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Preface

This book is a comprehensive textbook on stochastic calculus—the branch of
mathematics that is most widely applied in financial engineering and mathematical
finance. It will be useful for a two-semester graduate-level course on stochastic
calculus, where the background required is a course on measure-theoretic
probability.

This book begins with conditional expectation and martingales, and basic results
on martingales are included with proofs (in discrete time as well as in continuous
time). Then a chapter on Brownian motion and Ito’s integration with respect to the
Brownian motion follows, which includes stochastic differential equations. These
three chapters give a soft landing to a reader to the more complex results that
follow. The first three chapters form the introductory material.

Taking a cue from the Ito’s integral, a stochastic integrator is defined and its
properties, as well as the properties of the integral, are discussed. In most treat-
ments, one starts by defining the integral for a square integrable martingale and
where integrands themselves are in suitable Hilbert space. Then over several stages,
the integral is extended, and at each step, one has to reaffirm its properties. We
avoid this. Various results including quadratic variation and Ito’s formula follow
from the definition. Then Emery topology is defined and studied.

We then show that for a square integrable martingale M, the quadratic variation
[M,M] exists, and using this, we show that square integrable martingales are
stochastic integrators. This approach to stochastic integration is different from the
standard approach as we do not use Doob—Meyer decomposition. Instead of using
the predictable quadratic variation (M, M) of a square integrable martingale M, we
use the quadratic variation [M,M]. Using an inequality by Burkholder, we show
that all martingales and local martingales are stochastic integrators and thus
semimartingales are stochastic integrators. We then show that stochastic integrators
are semimartingales and obtain various results such as a description of the class of
integrands for the stochastic integral. We complete the chapter by giving a proof
of the Bichteler—Dellacherie—-Meyer—Mokobodzky theorem.
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These two chapters form the basic material. We have avoided invoking results
from functional analysis but rather included the required steps. Thus, instead of
saying that the integral is a continuous linear functional on a dense subset of a
Banach space and hence can be extended to the Banach space, we explicitly con-
struct the extension.

Next, we introduce Pathwise formulae for the quadratic variation and the
stochastic integral. These have not found a place in any textbook on stochastic
integration. We briefly specialize in continuous semimartingales and obtain growth
estimates and study the solution of a stochastic differential equation (SDE) using the
technique of random time change. We also prove pathwise formulae for the solution
of an SDE driven by continuous semimartingales.

Then, we move on to a study of predictable increasing processes, introduce
predictable stopping times and prove the Doob—Meyer decomposition theorem.

The Davis inequality (p = 1 case of the Burkholder—Davis—Gundy inequality)
plays an important role in the integral representation of martingales and hence is
taken up next. We also introduce the notion of a sigma-martingale.

We then give a comprehensive treatment of integral representation of martin-
gales and its connection with the uniqueness of equivalent martingale measure. This
connection is important from the point of view of mathematical finance. Here, we
consider the multivariate case and also include the case when the underlying pro-
cess is a sigma-martingale.

In order to study stochastic differential equations driven by a general semi-
martingale, we introduce the Metivier—Pellaumail inequality and, using it, introduce
a notion of the dominating process of a semimartingale. We then obtain existence
and uniqueness of solutions to the SDE and also obtain a pathwise formula by
showing that modified Euler—Peano approximations converge almost surely.

We conclude this book by discussing the Girsanov theorem and its role in the
construction of weak solutions to SDEs.

We would like to add that this book includes various techniques that we have
learnt over the last four decades from different sources. This includes, in addition to
books and articles given in the references, the Séminaire de Probabilités volumes
and various books on stochastic processes and research articles. We must also
mention the blog https://almostsure.wordpress.com/stochastic-calculus/ by George
Lowther, which brought some of these techniques to our attention.

Siruseri, India Rajeeva L. Karandikar
B. V. Rao


https://almostsure.wordpress.com/stochastic-calculus/
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Chapter 1 ®)
Discrete Parameter Martingales oo

In this chapter, we will discuss martingales indexed by integers (mostly positive
integers) and obtain basic inequalities on martingales and other results which are
the basis of most of the developments in later chapters on stochastic integration. We
will begin with a discussion on conditional expectation and then on filtration—two
notions central to martingales.

1.1 Notations

Foranintegerd > 1, R4 denotes the d-dimensional Euclidean space, and BR?Y) will
denote the Borel o-field on R?. Further, C(R?) and C,(R?) will denote the classes of
continuous functions and bounded continuous functions on R¢, respectively. When
d =1, we will write R in place of R'. Q will denote the set of rational numbers
in R.

(82, F, P) will denote a generic probability space, and B(£2, F) will denote the
class of real-valued bounded F measurable functions.

For a collection A C F, o(A) will denote the smallest o-field which contains A
and for a collection G C B(£2, F), o(G) will likewise denote the smallest o-field
with respect to which each function in G is measurable.

It is well known and easy to prove that

o(Cy(RY)) = BRY).

An R9-valued random variable X, on a probability space (£2, F, P), is function
from (£2, F) to (R, B(R?)). For such an X and a function f € C,(RY), E[ f(X)]
(or Ep[ f(X)] if there are more than one probability measure under consideration)
will denote the integral

© Springer Nature Singapore Pte Ltd. 2018 1
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E[f(X)]=sz(X(w))dP(w)-

For any measure ;. on (§2, F) and for 1 < p < oo, we will denote by LL” (1) the
space P (£2, F, p) of real-valued F measurable functions equipped with the norm

nfm7=</}deu>#

It is well known that IL” (1) is a Banach space under the norm || £ ,.
For more details and discussions as well as proofs of statements quoted in this
chapter, see Billingsley [4], Breiman [5], Ethier and Kurtz [18].

1.2 Conditional Expectation

Let X and Y be random variables. Suppose we are going to observe Y and are required
to make a guess for the value of X. Of course, we would like to be as close to X
as possible. Suppose the penalty function is square of the error. Thus we wish to
minimize

E[(X — a)?] (1.2.1)

where a is the guess or the estimate. For this to be meaningful, we should assume
E[X?] < oo. The value of a that minimizes (1.2.1) is the mean 1 = E[X]. On the
other hand, if we are allowed to use observations Y while making the guess, then our
estimate could be a function of Y. Thus we should choose the function g such that

E[(X — g(Y))*]

takes the minimum possible value. It can be shown that there exists a function g
(Borel measurable function from R to R) such that

E[(X — g(Y))*] < E[(X — f(Y))*] (1.2.2)

for all (Borel measurable) functions f. Further, if g;, g, are two functions satisfying
(1.2.2), then g, (Y) = g»(Y) almost surely P. Indeed, A = IL?(£2, F, P)—the space
of all square integrable random variables on (§2, F, P) with inner product (X, Y) =
E[XY], giving rise to the norm || Z| = /E[Z?], is a Hilbert space and

K= {f(): ffromR to R measurable, E[(f(Y))?] < oo}
isaclosed subspace of A. Hence given X € A, there is a unique element in K, namely

the orthogonal projection of X to KK, that satisfies (1.2.2). Thus for X € A, we can
define g(Y) to be the conditional expectation of X given Y, written as E[X | Y] =
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g(Y). One can show that for X, Z € Aanda,b e R
ElaX+bZ | Y] =aE[X | Y]+ bE[Z | Y]

and
X < ZimpliesE[X | Y] <E[Z | Y].

Note that (1.2.2) implies that for all ¢
ELX — g(1))*] < E[(X — g(¥) +1£(V))*]
for any f(Y) € K and hence that
PELF ()] + 20X — g(V) f(N] = 0, Vr.

In particular, g(Y) satisfies

E[(X — g(Y))f(Y)] =0 Vf bounded measurable. (1.2.3)
Indeed, (1.2.3) characterizes g(Y). Also, (1.2.3) is meaningful even when X is not
square integrable but only E[|X|] < oo. With a little work we can show that given X
with E[| X|] < oo, there exists aunique g(Y) such that (1.2.3) is valid. To see this, first
consider X > 0. Take X,, = min(X, n) and g, suchthatE[X,, | Y] = ¢, (Y). Clearly,
Gn(Y) = gnt1(Y) a.s. Define g(x) = limsup g, (x), g(x) = g(x) if g(x) < oo and
g(x) = 0 otherwise. One can show that

E[(X — g(Y))f(Y)] =0 Vf bounded measurable.
The case for general X can be deduced by writing X as difference of two non-
negative random variables. It is easy to see that in (1.2.3) it suffices to take f to be
{0, 1}-valued; i.e. indicator function of a Borel set. We are thus led to the following
definition: for random variables X, Y with E[|X|] < oo,

E[X [Y]=g()
where g is a Borel function satisfying
E[(X —g(Y)15(Y)] =0, VB € B(R). (1.2.4)
Now if instead of one random variable Y, we were to observe Yi, ..., Y,, we can
similarly define
EIX Y1, ...Yu]l=9g(1,...Yn)

where ¢ satisfies

El(X —g(Yy,...Yu)1g(Y1,...Y)] =0, VB e B(R").
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Also if we were to observe an infinite sequence, we have to proceed similarly, with
g being a Borel function on R*°. Of course, the random variables could be taking
values in R?. In each case we will have to write down properties and proofs thereof
and keep doing the same as the class of observable random variables changes.

Instead, here is a unified way. Let (§£2, F, P) be a probability space and Y be
a random variable on £2. The smallest o-field o(Y) with respect to which Y is
measurable (also called the o-field generated by Y) is given by

oY)={AeF:A={Y € B}, BeBR)}

Likewise, for random variables Y1, ...Y,,, the o-field o(Y;,...Y,,) generated by
Y1, ...Y, is the smallest o-field with respect to which Y7, ... Y,, are measurable and
is given by

oY1, ..Y)={AeF:A={(Y1,...Yn) € Bl, BeBER™].

Exercise 1.1 Show that

(i) Arandom variable Z can be written as Z = ¢(Y) for a measurable function
g if and only if Z is measurable with respect to o(Y).

(i) A random variable Z can be written as Z = g(Y;,Y,,...,Y,) for a
measurable function ¢ if and only if Z is measurable with respect to
O'(Yl, Yz,..., Yn).

Similar statement is true even for an infinite sequence of random variables. In view of
these observations, one can define conditional expectation given a o-field as follows.
It should be remembered that one mostly uses it when the o-field in question is
generated by a collection of observable random variables.

Definition 1.2 Let X be a random variable on (£2, F, P) with E[| X|] < oo and
let G be a sub-o-field of F. Then the conditional expectation of X given G is
defined to be the G measurable random variable Z such that

E[X14]1 =E[Z1,4], VA €g. (1.2.5)

Existence of Z can be proven on the same lines as given above, first for the case
when X is square integrable and then for general X. Also, Z is uniquely determined
up to null sets—if Z and Z’ are G measurable and both satisfy (1.2.5), then P(Z =
Z') = 1. Some properties of conditional expectation are given in the following two
propositions.

Throughout the book, we adopt a convention that all statements involving random
variables are to be interpreted in almost sure sense—i.e. X = Y means X =Y a.s.,
X <Y means X <Y a.s.

Proposition 1.3 Let X, Z be integrable random variables on (2, F,P) and G, H
be sub-o-fields of F with G C H and a, b € R. Then we have
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(i) ElaX +bZ | G] = aE[X | G] + bE[Z | G].

(ii) X <Z=E[X|G]<E[Z]|J].
(iii) |E[X |G]l < E[IX||G]

(iv) E[E[X | G]] = E[X].

(v) E[E[X | H]|G] = E[X | G].

(vi) If Z is G measurable such that E[ |ZX|] < oo then

E[ZX|G]= ZE[X | G].

Of course when X is square integrable, we do have an analogue of (1.2.2):

Proposition 1.4 Let X be a random variable with E[X?] < oo and H be a sub-o-
field. Then for all H measurable square integrable random variables U

E[(X — E[X | H])*] < E[(X — U)*].

1.3 Independence

Two events A, B in a probability space (§2, F, P), i.e. A, B € F, are said to be
independent if
P(AN B) =P(A)P(B).

For j =1,2,...m,let X; be an R4-valued random variable on a probability space
(2, F,P). Then Xy, X, ... X,, are said to be independent if for all A; € B(RY),

l<j<m
m

P(X; €A, 1<j<m=[]Px;eAp.
j=1

A sequence { X, } of random variables is said to be a sequence of independent random
variables if X, X», ..., X,, are independent for every m > 2.

Let G be a sub-o-field of F. An R?-valued random variable X is said to be
independent of the o-field G if for all A € B(R?), D € G,

P{X € A}Nn D) =P({X € A})P(D).

Exercise 1.5 Let X, Y be real-valued random variables. Show that

(i) X,Y are independent if and only if for all bounded Borel measurable
functions f, g on R, one has

EL/(X)g(M)] = ELf(X]E[g(N)]. (1.3.1)

(i) X,Y are independent if and only if for all bounded Borel measurable
functions f, on R, one has



6 1 Discrete Parameter Martingales
ELf(X) | o()] = E[f(X)]. (1.3.2)

(iii) X, Y are independent if and only if for all ¢ € R, one has
Elexp{itX} | o(Y)] = E[exp{itX}]. (1.3.3)

Exercise 1.6 Let U be an R?-valued random variable, and let G be a o-field.
Show that U is independent of G if and only if for all A € R?

E[exp{i)- U} | G] = E[exp{i\ - U}I. (1.3.4)

1.4 Filtration

Suppose X,, denotes a signal being transmitted at time n over a noisy channel (such
as voice over telephone lines), and let N,, denote the noise at time n and Y,, denote
the noise-corrupted signal that is observed. Under the assumption of additive noise,
we get

Y, =X,+N,, n>0.

Now the interest typically is in estimating the signal X,, at time n. Since the noise
as well the true signal is not observed, we must require that the estimate )?n of
the signal at time n be a function of only observations up to time n, i.e. X, must
only be a function of {Y; : 0 <k <n}, or )?n is measurable with respect to the
o-field G, = o{Y; : 0 <k < n}. A sequence of random variables X = {X,,} will
also be referred to as a process. Usually, the index n is interpreted as time. This is
the framework for filtering theory. See Kallianpur [31] for more on filtering theory.

Consider a situation from finance. Let S, be the market price of shares of a
company UVW at time n. Let A, denote the value of the assets of the company, B,
denote the value of contracts that the company has bid and C, denote the value of
contracts that the company is about to sign. The process S is observed by the public,
but the processes A, B, C are not observed by the public at large. Hence, while
making a decision on investing in shares of the company UVW, on the nth day, an
investor can only use information {S; : 0 < k < n} (we assume that the investment
decision is to be made before the price on nth day is revealed). Indeed, in trying
to find an optimal investment policy = = (m,) (optimum under some criterion), the
class of all investment strategies must be taken as all processes 7 such that for each n,
T, is a (measurable) function of {S; : 0 < k < n}. In particular, the strategy cannot
be a function of the unobserved processes A, B, C.

Let G, be the o-field generated by all the random variables observable before
time n, namely So, S1, S2, ..., Sy—1. It is reasonable to require that any action to be
taken at time n (say investment decision) is measurable with respect to G,. These
observations lead to the following definitions.
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Definition 1.7 A filtration on a probability space (£2, F, P) is an increasing
family of sub-o-fields (F,) = {F, : n > 0} of F indexed by n € {0,1,2,...,
m,...}.

Definition 1.8 A stochastic process X, i.e. a sequence X = {X,} of random
variables, is said to be adapted to a filtration (F)) if for all n > 0, X,, is F,
measurable.

In this chapter, we will only consider discrete-time stochastic processes. We will
assume that the underlying probability is complete,i.e. N € F,P(N) =0and N, <
N implies Ny € F and that F; contains all sets N € F with P(N) = 0. We will refer
to a stochastic process as a process. Let N be the class of all null sets (sets with
P(N) = 0), and for a process Z, possibly vector-valued, let

—0(Zy:0<k<n) (1.4.1)

and ~
Ff=aNUF?. (14.2)

While it is not required in the definition, in most situations, the filtration (F,)
under consideration would be chosen to be (for a suitable process Z)

(FH =1{Fl:n=0)

or - -
(F%) ={F?: n>0}.

Sometimes, a filtration is treated as a mere technicality. We would like to stress
that it is not so. It is a technical concept, but a very important ingredient of the
analysis. For example, in the estimation problem, one could consider the filtration
(ﬁX‘N) (recall, X is signal, N is noise and ¥ = X + N is the observable) as well
as (F, ¥). While one can use (]-' X’N) for technical reasons say in a proof, but when
it comes to_estimating the signal, the estimate at time n has to be measurable with
respect to F,. FYIfX, represents the estimate of the signal at time n, then the process
X must be required to be adapted to (F. FY ). Requiring it to be adapted to (}'_ My is
not meaningful. Indeed, if we can take X, to be adapted to (j-:_ XNy then we can as
well take X, = X, which is of course not meaningful. Thus, here (.7?_ XNy is a mere
technicality while (F7) is more than a technicality.

1.5 Martingales

In this section, we will fix a probability space (§2, F, P) and a filtration (F,). We
will only be considering R-valued processes in this section.
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Definition 1.9 A sequence M = {M,} of random variables is said to be a
martingale if M is (F,) adapted and for n > 0 one has E[|M,|] < oo and

EP[MnJrl |fn] =M,.

Definition 1.10 A sequence M = {M,} of random variables is said to be a
submartingale if M is (F,) adapted and for n > 0 one has E[|M,,|] < oo and

EP[Mn+1 |-¢.n] = Mn~

When there are more than one filtration in consideration, we will call it a (F))-
martingale or martingale w.r.t. (F,). Alternatively, we will say that {(M,,, F,,) : n >
0} is a martingale. It is easy to see that for a martingale M, for any m < n, one has

EP[Mn |fm] =M,

and similar statement is also true for submartingales. Indeed, one can define mar-
tingales and submartingales indexed by an arbitrary partially ordered set. We do not
discuss these in this book.

If M is a martingale and ¢ is a convex function on R, then Jensen’s inequal-
ity implies that the process X = {X,} defined by X, = ¢(M,) is a submartingale
provided X, is integrable for all n. If M is a submartingale and ¢ is an increasing
convex function then X is also a submartingale provided X, is integrable for each .
In particular, if M is a martingale or a positive submartingale with E[M?] < oo for
all n, then Y defined by ¥,, = M? is a submartingale.

When we are having only one filtration under consideration, we will drop reference
toitand simply say M is amartingale. It is easy to see also that sum of two martingales
with respect to the same underlying filtration is also a martingale. We note here an
important property of martingales that would be used later.

Theorem 1.11 Let M™ be a sequence of martingales on some probability space
(2, F, P) w.rt.a fixed filtration (F,). Suppose that

M" — M, inL"(P), Vn>0.

Then M is also a martingale w.r.t.the filtration (F,).

Proof Note that for any X converging to X in L' (P), for any o-field G, using (i),
(ii), (iii) and (iv) in Proposition 1.3, one has

E[ELX" |G] — E[X |G]|] = E[E[(X" — X) | 1]
< E[E[X" — X[ |Gl
= E[IX" — X]]

— 0.
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For n > 0, applying this to X" = M"

n?

one gets
M =E[M" | Ful = E[M,q1 | F,]in L'(P).

But M]" — M, in LY(P) so that E[M,,, | F,,] = M,,. It follows that M is a martin-
gale. (I

The following decomposition result, called the Doob decomposition, is simple
to prove but its analogue in continuous time was the beginning of the theory of
stochastic integration.

Theorem 1.12 Let X be a submartingale. Let A = {A,} be defined by Ay = 0 and
forn > 1,

An =Y El(Xi = Xi-1) | Fiil.

k=1

Then A is an increasing process (i.e. A, < A, forn > 0) such that Ay =0, A,
is F,_1 measurable for each n and M = {M,,} defined by

M, =X, _An

is a martingale. Further, if B = {B,} is a process such that By =0, B, is F,_
measurable for each n and N = {N,} defined by N, = X,, — B, is a martingale,
then

P(A,=B,Vn>1)=1.

Proof Since X is a submartingale, each summand in the definition of A, is non-
negative and hence A is an increasing process. Clearly, A, is F,_; measurable. By
the definition of A,,, M, we can see that

M, —M, =X, —X,—1— E[Xn — Xn1 |]:n—l]

and hence that
E[Mn - Mn—l |fn—l] =0

showing that M is a martingale. If B, is as in the statement, we can see that forn > 1,

E[(Xn - anl) |~¢.nfl] = E[(Nn - anl) | .7:,,71] + E[(Bn - anl) | .7:,171]
= E[(Bn - Bn—l) | ﬁl—]]
=B, — B,_,.

Now By = 0 implies

B, =) El(Xx — Xi1) | Fii]
k=1

completing the proof. ]
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The uniqueness in the result above depends strongly on the assumption that B,, is
Fn—1 measurable. The process A is called the compensator of the submartingale X.

Let M = {M,} be a martingale. The sequence D defined by D, = M,, — M,,_y,
forn > 1 and Dy = M, clearly satisfies

An adapted sequence {D,, : n > 0} satisfying (1.5.1) is called a martingale difference
sequence.

Definition 1.13 A sequence of random variables U = {U,} is said to be pre-
dictable if for all n > 1, U, is F,,_; measurable and U, is F, measurable.

The compensator A appearing in the Doob decomposition of a submartingale M is
predictable.

Consider a gambling house, where a sequence of games are being played, at say
one hour interval. If an amount a is bet on the nth game, the reward on the nth game is
aD,.Since a gambler can use the outcomes of the games that have been played earlier,
U, — the amount she bets on nth game can be random instead of a fixed number.
However, {U,, : n > 1} has to be predictable with respect to the underlying filtration
since the gambler has to decide how much to bet before the nth game is played. If the
game is fair, i.e. E[D, | F,,_1] = 0, then the partial sums M,, = Dy + ---+ D, is a
martingale and the total reward R,, at time 7 is then given by R, = ZZ:O Uy Dy. One
can see that it is also a martingale, if say U, is bounded. This leads to the following
definition.

Definition 1.14 Let M = {M,} be a martingale and U = {U,,} be a predictable
sequence of random variables. The process Z = {Z,} defined by Z, = 0 and
forn > 1

n

Zy =) UM~ M) (1.5.2)
k=1

is called the martingale transform of M by the sequence U.

The following result gives conditions under which the transformed sequence is a
martingale.

Theorem 1.15 Suppose M = {M, } is a martingale and U = {U, } is a predictable
sequence of random variables such that

E[|M,U,|] < oo foralln > 1. (1.5.3)

Then the martingale transform Z defined by (1.5.2) is a martingale.
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Proof Let us note that

ElIM,U,|1 = E[E[IM,U,| | Fu-11]

[
PE[M,,U,, | Fuall ] (1.5.4)
[

>E
=E |UnE[Mn |-7:n—l]|]
=E |UnMn—l|]

where we have used properties of conditional expectation and the fact that U, is F,,_;
measurable and that M is a martingale. Thus, (1.5.3) implies E[|U, M, _|] < oco.
This is needed to justify splitting the expression in the next step.

ElU.(M,, — M, 1) | Fooi] = ELUM, | F 1] — E[U M, -1 | Fri]
=U,EM, | Fo1] = UM,
=U,My — UM,
=0.

(1.5.5)

This implies C,, = U,,(M,, — M, _) is a martingale difference sequence, and thus Z
defined by (1.5.2) is a martingale. ([

The proof given above essentially also yields the following:

Theorem 1.16 Suppose M = {M,} is a submartingale and U = {U,} is a pre-
dictable sequence of random variables such that U, > 0 and

E[|M,_1U,|] < 00, E[|M,U,|1 < oo forall n> 1. (1.5.6)

Then the transform Z defined by (1.5.2) is a submartingale.

Exercise 1.17 Let (M,, F,) be a martingale. Show that M is a (]-‘_M) martin-
gale.

1.6 Stopping Times

We continue to work with a fixed probability space (£2, F, P) and a filtration (F,).

Definition 1.18 A stopping time 7 is a function from 2 to {0, 1,2, ..., } U {oo}
such that
{r=n}eXF, VYn<oo.

Equivalently, 7 is a stopping time if {7 < n} € F, forall n > 1. Stopping times were
introduced in the context of Markov Chains by Doob. Martingales and stopping times
together are very important tools in the theory of stochastic process in general and
stochastic calculus in particular.
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Definition 1.19 Let 7 be a stopping time and X be an adapted process. The
stopped random variable X . is defined by

X () =Y Xp (@)l r=n).
n=0

Note that by definition, X; = X, 1{; <. The following results connecting martin-
gales and submartingales and stopping times (and their counterparts in continuous
time) play a very important role in the theory of stochastic processes.

Exercise 1.20 Let o and 7 be two stopping times and let
E=T1voandn=rT1Ao0.

Show that £ and n are also stopping times. Here and in the rest of this book,
aV b =max(a,b) and a A b = min(a, b).

Exercise 1.21 Let 7 be a random variable taking valuesin {0, 1, 2, .. .}, and for
n > 0, let F, be the o-field generated by = A n. Characterize all the stopping
times w.r.t. this filtration.

Theorem 1.22 Let M = {M,} be a submartingale and T be a stopping time. Then
the process N = {N, } defined by

Nn = Mn/\‘r

is a submartingale. Further, if M is a martingale then so is N.

Proof Without loss of generality, we assume that My = 0. Let U, = 1{;-,, and
Vi = 1{7n). Since
{Uy =1} = Ui {r = k}

it follows that U, is F,_; measurable and hence U is a predictable sequence, and
since U, + V,, = 1, it follows that V is also a predictable sequence. Noting that
No =0andforn > 1

N, = Z Vie(My — My_1)
=1

the result follows from Theorem 1.16. O

The following version of this result is also useful.

Theorem 1.23 Let M = {M, )} be a submartingale and o, T be stopping times such
that 0 < 1. Let R = {R,}, S = {S,} be defined as follows: Ry = Sy = 0 and for
n>1

Sy =M, — Myp;,

Rn = Mn/\T - Mn/\(r-
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Then R, S are submartingales. Further, if M is a martingale then so are S, R.

Proof To proceed as earlier, let U, = 1{; <}, Vi = l{g<n<r} = Liz=n) — lio=n). Once
again U, V are predictable and note that So = Ry = O and forn > 1

S, = Z Ur(My — Mi—y)
=1
n

Ry= Vi(Mi — My_y).
k=1

The result follows from Theorems 1.16. O

The N in Theorem 1.22 is the submartingale M stopped at 7. S in Theorem 1.23 is
the increment of M after 7.

Corollary 1.24 Let M = {M,} be a submartingale and o, T be stopping times such
that o0 < 1. Then foralln > 1

E[M,ro] < E[M,n-].
It is easy to see that for a martingale M, E[M,,] = E[M,] foralln > 1. Of course,

this property does not characterize martingales. However, we do have the following
result.

Theorem 1.25 Let M = {M,} be an adapted process such that E[|M,|] < oo for
alln > 0. Then M is a martingale if and only if for all bounded stopping times T,

E[M.] = E[M,]. (1.6.1)
Proof If M is a martingale, Theorem 1.22 implies that
E[M- ] = E[Mo].
Thus taking n such that 7 < n, it follows that (1.6.1) holds.
Conversely, suppose (1.6.1) is true. To show that M is a martingale, suffices to
show that forn >0, A € F,,,

E[M,1114] = E[M,14]. (1.6.2)

Let 7 be defined by 7 = (n + 1)14 4+ nlye. Since A € F,, it is easy to check that 7
is a stopping time. Using E[M,] = E[Mj], it follows that

ElMs114 + My14c] = E[Mo]. (1.6.3)

Likewise, using (1.6.1) for 7 = n, we get E[M,] = E[M,], or equivalently
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E[M, 14+ M,14]=E[M,]. (1.6.4)

Now (1.6.2) follows from (1.6.3) and (1.6.4) completing the proof. O

1.7 Doob’s Maximal Inequality

We will now derive an inequality for martingales known as Doob’s maximal inequal-
ity. It plays a major role in stochastic calculus as we will see later.

Theorem 1.26 Let M be a martingale or a positive submartingale. Then, for A > 0,
n > 1 one has

1
P(OTEI%JMH >\ < XE[|Mn|1{max05k5,,|Mk|>A}]~ (1.7.1)

Further, for 1 < p < oo, there exists a universal constant C, depending only on p
such that
EL(max [My])"] < C,E[IM, "1, (1.72)

Proof Under the assumptions, the process N defined by N, = |M;| is a positive
submartingale. Let
T =inf{k : Ny > A}.

Here, and in what follows, we take infimum of the empty set as co. Then 7 is a
stopping time, and further, {maxp<x<, Ny < A} C {7 > n}. By Theorem 1.23, the
process S defined by Sy = N — Ni.- is a submartingale. Clearly Sy = 0 and hence
E[S,.] > 0. Note that 7 > n implies S, = 0. Thus, S, = Sn 1imaxg<<n N>} - Hence

E[Snl{maxogksu Nk>)\}] = 0.

This yields
E[NT/\}’I l{maXUSASH Ny >/\}] = E[Nn l{maxoikfn Ny >,\}]- (173)

Noting that maxg<x<, Ny > A implies 7 < n and N, > ), it follows that

NT/\}’! 1 {maxo<i<n N>} > )\l{maxUSkSH N>} (1 74)

combining (1.7.3) and (1.7.4) we conclude that (1.7.1) is valid.

The conclusion (1.7.2) follows from (1.7.1). To see this, fix 0 < o < oo and let
us write f = (maXo<x<n|Mi|) A @ and g = |M,,|. Then the inequality (1.7.1) can be
rewritten as

1
P(f >N =< XE[gl{f>)\]]- (1.7.5)
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Now consider the product space (2, F,P) ® ((0, o], B((0, a]), ) where p is
the Lebesgue measure on (0, «]. Consider the function 4 : £2 x (0, o] — (0, 00)
defined by

h(w, 1) = ptP sy, (Wi 1) € 2 x (0, al.

First, note that

/ ([ e ndndPw) = / Lf @)1 dPw)
2 J(0,a] 2
—EL/"].

(1.7.6)

On the other hand, using Fubini’s theorem in the first and fourth step below and using
the estimate (1.7.5) in the second step, we get

f[/ h(w,t)dt]dP(w):/ [/ h(w, t)dP(w)]dt
2 J(0,a] 0,0] J£2

:/ pt P VP(f > t)dt
0,a]
1
< [ gl
(0,0l !

= f pr?2 / 9@ p@-ndPw)ldr  (1.7.7)
0,a] o]

= / pt P21 = dt]g(w)dP(w)
2 J(0,a]

b / 9w) £V (W) dP(w)
-1 Jg

p
(p—=D

The first step in (1.7.8) below follows from the relations (1.7.6)—(1.7.7) and the next
one from Holder’s inequality, where g = (p+l) so that % + é =1:

z(p

Elgr? V1.

ELf?) < —L—E[gf¥D
(r—1
)4
(p—1

p 1 1
= E[¢’D 7 (E[fP]) .
o Elo"D7 EL7D

Since f is bounded, (1.7.8) implies

(ELg" D)7 (ELFP~D9])a (17.8)

(E[g"])7

E pp(=5H V4
[f7] =50
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which in turn implies (recalling definitions of f, g), writing C), = (ﬁ)”

EL((max [Mel) A )] < C,EL1M,1"]. (1.79)

Since (1.7.9) holds for all o, taking limit as « 1 oo (via integers) and using monotone
convergence theorem, we get that (1.7.2) is true. |

1.8 Martingale Convergence Theorem

Martingale convergence theorem is one of the main results on martingales. We begin
this section with an upcrossings inequality—a key step in its proof. Let {a, : 1 <
n < m} be a sequence of real numbers and o < 3 be real numbers. Let s, 7, be
defined (inductively) as follows: so = 0,7 = 0,and fork =1,2,...m

s =inf{n > t4_y :a, < a}, t{ =inf{n > s; : a, > G}.

Recall our convention—infimum of an empty set is taken to be oo. It is easy to see
that if ; = j < oo, then

O<si<th<...<Si<tfr=j <00 (1.8.1)

and fori < j
as, <o, a; > 0. (1.8.2)

i

We define
Un(laj - 1< j <m), o f) = max{k : 1 <m}.

Un({a; : 1 < j < mj}, a, B) is the number of upcrossings of the interval («, 3) by
the sequence {a; : 1 < j < m}. Egs.(1.8.1) and (1.8.2) together also imply #; >
(2k — 1) and also writing ¢; = max(«, a;) that

D (Cim = €s,am) = (B = )Un(fas}, @, B). (1.8.3)

j=1

This inequality follows because each completed upcrossings contributes at least
(8 — « to the sum, one term could be non-negative and rest of the terms are zero.

Lemma 1.27 For a sequence {a, : n > 1} of real numbers,

liminf a, = limsup a, (1.8.4)
n—00 n—00

if and only if
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lim U,({a; : 1 < j <m},a, B) <oo, Ya < f3, a, 3 rationals. (1.8.5)
m—0o0 :

Proof If liminf, ., a, < o < 3 < limsup,_, ., a, then
lim U, ({a; : 1 <j <m},a, )= oo.
m— o0

Thus (1.8.5) implies (1.8.4). The other implication follows easily. O

It follows that if (1.8.5) holds, then lim,,_, « a, exists in R = R U {—o0, co}. The
next result gives an estimate on expected value of

U,({X;:1=<j<m},a pB)

for a submartingale X.

Theorem 1.28 (Doob’s upcrossings inequality) . Let X be a submartingale. Then

fora < 3
E[Xm| + lal ]

ELU((X;: 1 =m)an ] = =0

(1.8.6)

Proof Fix a < 3 and define oyp = 0 = 79 and for k > 1
or=1inf{n > 71 : X,, < a}, 7 =inf{n >0 : X, > G}.

Then for each k, oy and 73 are stopping times. Writing ¥; = (X; — «)™, we see that
Y is also submartingale and as noted in (1.8.3)

m

> T = Yorm) = (B = )Un (X, 0 1< j < m), v, B). (1.8.7)
j=1

Ontheotherhand,using 0 < (o Am) < (mp Am)<... < (o Am)<(Tyy Am)=m
we have

m—1

Yo — YalAm = Z(Yr,/\m - Ya,'/\m) + Z(Ya,f+1Am - YT,-Am)- (1.8.8)
j=1

j=1
Since 41 Am > T; A m are stopping times and Y is a submartingale, using Corol-
lary 1.24 we have
E[Yaj+|Am - YTj/\m] = 0. (189)
Putting together (1.8.7), (1.8.8) and (1.8.9) we get
E[Ym - Yal/\m] = E[(ﬁ - a)Um({Xj 01 = ] = m}v «, ﬁ)] (1810)

Since Y; > 0 we get
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E[Y.
E[U,({X;:1<j<m},a, )] = 5[ ] (1.8.11)
The inequality (1.8.6) now follows using ¥, = (X,, — o)™ < | X,u| + | O

We recall the notion of uniform integrability of a class of random variables and
related results.
A collection {Z,, : « € A} of random variables is said to be uniformly integrable
if
hm [sup E[1Z411}z,1=k;1] = 0. (1.8.12)

—)OOa

Here are some exercises on uniform integrability.

Exercise 1.29 If {X, : n > 1} is uniformly integrable and |Y,| < |X,| for each
n then show that {¥,, : n > 1} is also uniformly integrable.

Exercise 1.30 Let {Z, : a € A} be such that for some p > 1

supE[|Z,]7] < o0.

show that {Z,, : a € A} is uniformly integrable.

Exercise 1.31 Let {Z, : o € A} be uniformly integrable. Show that

(i) sup, E[1Z4]1 < oo.
(i) Ye > 030 > 0 such that P(A) < ¢ implies

El1a|Z4|] <€ (1.8.13)

HINT: For (ii), observe that for any K > 0,
E[141Z,11 < KP(A) + E[|Zol1yz, 2]

Exercise 1.32 Show that{Z, : a € A} satisfies (i), (ii) in Exercise 1.31 if and
only if {Z, : a € A} is uniformly integrable.

Exercise 1.33 Suppose {X,: a € A} and {Y,: a € A} are uniformly inte-
grable and foreach a € A, let Z, = X, + Y,. Show that {Z, : « € A} is also
uniformly integrable.

The following result on uniform integrability is standard.
Lemma 1.34 Let Z, Z, € L'(P) forn > 1.

(i) Z, converges in L' (P) to Z if and only if it converges to Z in probability and
{Z,} is uniformly integrable.
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(ii) Let{G, : o € A} be a collection of sub-c-fields of F. Then
{E[Z | G.] : « € A} is uniformly integrable.

Exercise 1.35 Prove Lemma 1.34. For (i), use Exercise 1.32.

We are now in a position to prove the basic martingale convergence theorem.

Theorem 1.36 (Martingale Convergence Theorem) Let {X, : n > 0} be a sub-
martingale such that
supE[|X,|] = K| < o0. (1.8.14)

Then the sequence of random variables X, converges a.e. to a random variable &
with E[|£]] < oo. Further if {X,} is uniformly integrable, then X, converges to &
in LY(P). If {X,,} is a martingale or a positive submartingale and if for some p,
l<p<o
sup E[|X, 1=K, < oo, (1.8.15)
n
then X, converges to & in L (P).

Proof The upcrossings inequality Theorem 1.28 gives

Ky + |af

E[Um({Xj}sav 5)] = B—OL

for any o < (3 and hence by monotone convergence theorem

Elsup U,,({X,}, o, B)] < o0.

m>1
Let Nog = {sup,,>; Un({X}, a, B) = oco}. Then P(N,3) = 0 and hence if
N* =U{N,; : a < 3, a, (3 rationals}
then P(N*) = 0. Clearly, for w ¢ N* one has

sup U, ({X (W)}, o, B) < 00 Ya < 3, «, (3 rationals.

m>1
Hence by Lemma 1.27, forw ¢ N*

& (w) = liminf X, (w) = limsup X, (w).
n—oQ

n—00

Defining £*(w) = 0 for w € N*, by Fatou’s lemma we get

E[1€*] < o0
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so that P(£* € R) = 1. Then defining £(w) = £*(w) L{je* )| <00} We get
X, —> £a.e.

If {X,,} is uniformly integrable, the a.e. convergence also implies ! (P) convergence.
If {X,} is a martingale or a positive submartingale, then by Doob’s maximal
inequality,
E[(lrg]ggankl)p] < C,E[|X,IP1<C,K, <0

and hence by monotone convergence theorem Z = (sup;.;|X|)? is integrable. Now
the convergence in IL” (P) follows from the dominated convergence theorem. ]

Theorem 1.37 Let {F,,} be an increasing family of sub-o-fields of F, and let
Foo =0 (U F). Let Z € LY(P) and for 1 < n < oo, let

m=1

Z, =E[Z|F.]

Then Z, — Z* = E[Z | Fso]l in LY(P) and a.s.

Proof From the definition it is clear that Z is a martingale and it is uniformly inte-
grable by Lemma 1.34. Thus Z, converges in ! (P) and a.s. to say Z*. To complete
the proof, we will show that

Z* = E[Z| Fxl (1.8.16)

Since each Z,, is F, measurable and Z* is limit of {Z,,} (a.s.), it follows that Z* is
Fs measurable. Fix m > 1 and A € F,,. Then

E[Z, 141 = E[Z14], VR>=m (1.8.17)

since F,, C F, forn > m. Taking limitin (1.8.17) and using that Z, — Z*in LY(P),
we conclude that
E[Z*14]1 = E[Z14] (1.8.18)

VA e U2 | F,, which is a field that generates the o-field ... The monotone class

theorem implies that (1.8.18) holds for all A € F and hence (1.8.16) holds. (I

The previous result has an analogue when the o-fields are decreasing. Usually one
introduces a reverse martingale (martingale indexed by negative integers) to prove
this result. We avoid it by incorporating the same in the proof.

Theorem 1.38 Let {G,,} be a decreasing family of sub-o-fields of F, i.e. Gy 2 Gy
forallm > 1. Let Goo = N7_ Gy Let Zg € LY(P), and for 1 <n < oo, let

Z, = E[ZO | gn]

Then Z, — Zs in L'(P) and a.s.
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Proof Fixm. Then {(Z,,_;, F,—;) : 1 < j < m}isamartingale where Gy = F and
the upcrossings inequality Theorem 1.28 gives

EllZo| + |al ]

ElU,.{Zy—j:1<j<m},a B < —F—70.
08—«

and hence proceeding as in Theorem 1.36, we can conclude that there exists N* C §2

with P(N*) = 0 and for w ¢ N* one has

sup U ({Zy—j (W)}, a, B) < 00 Yo < 3, a, B rationals.

m>1
Now arguments as in Lemma 1.27 imply that

liminf Z,(w) = lim sup Z, (w).

n—>00 n—00

By Jensen’s inequality |Z,| < E[|Zy| | G,]. It follows that {Z,} is uniformly inte-
grable (by Lemma 1.34) and thus Z, converge a.e. and in L'(P) to a real-valued
random variable Z*. Since Z, for n > m is G,, measurable, it follows that Z* is G,,
measurable for every m and hence Z* is G, measurable.

Also forall A € G, for all n > 1 we have

/Z,llAszfzolAdP

since Goo € G,. Now L' (P) convergence of Z, to Z* implies that for all A € Go,

/Z*lAszfzolAdP.

Thus E[Zg | Goo] = Z*. O

Exercise 1.39 Let 2 = [0, 1], F be the Borel o-field on [0, 1], and let P denote
the Lebesgue measure on (£2, 7). Let Q be another probability measure
on (£2, F) absolutely continuous with respect to P, i.e. satisfying P(4) =0
implies Q(A) = 0. Forn > 1 let

277
X"(w) =Y 2"QU27"(j = 1), 27" D112 j@).

j=1

Let F, be the field generated by the intervals {27"(j — 1),27"j] : 1 < j <
2"}. Show that (X, F,) is a uniformly integrable martingale and thus con-
verges to a random variable ¢ in L!(P). Show that ¢ satisfies
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/fdP:Q(A) VAeF. (1.8.19)
A

HINT: To show uniform integrability of {X,, : n > 1} use Exercise 1.32 along
with the fact that absolute continuity of Q w.r.t. P implies that for all ¢ > 0,
36 > 0 such that P(A) < § implies Q(A) < e.

Exercise 1.40 Let F be a countably generated o-field on a set £2, i.e. there
exists a sequence of sets {B, : n > 1} suchthat 7 = o({B, : n > 1}). Let P,
Q be probability measures on (2, F) such that Q absolutely continuous with
respectto P. Forn > 1, let 7, = c({By : k < n}). Then show the following.

(i) Foreachn > 1,3 a partition {Cy, C; ..., Cy,} of £2 such that
FnZO'(C],CQ...,CkW).

(iiy Forn>1let
Q(C)

kn
Xyw) =) 1{P(Cl_)>o}mlc_, (W). (1.8.20)
j=1 J

Show that (X,,, F,) is a uniformly integrable martingale on (£2, F, P).
(i) X, converges in L'(P) and also P almost surely to X satisfying

/XszQ(A) VA e F. (1.8.21)
A

The random variable X in (1.8.21) is called the Radon—-Nikodym derivative of Q
w.r.t.P.

Exercise 1.41 Let F be a countably generated o-field on a set 2. Let I" be
a non-empty set and A be a o-field on I'. For each a € T let P, and Q, be
probability measures on (£2, F) such that Q, is absolutely continuous with
respect to P,. Suppose that for each A € 7, a+— P,(A) and a+— Q,(A)
are measurable. Show that there exists £ : 2 x I' — [0, co) such that £ is
measurable w.r.t. F ® A and

f G, )dP, =Qu(A) YA€ F, YaeTl (1.8.22)
A

1.9 Square Integrable Martingales

Martingales M such that
E[IM,*] <00, n>0 (1.9.1)
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are called square integrable martingales, and they play a special role in the theory of
stochastic integration as we will see later. Let us note that for p = 2, the constant C),
appearing in (1.7.2) equals 4. Thus for a square integrable martingale M, we have

E[( max |M])’] < 4E[1M, ] (19.2)

As seen earlier, X, = M? is a submartingale and the compensator of X—namely
the predictable increasing process A such that X, — A, is a martingale, is given by
Ao =0and forn > 1,

A, = E[(Xk — Xi—1) | Feal
=1

The compensator A is denoted as (M, M). Using

E[(My — My_1)* | Fii] = E[(M} — 2M My + M} ) | Fio1]

(1.9.3)
= E[(M} — M{_)) | Fia]
it follows that the compensator can be described as
(M, M), =Y E[(My — My1)* | Fi 1] (1.9.4)

k=1

Thus (M, M) is the unique predictable increasing process with (M, M)y = 0 such
that M2 — (M, M), is a martingale. Let us also define another increasing process
[M, M] associated with a martingale M: [M, M]y, = 0 and

(M. M1, =) (M — M), (1.9.5)
k=1
The process [M, M] is called the quadratic variation of M, and the process (M, M)
is called the predictable quadratic variation of M. It can be easily checked that
M2 =M, M, =M +2> " My (My — Mi_y)
k=1

and hence using Theorem 1.15 it follows that M,% — [M, M], is also a martingale. If
M, = 0, then it follows that

E[M2] = E[(M, M),] = E[[M, M],]. (1.9.6)

We have already seen that if U is a bounded predictable sequence then the trans-
form Z defined by (1.5.2)
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n
Zy =) UMy — M)
k=1

is itself a martingale. The next result includes an estimate on the I.?(P) norm of Z,,.

Theorem 1.42 Let M be a square integrable martingale and U be a bounded pre-
dictable process. Let Zo = 0 and forn > 1, let

Zn =Y UMy — My_y).
k=1

Then Z is itself a square integrable martingale and further
n

(Z.Z)y =Y UF(M. M) — (M. My _) (19.7)
k=1

2. Z), = Y UM, M — [M. MJ;_y). (1.9.8)
k=1

As a consequence

n N
EL max |} Un(My — M)’ < 4ELY UM, M — [M. M1i—)]. (19.9)
- k=1 k=1

Proof Since U is bounded and predictable, Z, is square integrable for each n. That
Z is square integrable martingale follows from Theorem 1.15. Since

(Zi = Zi1)* = UF(My — My 1)’ (1.9.10)

the relation (1.9.8) follows from the definition of the quadratic variation. Further,
taking conditional expectation given Fj_; in (1.9.10) and using that Uy is Fy_
measurable, one concludes

E[(Zk — Zi—1)* | Fie1l = UFE[(My — My—1)* | Fi—1]
= UZ((M, M)y — (M, M);_1)

by (1.9.4). This proves (1.9.7). Now (1.9.9) follows from (1.9.8) and Doob’s maximal
inequality, Theorem 1.26. O

(1.9.11)

Corollary 1.43 For a square integrable martingale M and a predictable process U
bounded by 1, defining Z,, = ZZ=1 Ur(My, — My_y) we have

El max |3 Un(My — Mi—)’] < 4EL [M. M]y]. (1.9.12)
T k=1

Further,
[Z,Z], <[M,M],, n>1. (1.9.13)
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The inequality (1.9.12) plays a very important role in the theory of stochastic
integration as later chapters will reveal. We will obtain another estimate due to
Burkholder [6] on martingale transform which is valid even when the martingale is
not square integrable.

Theorem 1.44 (Burkholder’s inequality) Let M be a martingale and U be a
bounded predictable process, bounded by 1. Then

- 9
P( max IZ UMy — Mi_)| = N) < XE[|MN| 1. (1.9.14)
k=1

1<n<N

Proof Let
A
T=1inf{n >0 : |M,1|ZZ}A(N+1)

so that 7 is a stopping time. Since {7 < N} = {maxo<,<y|M,| > %}, using Doob’s
maximal inequality (Theorem 1.26) for the positive submartingale {|M| : 0 < k <
N}, we have

P(t <N) < ;E(|MN|). (1.9.15)

For0 <n < N,let{, = M,1{,.. Bydefinitionof 7, |§,| < %forO <n < N.Since
ontheset {r = N + 1}, &, = M,, Yn < N, it follows that

P(lgzjlstl ; Ur(My — Mg—1)| = X)
< P(lr_gastg Uk = &1l = ) +P(r < N) (19.16)
< P( max |Xn: U&r — &) =N + iE(UMND
~  Cl<n<N — T A

We will now prove that for any predictable sequence of random variables {V,,}
bounded by 1, we have

N
[ELY  Vi(& — &1l < E[|My]]. (1.9.17)

k=1

Let us define Mk = My ., for k > 0. Since M is a martingale, E[Z,[(V:l Vk(Mk —

M;_1)] = 0. Writing Y, = &, — M,, it follows that

N N
E[Y  Vil& — & D1 =E[Y_ Vi(¥e — Y], (1.9.18)

k=1 k=1
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Since Y, = M, 1y<r) — Mynr = —Myparlz<py = —M; 1<y, it follows that Y —
Yk—l = MTI{Tg(k—])] — M’rl{'rgk} and thus Yk - Yk_] = _MTI[T:/(}' Using (1918),
we get

N N
ELY  Vi(& — &1l = [EDY_ ViV = Y]

k=1 k=1

N

<E[Y Y= Yiil]
k=1 (1.9.19)
N

<E[Y 1M1
k=1

= E[|MT| 1{‘rSN}]

<E[|My]]

where for the last step we have used that | M, | is a submartingale. We will decompose
{¢&,: 0 <n < N} into a martingale {R, : 0 <n < N} and a predictable process
{B,: 0<n < N}asfollows: By =0, Ry =& andforO <n < N

B, = B,—1 + (E[& | Fui] — &u-1)
R, =&, — By,
By construction, {R,} is a martingale and {B,,} is predictable. Note that
B, — By—1 = E[§ | Fumt] — &

and hence

R, —R,_1 = (gn - gnfl) - E[gn - gnfl |fn71]-

As a consequence
E[(R, — Ru-1)?] < E[(& — &)1, (1.9.20)

For x e R, let sgn(x) =1 for x >0 and sgn(x) = —1 for x <0, so that
|x| = sgn(x)x. Now taking V; = sgn(B; — Bi_1) and noting that V is G;,_; mea-
surable, we have E[ Vi (By — Br_1)] = E[Vi (& — &—1)] (since £ = R + B and R is
a martingale) and hence

n N
E[l‘;‘%i"zv'; Ue(By — By 1)1 < E[;KBk — B )]

N
=E[)_Ve(Be— Bl (1921

k=1
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N
=E[)_ Vi — &)
k=1
E[IMy]]

where we have used (1.9.19). Thus

E[|My|]. (1.9.22)

>IN

" A
P(gflgxzv'; Uk (Br — Bi-1)| = 5)

Since R is a martingale and U is predictable, X, = ZZ:] Ui (R — Ry_) is a mar-
tingale and hence X? is a submartingale. Thus

n

P( max |Z Ue(Re — Ri1)| = —) = P( max |Z Ue(Re — Ri)* = —)

=< EE[X 1.
(1.9.23)
Since X is a martingale transform of the martingale R, with U bounded by one, we

have
E[X%] = E[[X, X]y]

< E[[R, R]y]

N
<E[) (Re — Ri1)’] (1.9.24)

k=1

N
<ELY &% — &),

k=1

where we have used (1.9.20). The estimates (1.9.23) and (1.9.24) together yield

) <

l\J|>/
>/|_J;

P(max |y Uk(Re — Re-1)| =
=1

1<n<N

[Z(@ — &)l (1.9.25)

k=1

Using the identity (y — x)? = y> — x2 — 2x(y — x) fory = & and x = &_; and
summing over k, one gets

N N
DG -G =8 -5 - 22&4@ — &)
k=t = (1.9.26)

A
Z|MN|+2 ;Wk(ﬁk §k-1)
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where Wy = —$& 1. Here we have used £ = M3 1y~-. Note that [W;| < 1 and
Wy, is Gi—1 measurable. Using (1.9.19) and (1.9.26), we get

Y 3\
BIY (& — &1 = E[Myl]. (1.9.27)
k=1

Now (1.9.25) and (1.9.27) together yield

. A3
P(ﬂ;%'; Ue(Re = Rie)| = 2) < TE[IM| . (1.9.28)
Since & = Ry + By, (1.9.22) and (1.9.28) give
= 5
P(IIS%E Uk — &l = ) < TE[My|]. (1.9.29)
Finally, (1.9.16) and (1.9.29) together imply the required estimate (1.9.14). (I

1.10 Burkholder-Davis—Gundy Inequality

If M is a square integrable martingale with My = 0, then we have
E[M;] = E[(M, M),] = E[[M, M],].
And Doob’s maximal inequality (1.9.2) yields

E[[M, M1,] = E[M?]
< E[(max | M|)’] (1.10.1)
< 4E[[M, M],].

Burkholder and Gundy proved that indeed for 1 < p < oo, there exist constants

12
Cpi €y such that

P

¢, EL(IM. M1,) ] < El(max |M)"] < SEL(IM. M1,) "),

Note that for p = 2, this reduces to (1.10.1). Davis went on to prove the above
inequality for p = 1. This case plays an important role in the result on integral
representation of martingales that we will later consider. Hence we include a proof
for the case p = 1—essentially this is the proof given by Davis [14]
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Theorem 1.45 Let M be a martingale with My = 0. Then there exist universal
constants c', ¢* such that for all N > 1

c'E[(IM. M1y)*] < EL max [My|] < CE[(M. M]y)*]. (1.102)

Proof Let us define forn > 1

1 _
U, = gg;lel
n
1
Uy = (M — Mi_1)*)>
k=1
W, = max |M; — M|

1<k<n

and V! = U2, V2 = U. The reason for unusual notation is that we will prove

n’

E[U/] < 130E[V/], 1=1,2 (1.10.3)

and this will prove both the inequalities in (1.10.2). Note that by definition, for all
n>1,
W, <2V!

n’

W, <2U' t=1,2. (1.10.4)

We begin by decomposing M as M,, = X,, + Y,,, where X and Y are also martin-
gales defined as follows. Forn > 1 let

R, = (M, — My—1) ,—m,_)1>2w, 1)
Sn - E[Rn | fnfl]
n
Xy =) (Re = Sp)
k=1
T, = My — My—1) Ly, —m,)1<2w, )

Yn =M11_Xn

and Xy = Yy = 0. Let us note that X is a martingale by definition and hence so is Y.
Also that

Yo=Y (Ti+ .

k=1

If |R,| > Othen |(M,, — M,,_y)| > 2W,_;andso W, = |(M, — M,_,)| and, in turn,
IR, = W, <2(W,, — W,_1). Thus (noting W,, > W, _; for all n)

D IRl <2W, (1.10.5)
k=1

and using that E[ |S,|] < E[|R,| ], it also follows that
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> ELISi] ] < 2E(W,). (1.10.6)
k=1

Thus (using (1.10.4)) we have

ELY IRl + D ISil1 < 4E(W,) < 8E[V,], =12, (110.7)
k=1 k=1
Since X; — Xy—1 = Ry — Sk, (1.10.7) gives us for all n > 1,
ZE[ X — Xe 1|1 <8E[V/], t=1,2. (1.10.8)
k=1

Let us define forn > 1,

1
A, = max |X]
I<k=n

A= (X = X))
k=1

F! = max |¥;]
1<k<n

1
Fy=(Q (Y= Yi)?):
k=1

and B! = A2, B2 = Al,G) = F2,G% = F!.Sinceforl < j <n,|X;| <Y }_|R«l

n’

+ ZZ=1 | Sk|, the estimates (1.10.7)—(1.10.8) immediately give us
E[A!] <8E[V!], E[B.]<8E[V!], t=1,2. (1.10.9)
Also we note here that foralln > 1,r =1,2
Ul <A +F (1.10.10)

and
G' <B' +V!. (1.10.11)

Thus, foralln > 1,¢ = 1, 2 using (1.10.9) we conclude
E[(U!]1 < 8E[V!]+ E[F!]. (1.10.12)

Now using Fubini’s theorem (as used in proof of Theorem 1.26) it follows that

E[F)] =/ P(F} > x)dx. (1.10.13)
0
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We now will estimate P(F}, > x). For this we fix 7 € {1, 2}, and for x € (0, 00),
define a stopping time

oy =inf{n>1: V! >xorG) > xor|S,11| >x}AN.

Since S,4 is F, measurable, it follows that o, is a stopping time. If o, < N then
either V5, > x or Gy > x or Z,’c\,=1|Sk| > x. Thus

P(o, < N) <P(V}, > x) + P(GYy > x) + P( o, ISk] > x)

and hence
/ P(o, < N)dx < / P(Vy > x)dx +/ P(Gy > x)dx
0 0 0

+/ PO, 1S,] > x)dx
0

= E[V}]+ E[GY ]+ E[YN 15,11
< E[V{]+ E[V{] + E[By] + 2E[Wy]

where we have used (1.10.11) and (1.10.6) in the last step. Now using (1.10.9),
(1.10.4) gives us

/ P(o, < N)dx < 14E[V/]. (1.10.14)
0

Note that S,, < x and hence

|Gf7_t - ny),_1| 5 |TUA + SUX|

= 2W0X71 +x
< 4V;X71 +x
< 5x

and as a result, using ij _1 < x, we conclude
«

G. < 6x.

Ox

Hence in view of (1.10.11), we have

G' < min{B} + V/,, 6x}. (1.10.15)

Ox

Let Z,, = Yyro,. Then Z is a martingale with Zy = 0 and
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N
ElZy]= > El(Z — Z1)*] = EI(G} )].

k=1
Further, Z2 is a positive submartingale and hence

P(F) >x)=P(max |Z] > x)

x 1<k<N
LE22)
x2 N
1
— ;E[(G},X)ﬁ.

On the other hand

P(F(i > x) =P, (Zi - Zi_)H)? > x)

IA

N
1
= D ElZ = Zia)’)
k=1
1 2
= ;E[(ZN) ]
1
= SEG)’).
Thus, we have fort =1, 2, forn > 1
1
P(F; > x) < 5EIG, )l (1.10.16)
X x X

Now, writing Q' = é(Bl’v + V), we have

E[F}] =/ P(Fy > x)dx
0
5/ P(o, < N)dx—i—/ P(F; > x)dx
0 0
|
< 14E[v,’v]+/ —El(G), )*ldx
0o X !

* 1
< L4E[V]] + / L Ef(min(By + Vi 62)))dx (110.17)
o X

IA

14E[V}] + E[f i—g(min{Q’, x}2dx]
0

o' 00

EVI B[ S0t +ELf
0

o'

IA

36
;(Q’f]dx

< 14E[V}] + E[360Q'] + E[36Q'].
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Using the estimate (1.10.9), we have

1
E[Q'] = E(E[va] + E[VyD
(1.10.18)
9 t
< EE[VN]
and putting together (1.10.17)—(1.10.18) we conclude
E[F}] < 122E[V{]

and along with (1.10.12) we finally conclude, fort = 1, 2

E[UL] < 130E[V},].



Chapter 2 ()
Continuous-Time Processes Creck for

In this chapter, we will give definitions, set up notations that will be used in the rest
of the book and give some basic results. While some proofs are included, several
results are stated without proof. The proofs of these results can be found in standard
books on stochastic processes.

2.1 Notations and Basic Facts

E will denote a complete separable metric space, C(E) will denote the space of real-
valued continuous functions on E, C,(E) will denote bounded functions in C(E),
and B(E) will denote the Borel o-field on E. R? will denote the d-dimensional
Euclidean space and L(m, d) will denote the space of m x d matrices with real
entries. For x € R? and A € L(m, d), |x| and ||A|| will denote the Euclidean norms
of x, A, respectively.

(£2, F, P) will denote a generic probability space, and B(§2, F) will denote the
class of real-valued bounded F measurable functions. When 2 = E and F = B(E),
we will write B(E) for real-valued bounded Borel measurable functions.

Recall that for a collection A C F, o(A) will denote the smallest o-field which
contains A and for a collection G of measurable functions on (§2, F), o(G) will
likewise denote the smallest o-field on §2 with respect to which each function in G
is measurable.

It is well known and easy to prove that for a complete separable metric space E,

o(Cy(E)) = B(E)

For aninteger d > 1,let C; = C([0, co), R?) with the ucc topology, i.e. uniform
convergence on compact subsets of [0, co). With this topology, C, is itself a complete
separable metric space. We will denote a generic element in C,; by (. Denoting the
coordinate mappings on C, by
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36 2 Continuous-Time Processes
Bi(() =C¢(), (€Cyand 0 <t < o0

it can be shown that
BCy) =03 : 0<t < ).

A function ~ from [0, co) to R is said to be r.c.l.1. (right continuous with left
limits) if + is right continuous everywhere ((f) = lim,, y(u) for all 0 <t < 00)
and such that the left limit (1 —) = lim,4, y(u) exists forall 0 < r < co. We define
v¥(0—) =0 and for r > 0, Ay(t) = y(t) — y(t—).

For an integer d > 1, let D; = ID([0, 00), R?) be the space of all r.c.L.l. functions
~ from [0, 00) to R with the topology of uniform convergence on compact subsets,
abbreviated it as ucc. Thus 4" converges to 7y in ucc topology if

sup |y (t) — ()] > 0 VT < oo.

t<T

Exercise 2.1 Let~y € D,.
(i) Show that forany e > 0, and T < oo, the set

{tel0,T]: [(AV)@®)] > ¢}

is a finite set.

(iiy Show that the set {r € [0, o0) : |(A7)(r)| > 0} is a countable set.

(i) Let K ={y@®) : 0<t<T}U{y(@—) : 0 <t < T}. Show that K is com-
pact.

The space Dy, is equipped with the o-field o(6, : 0 <t < co0) where 6, are coor-
dinate mappings on D, defined by

0:(y) =~(@), yeDyand 0 <t < oco.

We will denote this o-field as B(ID,). It can be shown that this o-field is same as the
Borel o-field for the Skorokhod topology (see Ethier and Kurtz [18]). However, we
do not need this fact.

An E-valued random variable X defined on a probability space (§2, F, P) is
a measurable function from (§2, F) to (E, B(E)). For such an X and a function
f € Cy(E), E[ f(X)] will denote the integral

E[f(X)]=[Qf(X(W))dP(w)~

If there are more than one probability measures under consideration, we will denote
itas Ep[f(X)].

An E-valued stochastic process X is a collection {X; : 0 <t < oo} of E-valued
random variables. While one can consider families of random variables indexed by
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sets other than [0, 00), say [0, 1] or even [0, 1] x [0, 1], unless stated otherwise we
will take the index set to be [0, o). Sometimes for notational clarity we will also
use X (¢) to denote X.

From now on unless otherwise stated, a process will mean a continuous-time
stochastic process X = (X;) with ¢ € [0, 00) or t € [0, T]. For more details and
discussions as well as proofs of statements given without proof in this chapter, see
Breiman [5], Ethier and Kurtz [18], Ikeda and Watanabe [24], Jacod [26], Karatzas
and Shreve [43], Metivier [50], Meyer [51], Protter [52], Revuz-Yor [53], Stroock
and Varadhan [60], Williams [59].

Definition 2.2 Two processes X, Y, defined on the same probability space
(£2, F, P) are said to be equal (written as X = Y) if

P(X;, =Y, forallr >0) =1.
In other words, X = Y if 3829 € F such that P(§2y) = 1 and
Vit >0, Yw € 2y, Xi(w) =Y (w).

Definition 2.3 A process Y is said to be a version of another process X (writ-
ten as X < Y) if both are defined on the same probability space and if

P(X,=Y,)=1 forallt > 0.

It should be noted that in general, X <> Y does not imply X = Y. Take £2 = [0, 1]
with F to be the Borel o-field and P to be the Lebesgue measure. Let X, (w) = 0 for
allt,w € [0, 1]. Fort,w € [0, 1], ¥;(w) = 0 forw € [0, 1],w # t and ¥;(w) = 1 for
w = t. Easy to see that X <5 Y but P(X;, =Y, forallt > 0) =0.

Definition 2.4 Two E-valued processes X, Y are said to have same distribu-

tion (written as X < Y), where X is defined on (£2, 1, P;) and Y is defined
on (Qz,fz,Pz), ifforallm=>1,0<ti<th<...<ty, A1, As,..., A, € B(E)

Pi(X, € A1, X, € Ay, ..., X,, € Ap)
=Py(Y,, € A1,Y, €Ay, ... Y, €A,).

Thus, two processes have same distribution if their finite-dimensional distributions
. . d
are the same. It is easy to see that if X <> YthenX =Y.

Definition 2.5 Let X be an E-valued process and D be a Borel subset of E.
X is said to be D-valued if

P(X, e D V1) = 1.
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Definition 2.6 An E-valued process X is said to be a continuous process (or a
process with continuous paths) if for all w € £2, the path t — X,(w) is contin-
uous.

Definition 2.7 An E-valued process X is said to be an rc.LL process (or a
process with right continuous paths with left limits) if for all w € §2, the path
t — X, (w) is right continuous and admits left limits for all > 0.

Definition 2.8 An E-valued process X is said to be an lLc.rl process (or a
process with left continuous paths with right limits) if for all w € §2, the path
t — X, (w) is left continuous on (0, co) and admits right limits for all # > 0.

For an r.c.l.l. process X, X~ will denote the r.c.Ll. process defined by X;” = X (r—),
i.e. the left limit at ¢, with the convention X (0—) = 0 and let

AX =X —-X"

so that (AX), = 0 at each continuity point and equals the jump otherwise. Note that
by the above convention
(AX)o = Xo.

Let X, Y ber.c.Ll. processes such that X <—> Y. Thenitis easy tosee that X = Y.
The same is true if both X, Y are l.c.r.l. processes.

Exercise 2.9 Prove the statements in the previous paragraph.

It is easy to see that if X is an R?-valued r.c.Ll. process or an l.c.r.l. process then

sup | X, (w)| < oo VT < oo, Vw.
0<t<T

Exercise 2.10 If X is an R?-valued r.c.l.|. process then show that the process
Z defined by
Zi(w) = sup |X;(w)]

0<s<t

is an r.c.l.l. process.

When X is an R?-valued continuous process, the mapping w > X, (w) from £2
into C, is measurable and induces a measure P o X~! on (Cy, B(C,)). This is
so because the Borel o-field B(C,) is also the smallest o-field with respect to
which the coordinate process is measurable. Likewise, when X is an r.c.l.l. process,
the mapping w — X,(w) from £2 into DD; is measurable and induces a measure
Po X~ ! on (Dy, B(D,)). In both cases, the probability measure P o X! is called
the distribution of the process X.

Definition 2.11 A d-dimensional Brownian motion (also called a Wiener pro-
cess) is an R?-valued continuous process X such that
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(i) P(Xo=0)=1.
(i) For0 <s <t < oo, the distribution of X, — X, is normal (Gaussian) with
mean 0 and co-variance matrix (t — s)/, i.e. for u € R?

Elexpliu - (X, — X;)} = exp{—( — 5)[u|*}

(i) Form=>1,0=1t <1t <...<t,, the random variables Yi,...,Y, are
independent, where Y; = X, — X, .

Equivalently, it can be seen that a R¢-valued continuous process X is a Brownian
motion if and only if form > 1,0 <t < ... <ty uj, Uz, ..., Uy € R,

S I
Elexp({i Zu_,- X = exp{—§ Z min(¢;, t)uj - ug}.
j=1 jk=1

Remark 2.12 The process X in the definition above is sometimes called a
standard Brownian motion and Y given by

Y, =ut +0X,

where 1 € R? and o is a positive constant and is also called a Brownian
motion for any i and o.

When X is a d-dimensional Brownian motion, its distribution, i.e. the induced mea-
sure it = P o X! on (Cy, B(Cy)), is known as the Wiener measure. The Wiener
measure was constructed by Wiener before Kolmogorov’s axiomatic formulation of
probability theory. The existence of Brownian motion or the Wiener measure can
be proved in many different ways. One method is to use Kolmogorov’s consistency
theorem to construct a process X satisfying (i), (i7) and (ii7) in the definition, which
determine the finite-dimensional distributions of X, and then to invoke the following

. . . . ad v <
criterion for existence of a continuous process X such that X <— X.

Theorem 2.13 Let X be anR¢-valued process. Suppose that foreach T < oo, Im >
0, K < o0, 3> 0 such that

E[IX, — X,|"l < K|t —s|""", 0<s<t<T.

Then there exists a continuous process X such that X < X.

Exercise 2.14 Let X be a Brownian motion and let Y be defined as follows:
Yo=0andfor0 <t < oo, Y; =tX,; where s = } Show that Y is also a Brow-
nian motion.

Definition 2.15 A Poisson Process (with rate parameter ) is an r.c.l.l. non-
negative integer-valued process N such that
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(i) No=0.
(||) P(Nt — Ns = n) = exp{_A(t _ S)}(/\(t;!s))” ]
(i) Form=>1,0=1 <t <...<t,, the random variables Y,,...,Y,, are

independent, where Y; = N;, — N, _,.

Exercise 2.16 Let N', N2 be Poisson processes with rate parameters \! and
A2, respectively. Suppose N'! and N? are independent. Show that N defined
by N, = N + N? is also a Poisson process with rate parameter A = \! + 2.

Brownian motion and Poisson process are the two most important examples of
continuous time stochastic processes and arise in modelling of phenomena occurring
in nature.

2.2 Filtration

As in the discrete-time case, it is useful to define for r > 0, G; to be the o-field
generated by all the random variables observable up to time ¢ and then require any
action to be taken at time ¢ (an estimate of some quantity or investment decision)
should be measurable with respect to G,. These observations lead to the following
definitions.

Definition 2.17 A filtration on a probability space (§2, F, P) is an increasing
family of sub o-fields (F,) = {F, : t > 0} of F indexed by ¢ € [0, c0).

Definition 2.18 A process X is said to be adapted to a filtration (F,) if for all
t >0, X, is F, measurable.

We will always assume that the underlying probability space is complete,i.e. N € F,
P(N) =0,and N; € N implies N € F and (ii) that F; contains all sets N € F with
P(N) =0.

Note that if X is (F,) adapted and Y = X (see Definition 2.2) then Y is also (F,)
adapted in view of the assumption that F; contains all null sets.

Given a filtration (F,), we will denote by (F.") the filtration {.7-"l+ : t > 0} where

+ _
‘7:; = Nyt Fu-

Let N be the class of all null sets (sets with P(N) = 0), and for a process Z,
possibly vector-valued, let

Ff=0NU(Z,: 0<u<1). 2.2.1)

Then (F Z) is the smallest filtration such that , contains all null sets with respect
to which Z is adapted.

While it is not required in the definition, in most situations, the filtration (F,)
under consideration would be chosen to be (for a suitable process Z)
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(F/) ={F}: 1 =0}

Sometimes, a filtration is treated as a mere technicality, specially in continuous-
time setting as a necessary detail just to define stochastic integral. We would like to
stress that it is not so. See discussion in Sect. 1.4.

2.3 Martingales and Stopping Times

Let M be a process defined on a probability space (£2, F, P) and (F,) be a filtration.

Definition 2.19 M is said to be (F,)-martingale if M is (F,) adapted, M, is
integrable for all r and for 0 < s < ¢ one has

EP[MI |-7:s] = M;.

Definition 2.20 M is said to be (F,)-submartingale if M is (F,) adapted, M, is
integrable for all r and for 0 < s < r one has

EP[Mt |—7:s] > Ms-

Remark 2.21 Likewise M is said to be a supermartingale if N defined by N, =
—M, is a submartingale.

When there is only one filtration under consideration, we will drop reference to it and
call M to be a martingale (or a submartingale). If M is a martingale and ¢ is a convex
function on R, then Jensen’s inequality implies that ¢(M ) is a submartingale provided
each ¢(M,) is integrable. In particular, if M is a martingale with E[M?] < oo for all
t then M? is a submartingale. We are going to be dealing with martingales that have
r.c.L.l. paths. The next result shows that under minimal conditions on the underlying
filtration one can assume that every martingale has r.c.l.1. paths.

Theorem 2.22 Suppose that the filtration (F,) satisfies
NoCS N, NeF, PIN)=0 = NyeFy (2.3.1)
Niss Fr = Fs Vs > 0. (2.3.2)
Then every martingale M admits anr.c.ll.version M, i.e. there exists an r.c.LLprocess
M such that ;
PM,=M,)=1 Vvt >0. (2.3.3)

Proof For k,n > 1,lets] = k27" and X} = My and Gr = Fy;. Then for fixed n,
{X} : k > 0}is a martingale w.r.t.the filtration {G; : k > 0}. Fix rational numbers
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a < fandaninteger 7. Let 7, = T2". Doob’s upcrossings inequality Theorem 1.28
yields
ElMr]]+ o

ELUS (X} 0=k =Tl Pl s =

Thus, using the observation that
Ur, (X} : 0<k <T,}, o, 8) < Ur,,, (X} 1 0<k < T}, o0, B)

we get by the monotone convergence theorem,

Efsup Us, (X! : 0 <k < T}, a0 )] < w.
n>1 -

Thus we conclude that there exists a set N with P(N) = 0 such that forw ¢ N,

supUr, ({X} : 0<k<T,}, o, ) <0 2.3.4)

n>1

for all rational numbers o < 3 and integers 7. Thus if {#; : k > 1} are dyadic rational
numbers increasing or decreasing to ¢, then for w ¢ N, M, (w) converges. Define
O (1) = ([12¥] + 1)27%, where [r] is the largest integer less than or equal to r (the
integer part of r). For w ¢ N, letting

M, (w) = Jim My (@), 0=t <00 (2.3.5)

it follows that ¢ +— M, (w) isar.c.ll.function. Fix t and let#, = 0,,(¢). Then N, F, =
JF: so that

M, = E[M41 | Fi]

lim E[M,1 | F,]
n—oo

= llm Mt,,

n—oo

=M,.
Here has used Theorem 1.38. Hence (2.3.3) follows. O

The conditions (2.3.1) and (2.3.2) together are known as usual hypothesis in the
literature. We will assume (2.3.1) but will not assume (2.3.2). We will mostly consider
martingales with r.c.l.l. paths, and refer to it as an r.c.].l. martingale.

When we are having only one filtration under consideration, we will drop reference
to it and simply say M is a martingale. We note here an important property of
martingales that would be used later.

Theorem 2.23 Let M" be a sequence of martingales on some probability space
(2, F, P) w.rt.a fixed filtration (F,). Suppose that
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M! — M, in L'(P), Vt>0.

Then M is also a martingale w.r.t. the filtration (F,).

Proof Note that for any X" converging to X in L' (P), for any o-field G, using (i),
(ii), (iii) and (iv) in Proposition 1.3, one has

ENE[X" 1G] — EIX |G]| T = E[IE[(X" — X) | ]| ]
= E[E[1X" — X]1G]]
= E[IX" — X1]

— 0.
For s < t, applying this to X" = M}, one gets
M" = E[M]'| F,] - E[M, | F]in L'(P).
Since M" — M; in L'(P), we conclude that E[M, | ;] = M, and hence M is a

martingale. O

Remark 2.24 1t may be noted that in view of our assumption that 7, contains
all null sets, M as in the statement of the previous theorem is adapted.

Here is a consequence of Theorem 1.36 in continuous time.

Theorem 2.25 Let M be a martingale such that {M; : t > 0} is uniformly inte-
grable. Then, there exists a random variable & such that M; — ¢ inlL.'(P). Moreover,

M, = E[¢ | ]

Proof Here {M,, : n > 1} is a uniformly integrable martingale, and Theorem 1.36
yields that M,, — ¢ in L!(P). Similarly, for any sequence f,, 1 oo, M, converges to
say 7 in L' (P). Interlacing argument gives 1 = £ and hence M, — £ in L'(P). O

Doob’s maximal inequality for martingales in continuous time follows from the
discrete version easily. We do not need the L? version for p # 2 in the sequel, and
hence we will state only p = 2 version here.

Theorem 2.26 Let M be an r.c.l.l process. If M is a martingale or a positive sub-
martingale then one has

(i) For A >0, 0 <t < oo,

1
Pl sup M| > A\] < XE[|Mt| 1. (2.3.6)
0<s<t
(ii) For0 <t < oo,
E[ sup |M|*] < 4E[|M,|*]. (2.3.7)

O<s<t
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Example 2.27 Let (W,) denote a one-dimensional Brownian motion on a
probability space (£2, F, P). Then by the definition of Brownian motion, for
0<s <t, W,— W, has mean zero and is independent of {W,, 0 <u < s}.
Hence (see (1.3.2)) we have

ElW, —W, | F'1=0
and hence W is an (F")-martingale. Likewise,
ELW, — W) | FY1=EL(W, — W) l=1—3s
and using this and the fact that (W,) is a martingale, it is easy to see that
E(W> - W2 | FV=t—s
and so defining M, = W? —t, it follows that M is also an (F")-martingale.

Example 2.28 Let (N,) denote a Poisson process with rate parameter A = 1 on
a probability space (£2, F, P). Then by the definition of Poisson process, for
0<s<t, N,— N; has mean (t — s) and is independent of {N,, 0 <u < s}.
Writing M; = N, — ¢, and using (1.3.2), we can see that

E[M, — M, | FN1=0
and hence M is an (FV)-martingale. Likewise,
El(M, — M)? | FY1 = ElM, = M)*) =1 —s
and using this and the fact that (M,) is a martingale, it is easy to see that
EM? —M? | FN]=1t—5
and so defining U, = M} — t, it follows that U is also an (FV)-martingale.

The notion of stopping time, as mentioned in Sect. 1.6, was first introduced in
the context of Markov chains. Martingales and stopping times together are very
important tools in the theory of stochastic process in general and stochastic calculus
in particular.

Definition 2.29 A stopping time with respect to a filtration (F,) is a mapping 7
from £2 into [0, oo] such that for all 1 < oo,

(r<t}eF.
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If the filtration under consideration is fixed, we will only refer to it as a stopping
time. Of course, for a stopping time, {7 <t} =U,{T <t — %} € F;. For stopping
times 7 and o, it is easy to see that 7 A ¢ and 7 V ¢ are stopping times. In particular,
T Atand TV t are stopping times for any ¢ > 0.

Example 2.30 Let X be a R?-valued process with continuous paths and
adapted to a filtration (F,). Let C be a closed set in R. Then
1. =inf{r > 0: X, € C} (2.3.8)

is a stopping time. To see this, define opensets U, = {x : d(x,C) < %}. Writ-
ing A,x ={X, € Uy} and Q, = {r : rrational, 0 <r <t},

{TC = t} = m]?O:I[UFEQ,Ar,k]' (239)

7. is called the hitting time of C.
If X is an r.c.1.L process, then the hitting time 7. may not be a random variable and
hence may not be a stopping time. Let us define the contact time o, by
o, =min{inf{t > 0: X, € C}, inf{t > 0: X,_ € C}}. (2.3.10)
With same notations as above, we now have
(o0 < 1) = [N, (Ureg, A1 U {X, € C) (2.3.11)

and thus o is a stopping time. If 0 ¢ C, then o¢ can also be described as

o.=1inf{t >0: X, e Cor X,_ € C}.

Exercise 2.31 Construct an example to show that this alternate description
may be incorrect when 0 € C.

If 7 is a [0, co)-valued stopping time, then for integers m > 1, 7" defined via
T =2""(2"71]+ 1) (2.3.12)

is also a stopping time since {7 <t} = {7" <27"([2"t])} = {7 < 27" ([2"t])}
and it follows that {7 <t} € (F.). Clearly, 7" | .

One can see that if oy is an increasing sequence of stopping times (o < oy for
all k > 1), then o = limyy 0y is also a stopping time. However, if oy | o, 0 may
not be a stopping time as seen in the next exercise.

Exercise 2.32 Let 2 = {—1, 1} and P be such that0 < P(1) < 1. Let X;(1) =
X, (=1)=0for0<t<1.Fort>1,let X;,(1) =sin(t — 1) and X;(—1) = —sin
(t—1). Let
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or = inf{t > 0: X, > 27},
o=inf{r > 0: X, > 0}.

Show that 7X = {¢, 2} for0 <t < 1 and FX = {¢, {1}, {—1}, 2} fort > 1, o}
are stopping times w.r.t. (%) and o; | o but o is not a stopping time w.r.t.
(FX). Note that {o < s} € FX for all s and yet ¢ is not a stopping time.

Exercise 2.33 Let 2 = [0, o0) and F be the Borel o-field on §2. For ¢ > 0,
let F, be the o-field generated by Borel subsets of [0, t] along with the set
(t,00). Let 7 be a [0, oco)-valued measurable function on (£2, F). Show that
7 is a stopping time w.r.t. (F,) if and only if there exists «, 0 < a < o0, such
that 7(r) > ¢ forr € [0, o] and 7(r) = « for r € (o, o). Note that here, [0, co]
is to be taken as [0, co) and (oo, o0) as the empty set.

Definition 2.34 For a stochastic process X and a stopping time 7, X, is
defined via

X (W) = Xr@) (@) irw)<oo)

Remark 2.35 A random variable 7 taking countably many values {s;}, 0 <
s; < oo Vjis astopping time if and only if {7 = s;} € F;, for all j. For such a
stopping time T and a stochastic process X,

X, = Z l{T:sj}ij

j=1
and thus X, is a random variable (i.e. a measurable function).

In general, X - may not be arandom variable, i.e. may not be a measurable function.
However, if X has right continuous paths X, is a random variable. To see this, given
7 that is [0, oo)-valued, X,» is measurable where 7" is defined via (2.3.12) and
X, — X, and hence X, is a random variable. Finally, for a general stopping time
7, &, = X,an 18 a random variable and hence

X, = (limsup&,) {7 <o}

n—oo
is also a random variable.

Lemma 2.36 Let Z be an r.c.ll adapted process and T be a stopping time with
T < 00. Let Uy = Zp;. Then U is an adapted process (with respect to the same
filtration (F,) that Z is adapted to).

Proof When T takes finitely many values it is easy to see that U is adapted and for
the general case, the proof is by approximating 7 by 7" defined via (2.3.12). [
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Definition 2.37 For a stopping time 7 with respect to a filtration (F,), the
stopped o-field is defined by

F.={Aea(UF): AN{r <t} e F Vt}.
We have seen that for a right continuous process Z, Z, is a random variable, i.e.
measurable. The next lemma shows that indeed Z is F, measurable.

Lemma 2.38 Let X be a right continuous (F,) adapted process and T be a stopping
time. Then X, is F, measurable.

Proof For at < oo, we need to show that {X, <a}N{r <t} e F foralla € R.
Note that
{X; <a}n{r <t} ={Xinr <al{r <1}

As seen in Lemma 2.36, {X,; ., < a} € F, and of course, {T <t} € F,. |

Applying the previous result to the (deterministic) process X, = t we get
Corollary 2.39 Every stopping time T is F, measurable.
Also, we have

Corollary 2.40 Let o, T be two stopping times. Then {o < 7} € F..

Proof Let X; = 1{5(w).00)(t). We have seen that X is r.c.Ll.adapted and hence X is
F; measurable. Note that X, = 1;,<,). This completes the proof. g

Here is another observation.

Lemma 2.41 Let 7 be a stopping time and & be F, measurable random variable.
Then Z = {17 ) is an adapted r.c.l.l. process.

Proof Note that for any 7, {Z, <a}={{ <a}N{r <t}ifa <O0and {Z, <a} =
{e¢ <a}nN{r <th U{r > t}ifa > 0.Since{¢( < a} € F,,wehave{¢ <a}N{r <
t} € F; and also {1 > t} = {7 <t} € F,. This shows Z is adapted. Of course it is
r.c.l.1. by definition. O

The following result will be needed repeatedly in later chapters.

Lemma 2.42 Let X be any real-valued r.c.l.l. process adapted to a filtration (F,).
Let o be any stopping time. Then for any a > 0, T defined as follows is a stopping
time : if 0 = oo then T = 00 and if 0 < 00 then

T=inf{t >0 :|X;, — X,| = aor|X,- — X,| > a}. (2.3.13)

If T < ocothent > oandeither | X, — X,| > aor|X,; — X,| > a. In other words,
when the infimum is finite, it is actually minimum.
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Proof Let a process Y be defined by ¥; = X; — X,.,. Then as seen in Lemma 2.36,
Y is an r.c.ll. adapted process. For any ¢ > 0, let Q' = (Q N[0, ¢]) U {¢}. Note that
since Y has r.c.l.l. paths one has

w: TW) <1} =M (Ureg (1Y W) = a — 1)), (2.3.14)

To see this, let £2; denote the left-hand side and §2, denote the right-hand side.

Let w € £2,. If 7(w) < ¢, then there is an s € [0, ¢) such that |Y;(w)| > a or
|Ys_(w)| > a (recall the convention that Yy = Oandherea > 0).Ineither case, there
exists a sequence of rational numbers {ry} in (0, ) converging to s and lim| Y}, (w)| >
a and thus w € §2,. If 7(w) =t and if |Y;_(w)| > a then also w € §2,. To complete
the proof of £2; C 2, (recall r € Q"), we will show that 7(w) = ¢t and |Y,_(w)| < a
implies |Y;(w)| > a. Observe that 7(w) = t implies that there exist s,, > 1, §;, | ¢
such that for each m, |Y;, _(w)| > a or |Y;, (w)| > a. This implies |Y;(w)| > a, and
this proves £2; C £2,.

For the other part, if w € £2;, then there exist {r, € Q" : n > 1} such that
1Y, (W) >a— % Since Q' C [0, ¢], it follows that we can extract a subsequence
ry, that converges to s € [0, ¢]. By taking a further subsequence if necessary, we
can assume that either r,,, > s Yk orr,, < s Vk and thus |Y,”k (W) = |Ys(w)| = ain
the first case and 1Y, ] = Y- (w)| = a in the second case. Also, Yp(w) = 0 and
Yo_(w) = 0 and hence s € (0, t]. This shows 7(w) < s <t and thus w € £2;. This
proves (2.3.14).

In each of the cases, we see that either |Y.| > a or |Y._| > a. Since Y; = 0 for
t < o, it follows that 7 > o. This completes the proof. O

Remark 2.43 Note that 7 is the contact time for the set C = [a, c0) for the
process Y.

Remark 2.44 If X is a continuous process, the definition (2.3.13) is same as
r=inf{t > o :|X, — X,| > a}. (2.3.15)

Exercise 2.45 Construct an example to convince yourself that in the defini-
tion (2.3.13) of 7, + > o cannot be replaced by r > 0. However, when X is
continuous, in (2.3.15), t > o can be replaced by r > o.

Here is another result that will be used in the sequel.

Theorem 2.46 Let X be an r.c.l.l adapted process with Xo = 0. Fora > 0, let {o;, :
i > 0} be defined inductively as follows: oo = 0 and having defined o; : j <1i, let
0i+1 = 00 if 0; = 00 and otherwise

oy =inf{t > 0; 1 | X, — Xo,| > aor|X,;- — X, | > a}. (2.3.16)

Then each o; is a stopping time. Further, (i) if 0; < 0o, then g; < 0;1+1 and (ii)
limiToo g; = OQ.
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Proof That each o; is a stopping time and observation (i) follows from Lemma 2.42.
Remains to prove (ii). If for some w € 2,

lim o (w) = 1) < o0

itoo
then for such an w, the left limit of the mapping s — X, (w) at ty does not exist, a
contradiction. This proves (ii). ([l

Exercise 2.47 Let X be the Poisson process with rate parameter A. Let 6y = 0
and fori > 0, 0,41 be defined by (2.3.16) with a = 1. Forn > 1 let

Th =0p — Op—1-

Show that

(i) N;(w)=kifandonly if oy (w) <t < o341 (W).
(i) {7, : n > 1} areindependent random variables with P(7,, > t) = exp{—At}
foralln >1andr > 0.

Recall that (F.") denotes the right continuous filtration corresponding to the fil-
tration (F,). We now show that the hitting time of the interval (—oo, a) by anr.c.LL
adapted process is a stopping time for the filtration (F ).

Lemma 2.48 Let Y be an r.c.lil. adapted process. Let a € R and let
T=inf{t >0:Y, <a}. (2.3.17)
Then 7 is a stopping time for the filtration (F).
Proof Note that for any s > 0, right continuity of # — Y;(w) implies that
{w:T(w) < s} ={w: Y (w) < a for some r rational, r < s}

and hence {7 < s} € F;.
Now for any ¢, for all k£

1
{Tfl}zm:ik{7'<l‘+;}€]ft+%

and hence {T <t} € F,". O

Remark 2.49 Similarly, it can be shown that the hitting time of an open set by
an r.c.l.l. adapted process is a stopping time for the filtration (F.").

Here is an observation about (F.") stopping times.
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Lemma 2.50 Let o : 2 — [0, oo] be such that
{o<t}eF Vt=>0.
Then o is a (F) stopping time.
Proof Lett be fixed and let 7,, = t 4+ 27", Note that for all m > 1,
fo<t}=ny2 {o<t,}ekF,.

Thus {o <t} e N¥_| F,, = F,". H

Corollary 2.51 Let {7,, : m > 1} be a sequence of (F,) stopping times. Let 0 =
inf{r, : m > 1} and 0 = sup{r,, : m > 1}. Then 0 is a (F,) stopping time whereas
o is (F7) stopping time.

Proof The result follows by observing that

{9 = t} = ﬂm{Tm = t}

and
{o <t} =U,{m, <t}

Exercise 2.52 Show that A € F, if and only if the process X defined by
X1 (W) = 1aW) 1 [rw).00) (1)
is (F.) adapted.
Lemma 2.53 Let 0 < 7 be two stopping times. Then
F, € Fr.

Proof Let A € F,. Then fort >0, AN{o <t} e F; and {r <t} € F; and thus
AN{ec<t}Nn{r<t}=AN{r <t} e F,.Hence A € F.. O

Here is another result on the family of o-fields {F, : 7 a stopping time}.

Theorem 2.54 Let o, T be stopping times. Then

{o=71}e F,NF..

k—1 k

Proof Fix0 <t <oo.Forn>1land 1 <k <2"let Ay, = { 5t <0< 5

By, = {kz;nlt <7< zﬁnt}. Note that
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fo=7)N{o <1} =N, UL, [Aen N Beal.
This shows {o = 7} N {o <t} € F, forall f and thus {c = 7} € F,. Symmetry now
implies {o = 7} € F. as well. O

Martingales and stopping times are intricately related as the next result shows.

Theorem 2.55 Let M be a r.c.l.l. martingale and T be a bounded stopping time,
7 <T. Then
E(Mr | Fr]l= M. (2.3.18)

Proof We have observed that M, is F, measurable. First let us consider the case
when 7 is a stopping time taking finitely many values, s; < s, < ... <s, < T.Let
Aj = {7 =s;}. Since 7 is a stopping time, A ; € }"SJ,. Clearly, {Ay, ..., Ay} forms a
partition of £2. Let B € F. Then, by definition of F it follows that C; = BN A; €
Fs,. Since M is a martingale, E[M7 | F;,] = M, and hence

E[Mrlc,] = E[M;, 1c;] = E[M;1c,].

Summing over j we get
E(Mr13] = E[M;13].

This proves (2.3.18) when 7 takes finitely many values. For the general case, given

7 <T,let

(2"r1+ 1)

— A
2n

T.

Tn

Then for each n, 7, is a stopping time that takes only finitely many values and further
the sequence {7, } decreases to 7. By the part proven above we have

E[M; | F, 1= M, . (2.3.19)

Now given B € F,, using 7 < 7, and Lemma 2.53, we have B € F,, and hence
using (2.3.19), we have
ElMr15] = E[M, 15]. (2.3.20)

Now M, converges to M. (pointwise). Further, in view of Lemma 1.34, (2.3.19)
implies that {M,, : n > 1} is uniformly integrable and hence M, converges to M,
in L!(P). Thus taking limit as n — oo in (2.3.20) we get

E[Mr1p] = E[M 1]
This holds for all B € F, and hence we conclude that (2.3.18) is true. U

It should be noted that we have not assumed that the underlying filtration is right
continuous. This result leads to the following:
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Corollary 2.56 Let M be an r.c.l.l. martingale. Let c < T < T be two bounded

stopping times. Then
ElM | F,]=M,. (2.3.21)

Proof Taking conditional expectation given F, in (2.3.18) and using F, C F, we
get (2.3.21). O

As in the discrete case, here too we have the following characterization of mar-
tingales via stopping times.

Theorem 2.57 Let X be an r.c.l.l. (F,) adapted process with E[|X,|] < oo for all
t < 00. Then X is an (F,)-martingale if and only if for all (F,) stopping times T
taking finitely many values in [0, 00), one has

E[X:] = E[Xo]. (2.3.22)
Further if X is a martingale then for all bounded stopping times o one has
E[X,] = E[Xo]. (2.3.23)

Proof Suppose X is a martingale. Then (2.3.22) and (2.3.23) follow from (2.3.18).

On the other hand suppose (2.3.22) is true for stopping times taking finitely
many values. Fix s < ¢t and A € F;. To show E[X, | ;] = X, suffices to prove that
E[X;14] = E[X14]. Now take

T=s5lg+ 1l

to get
E[Xol = E[X,;] = E[X14] + E[X,14c] (2.3.24)

and of course taking the constant stopping time ¢, one has
E[Xo] = E[X,] = E[X,14] 4+ E[X,14c]. (2.3.25)

Now using (2.3.24) and (2.3.25) it follows that E[X1,4] = E[X,14] and hence X is
a martingale. (I

Corollary 2.58 For an r.c.l.l. martingale M and a stopping time o, N defined by
N = Mipo

is a martingale.
We also have the following result about two stopping times.

Theorem 2.59 Suppose M is an r.c.l.l. (F,)-martingale and o and T are (F,) stop-
ping times with o < 7. Suppose X is an r.c.l.l. (F,) adapted process. Let
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Ni = Xoni(Mrpt — Mopy).

Then N is a (F.)-martingale if either (i) X is bounded or if (ii) E[X(Z,] <ocoand M
is square integrable.

Proof Clearly, N is adapted. First consider the case when X is bounded. We will
show that for any bounded stopping time 6 (bounded by T'),

E[Ny]1 =0
and then invoke Theorem 2.55. Note that

No = Xong(Mrpno — M)
= X5(Mz — M5)

where 6 = o0 A 0 < T = 7 A 0 are also bounded stopping times. Now

E[No] = E[E[Ny | F51]
= E[E[X5(M: — M5) | F51]
= E[X;(E[M: | F5] — M5)]
=0

as E[M: | F5] = M; by part (ii) of Corollary 2.56. This proves the result when X is
bounded. For (ii), approximating X by X", where X} = max{min{X,, n}, —n} and
using (i) we conclude

E[XZA()(MTAH - M(mﬁ)] =0.

Since o < 7, we can check that
XZ/\()(MT/\G - MoA&) = X::-(MT/\Q - MaAH)

and hence that
E[X, (M;ro — Mspp)] = 0.

Using Doob’s maximal inequality Theorem 2.26 we have (sup,_7|M;|) is square
integrable. Since X, is square integrable, we conclude that

E[|Xa|(SUP|Ms|)] < Q.

s<T
The required result follows using dominated convergence theorem. O

Corollary 2.60 Suppose M is a r.c.Ll (F.)-martingale and o and T are stopping
times with o < 7. Suppose U is a F, measurable random variable. Let
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Nt = U(Mr/\z - MJAZ)'

Then N is a (F.)-martingale if either (i) U is bounded or if (ii) E[U?] < oo and M
is square integrable.

Proof Let us define a process X as follows:

X (W) = UW)liow),00 ().

Then X is adapted by Lemma 2.41 and X, = U. Now the result follows from The-
orem 2.59. u
Here is another variant that will be useful later.

Theorem 2.61 Suppose M, N arer.c.LL (F,)-martingales withE(M?) < oo, E(N?)
< o0 for all t. Let o and T be (F,) stopping times with o < T. Suppose B, X are
r.c.Ll. (F.) adapted processes such that E(|B;|) < oo for all t and X is bounded.
Suppose that Z is also a martingale where Z; = M;N; — B;. Let

Yt = X(r/\f[(M'r/\r - Mo/\t)(NT/\t - N(r/\t) - (BT/\t - B(r/\t)]-

Then Y is a (F,)-martingale.

Proof Since X is assumed to be bounded, it follows that Y; is integrable for all
t. Once again we will show that for all bounded stopping times 6, E[Yy] = 0. Let
oc=0A0<7T=7A6. Note that

E[Yy] = E[X5[(Mz — M5)(Nz — N5) — (B — B3)]]
= E[X;[(MzNz — M5Ns) — (B — B3)
— M5(N;z — N3) — Ns(Mz — M5)]]
=E[X5(Z; — Z3)] — E[X5M5(Nz — N5) — E[X5N5(Mz — M5)]]
=0

by Theorem 2.59 since M, N, Z are martingales. This completes the proof. O

2.4 A Version of Monotone Class Theorem

The following functional version of the usual monotone class theorem is very useful
in dealing with integrals and their extension. Its proof is on the lines of the standard
version of monotone class theorem for sets. We will include a proof; because of the
central role, this result will play in our development of stochastic integrals.

Definition 2.62 A subset A C B(£2, F) is said to be closed under uniform and
monotone convergence if f, g, h € B(2, F), f", ¢", " € Aforn > 1 are such
that
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(i) f"< f+tforalln>1and f" converges to f pointwise
(i) ¢" > g"t' foralln > 1 and g" converges to g pointwise
(iiiy A" converges to i uniformly

then f,g,h € A.
Here is a functional version of the monotone class theorem:

Theorem 2.63 Let A C B(82, F) be closed under uniform and monotone conver-
gence. Suppose G C A is an algebra such that

(i) o(G)=F.
(ii) Af" € G such that " < "™ and f" converges to 1 pointwise.

Then A = B($2, F).

Proof Let K C B(£2, F) be the smallest class that contains G and is closed under
uniform and monotone convergence. Clearly, K contains constants and K € A. Using
arguments similar to the usual (version for sets) monotone class theorem we will
first prove that K itself is an algebra. First we show that K is a vector space. For
feB(2,F),let

Ko(f)={geK: af+Bg €K, Va,( eR}.

Note that Ky ( f) is closed under uniform and monotone convergence. First fix f € G.
Since G is an algebra, it follows that G € Ky (f) and hence K = Ky (f). Now fix
f € K. The statement proven above implies that G C Ky (f), and since Ky(f) is
closed under uniform and monotone convergence, it follows that K = K (f). Thus
K is a vector space.

To show that K is an algebra, for f € B(£2, F) let

Ki(f)=1{geK: fgekK].

Since we have shown that K is a vector space containing constants, it follows that

Ki(f) =Ki(f +0)

for any ¢ € R. Clearly, if f > 0, K;(f) is closed under monotone and uniform con-
vergence. Given g € B(§2, F), choosing ¢ € R such that f = g + ¢ > 0, it follows
that K, (g) = K;(g + ¢) is closed under monotone and uniform convergence. Now
proceeding as in the proof of K being vector space, we can show that K is closed
under multiplication and thus K is an algebra.

LetC ={A € F: 14 € K}. In view of the assumption (ii), £2 € C. It is clearly
a o-field and also B(£2, C) € K. Since o(G) = F, one has o(A) = F where

A={{f<a} : feG, aeR}).
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Hence to complete the proof, suffices to show A C C as that would imply F = C
and in turn
B(2,7) CKCACB(L2,F)

implying K = A = B(£2, F). Now to show that 4 C C, fix f € Gand o € R and let
A={f <a}e ALet|f|] < M.Lety)(x) = 1 forx < cand®(x) = O0forx > o +
1 and ¥(x) =1 —x 4 a for @ < x < a+ 1. Using Weierstrass’s approximation
theorem, we can get polynomials p, that converge to ¢ uniformly on [—M, M].
Now p,(f) € G as G is an algebra and p,(f) converges uniformly to (). Thus
¥ (f) € K. Since K is an algebra, it follows that (¥ (f))" € Kforallm > 1. Clearly
W (f))" converges monotonically to 14. Thus 14 € K i.e. A € C completing the
proof. |

Here is a useful variant of the monotone class theorem.
Definition 2.64 A sequence of real-valued functions f, (on a set S) is said

to converge boundedly pointwise to a function f (written as f, kLA f) if there
exists number K such that | f,(u)| < K for all n,u and f,(u) — f(u) for all
ues.

Definition 2.65 A class A C B(£2, F) is said to be bp-closed if

foeA Va=1, £, 2% fimplies f € A.

If a set A is bp-closed then it is also closed under monotone and uniform limits
and thus we can deduce the following useful variant of the monotone class theorem
from Theorem 2.63.

Theorem 2.66 Let A C B($2, F) be bp-closed. Suppose G C A is an algebra such
that

(i) o(G) =F.
(ii) Af" € G such that f* < "' and f" converges to 1 pointwise.
Then A = B($2, F).

Here is an important consequence of Theorem 2.66.

Theorem 2.67 Let F be a o-field on $2, and let Q be a probability measure
on (82, F). Suppose G C B(£2, F) be an algebra such that o(G) = F. Further,
3f" € G such that f" < f"*' and f" converges to I pointwise. Then G is dense in
L2(2, F, Q).

Proof Let K denote the closure of G in L2(2, F,Q) and let A be the set of
bounded functions in K. Then G C A, and hence by Theorem 2.66 it follows that
A = B(£2, F). Hence it follows that K = IL?>(£2, F, Q) as every function in L?(Q)
can be approximated by bounded functions. (]
Exercise 2.68 Show that Theorem 2.66 remains true if the condition (ii) in

the theorem is replaced by 3" € G such that f” .
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2.5 The UCP Metric

Let R%(£2, (F.), P) denote the class of all r.c.l.l. (F.) adapted processes. For pro-
cesses X, Y € RO(£2, (F.), P), let

dup(X.Y) =Y 27"E[min(1, sup |X, — ¥,|)]. 2.5.1)

m=1 0<t<m
Noting thatd,,(X,Y) = Oifandonly if X = ¥ (i.e. P(X; = Y; Vt) = 1), it follows
that d,¢,, is a metric on R(£2, (F.), P). Now d,cp (X", X) — 01is equivalent to

sup | X} — X,| converges to 0 in probability VT < oo,
0<t<T

also called uniform convergence in probability, written as X" 2 x.

Remark 2.69 We have defined d,.,(X,Y) when X,Y are real-valued r.c.l.l.
processes. We can similarly define d,..,(X, Y) when X, Y are R4-valued r.c.l.l.
orl.c.r.l. processes. We will use the same notation d,, in each of these cases.

In the rest of this section, d is a fixed integer, we will be talking about R4 -valued
processes, and |-| will be the Euclidean norm on R?.

When d,., (X", X) — 0, sometimes we will write it as X" B x (and thus the
two mean the same thing). Let X, ¥ € R%(£2, (F.), P). Then for § > 0 and integers
N > 1, observe that

dp(X,Y) <27V 46+ P(sup |X, — Y| > 0) (25.2)
0<t<N
and
2N
P(sup |X, — Yi| > ) < ——d,ep(X, ). (2.5.3)
0<t<N 0

The following observation, stated here as a remark, follows from (2.5.2)—(2.5.3).

Remark 2,70 z" “% 7 if and only if for all integers T < o0, ¢ > 0,0 > 0, 3ng
such that for n > ny
Pl sup|Z! —Z,| > 6 ] <e. 2.5.4)

t<T

For an r.c.l.l.process Y, given T < 00, € > 0 one can choose K < oo such that

P[ suplY;| > K ]<e¢ (2.5.5)

t<T

and hence using (2.5.4) it follows that if Z" Rz , then given T < 00, € > 0 there
exists K < oo such that
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supP[ sup|Z!| > K ]<e. (2.5.6)

n>1 t<T

The following result uses standard techniques from measure theory and functional
analysis, but a proof is included as it plays an important part in subsequent chapters.

Theorem 2.71 The space R($2, (F.), P) is complete under the metric dycp.

Proof Let {X" : n > 1} be a Cauchy sequence in d,, metric. By taking a subse-
quence if necessary, we can assume without loss of generality that d,., (X", X") <
27" and hence

o0 o0
> 27"Elmin(1, sup |X;™! = X/|)] < o0

n=1 m=1 O=t=m
or equivalently
o0 oo
> 27 Elmin(1, sup [X]T' = X]])] < oo
m=1 n=1 Ost=m

and thus for all m > 1 one has

o0
Z[min(l, sup |X" — X")] < 00 as.

=1 0<t<m
because its expectation is finite. Note that for a sequence {a,}, >, |a,] < oo if and
only if )", min(l, |a,|) < oco. Hence for all m > 1 we have

o0

E sup | X" — X7 < oo as.
=1 0<t<m

Again, noting that for a real-valued sequence {b, }, Zn |bp+1 — by| < oo implies that
{b,} is Cauchy and hence converges, we conclude that outside a fixed null set (say
N), X} converges uniformly on [0, m] for every m. So we define the limit to be X,
which is an r.c.l.l. process. On the exceptional null set N, X, is defined to be zero.
Note that

n+k—1

D (X7, XY

j=n

ducp (Xn+k , Xn)

IA

n+k—1
> 2
j=n

< 27n+1

IA
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As a consequence, (using definition of d,,.,) we get that for all integers m,

E[min(1, sup |X — X"] < 2m27"*!,

0<t<m
Taking limit as k — oo and invoking dominated convergence theorem we conclude

E[min(1, sup |X — X,|)] <2m27"+1,

0<t<m

It follows that for any 7' < 00,0 < § < 1 we have

1
P( sup | X" — X,|) > 6) < 52<T+1>2*"+1. (2.5.7)

0<t<T

and hence, invoking Remark 2.70, it follows that X" converges in ucp metric to X.
Thus every Cauchy sequence converges and so the space is complete under the metric
dycp- O

Here is a result that will be useful later.
Theorem 2.72 Suppose Z", Z are r.c.l.l adapted processes such that

ucp

7" — Z.

Then there exists a subsequence {n*} such that Y* = z" satisfies

(i) supy_,-r|YF — Z;| - 0as. VT < oo.
(ii) There exists an r.c.l.l. adapted increasing process H such that

|Y¥| < H, Vt <oo, Vk=>1. (2.5.8)

Proof Sinced,,(Z", Z) — 0,for k > 1, we can choose n* with such that ducp (Z”k,

Z) <2 % and n**! > nk.Let Y* = Z"". Then as seen in the proof of Theorem 2.71,

this implies
oo

Z[sup|Ytk —Z|] <00, VT < a.s.
k=1 '=T

Hence (i) above holds for this choice of {n*}. Further, U; = Yo IYf — Zs| + | Z|
is an r.c.l.l. process as the series converges uniformly on [0, T'] for every T < oo.
Thus defining
o0
H, = sup [Y |} — Z,| +1Z,]

0<s<t k=1

it follows that H is an r.c.L.l. adapted increasing process. See Exercise 2.10. Clearly,
|Y¥| < H, forall k > 1. (Il
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Remark 2.73 If we have two, or finitely many sequences {Z"} converging to
Z'ind,,, i=1,2,..., p then we can get one common subsequence {n*}
and a process H such that (i), (ii) above holdfori = 1,2, ... p. All we need
to do is to choose {rn*} such that

duc‘p(zi’nk’zi) fz_k, i = 1,2p

Exercise 2.74 An alternative way of obtaining the conclusion in Remark 2.73
is to apply Theorem 2.72 to an appropriately defined R -valued processes.

The following lemma will play an important role in the theory of stochastic inte-
gration.

Lemma 2.75 Let Z", Z be adapted processes and let T be a sequence of stopping
times such that ™™ 1 oo. Suppose that for each m

ucp

Z o —> Zipm asn t 00. 2.5.9)

tAT™

Then
uc,
7" X% Zasn 1 oo.

Proof Fix T < oo,e > 0and n > 0. We need to show that In( such that for n > ny

Plsup|Z! — Z,| >n]<e. (2.5.10)

t<T
First, using 7" 1 o0, fix m such that

Pl <T]<c¢g/2. (2.5.11)

Using Z;, .» o Zinmm, get ng such that for n > ny

Pl sup|Z}. .n — Zipm| > 1] < g/2. (2.5.12)
t<T
Now,
{sup|Z; — Z;| > n} S {sup|Z},,w — Zipm| >y U{T" < T}
t<T t<T
and hence for n > ng, (2.5.10) follows from (2.5.11) and (2.5.12). O

The same argument as above also yields the following.

Corollary 2.76 Let Z" be r.c.l.l adapted processes and let " be a sequence of
stopping times such that ™ 1 oo. Forn > 1,m > 1 let

Y[n,m — Zn

tATM
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Suppose that for each m, {Y™™ : n > 1} is Cauchy in d,., metric then Z" is Cauchy
in d,¢, metric.

2.6 The Lebesgue-Stieltjes Integral

Let G : [0, 00) +— R be an r.c.LL function. For 0 < a < b < oo the total variation
VAR[q 5] of G(s) over [a, b] and VAR, ;) Over (a, b] are defined as follows:

VAR(5)(G) = sup{Y |G(t) = G(tj- )| ta=tg <ty <...<ty=b,m>1}. (2.6.1)
j=1

VAR[a,h](G) = |G(a)| + VAR(a’h](G).

If Varjp 11(G) < oo for all ¢, then G will be called a function with finite variation.
It is well known that a function has finite variation paths if and only if it can be
expressed as difference of two increasing functions.

If Varj ;1(G) < oo for all ¢, the function |G|, = VARr[oj(G) is then an increasing
[0, co)-valued function. Let us fix such a function G.

For any T fixed, there exists a unique countably additive measure v and a countably
additive signed measure p on the Borel o-field of [0, 7] such that

v([0,1) =|G|(t) vVt =T (2.6.2)
p([0,1]) = G(t) vVt <T. (2.6.3)

Here, v is the total variation measure of the signed measure L.
For measurable function / on [0, T], if f hdv < oo, then we define

t
f Ih1,d|G, = f {0, dv (2.6.4)
0
and .
/ hydG, = / hl0.dp. (2.6.5)
0
Note that we have . .
|/ hsdGsIE/ Ihl,d|Gl,. (2.66)
0 0

It follows that if £ is a bounded measurable function on [0, c0), then fot hdG is

defined and further if 4" A h, then the dominated convergence theorem yields that
H!' = [; h"dG converges to H(t) = [, hdG uniformly on compact subsets.
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Exercise 2.77 Let G be an r.c.l.l. function on [0, co) such that |G|, < oo for all
t < 0o. Show that forall T < oo

> I(AG),| < oo. (2.6.7)

t<T

Note that as seen in Exercise 2.1, {t : [(AG),| > 0} is a countable set and
thus the sum appearing above is a sum of countably many terms.
HINT: Observe that the left-hand side in (2.6.7) is less than or equal to |G|7.

Exercise 2.78 Let B be anr.c.l.l.adapted processes such that A, (w) = Varpo g
(B.(w)) < oo for all ¢, w. Show that A is an r.c.l.|. adapted process.

Let us denote by V' = VT (82, (F.), P) the class of (F,) adapted r.c.Ll.increasing
processes A with Ag > 0 and by V =V (£, (F,), P) the class of r.c.l.l. adapted
processes B such that

A;(w) = VAR[0(B.(w)) < 00 Vi >0, Yw € 2. (2.6.8)

As seen above, A € V. A process B € V will be called process with finite variation
paths. It is easy to see that B € V if and only if B can be written as difference of
two processes in VT: indeed, if A is defined by (2.6.8), we have B = D — C where
D=1(A+B)andC = 1(A— B)and C, D € V*.Let Vy and V§ denote the class
of processes A in V and V', respectively, such that Ag = 0. For B € V, we will
denote the process A defined by (2.6.8) as A = Var(B).

A process A € V will be said to be purely discontinuous if

Ar=Ag+ ) (AA).

O<s<t

Exercise 2.79 Show that every A € V can be written uniquely as A = B + C
with B, C € V, B being a continuous process with By = 0 and C being a purely
discontinuous process.

Lemma 2.80 Ler B € V and let X be a bounded l.c.r.l. adapted process. Then

Ci(w) =/ Xs(Ww)dBs(w) (2.6.9)
0

is well defined and is an r.c.Ll. adapted process. Further, C € V.

Proof Foreveryw € 2,1t — X;(w)isa bounded measurable function and hence C
is well defined. Forn > 1 andi > O let ]! = :7 Let

Xi =Xy fort! <t <t
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Then X" kLA X. Clearly
t
C/'w) = f X! (W)dB,(w) = Y Xp(By n — Bynr)
0 i<t

is r.c.1.l. adapted and further for every w € §2, C/"(w) — C,;(w) uniformly in ¢ €
[0, T] forevery T < oo. Thus C is also an r.c.l.l.adapted process. Let A = Var(B).
Let K be a bound for the process X. For any s < ¢,

1Ci(w) — Cs(W)] S/ |Xu(W)|dAg(w)

= K(A/(w) = As(w)).

Since A is an increasing process, it follows that Varjo, 71(C)(w) < KAr(w) < oo
forall T < oo and for all w. O

Exercise 2.81 Show that the conclusion in Lemma 2.80 is true even when X
is a bounded r.c.l.|. adapted process. In fact show that D} defined by

D} (w) = Z Xt,."H/\r(Bt,f‘JrlAf L)

i<t

converges to [, XdB.

Exercise 2.82 Show that the assumption of boundedness of X in Lemma 2.80
can be dropped.



Chapter 3 ®)
The Ito’s Integral e

We begin this chapter with the quadratic variation and Levy’s characterization of the
Brownian motion. Later, we will outline the basic development of the Ito’s Integral
w.r.t. Brownian motion. We also discuss existence and uniqueness of solutions to the
classical stochastic differential equations driven by Brownian motion.

3.1 Quadratic Variation of Brownian Motion

Let (W,) denote aone-dimensional Brownian motion onaprobability space (£2, F, P).
We have seen that W is a martingale w.r.t. its natural filtration (F, W) and with
M, = W? —t, M is also (F")-martingale. These properties are easy consequence
of the independent increment property of Brownian motion.

Wiener and Ito’s realized the need to give a meaning to limit of what appeared to
be Riemann—Stieltjes sums for the integral

/ Ssd Wy (3.1.1)
0

in different contexts—while in case of Wiener, the integrand was a deterministic
function, Ito’s needed to consider a random process ( fy) that was a non-anticipating
function of W—i.e. f is adapted to (F").

It is well known that paths s — W, (w) are nowhere differentiable for almost all
w, and hence we cannot interpret the integral in (3.1.1) as a path-by-path Riemann—
Stieltjes integral. We will deduce the later from the following result that is relevant
for stochastic integration.

© Springer Nature Singapore Pte Ltd. 2018 65
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Theorem 3.1 Let (W) be a Brownian motion. Let 1! =i27", i >0, n > 1. Let
VI =320 W e = Winls QF = Y 020(Wir ae — Wira)?. Then for all t > 0,
(a) V' = oo a.s. and (b) O} — t a.s.

Proof We will first prove (b). Let us fix t < oo and let

2
X,n = Wt-” At T Wt,-”/\tv Z,‘” = (Wt{;,At - Wt{’/\t) - (t,'n+1 ANt — t,'n A t)-

i+1

Then from properties of Brownian motion it follows that {X}, i > 0} are indepen-

dent random variables with normal distribution and E(X?) = 0, E(X!)? = (1", A

t —t' At).So, {Z!, i > 0} are independent random variables with E(Z") = 0 and
E(Z!)? =23, At — 1! A1)*. Now

E(Q; -0 =EQ)_7z)
i=0

= i E(zM)?
i=0

o0

2

=2 (Wt At =1 AT)
i=0

oo

<27t A= AT
i=0

— 27n+1t'

(3.1.2)

Note that each of the sum appearing above is actually a finite sum. Thus
o0
E> (0 -1 <t<oo
n=1

so that }°2  (Q" — t)? < oo a.s. and hence Q" — t a.s.

For (a), let a(d,w,t) =sup{|W,(w) — Wy (w)| : lu—v| <6,u,v €l0,t]}.
Then uniform continuity of u +— W, (w) implies that for all ¢ finite and for each
w,

lim a(d, w, t) = 0. (3.1.3)
510

Now note that for any w,

oo
Q7 (w) = (Og}i’éJWt{'HAr(w) - Wz;’/\t(w)|)(Z|Wt{'HAr - W;,.l/\,D

o (3.1.4)

=a™ w, )V (w).
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So if liminf, V/"(w) < oo for some w, then liminf, Q7 (w) = 0 in view of (3.1.3)
and (3.1.4).
For t > 0, since Qf — t a.s., we must have V' — oo a.s. O

Exercise 3.2 For any sequence of partitions

O=1<t"<...<t! <...; t'1oo asnt oo (3.1.5)

n

of [0, o) such that for all T < oo,

Su(T)=( sup (&7, —t") =0 asm 1 oo (3.1.6)

{n:1n<T)

let

[e.¢]
Q' = (Wi i — Wipn)™. 3.1.7)
n=0

Show that for each 7, Q" converges in probability to .

Remark 3.3 1t is well known that the paths of Brownian motion are nowhere
differentiable. For this and other path properties of Brownian motion, see
Breiman [5], McKean [47], Karatzas and Shreve [43].

Remark 3.4 Since the paths of Brownian motion do not have finite variation
on any interval, we cannot invoke Riemann-Stieltjes integration theory for
interpreting [ XdW, where W is Brownian motion. The following calculation
shows that the Riemann-Stieltjes sums do not converge in any weaker sense
(say in probability) either. Let us consider [ WdW. Lett! =i2™",i > 0,n > 1.
The question is whether the sums

oo
Z WS,-”N(WI{;IN - Wt;’At) (3.1.8)
i=0

converge to some limit for all choices of s such that 7 < s/ <+ ,. Let us
consider two cases s;' = ¢/' |, and s} = #":

o0

Al = Z Wi ne (Wi ne — Winar) (3.1.9)
i=0

B =) Wyn (Wi n = Wirn)- (3.1.10)
i=0

Now A} and B} cannot converge to the same limit as their difference satis-
fies
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(ar - B) = 0.

Thus even in this simple case, the Riemann—Stieltjes sums do not converge
to a unique limit. In this case, it is possible to show that A} and B}’ actually
do converge but to two different limits. It is possible to choose {s/'} so that the
Riemann sums in (3.1.8) do not converge.

3.2 Levy’s Characterization of Brownian Motion

Definition 3.5 Let (W,) be d-dimensional Brownian motion adapted to a filtra-
tion (F,). Then (W,, F,); =0, is said to be a Wiener martingale if W is a mar-
tingale w.r.t. (F,) and

{W, — W, : t > s} isindependent of F;. 3.2.1)

It follows that for a one-dimensional Wiener martingale (W;, F;) =0 M; = Wt2 —t
is also a martingale w.r.t (F;). Levy had proved that if W is any continuous process
such that both W, M are (F,)-martingales then W is a Brownian motion and (3.2.1)
holds. Most proofs available in texts today deduce this as an application of Ito’s
formula. We will give an elementary proof of this result which uses interplay of
martingales and stopping times. The proof is motivated by the proof given in Ito’s
lecture notes [25], but the same has been simplified using partition via stopping times
instead of deterministic partitions.

Exercise 3.6 Show that (3.2.1) is equivalent to
W, — W, is independent of F; for all t > s. (3.2.2)

We will use the following inequalities on the exponential function which can be
easily proven using Taylor’s theorem with remainder. For a, b € R

1
le” — (14 b)| < Ee"’wbﬁ
le — 1] < |al

) 1 1
ia _ (1 - - 2 < Z 3.
le (1+ia 2a ) < 6|a|

Using these inequalities, we conclude that for a, b such that |a| <6, |b| <,
0 < log,(2), we have
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. 1
le“T? — (1 +ia — 5az +b)|

iag,b __ ia _ fa _ ) _l 2
<1’ = A+ )]+ b =D+ (" = (I +ia=za)] )

1 1
= "Bl + Ibllal + Zlal’)
< 6QIbl + lal).
Theorem 3.7 Let X be a continuous process adapted to a filtration (F,) and let

M, = X,2 —t fort > 0. Suppose that (i) Xo =0, (ii) X is a (F,)-martingale and
(iii) M is a (F,)-martingale. Then X is a Brownian motion and further, for all s

{(X; — X;) :t = s} is independent of F;.

Proof We will prove this in a series of steps.
step 1: For bounded stopping times o < 7,say 7 < T,

El(X; — X,)*] = E[( — 0)]. (3.2.4)
To see this, Corollary 2.60 and the hypothesis that M is a martingale imply that

Y, =X, — X2

TAL oAt_(T/\t_G/\t)

is a martingale and hence E[Yr] = E[Y;] = 0. This proves step 1.
Let us fix A € R and let

1
Zt’\ =exp{i\X, + E)\zt}.

step 2: For each bounded stopping time o, E[Z}] = 1. This would show that Z*
is a (F,)-martingale. To prove this claim, fix A and let o < T. Let § be sufficiently
small such that (|]\| + A?)d < log,(2). Let us define a sequence of stopping times
{r; : i > 1} inductively as follows: 79 = 0 and for i > 0,

Tipr=inf{t > 7 1 |X, — X | =dor|t —7| >dort > o} (3.2.5)
Inductively, using Theorem 2.46 one can prove that each 7; is a stopping time and that

for each w, 7;(w) = o(w) for sufficiently large j. Further, continuity of the process
implies

X7 — X5l <60, |7iga — 7l <6. (3.2.6)
Let us write ]
2 —1=) (22 - 7). (3.2.7)

k=0
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Note that

E[(z}

Thk+1

[ 1
- Zi\k)] = E[Zi;{ (el/\(XTk-H7X7k)+§)‘2(7—k+1*7'k) —1)]

= E[Z) E(e®an X+ 2P0n—m) 1 | £ )]
Since E[X;,,, — X;, | F7,] = 0 as X is a martingale and
El(Xr,,, — X;)? = (1 —7) | Fr, 1 =0 (3.2.8)
as seen in step 1 above, we have

E[eiA(XTk_H_XTk)+%)\2(Tk+l_Tk) —11F.]
k

= Efe X X0 TN (] 4 i, — X))

_%)\Z(XTI(+1 - X‘rk)z + %)‘Z(Tk+1 — 7} | ‘7:”]

Using (3.2.3), (3.2.6) and the choice of §, we can conclude that the expression on
the right-hand side inside the conditional expectation is bounded by

ON((Xry = X0)? + (Test = 7))
Putting together these observations and (3.2.8), we conclude that

|E[(Z)

Thk+1

— Z) < 2602 X TE[(141 — 7))

As a consequence
[E[Z), — 1] = 20Xe=" TE[7, ).

Now Z? is bounded by e2*'T and converges to Z}, we conclude
IE[Z) — 1]] < 20A2T eV
Since this holds for all small 6 > 0O it follows that
E[Zz}) =1

and this completes the proof of step 2.
step 3: Fors < £, A € R,

E[e@ X=X | F] = ¢72¥ =), (3.2.9)

We have seen that ZtA is a martingale and (3.2.9) follows from it since X is F;
measurable.
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As a consequence
. 1
E[e@A X=X = g=3¥(=s), (3.2.10)

and so the distribution of X, — X is Gaussian with mean 0 and variance (t — ).
step 4:
Fors < t, A\, 0 € R, a F, measurable random variable Y we have

E[e(i/\(X,fxx)#»ieY)] — E[e(i/\(X[fX_v))]E[e(iHY)]. (3211)

The relation (3.2.11) is an immediate consequence of (3.2.9).

We have already seen that X, — X; has Gaussian distribution with mean 0 and
variance ¢ — s and (3.2.11) implies that X; — X is independent of JF, in particular,
X; — X, is independent of {X,, : u < s}. This completes the proof. O

Let W = (W', W2, ..., W%) be d-dimensional Brownian motion, where W/ is
the jth component, i.e. each W/ is areal-valued Brownian motion and wl w2, ...,

W¢ are independent.
Forany 0 = (0", 62, ....6%) € R with |0] = Y9_, (0/)> = 1,

d
x!=>"0'w/ (3.2.12)
j=1

is itself a Brownian motion. Defining
M? = (X% —1, (3.2.13)
we have
V0 € R? with || = 1; X?, M? are (F")-martingales . (3.2.14)

Indeed, using Theorem 3.7, we will show that (3.2.14) characterizes multidimen-
sional Brownian motion.

Theorem 3.8 Let W be an R -valued continuous process such that Wy = 0. Suppose
(F.) is a filtration such that W is (F.) adapted. Suppose W satisfies

Vo € R with 10| = 1; X7, MY are (F.)-martingales (3.2.15)

where X7 and MY are defined via (3.2.12) and (3.2.13). Then W is a d-dimensional
Brownian motion and further, for 0 < s <t

(W, — Wy) is independent of F;.
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Proof Theorem 3.7 implies that for § € R? with |§] = 1 and A € R
Elexp{iA(0 - W, — 0 - W)} | F] = exp{—3\*(t — )}

This implies that W is a Brownian motion. Independence of {W, — W, : ¢ > s} and
F; also follows as in Theorem 3.7. U

Theorems 3.7 and 3.8 are called Levy’s characterization of Brownian motion
(one-dimensional and multidimensional cases, respectively).

3.3 The Ito’s Integral

Let S be the class of stochastic processes f of the form
m

£i@) = ap@) o)) + Y a1 @) s,,,0(5) (3.3.1)

Jj=0

where0 = so <51 <52 < ... < S§puq1 < 00,a;isbounded F;, | measurable random
variable for 1 < j < (m + 1), and qg is bounded F; measurable. Elements of S will
be called simple processes. For an f given by (3.3.1), we define X = [ fdW by

m

Xi@) =Y a1 @) Wy 0 (@) = Wy (). (3.32)
j=0

ao does not appear on the right side because Wy = 0. It can be easily seen that [ fd W
defined via (3.3.1) and (3.3.2) for f € S does not depend upon the representation
(3.3.1). In other words, if g is given by

51 (@) = bo@) Loy () + 3 b1 @) L) () (3.3.3)
j=0

where 0 =rp <7y <... <ruq1 and b is F,,_ | measurable bounded random vari-
able,1 < j < (n+ 1), and by isbounded Fymeasurableand f = g, thenf fdwW =
[ gdW,ie.

m

D a1 @)Wy p () = Wy (@)
J=0 (3.3.4)

=Y b1 @)Wy pi (@) = Wy pr ().
j=0

By definition, X is a continuous adapted process. We will denote X, as fot fdw.
We will obtain an estimate on the growth of the integral defined above for simple
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f € S and then extend the integral to an appropriate class of integrands—those that
can be obtained as limits of simple processes. This approach is different from the
one adopted by Ito’s, and we have adopted this approach with an aim to generalize
the same to martingales.

We first note some properties of [ fdW for f € S and obtain an estimate.

Lemma 3.9 Let f,g € Sandleta,b € R. Then

/(af+bg)dW=a/ de+bf gdW. (3.3.5)
0 0 0

Proof Let f, g have representations (3.3.1) and (3.3.3), respectively. Easy to see that
wecanget0 =1y < t; < ... < t; such that

{tj:0<j<k}={s;:0=<j<m}U{r;:0=<j<nj}

and then represent both f, g over common time partition. Then the result (3.3.5)
follows easily. U

Lemma 3.10 Let f, g € S,andletY, = [, fdW,Z, = [, gdW and A, = [ fgsds,
M, =Y, Z, — A,. Then Y, Z, M are (F.)-martingales.

Proof By linearity property (3.3.5) and the fact that sum of martingales is a martin-
gale, suffices to prove the lemma in the following two cases:
Case 1: 0 <s <rand

fi=ale (), g =bly(t), a,b are F; measurable .
Case2:0<s <r<u<vand
fi=alg (), g =Dbluy(t), a is F; measurable and b is F, measurable.

Here in both cases, a, b are assumed to be bounded. In both the cases, Y; = a(W,,, —
Wins)- That Y is a martingale follows from Theorem 2.59. Thus in both cases, Y is
an (F,)-martingale and similarly, so is Z. Remains to show that M is a martingale.
In case 1, writing N, = W? —t

M, = ab(Wipr — Wip)> = (t AT —1 A s))
=ab(W,, = W2) — (t Ar =t As) = 2Wins(Winr — Winy)

tAS

= ab(NtAr - NI/\s) - 2abWtAs(Wt/\r - WtAs)-
Recalling that N, W are martingales, it follows from Theorem 2.59 that M is a
martingale as

abWt/\s(Wt/\r - WtAs) = abWs(Wt/\r - Wt/\s)'

In case 2, recalling 0 < s <r < u < v, note that


https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2

74 3 The Ito’s Integral

M; =a(Winr — Wire)b(Winy — Winu)
= a(Wr - Wv)b(wt/\v - Wt/\u)

as M, = 01if t < u. Proof is again completed using Theorem 2.59. O

Theorem 3.11 Let f €S, M, = [; fdW and N, = M? — [, fds. Then M and
N are (F.)-martingales. Further, for any T < oo,

t T
E[sup| | fdW|*] < 4E[/ f2ds]. (3.3.6)
0

t<T JO

Proof The fact that M and N are martingales follows from Lemma 3.10. As a
consequence E[N7] = 0 and hence

T T
E[(/ FdW)* = E[/ f2ds). (3.3.7)
0 0

Now the growth inequality (3.3.6) follows from Doob’s maximal inequality, Theorem
2.26 applied to M and using (3.3.7). ([

We will use the growth inequality (3.3.7) to extend the integral to a larger class
of functions that can be approximated in the norm defined by the right-hand side in
(3.3.7).

Each f € S can be viewed as a real-valued function on Q= [0, 00) x 2. It is
easy to see that S is an algebra. Let P be the o-field generated by S, i.e.the smallest
o-field on §2 such that every element of S is measurable w.r.t. P.

The o-field P is called the predictable o-field. We will discuss the predictable
o-field in the next chapter. We note here that every bounded left continuous adapted
process X is /P measurable as it is the pointwise limit of

m2"

X;n = Xol(()} +2Xﬁ1(fm d](t).
=0

g5
Hence every left continuous adapted process X is P measurable. Process f which

is P measurable is called a predictable process.

Lemma 3.12 Let f be a predictable process such that

T
E[/ f2ds] < oo VT < o<. (3.3.8)
0

Then there exists a continuous adapted process Y such that for all simple predictable
processes h € S,

t T
E[( sup |, —/ hdW|))?] < 4E[/ (fs — hy)*ds] VT < oo. (3.3.9)
0 0

0<t<T
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Further, Y and Z are (F,)-martingales where

t
=Y> - / fids.
0

Proof Forr > 0, let i, be the measure on (fj , P) defined as follows: for 7P measur-
able bounded functions g
/N gdp, = E[/ gsds]
17 0

and let us denote the > norm on IL2(x,) by |- ll2,...- By Theorem 2.67, S is dense in
IL?(u,) for every r > 0 and hence for integers m > 1, we can get ™ € S such that

1= "o, <2777 (3.3.10)
Using ||“[l2,, < lIll2,, for r < s it follows that for k > 1
L = o, <277 (3.3.11)

Denoting the L?(£2, F, P) normby |||
tenas,forg € S,m > 1,

the growth inequality (3.3.6) can be rewrit-

2,P>

t

I sup | [ gdW[ll,p < 2ligll2.p, (3.3.12)

0<t<m JO

Recall that f* € Sand hence [ f*dW is already defined. Let Y} = [, f*dW. Now
using (3.3.11) and (3.3.12), we conclude that for k > 1

IL sup ¥, — ¥ 1], <27"F (3.3.13)

0<t<m

Fix an integer n. For m > n, using (3.3.13) for k = 1 we get

I sup [Y," ! — ¥, <27+ (3.3.14)
OStSn
and hence
Z sup |¥;" ' — ¥ (1], < Zn sup Y — ¥ (1],
0<t<n 0<t<n ’

< E 27m+1
m=n

< Q.


https://doi.org/10.1007/978-981-10-8318-1_2

76 3 The Ito’s Integral

Hence,
o0

> [sup [¥" —¥/"|] < 00 a.s. P. (3.3.15)

<t<
m=n O*lfn

So let N
Ny ={w: Y [sup [/ (w) — ¥" ()|l = o0}

—, 0<t=n
andlet N = U | N,. Then N is a P null set. For w ¢ N, let us define

Y (w) = mlgnoO Y™ (w)
and for w € N, let Y;(w) = 0. It follows from (3.3.15) that forall T < oo, w ¢ N

sup ¥ (w) — Y;(w)| — 0. (3.3.16)

0<t<T

Thus Y is a process with continuous paths. Now using (3.3.12) for /" —h € S we
get

t T
E[( sup |V" —f hdW|)?] < 4E[/ (f™ — h)2ds]. (3.3.17)
0 0

0<t<T

In view of (3.3.10), the right-hand side above converges to

T
El f (fy — ho)2ds].
0

Using Fatou’s lemma and (3.3.16) along with P(N) = 0, taking lim inf in (3.3.17) we
conclude that (3.3.9) is true. From these observations, it follows that Y, converges to
Y, in L?(P) for each fixed ¢. The observation ||-||2.,, < |I*|l2,, forr < s and (3.3.10)
implies that for all 7, || f — f™|l2,,, — 0 and hence for all ¢

E[/ (fs — f™?2ds] — 0.
0

As a consequence,

El /0 )% = (f™2lds] — 0

and hence

El| / (f")ds — f F2ds|1— 0.
0 0
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By Theorem 3.11, we have Y” and Z" which are martingales where Z!' = (¥/")* —
fol (f™?2ds. As observed above Y/ converges in L'(P) to Y;, and Z!" converges in
L'(P) to Z, for each ¢ and hence Y and Z are martingales. [l

Remark 3.13 From the proof of the Lemma it also follows that Y is uniquely
determined by the property (3.3.9), for if Y is another process that satisfies
(3.3.9), then using it for h = f™ as in the proof above, we conclude that Y™
converges almost surely to Y and hence ¥ =Y.

Definition 3.14 For a predictable process f such that E[fOT f2ds] < 0o VT <

oo, we define the lto’s integral fo’ fdW to be the process Y that satisfies
(3.3.9).

The next result gives the basic properties of the Ito’s integral | fd W; most of them
have essentially been proved above.

Theorem 3.15 Let f, g be predictable processes satisfying (3.3.8).Then

/(af+bg)dW=a/ de~|—bf gdW. (3.3.18)
0 0 0

Let M, = [, fdW and N, = M? — [, f2ds. Then M and N are (F.)-martingales.
Further, for any T < 00,

t T
E[sup|/ de|2]§4E[/ f2ds). (3.3.19)
0 0

t<T

Proof The linearity (3.3.18) follows by linearity for the integral for simple functions
observed in Lemma 3.9 and then for general predictable processes via approximation.
That M, N are martingales has been observed in Lemma 3.12. The growth inequality
(3.3.19) follows from (3.3.9) with & = 0. O

Remark 3.16 For a bounded predictable process f, let Iy (f) = [ fdW.Then
the growth inequality (3.3.19) and linearity of Iy, imply that for f,,, f bounded
predictable processes

fu 25 5 implies Iy (f,) “% Ly (f).
Exercise 3.17 Let' =i27",i > 0,n > 1 and let
o0
£=2" Wyl ).
i=0

Show that
(i) f()t f”dW = ZZO Wt,.”(Wt,."H/\t - Wt,."/\z)~
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(iiy ELfy1fr — W, Pds] — 0.
(iii) [y f1dW — [y WdW.
(iv) [y WdW = J(W2—1).

Hint: For (iii) using notations as in (3.1.9) and (3.1.10) we have fo’ frdw =
B!, (A" — B'") = Q" along with (A" + B') = W? and Q" — t (see Exercise
3.2). Thus A7 and B} converge, as mentioned in Remark 3.4.

Exercise 3.18 Let f, = . Show that [j fdW =W, — [, W,ds.

Exercise 3.19 Let f € L?([0, co) be a deterministic function. Show that Z, =
fo’ fdWisaGaussianprocess,i.e.foranys <t < ... <ty <00, (Zy, Zy, ...,
Z,,) has multivariate normal (Gaussian) distribution.

For deterministic f the integral f fdW had been defined and studied by Wiener
and is also called the Wiener integral.

Exercise 3.20 Let A € V be a bounded r.c.l.l.adapted process with finite vari-
ation paths. Show that

t t
/ ATdW =AW, — f WdA. (3.3.20)
0 0

HINT: Let ! =i27",i > 0, n > 1. Observe that
o0 o0
D AWy e — Won) = AW = > Won a(Agnr — Apar)-
i=0 i=0

The left-hand side converges to fO’ A~ dW while the second term on right-
hand side converges to [; Wd A as seen in Exercise 2.81.

Remark 3.21 The Ito’s integral can be extended to a larger class of predictable
integrands f satisfying

T
/ flds < ocoa.s. VT < .
0

We will outline this later when we discuss integration w.r.t. semimartingales.

3.4 Multidimensional Ito’s Integral

Let W = (W', W2, ..., W9 be d-dimensional Brownian motion, where W/ is the
jth component. In other words, each W/ is a real-valued Brownian motion and
W', W2, ..., W¢ are independent. Suppose further that () is a filtration such that
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(W, Fi)u=0y is a Wiener martingale. Thus for each s, {W, — W, : ¢ > s} is inde-
pendent of F;. Denoting § = (6", ..., 6% € R and defining

d
x!=>"0'w/ (3.4.1)
j=1
M! = (x? —1, (34.2)
we have
Vo € RY with 0] = 1; X’ MY are (F.)-martingales . (3.4.3)

The argument given in the proof of next lemma is interesting. Throughout this
section, the filtration (F,) will remain fixed.

Lemma 3.22 For j # k, W/ WF is also a martingale.

Proof Let X, = %(W,j + Wtk). Then, as seen above, X is a Brownian motion and

hence X? — ¢ is a martingale. Note that

1 . .
XP =t = SIW))? + (W2 + 2w/ W -1
1 .

= 5[(W/)2 — 1]+ %[(W/‘)2 — 1]+ W/ Wk

Since the left-hand side above as well as the first two terms of right-hand side above
are martingales, it follows that so is the third term. O

Suppose that for 1 < j <mand 1 <k <d, f 7% are (F.) predictable processes
that satisfy (3.3.8). Let

. d t .
X/ = Z/ Fikawk,
k=170

Let X = (X', ... X™) denote the m-dimensional process. It is natural to define X, to
be fot fdX where we interpret f to be L(m, d) (m x d-matrix-valued) predictable

process. We will obtain a growth estimate on the stochastic integral |, Ot fdW whichin
turn would be crucial in the study of stochastic differential equations. The following
lemma is a first step towards it.

Lemma 3.23 Let h be a predictable process satisfying (3.3.8). Let Y,k = fot hdW*.
Then for j # k, Ylk Y/ is a martingale.

Proof Let X, = %(W,j + Wtk). Then, as seen above, X is a Brownian motion. For
simple functions f it is easy to check that
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/Otfdxz%(/otfdwwfotfdwk)

and hence for all f satisfying (3.3.8) via approximation. Thus,

' Lo vk
hdX = — (Y + Y5
0 2

7

and so ([y hdX)* — fot hds is a martingale. Now as in the proof of Lemma 3.22
' ' 1 ) ) '
( /0 hdX)? — /0 hlds = E[(1//)2+ (Y52 +2v/ v - /0 h2ds

1. ! 1 t ,
= E[(Y/)2 —fo h2ds] + 5[(1@")2 —/0 h’ds)+ Y] Yk,

and once again the left-hand side as well as the first two terms on the right-hand side
are martingales and hence so is the last term completing the proof. (]

Lemma 3.24 Let f, g be predictable processes satisfying (3.3.8). Let Y} = fot fawk,
Z:‘ = fof gdW*. Then for j # k, Y*Z] is a martingale.

Proof Let X, = Yk Z[j . We will first prove that X is a martingale when f, g are simple,
the general case follows by approximation. The argument is similar to the proof of
Theorem 3.10. By linearity, suffices to prove the required result in the following
cases.
Case 1: 0 <s <rand

fi=al (), g =Dbl,,(t), a,bare F; measurable ,a > 0, b > 0.
Case2:0<s <r <wu<vand

fi=alg (), g =Dbluy (), aisF; measurable and b is F, measurable.

In case 1,
. . . t t .
X, = 1i2] = abWh, — W)Wl ~ wh) = ([ hawy [ haw?)
0 0

where i = /(ab) 1 ,(¢) and hence by Lemma 3.23, X is a martingale.
In case 2, ' ' '
X, =Y[Z] = ab(Wh,, = W)W — Wi

Here, X; = 0 for¢ < r and

X, = f(WujAt - WL{/\[)
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with £ = ab(W*, — Wk ) is F, measurable and hence by Corollary 2.60, X is a
martingale.

This proves the required result for simple predictable processes f, g. The general
case follows by approximating f, g by simple predictable processes { "}, {¢g"} such
that forall 7 < oo

T
/ [|fén - fs|2 + |g:l - gs|2]ds — 0.
0

Then it follows from (3.3.19) that for each t < oo,

1 t
/f”de—>/ FdWFin L*(P),
0 0

t t
/ g dwW/ — / gdW/ in L?(P)
0 0

and hence the martingale ( fot Frdwr)( fot g"dW/) converges to
Ykz] = (fot dek)(fOt gdW/) in L'(P) and thus Y} Z] is a martingale. O

We are now ready to prove the main growth inequality. Recall that L(m, d)
denotes the space of m x d matrices and for x = (x, x2,...,x4) € RY, |x| =

,/Z?zl sz. denotes the Euclidean norm on R" and for a = (ax) € L(m, d), |lall =

\/ Z?:l Yo a?k is the Euclidean norm on L(m, d).

Let f = (f 7%y be L(m, d)-valued process. For R?-valued Brownian motion W,
we have seen that X = [ fdW is an R"-valued process.

Theorem 3.25 Let W be an R?-valued Brownian motion. Then for m x d-matrix-
valued predictable process f with

T
E[/ 1 £ 1Pds] < 00
0

we have . ,
Elsup | [ fdW[?] < 4E] / 1 £, 112ds]. (3.4.4)
0

0<t<T JO

Proof Let X] = Y ¢_, [ fi*dW*. Then

d t d ! t
oy =3 [t =3[ ptawty = [ opitzas)
k=10 k=1 Y0 0
d d

t t
+ZZl(k#}/0 ffde"/O filaw!

=1 k=1
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and each term on the right-hand side above is a martingale and thus summing over

J we conclude
t t
If fawp? —f I f11ds
0 0

E[l/ de|2]=E[/ FARAY (3.4.5)
0 0

is a martingale. Thus

and | fot fdW|? is a submartingale. The required estimate (3.4.4) now follows from
Doob’s maximal inequality (2.3.7) and (3.4.5). O

Exercise 3.26 Let W be an R?-valued Brownian motion. Let f e L*([0, oo)
be an L(m, d)-valued deterministic function. Show that Z, = fg fdW isaR?-
valued Gaussian process, i.e.foranyn < < ... <t, <00,(Zy,, Zsy, ..., Zy,)
considered as a dn-dimensional vector has multivariate normal (Gaussian)
distribution.

3.5 Stochastic Differential Equations

We are going to consider stochastic differential equations (SDE) of the type
dX, =o(t, X;)dW; + b(t, X;)dt. (3.5.1)

Equation (3.5.1) is to be interpreted as an integral equation:
t t
X: = Xo +/ o(s, Xs)dW; +/ b(s, Xy)ds. (3.5.2)
0 0

Here W is an R¢-valued Brownian motion, X, is an R?-valued F, measurable ran-
dom variable, o : [0, 00) X R" + L(m, d) and b : [0, 00) x R" > R™ are given
functions, and one is seeking a process X such that (3.5.2) is true. The solution X to
the SDE (3.5.1), when it exists, is called a diffusion process with diffusion coefficient
oo™ and drift coefficient b.

We shall impose the following conditions on o, b:

o :[0,00) x R" — L(m, d) is a continuous function (353)
b : [0, 00) x R™ = R™ is a continuous function o
VT < oo 3Cy < oo such that forall 7 € [0, T], x', x> € R?
lo@, x") — o, x| < Crlx' —¥7), (3.5.4)
|b(t, x") = b(t, x*)| < Cr|x' —x*|.
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Since r +— o(t,0) and  +— b(¢, 0) are continuous and hence bounded on [0, T'] for
every T < oo, using the Lipschitz conditions (3.5.4), we can conclude that for each
T < o0, IK7 < o0 such that

o, )l <Kr(1+ |x]),

3.5.5)
[b(t, x)| < K7 (14 |x]).

We will need the following lemma, known as Gronwall’s lemma, for proving unique-
ness of solution to (3.5.2) under the Lipschitz conditions.

Lemma 3.27 Let 3(t) be a bounded measurable function on [0, T] satisfying, for
some () <a<oo, 0<b < oo,

6(t) <a+ b/ B(s)ds, 0 <t <T. (3.5.6)
0

Then
B(t) < ae”. (3.5.7)

Proof Let
m0=e”:/ﬁ@ﬁh
0

Then by definition, g is absolutely continuous and

g (1) =e " B@) —be’bt/ B(s)ds a.e.
0

where almost everywhere refers to the Lebesgue measure on R. Using (3.5.6), it
follows that

gt <ae™ a.e.

Hence (using g(0) = 0 and that g is absolutely continuous) g() < 7 (1 — e~b) from
which we get

/ﬁmwsﬂw—n
0 b

The conclusion 3(t) < ae® follows immediately from (3.5.6). O

So now let (F,) be a filtration on (§2, F, P) and W be a d-dimensional Brownian
motion adapted to (F.) and such that (W;, ;)=o) 1s a Wiener martingale. Without
loss of generality, let us assume that (£2, F, P) is complete and that F, contains all
P null sets in F. Let K, denote the class of R™-valued continuous (F,) adapted
process Z such that E[fOT|ZS|2ds] <00 VT < o00.ForY € K, let
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1

&=Y +/ o(s, Ys)dW; +/ b(s, Ys)ds. (3.5.8)
0 0

Note that in view of the growth condition (3.5.5) the Ito’s integral above is defined.
Using the growth estimate (3.4.4) we see that

T
EL sup &, 2] < 3[E[|Yol’] + 4E[ / loGs, ¥,)|Pds]
0

0<t<T

T
+ E[( f b(s, Y5)|ds)?]]
0
T
<3E[|Yo|*] + 3K2(4 + T)/ (1 + E[Y,|*])ds
0

and hence ¢ € K,,,. Let us define a mapping A from K, into itself as follows: A(Y) =
& where ¢ is defined by (3.5.8). Thus solving the SDE (3.5.2) amounts to finding a
fixed point Z of the functional A with Zy = X, where Xy is pre-specified. We are
going to prove that given X, there exists a unique solution (or a unique fixed point
of A) with the given initial condition. The following lemma is an important step in
that direction.

Lemma 3.28 LetY, Z € K,  andlet{ = A(Y)andn = A(Z). Thenfor0 <t <T
one has

t
E[ sup & — 15|*] < 3E[|Yy — Zo|*] + 3C2(4 + T)/ E[lY, — Z,|*1ds
0

O<s<t

Proof Let us note that
t t
G—n=Yo—Zo+ | [o(s,¥s) —o(s, Z)1dW; +f [b(s, Yy) — b(s, Zy)lds
0 0

and hence this time using the Lipschitz condition (3.5.4) along with the growth
inequality (3.4.4) we now have

E[ sup |& — 01?1 <3[E[|Yo — ZoI*1 + 45[/ lo(s, Yy) — o(s, Z,)|ds]
0

0<s<t

+ EI( f b(s, Yy) — b(s, Z,)|ds)*1]
0

t
<3E[Yy — ZoP1+ 3C2(4 + T)/0 ELY, — Z, lds.

Corollary 3.29 Suppose Y, Z € K,, be such that Yoy = Zy. Thenfor0 <t <T
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t
ELsup [AY), = AZ).P) =365 @+ ) [ ENY, - Z,Plds
0<s<t 0

We are now in a position to prove the main result of this section.

Theorem 3.30 Suppose o, b satisfy conditions (3.5.3) and (3.5.4) and Xy is a Fy
measurable R™-valued random variable with E[|Xo|?] < oco. Then there exists a
process X such that E[f0T|XS|2ds] < oo VT < o0 and

t t
X, =x0+/ o (s, Xs)dwyju/ b(s, X,)ds. (3.5.9)
0 0

Further if X is another process such that )N('o = Xo, E[fOT|)~KS|2ds] < oo for all

T < oo and .

t
X =Xo+ / o(s, X)dW; + f b(s, X,)ds
0 0
then X = X, i.e.P(X, =Y, Vi) = 1.

Proof Let us first prove uniqueness. Let X and X be as in the statement of the
theorem. Then, using Corollary 3.29 it follows that

u(t) = E[ sup| X, — X,[*]

s<t

satisfies for 0 < ¢ < T (recalling Xy = 5(0)
, ~
u(t) <3C2@4+T) | E[IX, — X,|*1ds.
0

Hence u is bounded and satisfies
t
u(t) < 3CH(4+ T)/ u(s)ds, 0<t<T.
0

By (Gronwalljs) Lemma 3.27, it follows thatu(z) = 0,0 <t < T forevery T < oc.
Hence X = X.
We will now construct a solution. Let X 11 = X, forallt > 0. Note that X! € K,,,.
Now define X" inductively by
X" = AX™).

Since X! = X, forall r and X3 = X{,

t 1
X?-X}:/O a(s,Xo)dWS—i—/(; b(s, Xo)ds
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and hence
Elsup|X? — X![*] < 2K7(4 + T)(1 + E[| Xo|*]z. (3.5.10)
s<t
Note that Xj = X é = X, for all n > 1 and hence from Lemma 3.28 it follows that

forn >2,forO0<tr<T,

t
Efsup| X" — X"[*] < 3C2(4 + T) / E(X” — X"~ P1ds
0

s<t

Thus defining forn > 1, u,, = E[sup‘Y§,|X§’Jrl — X;Z|2] we have for n > 2, for 0 <
t<T,

u,(t) < 3C%(4+ T)f U,_1(s)ds. (3.5.11)
0
As seen in (3.5.10),
ui(t) < 2K7(4 + T)(1 + E[| Xo[* )t

and hence using (3.§.11), which is true for n > 2, we can deduce by induction on n
that for a constant Cy = 3(C7 + K7)(4 + T)(1 + E[|Xo|*])

(Cr)r”
n!

u,(t) < 0<r<T.

Thus ), v/u,(T) < oo for every T < oo which is same as

> lisupl X7 — X7|ll2 < 00 (3.5.12)

n=1 s<T

[ Z]|> denoting the I.>(P) norm here. The relation (3.5.12) implies

o0
10> supl X2+ — X2 (1]l < o0 (3.5.13)
n=1 s<T
as well as
n+k
sup||[sup| X — X7[ 1]l < sup[[[Y_ sup|X{*" — X/|1],
k>1  s<T k>1 —n s<T
0 : ) (3.5.14)
<Y _lisup|x{* = X/ll2]
. s<T
j=n "=

— 0 as n tends to 00.
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LetN = U7 {w: Z;’;l supssTIX:?“(w) — X! (w)| = co}. Thenby (3.5.13), P(N)
=0 and for w ¢ N, X7 (w) converges uniformly on [0, 7] for every T < 00. So let
us define X as follows:

X, (w) = lim,,_, oo X7 (w) %fw € N¢
0 ifweN.

By definition, X is a continuous adapted process (since by assumption N € F) and

X" converges to X uniformly in [0, T] for every T almost surely. Using Fatou’s

lemma and (3.5.14) we get

n+k
Ifsup| X, — X?{1ll2 < liminf[I[) " sup|X/ ™" — X/ |1
s<T k—o00 — s<T
< s
ad . 4 (3.5.15)
< [Y_lisupl X/ — X/]|I2]
s<T

j=n

— 0 as n tends to oo.
In particular, X € K,,. Since A(X") = X"*! by definition, (3.5.15) also implies that

lim [[[sup| X, — AX"),[ 1l =0 (3.5.16)
n—0o0

s<T
while (3.5.15) and Corollary 3.29 (remembering that X = X for all n) imply that

Jim [[[sup| A(X)s — AX")s[ll2 = 0. (3.5.17)

s<T

From (3.5.16) and (3.5.17) it follows that X = A(X) or that X is a solution to the
SDE (3.5.9). a



Chapter 4 ®)
Stochastic Integration oo

In this chapter we consider processes X that are good integrators: i.e.

Ie(N)(0) = /0 fdx

can be defined for a suitable class of integrands f and the integral has some nat-
ural continuity properties. We will call such a process a stochastic integrator. In
this chapter, we will prove basic properties of the stochastic integral fot fdX fora
stochastic integrator X.

In the rest of the book, (§2, F, P) will denote a complete probability space and
(F.) will denote a filtration such that Fy contains all null sets in F. All notions such
as adapted, stopping time, martingale will refer to this filtration unless otherwise
stated explicitly.

For some of the auxiliary results, we need to consider the corresponding right
continuous filtration (F7) = {F : t >0} where

»7:;+ = m_v>t-Fs-

‘We begin with a discussion on the predictable o -field.

4.1 The Predictable o -Field

Recall our convention that a process X = (X,) is viewed as a function on Q =
[0, 00) x £2 and the predictable o-field P has been defined as the o-field on £2
generated by S. Here S consists of simple adapted processes:

m
F) = aolo() + ) et L1 (s) (4.1.1)
k=0
© Springer Nature Singapore Pte Ltd. 2018 89
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where 0 =5p <51 <852 < ... < Su41 < 00, ai is bounded F,_, measurable ran-
dom variable, 1 < k < (m + 1), and aq is bounded F measurable. P measurable
processes have appeared naturally in the definition of the stochastic integral w.r.t.
Brownian motion and play a very significant role in the theory of stochastic inte-
gration with respect to general semimartingales as we will see. A process f will be
called a predictable process if it is P measurable. Of course, P depends upon the
underlying filtration and would refer to the filtration that we have fixed. If there are
more than one filtration under consideration, we will state it explicitly. For example
P(G.) denotes the predictable o-field corresponding to a filtration (G,) and S(G,)
denotes simple predictable process for the filtration (G,).
The following proposition lists various facts about the o-field P.

Proposition 4.1 Let (F,) be a filtration and P = P(F.).

(i) Let f be P measurable. Then f is (F,) adapted. Moreover; for every t < 00,
fi is 0 (Us o, Fy) measurable.
(ii) Let Y be a left continuous adapted process. Then Y is P measurable.
(iii) Let A be the class of all bounded adapted continuous processes. Then P = o (A)
and the smallest bp-closed class that contains A is B(ﬁ, P).
(iv) For any stopping time T, U = 1jo ¢ (i.e. U; = ljo,¢)(t)) is P measurable.
(v) For an r.c.ll. adapted process Z and a stopping time t, the process X defined
by
X =Z:1(z.00)(1) 4.1.2)

is predictable.
(vi) For a predictable process g and a stopping time t, g, is a random variable and

h defined by
ht = grl(r,oo) (t) (413)

is itself predictable.

Proof 1t suffices to prove the assertions assuming that the processes f, Y, g are
bounded (by making a tan~! transformation, if necessary). Now, for (i) let

K, ={f € IB%(ﬁ, P) . fiis o (Ug,Fy)- measurable}.

Itis easily seen that K is bp-closed and contains S and thus by Theorem 2.66 equals
B(£2, P) proving (i).
For (ii), given a left continuous bounded adapted process Y, let Y” be defined by

no"

Y = Yol (t) + Zy%l(k NGE (4.1.4)

3T s T
k=0

b
Then Y" € Sand Y" 2% Y and this proves (ii).
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For (iii), Let K, be the smallest bp-closed class containing A. From part (ii)
above, it follows that A C IB%(@, P) and hence K, C ]B%([E, P).Fort € [0,00),n > 1
let

") = (1 — nt)l[()!%](t),

Yi(t) = ntl(o,%](t) + l(nl,l](t) + (1 —n@ - 1))1(1,14-%](0-

b b
Then ¢" and " are continuous functions, bounded by 1 and ¢" 2 Lo} and ¥" 22

Lo,1y-
For f € S given by

f) =aolio(s) + D aj41lis,5,.1()
j=0

where 0 =59 < 51 <$2... < Spy1 < 00, ajy1 is bounded Fy; measurable random
variable, 0 < j < m, and ag is bounded F, measurable random variable. Let

Y= aod"(s) + ) aj " ().

8j+175j
j=0

Then it follows that Y" € A and Y" Q) Y. Thus S € K, and hence B(ﬁ, P) C K,
completing the proof of (iii).

For part (iv) note that U is adapted left continuous process and hence P measur-
able by part (i7).

For (v), suffices to prove that X is adapted since X is left continuous by con-
struction. Using Lemmas 2.38 and 2.41 it follows that that Z; is J; measurable
and W defined by W, = Z;1|; «, is an r.c.Ll. adapted process. Hence X = W™ is
predictable.

For (vi), the class of processes g for which (vi) is true is closed under bp-
convergence and contains the class of continuous adapted processes as shown above.
In view of part (iii), this completes the proof. ]

If X is P(FY) measurable, then part (i) of the result proven above says that for
every ¢, X, is measurable w.r.t. o (Y, : 0 < u < t). Thus having observed ¥,,, u < f,
the value X, can be known (predicted with certainty) even before observing Y;. This
justifies the name predictable o -field for P.

Exercise 4.2 Show that (i) ¢/ = {A € 2 : 1, € S} is a field and that &/ gen-
erates P i.e. P is the smallest o-field on £2 that contains /. (i) If x is a
signed-measure on P such that f €S, f > 0 implies [ fdu > 0, then pis a
positive measure.
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Exercise 4.3 For > 0, let G, = F;*. Show that forz > 0

U(Ux<t~7::v) = O’(Ux<tgs)-

Here is an important observation regarding the predictable o-field P(F.") corre-
sponding to the filtration (F.1).

Theorem 4.4 Let f be a (F 1) predictable process (i.e. P(F) measurable). Then
g defined by
81(w) = fi(w){©,00)x2)(t, ®) 4.1.5)

is a (F,) predictable process.

Proof Let f be a (F.") adapted bounded continuous process. A crucial observation
is that for > 0, f; is F; measurable (see Exercise 4.3) and thus defining for n > 1

hi =t A1) f

it follows that A" are (F,) adapted continuous processes and h”" LA g where g is
defined by (4.1.5) and hence in this case g is (F,) predictable.

Now let H be the class of bounded 7P (F.") measurable f for which the conclusion
is true. Then easy to see that 7 is an algebra that is bp-closed and contains all
(F.") adapted continuous processes. The conclusion follows by the monotone class
theorem, Theorem 2.66. (]

The following is an immediate consequence of this.

Corollary 4.5 Let f be an (F.") predictable process such that fy is Fo measurable.
Then f is (F.) predictable.

Proof Since fy is Fo measurable, h; = folyy(¢) is (F.) predictable and f =
g + h where g is the (F,) predictable process given by (4.1.5). Hence f is (F,)
predictable. O

Corollary 4.6 Let A C (0, 00) x 2. Then A € P(F.) if and only if A € P(F.).

The following example will show that the result may not be true if fo =0 is
dropped in Corollary 4.5 above.

Exercise 4.7 Let 2 = C([0, co) and let X, denote the coordinate process and
Fr=0(X,;: 0<s <t).Let Abethe setofall w € £2 that take positive as well
as negative values in (0, €) for every e > 0. Show that A € ;" but A does not
belong to F,. Use this to show the relevance of the hypothesis on f; in the
corollary given above.

Exercise 4.8 Let £ be an F, measurable random variable. Show that Y =
&1(z.00) is predictable.
HINT: Use Lemma 2.41 along with part (v) in Proposition 4.1.
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Exercise 4.9 Let X denote the coordinate mappings on (D,, B(C,)) and let
D,=0(X, :0<uc<t)andlet P=P(D.). Let f:[0,00) x D; — R be P
measurable. Let (£2, F, P) be a probability space with a filtration (F.). Let Y
be ar.c.l.l.(F.) adapted process. Let Z be defined by Z, = f(z, Y). Show that
Z is P(F.) measurable, i.e. a predictable process on (£2, F, P).

HINT: Verify for simple f and then use monotone class theorem.

4.2 Stochastic Integrators

Let us fix an r.c.l.l. (F,) adapted stochastic process X.
Recall, S consists of the class of processes f of the form

f(s) = aply(s) + Zaj-H Lis;55211(5) 4.2.1)
=0

where0 = 5o <51 <52 < ... < S§pq1 < 00,a;isbounded Fy; , measurable random
variable, | < j < (m + 1), and qay is bounded F measurable.

For simple predictable f € S given by (4.2.1), let Jx(f) be the r.c.Ll. process
defined by

m

Tx(N)®) = aoXo+ Y aj1(Xen — X ). (4.2.2)
j=0

One needs to verify that Jx is unambiguously defined on S. That is, if a given f
has two representations of type (4.2.1), then the corresponding expressions in (4.2.2)
agree. This as well as linearity of Jx(f) for f € S can be verified using elementary
algebra. By definition, for f € S, Jx(f) is anr.c.l.l.adapted process. In analogy with
the Ito’s integral with respect to Brownian motion discussed in the earlier chapter, we
wish to explore if we can extend Jy to the smallest bp-closed class of integrands that
contain S. Each f € S can be viewed as a real-valued function on Q= [0, o0) x £2.
Since P is the o -field generated by S, by Theorem 2.66, the smallest class of functions
that contains S and is closed under bp-convergence is B(ﬁ, P).

When the space, filtration and the probability measure are clear from the context,
we will write the class of adapted r.c.L.l. processes R°(£2, (F.), P) simply as R?.

Definition 4.10 An r.c.l.l. adapted process X is said to be a stochastic inte-
grator if the mapping Jx from S to R%(£2, (F.), P) has an extension J:
B($2, P) — RY(£2, (F.), P) satisfying the following continuity property:

2% fimplies Jx(f") 25 Ty (f). 4.2.3)

It should be noted that for a given r.c.l.l. process X, Jy may not be continuous on S.
See the next exercise. So this definition, in particular, requires that Jy is continuous
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on S and has a continuous extension to B($2, P). Though not easy to prove, continuity
of Jx on S does imply that it has a continuous extension and hence it is a stochastic
integrator. We will see this later in Sect.4.10. The next exercise shows that J¢ is not
continuous on S.

Exercise 4.11 Let G be a real-valued function from [0, oo) with G(0) = 0 such
that for some T < oo, Varj. 11(G) = 0.

(i) Show that there exists a sequence of partitions of [0, T']

0= <tf'<...<ty =T (4.2.4)

such that .
= (Y _IGE") = Gt ))] ) — oo. (4.2.5)

Jj=0

(i) Let sgn: R+ R be defined by sgn(x) =1 for x > 0 and sgn(x) = —1
for x < 0. Let /" = (oem)‘% sgn(G(1]') — G(t;"_l))l(,jm_],,jm]. Show that /™
converges to 0 uniformly.

(iii) Jo(f™) converges to oo.

Conclude that J; is not continuous on S.
We next observe that the extension, when it exists, is unique.

Theorem 4.12 Let X be an r.c.Ll. process. Suppose there exist mappings Jx, Jy
from B(R2, P)into R°(£2, (F.), P), such that for f € S (given by (4.2.1)),

m

I ()0 = T ()0 = aoXo+ Y a1 (X om0 — Xy n0)- (4.2.6)

j=I
Further suppose that both Jx, Jy satisfy (4.2.3). Then
PUx(N)®) = Ty (N Y =1 Vf € B2, P).
Proof Since Jx, Jy both satisfy (4.2.3), the class
Ki={f € B(2.P) : PUx(/)0) = Jy())®) ¥1) = 1)

is bp-closed and by our assumption (4.2.6), contains S. Since P = o (S), by Theo-
rem 2.66 it follows that K; = B(£2, P). O

The following result which is almost obvious in this treatment of stochastic integra-
tion is a deep result in the traditional approach to stochastic integration and is known
as Stricker’s theorem.
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Theorem 4.13 Let X be a stochastic integrator for the filtration (F,). Let (G.) be
a filtration such that F, C G, for all t. Suppose X is a stochastic integrator for the
filtration (G.) as well. Denoting the mapping defined by (4.2.2) for the filtration (G,)
and its extension by Hy, we have

Ix(f) = Hx(f) Vf €B(2, P(F)). (4.2.7)

Proof Let Jy be the restriction of Hy to IB%(S~2, P(F.)). Then Jy satisfies (4.2.6) as
well as (4.2.3). Thus (4.2.7) follows from uniqueness of extension, Theorem 4.12.
O

Here is an observation that plays an important role in next result.

Lemma 4.14 Let X be a stochastic integrator and § be a Fo measurable bounded
random variable. Then VY f € B(§2, P)

Ix(Ef) =&Ix(f). (4.2.8)

Proof LetK; consistofall f € IB%(§, P) such thaL (4.2.8) is true. Easy to verify that
S € K, and that K; is bp-closed. Thus, K, = B(£2, P) by Theorem 2.66. |

The next observation is about the role of P null sets.

Theorem 4.15 Let X be a stochastic integrator. Then f, g € B($2, P),
Plwe 2 : fi(w) =g (w)Vt >0)=1 (4.2.9)

implies
Plwe 2 : Jx(f)(w) = Jx(g)(w) Vt > 0) = 1. (4.2.10)

In other words, the mapping Jx maps equivalence classes of process under the
relation f = g (see Definition 2.2) to equivalence class of processes.

Proof Given f, g such that (4.2.9) holds, let
20 ={we 2 : filw) =g (w) vVt = 0}.

Then the assumption that Fy contains all P null sets implies that £2yp € Fy and thus
& = lg, i1s Fp measurable and £ f = &g in the sense that these are identical processes:

E(w) fi(w) =§(w)g(w) Yo e 2, t > 0.

Now we have

EJx(f) = JIx(ES)
= Jx(&g)
=£&Jx(g).

Since P(§ = 1) =1, (4.2.10) follows. O
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Corollary 4.16 Let f,, f be bounded predictable such that there exists §2y C §2
with P(§2¢) = 1 and such that

b,
lQ()fn _p) lﬂof

Then e
Ix(f) =5 Jx(f).

For a stochastic integrator X, we will be defining the stochastic integral ¥ =
[ fdX, for an appropriate class of integrands, given as follows:

Definition 4.17 For a stochastic integrator X, let L(X) denote the class of
predictable processes f such that

W' e B(2,P), h" — 0pointwise, |h"| < |f] = Jx(W") =5 0. (4.2.11)

From the definition, it follows that if f € IL(X) and g is predictable such that
lg| < |f|, then g € L(X). Here is an interesting consequence of this definition.

Theorem 4.18 Let X be a stochastic integrator. Then f € IL(X) if and only if

g" e B($2, P), g" — g poimwise , |g"| < | f| = Jx(g") is Cauchy in dycp.

(4.2.12)
Proof Suppose f satisfies (4.2.11). Let
¢" € B(2,P), g" — g pointwise , [g"| < | f].
Given any subsequences {m*}, {n*} of integers, increasing to oo, let
L
Then {*} satisfies (4.2.11) and hence Jy (h¥) X% 0andasa consequence
(Ux (™) = Jx(g" ) “5 0. (42.13)

Since (4.2.13) holds for all subsequences {m*}, {n*} of integers, increasing to oo, it
follows that Jx (g") is Cauchy. Conversely, suppose f satisfies (4.2.12). Given {h"}
as in (4.2.11), let a sequence gf be defined as g2 = h* and g%*~' =0 for k > 1.
Then g* converges to g = 0 and hence Jx (g*) is Cauchy. Since for odd integers 7,
Jx(g") =0, Jx(g%) = Jx(h*) converges to 0. O

Remark 4.19 Note that in the previous theorem, each g" was assumed to be
bounded but no such assumption was made about g.
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This result enables us to define [ fdX for f € L(X).

Definition 4.20 Let X be a stochastic integrator and let f € L(X). Then

/de = nan;o JX(fl{\flsrz}) (4214)

where the limit is in the d,., metric.

Exercise 4.21 Let a, — oo. Show that for f € L(X),

Ie(F 1z 5 / fdx.

When f is bounded, it follows that [ fdX = Jx(f) by definition. Here is an
important result which is essentially a version of dominated convergence theorem.

Theorem 4.22 Let f € L(X) and g" € B(ﬁ, ‘P) be such that g" — g pointwise,
18" < | fI. Then

/g"dX — /ng in d,,c, metric as n — oo.

Proof Forn > 1,let €"~! = gl{jg<n and §*" = g". Then |£™| < | f| and £™ con-
verges pointwise to g. Thus, [ §”dX is Cauchy in d,, metric. On the other hand

/52”‘1dX o /ng

from the definition of [ gd X. Thus

[?;‘Z”dX = /g”dX i /ng. 0

Note that in the result given above, we did not require g to be bounded. Even if g
were bounded, the convergence was not required to be bounded pointwise.
The process [ fdX is called the stochastic integral of f with respect to X, and

we will also write .
( / rax), = [ rax.
0

We interpret fot fdX as the definite integral of f with respect to X over the interval
[0, t]. We sometimes need the integral of f w.r.t. X over (0, ¢] and so we introduce

t t t
| rax = [ romix = [ rax - px.
0+ 0 0
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Note that [ fdX is an r.c.Ll. process by definition. We will also write fot " fdX to
denote Y;_ where Y, = fos fdX.

A simple example of a stochastic integrator is an r.c.l.l. adapted process X such
that the mapping ¢ — X,(w) satisfies Varjo 71(X.(w)) < oo for all w € §2, for all
T < oo.

Theorem 4.23 Let X € V be a process with finite variation paths, i.e. X be anr.c.Ll.
adapted process such that

VAR, 71(X.(®)) < 00 for all T < oo. (4.2.15)

Then X is a stochastic integrator. Further, for f € B($2, P) the stochastic integral
Ix(f) = [ fdX is the Lebesgue-Stieltjes integral for every w € 2:

Jx (f)(@)(@) =/0 f (s, w)dX(w) (4.2.16)

where the integral above is the Lebesgue—Stieltjes integral.

Proof For f €S, the right-hand side of (4.2.16) agrees with the specification in
(4.2.1)—(4.2.2). Further the dominated convergence theorem (for Lebesgue—Stieltjes
integral) implies that the right-hand side of (4.2.16) satisfies (4.2.3) and thus X is a
stochastic integrator and (4.2.16) is true. U

As seen in Remark 3.16, Brownian motion W is also a stochastic integrator.

Remark 424 1f X € V and A, = |X|, is the total variation of X on [0, 7] and f
is predictable such that

t
/ |f:ldA, < 00 Vi < 00 a.s. (4.2.17)
0

then f € IL(X) and the stochastic integral is the same as the Lebesgue—
Stieltjes integral. This follows from the dominated convergence theorem and
Theorem 4.23. However, L(X) may include processes f that may not satisfy
(4.2.17). We will return to this later (see Exercise 5.77).

Remark 4.25 Suppose X is an r.c.l.l. adapted process such that

ucp

f* — Ouniformly = Jx(f") — 0. (4.2.18)
Of course every stochastic integrator satisfies this property. Let S; denote

the class of f € S (simple functions) that are bounded by 1. For T < oo the
family of random variables

T
{f fdX : f eSS} (4.2.19)
0
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is bounded in probability or tight in the sense that

T

Ve =03 M < cosuchthat sup P(| | fdX|> M) <e. (4.2.20)
f€S1 0

To see this, suppose (4.2.18) is true but (4.2.20) is not true. Then we can get
an e > 0 and foreachm > 1, f € S with | /| < 1 such that

T
P(I/ fMdX| = m) > e. (4.2.21)
0

Writing g™ = %f’", it follows that ¢g” — 0 uniformly but in view of (4.2.21),

[OT g"d X does not converge to zero in probability—which contradicts (4.2.18).
Indeed, the apparently weaker property (4.2.18) characterizes stochastic
integrators as we will see later. See Theorem 5.89.

Remark 4.26 Equivalent Probability Measures: Let Q be a probability mea-
sure equivalent to P. In other words, for A € F,

Q(A) = 0if and only if P(A4) = 0.

Then it is well known and easy to see that (for a sequence of random vari-
ables) convergence in P probability implies and is implied by convergence in
Q probability and the same is true for ucp convergence. Thus, it follows that
anr.c.l.l.adapted process X is a stochastic integrator on (§2, F, P) if and only
if it is a stochastic integrator on (£2, F, Q). Moreover, the class IL(X) under the
two measures is the same and for f € L(X), the stochastic integral [ fdX
on the two spaces is identical.

4.3 Properties of the Stochastic Integral

First we note linearity of (f, X) — f fdX.

Theorem 4.27 Let X, Y be stochastic integrators, f, g be predictable processes and
o, BeR

(i) Suppose f, g € L(X). Leth = af + Bg. Then h € (X) and

/th:a/de—i—ﬂ/ng. 4.3.1)

(ii) Let Z = aX + BY. Then Z is a stochastic integrator. Further, if f € L(X) and
f e L(Y). then f € I.(Z) and
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/de =oz/de+/3/de. 4.3.2)

Proof We will begin by showing that (4.3.1) is true for f, g bounded predictable
processes. For a bounded predictable process f, let

]K(f)={geIEB(é,P):/(af—}-,Bg)dX:a/de—i—ﬁ/ng, Vo, f € R}.

If f €8, iteasy to see that S C K(f) and Theorem 4.22 implies that K (f) is bp-
closed. Hence invoking Theorem 2.66, it follows that K(f) = IB%(ﬁ, P).

Now we take f € B($2, P) and the part proven above yields S € K(f). Once
again, using that K ( f) is bp-closed we conclude that K(f) = B(ﬁ, P). Thus (4.3.1)
is true when f, g are bounded predictable process.

Now let us fix f, g € L(X). We will show (Jef]+ |Bg]) € L(X), let u" be
bounded predictable processes converging to u pointwise and

" < (laf |+ 1BgD); Vn = 1.

Let v" = u" 1o f)<|ge)y and w" = u" 14|~ |g}- Then v" and w" converge pointwise
0 v = ulyari<pe)y and w = ulyqr|>|pe)}> respectively, and further

lv*] < 2|Bgl
[w"| < 2laf].

Note that since v", w" are bounded and u”" = v" + w”", from the part proven above,

we have
/v"dX+/w"dX=fu”dX.

Since f, g € L(X), it follows that [ v"dX and [ w"dX are Cauchy in d,, metric
and hence so is their sum f u"dX.Thus (laf| + |Bgl) € L(X) and as a consequence,
(af + Bg) € L(X) as well.

Now let

"= Flrizny, 8" = 8lygi=n-

Then by definition, | f"d X convergesto [ fdX and [ g"dX convergesto [ gdX in
d,, metric. Also (af" + Bg") are bounded predictable processes, converge point-
wise to (af + Bg) and are dominated by (Jef| + [Bg]) € L(X). Hence by Theo-
rem 4.22 we have

f (@f" + Bg")dX f (@f + Bo)dX.

On the other hand, the validity of (4.3.1) for bounded predictable processes yields
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f (@f" + Bg"dX = / af"dX + / BgdX
=a/f”dX+,3/g”dX

ucp

—>oz/de+ﬂ/ng.

This completes proof of (i).
For (ii), we begin by noting that (4.3.2) is true when f is simple i.e.

Jz([) =adx(f)+BIy(f) fE€S.

Since Jx, Jy have a continuous extension to B(§ , P), it follows that so does Jz and
hence Z is also a stochastic integrator and thus (4.3.2) is true for bounded predictable
processes.

Nowif f e L(X)and f e L(Y) and g" € B(£2, P), converge pointwise to g, g"
is dominated by | f|, then « [ ¢"dX and B [ g"dY are Cauchy in d,, metric and
hence so is their sum, which equals [ ¢"d (X + BY) = [ g"dZ. Thus f € L(Z).
Equation (4.3.2) follows by using (4.3.2) for the bounded process f" = f1{f<n
and passing to the limit. O

Thus the class of stochastic integrators is a linear space. We will see later that it
is indeed an Algebra. Let us note that when X is a continuous process, then so is

[ fdx.

Theorem 4.28 Let X be a continuous process and further X be a stochastic inte-
grator. Then for f € L(X), [ fdX is also a continuous process.

Proof Let
K={f¢e€ B(2,P) : /de is a continuous process}.

By using the definition of [ fdX it is easy to see that S € K. Also that K is bp-

closed since Z" continuous, Z" -5 Z implies Z is also continuous. Hence invoking
Theorem 2.66 we conclude K = IB%(@, ‘P). The general case follows by noting that
limit in d,,., metric of continuous process is a continuous process and using that for
f € L(X), [ fdX is the limit in d,,cp-metric of [ f1(s<ndX. a

We can now prove:

Theorem 4.29 Dominated Convergence Theorem for the Stochastic Integral Let X
be a stochastic integrator. Suppose h", h are predictable processes such that

W' () = h(®) ¥t >0, Yo e R (4.3.3)

and there exists f € IL(X) such that
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|h"| < |f| Vn. (4.3.4)
Then
/ ndx <% / hdX. (4.3.5)

Proof Let g" = hnl{‘hu‘sn} and f" = /’l"l{‘hn|>n}

Note that in view of (4.3.4) and the assumption f € LL(X) it follows that A" €
L(X). Pointwise convergence of 4" to h also implies || < | f| which in turn yields
h € L(X). Thus [h"dX, [ hdX are defined. Clearly, g" — h pointwise and also
f" — 0 pointwise. Further, #" = g" + f", |g"| < |f|and | f"]| < |f].

From Theorem 4.22 it follows that [ g"dX =5 [ hdX and from the definition

ucp

of L(X), it follows that f f"dX — 0. Now linearity of the stochastic integral,
Theorem 4.27, shows that (4.3.5) is true. O

The reader should note the subtle difference between this result and Theorem 4.22.

Remark 4.30 The condition (4.3.3) that 4" — h pointwise can be replaced by
requiring that convergence holds pointwise outside a null set, namely that
there exists 2, C 2 with P(£2y) = 1 such that

h(w) — hy(w) Yt >0, Yo € £2. (4.3.6)

See Theorem 4.15 and Corollary 4.16.

It should be noted that the hypothesis in the dominated convergence theorem given
above are exactly the same as in the case of Lebesgue integrals.

Recall, for an r.c.ll. process X, X~ denotes the l.c.r.l. process defined by X, =
X (t—), i.e. the left limit at r with the convention X (0—) =0 and AX = X — X .
Note that (AX), = 0 at each continuity point # > 0 and equals the jump otherwise.
Note that by the above convention

(AX)o = Xo.

Exercise 4.31 Let X", n > 1 and X be r.c.l.l. adapted processes such that
ucp

x" X% x. Show that AX" X% AX.

The next result connects the jumps of the stochastic integral with the jumps of the
integrator.

Theorem 4.32 Let X be a stochastic integrator and let f € IL(X). Then we have
A(/ fdX) = f-(AX). (4.3.7)

Equation(4.3.7) is to be interpreted as follows: if Y, = fot fdX then (AY), =
Ji(AX),.
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Proof For f €S, (4.3.7) can be verified from the definition. Now the class K of f
such that (4.3.7) is true can be seen to be bp-closed and hence is the class of all
bounded predictable processes. The case of general f € L(X) can be completed as
in the proof of Theorem 4.28. ]

We have already seen that the class of stochastic integrators (with respect to a
filtration on a given probability space) is a linear space.

Theorem 4.33 Let X be a stochastic integrator and let f € L(X). LetY = [ fdX.
Then Y is also a stochastic integrator and for a bounded predictable process g,

t t
/5MY=/gﬂM,W. (4.3.8)
0 0

Further, for a predictable process g, g € L(Y) if and only if gf € L(X) and then
(4.3.8) holds.

Proof We first prove that Y is a stochastic integrator and that (4.3.8) holds. Let us
first assume that f, g € S are given by

F(s) =aolioy(®) + Y ajiles,s01(s) (43.9)
j=0

2(s) =bolioy() + Y _ bjsilu, () (43.10)
j=0

where a( and b, are bounded F measurable random variables, 0 = 5y < 51 < 5, <
ces < Smy1 <00,0=1y <1ty < <...,<lyy1 < 00;ajy is bounded F;, mea-
surable random variable, 0 < j < m; and b, is bounded .7-}/, measurable random
variable, 0 < j < n. Let us put

A={s;: 0<j<m+D}U{t;: 0<j<@m+ D}
Let us enumerate the set A as

A={ri: 0<i<k

where 0 = ry < r; < ... < ryy1. Note kK may be smaller than m + n as there could
be repetitions among the {s;} and {#;}. We can then represent f, g as

k
£) = colio®) + Y ¢jriloy(s) 4.3.11)
j=0
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k

g(s) = doliy(s) + Zdj-H Lo (8) (4.3.12)
=0

where ¢ 1, d;1 are bounded 7, measurable. Then

k
(8f)(s) = docoliny(s) + Zdj+lcj+l Lo ryin1(8)
j=0
and hence
; k
f (8f)dX = docoXo + I djs1ip1 (X inr — Xryno)- (4.3.13)
0 ,
j=0
Since ,
Y, = / fdX (4.3.14)
0

we have Yy = cgXo and ¥, = coXo + ZI;ZO ¢jt1(Xy,, a0 — Xr;ar) and hence
(Yer/\r - Yr/Al) = C_j+l(Xr,-+1At - Xr,At)~ (4.3.15)
Thus, using (4.3.13) and (4.3.15), we conclude
‘ k
/ (@)X =doYo+ Y dis1(Yr ni = Yronr)- (4.3.16)
0 >
j=0
The right-hand side in (4.3.16) is f gdY and thus (4.3.8) is true when both f, g € S.
Let us note that in view of (4.3.10) we also have
1 n
IRCEE ST SURTIEE % (43.17)
0 >
j=0
or in other words,

At

/ (gf)dX = boYy + Zle(/ T rax - fdx). (4.3.18)
0 o 0 0

Now fix g € S. Note that this fixes n (appearing in (4.3.10)) as well. Let

K={f eB(2,P): (43.18)holds}.
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We have seen that S C K. Easy to see using Theorem 4.29 (dominated convergence
theorem) that K is bp- closed and since it contains S, it equals IB%(@, ‘P). Thus, for
all bounded predictable f, (4.3.18) is true.

If f e L(X), then approximating f by f" = f1yf<a), using (4.3.18) for f"
and taking limits, we conclude (invoking dominated convergence theorem, which is
justified as g is bounded) that (4.3.18) is true for g € S and f € L(X).

Now fix f € L(X) and let Y be given by (4.3.14). Note that right-hand side in
(4.3.18) is Jy(g)(?), as defined by (4.2.1)-(4.2.2), so that we have

/ (gf)dX = Jy(g)(t), Vg €S. (4.3.19)
0

Letusdefine J(g) = fot gfdX forbounded predictable g, then J is an extension of

Jy as noted above. Theorem 4.29 again yields that if g” A g then J(g") Xy (2).
Thus, J is the extension of Jy as required in the definition of stochastic integrator.
Thus Y is a stochastic integrator and (4.3.8) holds (for bounded predictable g).

Now we shall prove the last statement of the theorem. Suppose g is predictable
such that fg € L(X). First, we will prove that g € IL(Y) and that (4.3.8) holds for
such a g.

To prove g € L.(Y), let i* be bounded predictable, converging pointwise to & such
that h* are dominated by g. We need to show that [ h*dY is Cauchy in d,., metric.

Let u¥ = h* f. Then u* are dominated by fg € IL(X) and converge pointwise
to hf. Invoking DCT, Theorem 4.29, we conclude that Z¥ = i u*d X converges to
Z = f hfdX and hence is Cauchy in d,., metric. On the other hand, since h* is
bounded, invoking (4.3.8) for h*, we conclude f h*dY = Z* and hence is Cauchy
in d,,., metric. This shows g € IL(Y).

Further, with h* = g1{)4/<x) above we conclude that the limitof [ h*dY is [ gdY.
On the other hand as seen above, (with h = g) [ hkdy = i h* fdX converges to
[ gfdX. Thus (4.3.8) is true.

To complete the proof, we need to show thatif g € IL(Y) then fg € LL(X). For this,
suppose u" are bounded predictable, |u"| < |fg| and u" converges to 0 pointwise.

Need to show [ u"dX 2200, Let

i i fi(@) #0

fi(@) = {0 if fi(w) =0.

and v" = u" f . Now v" are predictable and are dominated by |g| and v" converges
pointwise to 0. Thus,

/v”dY 220,

Since |u"| < | fgl, fs(w) = Oimplies u! (w) = 0. Thus it follows that v" f = u" and
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thus v" f is bounded and hence in IL(X). Thus by the part proven above, invoking

(4.3.8) for v" we have
/v”dY:/v"de:/u”dX.

This shows [ u"dX X% 0. Hence fg € L(X). This completes the proof. O

We had seen in Theorem 4.4 that the class of predictable processes is essentially
the same for the filtrations (F,) and (F. +t)—the only difference being at t = 0.
‘We now observe:

Theorem 4.34 For an r.c.l.l. (F,) adapted process X, it is a stochastic integrator
w.r.t. the filtration (F.) if and only if it is a stochastic integrator w.r.t. the filtration
(FH).

Proof Let X be a stochastic integrator w.r.t. the filtration (F,), so that f hdX is
defined for bounded (F,) predictable processes /. Given a bounded (F.1) predictable
processes f, let g be defined by

gi(w) = fi(@)1{0,00)x2)(t, ®).

Then by Theorem 4.4, g is a bounded (F,) predictable processes. So we define

Jx(f) = fng + foXo.

It is easy to check that Jx satisfies the required properties for X to be a stochastic
integrator.

Conversely if X is a stochastic integrator w.r.t.the filtration (F.), so that f hdX
is defined for bounded (") predictable processes h, of course for a bounded (F,)
predictable f we can define by Jx(f) = f fdX and Jx will have the required
continuity properties. However, we need to check that Jx(f) so defined is (F,)
adapted or in other words, belongs to RO(£2, (F.)), P). For f €8, it is clear that
Jx(f) € R%(2, (F.), P) since X is (F.) adapted. Since the space R%(£2, (F.), P)
is a closed subspace of R%(£2, (F), P) in the d,, metric, it follows that Jx(f) €
RO(£2, (F)),P) for f B(ﬁ ,’P(F.)) and thus X is a stochastic integrator for the
filtration (F,). O

Exercise 4.35 Let X be a (F,)- stochastic integrator. Foreach r let {G, : t > 0}
be afiltration such thatforall z, 7, < G, € F,". Show that X is a (G.)- stochastic
integrator.
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4.4 Locally Bounded Processes

We will introduce an important class of integrands, namely that of locally bounded
predictable processes, that is contained in LL.(X) for every stochastic integrator X.
For a stopping time 7, [0, 7] will denote the set {(¢, w) € 2:0 <t <71t(w)} and
thus g = f1jo,-; means the following: g;(w) = fi(w) if t < T(w) and g;(w) is zero
if t > 7(w).

The next result gives interplay between stopping times and stochastic integration.

Lemma 4.36 Let X be a stochastic integrator and f € IL(X). Let T be a stopping
time. Let g = f1jo,7. Let

Y, = / fdx 4.4.1)
0

andV = fng. Then V, = Yo, Le.

t
Yine =/ fliodX. (4.4.2)
0

Proof When f € S is a simple predictable process and 7 is a stopping time taking
only finitely many values, then g € S and (4.4.1)—(4.4.2) can be checked as in that
case, the integrals [ fdX and [ gdX are both defined directly by (4.2.2). Thus fix
f € S. Approximating a bounded stopping time 7 from above by stopping time taking
finitely many values (as seen in the proof of Theorem 2.54), it follows that (4.4.2) is
true for any bounded stopping time, then any stopping time t can be approximated
by 7" = v A n and one can check that (4.4.2) continues to be true. Thus we have
proven the result for simple integrands.
Now fix a stopping time 7 and let

K={f¢€ IB%(@, P): (4.4.1) — (4.4.2)is true forallr > 0.}.

Then it is easy to see that K is closed under bp-convergence and as noted above
it contains S. Hence by Theorem 2.66, it follows that K = IB%(.G , P). Finally, for
a general f € L(X), the result follows by approximating f by f" = f1{s<, and
using dominated convergence theorem. This completes the proof. O

Exercise 4.37 In the proof given above, we first proved the required result for
f €S and any stopping time . Complete the proof by first fixing a simple
stopping time ¢ and prove it for all f € L(X) and subsequently prove it for all
stopping times .

Remark 4.38 We can denote Y;,, as [;""

o fdXsothat(4.4.2) can be recastas

INT t
/ fdx = / floodX. (4.4.3)
0 0
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Corollary 4.39 If X is a stochastic integrator and f, g € L(X) and t is a stopping

time such that
flo =gl

INT INT
/ fdX = / gdX. (4.4.4)
0 0

Definition 4.40 A process f is said to be locally bounded if there exist stop-
ping times ", 0 < ' <72 < ..., 7" 1 oo such that for every n,

then for each t

f1jo,rn is bounded.

The sequence {t" : n > 1} is called a localizing sequence.

Thus if a process f is locally bounded, then we can get stopping times 7" increas-
ing to infinity (can even choose each t” to be bounded) and constants C, such that

Plw: sup |filw)|<C, )=1, Vn=>1. (4.4.5)

0<t=<7,(w)

Note that given finitely many locally bounded processes one can choose acommon
localizing sequence {t” : n > 1}. A continuous adapted process X such that Xy is
bounded is easily seen to be locally bounded. We can take the localizing sequence
to be

T, =inf{t >0: |X(@)| >nort > n}.

For an r.c.ll adapted process X, recall that X~ is the process defined by
X (t) = X(t—), where X (r—) is the left limit of X(s) at s =¢ for t > 0 and
X~ (0) = X(0—) = 0. Let 7, be the stopping times defined by

T, =inf{t >0: |X@)|>nor|X(t—)| >nort > n}. (4.4.6)

Then it can be easily seen that X~ 19 ,} is bounded by n and that 7, 1 oo and hence
X~ islocally bounded. Easy to see that sum of two locally bounded processes is itself
locally bounded. Further, if X is a r.c.l.l. process with bounded jumps: |[AX| < K,
then X is locally bounded, since X~ is locally bounded and (AX) is bounded and
X =X +(4AX).

Exercise 4.41 Let X be an r.c.l.l. adapted process. Show that X is locally
bounded if and only if AX is locally bounded.

For future reference, we record these observations as a lemma.
Lemma 4.42 Let X be an adapted r.c.l.l. process.

(i) If X is continuous with Xy bounded, then X is locally bounded.
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(ii) X~ is locally bounded.
(iii) If AX is locally bounded, then X is locally bounded.

We now prove an important property of the class L(X).

Theorem 4.43 Let X be an integrator and f be a predictable process such that
there exist stopping times t,, increasing to oo with

flog,) € LX) Vi > 1. (4.4.7)

Then f € L(X).

Proof Let g" be bounded predictable such that g" — g pointwise and |g"| < | f].
Let Z" = [ g"dX. Now for each m,

gnl[()yfm] — gl[oﬁfm] pointwise, (448)
lg" 0,50 < |f Lo.50l (4.4.9)
and Y™™ defined by
Yn,m = /g"l[OJW]dX (4410)
satisfies
Yy = Z;’Mm. (4.4.11)

In view of (4.4.8), (4.4.9) the assumption (4.4.7) implies that for each m, {Y"" :
n > 1} is Cauchy in d,, metric. Thus invoking Corollary 2.76, we conclude that Z"
is Cauchy in d,, metric and hence f € L(X). (I

As noted earlier, f € L(X), h predictable, |h| < C|f| for some constant C > 0
implies & € L(X). Thus the previous result gives us

Corollary 4.44 Let X be a stochastic integrator, g be a locally bounded predictable
process and [ € IL(X). Then fg belongs to L(X).

In particular, we have the following.

Corollary 4.45 Let g be a locally bounded predictable process. Then g belongs to
IL(X) for every stochastic integrator X. As a consequence, if Y is an r.c.l.l. adapted
process, then Y~ € IL(X) for every stochastic integrator X.

Exercise 4.46 Let X be a stochastic integrator. Let so =0 <s; <85 < ... <
sp < ...withs, 1 oo. Leté;, j =1,2..., be suchthat&; is 7, , measurable.

(i) Forn>1leth" = Z’}Zl €1, ,.s;1- Show that 2" € IL(X) and

t n
f WX =& (X n — Xy ).

0 j=1
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(i) Leth =372, &1, ,.5,)- Show that 7 € L(X) and

/th Zs,(xw— VR

For an r.c.ll. process X and a stopping time o, let X!°! denote the process X
stopped at o defined as follows

X = X0 (4.4.12)

Next result shows that if X is a stochastic integrator and o is a stopping time, then
Y = X' is a stochastic integrator as well.

Lemma 4.47 Let X be a stochastic integrator and o be a stopping time. Then X!
is also a stochastic integrator and for f € L(X), writing Z, = fot fdX, one has

t t
Zirng = / fdx'o! = f (flioo)dX. (4.4.13)
0 0

Proof First one checks that (4.4.13) is true for f € S. Then for any bounded pre-
dictable f, defining the process

Jo(f) = / (Flioo)dX

ucp

one can check that f, LA f implies Jo(f,) —> Jo(f) and hence it follows that
X'l is a stochastic integrator. Using (4.4.4), it follows that (4.4.13) is true for all
bounded predictable processes f. Finally, for a general f € IL(X), the result follows
by approximating f by f" = f1{ <, and using dominated convergence theorem.
This completes the proof. O

Exercise 4.48 Deduce the previous result using Theorem 4.33 by identifying
X"l as [ gdX for a suitable g € L(X).

The next result shows that if we localize the concept of integrator, we do not get
anything new; i.e. if a process is locally a stochastic integrator, then it is already a
stochastic integrator.

Theorem 4.49 Suppose X is an adapted r.c.l.l. process such that there exist stopping
times T" with t" < t"! foralln and t" 1 0o and the stopped processes X" = X"
are stochastic integrators. Then X is itself a stochastic integrator.

Proof Fix f € B(ﬁ, P)andform > 1letU™ = [ fdX™. Withoutloss of generality
we assume that ¥ = 0. Then using (4.4.4), it follows that U™ = U¥, . form < k.
We define ]o(f) by J()(f)o = foX() and form > 1,
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(=0, " <r<t™ (4.4.14)

It follows that .
Jo(f)inem =/ faxm. (4.4.15)
0

Of course, for simple predictable f, Jo(f) = fot fdX and thus Jj is an extension

of Jx. Now let f" be bounded predictable such that f” LA f. Using (4.4.15), for
n,m > 1 we have

t
JO(fn)r/\tm 2/ fnde'
0

Writing Z" = Jo(f") and Z = Jy(f), it follows using (4.4.15) that Z", n > 1, and
Z satisfy(2.5.9) and hence by Lemma 2.75 it follows that Z" X, Z. We have thus

proved that f” E) f implies Jo(f") L Jo(f) and since Jy(f) agrees with Jx (f)
for simple predictable f, it follows that X is a stochastic integrator. O

We have seen a version of the dominated convergence theorem for stochastic
integrals. Here is another result on convergence that will be needed later.

Theorem 4.50 Suppose Y",Y € R(£2, (F),P), Y" “P.y and X is a stochastic
integrator. Then
/(Y")—dx = / Y dX.

Proof We have noted that Y~ and (Y")™ belong to L(X). Let

by = duc,,(/(y")*dx, / Y~dXx).

To prove that b, — 0 suffices to prove the following: For any subsequence {ny :
k > 1}, there exists a further subsequence {m; : j > 1} of {ny : k > 1} (i.e. I subse-
quence {k; : j > 1} such that m; = ny,) such that

by, — 0. (4.4.16)
So now, given a subsequence {ny; : k > 1}, using d,,., (Y™, Y) — 0, let us choose

mj = ny, with k;4; > k; and d,e, (Y™, Y) <277, Then as seen in the proof of
Theorem 2.71, this would imply

o0
Z[suplY,m’ —Y|] < o0, VT < 0.
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Thus defining
o0
H, = Z | Yzmj Y| 4.4.17)
j=1

it follows that (outside a fixed null set) the convergence in (4.4.17) is uniform on
t €[0,T] for all T < oo and as a result H is an r.c.l.l. adapted process. Thus the
processes (Y™)~ are dominated by (H + Y)~ whichis alocally bounded process, as
H + Y is anr.c.l.l.adapted process. Thus the dominated convergence Theorem 4.29
yields

by, = dye, (f(Y™)~dX, [Y~dX) — 0.

This completes the proof as explained above. (I
Exercise 4.51 Show that if ¥* 2% Y, then there is a subsequence that is
dominated by a locally bounded process.

The subsequence technique used in the proof also yields the following result, which
will be useful alter.

Proposition 4.52 Ler Y" Py where Y", Y are R?-valued r.c.l.L. processes and
g", g :[0,00) x R? > R be continuous functions such that g" converges to g uni-
formly on compact subsets of [0, 00) x RY. Let 2l =g"(t, Y and Z, = g(t, Y)).

ucp

Then 2" — Z.

Proof Like in the previous proof, let b, = d,.,(Z", Z) and given any subse-
quence {n; : k > 1}, using d,,¢, (Y™, Y) — 0, choose m; = ny, with k4| > k; and
d,, (Y™, Y) <277 It follows that

o0
Z[sup|Y,m/ — Y]] < o0, VT < o0.

=1 t<T
and so [ sup,_; |Y,m’ — Y;|] converges to zero for all T < oo a.s. and now uniform
convergence of g” to g on compact subsets would yield convergence of Z"/ to Z
uniformly on [0, T'] for all T and thus bm; =d,, (2™, Z) converges to 0. Thus
every subsequence of {b,} has a further subsequence converging to zero and hence
lim,,_ o0 by = 0. O

Essentially the same proof as given above for Theorem 4.50 gives the following
result, only difference being that if X € V, i.e. if Varyp(X) < oo for all ¢ < oo,
and Y is an r.c.ll adapted process, the integral [ YdX is defined in addition to
J Y~dX,both are defined as Lebesgue—Stieltjes integrals while the later agrees with
the stochastic integral (as seen in Theorem 4.23).

Proposition 4.53 Suppose Y, Y € R*(£2, (F.),P), Y" P Yand X €V (a pro-
cess with finite variation paths). Then
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/(Y”)dX S /de.

Exercise 4.54 Let (£2, 7, P) be a probability space with a filtration (F.). Let
W= W!,..., W% be such that W/ is a stochastic integrator on (£2, F, P)
for1 < j<d. Let u =Po W™l Let X denote the coordinate mappings on
(Dy4, B(Dy)) and let D, = FX be the filtration generated by X and let P =
P(D.).LetX = (X', ..., X?%) denote the coordinate mappings on (Dy, B(D,)).

(i) Show that X/ is a stochastic integrator on (Dy, B(Dy), 1) with the filtration
(D)forl <j<d.

(i) Let f/ be P(D.) measurable such that f/ € L(X/). Let Z/ be defined by
Z! = f/(W). Show that Z/ € L(W/) for 1 < j < d. (See Exercise 4.9).

(iii) Let n:Dy > R be a measurable mapping and g: R R be a
bounded continuous function, A € B(D,) and let T < co. Show that

Eplla(W)g(fy FrW)dW!, ..., [ fE(W)dW4, h(W))]

. r (4.4.18)
= [, g(fy fldx', ..., [y fdX? hydpu.
(iv) Showthat (4.4.18)istrueif g is a bounded measurable function or [0, c0)-
valued measurable function.
HINT: For simple processes u, v on (Dy, B(D,), 1), observe that

pn(Jxi () = Jxi ()| > &) = P(Jywi () — Jwi (v)| > &).

(i) and (ii) follow from this. For (iii), note that it holds for simple processes
£, ..., f¥ and that the class of processes f!, ..., f¢ such that (4.4.18)
is true is closed under bounded pointwise convergence. Using monotone
class theorem, deduce that (4.4.18) is true for all bounded predictable
f', ..., f%. The general case follows by truncation. For (iv), the validity
for bounded measurable g follows from yet another application of mono-
tone class theorem.

4.5 Approximation by Riemann Sums

The next result shows that for an r.c.L.l. process Y and a stochastic integrator X,
the stochastic integral [ Y ~dX can be approximated by Riemann-like sums. The
difference is that the integrand must be evaluated at the lower end point of the
interval as opposed to any point in the interval in the Riemann—Stieltjes integral.
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Theorem 4.55 Let Y be an r.c.l.l. adapted process and X be a stochastic integrator.
Let

O=t<t"<...<t)'<...; t'tooasn?t oo (4.5.1)

be a sequence of partitions of [0, 0c0) such that for all T < oo,

Su(T)=( sup (1" —1,")) — 0 asm 1 oo. (4.5.2)
{n:tm<T}
Let
Z;n = Z Yt;”/\t(Xt;’H/\t - Xz;,”At) (4.5.3)
n=0

and Z = [ Y~dX. Note that for each t, m, the sum in (4.5.3) is a finite sum since
1 Nt =t from some n onwards. Then

ucp

" — Z (4.5.4)

or in other words

o0 t

ucp _
E Y,’fAt(Xl,’l”Jrl/\t - Xt,',"m) - Y dXx.
n=0 0

Proof Let Y™ be defined by

=3 0
n=0
We will first prove
,/Yde =Z". 4.5.5)

For this, let V; = sup,_,|Y|. Then V is an r.c.L.l. adapted process, and hence V~ is
locally bounded. -

Let us fix m and let ¢ (x) = max(min(x, k), —k), so that |¢*(x)| < k for all
x € R. Let

k
k E : k
U[ = ¢ (Yt,g”/\t)1(zg',t,’,”+,](t)-

n=0

Then U* € S and

t k
/ UtdX = Z(bk(yf,'flAt)(Xl"'JrlAf - Xt,’,"Az)'

n
0 n=0
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Note that U¥ converges pointwise (as k increases to o) to Y. Further, |U,k| V7 =
V(t—) for all  and hence by the Dominated Convergence Theorem 4.29, fot Ukdx
converges to [ Y"dX. On the other hand,

k [}
k . .
E ¢ (Yr,',”At)(Xz;’;l/\r — Ximar) = E Yt,’,“/\t(Xth/\l — Xynar) pointwise.

n=0 n=0

This proves (4.5.5).
Now, Y converges pointwise to Y~ and are dominated by the locally bounded
process V. Hence again by Theorem 4.29,

/ y"dx X% | y-ax

which is same as (4.5.4). U

We will next show that the preceding result is true when the sequence of deter-
ministic partitions is replaced by a sequence of random partitions via stopping times.
For this, we need the following lemma.

Lemma 4.56 Let X be a stochastic integrator, Z be an r.c.l.l. adapted process and
T be stopping time. Let
h=2Z:1¢ 0. (4.5.6)

Then h is locally bounded predictable and

t
/ hdX = Zni (X — Xenr)- (4.5.7)
0

Proof We have seen in Proposition 4.1 that & is predictable. Since

sup |hs| < sup |Z|

0<s<t 0<s=<t

and Z~ is locally bounded, it follows that % is locally bounded and thus /& € L(X).

If Z is a bounded r.c.1.1. adapted process and t takes finitely many values, then
easy to see that i belongs to S and that (4.5.7) is true. Now if 7 is a bounded stopping
time, then for m > 1, ™" defined by

™ =2""(2" ] + 1) (4.5.8)

are stopping times, each taking finitely many values and t™ | 7. One can then verify
(4.5.7) by approximating T by t” defined via (4.5.8) and then using the fact that
h"™ = Zn1n o) converges boundedly pointwise to £, validity of (4.5.7) for ™
implies the same for 7. For a general 7, we approximate it by 7, = t A n. Thus, it
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follows that (4.5.6)—(4.5.7) are true for bounded r.c.l.1. adapted processes Z. For a
general Z, let
Z" = max(min(Z, n), —n).

Noting that " = Z?1; «,) converges to & and |h"| < |h|, the validity of (4.5.7) for
Z" implies the same for Z by Theorem 4.29. (]

Corollary 4.57 Let Z and t be as in the previous lemma and o be another stopping
time with t < o. Let
8= Ztl(r,o]- (459)
Then .
/ 8dX = Zini(Xine — Xine) = Ze(Xinoe — Xinr). (4.5.10)
0

The first equality follows from the observation that g = i1y, where A is as in
Lemma 4.56 and hence fot gdX = (f,hdX)iro (using Lemma 4.36). The second
equality can be directly verified.

Exercise 4.58 Express 1(; ) as 1(r.0) — l(5.00) @nd thereby deduce the above
Corollary from Lemma 4.56.

Corollary 4.59 Let X be a stochastic integrator and T < o be stopping times. Let
& be a F; measurable random variable. Let

f = E 1(7:,0]~
Then f € L(X) and
12
/ fAdX =EXinoe — Xine)-
0
Proof This follows from the Corollary 4.57 by taking Z = £1|; ~, and noting that
as shown in Lemma 2.41, Z is adapted. O

Definition 4.60 For § > 0, a §-partition for an r.c.l.l. adapted process Z is a
sequence of stopping times {z,; : n >0} suchthat0 =1 <1, <... <1, <
...; T, 1 oo and

|Z, —Z,| <8 fort, <t <71y, n>0. 4.5.11)
Remark 4.61 Given r.c.l.l.adapted processes Z/, 1 <i < kand § > 0, we can
get a sequence of partitions {7, : n > 0} such that {z, : n > 0} is a § partition
for each of Z', %, ... Z*. Indeed, let {7, : n > 0} be defined inductively via
79 = 0 and

Ty = inf{t > 7, : max(]maxk|z;' -7, lmaxk|z;; -ZL) =8} (4512
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Invoking Theorem 2.46, we can see that {t, : n > 0} are stopping times and
that lim, o0 7, = 00.

Letd,, | Oand foreachm,let{z," : n > 0} be a §,,-partition for Z. We implicitly
assume that §,, > 0. Let

00
= Z Ztm:,;” l(rn”’,r,',’jr]](t)~
n=0

Then it follows that |Z" — Z,| < §,, and hence Z" YR 7z- Fork > 1, let

zZmk = szml( o ().

Now, using Corollary 4.57 and linearity of stochastic integrals, we have

/ Zmkdx = szm(x none = Xepar)-
0

n=0

LetV, = sup,,|Z;|. Then V isr.c.l.lLand thus, as noted earlier, V ~ is locally bounded.
Easy to see that |Z"*| < V~ and Z"™* converges pointwise to Z”. Hence by Theo-

rem 4.29, [ Z"*dX “% [ Z"dX. Thus

/ Z"dX = sz (X ne = Xopno)- (4.5.13)

Since Z™ converges pointwise to Z~ and |Z"| < V™ with V™ locally bounded,
invoking Theorem 4.29 it follows that

/ z"dX X% | z-adx. (4.5.14)

We have thus proved another version of Theorem 4.55.

Theorem 4.62 Let X be a stochastic integrator. Let Z be an r.c.l.l. adapted process.
Let §,, | 0 and form > 1let {t)" : n > 0} be a §,,-partition for Z. Then

ucp

t
szm(xtw_ Xonn) — | Z7dX. (4.5.15)
0

Remark 4.63 When " (6m)% < 00, say 8, =27, then the convergence in
(4.5.15) is stronger: it is uniform convergence on [0, T] almost surely for
each T < co. We will prove this in Chap. 6.
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4.6 Quadratic Variation of Stochastic Integrators

We now show that stochastic integrators also, like Brownian motion, have finite
quadratic variation.

Theorem 4.64 Let X be a stochastic integrator. Then there exists an adapted
increasing process A, written as [ X, X1, such that

t
X2 = x§+2f X dX +[X, X],, Vr. (4.6.1)
0

Further, let §,, | 0 and for m > 1 let {z,' : n > 0} be a §,-partition for X. Then
one has

00
Z(XT;”H/\[ - ‘L""/\t) Lp) [X, X];. (4.6.2)

Proof Fora,b € R,
b* —a®> =2a —a) + (b —a)’.

Using this with b = X;» ,, and a = X» ,, and summing with respect to n, we get

X2 =X242V" + Q"

where
ZXI'”/\Z(XT"’H/\[ - r”’/\t)
and
oo
2
Q Z(X AL T X‘L’,’,”/\t) .
n=0

Note that after some » that may depend uponw € §2, 7" > t and hence X oo = Xi.
In view of this, the two sums above have only finitely many nonzero terms.

By Theorem 4.62, V™ =5 J X~dX. Hence, writing
t
A =X —-Xx}-2 / X dX, (4.6.3)
0

we conclude
m ucp

Q[ _)At

This proves (4.6.1). Remains to show that A; is an increasing process. Fix w € 2,

s < t, and note that if r’” <s<rt! T then | X — X,jm| <6, and
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j—1
0y = Z(Xrgirl o XT;':")Z + (Xs — Xf}”)z
n=0
and
j_l o0
Q' = Z(anmw - Xfr/l’)z + Z(XI,ZQ_,AI - Xr,:"/\t)z-
n=0 n=j
Thus
0 < 0 +4;. (4.6.4)
Since Q" =5 A, it follows that A is an increasing process. O

Remark 4.65 From the identity (4.6.1), it follows that the process [X, X] does
not depend upon the choice of partitions.

Definition 4.66 For a stochastic integrator X, the process [X, X] obtained in
the previous theorem is called the quadratic variation of X.

From the definition of quadratic variation as in (4.6.2), it follows that for a stochastic
integrator X and a stopping time o

(XL X1, = [X, X]no V2. (4.6.5)

For stochastic integrators X, Y, let us define cross-quadratic variation between
X, Y via the polarization identity

[X, Y],:%([X—FY,X—{—Y],—[X—Y,X—Y],) (4.6.6)

By definition [ X, Y] € V since itis defined as difference of two increasing processes.
Also, it is easy to see that [ X, Y] = [Y, X].

By applying Theorem 4.64 to X + Y and X — Y and using that the mapping
(f, X) — f fdX is bilinear one can deduce the following result.

Theorem 4.67 (Integration by Parts Formula) Let X, Y be stochastic integrators.
Then

1 t
X,Y,=X0Y0+/ Y‘dX—i—/ X~dY +[X, Y], V1. (4.6.7)
0 0

Let §,, | 0 and form > 1let {1, : n > 0} be a é,-partition for X and Y. Then one
has

o0
D (Xen e = Xep ) Yen ne = Yepnr) = [X, Y], (4.6.8)
n=0
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Corollary 4.68 If X, Y are stochastic integrators, then sois Z = XY .
This follows from the integration by parts formula and Theorem 4.33.

Remark 4.69 Like (4.6.5), one also has for any stopping time o and stochastic
integrators X, Y:

(XL Y], =X, Y, = (XL YN, = [X, Y00 Vi (4.6.9)

This follows easily from (4.6.8).

Exercise 4.70 For stochastic integrators X, Y and stopping times o and t
show that
[X[”], y[r]] = [X, Y][(’M],

Exercise 4.71 Let X' X2, ..., X" be stochastic integrators and let p be a
polynomial in m variables. Then Z = p(X!', X?,..., X™) is also a stochastic
integrator.

Corollary 4.72 Let X, Y be stochastic integrators. Then

(i) A[X,X], = ((AX),)?, fort > 0.

(”) ZO<s§t((AX)S)2 S [X’ X]I < Q.
(iii) A[X,Y], = (AX),(AY), fort > 0.
(iv) If X (or Y ) is a continuous process, then [ X, Y] is also a continuous process.

Proof For (i), using (4.6.1) and (4.3.7), we get for every ¢ > 0
X2 — X2 =2X, (X, — X,0) +[X, X], — [X, X],_.
Using b> — a*> —2a(b — a) = (b — a)?, we get
X, — X,2)* =X, X1, — [X, X],—

which is same as (i). (ii) follows from (i) as [ X, X]; is an increasing process. (iii)
follows from (i) via the polarization identity (4.6.6). And lastly, (iv) is an easy
consequence of (iii). O

Remark 4.73 Let us note that by definition, [X, X] € Vg and [X,Y] e V. In
particular, [X, X]o =0and [X, Y], = 0.

The next result shows that for a continuous process A € V, [X, A] = 0 for all
stochastic integrators X.

Theorem 4.74 Let X be a stochastic integrator and A €'V, i.e. an r.c.Ll process
with finite variation paths. Then

[X, A], = Z (AX)s(AA),. (4.6.10)

O<s<t
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In particular, if X, A have no common jumps, then [X, A] = 0. This is clearly the
case if one of the two processes is continuous.

Proof Since A € 'V, for {t,'} as in Theorem 4.67 above one has

o0

uep "
E Xr,’,”/\t(AT,flrlAr — Aip) — X"dA
n=0

0
and
> 1
ucp
E XT;"H/\’(AT:,L/\’ — Apin) — XdA.
=0 0+

Using (4.6.8) we conclude

t t
(X, A]t=/ XdA—/ X"dA
0+ 0

and hence (4.6.10) follows. O

For stochastic integrators X, Y, let

JX V)= (AX)s(AY),.

O<s<t

The sum above is absolutely convergent in view of part (ii) Corollary 4.72. Clearly,
j (X, X) is an increasing process. Also we have seen that

J(X, X)) = [X, X];. (4.6.11)

We can directly verify that j (X, Y) satisfies the polarization identity
1
JX, Y), = Z(j(X-‘r Y.X+Y) —j(X =Y, X =Y)). (4.6.12)

The identity (4.6.7) characterizes [ X, Y], and it shows that (X, Y) — [X, Y], is
a bilinear form. The relation (4.6.8) also yields the parallelogram identity for [X, Y]:

Lemma 4.75 Let X, Y be stochastic integrators. Then we have
(X+Y, X+Y+[X-Y,X=Y], =2(X, X]; +[Y, Y]), Vt>0. (46.13)

Proof Let §,, | 0 and for m > 1, let {z," : n > 0} be a §,,-partition for X and Y.
Take a' = (XT,THN — Xennr), by = (Yr;"+lm — Yuuar). Use the identity (a + b)* +
(a — b)? = 2(a® + b*) witha = @ and b = b"; sum over n and take limit over m.
We will get the required identity by (4.6.2). (]
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Exercise 4.76 Deduce (4.6.13) from the integration by parts formula (4.6.7).

Here is an analogue of the inequality |a> — b?| < \/2(a — b)*(a® + b?).

Lemma 4.77 Let X, Y be stochastic integrators. Then we have

X, X1, — [V, YL| < V20X — ¥, X — Y1,(X, X], + [V, Y]). (4.6.14)

Proof Let )", a)', bl be as in the proof of Lemma 4.75 above. Then we have

1> @ = > B <> @ — (b0’

< 3 2@ — b2 + )2

5%ZW—WVZMWHW%

and taking limit over m, using (4.6.2), we get the required result (4.6.14). (]

Also, using that
[aX +bY,aX +bY], >0 Va,beR

we can deduce that

I[X, Y| = VIX, XY, Y],

Indeed, one has to do this carefully (in view of the null sets lurking around). We can
prove a little bit more.

Theorem 4.78 Let X, Y be stochastic integrators. Then for any s <t

VARG, (X, Y1) < v/(IX, X1, — [X, X1,).(IY. Y1, — [V, Y],), (4.6.15)
VAR ([X, Y]) < (X, X]; — [X, X10).(IY, Y], — [Y, Y],-), (4.6.16)
and
VAR ([X, Y]) < VX, XL[Y, Y], (4.6.17)
VAR[,1(j (X, Y)) < VIX, XI,[Y, Y], (4.6.18)
Proof Let

Qupsr={we 2 : [aX+bY,aX +bY],(w) >[aX +DbY,aX + bY];(w)}

and
20 =U{Q2upsr: s,1a,beQ,r > s}
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Then it follows that P(§£2p) = 1 (since for any process Z, [Z, Z] is an increasing
process). For w € 2, for0 <s <r,s,r,a,b e Q

@ (X, X1, = [X, X1) + b*([Y, Y], = [V, Y1) +2ab([X, Y], — [X, Y1) (@)=0.
Since the quadratic form above remains positive, we conclude

[([X, Y] (@) — [X, Y]s(@))]

(4.6.19)
< V(X, X1, (@) — [X, X];(@)([Y, Y], (@) — [V, Y] (w)).

Since all the processes occurring in (4.6.19) are r.c.1.1, it follows that (4.6.19) is true
foralls <r,s,r € [0, 00).
Now givens <tands =t <t <...<t, =t, we have

m—1

DX, Y1, — X, Y],
=0

m-1 (4.6.20)
<3 JAX X1, — X XL )AY, Y, = 1Y, YD)

=0
<V(X, X1, — [X, X])(Y, Y], — [Y. Y],

where the last step follows from Cauchy—Schwarz inequality and the fact that
[X, X], [Y, Y] are increasing processes. Now taking supremum over partitions of
[s, t]1in (4.6.20) we get (4.6.15). For (4.6.16), recalling definition of Var, 4(G) we
have

Varp ) ([X, Y]) = Var ([X, Y]) + [(A[LX, Y]l
< V(X X1 = [X, XI)(Y, Y1, — [Y. Y1,) + [(AX),(AY),]|

< / (X, X1 — [X, X1 + (AX)2)(Y, Y], — [V, Y], + (AY)?)
< J(X, X1, —[X, X1, (Y, Y], — [V, Y],).

Now (4.6.17) follows from (4.6.16) taking s = 0. As for (4.6.18), note that

VAR (X, Y)) = D [(AX)(AY),]

O<s<t
< [ DX ) Ay
O<s<t O<s<t

=VIX, X]:[Y, Y],. 0
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Corollary 4.79 For stochastic integrators X, Y, one has

I[X, Y] < VIX, X][Y, Y] (4.6.21)

and

VIX+Y, X +7Y], <VIX, X], + VIV, Y], (4.6.22)

Proof Taking s =0 and using |[X, Y];| < Varp, 4([X, Y]) (4.6.21) follows from
(4.6.17). In turn using (4.6.21) we note that
[X+Y, X+Y], =[X X], +[Y, Y] +2[X, Y],
< [X, X], +[Y, Y], +2J/[X, X]/[Y, Y]
= (VIX, X1, + V1Y, Y1)

Thus (4.6.22) follows. O

The next inequality is a version of the Kunita—Watanabe inequality that was proven
in the context of square integrable martingales.

Theorem 4.80 Let X, Y be stochastic integrators and let f, g be predictable pro-
cesses. Then for all T < oo

T T T
/ | fsgsd|[X, Y]y = (/ | filPdLX, X].v)f(/ lg;PdlY, Y1)z, (4.6.23)
0 0 0

Proof Let us write A; = |[X, Y]|; = VAR ([X, Y]). Note Ag = 0 by definition
of quadratic variation. We first observe that (4.6.23) holds for simple predictable
processes f, g € S. As seen in the proof of Theorem 4.33, we can assume that f, g
are given by (4.3.11) and (4.3.12). Using (4.6.15), it follows that for 0 < s < ¢

1A, — A < (IX, X1, — [X, X1,)2([Y, Y], — [V, Y],)?

and hence

T
fo | fsgsldI[X, Y|

k
= leindinl(Ar,, — A)
j=0
k
<Y lejardin |(X. X1, ., — [X. X)) 2 (Y. Y1, — [Y. Y],)"
j=0
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k k
<O (X, Xy, — (X X1 ))T O d2 (Y. Y], — Y. Y],)7

j=0 j=0
T 1 T 1
=( / | £ 17dIX, X15)7 - ( / |lgs2d[Y, Y1,)2.
0 0

This proves (4.6.23) for f, g € S. Now using functional version of monotone class
theorem, Theorem 2.66, one can deduce that (4.6.23) continues to hold for all
bounded predictable processes f, g. Finally, for general f, g, the inequality fol-
lows by approximating f, g by f" = f1y /<, and g" = gl{j4<n}, respectively, and
using monotone convergence theorem (recall that integrals appearing in this result
are Lebesgue—Stieltjes integrals with respect to increasing processes.) ]

Remark 4.81 Equivalent Probability Measures continued: Let X be a stochas-
ticintegrator on (£2, F, P). Let Q be a probability measure equivalent to P. We
have seen in Remark 4.26 that X is also a stochastic integrator on (£2, F, Q)
and the class L(X) under the two measures is the same and for f € L(X),
the stochastic integral [ fd X on the two spaces is identical.

It follows (directly from definition or from (4.6.1)) that the quadratic variation
of X is the same when X is considered on (2, F, P) or (2, F, Q).

4.7 Quadratic Variation of Stochastic Integrals

In this section, we will relate the quadratic variationof Y = [ fd X with the quadratic
variation of X. We will show that for stochastic integrators X, Z and f € L(X),
gel(2)

[/ fdX, / gdZ] = / fedlX, Z]. (4.7.1)
We begin with a simple result.

Lemma 4.82 Let X be a stochastic integrator, f € IL(X), 0 <u < oo, b be a F,
measurable bounded random variable. Then

h=>blyoof

is predictable, h € 1.(X) and

/ bl o) fdX =b/ Loy fdX =b (/ de—/ fdx). (472
0 0 0 0

Proof When f € S, validity of (4.7.2) can be verified directly as then / is also simple
predictable. Then, the class of f such that (4.7.2) is true can be seen to be closed
under bp-convergence and hence by Theorem 2.66, (4.7.2) is valid for all bounded
predictable processes. Finally, since b is bounded, say by c, |k| < c¢|f| and hence


https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2

126 4 Stochastic Integration

h € L(X). Now (4.7.2) can be shown to be true for all f € L(X) by approximating
f by f" = f1s/<n and using Dominated Convergence Theorem—Theorem 4.29.
]

Lemma 4.83 Ler X, Z be a stochastic integrators, 0 < u < 0o, b be a F, measur-
able bounded random variable. Let g = bl ) and Y = f gdX. Then

Y, Z], = / gdlX, Z];. (4.7.3)
0

Asa consequence,

t t t
Y, Z, = f Z,_dY, + / Y, dZ, + f g.d[X, Z],. (4.7.4)
0 0 0

Proof Let {t]' : n > 1}, m > 1 be a sequence of partitions satisfying (4.5.1) and
(4.5.2) such that for each m, )" = u for some n. Form > 1, let

o0
Al =YX e = Xep ) (Zip i = Zipas)
n=0

and

0]
m _ E
B; = (Yt;'iHAz - Yz;f/\t)(zt;ﬂlm - Zt,’,”/\t)-
n=0

Noting that Y; = b(X; — X, A;), it follows thatif s < ¢ < u, then (¥; — ¥;) = 0 and
ifu <s < tthen (Y, — Yy) = g (X; — X,) and as a consequence,

Btn'l — g (Alt'l'l _ Anl

unt’*
Using (4.6.8), it now follows that
Y, Z], = g([X, Z]; — [X, Z]uns)-

Of course this is same as (4.7.3). Now (4.7.4) follows from the integration by parts
formula and (4.7.3). |

Theorem 4.84 Let X, Y be stochastic integrators and let f, h be bounded pre-
dictable processes. Then

[/ de,/hdY],:/ fhd[X,Y]. (4.7.5)
0

Proof Fix a stochastic integrator Z and let K be the class of bounded predictable
processes f such that with
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W, = / fdx 4.7.6)
we have
t t t
W, Z, = WyZy +[ Wde—f-/ Z dw +/ fd[X, Z]. 4.7.7)
0 0 0

Easy to see that K is a linear space and that it is closed under bounded pointwise
convergence of sequences. It trivially contains f = aljy where a is bounded F
measurable and we have seen in Lemma 4.83 that K contains g = b1, ), where
0 < u < oo and b is F,, measurable bounded random variable. Since S is contained
in the linear span of such processes, it follows that S C K.

Now Theorem 2.66 implies that (4.7.7) holds for all bounded predictable processes
where W is given by (4.7.6). Comparing (4.7.7) with (4.6.7), we conclude that for
any stochastic integrator Z

[/ fdx, Z]:/fd[X, Zl. 4.7.8)

For Z = f hdY , we can use (4.7.8) to conclude
[Z, X] = /hd[Y, X]
and using symmetry of the cross-quadratic variation [X, Y], we conclude
[X,Z] = /hd[X, Y] (4.7.9)

The two Eqgs. (4.7.8)—(4.7.9) together give

[ fdX, [hdY]= [ fdIX, [ hdY]

_ 7 fhdix. ¥1. (4.7.10)

O
We would like to show that (4.7.5) is true for all f € L(X) and & € L(Y).

Theorem 4.85 Let X, Y be stochastic integrators and let f € L(X), g € L(Y) and
letU = [ fdX,V = [ gdY. Then

[U, V] = / fgdlX,Y]. (4.7.11)
0

Proof Let us approximate f, g by f" = f1jr<s and g" = gljjg<ny and let U" =
[ frdX, v* = [ g"dY. Since f € L(X) and g € L(Y), by definition U" 5 U
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and V" =% V. Now using Theorem 2.72 (also see the Remark following the result)
we can get a subsequence {n*} and a r.c.1.l. adapted increasing process H such that

UM |+ |V < H Vk=>1. (4.7.12)

Using (4.7.5) for f", g" (since they are bounded) we get invoking Theorem 4.33

t t
UVt = Uty +/ Urdv’ +/ VI dU" +[U", V"),
0 0

. . . (4.7.13)
=opvg+ [ugavo+ [ v [ grgarn,
0 0 0
Taking ¥ = X and g = f in (4.7.13) we get
t 1
UM = U8 +2 / U frdx, + f (fM*dIX, X];. (4.7.14)
0 0

In (4.7.14), we would like to take limitasn — o00. Since (f")* = f21|f|<n) increases
to f2, using monotone convergence theorem, we get

f(fs”)zd[X, X]s—>/ f2dix, Xl;. (4.7.15)
0 0

For the stochastic integral term, taking limit along the subsequence {n*} (chosen
so that (4.7.12) holds) and using H~ f € IL(X) (see Corollary 4.44) and dominated
convergence theorem (Theorem 4.29), we get

t t
/ vt rrtax, 5| U, fdx,. (4.7.16)
0 0
Thus putting together (4.7.14)—(4.7.16) along with U" X% U we conclude

(U)? = (Up)* + 2/ Us_ f,dX, +/ (f)%d[X, X1s. 4.7.17)
0 0

This implies
(U, Ul =/ (f)dIX, X];. (4.7.18)
0

More importantly, this implies
t
/ (fs(a)))zd[X, X]s(w) <00 Vt <00 a.s. 4.7.19)
0

Likewise, we also have
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1
/ (gs(@)*d[Y, Y](w) < 00 Vi < o0 a.s. (4.7.20)
0
Now invoking Theorem 4.80 along with (4.7.19)—(4.7.20), we get
t
/ | fs(w)gs(@)|d|[X, Y]|;(w) < o0 YVt <00 a.s. (4.7.21)
0

and then using dominated convergence theorem (for signed measures) we conclude

/ fil(w)g) (w)d[X, Y](w) —>/ fs(@)gs(@)d[X, Y](w) YVt <00 a.s.
0 0

4.7.22)
In view of (4.7.22), taking limit in (4.7.13) along the subsequence {n*} and using
argument similar to the one leading to (4.7.17), we conclude

t

t 1
UV, = UV +/ Us_gsdY; +/ Vi— fsd X +f fsg:d[X, Y]
0 0 0

which in turn implies

' ' '
UiV = UV +/ Us-dV; +f Vs-dU; +/ fs8sd[X, Y
0 0 0

and hence that .
[U, V] = / fs8:d[X, Y. 0
0

The earlier proof contains a proof of the following theorem. Of course, this can also
be deduced by taking f =hand X =Y.

Theorem 4.86 Let X be stochastic integratorandlet f € L(X)andletU = [ fdX.
Then

t
U, Ul = f fRdIX, X] (4.7.23)
0
Remark 4.87 In particular, it follows that for a stochastic integrator X, if f €
L(X) then
t
/ f2dIX, X], < 0 a.s. ¥t < oo.
0

4.8 1Ito’s Formula

Ito’s formula is a change of variable formula for stochastic integral. Let us look at
the familiar change of variable formula in usual calculus. Let G be a continuously
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differentiable function on [0, co) with derivative G’ = g and f be a continuously
differentiable function on R. Then

F(G@) = F(G(0) +/0 f'(G(s))g(s)ds. (4.8.1)

This can be proven by observing that (% f(G@)) = f'(G(t))g(t) and using the funda-
mental theorem of integral calculus. What can we say when G (¢) is not continuously
differentiable? Let us recast the change of variable formula as

F(G@) = f(G0) +/0 F(G()dG(s). (4.8.2)
+

Now this is true as long as G is a continuous function with finite variation. Fix t > 0
and let |G(s)| < K forO <s <t.Fore >0andé§ > 0 let

h(g) = sup{|f'(x1)) = f'(x2)| : =K <x1,x2 < K, |x1 — x2| < &},
a(®) =sup{|G(t)) —G()| : 0 <11, <t, |t} — ] <3},
so that h(a(%)) — 0 asn — oo in view of uniform continuity of f on [-K, K] and

G on [0, £].
Let us write ¢! = % Now using the mean value theorem, we get

FGEH )= (G = fONGE,,) — GE)

/ " ' an , . . a. (4.8.3)
=[(GE) +{O7) = FGENGEL,) — G()

where 0" = G(t') + uj (G(t,)) — G(t}")),forsomeu],0 < uj < 1.Now,itiseasily

seen that
n—1

FGW) = FGO) =D [F(GEH, ) — FGEH)] (4.8.4)

i=0

and using dominated convergence theorem for Lebesgue—Stieltjes integrals, we have
n—1 t

lim D IFGENGE ) =GN = | f(G($)dG(s). (4.8.5)
n— Py 0+

Since |Gt ) — G| < a(tn™"), it follows that

I(F' O = F(G )| < h(an™)) (4.8.0)

since 0]' = G(1}") + ui (G (¢ ) — G(")), with u, 0 < u] < 1. Hence,
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n—1
N LFOD = FGENIG ) — G)
i=0
n—1
< h(an™) Y IG(" ) — G| (4.8.7)
i=0
< h(a(tn™"))Varg(G)

— 0.

Now putting together (4.8.3)—(4.8.7) we conclude that (4.8.2) is true.

From the proof we see that unless the integrator has finite variation on [0, T'], the
sum of error terms may not go to zero. For a stochastic integrator, we have seen that
the quadratic variation is finite. This means we should keep track of first two terms in
Taylor expansion and take their limits (and prove that remainder goes to zero). Note
that (4.8.3) is essentially using Taylor expansion up to one term with remainder, but
we had assumed that f is only once continuously differentiable.

The following lemma is a crucial step in the proof of the Ito’s formula. First part
is proven earlier, stated here for comparison and ease of reference.

Lemma 4.88 Let X, Y be stochastic integrators and let Z be an r.c.l.l. adapted
process. Let §,, | 0 and form > 1 let {t)} : n > 0} be a 6,,-partition for X, Y and
Z. Then

0 t
D Zopne X n = Xopn) => | Z7dX (4.8.8)
n=0 0
and
ad ucp !
Y Zon K = Xepad) Yo = Your) => | Z7dIX, Y] (48.9)
n=0 0

Remark 4.89 Observe that if Z is continuous, then [j Z=dX = [, ZdX.

Proof The first part (4.8.8) has been proved in Theorem 4.62. The second part for
the special case Z = 1 is proven in Theorem 4.67. For (4.8.9), note that

Ay =B —C' =Dy

where

oo
n
A; = E Zr,',”AI(Xr;”H/\t - Xr,"”/\t)(yf,’l’ﬂrl/\t - YI,’,”/\I)?
n=0
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oo
n
Br = E Zr,',”At(Xr”’ lAtYI"’H/\t - Xr,{"/\er,',”At)a
n=0

n+ n

+

oo
n
C, = E Zrn"’AtXr;’At(Yr,’,"lAz - Yr,'l"/\t)’
n=0

00
n _
D[ - E Zr,:”AtYr,;”At(Xrll”L]AI _Xr,j"/\t)-
n=0

Recall that XY is a stochastic integrator as seen in Corollary 4.68. Now using (4.8.8),
we have
uc, !
B L / Z=d(XY)
0
ucp

t t
C' — Z‘X‘dY:/ Z~dS whereS:/X_dY
0 0
uep t t
D! — Z‘Y‘dX:/ Z7dR whereR:/Y‘dX.
0 0

Here we have used Theorem 4.33. Using bilinearity of integral, it follows that

t
A | zmav
0
where V, = X,Y, — XY, — fot X—dY — fot Y~dX. As seen in Theorem 4.67, V, =
[X, Y];. This completes the proof. [l

Remark 490 For each m > 1, let {t)" : m > 1} be a partition of [0, co) via
stopping times

O=1'<1"<1t)...;1) oo, m>1

such that for all n, m
(T — ) =27",

then (4.8.9) holds for all r.c.l.l.adapted processes Z and stochastic integrators
X,Y.

We will first prove a single variable change of variable formula for a continuous
stochastic integrator and then go on to the multivariate version.

Now let us fix a twice continuously differentiable function f. The standard version
of Taylor’s theorem gives

b
fb) = f@)+ f(@)®—a)+ [ F7(s)(b — s)ds. (4.8.10)
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However, we need the expansion up to two terms with an estimate on the remainder.
Let us write

1
fb) = fla)+ f'(@)b—a)+ Ef”(a)(b —a) + Ry(a,b) (4.8.11)

where

b
Ry(a.b) = / LF'(s) = £ (@](b — s)ds.

Since f” is assumed to be continuous, for any K < oo, f” is uniformly continuous
and bounded on [— K, K] so that

gliI(I)Af(K,5) =0
where
Af(K,8) = sup{|Ry(a,b)(b — a)_2| :a,be|[—-K,K],0 < |b—a| < éd}.

Here is the univariate version of the Ito’s formula for continuous stochastic inte-
grators.

Theorem 4.91 (Ito’s formula) Let f be a twice continuously differentiable function
on R and X be a continuous stochastic integrator. Then

t 1 t
f(Xt) = f(XO) +/ f/(Xu)l{u>0}qu + E/ f//(Xu)d[X, X]u
0 0

Corollary 4.92 Equivalently, we can write the formula as
t 1 t
) = G+ [ tax, 5 [ odixx,.
0+ 0

Proof Fixt.Let! = 2 fori > 0,n > 1. Let

Ul = f(Xz,"H) - f(Xt,-”)s (4.8.12)

V= f'Xp) Xy, — Xi), (4.8.13)
1

Wi =S 1" X)Xy, = X)?, (4.8.14)

R =Ry (Xpr, Xpn). (4.8.15)

Then one has
u'=v"+ W+ R, (4.8.16)
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n—1

DUl = f(X) — f(Xo).

i=0
Further using (4.8.8) and (4.8.9) (see Remark 4.89), we get

n—1

t
Zv;l_> f ' (X.)1~0d X, in probability,
i=0 0

n—1

1 t
Z W — 5 / f"(X,)d[X, X], in probability.
i=0 0

It suffices to prove that,
n—1
> R — 0 in probability.

i=0

Observe that
IR} ()| < [Rp(Xir(w), Xu, (@))].

For each w, u — X, (w) is uniformly continuous on [0, ¢] and hence
Sn(w) = [sup| Xy (@) = Xpp(@)|] — 0.
Let K;(w) = supy, < | Xy (@)|. Now

IR (@)] < A (K (@), 8,(@) Xy, — Xpp)?

and hence - .
Y IR @)] < Ap(Ki(@), 8,(@) Y (X, — Xy
i=0 i=0

Since L

Z(Xz;'+1 — X»)? — [X, X], in probability
i=0

and 6, (w) — 0, it follows that (4.8.20) is valid completing the proof.

Applying the Ito’s formula with f(x) = x™, m > 2, we get

(4.8.17)

(4.8.18)

(4.8.19)

(4.8.20)

m m ' m—1 m(m — 1) ' m—2
Xt = X() + mXu 1{u>0}qu + T Xu 1[u>0}d[X, X]Lt
0 0
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and taking f(x) = exp(x) we get

t

1 t
exp(X;) = exp(Xo) —l—/ exp(X,)dX, + E/ exp(X,)d[X, X]1,.
0+ 0

We now turn to the multidimensional version of the Ito’s formula. Its proof given
below is in the same spirit as the one given above in the one-dimensional case and
is based on the Taylor series expansion of a function. This idea is classical, and the
proof given here is a simplification of the proof presented in Metivier [50]. A similar
proof was also given in Kallianpur and Karandikar [32].

We will first prove the required version of Taylor’s theorem. Here, |- | denotes
the Euclidean norm on R¢, U will denote a fixed open convex subset of R4, and
C"2([0, 00) x U) denotes the class of functions f : [0, 00) x U — R that are once
continuously differentiable in ¢ € [0, co) and twice continuously differentiable in
x € U. Also, for f € C 12(10, 00) x 1), fo denotes the partial derivative of f in
the ¢ variable, f; denotes the partial derivative of f w.r.t. jth coordinate of x =
(x', ..., x%), and fj denotes the partial derivative of f; w.r.t. kth coordinate of
X = (xl,...,xd).

Lemma 4.93 Let f € C"2([0, 00) x U). Define h : [0, 00) x U x U — R as fol-
lows. Fort € [0,00), y = (y', ...,yd),x =@ ..., x) eU,let

d
h(t,y,x) =f(t,y) — f(t,x) — Z(yj —x)) fi(t, x)
j=1

4.8.21)

| =

d
D =GR =X ).
Jok=1

Then there exist continuous functions gji : [0,00) x U x U — R such that for t €

0,00, y=04...,9),x=x" ..., x) eU,
d
h(t,y, ) = Y gult, y, )07 = )" = xh). (4.8.22)
Jok=1

Further, the following holds. Define for T < oo, K € U and § > 0,

Ih(t, y, 0|
F(T,K,S):sup{ﬁ 0<t<T,xeK,yeK,0<|x—y| <6}
y—x
and
lh(t,y,x)|
A(T,K):sup{|—|2 :0<t<T,xeK,yeK,x #y}
y—x

Then for T < oo and a compact subset K C U, we have

A(T, K) < 00
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and
lim I'(T, K, $§) =0.
510

Proof Fix t € [0, 00). For 0 < s < 1, define

d
g(s,y,X) = f(t,x+s(y =) — f(t,x) —s Y () —x)) f(t, %)
j=1

S2

2

d
Do =D =) i x)
jok=1

wherex = (x!,...,x9), y=(',. o y?) € R?. Then g(0, y, x)=0and g(1, y, x)
= h(t, y, x). Writing (%g = g’ and %g = g”, we can check that g’'(0, y, x) = O and

d
(5,3, %) = Y (fult, x + sy —x) = f(t, NG —x)H(F —xh).

k=1

Noting that g(0, y, x) = g’(0, y, x) = 0, by Taylor’s theorem (see remainder form
given in Eq. (4.8.11)) we have

h(t,y,x)=g,y,x)

! (4.8.23)
Z/ (1 —S)g”(S, y,x)d&
0

Thus (4.8.22) is satisfied where {g;} are defined by

1
gt yox) = / (1= ) (flt.x +5(y = X)) — fult.xds.  (4.824)
0

The desired estimates on & follow from (4.8.22) and (4.8.24). (Il

Theorem 4.94 (Ito’s Formula for Continuous Stochastic Integrators) Let U C R¢
be a convex open set and let f € C'2([0, 00) x U). Let X, = (X,l, R X;i) be an
U -valued continuous process where each X/ is a stochastic integrator. Then

' d t
£, X) = £0, Xo) + / fols, Xds + 3 / f5(s, X)dX]
0 = Jor

J (4.8.25)
k=

1 ! )
+ EZZ/O Fir(s, X)dIX7, X ;.

j=1 k=1
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Proof Suffices to prove the equality (4.8.25) for a fixed 7 a.s. since both sides are
continuous processes. Once again let #' = ’;’ and

d
Vii= ) i X (X = X
j=1

d
1 . . « «
W= 2 30 S X)X = Xp)(XG = X
jk=1

R = h(t}, Xy, X))
From the definition of 7—(4.8.21)—it follows that
Fa X )= f@', Xe) =V + W'+ R} (4.8.26)

Now

n—1
FX) = 0, X0) =Y (f@y. X)) — £ X))
i=0
n—1
=Y (f@ X)) — £ X))
i=0

n—1
DG Xy ) = L X))

i=0

n—1
— Z(Uln + ‘/in _|_ Win + R,n)
i=0

in view of (4.8.26), where

Ul = fl X)) = £ X )

"

(4.8.27)
- folu, Xy du

"

i

and hence, by the dominated convergence theorem for Lebesgue integrals, we have

n—1 t
Y ur— / fols, X,)ds. (4.8.28)
i=0 0

Using (4.8.8) and (4.8.9), we get (see Remark 4.89)

n—1 d ¢
Svir=y f fi(s, X;)dX? in probability (4.8.29)
0+

i=0 j=l
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and
n—1

ZW” — Z / Fie(s, X)d[ X/, X*], in probability. (4.8.30)

]k 1

In view of these observations, the result, namely (4.8.25), would follow once we
show that

n—1
> R — 0 in probability. (4.8.31)
i=0

Now let K"? = {X(w) : 0 <s < t}and§,(w) = supi|(X,;x+](a)) — Xy (w))]. Then
K'-* is compact, 8, (w) — 0 and hence by Lemma 4.93 for every w € 2

(K™, 8,(w)) — 0. (4.8.32)
Since
|R}| < T'(K"*, 8, ()| Xy, (@) = Xpp (@)
we have
n—1 n—1
DOIRI < T(K™, 8, (w>>Z|X,,nH(w> Xy (@)
i=0 =0

The first factor above converges to O pointwise as seen in (4.8.32), and the second
factor converges to Z‘jzl[X 7, X7], in probability, and we conclude that (4.8.31) is
true completing the proof as noted earlier. O

Theorem 4.95 (Ito’s Formula for r.c.L.l. Stochastic Integrators) Let U be a convex
open subset ofRd. Let f € Ch2([0, 00) x U). Let X', ..., X% be stochastic inte-
grators and X, := (X}, ..., X9). Further suppose both X and X~ are U-valued.
Then

¢ d '
£ X) = F0, Xo) + /0 fols, X ds + 3 /0 £5(s, X, )dx!
o Jor

1 d
+ EZ / Fir(s, Xs)dIX7, XM,
= (4.8.33)
+ Y S XD — f(5, X)) — Zf,-(s, X, )AX]

O<s<t Jj=1

d d 1 A
= 2> 5 fir(s X (AX](AXD).

j=1 k=1
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Proof Let us begin by examining the last term. Firstly, what appears to be a sum
of uncountably many terms is really a sum of countable number of terms since the
summand is zero whenever X; = X,_. Also, the last term equals

D, = Z h(s, Xy, Xs5_) (4.8.34)

O<s<t

where 4 is defined by (4.8.21). By Lemma 4.93 for0 < s <t
(s, X(@), X5~ (@))| < AKK"*)| AX ()
where
K ={Xs(w) :0<s <T}U{X, (w) : 0<s <T} (4.8.35)

Here K" is compact (see Exercise 2.1) and thus by Lemma 4.93, A(K"“) < oc.
As a consequence, we have

D 1A, X (@), Xy (@)] < AKK™) Y [AX (o)

O<s<t O<s<t

and invoking Corollary 4.72 we conclude that series in (4.8.34) converges absolutely,
a.s. The rest of the argument is on the lines of the proof in the case of continuous
stochastic integrators except that this time the remainder term after expansion up
to two terms does not go to zero yielding an additional term. Also, the proof given
below requires use of partitions via stopping times.

For each n > 1, define a sequence {t/" : i > 1} of stopping times inductively as
follows: 7y = 0 and fori > 0,
t/y = inf{t > 't max{|X; — Xo[, | X;- — X |, |t = 7]} 227"} (4.8.36)

1

Let us note that each 7" is a stopping time (see Theorem 2.46),
0=t <t <...<71);<...,

Vn>1, 1, 1 00asm — 00

and
(t'py — 1) <27

Thus, {7, : m > 0}, n > 1 satisfies the conditions of Lemma 4.88.
Fix t > 0. On the lines of the proof in the continuous case, let

Ul = 5l A X a) = f(5 AL X )
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NII
M&

Vi fi(g At X /\t)(X] Xﬁ )
j=1
1< :
Wi =2 Z RGN SYNI0 CANED A6 CIVEED G
Jok=

R? = h(tin A ts Xti"+]/\f9 XI,-"/\I)

Then
F@oy At X a) = F@ At X)) = U+ V] + W4 R}
and hence
o0
F@ XD = £0,Xo) = Y (U + V7 + W + RY). (4.8.37)
i=0
Now,

AR

U” Z / fo(s, Xen a0)ds

and hence for all w

ZUz‘n(“’)_’/ Jo(s, Xs(w))ds
i=0 0

Since for every w, X;(w) = X;_(w) for all but countably many s, we can conclude

0 t
Z U" — | fo(s, X,_)ds in probability. (4.8.38)
i—0 0

By Lemma 4.88 and the remark following it,

d t
V- Z /0 X fi(s, X, _)dX! (4.8.39)
= j=1

and

00 d d
2w %ZZf Fir(s, Xs-)dIx?, x4 (4.8.40)
j=1 k=1

i=0 =

in probability. In view of (4.8.37)—(4.8.40), to complete the proof of the result it
suffices to prove
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o0 o0
STRI =D h( AL X Xoa) = Y h(s, Xy X,0). (4.8.41)
i=0 i=0

O<s<t

Let us partition indices i into three sets: A(t/ At, X Aty Xt Ar) 18 zero, is small
and is large as follows:

H'(w)={i 20 : 1/, | (0) ANt =T/ (0) At}

E'(w)={i ¢ H" : [AX¢ (@) =2-277)

F'(w)={i ¢ H" : [AX o ar(@)] > 2 27",

Fori € H"(w), h(z]'(w) A t, X,,_nHN (@), X¢7n (@) = 0 and thus writing

B' (@)= Y (@' (@) At Xg (@), X (@),
ieE"(w)

C'@) = Y h(@ @ At X (@), Xerni (@)

ieF"(w)

we observe that

[o¢]
> R =B"+C".
i=0

Note that for any j ifu, v € (rj’f, t;'+l),then | X, — X, <2.27"as X, X, are within
27" distance from ern. As a result, for any v € (t7, t]’.’H), [ Xy — Xy <2277
Thus, if |[AX(w)| > 2-27" for s € (0, ], then s must equal rj’? (w) At for some j
withi =j—1¢€ F", ie.

ifs € (0,¢] and |AX (w)| >2-27"thens =1 | Atfori € F"(w). (4.8.42)
Hence fori € E"(w),

[Xen ne(@) = Xenni (@) <[(XT)ep ar(@) = Xenp (@) + [AX e a(@)]

Tiv1 i+1

<3.27"
and hence

IB" (@) < Y (@] (@) At Xep (@), Xep e (@))]

i+1
ieE"(w)

STK™,3:27) ) | Xen (@) = Xeo s (@)
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where K" defined by (4.8.35) is compact. Since ) ; |Xr,.'fHAl — Xooar |2 converges to
Zj[Xj, X7], in probability and I'(K"®,3-27") — 0 for all w, invoking
Lemma 4.93 it follows that

B" — 0 in probability.
Thus to complete the proof of (4.8.41), it would suffice to show that
C" — Z h(s, Xy, X;_) in probability. (4.8.43)
O<s<t
Let G(w) = {s € (0,7] : |AX (w)| > 0}. Since X is an r.c.l.l. process, G(w) is a

countable set for every w. Fix w and for s € G(w), define

ay(w) == Z h(t] (@) At, X

s Xeoa (@) L @)an =s)-
ieF ()

Then

C'@)= Y h(t] "), Xo n(@), Xpn(@) = Y al(w).

ieF"(w) seG(w)

If |[AX ()| > 227", then af (w) = h(z]'(w) A1, Xs(@), Xoope (@) With s = T/,
(w) At (as seen in (4.8.42)) and hence

a"(w) = h(s, X,(0), X,_(»)) forall o. (4.8.44)
Fori € F"(w),

[Xen ne(@) = Xenni (@) <[(XT)en ar(@) = Xenp (@) + [AX e (@)

Tiv1 i+1

27"+ |AX (@)

Tit1

<2 AX ()]

Thus if |a] (w)| # 0, then s = 1"

i1(w) At forsomei € F"(w) and then

|a! (@)] SAK") X gz p1(@) = Xeppr(@)

i

<4AK") | AX o (@) (4.8.45)
=4AK") | AX(w)|*

Let Cy(w) = 4A(K"®)|AX,(w)|?. Then

D Co(@) =4AK") Y |AX (@)
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and hence by Corollary 4.72

ZCs(a)) <00 a.s.

Using Weierstrass’s M-test (series version of the dominated convergence theorem)
along (4.8.44) and (4.8.45), we get

C'w)= Y al@— Y his X (), X () as. (4.8.46)

seG(w) seG(w)

We have proved that the convergence in (4.8.43) holds almost surely and hence in
probability. This completes the proof. (]

Corollary 4.96 Let f, X be as in Theorem 4.95. Then Z, = f(t, X,) is a stochastic
integrator.

Proof In the Ito’s formula (4.8.33) that expresses f (¢, X;), it is clear that the terms
involving integral are stochastic integrators. We had seen that the last term is

= Z his, Xy, X5_)

O<s<t

where £ is defined by (4.8.21). By Lemma 4.93
(s, Xs(@), Xs—(@))| < AKK"*)| AX ()
for0 < s < t, where
K" ={Xs(@) : 0<s <t} U{X;—(w) : 0<5 <1}

Hence
Varp,71(D) (@) < A(K"*)[X, X]r.

Thus D is a process with finite variation and hence is a stochastic integrator, com-
pleting the proof. U

We have seen earlier in Corollary 4.72 that A[X, Y], = (AX);(AY),. Thus care-
fully examining the right-hand side of the Ito’s formula (4.8.33), we see that we are
adding and subtracting a term

LA .
Do 5kl X (AXD(AXD.
j=1 k=1

Let us introduce for now in an ad hoc manner [X, Y]© for stochastic integrators
X,Y:
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X, Y =[X,Y] — Z(AX)J(AY)J. (4.8.47)

O<s<t

Later we will show that this is the cross-quadratic variation of continuous martingale
parts of X and Y (see Theorem 8.83). For now we observe the following.

Lemma 4.97 Let X, Y be stochastic integrators and h be a locally bounded pre-
dictable process. Then [X, Y1© is a continuous process and further

/ hd[X,Y]© = / hd[X,Y]— Z hy(AX)s(AY);. (4.8.48)

O<s<t

Proof Continuity of [X, Y] follows from its definition (4.8.47) and part (iii) of
Corollary 4.72. The identity (4.8.48) for simple functions /2 € S follows by direct
verification and hence follows for all bounded predictable processes by monotone
class theorem. (]

Using Lemma 4.97, we can recast the Ito’s formula in an alternate form.

Theorem 4.98 (Ito’s formula for r.c.l.1. stochastic integrators)

Let U be a convex open subset ofRd. Let | € C2([0, 00) x U). Let X', ..., X¢
be stochastic integrators X, := (X!, ..., X?) is U-valued. Further, suppose X~ is
also U-valued. Then

t d ‘
F.X) = £0. Xo) + / fols, Xs)ds + 3 / fi(s. X, )dx!
0 oo+
1< ,
EZ | s Xod1x!, x4 (4.8.49)

d
+ Y AL XD = £ X = Y fi(s, X, ) AX]).

O<s<t j=1
Exercise 4.99 Let S be a (0, co)-valued continuous stochastic integrator.
Show that R, = (S,)~! is also a stochastic integrator and
t t
Ri=Ro— | (S)72dS;+ | (S)7°dIS. S],.
0+ 0+

Exercise 4.100 Let S be a (0, oco)-valuedr.c.l.l.stochastic integrator with S;_ >
0 fort > 0. Show that R, = (S,)~' is also a stochastic integrator and

R,_Ro—/ (S,_)"2ds, +/ ($0)7°dIS. S1 + > u(S;. S0

O<s<t

where u(y, x) = % - }C + O —x)=.
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Exercise 4.101 Let X be a continuous stochastic integrator and let S, =
exp(X; — 51X, X1,).

(i) Show that S satisfies

t

S, = exp(Xo) + / Sud X, (4.8.50)
0+

HINT: Apply Ito’s formula for f(X, [X, X]) for suitable function f.
(i) Let Z satisfy

t

Z; = exp(Xo) +/ Z,dX,. (4.8.51)
0+

Show that Z = S.
HINT: Let ¥, = Z, exp(— X, + %[X, X1],) and applying Ito’s formula, con-
cludethaty, =Y, =1.

(ili) Show that

t
X, = X, +/ s-'ds,.
0+

(iv) Let R, = (S,)~!. Show that R satisfies

t t
Ro=(S)™" = [ So7'dXu+ | (S)7'dIX. X], (4.8.52)
0+ 0+

which in turn is same as (see also Exercise 4.99)

Rio= (S — / (S0)°2dS, + / (S.)7%dIS. Sl.. 4.8.53)
0+ 0+

HINT: Use part (i) above and R, = exp(Y; — %[Y, Y], where Y, = —X, +
[X, X];.

Exercise 4.102 Let X, Y be a (0, co)-valued continuous stochastic integrators
and let U, V be solutions to

t

U, = exp(Xop) +/ U,dX, (4.8.54)
0+

and
t

V, = exp(Yy) + / V,dY,. (4.8.55)
0+
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Let W, = U,V,. Show that W is the unique solution to

t

t 1
W, = exp(XoYo) + W.dX, + / w,dY, + / W.d[X, Y]u. (4.8.56)
0+ 0+ 0+

4.9 The Emery Topology

On the class of stochastic integrators, we define a natural metric d,,, as follows. Let
S be the class of simple predictable processes f such that | f| < 1. For stochastic
integrators X, Y, let

e (X, V) = sup{dyep / fdXx, / fdyy : fesS) 4.9.1)

Easy to see that d,,, is a metric bounded by 1 on the class of stochastic integrators.
This metric was defined by Emery [16] and the induced topology is called the Emery

topology. If X" converges to X in d,,, metric, we will write it as X" “0X. Taking
f = ljo.r11n (4.9.1) and then taking limit as 7 1 oo, it follows that

diep(X,Y) = dep(X,Y) (4.9.2)
and thus convergence in Emery topology implies convergence in d,., metric. If A is
an increasing process, then it is easy to see that d,,, (A, 0) < d,c,(A, 0) and hence
we have

d..(A,0) = ducp (A,0). 4.9.3)

Let us define a metric d,,, on V as follows: for B, C € V

dyar (B, C) = dyep (VAR(B — C), 0). (4.9.4)
Lemma 4.103 Let B, C € V. Then
den (B, C) < dyor (B, C).

Proof Note that for any predictable f with | f| < 1

T T
|/ fdB —f fdC| < Varyo, (B — C).
0 0

The result follows from this observation. O

As a consequence of (2.5.2)—(2.5.3), it can be seen that d,, (X", X) — O if and
only if forall 7 > 0,8 > 0
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lim [sup P(sup | [ fdX" —/ fdX|>68]=0 4.9.5)
0

=0 re§,  0<t<T JO

and likewise that { X"} is Cauchy in d,,, is and only if forall T > 0,6 > 0

lim [sup P(sup || fdX" —/ fdx*| > 8)1=0. 4.9.6)
0

k=00 reg 0<t<T Jo

Theorem 4.104 For a bounded predictable process f with | f| < 1 one has

ducp(/ de’/de) Sdem(Xa Y) (497)

Proof Let K, be the class of bounded predictable processes for which (4.9.7) is true.
Then using the dominated convergence theorem it follows that K; is closed under
bp-convergence. Using the definition of d,,., we can conclude that K; contains S;.
Let K denote the class of bounded predictable processes g such that the process
g defined by ¢ = max(min(g, 1), —1) € K;. Then it is easy to see that K is closed
under bp-convergence and contains S. Thus K is the class of all bounded predictable
processes g and hence K; contains all predictable processes bounded by 1. O

Corollary 4.105 If X,., X are stochastic integrators such that X" <> X then for all
T >0,6 >0, n >0, there exists ng such that for n > ngy, we have

t t
sup P(sup || fdX" —/ fdX|>$68) <n (4.9.8)
fek,  0<i<T Jo 0

where K is the class of predictable processes bounded by 1.

Linearity of the stochastic integral and the definition of the metric d.,, yields the
inequality
dy(U+V, X+Y) <den(U, X) +dein(V, Y)

which in turn implies that if X” <> X and Y" <> Y then (X" + Y") <5 (X 4 Y).
We will now prove an important property of the metric d,,, .

Theorem 4.106 The space of stochastic integrators is complete under the metric
dem'

Proof Let{X"}be aCauchy sequence ind,,, metric. Then by (4.9.2) itis also Cauchy
in d,., metric and so by Theorem 2.71 there exists an r.c.l.l. adapted process X such

em

that X" % X. We will show that X is a stochastic integrator and X" — X.

Let a, = sup;. den (X", X"t*). Then a, — 0O since X" is Cauchy in d,,,. For
f e ]B%(ﬁ, P), consider Y"(f) = [ fdX". Then (in view of (4.9.7)) for bounded
predictable f with | f| < ¢, we have
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duey Y" (), Y"(f) < cay, Yk =1 (4.9.9)

and hence for bounded predictable processes f, {Y"(f)}is Cauchy in d,, and hence
by Theorem 2.71, Y"(f) converges to say Y (f) € R%(£2, (F.), P) and

duep (Y (f), Y(f)) < cay,, forall predictable f, |f] <c. (4.9.10)

For simple predictable f, we can directly verify that Y (f) = Jx(f). We will

show (using the standard 5) argument that ¥ (f") i Y(f)if fm Z f and {f™}
are uniformly bounded. Y ( f) would then be the required extension in the definition

of stochastic integrator proving that X is a stochastic integrator. Let us fix f” kLA f
where { f”'} are uniformly bounded. Dividing by the uniform upper bound if neces-
sary, we can assume that | f”'| < 1. We wish to show that d,,.,(Y (™), Y(f)) — 0
asm — oQ.

Given ¢ > 0, first choose and fix n* such that a,- < % Then

ey Y (™), Y () < ducp (Y (F™), YV (™) + duepy Y (™), YV ()
+ ey (Y (), Y ()
<y + ey (Y (™), YV () + ane

< g Fduey (Y (™M), Y () + §

4.9.11)

Since f” 2% f and {f™} is bounded by 1, [ f"dX" “% [ fdX" and hence we
can choose m* (depends upon n* which has been chosen and fixed earlier) such that
for m > m™ one has

A, (Y (f™), Y (f)) <

W] ™

and hence using (4.9.11) we get form > m*,

duey Y (™), Y(f)) <&

Thus, Y (f) is the required extension of { f fdX : f € S}provingthat X is astochas-
tic integrator and

Y(f) = / fdx.

Recalling that Y"(f) = [ fdX", Eq.(4.9.10) implies
de (X", X) < ay

with a, — 0. This completes the proof of completeness of d.,,. (I
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We will now strengthen the conclusion in Theorem 4.50 by showing that the
convergence is actually in the Emery topology.

Theorem 4.107 Suppose Y",Y € RO(£2, (F),P), " YP Y and X is a stochastic

integrator. Then
/(Y”)‘dX S /Y‘dX.

Proof Asnotedin Theorem 4.33, f (Y")~dX and f Y ~d X are stochastic integrators.
Further, we need to show that for T < 00,5 > 0

lim [sup P(sup || (Y") fdX —f Y™ fdX|>68)]=0. 4.9.12)

=00 fe§,  0<t<T JO 0

We will prove this by contradiction. Suppose (4.9.12) is not true. Then there exists
an ¢ and a subsequence {n*} such that

t t
sup P(sup | [ (¥") fdX —/ Y™ fdX|>38) >¢e Vk > 1. (4.9.13)
f:€Sy 0<t<T JO 0

For each k get f* € S; such that

1 t
P(sup || (v") frax — f Y~ frdX| > 8) > e. (4.9.14)
0<t<T JO 0

Now let g* = (Y”k —Y)~ f*. Since V" X% Y and f* are uniformly bounded by 1,
it follows that g* X% 0 and hence by Theorem 4.50,

t t
P(sup || (v") frax — f Y~ fkdx| > §) — 0.
0

0<t<T JO

This contradicts (4.9.14). This proves (4.9.12). U

em

We will show that indeed Y" 5% ¥ and X" <5 X implies that [YrdX" —
J YdX. We will first prove a lemma and then go on to this result.

Lemma 4.108 Suppose U" € R%(£2, (F.), P) be such that

sup sup |U!'| < H,

n>10<s<t

where H € R%(2, (F.), P) is an increasing process. Let X", X be stochastic inte-
grators such that X" IS X, Let 7" = f(U")’dX” and W" = f(U”)’dX. Then

em

(z"n-wm"n — 0.
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Proof Note that in view of Theorem 4.33 for bounded predictable f

/tfdzn—/tfdwn2/(Un)_fdxn_/(Ull)_de'
0 0

So we need to show (see (4.9.5)) for T < 0o, § > 0 and ¢ > 0, dny such that for
n > ng we have

t t
sup P(sup | [ (U™ fdX" —f (U™~ fdX| > 8) < e. (4.9.15)
f:€S; 0<t<T JO 0

Recall, S; is the class of predictable processes that are bounded by 1.
First, get A < oo such that

P(Hr = 2) =<

NSRS

and let a stopping time o be defined by
o=inf{t >0: H, > orH,_ > A} A(T +1).

Then we have
Plo <T)<P(Hr 2 4) <

| ™

and for f € S; writing h" = (U”)’f%l[o_g] we see that

P(sup || (U")” fdX" —/ U™~ fdX| > 9) (4.9.16)
0

0<t<T JO

<P( sup |/ ("~ fdx" —/ (U fdX|>8)+Po <T)
0

0<t<o AT

0
t t 5 e
<P( sup |/ h"dX”—/ hdX| > =)+ =.
0 0 AT 2

0<t<o AT

Finally, since X" =X, invoking Corollary 4.105 get ng such that forn > n( one
has

t t 5 e
sup P(sup | | gdX" —/ gdX| > -) < =
¢ek;,  o0<i<T Jo 0 A 2

where K is the class of predictable processes bounded by 1. Since h" € Kj, using
(4.9.16) it follows that

P(sup || (U")” fdX" —/ (U™ fdX| > 9d) < e.
0

0<t<T JO
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Note that the choice of A and n( did not depend upon f € K; and hence (4.9.15)
holds completing the proof. O

Here is our main result that connects convergence in the Emery topology and
stochastic integration.

Theorem 4.109 Let Y", Y € R(82, (F.), P) be such that Y" XV Y and let X" X
be stochastic integrators such that X" N X, Let 7" = f(Y”)’dX" and 7 =
[Y~dX. Then 2" = Z.

Proof We have seen in Theorem 4.107 that
/(Y")‘dX - / Y=dx & 0.
Thus suffices to prove that
/(Y”)’dX” — f(y")*dx 0. (4.9.17)

Let b, = d,,,(f/(Y")"dX", [(Y")~dX). To prove that b, — 0 suffices to prove
the following: (see proof of Theorem 4.50) For any subsequence {n; : k > 1}, there
exists a further subsequence {m; : j > 1} of {n; : k > 1} (i.e. there exists a subse-
quence {k; : j > 1} such that m; = ny;) such that

b, = dem(/(YMj)_deiv /(Y”’f)_dX) — 0.

So now, given a subsequence {n; : k > 1}, using d,, (Y™, Y) — 0, let us choose
mj = ng, with kj 1 > k; and d,,.,(Y"7,Y) < 27/ for each j > 1. Then as seen
earlier, this would imply

o0
Z[suplY,mf —Y|] <00, VT < 0.

Thus defining

o]

Hy = sup [Y_[¥" = Y| + Y]

0<s<t =1

we have that H is anr.c.l.l.process and | Y™/ | < H.Then by Lemma 4.108, it follows
that

/(Y’”/)‘dX'"-f - /(me)—dx 0.

This proves by,; — 0 and thus (4.9.17), completing the proof of the theorem. [
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Essentially the same arguments also proves the following:

Proposition 4.110 Let Y",Y € RO(£2, (F.),P) be such that Y" “5 Y and let
X", X €V be such that da, (X", X) — 0. Let Z" = [(Y")dX" and Z = [ YdX.
Then

d,., (Z", Z) — 0.

In particular,
d..(Z",Z) — 0.

We will now show that X — [X, X] and (X, Y) — [X, Y] are continuous map-
pings in the Emery topology.

Theorem 4.111 Suppose X", X, Y", Y are stochastic integrators such that X" —

em

X, Y" — Y. Then

dyo, ([X", Y], [X,Y]) — O (4.9.18)
and as a consequence
(x", v"1 5 (X, Y] (4.9.19)

Proof LetU" = X" — X. Thend,,,(U", 0) — 0 implies thatd,,(U", 0) — 0 and
hence as noted earlier in Proposition 4.52 (U")? X5 0. Also, by Theorem 4.109,
W™ ~du™ =5 0. Since

[Un’ Un] — (Un)Z _ 2/([]”)761'[]”,
it follows that [U", U"] X2 0 and so

dy, ([X" - X, X" — X],0) — 0. (4.9.20)

Now, (4.6.17) gives

Var,r(LU", Z]) < VIU", U"rZ, Z]7
and hence [U", U"] 20 implies that for all stochastic integrators Z
d,.-([U", Z],0) — O.
Since U" = X" — X, one has [U", Z] = [X", Z] — [X, Z] and so

duor ([X", Z] = [X, Z],0) — 0. (4.9.21)
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Noting that
(X", X"]=[X" — X, X" = X]+2[X", X] - [X, X]

we have

duar ([X", X"], [X, X])
= dyo, ([X", X"] = [X, X]. 0)
=dy, ([X" — X, X" — X] + [X",2X] — [X, 2X],0)
< dur ((X" = X, X" — X1,0) + dyo ([ X", 2X] — [X, 2X], 0).

Thus, using (4.9.20) and (4.9.21) it follows that
dye, ([X", X"], [X, X]) — 0. (4.9.22)

Now the required relation (4.9.18) follows from (4.9.22) by polarization identity
(4.6.6). O

The following result is proven on similar lines.

Theorem 4.112 Suppose X", X, Y", Y are stochastic integrators such that X" -

em

X, Y" — Y. Then
doo, (X", Y"), j(X,Y)) = 0. (4.9.23)

Proof As seenin (4.6.11)
JX"=-X, X" -X), <[X"-X,X"-X],
and hence by Theorem 4.111,
Ao (J (X" = X, X" = X),0) > 0.

Now proceeding as in the proof of Theorem 4.111, we can first prove that for all
stochastic integrators Z,

dvor (j (X", 2), j(X, Z)) — 0.
Once again, noting that
JEXL X =X =X, X" = X)+2j(X" X) — j(X, X)

we conclude that
dyo, (G (X", XM, j(X, X)) — 0.
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The required result, namely (4.9.23), follows from this by polarization identity
(4.6.12). |

Next we will prove that (X;) — (f (¢, X;)) is a continuous mapping in the Emery
topology for smooth functions f. Here is a lemma that would be needed in the proof.

em em

Lemma 4.113 Let X", Y" be stochastic integrators such that X" — X, Y" — Y.
Suppose Z" is a sequence of r.c.Ll processes such that Z" X2 7. Let

A=) ZUAX)(AY"),

O<s<t

A=) ZJ(AX),(AY),.

O<s<t

Then d,, (A", A) — O.

Proof Note that writing B" = j (X", Y") and B = j(X, Y), we have
g

A”:/Z"dB", A:/ZdB.

We have seen in (4.9.23) that d,,,(B", B) — 0. The conclusion now follows from
Proposition 4.110. U

Theorem 4.114 Letr X™ = (X', X>", ..., X%") be a sequence of R9-valued
r.c.ll processes such that X" are stochastic integrators for 1 < j <d, n > 1. Let

X & xi 1< j<d.
Let f € C2([0, 00) x R?). Let
Z = f. X", Z = f(t.X)
where X = (X', X2, ..., X%), Then Z" = Z.
Proof By Ito’s formula, (4.8.33) (see also (4.8.34)), we can write

2N =704+ AN+ Y + B + V", Z,=Zo+ A+ Y, + B +V,

where

t
A? :/ fo(S,Xgn))dS
0

a = [ s xods
0
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~

d t
v'=) / fils, XHdX]"
o Yo+
d t
Y, = Z/ fis, Xs_)dX!
o o+

d d
1 ! n j,n n
Bl=32.2 /0+ Firts, XX, X,

j=1 k=1

1d d P .
Bi=33). /0 Fir(s, X,)dIX7, XM,

j=1 k=1
Vi= 3" k(s XM X")
O<s<t

V= Z his, Xs, Xs_).

O<s<t

Since X" <% X, it follows that X{; converges to Xg in probability and hence Z;
converges to Z in probability.

By continuity of fy, f;, fj« (the partial derivatives of f (¢, x) w.r.t.t, x; and x;, xg,
respectively), and Proposition 4.52 we have

foCo XM 25 fo -, X);
ucp

FiGX™) 2B fi(,X), 1< j<d;

ucp

i X)) 2B (o X), 1< jk<d.

Also, X™ 2% X implies that for all j, k, 1 < j, k <d, [X/", X*"] <5 (X7, XK
as seen in (4.9.19), Theorem 4.111. Thus, by Theorem 4.109, it follows that

AT Ayt Sy, B XS B, (4.9.24)

If X", X were continuous processes so that V", V are identically equal to zero then
the result follows from (4.9.24). For the r.c.1.1.case, recall that /& can be expressed as

d
h(t,y,x) = Y gu(t, y, )0 = x)(* = xb)
Jok=1

where g i are defined by (4.8.24). Thus,
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d
V=30 ST gl XL XU (AXIM), (AXR,,
Jok=10<s<t

d
V=33 giuls, Xo. X )(AXD),(AXP),.

J,k=10<s<t

Now Lemma 4.113 implies thatd,,(V", V) — 0 and as a consequence, V" v,
Now combining this with (4.9.24) we finally get Z" “ z. ]

Essentially the same proof (invoking Proposition 4.52) would yield the slightly
stronger result. Recall thatfor g € C12([0, co) x U), gy denotes the partial derivative
of g in the ¢ variable, g; denotes the partial derivative of g w.r.t. jth coordinate of
X = (xl, xd ), and g denotes the partial derivative of g; w.r.t.kth coordinate of
x = xD.

Theorem 4.115 Let X™ = (X', X% ..., X%") be a sequence of RY-valued
r.c.ll processes such that X/ are stochastic integrators for 1 < j < d, n > 1 such
that

X xi1<j<d.

Let X = (X', X2, ..., X%, Let ", f e C12([0, 00) x R%) be functions such that
I 005 I [ convergeto f, fo, fj, fik (respectively) uniformly on compact subsets
of [0, 00) x R, Let

Zy =", X"), Zi= f@t, X,

em

Then 2" — Z.

4.10 Extension Theorem

We have defined stochastic integrator as an r.c.Ll. process X for which Jy defined by
(4.2.1), (4.2.2) for f € S admits an extension to B(£2, P) satisfying (4.2.3). Indeed,
just assuming that Jy satisfies

77 2% 0 implies Jx (f7) % 0 (4.10.1)

it can be shown that Jxy admits a required extension. The next exercise gives steps
to construct such an extension. The steps are like the usual proof of Caratheodory
extension theorem from measure theory. This exercise can be skipped on the first
reading.

Exercise 4.116 Let X be an r.c.l.l. adapted process. Let Jx(f) be defined by
(4.2.1), (4.2.2) for f € S. Suppose X satisfies



4.10 Extension Theorem

ucp

mes, 2 oimplies Jx (") “% 0.

For f €S, let

L (f) = sup{duc, (Jx(8). 0) = [g] = [f1}

and for & € B(22, P), let

Let

(i)

(ii)

(iii)

(vi)

(vii)

[ =inf(d_L(g") :¢" €S, |El <Y Ig"l).

n=1 n=1

A={6eB(2,P): 3f" e€Ss.t. I — f) — 0)
Let /", f € S. Show that
2 implies Jx (/") X% Jx(f).
Let £, f!, f2 e Sand ¢ € R. Show that

L) = LASD.

L, (cf) = el L, (1 fD).
£ <12 = LY < L.
L'+ ) < LY+ L.

Show that for &, & € B(2, P)
I+ 6) < I (E) + T ().

Show that A is a vector space.
Let f* € Sforn > 1 be such that f” 0. Show that

L, (f" — 0.

Let 1", h € S be such that 1" 2% h. Show that

I (") — I3 (h).
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(4.10.2)

(4.10.3)

(4.10.4)

(4.10.5)

(4.10.6)
(4.10.7)
(4.10.8)
(4.10.9)

(4.10.10)

(4.10.11)

Let f* € Sbe suchthat f* < f"+! < K for all n, where K is a constant.

Show that Ve > 0 3n* such that for m, n > n*, we have

LM =" <e

(4.10.12)
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(vii)

(xiv)
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[Hint: Prove by contradiction. If not true, get ¢ > 0 and subsequences
{n*}, {m*} both increasing to co such that

L™ = f™y>e Vk=>1.

X

Observe that g defined by g = f — ™ satisfy g* 0.
For ¢!, £ e B(2, P)

E') < 187 = " (") < I*(&). (4.10.13)

Let £/, € B(s2. P) be such that & = Y%, |£/]. Then
rrQQ_ &) <> ). (4.10.14)
j=1 j=1

Letg e Sand /" € S, n > 1, satisfy

HEDNIAE (4.10.15)

n=1

Show that N
L(gh < Y LAffD. (4.10.16)

k=1

[Hint: Let g" = min([g|. Y"_, | /*]) and note that g" 2% |g|.]
For f € S show that
LX) = L(f). (4.10.17)
For f € S show that
For & € A, define
Ix(§) = mlgrgo Ix(f™)

in d,., where f™ €§ are such that I'*(§ — f™) — 0. Show that Jy is
well defined on A and that

dyep((Jx(£),0) < I7(§) V& € A. (4.10.19)
Leth™ = 1ygm. If& € IB%(@, P)issuchthat |£| < K,thenforeachm > 1

show that
L) < L(K|h™) + 27"+, (4.10.20)
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(xv) Let& e B(22,P) and leta; € R be such that a; — 0. Show that

lim I*(a;€) = 0. (4.10.21)
Jj—>00

(xvi) Let&, & € B(2, P) forn > 1 be such that & — & uniformly. Show that

lim I*(§" — &) = 0. (4.10.22)

(xvii) Let £ € B(2,P) and &" € A be such that lim,, . [J*(E" — &) = 0.
Show that ¢ € A.
(xviii) Let&" € A be such that £” < £"*! vn > 1 and let

£ = lim & € B(2, P). (4.10.23)

(a) Given ¢’ > 0, show that there exists a sequence {g"} in S such that
gn < gn+l Vn > 1 and 1—;(*(gn _é_-n) < E/.
(b) Given e show that 3n* such that for n, m > n* we have

IrE" —§") <e.

[Hint: Use (a) above along with (vii).]
(c) Fork > 1 show that 3n* such that n* > n*~! (here n° = 1) and

I—)v(*(%.nk _ énk’l) < 2—k.
(d) Show that

e - <> rrE - <27k (4.10.24)

m=k

(e) Show that ¢ € A.

() Show that I'*(§ —&") — 0.
[Hint: Use (d) above to conclude that every subsequence of
a, = I'*(§ — &") has a further subsequence converging to 0.]

(xix) Show that A = B(£2, P).
[Hint: Use Monotone Class Theorem 2.63].
(xx) Letn" € B(£2, P) be a sequence such that " > n**! > 0 for all n with
lim, n” = 0. Show that
" — 0.

[Hint: Let £* = n' — 5" and use (f) above].
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(xxi) Let f", f € B(Z2, P) be such that £ 2% f. Show that
r*(f" — f) - 0. (4.10.25)

[Hint: Let g" = sup,,-, | /™ — f|. Thenuse g" | O and | f™ — f| < g".]

ucp

(xxi) Let 7", f € B(3,P) be such that /" 2% f. Show that Jx(f") “%

Ix (f).
(xxiii) Show that X is a stochastic integrator.



Chapter 5 ®)
Semimartingales ez

The reader would have noticed that in the development of stochastic integration in
the previous chapter, we have not talked about either martingales or semimartingales.

A semimartingale is any process which can be written as a sum of a local martin-
gale and a process with finite variation paths.

The main theme of this chapter is to show that the class of stochastic integrators
is the same as the class of semimartingales, thereby showing that stochastic integral
is defined for all semimartingales and the Ito’s formula holds for them. This is the
Dellacherie—Meyer—-Mokobodzky—Bichteler Theorem.

Traditionally, the starting point for integration with respect to square integrable
martingales is the Doob—Meyer decomposition theorem. We follow a different path,
proving that for a square integrable martingale M, the quadratic variation [M, M ] can
be defined directly and then X, = M,2 — [M, M];, is itself a martingale. This along
with Doob’s maximal inequality would show that square integrable martingales (and
locally square integrable martingales) are integrators. We would then go on to show
that a local martingale (and hence any semimartingale) is an integrator.

Next we show that every stochastic integrator is a semimartingale, thus proving
a weak version of the Dellacherie-Meyer—-Mokobodzky—Bichteler Theorem. Subse-
quently, we prove the full version of this result.

5.1 Notations and Terminology

We begin with some definitions.

Definition 5.1 An r.c.l.l. adapted process M is said to be a square integrable
martingale if M is a martingale and

E[M?] <00 VI < 0.
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Exercise 5.2 Let M be a square integrable martingale. Show that

(i) Elsupy,-; M?] < oo for each T < oo.
(i) supy,~y E[M?] < oc for each T < oo.

Definition 5.3 An r.c.l.l. adapted process L is said to be a local martingale
if there exist stopping times 7" 4 oo such that for each n, the process M"
defined by M" = L") i.e. M" = L,,,» is a martingale. Such a sequence {7}
is called a localizing sequence.

Exercise 5.4 Let W be the Brownian motion and let U = exp(le). Let

;=

W, ifr <1
Wi +UW, — W) ifr>1.
Let7" =1ifU>nand " =nif U < n. Let M" = LI""! be the stopped pro-
cess. Show that
() Foreach n, " is a stopping time for the filtration (F").
(i) 7 1 oo.
(iii) M"is a martingale (w.r.t.the filtration (F")).
(iv) E[|L;|]=o00cfort > 1

This gives an example of a local martingale that is not a martingale.
Here is a simple condition under which a local martingale is a martingale.

Lemma 5.5 Let an r.c.l.l. process L be a local martingale such that

E[ sup |[Lg|] < 00 Vi < o0. 5.1.1)

0<s<t
Then L is a martingale.

Proof Let 7" 1 oo such that for each n, the process M” defined by M" = L"'is a
martingale. Then M]' converges to L, pointwise and (5.1.1) implies that sup_ | L]
serves as a dominating function. Thus, for each ¢, M} convergesto L, in ! (|5)TNow
the required result follows using Theorem 2.23. [

Lemma 5.6 Let an r.c.ll process L be a local martingale such that for some p > 1

sup E[|L,|"] < o0 (5.1.2)

7€T,

where T, denotes the class of all bounded stopping times. Then L is a uniformly
integrable martingale.
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Proof Fix o € T, and let 7, be stopping times increasing to oo such that L™l are
martingales. Then
E[L,r]1 = E[Lo] Vn. (5.1.3)

Since {L,x-, : n > 1} is L” bounded and converges to L, as n — oo, it follows
that (see Exercise 1.30) E[L,] = E[L¢]. Using Theorem 2.57 it follows that L is
a martingale. Since {L, : t > 0} is L.” bounded, we conclude that L is uniformly
integrable. O

Here is another observation on positive local martingales.

Lemma 5.7 Let L be an r.c.l.l. local martingale such that P(L, > 0 Vt) = 1. Then

(i) Foro €T,
E[L,] < E[Lo]. (5.1.4)

(ii) L is a supermartingale.
(iii) IfE[L,] = E[Lo] forallt > O then L is a martingale.

Proof Let 7, be as in the proof of Lemma 5.6 above. Since L; > 0, (5.1.4) follows

by using Fatou’s lemma in the relation (5.1.3). As a consequence, L, is integrable
for each ¢. Also, for s <t we have

E[LZAT,, | f;] = LS/\TH‘

It follows that
Elinf L;rr, | Fs] < Lsar,- (5.1.5)

Since L., converges to L, as m — oo, writing &, = inf,,>, L;.,, it follows that
&, increases to L, and thus

E[r}gfn Lins, | Fs]1 1 E[L, | 1.

Taking limit in (5.1.5), we conclude
E[L, | Fi]1 < L;. (5.1.6)

This proves (ii). If E[L,] = E[Ly], then (5.1.6) implies E[L, | F;] = L, and thus
(iii) follows. U

Definition 5.8 An r.c.l.l. adapted process N is said to be a locally square
integrable martingale if there exist stopping times 7" 1 oo such that for each n,
the process M" defined by M" = N'"1;i.e. M" = N, .. is a square integrable
martingale.

Exercise 5.9 Show that the process L constructed in Exercise 5.4 is a locally
square integrable martingale.
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Definition 5.10 An r.c.l.l.adapted process X is said to be a semimartingale if
X can be written as X = M + A where M is an r.c.l.l.local martingale and A
is anr.c.l.l.process whose paths have finite variation on [0, T'] for all T < oo,
i.e. Var rj(A) < ooforall T < oo.

Let us denote by M the class of all r.c.l.l. martingales M with My = 0, M? the
class of all r.c.Ll. square integrable martingales with My = 0. We will also denote by
M. the class of r.c.l.l. local martingales with My = 0 and M, _ the class of r.c.Ll.

locally square integrable martingales with My = 0. Thus, M € Mfoc (M) if there
exist stopping times 7" increasing to infinity such that the stopped processes M!™"!
belong to M (respectively belong to M). The sequence 7" is called a localizing
sequence. Let M, be the class of all continuous martingales M with My = 0, M. joc
be the class of all continuous local martingales M with My = 0 and M? be the class
of square integrable continuous martingales M with My = 0.

Exercise 5.11 Show that M, joc € M2

loc*

Thus X is a semimartingale if we can write X = M + A where M € M. and
A € V. We will first show that semimartingales are stochastic integrators. Recall that
all semimartingales and stochastic integrators are by definition r.c.Ll. processes. We
begin by showing that square integrable r.c.l.l. martingales are stochastic integrators.
Usually this step is done involving Doob—Meyer decomposition theorem. We bypass
the same by a study of quadratic variation as a functional on the path space

5.2 The Quadratic Variation Map

Let D([0, 00), R) denote the space of r.c.l.l. functions on [0, 0co0). Recall our con-
vention that for v € ID([0, c0), R), v(¢—) denotes the left limit at # (for # > 0) and
v(0—) = 0 and A~(t) = v(t) — v(t—). Note that by definition, Ay(0) = v(0).

Exercise 5.12 Suppose f, € D([0, c0), R) are such that f, converges to a
function f uniformly on compact subsets of [0, 00); i.e. supy_, 7 | fu (1) — f(1)]
converges to zero for all T < oo. Show that

(i) f € D(0, 00), R).

(i) Let s €[0,00). If 5, €[0,s) converges to s then f,(s,) converges to
Ss—).

(i) f.(s—) convergesto f(s—) forall s € [0, 00).

(iv) (Af,)(s) converges to (Af)(s) for all s € [0, 00).

We will now define quadratic variation ¥ (y) of a function v € D([0, 00), R).
For each n > 1; let {#/'(y) : i > 1} be defined inductively as follows: 75 () =0
and having defined #" (), let

() = inf{t > ' (y) : Iy (@) =@ () = 27" or [y (1—) = (I (M) = 27"}
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If lim; /' () = t* < oo, then the function «y cannot have a left limit at #*. Hence for
each v € ID([0, 00), R), #7'(y) 1 oo as i 1 oo for each n. Let

W) = Yyt () A1) = (@ () A DY 5:2.1)
i=0

Since ¢/ () increases to infinity, for each «y and # fixed, the infinite sum appearing
aboveis essentially a finite sum and hence ¥, () isitself anr.c.l.l.function. Recall that
the space D = ([0, 00), R) is equipped with the topology of uniform convergence
on compact subsets (abbreviated as ucc). Let D denote the set of v € D such that
Y, () converges in the ucc topology and

lim, ¥,(y) ifyeD

. ~ (5.2.2)
0 if v ¢ D.

v () =!

Here are some basic properties of the quadratic variation map ¥.

Lemma 5.13 For~ € D

(i) W(v) is an increasing r.c.l.l function.
(i) AP (V) (t) = (Av(t))? forall t € (0, 00).
(iii) Y., (Ay(s))? < oo forallt € (0, 00).
(iv) Let W.(y)(t) =¥ (y)() — ZO<S<,(A’Y(S))2. Then W.(7y) is a continuous func-
tion.

Proof For (i), note that for s < t,ift;-1 <s <t ,, then|(v(s) — fy(t;?))| < 27" and

Jj+b
j—1
W) = Y (vt (1)) = Y& ) + (v(s) — v ()’
i=0
j—1
W)@ =) W () =@ ()’
i=0

+ ) () A =y () A1)

i=j

and hence
W (Y)(5) < W(N)(0) +277", (5.2.3)

Compare with (4.6.4). Thus (5.2.3) is valid for all n > 1 and s < ¢. Hence it follows
that the limiting function ¥ () is an increasing function. Convergence of the r.c.L.L
function ¥, (y) to ¥ () in ucc topology implies that ¥ (+y) is an r.c.l.l. function.
For (ii), it is easy to see that the set of points of discontinuity of ¥, () are
contained in the set of points of discontinuity of ~ for each n. Uniform convergence
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of W, (y)(t) to W (v)(¢) fort € [0, T] for every T < oo implies that the same is true
for ¥ (y);i.e. fort > 0, AW (7y)(¢) # 0 implies that Av(t) # 0.

On the other hand, let # > 0 be a discontinuity point for . Let us note that by the
definition of t’j’ ),

[y(u) —y()| <2.27" Yu,v € [t] (), 171, (7). (5.2.4)

Thus for n such that 2.27" < A~(t), t must be equal to ¢ () for some k > 1 since
(5.2.4) implies Avy(v) <2.27" for any v € Uj(t;?(’y), t;’H(’y)). Let s, =#/_,(7y)
where k (depending on n) is such that r = #;’(). Note that s, <. Let s* =
lim inf, 5,,. We will prove that

limy(sy) = v(t-), Im ¥, (7)(sy) = ¥ (N E-). (5:2.5)

Ifs* =t,thens, < tforalln > 1impliess, — ¢. Thuslim, v(s,) = v(¢—). Second
part of (5.2.5) follows from uniform convergence of ¥, () to ¥ (y) on [0, ¢] (see
Exercise 5.12).

If s* < t, using (5.2.4) it follows that |y(u) — y(v)| =0 for u, v € (s*, ¢) and
hence the function ~(u) is constant on the interval (s*, ¢) and implying that s, — s*.
Also, v(s*) = v(t—) and ¥ (y)(s*) = ¥ (y)(t—). So if ~y is continuous at s*, once
again uniform convergence of ¥, (y) to ¥ (v) on [0, ¢] shows that (5.2.5) is valid in
this case too.

Remains to consider the case s* < t and Ay(s*) = § > 0. In this case, for n such
that 2.27" < 4, s, = s* and uniform convergence of ¥, (y) to ¥ (y) on [0, 7] shows
that (5.2.5) is true in this case as well.

We have (for large n)

W, (N(@1) = W (V) (s0) + (Y(s) — (1)) (5.2.6)

and hence (5.2.5) yields
(N0 =¥ M=) + A0

completing the proof of (ii).
(ii7) follows from (i) and (ii) since for an increasing function that is non-negative
at zero, the sum of jumps up to ¢ is almost equal to its value at 7:

D (AY())> (N @).
O<s<t

The last part (iv) follows from (i7) and (iii). [l

Remark 5.14 W is the quadratic variation map. It may depend upon the choice
of the partitions. If, instead of 27", we had used any other sequence {z,}, it
would yield another mapping ¥ which will have similar properties. Our proof
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in the next section will show that if )", ¢, < oo, then for a square integrable
local martingale (M,),

U(M.(w)) =¥ (M.(w)) a.s.P.
We note two more properties of the quadratic variation map ¥. Recall that the

total variation VAR 71(7) of -y on the interval (0, 7] is defined by

m—1

Varg,r(7) = sup{ Y [y(sj01) =Y 0 <51 <52 < sy =Tom = 1)
j=0

If Var(,71(7y) < o0, 7y is said to have finite variation on [0, 7] and then on [0, 7] it
can be written as difference of two increasing functions.
Lemma 5.15 The quadratic variation map ¥ satisfies the following.

(i) For~y e D and 0 < s < oo fixed, let 7 € D be defined by: ~* (1) = (1 A s).
Then ~° € D. ~

(ii) Fory € D and si 1 oo, 7K be defined via v (t) = y(t A sp). If ¥ € D for all
k, then v € D and

W) As) =¥ (R)@), Vi < oo, Yk > 1. (5.2.7)

(iii) Suppose -y is continuous, and VAR )(7) < oo. Then ¥(v)(t) =0, Vt €
[0, T].

Proof (i) is immediate. For (ii), it can be checked from the definition that
W (N A sp) =¥, Vi (52.8)

Since 7" € ﬁ), it follows that &, () (¢) converges uniformly on [0, s¢] for every k and
hence using (5.2.8) we conclude that v € D and that (5.2.7) holds.
For (iii), note that -y being a continuous function,

Y@ (D) A =@ () A <27"
for all i, n and hence we have
W (D) =Y (' () AL = (& () A1)
i=0

<27 Y I () A D =Y () A D)
i=0

<27" x VaRrpo,71(7)-

This shows that ¥ (v)(t) = 0 for ¢t € [0, T']. O
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5.3 Quadratic Variation of a Square Integrable Martingale

The next lemma connects the quadratic variation map ¥ and r.c.l.l. martingales.

Lemma 5.16 Let (N;, F;) be an r.c.l.l martingale such that E(N,Z) < oo for all
t > 0. Suppose there is a constant C < oo such that with

T=inf{t >0: |[N;| > Cor|N,_| = C}

one has
N; = Nipr.

Let
Ai(w) = T(N.(w)(@).

Then (A,) is an (F;) adapted r.c.l.l. increasing process such that X, := N,2 — A, is
also a martingale.

Proof Let ¥, (7y) and t" (y) be as in the previous section.
Al (W) = ¥, (N.(w)(2)

ol (w) =t (N.(w)) (5.3.D)
Y (w) = N} (w) — N§(w) — A" (w)

It is easy to see that for each n, {0} : i > 1} are stopping times (see Theorem 2.46)
and that

o0
n 2
A} =D (Noznt = Nopas)*.
i=0

Further, for each n, o} (w) increases to oo asi 1 oo.
We will first prove that for each n, (¥}") is an (F;)-martingale. Using the identity
b> —a* — (b —a)®> =2a(b — a), we can write

o0
2 2 2
Y/ =N} = Ng =Y (Nt i = Nozar)
;
oo o0
_ 2 2 2
=D (Ngy e = Naen) = D (Nagne = Nogar)
s s
o0
=2 Noras(Noz ns = Nz o)

i=0

Let us define
Xt = Nrrlf’/\z(Nn,’g]At — Notar)-
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Then
o0
Y =2 Z X, (5.3.2)
i=0
Noting that for s < 7, |N;| < C and for s > 7, N; = N,, it follows that
INon at = Nonagl > 0 implies that [Non | < C.
Thus, writing ¢ (x) = max{min{x, C}, —C} (x truncated at C), we have
X" = Ic(Nosnt) (Noz ns — Noznr) (5.3.3)

and hence, X/ is a martingale. Using the fact that E(X!"| F, ror) = 0 and that X
is .7-',M;x+ , measurable, it follows that for i # j,

E[X" X1 =0. (5.3.4)
Also, using (5.3.3) and the fact that N is a martingale we have

E(X!)? < C?E(Nop, e = Ny

(5.3.5)
= CZE(N;’.;]M - N{%/’-’/\t)'
Using (5.3.4) and (5.3.5), it follows that for s < r,
EQ X/ < CCEWNZ 5 — Naw)- (5.3.6)

i=s

Since o increases to oo as i tends to infinity, E(N, 3 ) and E(NUZ:’-H ) both tend to

E[Ntz] as r, s tend to oo and hence Zle X{”i converges in L?(P). In view of (5.3.2),
one has

.
2ZX;1’5 — Y"inL>(P)asr — oo
i=0

and hence (Y}") is an (F;)-martingale for each n > 1.
For n > 1, define a process N" by

n o__ : n n
N =Ny ifol <t <o},,.

Observe that by the choice of {o] : i > 1}, one has

IN, = N'| <27" forall 1. (5.3.7)
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For now let us fix n. For each w € §2, let us define
Hw) ={o'(w) : i > 1} U{a?“(w) Q> 1} (5.3.8)

It may be noted that for w such that # — N, (w) is continuous, each 0"} (w) is neces-

sarily equal to al."“ (w) for some i, but this need not be the case when ¢t — N;(w)
has jumps. Let fy(w) = 0 and for j > 0, let

0j+1(w) =inf{s > 0;(w) : s € HWw)}.
It can be verified that
(Oiw) : i>1}={olw) :i>1}U{o!(w) :i>1}. (5.3.9)
To see that each 6; is a stopping time, fix i > 1,1 < oo. Let

A =1{(0} A1) # (@] AD)

Since o}, o .+ are stopping times, Ay; € F; for all k, j. It is not difficult to see that

{0, <t} = Uk oot <t} N By)
where By = 2 andfor 1 <k <1,
Bk = U0<j1<j2<...<jk( (m; (]§ m; 1 Al]m) N {UnJrl = t})

and hence 6; is a stopping time.

Using (5.3.9) and using the fact that N;' = N,N,n for aj <t< Jj_H , one can write
Y" and Y+ as
o0
Y/ =Y 2Ny (Nino,, = Nir))s
j=0
Y;n_H = 22 A6 (Nr/\é),H NzA9,-)~
Hence
0 .
vy -y =23z (5.3.10)
where

tA0;

Z = (Nn+l ,’Z/\(;I.)(Nz/\F)H] - NMG,-)-

Also, using (5.3.7) one has
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NPT — N < NP = N+ [N, — N[ < 270FD 407 <207 (53.11)

and hence (using that (Ny) is a martingale), one has

0 4 4
El(Z)*] < 73 ELWN oy, — Ning)?1 = 2WEKNMM)"’ — (Nipo)’1. (5.3.12)

Itis easy to see that E(Z/"/ | Firo,) = Oand Z s Fino,,, measurable. It then follows
that for i # j _ _
E(z”,z"1=0

and hence (using (5.3.12))

EQr/* — ¥/ =4E[(Y Z1)’)

j=0

=4E[) (Z]")
00 (5.3.13)

16 &
= 22n Z E[(NM"M)Z - (Nmf)j)z]
j=0

16
ﬁE[(N,)Z].

Thus, recalling that ¥+!, ¥ are martingales, it follows that Y"*! — ¥” is also a

martingale and thus invoking Doob’s maximal inequality, one has (using (5.3.13))

Elsup,,|Y;"" — Y]] < 4E(Y; ™ — v}’

64 5 (5.3.14)
< 2ZE[NT].
Thus, foreachn > 1,
n+1 n 8
Il [sup,<7 Yy — Y12 < z—nllerlz- (5.3.15)

It follows that
o0
€= 2:sup|Ys"+1 — Y <00 as.

n:lJST

as ||€]l. < oo by (5.3.15). Hence (Y/") converges uniformly in s € [0, T'] for every
T a.s. to an r.c.Ll process say (Y;). As a result, (AY) also converges uniformly
ins € [0, T] for every T < oo a.s. to say (A,) with ¥, = N?> — N} — A,. Further,
(5.3.15) also implies that for each s, convergence of Y{' to ¥ is also in L% and thus
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(Y;) is a martingale. Since A converges uniformly ins € [0, T] forall T < oo a.s.,
it follows that ~
Pw: N(w)eD) =1

and A, = A,. We have already proven that Y, = N,2 — Ng — A, is amartingale. This
completes the proof. (I

Exercise 5.17 Construct an example of a martingale N that is unbounded,
but satisfies the conditions of the Lemma 5.16.

Exercise 5.18 Use completeness of the underlying o-field to show that the
set {w: N,(w) € D} appearing above is measurable.

We are now in a position to prove an analogue of the Doob—Meyer decomposition
theorem for the square of an r.c.l.l.locally square integrable martingale. We will use
the notation [N, N ]w for the process A = ¥ (N.(w)) of the previous result and call
it quadratic variation of N. We will later show that square integrable martingales
and locally square integrable martingales are stochastic integrators. Then it would
follow that the quadratic variation defined for a stochastic integrator X via (4.6.2)
agrees with the definition given below for a square integrable martingale and a locally
square integrable martingale.

Theorem 5.19 Let (M;, F;) be an r.c.l.l locally square integrable martingale. Let
(M, M], (w) = ¥ (M.())(). (5.3.16)

Then

(i) (M, M]W is an (F;) adapted r.c.ll. increasing process such that X, = Mt2 —
(M, M];b is a local martingale.
(i)
P(AIM, M], = (AM,)?, Vt > 0) = 1.

(iii) If (By) is an r.c.Ll adapted increasing process such that By = 0 and
P(AB; = (AM,)?, ¥Vt > 0) =1

and V; = M,2 — B, is a local martingale, then P(B, = [M, M];U, Vi) = 1.
(iv) If M is a martingale and E(M,z) < oo forallt, then E((M, M]:/) < oo for all
tand X; = M,2 — M, M]:p is a martingale.
(v) IfE(M, M];I/) < oo forall t and My = 0, then E(Mtz) < oo forallt, (M,) is
a martingale and X, = M,2 — M, M]f is a martingale.

Proof Let 6, be stopping times increasing to oo such that for each n, {M]' = Mg, :
t > 0} is a martingale with E[(Mmgn)z] < oo for all ¢, n. For k > 1, let 7; be the
stopping time defined by
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7o =inf{t > 0:|M,| > kor |M,_| >k} A0 Ak.

Then 7; increases to oo and let Mtk = M, . Then for each k, M kis a martingale
satisfying conditions of Lemma 5.16 with C = k and 7 = 7. Hence X¥ = (M¥)? —
[MF, Mk];p is a martingale, where [MF, Mk];” = lI/(M_k(w)),. Also,

P(fw: M*(w)eD) =1, Vk=>1. (5.3.17)
Since Mlk = M; ., it follows from Lemma 5.15 that
Pw: M.(w) e D)) =1 (5.3.18)

and ) )
Pw : [M*, MM, (W) = [M, M, (W) ¥i}) =1.

It follows that X;,,, = Xf a.s. and since X* is a martingale for all &, it follows
that X, is a local martingale. This completes the proof of part (7).

Part (ii) follows from Lemma 5.13.

For (iii), note that from part (ii) and the hypothesis on B it follows that

U =[M,M] —B,

is a continuous process. Recalling X, = M> — [M, M], and V, = M? — B, are
local martingales, it follows that U, = V; — X, is also a local martingale with
Up = 0. Being continuous, U is locally square integrable. By part (i) above,
W, = Ut2 —[U,U ];U is a local martingale. On the other hand, U, being a differ-
ence of two increasing functions has finite variation, i.e. Var,71(U) < oo for all
T < oo. Continuity of U and part (iii) of Lemma 5.15 gives

(U, U], =0 Vr.
Hence W, = U? is a local martingale. Now if oy are stopping times increasing to oo
such that W, ., is a martingale for k > 1, then we have

E[W, 10,1 = E[U}., 1 =E[U3] = 0.
and hence U,zwk = 0 for each k. This yields U; = 0 a.s. for every ¢. This completes
the proof of (iii).

For (iv), we have proven in (i) that X, = M,2 —[M, M];” is a local martingale.

Let o} be stopping times increasing to oo such that X¥ = X,,,, are martingales.
Hence, E[X¥] =0, or

E(M, MY,,,) = E(M2,,) — E(MD). (5.3.19)
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Hence ,
E(M, M1,,,) < EM},,) < E(M}). (5.3.20)

Now Fatou’s lemma (or monotone convergence theorem) gives
E((M, M],) < E(M?) < co. (5.3.21)

Since Mtzmk converges to M? in L'(P) and [M, M]:'N,k converges to [M, M];U in

LL'(P), it follows that X¥ converges to X, in L'(P) and hence (X,) is a martingale.
For (v) let oy be as in part (iv). Using My = 0, that [M, M],w is increasing and
(5.3.19) we conclude
E(M;,,, ] = E(M. M],,,,)

< E(IM, M]})
Now using Fatou’s lemma, one gets
E[M?] < E(IM, M1}) < .

Now we can invoke part (iv) to complete the proof. (I

Corollary 5.20 Foran r.c.ll.martingale M with My = 0 and E[M%] < 00, one has

E[[M, M1;] < E[ sup |M,|*] < 4E[[M, M];] (53.22)

0<s<T

Proof Let X; = Mf —[M, M],W. As noted above X is a martingale. Since Xy = 0,
it follows that E[ X 7] = 0 and thus

E[[M, M],] = E[M23]. (5.3.23)

The inequality (5.3.22) now follows from Doob’s maximal inequality, Theorem 2.26.
O

Corollary 5.21 For an r.c.l.l locally square integrable martingale M, for any stop-
ping time o, one has

E[[M, M],] < E[ sup |M,[*] < 4E[[M, M], ] (5.3.24)

0<s<o

Proof 1f {7,} is a localizing sequence, then using (5.3.22) for the square integrable
martingale M = M, ., we get
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v 4

E[(M, M],,, 1 <E[ sup |M’]<4E[[M,M],,, ]
0<s<oAT,
Now the required result follows using monotone convergence theorem. ]

Corollary 5.22 If M € M2 with E[[M, M];] <00 forall T < oo then M is a

loc
square integrable martingale.

Proof Using (5.3.24), we conclude that E[sup,_ 7| M; 1] < o0. ]
Corollary 5.23 If M € M2 _then [M, M1 is locally square integrable.

loc

Theorem 5.24 Let M be a continuous local martingale with My = 0. If M € V then
M; =0 forallt.

Proof Invoking (iii) in Lemma 5.15, we conclude that [M, M];b = 0 for all # and
thus the conclusion follows from Corollary 5.21. (]

Remark 5.25 The pathwise formula for quadratic variation of a continuous
local martingale M was proven in Karandikar [34], but the proof required the
theory of stochastic integration. A proof involving only Doob’s inequality as
presented above for the case of continuous local martingales was the main
theme of Karandikar [35]. The formula for r.c.l.l.case was given in Karandikar
[38] but the proof required again the theory of stochastic integration. The
treatment given above is adapted from Karandikar—Rao [42].

Exercise 5.26 If P is Weiner measure on C([0, c0), R?) and Q is a probability
measure absolutely continuous w.r.t. P such that the coordinate process is
a local martingale (in the sense that each component is a local martingale),
then P = Q.

HINT: Use Levy’s characterization of Brownian motion.

For locally square integrable r.c.l.l. martingales M, N, we define cross-quadratic
variation [M, N] by the polarization identity as in the case of stochastic integrators
(see (4.6.6))

1
[M,N], = 2 M+ N M+ N, —[M —N.,M —N1)). (5.3.25)
It is easy to see that M; N, — [M, N]:V is a local martingale. It can be checked that
(M, N]W is the only process B in Vj such that M; N; — B, is a local martingale and
P((AB); = (AM);(AN); Vt) = 1. Also, [M, N]w is locally square integrable.

5.4 Square Integrable Martingales Are Stochastic
Integrators

The main aim of this section is to show that square integrable martingales are stochas-
tic integrators.
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The treatment is essentially classical, as in Kunita—Watanabe [46], but with an
exception. The role of (M, M)—the predictable quadratic variation in the Kunita—
Watanabe treatment—is here played by the quadratic variation [M, M].

Recall that M? denotes the class of r.c.l.l. martingales M such that E[M?] < oo
forall t < oo with My = 0.

Lemma 5.27 Let M,N e M? and f,g € S. Let X = Jy (f) and Y = Jy(g). Let
Z, = X,Y; — fol fs9sd[M, N]zj. Then X, Y, Z are martingales.

Proof The proof is almost the same as proof of Lemma 3.10, and it uses M, N, —
(M, N ]f is a martingale along with Theorem 2.59, Corollary 2.60 and Theorem 2.61.

O
Corollary 5.28 Let M € M? and f €S. Then Y, = [, fdM and Z, = (Y,)> —
fot frdIM, M]:‘p are martingales and

t T
E[ sup | | fdM|*] < 4E[/ frdiM, M1, . (5.4.1)
0

0<t<T Jo
Proof Lemma 5.27 gives Y, Z are martingales. The estimate (5.4.1) now follows
from Doob’s inequality. (]

Theorem 5.29 Let M € M?. Then M is a stochastic integrator. Further, for f €
B(£2, P), the processes Y; = for fdMand Z, = Y} — for frdIM, M]f are martin-
gales, [Y, Y1, = [y f2d[M, M1, and

t T
E[sup || fdM|*] < 4E[/ f2dIM, M].], VT < co. (5.4.2)
0

0<t<T Jo
Proof Fix T < oo. Suffices to prove the result for the case when M; = M, 7. The

rest follows by localization. S~ee Theorem 4.49. Recall that ~§ =10, 00) x £ and P
is the predictable o-field on £2. Let u be the measure on (§2, P) defined for A € P

T
1(A) = / [ / La(w, s)d[M, M], (w)]dP(w). (5.4.3)
0

Note that ~ )
w(§2) = E[[M, M];] = E[|M7|*] < o0

and for f € B(£2, P) the norm on L2(£2, P, ) is given by

T
1l = \/ er [ s2di ), (544
0

Clearly,]B%(Q P) < }Lz(.Q P, ). Since o (S) = 79 it follows from Theorem 2.67
that S is dense in L2(£2, P, ). Thus, given f € B($2, P), we can get f" € S such
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that
If = flla, <2770 (5.4.5)

Letting ¥/ = [, f"dM fort < T and ¥ = Y} for ¢ > T one has for m > n

El sup ¥ = Y/"P1 <4l f™ — f"II3, < 447"
0<t<T

It then follows that (as in the proof of Lemma 3.12) ¥;* converges uniformly in ¢ to
Y; (a.s.), where Y is an r.c.l.l.adapted process with Y; = Y; 7. For any g € S, using
the estimate (5.4.1) for f"* — g, we get

t
El sup |Y,"—/ gdM "1 < 4" —gl3,
0

0=<t=<T

and taking limit as » tends to infinity in the inequality above we get

t
ELsup 11, — [ gdb P <417 - gl (5.4.6)
0

0<t<T

Let us denote Y as Jy(f). Equation(5.4.6) implies that for f €S, Jy(f) =
fot fdM. Also, (5.4.6) implies that the process ¥ does not depend upon the choice
of the particular sequence { f"} in (5.4.5). Further, taking & € B(£2, P), a sequence
h™ € S approximating 4, using (5.4.6) for 2" and taking limit as m — oo

EL sup [(Jy () — () P1 < 4l1f = A3, (5.4.7)

0<t<T

The estimate (5.4.7) implies that if f, E) f, then Jy (f,) converges to Jy (f) in
ucp topology and thus M is a stochastic integrator.

The estimate (5.4.2) follows from (5.4.7) by taking h = 0.

Remains to show that ¥, = [y fdM and Z, = Y? — [; f2d[M, M), are martin-
gales. We have seen in Corollary 5.28 that Y” and Z/' = (Y/")? — fOT (f™32d(M, M]:
are martingales. Here Y;' converges to Y, in L2(P), and hence in L'(P), and so ¥
is a martingale. Further, (¥")> — (¥;)* in L'(P) and moreover || /" — f|l2,,, — 0
implies

El /0 I(fM? = f2dIM, M],] = 0

and thus .
E| / ("2 = f2)dIM. M1'| — 0.
0

So Z" converges to Z, in L' (P) and thus Z is also a martingale. Since
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AW/ﬂMMLMﬁ)=f%AMV=(AD2

where we have used Theorem 4 32 for the last equallty Using part (iii) of Theorem
5.19, it now follows that [Y, Y1, = [; f2d[M, M, . O

Let us now introduce a class of integrands f such that [ fd M is alocally square
integrable martingale.

Definition 5.30 For M € M, let L (M) denote the class of predictable pro-

cesses f such that there exist stopping times o, 1 oo with
E[/ f2dim, M]f] < oo fork > 1. (5.4.8)
0

We then have the following.

Theorem 5.31 Let M € Mlzoc i.e. M be alocally square integrable r.c.l.l.martingale
with My = 0. Then M is a stochastic integrator,

L2 (M) C (M) (5.4.9)

and for f € 1.2(M), the process Y, = fot fdM is a locally square integrable
martingale and U, = Y? — fo fdIM, M] is a local martingale, [Y, Y fo fid
(M, M]:. Further, for any stopping time o,

Elsup | [ fdM|*] < 4E[/U frdM, M1 1. (5.4.10)
0

0<t<o JO

Proof Let {6} be stopping times such that M* = M!%! € M?. Then M* is a stochas-
tic integrator by Theorem 5.29 and thus so is M by Theorem 4.49.

Now given f € IL2 (M), let o} 1 0o be stopping times such that (5.4.8) is true
and let 7, = oy A O A K.

For n > 1, let g, be a bounded predictable process with |g,| < | f| such that g,
converges to 0 pointwise. Let Z" = [ g,d M. To prove f € L(M), we need to show
that d,,.,(Z", 0) converges to 0. In view of Lemma 2.75, suffices to show that for
eachk > 1,

=2z 50 asn — . (5.4.11)

Note that Y"* = [ g,1j0,,,jd M*. Also, Y™* is a square integrable martingale since
gn is bounded and M* is a square integrable martingale. Moreover,

T
EmMKWﬂn=Eq‘@PmmaMRM%
0

O
<E(| (g)*dIM, M)).
0
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Since g,, converge pointwise to 0 and |g,| < |f| and f satisfies (5.4.8), it follows
that for each k fixed, E([Y"*, Y"*];) — 0 as n — oo. Invoking (5.3.22), we thus
conclude

lim E[ sup [Y"**]=0.

n=>00  g<t<T

Thus, (5.4.11) holds completing the proof that f € L(M).

The proof that Y is a square integrable martingale and that U is a martingale
is similar to the proof of part (iv) in Theorem 5.19. The estimate (5.4.10) follows
invoking (5.3.24) as Y € M? (I

Remark 5.32 Now that we have shown that locally square integrable r.c.l.I.
martingales M are stochastic integrators, the quadratic variation of M defined
via the mapping ¥ is consistent with the definition of [M, M] givenin Theorem
4.6. As a consequence various identities and inequalities that were proven
for the quadratic variation of a stochastic integrator in Sect. 4.6 also apply to
quadratic variation of locally square integrable martingales. Thus from now
on we will drop the superfix ¥ in [M, M]", [M, N]".

Remark 5.33 When M is a continuous martingale with M, = 0, it follows that
M is locally square integrable (since it is locally bounded). Further, [M, M];
is continuous and hence for any predictable f such that for each ¢z > 0

loc*

t
D, =/ fldIM, M]; < o0 as., (5.4.12)
0

D itself is continuous. Thus D is locally bounded and hence f € L2 (M). Itis
easy to see that if f € L2 (M) then f satisfies (5.4.12).
The estimate (5.4.10) has the following implication.

Theorem 5.34 Let M", M € ML, be such that for a sequence {o ;} of stopping times

increasing to oo, one has for each j > 1,
E[[M"—- M, M"—M]gj]—>0. (5.4.13)

Then M"™ converges to M in Emery topology.
Proof Given predictable f bounded by 1, using (5.4.10) one has

t t
P(sup | [ fdM" —/ fdM| > 9)
0 0

0<t<T
t

< P( sup | fdM” f fdM|>6)+P(o; <T)
0

0<t<o;

< 52E[/ |fiPdIM" — M, M" — M1,1 4 P(o; < T)

< ﬁE[[M" -M,M"—M],1+P(o; <T).
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Taking limit first as n — oo and then as j — 0o, we get

t t
lim sup P(sup || fdM" —/ fdM| > 9) = 0.
0

=00 res,  0<t<T Jo

In view of the observation (4.9.5), this proves convergence of M" to M in Emery
topology. (]
Exercise 5.35 Let M", M € M, be such that for a sequence {o;} of stopping

loc

times increasing to oo, one has for each j > 1,

E[ sup|M" — M,|*] — 0. (5.4.14)

1<0;

Show that

(i) M" converges to M in Emery topology.
@iy (M — M, M — M] 25 0.
(iiy [(M", M" 25 (M, M].
HINT: Use Theorem (4.111) for (ii) and (iii) above.

5.5 Semimartingales Are Stochastic Integrators

In the previous section, we have shown that locally square integrable martingales
are stochastic integrators. In this section, we propose to show that all martingales
are integrators and hence by localization it would follow that local martingales are
integrators as well.

Earlier we have shown that processes whose paths have finite variation on [0, 7T']
forevery T are stochastic integrators. It would then follow that all semimartingales are
stochastic integrators. Here is the continuous analogue of the Burkholder’s inequality,
Theorem 1.44.

Lemma 5.36 Let Z be ar.c.l.L.martingale with Zy = O and f € Sy, namely a simple
predictable process bounded by 1. Then for all A > 0, T < 0o we have

d 20
P(sup | [ fdZ|> N\ < =—E[|Z7]]. (5.5.1)
0<t<T JO A
Proof Let f € S| be given by
m—1
F) =alo(s) + Y ajiliss. ) (5.5.2)

j=0
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where 0 =59 <51 <52 <... <sp <00, a; is Fy,_, measurable random variable,
laj] < 1,1 < j < mandagis Fomeasurable and |ag| < 1. Without loss of generality,
we assume thats,,_; < T =s,,. Then

t m
f fAZ =" a(Zoni = Zsy o). (55.3)
0 k=1

Let us define a discrete process My = Z;, and discrete filtration G, = F;, for 0 <
k < m.Then M is a martingale with respect to the filtration {G; : 0 < k < m}. Letus
also define U, = a;, | <k <m and Uy = 0. Then U is predictable (with respect to
{Gr : 0 < k < m}) and is bounded by 1, and hence using Theorem 1.44 we conclude
that for a > 0,

I<n<

- 9 9
P( max IZ UMy — My_1)| > o) < EE[IMml] = EE[|ZT| 1. (5.5.4)
=1

Note that for sp_; <t < s, defining V* = fof fdz — [ fdZ, we have V} =

ax(Z, — Z, ,) and hence

sup |V} <2 sup |z (5.5.5)

Sk—1 <t =Sk 0<t<T

Also, note that [ fdZ =Y 5_, U;(M; — M;_;) and hence

t Sk

sup | [ fdZ| max| fdz| + mkax sup |V"|

0<t<T JO I<k=m =M <t<sg

IA

(5.5.6)

IA

max |ZUj(Mj — M) +2 sup |Z].

I<k<m % 1 0<t<T

Thus using (5.5.4) and (5.5.6) along with Theorem 2.26 we get
' k
P( sup |f fdZ| > \) < P( max |ZU-(M- -M;_ )| > E)\)
0<t<T Jo T 1<k=m . SR 7= 4

+PQ sup |Z,] > )\)
o<,fT| /! (5.5.7)

ﬁEHZTH"‘XEHZTH

20
= —E[|Z7]].
\ [Zr[]
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Lemma 5.37 Let M be a square integrable r.c.l.l. martingale with My = 0, and let
g be a bounded predictable process, |g| < C. Then

! 20
P(sup || gdM|> )) < CTE[|MT|]. (5.5.8)

0<t<T Jo

Proof When g is simple predictable process, the inequality (5.5.8) follows from
Lemma 5.36. Since M is a stochastic integrator, the class of predictable processes g
bounded by C for which (5.5.8) is true is bp- closed and hence it includes all such
processes. ]

Theorem 5.38 Let M be a uniformly integrable r.c.l.l. martingale with My = 0.
Then M is a stochastic integrator and (5.5.8) continues to be true for all bounded
predictable process g.

Proof In view of Theorem 4.34, in order to show that M is a stochastic integrator
for the filtration (F.), suffices to show that it is a stochastic integrator w.r.t. (F.).
Recall that M being r.c.1l.,, remains a uniformly integrable martingale w.r.t. (F.1).

Since M is a uniformly integrable martingale, by Theorem 2.25, £ = lim,_, o, M,
exists a.e and in L' (P) and further M, = E[¢ | F;"]. For k > 1, let M be the r.c.L.L.
(F.")-martingale given by

Mf = E[€le<x) | FT1 = ElE gy | Fo 1.
Note that for any 7 < oo, and k, j > n
E(IMf — M711 < 2E[1€]1jg=n] (5.5.9)

and
E[|ME — Mz|1 < 2E[|€]1¢j2m]- (5.5.10)

Doob’s maximal inequality—Theorem 2.26 now implies that M* converges to M in
d,., metric.

Let a, = E[|€|1{j¢|=n]- Since £ is integrable, it follows that a, — 0 as n — oo.

Since M* is abounded (F.")-martingale, it is a square integrable (F")-martingale
and hence a (F.")-stochastic integrator. We will first prove that M* is Cauchy in d,,,
metric.

Note that for any f € S;, using (5.5.8) we have for k, j > n,

! ! . 20 ; 40
P( sup | fde—/ fdM/| >)\)§—E[|M§—M%|]:—an
0<t<T Jo 0 A h

and hence, using (4.9.6) it follows that {M* : k > 1} is Cauchy in d,,, metric.

Since the class of stochastic integrators is complete in d,, metric as seen in
Theorem 4.106, and M* converges to M in d,,, it would follow that indeed M is
also a (F.7)-stochastic integrator and M* converges to M in d,,,.
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Since (5.5.8) holds for M* and for any bounded predictable g, [ gaM k¥ converges
to f gdM ind,.,, it follows that (5.5.8) continues to be true for uniformly integrable
martingales M. (]

On the same lines, one can also prove the following.
Theorem 5.39 Let N, N*, M* fork > 1 be r.c.l.l. martingales.

(i) Ifforall T < oo
E[INE — Nr|1— Oask — oo,

then N* converges to N in the Emery topology.
(ii) Ifforall T < oo
E[|M§ —M}|1— Oask,n — oo,

then M* is Cauchy in the d.,, metric for the Emery topology.
Proof Noting that

t t 20
sup P(sup | [ fdN" —/ fdN| > ) < —E[IN} — Nr|] (5.5.11)
fies;  o=<i=<t Jo 0 0

and

' ' 20
sup P(sup | [ fdM" —/ fdM*| > §) < —E[|M} — ME|]  (55.12)
f:€S; 0<t<T JO 0 4

the conclusions follow from (4.9.5) and (4.9.6) O
Here is the final result of this section.

Theorem 5.40 Let an r.c.ll process X be a semimartingale; i.e., X can be decom-
posed as X = M + A where M is an r.c.l.l. local martingale and A is an r.c.LL
process with finite variation paths. Then X is a stochastic integrator.

Proof We have shown in Theorem 5.38 that uniformly integrable r.c.l.l. martingales
are stochastic integrators and hence by localization, all r.c.l.l. local martingales are
stochastic integrators. Thus M is a stochastic integrator.

Earlier, in Theorem 4.23 we had observed that r.c.l.l. processes A with finite
variation paths are stochastic integrators and thus X = M + A is a stochastic inte-
breakgrator. (]

5.6 Stochastic Integrators Are Semimartingales

The aim of this section is to prove the converse to Theorem 5.40. These two results
taken together constitute one version of The Dellacherie-Meyer—-Mokobodzky—
Bichteler Theorem.
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Let Z be a stochastic integrator. Let

B, =Zo+ Y (AZ)1jaz)-1)- (5.6.1)

O<s<t

Since paths of Z are r.c.l.l.,, for every w, there are only finitely many jumps of Z(w)
of size greater than 1 in [0, ¢] and thus B is a well-defined r.c.L.l. adapted process
whose paths are of finite variation and hence B itself is a stochastic integrator. Thus
Y = Z — B is a stochastic integrator and now jumps of Y are of magnitude at most
1. Now defining stopping times 7,, for n > 1 via

™ =inf{t >0 : |Y,| > nor|Y|>n} (5.6.2)

and Y" = Y™ (i.e. Y] = Y;nm), it follows that for each n, Y" is a stochastic inte-
grator by Lemma 4.47. Further Y is bounded by n 4+ 1, since its jumps are bounded
by 1.

We will show that bounded stochastic integrators X can be decomposed as X =
M + A where M is ar.c.l.l. square integrable martingale and A is an r.c.l.1. process
with finite variation paths. We will also show that this decomposition is unique under
a certain condition on A. This would help in piecing together {M"}, { A"} obtained in
the decomposition Y = M" + A" of Y" to get a decomposition of Y into an r.c.Ll.
locally square integrable martingale and an r.c.l.1. process with finite variation paths.

The proof of these steps is split into several lemmas.

Lemma 5.41 Let M" € M? be a sequence of r.c.Ll. square integrable martingales
such that Mj = 0. Suppose 3T < o0 such that M]' = M}, ;. for all n and

E[[M" — M*, M" — M*];] — 0 as min(k, n) — oo. (5.6.3)
Then there exists an r.c.l.l. square integrable martingale M € M? such that

lim E[[M" — M, M" — M]r] =0, (5.6.4)

n—00

d,,,(M", M) — 0 and

lim E[ sup |M" — M,|*] = 0. (5.6.5)

n—o00 0<t<T
Proof The relation (5.3.22) and the hypothesis (5.6.3) imply that

E[ sup |M] — M§|2] — 0 as min(k, n) — oo. (5.6.6)

0<t<T

Hence the sequence of processes {M"} is Cauchy in ucp metric and thus in view
of Theorem 2.71 converges to an r.c.l.l. adapted process M and (5.6.5) is satisfied.
Further, (5.6.6) also implies that M converges to M, in L2(P) for each s and hence
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using Theorem 2.23 it follows that M is a martingale, indeed a square integrable
martingale. As a consequence (M} — Mr) — 0in L?(P) and using (5.3.23) it fol-
lows that (5.6.4) is true. The convergence of M" to M in Emery topology follows
from Theorem 5.34. (]

The following localized version of this result follows easily.

Corollary 542 Let M" € M?

ioc b€ such that for a sequence of bounded stopping
times o; 1 00, we have

E[(M" — M*, M" — M*], ] — 0 as min(k, n) — oo (5.6.7)

foralli > 1, then there exists M € Mlzoc such that

lim E[ sup |M" — M,|*] = 0. (5.6.8)

=00 (<i<g;

If M" in the Lemma above are continuous, it follows that M is also continuous. This
gives us the following.

Corollary 5.43 Let M" € M? be a sequence of continuous square integrable mar-
tingales such that My = 0. Suppose 3T < oo such that M}' = M}, ; and

E[[M" — M*, M" — M¥]7] — 0 as min(k, n) — oo. (5.6.9)
Then there exists a continuous square integrable martingale M € M? such that

lim E[[M" — M, M" — M];] =0 (5.6.10)

n—00

d,,,(M", M) — 0 and

lim E[ sup |M" — M,|*] = 0. (5.6.11)

n—00 0<t<T

Theorem 5.44 Let X be a stochastic integrator such that

(l) Xt = Xz/\TfOV Clll t,
(ii) E[[X, X]r] < o0.

Then X admits a decomposition X = M + A where M is an r.c.l.l. square integrable
martingale and A is a stochastic integrator satisfying

E[[N, Alr] =0 (5.6.12)

for all r.c.l.l. square integrable martingales N.

Proof The proof is very similar to the proof of existence of the projection operator
on a Hilbert space onto a closed subspace of the Hilbert space. Let
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a=inf{E[[X — M, X — M]y]: M e M?}.

Since E[[ X, X]7] < o0, it follows that o« < oo. Fork > 1, let M* € M2 be such that
~k ~k 1
E[[X — M", X — M"]7] SOH-%.

Define M* = M*

tAT?

t >0,k >1.Then

EI[X — M, X — MM/] = E[[X — M*, X — M*]r] < a+ %

Applying the parallelogram identity (4.6.13) to Y* = 1(X — M¥), Y" = L(X —
M™) we get

Y —y", Y* =y =20, Y 420y Y — Y+ Y Y+ Yy
(5.6.13)
Note that Y* + Y = X — L(M" + M¥) and since 1 (M" + M*) € M?, we have
E[[Y*+Y", Y +Y"7]1>a
and hence
i I ; 1 1 1 1
E[[Y" —Y"Y" —Y"'lr] =2(-(a+ ) +2(-(a+ ) —« (5.6.14)
4 k 4 n
Since Y¥ — Y = %(M” — M), (5.6.13)~(5.6.14) yields

LELM” — M* M7 — M) < 2 (0 )
4 n

Thus by Lemma 5.41, it follows that there exists M € M2 such that

lim E[[M" — M, M" — M]7] =0. (5.6.15)

n—o0o

We now show that «v is attained for this M. Let us define Y = %(X — M). Then we
have Y" — Y = 1(M — M") and hence (5.6.15) yields

E[[Y"—Y,Y" —Y];] — O. (5.6.16)

Using (4.6.14) we have
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[ELLY", Y"1r] — EILY, Y]r]|
< E[NY", Y"lr = [¥, Yr|]
<E2(Y" =Y. Y" = YIp).(Y". Y"]r + [Y. Y]p)]
< V2EIY" =Y, ¥y" = YIsD(EIY", Y]z + [V, Y7 ]).

(5.6.17)

Since E[[Y", Y"]r] < J(o+ D) and E[[Y, Y]7] < 2(E[[X, X]r + [M, M]7]) < o0,
(5.6.16) and (5.6.17) together yield E[[Y”, Y"]r] — E[[Y, Y]r]asn — oo and
hence E[[Y, Y]r] < }10[. On the other hand, since ¥ = %(X — M) where M € M,
we have E[[Y, Y]7] > Lo and hence E[[Y, Y]] = a. Since ¥ = L(X — M) we
conclude E[[ X — M, X — M]r] = a.

By definition of o we have, for any N € M2, forallu € R

E[[X —M —uN,X - M —uN]r]>a=E[[X - M, X — M]r]
since M + uN € M?. We thus have
W2E[[N, N17] — 2uE[[N, X — M];] = O forall u € R. (5.6.18)

This implies E[[N, X — M]r] = 0. Now the result follows by setting A = X — M.
A is a stochastic integrator because X is so by hypothesis and M has been proven to
be so. ]

Recall that M? denotes the class of continuous square integrable martingales. A
small modification of the proof above yields the following.

Theorem 5.45 Let X be a stochastic integrator such that

(l) Xt = Xz/\TfOV all t,
(ii) E[[X, X]r] < o0.

Then X admits a decomposition X = N + Y where N is a continuous square inte-
grable martingale and Y is a stochastic integrator satisfying

E[[Y, Ulr] =0 YU € M2 (5.6.19)
Proof This time we define
o =inf{E[[X — M, X — M]z]: M e M?}
and proceed as in the proof of Theorem 5.44. ]

The next lemma shows that (5.6.12) implies an apparently stronger conclusion
that [N, A] is a martingale for N € M?.

Lemma 5.46 Let A be a stochastic integrator such that
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(i) A; = Ajar, Yt < 00,
(ii) E[[A, A]l7] < o0,
(iii) E[[N, Alz]1 =0 forall N € M2

Then [N, A] is a martingale for all N € M.

Proof Fix N € M?. For any stopping time o, N!'°! is also a square integrable mar-
tingale and (4.6.9) gives [N'”), Al; = [N, A]Y”) = [N, Alr, and thus we conclude
E[[N, Al o] = 0. Theorem 2.57 now implies that [N, A] is a martingale. U

Remark 5.47 If U is a continuous square integrable martingale and ¢ is a
stopping time, U!°! is also a continuous square integrable martingale. Hence,
arguments as in the proof of the previous result yield that if a stochastic
integrator Y satisfies (5.6.19), then

[Y, U] is a martingale VU € M?.

The next result would tell us that essentially, the integrator A obtained above has
finite variation paths (under some additional conditions).

Lemma 5.48 Let A be a stochastic integrator such that

(i) A; = Aiar, VI < 00,
(ii) E[B] < oo where B = sup,_r|A;| + [A, Alr,
(iii) [N, Al is a martingale for all N € M?(F.").

Then A is a process with finite variation paths: VAR 71(A) < 0o a.s.

Proof For apartitionT ={0 =59 <51 <... <35, = T}of [0, T]let us denote

VE= 14, — Al

‘We will show that for all £ > 0, 3K < oo such that

supP(V™ > K) <¢ (5.6.20)

where the supremum above is taken over all partitions of [0, 7']. Taking a sequence
7" of successively finer partitions such that 6(7") — 0 (e.g. 7" = {kT27": 0 <
k < 2"}), it follows that V™ 1 VaRro,71(A) and thus (5.6.20) would imply

P(VAR[O’T](A) >K)<e

and hence that P(Varjo,7j(A) < oo) = 1. This would complete the proof.

Fix € > 0. Since A is a stochastic integrator for the filtration (F,), it is also a
stochastic integrator for the filtration (F.7) in view of Theorem 4.44. Thus we can
get (see Remark 4.25) J; < oo such that
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T

sup P([ fdAl= )<= (5.6.21)
fesiFn  Jo 6
Since E[B] < oo, we can get J, < oo such that
13
P(B> ) < s (5.6.22)

Let J = max{J;, J», E[B]} and n be such that 2,1—4 <e. Let K=(mn+1)J. We will
show that (5.6.20) holds for this choice of K. Note that the choice has been made
independent of a partition.

Now fix a partition 1 ={0 =1 <t < ... <t, = T}. Recall that for x € R,
sgn(x) = 1 for x > 0 and sgn(x) = —1 for x < 0, so that |x| = sgn(x)x. For 1 <
j < m, let us consider the (F)-martingale

Z] = Elsgn(4,, — A, ) | F1.

Since the filtration (F, *) is right continuous, the martingale Z{ admits an r.c.L.L
version Z;. Then Z{/ = sgn(A,, — A,,_,) and hence

Z] (A, = Ay = (A — A )L

Writing C,j = fot Ly, d Ay = (Ainy; — Arar,_y)> We get by integration by parts for-
mula (4.6.7)

(A, — A, )l = Z]C]
o ) Lo . . .
_ / 71.dci + / Cl.dzi +12’. ¢/,
0 0

1 . 1j . . . .

=/ Zj,dAer/ Cl dz] +1Z’,A), — 12, Al
ti—1 ti—1

andfort;_; <t <t

z/c] =/ Z‘{_dAS+v/ Cldz] +1Z',A), -2, A),_,.
ti_g t

J j—1

Let us define N
Z = Z Zijl(fj—l,t/](l)s
j=1

C = Zczjl(t,,],t,-](t)»
Jj=1
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M, =Y (Zl = Zh ).
j=1
It follows that |Cy| < 2B, |Z,| < 1, M is a bounded (F.")-martingale and
(M, A), = (1Z, Aliny, — [Z7, Al ).
j=1

Thus, defining

t t
Yt = f Zx—dAx +/ Cs—dMs + [Ma A]t
0 0

weget, forty_) <t <t,1 <k<m
k-1
Yo=Y I(A, — A, )|+ ZECF
j=1
and thus Y; > —2B. Also note that
m
Yr=>) I(A, — A, )l =V".
j=1

LetU, = fo[ Cs_dM, + [M, A),,itfollows that U is a (F.") local martingale since
by assumption on A, [M, A] is itself a (F.")-martingale, and thus fot C,_dM; is a
(F.") local martingale by Theorem 5.31. Further

t
Y[ = / ZsfdAs + U[.
0

Now defining
T=inf{t >0 : U, < -3J}AT

it follows that 7 is a stopping time (see Lemma 2.48) and
{T<T}c{U- = -3J}.
Since Y, > —2B, we note that
({r <T}N{B <J} € ({Ur = =31} N{Y: = =2J}

c {/ Z,_dA, = J).
0
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Hence using (5.6.21) and (5.6.22) we conclude

(5.6.23)

W™

P(r<T) =< P(/ Zy dA; = J)+PB =J) <
0

Now (AU), = C,_(AM), + (AM),(AA),. Since M is bounded by 1, (AM), < 2.
Also, |C,| <2B and |(AA),| < 2B. Thus [(AU),| < 8B. Let 7, be (F.") stopping
times increasing to oo such that U is a (F.")-martingale. By definition of 7,
it follows that U ., > —(3J + 8B). Since U is a (F.')-martingale, we have
E[U7ro,Ar] = 0. Recall that B is integrable and hence using Fatou’s lemma we
conclude

E[Urn.] <O. (5.6.24)

Since Urar > —(3J + 8B), it follows that E[(Ura,)"]1 < E[(3J + 8B)] (here,
(Urnr)~ denotes the negative part of Ur,; ). Since J > E[B], using (5.6.24) we
conclude

E[(Ur )t < 11J. (5.6.25)

Since V™ = Yy = fOT Z,_dA, + Ur and recalling that K = (n + 1)J

T
P(VT>K) < P(f Zy_dAgy > J)+P(Ur = nlJ)
0

™

< PO <)+ PWrs 2 n))
€ 1

— 4+ —E[(Urp)"

3+nJ [(Urar)7]

11J

nJ

IA

+

A IA
R MMM O\ M
+ +
YRS
I
(L)

since by our choice 2n—4 < ¢. This proves (5.6.20) and completes the proof as noted

earlier. O

We now put together the results obtained earlier in this chapter to get the following
key step in the main theorem of the section. We have to avoid assuming right conti-
nuity of the filtration in the main theorem. However, it was required in the previous
result and we avoid the same by an interesting argument. Here is a lemma that is
useful here and in later chapter.

Lemma 5.49 Let (82, F, P) be a complete probability space and let H C G be sub-
o-fields of F such that H contains all the P null sets in F. Let Z be an integrable
G measurable random variable such that for all G measurable bounded random
variables U one has

E[ZU] = E[ZE[U | H]]. (5.6.26)
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Then Z is 'H measurable.

Proof Noting that
E[ZE[U |'H]] = E[E[Z | HIE[U | H]] = E[E[Z | H]U]
using (5.6.26) it follows that for all G measurable bounded random variables U
E[(Z -E[Z|HDU]=0. (5.6.27)

Taking U = sgn(Z — E[Z | H]) (here sgn(x) = 1 for x > 0 and sgn(x) = —1 for
x < 0), we conclude from (5.6.27) that

E[I(Z —E[Z|HDI]=0.

Since H is assumed to contain all P null sets in F, it follows that Z is H meas-
urable. O

Theorem 5.50 Let X be a stochastic integrator such that

(i) X, = X;/\TfOV all t,
(ii) E[sup,_7|Xs|] < o0,
(iii) E[[X, X]7] < oc.

Then X admits a decomposition

X=M+A, MecM?* AcV, (5.6.28)
such that
[N, Al is a martingale for all N € M? (5.6.29)
and
E[[X, X]7] = E[[M, M]r]+ E[[A, Alr] (5.6.30)

and further, the decomposition (5.6.28) is unique under the requirement (5.6.29).

Proof As seen in Theorem 4.34, X being a stochastic integrator for the filtration
(F.) implies that X is also a stochastic integrator for the filtration (F, ). Also, (4.6.2)
implies that [ X, X] does not depend upon the underlying filtration, so the assumptions
of the theorem continue to be true when we take the underlying filtration to be
(F.F). Now Theorem 5.44 yields a decomposition X = M + A with M € M2(F.")
and E[[N, Al;] =0 forall N € M2(F"). Let M, = M, 7, A, = A;n7. Then M €
M2(F*) and E[[N, Al;] = 0 for all N € M2(F') since [N, Al, = [N, Alar (by
(4.6.9)). As a consequence,

EllX, X171 = E[IM, M]r] + E[[A, Al7].
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Thus E[[A, A]r] < oo and then by Lemma 5.46, we have [N, A] is a (.7-'_+)-
martingale for all N € M?(F."). Since the underlying filtration (F.") is right con-
tinuous, Lemma 5.48 implies that A € V; namely, paths of A have finite variation.
By construction, M, A are (F. D) adapted. Since for s < ¢, ]—'j C F,;, it follows that
A, = A,_ is JF, measurable. We will show that

(AA), is F; measurable V¢ > 0. (5.6.31)

Since X, is F; measurable, it would follow that M, = X, — A, is also F; measurable.
This will also imply M € M? = M?(F,) completing the proof.
Fix t > 0. Let U be a bounded F;" measurable random variable, and let V =
U — E[U | F;]. Let
Ny = Vl[t,oo)(s)

i.e. Ny =0fors < tand Ny = V fors > t.Itiseasy toseethat N € M?(F.") and that
[N, Al; = V(AA);1|1.00)(s) (using (4.6.10)). Thus [N, A]isa (F1)-martingale, and
in particular E[[N, A],] = 0. Hence we conclude that for all bounded j’-',Jr measurable
U

E[(AA), U] = E[(AA),E[U | F11. (5.6.32)

Invoking Lemma 5.49 we conclude that (AA), is F, measurable and hence that A, is
F, measurable. As noted earlier, this implies M € M?. Only remains to prove unique-
ness of decomposition satisfying (5.6.29). Let X = Z + B be another decomposition
with Z € M2, B € V and [N, B] being a martingale for all N € M2,

Now X=M+A=Z+B,B—A=M—2Z¢cM?and [N, B— A]is a mar-
tingale for all N € M?. Let N = M — Z = B — A. By definition, My = Zy =0
and so Np = 0. Now [N, B — A] is a martingale implies [B — A, B — A] = [M —
Z, M — Z]is amartingale, and as a consequence, we have E[[M — Z, M — Z]7] =
E[[M — Z, M — Z]y] = 0 (see Remark 4.73). Now invoking (5.3.22), we conclude
(since M — Z € M? and My = Zy = 0)

Elsup|M; — Z,|] = 0.

s<T
Thus M = Z and as a consequence A = B. This completes the proof. (]

Corollary 5.51 The processes M, A in (5.6.28) satisfy
M; =My, Ar=Ar V120 (5.6.33)

Proof Note that X, = X;.r. Let R, = M;,r and B; = A;n7. Then X = R+ B is
also a decomposition that satisfies (5.6.28) since R is also a square integrable mar-
tingale, B is a process with finite variation paths and if R is any square integrable
martingale, then

[N, Bl; =[N, Aliar


https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4

194 5 Semimartingales

and hence [N, B]is also a martingale. Now uniqueness part of Theorem 5.50 implies
(5.6.33). O

Corollary 5.52 Suppose X,Y are stochastic integrators satisfying conditions of
Theorem 5.50, andlet X = M + AandY = N + B be decompositions with M, N €
M2, A, B € Vand[U, Al, [U, B] being martingales forall U € M?>. Iffor a stopping
time o, X1V = Y1 then M) = N9 and Al°l = Bl°1,

Proof Follows by observing that X!°! is also a stochastic integrator and X7 =
M+ Alel and X191 = N1 4 B9l are two decompositions, both satisfying
(5.6.29). The conclusion follows from the uniqueness part of Theorem 5.50. (]

We now introduce two important definitions.

Definition 5.53 An adapted process B is said to be locally integrable if there
exist stopping times 7, increasing to co and random variables D,, such that
E[D,] < o and

Pw: sup |B/(w)| <D,(w)) =1 Vn=>1.

0<t=7(w)

The condition above is meaningful even if sup,_, .. (| B;(w)| is not measurable. It is
to be interpreted as—there exists a set £2p € F with P(£2y) = 1 such that the above
inequality holds for w € £2y.

Definition 5.54 An adapted process B is said to be locally square integrable
if there exist stopping times 7,, increasing to co and random variables D,, such
that E[D?] < oo and

Pw: sup |B/(w)| <D,(w))=1 Vn=>1.

0=r=7,(w)

Clearly, if B is locally bounded process then it is locally square integrable. It is
easy to see that a continuous adapted processes Y is locally bounded if Y is bounded,
is locally integrable if E[ |Yy| ] < oo and locally square integrable if E[ |Y,|?] < oo.
Indeed, the same is true for an r.c.l.l. adapted process if its jumps are bounded.

We have seen that for an r.c.l.l. adapted process Z, the process Z~ is locally
bounded and hence it follows that Z is locally integrable if and only if the process
AZ is locally integrable and likewise, Z is locally square integrable if and only if
the process AZ is locally square integrable.

Theorem 5.55 Let X be locally square integrable stochastic integrator. Then X
admits a decomposition X = M + A where M € MZZOC (M is a locally square inte-
grable martingale) and A € V (A is a process with finite variation paths) satisfying

[A,N]eM;,. VN e M

loc loc*

(5.6.34)

Further, such a decomposition is unique.
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Proof Since X is a locally square integrable process, it follows that AX is locally
square integrable. Since A[X, X] = (AX )2, it follows that [X, X] is locally inte-
grable and thus sois D, = sups<,|XS|2 + [X, X];.Leto” 1 oo be stopping times such
that E[D,+] < 00, andlet 7" = n A 0. Let X" = X!™1. Then X" satisfies conditions
of Theorem 5.50 (with T = n), and thus we can get decomposition X" = M" + A"
such that M" € M? and A" € V and

[U, A"] is a martingale for all U € M2, (5.6.35)
Using Corollary 5.52, we can see that
P(M! = MF Vi <" ATH =1, V¥n,k.

Thus we can define r.c.1.1l.processes M, A such that M!™) = M" and A""! = A" for
all n. This decomposition satisfies the asserted properties.
Uniqueness follows as in Theorem 5.50 and the observation that if ¥ € M2 ,

Yo=0and[Y,Y], =0foralltthenY =0 (i.e. P(Y; =0Vr) =1.) ([

Remark 5.56 The process A with finite variation r.c.l.|. paths appearing in the
above theorem was called a Natural process by Meyer, and it appeared in
the Doob Meyer decomposition of supermartingales. Later it was shown that
such a process is indeed a predictable process. A is also known as the
compensator of X. We will come back to this in Chap. 8 later.

Corollary 5.57 Let X be a locally square integrable stochastic integrator and A be
its compensator and M = X — A € Mfoc. Then for any stopping time o such that
E[[X, X]s] < o0,

E[[A, Al,] < E[[X, X],] (5.6.36)

and
E[[M, M],] < E[[X, X],] (5.6.37)

Proof If 1, 1 oo are as in the proof of Theorem 5.55, then by Theorem 5.50 we have
El[X, XIorr ] = ElIM, Mlsnr ]+ EllA, Alors, ]

and the required inequalities follow by taking limit as n — oo and using monotone
convergence theorem. (]

Arguments similar to the ones leading to Theorem 5.55 yield the following (we use
Theorem 5.45 and Remark 5.47). We also use the fact that every continuous process
is locally bounded and hence locally square integrable.

Theorem 5.58 Let X be locally square integrable stochastic integrator. Then X
admits a decomposition X = N + Y with N € M, ., i.e. N is a continuous locally
square integrable martingale with Ny =0, and Y is a locally square integrable
stochastic integrator satisfying
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[Y, U] is a local martingale YU € Mf (5.6.38)

Further, such a decomposition is unique. Indeed,
[Y,U]=0 YU € M. (5.6.39)

Proof The only new part is to show that (5.6.38) yields (5.6.39). For this note that
on the one hand [Y, U] is continuous as A[Y, U] = (AY)(AU) and U is continuous.
On the other hand by definition [Y, U] has finite variation paths. Thus [Y, U] is
a continuous local martingale with finite variation paths. Hence by Theorem 5.24,
[Y,U]=0. O

As an immediate consequence of Theorem 5.55, here is a version of the Della-
cherie-Meyer—-Mokobodzky—Bichteler Theorem. See Theorem 5.89 for the final ver-
sion.

Theorem 5.59 Let X be an r.c.l.l.adapted process. Then X is a stochastic integrator
if and only if X is a semimartingale.

Proof We have already proved (in Theorem 5.40) that if X is a semimartingale then
X is a stochastic integrator.
For the other part, let X be a stochastic integrator. Let us define

B, =Xo+ Y (AX)ljax),=1)- (5.6.40)

O<s<t

Then as noted at the beginning of the section, B is an adapted r.c.l.l. process with
finite variation paths and is thus a stochastic integrator. Hence Z = X — B is also a
stochastic integrator. By definition,

(AZ) = (AX)1jax<ny

and hence jumps of Z are bounded by 1. Hence Z is locally square integrable. Hence
by Theorem 5.55, Z admits a decomposition Z = M + A where M € Mlzoc and A

is a process with finite variation paths. Thus X = M + (B + A) and thus X is a
semimartingale. ]

The result proven above contains a proof of the following fact, which we record here
for later reference.

Corollary 5.60 Every semimartingale X can be writtenas X = M + A where M €
M2 and A € V; i.e. M is a locally square integrable r.c.l.l. martingale with My = 0

loc
and A is an r.c.l.l. process with finite variation paths.

Exercise 5.61 Let X be a semimartingale for the filtration (F,). Let (H,) be a
filtration such that H, C F, for all . Suppose X is (H,) adapted. Show that X
admits a decomposition X = N + B, where N, B are (H,) adapted, N a local
martingale and B a process with finite variation paths.
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Exercise 5.62 Let G(r) be a deterministic function. Suppose, G considered
as a stochastic process on some probability space and some filtration is a
semimartingale. Show that G is a function with finite variation on [0, T] for
every T < oo.

HINT: Use Exercise 5.61 with H, = {B € F : P(B) =0 or P(B) = 1} for all ¢.

Every local martingale X is a semimartingale by definition. In that case, the process
A appearing in the corollary above is also a local martingale. Thus we have

Corollary 5.63 Every r.c.Ll local martingale N can be written as N = M + L
where M is a locally square integrable r.c.l.l. martingale with My = 0 and L is an
r.c.L.l process with finite variation paths that is also a local martingale, i.e. M € MZZUC
and L € V N M.

Using the technique of separating large jumps from a semimartingale to get a
locally bounded semimartingale used in proof of Theorem 5.59, we can get the
following extension of Theorem 5.58.

Theorem 5.64 Let X be a stochastic integrator. Then X admits a decomposition
X =N+ SwithN € M, o ( N is acontinuous locally square integrable martingale
with Ng = 0) and S is a stochastic integrator satisfying

[S,U] =0 YU € M2. (5.6.41)

Further, such a decomposition X = N + S is unique.

Proof Let B be defined by (5.6.40), and let Z = X — B. Then Z is locally bounded,
and thus invoking Theorem 5.58, we can decompose Z as Z =N + Y with N €
M 1oc and Y satisfying [Y, U] =0 forall U € M%. Let S =Y + B. It follows that
X =N+ 8. Since [B,U] =0 forall U € M2, [S, U] =0 for all U € M2. To see
that such a decomposition is unique, if X = M + R is another such decomposition
with M € M? and [R,U] =O0forall U € M2, thenV =N — M = R — S € M, o
with [V, V] = 0 and hence V = 0 by Theorem 5.24. [l

Definition 5.65 Let X be a semimartingale. The continuous local martingale
N such that X = N+ S and [S,U] =0 for all U € M, ¢ is said to be the
continuous local martingale part of X and is denoted by X .

For a semimartingale X with X = X© 4 Z, we canseethat [X, X] = [X©, X©]
+[Z, Z]. We will later show in Theorem 8.83 that [X©, X©] = [X, X]©©—the
continuous part of the quadratic variation of X.

The next result shows that if X is a continuous process that is a semimartingale,
then it can be uniquely decomposed as a sum of a continuous local martingale and a
continuous process with finite variation paths.

Theorem 5.66 Let X be a continuous process, and further let X be a semimartingale.
Then X can be uniquely decomposed as
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X=M+A

where M and A are continuous processes, My = 0, M a local martingale and A a
process with finite variation paths.

Proof Without loss of generality, we assume Xy = 0. Now X being continuous,
it follows that X is locally square integrable and thus X admits a decomposition
X =M+ Awith M € M?_and A € V with A satisfying (5.6.34). On the one hand,

loc

continuity of X implies (AM); = —(AA), forall t > 0 and since A € V, we have

[A, M1, = ) (AA)(AM);.

O<s<t

Thus,
[A, M], == ) (AA); = —[A, Al

O<s<t

Since A satisfies (5.6.34), it follows that [A, M] = —[A, A] is a local martingale.
If 0, is a localizing sequence, it follows that E[[A, A];x,,] = O for all n. Since
[A, Al; > O for all s, it follows that [A, A];rs, = O a.s. for all ¢, n. This implies

[A, Al = Z (AA? =0 a.s. Vi

O<s<t

and hence A is a continuous process and hence sois M = X — A. Uniqueness follows
from Theorem 5.24. ]

Exercise 5.67 Let X be a continuous semimartingale, and let X = M + A be
a decomposition as in Theorem 5.66 with M € M, joc With My =0 and A €
V. Let X = N + B be any decomposition with N € M, and B € V. Then
[N, N]—[M, M] is an increasing process, i.e.

[N,N]=[M,M]+C, forsomeC eV". (5.6.42)

HINT: Observe that [M, A — B] = 0 since M is continuous. Write N = M +
(A — B)andtake C =[A — B, A — B].

Definition 5.68 A local martingale M is said to be purely discontinuous if
[M,N]=0 VN € M_oc. (5.6.43)

Let My, MZ, My 10cs Mfl’loc denote the class of purely discontinuous martingales,
purely discontinuous square integrable martingales, purely discontinuous local mar-
tingales, and purely discontinuous locally square integrable martingales, respectively.

Exercise 5.69 Let M € M, NV. Then show that M € M, joc.
HINT: Use Theorem 4.74.
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We will now show that every local martingale can be (uniquely) decomposed as
a sum of a continuous local martingale and a purely discontinuous local martingale.

Theorem 5.70 Let X be an r.c.l.l. local martingale. Then X admits a decomposition
X=M+N, MeM.p, Ne€Myip. (5.6.44)

Proof Let
B, = X0+ Z (AX)sLjaxy, =1

O<s<t

and let Y = X — B. Then B is an adapted r.c.l.l. process with finite variation paths,
and Y is a stochastic integrator with jumps bounded by 1 and hence is locally square
integrable. Then invoking Theorem 5.58, we get a decomposition

Y=M+A

where M € M, ), and A is a locally square integrable stochastic integrator such that
[A, S], = 0 forall S € M2. Since B € V, it follows that [B, S] = 0 for all S € M2.
Defining N = A+ B = X — M, we get that [N, S] = 0 for all § € M? and since
X, M are local martingales, it follows that so is N. |

Remark 5.71 Here, if X € M then M € M?, - and N € Mj .. We will later
show in Theorem 8.80 that in this case [M, M] is the continuous part of [ X, X]

and [N, N] is the sum of squares of jumps of X.

5.7 The Class L(X)

In the previous section, we have given a characterization of stochastic integrators.
Like stochastic integrators, the class L(X) of integrands for the integral | fd X was
defined (see Definition 4.17) in an ad hoc fashion. Here we give a concrete description
of L(X).

Theorem 5.72 Let X be a stochastic integrator. Then a predictable process f
belongs to 1.(X) if and only if X admits a decomposition X = M + A, where
M e M2 (M is a locally square integrable martingale with My = 0) and A € V

loc
(A is a process with finite variation paths) such that

t
/ | fs|d|Als <00 Vit <00 a.s. (5.7.1)
0
and there exist stopping times oy 1 0o such that

E[/Jk|f5|2d[M, M],] < o0 Vi < oo. (5.7.2)
0
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Proof 1f f satisfies (5.7.1), then as seen in Remark 4.24 f € L(A) and if f satisfies
(5.7.2), then f € ]Lfn (M) and hence f € (M) in view of Theorem 5.31. Thus if
X admits a decomposition X = M + A such that (5.7.1)—(5.7.2) holds then f €
L(M) NL(A) € L(M + A).

Conversely, let f € L(X). Then it is easy to see that 7 = (1 4+ | f]) € L(X). So
letY = [(1 +|f])dX. Then as noted in Theorem 4.33, Y is a stochastic integrator.
Hence by Corollary 5.60, Y admits a decomposition Y = N + B and with N € MIQOC
and B € V. Let

M=/a+vwww

A= /(1 +|f)"'dB.

The two integrals are defined as (1 + | f|)~! is bounded. Further, this also yields,
M € Mj_and A € V. Clearly

M+A=/a+vwa=/aHﬂWu+MWX=x
Since g = f-(1+|f)~" is bounded, g € L(Y) and hence f =g - (1+|f]) €

LL(X) (see Theorem 4.33). U

Exercise 5.73 Let M be a continuous martingale with M, = 0.

() Let M = N + B be any decomposition with N € M2 and B € V, and let
f € L2 (N). Show that f € .2 (M).
HINT: Use (5.6.42).
(i) Show that (M) = L2 (M).
(iii) Show that

t
L(M) = {f : predictable such that / ffd[M, M]; <00 a.s.}. (5.7.3)
0

HiNT: Use Remark 5.33.

Remark 5.74 1t follows that for a Brownian motion B,
t
L(B) = {f : predictable such that / flds < 00 a.s.).
0

Definition 5.75 For a process A with finite variation paths, let L} (A) be the
class of predictable processes f satisfying (5.7.1).

Thus, Lzl (A) € L(A). Theorem 5.72 can be recast as: for a stochastic integrator X,
f € L(X) ifand only if X admits a decomposition X = M + A, where M is alocally
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square integrable martingale with My = 0 and A is a process with finite variation
paths such that
fel?(M), and f eL(A).

As a consequence, for a semimartingale X

L(X) = U L2 (M)NLA).
{M,A:X=M+A, MeM},,, A€V}

Exercise 5.76 Let X be a continuous semimartingale, and let X = M + A be
the unique decomposition with M being continuous local martingale and A €
V. Then show that

L(X) =12 (M) N1} (A).

HINT: To show, L(X) € L2 (M) N L/ (A) use Exercise 5.67.

The following exercise gives an example of a process A € V such thatIL(A) is strictly
larger than ]Lll (A).

Exercise 5.77 Let {¢5": 1<k <2""!,m > 1} be a family of independent
identically distributed random variables with

P =1)=P¢"=-1)=05
and let g = Z=1 et

Fr=ofg"" 1 d"" <1y,

n om-1

1

A} = Z Z Som Y ko o0 (1),

m=1 k=1

oo 2m-l

A=) ) 2% E gk, 0) (1)

m=1 k=1
and f : [0, o0) — [0, c0) be defined by
f(ak,m) —m

with f(z) = 0 otherwise. Show that

(i) Foreachn, (A7, F;) is a martingale.
(i) Foreach t, A" converges to A, in L*(P).
(i) (A;, F;) is a martingale.
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(iv) AeV.
(v) Let B, = |Al,. Show that [; f(s)dB = 0.

(vi) Show that [A, Al, = 320 320 ST jum o) ().
(vii) Show that [ f2(s)d[A, A], < oo.

Thus |, fdAis defined as a stochastic integral but not defined as a Riemann—
Stieltjes integral.

5.8 The Dellacherie-Meyer-Mokobodzky-Bichteler
Theorem

In Theorem 5.59 we have shown that an r.c.l.l. adapted process is a stochastic inte-
grator if and only if it is a semimartingale. Even if we demand seemingly weaker
requirements on an adapted r.c.l.l. process X, it implies that it is a semimartingale.
Indeed, if we demand that /" — f uniformly implies that Jx (f"), — Jx(f); in
probability for every ¢, then it follows that X is a semimartingale. Thus demanding
continuity of the mapping Jx with the strongest form of convergence on the domain
S and the weakest form of convergence on the range leads to the same conclusion.

Definition 5.78 Let X be an r.c.l.l. adapted process. Then X is said to be a
weak stochastic integrator if

fres, f* — 0uniformly = Jx(f"), — 0 in probability for each ¢t < oco.

The Dellacherie-Meyer—Mokobodzky—Bichteler Theorem (first proven by Del-
lacherie with contributions from Meyer, Mokobodzky and then independently proven
by Bichteler) states that X is a weak stochastic integrator if and only if it is a semi-
martingale. If X is a semimartingale then it is a stochastic integrator. Clearly, if X is
a stochastic integrator, then it is a weak stochastic integrator. To complete the circle,
we will now show that if X is a weak stochastic integrator, then it is a semimartingale.

Towards this goal, we introduce some notation. Let ST be the class of stochastic
processes f of the form

£i@) =) a1 @)000) (5.8.1)

j=0

where 0 = 5o < 51 < $2 < ... < S$y41 < 00, aj4 is bounded ]:+ measurable ran-
dom variable, 0 < j < m, m > 1 and let C be the class of stochastic processes f of
the form

[i@) =" b1 ), 0).0, 1 (5) (5.8.2)

j=0
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where0 =09 <01 <0y <...,< 0,4 <O0are (]:_+) bounded stopping times and
b4 is bounded ]—";; measurable random variable, 0 < j <n, n > 1.
For f € C, let us define

I (@) =D bj1 (@) Xoy (@) = Xt (@) (5.8.3)
j=0

Sofor f €S, Jx(f) = Ix(f).Indeed, if X is a stochastic integrator, then as noted
earlier, Ix(f) = [ fdX,Vf € C.
We start with a few observations.

Lemma 5.79 Let X be an r.c.Ll adapted process, f € C and T be a stopping time.
Then we have, for allt < oo

Ix(floD: = Ix(finr- (5.8.4)

Proof Let f be given by (5.8.2), and let g = f1jo-;. Then we have

n
gs = Z bj+1 l(g,/\T,J_;+|/\TI(S)
Jj=0

and writingdj | = bj44 Lio;<r}s it follows thatd is F, jj - measurable and we have

n
gs = Zdj+l l(O‘j/\T,O"H_[/\T](s)'
j=0

Since Ix(f) and Ix(g) are defined pathwise, we can verify that the relation (5.8.4)
is true. .

Lemma 5.80 Let X be an rc.ll adapted process. Then X is a weak stochastic
integrator if and only if X satisfies the following condition for eacht < oo:

Ve >03K. <ocos.t. [ sup P(Jx(f)] > K] <e. (5.8.5)
fes 1fl=1

Proof 1If X satisfies (5.8.5), then given f" € S, a, = sup, ,| f/"(w)| — 0, we need to
show Jx (f"); — 0in probability. So given ¢ > 0, get K. as in (5.8.5). Givenn > 0
let ng be such that forn > ng, we have a, K. < n. Then g, = alf” € Sand|g,| < 1.
Hence ’

PUJIx ([l =m) = P(Jx(¢g")] > Ko) <e.

Thus X is a weak stochastic integrator. Conversely let X be a weak stochastic inte-
grator. If for some ¢, ¢ < 00, no such K. < oo exists, then for each n, we will get
f" such that | f*| < I and
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PUJx(f")l > n) = e. (5.8.6)
Then ¢" = % f" converges uniformly to zero, but in view of (5.8.6),
P(Jx(g")il > 1) > e Vn > 1.

This contradicts the assumption that X is a weak stochastic integrator. O

Lemma 5.81 Let X be an r.c.ll adapted process. Then X satisfies (5.8.5) if and
only if for each t < oothe following condition holds:

Ve >03K. <ocost. [ sup P(Ix(f)] > K.)] <e. (5.8.7)
feC, |fI1=1

Proof Since f € Simplies 19, € C, itis easy to see that (5.8.7) implies (5.8.5).
So now suppose K is such that (5.8.5) holds. We show that (5.8.7) holds. First
let f € ST be given by

m—1

£ @) = a1 @)s,s,0(5)

j=0

where 0 =59 < 51 <3 < ... <, < 00, a4 is bounded ]—":f measurable random
)

variable,0 < j < (m — 1).Let0 < §; < %besuchthatsj +0 <s5j11,0<j<m
and let

m—1

gf(w) = Zaj-H (w)l(sj-f-ékfsjﬂl(s)‘
=0

Since }"f] C Fi,+4 it follows that g* € S. Noting that g* converges to f and using
the explicit formula for Iy, Jy along with the fact that paths of X are r.c.l.l. we see
that (the number of terms in the sum remain fixed!)

Jx(§"): = Ix(f); pointwise.

Hence we conclude that
P(Ix(f)] > K.) <e.

In other words, (5.8.5) implies

Ve>03K. <ocost. [ sup P(Ix(f):| > K.)] <e. (5.8.8)
fest. |11

Let us note that if f € C is given by (5.8.2) with ¢; being simple stopping times,
namely taking finitely many values, then f € ST. To see this, let us order all the
values taken by the stopping times o, j =0, 1,...,n and let this ordered list be
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S0 < 81 < S <83 <...< s Recall that by construction, f is l.c.r.l. adapted and
thus

by = lilm f(u)
exists and is .7-';; measurable. And then
k—1
fo=) bilis,s(s)
Jj=0

proving that f € ST.
Now returning to the proof of (5.8.7), let f € C be given by

n—1
£ =Y bisilig0(5)
j=0
withO=0p <01 <0, <...,<0, <o00are (}'_*) bounded stopping times and b,

is bounded .7-';; measurable random variable, 0 < j < (n — 1). Let

2701+ 1
=—0

" m>1

be simple stopping times decreasing to 0,0 < j < n, and let

n—1
gy = Z bji 1<T,""s75"+1](s)'
j=0

Then g™ converges to f, and from the explicit expression for Ix (¢™) and Ix(f), it
follows that Iy (g™) converges to Ix(f). As noted above ¢" € St and hence

P(Ix(¢")| > K:) <€
and then Ix (¢™); — Ix(f), implies

PUIx ()il > Ko) <e.

Since this holds for every f € C, (5.8.7) follows. ]

The preceding two lemmas lead to the following interesting result. The convergence
for each ¢ in the definition of weak stochastic integrator leads to the apparently
stronger result—namely convergence in d,c,.

Theorem 5.82 Let X be a weak stochastic integrator. Then " € C, f" — 0 uni-
formly implies
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ucp

Ix(f™) “5 0. (5.8.9)

As a consequence, X satisfies (4.2.20).

Proof Fix f" € Csuchthat f" — 0uniformly. Proceeding as in the proof of Lemma
5.80, one can show using (5.8.7) that for each ¢,

Ix(f™"); — 0 in probability. (5.8.10)
Fixn > 0,T < oo.Forn > 1, let
™ =inf{t > 0: [Ix(f")/| > 2n}.

7" is a stopping time with respect to the filtration (F.7). Let ¢" = f"1.,+1. Note that
g" € C. In view of Lemma 5.79 we have

Ix(g")r = Ix(f") T pr-

Also, from definition of 7", we have

{ sup [Ix(f")il > 20} S {lx (g7 | > n}. (5.8.11)

0<t<T
Clearly, ¢" converges to 0 uniformly and hence as noted in (5.8.10),
Ix(¢g")r — 0 in probability.

In view of (5.8.11), this proves (5.8.9). As seen in Remark 4.25, (5.8.9) implies
(4.2.20). O
Here is one last observation in this theme.

Theorem 5.83 Let X be a weak stochastic integrator, and let h" € C. Then

ucp ucp

W — 0= Ix(h") — 0. (5.8.12)
Proof Fix T < oo and let n; = 1. For each k > 2, get iy, such that ny > n;_; and

n > ng = P(sup |h]]| > %)5%.
0<t<T

Forn, <n < ngyy, let
on =inf{t: |n)| > 1}.

Since h" € C, (a left continuous step function) it can be seen that o, is a stopping
time and that
J"=h"10.0,
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satisfies
If'l <1 formg <n < ngp
and
{ sup |h}| > ¢} ={on =T}
0<t<T
So
P, <T) < % forny <n < ngqq. (5.8.13)
Thus
f" converges to 0 uniformly (5.8.14)
and
PUx(f"): = Ix(h"), YVt € [0, T]) = P(o, > T). (5.8.15)

In view of Theorem 5.82, (5.8.14) implies Ix(f") X% 0 and then (5.8.13) and
(5.8.15) yield the desired conclusion, namely

ucp

Ix(h™) 2% 0.
O

In view of this Eesult, for a weak stochastic integrator, we can extend /y continuously
to the closure C of C in the d,,, metric.

For g € C, let Ix(g) be defined as limit of Ix(¢") where ¢" =B g. It is easy to
see that Iy is well defined. If X is a stochastic integrator, Ix agrees with f gdX.
We identify C in the next result.

Lemma 5.84 The closure C of C in the d,p, metric is given by
C={z: ZeR%.

Proof Let f € C and let f" € C, f" “n f. Then V" =lim,, f] are r.c.Ll. ada-
pted processes, and V" can be seen to be Cauchy in d,, and hence converge to V.
Further, using Theorem 2.72, it follows that a subsequence of V" converges to V
uniformly on [0, T] for every T < oo, almost surely. Thus V € R°. Now it follows
that f = V™. ]

Theorem 5.85 Let X be a weak stochastic integrator and Z € R. Let {r': n>1}
be a sequence of partitions of [0, 00) via stopping times:

O=7<m"<m'...;7)" too, m=>1

such that for some sequence 0,, | 0 (of real numbers)
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|Zi—- —Zmn| <6y forT) <t =<7, n>0, m>1 (5.8.16)

Form > 1, let

o0
Z' =) Zinmp L @),

n=0
Then -
Ix(Z") =) Zinep (Ko e = Xopnd) (5.8.17)
n=0
and e
Ix(Z™) 25 14(Z7). (5.8.18)

Thus, if X is also a stochastic integrator, Ix(Z~) = f Z dX.

Proof Let us note that given 6, | 0, there exist stopping times {7 : n > 1} m > 1,
satisfying (5.8.16), (say given in (4.5.12)).
Fork > 1, let

k
k
2 = Zoap L O
n=0
Then Z™* € C and
k
k
IX(Z™) = Y7 Zinp Ko on = Xpno)-
n=0

Now P(supoitng;”’k —Z"| > 0) <P(r" < T) and hence Z" € C and
Ix(Z"%) =5 Iy(Z™).

This proves (5.8.17). Now Z™ converges to Z~ uniformly and hence Z € C and

ucp

Ix(Z™) — Ix(Z7).

If X is also a stochastic integrator, using Theorem 4.62 it follows that for Z € R°,
Ix(Z™) agrees with [ Z~dX. O

Remark 5.86 Note that while dealing with weak stochastic integrators, we con-
sidered the filtration Z* for defining the class C, but the definition of weak
stochastic integrator did not require the underlying filtration to be right con-
tinuous.
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Thus for Z € R? and a weak stochastic integrator X, we define Iy (Z™) to be the
stochastic integral [ Z~dX. When a weak stochastic integrator is also a stochastic
integrator, this does not lead to any ambiguity as noted in the previous theorem.

Remark 5.87 A careful look at results in Sect. 4.6 shows that Theorems 4.64,
4.67 continue to be true if the underlying processes are weak stochastic
integrators instead of stochastic integrators. Instead of invoking Theorem
4.62, we can invoke Theorem 5.85. Thus weak stochastic integrators X, Y
admit quadratic variations [ X, X], [Y, Y] and cross-quadratic variation [ X, Y].
Various results on quadratic variation obtained in Sect. 4.6continue to be true
for weak stochastic integrators.

Moreover, Theorems 5.44, 5.45 and Lemma 5.46 are true for weak
stochastic integrators as well since the proof only relies on quadratic vari-
ation. Likewise, Lemma 5.48 is true for weak stochastic integrators since
apart from quadratic variation, it relies on (4.2.20), a property that holds for
weak stochastic integrators as noted earlier in Theorem 5.82.

As a consequence, Theorems 5.50, 5.55 and 5.58 are true for weak
stochastic integrators.

This discussion leads to the following result, whose proof is same as that of
Theorem 5.59.

Theorem 5.88 Let X be a weak stochastic integrator. Then X is a semimartingale.

Here is the full version of the Dellacherie-Meyer—Mokobodzky—Bichteler Theo-
rem.

Theorem 5.89 Let X be anr.c.l.l.(F,) adapted process. Let Jx be defined by (4.2.1)—
(4.2.2). Then the following are equivalent.

(i) X is a weak stochastic integrator; i.e. if f" €S, f* — 0 uniformly, then
Jx (™) — 0 in probability Vt < oo.
(ii) If f* €S, " — O uniformly, then Jx(f") —5 0.

ucp ucp

(iii) If f* €S, f* — 0, then Jx(f") — 0.

(iv) If f* €S, 1725 0, then Jy(f") “% 0.

(v) X is a stochastic integrator; i.e. the mapping Jx from'S to RY(£2, (F)), P) has
an extension Jx: B(£2, P) — R%(£2, (F.), P) satisfying

28 implies Ty (F") 2B 1y (f).

(vi) X is a semimartingale; i.e. X admits a decomposition X = M + A where M
is a local martingale and A is a process with finite variation paths.

(vii) X admits a decomposition X = N + B where N is a locally square integrable
martingale and B is a process with finite variation paths.
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Proof Equivalence of (v), (vi), (vii) has been proven in Theorem 5.59 and Corollary
5.60. Clearly,
(v) = (iv) = (@ii) = @) = (@).

Theorems 5.82 and 5.83 tell us that
(i) = (i) = (iiiQ).

And we have observed in Theorem 5.88 that (iii) implies (vi). This completes the
proof. (]

5.9 Enlargement of Filtration

The main result of the section is about enlargement of the underlying filtration (F,)
by adding a set A € F to each F;. The surprising result is that a semimartingale
for the original filtration remains a semimartingale for the enlarged filtration. In
the traditional approach, this was a deep result as it required decomposition of the
semimartingale into local martingale w.r.t. the enlarged filtration and a finite variation
process.

Let A € F be fixed, and let us define a filtration (G,) by

G ={BNA)U(CNA) : B,C e F}. (5.9.1)

It is easy to see that G, is a o-field for all # > 0 and (G,) is a filtration. Using the
description (5.9.1) of sets in G, it can be seen that if £ is a G; measurable bounded
random variable, then 3 F, measurable bounded random variables 7, 1’ such that

E=nla+n1ge. (5.9.2)

Let S(G.) denote the class of simple predictable process for the filtration (G,). Using
(5.9.2) it is easy to verify that for f € S(G,) 3 g, h € S(F.) such that

ftw) = g(t, w4 W) + h(t, W) e (W) V1, w) € 2. (5.9.3)
With this we can now describe the connection between predictable processes for the
two filtrations.

Theorem 5.90 Let f be an (G,) predictable process. We can choose (F,) predictable
processes g, h such that (5.9.3) holds. Further, if f is bounded by a constant c, then
g, h can also be chosen to be bounded by the same constant c.
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Proof Let K be the set of (G,) predictable process f for which the conclusion is true.
We have seen that K contains S(G,). We next show that K is closed under pointwise
convergence. This will show in particular that K is closed under bp-convergence and
hence that the conclusion is true for all bounded predictable processes. If " € K
with

f"=9"1a+h" 14

and f" — f then we can take

g(t, w) = limsup g" (¢, W) 1 timsup, .. g"](r.w)<oo} (5.9.4)
n—oo

h(t, w) = lim sup h" (t, w)lllim SUP,_, o |h"|(t,w) <00} (595)
n—0oQ

and then it follows that f = gl + h14- and thus f € K. Asnoted above, this proves
K contains all bounded predictable processes and in turn all predictable processes
since f" = f1{ /<) converges pointwise to f.

If f is bounded by ¢, we can replace g by § = gl{yj<j and i by h = =l <. O

Theorem 5.91 Let X be a semimartingale for the filtration (F,). Let A € F and
(G.) be defined by (5.9.1).
Then X is also a semimartingale for the filtration (G,).

Proof Let us denote the mapping defined by (4.2.1) and (4.2.2) for the filtration (G,)
by Hy, and let Jx be the mapping for the filtration (F,). Since these mappings are
defined pathwise, it is easy to verify that if f € S(G,) and g, h € S(F,) are as in
(5.9.3), then

Hx (f) = Jx(@)1a + Ix(h)1 4 (5.9.6)

We will prove that X is a weak stochastic integrator for the filtration (G,). For this,
let f" € B(ﬁ, P(G.)) decrease to 0 uniformly. Let @, | 0 be such that | f"| < a,.
Then for each n invoking Theorem 5.90 we choose ¢, h" € S(F,) with |¢"| < a,,
|h"| < a, such that

fn = gnlA + hnlAf-

As noted above this gives, forn > 1
Hy (f") = Jx(g")1a + Jx(B")1 4c. (5.9.7

Since X is a semimartingale for the filtration (F,), it is a stochastic integrator. Thus,
Jx(g™) X% 0 and Jx(h™) X% 0 and then (5.9.7) implies Hx (") 2% 0. Hence X
is a weak stochastic integrator for the filtration (F.). Invoking Theorem 5.89, we
conclude that X is a semimartingale for the filtration (G,). O
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Remark 5.92 As noted in Theorem 4.13, when f is (F.) predictable bounded
process, Hx(f) = Jx(f) and thus the stochastic integral | fd X is unambigu-
ously defined.

Theorem 5.93 Let X be a stochastic integrator on (§2, F, P) with a filtration (F)).
Let Q be a probability measure on ($2, F) that is absolutely continuous w.r.t.P. Then
X is a stochastic integrator on (2, F, Q), and the stochastic integral under P is a
version of the integral under Q.

Proof Let H be the completion of F under Q, and for ¢ > 0 let H, be the o-field
obtained by adding all Q null sets to F;. Let £ denote the Radon—-Nikodym derivative
of Q with respect to P, and let £2p = {w : £(w) > 0}. Let G be the filtration defined
by (5.9.1) with A = £2. It can be checked that a process f is (H,) predictable if and
only if f1g, is (G.) predictable. Let

Hx(f) = Jx(flg,) f €B(2, P(H.)).

Itis easy to see that Hy is the required extension of the integral of simple predictable
processes. (]

Remark 5.94 Suppose we start with a filtration (F.) that may not satisfy the
condition that each £ contains all null sets. Suppose X is a (]3_) adapted
process that satisfies (4.2.3) for this filtration. Let 7, be the smallest o-field
containing 7; and all the null sets. It is easy to see that X continues to satisfy
(4.2.3) w.r.t.the filtration (F,) and is thus a stochastic integrator.

Exercise 5.95 Let X be a semimartingale for a filtration (F,) on (2, F, P). Let
{A,, : m > 1} be a partition of £2 with A, € Fforalln > 1. Fort > 0, let

G =0(FU{A, : m>1}).

Show that

(i) For every (G.) predictable process f, there exists (F,) predictable pro-
cesses f™ such that
f=> la,f"
m=1

(ii) Suppose for each m > 1, {Y™" . n > 1} are r.c.l.l. processes such that

ymn X2 ym ag pn — co. Let

)
7n — Z lAm ymn
m=1
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and

o0
Z=Y 147"
m=1

Then prove that Z" “% Z as n — oo.
(iii) Show that X is a stochastic integrator for the filtration (G,).



Chapter 6 ®)
Pathwise Formula for the Stochastic Geda
Integral

In the previous chapter, we had obtained a pathwise formula for the quadratic
variation of a martingale. We will show in this chapter that the same formula yields
the quadratic variation of a semimartingale. We will also obtain a pathwise formula
for the stochastic integral.

6.1 Preliminaries

For a simple predictable process f, the stochastic integral | fd X has been defined
explicitly, path by path. In other words, the path ¢ — ( fol fdX)(w) is a function
of the paths {f;(w): 0 <s <t} and {X;(w): 0 <s <t} of the integrand f and
integrator X. For a general (bounded) predictable f the integral has been defined as
limit in probability of suitable approximations and it is not clear if we can obtain
a pathwise version. In statistical inference for stochastic processes the estimate; in
stochastic filtering theory the filter; and in stochastic control theory the control in
most situations involves stochastic integral, where the integrand and integrator are
functionals of the observation path and to be meaningful, the integral should also be
a functional of the observation.

How much does the integral depend upon the underlying filtration or the underly-
ing probability measure? Can we get one fixed version of the integral when we have
not one but a family of probability measures {P,} such that X is a semimartingale
under each P,,.

If we have one probability measure Q such that each P,, is absolutely continuous
w.r.t.Q and the underlying process X is a semimartingale under Q then the answer
to the question above is yes—simply take the integral defined under Q and that will
agree with the integral under P, for each o by Remark 4.26.
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When the family {P,} is countable family, such a Q can always be constructed.
However, such a Q may not exist in general. One concrete instance where such a
situation arises and has been considered in the literature is the following. In the
context of Markov Processes, one considers a family of measures {P, : x € E},
where P, represents the distribution of the Markov Process conditioned on Xy = x.
See [18]. In this context, Cinlar et al. [9] showed the following: For processes S
such that S is semimartingale under P, for every x and for f in a suitable class of
predictable processes, there exists a process Z such that Z is a version of [ fdS
under P, for every x.

In Bichteler [3], Karandikar [33, 34, 38] it was shown that for an r.c.l.1. adapted
process Z and a semimartingale X, suitably constructed Riemann sums converge
almost surely to the stochastic integral [ Z~dX . This result was recast in [41]
to obtain a universal mapping @ : D([0, co), R) x D([0, co0), R) — D([0, co0), R)
such that if X is a semimartingale and Z is an r.c.Ll. adapted process, then @ (Z, X)
is a version of the stochastic integral [ Z~dX.

As in the previous chapter, we fix a filtration (,) on a complete probability space
(£2, F, P) and we assume that F; contains all P-null sets in F.

First we will prove a simple result which enables us to go from L estimates to
almost sure convergence.

Lemma 6.1 Let V" be a sequence of r.c.Ll process and T an increasing sequence
of stopping times, increasing to oo such that for all k > 1,

> lisupl V"2 < oo. 6.1.1)

<
m=1 =Tk

Then we have

sup|V"| - 0 VT <oo0, a.s.
t<T

Proof The condition (6.1.1) implies

oo
1> supl V"]l < o0
1

[y
m=1"="k

and hence for each k,

Zsup|V,m| < 00 a.s.

1<
m=1"'="k

Since 74 increase to 0o, the required result follows. O
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6.2 Pathwise Formula for the Stochastic Integral

Recall that D([0, c0), R) denotes the space of r.c.Ll. functions on [0, c0) and that for
v € D([0, 00), R), v(¢—) denotes the left limit at ¢ (for ¢ > 0) and v(0—) = 0.

Fix v € ID([0, c0), R). For each n > 1;let {#]' () : i > 1} be defined inductively
as follows : 7 (v) = 0 and having defined ¢ (), let

i () =inf{t > £ (y) 2 [y(6) =@ ()] = 27" or [y(t=) —y(@ ()] = 27"}

6.2.1)
Note thatforeachy € ID([0, o), R)andforn > 1,#(y) 1 ocasi 1 oo (iflim; #]' () =
t* < 00, then the function y cannot have a left limit at t*). For v, v, € D([0, 00), R)
let

Dy (v, Y)(1) = Z Y D A @ () At =@ () A D). (6.2.2)
i=0

Since #/"(y) increases to infinity, for each « and ¢ fixed, the infinite sum appearing
above is essentially a finite sum and hence @,(, ;) is itself an r.c.l.l. function.
We now define a mapping @ : D([0, c0), R) x D([0, 00), R) — D([0, c0), R) as
follows: Let D* C ID([0, co), R) x D([0, 00), R) be defined by

D* = {(y, 1) : P.(y,71) converges in ucc topology}

and for 7, v, € D([0, oo), R)

limn (pn (’Ya ’Yl) if (’Ya 71) S D*

. (6.2.3)
0 otherwise.

(D(’Y, ’Yl) =

Note that the mapping @ has been defined without any reference to a probability
measure or a process. Here is the main result on pathwise integration formula.

Theorem 6.2 Let X be a semimartingale on a probability space (52, F, P) with
filtration (F,) and let U be an r.c.Ll. adapted process. Let

Z,(w) =2(U.(w), X.(w)) (6.2.4)

Then
Z=/U7dX. (6.2.5)

Proof For each fixed n, define {7 : i > 0} inductively with o; = 0 and
ol =inf{t > o} 1 Uy = Uyp| 227" or |U;— — Ugr| = 27"}

For all n, i, o} is a stopping time. Let us note that o} (w) = #/'(U,(w)). Let
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Z!(w) = &,(U.(w), X.(w)).

Then we can see that

o0
n
Z} = UingXingt,, = Xinot)
Jj=0

and thus Z" = [ U"dX where
o0
Uzn = Z UZAJ’; 1(0?,07“]([)-
i=0

By definition of {07}, {U"}, we have
|U' —U,—| <27" (6.2.6)

and hence U" — U~ in ucp. Then by Theorem4.50, Z" — Z = [U~dX in the
ucp metric.
The crux of the argument is to show that the convergence is indeed almost sure-

t t
sup| | U"dX —/ U dX|— 0 VT <ooa.s. (6.2.7)
0 0

t<T

Once this is shown, it would follow that (U, (w), X,(w)) € D* a.s. and then by def-
inition of @ and Z we conclude that Z,, = &(U", X) converges to ® (U, X) in ucc
topology almost surely. Since Z" — Z in ucp, we have Z = @ (U, X) completing
the proof.

Remains to prove (6.2.7). For this, first using Corollary 5.60, let us decompose
XasX =M+ A, M € M} and A € V. Now using the fact that the d A integral is

just the Lebesgue—Stieltjes integral and the estimate (6.2.6) we get

t t t
|/ U"dA—f U‘dA|§/ U — Us_|d|Al,
0 0 0

< 27"|Al,.

and hence . ,
sup| | U"dA —/ U dA| <27"A|r
0 0

t<T

(6.2.8)

— 0.

Thus (6.2.7) would follow in view of linearity of the integral once we show
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t

t
sup| [ U"dM —f U dM|— OVT < ocoa.s. (6.2.9)
t<T Jo 0

Let 7, be stopping times increasing to co such that 7, < k and M ™1 is a square
integrable martingale so that

E[[M, M], ] =E[[M", M"],] < cc. (6.2.10)

Thus using the estimate (5.4.10) on the growth of the stochastic integral with respect
to a local martingale (Theorem 5.31), we get

t t Tk
Elsup| | U"dM —/ U dM*] < 4E[/ |U" — U,_|*d[M, M],]
0 0

=7k JO

(6.2.11)
<4Q7ME[[M, M],].

Thus, writing £ = fot UrdM — fot U~ dM and oy, = /JE[[M, M],,], we have

[supl&!ll> < 27" ey (6.2.12)

=Tk

Since oy, < oo as seen in (6.2.10), Lemma 6.1 implies that (6.2.9) is true completing
the proof. (]

Remark 6.3 This result implies that the integral /U~ d X for an r.c.l.l. adapted
process U does not depend upon the underlying filtration or the probability
measure or on the decomposition of the semimartingale X into a (local) mar-
tingale and a process with finite variation paths. An w-path ¢ — fO’ U dX(w)
of the integral depends only on the w-paths r — U, (w) of the integrand and
t — X,(w) of the integrator. The same however cannot be said in general
about [ fdX if f is given to be a predictable process.

Remark 6.4 In Karandikar [38, 41] the same result was obtained with £/'(v)
defined via

ti' (7)) =inf{t > 1" (y) 2 Iy (@) — (' ()| = 27"}
instead of (6.2.1). The result is of course true, but requires the underlying

o-fields to be right continuous to prove that the resulting o’} are stopping
times.
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6.3 Pathwise Formula for Quadratic Variation

In Sect.5.2 we had obtained a pathwise formula for the quadratic variation process
of a locally square integrable martingale—namely (5.3.16). We now observe that
the same formula gives quadratic variation of local martingales as well—indeed of
semimartingales. We will need to use notations from Sect. 5.2 as well as Sect.6.2.

Theorem 6.5 Let W be the mapping defined in Sect. 5.2 by (5.2.2). For a semimartin-
gale X, let
'2

[X, X]; (w) = [¥(X.(w)]{?). (6.3.1)
Then [ X, X]W is a version of the quadratic variation [ X, X] i.e.

P([X. X], = [X.X], V1) = 1.
Proof For~y € ID([0, 00), R) and forn > 1,let {#]'(y) : i > 1} be defined inductively
by (6.2.1). Recall the Definition5.2.1 of ¥, and (6.2.2) of @,. Using the identity
b —a)?=0b>—a*—2a( —a) withb = v (V) At)anda = (&' (y) A1) and
summing over i € {0, 1,2...}, we get the identity

W, (1) = (Y(1)? = (7(0))* = 2@, (7, 7). (6.3.2)

Let Wy, D be as defined in Sect.5.2 and @, D* be as defined in Sect.6.2. Let

D={yeD: (y,7) e D}
Then using (6.3.2) along with the definition (6.2.3) of @, it follows that

DcD

and
w(y) = (v(1)? — (7(0)* =2 (7, 7) ~ € D. (6.3.3)

As noted in Sect. 6.2, (X, (w), X.(w)) € D* almost surely and
/X’dX:q)(X, X) (6.3.4)
From (6.3.1), (6.3.3) and (6.3.4) and it follows that
v 1
(X, X], = X>— X3 — 2/ X~dX. (6.3.5)
0

This along with (4.6.1) implies [X, X]Zq/ = [X, X], completing the proof. ([l
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Chapter 7 ()
Continuous Semimartingales ez

In this chapter, we will consider continuous semimartingales and show that stochastic
differential equations driven by these can be analysed essentially using the same
techniques as in the case of SDE driven by Brownian motion. This can be done
using random time change. The use of random time change in study of solutions to
stochastic differential equations was introduced in [33, 34].

We introduce random time change and we then obtain a growth estimate on [ fd X
where X is a continuous semimartingale and f is a predictable process. Then we
observe that if a semimartingale satisfies a condition (7.2.2), then the growth estimate
on [ fdX is very similar to the growth estimate on | fd (3, where /3 is a Brownian
motion. We also note that by changing time via a suitable random time, any semi-
martingale can be transformed to a semimartingale satisfying (7.2.2). Thus, without
loss of generality we can assume that the driving semimartingale satisfies (7.2.2) and
then use techniques used for Brownian motion case. We thus show that stochastic
differential equation driven by continuous semimartingales admits a solution when
the coefficients are Lipschitz functions. We also show that in this case, one can get
a pathwise formula for the solution, like the formula for the integral obtained in the
previous chapter.

7.1 Random Time Change

Change of variable plays an important role in calculations involving integrals of
functions of a real variable. As an example, let G be a continuous increasing function
with G[0] = 0. Let us look at the formula

F(G(@) = f(0) +/O F(G()dG(s). (7.1.1)
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which was derived in Sect.4.8. We had seen that when G is absolutely continuous,
this formula follows by the chain rule for derivatives. Let a : [0, 00) > [0, 00) be a
continuous strictly increasing one-one onto function. Let us write G (s) = G(a(s)).
It can be seen that (7.1.1) can equivalently be written as

F(G@) = f(0) + /0 F(G()dG(s). (7.1.2)

Exercise 7.1 Show that (7.1.1) holds if and only if (7.1.2) is true.

So to prove (7.1.1), suffices to prove (7.1.2) for a suitable choice of a(z). Let
a(s)=inf{t >0: (¢t +G@)) > s}.

For this choice of a it can be seen that G is a continuous increasing function and
that for 0 <u < v < o0, G(v)—f}(u) < v — u so that G is absolutely continuous
and thus (7.1.2) follows from chain rule.

When working with continuous semimartingales, the same idea yields interesting
results—of course, the time change 7 — a(¢) has to be replaced by t — ¢,, where
¢, is a stopping time.

Definition 7.2 A (F,)-random time change ¢ = (¢,) is a family of (F,) stopping
times {¢, : 0 <t < oo} such that for all w € 2, t — ¢,(w) is a continuous
strictly increasing function from [0, co) onto [0, o).

Example 7.3 Let A be a (F,) adapted continuous increasing process with
Ayp =0. Then
¢s =inf{t >0 : (1 +A) = s}

can be seen to be a (F,)-random time change.

Example 7.4 Let B be a (F,) adapted continuous increasing process with
By = 0 such that B is strictly increasing and lim, ., B, = oo a.s.. Then

¢s =inf{t >0 : B, > s}
can be seen to be a (F,)-random time change.

Recall Definition 2.37 of the stopped o-field. Given a (F,)-random time change
¢ = (¢,), we define a new filtration (G.) = (G,) as follows:

G =Fy, 0=t <o0. (7.1.3)
Clearly, for s < ¢, we have ¢; < ¢, and hence G; C G, and so {G,} is a filtration.

Further, Gy = F,. We will denote the filtration (G,) defined by (7.1.3) as (¢.F,). Given
a process f, we define the process g = ¢[ f] via
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gs = fo 0=s<o00. (7.1.4)
The map f — g is linear. We also define ¢ = {¢); : 0 <t < oo} via
Yy =inf{s =20 : ¢ =1} (7.1.5)

and denote v by [¢]~'. Here ) is the reverse time change.
Exercise 7.5 Show that if ¢, (w) = v then ¢, (w) = u.

Given a (F,) stopping time 7, we define o = ¢[7] by

that is given w consider the map ¢ — ¢,(w) and consider its inverse and evaluate it
at 7(w)—in other words, o(w) equals v, (w). Note the appearance of [#]7" in the
definition above. It is not difficult to see that

by =T.

Recall definition (4.4.12) of X!7), the process X stopped at 7. For Y = ¢[X], note
that
@XM = X7 = Xonr = Xong, = Xo,, = Yoro = ¥/

and thus we have
vl = pxt7, (7.1.7)

We will now prove few relations about random time change and its interplay
with notions discussed in the earlier chapters such as stopping times, predictable
processes, local martingales, semimartingales and stochastic integrals.

Theorem 7.6 ¢ = (¢,) be a (F.)- random time change. Let 1 = [¢]~' be defined
via (7.1.5). Then we have

(i) ¥ = (Yy) is a (G.)- random time change.
(ii) Let T be a (F.) stopping time. Then 0 = ¢[1] = 1, is a (G.) stopping time.
Further, if T, o are (F,) stopping times, then

ol A al = oIT] A ¢lal.

(iii) Let X be a (F.) adapted r.c.Ll. process. Then Y = ¢[X] is a (G,) adapted
r.c.l.l. process.
(iv) Let f be a (F,) bounded predictable process. Then g = ¢[ f1is a (G.) bounded
predictable process. If f is a (F,) locally bounded predictable process then
g = ¢[f]isa (G.) locally bounded predictable process.
(v) Let A be a (F,) adapted r.c.Ll. process with finite variation paths. Then B =
¢lAl is a (G.) adapted r.c.l.l. process with finite variation paths.


https://doi.org/10.1007/978-981-10-8318-1_4

224 7 Continuous Semimartingales

(vi) Let M be a (F,)-local martingale. Then N = ¢[M]is a (G.)-local martingale.
(vii) Let X be a (F,)-semimartingale. Then Y = ¢[X] is a (G,)-semimartingale.
(viii) Let Z = [ fdX. Then ¢|Z] = [ gdY (where f,g, X, Y are as in (iv) and
(vii)).
(ix) [Y,Y]=o[[X, X]], where X, Y are as in (vii).
(x) Let X", X be (F.) adapted r.c.l.l. processes such that X" R X. Then Y" =
PX"] =5 ¥ = ¢X].
Proof Note that by Corollary 2.52, ¢ is (G,) adapted. For any a, t € [0, 0c0), note
that

{Ya =1} ={a < ¢}

Since ¢, is F4, = G, measurable, it follows that {+/, < t} € G, and hence ¢, is a (G,)
stopping time. Since s > ¢; is continuous strictly increasing function from [0, co)
onto itself, same is true of s — 1), and hence, ©¥» = (7;) is a random time change.
This proves (i).

Now, for s € [0, 00), using Corollary 2.40, we have

{o=st={r =} eFy, =0

Thus o is a (G,) stopping time. The last part of (ii) follows since ¢ is an increasing
function.

For (iii) since X is r.c.l.l, (F,) adapted and ¢, is a (F,) stopping time, using
Lemma 2.38, we conclude that ¥; = X, is §; = F4 measurable. Thus Y is (G,)
adapted and is clearly r.c.l.l. When X is continuous, so is Y.

For (iv) the class of bounded processes f such that g = ¢[ f] is (G.) predictable
is bp-closed and by part (iii), it contains bounded continuous (F,) adapted processes
and thus also contains bounded (F,) predictable processes. Now if f is (F,) pre-
dictable and locally bounded, let 7" be sequence of stopping times, 7" 1 oo such
that f, = f""is bounded predictable. Then as shown above, ¢[ f,] is also bounded
predictable. Let 0" = ¢[7"]. As seen in (7.1.7),

¢ = o[ = ¢l f]

and thus ¢!l is predictable. Now 7" 1 oo implies 0" 4 oo and thus ¢ is locally
bounded (G,) predictable process. This proves (iv).
For (v), we have already noted that B is (G,) adapted. And clearly,

VAR[o,51(B(w)) = VAR[g 4, ()] (A(w))

and hence paths of B have finite variation.

For (vi), in order to prove that N is a (G,)-local martingale, we will obtain a
sequence o, of (G,) stopping times increasing to oo such that for all (G,) stopping
times (3,

E[Ny, 5] = E[No.
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This will prove N'"! is a martingale and hence that N is a local martingale. Since
M is a local martingale, let 7, be stopping times such M!™! is a martingale for each
n where 7, 1 oo. Let

Th = Tn AR A Q.

Then 7, < 7, and 7, 1 oo. Then M!™] is a martingale for each n and hence for all
stopping times 7 one has
E[M'r,,/\n] = E[M()] (718)

Now let 0, = ¢[7,] = ¢,. Since 7, < ¢y, it follows that o, < 1)y, = n. Now for
any (G.) stopping time 3, we will show

E[No, A5l = E[No]. (7.1.9)
Let 7 = ¢[3] = ¢. Then by part (ii) above, 7 is a (F,) stopping time. Note that
Nan/\ﬂ = MT,I/\’I/' (7110)

Further, My = Ny and thus (7.1.8) and (7.1.10) together imply (7.1.9) proving (vi).

Part (vii) follows from (v) and (vi) by decomposing the semimartingale X into
a local martingale M and a process with finite variation paths A: X = M + A. Then
Y = 6[X] = ¢[M] + ¢[A] = N + B.

We can verify the validity of (viii) when f is a simple predictable process and
then easy to see that the class of processes for which (viii) is true is bp-closed and
thus contains all bounded predictable processes. We can then get the general case
(of f being locally bounded) by localization.

For (ix), note that

t
(X, X]=X?— X} — 2/ X dX.
0
Changing time in this equation, and using (viii), we get

¢
OlX, X1l = X, — X — 2/ X~ dX
0

t
=Y3—Y02—2/ Y~dy

0
=[Y5Y]I

For the last part, note that for T < oo, Tj < 00, § > 0 one has (using ¥; = X))

P(sup |Y] — Y| = 6) < P( sup |X{ — X,| > 0) + P(¢r = Tp)

0<t<T 0<t<Ty
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Now given T < 00, > Oand € > 0, first get Tp such that P(¢7 > Tp) < 5 and then

for this Tp, using X" B x get ng such that for n > ng one has P(sup,, .7, | X} —
X, =0) < % Now, for n > ny we have

P(sup |Y' — Y| > 9) < e

0<r<T
Remark 2.70 now completes the proof. (I

Exercise 7.7 Let X be a (F,)-semimartingale, f € L(X) and let ¢ = (¢,) be a
(F.)- random time change. Let g = ¢[ f] and Y = ¢[X]. Show that g € L(Y).

Exercise 7.8 Let X', X? be (F,)-semimartingales and let ¢ = (¢;) be a (F.)-
random time change. Let Y/ = ¢[X']. Show that

Y v\ =ol[X", X*11.

Remark 7.9 It should be noted that if M is a martingale then N = ¢[M] may
not be a (G,)-martingale. In fact, N, may not be integrable as seen in the next
exercise.

Exercise 7.10 Let W be a Brownian motion and £ be a (0, oco)-valued random
variable independent of W such that E[{] = co. Let F; = 0(§, W, : 0 < s <1).
Let ¢, = t£. Show that

(i) ¢, is a stopping time for each ¢.

(i) ¢ = (¢) is a random time change.
(i) E[1Z,]] = oo forallt > 0 where Z = ¢[W].
(iv) Z is a local martingale but not a martingale.

7.2 Growth Estimate

Let X be a continuous semimartingale and let X = M + A be the decomposition
of X with M being a continuous local martingale, A being a process with finite
variation paths. We will call this as the canonical decomposition. Recall that the
quadratic variation [M, M] is itself a continuous process and |A|; = VARgj(A) is
also a continuous process. For a locally bounded predictable process f, for any
stopping time o such that the right-hand side in (7.2.1) below is finite one has

Etsup | [ fdxP

0<s<o JO+

. . (7.2.1)
< 8E[/ | f1?d[M, M1] + 2E[</ | fsld|Al)?].
0+ 0+
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To see this, we note [ fdX = [ fdM + [ fdA and for the dM integral we use
Theorem 5.31 and for the d A integral we use | [ fdA| < [|f|d|A].

For process A, B € V7 (increasing adapted processes), we define A << Bif C, =
B, — A, is an increasing process. The following observation will be used repeatedly
in the rest of this chapter: if A << B, then for all f

t t
| / FidA| < f \/,IdB;.
0+ 0+

We introduce a notion of a amenable semimartingale and obtain a growth estimate
onintegrals w.r.t. a amenable semimartingale which is similar to the one for Brownian
motion.

Definition 7.11 A continuous semimartingale Y is said to be a amenable
semimartingale if the canonical decomposition Y = N + B satisfies, for 0 <
s <t <00

[N,N], —[N,Nl; = (t —s), |Bl,—|Bl; = (t—s). (7.2.2)
Remark 7.12 The condition (7.2.2) can be equivalently stated as
s—[N,N]ly<t—|[N,N);, s—|Bly<t—|Bl;for0<s<r<oo (723)
or, writing I, = t, it is same as
[N,N] <1, |B| < I. (7.2.4)

Theorem 7.13 Suppose Y is a continuous amenable semimartingale. Then for any
locally bounded predictable f, and a stopping time o, one has

s onT
E[ sup || fdXP1<2(4+ T)E[/ | f:2ds). (7.2.5)
0+

0<s<oAT JO+

Proof The condition (7.2.2) implies that t — [N, N], and ¢ — | B|; are increasing
processes. This observation along with (7.2.1) yields

(oA

K onT T
El sup | / FdXP] < 8E[ [ fiPds] + 2(El / fildsD?.
0+ 0+ 0

0<s<oAT +

Now the required estimate follows by the Cauchy—Schwarz inequality:

oAT oAT
(El f \fi1ds])? < TE[ / £, 2ds].
0 0

+ +
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Remark 7.14 We see that for a amenable semimartingale X, the stochastic
integral [ fdX satisfies a growth estimate similar to the one when X is a
Brownian motion. Thus, results such as existence, uniqueness, approxima-
tion of solution to an SDE driven by a Brownian motion continue to hold for a
amenable semimartingale X. We will come back to this later in this chapter.

Remark 7.15 In the definition of amenable semimartingale, instead of (7.2.2)
we could have required that for some constant K < oo

[N,N]; —[N,N]s = K(t =), [B|;—|Bly < K(r—5). (7.2.6)

The only difference is that a constant K2 would appear in the estimate (7.2.5)

s oAT
E[ sup || fdX]*1<24+ T)KZE[/ | fs|2ds]. (7.2.7)
0<s<oAT JO+ 0+

A simple but important observation is that given a continuous semimartingale X
one can get a random time change ¢ = (¢,) such that the semimartingale ¥ = ¢[X]
satisfies (7.2.2). Indeed, given finitely many semimartingales, we can choose one
random time change that does it as we see in the next result.

Theorem 7.16 Ler X', X2, ..., X™ be continuous semimartingales with respect to
the filtration (F.). Then there exists a random time change ¢ = (¢,) (with respect to
the filtration (F.)) such that for 1 < j < m, Y/ = ¢[X/] is a amenable semimartin-
gale.

Proof For 1 < j <m, let X/ = M’ 4+ A/ be the canonical decomposition of the
semimartingale X/ with M/ being a continuous local martingale, Mj = 0 and A’
are continuous processes with finite variation paths. Define an increasing process V
by

Vi=t+4 Y (IM/, M), +|AT]).

j=1
Then V is strictly increasing adapted process with V; = 0. Now defining

¢ =inf{s >0 : V, > 1}
it follows that ¢ = (¢,) is a random time change.' As nqted eaﬂier, Y/ = o[X7] is a
semimartingale with canonical decomposition Y/ = N/ 4+ B/ where N/ = ¢[M/],

B/ = ¢[A/]. Further, observing thatfor 1 < j <m,0 <s <t < oo,

[N/, N'], — [N/, N]y = [M7, M1y, — [M?, M7)y, < Vy — Vs =1 —3s
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and
|B/|, — |B’ |y = |A]y, — |A g, < Vi, = Vg, =1 — 5,

it follows that this random time change satisfies the required condition. (]

7.3 Stochastic Differential Equations

Let us consider the stochastic differential equation (3.5.1) where instead of a
Brownian motion as in Chap.3, here W = (W!, W2, ..., W9) is a amenable semi-
martingale. The growth estimate (7.2.5) enables one to conclude that in this case too,
Theorem 3.30 is true and the same proof works essentially—using (7.2.5) instead
of (3.4.4). Moreover, using random time change, one can conclude that the same is
true even when W is any continuous semimartingale. We will prove this along with
some results on approximations to the solution of an SDE.

We are going to consider the following general framework for the SDE driven
by continuous semimartingales, where the evolution from a time #y onwards could
depend upon the entire past history of the solution rather than only on its current
value as was the case in Eq.(3.5.1) driven by a Brownian motion.

Let Y!, Y2, ... Y™ be continuous semimartingales w.r.t. the filtration (F,). Let
Y = (Y, Y2, ...Y™). Here we will consider an SDE

dU, =b(t,-,U)dY,, t >0, Uy=%& (7.3.1)
where the functional b is given as follows. Recall that C; = C([0, c0), RY). Let
a:[0,00) x 2 xCy;— L(d,m) (7.3.2)
be such that for all { € Cy,
(t,w) — a(t,w, () is anr.cl.l. (F,) adapted process (7.3.3)
and there is an increasing r.c.l.l.adapted process K such that for all (;, (; € Cg,

sup [la(s, w, &) —a(s, w, G|l = Ki(w) sup [G(s) — Gi(9)]. (7.3.4)

O<s<t 0<s<t

Finally, b : [0, 00) x £2 x C; — L(d, m) be given by
b(s,w, () =a(s—,w, (). (7.3.5)

Lemma 7.17 Suppose the functional a satisfies (7.3.2)—(7.3.4).
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(i) Forallt >0,
(W, Q) > a(t,w, () is F, @ B(C,) measurable. (7.3.6)

(ii) For any continuous (F,) adapted process V, Z defined by Z; = a(t,-, V)
(ie. Z/(w) =a(t,w, V(w))) is an r.c.Ll (F,) adapted process.
(iii) For any stopping time T,

(w, Q) — a(T(w),w, Q) is Fr ® B(C,) measurable. (7.3.7)

Proof Since for fixed ¢, (, the mapping w +— a(t, w, () is F; measurable and in view
of (7.3.4), ( — a(t,w, () is continuous for fixed ¢, w, it follows that (7.3.6) is true
since Cy is separable.

For part (i), let us define a process V' by V! = V,,,. In view of assumption
(7.3.3), Z is anr.c.l.l.process. The fact that w — V'(w) is F; measurable along with
(7.3.6) implies that Z; = a(t, -, V') is F; measurable.

For part (iii), when 7 is a simple stopping time, (7.3.7) follows from (7.3.6). For
a general bounded stopping time 7, the conclusion (7.3.7) follows by approximating
7 from above by simple stopping times and using right continuity of a(¢, w, ). For
a general stopping time 7, (7.3.7) follows by approximating 7 by 7 A n. (]

Let 0 denote the process that is identically equal to zero. Since (¢, w) +— a(t, w, 0)
is an r.c.l.l. adapted process, using hypothesis (7.3.4), it follows that for ( € C,

OSUP la(s,w, Ol < K/ (w)(1 +OSUP ()] (7.3.8)
<s<t <s<t
where
Kt/(w) = K,;(w) + sup |la(s,w, 0)]. (7.3.9)
0<s<t

K] is clearly an r.c.1.l. adapted process.
Here too, as in the Brownian motion case, a continuous (R%-valued) adapted
process U is said to be a solution to the Eq.(7.3.1) if

t
U =&+ / bs, -, U)dY, (73.10)
0+

ie.forl <j<d,

Ul =&+ Z/ bji(s, -, U)dY}
k=1 0+

where U = (U', ..., U%) and b = (bjy).

It is convenient to introduce matrix- and vector-valued processes and stochastic
integral [ fdX where f is matrix-valued and X is vector-valued. All our vectors are
column vectors, though we will write as ¢ = (¢1, ¢z, ..., Cim)-
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Let X', X2, ... X™ be continuous semimartingales w.r.t. the filtration (F,). We
will say that X = (X', X2, ... X™) is an R"-valued semimartingale. Similarly, for
1<j<d,1<k=<mlet fj be locally bounded predictable process. f = (fjr)
will be called an L (d, m)-valued locally bounded predictable process. The stochastic
integral Y = [ fdX is defined as follows: ¥ = (Y', Y%, ..., Y¥) where

Y/ = Z/fjkka.
k=1

Let us recast the growth estimate in matrix—vector form:

Theorem 7.18 Let X = (X', X2, ... X™), where X is a amenable semimartingale
foreach j, 1 < j < m. Then for any locally bounded L(d, m)-valued predictable f,
and a stopping time o, one has

E[ sup | de| ] <2m@ + T)E[/ I f;11%ds 1. (7.3.11)
0<s<oAT JO+
Proof
E[ sup || fdX]]
0<s<oAT JO+
d N
<Y E[ sup |Z / Fird X5 ]
=1 0<s<oAT k=1 0+
d m s
<mY Y E[ sup || fudX"]
J=1 k=1 0<s<onT JO+
<m(8+2T) Z Z E[/ | fix(s)*ds]
j=1 k=1
onT
=2m@+TEL|  |fIPds]
0+
where, for the last inequality above we have used the estimate (7.2.5). (I

We will prove existence and uniqueness of solution of (7.3.1). When the driving
semimartingale satisfies (7.2.2), the proof is almost the same as the proof when
the driving semimartingale is a Brownian motion. We will prove this result without
making any integrability assumptions on the initial condition &, and the uniqueness
assertion is without any moment condition. For this the following simple observation
is important.

Remark 7.19 Suppose M is a square integrable martingale w.r.t. a filtration
(F.) andlet £2y € Fy. Then N, = 1o, M, is also a square integrable martingale
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and further [N, N1, = 1o,[M, M],. Thus, the estimate (5.3.22) can be recast
as
Ellg, sup |M,*] <4E[1g,[M, M]7].

0<s<T

Using this we can refine the estimate (7.2.5): for a amenable semimartingale
X, any locally bounded predictable f, a stopping time ¢ and 2, € F,, one
has

K onT
Ellg, sup || fdX["1<24+ T)E[IQO/ | fs|2ds]. (7.3.12)
0<s<oAT JO+ 0+

Here is the modified estimate for vector-valued case: if X = (X', X2, ... X™)
where each X/ is a amenable semimartingale and f = (fjx) is an L(d, m)-
valued locally bounded predictable process, then

K onT
Ellg, sup || fdX[’]<2m(4+T)E[lg, / IfillPds].  (7.3.13)
0<s<onT JO+ 0+

We will first prove uniqueness of solution in the special case when the driving semi-
martingale is a amenable semimartingale.

Theorem 7.20 Let Y = (Y, Y2, ... Y™) where Y/ is a amenable continuous semi-
martingale for each j. Let the functional a satisfy conditions (7.3.2)—(7.3.4) and b
be defined by (7.3.5). Let &y be any Fy measurable random variable. Then if U, U
are (F,) adapted continuous process satisfying

t
U =& +/ b(s, -, U)dY;, (7.3.14)
0+
~ t ~
Ui =£o+/ b(s, -, U)dY;. (7.3.15)
0+
then y
PU, =U, YVt >0)=1. (7.3.16)

Proof Fori > 1,letT; = inf{r > 0: K/(w) > i or K;_(w) > i} A i where K, (w) is
the r.c.L.l. adapted process given by (7.3.9). Thus each 7; is a stopping time, 7; 1 00
and for 0 <t < 7;(w), we have

0<K/(w) <K/w) =i
Recalling that b(¢, -, () = a(t—, -, (), we conclude that for (, (1, (, € Cy

sup  [[b(s,w, @) —b(s,w, QDI =i sup  [G(s) — Cils)].  (7.3.17)

0=s=<(tA7i(w)) 0=s=<(tAT; (w))
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and
sup  [Ib(s,w, QI <i(1+  sup  [C(s)]). (7.3.18)

0<s<(tAT; (W) 0=<s<(tAT;(w))

We first show that if V is any solution to (7.3.14), i.e. V satisfies

t
V=6t / bs. - V)dY, (73.19)
0+
thenfork > 1, i > 1,
E[1{|£o\sk}OSUP |V,[*] < oo. (7.3.20)
<t<T;

Let us fix k,i for now. For j > 1, let o0; =inf{r > 0: |V;| > j}. Since V is a
continuous adapted process with Vo = &, it follows that o; is a stopping time,
lim;_, o 0; = 00 and

sup | V;]* < max(|&l% j2). (7.3.21)

0<t=<(r;A0})
Thus using the estimate (7.3.13) along with (7.3.18), we get for, i, j,k > landu > 0

Ellygiz  sup Vil

0<t=<(untino;)

(AT NG })

< 2[E[ g1t (1&0I* + 2m(4 + i) / b(s, -, V) I*ds)1]
0

+

WAT AT )
< E[1jg) <ty QK> + 8m(4 + i)i* f (I+  sup  |V,[Hds)].
0

0<t=<(sATiAC})
Writing
Bj(u) = E[1jg<n sup  |V,|’],

0<t=(unt;Aoj)

it follows that for 0 < u <,
Bj(u) < 2k* + 8m(4 +i)i® + 8m(4 + i)i2/ B;(s)ds
0

and further, (7.3.21) yields that 3; is a bounded function. Thus, using (Gronwall’s)
Lemma 3.27, we conclude

Bj(u) < [8m(4 +i)i* + 2k* ] exp{8m(4 + i)i*u}, 0 <u <i.
Now letting j increase to oo we conclude that (7.3.20) is true.

Returning to the proof of (7.3.16), since U, U both satisfy (7.3.19), both also
satisfy (7.3.20) and hence we conclude that for each i
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Ellqg < sup U — U[*] < oo. (7.3.22)

O<r=7

U, — U, =f (b(s, -, U) — b(s, -, U))dY,
0+

and hence using the Lipschitz condition (7.3.17) and the growth estimate (7.3.13),
we conclude that for0 <t < T,

Ellje=c) sup U — U]

0<s<(tAT;)

(tATi) 5
<2m4+ i)izE[/ e, 1<k) sup |Us — Us|*1du.
0 0

<s<u

Fixing i, we note that the function 3 defined by

B(t) = Ellyg <ty sup Uy — Usl*]

0<s<(tAT)

satisfies, for a suitable constant C;

8 < G / ' Bwydu, 1> 0.
0

As noted above (see (7.3.22)) (3(¢) is bounded. Now (Gronwall’s) Lemma 3.27
implies that 3(¢) = O for all . Thus we conclude

P{l&%l <kyn{ sup |U;—Us|>0H=0

0=<s=(tAT)
foralli > 1 and k > 1. Since 7; 1 00, this proves (7.3.16) completing the proof. [J

We have thus seen that if Y is a amenable semimartingale then uniqueness of solu-
tion holds for the SDE (7.3.14) and the proof is on the lines of Brownian motion case.
One big difference is that uniqueness is proven without a priori requiring the solution
to satisfy a moment condition. This is important as while the stochastic integral is
invariant under time change, moment conditions are not. And this is what enables
us to prove uniqueness when the driving semimartingale may not be a amenable
semimartingale.

Using random time change we extend the result on uniqueness of solutions to the
SDE (7.3.14) to the case when the driving semimartingale may not be a amenable
semimartingale.

Theorem 7.21 Let X = (X', X2, ... X™) where each X' is a continuous semi-
martingale. Let the functional a satisfy conditions (7.3.2)—(7.3.4) and b be defined


https://doi.org/10.1007/978-981-10-8318-1_3

7.3 Stochastic Differential Equations 235

by (7.3.5). Let &y be any Fy measurable random variable. If V, V are (F.) adapted
continuous processes satisfying

t
‘/l = 50 +/ b(S, ) V)dXﬁ (7323)

0+

~ t ~

Vi =& +/ b(s, -, V)dX;. (7.3.24)

0+

Then ~

PV, =V, Vi >0)=1. (7.3.25)

Proof Let ¢ be a (F.) random time change such that Y/ = ¢[X/], 1 < j < m are
amenable semimartingales (such a random time change exists as seen in Theorem
7.16). Let (G.) = (¢.F.), ¥ = [¢]~! be defined via (7.1.5).

We define c(z, w, {), d(t, w, {) as follows: fix w and let 6,(¢) € C, be defined by
0.,(O)(s) = ((¥s(w)) and let

C(ts w, C) = a(¢t(W), w, ew(o),

(7.3.26)
d([, w, C) = b(d)t(w)v w, aw(c))
Since ¢ is continuous, it follows that d (¢, w, () = c(t—, w, ().
We will first observe that for all (i, (; € Cg,
Osup “C(l/l, w, CZ) - C(M, w, gl)”
= OSHP ‘Ila(% (W), w, 0,((2)) — a(¢pu (W), w, 0,(C)|
< K4 W) sup 0,(0)(w) — 0,(C) ()] (7.3.27)
0<v=¢s(w)
< Kq‘);(w)o Sl{f( )ICz(dJu(w)) = QW)
< Ky, (w) Osup [C2(u) — Gi(u)].
We now prove that for each ¢,
(t, w) > c(t, w, ¢) is an r.c.l.l. (G,) adapted process. (7.3.28)

That the mapping is r.c.l.l. follows since a is r.c.l.l. and ¢, is continuous strictly
increasing function. To see that it is adapted, fix 7 and let ¢’ be defined by (' (s) =
(s A t). In view of (7.3.27), it follows that

C(tv w, C) = C(t, w, Ct) = a(¢t(w)v w, ew(cl)) (7329)
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Note that
0.,(¢") = ' (s (W) = (s (w) A 1).

Since v, is a (G,) stopping time, it follows that ¥); A 7 is G, measurable and hence so
is C(15(w) A 1). Tt follows that w — 6,,({") is G, = F,, measurable. Further, since ¢,
is a (F,) stopping time, part (iii) in Lemma 7.17 gives that (w, {) — a(¢;(w), w, ¢)
is Fy, ® B(C,;) measurable. From these we get

w > a(¢;(w), w, 0,(¢")) is G, measurable. (7.3.30)

The conclusion (7.3.28) follows from (7.3.29) and (7.3.30). Let H = ¢[K]. Then H
is an (G,) adapted increasing process and (7.3.27) can be rewritten as

sup fle(u, w, @) — c(u, w, QI = Hy(w) sup |G(u) — Ci(u)]. (7.3.31)

O<u=<s 0<u<s
Since d(s, -, () = c(s—, -, (), (7.3.31) implies

sup [|d(u, w, ) —d(u,w, ()|l = Hi—(w) sup |Gu) —G@)].  (7.3.32)

0<u<s O<u<s

Let U = ¢[V], U = ¢[V]. Then recall V = ¢[U], V = ¢[U]. Let A, A, B, B
be defined by A; = b(s, -, V), A = b(s, ,V) B; _Ad) and B; = Ay,. Then

By = Ay,
=b(¢xv s 7/)[U])
=d(s,-, U)

and likewise B, = d (1, -, (z).
Thus the processes U, U satisfy

t
U, =§+f d(s, -, U)dT,,
0

+

1
U, =§+/ d(s, -, U)dY;.
0

+

Since ¢, d satisfy (7.3.2)—(7.3.5), Theorem 7.20 implies
PWU, =0, V1 >0) =1

which in turn also proves (7.3.25) since V = ¢[U] and V= 1/)[[7]. O

We are now ready to prove the main result on existence of solution to an SDE
driven by continuous semimartingales. Our existence result is a modification of
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Picard’s successive approximation method. Here the approximations are explicitly
constructed.

Theorem 7.22 Let X!, X2, ... X™ be continuous semimartingales. Let the func-
tional a satisfy conditions (7.3.2)—(7.3.4) and b be defined by (7.3.5). Let & be any
Fo measurable random variable. Then there exists a (F,) adapted continuous process
V that satisfies

t
Vi =£o+/ b(s,-, V)dX;. (7.3.33)
0+

Proof We will construct approximations V ) that converge to a solution of (7.3.33).
Let V,(O) = &, for all t. The processes V™ are defined by induction on n. Assuming
that adapted r.c.1l. processes V@, ..., V=D have been defined, we now define
V™ fix n.
Let7y” = Oandlet {r\" : j > 1} be defined inductively as follows: if 7{"’ = oo

(n) (ﬂ)

thenTJrl = ooandlfT < oo then

P =infls > 7 ¢ flaGs, -, V) —a @™, VD)) = 2
or la(s—, -, V") —a(T;”),., VD) =27 (7.3.34)
Since the process s — a(s, -, V") is an adapted r.c.11. process, it follows that

each TJ(") is a stopping time and lim ;o 7-](") = oo. Let VO(") = & and for j > 0 and
(n) _(n)

t e (T s j+1] let
VO =V +a@”, VD)X = X ).
I J
Equivalently,
Vt(n) — &+ Za(TJ(‘n)’ N V(n_l))(er_}"ﬁ] — Xm_;”’)' (7.3.35)

j=0
Thus we have defined V™ and we will show that these processes converge almost
surely and the limit process V is the required solution. Let F™, Z™ R®™ be
defined by
F™ = b, -, v (7.3.36)

t
Z" =& + f FMdX, (7.3.37)
0+

(n) (n) n—1
R n Za(’r n N V( ))1(75,1)v7;_n4:]](t) (7.3.38)
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t
yo =§0+f R™dX,. (7.3.39)
0+

Let us note that by the definition of {TJ(.") : j = 0}, we have

|[F™ — R™M| <27, (7.3.40)

We will prove convergence of V™ employing the technique used in the proof of
uniqueness to the SDE Theorem 7.21—namely random time change.

Let ¢ be a (F.) random time change such that Y/ = ¢[X/], 1 < j <m are
amenable semimartingales (such a random time change exists as seen in Theorem
7.16). Let (G.) = (¢.F.), ¥ = [¢]~" be defined via (7.1.5).

Let c(t,w, (), d(t,w, () be given by (7.3.26). As noted in the proof of The-
orem 7.21, ¢, d satisty (7.3.2)—-(7.3.5). We will transform {Ti(") tn>1,10>1},
(v F®_zm RO . 5> 1} to the new time scale.

For n > 1, j =0 let o\ = ¢[7{"], UM = ¢[V™], GW = ¢[F™], W™ =
o[Z™], 8™ = $[R™]. Now it can be checked that

ol =inf{s >0 : fa(s,, U"V) —a@”, . . U")| = 27"

aa g (7.3.41)
or a(s—, - U"™Y) —a(o", -, U )| = 27"},

(n)

Each 05.") is a (G.) stopping time and lim jy 0"’ = co. Further, Ué") =& and

oo
Ut(n) = EO + ZC(O';")’ - U(nil))(Yl‘/\U;ﬁ:l — Yt/\O'i»"))’ (7342)
Jj=0
G;n) = d(t, ‘y U(nil)), (7343)
t
W =g+ f G"dY,, (7.3.44)
0+
oo
(n) (n) n—1
s =Y e\, U >)1(0(i,,)ﬂ(/2]](1), (7.3.45)
Jj=0 ’
t
Ut(n) = fO + / Sr(n)dYr. (7.3.46)
0+

Also, we have
G — s <27, (7.3.47)

Recall that we had shown in (7.3.31) that ¢ satisfies Lipschitz condition with coeffi-
cient H = ¢[K]. For j > 1, let

pj=inf{t >0: |H| > jor|H_|> jor|U" —&| > j}Aj.
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Then p; are (G.) stopping times and p; 1 oo. Further, for all (;, (; € C; we have

sup  le(a,w, @) —cla,w. QDI =j  sup  [Gla) —Gi(a)].  (7.3.48)

0<a=(sApj) 0<a=(snpj)

Letus fix k > 1 and j > 1. We observe that for all n > 2 (using (7.3.13) along with
(7.3.43) and (7.3.44))

Ell{gi<xy sup |Ws(n)—Ws(”_')|2]

0<s<(1Ap))

(tApj)
<2m4 + j)E[lwfk}f sup |G — GV 2dr]
0

0<s=(rnp;)

tnpj)
< 2m(4+ ) j El )<k / sup (UMY — UM 12dr] (7.3.49)
0

0<s=<(rAp;)
Likewise, using (7.3.47) we get forn > 1,

Ellygi<xy sup W — U™?]

0=<s=<(tAp))

tnpj) )
< 2m + E[ g < / sup |G — S |*dr]
0

0=<s=<(rnp;j)

<2m(+ j)47"]. (7.3.50)

Combining (7.3.49) and (7.3.50), we observe that for n > 2 (using for positive num-
bersx, y, z, (x + y +2)* < 3(x* 4+ y? +z%))

Ellge <ty sup |U® — U@

0<s=(tnp;)

< m@d+ jH@d " +4707);

(t/\/)j)
4+ 6m( + ) ElL g =0 / sup  |UOD — U Par]
0

0<s=<(rnp;)
Let
F@) =Ellyg<y sup U™ —U" V1A (7.3.51)

0=<s=<(tAp))

Then, writing C,, ; = 30m(4 + j) j?, the above inequality implies for n > 2
t
70 = Gy Coy [ £ V02
0

Since U” = &, by the definition of pPjs V<2< Cy,j- Now (7.3.51) implies
(via induction on n) that
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(Cm,jt)n

7@ < Cp ;. . (7.3.52)

and as a consequence (writing |-|, for the L>(P) norm, and recalling p i < J)

o0
-1
Z”l{lfo\sk}osup U™ — U, < oo
=s=p;

n=I1
and as a consequence

o]

Mgl Y, sup [UM = ULVl < oo. (7.3.53)

n=I1 O=s=<p;

As in the proof of Theorem 3.30, it now follows that for k > 1, j > 1, P(Ny, ;) =0
where

oo
Nij={w: ligwizh  sup QUMW) = UM (w)]) = oo}.

Oss=pjw) ,—;

Since forall T < oo
P(U;:?]':]{w o) =k, pjp>T)H =1

it follows that P(N) = 0 where N = U}*,_ Ny j and forw ¢ N, U™ (w) converges
uniformly on [0, T'] for every T < 00. So let us define U as follows:

lim, 0o U™ (w) ifw e N
U(w) = | Mmoo Us (w) itw
0 ifwe N.
By definition, U is a continuous (G,) adapted process (since by assumption N €

Fo = Go) and U™ converges to U uniformly in [0, 7] for every T almost surely
(and thus also ducp(U(”), U) — 0). Also, (7.3.53) yields

lim ||[1jg<x; sup U™ — UL, = 0.
n,r— 00

0<s=<p,
Now Fatou’s Lemma implies

lim [[1(g <) sup [UP™ — Ulll, =0
n—0o0

0<s=<p;

which is same as
lim E[1{g < sup [U™ — U,*]1 = 0. (7.3.54)

0=<s=<p;


https://doi.org/10.1007/978-981-10-8318-1_3

7.3 Stochastic Differential Equations 241

Now defining G; = d(t,-,U) and W, = & + fot G,dYs, it follows using the Lips-
chitz condition (7.3.48) along with (7.3.54) that

lim E[1g, <y sup |[W™ — W*]1=0. (7.3.55)
n—00

O=s=p;
Now (7.3.50), (7.3.54) and (7.3.55) imply that (for all j, k > 1)

Elle, <k sup [Wy — U,[*1=0

0<s=<p,

and hence that
P(Wy =U; Vs >0) =1.

Recalling the definition of G, W, it follows that U satisfies

t
Ut = 50 +/ d(S7 '1 U)dYS'
0

It now follows that V = ¢[U] satisfies (7.3.33). U

‘We have shown the existence and uniqueness of solution to the SDE (7.3.33). Indeed,
we have explicitly constructed processes V™ that converge to V. We record this in
the next theorem

Theorem 7.23 Ler X', X2, ... X™ be continuous semimartingales. Let a, b satisfy
conditions (7.3.2)—(7.3.5). Let & be any Fo measurable random variable. For n > 1
let {r{" : j = 1} and V™ be defined inductively by (7.3.34) and (7.3.35) as in the
proof of Theorem 7.22. Let V be the (unique) solution to the SDE

t
Vi=%& —+—/ b(s,-, V)dX;.
0+

Then VW 25 V and v converges to V in ucc topology almost surely.

Proof We had constructed in the proof of Theorem 7.22 a (F,) random time
change ¢ and filtration (G.) = (¢.F.) such that U™ = ¢[V®™] converges to U in
ucp metric: d,, (U™, U) — 0. Now ¢ = ¢! is also a (G.) random time change,
vV = [U™]and V = [U].Itfollows from Theorem 7.6 thatd,., (V™, V) — 0.
Let F; = b(t, -, V). Now the Lipschitz condition (7.3.4) on a, b implies F® 5 F,
where F™ is defined by (7.3.36) and then (7.3.40) implies R™ “% F. Hence The-
orem 4.107 implies that [ R™dX converges in Emery topology to [ FdX. Now
V, =& + fot F,d X, and (7.3.39) together imply that V™ <% V. As for almost sure
convergence in ucc topology, we had observed that it holds for U™, U and then we
can see that same holds for V™, V. O
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7.4 Pathwise Formula for Solution of SDE

In this section, we will consider the SDE

dV, = f(t—, H, V)dX, (7.4.1)
for an R9-valued process V where f :[0,00) x D, x Cy — L(d,m), H is an
R"-valued r.c.l.l. adapted process, X is a R"-valued continuous semimartingale.

Here D, = ([0, 00), R"), C4 = C([0, 00), RY). For t < 00, ( € C4 and v € D,
let v'(s) = v(t A s) and ¢"(s) = ((¢r A s). We assume that f satisfies

Ft,7, Q= ft,7.¢), ¥VyeD, (€Cq 0=t <o0, (74.2)
t — f(t,7v,()isanr.c.lLl.function Vy € D,, ¢ € C,. (7.4.3)

We also assume that there exists a constant C7 < oo for each 7 < oo such that
VyeD, ¢,€Cy, 05t <T

If (7, C) = f. 7 QI = Cr( + sup [y(s)D(sup [Gi(s) = Ca(s)D). (7.4.4)

0<s<t 0<s<t

As in Sect. 6.2, we will now obtain a mapping ¥ that yields a pathwise solution to
the SDE (7.4.1).

Theorem 7.24 Suppose f satisfies (7.4.2)—(7.4.4). Then there exists a mapping
¥ RxD, x C,, — C,

with the following property: for an Fy measurable random variable &, an adapted
r.c.l.l. process H and a continuous semimartingale X,

V=v(,H, X)

vields the unique solution to the SDE

Vl = 60 +/ f(S—, H’ V)dXA (745)
0

Proof We will define mappings
g™ R x D, x C,, — C([0, 00), RY)

inductively for n > 0. Let ¥ © (u, v, ¢)(s) = u for all s > 0. Having defined ¥©,
g wt=D we define ™ as follows. Fix n and u € R, v € D, and ¢ € C,.
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Let 7V = 0 and let {t;") : j > 1} be defined inductively as follows: ({tj(-") D j>

1} are themselves functions of (u, -, (), which are fixed for now and we will suppress
writing it as a function) if tj(.”) = oo then t;'fl = oo and if tj(.") < oo then writing

r=Da,~,O6s) = f(s,7%¥" Vw7, 0),
let
1) = infls > 1 150Dy, O) — TV, O™ = 27"
or |1V (u, v, O)(s=) = I P, v, O™y = 27)

(n)

(since I~V (u, , ¢) is an r.c.LL function, 1;"’ 1 0o as j 1 o0) and

o0
U7 Q) = ut )Ty, O A ) = S A L)),
=0
This defines ¥ ™ (u, v, ). Now we define

lim, ¥ ™ (u, ~, ¢) if the limit exists in ucc topology (7.4.6)
0 otherwise. o

'Ij(u’ s C) = {

Now it can be seen that

a(s,a), C) = f(sa H(UJ), C)a b(s,w, C) = f(s_a H(W), C)

satisfies (7.3.2)—(7.3.5) and if V' is defined inductively by (7.3.34) and (7.3.35),
then
¥ (& W), Hw), X (@) = VP (w).

As shown in Theorem 7.23, V™ (w) converges to V(w) in ucc topology almost
surely and hence it follows that

PW(&w), Hw), X(w)(1) = Vi(w) V1) = 1.
]

This pathwise formula was obtained in [36, 40]. It was recast in [41] in the form
given in this section.
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7.5 Weak Solutions of SDE

Let us consider a special case of the SDE discussed in the previous section. Let
o :[0,00) x C; — L(d,d) and & : [0, 00) x C; — R? be measurable functions.
For ( € Cyandt > 0 let (' (s) = ((t A s). Throughout this section, we assume that
o, h satisty

o(t,) =0, ("), Y(eCy 0<t < 00, (7.5.1)

h(t, () =h(, ¢, V(eCy 0<t < 0. (7.5.2)

Let W be a d-dimensional Brownian motion adapted to (F,). Consider the SDE

dY, = o(t,Y)dW + h(t, Y)dt. (7.5.3)
or equivalently
Y/ =v] +Z/ o'k (s, Y)de+/ h' (s, Y)ds. (7.5.4)
k=1 0 0

Equation (7.5.3) is said to admit a strong solution if given a Brownian motion W
on some probability space (§2, F, P), a filtration (F,) such that (W;, 7)o is a
Wiener martingale, and a F measurable random variable Y, there exists a process Y
adapted to (F,) satisfying (7.5.4). Moreover the uniqueness of strong solution holds
if given two solution Y and Y’ w.r.t. the same Brownian motion W,

PYo=Y) =1

implies that
P(Y, =Y/ Vt)=1.

This is the notion of solution to an SDE that we have been considering. There is
another notion of a solution to the SDE (7.5.3), known as weak solution. It is as
follows.

We say that Eq. (7.5.3) admits a weak solution if for all yy € RY we can construct
a probability space (£2, F, P), a Brownian motion W adapted to a filtration (F,)
such that (W;, ;)=o) is a Wiener martingale and a (F,) adapted process Y such that
Yo =y satisfying (7.5.4). We say weak uniqueness of solution to Eq.(7.5.3) holds
if for all yo € R?, given two (possibly different) probability spaces (§2, F, P) and
(.Q .7-' P) filtrations (F,) on (£2, F, P) and (.7-') on (.Q .7-' P) Brownian motions
W and W adapted to filtrations (F.) and (.7-' ) on the two spaces, respectively, such
that (W,, F)y>0, and (W,, ]—',) >0y are Wiener martingales, and processes Y and Y
adapted to (F,) and (]—" ), respectively, such that
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Y/ = y0+2/ alk (s, Y)dwf+/ hi (s, Y)ds. (7.5.5)
k=10 0

o~ d ! . o~ o~ t . o~

Y/ = y0+2/ o/ (s, Y)dW +/ hi(s,Y)ds, (7.5.6)
k=170 0

the distributions of ¥ and Y are the same, i.e.
PoY !=Po7 . (7.5.7)

Clearly, existence of strong solution implies existence of a weak solution.

Note that the uniqueness of the weak solution requires equality in distribution of
any two solutions, whereas uniqueness of the strong solution requires almost sure
equality of paths. The next example illustrates the difference in these two notions.

Example 7.25 Consider the SDE
dX, = sgn(X,)dW, (7.5.8)

where W is a Brownian motion. Recall that for x € R, sgn(x) =1 for x >0
and sgn(x) = —1 for x < 0, so that |x| = sgn(x)x. Let us note that if X is a
solution to (7.5.8), then X is a continuous martingale (since sgn is bounded)
and [X, X], =t since (sgn(x))?> = 1 for all x. Thus any solution X to (7.5.8)
is a Brownian motion and thus we have uniqueness of weak solution. Let us
now illustrate that we can construct X, W satisfying (7.5.8) such that W is a
Brownian motion. Start with a Brownian motion X and for r > 0 let

1
W, =/ sgn(X;)d X;.
0

Then it follows that X, W satisfy (7.5.8). Thus we have existence and unique-
ness of weak solution to the SDE (7.5.8). On the other hand, easy to see that
if X is a solutionthen sois Y = —X. This uses that fact that P(X; = 0) = 0 for
all 5. Thus, strong uniqueness does not hold. This example is due to Tanaka
who also observed that there is no (F") adapted process X such that (7.5.8)
is true. Thus (7.5.8) does not admit a strong solution.

A general result due to Yamada—Watanabe says that strong uniqueness also implies
weak uniqueness. Here we will prove that under Lipschitz conditions on the coeffi-
cients, we have strong uniqueness as well as weak uniqueness. Instead of appealing
to Yamada—Watanabe result, we deduce weak uniqueness from the pathwise formula
for solution to the SDE.
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Suppose that there exists C : [0, 00) > [0, 0o) such that o, h appearing in (7.5.3)
satisfy

t > o(t, ) is a continuous function V ¢ € C. (1.5.9)
t > h(t, ¢) is a continuous function V ¢ € C,. (7.5.10)
o, 1) —o(t, QI < CT(os::E;KI (s) — QD (7.5.11)
A, C1) — h(t, QI < CT(OS;l;ézKI (s) = G()]) (7.5.12)

Under these conditions, we can deduce the following.

Theorem 7.26 Suppose o, h satisfy (7.5.1), (7.5.2), (7.5.9)—(7.5.12). Let W be a
d-dimensional Brownian motion adapted to (F.) such that (W;, F;) =0y is a Wiener
martingale and let Yy be a Fy measurable random variable. Then

(i) Equation(7.5.3) admits a strong solution.
(ii) Strong uniqueness holds for Eq. (7.5.3).
(iii) Weak uniqueness also holds for Eq.(7.5.3).

Proof For 1 < j <d, defining f/*(t,~,() =0o/*(t,¢) for 1 <k <d and f/*
(t,v,C) =hi(t,¢) for k=d + 1, Eq.(7.5.3) is same as (7.4.5) with & = Y,
X/ =W/ for 1 < j <d and X?*! = t. Also since o, h satisfy (7.5.9)~(7.5.12) it
can be checked that f satisfies (7.4.2)—(7.4.4). Hence invoking Theorems 7.21 and
7.22, we conclude that existence of strong solution as well as uniqueness of strong
solution holds for the SDE (7.5.3).

Observe that ¥ (u, v, () does not depend on -y, hence denoting ¥*(u, () =
¥ (u, 0, ), where 0 is the constant function, it follows that if Y, Y satisfy (7.5.5) and
(7.5.6), respectively, then

Y = (v, W), Y = ¥*(yo, W).

As a consequence, denoting the Wiener measure on C; by u,, and the coordinate
process on C; as X, Z = W*(yy, W) we have

PoY'=p,o0z7!, Poy™! = pipo Z7 L.

Thus weak uniqueness holds. O

7.6 Matrix-Valued Semimartingales

In this section, we will consider matrix-valued semimartingales. The notations intro-
duced here will be used only in this section and in a corresponding section later.
Recall that L(m, k) is the set of all m x k matrices. Let Lo(d) denote the set of non-
singular d x d matrices.
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Let X = (X”7) be an L(m, k)-valued process. X is said to be a semimartingale
if each X7 is a semimartingale. Likewise, X will be said to be a local martingale if
each X7 is a local martingale and we will say that X € V if each X?? € V.

If f = (fY) is an L(d, m)-valued predictable process such that £/ € L(X/9)
(forall i, j, g), then Y = f fdX is defined as an L(d, k)-valued semimartingale as

follows: Y = (Y?) where

Y = Z/fff'dqu.
j=1

Likewise, if g = (¢'/) is an L(k, d)-valued predictable process such that g/ € (X ")
(for all i, j, p), then Z = f(dX)g is defined as follows: Z = (Z?/) where

k
ZP = Z / gldxrt.
i=1

For L(d, d)-valued semimartingales X, Y let [X, Y] = ([X, Y]¥) be the L(d, d)-
valued process defined by

d
(X, Y1 =) X%, vh,.
k=1
Exercise 7.27 Let X, Y be L(d, d)-valued semimartingales. Show that

t t
XY, = Xo¥y + / X, _dY, + / @X)Y +IX.Y],. (761
0+ 0+

The relation (7.6.1) is the matrix analogue of the integration by parts formula (4.6.7).
Recall our terminology: we say that a L(d, d)-valued process & is L(d)-valued
if
P(h; € Lo(d) Vit >0) = 1.

Exercise 7.28 Let X, Y be L(d, d)-valued continuous semimartingales and
let £, g, h be L(d, d)-valued predictable locally bounded processes. Further
let h be Lo(d)-valued. Let W = [ fdX, Z = [(dX)g, U = [(dX)h and V =
[ h~'dY. Show that

(W, Y], = [, fdIX,Y]. (7.6.2)
[Y, Zl, = [, d[Y, X]g. (7.6.3)
f gdW = [jgfdX. (7.6.4)
0

/0 @az)f = [,dx)gf. (7.6.5)
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/ fdzZ = [;dW)g. (7.6.6)
0
[U,v], =I[X,TY]. (7.6.7)

In view of (7.6.6), with f, g, X, W, Z as in the previous exercise, we will denote

[ fdZ = [@W)g = [ f(dX)g.
We can consider an analogue of the SDE (7.3.1)

dU, = b(t,-, U)dY,, t >0, Uy=& (7.6.8)

where now Y isan L(m, k)-valued continuous semimartingale, U is an L(d, k)-valued
process, & is L(d, k)-valued random variable and here

b : [0, 00) x 2 x C([0, 00), L(d, k)) — L(d, m).

Essentially the same arguments as given earlier in the section would give analogues
of existence and uniqueness results for Eq. (7.6.8).

Exercise 7.29 Formulate and prove analogues of Theorems 7.21, 7.22 and
7.23 for Eq. (7.6.8). Make precise and do a similar analysis for dU, = (dY;) b
(ta y U)

Exercise 7.30 Let X be an L(d, d)-valued continuous semimartingale with
X (0) = 0 and let I denote the d x d identity matrix. Show that the equations

t
Y, =1 +/ Y dX; (7.6.9)
0

and ,
Z, =1 +f dX)Zs (7.6.10)
0

admit unique solutions.

The solutions Y, Z are denoted respectively by e¢(X) and ¢'(X) and are the left and
right exponential of X.

Exercise 7.31 Let X be an L(d, d)-valued continuous semimartingale with
Xo=0.LetY = —-X +[X, X]. Let W = ¢(X) and Z = ¢/(Y). Show that

() [Y,Y]=I[X, X].

(i) [X,Y]=—[X,X].

(i) (W,Z]1=[WWUIX,Y]Z
(iv) Wz =1

The relation (iv) above implies that for any L(d, d)-valued continuous semi-
martingale X with Xy = 0, ¢(X) is Ly(d)-valued and
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[e(X)]™" = (=X +[X, X]). (7.6.11)

Exercise 7.32 Let X', X%, X3, X* be L(d, d)-valued continuous semimartin-
gales with X; =0, j = 1, 2, 3, 4. Show that

(i) e(X'+ X2+ X", X?]) = e(XDe(X?) where X'= [YXdX')(¥>)"!
and Y? = ¢(X?).

(i) e(X' + X?) =e(X")e(X?) where X' = [Y2(dX")(¥H)~!, X2 = X? — [X,
X% and Y2 = e(X?).

(iii) e(X)e(X?) = e(X? + X2 +[X3, X?]) where X° = [(Y?)"'(dX*)Y? and
Y2 =e(X?).
HINT: For (i), start with right-hand side and use integration by parts
formula (7.6.1) and simplify. For (ii), note that X' + X2+ [X', X?] =
X' + X2 and use (i). For (iii) note that if we let X' = X3 then [ ¥2(dX")
xH'=Xx3.

Exercise 7.33 Let Y be an Ly(d)-valued continuous semimartingale with Yy, =
I.LetX, = [;, Y~'dY. Show that

Y = e(X).

For an L((d)-valued continuous semimartingale Y with Y, = I, we define log(Y) =
f0’+ Y~'dY and log/(Y) = f0l+(dY)Y_'. We then have

e(log(Y) =Y, ¢(log'(Y)) =Y.

Likewise, for any L(d, d)-valued continuous semimartingale X with X, = 0, we
have
log(e(X) = X, log'(¢' (X)) = X.

Exercise 7.34 Let X be an L(d, d)-valued continuous semimartingales with
Xo=0and Y be an Ly(d)-valued continuous semimartingale with Y, = I.
Then show that

(i) X is alocal martingale if and only if ¢(X) is a local martingale.
(i) X eVifandonlyife(X) € V.
(iii) Y is a local martingale if and only if log(Y) is a local martingale.
(iv) Y e Vifandonly if log(Y) € V.

Exercise 7.35 Let Y be an Ly(d)-valued continuous semimartingale with
Yo = I. Show that Y admits a decomposition Y = MA where My =1, Ay = I,
M is a continuous local martingale and A € V. Further show that this decom-
position is unique.

HINT: Let X = log(Y) and use Exercise 7.32 to connect multiplicative decom-
position of Y and additive decomposition of X.

The exercises given in this section are from [37].



Chapter 8 ®)
Predictable Increasing Processes oo

We have discussed predictable o-field and seen the crucial role played by predictable
integrands in the theory of stochastic integration. In our treatment of the integration,
we have so far suppressed another role played by predictable processes. In the decom-
position of semimartingales, Theorem 5.55, the process A with finite variation paths
turns out to be a predictable process. Indeed, this identification played a major part
in the development of the theory of stochastic integration.

In this chapter, we will make this identification and prove the Doob—Meyer decom-
position theorem obtaining the predictable quadratic variation (M, M) of a square
integrable martingale. We will also introduce the notion of a predictable stopping
time.

An important step towards the proof of Doob—Meyer decomposition theorem is:
An r.c.1l. adapted process A with finite variation paths, Ao = 0, E[supy-,-7|4/|] <
oo is predictable if and only if it is natural, i.e. for all bounded r.c.1.l. martingales N,
[N, A] is also a martingale.

This result is usually stated assuming that the underlying filtration is right continu-
ous. We will prove its validity without assuming this. However, some of the auxiliary
results do require right continuity of o-fields, which we state explicitly.

8.1 The o-Field F-_

Recall that for a stopping time 7 with respect to a filtration (F,), the stopped o-field
F is defined by

Fo={Aco(UF): AN{r <t} eF ¥t <0}

We had seen that for every r.c.l.l. adapted process X and a stopping time 7, X is F;
measurable. We now define the pre-stopped o-field F,_ as follows.
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Definition 8.1 Let 7 be a stopping time with respect to a filtration (F,). Then
Fro=c(FoUAN{t <7} : A€ Fy, t < 00)).

Exercise 8.2 Let 7 be the constant stopping time 7 = ¢, r > 0. Show that
Fio = 0(Us<i Fy).

Exercise 8.3 Let0 < s < r. Show that 7, € F,_.

We note some basic properties of the pre-stopped o-field in the next result. Recall
the definition (2.34) of f;, (for a process f) whereby f; = f-1(r<oc}-

Theorem 8.4 Let 7, o be stopping times with respect to a filtration (F,). Then

(i) Tis F._ measurable.

(ii) Fr- S Fr.

(iii) Leto < 1. Ifoc <7onT >0 (ie.7(w) > 0 implies o(w) < 7(W)), then F, C
Fr_.

(iv) IfA € F, then (AN{oc < 1}) € F,_ and in particular, {c < 1} € F,_.

(v) Iff is a predictable process then f. is F,_ measurable.

(vi) Let W be a F,_ measurable random variable. Then there exists a predictable
process f such that f- 17 <0y = W1 <0}

(iv) Let U be a F, measurable random variable with E[|U|] < 0o and E[U |
Fr-1=0. Let M; = Ul; )(t). Then M is a martingale.

Proof Since {t < 7} € F,_ by definition, (i) follows.

For (ii) note thatif A € F,, t < ocand B = AN {t < 7}, thenforany s € [0, 00),
BN {r <s}isemptyifs < tand BN {T < s} € F;ift < s. Thus B € F.. Thisproves
(>iM).

For (iii), let A € F,. Note that writing Q7 to be the set of rational numbers in
[0, 00),

A= Uegr@N{o=rin{r<t)HU{AN{oc =7 =0}}

andAN{o <r}e F,.ThusA e F,_.
For (iv) note that for A € F,,

AN{oc<mh =Uegt(AN{fo <rhN{r <t}

alongwith (AN {o < r}) € F,implies (A N {o < 7}) € F,_.TakingA = £2 we con-
clude {c < 7} € F,_.

For (v), recall that P is the smallest o-field generated by processes of the form
(see (4.2.1))

Js = aolyoy(s) + Z i1 1(5;,5,11(5)
=0
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where 0 =59 < 5] <8 < ... < Sp+1 < 00, m > 1, ag is bounded F; measurable
and for 1 <j < (m+1), a;is a bounded }}jfl measurable random variable. For
such an f and o < 0,

m

fr <o} ={a =afnf{r=0HU (U{aj+1 <a}N{s <7 <sp1}). (B.LD
j=0

Now a;y1 is Fy, measurable implies {a;;1 < a} N {s; < 7} € F,_ and since 7 is F_
measurable, so does {aj+1 < a} N {s; < 7 < sj41}. This and the fact that Fy S F,_
together imply that {f; < a} € F,_.

For o > 0, {f. < a} equals the expression on the right-hand side of (8.1.1) union
{si+1 < 7}. Since {sj4.1 < 7} € F,_, it follows that f; is F_ measurable for simple
f as given above. The result (v) follows by invoking the monotone class theorem,
Theorem 2.66.

For (vi), if W = 1p where B=A N {t < 7} with A € F;, then we can take f =
141 00) While if B € Fy, we can take f = 151(0,00). Thus the required result holds if
W = 15 when

BeH=FU{AN{t<T1}): AeF, t>0)

Thus if G denotes the class of simple functions over H, if follows that the result (vi)
is true if W € G. Note that H is closed under finite intersections and hence G is an
algebra. Denoting by A the class of W such that (vi) is true, it follows that G C A.
It is easy to check that A is bp-closed. Since F,_ = o(H), the result (vi) follows
from the monotone class theorem, Theorem 2.66.

For (vii), invoking Lemma 2.41 it follows that M is anr.c.Ll. (F,) adapted stochas-
tic process. To show that M is a martingale, suffices to show (see Theorem 2.57) that
for all bounded stopping times o,

E[M,] =0. (8.1.2)

Here M, = Ul{;<4). Since {7 < 0} = {7 > o} € F-_ (by part (iv) above) and
E[U | F._] = 0 by assumption, (8.1.2) follows. O

The next result is a stopping time analogue of Exercise 8.3.

Theorem 8.5 Let o be an (F.") stopping time and T be a (F.) stopping time. Then
AeFf=Anf{o<T1heF_.
As a consequence, if 7" = Fy, {7 > 0} € {0 < 7} and {7 = 0} C {0 = 0} then
FycF.

Proof Fix A € F}.Fort > 0, note that
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Anfo<7y=|JtAn{o <rn{s <7} : r <s rationals in [0, 7]}

Now forr < s,AN{o <r} € F C F,.Hence AN {0 < 7} is a countable union of
sets in F,_ and thus belongs to F,_. On the other hand A N {o = 0} € F = Fy C
F,_.Thus,A e F,_. O

Remark 8.6 Note that the conditions {7 > 0} C {0 < 7} and {r =0} C {o = 0}
are the same as {o < 7} andon {r > 0}, {c < 7}.

8.2 Predictable Stopping Times

For stopping times o, 7 we define stochastic intervals as follows. Recall that 2=
[0, 00) x £2 ~
(0,71 ={(t,w) € 2: o(w) <1 =T7(wW)}

[0, 7] ={(t,w) € 2 : o(w) <t <T(W)}

and likewise, [0, 7), (o, 7) are also defined. The graph [7] of a stopping time is
defined by ~
[7] ={(T(w), w) € £2}.

With this notation, [, 7] = [7]. Note that for any o, 7, the processes f, g, h defined
by fi = lie.n (1), 9t = 1(»,~1(¢) and h, = 1;9,~1(¢) are adapted processes. While f is
r.c.ll, g is Lc.rl. and thus g is predictable. 4 is also lL.c.r.l. except at r = 0 and is
predictable. As a consequence we get that for stopping times o, 7 with 0 < o < 7,
we have

[0,7] e P, (o,7]€P. (8.2.1)

On the other hand if 7 is a [0, 00)-valued random variable such that f; = 19 - (¢) is
adapted, then 7 is a stopping time, since in that case {f; = 0} = {7 <1} € F,.

Exercise 8.7 Let X be a continuous adapted process such that X; = 0. Let
7 =inf{t >0 : |X,| = 0} (8.2.2)

and forn > 1, let
o, =inf{t >0 : |X,| <27"}. (8.2.3)

Let Y be anr.c.l.l. process such that Y, = 0 and M be a martingale such that
My = 0. Show that

(i) 7and o, forn > 1 are bounded stopping times with o, < 7.
(iiy Foralln>1,{r >0} C{o, < 7}
(iii) 0, 1 Tasn— oo.



8.2 Predictable Stopping Times 255

(iv) [r]eP.
(v) Y,, converges to Y,_ pointwise.
(vi) M,, converges to M,_ in L'(P).

The stopping time 7 in the exercise above has some special properties. Such stopping
times are called predictable.

Definition 8.8 A stopping time 7 is said to be predictable if
[r1eP. (8.2.4)

We have noted that for every stopping time 7, (7, 00) € P. Thus 7 is predictable if
and only if
[T,00) € P. (8.2.5)

It follows that maximum as well as minimum of finitely many predictable stopping
times is predictable. Indeed, supremum of countably many predictable stopping times
{1 : k > 1} is predictable since

[ sup 7, 00) = Mg [Tk, 00).
1<k<oo

Also, it follows that if 7 is predictable, then so is 7 A k for all k.

Exercise 8.9 Let o be any stopping time and a € [0, co) be a constant. Let
T = o + a. Show that 7 is predictable.

We will be proving that predictable stopping times are characterized by properties
(i), (iii) as well as by (vii) in the Exercise 8.7 above (when the underlying filtration
is right continuous).

Towards this goal, we need the following result from Metivier [50] on the pre-
dictable o-field, interesting in its own right. This is analogous to the result that every
finite measure on the Borel o-field of a complete separable metric space is regular.
Even the proof is very similar, with continuous adapted processes playing the role
of bounded continuous functions and zero sets of such processes playing the role of
closed sets. See [18].

Theorem 8.10 Let 1 be a finite measure on (ﬁ, P) and let
C={(tw)e Q: X;(w) = 0} : X is a bounded continuous adapted process.}
Then for all € > 0 and for all I' € ‘P there exist Ay, A such that Ay € C, A§ € C,
Ag ST C Ay

and
(AN (A0)) < e.
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Proof Easy to see that C is closed under finite unions and finite intersections: if
X', X? are bounded continuous processes, so are Y = X'X? and Z = |X!| + [X?|.
Indeed, C is closed under countable intersections as X/, j > 1 bounded continuous
(w.l.g.bounded by 1) yields that Z = 3 *, 277|X/| is a bounded continuous adapted
process and

{Z =0} =n;{x/ =0).

Let G be the class of sets " in P for which the desired conclusion holds. Clearly
it is closed under complements. Now it can be checked using properties of C noted
in the previous paragraph that G is a o-field.

For any continuous adapted process X and o € R

{X <a} ={Y =0} where Y = max(X, a) — a

and hence {X < a} € C. Since
1 1.
X =0t =n{IX| < -} =M {-IX| = ——}
n n

it follows that C € G. Invoking Proposition 4.1, part (iii)) we now conclude that

G=". 0

The following result gives some insight as to why stopping times satisfying (8.2.4)
are called predictable.

Theorem 8.11 Let 7 be (F.) stopping time. Then 7 is predictable if and only if there
exist (F7) stopping times 7" such that " < "' <7, 7" Y Tand ™" < Tont > 0.

Proof Let us take the easy part first. If {7" : n > 1} as in the statement exist then
noting that
[T, 00) N{(0,00) x 2} =N, (7", 00)
it follows that [7, 00) N {(0, 00) x 2} € P(F."). Thus using Corollary 4.6 we con-
clude
[7,00) N{(0,00) x 2} € P(F.).

Since 7 is a (F,) stopping time, {T = 0} € F( and thus [0, c0) x {T = 0} € P(F.).
We can thus conclude that

[T,00) € P(F.).

Thus 7 is predictable.
For the other part, suppose (8.2.4) holds. Consider the finite measure ;. on (2,P)
defined by
pI) =P{w : (t(w),w) € I'})

or equivalently for a positive bounded predictable f
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[ ran=etr
For m > 1, get bounded continuous adapted processes X™ such that
{X" =0} < [7] (8.2.6)
and
p(rln ({X™ =0)9) =27 (8.2.7)

Let o™ =inf{r > 0 : |X/"| = 0}. Then (8.2.6) and (8.2.7) together imply that o/ is
either equal to 7 or oo and
P(r £a™ <27™. (8.2.8)

Leto,, , = inf{r : |X/"| <27"}.Easytoseethato,,, < o™ andif0 < o < oothen
Omn < & and oy, 1 @™ asn — oo.Foru, v € [0, oo], letd*(u, v) = |tan’1(u) —
tan~!(v)|. Then d* is a metric for the usual topology on [0, oo]. Since 7,,, 1 o as

n — oo, we can choose n = n,, large enough so that denoting o, ,, = ¢”* we have
P@* (o™, ™) = 27") <27 (8.2.9)

Clearly, 0™ < o and further ™ < & on 0 < & < o0.

Let N, ={d*(c™, &™) > 27"} U {7 # "} and N =limsup,,_, N, =N, _,
U2, N,. By Borel-Cantelli Lemma and the probability estimates (8.2.8) and (8.2.9),
we conclude P(N) = 0. For w ¢ N, 3my = my(w) such that for m > myg, o (w) =
7(w), and d* (6™ (w), @™ (w)) < 27™. Recall that for all m > 1, 0™ (w) < o(w) for
all w. Further, for any w such that 0 < o (w) < 00, by construction 0" (w) < o(w).

Let 7" = inf{c* : k > m}. Then 7™ are (F.") stopping times such that forw ¢ N,

™w) < 7" (W) < T(Ww), Vm > 1,
T™"(Ww) < T7(w) if T(W) < 00

and
d* (7™ (w), T(w)) <27

Thus {7"} so constructed satisfy required properties. O

Remark 8.12 The stopping times {7 : n > 1} in the theorem above are said
to announce the predictable stopping time 7. Indeed, this characterization
was the definition of predictability of stopping times in most treatments.

Here are two observations linking the filtrations (F.), (F.") with stopping times
and martingales.
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Lemma 8.13 Let 7 be a (F,) stopping time. Then
[7] € P(F") = [7] € P(F)).

Proof Let f = 1j;). Then fy = 1{,=0) is Fo measurable as 7 is (F.,) stopping time.
Now the conclusion, namely f being (F,) predictable, follows from Corollary

4.5. O
Lemma 8.14 Let M be an r.c.ll. (F.)-martingale. Then M is also a (F)-martin-
gale.

Proof Fixs < t. Letu, = s+ 27". Note that
E[M; | Fu,] = My, ni-
Since F;" = N,F,, using Theorem 1.38 we conclude
E[M, | F1= M;.

O

We reiterate here that when the underlying filtration is required to be right contin-
uous, we will state it explicitly. Otherwise martingales, stopping times, predictable,
etc., refer to the filtration (F,).

Theorem 8.15 Let 7 bea (F.) predictable stopping time and let 7" be as in Theorem
8.11 announcing 1. Then

ol JF =F. (8.2.10)
n=1

Proof As seen in Theorem 8.4 (applied to the filtration (F.")) F\ € .. To see
the other inclusion, let B € .7-';[. If Be .7-"6’, then B € .7-'; foreachn > 1.If B=
AN{t <71}, A€ ]—",’L. Then B, =AN{t < 1"} € f;_ c .7-":;. Thus

oo
B,ea(|JFM
m=1

and of course easy to see that B = U2, B, completing the proof. O

Exercise 8.16 Let 7 be a (F,) predictable stopping time and let 7" be as in
Theorem 8.11 announcing 7. Suppose F, = F, . Show that

o JF =F.—. (8.2.11)
n=1

Thus conclude F,_ = F' .
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Here is a consequence of predictability of stopping times.

Theorem 8.17 Let 7 be a bounded predictable stopping time. Then for all r.c.Ll.
martingales M with My = 0 we have

E[(AM), | F,_1=0 (8.2.12)

Proof Let T be a bound for T and let 7" be a sequence of (F*) stopping times
announcing 7 as in Theorem 8.11 above. If 7 > 0, then M. converges to M,_ almost
surely whereas if 7 = 0 then 7" = O foralln and M,» = 0 and M,_ = 0 by definition
of My = 0. Thus we conclude that M. converges to M,_ almost surely. On the
other hand 7" < 7 and the martingale property of M gives E[M, | F.] = M,.—see
Lemma 8.14 and Corollary 2.56. Now Theorem 1.37 along with (8.2.10) yields

EIM, | F-]1=M,_. (8.2.13)

Now (8.2.12) follows from this as M, _ is F,_ measurable and F,_ C F." . O

We now observe that (8.2.12) characterizes predictable stopping times when the
filtration is right continuous.

Theorem 8.18 Let 7 be a bounded stopping time for the filtration (F.). Then the
following are equivalent.

(i) T is predictable, i.e. [T] € P(F),).
(ii) For all bounded (f_+) martingales M with My = 0, one has

E[(AM). | F1=0. (8.2.14)
(iii) For all bounded (F) martingales M with My = 0, one has
E[(AM),] = 0. (8.2.15)

Proof If [7] € P(F.) then of course [7] € P(F.) and hence (ii) holds as seen in
Theorem 8.17 (invoked here for the filtration (F1). Thus (i) implies (i7).

That (ii) implies (ii7) is obvious.

Let us now assume that (8.2.15) holds for all bounded (F, +)—martingales M. We
will show that there exists a sequence of stopping times announcing 7. In view of
Theorem 8.11, this will prove (i) completing the proof. Since 7 is be bounded, let T
be such that 7 < T.

Let N be the r.c.Ll. version of the martingale E[ 7 | .7-7“]. Let M; = N, — Ny and
Z; = N, — . Noting that N, = E[ 7| F'] = 7 by Theorem 2.55, we have Z, = 0.
We will first prove that

P(Z1y<y =0 Vi <T)=1. (8.2.16)
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To see this note that for A € 7", AN {r < 7} € 7" and using that N is a martingale
with Nr = 7, we have
Ellaly<nN:] = E[1aly<n7].

Hence
E[1aZ1y<n] = E[1a(T — ) 1<ry] = 0.

Since this holds for all A € .7-7' and Z; 1< 1s }",+ measurable, it follows that for
each t

Zfl{fST} Z O a.s.
Now right continuity of # = Z, shows the validity of (8.2.16). It now follows that
Z._ >0 a.s. and hence

N,_>7T as. (8.2.17)

On the other hand, M is a bounded martingale with M, = 0 and hence in view of the
assumption (8.2.15) on 7, it follows that E[(AM )] = 0. Noting that

(AM); = (AN);1(7-0
we have E[(AN);1{;-0] = 0. Now using N; = 7 we conclude
E[N;_1z=0)] = E[N;1(7=0y] = E[T 175001 (8.2.18)
In view of (8.2.17) and (8.2.18) we conclude
N:_1rz0p = Tlir20) aus. (8.2.19)

Let
o, =inf{t >0: Z, <27"}.

We will show that o, are (F.") stopping times and announce 7. Clearly, 0, < 0,41 <
7 for all n. As (F.7) is right continuous, o, is a (F.") stopping time by Lemma 2.48.

By definition of o, we have Z, <27", i.e. N,, — 0, < 27". Further, if o, > 0,
then by left continuity of paths of Z~, we also have

Zy— >27" (8.2.20)
Since 7 < T and hence ]—";f measurable , we conclude that Ny = 7. Now N being
a martingale, we have E[N,, ] = E[Ny] = E[Nr] and hence E[N,, ] = E[7]. Since

Nrr,, —0p = 27", we conclude

Elr —o,] <27 (8.2.21)
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Since 0, < 0,41 < 7 for all n we conclude that

lim o, = 7. (8.2.22)

n—oo
Remains to prove that on {7 > 0}, 0, < 7.
If > 0 and 0, > 0O, then as seen in (8.2.20), Z,,— > 27" and so N, _ > 0, a.s.

In view of (8.2.19), this implies 0, < 7 a.s. on 7 > 0. Thus {0, } announces 7 and
as a consequence 7 is predictable. (I

Let 7 be a stopping time and £ be a F- measurable random variable. Then 7 = {17 o)
is an l.c.r.l. adapted process and hence predictable.
The next result refines this observation when 7 is predictable.

Theorem 8.19 Let T be a predictable stopping time and let £ be a F._ measurable
random variable. Then f = 11« and g = 1 are predictable processes.

Proof Note that f = g + h where h = £1(; ~) and that £ is predictable being l.c.r.L.
adapted. Thus suffices to show that g is predictable.
ForA € F;, B=AN{s < 7}, observe that

1p(W) 1, w) = 1p(W) (5,00 () 1172, w).

The process 15(w) 1,00 (#) is L.c.r.l. adapted and hence predictable while 1;-(¢, w)
is predictable because 7 is predictable. Thus, the desired conclusion namely g is
predictable is true when £ = lg, B=AN{s < 7} and A € F;. It is easily seen to
be true when £ = 1, B € Fy. Since the class of bounded F,._ measurable random
variables £ for which the desired conclusion is true is a linear space and is bp-closed,
the conclusion follows by invoking the monotone class theorem—Theorem 2.66. [J

We will next show that the jump times of anr.c.L.l. adapted process X are stopping
times and if the process is predictable, then the stopping times can also be chosen to
be predictable.

Lemma 8.20 Let X be an r.c.ll. (F,) adapted process with Xy = 0. For o > 0 let
T=inf{r >0 : |AX]|;, > a}.

Then T is a stopping time with T(w) > 0 for all w. Further, T < oo implies |AX |,
> Q.

Proof Note that for any w € £2 and T < oo
{rel0,T]: [AX (W) = o}

is a finite set since X has r.c.L.l. paths. Thus 7(w) < oo implies |AX (W)|;@w) > a.
Moreover,
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{w:itTw) <t} ={w:3s5€[0,1] : |1AX |;(w) > a}. (8.2.23)

It now follows that (writing Q' = {r € [0, ¢] : r is rational} U {¢}) forw € £2,7(w) <
tifandonly if Vn > 1,3s,, 1, € 0", 0 < s, < rp < s, + %,

X, (W) — X, ()| > a— 1 (8.2.24)

E .
To see this, if such s, r, exist, then choose a subsequence 7, such that

Suce g Xy, (@), Xy, (@)

e
converge. Using s, < r, < s, + % and (8.2.24), it follows that

Sy, — U, 1y, = u, forsome u,0 <u <t.

Since |X;, —X;, | = o — t and X;, , X, are converging, the only possibility is
thatXS“k (w) —> Xu_,X,”k (w) = X, and | X, (w) — X, (w)| > a.Hence 7(w) < t.For
the other part, if 7(w) = s < ¢, using Q' is dense in [0, ¢] and ¢ € Q', we can get
SmrnthaO<sn<S§rn<sn+%9

X (W) = X, ()] < 57, 1X, (W) = X, (W) < 55

—= 2’

and hence using |AX (w)[s > «a, we get |X,, (w) — X, (w)| > o — % Thus

{T = t} = m?lil (U{s,reQ/,0<x<r§SJr%}{|XS _Xr| > o — %})

Thus 7 is a stopping time. Since Xy = 0 implies (AX)o =0, (8.2.23) implies
7> 0. ([l

The next result shows that the jumps of an r.c.l.l. process can be covered by a
countable sequence of stopping times.

Lemma 8.21 Let A be an r.c.ll. (F,) adapted process with Ay = 0. For n > 1 and
w e 2, letog =0andfori>1let o} (w) = o0 ifof(w) = oo and

ot (W) = inf{t > ol (W) : (A (W) = ;). (8.2.25)

Then

(i) Foralln > 1,i > 1, o} is a stopping time and o > 0.

(ii) Yw, oj(w) < oo implies |(AA)|y1 ) (W) > % and o} (w) < o} | (W).
(iii) Yw, lim;_, o o' (w) = oo.

(iv) (Recall 2 = [0, 00) x £2)

((t,w) € 21 |(AA) (W) = L) = ((0f (W), w) : i>1}N2.  (8.2.26)
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(v) If A is also predictable, then {0} : i > 1, n > 1} are predictable stopping
times.

Proof Fix n > 1. Lemma 8.20 implies that o' is a stopping time. We will prove that
o} are stopping times by induction. Assuming this to be the case for i = j, consider
the process ¥V, = A, — A, g~ Applying Lemma 8.20 to the r.c.l.l. adapted process Y,
we conclude that o7, is a stopping time. Moreover, if 07" < oo then o7, > o} This
completes the induction step proving (i), (if). Since an r.c.Ll. function can have only
finitely many jumps larger than % inany finite interval, it follows thatlim;_, o, 07 (w) =
oo proving (iii). Hence for a fixed w, the set {t : |(AA),(w)| > %} N[0, T] is finite
for every T and is thus contained in {0} (w) : 1 <i < m} for a sufficiently large m
and thus

{(t,w) € 2 1 [(AA)(W)] = L} S {07 W), w) : i = 13N Q2.

Part (ii) proven above implies that the equality holds proving (8.2.26). For (v), if
A is predictable, then AA = A — A~ is also predictable (since A~ is l.c.r.l. adapted).
Also (07, o}'] € P as its indicator is a l.c.r.l. adapted process. In view of (8.2.26)
fori > 1

[07] = {(t,w) € 2 : [(AA), (W) = 1} N (or ), 0]
and thus if A is predictable, [0]'] € P;i.e. o] is predictable. O

The previous result shows that the jumps of an r.c.l.l. adapted process can be
covered by countably many stopping times. We now show that one can choose finite
or countably many stopping times that cover jumps and have mutually disjoint graphs.
Note that stopping times are allowed to take oo as its value and the graph of a stopping
time is a subset of [0, c0) x §2 and thus several (or all!) may take value oo for an w
without violating the requirement that the graphs are mutually disjoint.

Theorem 8.22 Let X be an r.c.ll. (F.) adapted process with Xy = 0. Then there
exists a sequence of stopping times {1, = m > 1}, such that

{(ax) # 0} = (17l (8.2.27)
m=1
and further that for m # n, [1,,] N [1,] = @. As a consequence

(AX) =Y (AX), I 15,1. (8.2.28)

m=1

Further, if the process X is also predictable, then the stopping times {1, : m > 1}
can be chosen to be predictable and then (AX )., are F, _ measurable.
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Proof Let {07 : i > 0,n > 1} be defined by (8.2.25). For k =2""D(2i — 1), i >
I,n>11let
& =o}.

Then the sequence of stopping times {&; : k > 1} is just an enumeration of {o] : i >
1, n > 1} and thus in view of (8.2.26) we have

{(t,w) € 2 : (AX), ()] > 0} = {(& (W), w) : k> 11N 2. (8.2.29)

However, the graphs of {§; : k > 1} may not be disjoint. Define 7 = &; and define
stopping times 7; : k > 2 inductively as follows. Having defined stopping times 7,
1<k <mlet

Enr1(w)  ifw e NV {§ui1 (W) # 7j(w), Tj(w) < oo}

. (8.2.30)
otherwise .

Tm+1 (W) =

Fix . Note that
{Ts1 < 1} = &1 <3N {&nr1 # 73D
and A = L {&ni1 # 75} € F,,,, by Theorem 2.54. Thus,
it =} = {Gnin =11 NA € Fr.

and hence each 7,4 is also a stopping time. Thus {7, : k > 1} is a sequence of
stopping times.
In view of (8.2.29) and the definition (8.2.30) of 7,,.1, we can check that the
sequence {7;,, : m > 1} satisfies the required conditions, (8.2.27) and (8.2.28).
When the process X is predictable, we have seen that the stopping times {o} :
n > 1,i > 1} are predictable and thus here {&; : k > 1} are predictable. Since

[Tnt1] = [Ena 1 0 (UL 7D

it follows inductively that {7,,} are also predictable. Predictability of X implies that
AX is also predictable and then part (v) Theorem 8.4 now shows that (AX)., are
F,— measurable ]

The sequence of stopping times {7, : k > 1} satisfying (8.2.27) and (8.2.28) is
said to be enumerating the jumps of X .

Remark 8.23 Itis possible that in the construction given aboveP (7, = o0) =1
for some m. Of course, such a 7,, can be removed without altering the
conclusion.

Here is an observation.

Corollary 8.24 Let A be a (F,) predictable r.c.l.l. process with finite variation paths.
Let |A] = VAR(A) denote the total variation of A. Then |A| is (F.) predictable.
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Proof As seen earlier, predictability of A implies that of AA. Since (A|A]) = |(AA)]
it follows that (A|A|) is predictable and hence it follows that |A| is predictable.
Remember, |A|; is the total variation of s — A, on [0, £]. O

The following result is essentially proven above.

Lemma 8.25 Let H be an r.c.Ll. adapted process. Then H is predictable if and only
if (AH) admits a representation

(AH) =) (AH), It ) (8.2.31)

m=1

where {1,, : m > 1} is a sequence of predictable stopping times and (AH ), is F, _
measurable.

Proof One part is proven in Theorem 8.22. For the other part, if H admits such a
representation then by Theorem 8.19, (AH) is predictable. Since H = H™ + (AH)
and H~ is predictable being left continuous, it follows that H is predictable. ]

The following result would show that an r.c.L.l. predictable process is locally
bounded—in a sense proving that since we can predict the jumps, we can stop just
before a big jump.

Lemma 8.26 Let A be an r.c.l.l. predictable process with Ay = 0. Then for every n,
the stopping time
T, =1inf{t > 0:|A;| > norl|A,_| > n}

is predictable. As a consequence, A is locally bounded as a (F.") adapted process.

Proof We have shown in Lemma2.42 that 7,, is a stopping time, 7, > O andif 7, < oo
then |A; | > nor |A, _| > n. Further, it follows that lim, 7, = co. Let

I={(t.w) € 2: |Al=nor|A_| > n}.
Since A is predictable and so is A~ (being l.c.r.l.), it follows that I, € P and hence
[7.]=10,7]NT, €P.
This shows 7, is predictable.
For the second part, fix n > 1. By Theorem 8.11 there exist (F.") stopping times
{7u.m 1 m > 1} that increase to 7, strictly from below. Thus we can get m,, such that

. .
T, = Tp,m, Satisfies

P(ri <) =1, P(r; <7, —27") <27". (8.2.32)
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Let 0, = max{7, 75, ..., 77}. Then {0, : n > 1} are (F.") stopping times and
P, <m) =1, Plo,<on1)=1, Plo, <7 —27") <2™. (8.2.33)

Since 7, 1 o0, it follows that o, 1 co. And o, < 7, implies that |A;| < n for ¢ <
o,. Thus A% is bounded (by n) and so A is locally bounded as a (F.') adapted
process. O

Here is another important consequence of the preceding discussion on predictable
stopping times.

Theorem 8.27 Let M be an r.c.l.l. martingale. If M is also predictable, then M has
continuous paths almost surely.

Proof Let T be a bounded predictable stopping time. By Lemma 8.14, M is also a
(F)-martingale. Now using Theorem 8.18, we have

El(AM), | F]1=0.

On the other hand, as seen in Theorem 8.4, part (v), M is F, * measurable and thus

sois (AM), and so (AM), = 0 a.s. and hence we get M, = M,_ (a.s.). Now if o is
any predictable stopping time, o A k is also predictable and hence we conclude

(AM)onie =0 a.s.Vk>1
and hence passing to the limit
(AM), =0 a.s.

By Theorem 8.22, the jumps of M can be covered by countably many predictable
stopping times. This shows

P((AM), =0 Vi) =1

and hence paths of M are continuous almost surely. ([

By localizing, we can deduce the following:

Corollary 8.28 Let M be an r.c.ll. (F.) local martingale. If M is also (F,) pre-
dictable, then M has continuous paths almost surely.

Here is an interesting result.

Theorem 8.29 Let A be anr.c.ll (F,) predictable process with finite variation paths
with Ag = 0. If A is also a (F.)-martingale, then

P, =0 Vi) = 1. (8.2.34)
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Proof Theorem 8.27 implies that A is continuous. Now Theorem 4.74 implies
P(A,A]l, =0 Vi) = 1.

Now part (v) of Theorem 5.19 and its Corollary 5.20 together imply that (8.2.34) is
true. (]

Once again, we can localize and obtain the following.

Corollary 8.30 Let A be an r.c.l.l. (F,) predictable process with finite variation
paths with Ay = 0. If A is also a (F,) local martingale, then

PA; =0 V) =1.

8.3 Natural FV Processes Are Predictable

The main result of this section is to show that a process A € V is natural if and only
if it is predictable. To achieve this, we need to consider the right continuous filtration
(F) along with the given filtration.

Recall that we had observed in Corollary 4.5 that a (F.") predictable process f
such that f; is Fo measurable is (F,) predictable.

In his work on decomposition of submartingales, P. A. Meyer had introduced a
notion of natural increasing process. It was an ad hoc definition, given with the aim
of showing uniqueness in the Doob—Meyer decomposition.

Definition 8.31 Let A € V; i.e. A is an adapted process with finite variation
paths and Ay = 0. Suppose |A] is locally integrable where |A|, = Varjo(A). A
is said to be natural if for all bounded r.c.l.l. martingales M

[M, A] is a local martingale. (8.3.1)

Let W = {V € V; : |V]is locally integrable where | V|, = Varjo 4(V)}.

Remark 8.32 LetA € V, be such that [A, A] is locally integrable. Since A[A, A]
= (AA)?, it follows that (AA) is locally integrable and as a consequence A is
locally integrable and thus A € W.

Theorem 8.33 Let A € W be natural. Let o, t o0 be such that |A|'°") is integrable.
Then [M , A1 is a martingale for all bounded martingales M and n > 1.

Proof Let A" = Al Let M be a bounded martingale. As seen in (4.6.9), [M , A]""
= [M,A"]; and since A is natural, [M, A"]; is also a local martingale. Invoking
Theorem 4.74 we have

M, A"], = Z (AM)(AA"),. (8.3.2)

O<s<t


https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4

268 8 Predictable Increasing Processes

Thus if the martingale M is bounded by a constant C, (AM) is bounded by 2C and
then we have
[[M,A"],| <2C Z [(AA")s| < 2CAling, - (8.3.3)

O<s<t
By choice of 7, E[|A|;ns,] < 00. Thus

Elsup [[M, A"[s]] < 2CE[|A]/n,,] < c0.

s<t

Now Lemma 5.5 implies that the local martingale [M , A"] is indeed a martingale. []

We will first show that if A € W is predictable then it is natural. The converse is
also true and would be taken up subsequently.

Theorem 8.34 Let A € W be predictable. Then A is natural.

Proof Let M be a r.c.l.l. martingale bounded by C and let o, 1 co be such that
|A|lon] is integrable. Let us write A" = Al”"l, Note that A predictable implies A" is
predictable for all n. Fix n.

Predictability of A” implies that (AA") is predictable since (A")~ is predictable
being l.c.r.l.adapted. Let {7;,} be predictable stopping times covering jumps of A" as
constructed in Lemma 8.21. Now predictability of (AA") and part (v) of Theorem 8.4
implies that (AA")., is F., _ measurable for all m > 1. Since {7,,} cover the jumps
of A", it follows from (8.3.2) that

o]

[M, A", = (AA"), (AM), 117, 00 (D). (8.3.4)

m=0

For each m, 7,,, as well as (AA"),, are F. _ measurable by Theorem 8.4. Hence

n

= E[(4A4");, 117, .00 (OEL(AM), | F7,-1]
=0

E[(AA"), (AM);, 117, 00) ()] = E[E[(AA");,, (AM )7, 117, 00 (1) | T, - 1]

as M is amartingale and 7, is predictable. Since M is bounded by C, AM is bounded
by 2C and then we have

ELY [(AM);, (AA");, 15,00/ (] < 2CELY | [(AAZ )17, 00)(0)

m=1 m=1
<2C|A"|;

< Q.

The dominated convergence theorem implies that the series in (8.3.4) converges
in L' (P) and as a consequence, E[[M, A"],] = 0 for all t < cc.
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Now given a stopping time ¢ bounded by T, apply the above to N = M ! to get
EllM,A"],] = E[IM,A"];xr] = E[IN,A"]7] =0

where we have used (4.6.9) for the last equality. Invoking Theorem 2.55 we conclude
that [M, A"] is a martingale. Thus [M, A] is a local martingale for every bounded
martingale M and so A is natural. ]

Our next observation will play an important role in the converse that we will take
up later.

Lemma 8.35 Let A € W be natural. Then for all stopping times 1, (AA); is Fr_
measurable.

Proof To see this, first let 7 be bounded, say by k and let U be any bounded F;
measurable random variable and let

W, = (U — E[U | Fr-D1jr,00 (D).

As seen in Theorem 8.4, part (vii), W is a martingale with r.c.Ll. paths. Since W is
bounded and A is natural

(W, Al, = (AA); (U — E[U | Fr-D1{7,00)(1)

is a local martingale.

Let 0, 1 oo be stopping times such that |A|,, is integrable for all n. As seen in
Theorem 8.33, [W, Aln]]is amartingale and since 7 < k we have E[[W, Al 1= 0.
Thus

E[(AA""]) U] = E[(AA") E[U | F;_]]

for all bounded . measurable random variables U. Thus by Lemma 5.49, it follows
that (AA!")). is F,_ measurable. Since o, 1 0o, we conclude that AA, is F,_
measurable.

For a general stopping time 7, noting that (AA) A, iS F;,— measurable and hence
F.— measurable. As seen in Theorem 8.4 part (i), {7 < oo} € F,_. Since

(4AA), = lim (AA)’T/\nl{T<OO}
n—oo

it follows that
(AA); is F,_ measurable. (8.3.5)

O

Next we will show that if A is natural for (F.) then it is so for (F) filtration as
well.
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Theorem 8.36 Let A be an (F,) adapted r.c.l.l. process with finite variation paths
such that Ag = 0 and |A| is locally integrable where |A|; = VAR(o 1 (A). Suppose that
A is natural for the filtration (F.). Then it is also natural for the filtration (F.).

Proof Let o, 1 oo be such that |A|l°/ is integrable and let A" = Al%"). Let us fix
a (F.")-martingale N bounded by C with r.c.Ll. paths. To show [N, A] is a local
martingale, we will prove that for all n

[N,A"]is a(F.") — martingale. (8.3.6)

We carry out the proof in 3 steps.
Step 1:. We will first prove that for » > 0 fixed,

U = (AN),1{y.00)(1) (8.3.7)
is a (F.")-martingale and [U, A"] is given by
[U. A", = (AN),(AA™), 11,000 (1), (8.3.8)

and is a (F")-martingale.
To see this, note that E[(AN), | ]-",t] =0asNisa (]—"_+)-martingale. Thus U is
a (F.")-martingale. The process U has a single jump at ¢ = r and thus (8.3.8) holds.
Invoking Lemma 8.35 we observe that (AA"), is F,_ measurable. Since F,_ C F.©,
we have
(AA™), is FI measurable. (8.3.9)

r—
Asa consequence

E[(A[U,A"]), | F,2]1 = E[(AN),(AA"), | F,7]
= (AA"),E[(AN), | F,"] (8.3.10)
=0

and thus [U, A"] is a (F.")-martingale. This completes step 1.
Step 2: Let D = {t € [0, 00) : P((AN), # 0) > 0}. Then D is countable.

To see this, for ¢t > 0 let i(t) = E[ [N, N1;]. Then A is an [0, co)-valued function
since N is a bounded martingale. Clearly, 4 is increasing. Since

h(t) — h(t—) = E[[N, N1, — [N, N1,_]1 = E[((AN),)*],

it follows that 7 is a continuity point of 4 if and only if P((AN), # 0) = 0. Thus D
is precisely the set of discontinuity points of # which is countable. This completes
step 2.

Lett, t,...1,...bean enumeration of D. Let us write
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Z" = (AN), 100 (1)
k=1

and M™ =N — Z". Then Z" and [Z", A"] are (F.")-martingales as seen in step 1.
Note that

m

[z, A", = Z(AN),k (AA™), 115 00) (2). (8.3.11)
k=1

From the definition of Z™, M™ it follows that
{t: P((AM™), #0) >0} ={t; : k > (m+ 1)} (8.3.12)

Next we will prove
Step 3: Z™ converges to a (F.")-martingale Z in the Emery topology and [Z, A"] is
a(F, +)-martingale foreachn > 1.

To see this, for j < m we have

(2" —Z,2" = Z) = ) (AN)) 1000 (D).
k=j+1
Since N is a bounded martingale, it is square integrable and thus using Corollary
5.20, E[[N, N];] < oco. Hence
oo
ELY ((AN);)? 150001 < EIIN, N1,] < oc.
k=1

It follows that E[[Z" — Z/, Z" — Z/],] — Oforallt < oo asj, m — oo. Hence using
Lemma 5.41, we conclude that Z™ converges to a (F.")-martingale Z such that

E[[Zz"-Z,Z" —Z],] — Oforallt < o0 (8.3.13)
and
7" 4 7. (8.3.14)

Let us note that since N is bounded by C we have

D AN (AA™) |1y 00 (1) < 2C Y [(AA") 11y 00 (1)
k=1 k=1

<2C|A"|,

(8.3.15)
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Let V" be defined by

V=D (AN, (AA") Ty 00 (0). (8.3.16)
k=1

The series defining V" converges almost surely and in LY(P) in view of (8.3.15).
Then

B[V — 2", A"]i]] < Liy.00 (DELI(AN),, (AA"),, | ]
k;,n:H S (8.3.17)

— Qasm — o0

in view of (8.3.15). Since [Z™, A"] is a (F.")-martingale, (8.3.17) implies that V" is
a (F)-martingale. On the other hand (8.3.14) implies that

[Z", A"l = [Z,A"]as m — o0

in the Emery topology (see Theorem 4.1.1.1). Thus V" =[Z,A"] is a (F.")-
martingale. This completes step 3.

Since M™ =N — Z", we get M" <5 M where M =N — Z is also a (F.")-
martingale. Also, M X% M. Tt then follows from (8.3.12) that

P((AM), #0)=0 Vt=>0. (8.3.18)

This observation (8.3.18) and the assumption that F; contains all P null sets
together imply that M, is F," measurable. Since F;* C F, € F,, we conclude that
M is a (F,)-martingale. In view of the assumption that A is natural for the filtration
(F.), we conclude that [M , A]is a (F,)-local martingale. The process [M , A]isr.c.LL
and thus is also a (F.")-local martingale.

Since N =M +Z,[N,A] = [M,A] + [Z, A]. We have already shown in step 3
that [Z, A]is a (F, *)-local martingale and thus it follows that [NV, A] is a (F, *)-local
martingale. O

We now come to one of the main results of this chapter.

Theorem 8.37 Let B € W be natural for the filtration (F,), i.e. for all bounded
(F.)-martingales M
[M, B] is a local martingale. (8.3.19)

Then B is (F,) predictable.

Proof Let T, 1 oo be stopping times such that B = BI™! satisfies |B"|, is integrable
for all m, ¢. Suffices to prove that for all m, B™ is predictable. So fix m > 1 and let
us write A = B™. As seen in Theorem 8.33, for all bounded martingales M,

[M, A] is a martingale. (8.3.20)
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By Theorem 8.36, (8.3.20) is true for all bounded (F, +)-martingales M.
Let {0} : n>1, i > 0} be the stopping times defined by (8.2.25). We are going
to prove that each of these is predictable. Note that (8.2.26) can be rewritten as

oo
(A pai2 1y = Y (AA)gr 1oy, (8.3.21)
i=0
Here, | AA| denotes the process s — |(AA);|. It follows from Lemma 8.35 that
wni = (AA)q» is Fo»— measurable. (8.3.22)
Invoking part (vi) of Theorem 8.4, we obtain predictable processes f™ such that
f;,,n’il{a;l<oo} = W™ {51200}
Let
oo
9= e
i=1

Then ¢" is predictable since f™' is predictable and 1(o# o is l.c.r.l. adapted process
and hence predictable. Further, note that by definition

Gy = (D).
In view of the definition of {7} as seen in (8.2.26), it follows that
gnl{lAAlzﬁ} = (AA)IHAA‘Z%}. (8.3.23)
In particular, for all m > n
9" Vanz1y = 9" a1
and hence defining g = limsup,,_, ., g", it follows that g is predictable and
9ljaa=0) = (AA) 1 aa10- (8.3.24)
Now fix m > 1 and let A" = 1{jg~0g " 1{jaa= 1)- Then /2 is bounded predictable and
(AA)R" = l{lAAlzil’ (8.3.25)
Now given a bounded (F.")-martingale M with My = 0, N"" = f h"dM is also

a (F.")-martingale since 4" is a bounded predictable process. Thus [N™, A] is a
(F")-martingale—see Theorem 8.36. On the other hand
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[N, Al =/ n'd[M,A] = Z h' (AM);(AA),
0

0<s<t

_ Z (AM)1 1 an),= 1y

0<s<t
00
= Z(AM )(f/’.”/\r
j=0

Since [N™, A] is a martingale, E[[N™, A]szm] = 0 for all k. Thus

k
E[) (AM)orn] =0

=0
for all k. Hence forallm > 1,i > 1 and ¢t < oo
E[(AM),nr] = 0. (8.3.26)

Since (8.3.26) holds for all bounded (F.")-martingales M with M, = 0, invoking
Theorem 8.18 we conclude thatforallm > 1,i > 1 and¢ < oo, the bounded stopping
time 0" A tis (F.") predictable.

Since [07"] = U; Ni=; [0 A k], it follows that 07" is (F.") predictable for every
m, i. This along with the observation (8.3.22) gives us

(AA)J;‘ l[0;’]
is (F.") predictable for each n, i. As a consequence
[o.¢]
€' =) (Aol
i=0
is (F.") predictable. It can be seen using (8.3.21) that

lim &' = AA

n— 00

and thus AA is (F) predictable. Since
At = At— + (AA)Z
and since A,_ is (F.") predictable, being an l.c.r.1.adapted process, we conclude that

Ais (F.") predictable. Since B € W, it follows that By = Ay = 0 and then Corollary
4.5 implies that A is (F,) predictable. ([
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8.4 Decomposition of Semimartingales Revisited

In view of this identification of natural FV processes as predictable, we can recast
Theorem 5.50 as follows.

Theorem 8.38 Let X be a stochastic integrator such that

(i) X; = Xar forallt.
(ii) E[sup,—7|Xs|] < o0.
(iii) E[[X,X]1r] < oc.

Then X admits a decomposition
X=M+A, M ecM?*, AcV, Ay =0and A is predictable. (8.4.1)

Further, the decomposition (8.4.1) is unique.

Proof LetX = M + A be the decomposition in Theorem 5.50. As seen in Corollary
5.50, the process A satisfies A, = A;r. Since E[[M, A]7] = 0, we have

E[IX. X]r] = E[IM, M]r] + E[[A, Alr]

and hence E[[A, A]l7] < oo and so A € W. Thus A satisfies conditions of Theorem
8.37 and hence A is predictable. For uniqueness, if X = N + B is another decompo-
sition with N € M? and B € V and B being predictable, then M — N =B —Aisa
predictable process with finite variation paths which is also a martingale and hence
by Theorem 8.29, M = N and B = A. a

Remark 8.39 We note that in Theorem 8.38 we have not assumed that the
underlying filtration is right continuous.

We need two more results before we can deduce the Doob—Meyer decomposition
result. First, we need to extend Theorem 8.38 to all locally integrable semimartin-
gales. Then we need to show that when X is a submartingale, then the FV process
appearing in the decomposition is an increasing process. We begin with the second
result.

Theorem 8.40 Let U be an rc.l.l. (F,) predictable process with finite variation
paths with Uy = 0 and

E[VAR[o,71(U)] < coforall T < oo. (8.4.2)
If U is also a (F,) submartingale, then U is an increasing process, i.e.
PU,>U; VO<s<t<oo)=1. (8.4.3)

Proof Let V = |U| denote the total variation process of U (V; = Varjg 4(U)). As
seen in Corollary 8.24, V is also predictable and of course, V is an increasing process.
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Fix T < oo and define measures p and A on (5 , P) as follows. For a bounded
predictable process f

T
/fdu = E[/ fsdUq] (8.4.4)
0

T
/ fdx = E[ f £dVil. (8.4.5)
0

Since V is an increasing process, A is a positive finite measure. We shall show that
i s also a positive measure. Note that if f = al,, 5,) with a being F;, measurable,

a>0,s; <s; <T then
T
/ fdp =El f fdU,)
0

= Ela(U,, — U,))]

= E[aE[(Uvz - Usl) | fvl]]

>0
as E[(Us, — Uy,) | F5,1 = Oa.s. since U is a submartingale and a > 0. Since a simple
predictable process is a linear combination of such functions, it follows that for a
simple predictable f* given by (4.2.1) such that f > 0, [ fdp > 0. Since § generates

the predictable o-field, it follows that p is a positive measure (see Exercise 4.2). If f
is a non-negative bounded predictable process, then

T T
|/ fstsls/ £V,
0 0

[ gan < [ax.

Thus p is absolutely continuous w.r.t. A and thus denoting the Radon-Nikodym
derivative by &, it follows that & is a [0, oo)-valued predictable process such that

and thus for such an f,

/fdu = /fgd)\. (8.4.6)
Let us define a process B by
B/(w) = / Lio,77()&s(w)d Vi (w). (8.4.7)
0

Since £ is a [0, co)-valued and V is an r.c.l.l. increasing process, it follows that B
is increasing as well. Since ¢ and V are (F,) adapted, it follows that B is also (F,)
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adapted. Further, let us note that
(AB) =£(AV) (8.4.8)

and hence predictability of V implies that (AV) and as a consequence (AB) is
predictable. Since B = B~ + (AB), and B~ is l.c.r.l. and hence predictable, it follows
that B is predictable. Let C = B — U. Then C is a predictable process with finite
variation paths and Cy = 0.

We will show that C is a martingale. For this, using (8.4.6) and (8.4.7), we have
for any bounded predictable f

_ / Fedr (8.4.9)

Using (8.4.4) and (8.4.9) and recalling that C = B — U we conclude that for bounded
predictable processes f we have

T
E[/ £,dCy] = 0.
0

Taking f = als, s, With a being F;, measurable, s; < s < T, we conclude
Ela(Cy, — C;))] = 0.

This being true for all 7 < oo, we conclude that C is a martingale.
By Theorem 8.29, it follows that C = 0 and as a consequence, U = B. Since by
construction, B is an increasing process, this completes the proof. |

The preceding result also contains a proof of the following:

Corollary 8.41 Let U be an r.c.ll. (F,) predictable process with finite variation
paths with Uy = 0 such that (8.4.2) is true. Let V = |U| denote the total variation
process of U (V; = Varjo 4 (U) ). Then there exists a predictable process & such that
€] = 1 and

1
U,:/ &d V. (8.4.10)
0

Here are some auxiliary results.

Lemma 8.42 Let M be a local martingale. Then M is locally integrable.

Proof Let o be stopping times increasing to oo such that M”"! is a martingale. Let
a,, be the stopping times defined by
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a, =inf{t > 0: |M;| > nor |M;_| > n}

and let 7, = o, A 0, A n. Note that 7" also increases to co. Let M" = M ™!, Then
M" is a martingale and for any T < 0o

sup [M;| <n+ M| =n+ M|

0=t=7,
Since E[M]'] < oo, it follows that M is locally integrable. (]

Lemma 8.43 Let 7 be a stopping time and let £ be a F; measurable [0, 0o)-valued
integrable random variable. Let

X =&l r 00 ().
Then X admits a decomposition
X =M+A, M eM, Apredictable, A € A (8.4.11)
The decomposition (8.4.11) is unique. Further, for all T < oo,
E[Ar] < E[¢] (8.4.12)
EllM7[] < 2E[¢]. (8.4.13)

Proof Let {c, : n > 1} be such that E[{1¢>.,;] < 27". Such a sequence exists as
&> 0and E[£] < oco.Let&" = &le<c,y and X" = £ 11 o) (). Then, X is bounded
FV processes and hence a stochastic integrator. Thus by Theorem 8.38, it admits a
decomposition

X" =M"+A", M" € M?, AJ =0and A™ is predictable.

Also, ™ > 0 implies that X" is a submartingale. Since M ™ is a martingale, it follows
that A™ is a submartingale and hence by Theorem 8.40, A™ is an increasing process.

Let us note that X;""' — X/" = €1, <¢<c,,,) 1{r.00) and clearly it is an increasing
process. Thus, we have

E[ sup |X' —X"|] < E[X;"" — XJ']
0<t<T

S E[fl{cn<£§(7,l+l}] (8.4.14)

<27
Moreover X"+! — X" is a submartingale. Noting that

th+1 _th — Mtn+1 _Mtn +A;1+1 —A?, V>0 (8.4.15)
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and the fact that M"*! — M" is a martingale, it follows that A"*! — A" is a submartin-
gale. As a consequence, A"t — A" is an increasing process in view of Theorem 8.40.
Thus

E[ sup |A"T" —A”|] = E[A%! — AZ) (8.4.16)

0<t<T
Using E[M{"] = E[X}'] = E[{1{¢<c,;1{r=0}], we conclude that

ElM; ! — M) = EMT — M
= E[¢1¢,<c<cir1y L r=0y] (8.4.17)
> 0.

As a result we have

E[AZT — AL = E[X) — X — E[M;T — M)
< EX; = X7 (8.4.18)
<27

Using (8.4.16) and (8.4.18) we conclude

00 o0
E[Z sup AT — A7) < ZE[ sup A7 — A7)

n=1 0<t<T n=1 0<t<T

< D EAF - A7)

n=1

o0
<y 2
n=1

< Q.

(8.4.19)

As seen in the proof of Theorem 2.71, we conclude that outside a null set, A}
converges to A, uniformly in ¢ € [0, T'] for every T < 0o. On the exceptional set, A,
is defined to be zero. Since each A" is predictable and is an increasing process, it
follows that so is A, thus A € V. The estimate (8.4.19) also implies

E[lA} — A1 — 0 V1. (8.4.20)
DefiningM = X — A, using (8.4.20) and the easily checked fact that E[| X" — X;|] —
0, it follows that

E[|M — M,|] — 0 V1. (8.4.21)

Since each M" is a martingale, using (8.4.21) and Theorem 2.23 we conclude that
M is a martingale.
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The uniqueness of the decomposition follows from Theorem 8.29—if X = N + B
is another decomposition with a martingale N and B € V with By =0, then U =
M — N = B — A is a martingale as well as a predictable process with U € V with
Up = 0 and hence U, = 0O for all # by Theorem 8.29.

Note that Ag = 0 implies My = £1(;=¢y and hence E[M7] = E[M,] > 0. Thus,

E[Ar] = E[Xr] — E[Mr] < E[Xr] < E[].
This proves (8.4.12). For (8.4.13), note that [My| < X7 4+ Ar and hence
E[IM7]] < E[A7] + E[X7] < 2E[¢].

O

Corollary 8.44 The processes A, M constructed in the previous result also satisfy

E[ sup |A,]] < E[¢] (8.4.22)
0<t<T

E[ sup |M,] < 2E[£]. (8.4.23)
0<t<T

Proof Since A and X are increasing processes, Sup,, .y |A;|=Ar and sup,, .y |X|
= X7. Thus

sup |M,| < Ar + Xr.
0<t<T

The inequalities (8.4.22) and (8.4.23) follow from these observations. O

Corollary 8.45 Let 1, be a sequence of stopping times and let &, be a sequence of
[0, oo)-valued random variables, with £, being F,, measurable and

Z E[&,] < co. (8.4.24)

n=1
Let
o0
Zi=Y &l o0 (8.4.25)

n=1

Then there exists a unique predictable increasing process B with By = 0 and a mar-
tingale N such that
Z=N+B.
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Proof In view of (8.4.24), it follows that

oo
an <00 a.s
n=1

and hence Z is an r.c.Ll. process. Let X" = &,1[7, ) and let A" be the predictable
increasing process with Aj = 0 given by Lemma 8.43 such that M;' = X' — A} isa
martingale. Then as seen in Lemma 8.43 and Corollary 8.44 we have

E[ sup |A7]] < E[&,] (8.4.26)

0<t<T

and hence the assumption (8.4.24) implies that B, = > - | A7 defines a integrable
predictable process. Indeed, (8.4.26) implies that the series defining B converges
uniformly in ¢ € [0, T] for every T < oo almost surely. Thus, B is an r.c.Ll. increas-
ing predictable process. Further Zﬁ:] M]" converges in L'(P) to N, = Z, — B,. By
Theorem 2.23 N is a martingale. This proves existence part. The uniqueness again
follows from Theorem 8.29. ]

We can now extend the decomposition of semimartingales where the FV process
is predictable to a wider class of semimartingales.

Theorem 8.46 Let X be a semimartingale that is locally integrable. Then X admits
a decomposition

X=M+A, MeMy., AecV,Ay=0andA is predictable. (8.4.27)
The decomposition as in (8.4.27) is unique. Conversely, if a semimartingale X admits
a decomposition (8.4.27), then X is locally integrable.

The process A appearing in (8.4.27) is called the compensator of the semimartingale
X.

Proof Let 0, be stopping times increasing to oo such that

sup |X;| is integrable. (8.4.28)

0<i<o,
Let o, be the stopping times defined by
a,=inf{t >0: |X;|>nor|X,_ | >nor[X,X],_ >n} (8.4.29)
and let 7, = o, Ao, An. Let X" = X0l ¢ = (AX), , U" = (€ iy, 00, V' =

(€)1, 00 and Z" = X" — U" + V". Then

Z' =

t

X[ ift < Tn
X,— ift>m,
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Hence Z" is a bounded semimartingale. Note that [Z", Z"] is also bounded. Thus by
Theorem 8.38, Z" admits a decomposition as in (8.4.1). In view of (8.4.28) (¢")™ and
(£")~ are integrable and hence by Lemma 8.43, U", V" also admit decomposition
asin (8.4.11). Thus X" also admits a decomposition

X"=M"+A" (8.4.30)

with Aj = 0, A" being a predictable FV process. This decomposition is unique in
view of the Corollary 8.30. For n < m,

X'=X"fort <,
The uniqueness of the decompositions (8.4.30) then shows that
M!'=M", A} =A]"fort <7,.
Thus defining M; = lim, M;* and A; = lim, A}, it follows that
M, =M, A =A]fort <,

Thus M is alocal martingale and A is a predictable process with finite variation paths
with Ag = 0 and by construction, X = M + A. Thus a decomposition as in (8.4.27)
exists. On the other hand if a semimartingale X admits a decomposition (8.4.27),
then A, being a predictable FV process, is locally bounded (see Lemma 8.26) and
hence locally integrable and M being a local martingale is locally integrable (see
Lemma 8.42).

The uniqueness part once again follows from Corollary 8.30. (I

Remark 8.47 A locally integrable semimartingale is called a Special Semi-
martingale. The previous result says that a semimartingale admits a decom-
position as in (8.4.27) if and only if it is special.

Exercise 8.48 Let X be a semimartingale such that X, = 0 and

[(AX)| <a
for a constant a. Show that X is locally integrable. Further, if X =M + A is
the canonical decomposition with M € M o¢,A € V, A; = 0 and A predictable.
Show that

I(AA)] < a.

HINT: If o, are defined by (8.4.29), then X1 are bounded. Observe that for
any predictable stopping time 7,

(AAlehy = E[(AAl™) | Fo ).
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When M , N are local martingales such that the quadratic variation process [M , N ]
is locally integrable, then the unique predictable process A € V such that Ay = 0 and
[M,N]; — A, is a local martingale (in other words the process A appearing in the
decomposition (8.4.27) is denoted by (M, N)).

Definition 8.49 For local martingales M, N such that [M, N] is locally inte-
grable, the predictable cross-quadratic variation (M, N) is the unique pre-
dictable process with FV paths which is zero at + = 0 and such that

[MvN]t_<M’N>I

is a local martingale. When M = N and M is locally square integrable then
(M, M) is called the predictable quadratic variation of M.

If M, N are locally square integrable, [M , N] is locally integrable as seen in (4.6.17)
and hence the predictable quadratic variation (M, N) is defined. It is easy to see that
(M,N) + (M, N) is a bilinear mapping from M3 ., x M3, into V.

loc

8.5 Doob-Meyer Decomposition

As was mentioned earlier, the Doob—Meyer decomposition was the starting point
of the theory of stochastic integration. For a square integrable martingale M, the
Doob-Meyer decomposition of the submartingale M? gives an increasing process
(M, M) (also called the predictable quadratic variation of M ) which gave an estimate
on the growth of stochastic integral w.r.t. M . In this book, we have developed the
theory of stochastic integration via the quadratic variation [M , M ]. Nonetheless, the
predictable quadratic variation of a (locally) square integrable martingale M plays
an important role in the theory and now we will show thatif M € leoc then (M, M)
is an increasing process. We start with an auxiliary result.

Lemma 8.50 Ler A be an adapted increasing integrable process with Ao = 0 and
let U be a predictable process, U € V such that M = A — U is a martingale. Then
U € V*;i.e. U is an increasing process.

Proof Let {r,, : m € F} be the sequence of stopping times given by Theorem 8.22
(F is a subset of natural numbers) so that (8.2.27) and (8.2.28) are true. Let

C = Z(AA)TM 1[Tm,00)

meF

and
D[ = A[ - Ct'

It follows that C and D are adapted increasing processes, Cyp = 0, Dy = 0 and D is
continuous. Since
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0<C <A Vt

it follows that C is also integrable and thus by Corollary 8.45 we can get a predictable
increasing process B such that N, = C,; — B, is a martingale. Thus N, = A, — D, —
B,., Thus N—M =U — D — B. Now N — M is a martingale and at the same time
U — D — Bis an FV process that is predictable. Thus by Theorem 8.29, we have

U=D+B.

By construction, D and B are increasing processes and this shows U is incre-
asing. O

Corollary 8.51 Let M be a locally square integrable martingale. Then the pre-
dictable quadratic variation (M , M) (see Definition 8.49) is an increasing process.

Proof The result follows from Lemma 8.50 since [M, M] is an increasing pro-
cess. (]

We are now ready to prove the classical result.

Theorem 8.52 (The Doob—Meyer Decomposition Theorem) Let N be a locally
square integrable martingale with Ny = O w.r.t. a filtration (F,). Then (N, N) is the
unique r.c.l.l. (F,) predictable increasing process A such that Ay = 0 and M defined
by

M, = N? — A, (8.5.1)

is a local martingale. Further, for any stopping time o

E[(N,N),] < E[ sup [N,|*] < 4E[(N,N),]. (8.5.2)

0<s<o

Proof Since N,2 — [N, N1, is alocal martingale (see Theorem 5.19), for a predictable
process A, N> — A is alocal martingale if and only if [N, N] — A is alocal martingale.
Now the first part follows from Corollary 8.51.

For the remaining part, let 7, be a localizing sequence for the local martingale
M = N? — (N, N). Then forn > 1

Y =N = (NN
is a martingale. Hence for any bounded stopping time o we have,
EIN: .1 = EL(N. N)7,00] (85.3)

Now by Doob’s maximal inequality, Theorem 2.26, we get

E[(N,N):rol <E[ sup |Ng*] <4E[(N,N); ol

0<s<m, Ao
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Now taking limit as n — oo and using monotone convergence theorem, we conclude

E[(N,N),] < E[ sup |N;|*] < 4E[(N,N),]. (8.5.4)

0<s<o
O

Remark 8.53 Using (8.5.3), it follows that if N is a locally square integrable
martingale then for all stopping times o,

E[[N,N],]1= E[Ng] = E[(N,N),]. (8.5.5)

All the quantities can be oo, but if one is finite, so are the others and they are
equal.

Lemma 8.54 Let M be a locally square integrable martingale and let f be a pre-
dictable process such that for all t

t
B, =/ fIPd(M M), < oo a.s. (8.5.6)
0

Then B is a predictable increasing process.

Proof Let us note that B is an r.c.L.l. increasing adapted process and for any stopping
time T,

(AB), = |f;*(AM, M)),.
Now the result follows from Lemma 8.25 and part (v) of Theorem 8.4. (]

Exercise 8.55 Let V € V* be predictable and f be a predictable process such
that fo’ If|dV < oo for all t > 0. Show that the process U defined by U, =

[, fdV is predictable.

Lemma 8.56 Let M be a locally square integrable martingale and let f be a locally
bounded predictable process and let N = [ fdM . Then

(N,N),:/ Ifsl?d (M, M) < oo. 8.5.7)
0

Proof That B, defined by (8.5.6) is predictable has been noted above. One can show
that N> — B, is a local martingale starting with f simple and then by approximation.
Thus (N, N); = B;. (Il

Remark 8.57 Forf,M,N as above, we have seen that

[N,N], =/ If;|2d[M , M1, < oo (8.5.8)
0
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and hence it follows that for a stopping time o,

E[/ w2d<M,M>s]=E[f i 2dIM . M), (85.9)
0 0

The estimate (5.4.10) on the growth of the stochastic integral can be recast as:

Theorem 8.58 Let M be a locally square integrable martingale with My = 0.
For a locally bounded predictable process f, the processes Y; = fot fdM and Z, =

Yt2 - fot fszd (M, M) are local martingales and for any stopping time o such that
ELfY f2d (M, M),] < oo,

E[ sup |/ fdM |*] §4E[[affd<M,M)X]. (8.5.10)
0<t<o JO 0

For locally square integrable martingales M, N, the predictable cross-quadratic
variation (M , N') is the unique predictable processin V such that[M , N], — (M, N),
is a local martingale. Since M,N, — [M, N]; is a local martingale, it follows that
(M, N) is the unique predictable process in V| such that

7, = M,N, — (M, N), (8.5.11)

is a local martingale. We can see that the predictable cross-quadratic variation also
satisfies the polarization identity (for locally square integrable martingales M, N)

(M,N), = %((M +N,M +N),— (M —N,M —N), (8.5.12)

We had seen that (M, N) — (M, N) is bilinear in M and N. This yields an analogue
of Theorem 4.78 which we note here.

Theorem 8.59 Let M, N be locally square integrable martingales. Then for any

s <t
VARG (M, N)) < /(M. M); — (M, M)5).(N,N); — (N,N)s) (8.5.13)
and
VAR[0,1((M,N)) </ (M, M) (N,N), (8.5.14)
Proof Let

Qupsr={we 22 : (aM +bN,aM + bN),(w) > (aM + bN,aM + bN),(w)}

and
20 =UQupsr: s,r,a,beQ,r>s}).

Then it follows that P(£29) = 1 (since for any locally square integrable martingale
Z,(Z,Z) is an increasing process) and that forw € 2y, for0 <s <r,s,r,a,b € Q
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@M, M), — (M, M)5) +b*((N,N), — (N,N)y)
+ 2ab((M ,N), — (M, N)))(w) = 0,

and since the quadratic form above remains positive, we conclude

|((M, N)r(w) — (M, N)s(w))]

< VUM M), (w) — (M, M) w)((N,N), () — (N, N)sw)).
(8.5.15)
Since all the processes occurring in (8.5.15) are r.c.Ll., it follows that (8.5.15) is
true for all s <r,s,r € [0,00). Now given s <fand s =t <t; <...<t, =1,
we have

m—1
> M Ny, — (M. N),|
J=0
m-l (8.5.16)
=20 JUM M)y, — (M M) )N N, — (NN,
j=0

<V (M, M), — (M, M))({N,N); — (N, N),)

where the last step follows from Cauchy—Schwarz inequality and the fact that
(M,M), (N,N) are increasing processes. Now taking supremum over partitions
of [0, #] in (8.5.16) we get (8.5.13). Now (8.5.14) follows from (8.5.13) taking s = 0
since (M, M)y =0, (N,N)o=0and (M,N)y =0. O

And here is an analogue of (4.77). However, the proof is different from that given
earlier.

Lemma 8.60 Let U, V be locally square integrable martingales. Then for any t we
have

(U, U —(V, V)| <20U =V, U = V),({U,U), + (V, V). (8.5.17)
Proof Using bilinearity of (M, N) — (M, N), note that

Invoking (8.5.13) with s = 0, we get

(U, U) = (V, V), < (U=V,U=V),(U+V,U+V))

= U=V, U—=V),(U,U) +(V,V), +2(U, V).
(8.5.19)

Since
<U - V7 U - V)f = (U’ U)t + (Va V)t - 2<U’ V)f 2 O
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we have
2(U, V), < {U,U); +(V, V). (8.5.20)

Now (8.5.17) follows from (8.5.19) and (8.5.20). O

We will now prove that [M, M ] and (M , M ) depend continuously on M € M?

loc*

Theorem 8.61 LetM", M € M2 _ be such that for a sequence {0} of stopping times

loc
increasing to 0o, one has for eachj > 1,

E[tsup|Ml” —M,*] = 0. (8.5.21)
<0;
Then we have
M"—M,M"—M] & 0 (8.5.22)
M"—M,M"—M) =5 0, (8.5.23)
M", M"] “5 (M, M), (8.5.24)
M M"y 25 M. (8.5.25)

Proof Using (5.3.24) and (8.5.2) it follows from (8.5.21) that
E[M"-M ,M"-M];]]— 0

and
E[(M”—M,M”—M)Uf] — 0.

Since [M" —M , M" —M] and (M" — M ,M" — M) are increasing processes,
(8.5.22) and (8.5.23) follow from these observations and Lemma2.75. Using (4.6.17),
(8.5.14) along with (8.5.22) and (8.5.23), we conclude that

ucp

M" —M,M]-% 0 (8.5.26)

and
ucp

M"—-M, M) — 0. (8.5.27)
Using

M", M"] —[M,M]=[M"—M,M" —M]+2[M"—M,M]
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and
M' M"Yy — (M, M)=M"-—M,M"—M)+2M"—M,M),

the remaining conclusions (8.5.24) and (8.5.25) follow from (8.5.22), (8.5.26) and
(8.5.23), (8.5.27), respectively. (Il

Using Lemma 8.25, one can show that if A is a predictable r.c.l.l. FV process and
f is a [0, oo)-valued predictable process, then B defined by

t
B, = / fdA,
0

is predictable. Further, it can be checked (first for simple integrands and then by
limiting arguments) that for f, g predictable and locally bounded, M , N locally square
integrable martingales, X = [fdM and Y = [ gdN,

'
U,:X,Y,—/fgd(M,N)
0

is a local martingale. Thus

(/fdM,/ng) =/fgd(M,N). (8.5.28)

These observations lead us to the following analogue of Theorem 5.31 which we
record here for use later.

Theorem 8.62 Let M be a locally square integrable martingale with My = 0 and
o be a stopping time. For a locally bounded predictable process f such that
E[fogfszd(M, M),] < oo, we have

E[ sup |f fam |*] < 4E[/affd(M, M), (8.5.29)
0 0

0<t<o

Proof We had observed that Y = [ fdM is a local martingale above and that

(Y,Y), = /tffd(M,M)s.
0

Now the estimate (8.5.29) follows from (8.5.2). O

Definition 8.63 Two locally square integrable martingales M, N are said to
be strongly orthogonal if (M, N), = 0 for all r < co.

Equivalently, M, N are strongly orthogonal if Z; = M;N; is a local martingale.

Exercise 8.64 Construct an example of martingales M, N such that (M, N), =
0 forall t < oo but for some T < oo, [M, N]r # 0.
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The following interesting observation is due to Kunita—Watanabe who studied struc-
ture of square integrable martingales.

Theorem 8.65 Let M, N be locally square integrable martingales. Then N admits
a decomposition

t
N; = / JfaMm + U; (8.5.30)
0

where f € IL2(M) and U is a locally square integrable martingale strongly orthog-
onalto M.

Proof Let 7, be a sequence of stopping times, 7, < n, such that N;.., is a square

integrable martingale. Let a, = E[N? ]. Let

o =inf{}%°, ME[(NTM — o' gdM)*] : g e L2 (M)}.

It can be seen that o < 00, indeed, o < 1 since g =0 € Li(M). Now it can be
shown (proceeding as in the proof of existence of orthogonal projections onto a
closed subspace in a Hilbert space as used proof of Theorem 5.44) that the infimum
is attained, say for f € .2 (M) and then for every n

m

L, — [ [ gam)=0 vy e Lo,
0 0
Thus defining U by (8.5.30) with this f we have
E[UT"(/ " gdM) =0 Vg € L2(M).
0

Given a stopping time o, taking g = 10, this yields
E[UT,,NJAT,,] =0

which in turn yields
E[UO'/\TnNO'/\T,l] =0.

Writing Z; = U,;N,, we conclude that Z' = Z, ., is a martingale and thus Z is a local
martingale completing the proof. |

For N, M € Mg, if [M, N] = 0 then it follows that MN is a local martingale and
hence (M, N) = 0. This observation has an important consequence.

Lemma 8.66 Let N e VAM?  and M € M?

e e be such that for all stopping
times T,

(AN) (AM), =0 a.s.

Then (M, N) = 0. In particular, V N M? C M(Ziyloc.

loc
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Proof As seen in Theorem 4.74, N € V implies

[M.N], = ) (AM),(AN);.

O<s<t

Using Theorem 8.22, we can get stopping times {7;,, : n € F} (F is a finite or count-
able set) that cover the jumps of N and then it follows that

[M.N], = > (AM),, (AN);, 115, <.

neF

Now in view of the assumption, (AM ), (AN)., = 0 (a.s.) for each m and as a
consequence, [M, N]; = 0 (a.s.) for all ¢. Thus Z, = M;N, is a local martingale and
as a consequence (M, N) = 0. The last statement follows easily. (]

8.6 Square Integrable Martingales

In this section we will obtain a decomposition of square integrable martingales into
a martingale with continuous paths and a martingale with jumps.

Theorem 8.67 Let 7 be a predictable stopping time and let & be a F, measurable
square integrable random variable with E[§ | F_]1 = 0. Then

M, = Elpr.00) (1) (8.6.1)
is a martingale and (M , M) = A where
Ay = E[E | Fr 1 jr.00)(0). (8.6.2)

Proof From part (vii) in Theorem 8.4 it follows that M is a martingale. Since 7
is predictable, by Theorem 8.19 it follows that A is predictable and clearly A is an
increasing process. Noting that

M} = A, = (& —E[& | FrDljro0) (1)
it follows, again invoking part (vii) in Theorem 8.4, that N, = M —
gale.

It is clear from the definition of A that Aj = 0 on the set 7 > 0. On the other
hand, ¢ is F, measurable and hence £1y,—¢, is F measurable. Thus E[£ | F,_] =0
implies {1,=0; = 0. Since Fy < F,_, we conclude that Ag = 0 on {7 = 0} as well.
Thus Ay = 0 and hence

A, is a martin-

(M, M), = E[£ | Fr 11 00) (1) (8.6.3)
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follows from the uniqueness part of the Doob—Meyer decomposition (Theorem
8.52). O

We are going to prove a structural decomposition result for square integrable
martingales. This would play an important role in the proof of Metivier—Pellaumail
inequality in the next chapter. Here are some preparatory results. Recall the Definition
5.68—a locally square integrable martingale M is purely discontinuous if

[M,N]=0 VN €M, .

The class of purely discontinuous square integrable martingales is denoted by Mz,
and purely discontinuous locally square integrable martingales is denoted by Mf,’loc.

Exercise 8.68 Show that a locally square integrable martingale is purely dis-
continuous if and only if

(M,N),=0 Vt>0, VN € M?

c,loc*
Exercise 8.69 Let M" € M2 and M € M? be such that
E[M"—M , M"—-—M]r] - 0 VT <

then M e M.

Lemma 8.70 Let X be a square integrable martingale with X, = X; .7 for all t, for
some T < oo and let T be a predictable stopping time such that

P((AX), # 0) > 0.

Let N be defined by
Nt = (AX)T][T,OO)(t)'

Then N € Mg LetY =X — N. Then P((AY), #0) =0, Y is a square integrable
martingale,
(Y,N)=0

and
(N,N), = E[(AX)2 | Fr_1r.00)(0). (8.6.4)

Proof Using X, = X,,7, we have

[(AX)-| < 2suplX;|

t<T

and hence in view of Doob’s maximal inequality, Theorem 2.26, we have that £ =
(AX), is square integrable. Since 7 is predictable, E[(AX), | F,_] = 0. So Theorem
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8.67 implies that N is a square integrable martingale and that (8.6.4) is true. Since
N €V, using Lemma 8.66 it follows that N e Mé.
It follows that Y is a square integrable martingale and by construction, P((AY), #
0) = 0. Hence
(AY);(W)(AN),(w) =0, Vi, Yw

and hence by Lemma 8.66, (Y, N) = 0. O

For X € M3, applying the previous result to X ! € M? where {0, : m > 1}

is a localizing sequence we get:

Corollary 8.71 Let X be a locally square integrable martingale and let T be a
predictable stopping time such that

P((AX). # 0) > 0.

Let N, Y be defined by
Ny = (AX)r1ir,00) (1)

andY =X — N. Then P((AY), #0) =0, N, Y are locally square integrable mar-
tingales with
(Y,N)=0.

Further, (N, N) has a single jump at T and if o,, 1 00 are bounded stopping times
such that X1 € M? then

(N,N)71{r=0,) = EL(AX1")2 | 7). (8.6.5)

2

The following technical result will be used in the decomposition of M € M.

Theorem 8.72 Let M € leoc be a locally square integrable martingale with My =

0. Let {1 : k > 1} be a sequence of stopping times with disjoint graphs. Let
Vi = (AM) 11, ) (8.6.6)

and let A be the compensator of V/. Let W/ = VI — Al. Then
(i) Forallj>1, Wi e Mj .
(ii) §" = Z;”:l Wi converges in Emery topology to W.
(iii) W e MSUOC and if{o; : i > 1}is a sequence of bounded stopping times increas-
ing to oo with Wil e ij, then for each i

E[ suplS;" — W,’1 = 0as m — oco. (8.6.7)

t<o;

ucp

(vi) [S",5"] =5 [W, W] and (S", S") =5 (W, W).
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Proof Since graphs of {7} : k > 1} are disjoint,
oo oo
DIV VI =3 (AM) 1000 < ) (AM)] < [M M1 (8.68)
j=1 j=1 O<s<t
Also, easy to see that for j # k P(7; = 7;,) = 0 implies
V7, V¥l = 0. (8.6.9)

Let ; 1 oo be bounded stopping times such that M 1“1 € M? so that

E[[M.,M],] <oo Viz>l. (8.6.10)
It follows that for every i,
o0
; J oy _
Tim E[Z[V ,V,1=0. (8.6.11)
j=m

Since A’ is compensator of V/ and W/ = V/ — A/, it follows that 27:1 Al is the
compensator of Y7 V/and §" = 37" | V/ — 37 | A/, Using (5.6.37) along with
(8.6.8) and (8.6.9) we have

E[[S".$"],,] < E[[Y_ V.Y Vi],]

=1 =l

n
= > E[IV/. V],
j=1
<E[M.M];]
< oo.
Thus S" € MZ,.. Since S” € V by construction, using Lemma 8.66 it follows that
S" e Mfiqloc. Similarly, for m < n we have

E[[S" — 8™, 8" — "] <EL Y [V, Vilo]. (8.6.12)

j=m+1

Now (8.6.11) and (8.6.12) imply that §" is Cauchy in d,,, and thus converges to
say W such that W € M3 . (see Corollary 5.42) and further (8.6.7) holds. Since

(SM7il € M, the relation (8.6.7) implies that W!°! € M3 and hence W € M3 | .
As seen in Theorem 8.61, (8.6.7) implies (iv). O
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Lemma 8.73 Let M € M2 be such that My = 0, M, = M, .1 fort > 0 for some T
and let T be a predictable stopping time. Then

AM M), =E[(AM)? | F._] (8.6.13)

and
E[(AM)?] = E[(AM?).]. (8.6.14)

Proof Lett, 1 T be a sequence of (F*-) stopping time announcing 7 so that 7, < T
on 7 > 0. Note that since M,2 — (M, M), is a martingale, we have form <n

EIM? — M2 | Fr1=E[M . M), — (M. M), | F}].
On the other hand, easy to see that
ELM: —M:)* | Ff1=EM? =M | FI1.

Taking limit as n — oo and using that M, — M,_ (we need to use My = 0), it
follows that

E[(AM)? | F} 1= E(AM?), | Ff 1= E[AM M), | F].

Now taking limit as m — oo and using Theorem 8.15 along with Theorem 1.37, we
conclude

E[(AM)? | i1 = E[(AM?), | F} ] = E[AM M), | F].
Since (M, M) is predictable, A(M , M), is F,_ C ]—"f_ measurable, we conclude
E[(AM)? | Fr_]1 = E(AM?), | Fr 1= AM , M)-.

Both the required relations (8.6.13) and (8.6.14) follow from this. ([l
Corollary 8.74 Let M € M?__and let T be a predictable stopping time. Then for

loc

all bounded stopping times o such that M ') € M?
(AM, M) )] ;<o) = E(AMN? | Fo_]. (8.6.15)

Proof Follows from (8.6.13) by observing that (M !, M1y, = (M, M),,, and as a
consequence,
(AM, M) = (AM, M)):n0).

O

Theorem 8.75 LetY € MZZW be alocally square integrable martingale with Yy = 0.

Then there exists a sequence {1 : k > 1} of predictable stopping times such that the
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local martingale Y admits a decomposition
Y=7Z+4+U (8.6.16)

satisfying the following.

(i) UF = (AY); 11r,.00)(0) satisfies UX € M3, .
(i) U=Y72, Uk e Mfi e (here the sum cohverges in the Emery topology).
(iii) [U7, U] =0and (U, U*) =0 forallj, k > 1.
(iv) [U,Ul= 32, [U% UM
(v) (U, U) =32 (UK, US).
(vi) [Z, U] =0and (Z,U) = 0.
(vii) Z is a locally square integrable martingale,

¥, Y1=12,.Z1+ ) _[U* U"] (8.6.17)

k=1

and o
(Y, Y) Z)+Y (Wt uh. (8.6.18)

k=1

(viii) (Z,Z) is a continuous process.
Further, (U*, U*) is a process with a single jump at 7, and if o,, 1 00 are bounded
stopping times such that Y1 ¢ M

(U*, UY) 11 <o) = EL(AY" )2 | F ] (8.6.19)

Proof Let A= (Y,Y). By definition A is an increasing predictable process with
Ay = 0. Using Theorem 8.22, we can get predictable stopping times {7, : m > 1}
with disjoint graphs that enumerate the jumps of A, i.e.

oo
(AA) = "(AA);, iz, (8.6.20)
m=1
Fork > 1, let
= (AY) 15 00 () (8.6.21)

As observed in Lemma 8.70 and Corollary 8.71, U¥ is a locally square integrable
martingale and (8.6.19) holds. Since graphs of {7, : m > 1} are disjoint, it follows
that

(U, U/1=0, forj, k>1 (8.6.22)
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and as a consequence
(U, U%y =0 forj, k > 1. (8.6.23)

We invoke Theorem 8.72. In the notation of that theorem, V/ = U/ and A’ = 0
(since U/ is local martingale) and hence W/ = U/. Thus it follows from Theorem
8.72 that

S":ijukﬂU
k=1

where U € M ... In view of (8.6.22) and (8.6.23) we have [$", §"] = Y ;_,[U*,
U*land (S", S") = >"}_(U*, U*). Part (iv) in Theorem 8.72 now implies

[U*, UX (8.6.24)

K

(U, U] =

».
Il

(U*, U*). (8.6.25)

M2

(U.U) =

»
Il

1
Since Y — S* and S* do not have any common jump and S* € V,
[y — s, sk1=0.
Now using that ™ LU we get
[Y-U,U]=0. (8.6.26)
We define Z = Y — U so that (8.6.16) holds and conclude using (8.6.26) that
[Y,Y1=1[Z,Z]+[U, U]
This along with (8.6.24) implies (8.6.17). Finally [Z, U] = 0 also gives (Z,U) =0
and thus
(Y,Y)=(Z,Z2)+ (U, U)
and in turn (8.6.18) follows.

Remains to prove that (Z, Z) is continuous. By the choice of the stopping times
{rr : k > 1},itfollowsthatthe (Y, Y) does nothave jumps otherthanat {7, : k > 1}.
From Corollary 8.74 we get

(MY, Y);) g <0,y = ELAY"D? | F, ]
while from (8.6.19) it follows that

(AU*, U ) <0,y = ELAY D2 | 7 2]
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Since (U’, U’) has a single jump at 7; and since the graphs of {7, : k > 1} are
disjoint, it follows that

AU, U),, = AUS, UY,.
Thus we conclude that for all k > 1

AY,Y), = AU, U),,.

This implies (Z, Z) is continuous. O

Remark 8.76 Note that in the decomposition (8.6.16), Z and U are such that
(U, U) is purely discontinuous and (Z, Z) is continuous.

We will explore further structure of elements in Mﬁ_ loc and conclude with identi-

fying the continuous part [X , X ] of the quadratic variation of a semimartingale X
as the quadratic variation of its continuous local martingale part, to be defined below.

Lemma 8.77 Let Z € M3

e be such that (Z,Z) is continuous. Then for any pre-
dictable stopping time o,

(AZ), = 0. (8.6.27)

Proof LetT; 1 oo be stopping times such that Z* = Z!™] € M? andlet Y* = (Z¥)? —
(Z,Z)ipr,- Then Y kisa martingale and hence using Theorem 8.17 it follows that

E[(AY)on] = 0.
Since (Z, Z) is continuous, we conclude
ELZ},.)" = Zypm )’ 1=0.
Since Z¥ € M?, Lemma 8.73 now yields

E[(ZﬁAn - Zéca/\n)f)z] =0.

Thus
E[(AZ)(zr/\n/\Tk] =0
so that
P(AZ),pr, =0) = 1.
Since this holds for all n and for all k and 7 1 oo, this completes the proof. |

Lemma 8.78 Let Z € MZIOC be such that (Z,Z) is continuous. Let o be a stopping
time and let D = (AZ)y15,). Let A be the compensator of D, namely A is the
unique predictable process in V such that R = D — A is a local martingale. Then A
is a continuous process, R € Mfl. e and
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[R, Rl; = (AZ)2 1{5.00)(1) (8.6.28)

Proof Since A is predictable and the discontinuities of A can be covered by countably
many predictable stopping times (as seen in Theorem 8.22), it suffices to show that
for any bounded predictable stopping time 7,

P((AA), = 0) = 1.

So, fix a predictable stopping time 7. By Lemma 8.77, we have (AZ), = 0. Since
D = R + A this gives
(AA)r = —(AR),.

Thus (AR); is F,_ measurable (as A is predictable). On the other hand
E[(AR): | F7-1=0

by Theorem 8.17. Thus we get
(AA); =0

for all bounded predictable stopping times. Since A is predictable, this shows that A
is continuous. Continuity of A gives [R, R] = [D, D]. O

Theorem 8.79 Let Z € M2

e be such that (Z,Z) is continuous. Then Z admits a
decomposition

Z=M+R (8.6.29)

where M € M, 1, and R € Mﬁ e Further, there exist stopping times {o; : j > 1}
such that

(2,21, = M, M1, + Y (AZ)] 115,00 (0). (8.6.30)

j=1

Proof By Theorem 8.22, we can get stopping times {o; : j > 1} that enumerates the
jumps of Z. Let ‘
V= (AZ) 5 115,.00) (1), (8.6.31)

and let A/ be the compensator of V/ and R =7/ — A/. By Lemma 8.78, A’ is a
continuous process, R € M(zj’ Joe and

(R, R = (AZ) 115,00 (1)

Since A/, AF are continuous, [R/, Rl =1[Z/,Z¥]1 =0 for j # k. Let W' = Y
R. Tt follows that
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(W', W' =Y IR, R, =Y (AZ)] 115,.00(0) (8.6.32)
j=1 j=1
and
[Z—W", W' =0. (8.6.33)

Further, as seen in Theorem 8.72, W" converges in Emery topology to R € Mlziq loc
and
[W", W"] — [R, R]. (8.6.34)

Theorem 4.1.1.1 along with W” LR and (8.6.33) implies
[Z—-R,R]=0.
Defining M = Z — R, we conclude
[Z,Z]=[M,M]+[R,R]. (8.6.35)

The relations (8.6.32) and (8.6.34) yield

oo

[R,R] = Z(AZ); 1,000 (1). (8.6.36)
j=1

In turn, (8.6.35) and (8.6.36) together yield the validity of (8.6.30). Since (A[Z, Z]);
= (AZ)? and as the stopping times {o; : j > 1} cover jumps of Z, (8.6.30) implies
that [M, M ] is continuous and hence M is a continuous local martingale. This com-
pletes the proof. ]

Based on general considerations such as projections in a Hilbert space, we had
shown that every square integrable local martingale X can be written as a sum
of M € M, joc and N € Mfmoc. Now we have a more concrete description of this
decomposition.

Theorem 8.80 LetY € MZZUC be alocally square integrable martingale with Yy = 0.

There exist predictable stopping times {1 : k > 1} and a sequence of stopping times
{o; : j > 1} such that U* and V' defined by

UF = (AY), 11,.00)(0)
Vi = (AY),, 110,00 (1)

satisfy the following.
(i) U e Mz, weforallk > 1.
(”) Z?:l Uk ﬂ Ue Mczl loc*
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(iii) For allj > 1, 3 continuous process A’ € V such that R = VI — A/ e ng loc-
(lV) ij:l Rj ﬂ) R e M%i,‘loc‘

(v) [U/, UKl =0and (U/,U*) =0 forallj, k > 1,j # k.

(vi) [R,R*1 =0and (R,R"Y =0forallj, k>1,j +# k.

(vii) [R,U*]=0and (R, U*) = Oforallj, k > 1.
(viii) [U, U] =Y 12, [U*, U]

(ix) (U, U) =302 (U, U").

(x) [R,Rl=)"°|[R,R]

(xi) (R,R) =) 7" (R, R).

(xi) N=R+U eMj . andM =Y —N € M ..
(xii) [N, N1 =Yg, (AY);.
(xiii) [M, M is continuous.

Thus Y = M + N is a decomposition with M € M? , and N € Mj’ loc-

c, loc

Proof The proof is just putting together various parts proven in Theorem 8.75 and
Theorem 8.79. First get {7, : kK > 1} as in Theorem 8.75 that cover jumps of (Y, Y)
and define U*, U as above. Writing Z = Y — U, we conclude (Z, Z) is continuous.
Now we get o; to cover jumps of Z. Since {7 : k > 1} are predictable, for all k, j,

P(rx =0j, 0j <00) =0

and hence (AU),;, = Oandasaconsequence, (AZ),, = (AY),,. The restnow follows
from Theorem 8.79. O

Corollary 8.81 LetN € M3 . Then

[N.N]= ) (AN)%.

O<s<t

Remark 8.82 In the decompositions Y=M + N andN =R+ U, withM, N, R,

U € M2, various parts are characterized by the following :

[M,M] and (R, R) are continuous, [N, N] and (U, U )are purely discontinuous.
We now come to identify the continuous part [X , X1 of quadratic variation [X , X ]

of a semimartingale X as the quadratic variation [X (), X )] of the continuous local
martingale part X © of X .

Theorem 8.83 Let X be a semimartingale. Then X admits a decomposition
X=X9+s§
such that X is a continuous local martingale with XO(C) =0and

[U,S]1=0 forall continuous local martingales U.
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Further, such a decomposition is unique and

X, X]=[X,X9T+ > (AX);.

O<s<t
As a consequence, [X,X]© = [X©, X©],

Proof First, we invoke Corollary 5.60 and decompose X = Y + A where Y € M3

and A € V. Then we use Theorem 8.80, we get a decomposition ¥ = M + N with
M eM?, andN € Mfl loc- LetX©@ =M and S = A+ N. Since N € M(ziy loe>

¢, loc

[UNI=0 VU €M ..

Of course [U, A] = 0 by Theorem 4.74.

Uniqueness follows easily : if X = Z 4 R is any decomposition with Z € M 1o
such that [U, R] = Oforall U € M, o, then W = X© — Z = R — § is a continuous
local martingale. Since [W, S] = 0 and [W, R] = 0 it follows that [W, W] = 0 and
hence W = 0. O
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Chapter 9 ®)
The Davis Inequality oo

In this chapter, we would give the continuous-time version of the Burkholder—Davis—
Gundy inequality —p = 1 case. This is due to Davis. This plays an important role
in answering various questions on the stochastic integral w.r.t.a martingale M—
including condition on f € L(M) under which [ fdM is a local martingale. This
naturally leads us to the notion of a sigma-martingale which we discuss.

We will begin with a result on martingales obtained from process with a single
jump.

9.1 Preliminaries

Lemma 9.1 Let 7 be a stopping time and let £ be a F; measurable [0, 0o)-valued
integrable random variable. Let

X, =& 1j7.00)(1)

Let A be the compensator of X and M = X — A.
Then for all T < oo we have

ElvIM, M]r ] < 3E[£]. 9.1.1)
Proof Note that if o is a bounded predictable stopping time, then

(AA)O' = E[(AX)O' |Fa—]

© Springer Nature Singapore Pte Ltd. 2018 303
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since E[(AM), | F,—]1 = 0 by Theorem8.17 and (AA),, is F,_ measurable by The-
orem 8.4. Thus, for a bounded predictable stopping time o we have (recall that by
definition, (AX), = € 1{;2o0))

E[1(AA)s]]=E[E[(AX)s | Fo-1I]
=< EIE[1(AX)s| | Fo-1T1
= E[1(AX),]]
= E[|§| 1{'r<oo} 1{0:7-}]~

9.1.2)

Given a [0, oc]-valued stopping time o, note that the set
A={aeR:P(r=a)>00rP(oc =a) > 0}

is countable. Thus, fork > 1,wechoosea; € (k, k + 1) N A°.Let7, = 0 A a;. Then
(9.1.2) gives us, for each k > 1

E[1(AA), 11 < E[IEl Lir<og) Lin=n)]- 9.1.3)

Since
[(AA),| < liminf(AA),,
k—o00

and
€l Lir<oo) Lin=ny 1 1€ Lir<o) Lig=r) as.

we can take limit as k — o0 in (9.1.3) and use Fatou’s lemma on left-hand side and
monotone convergence theorem on right-hand side of (9.1.3) to conclude

E[1(AA)|1 < ELIE] Lirzoo) Lio=n]- 9.1.4)
Let o, be predictable stopping times with disjoint graphs such that
{(AA) # 0} = Upzi[onm]

(existence of such stopping times was proven in Theorem 8.22). Recall that the graphs
being disjoint means

Plo, =om, 0, <00)=0 Vn,m, n #m. (9.1.5)

Thus

VIA ALy = [0 (AAR2,

=244, 1.
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Noting that by Lemma4.75, [M, M]r < 2([X, X]r + [A, A]r) and by definition of
X, [X, X1r = & 1 ;<) we conclude that

ElVIM, Mlr] < V2E[VIX, X1r + VIA, Al7]
< V2E[E] + V2E[) [(AA),, 1]
m=1

~ 9.1.6)
< \/EE[';:] + ﬁE[Z 1{T<OO}£ 1{0’,":7'}]
m=1

< V2E[€] + V2E[¢]

where we have used (9.1.4) and (9.1.5). This completes the proof of (9.1.1). O

9.2 Burkholder-Davis—Gundy Inequality—Continuous
Time

We will prove the p = 1 case of the Burkholder—Davis—Gundy inequality: for 1 <
p < 00, there exist universal constants c;, cfj such that for all martingales M and
T < o0,

) E[(IM, M17)"] < E[ sup |M,|”]

0<t<T

< CE[(IM. M]7)*].

We have given a proof for p = 1 in the discrete case, and here we will approximate
the continuous-time martingale by its restriction to a discrete skeleton and then pass
to the limit.

One inequality follows easily from the discrete case. For the other we first note
it for the case of square integrable martingale and then later we will prove the same
without this restriction.

Theorem 9.2 Let ¢!, ¢ be the universal constants appearing in Theorem 1.45. Let
M be a martingale with My = 0. Then

¢'EL(IM, M17)?] < E[ sup |M,|]. 9.2.1)

0<t<T

Further, ifE[M%] < 00, then

El sup |M,|] < CE[(M, M]7)7]. 9.2.2)

0<t<T
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Proof ForO <k <2"andn > 1, let# , = L and let

21
1
Qn = [ Z(Mtk+l./x - Mtk‘»x)z ]2
k=0
and
Z" = max |M,_|.
1<k<2n i
Also let

VIM, M]r.

Applying the discrete version of the inequality proven in Theorem 1.45, we have

Q

c'E[Q"] < E[Z"] < *E[Q"]. (9.2.3)

We have seen in Theorem 4.64 that Q" converges to Q in probability, and hence a sub-
sequence Q" converges almost surely. Then applying Fatou’s lemma we conclude
from (9.2.3) that

c'E[Q] < ¢! lilgninf E[Q0™] < li]:ninf E[Z™].

Since Z" increases to Z, E[Z"<] converges to E[Z] and thus (9.2.1) follows. Also
we get from (9.2.3)
E[Z] < lim inf E[Q™].
—00

If E[M2] < oo, it follows that
El(Q")*] = EIM}] < oo.

Hence {Q" : n > 1} is uniformly integrable and thus Q" converges to Q in L!(P)
and thus

lim inf E[Q"] = E[Q].

The inequality (9.2.2) follows. O

Remark 9.3 If M is a locally square integrable martingale, then it satisfies
(9.2.2). To see this let 7, be stopping times increasing to co such that M =
M, .., is a square integrable martingale. Then we have from the previous
theorem that (9.2.2) holds for M". The desired conclusion follows by passing
to the limit and invoking monotone convergence theorem.

Our aim is to show that (9.2.2) holds for all martingales. We first consider a special
case and show that (9.2.2) holds in this case.


https://doi.org/10.1007/978-981-10-8318-1_1
https://doi.org/10.1007/978-981-10-8318-1_4

9.2 Burkholder-Davis—Gundy Inequality—Continuous Time 307

Lemma 9.4 Let M be a martingale with My = 0 and let o be a stopping time
bounded by T such that
IM;,| <K Vt<o. 9.2.4)

and
M, =M,,, V. 9.2.5)

Then E[/[M, M7 ] < o0 and (9.2.2) holds for M.

Proof Let £ = (AM),. Since M is a martingale and o is bounded, it follows that £
is integrable. Further,

sup |M;| < K + [¢]
OSIST

and hence sup,,.7|M,| is integrable. Hence E[VIM, M]r ] < oo by Theorem9.2.
Let

Al =& Lez) Lipon (0

B =& lygzj) lig.oo ()

andlet C/, D/ be the compensators of A/, B/, respectively, i.e.predictable increasing
processes (see Lemmas 8.43 and 9.1) such that

Ul = Al -]
v/ =B/ - D]

are martingales. Since A,j = A{'M, it follows that C,j = wa and hence Utj = U,J'M.
Likewise, V,/ = V/..,.. As seen in Lemma9.1, we have

E[VIUJ, Uil ] < 3E[€F L= )] (9.2.6)
E[VIV/, Vilr 1 < 3E[E™ 1jje=5]. 9.2.7)
Also, using Lemma 8.43, it follows that for all ¢
ELIU/ |1 < 2E[67 1gzp] (9.2.8)
ELIV/ |1 < 2E[E7 Lyg= ] 9.2.9)

Let ' _ A
M) =M, -U +V/ .
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Then M] = M, — U] + V. Now

M] = M, — (A] = B)) + (C] = D]).
Now |M, — (A,j — Bf)li K fort < o (as in that case A',i = B/ =0). Also

M, — (AL =B = M,_ +&— & 1yea iy + € gz
=M, +& gy

Further, A A _ A
M, — (Az{ - Bt]) = Mirs — (AilAn - Bil/\rf .

Hence ' .
(M, — (A] = BDHI < K +j Vt.

For each j, C/ and D/, being predictable r.c.L1. processes, are locally bounded and
hence it follows that M/ is locally bounded. Thus M/is locally square integrable for
each j. Thus by Remark 9.3, we have

El sup |M/|] < CE[(M/, M/]7)?]. (9.2.10)

0<t<T

In view of (9.2.8) and (9.2.9), U% — Oand VTj — 0inL!'(P) and hence M% — My
in L' (P). Thus, by Doob’s maximal inequality, (2.3.6)

P( sup |M,j — M| >¢) — 0.

0<t<T

By going through a subsequence and using Fatou’s lemma, we conclude from (9.2.10)
that
E[ sup |M,|] < ¢*liminf E[([M/, Ml (9.2.11)
—00

0<t<T J
Now M — M/ = U’ — VJ and hence (using (4.6.13))
[M — M/, M — M), <2(U/, U], + [V, V7])
Thus
EL(IM — M7, M — M717)?] < V2EL(UY, U/17) 2]+ V2EL(VY, VI17)7]

< 3V2PE[ €] 1ygi=jy
9.2.12)
where we have used (9.2.6), (9.2.7) and hence

lim E[([M — M/, M — M’]7):]=0. (9.2.13)

j—oo
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Using (4.6.21), we see that

M — M/, M — M/l =M, My + M/, M/ —2[M, M’1;
> [M, M1y + M7, M7]y — 2{/IM, M1:[Mi, Mi];
> (VIM, My —IMI, Mil )2

(9.2.14)
Hence in view of (9.2.13), we conclude
jlirr;o ElVIM/, Milr 1 =E[J/IM, M7 1.
This and (9.2.11) together imply that (9.2.2) holds for M. U

‘We are now in a position to prove p = 1 case of Burkholder—-Davis—Gundy inequality.

Theorem 9.5 There exist universal constants c', ¢ such that for all local martin-
gales M with My = 0 and for all T > 0 one has

c'E[(M, M17)7] < E[ sup |M,|] < CE[(IM, M17)?]. (9.2.15)

0<t<T

Proof Let {7, : n > 1} be stopping times increasing to oo such that M,,, is a
martingale. For n > 1 let

0, =inf{t > 0: |M;| > nor|M;_| > n}

andlet o, = 7, A0, An.Let
Ntn = MI/\O',,'

Then N" is a martingale and satisfies the conditions of Lemma9.4 with o = o,
K =n, T =n and hence N" satisfies (9.2.2). We have already noted that (9.2.1)
holds for N" in Theorem9.2. Thus we have

c'E[(IN", N"17)?] < E[ sup [N"]|] < E[(IN", N"]7)*] < 00.  (9.2.16)

0<t<T

Asn — oo, ([N", N”]T)% increases to ([M, M]T)% and sup,,.|N;'| increases to
supy ;<7 |M;]| and thus (9.2.15) follows from (9.2.16) using monotone convergence
theorem. The constants ¢!, ¢? are the universal constants as in Theorem9.2 and do
not depend upon n or M. O

Definition 9.6 A martingale M is said to be a #!-martingale if

E[ sup |M,]] < oo (9.2.17)

0<t<oo
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Remark 9.7 In view of the Burkholder—Davis—Gundy inequality, it follows that
M is a H'-martingale if and only if

E[ sup [M,M],] < oo (9.2.18)

0<t<oo

It also follows that if M is a H'-martingale and if f is a bounded predictable
process, then N = [ fdM is also a H'-martingale.

During the proof of Theorem 9.5 above we have shown the following:

Corollary 9.8 Let M be a local martingale. Then there exist stopping times o,
increasing to oo such that for alln > 1

Mo e H!, (9.2.19)

ElVIM, M],, 1 <oo Vn>1 (9.2.20)

and
E[ sup |M,]] < o0 Vn>1. (9.2.21)

0<t=o,

Corollary 9.9 Let M be a local martingale. For any stopping time o, one has

¢'EL(M, M1,)?] < E[ sup |M,|] < CE[(IM, M],)?]. (9.2.22)

0<t<co

Corollary 9.10 [f M is a local martingale and o is a stopping time such that
EL(M, M],)*] < oc] (9.2.23)

then it follows that E[sup05t50|M,]| < 00 and hence N; = M, ,, is a martingale.

Here is a consequence of Theorem 9.5 that will be needed later.

Theorem 9.11 Let X be a martingale such that

E[ sup |X/|] <0 VT <00 (9.2.24)
0<t<T

or equivalently, such that
E[([X, X]7)?] < 00 ¥T < 0.
Then there exists a sequence of bounded martingales Z* such that

lim E[ sup |ZF = X,|]1=0 VT < . (9.2.25)

k—o0 OS[ST
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Proof We will show that for all k > 1, there exists a bounded martingale Z* such
that

E[ sup |Z2F — X,|] < (9.2.26)

0<t<k

= =

The required result follows from this.

Thus we fix an integer k < co. Let o, be the stopping times constructed in the
proof of Theorem9.5 with M = X and N" denote the martingale X stopped at o,,.
Since sup,, .| N;'| increases to sup,, .| X; |, we can get integer n such that Y = N"
satisfies

E Y, - X/|1< —.
[Ossltlls)k| t 1= 3%

(9.2.27)
As noted in the proof of Theorem9.5, N and hence Y satisfy the conditions of
Lemma9.4. Thus for M = Y, we can get locally bounded martingales M~/ such that
(9.2.13) holds, i.e.
. . 1

lim E[([Y - M/, Y — M’])?]1=0. (9.2.28)

j—o00
Now using Burkholder-Davis—Gundy inequality Theorem 9.5, we can get j such that
W = M/ satisfies

1
El sup [W, = Yi[] = —

< —. (9.2.29)
0<r<k 3k

Finally, W being locally bounded, we can get stopping times 7, increasing to oo such
that U" given by U]' = W, ., is a bounded martingale and

E[ sup |U' — W;|]— 0asn — oo

0<t<k

and hence can get n such that Z = U" satisfies

1
El sup |Z, —Wi[] < . (9.2.30)
0=<t<k 3k
Now (9.2.28)—(9.2.30) together imply (9.2.26) with Z¥ = Z. Il

Remark 9.12 The martingales Z* obtained in the theorem also satisfy
klim E[(Z* — X, ZF — X]7)?] = 0 VT < oo. (9.2.31)
—00

This follows from the Burkholder—Davis—Gundy inequality (Theorem9.5).
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9.3 On Stochastic Integral w.r.t. a Martingale

For a local martingale M, the stochastic integral ¥ = [ fdM for f € L(M) is
defined (since M is also a stochastic integrator), and we have only observed that
when M is locally square integrable martingale and f € L2 (M), Y is also a locally
square integrable martingale. We now explore as to when is ¥ a martingale or a local
martingale. We begin with an observation.

Theorem 9.13 Let M be a martingale such that E[([M, M]T)%] < oo VT < coand
f be a bounded predictable process. Then N = [ fdM is also a martingale and

E[(IN, N]y)?] < 0o VT < oo.

Proof 1f f is bounded by ¢, and N = [ fdM (interpreted as a stochastic integral
w.r.t. stochastic integrator M), then N satisfies

T
[N, Nz = / |fI7dIM, M1, < c*[M, My
0
and hence E[([N, N ]T)%] < 00 VT < oo. Let A be the class of bounded predictable

process f such that N = [ fdM is a martingale. It is easy to see that simple pre-

dictable processes belong to A. If g" € A and ¢" LY g, then writing N" = [ ¢"dM
and N = [ gd M, we see that

T
E[(/ lgy — gs|?dIM, M];)? 1 — Oasn — oo.
0

Hence

E[V[N" —N,N"—N]y ] — Oasn, — oo
and as a consequence, (using (9.2.15))

E[ sup |[N] — Ny|] — Oasn — oo.
0<t<T

Thus N is a martingale. Thus A is closed under bp-convergence, and hence by
Theorem2.66, it follows that A is the class of all bounded predictable processes
completing the proof. O

By localizing, we immediately conclude that

Corollary 9.14 Let M be alocal martingale and f be a locally bounded predictable
process. Then Y = f fdM is also a local martingale.

As noted earlier, for an r.c.Ll. adapted process X, X~ defined by X = X,_ is a
locally bounded predictable process. Hence we conclude from the corollary above
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Corollary 9.15 Let M be a local martingale and X be an r.c.ll. adapted process.
ThenY = [ X~ dM is also a local martingale.

Earlier we have defined L2, (M) for a locally square integrable martingale M. We
now define L}, (M) for a local martingale M.

Definition 9.16 For a local martingale M, L! (M) is the class of predictable
processes f such that there exist stopping times o, increasing to co with

E[( /J" F2d[M, M1,)*] < oo. 9.3.1)
0

Theorem 9.17 Let M be a local martingale. Then ]L,IH(M) C L(M) and for f €
L! (M), N = [ fdM is a local martingale.

Proof Let f € L,'n(M) be such that (9.3.1) holds. We first show that f € LL(M). Let
¢* be bounded predictable processes converging pointwise to g such that |gF| < | f].

For k > 1, let Y* = f gkd M. Then we have seen that Y* is a local martingale.
From properties of stochastic integrators, we have

(Y%, v4), = / (g")?2dIM, M]
0

and hence .
E[ sup |Y¥|] < E[( / (f)d[M, M],)?] < oo (9.3.2)
0

0<t=<o,

where o, is as in (9.3.1). It thus follows that UF" = Y*

no, 1S @ martingale for each
k, n. Moreover, it follows that for k > j > 1

t
Yf—y/ v -y, = f (" — g))’dIM, M].
0
Hence, using (9.2.22), we get

E[ sup [Y* — 7| ] < 2E[( /m'(gf—g;‘)zd[M, M1,
0

0<t=<o,

The right-hand side above goes to 0 as k, j tend to co in view of the assumption
(9.3.1) and choice of g~ (using Lebesgue’s dominated convergence theorem). Thus
we have foreachn > 1

lim (sup E[ sup |Y}—Y/|]) =0. (9.3.3)

Mm—=00 jk>m 0<t<o,

Thus {Y*} are Cauchy in d,c, and hence f € IL(M). Let Y be the limit of ¥ k. By
dominated convergence theorem, we get ¥ = [ gd M. We also get from (9.3.3) that
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Jim E[ sup |[Y* —v,|1=0. (9.3.4)

k=00 0<t<g,

Noting that U;"" = =Y}, isamartingale foreachk, n,(9.3.4) implies that U" = Y, .,,

is a martingale. Thus Y is a local martingale.

To show that N is a local martingale, let us take g* = f 1 /<. The process
Y for this choice of {g*} equals N which has been shown to be a local martingale
completing the proof. U

Corollary 9.18 Let M be a local martingale and [ € IL(M) be such that
E[|f,(AM),|] < oo VY bounded stopping times o. 9.3.5)

Then f € L} (M) and Z = [ fdM is a local martingale.

Proof Forn > 1, let

o, = inf{s : (s +/ fidIM, M1,) > n}.
[0,5)

Then f € IL(M) implies that g, 1 co. Of course ¢, < n and for t < 7, fot fszd
[M, M]; < n. Thus,

‘/ " F2AIM ML, < Jut 2 (AME < it | fo (AM),, |

and thus in view of the assumption (9.3.5) on M,

E[\//U” f2dIM, M),] < oo
0

and thus f € L} (M). The second part follows from Theorem9.17. U

Corollary 9.19 Let M be a local martingale and [ € IL(M) be such that

t
z =/ fdM,
0

is bounded. Then Z is a martingale.

Proof Since Z is bounded, f satisfies (9.3.5). Thus by Corollary9.18, Z is a local
martingale. Since it is bounded, it follows that Z is a martingale. (]

Corollary 9.20 Let M be a continuous local martingale. Then

L(M) =L} (M) (9.3.6)
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Proof Since M is continuous, (9.3.5) is trivially satisfied and hence the result follows
from Theorem9.17 and Corollary 9.18. O

The Burkholder-Davis—Gundy inequality helps us to conclude the converse to The-
orem9.17:

Theorem 9.21 Let M be a local martingale and f € L(M) and let N = [ fdM
be a local martingale. Then f € L} (M).

Proof Since N is a local martingale and [N, N], = fot fszd[M, M];, Corollary 9.8
implies f € L} (M). O

9.4 Sigma-Martingales

We have seen that if M is a local martingale and f € L} (M), then X = [ fdMisa
local martingale. On the other hand if f € IL(M) but does not belong to L}n (M) then
X is defined and is a semimartingale but it is not a local martingale. Nonetheless, it

shares some properties of a local martingale and is called a sigma-martingale.

Definition 9.22 A semimartingale X is said to be a sigma-martingale if there
exists a local martingale N and f € L(N) such that X = [ fdN.

If X is a sigma-martingale with f, N as in the definition above and g € IL(X), then
Y = [gdX = [ gfdN and hence Y is also a sigma-martingale. Here is an elemen-
tary observation.

Lemma 9.23 Let X be a semimartingale. Then X is a sigma-martingale if and
only if there exists a (0, 00)-valued predictable process ¢ such that ¢ € L(X) and
M = [ ¢dX is a H'-martingale.
Proof If sucha M, ¢ exist, then ¢ = 1 € L(M) and X = [ ¢dM.

For the converse part, suppose N is a local martingale, X = [ fdN with f €
LL(N). Then taking g = (1 + | f])~", we observe that [ gdX = [ fgdN. Since N
is a local martingale and f g is bounded by 1, invoking Corollary 9.14 we conclude

that Y = [ fgdN is itself a local martingale. As seen in Corollary 9.8, there exist
stopping times o, increasing to oo such that

an = E[\/ [Y, Y]U,, ] < o0.
Let & be the predictable process defined by

. 1
T 1+ 1Yol

1
1+4+a,

Lo, 10105

s

1{0}(5‘) + Z 2_n
n=1
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Then A is (0, 1) valued and thus M = f hdY is alocal martingale. Since

(M, M],, = / " n2dly, v,
0
n o;
=Y [ wavy,
‘— Tj—-1

47 Y, Y],
—Z (1+ Trap M

Thus
¥, ¥],,.

VM M), < Zz ’(1 5
}

From the choice of a;, it now follows that

ElVIM, M];] <1 Vn =1

and as a consequence

Elsup vIM, M], ] = 1

<00

Hence, M is a martingale and M € H'. Let ¢ = hg. Then ¢ is (0, co) valued and
[odX =M. O

From the definition, it is not obvious that sum of sigma-martingales is also a
sigma-martingale, but this is so as the next result shows.

Theorem 9.24 Let X', X? be sigma-martingales and ay, a, be real numbers. Then
Y =a X' + a,X? is also a sigma-martingale.

Proof Let ¢', ¢ be (0, co)-valued predictable processes such that
M! / pdxi, i=1,2

are martingales. Then, writing £ = min(d)l, ¢2) and ns = 2; , it follows that

t t
N = / ndM = / &dx
0 0

are martingales since 7 is bounded by one. Clearly, ¥ = a; X' + a,X? is a semi-
martingale and ¢ € L(X') fori = 1, 2 implies £ € L.(Y) and
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t
/ &dY, = a\N! + a;N?
0
is a martingale. Since ¢ is (0, co)-valued predictable process, it follows that Y is a

sigma-martingale. O

The following result gives conditions under which a sigma-martingale is a local
martingale.

Lemma 9.25 Ler X be a sigma-martingale with Xy = 0. Suppose there exists a
sequence of stopping times T, 1 oo such that

E[V/I[X, X],, ] < oo Vn. 9.4.1)

Then X is a local martingale.

Proof Let N be a local martingale and f € L(N) be such that X = [ fdN. Note
that

X, X], = / (f)2dIN, N1,. 9.42)
0

Let .
Xf :/ 1 1{|fx\§k}st- 9.4.3)
0

Noting that f; 1< is bounded, it follows that X* is a local martingale. Since

ELIX*, X¥lins ] < EL/Sy7 £2 11z dIN, N1
< E[/IX, X1,
< o0

we conclude that for k, n fixed, Z;" = XX, _ isamartingale. Let Z' = X, ,,. Clearly,
fort >0

ELY/IX — X5, X — XM, ] < EL/7 72 TygpondIN. N1, (9.4.4)

The assumption (9.4.1) and the estimate (9.4.4) imply that for n fixed,

lim E[\/[X — Xk X = X*]yar 1 = 0. 9.4.5)
k—00
The Burkholder-Davis—Gundy inequality Corollary 9.9 now gives

m E[sup |Z5" — Z"] = 0. (9.4.6)

li
k—00 s<t
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Since Z¥" is a martingale for each k, n, (9.4.6) implies Z" is a martingale and thus
X is a local martingale. O

Corollary 9.26 Let X be a sigma-martingale. Suppose that X is integrable and
that there exists a sequence of stopping times 7, 1 0o such that (9.4.1) holds then X
is a local martingale.

Proof LetY, = X, — Xo. Observe that [Y, Y], = [X, X], for all #. Now the previous
result gives that Y is a local martingale and hence X is a local martingale. (]

Corollary 9.27 A bounded sigma-martingale X is a martingale.

Proof Since X is bounded, say by K, it follows that jumps of X are bounded by
2K. Thus jumps of the increasing process [X, X] are bounded by 4K? and thus X
satisfies (9.4.1) for

, =inf{r >0 : [X, X],_ > n}.

Hence X is a local martingale and being bounded, it is a martingale. U

Exercise 9.28 Let X be a sigma-martingale. Suppose |X;| < £ where £ is an
integrable random variable. Show that X is a martingale.

Here is a variant of the example given by Emery [17] of a sigma-martingale that is
not a local martingale.

Example 9.29 Let 7, £ be independent random variables with 7 having expo-
nential distribution and P(§ = 1) = P(¢ = —1) = 0.5. Without loss of general-
ity, we assume that 0 < 7(w) < oo for all w. Let

M, =& 17 00)(0)
and F, = o(M, : s < t).Easytoseethat M isamartingale. Let f, = % 1(0,00) ()

and X; = fO’ fdM. Then X is a sigma-martingale and

1
(X, X1, = = 100 ().
T

For any stopping time o, it can be checked that o is a constant on o < 7
and thus if o is not identically equal to 0, o > (7 A a) for some a > 0. Thus,
VIX. X1, = 1 1(-_4). It follows that for any stopping time o, not identically
zero, E[/[X, X],] = oo and so X is not a local martingale.

9.5 Auxiliary Results

We have seen that if M, N are locally square integrable martingales, then M N —
[M, N]is alocal martingale. We now show that the same is true for all local martin-
gales M, N.
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Theorem 9.30 Let M, N be local martingales with My = 0. Let X, = M;N; —
[M, N1;. Then X is a local martingale.

Proof The integration by parts formula (4.6.7) gives

t '
X, =/ M,_d Ny —i—/ N;_dM;
0 0

and by Corollary 9.15 it follows that X is a local martingale. U

Lemma 9.31 Let N be martingale such that E[supy_, . |N;| 1 < oo forall T < oc.
Let A €V be a predictable process with Ay = 0. Suppose for each T < 0o, there
is Ky < oo such that |Aly < Kr. Here |A|r is the variation of A on [0, T]. Then
Y, = A,N, — fot N,_d Ay is a martingale.

Proof Invoking Theorem 9.11, obtain bounded martingales N* such that

lim E[ sup |[Nf — N,|1=0 VT < co.
k—o00 OSIST

Let Y¥ = A,N* — [ N*_dA,. Note that

E[ sup |Y}|]1 < 2K7Cy (9.5.1)

0<t<T
where C; is a bound for N*. Also,

E[ sup |Y* — Y;|1 < 2K7E[ sup |[N* — N,|] (9.5.2)

0=<t<T 0=<t<T

By integration by parts formula (4.6.7),

t
Y,k=/ A, dNF +[A, N].
0

The integral appearing above is a local martingale by Corollary9.15, and [A, N*] is
a martingale by Theorem 8.34. Thus Y* is a local martingale. Lemma 5.5 along with
the observation (9.5.1) implies that ¥ Fisa martingale for each k and then (9.5.2)
along with Theorem 2.23 shows that Y is a martingale. (]

Theorem 9.32 Let M be local martingale such that My = 0 and let A € V be a pre-
dictable process with Ay = 0. Then Y, = A,M, — fot M,_dAy is a local martingale.

Proof Since A € Vis predictable, so is its total variation process B = |A| (see Corol-
lary 8.24). Thus B is locally bounded, and we can get stopping times 7" 1 oo such
that B™ is bounded. Invoking Corollary 9.8, get stopping times " 1 oo such that
M"™ = M'”"] are martingales satisfying, for each n > 1
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E[ sup [M']] < oo VT < oo.

0<t<T

Without loss of generality (by replacing ¢” by min(c”, 7") if necessary), we can
assume that ¢” < 7" and so B" = B’ is bounded for each n. Let A" = A”". It
follows that Y" = Yo"l satisfies

t
Y = A'M" —/O M" dA".

By Lemma9.31, Y” is a martingale for each n and thus Y is a local martingale. [

As a consequence of Theorem9.17, we have the following observation.

Lemma 9.33 Let M, N be local martingales such that My N is integrable. Then the
process Z defined by Z; = M, N; is locally integrable if and only [M, N] is locally
integrable.

Proof The integration by parts formula gives
t t
M, N, :M0N0+/ M.v—dNr+/ Ns—dMs+[Mv N]r
0 0
By corollary 9.15, the stochastic integral terms in the right-hand side above are local

martingales and thus the result follows. U

Remark 9.34 If M, N are local martingales such that M N is locally integrable,
thensois [M, N]andthus (M, N) exists and is the unique predictable process
in Vy such that

M;N, — (M, N),

is a local martingale.



Chapter 10 ®)
Integral Representation of Martingales oo

In this chapter we will consider the question as to when do all martingales adapted to
a filtration (F,) admit a representation as a stochastic integral with respect to a given
local martingale M. This result was proved by Ito’s when the underlying filtration
is the filtration generated by a multidimensional Wiener process. Ito’s had proven
the integral representation property for square integrable martingales and this was
extended to all martingales by Clark.

Jacod and Yor investigated this aspect and proved that the integral representation
property holds if and only if there does not exist any other probability measure
Q equivalent to the underlying probability measure with the property that M is a
Q—Ilocal martingale. Such a measure Q is called an Equivalent Martingale Measure
(EMM). In other words, martingale representation property holds if and only if EMM
is unique. Jacod—Yor proved this result in one dimension and in a special case for
multidimensional local martingale, which was subsequently extended.

This result is important from the point of view of mathematical finance. We will
give brief introduction to the same and prove the second fundamental theorem of
asset pricing.

10.1 Preliminaries

Throughout this chapter, we will be working with one fixed filtration (F,) such that
Fo contains all null sets. We do not assume that the filtration is right continuous. All
notions—martingale, local martingale, stopping time, adapted process, predictable
process—are with reference to this fixed filtration. Since in this chapter, we need to
deal with martingales which may not have r.c.1.l. paths a priori, we will explicitly
assume r.c.l.l. paths when it is needed.

© Springer Nature Singapore Pte Ltd. 2018 321
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Forr.c.l.l.semimartingales X L x2 ..., X weintroduce the class of semimartin-

gales that admit integral representation w.r.t. X', X2, ..., X%:
I(xhx2, ..., X%

d t
—(¥:3¢ eL(X)), 1 <j <d with¥, :YO+Z/ g dXI Vi)
j=170

Let us note that if ¥ € I(X', X2, ..., X%) then for any stopping time 7, ¥ defined
by Y, = Y., also belongs to I(X', X?,..., X9). Also, if ¥ e I(X', X2, ..., X9)
then we can always choose ¢/ € L(X/) with gj = 0 for 1 < j < d such that

d t
Y,:Yo—i—Z/ ¢/ dX’ Vi < co.
=170

IfY e I(X', X2, ..., X%), the semimartingale Y is said to have an integral represen-
tation w.r.t. semimartingales X', X2, ..., X% . Here is an elementary observation on
the class I(X', X2, ..., X9).

Lemma 10.1 Let Y be a semimartingale such that for a sequence of stopping times
T, 1 00, Y" defined by Y' =Y, ., admits an integral representation w.r.t. r.c.Ll.
semimartingales Xt x2 ..., x4 for each n > 1. Then Y also admits an integral
representation w.r.t. X' x2, ..., x4

Proof Let f/ e L(X/),1 < j <d,n > 1 be such that for all n,

d '
Y =Y+ Z/ fridxy.
j=170
Define f/ by
=30 o™
n=1

Then it is easy to check (using Theorem 4.43) that f/ € L.(X/) and

d t
Y,:Yo—l—Zf fldx/.
j=170

This completes the proof. ]

Exercise 10.2 LetY beanr.c.l.l.process such thatitis a local martingale under
probability measure Q; as well as Q,. Show that Y is a local martingale under
Q= %(Ql + Q).

Given r.c.ll. adapted processes X!, X2, ..., X4, let E(X!, X%, ..., X¢) denote
the class of probability measures Q on (§2, F) such that XU X2 ... X% are
Q-local martingales.
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For a probability measure P on (£2, F), let Ep(X', X2,..., X%) denote the
(ilass of measures Q € E(X', X2, ..., X%) such that Q is equivalent to P and let
Ep(X', X2,..., X%) denote the class of measure Q € E(X!, X2, ..., X9) such that
Q is absolutely continuous w.r.t. P. It is easy to see that for any X', X, ..., X?, the
sets E(X', X2, ..., X)), Ep(X", X2, ..., XY and Ep(X!, X?, ..., X9) are convex.

Elements of Ep(X', X2, ..., X?) are referred to as EMM- equivalent martingale
measures, though they should be called equivalent local martingale measures.

Likewise let E7(X!, X%, ..., X%) be the class of probability measures Q on
(2, F) such that X', X2,..., X9 are sigma-martingales on (£2, F, Q) and EZ
(X', X2, ..., X% denote the class of measure Q € E“ (X!, X2, ..., X9) such that
Q is equivalent to P. EZ(X', X2, ..., X9) is the class of equivalent o-martingale
measures.

Jacod and Yor discovered a connection between extreme points P of E(X) and
the martingale representation property w.r.t. X. This was later generalized to multidi-
mensions under suitable conditions. We will first deal with the one-dimensional case
and then take up multidimensional case and prove integral representation theorem
for multidimensional o-martingales. This necessitates definition of vector stochas-
tic integral. We will also discuss relevance of integral representation theorem to
mathematical finance.

10.2 One-Dimensional Case

In this section, we will fix a local martingale M and explore as to when I(M) contains
all martingales. The next lemma gives an important property of I(M).

Lemma 10.3 Let M be an r.c.l.l. local martingale and let N" € 1(M) be martin-
gales such that E[ |[N]' — N;|]1 — 0 forall t. Then N € I(M).

Proof The assumptions imply that N is a martingale (see Theorem 2.23). In view of
Theorem 5.39 and the assumptions on N", N, it follows that

N" converges to N in Emery topology.
Thus, invoking Theorem 4.111, we conclude that
[N" — N, N*" — N]r — 01in probability as n — co. (10.2.1)

Hence,using[N" — N", N* — N"]y <2([N" — N,N"— N]p+[N" — N,N" —
Nl7) (see (4.6.13)), we have

[N* — N™, N* — N"]7 — 0 in probability as n, m — oo. (10.2.2)

Since N" € (M), there exists predictable process g" € L(M) such that
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t
N'= N} + / g"dM. (10.2.3)
0
As a consequence, for all T < oo,

[N" — N™ N"— N"|p / (g — g™*dIM, M];.
— 0 in probability as n, m — oo.

By taking a subsequence, if necessary and relabelling, we assume thatfor 1 < k < n,

P 2 o1 1
(( (gv gH2dIM, M): > 27) = 5 (10.2.4)
Then by Borel-Cantelli Lemma, we conclude

Z(/ (g = gH2dIM, M],)? < oo as. (10.2.5)

forall T < oo. Since

/(Dg"“ G DPAIM, M1,]} < Z(f (g1 — gh2dIM, M1t

we conclude that for all T < oo

[/ (Z|g"+1 g N*dIM, M) < oo a.s. (10.2.6)
and also ,

lim sup |g" — g"1*d[M, M]; =0 a.s. (10.2.7)

k=00 0 m,n>k ’

Let 2 = [0, o0) x £2 and F be the product of 7 and the Borel o-field on [0, 00).
Let I" be the (o-finite) measure on (.Q F ) defined by, for £ € F

['(E) = f[/oo 15(s, w)d[M, M],(w)]dP(w). (10.2.8)
0

Now (10.2.6) implies that

Zlg"“<w> W) <o ae.T.
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Thus g* converges a.e. I'. Let

gs(w) = lim sup g} (w).

k—o00

Using (10.2.7), one can conclude that for all # < oo, for all ¢ > 0

tim P [ (g = g1 b1t = 0 = . (10.2.9)
— 00 0

and
t t
/ (gH*dIm, M; — f (gs)*d[M, M, in probability.
0 0

On the other hand convergence of N to N in Emery topology and Theorem 4.111
imply for all + < oo

t
/ (g9%d[M, M], = [N*, N¥], = [N, NJ, in probability.
0

Thus .
[NV, N, :/ (gs)zd[M,M]s. (10.2.10)
0

Now N being a martingale, as seen in Corollary 9.8, there exist stopping times o,
increasing to oo such that

E[VIN, N1, ] <oo Vn > 1 (10.2.11)

and hence (10.2.10) implies that g € ]L,ﬁ1 (M).LetY, = No + fot gdM . By definition,
Y is a local martingale with Yy = Ny. Now

T
[N"—Y,N" =Yl = / (g0 — g:)*dIM, M];
0
and thus as seen in (10.2.9),
[N" — Y, N" — Y]r — 0 in probability (10.2.12)

On the other hand N converges to N in Emery topology and thus invoking Theorem
4.111 we conclude that

[N" —Y,N"—Y]lr - [N — Y, N — Y]y in probability. (10.2.13)

Thus [N — Y, N — Y]y = 0 and recalling that N, Y are local martingales such that
Ny =Yy, it follows (once again invoking Burkholder-Davis-Gundy inequality for
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p = 1)that N =Y. Hence N, = Ny + fot fdM with f € L(M). This proves N €
I(M). O
Let us recall that Ml denotes the class of r.c.l.l. martingales.

Theorem 10.4 For an r.c.Ll local martingale M and T < o< let
Ky (M) ={Nr: N el(M)NM]}. (10.2.14)

Then Ky (M) is a closed linear subspace ()f]Ll (82, Fr, P).

Proof Let N* € I(M) N M be such that N7 converges in LY($2, Fr, P) to £. Without

loss of generality, we assume that N]' = N/ forall n > 1 and for all # < co. Now

for each n, N" is a uniformly integrable martingale. It follows that for all ¢
E[IN/ — N/"|]1 - Oasn,m — oo. (10.2.15)

Thus, by Theorem 5.39, it follows that {N"} is Cauchy in the d., metric for the
Emery topology. Since this metric is complete, the sequence N" converges in the
Emery topology to say N. Then N" also converges in d,, to N and in view of
(10.2.15), we conclude Ny = £ and for each ¢

E[IN" — N,|1— Oasn — oo. (10.2.16)

Thus Lemma 10.3 implies N € [(M) and thus Ny = £ € Ky (M). U

Exercise 10.5 Show that ¢ € Ky (M) if and only if € € L!(£2, Fr, P) and there
exist ) € L'(£2, Fo, P) and g € L} (M) such that ¢ = 1+ [/ gdM.

We now come to the main result of this section, due to Jacod—Yor [29]. This charac-
terizes martingales M with property that all martingales N admit an integral repre-
sentation w.r.t. M.

Definition 10.6 A process Y is said to admit an integral representation w.r.t.
an r.c.l.l.semimartingale X if

t
3f e L(X)suchthatY, =Y, +/ fydX, a.s. Vt. (10.2.17)
0

Note that if Y is a process that admits a representation w.r.t. an r.c.l.l. semimartingale
X, then Y has r.c.Ll. modification since the stochastic integral is by definition an
r.c.l.l. process.

Here is an important observation on integral representation.

Lemma 10.7 Let M be an r.c.Ll local martingale. Then all martingales N admit a
representation w.r.t. M if and only if

Ky(M) =L'"(2,Fr,P) VT < oo. (10.2.18)
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Proof Suppose all martingales N admit a representation w.r.t. M. Given ¢ € L!(£2,
Fr, P), consider the martingale N, = E[£ | F;]. Note that N may not be r.c.Ll. to
begin with. In view of our assumption, get f € (M) such that

t
N,=NQ+/ fdM a.s. Vt.
0

This implies that V, = Ny + for fdM is an r.c.l.l. martingale and is a version of N.
Thus by definition of K7 (M), it follows that Ny = & € Ky (M).

Conversely, if (10.2.18) holds, then given a martingale N, fix n and let £ = N,,.
Then ¢ € K, (M) and so we get f € L(X) suchthat = N, = Ny + fon f"dM and
further that Z" = [ f"dM is a martingale. It follows that Z!' = N, — Ny a.s. for

t <n.Let
fs - Z fyn 1(nfl,n]-
n

Then one can check that f € L(M), Z = f fdM is amartingale and Z, = N, — Ny
a.s. for all . Hence N admits a representation w.r.t. M. (]

Essentially the same proof also gives us the following.

Corollary 10.8 Let M be an r.c.ll. local martingale. Then all bounded martingales
N admit a representation w.r.t. M if and only if

L>(2, Fr,P) CKp(M) VT < oo. (10.2.19)

Theorem 10.9 Let M be an r.c.l.l local martingale on ($2, F, P) with a filtration
(F.). Suppose that Fy is trivial and F = o (U, JF;). Then the following are equivalent.

(i) Every bounded martingale N admits an integral representation w.r.t. M.
(ii) Every martingale N admits an integral representation w.r.t. M.
(iii) E is an extreme point of the convex set E(M).

(iv) Ep(M) = {P}.

(v) Ep(M) = {P}.

Proof We have seen that (i) is same as L*°($2, Fr, P) € Ky (M) VT € (0, co) and
(ii) is same as L'(§2, Fr, P) = Kz (M) VT € (0, 00). As seen in Theorem 10.4,
K7 (M) is a closed subspace of L!(£2, Fr, P). Since L>®(£2, Fr, P) is dense in
L2, Fr, P), it follows that (i) and (i) are equivalent.

On the other hand, suppose (iv) holds and suppose Q;, Q; € E(M) and P =
aQq + (1 — a)Qy. It follows that Q;, Q, are absolutely continuous w.r.t. P and
hence Q;, Q, € Ep(M). In view of (iv), Q; = Q, = P and thus P is an extreme
point of E(M) and so (iii) is true. Thus (iv) = (iii).

Since {P} € Ep(M) C Ep(M), it follows that (iv) implies (v).

On the other hand, suppose (v) is true and Q € Ep(M). Then Q; = %(Q +P) e
Ep(M). Then (v) implies Q; = P and hence Q = P. Thus (v) = (iv) holds.
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Till now we have proved (i) <= (ii) and (iii) < (iv) <= (v). To complete
the proof, we will show (i) = (v) and (iii) = (ii).

First we come to the proof of (iii) = (ii). Suppose P is an extreme point of
E(M) but (ii) is not true. We will show that this leads to a contradiction. Since (ii)
is not true, it follows that K (M) is a closed proper subspace of ! (£2, F, P). Since
K7 (M)isnotequal to L' (£2, Fr, P), by the Hahn—Banach Theorem (see [55]), there
exists £ € (82, Fr, P), P(§¢ # 0) > 0 such that

/ngP =0 VO e Kr(M).
Then for ¢ € R, we have
/9(1 4+ c&)dP = /GdP VO € Kr(M). (10.2.20)

Since £ is bounded, we can choose a ¢ > 0 such that
P(cl¢] < 0.5) = 1.

Now, let Q be the measure with density n = (1 4 ¢£). Then Q is a probability mea-
sure. Thus (10.2.20) yields

/GdQ = /edP V0 € Ky (M). (10.2.21)

Let 0, 1 oo be bounded stopping times such that M]' = M, ,,, is a P-martingale.
For any bounded stopping time 7, M, ; = M, rr € K7 and hence (remembering
that F is trivial)

EalM!, ;1 =Ep[M., ;1= M (10.2.22)

On the other hand,
Eo[var] = EP[TlevT]
= Ep[Ep[nM],,; | Frll
= EplnEp[M,; | Frll
= Ep[nM}] (10.2.23)
= Ea[M7]
= Ep[M}]
= M,.

where we have used the facts that 1 is Fr measurable, M" is a P-martingale and
that (10.2.22) holds for 7 = T. Now noting that M = M . + M . — M7, we
conclude

EqlM!] = Eq[M?, ;] + EqIM., ;] — EqlM}] = My.
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Thus M} = M, ,,, is a Q- martingale for every n so that M is a Q-local martingale
and thus Q € E(M). Similarly, if Q is the measure with density n = (1 — c§), we
can prove that Q € E(M). Here P = 2(Q + Q) and P # Q (since P(¢ # 0) > 0).
This contradicts the assumption that P is an extreme point of E(M). Thus (iii) =
@ii).

To complete the proof we will show that (i) implies (v). Suppose (7) is true and let
Q € Ep(M). Fix T < oo and let 7 be any Fr measurable bounded random variable.
Since L>°(£2, Fr, P) € Ky (M) and Fy is trivial, we can get g € L(M) with

T
n=c+/ gdM
0

such that fot g ljo.77d M is a P-martingale and ¢ = Ep[7].

LetZ, = fot gs Lo.71(s)d M. Then Z, = Ep[(n — ¢) | F;] and since 7 is bounded,
it follows that Z is bounded. As noted earlier, since P and Q are equivalent, the
stochastic integrals under P and Q are identical. Under Q, M being a local martingale
and Z = f f dM being bounded, we conclude invoking Corollary 9.19 that Z is also
a martingale under Q. Thus, Eq[Z7] = 0 = Ep[Z7] and thus using 7 = ¢ + Zr we
get Eq[n] = ¢ = Ep[n]. Since this holds for all F; measurable bounded random
variables 7, we conclude Q and P agree on F7. In view of the assumption F =
o(U,F,), we get Q = P proving (v). This completes the proof. O

We can now deduce the integral representation property for Brownian motion,
due to Ito’s [25] and Clark [10].

Theorem 10.10 Let W be one-dimensional Brownian motion and let F;, = .7-"ZW and
F = o(U,F). Then every martingale M w.rt. the filtration (F.) admits an integral
representation

t
M, = M, +[ FdW, VYt >0 (10.2.24)
0

for some f € L(W).

Proof We will prove that Ep(W) = {P}. The conclusion then would follow from
Theorem 10.9. If Q € Ep(W), then by definition, W is a Q-local martingale and
(w, W]? = ¢t since Q is equivalent to P and [W, W],P = t, see Remark 4.81. Now
part (v) in Theorem 5.19 implies that W, and W? — ¢ are Q-local martingales and
then Levy’s characterization of Brownian motion, Theorem 3.7 implies that W is a
Brownian motion under Q. Thus for #1, 15, ..., t,, € [0, 00) and B € B(R™),

Q(W,,. W,,.....W,) € B)=P(W,,W,.....W,) € B). (10.2.25)

Hence P = Q since F = (W, : s € [0, 00)). Thus Ep(W) = {P}. (I
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10.3 Quasi-elliptical Multidimensional Semimartingales

The d-dimensional version of Theorem 10.9 is not true in general—the implication
(ii1) implies (ii) may not be true. The difficulty is this: given a sequence of martingales
{N" :n > 1} such that N} is converging in L' (say to Nr) for every T < oo, and
{¢™7 : n > 1} such that

d t
N' =N+ /0 gidmI
j=1

we cannot conclude that the sequence of integrands g™/ is converging as was the
case in one-dimensional. See counter example in [29]. This prompts us to introduce
a condition under which the class of martingales that admit integral representation
is closed under L' convergence.

For r.c.ll. semimartingales X', X%, ..., X4 and \', ..., \? € R, defining ¥ =
ijl M\ X/, note that

d
v, ¥l =) XNNIX', X7,
i,j=1

and hence
d

Z NN (X, X771, — X', X71) = 0 a.s. (10.3.1)

ij=1

In other words, for s < ¢ fixed, the matrix (([X’, X/], — [X', X/],)) is non-negative
definite.

Definition 10.11 A dJ-dimensional r.c.l.l. semimartingale X = (X', ..., X%) is
said to be quasi-elliptic if there exists a sequence of stopping times 7, 1 oo
and constants «,, > O suchthatv\',..., A e R, Vs <t < 7,,, one has

d d
SONNAXL X1 - XL X)) = af Y DX X — (X XL as.
i,j=1 i=1

(10.3.2)

Remark 10.12 Note thatif X = (X!, X2, ..., X%) is a quasi-elliptic semimartin-
gale on (£2, F, P) and Q is a probability measure absolutely continuous w.r.t.
P, then X continues to be a quasi-elliptic semimartingale on (2, 7, Q).

Example 10.13 Let X = (X', X%, ..., X%) be a semimartingale such that
[X!, X/] = 0fori # j. Thentrivially, X is a quasi-elliptic semimartingale. This
is the case when X is d-dimensional standard Brownian motion.
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Example 10.14 Let X = (X', X2, ..., X%) be the solution to the SDE (3.51)
withm = d where o, b satisfy (3.5.3) and (3.5.4). Further, suppose that 3o > 0

suchthatforallr > 0, x € R%, A, Aoy ..oy Mg
d d
Z N Ajoij(t, x) > QZA?. (10.3.3)
i, j=1 i=1
Then it is easy to verify that X = (X', X?,..., X%) is a quasi-elliptic semi-
martingale.

Lemma 10.15 Ler X = (X', X%, ..., XY bea quasi-elliptic semimartingale. Then
for all hoel(X)), 1< Jj <d, one has

d P d t
Zf (h))dIX7, X7], < — Z/ RrId(X', XI], vt <7, a.s. (10.3.4)
j=170 Y 5200

where T, and o, are as in (10.3.2).

Proof Clearly, the assumption (10.3.2) implies that (10.3.4) is true for simple pre-
dictable processes hY n2, ..., h? € S. Now fixing K%, ..., h? €S, the class of h! for
which (10.3.4) is true is seen to be bp-closed and hence by monotone class theorem,
(Theorem 2.66) contains all bounded predictable processes. Similarly, assuming that
(10.3.4) is true for A', ... h/ bounded predictable and A/*!, ... h? €S, we can
show that the same is true for k!, ..., h/*! bounded predictable and Rt . hle
S. Thus by induction we conclude that (10.3.4) holds when hY K%, ... h? are
bounded.

Now note that by the Kunita—Watanabe inequality (Theorem 4.80) and Remark
4.87, the right-hand side in (10.3.4) is finite a.s. for hel(X)), 1< j <d.Let
n=9_h/Pandforl < j <dandn > I, let

W = R 1y

Using (10.3.1), it follows that

d P d t
Z/ h;”ihf’jd[Xi,Xj]s increases to Z/ hih{fd[Xi,Xj]s
0 0

i,j=1 i,j=1

and also easy to see that

d P d t
> / (h7)*d[X7, X7, increases to ) / (h))2d[X7, X7],.
i=1 Y0 i=1 70
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Thus validity of (10.3.4) for {h"/ :1 < j <d} for all n > 1 implies validity of
(10.3.4) for {h/ e (X)) : 1 < j < d]}. O
Corollary 10.16 Let X = (X!, X2, ..., X9) be a quasi-elliptic semimartingale.
Suppose g”’j eL(x), 1< j <d,n > 1are such that vVt < 00

d t

E / (g;”i — g;”’i)(g?’j — g;"’j)d[Xi, X71, = 0 in probability as n, m — ooc.
= 0
i,j=1

Then Vt < o0

d t
Z /0 (g;”i - g;"’i)zd[Xi, X', — 0 in probability as n, m — oo.
ij=1

Proof This follows from Lemmas 2.75 and 10.15. ([

We have noted that if X!, X2,..., X9 are rcll semimartingales such that
[X!, X/] = 0fori # jthen X = (X!, X2, ..., X9)is quasi-elliptic semimartingale.
In particular, if X', X2, ..., X are continuous local martingales such that X’ X/ is
also a local martingale for i # j, then X = (XU X2, ..., X s quasi-elliptic local
martingale.

Here is the analogue of Lemma 10.3 in multidimensional case for a quasi-elliptic
semimartingale.

Lemma 10.17 Let (M', M?,..., M%) bea quasi-elliptic semimartingale such that
each component is a local martingale. Let N" € LMY, M2, ..., M%) be martingales
such that E[ [N} — N;|1 — 0 forall t.

Then N € I(M', M?, ..., M?).

Proof The proof follows that of Lemma 10.3. First we get g™/ € L(M/) for 1 <
j <d,n > 1 such that

d '
N'= N} + Z/ g"idm.
j=170
We choose g™/ such that g; "/ = (. We then conclude that N is converging in Emery
topology and as a consequence, for all T < oo,
[N" — N™, N" — N™]y — 0 in probability as n, m — co. (10.3.5)
Here note that
d T
[N" = N" N" =N"Ir = ) / (" = g" g = g"d M, M.
0

k=1
(10.3.6)
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Now (10.3.5), (10.3.6), the assumption that (M', M?, ... M%) is a quasi-elliptic
local martingale and Corollary 10.16 implies that for each j, 1 < j <d

T
/ (g;"j — g;"'j)zd[M, M]; — 0 in probability as n, m — oo. (10.3.7)
0

Now, by taking a subsequence, if necessary and relabelling, we assume that for
l<k<nl=<j=<d

k
Pq/@ﬁ—ﬁhMMLMm%zlog (103.8)
0

Proceeding as in the proof of Lemma 10.3, defining
g/ (w) = lim sup g*/ (w)
k—o00

we can conclude that

d t
[MM=Z/%WWWM.
jk=170

Getting 0, 1 oo such that (10.2.11) holds and using that (M', ..., M%) is quasi-
elliptic, we conclude, for a suitable sequence of stopping times 7,, 1 oo (as in defi-
nition of quasi-elliptic semimartingales),

Ty NTy . . X
E[(/ (g)dIMI M71) ] <00 1<j<d nxl.
0

Thus g/ € L(M/). Now defining ¥; = Ny + Z?:l fot g/dM/, we can show that
(10.2.12) and (10.2.13) hold and thus N =Y completing the proof that N €
IM', M2, ..., M%), O

Now the same proof as that of Theorem 10.4 gives us the following.

Theorem 10.18 For r.c.ll local martingales MY M?, ... M%and T < oo let

Ke(M', M?, ..., MY ={Ny: NelM' M*> ..., MHNM}. (10.3.9)

Suppose (M', M?, ..., M?) is quasi-elliptic semimartingale such that each M’
is a local martingale. Then Kr (M", M?, ..., M%) is a closed linear subspace of
LY($2, Fr, P).

We are now ready to prove the multidimensional version of Theorem 10.9.

Theorem 10.19 Let M = (M', M2, ..., M%) be a quasi-elliptic semimartingale
such that each component is a local martingale on a probability space (§2, F, P)
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with a filtration (F,). Suppose that Fy is trivial and F = o (U, F;). Then the following
are equivalent.

(i) For every bounded martingale N, Af7 € L(M/), 1 < j < d such that
d t
N, = N0+Z/ fldm! as. vi. (10.3.10)
j=1 70

(ii) For every martingale N, 3f7 € L(M7), 1 < j < d such that (10.3.10) is true.
(iii) E is an extreme point of the convex set E(M", M2, ..., MY

(iv) Ep(M', M?, ..., M%) = {P}.

(v) Ep(M', M?, ..., M%) = {P}.

Proof The proof closely follows that of Theorem 10.9. Once again we can observe
that (i) is same as L>°(2, Fr, P) C Ky (M', M?, ..., M%), VT € (0, 0o) and (i)
is same as L' (82, Fr, P) = Ky (MY, M?, ..., M%), VT € (0, 0c0).

Proofs of (i) <= (ii) and (iii) < (iv) <= (v) are exactly the same.

The proof of (i) = (v) is also on similar lines, invoking Theorem 10.18 in place
of Theorem 10.4 to conclude that the class of Fr measurable random variables that
admit representation is a closed subspace of LY, F,P).

For the proof of the last part, namely (i) implies (v), assume (i) is true and let
Qe Ep(M!', M?, ..., M.

Fix T < oo and let n be a Fr measurable bounded random variable. Since
L>®(82, Fr, P) is a subset of Ky (M', M?, ..., M%) and Fy is trivial, we can get
g/ e L(M/) for 1 < j <d with

d T
n:c—i—Z/o g dM’
=1

such that V; = ¢ + Z;l=1 fy 9’ dM is a P-martingale.

Let Z, = Y9_, [y 9 lo.r(s)dM; . Then Z, = E[( — ¢) | 7] and thus Z is a
bounded P-martingale.

Since M', M?, ..., M? are Q-local martingales and ¢/ € IL.(M/), it follows that
Z is a Q-sigma-martingale. But Z is a bounded process and now invoking Corollary
9.27 we conclude that Z is a Q-martingale. The rest of the proof that Q = P is exactly
as in Theorem 10.9. (]

We can now deduce the integral representation property for d-dimensional Brow-
nian motion, due to Ito’s [25] and Clark [10].

Theorem 10.20 Let W = (W', W2, ..., W?) be d-dimensional Brownian motion.
Thus each W/ is a one-dimensional Brownian motion and moreover W', W2, ..., W4
are independent. Let F; = .7-",W and F = O'(U,]:;W). Then every martingale M w.r.t.
the filtration (F,) admits a representation
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d t
M, =M0+Z/ fldwi vt (10.3.11)
. 0
j=1

where f/ e L(W/) for1 < j <d.

Proof The proof is on the same lines as in the case of one-dimensional version,
Theorem 10.10. First we note that [W/, W¥] = 0 for j # k implies that W is a
quasi-elliptic semimartingale so that we can use Theorem 10.19. We will show that
if Qe Ep(W!, W2, ..., W9) then Q = P. Once again as in Theorem 10.10, we
deduce that for each j, W/ is a square integrable martingale with [W/, W/]9 = ¢
and for j # k, [W/, Wk],Q = 0. Thus Levy’s characterization Theorem 3.8 implies
that W is a d-dimensional Brownian motion on (£2, F, Q). The assumption that F
is generated by {W, : ¢ > 0} yields P = Q completing the proof. (]

Example 10.21 LetW=(W', W2, ..., W%) be d-dimensional Brownian motion.
Thus each W/ is a real-valued Brownian motion and W', W2, ..., W¢ are
independent. Let 7, = 7V and F = o(U,F,). Let X = (X!, X2,..., X9) be
the solution to the SDE (3.5.1) with m =d and b =0 where o satisfies
(8.5.3), (3.5.4). Further, suppose that 3a > 0 such that for all t > 0, x € R?,
AN, A

d d
D ANt x) = a Yy A (10.3.12)
i=1

ij=1

Then as noted earlier, X = (X!, X2, ..., X9) is a quasi-elliptic semimartin-
gale. Moreover, the condition (10.3.12) implies that o (¢, x) is invertible and
then

t
W, = / o s, X,)dX,. (10.3.13)
0

Thus, W, is F* measurable and as a consequence, F* = F,. Hence every
martingale M admits a representation

d t
M, = My + Z[ g dx’ vi (10.3.14)
j=170

where ¢/ € L(X/) for 1 < j < d- just define g, = f,0~'(s, X,) where f is as
in (10.3.11). Since (F¥) = (F.), g above is also (F*) predictable. As a con-
sequence, we also get that

Ep(X', X%,..., X% = {P}.
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10.4 Continuous Multidimensional Semimartingales

We will show that for continuous semimartingales X', X2, ..., X%, we can get
bounded predictable processes f*/ such that Y = (Y!, ..., Y¢) defined by

d ¢
vi=Y" /0 fiax’
j=1

satisfies for j # k A
Y’/ v, =0 vr

and thus is quasi-elliptic. Thus, Theorem 10.19 would hold for (Y',..., Y%) if
X! ..., X? were local martingales.

We will first show that such a transformation is always possible. In order to achieve
this, we need some auxiliary results.

Lemma 10.22 Let N9 QU DU pe the class of d x d symmetric non-negative
definite matrices, d x d Orthogonal matrices and d x d diagonal matrices, respec-
tively. Then there exists a Borel measurable mapping 0 : N9l 1 QW x D9 such
that

6(C) = (B, D) satisfies C = BT DB.

Proof Given a non-negative definite C, the eigenvalue-eigenvector decomposition
gives existence of orthogonal B and diagonal D such that C = BT DB. Since for all
C e NI the set

{(B,D) € 0¥l x DI . ¢ =BT"DB)

is compact, measurable selection theorem (See [20] or Corollary 5.2.6 of [57]) yields
the existence of Borel measurable 6. U

Lemma 10.23 Let D be a o-field on a non-empty set I' and for 1 < i, j < d, \;;
be o-finite signed measures on (I", D) such that for all E € D, the matrix((\;;j (E)))
is a symmetric non-negative definite matrix. Let A(E) = Z?:] Aii (E). Then for
1 <i,j <d there exists a version ¢l of the Radon-Nikodym derivative % such
that for all o € I', the matrix ((cV («))) is non-negative definite.

Proof For 1 <i < j <dlet f" be a version of the Radon-Nikodym derivative %
andlet f/ = f%. For rational numbers ry, 5, .. ., rq, let
Apryra = Zr,-rjfij(a) < 0}
ij
Then A(A,, 1,...r,) = 0and hence A(A) = 0 where

A=U{A, ;,...ry 0 T1,72, ..., 14 1ationals}.
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The required version is now given by

(@) = f (@) 1xe(e).

O
We are now ready to prove
Theorem 10.24 Let M', M2, ..., M? be continuous semimartingales. We can get
predictable processes b/ bounded by 1 such that N = (N', ..., N%) defined by
N/ = Z/ bdM' (10.4.1)
i=1 Y0
satisfies '
[N/, N¥), =0 vr. (10.4.2)
Further,
d ¢
Mk = Z / b*AN/. (10.4.3)
j=1 70

Proof First let us assume that [M*, M¥], < C forall r and 1 < k < d. Recall that
the predictable o-field P is the smallest o-field on Q= [0, 00) x £2 with respect to
which all continuous adapted processes are measurable.

Let signed measures I;; on P be defined as follows: for £ € P, 1 <1i, j <d,

I(E) = /_Q /0 " Le(s )M, MI1,(0)dP ).

Let A = Z‘;: , I';;. From the properties of quadratic variation [M', M], it follows
that for all £ € P, the matrix ((I7;(E))) is non-negative definite. In particular, for
all i, j

()| < T (E) + Iy (E)

Hence, I7j; is absolutely continuous w.r.t. A , Vi, j. It follows that we can get pre-
dictable processes ¢/ such that
a5 _ (10.4.4)
dA
and that C = ((c"/)) is a non-negative definite matrix (see Lemma 10.23). By con-
struction |¢/| < 1. Using Lemma 10.22, we can obtain predictable processes b'/, d’
such that for all i, k, (writing §;x = 1 if i = k and d;; = 0 if i # k),)
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d
> bUbY = by (10.4.5)
d
> bi'bl* = by (10.4.6)
j=1
d
> bUel'bt = byd (10.4.7)

Jil=1

Since C = ((c}/)) is non-negative definite, it follows thatd’ > 0. Further, B = ((b'/))
being orthogonal matrix the process b"/ is bounded by one and hence is in IL(M) for
alll <i,j<d.

For 1 < j <d, let N/ be defined by (10.4.1). Using (10.4.6), it follows that

d ¢ ; d d
bi*dNT = / bfkbf’dM’
X[y = [ XY

j=1i=1
_ gk
= Mt

Note that
[N', N¥], = 2/ bIpMaim? | M,

J,l=1

and hence for any bounded predictable process & such that |hy| < C ljo.71(s) for
some T <ooand C <ooandi # k

EP[/ th’N]]_ff Zb”bk’ d[M’, M",dP(w)

Ji,l=1

/ Z btjbkldlw]l
(10.4.9)

jll

= n bibM it d A
| >

=1
=0

where the last step follows from (10.4.7). Given a bounded stopping time o, taking
h = l[o,g], it follows that % is predictable and thus using (10.4.9) we conclude from
(10.4.9) that for i # k

ELIN', N*],]1 =0.
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Thus [N?, N¥]is a martingale for i # k (see Theorem 2.57). Also, it is a continuous
process (as each N/ is continuous) and [N, N¥] € V with [N?, N¥], = 0 by defi-
nition. Hence it follows (see Corollary 5.24) that [N?, N K1, = 0 fori # k. Thus we
have proved the result for the case when [M*, M*], are bounded. For the general
case, let

d
= inf{¢ Z (M7, M7, > n).

Then o, 1 oo and for each n,
[M*lond | prklonl] s bounded for 1 < k < d

where M*[9] is defined by M 17! = Mk

tAG,"
Let ((b"1/)) be the predictable processes obtained in the preceding paragraphs
for MUl p2lend o M4lonl Then defining
o0

b= 0" 1, ()

n=1
we can verify that N defined by (10.4.1) satisfies (10.4.2) and (10.4.3). U

Remark 10.25 Let M, N be as in Theorem 10.24.

Then it follows that M, ..., M¢ are local martingales ifand only if N', ..., N¢
are local martingales since b'* are bounded predictable processes. Further,
(10.4.1), (10.4.3) imply that

EM', M?*, ..., M") =E(N',N?, ..., N,
Ep(M', M?, ..., M%) =Ep(N', N?,..., N9,
Ep(M"', M2, ..., M%) =Ep(N', N2, ..., NY).
In view of Remark 10.25, we have the following result as a direct consequence of
Theorem 10.19.

Theorem 10.26 Ler M', M2, ..., M? be continuous local martingales on ($2,
F, P). Suppose that Fy is trivial and F = o(U,F;). Let N', N2, ..., N9 be as in
Theorem 70.24 so that (10.4.1), (10.4.2) and (10.4.3) hold. Then the following are
equivalent.

(i) For every bounded martingale U, 3f7 € L(N7), 1 < j < d such that
d t
U, = U, +Zf fldN? Vvt (10.4.10)
j=170

(ii) For every martingale N, 3f/ € L(N/), 1 < j < d such that (10.4.10) is true.
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(iii) E is an extreme point of the convex set E(M ", M2, ..., M.
(iv) Ep(M', M?, ..., M%) = (P}.
(v) Ep(M', M?, ..., M?) = {P}.

10.5 General Multidimensional Case

We have commented that in general, the multidimensional version of Theorem 10.9
is not true. In view of this, we had given a version in case of quasi-ellipticity, Theorem
10.19 and a version in the case of continuous local martingales, Theorem 10.26. We
now come to the general multidimensional case.

Forr.c.ll. semimartingales X', ..., X?andh/ e IL(X/), we can define the vector

stochastic integral as
P d
(h,dX) = /hfdxf.
oo =2

In order to discuss the general case of integral representation theorem, we need
to extend the notion of vector stochastic integral. See Jacod [27], Cherny and
Shiryaev [7].

Definition 10.27 For r.c.ll. semimartingales X', ..., X9, let L, (X', ..., X%
denote the class of R?-valued predictable processes h = (h',...h%) such
that for any sequence of predictable processes ¢" satisfying

(i) 16"l <1,
(iiy h/¢"isboundedforall j,n,1<j<d,n>1,
(ili) ¢" — 0 pointwise

the processes Z" = ijl [ hi¢"dX/ converge to 0 in d,., metric.
Here is an observation.

Lemma 1028 Let X = (X',..., X% be rc.ll semimartingales and let h =
(', ..., h") be an R¢-valued predictable process. Let

d

A 1

b= _ Z/h" l{\h|>0}de" (10.5.1)
j=1

where |h| = ,/Z?:l(h-f)z. Then hﬂfﬁ e L(X/)for1 < j<dand
helyX', ..., X% ifand only if |h| € L(X<") (10.5.2)

Proof Since h' 1[‘h|>0}‘;1—| is bounded, clearly, i/ thﬁ eL(X/)forl<j<d.
Leth € L,(X', ..., X9). Let f" be bounded predictable processes with | f| < |h|
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and f" — O pointwise. Let ¢" = f” 1{|h‘>0}ﬁ. Then ¢" are predictable processes
with |¢"| <1 and ¢" — 0 pointwise. Also, f" = ¢"|h| and so ff"dX<h> =
Z‘jzl [hi¢"dX/. Thus, [ f"dX<"> — 0 in d,., metric and thus |i| € L(X<">)
(see Theorem 4.18).

Conversely, suppose || € (X <">). Given predictable ¢" as in Definition 10.27,
let f" = |h|@". Then | f"| < |h| and f" — O pointwise and hence

w" = / f"dX<"> — 0 d,, metric.
Noting that

d
/f”dx<h> = Z/hjqb"de
j=1

we conclude that & € L, (X', ..., X9). O

Definition 10.29 For h e L, (X', ..., X%), where X', ..., X% are r.c.ll. semi-
martingales, the vector stochastic integral fé(h, dX) is defined by

t t
/(h,dX):/ |hg|d X ">
0 0

where X <> is defined in (10.5.1).
Note that if Z, = [ (h, dX), then

t
(Z,Z], = f |hs|2d[X <", X <>,
0

d t
1 .
= Z/ |hs|2—2(hgh’;)d[x',x"]s (10.5.3)
“—Jo N
Jsk=
d t
- Z/(hgh(;)d[xf,xk]_v.
k=170
Likewise, for h € L,(X',..., X%) and g € L,(U',...,U%), Z, = [, (h, dX)
and W, = fot(g, dU), we have
(Z. W], =) / (highdlx’, U,. (10.5.4)
jk=170
Remark 10.30 Let X', ..., X? be r.c.l.l. semimartingales and let 4/ e L(X/)

for 1 <j <d. Thenitis easy to see that h = (h', ..., h%) e L,(X', ..., X%
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and .
/(h, dX) :Z/hfdxf.
j=1
However, h = (b, ..., h%) e L,(X', ..., X9) does not imply that 7/ e L(X/)
forl <j<d.

Remark 10.31 Let h e L,(X',..., X%), where X', ..., X? are r.c.ll. semi-
martingales. For any predictable process 1 such that ¢» > 0 and | 4 |< 9,
we have

t t
/ (h,dX) =/ VsdZ (10.5.5)
0 0
where
d t h] '
Z, = Z[ —dx/. (10.5.6)
j=ido ¥
We introduce the class of semimartingales that admit a representation as vector
integral w.r.t. an R?-valued r.c.L.l. semimartingale X = (X', ..., X9). Let
xt .o xY

t
={Z:3geL,(X', ..., X%, with Z, :zo+f (g, dX) Vt < 00}
0

When X = (X', ..., X9),wewillalsowrite L, (X) = L,(X", ..., X% andI"(X) =
'x', ..., x9).
Here is an observation about vector integral, an analogue of Theorem 4.33.

Theorem 10.32 Ler X', ..., X4 be rc.lL semimartingales and let ¢ be a (0, 00)-
valued predictable process such that ¢ € L(X/) for 1 < j <d. Let Y/ = i pdX/
and h = (h', h2, ..., h%) be an R?-valued predictable process. Let fj = ¢h! and
=" 24 D Writing X = (XY, ..., XD andY = (Y, ..., Y?). Then

felyX)ifand onlyifh € L,(Y) (10.5.7)
and then
/(f, dX) = /(h, dy). (10.5.8)
As a consequence
I"(X) =1°(Y). (10.5.9)

Proof Recall that f € L,(X) if and only if |f] e L(X</>) where X</> =
Zj{zl [ f 1{\f\>0}|lﬁdxj andh € L,(Y)ifandonlyif || € L(Y<">)where Y <"> =

Z;{:l S hj Ym0 ﬁde. Since ¢ is (0, 00)-valued, it follows that for all j
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4 1 ) 1
h’ l{\h|>0}m = f/ 1{|f\>0}m

and as a consequence

f¢dX<f> — Xd:/ fj ]“f|>0}i¢dxj
p /]

d 1
= Z/hj Ljnj=0) -~ dd X/
= |l

U

. 1 .
/ h' 1{|h‘>0}mdyj

=1

~.

<h>

~

Thus, using Theorem 4.33, we have

|h| € L(Y=">) if and only if | f| = |h|¢ € L(X~/>)

/|h|dY<h> =/|f|dX<f>.

Since [(f,dX)= [|fldX=/> and [(h,dY) = [|h|dY=">, this completes the
proof. ]

and

We observe that an analogue of Theorem 4.43 holds for vector integral as well.

Theorem 10.33 Let X!, X2, ..., X9 be r.c.LL stochastic integrators and let Kl K2,
..., h? be predictable processes such that there exist stopping times T, increasing
to 00 with

(' Loryso o h lor ) € Ly(Xh, ..., XY V> 1. (10.5.10)

Then (h', h2, ..., h%) e Ly(X', ..., X%).

Proof Let ¢" be predictable processes, |¢"| < 1, h/¢" is bounded for all j,n, 1 <
Jj <d,n=>1,¢" — 0pointwise. Then in view of (10.5.10), it follows that for each
m,

d
zmn =" / h 1jo.5,16"dX? — 0in d,, metric. (10.5.11)
j=1
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We need to show that
d . .
7" = Z / h/¢"dX! — 0in d,., metric. (10.5.12)
j=1

By (4.4.2) in Lemma 4.36, it follows that

Z;n,n — ZI‘L

(AT

Now the required conclusion, namely (10.5.12) follows from (10.5.11) and Lemma
2.75. (Il

Exercise 10.34 Show that the mapping (4, X) +— [(h, dX) is linear in h and
X.

In analogy with Lemma 10.1, here we have the following result, with very similar
proof.

Lemma 10.35 Let X', X2, ..., X% be semimartingales and Y be a semimartingale
such that for a sequence of stopping times 7, 1 00, Y" defined by Y' = Y., satisfies

Y eIV(x!, X2, ..., X9).

Then
Y eIP(x', X2, ..., X9).

Proof Let f/ e L.(X/),1 < j <d,n > 1be such that for all n,
t
Y= 1) +/ (f", dX).
0
Define f/ by
o0
fj = Z l(an.Tn]fn’J'
n=1

Then it is easy to check (using Theorem 10.33) that f/ € L.(X/) and

v, = YO+/ (f, dX).
0

This completes the proof. ]

With the introduction of vector integral, we can now prove the multidimensional
analogue of Lemma 10.3.
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Lemma 10.36 Let M', M?, ..., M9 be rc.LL local martingales. For n > 1, let
X" be martingales such that X" € I'(M', M?, ..., M?). Suppose that E[ | X" —
X,1— O0asn — ocoVt. Then X e I"(M', M?, ..., M?).

Proof The proof follows that of Lemma 10.3. In view of Lemma 10.35, suffices to
consider the case when for some 7 < oo,

X, =Xiar, X=X, Vi=0,n>1. (10.5.13)

So let us fix a T < oo such that (10.5.13) holds. Without loss of generality, we can

assume that M,j = MIJAT for 1 < j < d.We note that Theorem 5.39 implies that X"

converges to X in Emery topology and as a consequence,

[X" — X, X" — X]r — 0 in probability as n — oo, (10.5.14)
[X", X"z — [X, X]r in probability as n — oo (10.5.15)

and
[X" — X™ X" — X"™]r — 0 in probability as n, m — oo. (10.5.16)

By taking a subsequence and relabelling if necessary, we assume that
PIX" =X, X"—X]r =25 <27% wvn>k (10.5.17)

Using this estimate and invoking Borel-Cantelli Lemma it follows that

> VIXT—X. X" = X]r <0 as.

n=1

Let

d 00
B=Y VIM/, Mily +) VIX" =X, X" = XIr +IX, X1r
j=1 n=1

Using (4.6.22), it follows that /[ X", X"]r < 2B and also

VX" — Xm X" — X" <2B (10.5.18)
We are going to carry out a orthogonalization as in Theorem 10.24. However, this
time [M/, M*] are not continuous and thus we cannot assume them to be locally

integrable. Thus we introduce an equivalent measure Q as follows: let

a = Eplexp {—B}],

1
§ = —exp{—B}
(@
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and Q be the probability measure on (£2, F) defined by

dQ
ap =

Since Eq[B*] < oo for all ¢ and for all k, and [X" — X", X" — X" converges to
0 in P and hence in Q probability as n, m — oo, it follows using (10.5.18) that

Eo[ [X" — X", X" — X"]7] > 0 asn,m — oo. (10.5.19)
Likewise
Eol [X" — X, X" — X]z] — 0 asn — 0o (10.5.20)
and
Eal [X", X"]7] — Eql [X, X]r] asn — oo. (10.5.21)
Since X" e I'(M" ..., M%), we can get f" = (f™',..., f™?) such that f" e

L,(M'..., M%) and
13
Xy =X3+/ (f",dM). (10.5.22)
0

We repeat the construction that we carried out in proof of Theorem 10.24, with a subtle
difference. Here we do not have continuity of [M?, M/] but do have integrability of
[M/, M7]7 under probability measure Q for each j. Let signed measures I5; on P
be defined as follows: for £ € P, 1 < i, j <d,

T
I (E) = /Q fo L (s, w)d[M', M7, (0)dQw).

Let A = Z?:l I';;. From the properties of quadratic variation [M*, M/], it follows
that for all E € P, the matrix ((I3;(E))) is non-negative definite. Further, I7j; is
absolutely continuous w.r.t. A Vi, j. It follows that we can get predictable processes
'/ such that

drlj;

= ¢t (10.5.23)

and that C = ((c"/)) is a non-negative definite matrix (see Lemma 10.23). By con-
struction |c¥/| < 1. Using Lemma 10.22, we can obtain predictable processes b*/, d’
such that for all i, k, (writing d;; = 1 if i = k and ;; = 0 if i # k),

d
> BB = 6y (10.5.24)
j=1
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d
> bi'bi* = by (10.5.25)
j=1
d
> bUel'bt = byd (10.5.26)
J.l=1

Since ((c}/)) is non-negative definite, it follows that d’ > 0. For 1 < j < d, let N
be defined by

N/ = Z fo blidM: (10.5.27)
i=1

Using (10.5.25), it follows that forr < T

d

d : . d
b*dNI = / b*bidmi
;/0 0 ZZ ) (10.5.28)

j=1i=1
_ gk
= Mt

Note that

d ¢
[Ni, Nk]t — Z / b;/bfld[M/’ Ml]s
0

JiI=1

and hence for any bounded predictable process & and for i # k

T T d
Eal f hyd[N', N¥];] = f f he Y bUbdIMI, M')dQ(w)
0 22J0

ji=1

d
= | n bip¥ar;
f 2 7 (10.5.29)

2 ji=1

d
=/ hybUbHel'd A
2 i
=0
where the last step follows from (10.5.26). As a consequence, for bounded
predictable A

d T d T
EQ[Z/O h;h’;d[N",Nk]s]zEQ[Zfo (h52d[N*, N¥],] (10.5.30)
k=1

i.k=1
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Let us observe that (10.5.30) holds for any predictable processes {hj 1 <i<d}
provided the right-hand side is finite: we can first note that it holds for i = h' 1<)
where |h| = Zle |h'| and then let k 1 oo. Let us define

d
= Z fripki (10.5.31)

and let " = 1+ Y°¢_, (Ig"*| + | f"**|). Then note that

f<g”,dN> =/w"dW"

where
d n,k
= Z/ TNt
k=1 ¥
Note that
d d
— Z Z/ n ]bkdek
k=1 j=I
d d d
= ZZZ/ b am’ (10.5.32)
k=1 j=1 I=1
4
Jj=1 ¥
and hence
/<f”,dM> =fz/)”dW".
Thus we have
f(g”, dN) = /(f”, aM) (10.5.33)

and as a consequence, recalling (10.5.3), we have

[Xn_Xm’Xn Xm Z / (gn] m])(gnk mk)d[N] Nk]
Jk=1
(10.5.34)

Now invoking (10.5.29) we get
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d T
Eal [X" — X", X" = X"]r] = Ealy / (g* — g dIN*, N¥)j]
_1 40
k=t (10.5.35)

d
=Y. / (g = ") d Iy
k=1

Since lgft-hand side in (10.5.35) converges to 0 (see (10.5.19)), using completeness
of L2(£2, P, I'k), we can get predictable processes gk such that

/ ("™ — ¢Y2d T — 0.

As a consequence,

d T
Z [ " — g (" — g")dIN’, N¥] - 0 in Q- probability as n — oo,
jk=170
(10.5.36)
and thus for any bounded stopping time 7

d . d .
> [ harhan . v - 3 [ @hhdv v aessn)
jh=170 jik=1"0
in Q probability as n — oco. Noting that Q and P are equivalent and
d T
XX = 3 [ @ Hdin v
jk=1"0
we conclude that
d t
(X", X", — Z / (¢))(g")d[N/, N¥] in P - probability as n — oo
jk=1"0
and as a consequence
d t
[X. Xl =) / (¢")(g"dIN', N*] (10.5.38)
jk=1"0

Let us define bounded predictable processes ¢’ and predictable process # and a
P-martingale Z as follows:

d
hy=1+) |gi| (10.5.39)
i=1
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&= (10.5.40)
d !

Z, = Z/O ¢l dN? (10.5.41)
j=1

Then

Z, = ZZ f bl dM’ (10.5.42)

i=1 j=I1

Since ¢/, b/ are predictable and bounded by 1, it follows that Z is a P-local martin-
gale. Let us note that

d d .
/hzd[Z Z1s ZZ] R ¢l pEd[N7, N¥],
0
j=1 k=1
4 (10.5.43)
=> fgsg,d[N’ N4,.
j=1 k=1
Putting together (10.5.38) and (10.5.43), we conclude
1
(X, X = f hid|Z, Z)s (10.5.44)
0

We now forget Q and focus only on P. Since X is a martingale, we can get stop-
ping times o, 1 oo such that Ep[ [X, X],,] < oo and thus using (10.5.44), we con-
clude that i € }L,ln(Z). Defining ¥, = Xy + for hdZ, we note that Y, = X + fol <
g, dN >.Thus Y is a local martingale and further

X" —Y,X"—Y], = / Z (g™ — g (g"*F — VAN, NF].  (10.5.45)
Jj.k=1
Using (10.5.36) and the observation that Q and P are equivalent, we conclude
[X" —Y, X" — Y], — 0in Pprobability as n — oc. (10.5.46)

Since foralln > 1

VIX=Y, X—Y], <J/IX"—X,X"—X], +/[X" =Y, X" —Y], (10.5.47)

using (10.5.46) and (10.5.14), we conclude
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[X-Y,X—-Y],=0 V. (10.5.48)

Since X, Y are local martingales and X, = Y, (10.5.48) implies X, = Y; for all t.
To complete the proof, we will show that

XIZXO+/ (g,dN>=Xo+/ (f. dM)
0 0

for a suitably defined f. So let
d
fl — ngbki
k=1
and let v = Y9_, (1 + | f/| + |g/|). Then
W= Z/ — flam’
"1
f — fib/"dN/

(U
/ kbkzb/sz]

Il
NM&
M&

—gk5jdej

where we have used (10.5.28), definition of f/ and (10.5.24). Thus
/(f, dMm) =/¢dW=f<g, dN).

X, =X0+/ (f, dM).
0

Hence

For semimartingales X', X2, ..., X9 let K%.(X!, ..., X9) be defined by

Ke(x', ..., XN ={Np: Nel'X',...,x)nMj}. (10.5.49)
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Note that if Q is equivalent to P the class K% under Q may not be the same as the
one under P defined above as the class of martingales Ml need not be the same under
the two measures.

As an immediate consequence of Lemma 10.36 we have

Theorem 10.37 For local martingales M, ..., M4, K% (M, ..., M%) is a closed
linear subspace of ' (2, Fr, P) for every T < o0.

Now using Theorem 10.37 instead of Theorem 10.18, we can obtain the integral
representation property for general multidimensional local martingales—rest of the
argument is essentially same as in the proof of Theorem 10.19, but we will give it
here for the reader’s convenience.

Theorem 10.38 Let M', M?, ..., M? be local martingales on (82, F, P). Suppose
that Fy is trivial and F = o (U, F;). Then the following are equivalent.

(i) For every bounded martingale S, 3f € L,(M', M?, ..., M%) such that
t
S; = So+/ (f,dM) a.s. Vt. (10.5.50)
0

(ii) Foreverymartingale S,3f € L,(M"', M?, ..., M%) such that (10.5.50) is true.
(iii) E is an extreme point of the convex set EM', M?, ..., M%).

(iv) Ep(M', M?, ..., M%) = {P}.

(v) Ep(M', M?, ..., M%) = (P}.

Proof Tt can be seen that (i) is same as .°°(£2, Fr, P) C K’;(M', e, MHNT €
(0, 00) and (ii) is same as L' (£2, Fr, P) = K”T(Ml, L MHYT € (0, 00). As seen
in Theorem 10.37, K. (M', ..., M%) is a closed subspace of L.!(£2, Fr, P). Since
L>°($2, Fr, P) is dense in L' (£2, F7, P), it follows that (i) and (ii) are equivalent.

On the other hand, suppose (iv) holds and let P = aQ; + (1 — a)Q, where
Q;,Q, e EmM', M?, ..., Mf‘i), 0 < «a < 1. Then Qy, Q; are absolutely continuous
w.r.t. P and hence Q;, Q, € Ep(M', M2, ..., M?). In view of (iv),Q; = Q, =P
and thus P is an extreme point of E(M ', M?, ..., M%) andso (iii) is true. Thus (iv)
= (iii). ~

Since {P} C Ep(M', M?, ..., M%) C Ep(M", M?, ..., M?), it follows that (iv)
implies (v). _

If (v)istrueandQ € Ep(M', M?, ..., M?),thenQ; = 1 (Q+ P) € Ep(M', M?,
..., M?). Then (v) implies Q; = P and hence Q = P. Thus (v) = (iv) holds.

To see that (iii) = (ii) let P be an extreme point of E(M ", M?, ..., M%) but (ii)
is not true. Then K¥. (M, ..., M%) is a closed proper subspace of L!(§2, F, P) and
by the Hahn—Banach Theorem (see [55]), there exists £ € L>°(82, Fr, P), P(§ #
0) > 0 such that

/6§dP =0 V0 e Ky(M', ..., M%),

Then for ¢ € R, we have
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/9(1+c§)dP=/9dP Vo e KM, ..., M%). (10.5.51)

Since £ is bounded, we can choose a ¢ > 0 such that
P(cl£] < 0.5) =1.

Now, let Q be the measure with density 7 = (1 + ¢£). Then Q is a probability mea-
sure. Thus (10.5.51) yields

/9dQ=/9dP vh e Ky.(M', ..., M%). (10.5.52)

Let 0, 1 0o be bounded stopping times such that M,j "= M,".N,“ is a P-martingale.

For any bounded stopping time T, MZ’A'LT = M'Ti ro, a7 € K7 and hence

EalM’'1 = Ep[M/" 1= M| (10.5.53)

TAT

On the other hand, ) )
EalM.};1 = Ep[nM.);]

= Ep[Ep[nM.); | Frl
= Ep[nEp[M]; | Frll
= EplnM;"]

= EalM{"]

= M.

(10.5.54)

where we have used the facts that 7 is Fr measurable, M Jn is a P-martingale and
(10.5.53). Now noting that M/" = M”", + M}, — M;", we conclude

T™vT

EalM/"] = EqIM};]1+ EalM.};] — EalM;"]1 = M{.

T

Thus M}" = szm,, is a Q-martingale for every n so that M/ is a Q-local martingale
and thus Q e E(M!, M2, ... ,Md). Similarly, if Q is the measure with density n =
(1 =€), we can prove that Q € E(M', M?, ..., M?). Here P = 1(Q+ Q) and
P £ Q (since P(§ # 0) > 0). This contradicts the assumption that P is an extreme
point of E(M', M?, ..., M?). Thus (iii) = (ii).

To complete the proof, we need to show that (i) implies (v). Suppose (i) is true
and let Q e Ep(M!', M?, ..., M?%). Fix T < oo and let n be any F; measurable
bounded random variable. Since L*>(£2, Fr, P) € K} (M', M?, ..., M%) and Fy is
trivial, we can get g = (¢', ..., ¢%) e L,(M"', M?, ..., M%) with
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T
n=c+ / (9, dM)
0

suchthat [; (g, d M) is amartingale. Leth, = g ljo.r)(s)and Z, = [; (h, dM).1tfol-
lows that Z, = Ep[(n — ¢) | ;] and since 7 is bounded, it follows that Z is bounded.
As noted earlier, since P and Q are equivalent, the stochastic integrals under P and
Q are identical. Under Q, M', M?, ..., M? being local martingales, Z = [(h, dM)
is a local martingale. Since it is also bounded, we conclude invoking Corollary 9.19
that Z is also a martingale under Q. Thus, Eq[Z7] = 0 = Ep[Z7] and thus using
n=c+ Zr we get Eq[n] = ¢ = Ep[n]. Since this holds for all F; measurable
bounded random variables 7, we conclude Q and P agree on Fr. In view of the
assumption F = o (U, F;), we get Q = P proving (v). This completes the proof. [

10.6 Integral Representation w.r.t. Sigma-Martingales

In this section, we will prove an analogue of Theorem 10.38 for a multidimensional
sigma-martingale.

Let us note that if X!, X2, ..., X are sigma-martingales, then we can choose
predictable (0, co)-valued process ¢ such that [ ¢d X/ is a local martingale for each
j. First for each j we choose ¢/ and then take ¢ = min(¢', ..., ¢9).

Here are two observations on sigma-martingales.

Lemma 10.39 For sigma-martingales X' x2, .., X4 BO(X!, X%, ..., XY and
E3 (X', X2, ..., X?) are convex sets.

Proof Let Q;, Q, e E7(X!, X2, ..., X%) and let Qy = aQ; + (1 — ®)Q, for 0 <
a < 1.Fork = 1, 2,lett)y be (0, 0o)-valued predictable processes such that | Yd X/
is a Q¢-martingale for each j. Then taking ¢ = min(¢y, ¢») and N/ = [ ¢d X/, it
follows that for each j, N/ is a martingale under Q; as well as under Q, and thus

under Q as well. Hence Q) € E°(X!, X2, ..., X¢). Similarly, it can be shown that
Eg(X', X2, ..., X?) is a convex set. O
Lemma 10.40 Let X', X2, ..., X? be sigma-martingales. Then there exists a pre-

dictable (0, o0o0)-valued process ¢ such that

(i) N/ = fqbde is a martingale for each j.
(i) Kv(x', X2, ..., X% =K%(N!, N2, ..., N%).
(iii) Ep(N',N?,...,NY) C E3(X", X?, ..., X%).
(iv) Suppose that P is an extreme point of E° (X', X2, ..., X%). Then P is also an
extreme point ofIE(Nl, N2, ..., N%.

Proof We have seen in Lemma 9.23 that we can choose (0, co)-valued predictable
processes ¢’/ € L(X/) such that M/ = [ ¢/dX/ are martingales. Let ¢ = min
(@', ...,¢%. Let ) = c% Note that ¢/ is bounded by 1. Then N/ = [ ¢dX/ =
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[ 1/dM/ and then using Theorem 9.13 it follows that N/ is a martingale. This
proves (i). For (ii), we have seen in Theorem 10.32 that g = (gl, gz, ey gd) €
L,(N', N2,...,N% if and only if g¢ = (¢'¢, ¢*¢. ..., g%¢) e Ly (X', X2, ...,

X?) and then
/ (g, dN) = / (bg. dX).

The assertion (ii) follows from this.

For (iii), if Q€ Ep(N',N?,...,N9), then X/ = [IN/ is a Q-sigma-
martingale for 1 < j < d and thus Q € EZ(X', X?,..., X9).

For (iv), if Q;, Q, € E(N!, N2, ..., N9) with P = 1(Q, + Qy), then by part
(iii)

Q;,Q; e Ep(N', N, ..., N CEa(x', X2, ..., X)) CE (X', X2, ..., X%.

Since P is an extreme point of E7 (X!, X2, ..., X9), we conclude Q; = Q, =P
proving (iv) ([
Part (ii) above along with Lemma 10.36 yields the following.

Corollary 10.41 Let X', X?,..., X be sigma-martingales. Then YT < oo, K%
(X', X2%,..., X% is a closed subspace of]Ll(.Q, F,P)

The proof of the next result is on the lines of corresponding results given in
previous sections. The proof closely follows the proof of Theorem 10.38.

Theorem 10.42 Let X!, X2, ..., X9 be sigma-martingales on (2, F, P). Suppose
that Fy is trivial and F = o (U, F;). Then the following are equivalent.

(i) For every bounded martingale S, 3g € L, (X', X2, ..., XY such that
t
S; = So—i-/ (g,dX) a.s. Vt. (10.6.1)
0

(ii) For every martingale S, 3g € L, (X", X2, ..., X%) such that (10.6.1) is true.
(iii) P is an extreme point of the convex set Eo (X', X%, ..., X%.
(iv) Eg(X', X%, ..., X%) = {P}.
(v) Eg(x', X%, ..., X9 ={P}.
Proof Once again it can be seen that (i) is same as
L>®(2, Fr,P) CKyW.(X!, ..., X%) VT € (0, o0)

and (i7) is same as

LY(2, Fr,P) = Ki(X', ..., X%) VT € (0, 00).
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Also, as seen in Theorem 10.18, K% (X', ..., X% is a closed subspace of L'(£2,
Fr, P). Since L*® (82, Fr, P) is dense in L' (£2, Fr, P), it follows that (i) and (ii)
are equivalent. The proofs of (iv) = (iii), (iv) implies (v) and (v) = (iv) are
exactly the same as that given in Theorem 10.38.

To see that (iii) = (ii) let P be an extreme pointof E(X !, X2, ..., X%). Let ¢ and
N/ be asin Lemma 10.40. Part (iv) in Lemma 10.40 now implies that P is an extreme
point of E(N', N2, ..., N%) and then Theorem 10.38 implies that L' (£2, Fr, P) =
K%(Nl, ..., N%).Thus part (ii) of Lemma 10.40 gives L' (2, Fr, P) =K‘;(X1, ey
X?) VT € (0, 0o) which is same as (ii).

To complete the proof, we will show that (i) implies (v). This is exactly as in
Theorem 10.38. Suppose (i) is true and let Q € E(X', X?,..., X9). Fix T < o0
and let ) be any Fr measurable bounded random variable. Since L.*°(§2, Fr, P) C
K%(Xl, X2, ..., X% and F; is trivial, we can get g € L, (X/) with

T
77=C+/ (9, dX)
0

such that f; (g, dX) is a martingale. Let hy = g, ljo71(s) and Z, = [;(h, dX). It
follows that Z, = Ep[(n — ¢) | F;] and since 7 is bounded, it follows that Z is
bounded. As noted earlier, since P and Q are equivalent, the stochastic integrals
under P and Q are identical. Under Q, X', X2, ..., X? are sigma-martingales
and thus Z = [(h, dX) is also a sigma-martingale. Since it is also bounded, we
conclude invoking Corollary 9.27 that Z is also a martingale under Q. Thus,
EqlZ7r] =0 =Ep[Z7] and thus using n = c 4+ Zy we get Eq[n] = ¢ = Ep[n].
Since this holds for all 77 measurable bounded random variables 7, we conclude Q
and P agree on Fr. In view of the assumption F = o (U, F;), we get Q = P proving
(v). This completes the proof. (]

This result has strong connections to mathematical finance and in particular to the
theory of asset pricing. We will give a brief background in the next section.

10.7 Connections to Mathematical Finance

Connections of stochastic processes and mathematical finance go back to 1900 when
Bachelier [1] studied the question of option pricing in his Doctoral Thesis. Here he
had modelled the stock price movement as a Brownian motion. This was before
Einstein used Brownian motion in the context of physics and movement of particles.
Samuelson, Merton worked extensively on this question [49, 56]. The paper by
Black—Scholes brought the connection to the forefront. The papers by Harrison and
Pliska around 1980 built the formal connection between mathematical finance and
stochastic calculus [22, 23]. The fundamental papers by Kreps [45], Yan [61], Stricker
[58] laid the foundation for the so-called First Fundamental Theorem of Asset Pricing.
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The final version of this result is due to Delbaen and Schachermayer [11, 12]. Also
see [2, 30, 32, 43, 54].

We will give a brief account of the framework. We consider a market with d
stocks, whose prices are modelled as stochastic processes X', X2, ..., X?, assumed
to be processes with r.c.l.l. paths. The market is assumed to be ideal where there are
no transaction costs and rate of interest » on deposits is same as rate of interest on
loans, with instantaneous compounding, so that deposit of 1$ is worth ¢’* at time 7.
Let S{ = X]e ™, 1 < j < d denote the discounted stock prices. Let F, = o (S; :
O<u<t 1=<j=d).

A simple trading strategy is where an investor trades stock at finitely many time
points and at a time s she/he can use information available up to time s. Then it can be
seen that the strategy can be represented as follows: the times where the stock holdings
change should be a stopping time and thus the strategy f = (f!, f%,..., f%) can
be seen to be representable as

m—1

1= "al Lo (10.7.1)

k=0

where oy are stopping times and a,{ are J,, measurable bounded random variables.
For such a trading strategy, the value function (representing gain or loss from the
strategy) is given by

d m—1

Vi) =D " al (82 i — Shn)- (10.7.2)

j=1 k=0

When S', ... S/ are semimartingales, then we see that V,(f) = fot(f, ds).

A simple trading strategy f is said to be an arbitrage opportunity if for some 7' the
following two conditions hold : (i) P(Vy(f) > 0) = 1 and (ii) P(V7(f) > 0) > 0.
One of the economic principles is that such a strategy cannot exist in a market in
equilibrium, i.e. there are many buyers and sellers at that price for if it existed, all
investors will follow the strategy as it gives an investor a shot at making money
without taking any risk, thus disturbing the equilibrium. This is referred to as the no
arbitrage principle or simply NA.

If each S/ is a martingale, then V,(f) is a martingale for every simple strategy
f and thus E[V7(f)] = 0 and thus NA holds. It can be seen that NA is true even
when each S/ is martingale under a probability measure Q that is equivalent to P.
The converse to this statement is not true. However, it was recognized that if one
rules out approximate arbitrage (in an appropriate sense) then indeed the converse is
true. We will not trace the history of this line of thought (see references given above
for the same) but give three results on this theme. The following result is Theorem
7.2in [11].

Theorem 10.43 Suppose the processes S', S* ... S¢ are locally bounded and that
for any sequence of simple strategies " € S* and 0 < T < oo, the condition
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1

PVr(fHY=2—--)=1 Vn=>1 (10.7.3)
n

implies that for all € > 0
P(Vr(f")| =€ — 0asn — oc. (10.7.4)

Then S/ is a semimartingale for each j.

The condition (10.7.3) = (10.7.4) is essentially ruling out approximate arbitrage
and has been called NFLVR—No Free Lunch with Vanishing Risk by Delbaen—
Schachermayer.

Thus we now assume that S', §? ... S are semimartingales. L, (S', ..., §7) is
taken as the class of trading strategies and for f € L, (S', ..., S9), the value process
for the trading strategy f is defined to be V,(f) = fot (f, dS). A trading strategy f
is said to be admissible if for some constant K, one has

d

t

P(l (f.dS)>—-K vi)=1 (10.7.5)
0
and
12
/ (f, dS) converges in probability (to sayV (f))as t — oo. (10.7.6)
0

The following theorem for one-dimensional case was proven in [11] (Corollary 1.2).
For the multidimensional case see Theorem 8.2.1 in [13]. This also follows from
Theorem 10.45 below.

Theorem 10.44 Suppose S', S ... 8% are locally bounded semimartingales and
that for any sequence of admissible strategies f" the condition

P(V(f" > — %) =1, Vn>1 (10.7.7)

implies that for all ¢ > 0
PUV(f") =€ — 0asn — oo. (10.7.8)

Then there exists a probability measure Q equivalent to P such that each S/ is a
local martingale on (2, F, Q).

Here is the final version of the (first) Fundamental Theorem of Asset Pricing
—Theorem 14.1.1 in [12]. Also see [30], who independently proved the result.

Theorem 10.45 Suppose the processes S', S* ... S are semimartingales and that
for any sequence of admissible strategies f" the condition
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1

PV(fM=—--)=1, Vn>1 (10.7.9)
n

implies that for all € > 0
PV (f™"| >¢€) — 0asn — oo. (10.7.10)

Then there exists a probability measure Q equivalent to P such that each S/ is a
sigma-martingale on (2, F, Q).

We can recast this result as follows: for semimartingales S', 5% ... S, the set E3
(S', §2...8% is non-empty if and only if S', §?... 5% satisfy NFLVR (namely
(10.7.9) = (10.7.10)).

We now come to derivative securities and the role of NA condition (and NFLVR).
A derivative security, also called a contingent claim, is a type of security traded
whose value is contingent upon (or depends upon) the prices of the stocks. Thus the
payout £, say at time T, could be £ = g(S}, S, ..., S%) for a function g : R > R
or could be a function of the paths {S,J :0<t<T,1<j<d}. Allwerequire is
that ¢ is Fr measurable so that at time 7', £ is observed or known.

For example, £ = (S} — K)™ : this is called the European Call Option (on S’
with strike price K and terminal time 7). Call Options have been traded on various
exchanges across the world for close to a century. It was in the context of pricing of
options that Bachelier had introduced in 1900 Brownian motion as a model for stock
prices.

Suppose that £ (Fr measurable random variable) is a contingent claim, x € R
and f € L,(S!, S?...5%) is a trading strategy with

T
x—l—/ < f,dS> = € a.s. (10.7.11)
0

Even if £ is not offered for trade, an investor can always replicate it with an initial
investment x following the strategy f. If (10.7.11) holds, (x, f) is called replicating
strategy. In such a case, the price p of the contingent claim (assuming that the market
is in equilibrium), must be equal to x. For if p > x, an investor could sell one the
contingent claim at p, keep aside p — x, invest x and follow the strategy f. At time
T the portfolio is worth exactly what the investor has to pay for the contingent claim.
Thus the investor has made a profit of (p — x) without any risk; in other words, it is
an arbitrage opportunity. The possibility p < x can be ruled out likewise, this time
the investor buys a contingent claim at p and follows strategy (—x, — f).

Thusif (10.7.11) holds, in other words, areplicating strategy exists for a contingent
claim &, the price of the contingent claim equals the initial investment needed for the
strategy.

The market consisting of (discounted) stocks S', S2,..., 8% is said to be com-
plete if for all bounded F; measurable random variables ¢, 3x e R and f € L,
(S', S%, ..., 8% such that for some K < oo,
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t

|/ < f£dS>|<K Vt>0 as. (10.7.12)
0

and ,
f:x—}—/ < f,dS > a.s. (10.7.13)
0

Here is the second fundamental theorem of asset pricing.

Theorem 10.46 Suppose S 1s2 ... S%isa semimartingale such that
B(S'. 8% ... 8% # 6.

ie. SY, 8% ..., S admita Equivalent sigma-martingale measure (ESMM).
Then the market is complete if and only if the ESMM is unique, i.e. E5(S I s2,
S isa singleton.

Proof LetQ € Eg(S', $2, ..., §%). Suppose the market is complete. Fix 7 > 0 and
let £ € L*°(£2, Fr, Q). Consider the contingent claim £. Using completeness of
market, obtain x, f satisfying (10.7.12) and (10.7.13). Under Q, S', §2,..., §¢
being sigma-martingales N, = fot < f,dS > fort <T and N, = N7 is also a
sigma-martingale. Being bounded (in view of (10.7.12) ) it follows that N is a
martingale. Thus & € K%(Sl, S2,...,8%. Thus completeness of market is same is

Ku(S!, §2,..., 8% D L™, Fr,Q).

By Theorem 10.42, this is equivalent to EL(S', 82, ..., §9) = Q. O



Chapter 11 ®)
Dominating Process of a Semimartingale | oo

In Chap.7, we saw that using random time change, any continuous semimartingale
can be transformed into a amenable semimartingale, and then one can have a growth
estimate on the stochastic integral similar to the one satisfied by integrals w.r.t.
Brownian motion.

When it comes to r.c.l.l. semimartingales, this is impossible in view of the jumps.
Here we are faced with a difficulty as the stochastic integral is essentially created via
an IL? estimate while the integral w.r.t. a process with finite variation is essentially
defined as an ! object-as in Lebesgue—Stieltjes integral. The problem is compounded
by the fact that not every semimartingale need be locally integrable.

Metivier—Pellaumail obtained an inequality that makes all semimartingales
amenable to the I> treatment. Indeed, P. A. Meyer in a private correspondence
had drawn our attention to the Metivier—Pellaumail inequality when he had seen the
random change technique in [34]—both have an effect of making every semimartin-
gale amenable to the .2 theory. As in earlier chapters, we fix a filtration (F.) on a
complete probability space (£2, F, P) and we assume that F; contains all P null sets
in F.

The Metivier—Pellaumail inequality relies on predictable quadratic variation
(M, M) of asquare integrable martingale, which we discussed in the previous chapter.
The inequality states that for a square integrable martingale M and a stopping times
T, one has

El sup |M,|*] < 4E[ [M, M],_ + (M, M),_]. (11.0.1)

0<t<rt

Since given any adapted process A with r.c.l.l. paths, we can get stopping times 7,
such that
E[ sup |A,*] < o0

0<t<m,
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the estimate (11.0.1) makes it feasible to obtain an estimate on growth of stochastic
integral [ fd X for any semimartingale X as we will see in later in this chapter.

11.1 An Optimization Result

Let H be a sub-o-field of F and & be a square integrable r.v. such that
El¢IH] =0.

Let A € F. Consider the class IL of random variables ¢ such that E[¢ | H] = 0 and
@14 = £1,4. Consider the problem of minimizing E[¢%], ¢ € L.

Let us examine this in a special case, where H is the o-field generated by a
countable partition {H, : n > 1} of 2. Let E, = H,N A and F,, = H, N A°. Let
Pn = P(En) and qn = P(Fn)

a, = E[glE,,]’ bn = E[é-lF,,]

Since E[¢|H] =0, it follows that a, + b, = 0. It follows that for any ¢ € L,

Elplg 1= b, since E[¢|H] =0 and ¢14 = £14. Since there is no other restric-

tion on ¢, it is clear that in this case, the minimum is attained when ¢ is a constant

on each F,, equal to 0 if p,, = 0 or g, = 0 and equal to Z—Z when g, > 0. Thus let
={n: p,>0,qg,>0}and

=&la+ Z_IF

neN’ dn

and it follows that for ¢ € L
El¢*] > E[¢*].

We would like to get a description of v as well as E[¢?] in terms of £, H and A. For
this, let G = o(H, A) and n = E[£ | G]. Then

Z n lE,, + Z_IF

nEN/ neN/

and
1/) = glA +7]1Ac.
Thus
b2
E[y’] = E[&1al + ) 2.

neN’
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Now it can be checked that (using a? = b?)

2 1 a, by
Elf [Hl =) (- + )1,
wery Pntdn Pn dn

1 n n
Sy ot
neN’ Pn qn Pn4n

I

]
%

=

neN’ Pndn
It thus follows that 12
ELLAED? [ HIl =) E[—"1g,]
nelN nqn
b2
qn

and hence
E[¢?] = E[€214] 4+ E[14E[* | H]].

We will now show that the result is true in general. The calculations done above
give us a clue as to the answer.

Theorem 11.1 Let 'H be a sub-o-field of F, and let £ be a random variable with
E[€?] < oo such that E[¢ | H] = 0. Let A € F and

L={¢:E[¢|H]=0, ¢pls=El,).

Then for ¢ € IL
El¢?] > E[¢’]

where G = o(H, A), n = E[£| G] and
Y =E&1a+nlge.

Further,
E[¢?] = E[€214] 4+ E[14E[* | H]]. (11.1.1)

Proof Let us begin by noting that G = {(BN A) U (C N A°) : B, C € H}. Hence
L2(2,G,P) = (Bl + 01, : (8,0 € L>(2,H, P)}. (11.1.2)

Thus, n = E[£ | G] can be written as ) = 314 + 014 where 3, 6 are H measurable
square integrable random variables. Note that
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E[¢*] = E[(¢ — ¥)* +¢* +2(¢ — ¥)¥]

Now (¢ —4)1a =0 and hence (¢ —Y)Y = (¢ —P)lath = (¢ —P)Lab =
(¢ — 1)0 and hence
E[2(¢ — ¥)¢] = E[E[2(¢ — )0 | H]I
= E[0E[2(¢ — ) | HII
=0

as E[¢¥|H] = 0 and E[¢ | H] = 0. This proves the first part. For the second part,
recall n = B14 + 01 . Let o = E[14 | H]. Since E[n | H] = 0, we have

Ba+0(1—a)=0. (11.1.3)

Thus
Eln* |'H] = E[8%14 + 0714 | H]
= Pa+ 6071 - a)

and hence

E[14E[n* | H1] = E[E[n? | HIE[14 | H]]

[
[FPa+6*(1 — )E[14 | H]]

[32a? + 0*(1 — w)a) (11.1.4)
[

[

0*(1 — ) + 6*(1 — @)al

where we have used (11.1.3). On the other hand

Eln* 1] = E[071 4]

= E[0*E[14 | H] (11.1.5)
= E[6’(1 — )]
Thus (11.1.4) and (11.1.5) yield
Eln*1ac] = E[14E[1* | H]1. (11.1.6)

Now, from the definition of 1), we have

E[¢?] = E[€*14] 4+ E[1*1 4c]

(11.1.7)
= E[21,] + E[14E[* | H]).

where the last step follows from (11.1.6). O
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Let us observe that 7 = E[{ | G] and hence by Jensen’s inequality, one has.
E[LLEL7” | HI] < ELLAELE® | H]1.

Thus the previous result leads to

Theorem 11.2 Let & be a random variable such that E[€ | H] = 0 and E[£?] < oc.
For A € F, there exists a random variable 1) such that

(i) Yla=¢&ly
(ii) E[v|H]=0.
(iii) E[?] < E[14(&? + E[€2 | HD)].

11.2 Metivier-Pellaumail Inequality

We are now in a position to prove

Theorem 11.3 (Metivier—Pellaumail inequality) Let M be a square integrable mar-
tingale with My = 0 and o be a stopping time. Then we have

Elsup|M,|*] < 4[E[M, M],_ + E[(M, M), _]]. (11.2.1)

t<o

Proof Suffices to prove it for o bounded as the general case follows by using (11.2.1)
for o A m and taking limit over m. So we assume ¢ < T. Now we can assume that
M; = M.

Let {7y : k> 1} be predictable stopping times as in Theorem 8.75. Let & =
(AM);, U* =& in00)s Z =Y 4o UY, N = M — Z. Since 7 is predictable, U* is
a martingale. We have seen in Theorem 8.75 that (N, N) is a continuous increasing
process. Moreover

[Z.Z) =) & lino0)(t) (11.2.2)
keF
and
(Z,2) =) EI&§ | Fr iz 00() (11.2.3)
keF

Fork € F,let G, = o(F,_, {0 > 14}), m = E[& | Gi] and

Y = §k1{0>77<} + nkl{USTk}‘

Since E[¢; | ;-] = 0and F,_ C Gy, it follows that E[v; | F,,_] = 0 and hence

Vtk = l[Tk,OO) ()
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is a martingale. Since V¥, V7 do not have common jumps for j # k

vk, vil=0, (VK viy=o0. (11.2.4)
Moreover, for all k € F, Theorem 11.2 implies

E[(W0)*] < Ell{y=r) (& + E[& | FrD] (11.2.5)

This of course also gives

E[(x)?] < 2E[(&)].

LetY = ZkeF VK If F is finite, clearly, Y is a martingale. In case F is infinite, the
series converges and Y is a martingale as in the proof of Theorem 8.75. Noting that
'l/)k 1{{J‘>Tk} = gk 1{0’>Tk}’ we have

V<o) = Vil (<o) Lino0) (1)
= & lr<o) L in,00) (1) (11.2.6)
= Uf <o)

As a consequence of (11.2.6), we get
Ztl{t<a} = Ytl{t<0}~ (11.2.7)

Moreover, using (11.2.5), (11.2.2) and (11.2.3) we get

E[LY. Y1o] = E[Y ¢ 11o=r]

keF

<E[Y 43l
keF (11.2.8)

<ELY  lpory (& +EIE | Fr D]

keF
<EllZ,Zl,- +(Z, Z),-]

Let X = N + Y. Then in view of (11.2.7), X;1{;.4) = M,;1{,, and hence

Elsup| M, |*] = E[sup|X,|*]

<o t<o

< E[sup|X,|*] (11.2.9)

t<o

=< 4E[[X, X],]

Finally, using (11.2.8) along with [N, Y] = O and E[[N, N],] = E[(N, N),], we
get
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EllX, X],]1 = E[[N, N1,1+ EI[Y, Y1,]

(11.2.10)
< E[N, N),1+EllZ, Z],-1+ E[{Z, Z),]
Since (N, N) is continuous, we have (N, N),_ = (N, N),. As seen in Theorem
8.75 (N, Z) = 0 and hence we get
(N’ N)(T + (Z, Z)U— = (M, M>(f—~
This along with (11.2.9) and (11.2.10) implies
Elsup|M,’] < 4[E[(Z, Z], 1+ E[(M, M),_]] (11.2.11)
<o
Finally, [Z, Z] < [M, M] implies (11.2.1). ([l

11.3 Growth Estimate

The Metivier-Pellaumail inequality enables us to obtain a growth estimate on [ fd X
for any semimartingale X. Given a locally bounded predictable process f and a
decomposition X = M + A of a semimartingale X, where M is a locally square
integrable martingale with My = 0 and A is a process with finite variation paths,
letY=/fdX,N=[fdMand B= [ fdA. Then Y = N + B, N is a locally
square integrable martingale and B € V. Further,

[N, N],:/ fszd[M, M, (11.3.1)
0

(N,N), = /[ f2d(M, M), (11.3.2)
0

and thus in view of (11.2.1), we have

Efsup| | fdM|*] < 4E[/T_ f2d[M, M, +f7_ f2d(M, M),]. (11.3.3)
0 0

t<t JO

Writing |A|; = VARyo,j(A), we have for all 7,

t t
I/ | fldAs)? < IAIz/ | 21| Al
0 0

and hence . o
Elsup| [ fdAI*] <E[|Al,- / | f21d]Als) (11.3.4)

t<t JO 0
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We can combine the two estimates (11.3.3) and (11.3.4) as follows: let
V, =81+ [M, M1, + (M, M), + VAR 1(A)) (11.3.5)

and then we have (compare with (7.2.5) for amenable semimartingales)

Efsup| | fdX|*] §E[V_/ _|fS2|d|V|5]. (11.3.6)
0

<1t JO

The significant point about this estimate is that given any locally bounded predictable
f and any semimartingale X, we can get a sequence of stopping times 7, increasing
to oo such that the expression on the right-hand side in (11.3.6) is finite. This may
not be the case for the estimate

Etsup| [ fdXP] < E[V, / 21V
0

t=7 JO

which indeed can be obtained without any need for the Metivier—Pellaumail inequal-
ity. The process V introduced above (modulo a constant) was called a control process
of the semimartingale X by Metivier—Pellaumail.

While the control process was used to successfully deal with stochastic differ-
ential equations driven by semimartingales, the notion is not natural as even if the
semimartingale is small in Emery topology, the control process may not be small.
Further, if V is control process for a semimartingale X, for a constant ¢, ¢V may not
be a control process for cX.

Definition 11.4 An (adapted) increasing process U is said to be a dominating
process for a semimartingale X if there exists a decomposition X = M + A,
with M a locally square integrable martingale with M, = 0, A a process with
finite variation paths such that the process B defined by

B, = U, = 2V2(IM, M1, + (M, M))'* — V2| A|, (11.3.7)
belongs to V*; i.e. B is an increasing process with By > 0.

Theorem 11.5 Every semimartingale X admits a dominating process.

Proof As noted in Corollary 5.60, X admits a decomposition X = M + A, where
M is alocally square integrable martingale with My = 0 and A € V. Then

U, = 2V2(IM, M1, + (M, M))"* + V2|A|, (11.3.8)

is a dominating process. O

Remark 11.6 One of the reasons that we did not define U given by (11.3.8) for
some decomposition X = M + A as the dominating process is that now we
can have a common dominating process for finitely many semimartingales.
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With this definition we have the following inequality.

Theorem 11.7 Let X be a semimartingale and U be a dominating process for X.
Then for any stopping time o we have

El sup |X,1*] < E[U}_] (11.3.9)

O<t<o

Proof Let X = M + A be a decomposition of semimartingale X as in Definition
11.4, with B defined by (11.3.7) being an increasing process with By > 0. Then it
follows that B, > 0O for all ¢+ and hence

2V2(M, M), + (M, M))'> +V2|A|, < U,

and as a result
8(IM, M), + (M, M),) +2|A]> < U? (11.3.10)

On the other hand, for any stopping time o, we have

El sup |X,|*] < 2E[ sup |M,|*] + 2E[ sup |A,[*] (11.3.11)

0<t<o 0<t<o 0<t<o

By Metivier—Pellaumail inequality (11.2.1) we have

Elsup|M,|*] < 4[E[M, M],_ + E[(M, M),_]]. (11.3.12)

t<o

At the same time |A;| < |A|; (where | A| is the total variation of A). As a result

Elsup|A,|*] < E[|A>_]. (11.3.13)

t<o

Combining (11.3.11)—(11.3.13), we get

E[ sup |X,|*] < E[8(IM, M],_ + (M, M),_) +2|A]>_]. (11.3.14)
0<t<o
Now the required estimate (11.3.9) follows from (11.3.10) and (11.3.14). O

Ideally, we would have liked a notion of dominating process such thatif U!, U? be
dominating processes of semimartingale X!, X2, respectively, then V = U' 4 U? is
a dominating process for ¥ = X! + X2, While this is not quite true, we will show
that ¥ admits a dominating process W such that W, < V;. To prove this, we need the
following result.

Lemma 11.8 For M, N be locally square integrable martingales, let

qM,N)=[M,N]+ (M, N).
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Then, for all t

(@M + N, M +N))? < (g(M, M)+ (@(N, N))*. (11.3.15)
Also, if M' are locally square integrable martingales, i = 1,2, ...,k then
k k k
i iy )3 i iy
(@MY MO < Y g M), (113.16)
i=1 i=1 i=1

Proof Since M, N — [M, N] and M, N +— (M, N) are bilinear maps, it follows
that same is true of M, N — q(M, N). Further, g(M, M), > 0. Then proceeding as
in the proof of Theorems 4.77 and 8.59, we can conclude that

g(M.N), < (q(M, M),)*(q(N, N),) (11.3.17)

and as a result one has

q(M + N, M+ N), = g(M, M), + (N, N), +2q(M, N),
<q(M, M), +q(N, N), +2(q(M, M),)*(g(N, N),)?.
=[(g(M, M),)* + (q(N,N),)**

This proves (11.3.15). The estimate (11.3.16) is just the k variable version of the
same. O

Theorem 11.9 Let X', X? be semimartingales, and let U', U? be dominating pro-
cesses for X' and X?, respectively. Let Y = X' + X?. Then the semimartingale Y
admits a dominating process V such that

V, <U'+ U} Vi (11.3.18)
Proof Let X' = M’ + A’ (i = 1, 2) be decompositions of the semimartingales with
M’ being a local square integrable martingale with M} = 0 and A’ being a process
with finite variation paths such that

D! =U/ - C!

are increasing processes with Df) > 0 where

Cl=2v2(IM!, M'), + (M', M'))'? + /2| A7),

Let N = M'+ M? B = A! + A% and
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V, = 2J/2(IN, N1, + (N, N))'/* + V2| BJ,.

Then V is a dominating process for ¥ and to complete the proof of the first part, we
need to show (11.3.18). Clearly,

|B|, < |A"|, + A%, vr. (11.3.19)
Since N = M!' + M?, it follows from Lemma 11.8 that

(IN, N1, + (N, N))'/?
< (M, M", + (M, MY+ (M, MP), + (MP, MP))Y 2

(11.3.20)
Now estimates (11.3.19) and (11.3.20) imply

V, <C!+C2.
Since C! < U/, the required result follows. O

We now move to exploring the connection of dominating process with stochastic
integral. Here are a sequence of auxiliary results that we need later.

Lemma 11.10 Let U,V € VT be such that W defined by W, = V, — U, belongs to
V*. Then Z defined by Z, = V> — U} also belongs to V+.

Proof Note that U, V € V* implies U; > 0 and V, > 0 and

Zi—Zi= Vi = U)(V,+ Up) — (Vs = Ug)(Vs + Us)
=W, (Vi + Up) — Wi (Vs + Uy)
= (Wt - W?)(VY + Us) + Wt(vt - Vv) + Wt(Ut - Uv)

Since W, U,V € V1, it follows that Z, — Z; > 0 and thus Z is increasing. Also,
easy to see that Zy > O and so Z € V*, O

Remark 11.11 Essentially the same argument as in Lemma 11.8 (see also
(4.6.21)) gives us for locally square integrable martingales N/, j = 1,2, ...k

(Ni,Nj)t < ((Ni,Ni),«)%“Nj,Nj)t)% (11.3.21)
[N'. N71, < (INF. NT1) (N, N7]) (11.3.22)

and as a consequence
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k k k
O-N YN =0 SN Nz

k k
<DL NYDEANT N (11323)

and similarly,

k k
Y NLY N <Y (AN N (11.3.24)
i i=1

For a locally bounded predictable process f and an increasing process V, let
0,(f, V) be defined by

0,(f.V) = </ £ PdV): +/ f1dV;. (113.25)
0 0

Note that 8( f, V) is an increasing process,

0:(f, V) =2Csup | fsD Vi, (11.3.26)

0<s<t

/|fs|2dV359?(f, V)szf Ifsldes2+2(/ AldV? (11327)
0 0 0

and also

t t t
/Ifsldef§9f2(f, V)SZ(/ |fx|2de+Vt/ LPdV).  (113.28)
0 0 0

The following result gives interplay of this notion of dominating process with that
of stochastic integral.

Theorem 11.12 Let X be a semimartingale, U be a dominating processes for X and
f be alocally bounded predictable process. Let Y = [ fdX. Then the semimartin-
gale Y admits a dominating process V such that

Vi <0,(f,U) V. (11.3.29)
Proof Let X = M + A be a decomposition of the semimartingale X with M being a

locally square integrable martingale with My = 0 and A being a process with finite
variation paths such that U — C — +/2|A| € V* where C € V* is given by
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Cr = 2V2((M, M), + [M, M1)"/>.

Let N= [ fdM, B= [ fdA. Then N is a locally square integrable martingale
with Ny = 0, B is a process with finite variation paths such that Y = N + B. Now

(N, N), + [N, N, = / P, M) + f \fPdIM, M
0 0

and |B|, = fot | f]1d|A| and as a consequence, V defined below is a dominating pro-

Cess:
V, = 2J/2((N, N), + [N, N1)'* + V2| B|

t t 11.3.30)
:</ Ifldez)‘/2+x/5/ \f1dIA] (
0 0

Since U — C € V7, it follows that (using Lemma 11.10) U? — C? € V* and hence
t t

f |fI2dC? < / |fI?aU? (11.3.31)
0 0

and U — +/2|A| € V7 implies

t t
ﬂ/ IfIdIAIS/ | f1d|U] (11.3.32)
0 0
Combining (11.3.30)—(11.3.32), we get
t t
Vi 5(/ |f|2d02>‘/2+f |f1d1U| = 6,(f, U). (11.3.33)
0 0
This proves (11.3.29). (Il

Putting together Theorems 11.7 and 11.12 we now obtain an estimate on the growth
of a stochastic integral.

Theorem 11.13 Let X be semimartingale and f be a locally bounded predictable
process. Let V be a dominating process for X. Then for any stopping time T one has

t
Elsupl [ fdX[*] <E[02_(f. V)] (11.3.34)
t<1t JO
Further,
t
Elsup| [ fdX[*] <4E[(sup |f])V ] (11.3.35)
t<1 JO O<s<t

Proof As noted earlier, (11.3.34) follows from Theorems 11.7 and 11.12 and then
(11.3.35) follows from (11.3.26). [l
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Remark 11.14 Before proceeding, we would like to stress that given a locally
bounded predictable f and an increasing process V € V*, one can always
get bounded stopping times 7, increasing to oo such that

E[62,_(f, V)] < o0

and thus the estimate (11.3.34) is meaningful for any locally bounded pre-
dictable f and any semimartingale.

We can now add to the Dellacherie—-Meyer—Mokobodzky—Bichteler Theorem.
Each of the seven equivalent conditions in Theorem 5.89 is equivalent to existence
of a dominating process. We will list here only two out of the seven.

Theorem 11.15 Let X be an rc.Ll (F,) adapted process. Let Jx be defined by
(4.2.1)—(4.2.2). Then the following are equivalent.

(i) X is a weak stochastic integrator; i.e. if f" €S, f" — 0 uniformly, then
Jx(f™): — 0in probability Vt < oc.
(ii) X is a semimartingale; i.e. X admits a decomposition X = M + A where M is
a local martingale and A is a process with finite variation paths.
(iii) There exists an increasing adapted process V such that for all stopping times
T and for all f € S, one has

Elsup|Jx (f)/|*] < 2E[ / Lo, ()| fs12d V7 + ( / Lio,n ()1 fs1d Vs)*]
(11.3.36)

Proof We have already shown that (i) and (i7) are equivalent. Using Theorem 11.13,
it follows that (ii) implies (iii) follows. To see that (iii) implies (i), note that given
any adapted increasing process V, s < oo and € > 0, we can get a stopping time
7 such that V,_ is bounded and P(s < 7) > (1 — ¢). See Remark 11.14. Now the
result follows from Theorem 11.13 and the estimate (11.3.27). (I

11.4 Alternate Metric for Emery Topology

We will now introduce another metric on the space of semimartingales in terms
of dominating process and then show that this metric is equivalent to the metric
introduced earlier for the Emery topology.

Definition 11.16 For semimartingales X, Y, let
d,,(X,Y) = inf{d,.,(V,0) : V is a dominating process for X — Y}.
Itiseasy to see thatif V is a dominating process for X — Y then V is also adominating

process for ¥ — X and thus dy,,, (X, Y) = d,, (Y, X). The next two results will show
that dy,,, is a metric.
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Lemma 11.17 Let X, Y be semimartingales such thatdy,,(X,Y) =0.Then X =Y.

Proof Get V¥ € V* such that V¥ dominates X — Y and d,,(V*, 0) < 27*.

Then
o0 o0
ZZz "E[VEAL <1

k=1 n=1

—

and as a consequence, for every n, (using Fubini’s Theorem) we have
EDY 27"[Vialll <1,
k=1
Thus (noting V,k > 0)

o0
Zz” FAll<oo as.
k=1

and hence for every ¢ < 0o

o0
= [Z Vtk] <00 a.s.
k=1

Now let 7, be stopping times increasing to oo such that U, _ < m. In view of
(11.3.9), we have for every k

El sup |X, — ¥[’] < E[(V )% (11.4.1)

0<t<Tp,

Now (VX _)* converges to zero in probability as k — oo and is dominated by m?,
and thus the right-hand side in (11.4.1) converges to zero. Thus for every m,

E[ sup |X, —Y,[*)]=0

0<t<t,

showing that X =Y. (I

Remains to show that dy,, satisfies triangle inequality, which we do next.

Lemma 11.18 Let X, Y, Z be semimartingales. Then
dy, (X, Z2) < d;u (X, Y) + ds (Y, Z). (11.4.2)

Proof Givene > 0, get U, V € V* such that U is a dominating process for X — Y,
V is a dominating process for ¥ — Z and
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dyep(U,0) =d; (X, Y) + ¢
diep(V,0) =d;p (Y, Z) +¢.

Since X — Z = (X — Y) + (Y — Z), invoking Theorem 11.9, we can get W € V'
such that W is a dominating process for X — Z and W < U + V. As a result, we
note that

ducp(W9 0) = ducp(Uv O) + ducp(Va O)

Putting these estimates together, we get

dg (X, Z) < dyep(W, 0)
< dyep(U,0) +dyep(V, 0)
< de(X,Y) +dw (Y, Z) + 2e.

Since ¢ is arbitrary, this proves (11.4.2). (]

Using the previous two results, we conclude that d;,, is a metric on the space of
semimartingales. We will show that this metric also induces the Emery topology.
The first step is to show that the space of semimartingales is complete in this metric.

Theorem 11.19 Let X" be a sequence of semimartingales that is Cauchy in dg,,
metric. Then there exists a semimartingale X with dg,,, (X", X) — 0.

Proof By taking a subsequence if necessary, we assume that X” is such that (writing
X" =0)

d,, (X", X"y <27, (11.4.3)
Forn > 1,let V" € V* be dominating process for X" — X n=1 guch that

dyp(V",0) < dg (X", X" +27" <227, (11.4.4)

Thus there exists a decomposition X" — X"~! = M" + A" with M" being a locally
square integrable martingale with M = 0, A" € V and such that U" defined by

Ul = V' = 2V2(M", M+ (M M) )Y — V214, (114.5)
is an increasing process with Uy > 0. In particular, for all n, ¢
2V2(IM", M", + (M", M"))'? + V2] A", < V) (11.4.6)

As in Lemma 11.17, using (11.4.4) we can conclude that

[e¢]

V,:ZV” <00 Vi < o0. (11.4.7)

t
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Let us define B" =" | Af and B, =) .-, A”. Then

[o.¢]
|B—B", < > |A"]. (11.4.8)
n=m-+1

In view of (11.4.6) and (11.4.7), it follows that D defined by

o0

D, =) ((M", M"))'/?

n=1

satisfies D, < V,, is a predictable increasing process, and Dy = 0. Thus D is locally

bounded, and we can get stopping times o; increasing to infinity such that D, is
bounded (say by c;) for each j. Let

00
D= ) (M".M"))'".
n=m+1

Then D(’fj < D, < c; and converges to zero almost surely and as a consequence
lim E[D”"]=0 (11.4.9)
m— 00 J

Let us define N as follows: N° = 0 and
N" =" M".
n=l1

Then N is also a locally square integrable martingale and X = N™ + B™. Noting
that form < k, N¥ — N" = Zk M" and hence using (11.3.23) we get

n=m+1
k k
(NE=N", N = N")Z=(( Y M, Y MM~
n=m+1 n=m+1
k (11.4.10)
< > (Mt M)
n=m-+1
<Dy
and thus in view of (11.4.9), we have
lim sup E(N* — N, N*¥ — N™), 1= 0. (11.4.11)

m—>00 j—n

In turn, using Doob’s maximal inequality, we get
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lim sup E[sup|N} — N"|*] = 0. (11.4.12)

m—>00 p_ 1<a;

Invoking arguments given in Lemma 2.75, it follows that N* converges in ucp metric
to an r.c.l.l. adapted process N. Further,

lim E[sup|N; — N"|*] = 0. (11.4.13)

m—>00  i<g,

Thus N is alocally square integrable martingale. Using Theorem 8.61 and arguments
asin (11.4.10) we conclude
((N—Nm, N — Nm)t + [N _ Nm, N — Nm],)l/2
— hin((Nk _ Nm, Nk _ NW!)[ + [Nk _ Nm, Nk _ Nm]t)l/z

k
<lim  (LM", M"), + (M", M"))'2 (11.4.14)

n=m+1

Let us define X = N + B. Then X is a semimartingale. Further, X — X" = N —
N™ + B — B™ and thus U™ defined by

U™ =2v2(IN = N",N = N"], + (N = N", N = N"))"/> + V/2|B — B"|,

is a dominating process for X — X™. Using (11.4.6), (11.4.8), (11.4.14), it follows
that

o]

In view of (11.4.7), it follows that Y o 41 V/" converges to zero almost surely

(as m — o0). Thus, U;" converges to 0 in probability. Since for each m, U™ is an

increasing process, we conclude that U™ X%, 0 and so d,), (X, X™) converges to 0
completing the proof. (]

The next result connects convergence in dy,,, with that in d,,,.

Lemma 11.20 Suppose X", X are semimartingales such that

o0
stm(x", X) < 00. (11.4.15)

n=1

Then d,,, (X", X) — 0.

Proof Let V" be a dominating process for X" — X such that

dyep(V",0) < dyp (X", X) + 27"
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Then as seen in the proof of Lemma 11.17,
(o]
U=Y V' <oo Vi
n=1

Leto; =inf{t > 0: U, > jor U,_ > j}. Then

o0
Us)— = Z V;f* =J
n=I1

and hence for each j,
lim E[(V" )*]=0. (11.4.16)
n— 00 J

Now for any predictable process f bounded by 1, we have

Elsup| de"—/ fdX|1 < 4E[(V] )] (11.4.17)
A .

t<o; JO

Given T < oo, n > 0 and € > 0, get j such that
1
Plo;>T) < ze (11.4.18)

and using (11.4.16) and (11.4.17) for this fixed j, get ng such that for n > ng

P(sup| | fdx" —f fdX|1=n) < %5 (11.4.19)
0

t<o; JO

Recall that choice of ng is independent of f and thus (note: S; is the set of predictable
processes bounded by 1) for n > ny we have

t

t
sup P(sup| | fdX" —/ fdX|1=mn)
fes,  i<T Jo 0

t t
< sup Psupl [ fax"~ [ raxi1z ) +Po; = 1)
feS; t<o; JO 0

<e¢

As noted in the proof of Lemma 4.108, this shows d,,, (X", X) — 0. O

Now we are in a position to prove that dy,, and d,,, give rise to the same topology.
In other words, d;,, is also a metric for the Emery topology.
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Theorem 11.21 For semimartingales X", X
d (X", X) — 0 ifand only if d,,, (X", X) — 0.

Proof Let X", X be such thatd,,, (X", X) — 0. We will show thatd,,,, (X", X) — O.
Take any subsequence {n*}andlet Y* = X" Since d,,, (Y*, X) — 0, we can choose
a subsequence {k"} such that Z" = Y*" satisfies

dem(zm, X) < oo.
k=1

Now Lemma 11.20 yields that d,,,(Z™, X) — 0. Thus the sequence {X"} satisfies
the property that given any subsequence, there exists a further subsequence that
converges to X in d,,, metric. Hence d,,, (X", X) — 0.

From the definition of the metrics d.,, and d,,, it follows that the space of semi-
martingales is a linear topological space under each. Further, we have shown that the
space is complete under each of the metrics. The identity mapping being continuous
is then a homeomorphism in view of the open mapping theorem. See [55]. (]

The following result gives a technique to prove almost sure convergence of
stochastic integrals.

Theorem 11.22 Suppose X", X are semimartingales such that

V" dominates (X" — X) (11.4.20)
and

oo

D (V) < oo Vi <o (11.4.21)

n=1

Let f", f be locally bounded predictable processes such that for all T < oo

o0
Z[ sup | " — fil’l < oo as. (11.4.22)
=1 0<t<T
Then forall T < oo
& t t
[sup || f"dX" —/ fdX|*] < oo a.s. (11.4.23)
w1 0=t<T Jo 0

and as a consequence

t

t
lim [ sup | [ f"dX" —/ fdX’1=0 a.s. (11.4.24)
0

=0 0<t<T Jo
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Proof Let W be a dominating process for X and let

Vi= Wt 0 (V2 0 5Py £ = S+ SUpocscy £l

For j > 1, let
T =inf{t >0 : V, > jorV,_ > j}.

Note that sup,_ . | fs| < j, and hence

sup |f7'l < sup |fsl+ sup [f]' — fil

0=<s<7; 0<s<T; 0<s<T;

<2j.

Using the fact that V is a dominating process for X" — X as well as for X and that
Vi~ < j, we have (invoking (11.3.35))

t t
E[ sup || f"dX" - / frdX P < 16/°E[(V] ),

O<t<7; JO

E[ sup || f'dX — /de|]<4ﬁE[ sup | — £,I*1

O<t<7; JO 0<s<7;

and hence

D sup | [ praxe - / FaxP)
n=1

0<I<T/
o0
< 2EJ[ sup | ax" — / "dX|?
21:0<t<p‘rj f f
+Z sup| f dX — / FdX* (11.4.25)
e 10<t<7'j

< 32]2E[2<v"._>2 + Z sup | £ — fi’1]

n=1 n= 10<Y<T/

< 32/°E[V;_]
< 32j%.
Thus for all j

o0

t t
> sup || frdx" —/ fdX* <o a.s.
0

=1 O<t<7; JO

Since 7; increases to oo, this implies (11.4.23) which in turn implies (11.4.24). [



Chapter 12 ®)
SDE Driven by r.c.l.l. Semimartingales e

In this chapter, we will consider stochastic differential equations as in Sect. 7.3 where
the driving semimartingale need not be continuous.

‘We will consider the SDE (7.3.1), where b would be as in Sect.7.3 but Y would
be an r.c.l.l. semimartingale. We will continue to use the conventions used in that
section on matrix—vector-valued processes and stochastic integrals.

Here we will use the Metivier—Pellaumail inequality and the notion of dominating
process introduced earlier, and we will see that invoking these, the proofs of existence
and uniqueness are essentially same as in the case of SDE’s driven by Brownian
motion. In Sect. 7.3 we had used random time change to achieve the same.

We begin with an analogue of the Gronwall’s inequality, a key step in the study
of differential equations.

12.1 Gronwall Type Inequality

We will obtain an analogue of Gronwall’s inequality that would be useful in deal-
ing with the stochastic differential equations driven by semimartingales in the next
section. The first one is from Metivier [50], and the second one is essentially based
on the same idea.

Theorem 12.1 Let A, B € V* (increasing processes with Ag > 0, By > 0) and a
stopping time T be such that B,_ < M. Suppose that for all stopping times 0 < T

E[A,_] <a+ BE[ A dB]. (12.1.1)
[0,0)

Fora > 0let C(a) = Z_[,'a:]o a’. Then we have
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E[A,_] £2aC(28M) (12.1.2)

Proof Let us define V, = %B,. Then V._ <1 and we have

E[A, ] <a+BME[| A=dV] (12.1.3)
[0,0)

For integers i > 1,let ; =inf{r >0: A, >ior A, >i} A7.Note that A_ <1,
7; 1 7 and since A is increasing process, it follows that

E[A._] — E[A;_]asi — oo. (12.1.4)
Fixiand § = 2L+M and let oy be defined inductively by oy = 0 and for k > 0
Okp1 =inf{t > o : (V, =V, ) =dor (Vo = V,) =0} AT; (12.1.5)

If o441 < 7, then (V,,,, — V) > 6 and hence

k+1
oy =7, for N =[28M]+ 1. (12.1.6)

Moreover, for all k, (Vs,,,— — V,,) < 0.
For k > 0, let Zy = A,,— and 6 = E[Z;]. Then

ElZen] < a + AME /

[0,0%)
<a+ BME[Z]+ BME[Z; 4116

AgdV] + ﬂME[(/ As-dVi]

[o%,0%41)

1
<a+ OME[Z,]+ EE[ZkH]

Thus we have for k > 1 (note that a priori we know that A
is finite)

or— =< i and hence 0,

9k+1 <2a+ ZﬁMgk

Likewise, we can conclude that #; = E[Z;] < 2a. Then by induction it follows that

k
Ouer < 2a(1+ ) (26M)).

j=1

Thus invoking (12.1.6), we have E[A,_] = Oy < 2aC(2BM). In view of (12.1.4),

this completes the proof of (12.1.2). [

The next result is an analogue of the inequality obtained in Theorem 12.1 for
(As2)*.
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Theorem 12.2 Let A, B € V' (increasing processes with Ag > 0, By > 0) and a
stopping time T be such that B._ < M and for all stopping times o < T

El(A,-)’] < a+ BE[(0,—(A™, B))’] (12.1.7)
For a > 0, let C(a) = Y.\ o/, Then we have
E[(A,-)?] < 3aC(108M?) (12.1.8)
Proof Let us define V, = ﬁB,. Then V._ < 1 and we have
El(A,-)] < a + BM’E[(6,— (A", V))*] (12.1.9)

For integers i > 1,let7; =inf{t >0: A, >ior A, > i} A7.Notethat A, _ <1,
7; 1 7 and since A is increasing process, it follows that

E[AZ_]1— E[AZ_]asi — oo. (12.1.10)
Fix 6 = m/;W and let o}, be defined inductively by oy = 0 and for k > 0

O =inf{t > o5 1 (V,=V,)>dor (Vo —V,) >} AT (12.1.11)

— VUk) > ¢ and hence oy =T1;, for N = [IOﬁMZ] +1.
— V,,) < 4. Noting that for f >0

If Ok+1 < Ti, then (VUH]
Moreover, for all k, (V,,

k+1—

O (f, V) <2 |  fRVZ+2V, f2dv;
[0,7) [0,1)

and using the inequality (12.1.9), we have, writing U, = V* for convenience,

El(As,,, )1 < a+ BM?E[(0,,,, (A7, V))*]

12.1.12
<a+26ME[( A? dU, +/ A7_dV)). ( )
[0,0%+1) [0,0%+1)

For k > 0, let Z; = (A,,,c_)2 and 0, = E[Z,] = E[(A(,k_)z]. Since oy < T3, O is
finite for each k. Using (12.1.12) for k > 1

b <a+28ME[( [ A2dU, + / A2 V)

[0,0%) [0.04)
+ 2BM*E[( A}_du, +/ A7_dV)] (12.1.13)
[ow,0k+1) [ok.ox+1)

<a+2BM*E[Zi (U, — Uo) + Zi(Vy, — Vp)]
+ 2'/BMZE[ZkJrl (Uo'k+1_ - Uak) + Zk+1(VO'k+]_ - V(rk)]
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UsingU; < 1,V, < 1forallt < 7and (V,

k+1—

—V,) <dand
(UO‘/H], - U(Tk) = (V(T/\qr], - V(J‘k)(vo'k“, + VO‘;,) =< 26
the inequality (12.1.13) yields

Ors1 <a + 28M>*(20y) + 28M*(30,41)0

6 (12.1.14)
<a + 45M20k + Eek_H

Thus, for k > 1
10 2 2
Orr1 < Za + 108M~6, < 3a + 106M~0,.

Same argument as above also yields ; < 3a. Thus by induction it follows that

k

Or1 < 3aly_(108M%)]. (12.1.15)
j=0

Since oy = 7; as noted earlier, it follows that Oy = E[(A,,_)?]. Thus (12.1.15)
implies that, writing o = 103M?,

[a]
El(A,-)* <3al) o]

j=0

This proves the required estimate in view of (12.1.10). (]

12.2 Stochastic Differential Equations

Let Y', Y2, ... Y™ be r.c.ll. semimartingales w.r.t. the filtration (F.). Here we will
consider an SDE
dU, =b(t,-,U)dY;, t >0, Uy=¢& (12.2.1)

where the functional b is given as follows. Recall that D; = ID([0, c0), RY). Let
B(D,) be the smallest o-field on D, under which the coordinate mappings are mea-

surable. Let
a:[0,00) x 2 xD; — L(d, m) (12.2.2)
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be such that for all r € [0, c0),
(w,y) — a(t,w,y)is F; @ B(D,;) measurable, (12.2.3)
for all (w,y) € 2 x Dy
t — a(t,w,y) is anr.c.l.l. mapping (12.2.4)

and suppose that there is an increasing r.c.l.l. adapted process K such that for all
Y, Y1, Y2 € Dy,

Osup la(s, w, VI < Ki(w) OSUP (I + [y(s)D (12.2.5)
=s=t <s<t

sup [la(s, w, y2) —a(s, w, yDll < Ki(w) sup |y2(s) — yi(s)]. (12.2.6)
0<s<t O=<s<t

Letb : [0, 00) x 2 x D; — L(d, m) be given by

b(s,w,y) =a(s—,w, V). (12.2.7)
Note that (12.2.6) implies
sup [|b(s, w, y2) — b(s, w, YDl < K;—(w) sup [y2(s) — v1(s)I. (12.2.3)
O<s<t O<s<t

Lemma 12.3 Suppose a satisfies (12.2.2)—(12.2.6). Then we have

(i) Foranr.c.ll (F,) adapted process V, Z defined by Z, = b(t, -, V) (i.e. Z,(w) =
a(t,w,V(w))) isan rc.ll (F.) adapted process.
(ii) For any stopping time T,

(w, Q) > a(t(w),w, Q) is Fr @ B(C,) measurable (12.2.9)

Proof For part (i), let us define a process V' by V! = V,,,. Note that in view of
(12.2.6), Z, = a(t, -, V"). The fact that w — V’(w) is F, measurable along with
(12.2.3) implies that Z, is also F, measurable. For part (ii), when 7 is a simple
stopping time, (12.2.9) follows from (12.2.3). For a general bounded stopping time
T, the conclusion (12.2.9) follows by approximating 7 from above by simple stopping
times and using right continuity of a(t, w, (). For a general stopping time 7, (12.2.9)
follows by approximating 7 by 7 A n. (]

Recall that we had introduced matrix—vector-valued processes and stochastic inte-
gral [ fdX where f, X are matrix—vector-valued while dealing with SDEs driven
by continuous semimartingales in Sect.7.6. We will continue to use the same nota-
tion. As in the case of continuous semimartingales, here too, an r.c.l.l. (R9-valued)
adapted process U is said to be a solution to the Eq. (12.2.1) if

t
U =0 +/ b(s,-, U)dY; (12.2.10)
0
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ie.forl <j <d,

Ul =Uy +Z/ bjx(s, -, U)dY¥
k=1 0+

where U = (U, ..., U%) and b = (bj;).
Let us recast the growth estimate Theorem 11.13 in matrix—vector form for later
use:

Lemma 12.4 Ler X = (X', X?,... X™), where X/ is a semimartingale for each j,
1 < j < m. Suppose V is a dominating process for each of X/, 1 < j < m. Then
for any locally bounded L(d, m)-valued predictable f, and a stopping time o, one
has s

El sup | [ fdX?] <dm’E[6;_(|f]I. V)]. (12.2.11)

0<s<o JO+

Proof Fix T < oo. Then

e sup [ faXPI= 3B sip (3 | swaxtey
+

0<s<oAT JO+ 0<s<oAT k=1

j=1

d m

=m [ sup | f dx
Z::z:: oss<ont Jos " (12.2.12)
d m

=m Z Z (U/\T)—(fjlﬁ V1.1

= dm 3, (Rt

The result follows taking limit as 7 1 oo in (12.2.12). 0

We are now in a position to prove uniqueness of solution to the SDE (12.2.1). The
proofis essentially the same as for SDE driven by Brownian motion or by a continuous
semimartingale. Here we use the growth estimate (7.3.11) in place of (3.4.4) or (7.2.5)
for a continuous semimartingale satisfying (7.2.2). The technique of time change used
for continuous semimartingale is replaced here by the notion of dominating process
and the estimate in Theorem 12.2 replacing Gronwall’s lemma—Lemma 3.27.

Lemma 12.5 Ler Y', Y2, ... Y™ be rc.Ll semimartingales w.r.t. the filtration (F,).
Let a satisfy (12.2.2)—(12.2.6) and let b be defined by (12.2.7). Suppose H and G be
r.c.l.l. adapted processes and let X and Z satisfy

t

X, = H,+/ b(s, -, X)dY, (12.2.13)
0+
1

Z, =G,+/ b(s, -, Z)dY,. (12.2.14)
0+
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Let V be a (common) dominating process for Y/, 1 < j < m and let o be a stopping
time such that V,_ < M and K,_ < 3. Then

E[ sup |X, — Z,|*] < 6E[ sup |H; — G,|*1C2dm>*5*M?) (12.2.15)

O<s<o O<s<o

where C(«) is as in Theorem 12.2.

Proof Using (12.2.13) and (12.2.14), we have

E[ sup | X, — Z|*] <2E[ sup |H, — G,|*]

O<s<o O<s<o

+ 2E[ sup | ‘ (b(u,-, Z) — b(u, -, X))dY,|*]

0<s<o JO

Using the Lipschitz condition (12.2.6), the fact that K,_ < f, it follows that for
s <o
”(b(sa i Z) - b(S, i) X)“ S ﬂ Sup |Xf - Zl|'

0<t<s

Thus writing A; = sup,.,,|X; — Z;|, we get for any stopping time 7 < o, using
(12.2.11),

E[AZ_] < 2E[ sup |H, — G,[*] +23°dm’E[0?_(A™, V)].

0<s<t

Now V,_ < M and Theorem 12.2 together imply the required estimate (12.2.15). [J

This result immediately leads to:

Theorem 12.6 LerY!, Y2, ... Y™ berc.lLl semimartingales w.r.t. the filtration (F.).
Let a satisfy (12.2.2)—(12.2.6) and let b be defined by (12.2.7). Let H be an adapted
r.c.L.l process. Suppose X and Z satisfy

t
thH,—i—/ b(s, -, X)dY (12.2.16)
0+
t
Z, = H,; —i—/ b(s,-, 2)dY; (12.2.17)
0+

Then X = Z.

Proof Let V be acommon dominating process for Y/, 1 < j < m.LetU, =V, + K,
and o, be defined by

o, =inf{t >0: U, >norU,_ > n}.

Then o, increases to oo. Since V,,— < n and K, _ < n, Lemma 12.5 implies
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E[ sup |X, —Z/[*1=0

0<s<o,
for n > 1. This proves X = Z. O

The same proof essentially yields the following

Theorem 12.7 LetY!, Y2, ... Y" berc.LL semimartingales w.r.t.the filtration (F),).
Let a satisfy (12.2.2)—(12.2.6) and let b be defined by (12.2.7). Let H be an adapted
r.c.Ll. process. Suppose T is a stopping time and X and Z satisfy

INT
Xinr = Hipr —}—/ b(s, -, X)dY; (12.2.18)
0+
INAT
Zine = Hopr +/ b(s, -, 2)dY; (12.2.19)
0+
Then
P(Xinr = Zipr V) = 1. (12.2.20)

Proof Let V be acommon dominating process for Y/, 1< j<m.LletU, =V, + K,
and o, be defined by

o, =inf{t >0: U, >norlU,_>n}AT.
Then o, increases to 7. Since V,,_ < n and K, _ < n, Lemma 12.5 implies

E[ sup |X, —Z/|*1=0

0<t<o,

for n > 1. This proves P(X; = Z; Vt < 1) = 1. The required result (12.2.20) fol-
lows from this. O

Having proven uniqueness of solution to the SDE (12.2.16), we now move onto
proving existence of solution to the equation. We will show this by showing that
Picard’s successive approximation method converges to a solution of the equation.
The proof will be very similar to the proof in the Brownian motion case.

Theorem 12.8 LetY', Y2, ... Y™ be r.c.Ll semimartingales w.r.t.the filtration (F.).
Let a satisfy (12.2.2)—(12.2.6) and let b be defined by (12.2.7). Let H be an adapted
r.c.l.l. process. Then there exists an adapted r.c.Ll. process X such that (12.2.16)
holds. In other words, existence and uniqueness hold for the SDE (12.2.16).

Proof Let X' = H, for all 1 > 0 and for n > 1 let X"l be defined inductive as
follows:

t
x" = g, +/ b(s, -, X" ay, (12.2.21)
0+
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Then note that

t
X - x =/ (b(s, -, X" — b(s, -, X" 1))ay,. (12.2.22)
0+

As in the proof of Lemma 12.5, let V be a (common) dominating process for Y/,
1 <j<m.Let
Uy =Vi+ V] + sup |H| + K,

0<s<t

where K is asin conditions (12.2.5) and (12.2.6). Let o ; be the stopping times defined
by
oj=inf{t >0:U, > jorU,_ > j}.

Note that o; 1 oo as j 1 co. Forn > 0 let

A = sup XU x ),

0<s<t

Fors < o,
I(b(s, -, X" — b(s, -, X1y < jAl—!

and thus using (12.2.22) along with the estimate (12.2.11), we get for any stopping
time 7 < o;, forn > 1 (using (11.3.28) for the last step)

E[(A")2) = Ef[sup|x" ™! — x!"2)

<7

t
= E[sup| | (b(s, -, X" = b(s, -, X"~ Ndy,|*]

t<1 JO
< dm?j?E[07_(A" 1, V) (12.2.23)
< 2dm? °E] / Al2av? 4, / (Al12av,]
[0,7) [0,7)

< 4dm? j°E[ / (A"h2ap,]
[0,7)

where D, = VS2 + V;. Hence writing B,[k] = Zﬁ:o 47 (A£”])2, we thus get for any
stopping time 7 < 0

E[BM] < E[(A™)?] + 16dm? j3E[ B Uqu (12.2.24)
[0,7)

Also, recalling that |X,[0]| =|H,| < jforallt < o, we have


https://doi.org/10.1007/978-981-10-8318-1_11

392 12 SDE Driven by r.c.l.l. Semimartingales

E[(A)2] = Efsup|x!" — x[”'?]

T—
<7

t
= E[sup| | b(s,-, XHay|?

<7 JO
< dm’E[6;_(j, V)]

< 4dm2j4.

Using (12.2.24) we get for any stopping time 7 < ¢;

E[B™) < 4dm®j* + 16dm>j°E[ BMau
[0, 7)

and then using the version of Gronwall inequality given in Theorem 12.1, we conclude

E(BY) 1< C1(j.d.m)
where Cy(j,d,m) = 8dm?j*C(32dm? j*) and C(a) = Y'")j /. Taking limit as
k 1 oo, we conclude

E[B,,_1 < C1(j, d, m).

Thus, for each j > 1,

> 4'E[AYL)] < o0
n=0

and as a consequence, for large n, E[(A([,';]_)z] < 47" and hence

oo o0
> VELATL =Y I sup X — P ), < o0 (12.2.25)
n=0 n— §<0;
The relation (12.2.25) implies
o0
10> sup X+ — XI5 < oo (12.2.26)
=0 §<0;
as well as
n+k
sup||[sup | X" — X[ ]|, < suplI[ Y sup| XV — XU ]|,
k>1 s<oj k>1 j=n+1 s<0;

° (12.2.27)
<[ ICsup X — x)la]

jmntl §<0;j

— 0 asntends to oco.
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Let N =U% {w: h sups<gj|X£"+‘](w) — X!"(w)| = co}. Then by (12.2.26)

P(N) =0 and for w ¢ N, X!"(w) converges uniformly on [0, o;(w)) for every
Jj < 00. So let us define X as follows:

lim, o X" (w) ifw e N¢

Xi(w) =
“=10 ifw e N.
Since P(N) = 0, it follows that
X" converges to X uniformly on compact subsets of [0, 00) a.s. (12.2.28)

In view of (12.2.27), it also follows that, for each j,

lim E[(sup|X, — X" ]?] = 0. (12.2.29)

n— 00 S<O;
b J
Recalling the Lipschitz condition (12.2.6) and the fact that K,, < j, we have

sup | (b(s, -, X) = b(s, -, X")|| < j sup|X; — X", (12.2.30)

A‘<(7/ .Y<(7/

As a consequence, writing f' = b(s, -, X) — b(s, -, Xy

Etsup| [ (b(s. - X0a¥, — [ bis.-, XMav.P) < EI6E, (", V)
0

t<o; JO

< j2.j*Elsup|X, — X"

§<0;

— Qasn — oo.

This along with (12.2.21) and (12.2.28) yields that

t
Xt = Ht+/ (b(S,',X)dYx,
0

in other words X is a solution to the Eq.(12.2.16). (]

By modifying the successive approximation scheme (evaluating the integral defin-
ing X" approximately) we can obtain a pathwise formula for the solution to the SDE
as obtained in Sect. 7.4 for the case of SDE’s driven by continuous semimartingales.
However, this approximation involves an iterated limit.


https://doi.org/10.1007/978-981-10-8318-1_7

394 12 SDE Driven by r.c.l.l. Semimartingales

12.3 Pathwise Formula for Solution to an SDE

In this section, we will consider the SDE
dX, =g, G, X)dY (12.3.1)
where f, g : [0, 00) x D, x Dy — L(d, m) are such that
Y(,y) €D, x Dy, t+— f(t, ¢, v)isanr.c.LL function, (12.3.2)

and g is related to f via

9(t, ¢ y) = f1—.Cv) (12.3.3)

and G is an R"-valued r.c.L.I. adapted process and Y is a semimartingale. Here for an
integer k, D, = D([0, 00), RK).
Recall that B(IDy) is the o-field generated by the coordinate mappings. We assume
that
f is measurable w.r.t. B([0, 00)) ® B(D,) ® B(D,). (12.3.4)

Fort < 0o,y €Dy and ¢ € D, let y'(s) = y( As) and ('(s) = ((t A s) and we
assume that f satisfies

@&, Cy)y=f,¢y), ¥YCeD,, yehy, 0<t < oo. (12.3.5)

We also assume that there exists a function C : [0, c0) x D, +— R measurable w.r.t.
B([0, 00)) ® B(D,) such that V¢ € D, y, vy, y2 €Dy, 0<t <T

If . ¢l = C, O+ sup [y(s)]) (12.3.6)

O<s<t

If(. ¢y — f. ¢yl = C, C)(OSHP 1v1(s) = v2(s)D) (12.3.7)

<s=<t

and for all ¢ € D,,
t — C(t,()isrc.ll. (12.3.8)

As in Sect. 6.2, we will now obtain a mapping
Y : Dy x D, x D, — D([0, 00), RY)

such that for adapted r.c.Ll. process H, G (R4, R’-valued, respectively) and an R™ -
valued r.c.l.l. semimartingale Y,

X =w(H,G,Y)
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yields the unique solution to the SDE
t
X, = H, —i—/ g(s, G, X)dY. (12.3.9)
0

We will define mappings
™ Dy x D, x D, — D(0, 00), RY)

inductively for n > 1. Let ¥ @ (1), ¢, y)(s) = n for all s > 0 and having defined
gO g gD we define ¥ ™ as follows. Fix n and € D,,, ¢ € D, and
Y € Dy.

Let té") =0 and let {t;") . j > 1} be defined inductively as follows: ({tj(.") D j>
1} are themselves functions of (7, (, y), which are fixed for now, and we will suppress
writing it as a function) if 1" = 0o, then ™, = oo and if t;") < 00, then writing

J J+HL
r=Lm, ¢, v)) = fis. " 0. ¢v)
let
17y =inf(s = 6" 0", ¢ y)s) = TV, Gy =27
or [TV (@, ¢, y)(s=) = " V(. ¢, )™ = 27")

since '~V (n, ¢, y) is an r.c.1.1. function, tj(.") T ooas j 1t oo Let
oo
U, ) =1+ Y FOD 0, CE) s AL = vis AL,
j=0
Now we define

lim, ¥ ™ (n, ¢, y) if the limit exists in ucc topology

(¢, y) = 0 otherwise. (12.3.10)
Now it can be seen that
a(s,w,y) = f(s, Gw),y), bls,w,y) =g(s, GWw),y)
satisfies (12.2.2)~(12.2.7) with K, (w) = C(t, G(w)). Let
X(w) = ¥ (H W), Gw), Y (w)). (12.3.11)

Note that an w path of X has been defined directly in terms of the w paths of G, H, Y
via the functional ¥. We will prove
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Theorem 12.9 X defined by (12.3.11) is the (unique) solution to the SDE (12.3.9).

Proof Let Z,(O) = H,. The processes Z" are defined by induction on n. Fix n. Having
defined Z©, ..., Z"=D we define Z™:
Let7)" = O and let {T(") . j > 1} be defined inductively as follows: if T(") 0o,

(n) (n)

then 7,.); = oo and if 7,77 < oo, then

T =inf(s = 7" 1 £ (5, G, 27 = f(r)", G, 207Dy = 27

j+1 -
or | f(s—. G, 2" V) = f(r", G, 2" )| = 27",
‘ (12.3.12)
Since the process s — f(s, G, Z"~V) is an adapted r.c.Ll. process, it follows that
each T](.") is a stopping time and lim 1 T_;") = c0. Let Z" = Hy and for j > 0,

(n) (n)
T, <U=Ti let

Z(n) Z(V(l”)) + f(T(n) Z(nfl))(Yt _ YTgrz)).
j

Equivalently,
z" =H, + Z f@”.G 2", =Yy pm) (12.3.13)
_0 J
It can be seen from the respective definitions that
Z"(w) =¥ " (HWw), GW), Y W)).
Thus to complete the proof, suffices to show that Z™ converges to a solution Z of

the SDE (12.3.9). Uniqueness would then imply that Z = X.
For n > 1, let us define W" and S" by

S(n) Zf(T(n) G, 7" 1))1[ o, (u))(t) (12.3.14)
j=0
t
w" = H,+f fs—, G, 2" MNdy,. (12.3.15)
0
Let us note that .
Z =Hf—|—/ s™ay, (12.3.16)
0

(n) .

Noting that by definition of {T = S

IS — f(t, G, Z" Dy <27, (12.3.17)
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As in the proof of Theorem 12.8, let V be a (common) dominating process for Y/,
1 <j<m.Let
Uy =V, + V] + sup |Hy| + K,

O<s<t

where K,(w) = C(t, G(w)) and C is as in the Lipschitz and growth conditions
(12.3.6)-(12.3.7), Dy, = Vs2 + Vi and let o be the stopping times defined by

oj=inf{t >0:U, > jorU,_ > j}.

Note that o; 1 00 as j 1 co. Using (12.3.15)—(12.3.17) and the fact that V,,_ < j
along with the fact that V is a common dominating process for Y/, 1 < j < m we
get

E[ sup |W" — Z" ] < dm?j?27%" (12.3.18)

O<s<o;
Forn > 0 let
AE”] = sup |ZL”+1] _ Z‘[Yn]|.

0<s<t

For any stopping time 7 < o, for n > 1 (using (11.3.28) for the last step)

E[(Ag_n_])z] = E[sup|Zl[”+1] _ Z[[n]|2]

<7

< 3E[ sup [,V — "V 4 3E[ sup |W," — 2]
O<s<o; 0<s<o;
+ 3E[sup| ;"1 — WP

t<T

t
< 6dm®j?27" + 3E[sup| [ (g(s. G, Z") — g(s. G, Z\" ")y, ]

t<t JO

< 6dm?*j?27*" + 3dm? j2E[0>_ (A" V)

< 6dm?j227%" + 6dm?jPE[| (A"T)2qV?
[0,7)

L, / Ar2qv,)
[0,7)

< 6dm?j>27%" + 12dm>j E[ / (Ar"~"2a Dy
[0.7)
(12.3.19)

Hence writing B, = Y o ;2" (AE”])z, we thus get for any stopping time 7 < o

E[B,_] < E[A®]+) " 2"6dm?j27>" + 24dm’ j°E[ | B,_dU] (12.3.20)
n=0 [0.7)
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As in the proof of Theorem 12.8, it follows that
E[AY] < dm?j*
and hence that

E[(B.)*] < dm?j* + 6dm?j* + 12dm*j°E[ |  (B,_)?dD].  (12.3.21)
[0,7)
Now proceeding exactly as in the proof of Theorem 12.8, we can conclude that
Z™ converges to a solution Z of Eq.(12.3.9). Since Z"(w) = ¥"(H (w), G(w),
Y (w)), and Z" converges to Z, it follows that Z(w) = ¥ (H (w), G(w), Y (w)) com-
pleting the proof.

12.4 Euler-Peano Approximations

We are going to show that Euler—Peano approximations (for the solution to the SDE
(12.3.9) converge to the solution and indeed converge almost surely, and this yields
a pathwise formula for the solution. In the formula given in Sect. 12.3, the approx-
imation ¥ ™ depended upon ¥~V whereas in the approximation constructed in
this section, the approximation ¥ ™ is defined directly in terms of the coefficients
and thus is preferable from computational point of view as compared to the formula
(12.3.10). These results were obtained in [40]. The formulation given here is taken
from [41]. We need this auxiliary lemma later.

Lemma 12.10 LetO =71 <7 < ... <7 <...beanincreasing sequence of stop-
ping times. For an r.c.l.l. adapted processes U, let S be defined by

o0
S =Y Unlinm) (). (12.4.1)
i=0

Then S is an r.c.l.l. adapted process.

Proof Let 0 =1lim;_,» 7;. Fix T < o(w). For t € [0, T], S;(w) is a finite sum of
r.c.L.l. functions and hence is r.c.l.L.

If o(w) < oo, then for t > o(w), S;(w) = 0 and thus S.(w) is a right continuous
function. Remains to show that when o (w) < oo, the left limit of S at o (w) exists. Fix
w such that a = o(w) < o0. If 0(w) = 7;(w) for some i, then the claim is obvious.
In the other case U, (w) = U,—(w) and if ¢, 1 a with t, < a, then §; (w) is a
subsequence of U, (. (w) and hence left limit of S.(w) at a exists and equals U,_ (w).
Since each summand is adapted, so is S. O

We will consider the framework as in Sect.12.2. Let Y!, Y2, ...Y" be rc.ll
semimartingales w.r.t. the filtration (F,), H be an r.c.l.l. adapted process. Consider
the SDE

t
U =H, —i—/ b(s, -, U)dYs, (12.4.2)
0+
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where the functional b is given as follows. Let
a:[0,00) x 2 x Dy — L(d, m) (12.4.3)
be such that for all 7 € [0, c0)
(w,y) — a(t,w,y) is F; @ B(Dy) measurable, (12.4.4)
for all (w,y) € £2 x Dy
t — a(t,w,y) is anr.c.l.l. mapping (12.4.5)

and suppose that there is an increasing r.c.l.l. adapted process K such that for all
Y, Y1, V2 € Dy,

sup Jla(s, w, )| < K;(w) sup (1 + [y(s)]) (12.4.6)
0<s<t O<s=<t
OSUP la(s, w,y2) —a(s,w, Yyl < Ki(w) 0sup [y2(s) = y1(s)]. (12.4.7)
<s<t <s<t

Letb : [0, 00) x 2 x D; — L(d, m) be given by
b(s,w,y) =a(s—,w, V). (12.4.8)

As proved in Theorem 12.6, the SDE (12.4.2) admits a unique solution X under the
conditions (12.4.3)—(12.4.8).

Letus fix £ > 0, and we will construct an e-approximation Z = Z° to the solution
X of the SDE. We will drop ¢ from the notation here and in what follows till the next
theorem, where we will give an estimateon X — Z = X — Z°.

Fori > 0, let stopping times 7; and processes W' be defined inductively by:

70 = 0 and W,0 = H,
and having defined 7;, Wi for j <i,if 7 < oolet

A = (H = Hy, +a(7i, - WY, = Yo) i 00 (1)
B = (at,, W) —a(ri -, W) r,.00) (1)
Ut = A1+ K))
Ty =inf{t > 70 (UM > cor [UT'| > cor |BF!| > 4cor |BIT!| > 4¢)
i+1
Wit = Ho+ ) AL 17, 00)(0)

J=1

(12.4.9)
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and if 7; = oo, then 7;4; = oo, A"t =0, B+ =0, U+ =0 and W+ = W',
Note that for i < k, Wi and W* agree on [0, 7;] by definition and as a consequence,
we have

a(ti, - W =a(r, -, Wh. (12.4.10)

Fori > 0 define Z'*' by Z{™' = H, and

; i+l ..
Wsz+l + AT for T <t <Tjyr, <

i+1
W7'i+l

i+l __
Z," = f
or t > Tiyl.

Thus, by the choice of {7; : j > 1}, we have

sup |W/ —Z]| <e (12.4.11)
t

and . .
sup K,|W/ —Z]| <e (12.4.12)
t

for all j > 1. As a consequence of the Lipschitz condition on a we also have

sup la(t, -, W) —a(t,-, Z))| <e. (12.4.13)
t

‘We can now check that

k—1

Zf = Hipr, + Y a(@i, - WHYinr,, — Yr) (12.4.14)
i=0

A =z 7 (12.4.15)

Let us define a mapping 7 : 2 x D; — Dy as follows:
T(w, y)(@) = y(1i(W)) for i (w) =1 < T (w).

Lemma 12.10 ensures that 7 (w, y) is an r.c.L1. function. We now define mapping J
that maps r.c.Ll. adapted processes into r.c.l.l. adapted processes by

JUw) =Tw,Uw))

or equivalently,

oo
JWU) = Z U771[7'1,7'1+1)' (12.4.16)
i=0
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Let us note that for all k > 1, by definition of Z*, W* we have

J(Z5 = wk.
Let us define a : [0, 00) x 2 x D; — L(d, m) as follows:

alt,w,y) =T (w,a(-,w, T (w,y))).

Easy to check that a satisfies (12.2.2)—(12.2.6) and hence defining

g(tv w, Y) = gl(t_a W, Y),

it follows from Theorem 12.6 that the SDE
l ~
Z; = H, +/ b(s, -, 2)dY;
0+

admits a unique solution.
We can check (using (12.4.17)) that

oo

. 25 => alr. . Wl ., @
i=0

and so

b(t,-, z% = Za(ﬁ, W W (g (0.

i=0

Hence it follows from (12.4.14) that
IATE -
Zf = Ht/\Tk +/ b(ss s Zk)dYS
0

Then invoking Theorem 12.7, we conclude

P(zE  =Z VE>0)=1.

ATk

Lemma 12.11
lim 7, =00 a.s.
11— 00

Proof We will show that for w such that

Z},, (W) = Zing (W) V1 =0, Vk =1,

401

(12.4.17)

(12.4.18)

(12.4.19)

(12.4.20)

(12.4.21)
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lim; _, o 7; (w) = 00. Note that if 7,4 (w) < oo, then

Ut w) = 1+ Koy (W)(Zs,, (W) — Zn (W),

Ti+1

UMt (w) = (14 Koy, (W) (Zs, - (W) — Z (W),

Ti+1
a(i, - WHw) = a(mi, -, T(2)) (W),
a(mipi—, - WHW) = aipi—, - T(2)(w).
Suppose there exists an w such that (12.4.21) holds and such that 0 = lim; o, 7; (W) <

00. Then from the definition of the sequence {7; : j > 1} it follows that at least one
of the following four inequalities

(1 + K, (D)) (Zy,, (W) — Zr, (W) > &, (12.4.22)
(0 + Ky () (Zs,, - (W) = Zy (w)) > &, (12.4.23)
la(Tis1, -, WHw) —a(ri, -, T(Z2))(Ww)| = 2, (12.4.24)
la(Tiy1—, - T(Z)(w) —a(7;, -, T(Z))(w)| > 2¢ (12.4.25)

must be satisfied for countably many i. Note that in general a (741, -, W'))(w) may
not be equal to a (741, -, T(Z))(w) = a(tiy1, -, W) (w).

If (12.4.22) or (12.4.23) holds for countably many i, then the left limit Zy_(w)
at f cannot exist—a contradiction. Likewise, if (12.4.25) holds for countably many
i, then the left limit a(@—, -, 7 (Z))(w) cannot exist, again a contradiction, since
a(t, -, ) isr.c.ll. for all c.

Now for i such that (12.4.22) does not hold,

la(Tis1, - W) W) —a(Tis1, - T(Z)) (W)
= la(Tis1, - WH)W) — a(Tis1, - W) (W)
< K, (w) sup | W/ — W/*|
= K/(W)|Zy,, (W) — Z, ()]

<e
Thus for i such that (12.4.22) does not hold but (12.4.24) holds,

la(rit1, T(2) (W) — a(7i, -, T(Z))(w)|
> |a(Tisr, » W) —a(ri, - T(Z)) ()|
—la(misi, - W) W) = almi, - WH W) (12.4.26)
>2e—e=¢
Thus if (12.4.24) holds for countably many i (and since we have already shown that

(12.4.22) holds at most finitely many times), it follows that (12.4.26) holds countably
many times thus a(¢, -, 7 (Z)) cannot have a left limit at é—again a contradiction.
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It thus follows that § = oo. (I

We have suppressed e from notations but b depends on {7;} which in turn depends
upon ¢ and the process Z also depends upon . Note that

oo
b(s..Z) =Y a(r, . W)l .0
i=0
and hence using the Lipschitz condition (12.4.7), definition of {7;} we get
oo
Ib(s. - 2) = b(s. . D)l = Y _lla(s—. -, Z) — a(ry, - W) |1z 0,0 (5)

i=0

= lats—. . 2" —a(r, . W1 7000
i =0
oo

=D llats— - Z™) = als— - W) 5,0(5)
=0
oo

+ ) llats—. . WY —a(ni, - W 06)
i=0

o0
<K, Z|ZH—1 - Wi+l|1(ﬂ-,m1](s) +e
(=0
<(Ks; + De
(12.4.27)

Lemma 12.12 Let X be the solution to (12.4.2) and Z = Z° be as defined in pre-
ceding paragraphs (satisfying (12.4.27)) for fixed . Let V be a common dominating
processforY’, 1 < j <m.LetU, =V, + K, (Where K appears in condition (12.4.7)
on a) and for j > 1 let o; be defined by

oj=inf{t >0:U; = jorU,_ > j}.
Then there exists a constant k(j, d, m) depending only on j, d, m such that

E[ sup |X, — Z5|*] < €%k(j,d, m) (12.4.28)

0<s<o;
Proof Let us define (dropping the suffix € on Z)

At = Sup |X[ - Zt|

0<s<t
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Now, forany 7 < o;

E[|A,—1*1 < E[sup | [ (b(s,-, X) —b(s, -, Z))dY|’]
O0<t<o JO+
< 2E[ sup | (b(s, -, X)—b(s, -, Z))dY|2]

0<t<o Jo+ (12.4.29)

t

+E[sup || (bGs, -, Z) —b(s,-, Z)dY|*]
0<t<o JO+
<2j%dm’E[02_(A~, V)] +2(j + 1)’dm’>
Using Theorem 12.1, it now follows that
EllA,,— ] < 4(j + D*dm*C (4 dm?) (12.4.30)
where C(a) = Y1) o/ Thus (12.4.28) holds with

k(j,d,m) =4 + 1)’ dm>C(4j*dm?).

‘We have thus proved

Theorem 12.13 Let X" denotes the approximation Z° for ¢ = 27" constructed in
the preceding paragraphs. Then X" converges almost surely to the solution X of the
SDE (12.4.2).

This in turn helps us obtain a pathwise formula for solution to the SDE (12.4.2).

We will consider the framework from Sect. 12.3 and obtain a pathwise formula
involving a single limit rather than an iterative limit. Let f, g : [0, 00) x D, x Dy
L(d, m) be such that

Y(,y) €D, xDy, t+— f(t,(, v)isanr.c.ll function, (12.4.31)

and g is related to f via

and G is an R"-valued r.c.1.l. adapted process and X is a semimartingale. Suppose
f is measurable w.r.t. B([0, 00)) ® B(D,) ® B(Dy). (12.4.33)

Fort <00,y €Dy and ¢ € D, let y'(s) = y( As) and ('(s) = ((t As) and we
assume that f satisfies

f&, ¢y =f&, Ly, ¥ eD,, yeDy, 0<t < oc. (12.4.34)

We also assume that there exists a function C : [0, c0) x D, — R measurable w.r.t.
B([0, ) ® B(D,) suchthat V¢ € D, y,v1,y2 €Dy, 0<t <T
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If@ ¢yl = C@, C)(Osup ly(s)D (12.4.35)

<s<t

If(. ¢y — f@. ¢yl = C, C)(Osup lvi(s) = v2(s)]) (12.4.36)

<s<t

and for all ¢ € D,,
t — C(t,Q)isrc.ll (12.4.37)

For n > 1, we define

™D, x D, x D, = D([0, 00), RY)
as follows: forn € D,,, ( € D, and y € Dy (fixed) letfo = Oandlet{z; : j > 1} and
{af © j=1L{B/ : j=1},{¢ : j > 1} bedefined inductively as follows: (these

are themselves functions of , (1, (, y), which are fixed for now and we will suppress
writing these as a function) if 1; = oo, then ¢, ; = co and if #; < oo, then

o = (n = + f (. . €)1 = Vi) o0 () (12.438)
/8; = (f(t7 <7 51) - f(ti C’ El))l[t,,oo)(t)
fip1 =inf{t > 2 |og| = 27" or aj_| = 27" or [|B]| = 27" or | B_|| = 27"}

and

1 - i i
&+ a; for t > t;4,.

i {f; for 1 <ty

Thus, £+ is a function that has jumps at #1, ..., ;1 and is constant on the intervals
[0,20), ..., [4, tjy1), .. [t tig1), [Hig1, 00).
Also & and ¢+! agree on [0, #;,) by definition.
We finally define
o0
GO, G =1+ D F A CE) Vin — Yinn) (12.4.39)
i=0

and forn € Dy, ( € D, and y € D,, we define

N lim, ¥ ™ (n, ¢,y) if the limit exists in ucc topolo
& (. C.y) = G POIOEY (12.4.40)

0 otherwise.

As in Sects. 6.2 and 12.3, it should be noted that the mapping
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U : Dy x D, x D, = D([0, 00), RY)

has been defined without any reference to a probability measure or any semimartin-
gale. As in Theorem 12.9, this also yields a pathwise formula. This one is preferable
from computation point of view as here, in order to construct nth approximation, we
do not need the (n — 1)th approximation.

Theorem 12.14 Let f, g satisfy conditions (12.4.31)—(12.4.37). Let Y be a semi-

martingale w.r.t. a filtration (F.) and let H, G be rc.ll. (F.) adapted processes

taking values in R?, R, respectively. Let ¥ be as defined in (12.4.40) and let
X=V(HG,Y).

Then X satisfies the SDE

t
X, = H[+f g(t, G, X)dY. (12.4.41)
0+

The proof follows from observing that
at,w,y) = f(t,GWw),y), bt,w,y) =g, GWw),y)
satisfy (12.3.2)—(12.3.8) and further,
vWH, G, Y)=X"
where X" is the 27" approximation constructed in this section earlier. It now follows
that

U(H,G,Y)=X

is the unique solution to the Eq. (12.4.41). (]

12.5 Matrix-Valued Semimartingales

In this section, we will consider matrix-valuedr.c.l.l. semimartingales. We will use the
notations introduced in Sect. 7.6. Recall that L(m, k) is the set of all m x k matrices,
and L((d) denotes the set of non-singular d x d matrices.

Recall that when X = (X79) is an L(m, k)-valued semimartingale and f = (")
is an L(d, m)-valued predictable process such that £/ e IL(X/9) (foralli, j, q), then
Y = f fdX is defined as an L(d, k)-valued semimartingale as follows: ¥ = (Y9)

where
Y = Z/ fidxia
j=1
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and that for L(d, d)-valued semimartingales X, Y let [X, Y] = ([X, Y]V) be the
L(d, d)-valued process defined by

d
[X. Y]/ =) [x* v4].

k=1

We can consider an analogue of the SDE (12.2.1)
dU, =b(t,-,U)dY;, t >0, Uy=¢& (12.5.1)

where now Y is an L(m, k)-valued continuous semimartingale, U is an L(d, k)-valued
process, & is L(d, k)-valued random variable and here

b :[0,00) x 2 x D([0, 00), L(d, k)) — L(d, m).

Exercise 12.15 Formulate and prove analogues of Theorems 12.6, 12.8 and
12.14 for Eqg.(12.5.1).

Exercise 12.16 Let X be an L(d, d)-valued semimartingale with X (0) = 0 and
let I denote the d x d identity matrix. Show that the equations

t
Y, =1 +/ Y,_dX, (12.5.2)
0

and .
Z;, =1 +/ dX)Z,_ (12.5.3)
0

admit unique solutions.

The solutions Y, Z are denoted, respectively, by e(X) and ¢/(X) and are the left and
right exponential of X.

Exercise 12.17 Let X be an L(d, d)-valued semimartingale with X (0) = 0 and
let Y = ¢(X) and Z = ¢/(X). Show that

(i) If Y and Y~ are Ly(d)-valued, then (I + AX) is Lo(d)-valued.
(i) If Zand Z~ are Ly(d)-valued, then (I + AX) is Lo(d)-valued.

For amatrix A € IL(d, d) we will denote (only in this section) the Hilbert—Schmidt
norm of A by ||A||. The following facts are standard. The norm is defined as

d
AP =) (@)

ij=1
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If |A|| < 1,then B = (I + A) belongs to L (d). Further, for |A|| < o < 1, one has

I(I+A) ' —T+A| < IA]>. (12.5.4)

1 —«

Exercise 12.18 For an L(d, d)-valued semimartingale X, show that

> IAX), | < Trace([X. X1,).

O<s<t

Exercise 12.19 Let X be anL(d, d)-valued semimartingale with X (0) = 0 such
that (I + AX) is Ly(d)-valued. Then

(i) Show that W, =Y ,_ _[{(I+AX)"} =1+ (AX)+ (AX)?] is well
defined. N

(i) Show that AW = {(I + AX)"!'} =1+ (AX) — (AX)>.

(ili) LetU = —X +[X, X]+ W. Show that

X+U+[X,U]=0 (12.5.5)
(iv) Show that
e(X)(U) =1 (12.5.6)
and
e(U)e'(X) = 1. (12.5.7)

(v) Let Y =e¢(X) and Z = ¢/ (X). Show that Y, Y~, Z and Z~ are Ly(d)-
valued.
HINT: For (i), separate jumps bigger than half, these are finitely many.
For the rest of the jumps, use estimate (12.5.4). For (iv) use integration
by parts formula, (7.6.1).

For a L(d, d)-valued semimartingale Y such that Yy = I and such that Y and Y~ are
Lo(d)-valued, let

log(Y); = / (¥)-'ay
0+

and

log'(Y) = /0 @vyyH .
+

The next exercise is to show that ¢ and log are inverses of each other. We will say
that a matrix-valued process is a local martingale (or a process with finite variation)
if each of its components is so.
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Exercise 12.20 Let X be anL(d, d)-valued semimartingale with X (0) = 0 such
that (1 + AX) is Ly(d)-valued and let Y be a L(d, d)-valued semimartingale
such that Y and Y~ are L((d)-valued. Then show that

(i) e(log(Y)) =Y, ¢(log'(Y)) =Y.

(i) log(e(X)) = X, log'(¢'(X)) = X.
(i) X € M oc if and only if e(X) € M |oc.
(iv) X e Vifandonlyife(X) e V.

(V) Y € Mo if and only if log(Y) € M joq.
(vi) Y e Vifand only if log'(Y) € V.

Exercise 12.21 Let X’ be L(d, d)-valued semimartingale with X’(0) = 0 such
that (1 + AX')is Lo(d)-valued, fori = 1,2.LetY = e(X*)andU' = [ Y~ (dX")
(Y™)~'. Then show that

e(X'+ X2+ X", X?)) = e(UYHe(X?) (12.5.8)

The formula (12.5.8) has an important consequence. Given a L(d, d)-valued semi-
martingale Y such that Y and Y~ are Lo(d)-valued, let X = e(Y). If we can write
X=M+A+[M,A]suchthat M € M|, and A € V with (I + AM), (I + AA)
are L((d)-valued, then it would follow that

Y=NB

where N = ¢(M) € M|, and B = ¢(A) € V yielding a multiplicative decomposi-
tion of Y. The next exercise is about this.

Exercise 12.22 Let Y be a L(d, d)-valued semimartingale such that Yy =1
with Y and Y~ being Ly(d)-valued. Let X = ¢(Y). Let

Di= Y (AX)sLyax, =)

O<s=<t
Zl - Xt - D[.

(i) Show that

(@) PUI(AZ) ] <5 Vo) =1.

(b) Z is locally integrable (i.e. each component is locally integrable).
(i) Let Z = M + A be the decomposition with M € M|,cand A € V, Zy =0
and A being predictable. Show that

(@ PUI(AA) ] <5 V) =1.
(b) PUI(AM) | <3 V1) =1,
(€) (I + AM) is Ly(d)-valued.
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(iii) LetB, = A, + D,;sothatX =M + B.LetC, =B, — Y _,_,(I + (AM),)"
(AB),. Show that

(@) B=C+[M,C].

(b) X, =M, +C, +[M,C],.

(€ U+ AX)=U+AM)I+ AC).

(d) (I +AM) and (I + AC) are Ly(d)-valued.

Let H=1¢(C), N = fH*(dM)(H*)*1 and R = ¢(N). Show that

(@) ReM,and H € Vand
X = RH. (12.5.9)



Chapter 13 ()
Girsanov Theorem Check for

In this chapter, we will obtain Girsanov Theorem and its generalizations by Meyer.
Let M be a martingale on (£2, F, P) and let Q be another probability measure
on (£2, F), absolutely continuous w.r.t. P. Then as noted in Remark 4.26, M is a
semimartingale on (£2, F, Q). We will obtain a decomposition of M into N and B,
where N is a Q-martingale. This result for Brownian motion was due to Girsanov,
and we will also present the generalizations due to Meyer.

13.1 Preliminaries

Let (£2, F, P) be a complete probability space and (F,) be a filtration such that F
contains all P null sets. Let Q be a probability measure on (£2, F) such that P and
Q are equivalent; i.e., for A € F, P(A) = 0 if and only if Q(A) = 0. In such a case,
P and Q are also called mutually absolutely continuous. Let £ = ‘é—g. Let Z be the
r.c.LL version of the martingale Ep[£ | F;t]. Of course Z is a uniformly integrable
martingale with Ep[Z,] = 1. Also, for A € F;

Q(A):thdP. (13.1.1)
A

Here is a simple observation on Z.

Lemma 13.1 Z is a (0, 00) valued process, i.e. P(Z, > 0 Vt > 0) = 1.

Proof Since P and Q are equivalent, P(¢ > 0) = 1 and 7 = ¢! is the Radon-
Nikodym derivative of P w.r.t. Q. Let Y be the r.c.Ll. version of the martingale
Ealn | }',’L]. It follows that Z,Y, = 1 almost surely for each ¢ and since the two
processes are r.c.l1.it follows that P(Z,Y, = 1 V¢ > 0) = 1. The result follows. [J
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Lemma 13.2 Ler Q, & Z be as above. Suppose Z is (F,) adapted. Let M be an
adapted process. Then

(i) M is a Q-martingale if and only if M Z is a P-martingale.
(ii) M is a Q-local martingale if and only if M Z is a P-local martingale.

Proof For astopping time o, let 1) be a non-negative bounded F, measurable random
variable. Then

Ealnl = Ep[nZ] = EplnE[Z | ;] = Ep[nZ,].
Thus M, is Q integrable if and only if M, Z; is P-integrable. Further, for any bounded
stopping time o,
Eql[M,] = Ep[M,Z,]. (13.1.2)
Thus (i) follows from Theorem 2.57. For (ii), if M is a Q-local martingale, then get
stopping times 7, 1 oo such that for each n, M, .., is a Q-martingale. Then for any
bounded stopping time o, we have

EalMorr,] = Ep[Monr, Zons, 1 (13.1.3)

Thus M;rr, Z; -, is a P-martingale, and thus M Z is a P-local martingale. The con-
verse follows similarly. (]

Remark 13.3 Note that Z, = Eq[n | F,"]is (F.) adapted if the filtration (F,) is
right continuous or Z is a continuous process.

13.2 Cameron-Martin Formula

Let 2 = C; = C([0, 00), RY), F = B(Cy). Let X, be defined by

X:(¢Q) =), ¢eCy. (13.2.1)

Let /1, be the Wiener measure on (£, F) so that X is a Brownian motion on
(82, F, pw)- Let 6 € C4 be fixed such that #(0) = 0. Consider the mapping

TQ:QHQ

given by
Ty(Q) =C+0.

LetQp = py © Te’l. Note that for A € B(C,),

Qy(A) = (€ : Ty(C) € A) = puw(A —0) (13.2.2)
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where A — 0 = {( : ( + 0 € A}. The next result gives conditions under which i,
and Qp are equivalent. In what follows the filtration is taken to be (F,) = (F: Xy,
Recall that an absolutely continuous function 6 is differentiable almost everywhere
w.r.t. Lebesgue measure, and we will denote the derivative by 6. When 0 is R? -valued,
absolute continuity and the derivative are interpreted coordinatewise.

Theorem 13.4 Let Ty, Qy be as above. Then Qy is equivalent to i, if and only if 6
is absolutely continuous and

d oo
o= Zf (0))’ds < oo. (13.2.3)
i=1 70
Further,
t
0! =/ fids ¥t < 0. (13.2.4)
0

If (13.2.3) holds, then Z defined by

d d .
.. . 1 ..
Z, = 0idx’ — - 01)*d
ey [ x5 3 [
is a uniformly integrable martingale and for A € F,,
/ Z,dP = Qp(A). (13.2.5)
A

Further,
Qy

Z, converges to inL! (tw)- (13.2.6)

w

Proof Suppose that 6 is absolutely continuous and (13.2.3) and (13.2.4) hold. Then
it follows that M, = 3", fy 01dX! is a continuous square integrable martingale

and
d t
(M, M1, =) / (0)7ds.
i=170
Thus, Z, = exp(M; — %[M, M],). Further,

t
Z, =1 +/ ZdM (13.2.7)
0

(see Exercise 4.101) and is thus a local martingale. As seen in Exercise 3.26, for
each t, M, has normal distribution with mean zero and E[Mf] =[M, M];. As a
consequence,
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E(Z7] = ElexpM, — [M. M])]
= exp([M, M],)
< exp(w).
Now invoking Corollary 5.22 we conclude that Z is a square integrable martingale and
further, being I.? bounded, it is uniformly integrable. Thus by martingale convergence

theorem, Z, converges in ' and almost surely to, say, £ and fort < oo, E[£ | Fi] =
Z,. Clearly, E[¢] = 1 and £ > 0 almost surely. Since

E[(M, — M\)*] = [M, M], — [M, M],

and [M, M], converges to «, it follows that M, converges in L? to say 1. So & =
exp(n — %a) and thus ., (£ > 0) = 1. So Q is equivalent to fi,,.

Let Q be defined by
Q) = / Edju.
A

Then for A € F;, using E[{ | F;] = Z,, we also have
Q(A) = / Z,d iy (13.2.8)
A

Let W, = X, — 6,. Fix \', A2, ..., A%) € R? such that 7| (\)? = 1 and let U, =
SENXL Y, =L NWL V=3 N6 and ¢, = YO N§i. Observe that
Y, =U, — V, and

t t t
(Ut - Vt)Zt = / (Us - Vs)dzs +/ stUs - / Zs¢sds + [U - V, Z]t
0 0 0

~ (13.2.9)
Since Q is equivalent to i,,, the quadratic variation of a semimartingale is the same
under 1, and Q. Now

U-V,Zl,=U,Z]

d .
= Z)\l[Xia Z]t
i=1
d t
_;)\ /0 Zd[X', M]; (13.2.10)
d t
:Z/\i/ Z,0'ds
i=1 Y0

t
= / Zspgds.
0
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Using (13.2.9) and (13.2.10) it follows that Y; Z, = (U; — V;)Z; is a j1,,-local martin-
gale, being a sum of stochastic integrals w.r.t. continuous martingales. Using Lemma
13.2, it follows that Y, is a Q-local martingale. Since V is a process with finite vari-
ation paths, it follows that

[ NWL S NW, = (Y, Y,
=[U. U],
= [ NXL Y VX,

d
=> ()
i=1

Invoking Levy’s characterizatiop, Theorem 3.8, we conclude that W is a d-dimen-
sional Brownian motion under Q. For A € B(Cy), we have

QA =QX-0ecA—0)
=QWeA-0)
= (A — 6)
= Qy(A)

where the last step was noted in (13.2.2). Thus Q= Qq.

This proves one part. For the other part, let us assume that Qg is equivalent to fi,,.
Now the process X is a semimartingale under i, and hence under Qy. On the other
hand, under Qy, W = X — 6 is a Brownian motion and hence a Q4-semimartingale.
Thus 6 considered as a stochastic process is a semimartingale. Thus for each i, ¢’ is
a function with finite variation on [0, T'] for every T < oo (see Exercise 5.62).

We will show thadtOG must satisfy (13.2.3) and (13.2.4). Let ¢ be the Radon—

Nikodym derivative W“, and let Z be the martingale

Z, =E, [§1F].
Since 6(0) = 0, it follows that Z, = 1. Since all (F.")-martingales on (2, F, ()

admit a stochastic integral representation w.r.t. X (Theorem 10.20), we can get pre-
dictable processes f/ e L(X/), 1 < j < d such that

d t
thl—i—Z/ fldxi. (13.2.11)
j=1"0

It follows that Z is continuous and hence Z, = E,, [£{|F;]. As noted in the previous
section, j1,,(Z; > 0 Vt) = 1. Let
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t

M,:/ z'az,. (13.2.12)
0

Then M is a local martingale, and writing gf = (Z,)™! fsj , it follows that
d t
M,:Zf gldx/. (13.2.13)
j=170

Let V,j = fot gsj ds,forl < j < d.We will next show that X,J - V,j is a Qg martingale
for each j. For this, using integration by parts formula, we get

. . [ . . t . t . .
X} -v)Hz, =/ (X! —=V)HdZ +f Z,dX] —/ Z,glds + X', Z];.
0 0 0
(13.2.14)
Now, [X’,Z], = ZZZI fot fkd(x/, x*]. Since [X/,X¥]=0 if j#k and
[X/, X7], = t, it follows that

t t
(X7, 7], = / ijds = / ngsjds.
0 0

Hence, using (13.2.14), we conclude
. . t . . l .
x] -vhz, :/ (X] —V)Hdz, +/ Z,dX]
0 0

and is thus a p,,-local martingale, being a sum of stochastic integrals w.r.t. contin-
uous martingales. Hence by Lemma 13.2, (X/ — V/) is a Qg-local martingale. As
noted earlier, X/ — 6/ is a Brownian motion under Qg and thus (V/ — 67) is itself a
continuous local martingale under Q. But we have noted that #/ is a function with
finite variation and by definition V/ is a process with finite variation paths. Thus
invoking Theorem 5.24, we conclude p,,(V;/ — 6/ = 0 Vt) = 1. Thus

t .
po [ alds =6l i = 1.
0

This proves 6 is absolutely continuous and (13.2.4) holds. Remains to show that 6
satisfies (13.2.3) to complete the proof. Now we have

1
Z; = exp(M; — E[M» M])
where M, = Z?Zl fot 6/dx! and [M, M], = Z?Zl fol(ésj)zds. Further, Z, con-
verges in L' (i) to £&. We are to show that [M, M], — a < oo. Suppose not, i.e.
[M, M]; 1 oo. Gett, 1 oo such that [M, M],, = n. Then
\Z, — Zi,| = Zy, lexp((M,,,, — M) — 1) — 1].

Using that Z; and (M,,,, — M,,) are independent, it follows that
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E[1Z,., — Z,1 = E[Z, JE[lexp(M,,,, — M,,) — 5) — 1]]
= Ellexp(M,,,, — M;,) — 5) — 1]]
= Ellexp(n — 3) = 11].
where 77 is arandom variable with standard normal distribution. As aresult, E[| Z, ., —

Z,|] does not converge to 0 contradicting L' (i) convergence of Z,. Hence (13.2.3)
holds completing the proof. ([

Lemma 13.5 Let M be a continuous local martingale and let f be a predictable
process such that

/ f2dIM, M]; < < a.s. (13.2.15)
0

Then N, = fot fdM converges in probability as t — o0.
Proof Fork > 1, let

= inf{r : / f2dM, M1, > k).
0

Note that the assumption (13.2.15) yields
(T < 00) — 0 as k — oo. (13.2.16)
Then continuity of [N, N]; implies that
[N, Nlipr, < k. (13.2.17)
Since [N, N] is increasing, this yields

lim sup E[|[N, Nlnr]— E[[N, Nljar, |1 = 0. (13.2.18)

T—o0 5,0>T
Observe that for any &,

lim sup j1,, (|Ns — N;| > €)

T—0g t>T

= hm SUp by (|Ngar, — Niar | =€) 4 oy (T < 00)
T—oos >T

1
< lim sup — [|Nmn Nt/\'rk|2] + pw (Tk < 00)

T—oog o1 €2

= lim sup —E[I[N Nliar, ] = E[IN, Nlsar 1 4 ptow (1% < 00).

Teoox >T 5

In view of (13.2.16) and (13.2.18), we conclude that N, is Cauchy in probability and
hence converges in probability. O
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Remark 13.6 For a semimartingale X and f € L(X), if fO’ fdX converges in
probability as r — oo, the limit is denoted by

/Ooo fdx.

The conclusion of Theorem 13.4 can be restated as

dQy d o . 1 d R 2
= exp{ f 0.dX, — - / (0:)°ds}. (13.2.19)
ane =) MR,

This is known as the Cameron—Martin formula.

13.3 Girsanov Theorem

Girsanov [19] generalized the Cameron—Martin formula to the case when the Brow-
nian motion is translated by an adapted process. We begin with a simple observation.

Lemma 13.7 Let N be a continuous local martingale such that Ny = 0. Let
Y, = exp(N; — %[N, N1,). ThenY is a supermartingale, and for all T € Ty, E[Y,] <
1.

Proof Using Ito’s formula, it follows that

t
Yt=1+/ YdN.
0

Thus Y is a local martingale. The rest follows from Lemma 5.7. ]

Let Z be a d-dimensional Brownian motion adapted to a filtration (F,) such
that (Z,, F;) =0y is @ Wiener martingale. Let f = (f 7y be an R?-valued predictable
process such that f/ € IL(Z/). Suppose that

d oo
o= Z/O (f))*ds < 00 a.s. (13.3.1)
j=1
d t
M, = Zf fldzl. (13.3.2)
j=1"0

Then M is alocal martingale, and in view of the assumption (13.3.1), it follows from
Lemma 13.5 that
M,; — 7 in probability
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where
d oo
n= Zf fldzi. (13.3.3)
j=170
Theorem 13.8 (Girsanov Theorem) Let f!, ..., f? be predictable processes satis-
fying (13.3.1). Let
dopoo gl e
= eXp(Z/ flazi - Z/ (f))2ds). (13.3.4)
j=170 j=170
Suppose
E[¢] = 1. (13.3.5)

Let Q be the probability measure defined by

dQ
ap =&

Then the process Y = (Y1, ..., Y¥) defined by
. . t .
Y =7/ —/ flds
0

is a d-dimensional Brownian motion, and (Y;, F;) =0y is a Wiener martingale under

Q.

Proof Let S _
U =exp(X0, [y fldzi =130, [5(f)2ds) (13.3.6)

As noted earlier, (13.3.1) implies that U, converges to £ in probability. From Lemma
13.7 it follows that U is a supermartingale. Thus, for A € F, t — E[U,1,] is
a decreasing function for ¢ € [s, 00). Choosing a sequence {t, : n > 1} C [s, 00)
increasing to oo such that U, converges to £ almost surely, we conclude using Fatou’s
lemma that

E[¢14] < E[U14]. (13.3.7)

In particular,
1 =E[¢] <E[U,] < 1.

Thus, E[U,] = 1 for all t and as a consequence, U is a martingale. Moreover, since
(13.3.7) holds for all A € F; and E[U,] = 1 it follows that equality holds in (13.3.7)
and hence

Epl& | 5] = Us. (13.3.8)
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Thus for A € F;,
Q(A):/SdP:/U,dP (13.3.9)
A A

Note that by definition [Y?, Y/] = [Z’, Z/] and that the quadratic variation under P
is same as that under Q. Thus, in view of the Levy’s characterization of Brownian
motion, all one needs to show is that Y/ is a Q-local martingale.

Let us observe that U, = 1 + [, UydM, and so [Y/, U], = [2/, U}, = [, Usd
[Z/, M]; = [, Us f{ ds. Thus

Y/U,:/ YSdeS+f U,dY; + Y/, U],
0 0

1 t t
=/ Ysdes+/ USde—/ Usflds+1Y', Ul
0 0 0

t t
=/ Yg‘dUs+/ U,dZ!
0 0

Since U and Z/ are martingales under P, it follows that Y/ U is P-local martingale.
Invoking Lemma 13.2 we conclude that Y/ is Q local martingale. As noted above,
this implies Y is an R¥-valued Brownian motion and (Y}, F) =0y 1s a Wiener martin-
gale. (]

A natural question that arises is: given f', f2,..., f¢, such that (13.3.1) is true
when does (13.3.5) hold? What are known as sufficient conditions, but no necessary
and sufficient condition is known. We now give sufficient conditions, due to Novikov
and Kazamaki.

Theorem 13.9 Let M be a continuous local martingale such that My = 0. Suppose
that
sup E[exp(M,)] = K < oo. (13.3.10)

TET},

Then U, = exp(M,; — %[M, M],) is a uniformly integrable martingale.
Further, [M, M), — n, M; — ¢ and U, — & = exp(¢ — %77) in probability as
t 4 oo and
E[(]=1. (13.3.11)

Proof Since for any « € [0, %], exp(ax) < (1 + exp(%x)), it follows that for any
a € [0, %] and 7 € T}, we have

Elexp(aM,;)] < (1 + K). (13.3.12)
Fix A € (0, 1) and let

U} = exp(A\M, — IN°[M, M],)).
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For 7 € Ty, p > 1 and a > 0 (to be chosen later) let us write
(UN? = exp(aAM, — 1 X*p[M, M1,) exp(\(p — a)M).
For b > 1, ¢ > 1 such that % + % = 1, using Holder’s inequality, we conclude
E[(UN)?] < (Elexp(abAM- — $X* pb[M, M1:)])* (Elexp(cA(p — a) M)+

‘We now choose a = */—f so that a2b? = pb, and hence the first factor on right-hand
side above is <1 in view of Lemma 13.7. We thus get

EL(UY)"] < (Elexp(cA(p — a)M,)])*. (13.3.13)

For § > 0, take p = (1 + 62 and b = (1 + 6)2. Since a = ‘/—f, we getg = U0,

2
Also ¢ = 2 = 4D Thys,

b—1 20+02
_(1+5)2 22 (1+52)

Alp—a) = 5 MU+ "= %)
o na ? 2) 13.3.14
_25+§2>‘(1+6)((1+5)(1+5) 1) (13.3.14)
AL a5+ 6

244

Since A < 1, in view of (13.3.14), we can choose § > 0 such that cA\(p — a) < %,
and as a result we have by (13.3.12)

EL(UMN"] < (1 + K)+ (13.3.15)
where p > 1, a and c are as chosen above and K is as in (13.3.10). This shows

sup E[(UT’\)”] < 0.

T€T,
Invoking Lemma 5.6 we conclude that for 0 < A\ < 1, U* is uniformly integrable
martingale and hence by Theorem 2.25 U} converges in probability for each such

. Using this for distinct values of A, say % and % we can conclude that [M, M]; and
M, converge in probability say to 1 and ¢ and then that

1
U,’\ — exp(Ap — 5)\277).

Further it follows that and that for any A < 1
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Elexp(\¢ — 2N*p)] = 1. (13.3.16)

Thus it follows that U, converges in probability to & = exp(¢ — %n). Remains to
show (13.3.11).

Since M; — ¢, using (13.3.12) and Fatou’s lemma (along a sequence #, 1 0o
such that U;, converges almost surely) we conclude that for any a € [0, %], we have

Elexp(a¢)] < (1 + K). (13.3.17)
By Lemma 13.7, for all # we have
Elexp(M, — 1[M, M],] < 1
and hence again using Fatou’s lemma we conclude
Elexp(¢ — 3] < 1. (13.3.18)

Note that

exp(Ap — 2X°n) = exp(\2p — 2X°n) exp(A(1 — N)9b).

1

Now using this relation along with Holder’s inequality with p = % andg = a0

we get
1 = E[exp(\¢ — $A%)]

= Elexp(\*¢ — 5A*n) exp(A(1 — N)@)]

< (Elexp(¢ — im D™ (Elexp( ¢>]><H2> (13:3.19)

1+
< (Elexp(¢ — 1DV (1 + K)1Y)

where the first equality is (13.3.16), and in the last step we have used (13.3.17). Now
taking limit as A 4 1 in (13.3.19), we conclude

1 < Elexp(¢ — 5
In view of (13.3.18), this shows
Elexp(é — 3m] = 1.
(]

The condition (13.3.10) is due to Kazamaki [44]. Earlier, a slightly stronger condition
(13.3.20) was proposed by Novikov, which we give below. In practice, the Novikov
condition may be easier to check than the Kazamaki condition.
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Theorem 13.10 Let M be a continuous local martingale such that My = 0. Suppose
that
sup E[exp(%[M, Mlr)] = K < 0. (13.3.20)

T <oo

Then U; = exp(M; — %[M, M];) is a uniformly integrable martingale. Further,
(M, M], > n, M; — Band U, — & = exp([ — %77) in probability with

E[¢] = 1. (13.3.21)

Proof We will show that (13.3.20) implies (13.3.10). For any bounded stopping time
7, bounded by T observe that
Elexp(; M.)] = Elexp(3 M, — ;[M, M].) exp(;[M, M],)]
< (Elexp(M; — 3[M, M1,)])? (Elexp(}[M, M],)])
< (Elexp(1[M, M])])? (13.3.22)
< (Elexp(A[M, M1p)])>?
< VK.

where we have used Lemma 13.7 and Cauchy—Schwarz inequality. Taking supremum
over 7 € Tj, on LHS, the result follows, namely that (13.3.20) implies (13.3.10). J

The results given above lead to the generalization of the Cameron—Martin for-
mula by Girsanov to the case when the Brownian motion is translated by a possibly
nonlinear predictable functional g.

In this section, we continue to denote the coordinate process on C,; by X = (X;).
Fort >0letG, =o(X, :u <t).Let

g : [0, 00) x C; — RY be (G.)-predictable. (13.3.23)
Suppose on some probability space (§2, F, P), we have a filtration (F,), a Brownian
motion W such that (W;, F;)y=0y is a Wiener martingale. Note that if ¥ is any
continuous (F,) adapted process, then U, = g(z, Y) is a (F,) predictable process.
Suppose Y is a solution of the stochastic differential equation

dY, =dW, + g, Y)dt (13.3.24)

i.e. Y is an adapted continuous process such that

. . t .
Y/ =w/ —i—/ g’ (s, Y)ds. (13.3.25)
0
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Let v =P o Y~! be the distribution of Y—thus v is a probability measure on
(Cy4, B(Cy)). Let u,, denote the Wiener measure on (2, F) = (Cy, B(Cy)). Thus
X is Brownian motion under .

The next result, due to Girsanov, shows that under some conditions, v is absolutely
continuous w.r.t. 1, and gives a formula for the Radon—Nikodym derivative. Recall
that T}, denotes the class of all bounded stopping times w.r.t. the filtration under
consideration.

Theorem 13.11 Let g = (¢', ..., g9) satisfy (13.3.23). Suppose Y is a solution to
the SDE (13.3.25) where W is a Brownian motion. Assume that

d o0

Z/ (¢/ (s, Y,))?ds < 00 a.s. P. (13.3.26)

j=1"0

and
d T
1 . .

sup Ep[exp(— Z/ g/ (s, Y)dW)] < oo. (13.3.27)
’TET[, j:l 0

Then v = P o Y~ is absolutely continuous w.r.t. i, and

d d

d Rl | e

d: = exp( E ,/() g’ (s, X)dX] — 3 E /0 (¢’ (s, X))*ds). (13.3.28)
v j=1 j=1

Thus, uniqueness of weak solution to the SDE (13.3.25) holds in the class of solutions

satisfying (13.3.27). Moreover, for T < oo

d T d T

v . . 1 .

W|f,=exp(§ f g5 X)dX] = 2y / (¢/(s. X))*ds)  (13.3.29)
w j=1 0 j=1 0

i.e. for A € Gr

d T d T
v(A) = / exp(Z/ gf(S, X)dX-Si — %Z/ (g./'(s, X))ZdS)duw.
A o170 =170
(13.3.30)

Proof First note that the condition (13.3.27) is same as

d . d .
sup Ep[exp(—l Z/o g’ (s, Y)dYSj + % Z/o (¢' (s, Y))?*ds)] < oo.
j=1 j=1

TETb 2 P
(13.3.31)
Let a process Z be defined on (C,, B(Cy)) via
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. . t .
Z! = x/ —/ g/ (s, X)ds. (13.3.32)
0

Since v = P o Y ! it follows that distribution of Z under v is the same as that of W
under P: and in other words Z is a Brownian motion under v.

Let T, denote the class of bounded (F X stopping times. The condition (13.3.31)
implies

d a d [oa
sup E, [exp(— > / g’ (s, X)dX] + ! > / (g’ (s. X))*ds)] < oo.
oeTy 2 j=170 2 j=1"0

‘ (133.33)
Let M; = — Z?=1 fy 97 (s, X)dZ]. Then M is a v-local martingale. Noting that

d ' '
M, = —Z/ g9’ (s, X)dx] +/ (¢’ (s, X))*ds
oo 0
The relation (13.3.33) yields

1
sup E,,[exp(EMT)] < 00 (13.3.34)

oeTy

Thus invoking Theorem 13.9 we conclude that
1
U, =exp(M, — E[M, M)

is auniformly integrable martingale and U, convergesto £ in L' (v) with (€ > 0) = 1
and E, [£] = 1 where

d o0 d o0
€= exp(—Z/ g/ (s, X)dzZ! — %Z/ (¢’ (s, X))?ds). (13.3.35)
j=170 j=170

Note that the assumption (13.3.26) along with Lemma 13.5 ensures that for each
js fot g’ (s, X)dZ] converges to [~ g/(s, X)dZ{ in v probability. Let us define a
probability measure £ on (C4, B(Cy)) by

dpt
a =t
By Theorem13.8, it follows that X,j = Z;j + fol ¢’ (s, X)ds is a d-dimensional Brow-
nian motion on (Cy, B(C,), it). Recalling that X is the coordinate process on Cy,
we conclude i = p,,. Since v(§ > 0) = 1, it follows that v and p,, are equivalent
and
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dv _
=
Hw

Now

el =exp()_ / gf(s,x>dz;+52 / (97 (s, X))*ds)
j=1"0 =170

d d
:eXp(Zf gj(s, X)dX! — EZ/ (gj(s, X))zds)
j=170 j=170
where in the second step we have used
/ g'(s. X)dZ! = / 9’ (s. X)d X! — / (g’ (s, X))*ds.
0 0 0

Since the distribution v = P o Y~! for any solution Y to the SDE (13.3.25) satisfies
(13.3.28), uniqueness of weak solution to SDE (13.3.25) follows. Observing that

d T d T
. . 1 . ”
V, = exp(Z /0 9'(s, X)dX{ = 5 Z fo (¢ (s, X))*ds)
j=1 j=1
is a martingale under f,,, we can conclude that (13.3.30) holds. This completes the

proof. O

Let us note that the condition (13.3.33) can be recast as follows in terms of integral
w.r.t. the Wiener measure.

£ lexp(—3 ,é /0 g6 0dx] + 5 g /0 (@ (s, X)d)]
14 o R AT
=B ¢ exp(— ; /0 g’ (s, X)dX] + 3 ; fo (97 (s, X))*ds)]
1 o .
= Eulenn(; Y | e x0dx))

Thus the condition (13.3.27) implies
O'GT},

d
1 T .
sup E#m[exp(z E /0 g9’ (s, X)dX])] < oo. (13.3.36)
j=1

Indeed, if in (13.3.27), we take the underlying filtration to be (.F_y), then (13.3.27)
is equivalent to (13.3.36). The advantage of the condition (13.3.36) is that it only



13.3 Girsanov Theorem 427

involves integrals w.r.t. the Wiener measure. Having proven the uniqueness, we will
now show existence under suitable conditions.

Theorem 13.12 Suppose that g = (g', ..., g¢) satisfies (13.3.23),
d o0
Z/ (¢ (s, X,))?ds < 00 a.s. iy (13.3.37)
— Jo

and (13.3.36). Then there exists a probability space (.Q .7-" P) with filtration (.7-") a
Browman motion W such that (W,, .7-",) =0y is a Wiener martingale, and an adapted
process Y satisfying

d o0
Z/ (¢’ (s, Yy))?ds < 00 a.s. P, (13.3.38)
0
sup Ep [exp(——Z/ ¢ (5. Y)dW/)] < oo (13.3.39)
TGT[,
and .
=W/ + f ¢ (s, Y)ds, 1<j<d. (13.3.40)

Here @, is the class of bounded stopping times on (§ v ﬁ) w.r.t. the filtration (.7?_).

Proof Let us define a measure v on (Cy, B(Cy)) by (13.3.28). The assumption
(13.3.37) implies that v is a probability measure and Theorem 13.8 then implies that
Z defined by (13.3.32) is a d-dimensional Brownian motion and

dX, =dZ, + g(t, X)dt.

Let us take (2, 7, P) = (Cq, B(Cy). v), (F)) = (FX), W = Z, ¥ = X. It follows
that (13.3.38) and (13.3.40) hold. Retracing steps in the proof of Theorem 13.11, we
can verify that (13.3.36) implies (13.3.39). U

In other words, if g satisfies (13.3.23), (13.3.37) then existence and uniqueness
of weak solution to (13.3.40) holds in the class of solutions satisfying (13.3.38) and
(13.3.39).

We now briefly consider analogues of the results in this section for solutions
to stochastic differential equations driven by Brownian motion. Let us fix o :
[0, 00) x Cyq > L(d,d) and h : [0, 00) x C4 > R? satisfying conditions (7.5.1),
(7.5.2), (7.5.9)—(7.5.12). Also let us fix yg € R<. We have seen in Theorem 7.26 that
the SDE,


https://doi.org/_7
https://doi.org/_7
https://doi.org/_7
https://doi.org/_7
https://doi.org/_7

428 13 Girsanov Theorem
Y/ = yo—i-Z/ o’k (s, Y)dWF +/ hi (s, Y)ds, (13.3.41)
k=10 0

where W is a Brownian motion, admits a unique strong solution ¥ and that P o Y —lis
uniquely determined; i.e., the SDE (13.3.41) has a unique weak solution. we denote
PoY~! =p,.

We will continue to denote by X the coordinate process on C, defined by (13.2.1).
LetC,=0(X, : u<t)

Here is a result extending existence of weak solutions to equation of the type
(13.3.41).

Theorem 13.13 Suppose W is a Brownian motion on some probability space
(2, F,P) and Y is a solution to the SDE (13.3.41). Let ¢ : [0, 00) x C; — R?
be predictable (for the filtration (C,)). Suppose

d o0
Z/ (¢’ (s, Y))?ds < o0 a.s. P. (13.3.42)
j=170
¢ = 1 (5120 (13.3.43)
and
1< :
sup Ep[exp(= Z/ ¢ (s, Y)dW/)] < 0. (13.3.44)
T7€T), 2 =1 0
Let
f=h+oo (13.3.45)

ie. f1 =hi +3{_ o/*¢*. Then the SDE,

v/ :yO+Z/ oIk (s, V)de+/ f(s, V)ds, (13.3.46)
k=1 0 0

where U denotes a Brownian _motion, admits a weak solution. Further, for such a
solution V defined on (82, F, P),

d o0
Z[ (¢ (s, Vi) ds < 00 a.s. P (13.3.47)
j=1"0

and

d T
sup Eﬁ[exp(—% Z/ ¢’ (s, V)dU})] < oo. (13.3.48)
j=17°

7Ty,
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Proof Defining Q on (£2, F) by

dQ SN Ry
ﬁ :exp(jzl-/o @’ (s, Y)dWS'/ — EJZI/O (¢’ (s, Y))zds)

it follows from Theorem 13.9 that Q is a probability measure and invoking Theorem
13.8 it follows that U defined by

. . 4 .
Ul =w/ — / & (s, Y)ds (13.3.49)
0

is a Brownian motion under Q. Clearly, using the definition of U and f in terms of
W and o, ¢, h we can deduce that

. d l . l .
Y/ =y0+2f0 ok (s, Y)dUS"—i—-/O fi(s, Y)ds. (13.3.50)
k=1

Noting that
14 A S
—52/ ¢’ (s, Y)de+Z/ ¢’ (s, Y)dW/ _EZ/ (¢' (s, Y))*ds
j=1"9 j=1"0 j=1"0
14 .
ZEZ/O ¢’ (s, Y)dW/!
j=1

it follows that

1 7 4
Ealexp(—5 Y [ /6 Y)dU5>]=Ep[—exp<——Z [ e maun
=1

1 T '
= EP[exP(E Z/o @' (s, Y)dW{)].
=1

~

Thus the condition (13.3.44) implies (13.3.48) with P =Q, V =Y. Since Q is
absolutely continuous w.r.t. P, (13.3.47) holds with P= QV=yY. O

Having proved existence, we will now show uniqueness of the weak solution by iden-
tifying its distribution. Recall y, = P o Y~!, where Y is the unique strong solution

to the SDE .
. ro r
Y/ =yo+Z/ oIk (s, Y)dwf‘+/ i (s, Y)ds
k=170 0

with W being a Brownian motion.
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Theorem 13.14 Let U be a Brownian motion on (§ , j-: , 6) adapted to a filtration
(.7?_) such that (U,, ﬁ){,zo} is a Wiener martingale and let V be an (j—:_) adapted
continuous process satisfying the SDE (13.3.46), where f is defined by (13.3.45).
Further, suppose ¢, V satisfy (13.3.47) and (13.3.48). Let v = Q o V™! be the dis-
tribution of V. Then v is absolutely continuous w.r.t. u, and for T < 0o

dv

d—u*lf, = exp(L) (13.3.51)

where
d r . d ro. 1 d ro
L=Z/ W(s,X)dxg—Z/ hW(s,X)ds—EZf (@ (s, X))*ds,
j=170 j=170 j=170

X is the coordinate process on Cy and ) = ¢o~"1{5.20,. As a consequence, weak
solution to the SDE (13.3.46) is unique.

Proof Let us define a measure Pon (§ , F ) by

o)

d
d

d oo d 00
= exp(—ZfO ¢/ (s, V)dU} — %Z/O (¢’ (s, V))ds).  (13.3.52)
j=1 j=1

O)

In view of the assumption (13.3.48), it follows from Theorem 13.9 that Pisa prob-
ability measure and from Theorem 13.9 that Z defined by

. . t .
7zl = U/ +f ¢/ (s, V)ds. (13.3.53)
0

is a Brownian motion under ﬁ Now recalling that V satisfies (13.3.46) and that £,
f and ¢ are related via (13.3.45), we note that

V) =yo+ Zf o/ (s, V)d Z +/ hi(s, V)ds. (13.3.54)
k=10 0

Since Z is a Brownian )r\nqgion under ﬁ it follows that V is a weak solution to the
SDE (13.3.41) on (£2, F, P) and as a consequence, we have
PoV™!l=yu,. (13.3.55)

Since P and Q are mutually absolutely continuous, it follows that u., and v are
mutually absolutely continuous.
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Let
d t d t
S =exp(—) f ¢’ (s, V)dUJ—%Z / (@' (s, V))*ds).
j=1"0 j=1"0

It then follows that S is a Q-martingale and for A € F

P(A) = f S,dQ. (13.3.56)
A
Let
d t 1 d t
R, :exp(Z/ @' (s, V)dZ] — EZ/ (@' (s, V))2ds). (13.3.57)
j=170 j=179
Note that

d ' d t
S =exp(y f ¢ s, v>dag+%2 f (¢'(s. V))?ds)
j=1"0 j=170

d_ o oA . (13.3.58)
=ex J(s,V)dZ! — - / I(s, V))°ds
p(;foqb( )dz! Z;O(W )2 ds)
—R,.
Using (13.3.56) it follows that
Q(A) =/R,d§ VA e F,, Vi (13.3.59)
A

and thus R is a P-martingale. Using (13.3.43) and (13.3.54) and ¢ = ¢o ' 1{5/0)
it follows that

d 1 d t
Z/ ¢'(s.V)dZ] = Z/ ¢ (s, V)1 o120 Z]
= Jo = Jo

d ¢ d ‘
= Z/ (s, V)dV/ —Z/ hi (s, Vbl (s, V)ds
j=1"0 j=10

Thus,
R; = exp(¢)

where
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d ‘ d ! d t
=X [ Wevavi=-Y [ vievis-3 Y [[@e.viras
j=170 j=170 j=170

Let us define a; on (Cy, B(Cy), 1) by

a; = exp(n)

where

d t . ) d r A 1 d [ A
n=§/0 P! (s, X)ng—JZ_;/O h (s, X)i/ (s, X)ds — 5;/0 (¢’ (s, X))?ds

We would like to show that for B € FX,
/ R,dP = v d . (13.3.60)
{VeB)} {XeB)

If )/ were continuous, the stochastic integral could be expressed pathwise using
Theorem 6.2 and then (13.3.60) would follow from the usual change of variable
formula. For the general case, (13.3.60) follows using Exercise 4.54.

v(B) = Q(V € B)
= R,dP
fWGB} (13.3.61)

= / ad fiy.
B

Thus, v is uniquely determined on ]_-tx and since U,>o}',X is a field that generates
B(C,), it follows that v is uniquely determined. Thus weak uniqueness holds for
solution to the SDE (13.3.46). O

13.4 The Girsanov—Meyer Theorem

The following result is due to Meyer building upon the idea by Girsanov in the
context of a Wiener process. We return to the framework of Sect. 13.1. Recall Q
is a probability measure equivalent to P, £ = Z—S, Z is the (r.c.Ll version) of the
martingale Ep[£ | .7-',*]. We assume that Z is (F,) adapted. Of course, if the filtration
(F.) is right continuous, this assumption is always satisfied.
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Theorem 13.15 (Girsanov—Meyer) Let M be a P-local martingale. Then
t
N, = M, —/ (Z,)"'d[M, Z], (13.4.1)
0

is a Q-local martingale.

Proof Let U, = [,(Z;)"'d[M, Z]. Then
N.Z, =M, Z, — U, Z,

:(Mtzt_[M7Z]1)+[MaZ]l_(/ Us—dZ.H-/ Z—dUs; + (U, Z]))
0 0

where we have used integration by parts formula, (4.6.7) along with Uy = 0. Now
(M,Z, — [M, Z],) is P-local martingale (see Theorem 9.30). Further, fot Us_dZ; is
a P-local martingale (see Corollary 9.15). It thus follows that

t
NiZi =L, +[M,Z] —/ Z,_dU; —[U, Z], (13.4.2)
0

where L, = (M, Z, — [M, Z],) — fot Us_dZ, and thus L is a P-local martingale.
Since U € V is a process with finite variation paths, [U, Z], = ZOGS(A U),(AZ);
and as a consequence

t t
f Z,_dUs + U, Z], = / Z,dUs. (13.4.3)
0 0

From the definition of U, it follows that

t t
/ Z,dU, = / Z(Z) 7 'd[M, 71 = M, Z]. (13.4.4)
0 0
Thus using (13.4.2)—(13.4.4) it follows that
N,Z, =L,

and thus N Z is a P-local martingale. Hence N is a Q-local martingale. ]
Here is the predictable version of the Girsanov—Meyer Theorem.

Theorem 13.16 (Girsanov—Meyer) Let M be a P-local martingale. Further suppose
that M Z is locally integrable. Then

Lt=Ml—/ (Z,)'d(M, Z), (13.4.5)
0

is a Q-local martingale.
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Proof Once again we need to show that L Z is a P-local martingale. We have observed
that (see Remark 9.34), M, Z, — (M, Z), is a local martingale. So in order to show
that LZ is a P-local martingale, it suffices to show that N defined by

N, = (M, z>,—z,/ (Z,)'d(M, Z), (13.4.6)
0

is a P-local martingale. Let V, = fot (Z;_ )~ 'd(M, Z) so that
N =M, Z), — Z,V,.

First we observe that V has a jump at a stopping time o if and only if (M, Z) has a
jump at o and then
(AV)y = (Zo) "1 (AM, Z)),.

Predictability of (M, Z) implies that for a predictable stopping time o, V,_ is
Fo— measurable. It follows using Lemma 8.25 that V is predictable.Then we have
(note Vy = 0)

t t
Z,V, = / Zo_dV; +/ Vi_dZ;, + [V, Z];. (13.4.7)
0 0
Since fot Zs_dVy, = (M, Z),, we conclude

t
Nt = _f Vx—dzx - [Va Z]t
0

Now fot Vs_dZ; is a P-local martingale by Corollary 9.15 and [V, Z], is a P-local
martingale by Theorem 9.32. Thus N is a P-local martingale. As noted earlier, this
completes the proof that L is Q-local martingale. U
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