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Preface

This book is a comprehensive textbook on stochastic calculus—the branch of
mathematics that is most widely applied in financial engineering and mathematical
finance. It will be useful for a two-semester graduate-level course on stochastic
calculus, where the background required is a course on measure-theoretic
probability.

This book begins with conditional expectation and martingales, and basic results
on martingales are included with proofs (in discrete time as well as in continuous
time). Then a chapter on Brownian motion and Ito’s integration with respect to the
Brownian motion follows, which includes stochastic differential equations. These
three chapters give a soft landing to a reader to the more complex results that
follow. The first three chapters form the introductory material.

Taking a cue from the Ito’s integral, a stochastic integrator is defined and its
properties, as well as the properties of the integral, are discussed. In most treat-
ments, one starts by defining the integral for a square integrable martingale and
where integrands themselves are in suitable Hilbert space. Then over several stages,
the integral is extended, and at each step, one has to reaffirm its properties. We
avoid this. Various results including quadratic variation and Ito’s formula follow
from the definition. Then Emery topology is defined and studied.

We then show that for a square integrable martingale M, the quadratic variation
½M;M� exists, and using this, we show that square integrable martingales are
stochastic integrators. This approach to stochastic integration is different from the
standard approach as we do not use Doob–Meyer decomposition. Instead of using
the predictable quadratic variation hM;Mi of a square integrable martingale M, we
use the quadratic variation ½M;M�. Using an inequality by Burkholder, we show
that all martingales and local martingales are stochastic integrators and thus
semimartingales are stochastic integrators. We then show that stochastic integrators
are semimartingales and obtain various results such as a description of the class of
integrands for the stochastic integral. We complete the chapter by giving a proof
of the Bichteler–Dellacherie–Meyer–Mokobodzky theorem.
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These two chapters form the basic material. We have avoided invoking results
from functional analysis but rather included the required steps. Thus, instead of
saying that the integral is a continuous linear functional on a dense subset of a
Banach space and hence can be extended to the Banach space, we explicitly con-
struct the extension.

Next, we introduce Pathwise formulae for the quadratic variation and the
stochastic integral. These have not found a place in any textbook on stochastic
integration. We briefly specialize in continuous semimartingales and obtain growth
estimates and study the solution of a stochastic differential equation (SDE) using the
technique of random time change. We also prove pathwise formulae for the solution
of an SDE driven by continuous semimartingales.

Then, we move on to a study of predictable increasing processes, introduce
predictable stopping times and prove the Doob–Meyer decomposition theorem.

The Davis inequality (p ¼ 1 case of the Burkholder–Davis–Gundy inequality)
plays an important role in the integral representation of martingales and hence is
taken up next. We also introduce the notion of a sigma-martingale.

We then give a comprehensive treatment of integral representation of martin-
gales and its connection with the uniqueness of equivalent martingale measure. This
connection is important from the point of view of mathematical finance. Here, we
consider the multivariate case and also include the case when the underlying pro-
cess is a sigma-martingale.

In order to study stochastic differential equations driven by a general semi-
martingale, we introduce the Metivier–Pellaumail inequality and, using it, introduce
a notion of the dominating process of a semimartingale. We then obtain existence
and uniqueness of solutions to the SDE and also obtain a pathwise formula by
showing that modified Euler–Peano approximations converge almost surely.

We conclude this book by discussing the Girsanov theorem and its role in the
construction of weak solutions to SDEs.

We would like to add that this book includes various techniques that we have
learnt over the last four decades from different sources. This includes, in addition to
books and articles given in the references, the Séminaire de Probabilités volumes
and various books on stochastic processes and research articles. We must also
mention the blog https://almostsure.wordpress.com/stochastic-calculus/ by George
Lowther, which brought some of these techniques to our attention.

Siruseri, India Rajeeva L. Karandikar
B. V. Rao

viii Preface

https://almostsure.wordpress.com/stochastic-calculus/


Contents

1 Discrete Parameter Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Conditional Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Doob’s Maximal Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8 Martingale Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . 16
1.9 Square Integrable Martingales . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.10 Burkholder–Davis–Gundy Inequality . . . . . . . . . . . . . . . . . . . . 28

2 Continuous-Time Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1 Notations and Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3 Martingales and Stopping Times . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 A Version of Monotone Class Theorem . . . . . . . . . . . . . . . . . . 54
2.5 The UCP Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.6 The Lebesgue–Stieltjes Integral . . . . . . . . . . . . . . . . . . . . . . . . 61

3 The Ito’s Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.1 Quadratic Variation of Brownian Motion . . . . . . . . . . . . . . . . . 65
3.2 Levy’s Characterization of Brownian Motion . . . . . . . . . . . . . . 68
3.3 The Ito’s Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Multidimensional Ito’s Integral . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 82

4 Stochastic Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1 The Predictable r-Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.2 Stochastic Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3 Properties of the Stochastic Integral . . . . . . . . . . . . . . . . . . . . . 99

ix



4.4 Locally Bounded Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5 Approximation by Riemann Sums . . . . . . . . . . . . . . . . . . . . . . 113
4.6 Quadratic Variation of Stochastic Integrators . . . . . . . . . . . . . . 118
4.7 Quadratic Variation of Stochastic Integrals . . . . . . . . . . . . . . . . 125
4.8 Ito’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.9 The Emery Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.10 Extension Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5 Semimartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.1 Notations and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2 The Quadratic Variation Map . . . . . . . . . . . . . . . . . . . . . . . . . 164
5.3 Quadratic Variation of a Square Integrable Martingale . . . . . . . 168
5.4 Square Integrable Martingales Are Stochastic Integrators . . . . . . 175
5.5 Semimartingales Are Stochastic Integrators . . . . . . . . . . . . . . . . 180
5.6 Stochastic Integrators Are Semimartingales . . . . . . . . . . . . . . . . 183
5.7 The Class LðXÞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.8 The Dellacherie–Meyer–Mokobodzky–Bichteler Theorem . . . . . 202
5.9 Enlargement of Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6 Pathwise Formula for the Stochastic Integral . . . . . . . . . . . . . . . . . 215
6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
6.2 Pathwise Formula for the Stochastic Integral . . . . . . . . . . . . . . 217
6.3 Pathwise Formula for Quadratic Variation . . . . . . . . . . . . . . . . 220

7 Continuous Semimartingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.1 Random Time Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.2 Growth Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
7.3 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 229
7.4 Pathwise Formula for Solution of SDE . . . . . . . . . . . . . . . . . . 242
7.5 Weak Solutions of SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
7.6 Matrix-Valued Semimartingales . . . . . . . . . . . . . . . . . . . . . . . . 246

8 Predictable Increasing Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
8.1 The r-Field F s� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
8.2 Predictable Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.3 Natural FV Processes Are Predictable . . . . . . . . . . . . . . . . . . . 267
8.4 Decomposition of Semimartingales Revisited . . . . . . . . . . . . . . 275
8.5 Doob–Meyer Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.6 Square Integrable Martingales . . . . . . . . . . . . . . . . . . . . . . . . . 291

9 The Davis Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
9.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
9.2 Burkholder–Davis–Gundy Inequality—Continuous Time . . . . . . 305
9.3 On Stochastic Integral w.r.t. a Martingale . . . . . . . . . . . . . . . . . 312

x Contents



9.4 Sigma-Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
9.5 Auxiliary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

10 Integral Representation of Martingales . . . . . . . . . . . . . . . . . . . . . . 321
10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
10.2 One-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
10.3 Quasi-elliptical Multidimensional Semimartingales . . . . . . . . . . 330
10.4 Continuous Multidimensional Semimartingales . . . . . . . . . . . . . 336
10.5 General Multidimensional Case . . . . . . . . . . . . . . . . . . . . . . . . 340
10.6 Integral Representation w.r.t. Sigma-Martingales . . . . . . . . . . . . 354
10.7 Connections to Mathematical Finance . . . . . . . . . . . . . . . . . . . 356

11 Dominating Process of a Semimartingale . . . . . . . . . . . . . . . . . . . . 361
11.1 An Optimization Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
11.2 Metivier–Pellaumail Inequality . . . . . . . . . . . . . . . . . . . . . . . . . 365
11.3 Growth Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
11.4 Alternate Metric for Emery Topology . . . . . . . . . . . . . . . . . . . 374

12 SDE Driven by r.c.l.l. Semimartingales . . . . . . . . . . . . . . . . . . . . . . 383
12.1 Gronwall Type Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
12.2 Stochastic Differential Equations . . . . . . . . . . . . . . . . . . . . . . . 386
12.3 Pathwise Formula for Solution to an SDE . . . . . . . . . . . . . . . . 394
12.4 Euler–Peano Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 398
12.5 Matrix-Valued Semimartingales . . . . . . . . . . . . . . . . . . . . . . . . 406

13 Girsanov Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
13.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
13.2 Cameron–Martin Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
13.3 Girsanov Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
13.4 The Girsanov–Meyer Theorem . . . . . . . . . . . . . . . . . . . . . . . . 432

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Contents xi



About the Authors

Rajeeva L. Karandikar has been Professor and Director of Chennai Mathematical
Institute, Tamil Nadu, India, since 2010. An Indian mathematician, statistician and
psephologist, he is a Fellow of the Indian Academy of Sciences, Bengaluru, India,
and the Indian National Science Academy, New Delhi, India. He received his M.
Stat. and Ph.D. degrees from the Indian Statistical Institute, Kolkata, India, in 1978
and 1981, respectively. He spent 2 years as Visiting Professor at the University of
North Carolina at Chapel Hill, USA, and worked with Prof. Gopinath Kallianpur.
He returned to the Indian Statistical Institute, New Delhi, India, in 1984. In 2006, he
moved to Cranes Software International Limited, where he was Executive Vice
President for analytics until 2010. His research interests include stochastic calculus,
filtering theory, option pricing theory, psephology in the context of Indian elections
and cryptography.

B. V. Rao is Adjunct Professor at Chennai Mathematical Institute, Tamil Nadu,
India. He received his M.Sc. degree in Statistics from Osmania University,
Hyderabad, India, in 1965 and his doctoral degree from the Indian Statistical
Institute, Kolkata, India, in 1970. His research interests include descriptive set
theory, analysis, probability theory and stochastic calculus. He was Professor and
later Distinguished Scientist at the Indian Statistical Institute, Kolkata. Generations
of Indian probabilists have benefitted from his teaching, where he taught from 1973
until 2009.

xiii



Chapter 1
Discrete Parameter Martingales

In this chapter, we will discuss martingales indexed by integers (mostly positive
integers) and obtain basic inequalities on martingales and other results which are
the basis of most of the developments in later chapters on stochastic integration. We
will begin with a discussion on conditional expectation and then on filtration—two
notions central to martingales.

1.1 Notations

For an integer d ≥ 1,Rd denotes the d-dimensional Euclidean space, andB(Rd) will
denote the Borelσ-field onRd . Further,C(Rd) andCb(R

d) will denote the classes of
continuous functions and bounded continuous functions on R

d , respectively. When
d = 1, we will write R in place of R1. Q will denote the set of rational numbers
in R.

(Ω,F ,P) will denote a generic probability space, and B(Ω,F) will denote the
class of real-valued bounded F measurable functions.

For a collectionA ⊆ F , σ(A) will denote the smallest σ-field which containsA
and for a collection G ⊆ B(Ω,F), σ(G) will likewise denote the smallest σ-field
with respect to which each function in G is measurable.

It is well known and easy to prove that

σ(Cb(R
d)) = B(Rd).

An R
d -valued random variable X , on a probability space (Ω,F ,P), is function

from (Ω,F) to (Rd ,B(Rd)). For such an X and a function f ∈ Cb(R
d), E[ f (X)]

(or EP[ f (X)] if there are more than one probability measure under consideration)
will denote the integral

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Discrete Parameter Martingales

E[ f (X)] =
∫

Ω

f (X (ω))dP(ω).

For any measure μ on (Ω,F) and for 1 ≤ p < ∞, we will denote by L
p(μ) the

space Lp(Ω,F ,μ) of real-valued F measurable functions equipped with the norm

‖ f ‖p = (

∫
| f |p dμ)

1
p .

It is well known that Lp(μ) is a Banach space under the norm ‖ f ‖p.
For more details and discussions as well as proofs of statements quoted in this

chapter, see Billingsley [4], Breiman [5], Ethier and Kurtz [18].

1.2 Conditional Expectation

Let X andY be randomvariables. Supposewe are going to observeY and are required
to make a guess for the value of X . Of course, we would like to be as close to X
as possible. Suppose the penalty function is square of the error. Thus we wish to
minimize

E[(X − a)2] (1.2.1)

where a is the guess or the estimate. For this to be meaningful, we should assume
E[X2] < ∞. The value of a that minimizes (1.2.1) is the mean μ = E[X ]. On the
other hand, if we are allowed to use observations Y while making the guess, then our
estimate could be a function of Y . Thus we should choose the function g such that

E[(X − g(Y ))2]

takes the minimum possible value. It can be shown that there exists a function g
(Borel measurable function from R to R) such that

E[(X − g(Y ))2] ≤ E[(X − f (Y ))2] (1.2.2)

for all (Borel measurable) functions f . Further, if g1, g2 are two functions satisfying
(1.2.2), then g1(Y ) = g2(Y ) almost surely P. Indeed, A = L

2(Ω,F ,P)—the space
of all square integrable random variables on (Ω,F ,P) with inner product 〈X,Y 〉 =
E[XY ], giving rise to the norm ‖Z‖ = √

E[Z2], is a Hilbert space and

K = { f (Y ) : f fromR to R measurable, E[( f (Y ))2] < ∞}

is a closed subspace ofA. Hence given X ∈ A, there is a unique element inK, namely
the orthogonal projection of X to K, that satisfies (1.2.2). Thus for X ∈ A, we can
define g(Y ) to be the conditional expectation of X given Y , written as E[X | Y ] =
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g(Y ). One can show that for X, Z ∈ A and a, b ∈ R

E[aX + bZ | Y ] = aE[X | Y ] + bE[Z | Y ]

and
X ≤ Z implies E[X | Y ] ≤ E[Z | Y ].

Note that (1.2.2) implies that for all t

E[(X − g(Y ))2] ≤ E[(X − g(Y ) + t f (Y ))2]

for any f (Y ) ∈ K and hence that

t2E[ f (Y )2] + 2tE[(X − g(Y )) f (Y )] ≥ 0, ∀t.

In particular, g(Y ) satisfies

E[(X − g(Y )) f (Y )] = 0 ∀ f bounded measurable. (1.2.3)

Indeed, (1.2.3) characterizes g(Y ). Also, (1.2.3) is meaningful even when X is not
square integrable but only E[|X | ] < ∞. With a little work we can show that given X
withE[|X | ] < ∞, there exists a unique g(Y ) such that (1.2.3) is valid. To see this, first
consider X ≥ 0. Take Xn = min(X, n) and gn such thatE[Xn | Y ] = gn(Y ). Clearly,
gn(Y ) ≤ gn+1(Y ) a.s. Define g̃(x) = lim sup gn(x), g(x) = g̃(x) if g̃(x) < ∞ and
g(x) = 0 otherwise. One can show that

E[(X − g(Y )) f (Y )] = 0 ∀ f bounded measurable.

The case for general X can be deduced by writing X as difference of two non-
negative random variables. It is easy to see that in (1.2.3) it suffices to take f to be
{0, 1}-valued; i.e. indicator function of a Borel set. We are thus led to the following
definition: for random variables X,Y with E[|X | ] < ∞,

E[X | Y ] = g(Y )

where g is a Borel function satisfying

E[(X − g(Y ))1B(Y )] = 0, ∀B ∈ B(R). (1.2.4)

Now if instead of one random variable Y , we were to observe Y1, . . . ,Ym , we can
similarly define

E[X | Y1, . . . Ym] = g(Y1, . . . Ym)

where g satisfies

E[(X − g(Y1, . . . Ym))1B(Y1, . . . Ym)] = 0, ∀B ∈ B(Rm).



4 1 Discrete Parameter Martingales

Also if we were to observe an infinite sequence, we have to proceed similarly, with
g being a Borel function on R

∞. Of course, the random variables could be taking
values in Rd . In each case we will have to write down properties and proofs thereof
and keep doing the same as the class of observable random variables changes.

Instead, here is a unified way. Let (Ω,F ,P) be a probability space and Y be
a random variable on Ω . The smallest σ-field σ(Y ) with respect to which Y is
measurable (also called the σ-field generated by Y ) is given by

σ(Y ) = {A ∈ F : A = {Y ∈ B}, B ∈ B(R)}.

Likewise, for random variables Y1, . . . Ym , the σ-field σ(Y1, . . . Ym) generated by
Y1, . . . Ym is the smallest σ-field with respect to which Y1, . . . Ym are measurable and
is given by

σ(Y1, . . . Ym) = {A ∈ F : A = {(Y1, . . . Ym) ∈ B}, B ∈ B(Rm)}.

Exercise 1.1 Show that

(i) A random variable Z can bewritten as Z = g(Y ) for ameasurable function
g if and only if Z is measurable with respect to σ(Y ).

(ii) A random variable Z can be written as Z = g(Y1,Y2, . . . , Yn) for a
measurable function g if and only if Z is measurable with respect to
σ(Y1,Y2, . . . ,Yn).

Similar statement is true even for an infinite sequence of random variables. In view of
these observations, one can define conditional expectation given a σ-field as follows.
It should be remembered that one mostly uses it when the σ-field in question is
generated by a collection of observable random variables.

Definition 1.2 Let X be a random variable on (Ω,F ,P) with E[|X | ] < ∞ and
let G be a sub-σ-field of F . Then the conditional expectation of X given G is
defined to be the G measurable random variable Z such that

E[X1A] = E[Z1A], ∀A ∈ G. (1.2.5)

Existence of Z can be proven on the same lines as given above, first for the case
when X is square integrable and then for general X . Also, Z is uniquely determined
up to null sets—if Z and Z ′ are G measurable and both satisfy (1.2.5), then P(Z =
Z ′) = 1. Some properties of conditional expectation are given in the following two
propositions.

Throughout the book, we adopt a convention that all statements involving random
variables are to be interpreted in almost sure sense—i.e. X = Y means X = Y a.s.,
X ≤ Y means X ≤ Y a.s.

Proposition 1.3 Let X, Z be integrable random variables on (Ω,F ,P) and G, H
be sub-σ-fields of F with G ⊆ H and a, b ∈ R. Then we have
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(i) E[aX + bZ | G] = aE[X | G] + bE[Z | G].
(ii) X ≤ Z ⇒ E[X | G] ≤ E[Z | G].
(iii) |E[X |G]| ≤ E[|X | |G].
(iv) E[E[X | G]] = E[X ].
(v) E[E[X | H] |G] = E[X | G].
(vi) If Z is G measurable such that E[ |Z X | ] < ∞ then

E[Z X |G] = ZE[X |G].

Of course when X is square integrable, we do have an analogue of (1.2.2):

Proposition 1.4 Let X be a random variable with E[X2] < ∞ and H be a sub-σ-
field. Then for allH measurable square integrable random variables U

E[(X − E[X | H])2] ≤ E[(X −U )2].

1.3 Independence

Two events A, B in a probability space (Ω,F ,P), i.e. A, B ∈ F , are said to be
independent if

P(A ∩ B) = P(A)P(B).

For j = 1, 2, . . .m, let X j be an R
d -valued random variable on a probability space

(Ω,F ,P). Then X1, X2, . . . Xm are said to be independent if for all A j ∈ B(Rd),
1 ≤ j ≤ m

P(X j ∈ A j , 1 ≤ j ≤ m) =
m∏
j=1

P(X j ∈ A j ).

A sequence {Xn} of random variables is said to be a sequence of independent random
variables if X1, X2, . . . , Xm are independent for every m ≥ 2.

Let G be a sub-σ-field of F . An R
d -valued random variable X is said to be

independent of the σ-field G if for all A ∈ B(Rd), D ∈ G,

P({X ∈ A} ∩ D) = P({X ∈ A})P(D).

Exercise 1.5 Let X,Y be real-valued random variables. Show that

(i) X,Y are independent if and only if for all bounded Borel measurable
functions f, g on R, one has

E[ f (X)g(Y )] = E[ f (X)]E[g(Y )]. (1.3.1)

(ii) X,Y are independent if and only if for all bounded Borel measurable
functions f, on R, one has
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E[ f (X) | σ(Y )] = E[ f (X)]. (1.3.2)

(iii) X,Y are independent if and only if for all t ∈ R, one has

E[exp{i t X} | σ(Y )] = E[exp{i t X}]. (1.3.3)

Exercise 1.6 Let U be an R
d -valued random variable, and let G be a σ-field.

Show that U is independent of G if and only if for all λ ∈ R
d

E[exp{iλ ·U } | G] = E[exp{iλ ·U }]. (1.3.4)

1.4 Filtration

Suppose Xn denotes a signal being transmitted at time n over a noisy channel (such
as voice over telephone lines), and let Nn denote the noise at time n and Yn denote
the noise-corrupted signal that is observed. Under the assumption of additive noise,
we get

Yn = Xn + Nn, n ≥ 0.

Now the interest typically is in estimating the signal Xn at time n. Since the noise
as well the true signal is not observed, we must require that the estimate X̂n of
the signal at time n be a function of only observations up to time n, i.e. X̂n must
only be a function of {Yk : 0 ≤ k ≤ n}, or X̂n is measurable with respect to the
σ-field Gn = σ{Yk : 0 ≤ k ≤ n}. A sequence of random variables X = {Xn} will
also be referred to as a process. Usually, the index n is interpreted as time. This is
the framework for filtering theory. See Kallianpur [31] for more on filtering theory.

Consider a situation from finance. Let Sn be the market price of shares of a
company UVW at time n. Let An denote the value of the assets of the company, Bn

denote the value of contracts that the company has bid and Cn denote the value of
contracts that the company is about to sign. The process S is observed by the public,
but the processes A, B,C are not observed by the public at large. Hence, while
making a decision on investing in shares of the company UVW, on the nth day, an
investor can only use information {Sk : 0 ≤ k < n} (we assume that the investment
decision is to be made before the price on nth day is revealed). Indeed, in trying
to find an optimal investment policy π = (πn) (optimum under some criterion), the
class of all investment strategies must be taken as all processes π such that for each n,
πn is a (measurable) function of {Sk : 0 ≤ k < n}. In particular, the strategy cannot
be a function of the unobserved processes A, B,C .

Let Gn be the σ-field generated by all the random variables observable before
time n, namely S0, S1, S2, . . . , Sn−1. It is reasonable to require that any action to be
taken at time n (say investment decision) is measurable with respect to Gn . These
observations lead to the following definitions.
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Definition 1.7 A filtration on a probability space (Ω,F ,P) is an increasing
family of sub-σ-fields (F�) = {Fn : n ≥ 0} of F indexed by n ∈ {0, 1, 2, . . . ,
m, . . .}.
Definition 1.8 A stochastic process X , i.e. a sequence X = {Xn} of random
variables, is said to be adapted to a filtration (F�) if for all n ≥ 0, Xn is Fn

measurable.

In this chapter, we will only consider discrete-time stochastic processes. We will
assume that the underlying probability is complete, i.e. N ∈ F , P(N ) = 0 and N1 ⊆
N implies N1 ∈ F and thatF0 contains all sets N ∈ F withP(N ) = 0.We will refer
to a stochastic process as a process. Let N be the class of all null sets (sets with
P(N ) = 0), and for a process Z , possibly vector-valued, let

F Z
n = σ(Zk : 0 ≤ k ≤ n) (1.4.1)

and
F̃ Z

n = σ(N ∪ F Z
n ). (1.4.2)

While it is not required in the definition, in most situations, the filtration (F�)
under consideration would be chosen to be (for a suitable process Z )

(F Z
� ) = {F Z

n : n ≥ 0}

or
(F̃ Z

� ) = {F̃ Z
n : n ≥ 0}.

Sometimes, a filtration is treated as a mere technicality. We would like to stress
that it is not so. It is a technical concept, but a very important ingredient of the
analysis. For example, in the estimation problem, one could consider the filtration
(F̃ X,N

� ) (recall, X is signal, N is noise and Y = X + N is the observable) as well
as (FY

� ). While one can use (F̃ X,N
� ) for technical reasons say in a proof, but when

it comes to estimating the signal, the estimate at time n has to be measurable with
respect to F̃Y

n . If X̂n represents the estimate of the signal at time n, then the process
X̂ must be required to be adapted to (F̃Y

� ). Requiring it to be adapted to (F̃ X,N
� ) is

not meaningful. Indeed, if we can take X̂n to be adapted to (F̃ X,N
� ), then we can as

well take X̂n = Xn which is of course not meaningful. Thus, here (F̃ X,N
� ) is a mere

technicality while (F̃Y
� ) is more than a technicality.

1.5 Martingales

In this section, we will fix a probability space (Ω,F ,P) and a filtration (F�). We
will only be considering R-valued processes in this section.
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Definition 1.9 A sequence M = {Mn} of random variables is said to be a
martingale if M is (F�) adapted and for n ≥ 0 one has E[|Mn| ] < ∞ and

EP[Mn+1 |Fn] = Mn.

Definition 1.10 A sequence M = {Mn} of random variables is said to be a
submartingale if M is (F�) adapted and for n ≥ 0 one has E[|Mn| ] < ∞ and

EP[Mn+1 |Fn] ≥ Mn.

When there are more than one filtration in consideration, we will call it a (F�)-
martingale or martingale w.r.t. (F�). Alternatively, we will say that {(Mn,Fn) : n ≥
0} is a martingale. It is easy to see that for a martingale M , for any m < n, one has

EP[Mn |Fm] = Mm

and similar statement is also true for submartingales. Indeed, one can define mar-
tingales and submartingales indexed by an arbitrary partially ordered set. We do not
discuss these in this book.

If M is a martingale and φ is a convex function on R, then Jensen’s inequal-
ity implies that the process X = {Xn} defined by Xn = φ(Mn) is a submartingale
provided Xn is integrable for all n. If M is a submartingale and φ is an increasing
convex function then X is also a submartingale provided Xn is integrable for each n.
In particular, if M is a martingale or a positive submartingale with E[M2

n ] < ∞ for
all n, then Y defined by Yn = M2

n is a submartingale.
Whenwe are having only onefiltration under consideration,wewill drop reference

to it and simply sayM is amartingale. It is easy to see also that sumof twomartingales
with respect to the same underlying filtration is also a martingale. We note here an
important property of martingales that would be used later.

Theorem 1.11 Let Mm be a sequence of martingales on some probability space
(Ω,F ,P) w.r.t.a fixed filtration (F�). Suppose that

Mm
n → Mn in L

1(P), ∀n ≥ 0.

Then M is also a martingale w.r.t. the filtration (F�).

Proof Note that for any Xm converging to X in L
1(P), for any σ-field G, using (i),

(i i), (i i i) and (iv) in Proposition 1.3, one has

E[|E[Xm |G] − E[X |G]| ] = E[|E[(Xm − X) |G]| ]
≤ E[E[|Xm − X | |G]]
= E[|Xm − X | ]
→ 0.
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For n ≥ 0, applying this to Xm = Mm
n , one gets

Mm
n = E[Mm

n+1 |Fn] → E[Mn+1 |Fn] in L1(P).

But Mm
n → Mn in L1(P) so that E[Mn+1 |Fn] = Mn . It follows that M is a martin-

gale. �

The following decomposition result, called the Doob decomposition, is simple
to prove but its analogue in continuous time was the beginning of the theory of
stochastic integration.

Theorem 1.12 Let X be a submartingale. Let A = {An} be defined by A0 = 0 and
for n ≥ 1,

An =
n∑

k=1

E[(Xk − Xk−1) | Fk−1].

Then A is an increasing process ( i.e. An ≤ An+1 for n ≥ 0 ) such that A0 = 0, An

is Fn−1 measurable for each n and M = {Mn} defined by

Mn = Xn − An

is a martingale. Further, if B = {Bn} is a process such that B0 = 0, Bn is Fn−1

measurable for each n and N = {Nn} defined by Nn = Xn − Bn is a martingale,
then

P(An = Bn ∀n ≥ 1) = 1.

Proof Since X is a submartingale, each summand in the definition of An is non-
negative and hence A is an increasing process. Clearly, An is Fn−1 measurable. By
the definition of An, Mn we can see that

Mn − Mn−1 = Xn − Xn−1 − E[Xn − Xn−1 |Fn−1]

and hence that
E[Mn − Mn−1 |Fn−1] = 0

showing that M is a martingale. If Bn is as in the statement, we can see that for n ≥ 1,

E[(Xn − Xn−1) |Fn−1] = E[(Nn − Nn−1) |Fn−1] + E[(Bn − Bn−1) |Fn−1]
= E[(Bn − Bn−1) |Fn−1]
= Bn − Bn−1.

Now B0 = 0 implies

Bn =
n∑

k=1

E[(Xk − Xk−1) | Fk−1]

completing the proof. �
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The uniqueness in the result above depends strongly on the assumption that Bn is
Fn−1 measurable. The process A is called the compensator of the submartingale X .

Let M = {Mn} be a martingale. The sequence D defined by Dn = Mn − Mn−1,
for n ≥ 1 and D0 = M0 clearly satisfies

E[Dn |Fn−1] = 0 ∀n ≥ 1. (1.5.1)

An adapted sequence {Dn : n ≥ 0} satisfying (1.5.1) is called amartingale difference
sequence.

Definition 1.13 A sequence of random variables U = {Un} is said to be pre-
dictable if for all n ≥ 1, Un is Fn−1 measurable and U0 is F0 measurable.

The compensator A appearing in the Doob decomposition of a submartingale M is
predictable.

Consider a gambling house, where a sequence of games are being played, at say
one hour interval. If an amount a is bet on the nth game, the reward on the nth game is
aDn . Since a gambler can use the outcomes of the games that have been played earlier,
Un − the amount she bets on nth game can be random instead of a fixed number.
However, {Un : n ≥ 1} has to be predictable with respect to the underlying filtration
since the gambler has to decide howmuch to bet before the nth game is played. If the
game is fair, i.e. E[Dn | Fn−1] = 0, then the partial sums Mn = D0 + · · · + Dn is a
martingale and the total reward Rn at time n is then given by Rn = ∑n

k=0UkDk . One
can see that it is also a martingale, if say Un is bounded. This leads to the following
definition.

Definition 1.14 Let M = {Mn} be a martingale andU = {Un} be a predictable
sequence of random variables. The process Z = {Zn} defined by Z0 = 0 and
for n ≥ 1

Zn =
n∑

k=1

Uk(Mk − Mk−1) (1.5.2)

is called the martingale transform of M by the sequence U .

The following result gives conditions under which the transformed sequence is a
martingale.

Theorem 1.15 Suppose M = {Mn} is a martingale and U = {Un} is a predictable
sequence of random variables such that

E[|MnUn| ] < ∞ for all n ≥ 1. (1.5.3)

Then the martingale transform Z defined by (1.5.2) is a martingale.
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Proof Let us note that

E[|MnUn| ] = E[E[|MnUn| |Fn−1]]
≥ E[|E[MnUn |Fn−1]| ]
= E[|UnE[Mn |Fn−1]| ]
= E[|UnMn−1| ]

(1.5.4)

where we have used properties of conditional expectation and the fact thatUn isFn−1

measurable and that M is a martingale. Thus, (1.5.3) implies E[|UnMn−1| ] < ∞.
This is needed to justify splitting the expression in the next step.

E[Un(Mn − Mn−1) |Fn−1] = E[UnMn |Fn−1] − E[UnMn−1 |Fn−1]
= UnE[Mn |Fn−1] −UnMn−1

= UnMn−1 −UnMn−1

= 0.

(1.5.5)

This implies Cn = Un(Mn − Mn−1) is a martingale difference sequence, and thus Z
defined by (1.5.2) is a martingale. �

The proof given above essentially also yields the following:

Theorem 1.16 Suppose M = {Mn} is a submartingale and U = {Un} is a pre-
dictable sequence of random variables such that Un ≥ 0 and

E[|Mn−1Un| ] < ∞, E[|MnUn| ] < ∞ for all n ≥ 1. (1.5.6)

Then the transform Z defined by (1.5.2) is a submartingale.

Exercise 1.17 Let (Mn,Fn) be a martingale. Show that M is a (FM
� ) martin-

gale.

1.6 Stopping Times

We continue to work with a fixed probability space (Ω,F ,P) and a filtration (F�).

Definition 1.18 A stopping time τ is a function from Ω to {0, 1, 2, . . . , } ∪ {∞}
such that

{τ = n} ∈ Fn, ∀n < ∞.

Equivalently, τ is a stopping time if {τ ≤ n} ∈ Fn for all n ≥ 1. Stopping times were
introduced in the context ofMarkov Chains byDoob.Martingales and stopping times
together are very important tools in the theory of stochastic process in general and
stochastic calculus in particular.
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Definition 1.19 Let τ be a stopping time and X be an adapted process. The
stopped random variable Xτ is defined by

Xτ (ω) =
∞∑
n=0

Xn(ω)1{τ=n}.

Note that by definition, Xτ = Xτ1{τ<∞}. The following results connecting martin-
gales and submartingales and stopping times (and their counterparts in continuous
time) play a very important role in the theory of stochastic processes.

Exercise 1.20 Let σ and τ be two stopping times and let

ξ = τ ∨ σ and η = τ ∧ σ.

Show that ξ and η are also stopping times. Here and in the rest of this book,
a ∨ b = max(a, b) and a ∧ b = min(a, b).

Exercise 1.21 Let τ be a random variable taking values in {0, 1, 2, . . .}, and for
n ≥ 0, let Fn be the σ-field generated by τ ∧ n. Characterize all the stopping
times w.r.t. this filtration.

Theorem 1.22 Let M = {Mn} be a submartingale and τ be a stopping time. Then
the process N = {Nn} defined by

Nn = Mn∧τ

is a submartingale. Further, if M is a martingale then so is N .

Proof Without loss of generality, we assume that M0 = 0. Let Un = 1{τ<n} and
Vn = 1{τ≥n}. Since

{Un = 1} = ∪n−1
k=0{τ = k}

it follows that Un is Fn−1 measurable and hence U is a predictable sequence, and
since Un + Vn = 1, it follows that V is also a predictable sequence. Noting that
N0 = 0 and for n ≥ 1

Nn =
n∑

k=1

Vk(Mk − Mk−1)

the result follows from Theorem 1.16. �

The following version of this result is also useful.

Theorem 1.23 Let M = {Mn} be a submartingale and σ, τ be stopping times such
that σ ≤ τ . Let R = {Rn}, S = {Sn} be defined as follows: R0 = S0 = 0 and for
n ≥ 1

Sn = Mn − Mn∧τ ,

Rn = Mn∧τ − Mn∧σ.
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Then R, S are submartingales. Further, if M is a martingale then so are S, R.

Proof To proceed as earlier, letUn = 1{τ<n}, Vn = 1{σ<n≤τ } = 1{τ≥n} − 1{σ≥n}. Once
again U, V are predictable and note that S0 = R0 = 0 and for n ≥ 1

Sn =
n∑

k=1

Uk(Mk − Mk−1)

Rn =
n∑

k=1

Vk(Mk − Mk−1).

The result follows from Theorems 1.16. �

The N in Theorem 1.22 is the submartingale M stopped at τ . S in Theorem 1.23 is
the increment of M after τ .

Corollary 1.24 Let M = {Mn} be a submartingale and σ, τ be stopping times such
that σ ≤ τ . Then for all n ≥ 1

E[Mn∧σ] ≤ E[Mn∧τ ].

It is easy to see that for a martingale M ,E[Mn] = E[M0] for all n ≥ 1.Of course,
this property does not characterize martingales. However, we do have the following
result.

Theorem 1.25 Let M = {Mn} be an adapted process such that E[|Mn| ] < ∞ for
all n ≥ 0. Then M is a martingale if and only if for all bounded stopping times τ ,

E[Mτ ] = E[M0]. (1.6.1)

Proof If M is a martingale, Theorem 1.22 implies that

E[Mτ∧n] = E[M0].

Thus taking n such that τ ≤ n, it follows that (1.6.1) holds.
Conversely, suppose (1.6.1) is true. To show that M is a martingale, suffices to

show that for n ≥ 0, A ∈ Fn ,

E[Mn+11A] = E[Mn1A]. (1.6.2)

Let τ be defined by τ = (n + 1)1A + n1Ac . Since A ∈ Fn , it is easy to check that τ
is a stopping time. Using E[Mτ ] = E[M0], it follows that

E[Mn+11A + Mn1Ac ] = E[M0]. (1.6.3)

Likewise, using (1.6.1) for τ = n, we get E[Mn] = E[M0], or equivalently
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E[Mn1A + Mn1Ac ] = E[M0]. (1.6.4)

Now (1.6.2) follows from (1.6.3) and (1.6.4) completing the proof. �

1.7 Doob’s Maximal Inequality

Wewill now derive an inequality for martingales known as Doob’s maximal inequal-
ity. It plays a major role in stochastic calculus as we will see later.

Theorem 1.26 Let M be a martingale or a positive submartingale. Then, for λ > 0,
n ≥ 1 one has

P(max
0≤k≤n

|Mk | > λ) ≤ 1

λ
E[|Mn|1{max0≤k≤n |Mk |>λ}]. (1.7.1)

Further, for 1 < p < ∞, there exists a universal constant Cp depending only on p
such that

E[(max
0≤k≤n

|Mk |)p] ≤ CpE[|Mn|p]. (1.7.2)

Proof Under the assumptions, the process N defined by Nk = |Mk | is a positive
submartingale. Let

τ = inf{k : Nk > λ}.

Here, and in what follows, we take infimum of the empty set as ∞. Then τ is a
stopping time, and further, {max0≤k≤n Nk ≤ λ} ⊆ {τ > n}. By Theorem 1.23, the
process S defined by Sk = Nk − Nk∧τ is a submartingale. Clearly S0 = 0 and hence
E[Sn] ≥ 0. Note that τ ≥ n implies Sn = 0. Thus, Sn = Sn1{max0≤k≤n Nk>λ}. Hence

E[Sn1{max0≤k≤n Nk>λ}] ≥ 0.

This yields
E[Nτ∧n1{max0≤k≤n Nk>λ}] ≤ E[Nn1{max0≤k≤n Nk>λ}]. (1.7.3)

Noting that max0≤k≤n Nk > λ implies τ ≤ n and Nτ > λ, it follows that

Nτ∧n1{max0≤k≤n Nk>λ} ≥ λ1{max0≤k≤n Nk>λ}, (1.7.4)

combining (1.7.3) and (1.7.4) we conclude that (1.7.1) is valid.
The conclusion (1.7.2) follows from (1.7.1). To see this, fix 0 < α < ∞ and let

us write f = (max0≤k≤n|Mk |) ∧ α and g = |Mn|. Then the inequality (1.7.1) can be
rewritten as

P( f > λ) ≤ 1

λ
E[g1{ f >λ}]. (1.7.5)
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Now consider the product space (Ω,F ,P) ⊗ ((0,α],B((0,α]),μ) where μ is
the Lebesgue measure on (0,α]. Consider the function h : Ω × (0,α] �→ (0,∞)

defined by
h(ω, t) = pt p−11{t< f (ω)}, (ω, t) ∈ Ω × (0,α].

First, note that

∫
Ω

[
∫

(0,α]
h(ω, t)dt]dP(ω) =

∫
Ω

[ f (ω)]p dP(ω)

= E[ f p].
(1.7.6)

On the other hand, using Fubini’s theorem in the first and fourth step below and using
the estimate (1.7.5) in the second step, we get

∫
Ω

[
∫

(0,α]
h(ω, t)dt]dP(ω) =

∫
(0,α]

[
∫

Ω

h(ω, t)dP(ω)]dt

=
∫

(0,α]
pt (p−1)P( f > t)dt

≤
∫

(0,α]
pt (p−1) 1

t
E[g1{ f >t}]dt

=
∫

(0,α]
pt (p−2)[

∫
Ω

g(ω)1{ f (ω)>t}dP(ω)]dt

=
∫

Ω

[
∫

(0,α]
pt (p−2)1{ f (ω)>t}dt]g(ω)dP(ω)

= p

(p − 1)

∫
Ω

g(ω) f (p−1)(ω)dP(ω)

= p

(p − 1)
E[g f (p−1)].

(1.7.7)

The first step in (1.7.8) below follows from the relations (1.7.6)–(1.7.7) and the next
one from Holder’s inequality, where q = p

(p−1) so that
1
p + 1

q = 1:

E[ f p] ≤ p

(p − 1)
E[g f (p−1)]

= p

(p − 1)
(E[g p]) 1

p (E[ f (p−1)q ]) 1
q

= p

(p − 1)
(E[g p]) 1

p (E[ f p]) 1
q .

(1.7.8)

Since f is bounded, (1.7.8) implies

E[ f p](1− 1
q ) ≤ p

(p − 1)
(E[g p]) 1

p
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which in turn implies (recalling definitions of f, g), writing Cp = (
p

(p−1) )
p

E[((max
0≤k≤n

|Mk |) ∧ α)p] ≤ CpE[|Mn|p]. (1.7.9)

Since (1.7.9) holds for allα, taking limit asα ↑ ∞ (via integers) and usingmonotone
convergence theorem, we get that (1.7.2) is true. �

1.8 Martingale Convergence Theorem

Martingale convergence theorem is one of the main results on martingales. We begin
this section with an upcrossings inequality—a key step in its proof. Let {an : 1 ≤
n ≤ m} be a sequence of real numbers and α < β be real numbers. Let sk, tk be
defined (inductively) as follows: s0 = 0, t0 = 0, and for k = 1, 2, . . .m

sk = inf{n > tk−1 : an ≤ α}, tk = inf{n ≥ sk : an ≥ β}.

Recall our convention—infimum of an empty set is taken to be ∞. It is easy to see
that if tk = j < ∞, then

0 ≤ s1 < t1 < . . . < sk < tk = j < ∞ (1.8.1)

and for i ≤ j
asi ≤ α, ati ≥ β. (1.8.2)

We define
Um({a j : 1 ≤ j ≤ m},α,β) = max{k : tk ≤ m}.

Um({a j : 1 ≤ j ≤ m},α,β) is the number of upcrossings of the interval (α,β) by
the sequence {a j : 1 ≤ j ≤ m}. Eqs. (1.8.1) and (1.8.2) together also imply tk >

(2k − 1) and also writing c j = max(α, a j ) that

m∑
j=1

(ct j∧m − cs j∧m) ≥ (β − α)Um({a j },α,β). (1.8.3)

This inequality follows because each completed upcrossings contributes at least
β − α to the sum, one term could be non-negative and rest of the terms are zero.

Lemma 1.27 For a sequence {an : n ≥ 1} of real numbers,

lim inf
n→∞ an = lim sup

n→∞
an (1.8.4)

if and only if
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lim
m→∞Um({a j : 1 ≤ j ≤ m},α,β) < ∞, ∀α < β, α,β rationals. (1.8.5)

Proof If lim infn→∞ an < α < β < lim supn→∞ an then

lim
m→∞Um({a j : 1 ≤ j ≤ m},α,β) = ∞.

Thus (1.8.5) implies (1.8.4). The other implication follows easily. �
It follows that if (1.8.5) holds, then limn→∞ an exists in R̄ = R ∪ {−∞,∞}. The

next result gives an estimate on expected value of

Um({X j : 1 ≤ j ≤ m},α,β)

for a submartingale X .

Theorem 1.28 (Doob’s upcrossings inequality) . Let X be a submartingale. Then
for α < β

E[Um({X j : 1 ≤ j ≤ m},α,β)] ≤ E[|Xm | + |α| ]
β − α

. (1.8.6)

Proof Fix α < β and define σ0 = 0 = τ0 and for k ≥ 1

σk = inf{n > τk−1 : Xn ≤ α}, τk = inf{n ≥ σk : Xn ≥ β}.

Then for each k, σk and τk are stopping times. Writing Yk = (Xk − α)+, we see that
Y is also submartingale and as noted in (1.8.3)

m∑
j=1

(Yτ j∧m − Yσ j∧m) ≥ (β − α)Um({X j : 1 ≤ j ≤ m},α,β). (1.8.7)

On theother hand, using 0 ≤ (σ1 ∧ m) ≤ (τ1 ∧ m)≤ . . . ≤ (σm ∧ m)≤ (τm ∧ m) = m
we have

Ym − Yσ1∧m =
m∑
j=1

(Yτ j∧m − Yσ j∧m) +
m−1∑
j=1

(Yσ j+1∧m − Yτ j∧m). (1.8.8)

Since σ j+1 ∧ m ≥ τ j ∧ m are stopping times and Y is a submartingale, using Corol-
lary 1.24 we have

E[Yσ j+1∧m − Yτ j∧m] ≥ 0. (1.8.9)

Putting together (1.8.7), (1.8.8) and (1.8.9) we get

E[Ym − Yσ1∧m] ≥ E[(β − α)Um({X j : 1 ≤ j ≤ m},α,β)]. (1.8.10)

Since Yk ≥ 0 we get
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E[Um({X j : 1 ≤ j ≤ m},α,β)] ≤ E[Ym]
β − α

. (1.8.11)

The inequality (1.8.6) now follows using Ym = (Xm − α)+ ≤ |Xm | + |α|. �

We recall the notion of uniform integrability of a class of random variables and
related results.

A collection {Zα : α ∈ Δ} of random variables is said to be uniformly integrable
if

lim
K→∞[sup

α∈Δ

E[|Zα|1{|Zα|≥K }]] = 0. (1.8.12)

Here are some exercises on uniform integrability.

Exercise 1.29 If {Xn : n ≥ 1} is uniformly integrable and |Yn| ≤ |Xn| for each
n then show that {Yn : n ≥ 1} is also uniformly integrable.

Exercise 1.30 Let {Zα : α ∈ Δ} be such that for some p > 1

sup
α

E[|Zα|p] < ∞.

show that {Zα : α ∈ Δ} is uniformly integrable.

Exercise 1.31 Let {Zα : α ∈ Δ} be uniformly integrable. Show that

(i) supα E[|Zα| ] < ∞.

(ii) ∀ε > 0 ∃δ > 0 such that P(A) < δ implies

E[1A|Zα| ] < ε (1.8.13)

Hint: For (i i), observe that for any K > 0,

E[1A|Zα| ] ≤ KP(A) + E[|Zα|1{|Zα|≥K }].

Exercise 1.32 Show that {Zα : α ∈ Δ} satisfies (i), (i i) in Exercise 1.31 if and
only if {Zα : α ∈ Δ} is uniformly integrable.

Exercise 1.33 Suppose {Xα : α ∈ Δ} and {Yα : α ∈ Δ} are uniformly inte-
grable and for each α ∈ Δ, let Zα = Xα + Yα. Show that {Zα : α ∈ Δ} is also
uniformly integrable.

The following result on uniform integrability is standard.

Lemma 1.34 Let Z , Zn ∈ L
1(P) for n ≥ 1.

(i) Zn converges in L
1(P) to Z if and only if it converges to Z in probability and

{Zn} is uniformly integrable.
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(ii) Let {Gα : α ∈ Δ} be a collection of sub-σ-fields of F . Then

{E[Z | Gα] : α ∈ Δ} is uniformly integrable.

Exercise 1.35 Prove Lemma 1.34. For (i), use Exercise 1.32.

We are now in a position to prove the basic martingale convergence theorem.

Theorem 1.36 (Martingale Convergence Theorem) Let {Xn : n ≥ 0} be a sub-
martingale such that

sup
n

E[|Xn| ] = K1 < ∞. (1.8.14)

Then the sequence of random variables Xn converges a.e. to a random variable ξ
with E[|ξ| ] < ∞. Further if {Xn} is uniformly integrable, then Xn converges to ξ
in L

1(P). If {Xn} is a martingale or a positive submartingale and if for some p,
1 < p < ∞

sup
n

E[|Xn|p] = Kp < ∞, (1.8.15)

then Xn converges to ξ in Lp(P).

Proof The upcrossings inequality Theorem 1.28 gives

E[Um({X j },α,β)] ≤ K1 + |α|
β − α

for any α < β and hence by monotone convergence theorem

E[sup
m≥1

Um({X j },α,β)] < ∞.

Let Nαβ = {supm≥1Um({X j },α,β) = ∞}. Then P(Nαβ) = 0 and hence if

N ∗ = ∪{Nαβ : α < β, α,β rationals}

then P(N ∗) = 0. Clearly, for ω /∈ N ∗ one has

sup
m≥1

Um({X j (ω)},α,β) < ∞ ∀α < β, α,β rationals.

Hence by Lemma 1.27, for ω /∈ N ∗

ξ∗(ω) = lim inf
n→∞ Xn(ω) = lim sup

n→∞
Xn(ω).

Defining ξ∗(ω) = 0 for ω ∈ N ∗, by Fatou’s lemma we get

E[|ξ∗| ] < ∞



20 1 Discrete Parameter Martingales

so that P(ξ∗ ∈ R) = 1. Then defining ξ(ω) = ξ∗(ω)1{|ξ∗(ω)|<∞} we get

Xn → ξ a.e.

If {Xn} is uniformly integrable, the a.e. convergence also impliesL1(P) convergence.
If {Xn} is a martingale or a positive submartingale, then by Doob’s maximal

inequality,
E[(max

1≤k≤n
|Xk |)p] ≤ CpE[|Xn|p] ≤ CpKp < ∞

and hence by monotone convergence theorem Z = (supk≥1|Xk |)p is integrable. Now
the convergence in L

p(P) follows from the dominated convergence theorem. �

Theorem 1.37 Let {Fm} be an increasing family of sub-σ-fields of F , and let
F∞ = σ(∪∞

m=1Fm). Let Z ∈ L
1(P) and for 1 ≤ n < ∞, let

Zn = E[Z |Fn].

Then Zn → Z∗ = E[Z | F∞] in L1(P) and a.s.

Proof From the definition it is clear that Z is a martingale and it is uniformly inte-
grable by Lemma 1.34. Thus Zn converges in L1(P) and a.s. to say Z∗. To complete
the proof, we will show that

Z∗ = E[Z |F∞]. (1.8.16)

Since each Zn is F∞ measurable and Z∗ is limit of {Zn} (a.s.), it follows that Z∗ is
F∞ measurable. Fix m ≥ 1 and A ∈ Fm . Then

E[Zn1A] = E[Z1A], ∀n ≥ m (1.8.17)

sinceFm ⊆ Fn for n ≥ m. Taking limit in (1.8.17) and using that Zn → Z∗ inL1(P),
we conclude that

E[Z∗1A] = E[Z1A] (1.8.18)

∀A ∈ ∪∞
n=1Fn , which is a field that generates the σ-field F∞. The monotone class

theorem implies that (1.8.18) holds for all A ∈ F∞ and hence (1.8.16) holds. �

The previous result has an analogue when the σ-fields are decreasing. Usually one
introduces a reverse martingale (martingale indexed by negative integers) to prove
this result. We avoid it by incorporating the same in the proof.

Theorem 1.38 Let {Gm} be a decreasing family of sub-σ-fields ofF , i.e. Gm ⊇ Gm+1

for all m ≥ 1. Let G∞ = ∩∞
m=1Gm. Let Z0 ∈ L

1(P), and for 1 ≤ n ≤ ∞, let

Zn = E[Z0 |Gn].

Then Zn → Z∞ in L1(P) and a.s.
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Proof Fixm. Then {(Zm− j ,Fm− j ) : 1 ≤ j ≤ m} is a martingale where G0 = F and
the upcrossings inequality Theorem 1.28 gives

E[Um({Zm− j : 1 ≤ j ≤ m},α,β)] ≤ E[|Z0| + |α| ]
β − α

.

and hence proceeding as in Theorem 1.36, we can conclude that there exists N ∗ ⊆ Ω

with P(N ∗) = 0 and for ω /∈ N ∗ one has

sup
m≥1

Um({Zm− j (ω)},α,β) < ∞ ∀α < β, α,β rationals.

Now arguments as in Lemma 1.27 imply that

lim inf
n→∞ Zn(ω) = lim sup

n→∞
Zn(ω).

By Jensen’s inequality |Zn| ≤ E[|Z0| | Gn]. It follows that {Zn} is uniformly inte-
grable (by Lemma 1.34) and thus Zn converge a.e. and in L1(P) to a real-valued
random variable Z∗. Since Zn for n ≥ m is Gm measurable, it follows that Z∗ is Gm

measurable for every m and hence Z∗ is G∞ measurable.
Also for all A ∈ G∞, for all n ≥ 1 we have

∫
Zn1AdP =

∫
Z01AdP

since G∞ ⊆ Gn . Now L1(P) convergence of Zn to Z∗ implies that for all A ∈ G∞
∫

Z∗1AdP =
∫

Z01AdP.

Thus E[Z0 |G∞] = Z∗. �

Exercise 1.39 Let Ω = [0, 1], F be the Borel σ-field on [0, 1], and let P denote
the Lebesgue measure on (Ω,F). Let Q be another probability measure
on (Ω,F) absolutely continuous with respect to P, i.e. satisfying P(A) = 0
implies Q(A) = 0. For n ≥ 1 let

Xn(ω) =
2n∑
j=1

2nQ((2−n( j − 1), 2−n j])1(2−n( j−1),2−n j](ω).

Let Fn be the field generated by the intervals {(2−n( j − 1), 2−n j] : 1 ≤ j ≤
2n}. Show that (Xn,Fn) is a uniformly integrable martingale and thus con-
verges to a random variable ξ in L

1(P). Show that ξ satisfies
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∫
A
ξdP = Q(A) ∀A ∈ F . (1.8.19)

Hint: To show uniform integrability of {Xn : n ≥ 1} use Exercise 1.32 along
with the fact that absolute continuity of Q w.r.t. P implies that for all ε > 0,
∃δ > 0 such that P(A) < δ implies Q(A) < ε.

Exercise 1.40 Let F be a countably generated σ-field on a set Ω, i.e. there
exists a sequence of sets {Bn : n ≥ 1} such that F = σ({Bn : n ≥ 1}). Let P,
Q be probability measures on (Ω,F) such that Q absolutely continuous with
respect to P. For n ≥ 1, let Fn = σ({Bk : k ≤ n}). Then show the following.

(i) For each n ≥ 1, ∃ a partition {C1,C2 . . . ,Ckn } of Ω such that

Fn = σ(C1,C2 . . . ,Ckn ).

(ii) For n ≥ 1 let

Xn(ω) =
kn∑
j=1

1{P(C j )>0}
Q(C j )

P(C j )
1C j (ω). (1.8.20)

Show that (Xn,Fn) is a uniformly integrable martingale on (Ω,F ,P).
(iii) Xn converges in L1(P) and also P almost surely to X satisfying

∫
A
X dP = Q(A) ∀A ∈ F . (1.8.21)

The random variable X in (1.8.21) is called the Radon–Nikodym derivative of Q
w.r.t.P.

Exercise 1.41 Let F be a countably generated σ-field on a set Ω. Let � be
a non-empty set and A be a σ-field on �. For each α ∈ � let Pα and Qα be
probability measures on (Ω,F) such that Qα is absolutely continuous with
respect to Pα. Suppose that for each A ∈ F , α �→ Pα(A) and α �→ Qα(A)

are measurable. Show that there exists ξ : Ω × � �→ [0,∞) such that ξ is
measurable w.r.t.F ⊗ A and

∫
A
ξ(·,α)dPα = Qα(A) ∀A ∈ F , ∀α ∈ � (1.8.22)

1.9 Square Integrable Martingales

Martingales M such that
E[|Mn|2] < ∞, n ≥ 0 (1.9.1)
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are called square integrable martingales, and they play a special role in the theory of
stochastic integration as we will see later. Let us note that for p = 2, the constant Cp

appearing in (1.7.2) equals 4. Thus for a square integrable martingale M , we have

E[(max
0≤k≤n

|Mk |)2] ≤ 4E[|Mn|2]. (1.9.2)

As seen earlier, Xn = M2
n is a submartingale and the compensator of X—namely

the predictable increasing process A such that Xn − An is a martingale, is given by
A0 = 0 and for n ≥ 1,

An =
n∑

k=1

E[(Xk − Xk−1) | Fk−1].

The compensator A is denoted as 〈M, M〉. Using

E[(Mk − Mk−1)
2 |Fk−1] = E[(M2

k − 2MkMk−1 + M2
k−1) |Fk−1]

= E[(M2
k − M2

k−1) |Fk−1]
(1.9.3)

it follows that the compensator can be described as

〈M, M〉n =
n∑

k=1

E[(Mk − Mk−1)
2 |Fk−1] (1.9.4)

Thus 〈M, M〉 is the unique predictable increasing process with 〈M, M〉0 = 0 such
that M2

n − 〈M, M〉n is a martingale. Let us also define another increasing process
[M, M] associated with a martingale M : [M, M]0 = 0 and

[M, M]n =
n∑

k=1

(Mk − Mk−1)
2. (1.9.5)

The process [M, M] is called the quadratic variation of M , and the process 〈M, M〉
is called the predictable quadratic variation of M . It can be easily checked that

M2
n − [M, M]n = M2

0 + 2
n∑

k=1

Mk−1(Mk − Mk−1)

and hence using Theorem 1.15 it follows that M2
n − [M, M]n is also a martingale. If

M0 = 0, then it follows that

E[M2
n ] = E[〈M, M〉n] = E[[M, M]n]. (1.9.6)

We have already seen that if U is a bounded predictable sequence then the trans-
form Z defined by (1.5.2)
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Zn =
n∑

k=1

Uk(Mk − Mk−1)

is itself a martingale. The next result includes an estimate on the L2(P) norm of Zn .

Theorem 1.42 Let M be a square integrable martingale and U be a bounded pre-
dictable process. Let Z0 = 0 and for n ≥ 1, let

Zn =
n∑

k=1

Uk(Mk − Mk−1).

Then Z is itself a square integrable martingale and further

〈Z , Z〉n =
n∑

k=1

U 2
k (〈M, M〉k − 〈M, M〉k−1) (1.9.7)

[Z , Z ]n =
n∑

k=1

U 2
k ([M, M]k − [M, M]k−1). (1.9.8)

As a consequence

E[ max
1≤n≤N

|
n∑

k=1

Uk(Mk − Mk−1)|2] ≤ 4E[
N∑

k=1

U 2
k ([M, M]k − [M, M]k−1)]. (1.9.9)

Proof Since U is bounded and predictable, Zn is square integrable for each n. That
Z is square integrable martingale follows from Theorem 1.15. Since

(Zk − Zk−1)
2 = U 2

k (Mk − Mk−1)
2 (1.9.10)

the relation (1.9.8) follows from the definition of the quadratic variation. Further,
taking conditional expectation given Fk−1 in (1.9.10) and using that Uk is Fk−1

measurable, one concludes

E[(Zk − Zk−1)
2 |Fk−1] = U 2

k E[(Mk − Mk−1)
2 |Fk−1]

= U 2
k (〈M, M〉k − 〈M, M〉k−1)

(1.9.11)

by (1.9.4). This proves (1.9.7). Now (1.9.9) follows from (1.9.8) andDoob’smaximal
inequality, Theorem 1.26. �

Corollary 1.43 For a square integrable martingale M and a predictable process U
bounded by 1, defining Zn = ∑n

k=1Uk(Mk − Mk−1) we have

E[ max
1≤n≤N

|
n∑

k=1

Uk(Mk − Mk−1)|2] ≤ 4E[ [M, M]N ]. (1.9.12)

Further,
[Z , Z ]n ≤ [M, M]n, n ≥ 1. (1.9.13)
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The inequality (1.9.12) plays a very important role in the theory of stochastic
integration as later chapters will reveal. We will obtain another estimate due to
Burkholder [6] on martingale transform which is valid even when the martingale is
not square integrable.

Theorem 1.44 (Burkholder’s inequality) Let M be a martingale and U be a
bounded predictable process, bounded by 1. Then

P( max
1≤n≤N

|
n∑

k=1

Uk(Mk − Mk−1)| ≥ λ) ≤ 9

λ
E[|MN | ]. (1.9.14)

Proof Let

τ = inf{n ≥ 0 : |Mn| ≥ λ

4
} ∧ (N + 1)

so that τ is a stopping time. Since {τ ≤ N } = {max0≤n≤N |Mn| ≥ λ
4 }, using Doob’s

maximal inequality (Theorem 1.26) for the positive submartingale {|Mk | : 0 ≤ k ≤
N }, we have

P(τ ≤ N ) ≤ 4

λ
E(|MN |). (1.9.15)

For 0 ≤ n ≤ N , let ξn = Mn1{n<τ }. By definition of τ , |ξn| ≤ λ
4 for 0 ≤ n ≤ N . Since

on the set {τ = N + 1}, ξn = Mn, ∀n ≤ N , it follows that

P( max
1≤n≤N

|
n∑

k=1

Uk(Mk − Mk−1)| ≥ λ)

≤ P( max
1≤n≤N

|
n∑

k=1

Uk(ξk − ξk−1)| ≥ λ) + P(τ ≤ N )

≤ P( max
1≤n≤N

|
n∑

k=1

Uk(ξk − ξk−1)| ≥ λ) + 4

λ
E(|MN |).

(1.9.16)

We will now prove that for any predictable sequence of random variables {Vn}
bounded by 1, we have

|E[
N∑

k=1

Vk(ξk − ξk−1)]| ≤ E[|MN | ]. (1.9.17)

Let us define M̃k = Mk∧τ for k ≥ 0. Since M̃ is a martingale, E[∑N
k=1 Vk(M̃k −

M̃k−1)] = 0. Writing Yn = ξn − M̃n , it follows that

E[
N∑

k=1

Vk(ξk − ξk−1)] = E[
N∑

k=1

Vk(Yk − Yk−1)]. (1.9.18)
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Since Yn = Mn1{n<τ } − Mn∧τ = −Mn∧τ1{τ≤n} = −Mτ1{τ≤n}, it follows that Yk −
Yk−1 = Mτ1{τ≤(k−1)} − Mτ1{τ≤k} and thus Yk − Yk−1 = −Mτ1{τ=k}. Using (1.9.18),
we get

|E[
N∑

k=1

Vk(ξk − ξk−1)]| = |E[
N∑

k=1

Vk(Yk − Yk−1)]|

≤E[
N∑

k=1

|Yk − Yk−1| ]

≤E[
N∑

k=1

|Mτ |1{τ=k}]

≤E[|Mτ |1{τ≤N }]
≤E[|MN | ]

(1.9.19)

where for the last step we have used that |Mn| is a submartingale.Wewill decompose
{ξn : 0 ≤ n ≤ N } into a martingale {Rn : 0 ≤ n ≤ N } and a predictable process
{Bn : 0 ≤ n ≤ N } as follows: B0 = 0, R0 = ξ0 and for 0 < n ≤ N

Bn = Bn−1 + (E[ξn |Fn−1] − ξn−1)

Rn = ξn − Bn.

By construction, {Rn} is a martingale and {Bn} is predictable. Note that

Bn − Bn−1 = E[ξn |Fn−1] − ξn−1

and hence
Rn − Rn−1 = (ξn − ξn−1) − E[ξn − ξn−1 |Fn−1].

As a consequence
E[(Rn − Rn−1)

2] ≤ E[(ξn − ξn−1)
2]. (1.9.20)

For x ∈ R, let sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0, so that
|x | = sgn(x)x . Now taking Vk = sgn(Bk − Bk−1) and noting that Vk is Gk−1 mea-
surable, we have E[Vk(Bk − Bk−1)] = E[Vk(ξk − ξk−1)] (since ξ = R + B and R is
a martingale) and hence

E[ max
1≤n≤N

|
n∑

k=1

Uk(Bk − Bk−1)| ] ≤ E[
N∑

k=1

|(Bk − Bk−1)| ]

= E[
N∑

k=1

Vk(Bk − Bk−1)] (1.9.21)
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= E[
N∑

k=1

Vk(ξk − ξk−1)]

≤ E[ |MN | ]

where we have used (1.9.19). Thus

P( max
1≤n≤N

|
n∑

k=1

Uk(Bk − Bk−1)| ≥ λ

2
) ≤ 2

λ
E[ |MN | ]. (1.9.22)

Since R is a martingale and U is predictable, Xn = ∑n
k=1Uk(Rk − Rk−1) is a mar-

tingale and hence X2
n is a submartingale. Thus

P( max
1≤n≤N

|
n∑

k=1

Uk(Rk − Rk−1)| ≥ λ

2
) = P( max

1≤n≤N
|

n∑
k=1

Uk(Rk − Rk−1)|2 ≥ λ2

4
)

≤ 4

λ2
E[X2

N ].
(1.9.23)

Since X is a martingale transform of the martingale R, with U bounded by one, we
have

E[X2
N ] = E[[X, X ]N ]

≤ E[[R, R]N ]

≤ E[
N∑

k=1

(Rk − Rk−1)
2]

≤ E[
N∑

k=1

(ξk − ξk−1)
2],

(1.9.24)

where we have used (1.9.20). The estimates (1.9.23) and (1.9.24) together yield

P( max
1≤n≤N

|
n∑

k=1

Uk(Rk − Rk−1)| ≥ λ

2
) ≤ 4

λ2
E[

N∑
k=1

(ξk − ξk−1)
2]. (1.9.25)

Using the identity (y − x)2 = y2 − x2 − 2x(y − x) for y = ξk and x = ξk−1 and
summing over k, one gets

N∑
k=1

(ξk − ξk−1)
2 = ξ2N − ξ20 − 2

N∑
k=1

ξk−1(ξk − ξk−1)

≤ λ

4
|MN | + 2

λ

4

N∑
k=1

Wk(ξk − ξk−1)

(1.9.26)



28 1 Discrete Parameter Martingales

where Wk = − 4
λ
ξk−1. Here we have used ξ2N = M2

N1{N<τ }. Note that |Wk | ≤ 1 and
Wk is Gk−1 measurable. Using (1.9.19) and (1.9.26), we get

E[
N∑

k=1

(ξk − ξk−1)
2] ≤ 3λ

4
E[|MN | ]. (1.9.27)

Now (1.9.25) and (1.9.27) together yield

P( max
1≤n≤N

|
n∑

k=1

Uk(Rk − Rk−1)| ≥ λ

2
) ≤ 3

λ
E[|MN | ]. (1.9.28)

Since ξk = Rk + Bk , (1.9.22) and (1.9.28) give

P( max
1≤n≤N

|
n∑

k=1

Uk(ξk − ξk−1)| ≥ λ) ≤ 5

λ
E[|MN | ]. (1.9.29)

Finally, (1.9.16) and (1.9.29) together imply the required estimate (1.9.14). �

1.10 Burkholder–Davis–Gundy Inequality

If M is a square integrable martingale with M0 = 0, then we have

E[M2
n ] = E[〈M, M〉n] = E[[M, M]n].

And Doob’s maximal inequality (1.9.2) yields

E[[M, M]n] = E[M2
n ]

≤ E[(max
1≤k≤n

|Mk |)2]
≤ 4E[[M, M]n].

(1.10.1)

Burkholder and Gundy proved that indeed for 1 < p < ∞, there exist constants
c1p, c

2
p such that

c1pE[([M, M]n) p
2 ] ≤ E[(max

1≤k≤n
|Mk |)p] ≤ c2pE[([M, M]n) p

2 ].

Note that for p = 2, this reduces to (1.10.1). Davis went on to prove the above
inequality for p = 1. This case plays an important role in the result on integral
representation of martingales that we will later consider. Hence we include a proof
for the case p = 1—essentially this is the proof given by Davis [14]
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Theorem 1.45 Let M be a martingale with M0 = 0. Then there exist universal
constants c1, c2 such that for all N ≥ 1

c1E[([M, M]N )
1
2 ] ≤ E[ max

1≤k≤N
|Mk | ] ≤ c2E[([M, M]N )

1
2 ]. (1.10.2)

Proof Let us define for n ≥ 1

U 1
n = max

1≤k≤n
|Mk |

U 2
n = (

n∑
k=1

(Mk − Mk−1)
2)

1
2

Wn = max
1≤k≤n

|Mk − Mk−1|

and V 1
n = U 2

n , V
2
n = U 1

n . The reason for unusual notation is that we will prove

E[Ut
n] ≤ 130E[V t

n ], t = 1, 2 (1.10.3)

and this will prove both the inequalities in (1.10.2). Note that by definition, for all
n ≥ 1,

Wn ≤ 2V t
n , Wn ≤ 2Ut

n t = 1, 2. (1.10.4)

We begin by decomposing M as Mn = Xn + Yn , where X and Y are also martin-
gales defined as follows. For n ≥ 1 let

Rn = (Mn − Mn−1)1{|(Mn−Mn−1)|>2Wn−1}
Sn = E[Rn | Fn−1]

Xn =
n∑

k=1

(Rk − Sk)

Tn = (Mn − Mn−1)1{|(Mn−Mn−1)|≤2Wn−1}
Yn = Mn − Xn

and X0 = Y0 = 0. Let us note that X is a martingale by definition and hence so is Y .
Also that

Yn =
n∑

k=1

(Tk + Sk).

If |Rn| > 0 then |(Mn − Mn−1)| > 2Wn−1 and soWn = |(Mn − Mn−1)| and, in turn,
|Rn| = Wn < 2(Wn − Wn−1). Thus (noting Wn ≥ Wn−1 for all n)

n∑
k=1

|Rk | ≤ 2Wn (1.10.5)

and using that E[ |Sn| ] ≤ E[ |Rn| ], it also follows that
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n∑
k=1

E[ |Sk | ] ≤ 2E(Wn). (1.10.6)

Thus (using (1.10.4)) we have

E[
n∑

k=1

|Rk | +
n∑

k=1

|Sk | ] ≤ 4E(Wn) ≤ 8E[V t
n ], t = 1, 2. (1.10.7)

Since Xk − Xk−1 = Rk − Sk , (1.10.7) gives us for all n ≥ 1,

n∑
k=1

E[ |Xk − Xk−1| ] ≤ 8E[V t
n ], t = 1, 2. (1.10.8)

Let us define for n ≥ 1,
A1
n = max

1≤k≤n
|Xk |

A2
n = (

n∑
k=1

(Xk − Xk−1)
2)

1
2

F1
n = max

1≤k≤n
|Yk |

F2
n = (

n∑
k=1

(Yk − Yk−1)
2)

1
2

and B1
n = A2

n , B
2
n = A1

n ,G
1
n = F2

n ,G
2
n = F1

n . Since for 1 ≤ j ≤ n, |X j | ≤ ∑n
k=1|Rk |

+ ∑n
k=1|Sk |, the estimates (1.10.7)–(1.10.8) immediately give us

E[At
n] ≤ 8E[V t

n ], E[Bt
n] ≤ 8E[V t

n ], t = 1, 2. (1.10.9)

Also we note here that for all n ≥ 1, t = 1, 2

Ut
n ≤ At

n + Ft
n (1.10.10)

and
Gt

n ≤ Bt
n + V t

n . (1.10.11)

Thus, for all n ≥ 1, t = 1, 2 using (1.10.9) we conclude

E[Ut
n] ≤ 8E[V t

n ] + E[Ft
n]. (1.10.12)

Now using Fubini’s theorem (as used in proof of Theorem 1.26) it follows that

E[Ft
n] =

∫ ∞

0
P(Ft

n > x)dx . (1.10.13)
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We now will estimate P(Ft
N > x). For this we fix t ∈ {1, 2}, and for x ∈ (0,∞),

define a stopping time

σx = inf{n ≥ 1 : V t
n > x or Gt

n > x or |Sn+1| > x} ∧ N .

Since Sn+1 is Fn measurable, it follows that σx is a stopping time. If σx < N then
either V t

N > x or Gt
N > x or

∑N
k=1|Sk | > x . Thus

P(σx < N ) ≤ P(V t
N > x) + P(Gt

N > x) + P(
∑N

k=1|Sk | > x)

and hence
∫ ∞

0
P(σx < N )dx ≤

∫ ∞

0
P(V t

N > x)dx +
∫ ∞

0
P(Gt

N > x)dx

+
∫ ∞

0
P(

∑N
k=1|Sn| > x)dx

= E[V t
N ] + E[Gt

N ] + E[∑N
k=1|Sn| ]

≤ E[V t
N ] + E[V t

N ] + E[Bt
N ] + 2E[WN ]

where we have used (1.10.11) and (1.10.6) in the last step. Now using (1.10.9),
(1.10.4) gives us ∫ ∞

0
P(σx < N )dx ≤ 14E[V t

N ]. (1.10.14)

Note that Sσx ≤ x and hence

|Gt
σx

− Gt
σx−1| ≤ |Tσx + Sσx |

≤ 2Wσx−1 + x

≤ 4V t
σx−1 + x

≤ 5x

and as a result, using Gt
σx−1 ≤ x , we conclude

Gt
σx

≤ 6x .

Hence in view of (1.10.11), we have

Gt
σx

≤ min{Bt
N + V t

N , 6x}. (1.10.15)

Let Zn = Yn∧σx . Then Z is a martingale with Z0 = 0 and
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E[Z2
N ] =

N∑
k=1

E[(Zk − Zk−1)
2] = E[(G1

σx
)2].

Further, Z2
n is a positive submartingale and hence

P(F1
σx

> x) = P( max
1≤k≤N

|Zk | > x)

≤ 1

x2
E[Z2

N ]

= 1

x2
E[(G1

σx
)2].

On the other hand

P(F2
σx

> x) = P((
∑N

k=1(Zk − Zk−1)
2)

1
2 > x)

≤ 1

x2

N∑
k=1

E[(Zk − Zk−1)
2]

= 1

x2
E[(ZN )2]

≤ 1

x2
E[(G2

σx
)2].

Thus, we have for t = 1, 2, for n ≥ 1

P(Ft
σx

> x) ≤ 1

x2
E[(Gt

σx
)2]. (1.10.16)

Now, writing Qt = 1
6 (B

t
N + V t

N ), we have

E[Ft
N ] =

∫ ∞

0
P(Ft

N > x)dx

≤
∫ ∞

0
P(σx < N )dx +

∫ ∞

0
P(Ft

σx
> x)dx

≤ 14E[V t
N ] +

∫ ∞

0

1

x2
E[(Gt

σx
)2]dx

≤ 14E[V t
N ] +

∫ ∞

0

1

x2
E[(min{Bt

N + V t
N , 6x})2]dx

≤ 14E[V t
N ] + E[

∫ ∞

0

36

x2
(min{Qt , x})2dx]

≤ 14E[V t
N ] + E[

∫ Qt

0

36

x2
(x)2dx] + E[

∫ ∞

Qt

36

x2
(Qt )2]dx

≤ 14E[V t
N ] + E[36Qt ] + E[36Qt ].

(1.10.17)
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Using the estimate (1.10.9), we have

E[Qt ] = 1

6
(E[Bt

N ] + E[V t
N ])

≤ 9

6
E[V t

N ]
(1.10.18)

and putting together (1.10.17)–(1.10.18) we conclude

E[Ft
N ] ≤ 122E[V t

N ]

and along with (1.10.12) we finally conclude, for t = 1, 2

E[Ut
N ] ≤ 130E[V t

N ].

�



Chapter 2
Continuous-Time Processes

In this chapter, we will give definitions, set up notations that will be used in the rest
of the book and give some basic results. While some proofs are included, several
results are stated without proof. The proofs of these results can be found in standard
books on stochastic processes.

2.1 Notations and Basic Facts

E will denote a complete separable metric space,C(E)will denote the space of real-
valued continuous functions on E , Cb(E) will denote bounded functions in C(E),
and B(E) will denote the Borel σ-field on E . Rd will denote the d-dimensional
Euclidean space and L(m, d) will denote the space of m × d matrices with real
entries. For x ∈ R

d and A ∈ L(m, d), |x | and ‖A‖ will denote the Euclidean norms
of x, A, respectively.

(Ω,F ,P) will denote a generic probability space, and B(Ω,F) will denote the
class of real-valued boundedF measurable functions.WhenΩ = E andF = B(E),
we will write B(E) for real-valued bounded Borel measurable functions.

Recall that for a collection A ⊆ F , σ(A) will denote the smallest σ-field which
contains A and for a collection G of measurable functions on (Ω,F), σ(G) will
likewise denote the smallest σ-field on Ω with respect to which each function in G

is measurable.
It is well known and easy to prove that for a complete separable metric space E ,

σ(Cb(E)) = B(E)

For an integer d ≥ 1, letCd = C([0,∞),Rd)with the ucc topology, i.e. uniform
convergence on compact subsets of [0,∞).With this topology,Cd is itself a complete
separable metric space. We will denote a generic element in Cd by ζ. Denoting the
coordinate mappings on Cd by

© Springer Nature Singapore Pte Ltd. 2018
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βt (ζ) = ζ(t), ζ ∈ Cd and 0 ≤ t < ∞

it can be shown that
B(Cd) = σ(βt : 0 ≤ t < ∞).

A function γ from [0,∞) to R
d is said to be r.c.l.l. (right continuous with left

limits) if γ is right continuous everywhere (γ(t) = limu↓t γ(u) for all 0 ≤ t < ∞)
and such that the left limit γ(t−) = limu↑t γ(u) exists for all 0 < t < ∞. We define
γ(0−) = 0 and for t ≥ 0, Δγ(t) = γ(t) − γ(t−).

For an integer d ≥ 1, let Dd = D([0,∞),Rd) be the space of all r.c.l.l. functions
γ from [0,∞) to Rd with the topology of uniform convergence on compact subsets,
abbreviated it as ucc. Thus γn converges to γ in ucc topology if

sup
t≤T

|γn(t) − γ(t)| → 0 ∀T < ∞.

Exercise 2.1 Let γ ∈ Dd .

(i) Show that for any ε > 0, and T < ∞, the set

{t ∈ [0, T ] : |(Δγ)(t)| > ε}

is a finite set.
(ii) Show that the set {t ∈ [0,∞) : |(Δγ)(t)| > 0} is a countable set.
(iii) Let K = {γ(t) : 0 ≤ t ≤ T } ∪ {γ(t−) : 0 ≤ t ≤ T }. Show that K is com-

pact.

The space Dd is equipped with the σ-field σ(θt : 0 ≤ t < ∞) where θt are coor-
dinate mappings on Dd defined by

θt (γ) = γ(t), γ ∈ Dd and 0 ≤ t < ∞.

We will denote this σ-field as B(Dd). It can be shown that this σ-field is same as the
Borel σ-field for the Skorokhod topology (see Ethier and Kurtz [18]). However, we
do not need this fact.

An E-valued random variable X defined on a probability space (Ω,F ,P) is
a measurable function from (Ω,F) to (E,B(E)). For such an X and a function
f ∈ Cb(E), E[ f (X)] will denote the integral

E[ f (X)] =
∫

Ω

f (X (ω))dP(ω).

If there are more than one probability measures under consideration, we will denote
it as EP[ f (X)].

An E-valued stochastic process X is a collection {Xt : 0 ≤ t < ∞} of E-valued
random variables. While one can consider families of random variables indexed by



2.1 Notations and Basic Facts 37

sets other than [0,∞), say [0, 1] or even [0, 1] × [0, 1], unless stated otherwise we
will take the index set to be [0,∞). Sometimes for notational clarity we will also
use X (t) to denote Xt .

From now on unless otherwise stated, a process will mean a continuous-time
stochastic process X = (Xt ) with t ∈ [0,∞) or t ∈ [0, T ]. For more details and
discussions as well as proofs of statements given without proof in this chapter, see
Breiman [5], Ethier and Kurtz [18], Ikeda and Watanabe [24], Jacod [26], Karatzas
and Shreve [43], Metivier [50], Meyer [51], Protter [52], Revuz-Yor [53], Stroock
and Varadhan [60], Williams [59].

Definition 2.2 Two processes X , Y , defined on the same probability space
(Ω,F ,P) are said to be equal (written as X = Y ) if

P(Xt = Yt for all t ≥ 0) = 1.

In other words, X = Y if ∃Ω0 ∈ F such that P(Ω0) = 1 and

∀t ≥ 0, ∀ω ∈ Ω0, Xt (ω) = Yt (ω).

Definition 2.3 A process Y is said to be a version of another process X (writ-
ten as X

v←→ Y ) if both are defined on the same probability space and if

P(Xt = Yt ) = 1 for all t ≥ 0.

It should be noted that in general, X
v←→ Y does not imply X = Y . TakeΩ = [0, 1]

with F to be the Borel σ-field and P to be the Lebesgue measure. Let Xt (ω) = 0 for
all t,ω ∈ [0, 1]. For t,ω ∈ [0, 1], Yt (ω) = 0 for ω ∈ [0, 1], ω �= t and Yt (ω) = 1 for
ω = t . Easy to see that X

v←→ Y but P(Xt = Yt for all t ≥ 0) = 0.

Definition 2.4 Two E-valued processes X , Y are said to have same distribu-

tion (written as X
d= Y ), where X is defined on (Ω1,F1,P1) and Y is defined

on (Ω2,F2,P2), if for all m ≥ 1, 0 ≤ t1 < t2 < . . . < tm , A1, A2, . . . , Am ∈ B(E)

P1(Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtm ∈ Am)

= P2(Yt1 ∈ A1,Yt2 ∈ A2, . . . ,Ytm ∈ Am).

Thus, twoprocesses have samedistribution if their finite-dimensional distributions

are the same. It is easy to see that if X
v←→ Y then X

d= Y .

Definition 2.5 Let X be an E-valued process and D be a Borel subset of E .
X is said to be D-valued if

P(Xt ∈ D ∀t) = 1.
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Definition 2.6 An E-valued process X is said to be a continuous process (or a
process with continuous paths) if for all ω ∈ Ω, the path t �→ Xt (ω) is contin-
uous.

Definition 2.7 An E-valued process X is said to be an r.c.l.l. process (or a
process with right continuous paths with left limits) if for all ω ∈ Ω, the path
t �→ Xt (ω) is right continuous and admits left limits for all t > 0.

Definition 2.8 An E-valued process X is said to be an l.c.r.l. process (or a
process with left continuous paths with right limits) if for all ω ∈ Ω, the path
t �→ Xt (ω) is left continuous on (0,∞) and admits right limits for all t ≥ 0.

For an r.c.l.l. process X , X− will denote the r.c.l.l. process defined by X−
t = X (t−),

i.e. the left limit at t , with the convention X (0−) = 0 and let

ΔX = X − X−

so that (ΔX)t = 0 at each continuity point and equals the jump otherwise. Note that
by the above convention

(ΔX)0 = X0.

Let X,Y be r.c.l.l. processes such that X
v←→ Y . Then it is easy to see that X = Y .

The same is true if both X,Y are l.c.r.l. processes.

Exercise 2.9 Prove the statements in the previous paragraph.

It is easy to see that if X is an R
d -valued r.c.l.l. process or an l.c.r.l. process then

sup
0≤t≤T

|Xt (ω)| < ∞ ∀T < ∞, ∀ω.

Exercise 2.10 If X is an R
d -valued r.c.l.l. process then show that the process

Z defined by
Zt (ω) = sup

0≤s≤t
|Xs(ω)|

is an r.c.l.l. process.

When X is an R
d -valued continuous process, the mapping ω �→ X �(ω) from Ω

into Cd is measurable and induces a measure P ◦ X−1 on (Cd ,B(Cd)). This is
so because the Borel σ-field B(Cd) is also the smallest σ-field with respect to
which the coordinate process is measurable. Likewise, when X is an r.c.l.l. process,
the mapping ω �→ X �(ω) from Ω into Dd is measurable and induces a measure
P ◦ X−1 on (Dd ,B(Dd)). In both cases, the probability measure P ◦ X−1 is called
the distribution of the process X .

Definition 2.11 A d-dimensional Brownian motion (also called a Wiener pro-
cess) is an R

d -valued continuous process X such that
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(i) P(X0 = 0) = 1.
(ii) For 0 ≤ s < t < ∞, the distribution of Xt − Xs is normal (Gaussian) with

mean 0 and co-variance matrix (t − s)I , i.e. for u ∈ R
d

E[exp{iu · (Xt − Xs)}] = exp{−(t − s)|u|2}

(iii) For m ≥ 1, 0 = t0 < t1 < . . . < tm , the random variables Y1, . . . ,Ym are
independent, where Y j = Xt j − Xt j−1 .

Equivalently, it can be seen that a R
d -valued continuous process X is a Brownian

motion if and only if for m ≥ 1, 0 ≤ t1 < . . . < tm , u1, u2, . . . , um ∈ R
d ,

E[exp{i
m∑
j=1

u j · Xt j }] = exp{−1

2

m∑
j,k=1

min(t j , tk)u j · uk}.

Remark 2.12 The process X in the definition above is sometimes called a
standard Brownian motion and Y given by

Yt = μt + σXt

where μ ∈ R
d and σ is a positive constant and is also called a Brownian

motion for any μ and σ.

When X is a d-dimensional Brownian motion, its distribution, i.e. the induced mea-
sure μ = P ◦ X−1 on (Cd ,B(Cd)), is known as the Wiener measure. The Wiener
measure was constructed by Wiener before Kolmogorov’s axiomatic formulation of
probability theory. The existence of Brownian motion or the Wiener measure can
be proved in many different ways. One method is to use Kolmogorov’s consistency
theorem to construct a process X satisfying (i), (i i) and (i i i) in the definition, which
determine the finite-dimensional distributions of X , and then to invoke the following
criterion for existence of a continuous process X̃ such that X

v←→ X̃ .

Theorem 2.13 Let X be anRd -valued process. Suppose that for each T < ∞, ∃m >

0, K < ∞ ,β > 0 such that

E[|Xt − Xs |m] ≤ K |t − s|1+β, 0 ≤ s ≤ t ≤ T .

Then there exists a continuous process X̃ such that X
v←→ X̃ .

Exercise 2.14 Let X be a Brownian motion and let Y be defined as follows:
Y0 = 0 and for 0 < t < ∞, Yt = t Xs where s = 1

t . Show that Y is also a Brow-
nian motion.

Definition 2.15 A Poisson Process (with rate parameter λ) is an r.c.l.l. non-
negative integer-valued process N such that
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(i) N0 = 0.
(ii) P(Nt − Ns = n) = exp{−λ(t − s)} (λ(t−s))n

n! .
(iii) For m ≥ 1, 0 = t0 < t1 < . . . < tm , the random variables Y1, . . . ,Ym are

independent, where Y j = Ntj − Ntj−1 .

Exercise 2.16 Let N 1, N 2 be Poisson processes with rate parameters λ1 and
λ2, respectively. Suppose N 1 and N 2 are independent. Show that N defined
by Nt = N 1

t + N 2
t is also a Poisson process with rate parameter λ = λ1 + λ2.

Brownian motion and Poisson process are the two most important examples of
continuous time stochastic processes and arise in modelling of phenomena occurring
in nature.

2.2 Filtration

As in the discrete-time case, it is useful to define for t ≥ 0, Gt to be the σ-field
generated by all the random variables observable up to time t and then require any
action to be taken at time t (an estimate of some quantity or investment decision)
should be measurable with respect to Gt . These observations lead to the following
definitions.

Definition 2.17 A filtration on a probability space (Ω,F ,P) is an increasing
family of sub σ-fields (F�) = {Ft : t ≥ 0} of F indexed by t ∈ [0,∞).

Definition 2.18 A process X is said to be adapted to a filtration (F�) if for all
t ≥ 0, Xt is Ft measurable.

Wewill always assume that the underlying probability space is complete, i.e. N ∈ F ,
P(N ) = 0, and N1 ⊆ N implies N ∈ F and (i i) thatF0 contains all sets N ∈ F with
P(N ) = 0.

Note that if X is (F�) adapted and Y = X (see Definition 2.2) then Y is also (F�)
adapted in view of the assumption that F0 contains all null sets.

Given a filtration (F�), we will denote by (F+
� ) the filtration {F+

t : t ≥ 0} where

F+
t = ∩u>tFu .

Let N be the class of all null sets (sets with P(N ) = 0), and for a process Z ,
possibly vector-valued, let

F Z
t = σ(N ∪ σ(Zu : 0 ≤ u ≤ t)). (2.2.1)

Then (F Z
� ) is the smallest filtration such that F0 contains all null sets with respect

to which Z is adapted.
While it is not required in the definition, in most situations, the filtration (F�)

under consideration would be chosen to be (for a suitable process Z )
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(F Z
� ) = {F Z

t : t ≥ 0}

Sometimes, a filtration is treated as a mere technicality, specially in continuous-
time setting as a necessary detail just to define stochastic integral. We would like to
stress that it is not so. See discussion in Sect. 1.4.

2.3 Martingales and Stopping Times

Let M be a process defined on a probability space (Ω,F ,P) and (F�) be a filtration.

Definition 2.19 M is said to be (F�)-martingale if M is (F�) adapted, Mt is
integrable for all t and for 0 ≤ s < t one has

EP[Mt |Fs] = Ms .

Definition 2.20 M is said to be (F�)-submartingale if M is (F�) adapted, Mt is
integrable for all t and for 0 ≤ s < t one has

EP[Mt |Fs] ≥ Ms .

Remark 2.21 Likewise M is said to be a supermartingale if N defined by Nt =
−Mt is a submartingale.

When there is only one filtration under consideration, we will drop reference to it and
call M to be a martingale (or a submartingale). If M is a martingale and φ is a convex
function onR, then Jensen’s inequality implies thatφ(M) is a submartingale provided
each φ(Mt ) is integrable. In particular, if M is a martingale with E[M2

t ] < ∞ for all
t then M2 is a submartingale. We are going to be dealing with martingales that have
r.c.l.l. paths. The next result shows that under minimal conditions on the underlying
filtration one can assume that every martingale has r.c.l.l. paths.

Theorem 2.22 Suppose that the filtration (F�) satisfies

N0 ⊆ N , N ∈ F , P(N ) = 0 ⇒ N0 ∈ F0 (2.3.1)

∩t>s Ft = Fs ∀s ≥ 0. (2.3.2)

Then everymartingale M admits an r.c.l.l.version M̃, i.e. there exists an r.c.l.l.process
M̃ such that

P(Mt = M̃t ) = 1 ∀t ≥ 0. (2.3.3)

Proof For k, n ≥ 1, let snk = k2−n and Xn
k = Msnk and Gn

k = Fsnk . Then for fixed n,
{Xn

k : k ≥ 0} is a martingale w.r.t.the filtration {Gn
k : k ≥ 0}. Fix rational numbers

https://doi.org/10.1007/978-981-10-8318-1_1
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α < β and an integer T . Let Tn = T 2n . Doob’s upcrossings inequality Theorem 1.28
yields

E[UTn ({Xn
k : 0 ≤ k ≤ Tn},α,β)] ≤ E[|MT | ] + |α|

β − α
.

Thus, using the observation that

UTn ({Xn
k : 0 ≤ k ≤ Tn},α,β) ≤ UTn+1({Xn+1

k : 0 ≤ k ≤ Tn+1},α,β)

we get by the monotone convergence theorem,

E[sup
n≥1

UTn ({Xn
k : 0 ≤ k ≤ Tn},α,β)] ≤ E[|MT | ] + |α|

β − α
.

Thus we conclude that there exists a set N with P(N ) = 0 such that for ω /∈ N ,

sup
n≥1

UTn ({Xn
k : 0 ≤ k ≤ Tn},α,β) < ∞ (2.3.4)

for all rational numbersα < β and integers T . Thus if {tk : k ≥ 1} are dyadic rational
numbers increasing or decreasing to t , then for ω /∈ N , Mtk (ω) converges. Define
θk(t) = ([t2k] + 1)2−k , where [r ] is the largest integer less than or equal to r (the
integer part of r ). For ω /∈ N , letting

M̃t (ω) = lim
k→∞ Mθk (t)(ω), 0 ≤ t < ∞ (2.3.5)

it follows that t �→ M̃t (ω) is a r.c.l.l.function. Fix t and let tn = θn(t). Then ∩nFtn =
Ft so that

Mt = E[Mt+1 | Ft ]
= lim

n→∞E[Mt+1 | Ftn ]
= lim

n→∞ Mtn

= M̃t .

Here has used Theorem 1.38. Hence (2.3.3) follows. �

The conditions (2.3.1) and (2.3.2) together are known as usual hypothesis in the
literature.Wewill assume (2.3.1) butwill not assume (2.3.2).Wewillmostly consider
martingales with r.c.l.l. paths, and refer to it as an r.c.l.l.martingale.

Whenwe are having only onefiltration under consideration,wewill drop reference
to it and simply say M is a martingale. We note here an important property of
martingales that would be used later.

Theorem 2.23 Let Mn be a sequence of martingales on some probability space
(Ω,F ,P) w.r.t.a fixed filtration (F�). Suppose that

https://doi.org/10.1007/978-981-10-8318-1_1
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Mn
t → Mt in L

1(P), ∀t ≥ 0.

Then M is also a martingale w.r.t. the filtration (F�).

Proof Note that for any Xn converging to X in L
1(P), for any σ-field G, using (i),

(i i), (i i i) and (iv) in Proposition 1.3, one has

E[|E[Xn |G] − E[X |G]| ] = E[|E[(Xn − X) |G]| ]
≤ E[E[|Xn − X | |G]]
= E[|Xn − X | ]
→ 0.

For s < t , applying this to Xn = Mn
t , one gets

Mn
s = E[Mn

t |Fs] → E[Mt |Fs] in L1(P).

Since Mn
s → Ms in L

1(P), we conclude that E[Mt |Fs] = Ms and hence M is a
martingale. �

Remark 2.24 It may be noted that in view of our assumption that F0 contains
all null sets, M as in the statement of the previous theorem is adapted.

Here is a consequence of Theorem 1.36 in continuous time.

Theorem 2.25 Let M be a martingale such that {Mt : t ≥ 0} is uniformly inte-
grable. Then, there exists a random variable ξ such that Mt → ξ inL1(P). Moreover,

Mt = E[ξ | Ft ].

Proof Here {Mn : n ≥ 1} is a uniformly integrable martingale, and Theorem 1.36
yields that Mn → ξ in L1(P). Similarly, for any sequence tn ↑ ∞, Mtn converges to
say η in L1(P). Interlacing argument gives η = ξ and hence Mt → ξ in L1(P). �

Doob’s maximal inequality for martingales in continuous time follows from the
discrete version easily. We do not need the L p version for p �= 2 in the sequel, and
hence we will state only p = 2 version here.

Theorem 2.26 Let M be an r.c.l.l. process. If M is a martingale or a positive sub-
martingale then one has

(i) For λ > 0, 0 < t < ∞,

P[ sup
0≤s≤t

|Ms | > λ] ≤ 1

λ
E[|Mt | ]. (2.3.6)

(ii) For 0 < t < ∞,
E[ sup

0≤s≤t
|Ms |2] ≤ 4E[|Mt |2]. (2.3.7)

https://doi.org/10.1007/978-981-10-8318-1_1
https://doi.org/10.1007/978-981-10-8318-1_1
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Example 2.27 Let (Wt ) denote a one-dimensional Brownian motion on a
probability space (Ω,F ,P). Then by the definition of Brownian motion, for
0 ≤ s ≤ t , Wt − Ws has mean zero and is independent of {Wu, 0 ≤ u ≤ s}.
Hence (see (1.3.2)) we have

E[Wt − Ws | FW
s ] = 0

and hence W is an (FW
� )-martingale. Likewise,

E[(Wt − Ws)
2 | FW

s ] = E[(Wt − Ws)
2] = t − s

and using this and the fact that (Wt ) is a martingale, it is easy to see that

E[W 2
t − W 2

s | FW
s ] = t − s

and so defining Mt = W 2
t − t , it follows that M is also an (FW

� )-martingale.

Example 2.28 Let (Nt ) denote a Poisson processwith rate parameter λ = 1 on
a probability space (Ω,F ,P). Then by the definition of Poisson process, for
0 ≤ s ≤ t , Nt − Ns has mean (t − s) and is independent of {Nu, 0 ≤ u ≤ s}.
Writing Mt = Nt − t , and using (1.3.2), we can see that

E[Mt − Ms | F N
s ] = 0

and hence M is an (F N
� )-martingale. Likewise,

E[(Mt − Ms)
2 | FM

s ] = E[(Mt − Ms)
2] = t − s

and using this and the fact that (Mt ) is a martingale, it is easy to see that

E[M2
t − M2

s | F N
s ] = t − s

and so defining Ut = M2
t − t , it follows that U is also an (F N

� )-martingale.

The notion of stopping time, as mentioned in Sect. 1.6, was first introduced in
the context of Markov chains. Martingales and stopping times together are very
important tools in the theory of stochastic process in general and stochastic calculus
in particular.

Definition 2.29 A stopping time with respect to a filtration (F�) is a mapping τ
from Ω into [0,∞] such that for all t < ∞,

{τ ≤ t} ∈ Ft .

https://doi.org/10.1007/978-981-10-8318-1_1
https://doi.org/10.1007/978-981-10-8318-1_1
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If the filtration under consideration is fixed, we will only refer to it as a stopping
time. Of course, for a stopping time, {τ < t} = ∪n{τ ≤ t − 1

n } ∈ Ft . For stopping
times τ and σ, it is easy to see that τ ∧ σ and τ ∨ σ are stopping times. In particular,
τ ∧ t and τ ∨ t are stopping times for any t ≥ 0.

Example 2.30 Let X be a R
d -valued process with continuous paths and

adapted to a filtration (F�). Let C be a closed set in R. Then

τC = inf{t ≥ 0 : Xt ∈ C} (2.3.8)

is a stopping time. To see this, define open setsUk = {x : d(x,C) < 1
k }. Writ-

ing Ar,k = {Xr ∈ Uk} and Qt = {r : r rational, 0 ≤ r ≤ t},

{τC ≤ t} = ∩∞
k=1[∪r∈Qt Ar,k]. (2.3.9)

τC is called the hitting time of C .

If X is an r.c.l.l. process, then the hitting time τC may not be a random variable and
hence may not be a stopping time. Let us define the contact time σC by

σC = min{inf{t ≥ 0 : Xt ∈ C}, inf{t > 0 : Xt− ∈ C}}. (2.3.10)

With same notations as above, we now have

{σC ≤ t} = [∩∞
k=1(∪r∈Qt Ar,k)] ∪ {Xt ∈ C} (2.3.11)

and thus σC is a stopping time. If 0 /∈ C , then σC can also be described as

σC = inf{t ≥ 0 : Xt ∈ C or Xt− ∈ C}.

Exercise 2.31 Construct an example to show that this alternate description
may be incorrect when 0 ∈ C .

If τ is a [0,∞)-valued stopping time, then for integers m ≥ 1, τm defined via

τm = 2−m([2mτ ] + 1) (2.3.12)

is also a stopping time since {τm ≤ t} = {τm ≤ 2−m([2mt])} = {τ < 2−m([2mt])}
and it follows that {τm ≤ t} ∈ (F�). Clearly, τm ↓ τ .

One can see that if σk is an increasing sequence of stopping times (σk ≤ σk+1 for
all k ≥ 1), then σ = limk↑∞ σk is also a stopping time. However, if σk ↓ σ, σ may
not be a stopping time as seen in the next exercise.

Exercise 2.32 Let Ω = {−1, 1} and P be such that 0 < P(1) < 1. Let Xt (1) =
Xt (−1) = 0 for 0 ≤ t ≤ 1. For t > 1, let Xt (1) = sin(t − 1) and Xt (−1) = − sin
(t − 1). Let
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σk = inf{t ≥ 0 : Xt ≥ 2−k},

σ = inf{t ≥ 0 : Xt > 0}.

Show that F X
t = {φ,Ω} for 0 ≤ t ≤ 1 and F X

t = {φ, {1}, {−1},Ω} for t > 1, σk

are stopping times w.r.t. (F X
� ) and σk ↓ σ but σ is not a stopping time w.r.t.

(F X
� ). Note that {σ < s} ∈ F X

s for all s and yet σ is not a stopping time.

Exercise 2.33 Let Ω = [0,∞) and F be the Borel σ-field on Ω. For t ≥ 0,
let Ft be the σ-field generated by Borel subsets of [0, t] along with the set
(t,∞). Let τ be a [0,∞)-valued measurable function on (Ω,F). Show that
τ is a stopping time w.r.t. (F�) if and only if there exists α, 0 ≤ α ≤ ∞, such
that τ (t) ≥ t for t ∈ [0,α] and τ (t) = α for t ∈ (α,∞). Note that here, [0,∞]
is to be taken as [0,∞) and (∞,∞) as the empty set.

Definition 2.34 For a stochastic process X and a stopping time τ , Xτ is
defined via

Xτ (ω) = Xτ (ω)(ω)1{τ (ω)<∞}.

Remark 2.35 A random variable τ taking countably many values {s j }, 0 ≤
s j < ∞ ∀ j is a stopping time if and only if {τ = s j } ∈ Fs j for all j . For such a
stopping time τ and a stochastic process X ,

Xτ =
∞∑
j=1

1{τ=s j }Xsj

and thus Xτ is a random variable (i.e. a measurable function).

In general, Xτ maynot be a randomvariable, i.e.maynot be ameasurable function.
However, if X has right continuous paths Xτ is a random variable. To see this, given
τ that is [0,∞)-valued, Xτm is measurable where τm is defined via (2.3.12) and
Xτm → Xτ and hence Xτ is a random variable. Finally, for a general stopping time
τ , ξn = Xτ∧n is a random variable and hence

Xτ = (lim sup
n→∞

ξn)1{τ<∞}

is also a random variable.

Lemma 2.36 Let Z be an r.c.l.l. adapted process and τ be a stopping time with
τ < ∞. Let Ut = Zτ∧t . Then U is an adapted process (with respect to the same
filtration (F�) that Z is adapted to).

Proof When τ takes finitely many values it is easy to see that U is adapted and for
the general case, the proof is by approximating τ by τm defined via (2.3.12). �
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Definition 2.37 For a stopping time τ with respect to a filtration (F�), the
stopped σ-field is defined by

Fτ = {A ∈ σ(∪tFt ) : A ∩ {τ ≤ t} ∈ Ft ∀t}.

We have seen that for a right continuous process Z , Zτ is a random variable, i.e.
measurable. The next lemma shows that indeed Zτ is Fτ measurable.

Lemma 2.38 Let X be a right continuous (F�) adapted process and τ be a stopping
time. Then Xτ is Fτ measurable.

Proof For a t < ∞, we need to show that {Xτ ≤ a} ∩ {τ ≤ t} ∈ Ft for all a ∈ R.
Note that

{Xτ ≤ a} ∩ {τ ≤ t} = {Xt∧τ ≤ a} ∩ {τ ≤ t}.

As seen in Lemma 2.36, {Xt∧τ ≤ a} ∈ Ft and of course, {τ ≤ t} ∈ Ft . �

Applying the previous result to the (deterministic) process Xt = t we get

Corollary 2.39 Every stopping time τ is Fτ measurable.

Also, we have

Corollary 2.40 Let σ, τ be two stopping times. Then {σ ≤ τ } ∈ Fτ .

Proof Let Xt = 1[σ(ω),∞)(t). We have seen that X is r.c.l.l. adapted and hence Xτ is
Fτ measurable. Note that Xτ = 1{σ≤τ }. This completes the proof. �

Here is another observation.

Lemma 2.41 Let τ be a stopping time and ξ be Fτ measurable random variable.
Then Z = ξ1[τ ,∞) is an adapted r.c.l.l. process.

Proof Note that for any t , {Zt ≤ a} = {ξ ≤ a} ∩ {τ ≤ t} if a < 0 and {Zt ≤ a} =
({ξ ≤ a} ∩ {τ ≤ t}) ∪ {τ > t} ifa ≥ 0. Since {ξ ≤ a} ∈ Fτ ,wehave {ξ ≤ a} ∩ {τ ≤
t} ∈ Ft and also {τ > t} = {τ ≤ t}c ∈ Ft . This shows Z is adapted. Of course it is
r.c.l.l. by definition. �

The following result will be needed repeatedly in later chapters.

Lemma 2.42 Let X be any real-valued r.c.l.l. process adapted to a filtration (F�).
Let σ be any stopping time. Then for any a > 0, τ defined as follows is a stopping
time : if σ = ∞ then τ = ∞ and if σ < ∞ then

τ = inf{t > σ : |Xt − Xσ| ≥ a or |Xt− − Xσ| ≥ a}. (2.3.13)

If τ < ∞ then τ > σ and either |Xτ− − Xσ| ≥ a or |Xτ − Xσ| ≥ a. In other words,
when the infimum is finite, it is actually minimum.
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Proof Let a process Y be defined by Yt = Xt − Xt∧σ . Then as seen in Lemma 2.36,
Y is an r.c.l.l. adapted process. For any t > 0, let Qt = (Q ∩ [0, t]) ∪ {t}. Note that
since Y has r.c.l.l. paths one has

{ω : τ (ω) ≤ t} = ∩∞
n=1(∪r∈Qt {|Yr (ω)| ≥ a − 1

n }). (2.3.14)

To see this, let Ω1 denote the left-hand side and Ω2 denote the right-hand side.
Let ω ∈ Ω1. If τ (ω) < t , then there is an s ∈ [0, t) such that |Ys(ω)| ≥ a or

|Ys−(ω)| ≥ a (recall the convention thatY0− = 0 andherea > 0). In either case, there
exists a sequence of rational numbers {rk} in (0, t) converging to s and limk |Yrk (ω)| ≥
a and thus ω ∈ Ω2. If τ (ω) = t and if |Yt−(ω)| ≥ a then also ω ∈ Ω2. To complete
the proof of Ω1 ⊆ Ω2 (recall t ∈ Q

t ), we will show that τ (ω) = t and |Yt−(ω)| < a
implies |Yt (ω)| ≥ a. Observe that τ (ω) = t implies that there exist sm > t , sm ↓ t
such that for each m, |Ysm−(ω)| ≥ a or |Ysm (ω)| ≥ a. This implies |Yt (ω)| ≥ a, and
this proves Ω1 ⊆ Ω2.

For the other part, if ω ∈ Ω2, then there exist {rn ∈ Q
t : n ≥ 1} such that

|Yrn (ω)| ≥ a − 1
n . Since Q

t ⊆ [0, t], it follows that we can extract a subsequence
rnk that converges to s ∈ [0, t]. By taking a further subsequence if necessary, we
can assume that either rnk ≥ s ∀k or rnk < s ∀k and thus |Yrnk (ω)| → |Ys(ω)| ≥ a in
the first case and |Yrnk (ω)| → |Ys−(ω)| ≥ a in the second case. Also, Y0(ω) = 0 and
Y0−(ω) = 0 and hence s ∈ (0, t]. This shows τ (ω) ≤ s ≤ t and thus ω ∈ Ω1. This
proves (2.3.14).

In each of the cases, we see that either |Yτ | ≥ a or |Yτ−| ≥ a. Since Yt = 0 for
t ≤ σ, it follows that τ > σ. This completes the proof. �

Remark 2.43 Note that τ is the contact time for the set C = [a,∞) for the
process Y .

Remark 2.44 If X is a continuous process, the definition (2.3.13) is same as

τ = inf{t > σ : |Xt − Xσ| ≥ a}. (2.3.15)

Exercise 2.45 Construct an example to convince yourself that in the defini-
tion (2.3.13) of τ , t > σ cannot be replaced by t ≥ σ. However, when X is
continuous, in (2.3.15), t > σ can be replaced by t ≥ σ.

Here is another result that will be used in the sequel.

Theorem 2.46 Let X be an r.c.l.l.adapted process with X0 = 0. For a > 0, let {σi , :
i ≥ 0} be defined inductively as follows: σ0 = 0 and having defined σ j : j ≤ i , let
σi+1 = ∞ if σi = ∞ and otherwise

σi+1 = inf{t > σi : |Xt − Xσi | ≥ a or |Xt− − Xσi | ≥ a}. (2.3.16)

Then each σi is a stopping time. Further, (i) if σi < ∞, then σi < σi+1 and (i i)
limi↑∞ σi = ∞.
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Proof That each σi is a stopping time and observation (i) follows from Lemma 2.42.
Remains to prove (i i). If for some ω ∈ Ω ,

lim
i↑∞ σi (ω) = t0 < ∞

then for such an ω, the left limit of the mapping s → Xs(ω) at t0 does not exist, a
contradiction. This proves (i i). �

Exercise 2.47 Let X be the Poisson process with rate parameter λ. Let σ0 = 0
and for i ≥ 0, σi+1 be defined by (2.3.16) with a = 1. For n ≥ 1 let

τn = σn − σn−1.

Show that

(i) Nt (ω) = k if and only if σk(ω) ≤ t < σk+1(ω).
(ii) {τn : n ≥ 1} are independent random variables with P(τn > t) = exp{−λt}

for all n ≥ 1 and t ≥ 0.

Recall that (F+
� ) denotes the right continuous filtration corresponding to the fil-

tration (F�). We now show that the hitting time of the interval (−∞, a) by an r.c.l.l.
adapted process is a stopping time for the filtration (F+

� ).

Lemma 2.48 Let Y be an r.c.l.l. adapted process. Let a ∈ R and let

τ = inf{t ≥ 0 : Yt < a}. (2.3.17)

Then τ is a stopping time for the filtration (F+
� ).

Proof Note that for any s > 0, right continuity of t �→ Yt (ω) implies that

{ω : τ (ω) < s} = {ω : Yr (ω) < a for some r rational, r < s}

and hence {τ < s} ∈ Fs .
Now for any t , for all k

{τ ≤ t} = ∩∞
n=k{τ < t + 1

n
} ∈ Ft+ 1

k

and hence {τ ≤ t} ∈ F+
t . �

Remark 2.49 Similarly, it can be shown that the hitting time of an open set by
an r.c.l.l. adapted process is a stopping time for the filtration (F+

� ).

Here is an observation about (F+
� ) stopping times.
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Lemma 2.50 Let σ : Ω �→ [0,∞] be such that

{σ < t} ∈ Ft ∀t ≥ 0.

Then σ is a (F+
� ) stopping time.

Proof Let t be fixed and let tm = t + 2−m . Note that for all m ≥ 1,

{σ ≤ t} = ∩∞
n=m{σ < tn} ∈ Ftm .

Thus {σ ≤ t} ∈ ∩∞
m=1Ftm = F+

t . �

Corollary 2.51 Let {τm : m ≥ 1} be a sequence of (F�) stopping times. Let σ =
inf{τm : m ≥ 1} and θ = sup{τm : m ≥ 1}. Then θ is a (F�) stopping time whereas
σ is (F+

� ) stopping time.

Proof The result follows by observing that

{θ ≤ t} = ∩m{τm ≤ t}

and
{σ < t} = ∪m{τm < t}.

�

Exercise 2.52 Show that A ∈ Fτ if and only if the process X defined by

Xt (ω) = 1A(ω)1[τ (ω),∞)(t)

is (F�) adapted.

Lemma 2.53 Let σ ≤ τ be two stopping times. Then

Fσ ⊆ Fτ .

Proof Let A ∈ Fσ . Then for t ≥ 0, A ∩ {σ ≤ t} ∈ Ft and {τ ≤ t} ∈ Ft and thus
A ∩ {σ ≤ t} ∩ {τ ≤ t} = A ∩ {τ ≤ t} ∈ Ft . Hence A ∈ Fτ . �

Here is another result on the family of σ-fields {Fτ : τ a stopping time}.
Theorem 2.54 Let σ, τ be stopping times. Then

{σ = τ } ∈ Fσ ∩ Fτ .

Proof Fix 0 ≤ t < ∞. For n ≥ 1 and 1 ≤ k ≤ 2n let Ak,n = { k−1
2n t ≤ σ ≤ k

2n t} and
Bk,n = { k−1

2n t ≤ τ ≤ k
2n t}. Note that
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{σ = τ } ∩ {σ ≤ t} = ∩∞
n=1 ∪2n

k=1 [Ak,n ∩ Bk,n].

This shows {σ = τ } ∩ {σ ≤ t} ∈ Ft for all t and thus {σ = τ } ∈ Fσ . Symmetry now
implies {σ = τ } ∈ Fτ as well. �

Martingales and stopping times are intricately related as the next result shows.

Theorem 2.55 Let M be a r.c.l.l. martingale and τ be a bounded stopping time,
τ ≤ T . Then

E[MT |Fτ ] = Mτ . (2.3.18)

Proof We have observed that Mτ is Fτ measurable. First let us consider the case
when τ is a stopping time taking finitely many values, s1 < s2 < . . . < sm ≤ T . Let
A j = {τ = s j }. Since τ is a stopping time, A j ∈ Fs j . Clearly, {A1, . . . , Am} forms a
partition ofΩ . Let B ∈ Fτ . Then, by definition ofFτ it follows that C j = B ∩ A j ∈
Fs j . Since M is a martingale, E[MT |Fs j ] = Msj and hence

E[MT 1C j ] = E[Msj1C j ] = E[Mτ1C j ].

Summing over j we get
E[MT 1B] = E[Mτ1B].

This proves (2.3.18) when τ takes finitely many values. For the general case, given
τ ≤ T , let

τn = ([2nτ ] + 1)

2n
∧ T .

Then for each n, τn is a stopping time that takes only finitely many values and further
the sequence {τn} decreases to τ . By the part proven above we have

E[MT |Fτn ] = Mτn . (2.3.19)

Now given B ∈ Fτ , using τ ≤ τn and Lemma 2.53, we have B ∈ Fτn and hence
using (2.3.19), we have

E[MT 1B] = E[Mτn1B]. (2.3.20)

Now Mτn converges to Mτ (pointwise). Further, in view of Lemma 1.34, (2.3.19)
implies that {Mτn : n ≥ 1} is uniformly integrable and hence Mτn converges to Mτ

in L1(P). Thus taking limit as n → ∞ in (2.3.20) we get

E[MT 1B] = E[Mτ1B].

This holds for all B ∈ Fτ and hence we conclude that (2.3.18) is true. �

It should be noted that we have not assumed that the underlying filtration is right
continuous. This result leads to the following:

https://doi.org/10.1007/978-981-10-8318-1_1
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Corollary 2.56 Let M be an r.c.l.l. martingale. Let σ ≤ τ ≤ T be two bounded
stopping times. Then

E[Mτ |Fσ] = Mσ. (2.3.21)

Proof Taking conditional expectation given Fσ in (2.3.18) and using Fσ ⊆ Fτ we
get (2.3.21). �

As in the discrete case, here too we have the following characterization of mar-
tingales via stopping times.

Theorem 2.57 Let X be an r.c.l.l. (F�) adapted process with E[|Xt | ] < ∞ for all
t < ∞. Then X is an (F�)-martingale if and only if for all (F�) stopping times τ
taking finitely many values in [0,∞), one has

E[Xτ ] = E[X0]. (2.3.22)

Further if X is a martingale then for all bounded stopping times σ one has

E[Xσ] = E[X0]. (2.3.23)

Proof Suppose X is a martingale. Then (2.3.22) and (2.3.23) follow from (2.3.18).
On the other hand suppose (2.3.22) is true for stopping times taking finitely

many values. Fix s < t and A ∈ Fs . To show E[Xt |Fs] = Xs , suffices to prove that
E[Xt1A] = E[Xs1A]. Now take

τ = s1A + t1Ac

to get
E[X0] = E[Xτ ] = E[Xs1A] + E[Xt1Ac ] (2.3.24)

and of course taking the constant stopping time t , one has

E[X0] = E[Xt ] = E[Xt1A] + E[Xt1Ac ]. (2.3.25)

Now using (2.3.24) and (2.3.25) it follows that E[Xs1A] = E[Xt1A] and hence X is
a martingale. �

Corollary 2.58 For an r.c.l.l.martingale M and a stopping time σ, N defined by

Nt = Mt∧σ

is a martingale.

We also have the following result about two stopping times.

Theorem 2.59 Suppose M is an r.c.l.l. (F�)-martingale and σ and τ are (F�) stop-
ping times with σ ≤ τ . Suppose X is an r.c.l.l. (F�) adapted process. Let
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Nt = Xσ∧t (Mτ∧t − Mσ∧t ).

Then N is a (F�)-martingale if either (i) X is bounded or if (i i) E[X2
σ] < ∞ and M

is square integrable.

Proof Clearly, N is adapted. First consider the case when X is bounded. We will
show that for any bounded stopping time θ (bounded by T ),

E[Nθ] = 0

and then invoke Theorem 2.55. Note that

Nθ = Xσ∧θ(Mτ∧θ − Mσ∧θ)

= X σ̃(Mτ̃ − Mσ̃)

where σ̃ = σ ∧ θ ≤ τ̃ = τ ∧ θ are also bounded stopping times. Now

E[Nθ] = E[E[Nθ |Fσ̃]]
= E[E[X σ̃(Mτ̃ − Mσ̃) |Fσ̃]]
= E[X σ̃(E[Mτ̃ |Fσ̃] − Mσ̃)]
= 0

as E[Mτ̃ |Fσ̃] = Mσ̃ by part (i i) of Corollary 2.56. This proves the result when X is
bounded. For (i i), approximating X by Xn , where Xn

t = max{min{Xt , n},−n} and
using (i) we conclude

E[Xn
σ∧θ(Mτ∧θ − Mσ∧θ)] = 0.

Since σ ≤ τ , we can check that

Xn
σ∧θ(Mτ∧θ − Mσ∧θ) = Xn

σ(Mτ∧θ − Mσ∧θ)

and hence that
E[Xn

σ(Mτ∧θ − Mσ∧θ)] = 0.

Using Doob’s maximal inequality Theorem 2.26 we have (sups≤T |Ms |) is square
integrable. Since Xσ is square integrable, we conclude that

E[|Xσ|(sup
s≤T

|Ms |)] < ∞.

The required result follows using dominated convergence theorem. �

Corollary 2.60 Suppose M is a r.c.l.l. (F�)-martingale and σ and τ are stopping
times with σ ≤ τ . Suppose U is a Fσ measurable random variable. Let
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Nt = U (Mτ∧t − Mσ∧t ).

Then N is a (F�)-martingale if either (i)U is bounded or if (i i) E[U 2] < ∞ and M
is square integrable.

Proof Let us define a process X as follows:

Xt (ω) = U (ω)1[σ(ω),∞)(t).

Then X is adapted by Lemma 2.41 and Xσ = U . Now the result follows from The-
orem 2.59. �

Here is another variant that will be useful later.

Theorem 2.61 Suppose M, N are r.c.l.l. (F�)-martingaleswithE(M2
t ) < ∞,E(N 2

t )

< ∞ for all t . Let σ and τ be (F�) stopping times with σ ≤ τ . Suppose B, X are
r.c.l.l. (F�) adapted processes such that E(|Bt |) < ∞ for all t and X is bounded.
Suppose that Z is also a martingale where Zt = Mt Nt − Bt . Let

Yt = Xσ∧t [(Mτ∧t − Mσ∧t )(Nτ∧t − Nσ∧t ) − (Bτ∧t − Bσ∧t )].

Then Y is a (F�)-martingale.

Proof Since X is assumed to be bounded, it follows that Yt is integrable for all
t . Once again we will show that for all bounded stopping times θ, E[Yθ] = 0. Let
σ̃ = σ ∧ θ ≤ τ̃ = τ ∧ θ. Note that

E[Yθ] = E[X σ̃[(Mτ̃ − Mσ̃)(Nτ̃ − Nσ̃) − (Bτ̃ − Bσ̃)]]
= E[X σ̃[(Mτ̃ Nτ̃ − Mσ̃Nσ̃) − (Bτ̃ − Bσ̃)

− Mσ̃(Nτ̃ − Nσ̃) − Nσ̃(Mτ̃ − Mσ̃)]]
= E[X σ̃(Z τ̃ − Z σ̃)] − E[X σ̃Mσ̃(Nτ̃ − Nσ̃) − E[X σ̃Nσ̃(Mτ̃ − Mσ̃)]]
= 0

by Theorem 2.59 since M, N , Z are martingales. This completes the proof. �

2.4 A Version of Monotone Class Theorem

The following functional version of the usual monotone class theorem is very useful
in dealing with integrals and their extension. Its proof is on the lines of the standard
version of monotone class theorem for sets. We will include a proof; because of the
central role, this result will play in our development of stochastic integrals.

Definition 2.62 A subset A ⊆ B(Ω,F) is said to be closed under uniform and
monotone convergence if f, g, h ∈ B(Ω,F), f n, gn, hn ∈ A for n ≥ 1 are such
that
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(i) f n ≤ f n+1 for all n ≥ 1 and f n converges to f pointwise
(ii) gn ≥ gn+1 for all n ≥ 1 and gn converges to g pointwise
(iii) hn converges to h uniformly

then f, g, h ∈ A.

Here is a functional version of the monotone class theorem:

Theorem 2.63 Let A ⊆ B(Ω,F) be closed under uniform and monotone conver-
gence. Suppose G ⊆ A is an algebra such that

(i) σ(G) = F .
(ii) ∃ f n ∈ G such that f n ≤ f n+1 and f n converges to 1 pointwise.

Then A = B(Ω,F).

Proof Let K ⊆ B(Ω,F) be the smallest class that contains G and is closed under
uniformandmonotone convergence.Clearly,K contains constants andK ⊆ A. Using
arguments similar to the usual (version for sets) monotone class theorem we will
first prove that K itself is an algebra. First we show that K is a vector space. For
f ∈ B(Ω,F), let

K0( f ) = {g ∈ K : α f + βg ∈ K, ∀α,β ∈ R}.

Note thatK0( f ) is closed under uniform andmonotone convergence. First fix f ∈ G.
Since G is an algebra, it follows that G ⊆ K0( f ) and hence K = K0( f ). Now fix
f ∈ K. The statement proven above implies that G ⊆ K0( f ), and since K0( f ) is
closed under uniform and monotone convergence, it follows that K = K0( f ). Thus
K is a vector space.

To show that K is an algebra, for f ∈ B(Ω,F) let

K1( f ) = {g ∈ K : f g ∈ K}.

Since we have shown that K is a vector space containing constants, it follows that

K1( f ) = K1( f + c)

for any c ∈ R. Clearly, if f ≥ 0,K1( f ) is closed under monotone and uniform con-
vergence. Given g ∈ B(Ω,F), choosing c ∈ R such that f = g + c ≥ 0, it follows
that K1(g) = K1(g + c) is closed under monotone and uniform convergence. Now
proceeding as in the proof of K being vector space, we can show that K is closed
under multiplication and thus K is an algebra.

Let C = {A ∈ F : 1A ∈ K}. In view of the assumption (i i), Ω ∈ C. It is clearly
a σ-field and also B(Ω, C) ⊆ K. Since σ(G) = F , one has σ(A) = F where

A = { { f ≤ α} : f ∈ G, α ∈ R}.
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Hence to complete the proof, suffices to show A ⊆ C as that would imply F = C
and in turn

B(Ω,F) ⊆ K ⊆ A ⊆ B(Ω,F)

implyingK = A = B(Ω,F). Now to show thatA ⊆ C, fix f ∈ G andα ∈ R and let
A = { f ≤ α} ∈ A. Let | f | ≤ M . Letψ(x) = 1 for x ≤ α andψ(x) = 0 for x ≥ α +
1 and ψ(x) = 1 − x + α for α < x < α + 1. Using Weierstrass’s approximation
theorem, we can get polynomials pn that converge to ψ uniformly on [−M, M].
Now pn( f ) ∈ G as G is an algebra and pn( f ) converges uniformly to ψ( f ). Thus
ψ( f ) ∈ K. SinceK is an algebra, it follows that (ψ( f ))m ∈ K for allm ≥ 1. Clearly
(ψ( f ))m converges monotonically to 1A. Thus 1A ∈ K i.e. A ∈ C completing the
proof. �

Here is a useful variant of the monotone class theorem.

Definition 2.64 A sequence of real-valued functions fn (on a set S) is said

to converge boundedly pointwise to a function f (written as fn
bp−→ f ) if there

exists number K such that | fn(u)| ≤ K for all n, u and fn(u) → f (u) for all
u ∈ S.

Definition 2.65 A class A ⊆ B(Ω,F) is said to be bp-closed if

fn ∈ A ∀n ≥ 1, fn
bp−→ f implies f ∈ A.

If a set A is bp-closed then it is also closed under monotone and uniform limits
and thus we can deduce the following useful variant of the monotone class theorem
from Theorem 2.63.

Theorem 2.66 Let A ⊆ B(Ω,F) be bp-closed. SupposeG ⊆ A is an algebra such
that

(i) σ(G) = F .
(ii) ∃ f n ∈ G such that f n ≤ f n+1 and f n converges to 1 pointwise.

Then A = B(Ω,F).

Here is an important consequence of Theorem 2.66.

Theorem 2.67 Let F be a σ-field on Ω , and let Q be a probability measure
on (Ω,F). Suppose G ⊆ B(Ω,F) be an algebra such that σ(G) = F . Further,
∃ f n ∈ G such that f n ≤ f n+1 and f n converges to 1 pointwise. Then G is dense in
L
2(Ω,F ,Q).

Proof Let K denote the closure of G in L
2(Ω,F ,Q) and let A be the set of

bounded functions in K. Then G ⊆ A, and hence by Theorem 2.66 it follows that
A = B(Ω,F). Hence it follows that K = L

2(Ω,F ,Q) as every function in L
2(Q)

can be approximated by bounded functions. �
Exercise 2.68 Show that Theorem 2.66 remains true if the condition (i i) in

the theorem is replaced by ∃ f n ∈ G such that f n
bp−→ 1.
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2.5 The UCP Metric

Let R0(Ω, (F�),P) denote the class of all r.c.l.l. (F�) adapted processes. For pro-
cesses X,Y ∈ R

0(Ω, (F�),P), let

ducp(X,Y ) =
∞∑

m=1

2−mE[min(1, sup
0≤t≤m

|Xt − Yt |)]. (2.5.1)

Noting that ducp(X,Y ) = 0 if and only if X = Y (i.e. P(Xt = Yt ∀t) = 1), it follows
that ducp is a metric on R0(Ω, (F�),P). Now ducp(Xn, X) → 0 is equivalent to

sup
0≤t≤T

|Xn
t − Xt | converges to 0 in probability ∀T < ∞,

also called uniform convergence in probability, written as Xn ucp−→ X .

Remark 2.69 We have defined ducp(X,Y ) when X,Y are real-valued r.c.l.l.
processes. We can similarly define ducp(X,Y ) when X,Y areR

d -valued r.c.l.l.
or l.c.r.l. processes.Wewill use the same notation ducp in each of these cases.

In the rest of this section, d is a fixed integer, we will be talking about Rd -valued
processes, and |·| will be the Euclidean norm on R

d .

When ducp(Xn, X) → 0, sometimes we will write it as Xn ucp−→ X (and thus the
two mean the same thing). Let X,Y ∈ R

0(Ω, (F�),P). Then for δ > 0 and integers
N ≥ 1, observe that

ducp(X,Y ) ≤ 2−N + δ + P( sup
0≤t≤N

|Xt − Yt | > δ) (2.5.2)

and

P( sup
0≤t≤N

|Xt − Yt | > δ) ≤ 2N

δ
ducp(X,Y ). (2.5.3)

The following observation, stated here as a remark, follows from (2.5.2)–(2.5.3).

Remark 2.70 Zn ucp−→ Z if and only if for all integers T < ∞, ε > 0, δ > 0, ∃n0
such that for n ≥ n0

P[ sup
t≤T

|Zn
t − Zt | > δ ] < ε. (2.5.4)

For an r.c.l.l. process Y , given T < ∞, ε > 0 one can choose K < ∞ such that

P[ sup
t≤T

|Yt | > K ] < ε (2.5.5)

and hence using (2.5.4) it follows that if Zn ucp−→ Z , then given T < ∞, ε > 0 there
exists K < ∞ such that
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sup
n≥1

P[ sup
t≤T

|Zn
t | > K ] < ε. (2.5.6)

The following result uses standard techniques frommeasure theory and functional
analysis, but a proof is included as it plays an important part in subsequent chapters.

Theorem 2.71 The space R0(Ω, (F�),P) is complete under the metric ducp.

Proof Let {Xn : n ≥ 1} be a Cauchy sequence in ducp metric. By taking a subse-
quence if necessary, we can assumewithout loss of generality that ducp(Xn+1, Xn) <

2−n and hence

∞∑
n=1

∞∑
m=1

2−mE[min(1, sup
0≤t≤m

|Xn+1
t − Xn

t |)] < ∞

or equivalently

∞∑
m=1

2−m
∞∑
n=1

E[min(1, sup
0≤t≤m

|Xn+1
t − Xn

t |)] < ∞

and thus for all m ≥ 1 one has

∞∑
n=1

[min(1, sup
0≤t≤m

|Xn+1
t − Xn

t |)] < ∞ a.s.

because its expectation is finite. Note that for a sequence {an}, ∑
n |an| < ∞ if and

only if
∑

n min(1, |an|) < ∞. Hence for all m ≥ 1 we have

∞∑
n=1

sup
0≤t≤m

|Xn+1
t − Xn

t | < ∞ a.s.

Again, noting that for a real-valued sequence {bn},∑n|bn+1 − bn| < ∞ implies that
{bn} is Cauchy and hence converges, we conclude that outside a fixed null set (say
N ), Xn

t converges uniformly on [0,m] for every m. So we define the limit to be Xt ,
which is an r.c.l.l. process. On the exceptional null set N , Xt is defined to be zero.
Note that

ducp(Xn+k, Xn) ≤
n+k−1∑
j=n

ducp(X j+1, X j )

≤
n+k−1∑
j=n

2− j

≤ 2−n+1.
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As a consequence, (using definition of ducp) we get that for all integers m,

E[min(1, sup
0≤t≤m

|Xn
t − Xn+k

t |)] ≤ 2m2−n+1.

Taking limit as k → ∞ and invoking dominated convergence theorem we conclude

E[min(1, sup
0≤t≤m

|Xn
t − Xt |)] ≤ 2m2−n+1.

It follows that for any T < ∞, 0 < δ < 1 we have

P( sup
0≤t≤T

|Xn
t − Xt |) > δ) ≤ 1

δ
2(T+1)2−n+1. (2.5.7)

and hence, invoking Remark 2.70, it follows that Xn converges in ucp metric to X .
Thus every Cauchy sequence converges and so the space is complete under themetric
ducp. �

Here is a result that will be useful later.

Theorem 2.72 Suppose Zn, Z are r.c.l.l. adapted processes such that

Zn ucp−→ Z .

Then there exists a subsequence {nk} such that Y k = Znk satisfies

(i) sup0≤t≤T |Y k
t − Zt | → 0 a.s. ∀T < ∞.

(ii) There exists an r.c.l.l. adapted increasing process H such that

|Y k
t | ≤ Ht ∀t < ∞, ∀k ≥ 1. (2.5.8)

Proof Since ducp(Zn, Z) → 0, for k ≥ 1, we can choose nk with such that ducp(Znk ,

Z) ≤ 2−k and nk+1 > nk . Let Y k = Znk . Then as seen in the proof of Theorem 2.71,
this implies

∞∑
k=1

[sup
t≤T

|Y k
t − Zt |] < ∞, ∀T < ∞ a.s.

Hence (i) above holds for this choice of {nk}. Further, Us = ∑∞
k=1|Y k

s − Zs | + |Zs |
is an r.c.l.l. process as the series converges uniformly on [0, T ] for every T < ∞.
Thus defining

Ht = sup
0≤s≤t

[
∞∑
k=1

|Y k
s − Zs | + |Zs |]

it follows that H is an r.c.l.l. adapted increasing process. See Exercise 2.10. Clearly,
|Y k

t | ≤ Ht for all k ≥ 1. �
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Remark 2.73 If we have two, or finitely many sequences {Zi,n} converging to
Zi in ducp, i = 1, 2, . . . , p then we can get one common subsequence {nk}
and a process H such that (i), (i i) above hold for i = 1, 2, . . . p. All we need
to do is to choose {nk} such that

ducp(Zi,nk , Zi ) ≤ 2−k, i = 1, 2 . . . p.

Exercise 2.74 An alternative way of obtaining the conclusion in Remark 2.73
is to apply Theorem 2.72 to an appropriately defined R

dp-valued processes.

The following lemma will play an important role in the theory of stochastic inte-
gration.

Lemma 2.75 Let Zn, Z be adapted processes and let τm be a sequence of stopping
times such that τm ↑ ∞. Suppose that for each m

Zn
t∧τm

ucp−→ Zt∧τm as n ↑ ∞. (2.5.9)

Then
Zn ucp−→ Z as n ↑ ∞.

Proof Fix T < ∞, ε > 0 and η > 0. We need to show that ∃n0 such that for n ≥ n0

P[ sup
t≤T

|Zn
t − Zt | > η ] < ε. (2.5.10)

First, using τm ↑ ∞, fix m such that

P[ τm < T ] < ε/2. (2.5.11)

Using Zn
t∧τm

ucp−→ Zt∧τm , get n0 such that for n ≥ n0

P[ sup
t≤T

|Zn
t∧τm − Zt∧τm | > η ] < ε/2. (2.5.12)

Now,
{ sup
t≤T

|Zn
t − Zt | > η} ⊆ {sup

t≤T
|Zn

t∧τm − Zt∧τm | > η} ∪ {τm < T }

and hence for n ≥ n0, (2.5.10) follows from (2.5.11) and (2.5.12). �

The same argument as above also yields the following.

Corollary 2.76 Let Zn be r.c.l.l. adapted processes and let τm be a sequence of
stopping times such that τm ↑ ∞. For n ≥ 1,m ≥ 1 let

Y n,m
t = Zn

t∧τm .
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Suppose that for each m, {Y n,m : n ≥ 1} is Cauchy in ducp metric then Zn is Cauchy
in ducp metric.

2.6 The Lebesgue–Stieltjes Integral

Let G : [0,∞) �→ R be an r.c.l.l. function. For 0 ≤ a < b < ∞ the total variation
Var[a,b] of G(s) over [a, b] and Var(a,b] over (a, b] are defined as follows:

Var(a,b](G) = sup{
m∑
j=1

|G(t j ) − G(t j−1)| : a = t0 < t1 < . . . < tm = b, m ≥ 1}. (2.6.1)

Var[a,b](G) = |G(a)| + Var(a,b](G).

If Var[0,t](G) < ∞ for all t , then G will be called a function with finite variation.
It is well known that a function has finite variation paths if and only if it can be
expressed as difference of two increasing functions.

If Var[0,t](G) < ∞ for all t , the function |G|t = Var[0,t](G) is then an increasing
[0,∞)-valued function. Let us fix such a function G.

For any T fixed, there exists a unique countably additivemeasureν and a countably
additive signed measure μ on the Borel σ-field of [0, T ] such that

ν([0, t]) = |G|(t) ∀t ≤ T (2.6.2)

μ([0, t]) = G(t) ∀t ≤ T . (2.6.3)

Here, ν is the total variation measure of the signed measure μ.
For measurable function h on [0, T ], if ∫

hdν < ∞, then we define

∫ t

0
|h|s d|G|s =

∫
|h|1[0,t]dν (2.6.4)

and ∫ t

0
hs dGs =

∫
h1[0,t]dμ. (2.6.5)

Note that we have

|
∫ t

0
hs dGs | ≤

∫ t

0
|h|s d|G|s . (2.6.6)

It follows that if h is a bounded measurable function on [0,∞), then
∫ t
0 hdG is

defined and further if hn
bp−→ h, then the dominated convergence theorem yields that

Hn
t = ∫ t

0 h
n dG converges to H(t) = ∫ t

0 hdG uniformly on compact subsets.
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Exercise 2.77 Let G be an r.c.l.l. function on [0,∞) such that |G|t < ∞ for all
t < ∞. Show that for all T < ∞

∑
t≤T

|(ΔG)t | < ∞. (2.6.7)

Note that as seen in Exercise 2.1, {t : |(ΔG)t | > 0} is a countable set and
thus the sum appearing above is a sum of countably many terms.
Hint: Observe that the left-hand side in (2.6.7) is less than or equal to |G|T .
Exercise 2.78 Let B be an r.c.l.l.adapted processes such that At (ω) = Var[0,t]
(B�(ω)) < ∞ for all t,ω. Show that A is an r.c.l.l. adapted process.

Let us denote by V
+ = V

+(Ω, (F�),P) the class of (F�) adapted r.c.l.l. increasing
processes A with A0 ≥ 0 and by V = V(Ω, (F�),P) the class of r.c.l.l. adapted
processes B such that

At (ω) = Var[0,t](B�(ω)) < ∞ ∀t ≥ 0, ∀ω ∈ Ω. (2.6.8)

As seen above, A ∈ V
+. A process B ∈ Vwill be called process with finite variation

paths. It is easy to see that B ∈ V if and only if B can be written as difference of
two processes in V+: indeed, if A is defined by (2.6.8), we have B = D − C where
D = 1

2 (A + B) andC = 1
2 (A − B) andC, D ∈ V

+. LetV0 andV
+
0 denote the class

of processes A in V and V
+, respectively, such that A0 = 0. For B ∈ V, we will

denote the process A defined by (2.6.8) as A = Var(B).
A process A ∈ V will be said to be purely discontinuous if

At = A0 +
∑
0<s≤t

(ΔA)s .

Exercise 2.79 Show that every A ∈ V can be written uniquely as A = B + C
with B,C ∈ V, B being a continuous process with B0 = 0 andC being a purely
discontinuous process.

Lemma 2.80 Let B ∈ V and let X be a bounded l.c.r.l. adapted process. Then

Ct (ω) =
∫ t

0
Xs(ω)dBs(ω) (2.6.9)

is well defined and is an r.c.l.l. adapted process. Further, C ∈ V.

Proof For every ω ∈ Ω , t �→ Xt (ω) is a bounded measurable function and hence C
is well defined. For n ≥ 1 and i ≥ 0 let tni = i

n . Let

Xn
t = Xtni for tni ≤ t < tni+1.
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Then Xn bp−→ X . Clearly

C n
t (ω) =

∫ t

0
Xn
s (ω)dBs(ω) =

∑
i : tni ≤t

Xtni (Btni+1∧t − Btni ∧t )

is r.c.l.l. adapted and further for every ω ∈ Ω , C n
t (ω) → Ct (ω) uniformly in t ∈

[0, T ] for every T < ∞. Thus C is also an r.c.l.l.adapted process. Let A = Var(B).
Let K be a bound for the process X . For any s < t ,

|Ct(ω) − Cs(ω)| ≤
∫ t

s
|Xu(ω)|d As(ω)

≤ K (At (ω) − As(ω)).

Since A is an increasing process, it follows that Var[0,T ](C)(ω) ≤ K AT (ω) < ∞
for all T < ∞ and for all ω. �

Exercise 2.81 Show that the conclusion in Lemma 2.80 is true even when X
is a bounded r.c.l.l. adapted process. In fact show that Dn

t defined by

Dn
t (ω) =

∑
i : tni ≤t

Xtni+1∧t (Btni+1∧t − Btni ∧t )

converges to
∫ t
0 XdB.

Exercise 2.82 Show that the assumption of boundedness of X in Lemma 2.80
can be dropped.



Chapter 3
The Ito’s Integral

We begin this chapter with the quadratic variation and Levy’s characterization of the
Brownian motion. Later, we will outline the basic development of the Ito’s Integral
w.r.t.Brownian motion. We also discuss existence and uniqueness of solutions to the
classical stochastic differential equations driven by Brownian motion.

3.1 Quadratic Variation of Brownian Motion

Let(Wt )denoteaone-dimensionalBrownianmotiononaprobabilityspace(Ω,F ,P).
We have seen that W is a martingale w.r.t. its natural filtration (FW

� ) and with
Mt = W 2

t − t , M is also (FW
� )-martingale. These properties are easy consequence

of the independent increment property of Brownian motion.
Wiener and Ito’s realized the need to give a meaning to limit of what appeared to

be Riemann–Stieltjes sums for the integral

∫ t

0
fs dWs (3.1.1)

in different contexts—while in case of Wiener, the integrand was a deterministic
function, Ito’s needed to consider a random process ( fs) that was a non-anticipating
function of W—i.e. f is adapted to (FW

� ).
It is well known that paths s �→ Ws(ω) are nowhere differentiable for almost all

ω, and hence we cannot interpret the integral in (3.1.1) as a path-by-path Riemann–
Stieltjes integral. We will deduce the later from the following result that is relevant
for stochastic integration.
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Theorem 3.1 Let (Wt ) be a Brownian motion. Let tni = i2−n, i ≥ 0, n ≥ 1. Let
V n
t = ∑∞

i=0 |Wtni+1∧t − Wtni ∧t |, Qn
t = ∑∞

i=0(Wtni+1∧t − Wtni ∧t )2. Then for all t > 0,
(a) V n

t → ∞ a.s. and (b) Qn
t → t a.s.

Proof We will first prove (b). Let us fix t < ∞ and let

Xn
i = Wtni+1∧t − Wtni ∧t , Zn

i = (Wtni+1∧t − Wtni ∧t )2 − (tni+1 ∧ t − tni ∧ t).

Then from properties of Brownian motion it follows that {Xn
i , i ≥ 0} are indepen-

dent random variables with normal distribution and E(Xn
i ) = 0, E(Xn

i )
2 = (tni+1 ∧

t − tni ∧ t). So, {Zn
i , i ≥ 0} are independent random variables with E(Zn

i ) = 0 and
E(Zn

i )
2 = 2(tni+1 ∧ t − tni ∧ t)2. Now

E(Qn
t − t)2 = E(

∞∑
i=0

Zn
i )

2

=
∞∑
i=0

E(Zn
i )

2

= 2
∞∑
i=0

(tni+1 ∧ t − tni ∧ t)2

≤ 2−n+1
∞∑
i=0

(tni+1 ∧ t − tni ∧ t)

= 2−n+1t.

(3.1.2)

Note that each of the sum appearing above is actually a finite sum. Thus

E
∞∑
n=1

(Qn
t − t)2 ≤ t < ∞

so that
∑∞

n=1(Q
n
t − t)2 < ∞ a.s. and hence Qn

t → t a.s.
For (a), let α(δ,ω, t) = sup{|Wu(ω) − Wv(ω)| : |u − v| ≤ δ, u, v ∈ [0, t]}.

Then uniform continuity of u �→ Wu(ω) implies that for all t finite and for each
ω,

lim
δ↓0

α(δ,ω, t) = 0. (3.1.3)

Now note that for any ω,

Qn
t (ω) ≤ ( max

0≤i<∞|Wtni+1∧t (ω) − Wtni ∧t (ω)|)(
∞∑
i=0

|Wtni+1∧t − Wn
ti∧t |)

= α(2−n,ω, t)V n
t (ω).

(3.1.4)
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So if lim infn V n
t (ω) < ∞ for some ω, then lim infn Qn

t (ω) = 0 in view of (3.1.3)
and (3.1.4).

For t > 0, since Qn
t → t a.s., we must have V n

t → ∞ a.s. �

Exercise 3.2 For any sequence of partitions

0 = tm0 < tm1 < . . . < tmn < . . . ; tmn ↑ ∞ as n ↑ ∞ (3.1.5)

of [0,∞) such that for all T < ∞,

δm(T ) = ( sup
{n : tmn ≤T }

(tmn+1 − tmn )) → 0 as m ↑ ∞ (3.1.6)

let

Qm
t =

∞∑
n=0

(Wtmn+1∧t − Wtmn ∧t )2. (3.1.7)

Show that for each t , Qm
t converges in probability to t .

Remark 3.3 It is well known that the paths of Brownian motion are nowhere
differentiable. For this and other path properties of Brownian motion, see
Breiman [5], McKean [47], Karatzas and Shreve [43].

Remark 3.4 Since the paths of Brownian motion do not have finite variation
on any interval, we cannot invoke Riemann–Stieltjes integration theory for
interpreting

∫
XdW , where W is Brownian motion. The following calculation

shows that the Riemann–Stieltjes sums do not converge in any weaker sense
(say in probability) either. Let us consider

∫
WdW . Let tni = i2−n, i ≥ 0, n ≥ 1.

The question is whether the sums

∞∑
i=0

Wsni ∧t (Wtni+1∧t − Wtni ∧t ) (3.1.8)

converge to some limit for all choices of sni such that tni ≤ sni ≤ tni+1. Let us
consider two cases sni = tni+1 and sni = tni :

An
t =

∞∑
i=0

Wtni+1∧t (Wtni+1∧t − Wtni ∧t ) (3.1.9)

Bn
t =

∞∑
i=0

Wtni ∧t (Wtni+1∧t − Wtni ∧t ). (3.1.10)

Now An
t and Bn

t cannot converge to the same limit as their difference satis-
fies
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(An
t − Bn

t ) = Qn
t .

Thus even in this simple case, the Riemann–Stieltjes sums do not converge
to a unique limit. In this case, it is possible to show that An

t and Bn
t actually

do converge but to two different limits. It is possible to choose {sni } so that the
Riemann sums in (3.1.8) do not converge.

3.2 Levy’s Characterization of Brownian Motion

Definition 3.5 Let (Wt ) be d-dimensional Brownian motion adapted to a filtra-
tion (Ft ). Then (Wt ,Ft ){t≥0} is said to be a Wiener martingale if W is a mar-
tingale w.r.t.(F�) and

{Wt − Ws : t ≥ s} is independent of Fs . (3.2.1)

It follows that for a one-dimensional Wiener martingale (Wt ,Ft ){t≥0} Mt = W 2
t − t

is also a martingale w.r.t (Ft ). Levy had proved that if W is any continuous process
such that both W, M are (F�)-martingales then W is a Brownian motion and (3.2.1)
holds. Most proofs available in texts today deduce this as an application of Ito’s
formula. We will give an elementary proof of this result which uses interplay of
martingales and stopping times. The proof is motivated by the proof given in Ito’s
lecture notes [25], but the same has been simplified using partition via stopping times
instead of deterministic partitions.

Exercise 3.6 Show that (3.2.1) is equivalent to

Wt − Ws is independent of Fs for all t ≥ s. (3.2.2)

We will use the following inequalities on the exponential function which can be
easily proven using Taylor’s theorem with remainder. For a, b ∈ R

|eb − (1 + b)| ≤ 1

2
e|b||b|2

|eia − 1| ≤ |a|
|eia − (1 + ia − 1

2
a2)| ≤ 1

6
|a|3.

Using these inequalities, we conclude that for a, b such that |a| ≤ δ, |b| ≤ δ,
δ < loge(2), we have
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|eia+b − (1 + ia − 1

2
a2 + b)|

≤ |eia[eb − (1 + b)] + b(eia − 1) + (eia − (1 + ia − 1

2
a2))|

≤ (
1

2
e|b||b|2 + |b||a| + 1

6
|a|3)

≤ δ(2|b| + |a|2).

(3.2.3)

Theorem 3.7 Let X be a continuous process adapted to a filtration (F�) and let
Mt = X2

t − t for t ≥ 0. Suppose that (i) X0 = 0, (i i) X is a (F�)-martingale and
(i i i) M is a (F�)-martingale. Then X is a Brownian motion and further, for all s

{(Xt − Xs) : t ≥ s} is independent of Fs .

Proof We will prove this in a series of steps.
step 1: For bounded stopping times σ ≤ τ , say τ ≤ T ,

E[(Xτ − Xσ)2] = E[(τ − σ)]. (3.2.4)

To see this, Corollary 2.60 and the hypothesis that M is a martingale imply that

Yt = X2
τ∧t − X2

σ∧t − (τ ∧ t − σ ∧ t)

is a martingale and hence E[YT ] = E[Y0] = 0. This proves step 1.
Let us fix λ ∈ R and let

Zλ
t = exp{iλXt + 1

2
λ2t}.

step 2: For each bounded stopping time σ, E[Zλ
σ] = 1. This would show that Zλ

is a (F�)-martingale. To prove this claim, fix λ and let σ ≤ T . Let δ be sufficiently
small such that (|λ| + λ2)δ < loge(2). Let us define a sequence of stopping times
{τi : i ≥ 1} inductively as follows: τ0 = 0 and for i ≥ 0,

τi+1 = inf{t ≥ τi : |Xt − Xτi | ≥ δ or |t − τi | ≥ δ or t ≥ σ} (3.2.5)

Inductively, using Theorem 2.46 one can prove that each τi is a stopping time and that
for each ω, τ j (ω) = σ(ω) for sufficiently large j . Further, continuity of the process
implies

|Xτi+1 − Xτi | ≤ δ, |τi+1 − τi | ≤ δ. (3.2.6)

Let us write

Zλ
τm

− 1 =
m−1∑
k=0

(Zλ
τk+1

− Zλ
τk
). (3.2.7)

https://doi.org/10.1007/978-981-10-8318-1_2
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Note that

E[(Zλ
τk+1

− Zλ
τk
)] = E[Zλ

τk
(eiλ(Xτk+1−Xτk )+ 1

2 λ2(τk+1−τk ) − 1)]
= E[Zλ

τk
E(eiλ(Xτk+1−Xτk )+ 1

2 λ2(τk+1−τk ) − 1 | Fτk )]

Since E[Xτk+1 − Xτk | Fτk ] = 0 as X is a martingale and

E[(Xτk+1 − Xτk )
2 − (τk+1 − τk) | Fτk ] = 0 (3.2.8)

as seen in step 1 above, we have

E[eiλ(Xτk+1−Xτk )+ 1
2 λ2(τk+1−τk ) − 1 |Fτk ]

= E[eiλ(Xτk+1−Xτk )+ 1
2 λ2(τk+1−τk ) − {1 + iλ(Xτk+1 − Xτk )

− 1
2λ

2(Xτk+1 − Xτk )
2 + 1

2λ
2(τk+1 − τk)} |Fτk ]

Using (3.2.3), (3.2.6) and the choice of δ, we can conclude that the expression on
the right-hand side inside the conditional expectation is bounded by

δλ2((Xτk+1 − Xτk )
2 + (τk+1 − τk))

Putting together these observations and (3.2.8), we conclude that

|E[(Zλ
τk+1

− Zλ
τk
)]| ≤ 2δλ2e

1
2 λ2TE[(τk+1 − τk)].

As a consequence
|E[Zλ

τm
− 1]| ≤ 2δλ2e

1
2 λ2TE[τm].

Now Zλ
τm

is bounded by e
1
2 λ2T and converges to Zλ

σ , we conclude

|E[Zλ
σ − 1]| ≤ 2δλ2T e

1
2 λ2T .

Since this holds for all small δ > 0 it follows that

E[Zλ
σ] = 1

and this completes the proof of step 2.
step 3: For s < t , λ ∈ R,

E[e(iλ(Xt−Xs )) |Fs] = e− 1
2 λ2(t−s). (3.2.9)

We have seen that Zλ
t is a martingale and (3.2.9) follows from it since Xs is Fs

measurable.
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As a consequence
E[e(iλ(Xt−Xs ))] = e− 1

2 λ2(t−s), (3.2.10)

and so the distribution of Xt − Xs is Gaussian with mean 0 and variance (t − s).
step 4:
For s < t , λ, θ ∈ R, a Fs measurable random variable Y we have

E[e(iλ(Xt−Xs )+iθY )] = E[e(iλ(Xt−Xs ))]E[e(iθY )]. (3.2.11)

The relation (3.2.11) is an immediate consequence of (3.2.9).
We have already seen that Xt − Xs has Gaussian distribution with mean 0 and

variance t − s and (3.2.11) implies that Xt − Xs is independent of Fs , in particular,
Xt − Xs is independent of {Xu : u ≤ s}. This completes the proof. �

Let W = (W 1,W 2, . . . ,Wd) be d-dimensional Brownian motion, where W j is
the j th component, i.e. eachW j is a real-valued Brownian motion andW 1,W 2, . . . ,

Wd are independent.
For any θ = (θ1, θ2, . . . , θd) ∈ R

d with |θ| = ∑d
j=1(θ

j )2 = 1,

X θ
t =

d∑
j=1

θ jW j
t (3.2.12)

is itself a Brownian motion. Defining

Mθ
t = (X θ

t )
2 − t, (3.2.13)

we have

∀θ ∈ R
d with |θ| = 1; X θ, Mθ are (FW

� )-martingales . (3.2.14)

Indeed, using Theorem 3.7, we will show that (3.2.14) characterizes multidimen-
sional Brownian motion.

Theorem 3.8 LetW beanRd -valued continuous process such thatW0 = 0. Suppose
(F�) is a filtration such that W is (F�) adapted. Suppose W satisfies

∀θ ∈ R
d with |θ| = 1; X θ, Mθ are (F�)-martingales , (3.2.15)

where X θ and Mθ are defined via (3.2.12) and (3.2.13). Then W is a d-dimensional
Brownian motion and further, for 0 ≤ s ≤ t

(Wt − Ws) is independent of Fs .



72 3 The Ito’s Integral

Proof Theorem 3.7 implies that for θ ∈ R
d with |θ| = 1 and λ ∈ R

E[exp{iλ(θ · Wt − θ · Ws)} |Fs] = exp{− 1
2λ

2(t − s)}.

This implies thatW is a Brownian motion. Independence of {Wt − Ws : t ≥ s} and
Fs also follows as in Theorem 3.7. �

Theorems 3.7 and 3.8 are called Levy’s characterization of Brownian motion
(one-dimensional and multidimensional cases, respectively).

3.3 The Ito’s Integral

Let S be the class of stochastic processes f of the form

fs(ω) = a0(ω)1{0}(s) +
m∑
j=0

a j+1(ω)1(s j ,s j+1](s) (3.3.1)

where 0 = s0 < s1 < s2 < . . . < sm+1 < ∞,a j is boundedFs j−1 measurable random
variable for 1 ≤ j ≤ (m + 1), and a0 is boundedF0 measurable. Elements of Swill
be called simple processes. For an f given by (3.3.1), we define X = ∫

f dW by

Xt (ω) =
m∑
j=0

a j+1(ω)(Wsj+1∧t (ω) − Wsj∧t (ω)). (3.3.2)

a0 does not appear on the right side becauseW0 = 0. It can be easily seen that
∫

f dW
defined via (3.3.1) and (3.3.2) for f ∈ S does not depend upon the representation
(3.3.1). In other words, if g is given by

gt (ω) = b0(ω)1{0}(s) +
n∑
j=0

b j+1(ω)1(r j ,r j+1](t) (3.3.3)

where 0 = r0 < r1 < . . . < rn+1 and b j is Fr j−1 measurable bounded random vari-
able, 1 ≤ j ≤ (n + 1), and b0 is boundedF0 measurable and f = g, then

∫
f dW =∫

gdW , i.e.

m∑
j=0

a j+1(ω)(Wsj+1∧t (ω) − Wsj∧t (ω))

=
n∑
j=0

b j+1(ω)(Wrj+1∧t (ω) − Wrj∧t (ω)).

(3.3.4)

By definition, X is a continuous adapted process. We will denote Xt as
∫ t
0 f dW .

We will obtain an estimate on the growth of the integral defined above for simple
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f ∈ S and then extend the integral to an appropriate class of integrands—those that
can be obtained as limits of simple processes. This approach is different from the
one adopted by Ito’s, and we have adopted this approach with an aim to generalize
the same to martingales.

We first note some properties of
∫

f dW for f ∈ S and obtain an estimate.

Lemma 3.9 Let f, g ∈ S and let a, b ∈ R. Then

∫ t

0
(a f + bg)dW = a

∫ t

0
f dW + b

∫ t

0
gdW. (3.3.5)

Proof Let f, g have representations (3.3.1) and (3.3.3), respectively. Easy to see that
we can get 0 = t0 < t1 < . . . < tk such that

{t j : 0 ≤ j ≤ k} = {s j : 0 ≤ j ≤ m} ∪ {r j : 0 ≤ j ≤ n}

and then represent both f, g over common time partition. Then the result (3.3.5)
follows easily. �

Lemma 3.10 Let f, g ∈ S, and let Yt =
∫ t
0 f dW, Zt =

∫ t
0 gdW and At = ∫ t

0 fsgsds,
Mt = Yt Zt − At . Then Y, Z , M are (F�)-martingales.

Proof By linearity property (3.3.5) and the fact that sum of martingales is a martin-
gale, suffices to prove the lemma in the following two cases:
Case 1: 0 ≤ s < r and

ft = a1(s,r ](t), gt = b1(s,r ](t), a, b are Fs measurable .

Case 2: 0 ≤ s < r ≤ u < v and

ft = a1(s,r ](t), gt = b1(u,v](t), a is Fs measurable and b is Fu measurable.

Here in both cases, a, b are assumed to be bounded. In both the cases, Yt = a(Wt∧r −
Wt∧s). That Y is a martingale follows from Theorem 2.59. Thus in both cases, Y is
an (F�)-martingale and similarly, so is Z . Remains to show that M is a martingale.
In case 1, writing Nt = W 2

t − t

Mt = ab((Wt∧r − Wt∧s)2 − (t ∧ r − t ∧ s))

= ab((W 2
t∧r − W 2

t∧s) − (t ∧ r − t ∧ s) − 2Wt∧s(Wt∧r − Wt∧s))
= ab(Nt∧r − Nt∧s) − 2abWt∧s(Wt∧r − Wt∧s).

Recalling that N ,W are martingales, it follows from Theorem 2.59 that M is a
martingale as

abWt∧s(Wt∧r − Wt∧s) = abWs(Wt∧r − Wt∧s).

In case 2, recalling 0 ≤ s ≤ r ≤ u ≤ v, note that

https://doi.org/10.1007/978-981-10-8318-1_2
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Mt = a(Wt∧r − Wt∧s)b(Wt∧v − Wt∧u)
= a(Wr − Ws)b(Wt∧v − Wt∧u)

as Mt = 0 if t ≤ u. Proof is again completed using Theorem 2.59. �
Theorem 3.11 Let f ∈ S, Mt = ∫ t

0 f dW and Nt = M2
t − ∫ t

0 f 2s ds. Then M and
N are (F�)-martingales. Further, for any T < ∞,

E[sup
t≤T

|
∫ t

0
f dW |2] ≤ 4E[

∫ T

0
f 2s ds]. (3.3.6)

Proof The fact that M and N are martingales follows from Lemma 3.10. As a
consequence E[NT ] = 0 and hence

E[(
∫ T

0
f dW )2] = E[

∫ T

0
f 2s ds]. (3.3.7)

Now the growth inequality (3.3.6) follows fromDoob’smaximal inequality, Theorem
2.26 applied to M and using (3.3.7). �

We will use the growth inequality (3.3.7) to extend the integral to a larger class
of functions that can be approximated in the norm defined by the right-hand side in
(3.3.7).

Each f ∈ S can be viewed as a real-valued function on Ω̃ = [0,∞) × Ω . It is
easy to see that S is an algebra. Let P be the σ-field generated by S, i.e. the smallest
σ-field on Ω̃ such that every element of S is measurable w.r.t.P .

The σ-field P is called the predictable σ-field. We will discuss the predictable
σ-field in the next chapter. We note here that every bounded left continuous adapted
process X is P measurable as it is the pointwise limit of

Xm
t = X01{0} +

m2m∑
j=0

X j
2m
1(

j
2m ,

j+1
2m ](t).

Hence every left continuous adapted process X is P measurable. Process f which
is P measurable is called a predictable process.

Lemma 3.12 Let f be a predictable process such that

E[
∫ T

0
f 2s ds] < ∞ ∀T < ∞. (3.3.8)

Then there exists a continuous adapted process Y such that for all simple predictable
processes h ∈ S,

E[( sup
0≤t≤T

|Yt −
∫ t

0
hdW |)2] ≤ 4E[

∫ T

0
( fs − hs)

2ds] ∀T < ∞. (3.3.9)

https://doi.org/10.1007/978-981-10-8318-1_2
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Further, Y and Z are (F�)-martingales where

Zt = Y 2
t −

∫ t

0
f 2s ds.

Proof For r > 0, let μr be the measure on (Ω̃,P) defined as follows: for P measur-
able bounded functions g ∫

Ω̃

gdμr = E[
∫ r

0
gsds]

and let us denote the L2 norm on L2(μr ) by ‖·‖2,μr . By Theorem 2.67, S is dense in
L
2(μr ) for every r > 0 and hence for integers m ≥ 1, we can get f m ∈ S such that

‖ f − f m‖2,μm ≤ 2−m−1. (3.3.10)

Using ‖·‖2,μr ≤ ‖·‖2,μs for r ≤ s it follows that for k ≥ 1

‖ f m+k − f m‖2,μm ≤ 2−m . (3.3.11)

Denoting theL2(Ω,F ,P) normby ‖·‖2,P , the growth inequality (3.3.6) can be rewrit-
ten as, for g ∈ S, m ≥ 1,

‖ sup
0≤t≤m

|
∫ t

0
gdW | ‖2,P ≤ 2‖g‖2,μm (3.3.12)

Recall that f k ∈ S and hence
∫ t
0 f k dW is already defined. Let Y k

t = ∫ t
0 f k dW . Now

using (3.3.11) and (3.3.12), we conclude that for k ≥ 1

‖[ sup
0≤t≤m

|Ym+k
t − Ym

t | ]‖2,P ≤ 2−m+1. (3.3.13)

Fix an integer n. For m ≥ n, using (3.3.13) for k = 1 we get

‖[ sup
0≤t≤n

|Ym+1
t − Ym

t | ]‖2,P ≤ 2−m+1. (3.3.14)

and hence

‖[
∞∑

m=n

sup
0≤t≤n

|Ym+1
t − Ym

t | ]‖2,P ≤
∞∑

m=n

‖[ sup
0≤t≤n

|Ym+1
t − Ym

t | ]‖2,P

≤
∞∑

m=n

2−m+1

< ∞.

https://doi.org/10.1007/978-981-10-8318-1_2
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Hence,
∞∑

m=n

[ sup
0≤t≤n

|Ym+1
t − Ym

t |] < ∞ a.s. P. (3.3.15)

So let

Nn = {ω :
∞∑

m=n

[ sup
0≤t≤n

|Ym+1
t (ω) − Ym

t (ω)|] = ∞}

and let N = ∪∞
n=1Nn . Then N is a P null set. For ω /∈ N , let us define

Yt (ω) = lim
m→∞ Ym

t (ω)

and for ω ∈ N , let Yt (ω) = 0. It follows from (3.3.15) that for all T < ∞, ω /∈ N

sup
0≤t≤T

|Ym
t (ω) − Yt (ω)| → 0. (3.3.16)

Thus Y is a process with continuous paths. Now using (3.3.12) for f m − h ∈ S we
get

E[( sup
0≤t≤T

|Ym
t −

∫ t

0
hdW |)2] ≤ 4E[

∫ T

0
( f m − h)2s ds]. (3.3.17)

In view of (3.3.10), the right-hand side above converges to

E[
∫ T

0
( fs − hs)

2ds].

Using Fatou’s lemma and (3.3.16) alongwithP(N ) = 0, taking lim inf in (3.3.17)we
conclude that (3.3.9) is true. From these observations, it follows that Ym

t converges to
Yt in L2(P) for each fixed t . The observation ‖·‖2,μr ≤ ‖·‖2,μs for r ≤ s and (3.3.10)
implies that for all r , ‖ f − f m‖2,μr → 0 and hence for all t

E[
∫ t

0
( fs − f ms )2ds] → 0.

As a consequence,

E[
∫ t

0
|( fs)2 − ( f ms )2|ds] → 0

and hence

E[|
∫ t

0
( f ms )2ds −

∫ t

0
f 2s ds| ] → 0.
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ByTheorem 3.11, we have Y n and Zn which aremartingales where Zn
t = (Y n

t )2 −∫ t
0 ( f

n
s )2ds. As observed above Y n

t converges in L1(P) to Yt , and Zn
t converges in

L1(P) to Zt for each t and hence Y and Z are martingales. �

Remark 3.13 From the proof of the Lemma it also follows that Y is uniquely
determined by the property (3.3.9), for if Ỹ is another process that satisfies
(3.3.9), then using it for h = f m as in the proof above, we conclude that Ym

converges almost surely to Ỹ and hence Y = Ỹ .

Definition 3.14 For a predictable process f such that E[∫ T
0 f 2s ds] < ∞ ∀T <

∞, we define the Ito’s integral
∫ t
0 f dW to be the process Y that satisfies

(3.3.9).

The next result gives the basic properties of the Ito’s integral
∫

f dW ; most of them
have essentially been proved above.

Theorem 3.15 Let f, g be predictable processes satisfying (3.3.8).Then

∫ t

0
(a f + bg)dW = a

∫ t

0
f dW + b

∫ t

0
gdW. (3.3.18)

Let Mt = ∫ t
0 f dW and Nt = M2

t − ∫ t
0 f 2s ds. Then M and N are (F�)-martingales.

Further, for any T < ∞,

E[sup
t≤T

|
∫ t

0
f dW |2] ≤ 4E[

∫ T

0
f 2s ds]. (3.3.19)

Proof The linearity (3.3.18) follows by linearity for the integral for simple functions
observed in Lemma3.9 and then for general predictable processes via approximation.
That M , N are martingales has been observed in Lemma 3.12. The growth inequality
(3.3.19) follows from (3.3.9) with h = 0. �

Remark 3.16 For a bounded predictable process f , let IW ( f ) = ∫
f dW . Then

the growth inequality (3.3.19) and linearity of IW imply that for fn, f bounded
predictable processes

fn
bp−→ f implies IW ( fn)

ucp−→ IW ( f ).

Exercise 3.17 Let tni = i2−n, i ≥ 0, n ≥ 1 and let

f ns =
∞∑
i=0

Wtni 1(tni ,tni+1](s).

Show that

(i)
∫ t
0 f n dW = ∑∞

i=0 Wtni (Wtni+1∧t − Wtni ∧t ).
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(ii) E[∫ T
0 | f ns − Ws |2ds] → 0.

(iii)
∫ t
0 f n dW → ∫ t

0 WdW.

(iv)
∫ t
0 WdW = 1

2 (W
2
t − t).

Hint: For (i i i) using notations as in (3.1.9) and (3.1.10) we have
∫ t
0 f n dW =

Bn
t , (An

t − Bn
t ) = Qn

t along with (An
t + Bn

t ) = W 2
t and Qn

t → t (see Exercise
3.2). Thus An

t and Bn
t converge, as mentioned in Remark 3.4.

Exercise 3.18 Let ft = t . Show that
∫ t
0 f dW = tWt − ∫ t

0 Wsds.

Exercise 3.19 Let f ∈ L
2([0,∞) be a deterministic function. Show that Zt =∫ t

0 f dW is aGaussian process, i.e. for any t1 < t2 < . . . < tm<∞, (Zt1 , Zt2 , . . . ,

Ztm ) has multivariate normal (Gaussian) distribution.

For deterministic f the integral
∫

f dW had been defined and studied by Wiener
and is also called the Wiener integral.

Exercise 3.20 Let A ∈ V be a bounded r.c.l.l.adapted process with finite vari-
ation paths. Show that

∫ t

0
A−dW = AtWt −

∫ t

0
WdA. (3.3.20)

Hint: Let tni = i2−n, i ≥ 0, n ≥ 1. Observe that

∞∑
i=0

Atni ∧t (Wtni+1∧t − Wtni ∧t ) = AtWt −
∞∑
i=0

Wtni+1∧t (Atni+1∧t − Atni ∧t ).

The left-hand side converges to
∫ t
0 A−dW while the second term on right-

hand side converges to
∫ t
0 WdA as seen in Exercise 2.81.

Remark 3.21 The Ito’s integral can be extended to a larger class of predictable
integrands f satisfying ∫ T

0
f 2s ds < ∞ a.s. ∀T < ∞.

We will outline this later when we discuss integration w.r.t.semimartingales.

3.4 Multidimensional Ito’s Integral

Let W = (W 1,W 2, . . . ,Wd) be d-dimensional Brownian motion, where W j is the
j th component. In other words, each W j is a real-valued Brownian motion and
W 1,W 2, . . . ,Wd are independent. Suppose further that (F�) is a filtration such that

https://doi.org/10.1007/978-981-10-8318-1_2
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(Wt ,Ft ){t≥0} is a Wiener martingale. Thus for each s, {Wt − Ws : t ≥ s} is inde-
pendent of Fs . Denoting θ = (θ1, . . . , θd) ∈ R

d and defining

X θ
t =

d∑
j=1

θ jW j
t (3.4.1)

Mθ
t = (X θ

t )
2 − t, (3.4.2)

we have
∀θ ∈ R

d with |θ| = 1; X θ, Mθ are (F�)-martingales . (3.4.3)

The argument given in the proof of next lemma is interesting. Throughout this
section, the filtration (F�) will remain fixed.

Lemma 3.22 For j �= k, W jWk is also a martingale.

Proof Let Xt = 1√
2
(W j

t + Wk
t ). Then, as seen above, X is a Brownian motion and

hence X2
t − t is a martingale. Note that

X2
t − t = 1

2
[(W j

t )2 + (Wk
t )2 + 2W j

t W
k
t ] − t

= 1

2
[(W j

t )2 − t] + 1

2
[(Wk

t )2 − t] + W j
t W

k
t .

Since the left-hand side above as well as the first two terms of right-hand side above
are martingales, it follows that so is the third term. �

Suppose that for 1 ≤ j ≤ m and 1 ≤ k ≤ d, f jk are (F�) predictable processes
that satisfy (3.3.8). Let

X j
t =

d∑
k=1

∫ t

0
f jk dWk .

Let X = (X1, . . . Xm) denote them-dimensional process. It is natural to define Xt to
be

∫ t
0 f d X where we interpret f to be L(m, d) (m × d-matrix-valued) predictable

process.Wewill obtain a growth estimate on the stochastic integral
∫ t
0 f dW which in

turn would be crucial in the study of stochastic differential equations. The following
lemma is a first step towards it.

Lemma 3.23 Let h be a predictable process satisfying (3.3.8). Let Y k
t = ∫ t

0 hdW
k.

Then for j �= k, Y k
t Y

j
t is a martingale.

Proof Let Xt = 1√
2
(W j

t + Wk
t ). Then, as seen above, X is a Brownian motion. For

simple functions f it is easy to check that
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∫ t

0
f d X = 1√

2
(

∫ t

0
f dW j +

∫ t

0
f dWk)

and hence for all f satisfying (3.3.8) via approximation. Thus,

∫ t

0
hdX = 1√

2
(Y j

t + Y k
t )

and so (
∫ t
0 hdX)2 − ∫ t

0 h
2
s ds is a martingale. Now as in the proof of Lemma 3.22

(

∫ t

0
hdX)2 −

∫ t

0
h2s ds = 1

2
[(Y j

t )2 + (Y k
t )2 + 2Y j

t Y
k
t ] −

∫ t

0
h2s ds

= 1

2
[(Y j

t )2 −
∫ t

0
h2s ds] + 1

2
[(Y k

t )2 −
∫ t

0
h2s ds] + Y j

t Y
k
t .

and once again the left-hand side as well as the first two terms on the right-hand side
are martingales and hence so is the last term completing the proof. �

Lemma 3.24 Let f, g bepredictable processes satisfying (3.3.8). Let Y k
t =∫ t

0 f dWk,

Zk
t = ∫ t

0 gdWk. Then for j �= k, Y k
t Z

j
t is a martingale.

Proof Let Xt = Y k
t Z

j
t .Wewill first prove that X is amartingalewhen f, g are simple,

the general case follows by approximation. The argument is similar to the proof of
Theorem 3.10. By linearity, suffices to prove the required result in the following
cases.
Case 1: 0 ≤ s < r and

ft = a1(s,r ](t), gt = b1(s,r ](t), a, b are Fs measurable , a ≥ 0, b ≥ 0.

Case 2: 0 ≤ s < r ≤ u < v and

ft = a1(s,r ](t), gt = b1(u,v](t), a is Fs measurable and b is Fu measurable.

In case 1,

Xt = Y k
t Z

j
t = ab(Wk

r∧t − Wk
s∧t )(W

j
r∧t − W j

s∧t ) = (

∫ t

0
hdWk)(

∫ t

0
hdW j )

where h = √
(ab)1(s,r ](t) and hence by Lemma 3.23, X is a martingale.

In case 2,
Xt = Y k

t Z
j
t = ab(Wk

r∧t − Wk
s∧t )(W

j
v∧t − W j

u∧t ).

Here, Xt = 0 for t ≤ r and

Xt = ξ(W j
v∧t − W j

u∧t )
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with ξ = ab(Wk
r∧t − Wk

s∧t ) is Fu measurable and hence by Corollary 2.60, X is a
martingale.

This proves the required result for simple predictable processes f, g. The general
case follows by approximating f, g by simple predictable processes { f n}, {gn} such
that for all T < ∞ ∫ T

0
[| f ns − fs |2 + |gns − gs |2]ds → 0.

Then it follows from (3.3.19) that for each t < ∞,

∫ t

0
f n dWk →

∫ t

0
f dWk in L2(P),

∫ t

0
gn dW j →

∫ t

0
gdW j in L2(P)

and hence the martingale (
∫ t
0 f n dWk)(

∫ t
0 gn dW j ) converges to

Y k
t Z

j
t = (

∫ t
0 f dWk)(

∫ t
0 gdW j ) in L1(P) and thus Y k

t Z
j
t is a martingale. �

We are now ready to prove the main growth inequality. Recall that L(m, d)

denotes the space of m × d matrices and for x = (x1, x2, . . . , xd) ∈ R
d , |x | =√∑d

j=1 x
2
j denotes the Euclidean norm on R

m and for a = (a jk) ∈ L(m, d), ‖a‖ =√∑d
j=1

∑m
k=1 a

2
jk is the Euclidean norm on L(m, d).

Let f = ( f jk) be L(m, d)-valued process. For Rd -valued Brownian motion W ,
we have seen that X = ∫

f dW is an R
m-valued process.

Theorem 3.25 Let W be an R
d -valued Brownian motion. Then for m × d-matrix-

valued predictable process f with

E[
∫ T

0
‖ fs‖2ds] < ∞

we have

E[ sup
0≤t≤T

|
∫ t

0
f dW |2] ≤ 4E[

∫ T

0
‖ fs‖2ds]. (3.4.4)

Proof Let X j
t = ∑d

k=1

∫
f jk dWk . Then

(X j
t )

2 −
d∑

k=1

∫ t

0
( f jk)2ds =

d∑
k=1

[(
∫ t

0
f jk dWk)2 −

∫ t

0
( f jk)2ds]

+
d∑

l=1

d∑
k=1

1{k �=l}
∫ t

0
f jk dWk

∫ t

0
f jl dWl

https://doi.org/10.1007/978-981-10-8318-1_2
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and each term on the right-hand side above is a martingale and thus summing over
j we conclude

|
∫ t

0
f dW |2 −

∫ t

0
‖ fs‖2ds

is a martingale. Thus

E[|
∫ t

0
f dW |2] = E[

∫ t

0
‖ fs‖2ds] (3.4.5)

and |∫ t
0 f dW |2 is a submartingale. The required estimate (3.4.4) now follows from

Doob’s maximal inequality (2.3.7) and (3.4.5). �

Exercise 3.26 Let W be an R
d -valued Brownian motion. Let f ∈ L

2([0,∞)

be an L(m, d)-valued deterministic function. Show that Zt = ∫ t
0 f dW is a R

d -
valuedGaussian process, i.e. for any t1 < t2 < . . . < tn < ∞, (Zt1 , Zt2 , . . . , Ztn )

considered as a dn-dimensional vector has multivariate normal (Gaussian)
distribution.

3.5 Stochastic Differential Equations

We are going to consider stochastic differential equations (SDE) of the type

dXt = σ(t, Xt )dWt + b(t, Xt )dt. (3.5.1)

Equation (3.5.1) is to be interpreted as an integral equation:

Xt = X0 +
∫ t

0
σ(s, Xs)dWs +

∫ t

0
b(s, Xs)ds. (3.5.2)

Here W is an R
d -valued Brownian motion, X0 is an R

d -valued F0 measurable ran-
dom variable, σ : [0,∞) × R

m �→ L(m, d) and b : [0,∞) × R
m �→ R

m are given
functions, and one is seeking a process X such that (3.5.2) is true. The solution X to
the SDE (3.5.1), when it exists, is called a diffusion process with diffusion coefficient
σσ∗ and drift coefficient b.

We shall impose the following conditions on σ, b:

σ : [0,∞) × R
m �→ L(m, d) is a continuous function

b : [0,∞) × R
m �→ R

m is a continuous function
(3.5.3)

∀T < ∞ ∃CT < ∞ such that for all t ∈ [0, T ], x1, x2 ∈ R
d

‖σ(t, x1) − σ(t, x2)‖ ≤CT |x1 − x2|,
|b(t, x1) − b(t, x2)| ≤CT |x1 − x2|.

(3.5.4)

https://doi.org/10.1007/978-981-10-8318-1_2
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Since t �→ σ(t, 0) and t �→ b(t, 0) are continuous and hence bounded on [0, T ] for
every T < ∞, using the Lipschitz conditions (3.5.4), we can conclude that for each
T < ∞, ∃KT < ∞ such that

‖σ(t, x)‖ ≤ KT (1 + |x |),
|b(t, x)| ≤ KT (1 + |x |). (3.5.5)

Wewill need the following lemma, known as Gronwall’s lemma, for proving unique-
ness of solution to (3.5.2) under the Lipschitz conditions.

Lemma 3.27 Let β(t) be a bounded measurable function on [0, T ] satisfying, for
some 0 ≤ a < ∞, 0 < b < ∞,

β(t) ≤ a + b
∫ t

0
β(s) ds, 0 ≤ t ≤ T . (3.5.6)

Then
β(t) ≤ aebt . (3.5.7)

Proof Let

g(t) = e−bt
∫ t

0
β(s) ds.

Then by definition, g is absolutely continuous and

g′(t) = e−btβ(t) − be−bt
∫ t

0
β(s) ds a.e.

where almost everywhere refers to the Lebesgue measure on R. Using (3.5.6), it
follows that

g′(t) ≤ ae−bt a.e.

Hence (using g(0) = 0 and that g is absolutely continuous) g(t) ≤ a
b (1 − e−bt ) from

which we get ∫ t

0
β(s) ds ≤ a

b
(ebt − 1).

The conclusion β(t) ≤ aebt follows immediately from (3.5.6). �

So now let (F�) be a filtration on (Ω,F ,P) andW be a d-dimensional Brownian
motion adapted to (F�) and such that (Wt ,Ft ){t≥0} is a Wiener martingale. Without
loss of generality, let us assume that (Ω,F ,P) is complete and that F0 contains all
P null sets in F . Let Km denote the class of Rm-valued continuous (F�) adapted
process Z such that E[∫ T

0 |Zs |2ds] < ∞ ∀T < ∞. For Y ∈ Km let
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ξt = Y0 +
∫ t

0
σ(s,Ys)dWs +

∫ t

0
b(s,Ys)ds. (3.5.8)

Note that in view of the growth condition (3.5.5) the Ito’s integral above is defined.
Using the growth estimate (3.4.4) we see that

E[ sup
0≤t≤T

|ξt |2] ≤ 3[E[|Y0|2] + 4E[
∫ T

0
‖σ(s,Ys)‖2ds]

+ E[(
∫ T

0
|b(s,Ys)|ds)2]]

≤3E[|Y0|2] + 3K 2
T (4 + T )

∫ T

0
(1 + E[|Ys |2])ds

and hence ξ ∈ Km . Let us define amappingΛ fromKm into itself as follows:Λ(Y ) =
ξ where ξ is defined by (3.5.8). Thus solving the SDE (3.5.2) amounts to finding a
fixed point Z of the functional Λ with Z0 = X0, where X0 is pre-specified. We are
going to prove that given X0, there exists a unique solution (or a unique fixed point
of Λ) with the given initial condition. The following lemma is an important step in
that direction.

Lemma 3.28 Let Y, Z ∈ Km and let ξ = Λ(Y ) and η = Λ(Z). Then for 0 ≤ t ≤ T
one has

E[ sup
0≤s≤t

|ξs − ηs |2] ≤ 3E[|Y0 − Z0|2] + 3C2
T (4 + T )

∫ t

0
E[|Ys − Zs |2]ds

Proof Let us note that

ξt − ηt = Y0 − Z0 +
∫ t

0
[σ(s,Ys) − σ(s, Zs)]dWs +

∫ t

0
[b(s,Ys) − b(s, Zs)]ds

and hence this time using the Lipschitz condition (3.5.4) along with the growth
inequality (3.4.4) we now have

E[ sup
0≤s≤t

|ξs − ηs |2] ≤3[E[|Y0 − Z0|2] + 4E[
∫ t

0
‖σ(s,Ys) − σ(s, Zs)‖2ds]

+ E[(
∫ t

0
|b(s,Ys) − b(s, Zs)|ds)2]]

≤3E[|Y0 − Z0|2] + 3C2
T (4 + T )

∫ t

0
E[|Ys − Zs |2]ds.

�

Corollary 3.29 Suppose Y, Z ∈ Km be such that Y0 = Z0. Then for 0 ≤ t ≤ T
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E[ sup
0≤s≤t

|Λ(Y )s − Λ(Z)s |2] ≤ 3C2
T (4 + T )

∫ t

0
E[|Ys − Zs |2]ds

We are now in a position to prove the main result of this section.

Theorem 3.30 Suppose σ, b satisfy conditions (3.5.3) and (3.5.4) and X0 is a F0

measurable R
m-valued random variable with E[|X0|2] < ∞. Then there exists a

process X such that E[∫ T
0 |Xs |2ds] < ∞ ∀T < ∞ and

Xt = X0 +
∫ t

0
σ(s, Xs)dWs +

∫ t

0
b(s, Xs)ds. (3.5.9)

Further if X̃ is another process such that X̃0 = X0, E[∫ T
0 |X̃s |2ds] < ∞ for all

T < ∞ and

X̃t = X̃0 +
∫ t

0
σ(s, X̃s)dWs +

∫ t

0
b(s, X̃s)ds

then X = X̃ , i.e.P(Xt = Yt ∀t) = 1.

Proof Let us first prove uniqueness. Let X and X̃ be as in the statement of the
theorem. Then, using Corollary 3.29 it follows that

u(t) = E[ sup
s≤t

|Xs − X̃s |2]

satisfies for 0 ≤ t ≤ T (recalling X0 = X̃0)

u(t) ≤ 3C2
T (4 + T )

∫ t

0
E[|Xs − X̃s |2]ds.

Hence u is bounded and satisfies

u(t) ≤ 3C2
T (4 + T )

∫ t

0
u(s)ds, 0 ≤ t ≤ T .

By (Gronwall’s) Lemma 3.27, it follows that u(t) = 0, 0 ≤ t ≤ T for every T < ∞.
Hence X = X̃ .

We will now construct a solution. Let X1
t = X0 for all t ≥ 0. Note that X1 ∈ Km .

Now define Xn inductively by

Xn+1 = Λ(Xn).

Since X1
t = X0 for all t and X2

0 = X1
0,

X2
t − X1

t =
∫ t

0
σ(s, X0)dWs +

∫ t

0
b(s, X0)ds
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and hence
E[sup

s≤t
|X2

s − X1
s |2] ≤ 2K 2

T (4 + T )(1 + E[|X0|2])t. (3.5.10)

Note that Xn
0 = X1

0 = X0 for all n ≥ 1 and hence from Lemma 3.28 it follows that
for n ≥ 2, for 0 ≤ t ≤ T ,

E[sup
s≤t

|Xn+1
s − Xn

s |2] ≤ 3C2
T (4 + T )

∫ t

0
E[|Xn

s − Xn−1
s |2]ds

Thus defining for n ≥ 1, un = E[sups≤t |Xn+1
s − Xn

s |2] we have for n ≥ 2, for 0 ≤
t ≤ T ,

un(t) ≤ 3C2
T (4 + T )

∫ t

0
un−1(s)ds. (3.5.11)

As seen in (3.5.10),

u1(t) ≤ 2K 2
T (4 + T )(1 + E[|X0|2])t

and hence using (3.5.11), which is true for n ≥ 2, we can deduce by induction on n
that for a constant C̃T = 3(C2

T + K 2
T )(4 + T )(1 + E[|X0|2])

un(t) ≤ (C̃T )ntn

n! , 0 ≤ t ≤ T .

Thus
∑

n

√
un(T ) < ∞ for every T < ∞ which is same as

∞∑
n=1

‖sup
s≤T

|Xn+1
s − Xn

s |‖2 < ∞ (3.5.12)

‖Z‖2 denoting the L2(P) norm here. The relation (3.5.12) implies

‖[
∞∑
n=1

sup
s≤T

|Xn+1
s − Xn

s | ]‖2 < ∞ (3.5.13)

as well as

sup
k≥1

‖[sup
s≤T

|Xn+k
s − Xn

s | ]‖2 ≤ sup
k≥1

‖[
n+k∑
j=n

sup
s≤T

|X j+1
s − X j

s | ]‖2

≤ [
∞∑
j=n

‖sup
s≤T

|X j+1
s − X j

s |‖2]

→ 0 as n tends to ∞.

(3.5.14)
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Let N = ∪∞
T=1{ω : ∑∞

n=1 sups≤T |Xn+1
s (ω) − Xn

s (ω)| = ∞}. Then by (3.5.13),P(N )

= 0 and for ω /∈ N , Xn
s (ω) converges uniformly on [0, T ] for every T < ∞. So let

us define X as follows:

Xt (ω) =
{
limn→∞ Xn

t (ω) if ω ∈ Nc

0 if ω ∈ N .

By definition, X is a continuous adapted process (since by assumption N ∈ F0) and
Xn converges to X uniformly in [0, T ] for every T almost surely. Using Fatou’s
lemma and (3.5.14) we get

‖[sup
s≤T

|Xs − Xn
s | ]‖2 ≤ lim inf

k→∞ ‖[
n+k∑
j=n

sup
s≤T

|X j+1
s − X j

s | ]‖2

≤ [
∞∑
j=n

‖sup
s≤T

|X j+1
s − X j

s |‖2]

→ 0 as n tends to ∞.

(3.5.15)

In particular, X ∈ Km . Since Λ(Xn) = Xn+1 by definition, (3.5.15) also implies that

lim
n→∞‖[sup

s≤T
|Xs − Λ(Xn)s | ]‖2 = 0 (3.5.16)

while (3.5.15) and Corollary 3.29 (remembering that Xn
0 = X0 for all n) imply that

lim
n→∞‖[sup

s≤T
|Λ(X)s − Λ(Xn)s | ]‖2 = 0. (3.5.17)

From (3.5.16) and (3.5.17) it follows that X = Λ(X) or that X is a solution to the
SDE (3.5.9). �



Chapter 4
Stochastic Integration

In this chapter we consider processes X that are good integrators: i.e.

JX ( f )(t) =
∫ t

0
f d X

can be defined for a suitable class of integrands f and the integral has some nat-
ural continuity properties. We will call such a process a stochastic integrator. In
this chapter, we will prove basic properties of the stochastic integral

∫ t
0 f d X for a

stochastic integrator X .
In the rest of the book, (Ω,F ,P) will denote a complete probability space and

(F�) will denote a filtration such that F0 contains all null sets in F . All notions such
as adapted, stopping time, martingale will refer to this filtration unless otherwise
stated explicitly.

For some of the auxiliary results, we need to consider the corresponding right
continuous filtration (F+

� ) = {F+
t : t ≥ 0} where
F+

t = ∩s>tFs .

We begin with a discussion on the predictable σ -field.

4.1 The Predictable σ -Field

Recall our convention that a process X = (Xt ) is viewed as a function on Ω̃ =
[0,∞) × Ω and the predictable σ -field P has been defined as the σ -field on Ω̃

generated by S. Here S consists of simple adapted processes:

f (s) = a01{0}(s) +
m∑

k=0

ak+11(sk ,sk+1](s) (4.1.1)
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where 0 = s0 < s1 < s2 < . . . < sm+1 < ∞, ak is bounded Fsk−1 measurable ran-
dom variable, 1 ≤ k ≤ (m + 1), and a0 is bounded F0 measurable. P measurable
processes have appeared naturally in the definition of the stochastic integral w.r.t.
Brownian motion and play a very significant role in the theory of stochastic inte-
gration with respect to general semimartingales as we will see. A process f will be
called a predictable process if it is P measurable. Of course, P depends upon the
underlying filtration and would refer to the filtration that we have fixed. If there are
more than one filtration under consideration, we will state it explicitly. For example
P(G�) denotes the predictable σ -field corresponding to a filtration (G�) and S(G�)
denotes simple predictable process for the filtration (G�).

The following proposition lists various facts about the σ -field P .

Proposition 4.1 Let (F�) be a filtration and P = P(F�).

(i) Let f be P measurable. Then f is (F�) adapted. Moreover, for every t < ∞,
ft is σ(∪s<tFs) measurable.

(ii) Let Y be a left continuous adapted process. Then Y is P measurable.
(iii) LetA be the class of all bounded adapted continuous processes. ThenP = σ(A)

and the smallest bp-closed class that contains A is B(Ω̃,P).
(iv) For any stopping time τ , U = 1[0,τ ] (i.e. Ut = 1[0,τ ](t)) is P measurable.
(v) For an r.c.l.l. adapted process Z and a stopping time τ , the process X defined

by
Xt = Zτ1(τ,∞)(t) (4.1.2)

is predictable.
(vi) For a predictable process g and a stopping time τ , gτ is a random variable and

h defined by
ht = gτ1(τ,∞)(t) (4.1.3)

is itself predictable.

Proof It suffices to prove the assertions assuming that the processes f , Y , g are
bounded (by making a tan−1 transformation, if necessary). Now, for (i) let

K1 = { f ∈ B(Ω̃,P) : ft is σ(∪s<tFs)- measurable}.

It is easily seen thatK1 is bp-closed and contains S and thus by Theorem 2.66 equals
B(Ω̃,P) proving (i).

For (i i), given a left continuous bounded adapted process Y , let Y n be defined by

Y n
t = Y01{0}(t) +

n2n∑
k=0

Y k
2n
1( k

2n , k+1
2n ](t). (4.1.4)

Then Y n ∈ S and Y n bp−→ Y and this proves (i i).

https://doi.org/10.1007/978-981-10-8318-1_2
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For (i i i), Let K2 be the smallest bp-closed class containing A. From part (i i)
above, it follows thatA ⊆ B(Ω̃,P) and henceK2 ⊆ B(Ω̃,P). For t ∈ [0,∞), n ≥ 1
let

φn(t) = (1 − nt)1[0, 1n ](t),

ψn(t) = nt1(0, 1n ](t) + 1( 1
n ,1](t) + (1 − n(t − 1))1(1,1+ 1

n ](t).

Then φn and ψn are continuous functions, bounded by 1 and φn bp−→ 1{0} and ψn bp−→
1(0,1].

For f ∈ S given by

f (s) = a01{0}(s) +
m∑
j=0

a j+11(s j ,s j+1](s)

where 0 = s0 < s1 < s2 . . . < sm+1 < ∞, a j+1 is bounded Fs j measurable random
variable, 0 ≤ j ≤ m, and a0 is bounded F0 measurable random variable. Let

Y n
s = a0φ

n(s) +
m∑
j=0

a j+1ψ
n(

s−s j
s j+1−s j

).

Then it follows that Y n ∈ A and Y n bp−→ Y . Thus S ⊆ K2 and hence B(Ω̃,P) ⊆ K2

completing the proof of (i i i).
For part (iv) note thatU is adapted left continuous process and hence P measur-

able by part (i i).
For (v), suffices to prove that X is adapted since X is left continuous by con-

struction. Using Lemmas 2.38 and 2.41 it follows that that Zτ is Fτ measurable
and W defined by Wt = Zτ1[τ,∞) is an r.c.l.l. adapted process. Hence X = W− is
predictable.

For (vi), the class of processes g for which (vi) is true is closed under bp-
convergence and contains the class of continuous adapted processes as shown above.
In view of part (i i i), this completes the proof. �

If X is P(FY
� ) measurable, then part (i) of the result proven above says that for

every t , Xt is measurable w.r.t. σ(Yu : 0 ≤ u < t). Thus having observed Yu, u < t ,
the value Xt can be known (predicted with certainty) even before observing Yt . This
justifies the name predictable σ -field for P .

Exercise 4.2 Show that (i) U = {A ⊆ Ω̃ : 1A ∈ S} is a field and that U gen-
erates P i.e. P is the smallest σ -field on Ω̃ that contains U . (ii) If μ is a
signed-measure on P such that f ∈ S, f ≥ 0 implies

∫
f dμ ≥ 0, then μ is a

positive measure.

https://doi.org/10.1007/978-981-10-8318-1_2
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Exercise 4.3 For t ≥ 0, let Gt = F+
t . Show that for t > 0

σ(∪s<tFs) = σ(∪s<tGs).

Here is an important observation regarding the predictable σ -field P(F+
� ) corre-

sponding to the filtration (F+
� ).

Theorem 4.4 Let f be a (F+
� ) predictable process (i.e. P(F+

� ) measurable). Then
g defined by

gt(ω) = ft (ω)1{(0,∞)×Ω}(t, ω) (4.1.5)

is a (F�) predictable process.

Proof Let f be a (F+
� ) adapted bounded continuous process. A crucial observation

is that for t > 0, ft is Ft measurable (see Exercise 4.3) and thus defining for n ≥ 1

hnt = (nt ∧ 1) ft

it follows that hn are (F�) adapted continuous processes and hn
bp−→ g where g is

defined by (4.1.5) and hence in this case g is (F�) predictable.
Now letH be the class of boundedP(F+

� )measurable f for which the conclusion
is true. Then easy to see that H is an algebra that is bp-closed and contains all
(F+

� ) adapted continuous processes. The conclusion follows by the monotone class
theorem, Theorem 2.66. �

The following is an immediate consequence of this.

Corollary 4.5 Let f be an (F+
� ) predictable process such that f0 isF0 measurable.

Then f is (F�) predictable.

Proof Since f0 is F0 measurable, ht = f01{0}(t) is (F�) predictable and f =
g + h where g is the (F�) predictable process given by (4.1.5). Hence f is (F�)
predictable. �

Corollary 4.6 Let A ⊆ (0,∞) × Ω . Then A ∈ P(F�) if and only if A ∈ P(F+
� ).

The following example will show that the result may not be true if f0 = 0 is
dropped in Corollary 4.5 above.

Exercise 4.7 Let Ω = C([0,∞) and let Xt denote the coordinate process and
Ft = σ(Xs : 0 ≤ s ≤ t). Let A be the set of all ω ∈ Ω that take positive as well
as negative values in (0, ε) for every ε > 0. Show that A ∈ F+

0 but A does not
belong to F0. Use this to show the relevance of the hypothesis on f0 in the
corollary given above.

Exercise 4.8 Let ξ be an Fτ measurable random variable. Show that Y =
ξ1(τ,∞) is predictable.
Hint: Use Lemma 2.41 along with part (v) in Proposition 4.1.

https://doi.org/10.1007/978-981-10-8318-1_2
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Exercise 4.9 Let X denote the coordinate mappings on (Dd ,B(Cd)) and let
Dt = σ(Xu : 0 ≤ u ≤ t) and let P = P(D·). Let f : [0,∞) × Dd �→ R be P
measurable. Let (Ω,F ,P) be a probability space with a filtration (F·). Let Y
be a r.c.l.l.(F·) adapted process. Let Z be defined by Zt = f (t,Y ). Show that
Z is P(F·) measurable, i.e. a predictable process on (Ω,F ,P).
Hint: Verify for simple f and then use monotone class theorem.

4.2 Stochastic Integrators

Let us fix an r.c.l.l. (F�) adapted stochastic process X .
Recall, S consists of the class of processes f of the form

f (s) = a01{0}(s) +
m∑
j=0

a j+11(s j ,s j+1](s) (4.2.1)

where 0 = s0 < s1 < s2 < . . . < sm+1 < ∞,a j is boundedFs j−1 measurable random
variable, 1 ≤ j ≤ (m + 1), and a0 is bounded F0 measurable.

For simple predictable f ∈ S given by (4.2.1), let JX ( f ) be the r.c.l.l. process
defined by

JX ( f )(t) = a0X0 +
m∑
j=0

a j+1(Xsj+1∧t − Xsj∧t ). (4.2.2)

One needs to verify that JX is unambiguously defined on S. That is, if a given f
has two representations of type (4.2.1), then the corresponding expressions in (4.2.2)
agree. This as well as linearity of JX ( f ) for f ∈ S can be verified using elementary
algebra. By definition, for f ∈ S, JX ( f ) is an r.c.l.l.adapted process. In analogy with
the Ito’s integral with respect to Brownianmotion discussed in the earlier chapter, we
wish to explore if we can extend JX to the smallest bp-closed class of integrands that
contain S. Each f ∈ S can be viewed as a real-valued function on Ω̃ = [0,∞) × Ω .
SinceP is theσ -field generated byS, byTheorem2.66, the smallest class of functions
that contains S and is closed under bp-convergence is B(Ω̃,P).

When the space, filtration and the probability measure are clear from the context,
we will write the class of adapted r.c.l.l. processes R0(Ω, (F�),P) simply as R0.

Definition 4.10 An r.c.l.l. adapted process X is said to be a stochastic inte-
grator if the mapping JX from S to R

0(Ω, (F�),P) has an extension JX :
B(Ω̃,P) �→ R

0(Ω, (F�),P) satisfying the following continuity property:

f n
bp−→ f implies JX ( f n)

ucp−→ JX ( f ). (4.2.3)

It should be noted that for a given r.c.l.l.process X , JX may not be continuous on S.
See the next exercise. So this definition, in particular, requires that JX is continuous

https://doi.org/10.1007/978-981-10-8318-1_2
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onS and has a continuous extension toB(Ω̃,P). Though not easy to prove, continuity
of JX on S does imply that it has a continuous extension and hence it is a stochastic
integrator. We will see this later in Sect. 4.10. The next exercise shows that JG is not
continuous on S.

Exercise 4.11 Let G be a real-valued function from [0,∞) with G(0) = 0 such
that for some T < ∞, Var[0,T ](G) = ∞.

(i) Show that there exists a sequence of partitions of [0, T ]

0 = tm0 < tm1 < . . . < tmnm = T (4.2.4)

such that

αm = (

nm−1∑
j=0

|G(tmj ) − G(tmj−1)| ) → ∞. (4.2.5)

(ii) Let sgn : R �→ R be defined by sgn(x) = 1 for x ≥ 0 and sgn(x) = −1
for x < 0. Let f m = (αm)− 1

2 sgn(G(tmj ) − G(tmj−1))1(tmj−1,t
m
j ]. Show that f m

converges to 0 uniformly.
(iii) JG( f m) converges to ∞.

Conclude that JG is not continuous on S.

We next observe that the extension, when it exists, is unique.

Theorem 4.12 Let X be an r.c.l.l. process. Suppose there exist mappings JX , J ′
X

from B(Ω̃,P)into R
0(Ω, (F�),P), such that for f ∈ S (given by (4.2.1)),

JX ( f )(t) = J ′
X ( f )(t) = a0X0 +

m∑
j=1

a j+1(Xsj+1∧t − Xsj∧t ). (4.2.6)

Further suppose that both JX , J ′
X satisfy (4.2.3). Then

P(JX ( f )(t) = J ′
X ( f )(t) ∀t) = 1 ∀ f ∈ B(Ω̃,P).

Proof Since JX , J ′
X both satisfy (4.2.3), the class

K1 = { f ∈ B(Ω̃,P) : P(JX ( f )(t) = J ′
X ( f )(t) ∀t) = 1}

is bp-closed and by our assumption (4.2.6), contains S. Since P = σ(S), by Theo-
rem 2.66 it follows that K1 = B(Ω̃,P). �

The following result which is almost obvious in this treatment of stochastic integra-
tion is a deep result in the traditional approach to stochastic integration and is known
as Stricker’s theorem.

https://doi.org/10.1007/978-981-10-8318-1_2
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Theorem 4.13 Let X be a stochastic integrator for the filtration (F�). Let (G�) be
a filtration such that Ft ⊆ Gt for all t . Suppose X is a stochastic integrator for the
filtration (G�) as well. Denoting the mapping defined by (4.2.2) for the filtration (G�)
and its extension by HX , we have

JX ( f ) = HX ( f ) ∀ f ∈ B(Ω̃,P(F�)). (4.2.7)

Proof Let J ′
X be the restriction of HX to B(Ω̃,P(F�)). Then J ′

X satisfies (4.2.6) as
well as (4.2.3). Thus (4.2.7) follows from uniqueness of extension, Theorem 4.12.

�

Here is an observation that plays an important role in next result.

Lemma 4.14 Let X be a stochastic integrator and ξ be a F0 measurable bounded
random variable. Then ∀ f ∈ B(Ω̃,P)

JX (ξ f ) = ξ JX ( f ). (4.2.8)

Proof LetK2 consist of all f ∈ B(Ω̃,P) such that (4.2.8) is true. Easy to verify that
S ⊆ K2 and that K2 is bp-closed. Thus, K2 = B(Ω̃,P) by Theorem 2.66. �

The next observation is about the role of P null sets.

Theorem 4.15 Let X be a stochastic integrator. Then f, g ∈ B(Ω̃,P),

P(ω ∈ Ω : ft (ω) = gt(ω) ∀t ≥ 0) = 1 (4.2.9)

implies
P(ω ∈ Ω : JX ( f )t (ω) = JX (g)t(ω) ∀t ≥ 0) = 1. (4.2.10)

In other words, the mapping JX maps equivalence classes of process under the
relation f = g (see Definition 2.2) to equivalence class of processes.

Proof Given f, g such that (4.2.9) holds, let

Ω0 = {ω ∈ Ω : ft (ω) = gt(ω) ∀t ≥ 0}.

Then the assumption that F0 contains all P null sets implies that Ω0 ∈ F0 and thus
ξ = 1Ω0 isF0 measurable and ξ f = ξg in the sense that these are identical processes:

ξ(ω) ft (ω) = ξ(ω)gt(ω) ∀ω ∈ Ω, t ≥ 0.

Now we have
ξ JX ( f ) = JX (ξ f )

= JX (ξg)

= ξ JX (g).

Since P(ξ = 1) = 1, (4.2.10) follows. �

https://doi.org/10.1007/978-981-10-8318-1_2
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Corollary 4.16 Let fn, f be bounded predictable such that there exists Ω0 ⊆ Ω

with P(Ω0) = 1 and such that

1Ω0 fn
bp−→ 1Ω0 f.

Then
JX ( fn)

ucp−→ JX ( f ).

For a stochastic integrator X , we will be defining the stochastic integral Y =∫
f d X , for an appropriate class of integrands, given as follows:

Definition 4.17 For a stochastic integrator X , let L(X) denote the class of
predictable processes f such that

hn ∈ B(Ω̃,P), hn → 0 pointwise, |hn| ≤ | f | ⇒ JX (hn)
ucp−→ 0. (4.2.11)

From the definition, it follows that if f ∈ L(X) and g is predictable such that
|g| ≤ | f |, then g ∈ L(X). Here is an interesting consequence of this definition.

Theorem 4.18 Let X be a stochastic integrator. Then f ∈ L(X) if and only if

gn ∈ B(Ω̃,P), gn → g pointwise , |gn| ≤ | f | ⇒ JX (gn) is Cauchy in ducp.
(4.2.12)

Proof Suppose f satisfies (4.2.11). Let

gn ∈ B(Ω̃,P), gn → g pointwise , |gn| ≤ | f |.

Given any subsequences {mk}, {nk} of integers, increasing to ∞, let

hk = 1

2
(gm

k − gn
k
).

Then {hk} satisfies (4.2.11) and hence JX (hk)
ucp−→ 0 and as a consequence

(JX (gm
k
) − JX (gn

k
))

ucp−→ 0. (4.2.13)

Since (4.2.13) holds for all subsequences {mk}, {nk} of integers, increasing to ∞, it
follows that JX (gn) is Cauchy. Conversely, suppose f satisfies (4.2.12). Given {hn}
as in (4.2.11), let a sequence gk be defined as g2k = hk and g2k−1 = 0 for k ≥ 1.
Then gk converges to g = 0 and hence JX (gk) is Cauchy. Since for odd integers n,
JX (gn) = 0, JX (g2k) = JX (hk) converges to 0. �

Remark 4.19 Note that in the previous theorem, each gn was assumed to be
bounded but no such assumption was made about g.
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This result enables us to define
∫

f d X for f ∈ L(X).

Definition 4.20 Let X be a stochastic integrator and let f ∈ L(X). Then

∫
f d X = lim

n→∞ JX ( f 1{| f |≤n}) (4.2.14)

where the limit is in the ducp metric.

Exercise 4.21 Let an → ∞. Show that for f ∈ L(X),

JX ( f 1{| f |≤an})
ucp−→

∫
f d X.

When f is bounded, it follows that
∫

f d X = JX ( f ) by definition. Here is an
important result which is essentially a version of dominated convergence theorem.

Theorem 4.22 Let f ∈ L(X) and gn ∈ B(Ω̃,P) be such that gn → g pointwise,
|gn| ≤ | f |. Then

∫
gndX →

∫
gdX in ducp metric as n → ∞.

Proof For n ≥ 1, let ξ 2n−1 = g1{|g|≤n} and ξ 2n = gn . Then |ξm | ≤ | f | and ξm con-
verges pointwise to g. Thus,

∫
ξmdX is Cauchy in ducp metric. On the other hand

∫
ξ 2n−1dX

ucp−→
∫

gdX

from the definition of
∫
gdX . Thus

∫
ξ 2ndX =

∫
gndX

ucp−→
∫

gdX. �

Note that in the result given above, we did not require g to be bounded. Even if g
were bounded, the convergence was not required to be bounded pointwise.

The process
∫

f d X is called the stochastic integral of f with respect to X , and
we will also write

(

∫
f d X)t =

∫ t

0
f d X.

We interpret
∫ t
0 f d X as the definite integral of f with respect to X over the interval

[0, t]. We sometimes need the integral of f w.r.t.X over (0, t] and so we introduce

∫ t

0+
f d X =

∫ t

0
f 1(0,∞)dX =

∫ t

0
f d X − f0X0.
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Note that
∫

f d X is an r.c.l.l. process by definition. We will also write
∫ t−
0 f d X to

denote Yt− where Ys = ∫ s
0 f d X .

A simple example of a stochastic integrator is an r.c.l.l. adapted process X such
that the mapping t �→ Xt (ω) satisfies Var[0,T ](X �(ω)) < ∞ for all ω ∈ Ω , for all
T < ∞.

Theorem 4.23 Let X ∈ V be a process with finite variation paths, i.e. X be an r.c.l.l.
adapted process such that

Var[0,T ](X�(ω)) < ∞ f or all T < ∞. (4.2.15)

Then X is a stochastic integrator. Further, for f ∈ B(Ω̃,P) the stochastic integral
JX ( f ) = ∫

f d X is the Lebesgue–Stieltjes integral for every ω ∈ Ω:

JX ( f )(t)(ω) =
∫ t

0
f (s, ω)dXs(ω) (4.2.16)

where the integral above is the Lebesgue–Stieltjes integral.

Proof For f ∈ S, the right-hand side of (4.2.16) agrees with the specification in
(4.2.1)–(4.2.2). Further the dominated convergence theorem (for Lebesgue–Stieltjes
integral) implies that the right-hand side of (4.2.16) satisfies (4.2.3) and thus X is a
stochastic integrator and (4.2.16) is true. �

As seen in Remark 3.16, Brownian motion W is also a stochastic integrator.

Remark 4.24 If X ∈ V and At = |X |t is the total variation of X on [0, t] and f
is predictable such that

∫ t

0
| fs |d As < ∞ ∀t < ∞ a.s. (4.2.17)

then f ∈ L(X) and the stochastic integral is the same as the Lebesgue–
Stieltjes integral. This follows from the dominated convergence theorem and
Theorem 4.23. However, L(X) may include processes f that may not satisfy
(4.2.17). We will return to this later (see Exercise 5.77).

Remark 4.25 Suppose X is an r.c.l.l. adapted process such that

f n → 0 uniformly ⇒ JX ( f n)
ucp−→ 0. (4.2.18)

Of course every stochastic integrator satisfies this property. Let S1 denote
the class of f ∈ S (simple functions) that are bounded by 1. For T < ∞ the
family of random variables

{
∫ T

0
f d X : f ∈ S1} (4.2.19)

https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_5
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is bounded in probability or tight in the sense that

∀ε > 0 ∃ M < ∞ such that sup
f ∈S1

P(|
∫ T

0
f d X | ≥ M) ≤ ε. (4.2.20)

To see this, suppose (4.2.18) is true but (4.2.20) is not true. Then we can get
an ε > 0 and for each m ≥ 1, f m ∈ S with | f m | ≤ 1 such that

P(|
∫ T

0
f mdX | ≥ m) ≥ ε. (4.2.21)

Writing gm = 1
m f m , it follows that gm → 0 uniformly but in view of (4.2.21),∫ T

0 gmdX does not converge to zero in probability—which contradicts (4.2.18).
Indeed, the apparently weaker property (4.2.18) characterizes stochastic
integrators as we will see later. See Theorem 5.89.

Remark 4.26 Equivalent Probability Measures: Let Q be a probability mea-
sure equivalent to P. In other words, for A ∈ F ,

Q(A) = 0 if and only if P(A) = 0.

Then it is well known and easy to see that (for a sequence of random vari-
ables) convergence in P probability implies and is implied by convergence in
Q probability and the same is true for ucp convergence. Thus, it follows that
an r.c.l.l.adapted process X is a stochastic integrator on (Ω,F ,P) if and only
if it is a stochastic integrator on (Ω,F ,Q). Moreover, the classL(X) under the
two measures is the same and for f ∈ L(X), the stochastic integral

∫
f d X

on the two spaces is identical.

4.3 Properties of the Stochastic Integral

First we note linearity of ( f, X) �→ ∫
f d X .

Theorem 4.27 Let X,Y be stochastic integrators, f, g be predictable processes and
α, β ∈ R.

(i) Suppose f, g ∈ L(X). Let h = α f + βg. Then h ∈ L(X) and

∫
hdX = α

∫
f d X + β

∫
gdX. (4.3.1)

(ii) Let Z = αX + βY. Then Z is a stochastic integrator. Further, if f ∈ L(X) and
f ∈ L(Y ). then f ∈ L(Z) and

https://doi.org/10.1007/978-981-10-8318-1_5
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∫
f d Z = α

∫
f d X + β

∫
f dY. (4.3.2)

Proof We will begin by showing that (4.3.1) is true for f, g bounded predictable
processes. For a bounded predictable process f , let

K( f ) = {g ∈ B(Ω̃,P) :
∫

(α f + βg)dX = α

∫
f d X + β

∫
gdX, ∀α, β ∈ R}.

If f ∈ S, it easy to see that S ⊆ K( f ) and Theorem 4.22 implies that K ( f ) is bp-
closed. Hence invoking Theorem 2.66, it follows that K( f ) = B(Ω̃,P).

Now we take f ∈ B(Ω̃,P) and the part proven above yields S ⊆ K( f ). Once
again, using that K ( f ) is bp-closed we conclude thatK( f ) = B(Ω̃,P). Thus (4.3.1)
is true when f, g are bounded predictable process.

Now let us fix f, g ∈ L(X). We will show (|α f | + |βg|) ∈ L(X), let un be
bounded predictable processes converging to u pointwise and

|un| ≤ (|α f | + |βg|); ∀n ≥ 1.

Let vn = un1{|α f |≤|βg|} and wn = un1{|α f |>|βg|}. Then vn and wn converge pointwise
to v = u1{|α f |≤|βg|} and w = u1{|α f |>|βg|}, respectively, and further

|vn| ≤ 2|βg|

|wn| ≤ 2|α f |.

Note that since vn, wn are bounded and un = vn + wn , from the part proven above,
we have ∫

vndX +
∫

wndX =
∫

undX.

Since f, g ∈ L(X), it follows that
∫

vndX and
∫

wndX are Cauchy in ducp metric
and hence so is their sum

∫
undX . Thus (|α f | + |βg|) ∈ L(X) and as a consequence,

(α f + βg) ∈ L(X) as well.
Now let

f n = f 1{| f |≤n}, gn = g1{|g|≤n}.

Then by definition,
∫

f ndX converges to
∫

f d X and
∫
gndX converges to

∫
gdX in

ducp metric. Also (α f n + βgn) are bounded predictable processes, converge point-
wise to (α f + βg) and are dominated by (|α f | + |βg|) ∈ L(X). Hence by Theo-
rem 4.22 we have

∫
(α f n + βgn)dX

ucp−→
∫

(α f + βg)dX.

On the other hand, the validity of (4.3.1) for bounded predictable processes yields

https://doi.org/10.1007/978-981-10-8318-1_2
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∫
(α f n + βgn)dX =

∫
α f ndX +

∫
βgndX

= α

∫
f ndX + β

∫
gndX

ucp−→ α

∫
f d X + β

∫
gdX.

This completes proof of (i).
For (i i), we begin by noting that (4.3.2) is true when f is simple i.e.

JZ ( f ) = α JX ( f ) + β JY ( f ) f ∈ S.

Since JX , JY have a continuous extension to B(Ω̃,P), it follows that so does JZ and
hence Z is also a stochastic integrator and thus (4.3.2) is true for bounded predictable
processes.

Now if f ∈ L(X) and f ∈ L(Y ) and gn ∈ B(Ω̃,P), converge pointwise to g, gn

is dominated by | f |, then α
∫
gndX and β

∫
gndY are Cauchy in ducp metric and

hence so is their sum, which equals
∫
gnd(αX + βY ) = ∫

gndZ . Thus f ∈ L(Z).
Equation (4.3.2) follows by using (4.3.2) for the bounded process f n = f 1{| f |≤n}
and passing to the limit. �

Thus the class of stochastic integrators is a linear space. We will see later that it
is indeed an Algebra. Let us note that when X is a continuous process, then so is∫

f d X .

Theorem 4.28 Let X be a continuous process and further X be a stochastic inte-
grator. Then for f ∈ L(X),

∫
f d X is also a continuous process.

Proof Let

K = { f ∈ B(Ω̃,P) :
∫

f d X is a continuous process}.

By using the definition of
∫

f d X it is easy to see that S ⊆ K. Also that K is bp-

closed since Zn continuous, Zn ucp−→ Z implies Z is also continuous. Hence invoking
Theorem 2.66 we conclude K = B(Ω̃,P). The general case follows by noting that
limit in ducp metric of continuous process is a continuous process and using that for
f ∈ L(X),

∫
f d X is the limit in ducp-metric of

∫
f 1{| f |≤n}dX . �

We can now prove:

Theorem 4.29 Dominated Convergence Theorem for the Stochastic Integral Let X
be a stochastic integrator. Suppose hn, h are predictable processes such that

hnt (ω) → ht (ω) ∀t ≥ 0, ∀ω ∈ Ω (4.3.3)

and there exists f ∈ L(X) such that

https://doi.org/10.1007/978-981-10-8318-1_2
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|hn| ≤ | f | ∀n. (4.3.4)

Then ∫
hndX

ucp−→
∫

hdX. (4.3.5)

Proof Let gn = hn1{|hn |≤n} and f n = hn1{|hn |>n}
Note that in view of (4.3.4) and the assumption f ∈ L(X) it follows that hn ∈

L(X). Pointwise convergence of hn to h also implies |h| ≤ | f | which in turn yields
h ∈ L(X). Thus

∫
hndX,

∫
hdX are defined. Clearly, gn → h pointwise and also

f n → 0 pointwise. Further, hn = gn + f n , |gn| ≤ | f | and | f n| ≤ | f |.
From Theorem 4.22 it follows that

∫
gndX

ucp−→ ∫
hdX and from the definition

of L(X), it follows that
∫

f ndX
ucp−→ 0. Now linearity of the stochastic integral,

Theorem 4.27, shows that (4.3.5) is true. �

The reader should note the subtle difference between this result and Theorem 4.22.

Remark 4.30 The condition (4.3.3) that hn → h pointwise can be replaced by
requiring that convergence holds pointwise outside a null set, namely that
there exists Ω0 ⊆ Ω with P(Ω0) = 1 such that

hnt (ω) → ht (ω) ∀t ≥ 0, ∀ω ∈ Ω0. (4.3.6)

See Theorem 4.15 and Corollary 4.16.

It should be noted that the hypothesis in the dominated convergence theorem given
above are exactly the same as in the case of Lebesgue integrals.

Recall, for an r.c.l.l. process X , X− denotes the l.c.r.l. process defined by X−
t =

X (t−), i.e. the left limit at t with the convention X (0−) = 0 and ΔX = X − X−.
Note that (ΔX)t = 0 at each continuity point t > 0 and equals the jump otherwise.
Note that by the above convention

(ΔX)0 = X0.

Exercise 4.31 Let Xn, n ≥ 1 and X be r.c.l.l. adapted processes such that
Xn ucp−→ X . Show that ΔXn ucp−→ ΔX .

The next result connects the jumps of the stochastic integral with the jumps of the
integrator.

Theorem 4.32 Let X be a stochastic integrator and let f ∈ L(X). Then we have

Δ(

∫
f d X) = f · (ΔX). (4.3.7)

Equation (4.3.7) is to be interpreted as follows: if Yt = ∫ t
0 f d X then (ΔY )t =

ft (ΔX)t .
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Proof For f ∈ S, (4.3.7) can be verified from the definition. Now the class K of f
such that (4.3.7) is true can be seen to be bp-closed and hence is the class of all
bounded predictable processes. The case of general f ∈ L(X) can be completed as
in the proof of Theorem 4.28. �

We have already seen that the class of stochastic integrators (with respect to a
filtration on a given probability space) is a linear space.

Theorem 4.33 Let X be a stochastic integrator and let f ∈ L(X). Let Y = ∫
f d X.

Then Y is also a stochastic integrator and for a bounded predictable process g,

∫ t

0
gdY =

∫ t

0
g f dX, ∀t. (4.3.8)

Further, for a predictable process g, g ∈ L(Y ) if and only if g f ∈ L(X) and then
(4.3.8) holds.

Proof We first prove that Y is a stochastic integrator and that (4.3.8) holds. Let us
first assume that f, g ∈ S are given by

f (s) = a01{0}(s) +
m∑
j=0

a j+11(s j ,s j+1](s) (4.3.9)

g(s) = b01{0}(s) +
n∑
j=0

b j+11(t j ,t j+1](s) (4.3.10)

where a0 and b0 are bounded F0 measurable random variables, 0 = s0 < s1 < s2 <

. . . ,< sm+1 < ∞, 0 = t0 < t1 < t2 < . . . ,< tn+1 < ∞; a j+1 is bounded Fs j mea-
surable random variable, 0 ≤ j ≤ m; and b j+1 is bounded Ft j measurable random
variable, 0 ≤ j ≤ n. Let us put

A = {s j : 0 ≤ j ≤ (m + 1)} ∪ {t j : 0 ≤ j ≤ (n + 1)}.

Let us enumerate the set A as

A = {ri : 0 ≤ i ≤ k}

where 0 = r0 < r1 < . . . < rk+1. Note k may be smaller than m + n as there could
be repetitions among the {s j } and {ti }. We can then represent f, g as

f (s) = c01{0}(s) +
k∑
j=0

c j+11(r j ,r j+1](s) (4.3.11)
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g(s) = d01{0}(s) +
k∑
j=0

d j+11(r j ,r j+1](s) (4.3.12)

where c j+1, d j+1 are bounded Fr j measurable. Then

(g f )(s) = d0c01{0}(s) +
k∑
j=0

d j+1c j+11(r j ,r j+1](s)

and hence

∫ t

0
(g f )dX = d0c0X0 +

k∑
j=0

d j+1c j+1(Xr j+1∧t − Xr j∧t ). (4.3.13)

Since

Yt =
∫ t

0
f d X (4.3.14)

we have Y0 = c0X0 and Yt = c0X0 + ∑k
j=0 c j+1(Xr j+1∧t − Xr j∧t ) and hence

(Yr j+1∧t − Yr j∧t ) = c j+1(Xr j+1∧t − Xr j∧t ). (4.3.15)

Thus, using (4.3.13) and (4.3.15), we conclude

∫ t

0
(g f )dX = d0Y0 +

k∑
j=0

d j+1(Yr j+1∧t − Yr j∧t ). (4.3.16)

The right-hand side in (4.3.16) is
∫
gdY and thus (4.3.8) is true when both f, g ∈ S.

Let us note that in view of (4.3.10) we also have

∫ t

0
(g f )dX = b0Y0 +

n∑
j=0

b j+1(Yt j+1∧t − Yt j∧t ) (4.3.17)

or in other words,

∫ t

0
(g f )dX = b0Y0 +

n∑
j=0

b j+1(

∫ t j+1∧t

0
f d X −

∫ t j∧t

0
f d X). (4.3.18)

Now fix g ∈ S. Note that this fixes n (appearing in (4.3.10)) as well. Let

K = { f ∈ B(Ω̃,P) : (4.3.18) holds}.



4.3 Properties of the Stochastic Integral 105

We have seen that S ⊆ K. Easy to see using Theorem 4.29 (dominated convergence
theorem) that K is bp- closed and since it contains S, it equals B(Ω̃,P). Thus, for
all bounded predictable f , (4.3.18) is true.

If f ∈ L(X), then approximating f by f n = f 1{| f |≤n}, using (4.3.18) for f n

and taking limits, we conclude (invoking dominated convergence theorem, which is
justified as g is bounded) that (4.3.18) is true for g ∈ S and f ∈ L(X).

Now fix f ∈ L(X) and let Y be given by (4.3.14). Note that right-hand side in
(4.3.18) is JY (g)(t), as defined by (4.2.1)–(4.2.2), so that we have

∫ t

0
(g f )dX = JY (g)(t), ∀g ∈ S. (4.3.19)

Let us define J (g) = ∫ t
0 g f dX for bounded predictable g, then J is an extension of

JY as noted above. Theorem 4.29 again yields that if gn
bp−→ g then J (gn)

ucp−→ J (g).
Thus, J is the extension of JY as required in the definition of stochastic integrator.
Thus Y is a stochastic integrator and (4.3.8) holds (for bounded predictable g).

Now we shall prove the last statement of the theorem. Suppose g is predictable
such that f g ∈ L(X). First, we will prove that g ∈ L(Y ) and that (4.3.8) holds for
such a g.

To prove g ∈ L(Y ), let hk be bounded predictable, converging pointwise to h such
that hk are dominated by g. We need to show that

∫
hkdY is Cauchy in ducp metric.

Let uk = hk f . Then uk are dominated by f g ∈ L(X) and converge pointwise
to h f . Invoking DCT, Theorem 4.29, we conclude that Zk = ∫

ukdX converges to
Z = ∫

h f dX and hence is Cauchy in ducp metric. On the other hand, since hk is
bounded, invoking (4.3.8) for hk , we conclude

∫
hkdY = Zk and hence is Cauchy

in ducp metric. This shows g ∈ L(Y ).
Further, with hk = g1{|g|≤k} above we conclude that the limit of

∫
hkdY is

∫
gdY .

On the other hand as seen above, (with h = g)
∫
hkdY = ∫

hk f dX converges to∫
g f dX . Thus (4.3.8) is true.
To complete the proof, we need to show that if g ∈ L(Y ) then f g ∈ L(X). For this,

suppose un are bounded predictable, |un| ≤ | f g| and un converges to 0 pointwise.

Need to show
∫
undX

ucp−→ 0. Let

f̃s(ω) =
{

1
fs (ω)

if fs(ω) �= 0

0 if fs(ω) = 0.

and vn = un f̃ . Now vn are predictable and are dominated by |g| and vn converges
pointwise to 0. Thus, ∫

vndY
ucp−→ 0.

Since |un| ≤ | f g|, fs(ω) = 0 implies uns (ω) = 0. Thus it follows that vn f = un and
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thus vn f is bounded and hence in L(X). Thus by the part proven above, invoking
(4.3.8) for vn we have

∫
vndY =

∫
vn f dX =

∫
undX.

This shows
∫
undX

ucp−→ 0. Hence f g ∈ L(X). This completes the proof. �

We had seen in Theorem 4.4 that the class of predictable processes is essentially
the same for the filtrations (F�) and (F+

� )—the only difference being at t = 0.
We now observe:

Theorem 4.34 For an r.c.l.l. (F�) adapted process X, it is a stochastic integrator
w.r.t. the filtration (F�) if and only if it is a stochastic integrator w.r.t. the filtration
(F+

� ).

Proof Let X be a stochastic integrator w.r.t. the filtration (F�), so that
∫
hdX is

defined for bounded (F�) predictable processes h. Given a bounded (F+
� ) predictable

processes f , let g be defined by

gt(ω) = ft (ω)1{(0,∞)×Ω}(t, ω).

Then by Theorem 4.4, g is a bounded (F�) predictable processes. So we define

JX ( f ) =
∫

gdX + f0X0.

It is easy to check that JX satisfies the required properties for X to be a stochastic
integrator.

Conversely if X is a stochastic integrator w.r.t. the filtration (F+
� ), so that

∫
hdX

is defined for bounded (F+
� ) predictable processes h, of course for a bounded (F�)

predictable f we can define by JX ( f ) = ∫
f d X and JX will have the required

continuity properties. However, we need to check that JX ( f ) so defined is (F�)
adapted or in other words, belongs to R

0(Ω, (F�),P). For f ∈ S, it is clear that
JX ( f ) ∈ R

0(Ω, (F�),P) since X is (F�) adapted. Since the space R
0(Ω, (F�),P)

is a closed subspace of R0(Ω, (F+
� ),P) in the ducp metric, it follows that JX ( f ) ∈

R
0(Ω, (F�),P) for f ∈ B(Ω̃,P(F�)) and thus X is a stochastic integrator for the

filtration (F�). �

Exercise 4.35 Let X be a (F�)- stochastic integrator. For each t let {Gt : t ≥ 0}
be a filtration such that for all t ,Ft ⊆ Gt ⊆ F+

t . Show that X is a (G�)- stochastic
integrator.
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4.4 Locally Bounded Processes

We will introduce an important class of integrands, namely that of locally bounded
predictable processes, that is contained in L(X) for every stochastic integrator X .
For a stopping time τ , [0, τ ] will denote the set {(t, ω) ∈ Ω̃ : 0 ≤ t ≤ τ(ω)} and
thus g = f 1[0,τ ] means the following: gt(ω) = ft (ω) if t ≤ τ(ω) and gt(ω) is zero
if t > τ(ω).

The next result gives interplay between stopping times and stochastic integration.

Lemma 4.36 Let X be a stochastic integrator and f ∈ L(X). Let τ be a stopping
time. Let g = f 1[0,τ ]. Let

Yt =
∫ t

0
f d X (4.4.1)

and V = ∫
gdX. Then Vt = Yt∧τ , i.e.

Yt∧τ =
∫ t

0
f 1[0,τ ]dX. (4.4.2)

Proof When f ∈ S is a simple predictable process and τ is a stopping time taking
only finitely many values, then g ∈ S and (4.4.1)–(4.4.2) can be checked as in that
case, the integrals

∫
f d X and

∫
gdX are both defined directly by (4.2.2). Thus fix

f ∈ S. Approximating a bounded stopping time τ fromabove by stopping time taking
finitely many values (as seen in the proof of Theorem 2.54), it follows that (4.4.2) is
true for any bounded stopping time, then any stopping time τ can be approximated
by τ̃ n = τ ∧ n and one can check that (4.4.2) continues to be true. Thus we have
proven the result for simple integrands.

Now fix a stopping time τ and let

K = { f ∈ B(Ω̃,P) : (4.4.1) − (4.4.2) is true for all t ≥ 0.}.

Then it is easy to see that K is closed under bp-convergence and as noted above
it contains S. Hence by Theorem 2.66, it follows that K = B(Ω̃,P). Finally, for
a general f ∈ L(X), the result follows by approximating f by f n = f 1{| f |≤n} and
using dominated convergence theorem. This completes the proof. �
Exercise 4.37 In the proof given above, we first proved the required result for
f ∈ S and any stopping time τ . Complete the proof by first fixing a simple
stopping time τ and prove it for all f ∈ L(X) and subsequently prove it for all
stopping times τ .

Remark 4.38 We can denote Yt∧τ as
∫ t∧τ

0 f d X so that (4.4.2) can be recast as

∫ t∧τ

0
f d X =

∫ t

0
f 1[0,τ ]dX. (4.4.3)

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
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Corollary 4.39 If X is a stochastic integrator and f, g ∈ L(X) and τ is a stopping
time such that

f 1[0,τ ] = g1[0,τ ]

then for each t ∫ t∧τ

0
f d X =

∫ t∧τ

0
gdX. (4.4.4)

Definition 4.40 A process f is said to be locally bounded if there exist stop-
ping times τ n, 0 ≤ τ 1 ≤ τ 2 ≤ . . ., τ n ↑ ∞ such that for every n,

f 1[0,τ n ] is bounded.

The sequence {τ n : n ≥ 1} is called a localizing sequence.

Thus if a process f is locally bounded, then we can get stopping times τ n increas-
ing to infinity (can even choose each τ n to be bounded) and constants Cn such that

P(ω : sup
0≤t≤τn(ω)

| ft (ω)| ≤ Cn ) = 1, ∀n ≥ 1. (4.4.5)

Note that given finitelymany locally bounded processes one can choose a common
localizing sequence {τ n : n ≥ 1}. A continuous adapted process X such that X0 is
bounded is easily seen to be locally bounded. We can take the localizing sequence
to be

τn = inf{t ≥ 0 : |X (t)| ≥ n or t ≥ n}.

For an r.c.l.l. adapted process X , recall that X− is the process defined by
X−(t) = X (t−), where X (t−) is the left limit of X (s) at s = t for t > 0 and
X−(0) = X (0−) = 0. Let τn be the stopping times defined by

τn = inf{t ≥ 0 : |X (t)| ≥ n or |X (t−)| ≥ n or t ≥ n}. (4.4.6)

Then it can be easily seen that X−1[0,τn ] is bounded by n and that τn ↑ ∞ and hence
X− is locally bounded. Easy to see that sum of two locally bounded processes is itself
locally bounded. Further, if X is a r.c.l.l. process with bounded jumps: |ΔX | ≤ K ,
then X is locally bounded, since X− is locally bounded and (ΔX) is bounded and
X = X− + (ΔX).

Exercise 4.41 Let X be an r.c.l.l. adapted process. Show that X is locally
bounded if and only if ΔX is locally bounded.

For future reference, we record these observations as a lemma.

Lemma 4.42 Let X be an adapted r.c.l.l. process.

(i) If X is continuous with X0 bounded, then X is locally bounded.
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(ii) X− is locally bounded.
(iii) If ΔX is locally bounded, then X is locally bounded.

We now prove an important property of the class L(X).

Theorem 4.43 Let X be an integrator and f be a predictable process such that
there exist stopping times τm increasing to ∞ with

f 1[0,τm ] ∈ L(X) ∀n ≥ 1. (4.4.7)

Then f ∈ L(X).

Proof Let gn be bounded predictable such that gn → g pointwise and |gn| ≤ | f |.
Let Zn = ∫

gndX . Now for each m,

gn1[0,τm ] → g1[0,τm ] pointwise, (4.4.8)

|gn1[0,τm ]| ≤ | f 1[0,τm ]| (4.4.9)

and Y n,m defined by

Y n,m =
∫

gn1[0,τm ]dX (4.4.10)

satisfies
Y n,m
t = Zn

t∧τm
. (4.4.11)

In view of (4.4.8), (4.4.9) the assumption (4.4.7) implies that for each m, {Y n,m :
n ≥ 1} is Cauchy in ducp metric. Thus invoking Corollary 2.76, we conclude that Zn

is Cauchy in ducp metric and hence f ∈ L(X). �
As noted earlier, f ∈ L(X), h predictable, |h| ≤ C | f | for some constant C > 0
implies h ∈ L(X). Thus the previous result gives us

Corollary 4.44 Let X be a stochastic integrator, g be a locally bounded predictable
process and f ∈ L(X). Then f g belongs to L(X).

In particular, we have the following.

Corollary 4.45 Let g be a locally bounded predictable process. Then g belongs to
L(X) for every stochastic integrator X. As a consequence, if Y is an r.c.l.l. adapted
process, then Y− ∈ L(X) for every stochastic integrator X.

Exercise 4.46 Let X be a stochastic integrator. Let s0 = 0 < s1 < s2 < . . . <

sn < . . . with sn ↑ ∞. Let ξ j , j = 1, 2 . . . , be such that ξ j is Fs j−1 measurable.

(i) For n ≥ 1 let hn = ∑n
j=1 ξ j1(s j−1,s j ]. Show that hn ∈ L(X) and

∫ t

0
hndX =

n∑
j=1

ξ j (Xsj∧t − Xsj−1∧t ).

https://doi.org/10.1007/978-981-10-8318-1_2
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(ii) Let h = ∑∞
j=1 ξ j1(s j−1,s j ]. Show that h ∈ L(X) and

∫ t

0
hdX =

∞∑
j=1

ξ j (Xsj∧t − Xsj−1∧t ).

For an r.c.l.l. process X and a stopping time σ , let X [σ ] denote the process X
stopped at σ defined as follows

X [σ ]
t = Xt∧σ . (4.4.12)

Next result shows that if X is a stochastic integrator and σ is a stopping time, then
Y = X [σ ] is a stochastic integrator as well.

Lemma 4.47 Let X be a stochastic integrator and σ be a stopping time. Then X [σ ]
is also a stochastic integrator and for f ∈ L(X), writing Zt = ∫ t

0 f d X, one has

Zt∧σ =
∫ t

0
f d X [σ ] =

∫ t

0
( f 1[0,σ ])dX. (4.4.13)

Proof First one checks that (4.4.13) is true for f ∈ S. Then for any bounded pre-
dictable f , defining the process

J0( f ) =
∫

( f 1[0,σ ])dX

one can check that fn
bp−→ f implies J0( fn)

ucp−→ J0( f ) and hence it follows that
X [σ ] is a stochastic integrator. Using (4.4.4), it follows that (4.4.13) is true for all
bounded predictable processes f . Finally, for a general f ∈ L(X), the result follows
by approximating f by f n = f 1{| f |≤n} and using dominated convergence theorem.
This completes the proof. �

Exercise 4.48 Deduce the previous result using Theorem 4.33 by identifying
X [σ ] as

∫
gdX for a suitable g ∈ L(X).

The next result shows that if we localize the concept of integrator, we do not get
anything new; i.e. if a process is locally a stochastic integrator, then it is already a
stochastic integrator.

Theorem 4.49 Suppose X is an adapted r.c.l.l.process such that there exist stopping
times τ n with τ n ≤ τ n+1 for all n and τ n ↑ ∞ and the stopped processes Xn = X [τ n ]
are stochastic integrators. Then X is itself a stochastic integrator.

Proof Fix f ∈ B(Ω̃,P) and form ≥ 1 letUm = ∫
f d Xm .Without loss of generality

we assume that τ 0 = 0. Then using (4.4.4), it follows that Um
t = Uk

t∧τm for m ≤ k.
We define J0( f ) by J0( f )0 = f0X0 and for m ≥ 1,
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J0( f )t = Um
t , τm−1 < t ≤ τm . (4.4.14)

It follows that

J0( f )t∧τm =
∫ t

0
f d Xm . (4.4.15)

Of course, for simple predictable f , J0( f ) = ∫ t
0 f d X and thus J0 is an extension

of JX . Now let f n be bounded predictable such that f n
bp−→ f . Using (4.4.15), for

n,m ≥ 1 we have

J0( f
n)t∧τm =

∫ t

0
f ndXm .

Writing Zn = J0( f n) and Z = J0( f ), it follows using (4.4.15) that Zn, n ≥ 1, and

Z satisfy(2.5.9) and hence by Lemma 2.75 it follows that Zn ucp−→ Z . We have thus

proved that f n
bp−→ f implies J0( f n)

ucp−→ J0( f ) and since J0( f ) agrees with JX ( f )
for simple predictable f , it follows that X is a stochastic integrator. �

We have seen a version of the dominated convergence theorem for stochastic
integrals. Here is another result on convergence that will be needed later.

Theorem 4.50 Suppose Y n,Y ∈ R
0(Ω, (F�),P), Y n ucp−→ Y and X is a stochastic

integrator. Then ∫
(Y n)−dX

ucp−→
∫

Y−dX.

Proof We have noted that Y− and (Y n)− belong to L(X). Let

bn = ducp(
∫

(Y n)−dX,

∫
Y−dX).

To prove that bn → 0 suffices to prove the following: For any subsequence {nk :
k ≥ 1}, there exists a further subsequence {m j : j ≥ 1} of {nk : k ≥ 1} (i.e. ∃ subse-
quence {k j : j ≥ 1} such that m j = nk j ) such that

bm j → 0. (4.4.16)

So now, given a subsequence {nk : k ≥ 1}, using ducp(Y nk ,Y ) → 0, let us choose
m j = nk j with k j+1 > k j and ducp(Ym j ,Y ) ≤ 2− j . Then as seen in the proof of
Theorem 2.71, this would imply

∞∑
j=1

[sup
t≤T

|Ym j
t − Yt |] < ∞, ∀T < ∞.

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
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Thus defining

Ht =
∞∑
j=1

| Ym j
t − Yt | (4.4.17)

it follows that (outside a fixed null set) the convergence in (4.4.17) is uniform on
t ∈ [0, T ] for all T < ∞ and as a result H is an r.c.l.l. adapted process. Thus the
processes (Ym j )− are dominated by (H + Y )− which is a locally bounded process, as
H + Y is an r.c.l.l.adapted process. Thus the dominated convergence Theorem 4.29
yields

bm j = ducp(
∫
(Ym j )−dX,

∫
Y−dX) → 0.

This completes the proof as explained above. �

Exercise 4.51 Show that if Y n ucp−→ Y , then there is a subsequence that is
dominated by a locally bounded process.

The subsequence technique used in the proof also yields the following result, which
will be useful alter.

Proposition 4.52 Let Y n ucp−→ Y , where Y n,Y are R
d -valued r.c.l.l. processes and

gn, g : [0,∞) × R
d �→ R be continuous functions such that gn converges to g uni-

formly on compact subsets of [0,∞) × R
d . Let Zn

t = gn(t,Y n
t ) and Zt = g(t,Yt ).

Then Zn ucp−→ Z.

Proof Like in the previous proof, let bn = ducp(Zn, Z) and given any subse-
quence {nk : k ≥ 1}, using ducp(Y nk ,Y ) → 0, choose m j = nk j with k j+1 > k j and
ducp(Ym j ,Y ) ≤ 2− j . It follows that

∞∑
j=1

[ sup
t≤T

|Ym j
t − Yt | ] < ∞, ∀T < ∞.

and so [ supt≤T |Ym j
t − Yt |] converges to zero for all T < ∞ a.s. and now uniform

convergence of gn to g on compact subsets would yield convergence of Zm j to Z
uniformly on [0, T ] for all T and thus bm j = ducp(Zm j , Z) converges to 0. Thus
every subsequence of {bn} has a further subsequence converging to zero and hence
limn→∞ bn = 0. �

Essentially the same proof as given above for Theorem 4.50 gives the following
result, only difference being that if X ∈ V, i.e. if Var[0,t](X) < ∞ for all t < ∞,
and Y is an r.c.l.l. adapted process, the integral

∫
YdX is defined in addition to∫

Y−dX , both are defined as Lebesgue–Stieltjes integrals while the later agrees with
the stochastic integral (as seen in Theorem 4.23).

Proposition 4.53 Suppose Y n,Y ∈ R
0(Ω, (F�),P), Y n ucp−→ Y and X ∈ V (a pro-

cess with finite variation paths). Then
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∫
(Y n)dX

ucp−→
∫

YdX.

Exercise 4.54 Let (Ω,F ,P) be a probability space with a filtration (F·). Let
W = (W 1, . . . ,Wd) be such that W j is a stochastic integrator on (Ω,F ,P)

for 1 ≤ j ≤ d. Let μ = P ◦ W−1. Let X denote the coordinate mappings on
(Dd ,B(Dd)) and let Dt = F X

t be the filtration generated by X and let P =
P(D·). Let X = (X1, . . . , Xd) denote the coordinatemappings on (Dd ,B(Dd)).

(i) Show that X j is a stochastic integrator on (Dd ,B(Dd), μ)with the filtration
(D·) for 1 ≤ j ≤ d.

(ii) Let f j be P(D·) measurable such that f j ∈ L(X j ). Let Z j be defined by
Z j
t = f j

t (W ). Show that Z j ∈ L(W j ) for 1 ≤ j ≤ d. (See Exercise 4.9).
(iii) Let h : Dd �→ R be a measurable mapping and g : Rd+1 �→ R be a

bounded continuous function, A ∈ B(Dd) and let T < ∞. Show that

EP[1A(W )g(
∫ T
0 f 1(W )dW 1, . . . ,

∫ T
0 f d(W )dWd , h(W ))]

= ∫
A g(

∫ T
0 f 1dX1, . . . ,

∫ T
0 f ddXd , h)dμ.

(4.4.18)

(iv) Show that (4.4.18) is true if g is a boundedmeasurable function or [0,∞)-
valued measurable function.
Hint: For simple processes u, v on (Dd ,B(Dd), μ), observe that

μ(|JX j (u) − JX j (v)| > ε) = P(|JW j (u) − JW j (v)| > ε).

(i) and (ii) follow from this. For (iii), note that it holds for simple processes
f 1, . . . , f d and that the class of processes f 1, . . . , f d such that (4.4.18)
is true is closed under bounded pointwise convergence. Usingmonotone
class theorem, deduce that (4.4.18) is true for all bounded predictable
f 1, . . . , f d . The general case follows by truncation. For (iv), the validity
for bounded measurable g follows from yet another application of mono-
tone class theorem.

4.5 Approximation by Riemann Sums

The next result shows that for an r.c.l.l. process Y and a stochastic integrator X ,
the stochastic integral

∫
Y−dX can be approximated by Riemann-like sums. The

difference is that the integrand must be evaluated at the lower end point of the
interval as opposed to any point in the interval in the Riemann–Stieltjes integral.
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Theorem 4.55 Let Y be an r.c.l.l.adapted process and X be a stochastic integrator.
Let

0 = tm0 < tm1 < . . . < tmn < . . . ; tmn ↑ ∞ as n ↑ ∞ (4.5.1)

be a sequence of partitions of [0,∞) such that for all T < ∞,

δm(T ) = ( sup
{n : tmn ≤T }

(tmn+1 − tmn )) → 0 as m ↑ ∞. (4.5.2)

Let

Zm
t =

∞∑
n=0

Ytmn ∧t (Xtmn+1∧t − Xtmn ∧t ) (4.5.3)

and Z = ∫
Y−dX. Note that for each t, m, the sum in (4.5.3) is a finite sum since

tmn ∧ t = t from some n onwards. Then

Zm ucp−→ Z (4.5.4)

or in other words

∞∑
n=0

Ytmn ∧t (Xtmn+1∧t − Xtmn ∧t )
ucp−→

∫ t

0
Y−dX.

Proof Let Ym be defined by

Ym
t =

∞∑
n=0

Ytmn ∧t1(tmn , tmn+1](t).

We will first prove ∫
YmdX = Zm . (4.5.5)

For this, let Vt = sups≤t |Y |. Then V is an r.c.l.l. adapted process, and hence V− is
locally bounded.

Let us fix m and let φk(x) = max(min(x, k),−k), so that |φk(x)| ≤ k for all
x ∈ R. Let

Uk
t =

k∑
n=0

φk(Ytmn ∧t )1(tmn ,tmn+1](t).

Then Uk ∈ S and

∫ t

0
UkdX =

k∑
n=0

φk(Ytmn ∧t )(Xtmn+1∧t − Xtmn ∧t ).
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Note thatUk converges pointwise (as k increases to∞) to Ym . Further, |Uk
t | ≤ V−

t =
V (t−) for all t and hence by the Dominated Convergence Theorem 4.29,

∫ t
0 U

kdX
converges to

∫
YmdX . On the other hand,

k∑
n=0

φk(Ytmn ∧t )(Xtmn+1∧t − Xtmn ∧t ) →
∞∑
n=0

Ytmn ∧t (Xtmn+1∧t − Xtmn ∧t ) pointwise.

This proves (4.5.5).
Now, Ym converges pointwise to Y− and are dominated by the locally bounded

process V−. Hence again by Theorem 4.29,

∫
YmdX

ucp−→
∫

Y−dX

which is same as (4.5.4). �

We will next show that the preceding result is true when the sequence of deter-
ministic partitions is replaced by a sequence of random partitions via stopping times.
For this, we need the following lemma.

Lemma 4.56 Let X be a stochastic integrator, Z be an r.c.l.l. adapted process and
τ be stopping time. Let

h = Zτ1(τ,∞). (4.5.6)

Then h is locally bounded predictable and

∫ t

0
hdX = Zτ∧t (Xt − Xτ∧t ). (4.5.7)

Proof We have seen in Proposition 4.1 that h is predictable. Since

sup
0≤s≤t

|hs | ≤ sup
0≤s≤t

|Z−
s |

and Z− is locally bounded, it follows that h is locally bounded and thus h ∈ L(X).
If Z is a bounded r.c.l.l. adapted process and τ takes finitely many values, then

easy to see that h belongs to S and that (4.5.7) is true. Now if τ is a bounded stopping
time, then for m ≥ 1, τm defined by

τm = 2−m([2mτ ] + 1) (4.5.8)

are stopping times, each taking finitely many values and τm ↓ τ . One can then verify
(4.5.7) by approximating τ by τm defined via (4.5.8) and then using the fact that
hm = Zτm1(τm ,∞) converges boundedly pointwise to h, validity of (4.5.7) for τm

implies the same for τ . For a general τ , we approximate it by τn = τ ∧ n. Thus, it
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follows that (4.5.6)–(4.5.7) are true for bounded r.c.l.l. adapted processes Z . For a
general Z , let

Zn = max(min(Z , n),−n).

Noting that hn = Zn
τ 1(τ,∞) converges to h and |hn| ≤ |h|, the validity of (4.5.7) for

Zn implies the same for Z by Theorem 4.29. �

Corollary 4.57 Let Z and τ be as in the previous lemma and σ be another stopping
time with τ ≤ σ . Let

g = Zτ1(τ,σ ]. (4.5.9)

Then ∫ t

0
gdX = Zτ∧t (Xt∧σ − Xt∧τ ) = Zτ (Xt∧σ − Xt∧τ ). (4.5.10)

The first equality follows from the observation that g = h1[0,σ ] where h is as in
Lemma 4.56 and hence

∫ t
0 gdX = (

∫ ·
0 hdX)t∧σ (using Lemma 4.36). The second

equality can be directly verified.

Exercise 4.58 Express 1(τ,σ ] as 1(τ,∞) − 1(σ,∞) and thereby deduce the above
Corollary from Lemma 4.56.

Corollary 4.59 Let X be a stochastic integrator and τ ≤ σ be stopping times. Let
ξ be a Fτ measurable random variable. Let

f = ξ1(τ,σ ].

Then f ∈ L(X) and ∫ t

0
f d X = ξ(Xt∧σ − Xt∧τ ).

Proof This follows from the Corollary 4.57 by taking Z = ξ1[τ,∞) and noting that
as shown in Lemma 2.41, Z is adapted. �

Definition 4.60 For δ > 0, a δ-partition for an r.c.l.l. adapted process Z is a
sequence of stopping times {τn; : n ≥ 0} such that 0 = τ0 < τ1 < . . . < τn <

. . . ; τn ↑ ∞ and

|Zt − Zτn | ≤ δ for τn ≤ t < τn+1, n ≥ 0. (4.5.11)

Remark 4.61 Given r.c.l.l.adapted processes Zi , 1 ≤ i ≤ k and δ > 0, we can
get a sequence of partitions {τn : n ≥ 0} such that {τn : n ≥ 0} is a δ partition
for each of Z1, Z2, . . . Zk . Indeed, let {τn : n ≥ 0} be defined inductively via
τ0 = 0 and

τn+1 = inf{t > τn : max(max
1≤i≤k

|Zi
t − Zi

τn
|, max

1≤i≤k
|Zi

t− − Zi
τn

|) ≥ δ}. (4.5.12)

https://doi.org/10.1007/978-981-10-8318-1_2
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Invoking Theorem 2.46, we can see that {τn : n ≥ 0} are stopping times and
that limn↑∞ τn = ∞.

Let δm ↓ 0 and for eachm, let {τm
n : n ≥ 0} be a δm-partition for Z . We implicitly

assume that δm > 0. Let

Zm
t =

∞∑
n=0

Zt∧τm
n
1(τm

n ,τm
n+1](t).

Then it follows that |Zm
t − Zt | ≤ δm and hence Zm ucp−→ Z−. For k ≥ 1, let

Zm,k
t =

k∑
n=0

Zt∧τm
n
1(τm

n ,τm
n+1](t).

Now, using Corollary 4.57 and linearity of stochastic integrals, we have

∫ t

0
Zm,kdX =

k∑
n=0

Zt∧τm
n
(Xτm

n+1∧t − Xτm
n ∧t ).

LetVt = sups≤t |Zs |. ThenV is r.c.l.l.and thus, as noted earlier,V− is locally bounded.
Easy to see that |Zm,k | ≤ V− and Zm,k converges pointwise to Zm . Hence by Theo-

rem 4.29,
∫ t
0 Zm,kdX

ucp−→ ∫ t
0 ZmdX . Thus

∫ t

0
ZmdX =

∞∑
n=0

Zt∧τm
n
(Xτm

n+1∧t − Xτm
n ∧t ). (4.5.13)

Since Zm converges pointwise to Z− and |Zn| ≤ V− with V− locally bounded,
invoking Theorem 4.29 it follows that

∫
ZmdX

ucp−→
∫

Z−dX. (4.5.14)

We have thus proved another version of Theorem 4.55.

Theorem 4.62 Let X be a stochastic integrator. Let Z be an r.c.l.l.adapted process.
Let δm ↓ 0 and for m ≥ 1 let {τm

n : n ≥ 0} be a δm-partition for Z. Then

∞∑
n=0

Zt∧τm
n
(Xτm

n+1∧t − Xτm
n ∧t )

ucp−→
∫ t

0
Z−dX. (4.5.15)

Remark 4.63 When
∑

m(δm)2 < ∞, say δm = 2−m , then the convergence in
(4.5.15) is stronger: it is uniform convergence on [0, T ] almost surely for
each T < ∞. We will prove this in Chap.6.

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_6
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4.6 Quadratic Variation of Stochastic Integrators

We now show that stochastic integrators also, like Brownian motion, have finite
quadratic variation.

Theorem 4.64 Let X be a stochastic integrator. Then there exists an adapted
increasing process A, written as [X, X ], such that

X2
t = X2

0 + 2
∫ t

0
X−dX + [X, X ]t , ∀t. (4.6.1)

Further, let δm ↓ 0 and for m ≥ 1 let {τm
n : n ≥ 0} be a δm-partition for X. Then

one has ∞∑
n=0

(Xτm
n+1∧t − Xτm

n ∧t )2
ucp−→ [X, X ]t . (4.6.2)

Proof For a, b ∈ R,
b2 − a2 = 2a(b − a) + (b − a)2.

Using this with b = Xτm
n+1∧t and a = Xτm

n ∧t and summing with respect to n, we get

X2
t = X2

0 + 2Vm
t + Qm

t

where

Vm
t =

∞∑
n=0

Xτm
n ∧t (Xτm

n+1∧t − Xτm
n ∧t )

and

Qm
t =

∞∑
n=0

(Xτm
n+1∧t − Xτm

n ∧t )2.

Note that after some n thatmay depend uponω ∈ Ω , τm
n > t and hence Xτm

n+1∧t = Xt .
In view of this, the two sums above have only finitely many nonzero terms.

By Theorem 4.62, Vm ucp−→ ∫
X−dX . Hence, writing

At = X2
t − X2

0 − 2
∫ t

0
X−dX, (4.6.3)

we conclude
Qm

t
ucp−→ At .

This proves (4.6.1). Remains to show that At is an increasing process. Fix ω ∈ Ω ,
s ≤ t , and note that if τm

j ≤ s < τm
j+1, then |Xs − Xτm

j
| ≤ δm and



4.6 Quadratic Variation of Stochastic Integrators 119

Qm
s =

j−1∑
n=0

(Xτm
n+1

− Xτm
n
)2 + (Xs − Xτm

j
)2

and

Qm
t =

j−1∑
n=0

(Xτm
n+1

− Xτm
n
)2 +

∞∑
n= j

(Xτm
n+1∧t − Xτm

n ∧t )2.

Thus
Qm

s ≤ Qm
t + δ2m . (4.6.4)

Since Qm ucp−→ A, it follows that A is an increasing process. �

Remark 4.65 From the identity (4.6.1), it follows that the process [X, X ] does
not depend upon the choice of partitions.

Definition 4.66 For a stochastic integrator X , the process [X, X ] obtained in
the previous theorem is called the quadratic variation of X .

From the definition of quadratic variation as in (4.6.2), it follows that for a stochastic
integrator X and a stopping time σ

[X [σ ], X [σ ]]t = [X, X ]t∧σ ∀t. (4.6.5)

For stochastic integrators X,Y , let us define cross-quadratic variation between
X,Y via the polarization identity

[X,Y ]t = 1

4
([X + Y, X + Y ]t − [X − Y, X − Y ]t ) (4.6.6)

By definition [X,Y ] ∈ V since it is defined as difference of two increasing processes.
Also, it is easy to see that [X,Y ] = [Y, X ].

By applying Theorem 4.64 to X + Y and X − Y and using that the mapping
( f, X) �→ ∫

f d X is bilinear one can deduce the following result.

Theorem 4.67 (Integration by Parts Formula) Let X,Y be stochastic integrators.
Then

XtYt = X0Y0 +
∫ t

0
Y−dX +

∫ t

0
X−dY + [X,Y ]t , ∀t. (4.6.7)

Let δm ↓ 0 and for m ≥ 1 let {τm
n : n ≥ 0} be a δm-partition for X and Y . Then one

has ∞∑
n=0

(Xτm
n+1∧t − Xτm

n ∧t )(Yτm
n+1∧t − Yτm

n ∧t )
ucp−→ [X,Y ]t . (4.6.8)
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Corollary 4.68 If X,Y are stochastic integrators, then so is Z = XY .

This follows from the integration by parts formula and Theorem 4.33.

Remark 4.69 Like (4.6.5), one also has for any stopping time σ and stochastic
integrators X,Y :

[X [σ ],Y ]t = [X,Y [σ ]]t = [X [σ ],Y [σ ]]t = [X,Y ]t∧σ ∀t. (4.6.9)

This follows easily from (4.6.8).

Exercise 4.70 For stochastic integrators X,Y and stopping times σ and τ

show that
[X [σ ],Y [τ ]] = [X,Y ][σ∧τ ].

Exercise 4.71 Let X1, X2, . . . , Xm be stochastic integrators and let p be a
polynomial in m variables. Then Z = p(X1, X2, . . . , Xm) is also a stochastic
integrator.

Corollary 4.72 Let X,Y be stochastic integrators. Then

(i) Δ[X, X ]t = ((ΔX)t )
2, for t > 0.

(ii)
∑

0<s≤t ((ΔX)s)
2 ≤ [X, X ]t < ∞.

(iii) Δ[X,Y ]t = (ΔX)t (ΔY )t for t > 0.
(iv) If X (or Y ) is a continuous process, then [X,Y ] is also a continuous process.

Proof For (i), using (4.6.1) and (4.3.7), we get for every t > 0

X2
t − X2

t− = 2Xt−(Xt − Xt−) + [X, X ]t − [X, X ]t−.

Using b2 − a2 − 2a(b − a) = (b − a)2, we get

(Xt − Xt−)2 = [X, X ]t − [X, X ]t−
which is same as (i). (i i) follows from (i) as [X, X ]t is an increasing process. (i i i)
follows from (i) via the polarization identity (4.6.6). And lastly, (iv) is an easy
consequence of (i i i). �

Remark 4.73 Let us note that by definition, [X, X ] ∈ V
+
0 and [X,Y ] ∈ V0. In

particular, [X, X ]0 = 0 and [X,Y ]0 = 0.

The next result shows that for a continuous process A ∈ V, [X, A] = 0 for all
stochastic integrators X .

Theorem 4.74 Let X be a stochastic integrator and A ∈ V, i.e. an r.c.l.l. process
with finite variation paths. Then

[X, A]t =
∑
0<s≤t

(ΔX)s(ΔA)s . (4.6.10)
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In particular, if X, A have no common jumps, then [X, A] = 0. This is clearly the
case if one of the two processes is continuous.

Proof Since A ∈ V, for {τm
n } as in Theorem 4.67 above one has

∞∑
n=0

Xτm
n ∧t (Aτm

n+1∧t − Aτm
n ∧t )

ucp−→
∫ t

0
X−d A

and ∞∑
n=0

Xτm
n+1∧t (Aτm

n+1∧t − Aτm
n ∧t )

ucp−→
∫ t

0+
XdA.

Using (4.6.8) we conclude

[X, A]t =
∫ t

0+
XdA −

∫ t

0
X−d A

and hence (4.6.10) follows. �

For stochastic integrators X,Y , let

j (X,Y )t =
∑
0<s≤t

(ΔX)s(ΔY )s .

The sum above is absolutely convergent in view of part (i i) Corollary 4.72. Clearly,
j (X, X) is an increasing process. Also we have seen that

j (X, X)t ≤ [X, X ]t . (4.6.11)

We can directly verify that j (X,Y ) satisfies the polarization identity

j (X,Y )t = 1

4
( j (X + Y, X + Y )t − j (X − Y, X − Y )t ). (4.6.12)

The identity (4.6.7) characterizes [X,Y ]t , and it shows that (X,Y ) �→ [X,Y ]t is
a bilinear form. The relation (4.6.8) also yields the parallelogram identity for [X,Y ]:
Lemma 4.75 Let X,Y be stochastic integrators. Then we have

[X + Y, X + Y ]t + [X − Y, X − Y ]t = 2([X, X ]t + [Y,Y ]t ), ∀t ≥ 0. (4.6.13)

Proof Let δm ↓ 0 and for m ≥ 1, let {τm
n : n ≥ 0} be a δm-partition for X and Y .

Take amn = (Xτm
n+1∧t − Xτm

n ∧t ), bmn = (Yτm
n+1∧t − Yτm

n ∧t ). Use the identity (a + b)2 +
(a − b)2 = 2(a2 + b2) with a = amn and b = bmn ; sum over n and take limit over m.
We will get the required identity by (4.6.2). �
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Exercise 4.76 Deduce (4.6.13) from the integration by parts formula (4.6.7).

Here is an analogue of the inequality |a2 − b2| ≤ √
2(a − b)2(a2 + b2).

Lemma 4.77 Let X,Y be stochastic integrators. Then we have

|[X, X ]t − [Y,Y ]t | ≤ √
2[X − Y, X − Y ]t ([X, X ]t + [Y,Y ]t ). (4.6.14)

Proof Let τm
n , amn , bmn be as in the proof of Lemma 4.75 above. Then we have

|
∑
n

(amn )2 −
∑
n

(bmn )2| ≤
∑
n

|(amn )2 − (bmn )2|

≤
∑
n

√
2(amn − bmn )2((amn )2 + (bmn )2)

≤
√
2

∑
n

(amn − bmn )2

√∑
n

((amn )2 + (bmn )2)

and taking limit over m, using (4.6.2), we get the required result (4.6.14). �

Also, using that

[aX + bY, aX + bY ]t ≥ 0 ∀a, b ∈ R

we can deduce that
|[X,Y ]t | ≤ √[X, X ]t [Y,Y ]t .

Indeed, one has to do this carefully (in view of the null sets lurking around). We can
prove a little bit more.

Theorem 4.78 Let X,Y be stochastic integrators. Then for any s ≤ t

Var(s,t]([X, Y ]) ≤ √
([X, X ]t − [X, X ]s).([Y, Y ]t − [Y, Y ]s), (4.6.15)

Var[s,t]([X, Y ]) ≤ √
([X, X ]t − [X, X ]s−).([Y, Y ]t − [Y, Y ]s−), (4.6.16)

and
Var[0,t]([X, Y ]) ≤ √[X, X ]t [Y, Y ]t , (4.6.17)

Var[0,t]( j (X, Y )) ≤ √[X, X ]t [Y, Y ]t . (4.6.18)

Proof Let

Ωa,b,s,r = {ω ∈ Ω : [aX + bY, aX + bY ]r (ω) ≥ [aX + bY, aX + bY ]s(ω)}

and
Ω0 = ∪{Ωa,b,s,r : s, r, a, b ∈ Q, r ≥ s}.
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Then it follows that P(Ω0) = 1 (since for any process Z , [Z , Z ] is an increasing
process). For ω ∈ Ω0, for 0 ≤ s ≤ r , s, r, a, b ∈ Q

(a2([X, X ]r − [X, X ]s) + b2([Y,Y ]r − [Y,Y ]s)+ 2ab([X,Y ]r − [X,Y ]s))(ω)≥0.

Since the quadratic form above remains positive, we conclude

|([X,Y ]r (ω) − [X,Y ]s(ω))|
≤ √

([X, X ]r (ω) − [X, X ]s(ω))([Y,Y ]r (ω) − [Y,Y ]s(ω)).
(4.6.19)

Since all the processes occurring in (4.6.19) are r.c.l.l., it follows that (4.6.19) is true
for all s ≤ r , s, r ∈ [0,∞).

Now given s < t and s = t0 < t1 < . . . < tm = t , we have

m−1∑
j=0

|[X,Y ]t j+1 − [X,Y ]t j |

≤
m−1∑
j=0

√
([X, X ]t j+1 − [X, X ]t j )([Y,Y ]t j+1 − [Y,Y ]t j )

≤√
([X, X ]t − [X, X ]s)([Y,Y ]t − [Y,Y ]s)

(4.6.20)

where the last step follows from Cauchy–Schwarz inequality and the fact that
[X, X ], [Y,Y ] are increasing processes. Now taking supremum over partitions of
[s, t] in (4.6.20) we get (4.6.15). For (4.6.16), recalling definition of Var[a,b](G) we
have

Var[s,t]([X,Y ]) = Var(s,t]([X,Y ]) + |(Δ[X,Y ])s |
≤ √

([X, X ]t − [X, X ]s)([Y,Y ]t − [Y,Y ]s) + |(ΔX)s(ΔY )s |
≤

√
([X, X ]t − [X, X ]s + (ΔX)2s )([Y,Y ]t − [Y,Y ]s + (ΔY )2s )

≤ √
([X, X ]t − [X, X ]s−)([Y,Y ]t − [Y,Y ]s−).

Now (4.6.17) follows from (4.6.16) taking s = 0. As for (4.6.18), note that

Var[0,t]( j (X,Y )) =
∑
0<s≤t

|(ΔX)s(ΔY )s |

≤
√ ∑

0<s≤t

(ΔX)2s

∑
0<s≤t

(ΔY )2s

≤√[X, X ]t [Y,Y ]t . �
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Corollary 4.79 For stochastic integrators X,Y , one has

|[X,Y ]t | ≤ √[X, X ]t [Y,Y ]t (4.6.21)

and √[X + Y, X + Y ]t ≤ √[X, X ]t + √[Y,Y ]t (4.6.22)

Proof Taking s = 0 and using |[X,Y ]t | ≤ Var[0,t]([X,Y ]) (4.6.21) follows from
(4.6.17). In turn using (4.6.21) we note that

[X + Y, X + Y ]t = [X, X ]t + [Y,Y ]t + 2[X,Y ]t
≤ [X, X ]t + [Y,Y ]t + 2

√[X, X ]t [Y,Y ]t
= (

√[X, X ]t + √[Y,Y ]t )2.

Thus (4.6.22) follows. �

The next inequality is a version of theKunita–Watanabe inequality thatwas proven
in the context of square integrable martingales.

Theorem 4.80 Let X,Y be stochastic integrators and let f, g be predictable pro-
cesses. Then for all T < ∞

∫ T

0
| fsgs |d|[X,Y ]|s ≤ (

∫ T

0
| fs |2d[X, X ]s) 1

2 (

∫ T

0
|gs |2d[Y,Y ]s) 1

2 . (4.6.23)

Proof Let us write At = |[X,Y ]|t = Var[0,t]([X,Y ]). Note A0 = 0 by definition
of quadratic variation. We first observe that (4.6.23) holds for simple predictable
processes f, g ∈ S. As seen in the proof of Theorem 4.33, we can assume that f, g
are given by (4.3.11) and (4.3.12). Using (4.6.15), it follows that for 0 ≤ s < t

|At − As | ≤ ([X, X ]t − [X, X ]s) 1
2 ([Y,Y ]t − [Y,Y ]s) 1

2

and hence

∫ T

0
| fsgs |d|[X,Y ]|s

=
k∑
j=0

|c j+1d j+1|(Ar j+1 − Ar j )

≤
k∑
j=0

|c j+1d j+1|([X, X ]r j+1 − [X, X ]r j )
1
2 ([Y,Y ]r j+1 − [Y,Y ]r j )

1
2
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≤(

k∑
j=0

c2j+1([X, X ]r j+1 − [X, X ]r j ))
1
2 (

k∑
j=0

d2
j+1([Y,Y ]r j+1 − [Y,Y ]r j ))

1
2

= (

∫ T

0
| fs |2d[X, X ]s) 1

2 · (

∫ T

0
|gs |2d[Y,Y ]s) 1

2 .

This proves (4.6.23) for f, g ∈ S. Now using functional version of monotone class
theorem, Theorem 2.66, one can deduce that (4.6.23) continues to hold for all
bounded predictable processes f, g. Finally, for general f, g, the inequality fol-
lows by approximating f, g by f n = f 1{| f |≤n} and gn = g1{|g|≤n}, respectively, and
using monotone convergence theorem (recall that integrals appearing in this result
are Lebesgue–Stieltjes integrals with respect to increasing processes.) �

Remark 4.81 Equivalent Probability Measures continued: Let X be a stochas-
tic integrator on (Ω,F ,P). Let Q be a probability measure equivalent to P.We
have seen in Remark 4.26 that X is also a stochastic integrator on (Ω,F ,Q)

and the class L(X) under the two measures is the same and for f ∈ L(X),
the stochastic integral

∫
f d X on the two spaces is identical.

It follows (directly from definition or from (4.6.1)) that the quadratic variation
of X is the same when X is considered on (Ω,F ,P) or (Ω,F ,Q).

4.7 Quadratic Variation of Stochastic Integrals

In this section,wewill relate the quadratic variation ofY = ∫
f d X with the quadratic

variation of X . We will show that for stochastic integrators X, Z and f ∈ L(X),
g ∈ L(Z)

[
∫

f d X,

∫
gdZ ] =

∫
f gd[X, Z ]. (4.7.1)

We begin with a simple result.

Lemma 4.82 Let X be a stochastic integrator, f ∈ L(X), 0 ≤ u < ∞, b be a Fu

measurable bounded random variable. Then

h = b1(u,∞) f

is predictable, h ∈ L(X) and

∫ t

0
b1(u,∞) f d X = b

∫ t

0
1(u,∞) f d X = b (

∫ t

0
f d X −

∫ u∧t

0
f d X). (4.7.2)

Proof When f ∈ S, validity of (4.7.2) can be verified directly as then h is also simple
predictable. Then, the class of f such that (4.7.2) is true can be seen to be closed
under bp-convergence and hence by Theorem 2.66, (4.7.2) is valid for all bounded
predictable processes. Finally, since b is bounded, say by c, |h| ≤ c| f | and hence

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
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h ∈ L(X). Now (4.7.2) can be shown to be true for all f ∈ L(X) by approximating
f by f n = f 1{| f |≤n} and using Dominated Convergence Theorem—Theorem 4.29.

�

Lemma 4.83 Let X, Z be a stochastic integrators, 0 ≤ u < ∞, b be a Fu measur-
able bounded random variable. Let g = b1(u,∞) and Y = ∫

gdX. Then

[Y, Z ]t =
∫ t

0
gsd[X, Z ]s . (4.7.3)

As a consequence,

Yt Zt =
∫ t

0
Zs−dYs +

∫ t

0
Ys−dZs +

∫ t

0
gsd[X, Z ]s . (4.7.4)

Proof Let {tmn : n ≥ 1}, m ≥ 1 be a sequence of partitions satisfying (4.5.1) and
(4.5.2) such that for each m, tmn = u for some n. For m ≥ 1, let

Am
t =

∞∑
n=0

(Xtmn+1∧t − Xtmn ∧t )(Ztmn+1∧t − Ztmn ∧t )

and

Bm
t =

∞∑
n=0

(Ytmn+1∧t − Ytmn ∧t )(Ztmn+1∧t − Ztmn ∧t ).

Noting that Yt = b(Xt − Xu∧t ), it follows that if s < t ≤ u, then (Yt − Ys) = 0 and
if u ≤ s < t then (Yt − Ys) = g (Xt − Xs) and as a consequence,

Bm
t = g (Am

t − Am
u∧t ).

Using (4.6.8), it now follows that

[Y, Z ]t = g([X, Z ]t − [X, Z ]u∧t ).

Of course this is same as (4.7.3). Now (4.7.4) follows from the integration by parts
formula and (4.7.3). �

Theorem 4.84 Let X,Y be stochastic integrators and let f, h be bounded pre-
dictable processes. Then

[
∫

f d X,

∫
hdY ]t =

∫ t

0
f hd[X,Y ]. (4.7.5)

Proof Fix a stochastic integrator Z and let K be the class of bounded predictable
processes f such that with
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Wt =
∫

f d X (4.7.6)

we have

Wt Zt = W0Z0 +
∫ t

0
W−dZ +

∫ t

0
Z−dW +

∫ t

0
fsd[X, Z ]s . (4.7.7)

Easy to see that K is a linear space and that it is closed under bounded pointwise
convergence of sequences. It trivially contains f = a1{0} where a is bounded F0

measurable and we have seen in Lemma 4.83 that K contains g = b1(u,∞), where
0 ≤ u < ∞ and b is Fu measurable bounded random variable. Since S is contained
in the linear span of such processes, it follows that S ⊆ K.

NowTheorem2.66 implies that (4.7.7) holds for all boundedpredictable processes
where W is given by (4.7.6). Comparing (4.7.7) with (4.6.7), we conclude that for
any stochastic integrator Z

[
∫

f d X, Z ] =
∫

f d[X, Z ]. (4.7.8)

For Z = ∫
hdY , we can use (4.7.8) to conclude

[Z , X ] =
∫

hd[Y, X ]

and using symmetry of the cross-quadratic variation [X,Y ], we conclude

[X, Z ] =
∫

hd[X,Y ]. (4.7.9)

The two Eqs. (4.7.8)–(4.7.9) together give

[∫ f d X,
∫
hdY ] = ∫

f d[X,
∫
hdY ]

= ∫
f hd[X,Y ]. (4.7.10)

�
We would like to show that (4.7.5) is true for all f ∈ L(X) and h ∈ L(Y ).

Theorem 4.85 Let X,Y be stochastic integrators and let f ∈ L(X), g ∈ L(Y ) and
let U = ∫

f d X, V = ∫
gdY . Then

[U, V ]t =
∫ t

0
f gd[X,Y ]. (4.7.11)

Proof Let us approximate f, g by f n = f 1{| f |≤n} and gn = g1{|g|≤n} and let Un =∫
f ndX , V n = ∫

gndY . Since f ∈ L(X) and g ∈ L(Y ), by definition Un ucp−→ U

https://doi.org/10.1007/978-981-10-8318-1_2
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and V n ucp−→ V . Now using Theorem 2.72 (also see the Remark following the result)
we can get a subsequence {nk} and a r.c.l.l. adapted increasing process H such that

|Unk
t | + |V nk

t | ≤ Ht ∀k ≥ 1. (4.7.12)

Using (4.7.5) for f n, gn (since they are bounded) we get invoking Theorem 4.33

Un
t V

n
t = Un

0 V
n
0 +

∫ t

0
Un

s−dV
n
s +

∫ t

0
V n
s−dU

n
s + [Un, V n]t

= Un
0 V

n
0 +

∫ t

0
Un

s−g
n
s dYs +

∫ t

0
V n
s− f ns d Xs +

∫ t

0
f ns g

n
s d[X,Y ]s .

(4.7.13)

Taking Y = X and g = f in (4.7.13) we get

(Un
t )2 = (Un

0 )2 + 2
∫ t

0
Un

s− f ns d Xs +
∫ t

0
( f ns )2d[X, X ]s . (4.7.14)

In (4.7.14),wewould like to take limit asn → ∞. Since ( f ns )2 = f 2s 1{| f |≤n} increases
to f 2s , using monotone convergence theorem, we get

∫ t

0
( f ns )2d[X, X ]s →

∫ t

0
f 2s d[X, X ]s . (4.7.15)

For the stochastic integral term, taking limit along the subsequence {nk} (chosen
so that (4.7.12) holds) and using H− f ∈ L(X) (see Corollary 4.44) and dominated
convergence theorem (Theorem 4.29), we get

∫ t

0
Unk

s− f n
k

s d Xs
ucp−→

∫ t

0
Us− fsd Xs . (4.7.16)

Thus putting together (4.7.14)–(4.7.16) along with Un ucp−→ U we conclude

(Ut )
2 = (U0)

2 + 2
∫ t

0
Us− fsd Xs +

∫ t

0
( fs)

2d[X, X ]s . (4.7.17)

This implies

[U,U ]t =
∫ t

0
( fs)

2d[X, X ]s . (4.7.18)

More importantly, this implies

∫ t

0
( fs(ω))2d[X, X ]s(ω) < ∞ ∀t < ∞ a.s. (4.7.19)

Likewise, we also have

https://doi.org/10.1007/978-981-10-8318-1_2
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∫ t

0
(gs(ω))2d[Y,Y ]s(ω) < ∞ ∀t < ∞ a.s. (4.7.20)

Now invoking Theorem 4.80 along with (4.7.19)–(4.7.20), we get

∫ t

0
| fs(ω)gs(ω)|d|[X,Y ]|s(ω) < ∞ ∀t < ∞ a.s. (4.7.21)

and then using dominated convergence theorem (for signed measures) we conclude

∫ t

0
f ns (ω)gns (ω)d[X,Y ]s(ω) →

∫ t

0
fs(ω)gs(ω)d[X,Y ]s(ω) ∀t < ∞ a.s.

(4.7.22)
In view of (4.7.22), taking limit in (4.7.13) along the subsequence {nk} and using
argument similar to the one leading to (4.7.17), we conclude

UtVt = U0V0 +
∫ t

0
Us−gsdYs +

∫ t

0
Vs− fsd Xs +

∫ t

0
fsgsd[X,Y ]s

which in turn implies

UtVt = U0V0 +
∫ t

0
Us−dVs +

∫ t

0
Vs−dUs +

∫ t

0
fsgsd[X,Y ]s

and hence that

[U, V ]t =
∫ t

0
fsgsd[X,Y ]s . �

The earlier proof contains a proof of the following theorem. Of course, this can also
be deduced by taking f = h and X = Y .

Theorem 4.86 Let X be stochastic integrator and let f ∈ L(X)and letU = ∫
f d X.

Then

[U,U ]t =
∫ t

0
f 2d[X, X ] (4.7.23)

Remark 4.87 In particular, it follows that for a stochastic integrator X , if f ∈
L(X) then ∫ t

0
f 2s d[X, X ]s < ∞ a.s. ∀t < ∞.

4.8 Ito’s Formula

Ito’s formula is a change of variable formula for stochastic integral. Let us look at
the familiar change of variable formula in usual calculus. Let G be a continuously
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differentiable function on [0,∞) with derivative G ′ = g and f be a continuously
differentiable function on R. Then

f (G(t)) = f (G(0)) +
∫ t

0
f ′(G(s))g(s)ds. (4.8.1)

This can be proven by observing that d
dt f (G(t)) = f ′(G(t))g(t) and using the funda-

mental theorem of integral calculus. What can we say when G(t) is not continuously
differentiable? Let us recast the change of variable formula as

f (G(t)) = f (G(0)) +
∫ t

0+
f ′(G(s))dG(s). (4.8.2)

Now this is true as long as G is a continuous function with finite variation. Fix t > 0
and let |G(s)| ≤ K for 0 ≤ s ≤ t . For ε > 0 and δ > 0 let

h(ε) = sup{| f ′(x1) − f ′(x2)| : −K ≤ x1, x2 ≤ K , |x1 − x2| ≤ ε},

a(δ) = sup{|G(t1) − G(t2)| : 0 ≤ t1, t2 ≤ t, |t1 − t2| ≤ δ},

so that h(a( t
n )) → 0 as n → ∞ in view of uniform continuity of f on [−K , K ] and

G on [0, t].
Let us write tni = i t

n . Now using the mean value theorem, we get

f (G(tni+1))− f (G(tni )) = f ′(θn
i )(G(tni+1) − G(tni ))

= [ f ′(G(tni )) + { f ′(θn
i ) − f ′(G(tni ))}](G(tni+1) − G(tni ))

(4.8.3)

where θn
i = G(tni ) + uni (G(tni+1) − G(tni )), for someuni , 0 ≤ uni ≤ 1.Now, it is easily

seen that

f (G(t)) − f (G(0)) =
n−1∑
i=0

[ f (G(tni+1)) − f (G(tni ))] (4.8.4)

and using dominated convergence theorem for Lebesgue–Stieltjes integrals, we have

lim
n→∞

n−1∑
i=0

[ f ′(G(tni ))(G(tni+1) − G(tni ))] =
∫ t

0+
f ′(G(s))dG(s). (4.8.5)

Since |G(tni+1) − G(tni )| ≤ a(tn−1), it follows that

|( f ′(θn
i ) − f ′(G(tni )))| ≤ h(a(tn−1)) (4.8.6)

since θn
i = G(tni ) + uni (G(tni+1) − G(tni )), with uni , 0 ≤ uni ≤ 1. Hence,



4.8 Ito’s Formula 131

|
n−1∑
i=0

[ f ′(θn
i ) − f ′(G(tni ))](G(tni+1) − G(tni ))|

≤ h(a(tn−1))

n−1∑
i=0

|G(tni+1) − G(tni )|

≤ h(a(tn−1))Var(0,t](G)

→ 0.

(4.8.7)

Now putting together (4.8.3)–(4.8.7) we conclude that (4.8.2) is true.
From the proof we see that unless the integrator has finite variation on [0, T ], the

sum of error terms may not go to zero. For a stochastic integrator, we have seen that
the quadratic variation is finite. This means we should keep track of first two terms in
Taylor expansion and take their limits (and prove that remainder goes to zero). Note
that (4.8.3) is essentially using Taylor expansion up to one term with remainder, but
we had assumed that f is only once continuously differentiable.

The following lemma is a crucial step in the proof of the Ito’s formula. First part
is proven earlier, stated here for comparison and ease of reference.

Lemma 4.88 Let X,Y be stochastic integrators and let Z be an r.c.l.l. adapted
process. Let δm ↓ 0 and for m ≥ 1 let {τm

n : n ≥ 0} be a δm-partition for X, Y and
Z. Then ∞∑

n=0

Zτm
n ∧t (Xτm

n+1∧t − Xτm
n ∧t )

ucp−→
∫ t

0
Z−dX (4.8.8)

and

∞∑
n=0

Zτm
n ∧t (Xτm

n+1∧t − Xτm
n ∧t )(Yτm

n+1∧t − Yτm
n ∧t )

ucp−→
∫ t

0
Z−d[X,Y ]. (4.8.9)

Remark 4.89 Observe that if Z is continuous, then
∫ t
0 Z−dX = ∫ t

0+ ZdX .

Proof The first part (4.8.8) has been proved in Theorem 4.62. The second part for
the special case Z = 1 is proven in Theorem 4.67. For (4.8.9), note that

An
t = Bn

t − C n
t − Dn

t

where

An
t =

∞∑
n=0

Zτm
n ∧t (Xτm

n+1∧t − Xτm
n ∧t )(Yτm

n+1∧t − Yτm
n ∧t ),
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Bn
t =

∞∑
n=0

Zτm
n ∧t (Xτm

n+1∧t Yτm
n+1∧t − Xτm

n ∧t Yτm
n ∧t ),

C n
t =

∞∑
n=0

Zτm
n ∧t Xτm

n ∧t (Yτm
n+1∧t − Yτm

n ∧t ),

Dn
t =

∞∑
n=0

Zτm
n ∧t Yτm

n ∧t (Xτm
n+1∧t − Xτm

n ∧t ).

Recall that XY is a stochastic integrator as seen in Corollary 4.68. Now using (4.8.8),
we have

Bn
t

ucp−→
∫ t

0
Z−d(XY )

C n
t

ucp−→
∫ t

0
Z−X−dY =

∫ t

0
Z−dS where S =

∫
X−dY

Dn
t

ucp−→
∫ t

0
Z−Y−dX =

∫ t

0
Z−dR where R =

∫
Y−dX.

Here we have used Theorem 4.33. Using bilinearity of integral, it follows that

An
t

ucp−→
∫ t

0
Z−dV

where Vt = XtYt − X0Y0 − ∫ t
0 X−dY − ∫ t

0 Y
−dX . As seen in Theorem 4.67, Vt =

[X,Y ]t . This completes the proof. �

Remark 4.90 For each m ≥ 1, let {τm
n : m ≥ 1} be a partition of [0,∞) via

stopping times

0 = τm
0 < τm

1 < τm
2 . . . ; τm

n ↑ ∞, m ≥ 1

such that for all n,m
(τm

n+1 − τm
n ) ≤ 2−m,

then (4.8.9) holds for all r.c.l.l.adapted processes Z and stochastic integrators
X,Y .

We will first prove a single variable change of variable formula for a continuous
stochastic integrator and then go on to the multivariate version.

Now let us fix a twice continuously differentiable function f . The standard version
of Taylor’s theorem gives

f (b) = f (a) + f ′(a)(b − a) +
∫ b

a
f ′′(s)(b − s)ds. (4.8.10)
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However, we need the expansion up to two terms with an estimate on the remainder.
Let us write

f (b) = f (a) + f ′(a)(b − a) + 1

2
f ′′(a)(b − a)2 + R f (a, b) (4.8.11)

where

R f (a, b) =
∫ b

a
[ f ′′(s) − f ′′(a)](b − s)ds.

Since f ′′ is assumed to be continuous, for any K < ∞, f ′′ is uniformly continuous
and bounded on [−K , K ] so that

lim
δ→0

Λ f (K , δ) = 0

where

Λ f (K , δ) = sup{|R f (a, b)(b − a)−2| : a, b ∈ [−K , K ], 0 < |b − a| < δ}.

Here is the univariate version of the Ito’s formula for continuous stochastic inte-
grators.

Theorem 4.91 (Ito’s formula) Let f be a twice continuously differentiable function
on R and X be a continuous stochastic integrator. Then

f (Xt ) = f (X0) +
∫ t

0
f ′(Xu)1{u>0}dXu + 1

2

∫ t

0
f ′′(Xu)d[X, X ]u .

Corollary 4.92 Equivalently, we can write the formula as

f (Xt ) = f (X0) +
∫ t

0+
f ′(Xu)dXu + 1

2

∫ t

0
f ′′(Xu)d[X, X ]u .

Proof Fix t . Let tni = ti
n for i ≥ 0, n ≥ 1. Let

Un
i = f (Xtni+1

) − f (Xtni ), (4.8.12)

V n
i = f ′(Xtni )(Xtni+1

− Xtni ), (4.8.13)

Wn
i = 1

2
f ′′(Xtni )(Xtni+1

− Xtni )
2, (4.8.14)

Rn
i = R f (Xtni , Xtni+1

). (4.8.15)

Then one has
Un

i = V n
i + Wn

i + Rn
i , (4.8.16)
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n−1∑
i=0

Un
i = f (Xt ) − f (X0). (4.8.17)

Further using (4.8.8) and (4.8.9) (see Remark 4.89), we get

n−1∑
i=0

V n
i →

∫ t

0
f ′(Xu)1{u>0}dXu in probability, (4.8.18)

n−1∑
i=0

Wn
i → 1

2

∫ t

0
f ′′(Xu)d[X, X ]u in probability. (4.8.19)

It suffices to prove that,

n−1∑
i=0

Rn
i → 0 in probability. (4.8.20)

Observe that
|Rn

i (ω)| ≤ |R f (Xtni (ω), Xtni+1
(ω))|.

For each ω, u �→ Xu(ω) is uniformly continuous on [0, t] and hence

δn(ω) = [sup
i

|Xtni+1
(ω) − Xtni (ω)| ] → 0.

Let Kt (ω) = sup0≤u≤t |Xu(ω)|. Now

|Rn
i (ω)| ≤ Λ f (Kt (ω), δn(ω))(Xtni+1

− Xtni )
2

and hence
n−1∑
i=0

|Rn
i (ω)| ≤ Λ f (Kt (ω), δn(ω))

n−1∑
i=0

(Xtni+1
− Xtni )

2.

Since
n−1∑
i=0

(Xtni+1
− Xtni )

2 → [X, X ]t in probability

and δn(ω) → 0, it follows that (4.8.20) is valid completing the proof. �

Applying the Ito’s formula with f (x) = xm , m ≥ 2, we get

Xm
t = Xm

0 +
∫ t

0
mXm−1

u 1{u>0}dXu + m(m − 1)

2

∫ t

0
Xm−2
u 1{u>0}d[X, X ]u
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and taking f (x) = exp(x) we get

exp(Xt ) = exp(X0) +
∫ t

0+
exp(Xu)dXu + 1

2

∫ t

0
exp(Xu)d[X, X ]u .

We now turn to the multidimensional version of the Ito’s formula. Its proof given
below is in the same spirit as the one given above in the one-dimensional case and
is based on the Taylor series expansion of a function. This idea is classical, and the
proof given here is a simplification of the proof presented in Metivier [50]. A similar
proof was also given in Kallianpur and Karandikar [32].

We will first prove the required version of Taylor’s theorem. Here, | · | denotes
the Euclidean norm on R

d , U will denote a fixed open convex subset of Rd , and
C1,2([0,∞) ×U ) denotes the class of functions f : [0,∞) ×U �→ R that are once
continuously differentiable in t ∈ [0,∞) and twice continuously differentiable in
x ∈ U . Also, for f ∈ C1,2([0,∞) × U), f0 denotes the partial derivative of f in
the t variable, f j denotes the partial derivative of f w.r.t. j th coordinate of x =
(x1, . . . , xd), and f jk denotes the partial derivative of f j w.r.t. kth coordinate of
x = (x1, . . . , xd).

Lemma 4.93 Let f ∈ C1,2([0,∞) ×U ). Define h : [0,∞) ×U ×U → R as fol-
lows. For t ∈ [0,∞), y = (y1, . . . , yd), x = (x1, . . . , xd) ∈ U, let

h(t, y, x) = f (t, y) − f (t, x) −
d∑
j=1

(y j − x j ) f j (t, x)

− 1

2

d∑
j,k=1

(y j − x j )(yk − xk) f jk(t, x).

(4.8.21)

Then there exist continuous functions g jk : [0,∞) ×U ×U → R such that for t ∈
[0,∞), y = (y1, . . . , yd), x = (x1, . . . , xd) ∈ U,

h(t, y, x) =
d∑

j,k=1

g jk(t, y, x)(y
j − x j )(yk − xk). (4.8.22)

Further, the following holds. Define for T < ∞, K ⊆ U and δ > 0,

Γ (T, K , δ) = sup{ |h(t, y, x)|
|y − x |2 : 0 ≤ t ≤ T, x ∈ K , y ∈ K , 0 < |x − y| ≤ δ}

and

Λ(T, K ) = sup{ |h(t, y, x)|
|y − x |2 : 0 ≤ t ≤ T, x ∈ K , y ∈ K , x �= y}.

Then for T < ∞ and a compact subset K ⊆ U, we have

Λ(T, K ) < ∞
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and
lim
δ↓0 Γ (T, K , δ) = 0.

Proof Fix t ∈ [0,∞). For 0 ≤ s ≤ 1, define

g(s, y, x) = f (t, x + s(y − x)) − f (t, x) − s
d∑
j=1

(y j − x j ) f j (t, x)

− s2

2

d∑
j,k=1

(y j − x j )(yk − xk) f jk(t, x)

where x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d . Then g(0, y, x)=0 and g(1, y, x)

= h(t, y, x).Writing d
ds g = g′ and d2

ds2 g = g′′, we can check that g′(0, y, x) = 0 and

g′′(s, y, x) =
d∑

j,k=1

( f jk(t, x + s(y − x)) − f jk(t, x))(y
j − x j )(yk − xk).

Noting that g(0, y, x) = g′(0, y, x) = 0, by Taylor’s theorem (see remainder form
given in Eq. (4.8.11)) we have

h(t, y, x) = g(1, y, x)

=
∫ 1

0
(1 − s)g′′(s, y, x)ds.

(4.8.23)

Thus (4.8.22) is satisfied where {g jk} are defined by

g jk(t, y, x) =
∫ 1

0
(1 − s)( f jk(t, x + s(y − x)) − f jk(t, x))ds. (4.8.24)

The desired estimates on h follow from (4.8.22) and (4.8.24). �

Theorem 4.94 (Ito’s Formula for Continuous Stochastic Integrators) Let U ⊆ R
d

be a convex open set and let f ∈ C1,2([0,∞) ×U ). Let Xt = (X1
t , . . . , X

d
t ) be an

U-valued continuous process where each X j is a stochastic integrator. Then

f (t, Xt ) = f (0, X0) +
∫ t

0
f0(s, Xs)ds +

d∑
j=1

∫ t

0+
f j (s, Xs)dX

j
s

+ 1

2

d∑
j=1

d∑
k=1

∫ t

0
f jk(s, Xs)d[X j , Xk]s .

(4.8.25)
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Proof Suffices to prove the equality (4.8.25) for a fixed t a.s. since both sides are
continuous processes. Once again let tni = ti

n and

V n
i =

d∑
j=1

f j (t
n
i , Xtni )(X

j
tni+1

− X j
tni
)

Wn
i = 1

2

d∑
j,k=1

f jk(t
n
i , Xtni )(X

j
tni+1

− X j
tni
)(Xk

tni+1
− Xk

tni
)

Rn
i = h(tni , Xtni , Xtni+1

)

From the definition of h—(4.8.21)—it follows that

f (tni , Xtni+1
) − f (tni , Xtni ) = V n

i + Wn
i + Rn

i (4.8.26)

Now

f (t, Xt ) − f (0, X0) =
n−1∑
i=0

( f (tni+1, Xtni+1
) − f (tni , Xtni ))

=
n−1∑
i=0

( f (tni+1, Xtni+1
) − f (tni , Xtni+1

))

+
n−1∑
i=0

( f (tni , Xtni+1
) − f (tni , Xtni ))

=
n−1∑
i=0

(Un
i + V n

i + Wn
i + Rn

i )

in view of (4.8.26), where

Un
i = f (tni+1, Xtni+1

) − f (tni , Xtni+1
)

=
∫ tni+1

tni

f0(u, Xtni+1
)du

(4.8.27)

and hence, by the dominated convergence theorem for Lebesgue integrals, we have

n−1∑
i=0

Un
i →

∫ t

0
f0(s, Xs)ds. (4.8.28)

Using (4.8.8) and (4.8.9), we get (see Remark 4.89)

n−1∑
i=0

V n
i →

d∑
j=1

∫ t

0+
f j (s, Xs)dX

j
s in probability (4.8.29)
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and
n−1∑
i=0

Wn
i → 1

2

d∑
j,k=1

∫ t

0
f jk(s, Xs)d[X j , Xk]s in probability. (4.8.30)

In view of these observations, the result, namely (4.8.25), would follow once we
show that

n−1∑
i=0

Rn
i → 0 in probability. (4.8.31)

Now let K t,ω = {Xs(ω) : 0 ≤ s ≤ t} and δn(ω) = supi |(Xtni+1
(ω) − Xtni (ω))|. Then

K t,ω is compact, δn(ω) → 0 and hence by Lemma 4.93 for every ω ∈ Ω

Γ (K t,ω, δn(ω)) → 0. (4.8.32)

Since
|Rn

i | ≤ Γ (K t,ω, δn(ω))|Xtni+1
(ω) − Xtni (ω)|2

we have
n−1∑
i=0

|Rn
i | ≤ Γ (K t,ω, δn(ω))

n−1∑
i=0

|Xtni+1
(ω) − Xtni (ω)|2.

The first factor above converges to 0 pointwise as seen in (4.8.32), and the second
factor converges to

∑d
j=1[X j , X j ]t in probability, and we conclude that (4.8.31) is

true completing the proof as noted earlier. �

Theorem 4.95 (Ito’s Formula for r.c.l.l. Stochastic Integrators) Let U be a convex
open subset of Rd . Let f ∈ C1,2([0,∞) ×U ). Let X1, . . . , Xd be stochastic inte-
grators and Xt := (X1

t , . . . , X
d
t ). Further suppose both X and X− are U-valued.

Then

f (t, Xt ) = f (0, X0) +
∫ t

0
f0(s, Xs−)ds +

d∑
j=1

∫ t

0+
f j (s, Xs−)dX j

s

+ 1

2

d∑
j=1

d∑
k=1

∫ t

0
f jk(s, Xs−)d[X j , Xk]s

+
∑
0<s≤t

{ f (s, Xs) − f (s, Xs−) −
d∑
j=1

f j (s, Xs−)ΔX j
s

−
d∑
j=1

d∑
k=1

1

2
f jk(s, Xs−)(ΔX j

s )(ΔXk
s )}.

(4.8.33)
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Proof Let us begin by examining the last term. Firstly, what appears to be a sum
of uncountably many terms is really a sum of countable number of terms since the
summand is zero whenever Xs = Xs−. Also, the last term equals

Dt =
∑
0<s≤t

h(s, Xs, Xs−) (4.8.34)

where h is defined by (4.8.21). By Lemma 4.93 for 0 < s ≤ t

|h(s, Xs(ω), Xs−(ω))| ≤ Λ(K t,ω)|ΔXs(ω)|2

where

K t,ω = {Xs(ω) : 0 ≤ s ≤ T } ∪ {Xs−(ω) : 0 ≤ s ≤ T } (4.8.35)

Here K t,ω is compact (see Exercise 2.1) and thus by Lemma 4.93, Λ(K t,ω) < ∞.
As a consequence, we have

∑
0<s≤t

|h(s, Xs(ω), Xs−(ω))| ≤ Λ(K t,ω)
∑
0<s≤t

|ΔXs(ω)|2

and invoking Corollary 4.72 we conclude that series in (4.8.34) converges absolutely,
a.s. The rest of the argument is on the lines of the proof in the case of continuous
stochastic integrators except that this time the remainder term after expansion up
to two terms does not go to zero yielding an additional term. Also, the proof given
below requires use of partitions via stopping times.

For each n ≥ 1, define a sequence {τ n
i : i ≥ 1} of stopping times inductively as

follows: τ n
0 = 0 and for i ≥ 0,

τ n
i+1 = inf{t > τ n

i : max{|Xt − Xτ n
i
|, |Xt− − Xτ n

i
|, |t − τ n

i |} ≥ 2−n} (4.8.36)

Let us note that each τ n
i is a stopping time (see Theorem 2.46),

0 = τ n
0 < τ n

1 < . . . < τ n
m < . . . ,

∀n ≥ 1, τ n
m ↑ ∞ as m → ∞

and
(τ n

i+1 − τ n
i ) ≤ 2−n.

Thus, {τ n
m : m ≥ 0}, n ≥ 1 satisfies the conditions of Lemma 4.88.

Fix t > 0. On the lines of the proof in the continuous case, let

Un
i = f (τ n

i+1 ∧ t, Xτ n
i+1∧t ) − f (τ n

i ∧ t, Xτ n
i+1∧t )

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
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V n
i =

d∑
j=1

f j (τ
n
i ∧ t, Xτ n

i ∧t )(X
j
τ n
i+1∧t − X j

τ n
i ∧t )

Wn
i = 1

2

d∑
j,k=1

f jk(τ
n
i ∧ t, Xτ n

i ∧t )(X
j
τ n
i+1∧t − X j

τ n
i ∧t )(X

k
τ n
i+1∧t − Xk

τ n
i ∧t )

Rn
i = h(τ n

i ∧ t, Xτ n
i+1∧t , Xτ n

i ∧t )

Then
f (τ n

i+1 ∧ t, Xτ n
i+1∧t ) − f (τ n

i ∧ t, Xτ n
i ∧t ) = Un

i + V n
i + Wn

i + Rn
i

and hence

f (t, Xt ) − f (0, X0) =
∞∑
i=0

(Un
i + V n

i + Wn
i + Rn

i ). (4.8.37)

Now,
∞∑
i=0

Un
i =

∞∑
i=0

∫ τ n
i+1∧t

τ n
i ∧t

f0(s, Xτ n
i+1∧t )ds

and hence for all ω ∞∑
i=0

Un
i (ω) →

∫ t

0
f0(s, Xs(ω))ds

Since for every ω, Xs(ω) = Xs−(ω) for all but countably many s, we can conclude

∞∑
i=0

Un
i →

∫ t

0
f0(s, Xs−)ds in probability. (4.8.38)

By Lemma 4.88 and the remark following it,

∞∑
i=0

V n
i →

d∑
j=1

∫ t

0+
f j (s, Xs−)dX j

s (4.8.39)

and
∞∑
i=0

Wn
i → 1

2

d∑
j=1

d∑
k=1

∫ t

0
f jk(s, Xs−)d[X j , Xk] (4.8.40)

in probability. In view of (4.8.37)–(4.8.40), to complete the proof of the result it
suffices to prove
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∞∑
i=0

Rn
i =

∞∑
i=0

h(τ n
i ∧ t, Xτ n

i+1∧t , Xτ n
i ∧t ) →

∑
0<s≤t

h(s, Xs, Xs−). (4.8.41)

Let us partition indices i into three sets: h(τ n
i ∧ t, Xτ n

i+1∧t , Xτ n
i ∧t ) is zero, is small

and is large as follows:

Hn(ω) = {i ≥ 0 : τ n
i+1(ω) ∧ t = τ n

i (ω) ∧ t}
En(ω) = {i /∈ Hn : |ΔXτ n

i+1∧t (ω)| ≤ 2 · 2−n}
Fn(ω) = {i /∈ Hn : |ΔXτ n

i+1∧t (ω)| > 2 · 2−n}.

For i ∈ Hn(ω), h(τ n
i (ω) ∧ t, Xτ n

i+1∧t (ω), Xτ n
i ∧t (ω)) = 0 and thus writing

Bn(ω) =
∑

i∈En(ω)

h(τ n
i (ω) ∧ t, Xτ n

i+1∧t (ω), Xτ n
i ∧t (ω)),

C n(ω) =
∑

i∈Fn(ω)

h(τ n
i (ω) ∧ t, Xτ n

i+1∧t (ω), Xτ n
i ∧t (ω))

we observe that ∞∑
i=0

Rn
i = Bn + C n.

Note that for any j if u, v ∈ (τ n
j , τ

n
j+1), then |Xu − Xv| ≤ 2.2−n as Xu, Xv are within

2−n distance from Xτ n
j
. As a result, for any v ∈ (τ n

j , τ
n
j+1), |Xv− − Xv| ≤ 2.2−n .

Thus, if |ΔXs(ω)| > 2 · 2−n for s ∈ (0, t], then s must equal τ n
j (ω) ∧ t for some j

with i = j − 1 ∈ Fn , i.e.

if s ∈ (0, t] and |ΔXs(ω)| > 2 · 2−n then s = τ n
i+1 ∧ t for i ∈ Fn(ω). (4.8.42)

Hence for i ∈ En(ω),

|Xτ n
i+1∧t (ω) − Xτ n

i ∧t (ω)| ≤|(X−)τ n
i+1∧t (ω) − Xτ n

i ∧t (ω)| + |ΔXτ n
i+1∧t (ω)|

≤3 · 2−n

and hence

|Bn(ω)| ≤
∑

i∈En(ω)

|h(τ n
i (ω) ∧ t, Xτ n

i+1∧t (ω), Xτ n
i ∧t (ω))|

≤ Γ (K t,ω, 3 · 2−n)
∑
i

|Xτ n
i+1∧t (ω) − Xτ n

i ∧t (ω)|2
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where K t,ω defined by (4.8.35) is compact. Since
∑

i |Xτ n
i+1∧t − Xτ n

i ∧t |2 converges to∑
j [X j , X j ]t in probability and Γ (K t,ω, 3 · 2−n) → 0 for all ω, invoking

Lemma 4.93 it follows that

Bn → 0 in probability.

Thus to complete the proof of (4.8.41), it would suffice to show that

C n →
∑
0<s≤t

h(s, Xs, Xs−) in probability. (4.8.43)

Let G(ω) = {s ∈ (0, t] : |ΔXs(ω)| > 0}. Since X is an r.c.l.l. process, G(ω) is a
countable set for every ω. Fix ω and for s ∈ G(ω), define

ans (ω) :=
∑

i∈Fn(ω)

h(τ n
i (ω) ∧ t, Xτ n

i+1(ω)∧t , Xτ n
i ∧t (ω))1{(τ n

i+1(ω)∧t)=s}.

Then

C n(ω) =
∑

i∈Fn(ω)

h(τ n
i ∧ t(ω), Xτ n

i+1∧t (ω), Xτ n
i ∧t (ω)) =

∑
s∈G(ω)

ans (ω).

If |ΔXs(ω)| > 2 · 2−n , then ans (ω) = h(τ n
i (ω) ∧ t, Xs(ω), Xτ n

i ∧t (ω)) with s = τ n
i+1

(ω) ∧ t (as seen in (4.8.42)) and hence

ans (ω) → h(s, Xs(ω), Xs−(ω)) for all ω. (4.8.44)

For i ∈ Fn(ω),

|Xτ n
i+1∧t (ω) − Xτ n

i ∧t (ω)| ≤|(X−)τ n
i+1∧t (ω) − Xτ n

i ∧t (ω)| + |ΔXτ n
i+1∧t (ω)|

≤2−n + |ΔXτ n
i+1∧t (ω)|

≤2|ΔXτ n
i+1∧t (ω)|

Thus if |ans (ω)| �= 0, then s = τ n
i+1(ω) ∧ t for some i ∈ Fn(ω) and then

|ans (ω)| ≤Λ(K t,ω)|Xτ n
i+1∧t (ω) − Xτ n

i ∧t (ω)|2
≤4Λ(K t,ω)|ΔXτ n

i+1∧t (ω)|2
= 4Λ(K t,ω)|ΔXs(ω)|2.

(4.8.45)

Let Cs(ω) = 4Λ(K t,ω)|ΔXs(ω)|2. Then
∑
s

Cs(ω) = 4Λ(K t,ω)
∑
s

|ΔXs(ω)|2
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and hence by Corollary 4.72

∑
s

Cs(ω) < ∞ a.s.

Using Weierstrass’s M-test (series version of the dominated convergence theorem)
along (4.8.44) and (4.8.45), we get

C n(ω) =
∑

s∈G(ω)

ans (ω) →
∑

s∈G(ω)

h(s, Xs(ω), Xs−(ω)) a.s. (4.8.46)

We have proved that the convergence in (4.8.43) holds almost surely and hence in
probability. This completes the proof. �

Corollary 4.96 Let f , X be as in Theorem 4.95. Then Zt = f (t, Xt ) is a stochastic
integrator.

Proof In the Ito’s formula (4.8.33) that expresses f (t, Xt ), it is clear that the terms
involving integral are stochastic integrators. We had seen that the last term is

Dt =
∑
0<s≤t

h(s, Xs, Xs−)

where h is defined by (4.8.21). By Lemma 4.93

|h(s, Xs(ω), Xs−(ω))| ≤ Λ(K t,ω)|ΔXs(ω)|2

for 0 < s ≤ t , where

K t,ω = {Xs(ω) : 0 ≤ s ≤ t} ∪ {Xs−(ω) : 0 ≤ s ≤ t}.

Hence
Var[0,T ](D)(ω) ≤ Λ(KT,ω)[X, X ]T .

Thus D is a process with finite variation and hence is a stochastic integrator, com-
pleting the proof. �

We have seen earlier in Corollary 4.72 that Δ[X,Y ]t = (ΔX)t (ΔY )t . Thus care-
fully examining the right-hand side of the Ito’s formula (4.8.33), we see that we are
adding and subtracting a term

d∑
j=1

d∑
k=1

1

2
f jk(s, Xs−)(ΔX j

s )(ΔXk
s ).

Let us introduce for now in an ad hoc manner [X,Y ](c) for stochastic integrators
X,Y :



144 4 Stochastic Integration

[X,Y ](c)t = [X,Y ]t −
∑
0<s≤t

(ΔX)s(ΔY )s . (4.8.47)

Later we will show that this is the cross-quadratic variation of continuous martingale
parts of X and Y (see Theorem 8.83). For now we observe the following.

Lemma 4.97 Let X,Y be stochastic integrators and h be a locally bounded pre-
dictable process. Then [X,Y ](c) is a continuous process and further

∫
hd[X,Y ](c) =

∫
hd[X,Y ] −

∑
0<s≤t

hs(ΔX)s(ΔY )s . (4.8.48)

Proof Continuity of [X,Y ](c) follows from its definition (4.8.47) and part (i i i) of
Corollary 4.72. The identity (4.8.48) for simple functions h ∈ S follows by direct
verification and hence follows for all bounded predictable processes by monotone
class theorem. �

Using Lemma 4.97, we can recast the Ito’s formula in an alternate form.

Theorem 4.98 (Ito’s formula for r.c.l.l. stochastic integrators)
Let U be a convex open subset of Rd . Let f ∈ C1,2([0,∞) ×U ). Let X1, . . . , Xd

be stochastic integrators Xt := (X1
t , . . . , X

d
t ) is U-valued. Further, suppose X− is

also U-valued. Then

f (t, Xt ) = f (0, X0) +
∫ t

0
f0(s, Xs−)ds +

d∑
j=1

∫ t

0+
f j (s, Xs−)dX j

s

+ 1

2

d∑
j=1

d∑
k=1

∫ t

0+
f jk(s, Xs−)d[X j , Xk](c)

+
∑
0<s≤t

{ f (s, Xs) − f (s, Xs−) −
d∑
j=1

f j (s, Xs−)ΔX j
s }.

(4.8.49)

Exercise 4.99 Let S be a (0,∞)-valued continuous stochastic integrator.
Show that Rt = (St )−1 is also a stochastic integrator and

Rt = R0 −
∫ t

0+
(Ss)

−2dSs +
∫ t

0+
(Ss)

−3d[S, S]s .

Exercise 4.100 Let S be a (0,∞)-valued r.c.l.l.stochastic integrator with St− >

0 for t > 0. Show that Rt = (St )−1 is also a stochastic integrator and

Rt = R0 −
∫ t

0+
(Ss−)−2dSs +

∫ t

0+
(Ss−)−3d[S, S](c)s +

∑
0<s≤t

u(Ss, Ss−)

where u(y, x) = 1
y − 1

x + (y − x) 1
x2 .

https://doi.org/10.1007/978-981-10-8318-1_8
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Exercise 4.101 Let X be a continuous stochastic integrator and let St =
exp(Xt − 1

2 [X, X ]t ).
(i) Show that S satisfies

St = exp(X0) +
∫ t

0+
SudXu . (4.8.50)

Hint: Apply Ito’s formula for f (X, [X, X ]) for suitable function f .
(ii) Let Z satisfy

Zt = exp(X0) +
∫ t

0+
ZudXu . (4.8.51)

Show that Z = S.
Hint: Let Yt = Zt exp(−Xt + 1

2 [X, X ]t ) and applying Ito’s formula, con-
clude that Yt = Y0 = 1.

(iii) Show that

Xt = X0 +
∫ t

0+
S−1
u dSu .

(iv) Let Rt = (St )−1. Show that R satisfies

Rt = (S0)
−1 −

∫ t

0+
(Su)

−1dXu +
∫ t

0+
(Su)

−1d[X, X ]u (4.8.52)

which in turn is same as (see also Exercise 4.99)

Rt = (S0)
−1 −

∫ t

0+
(Su)

−2dSu +
∫ t

0+
(Su)

−3d[S, S]u . (4.8.53)

Hint: Use part (i) above and Rt = exp(Yt − 1
2 [Y,Y ]t ) where Yt = −Xt +

[X, X ]t .
Exercise 4.102 Let X,Y be a (0,∞)-valued continuous stochastic integrators
and let U, V be solutions to

Ut = exp(X0) +
∫ t

0+
UudXu (4.8.54)

and

Vt = exp(Y0) +
∫ t

0+
VudYu . (4.8.55)
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Let Wt = UtVt . Show that W is the unique solution to

Wt = exp(X0Y0) +
∫ t

0+
WudXu +

∫ t

0+
WudYu +

∫ t

0+
Wud[X,Y ]u . (4.8.56)

4.9 The Emery Topology

On the class of stochastic integrators, we define a natural metric dem as follows. Let
S1 be the class of simple predictable processes f such that | f | ≤ 1. For stochastic
integrators X,Y , let

dem(X,Y ) = sup{ducp(
∫

f d X,

∫
f dY ) : f ∈ S1} (4.9.1)

Easy to see that dem is a metric bounded by 1 on the class of stochastic integrators.
This metric was defined by Emery [16] and the induced topology is called the Emery
topology. If Xn converges to X in dem metric, we will write it as Xn em−→ X . Taking
f = 1[0,T ] in (4.9.1) and then taking limit as T ↑ ∞, it follows that

ducp(X,Y ) ≤ dem(X,Y ) (4.9.2)

and thus convergence in Emery topology implies convergence in ducp metric. If A is
an increasing process, then it is easy to see that dem(A, 0) ≤ ducp(A, 0) and hence
we have

dem(A, 0) = ducp(A, 0). (4.9.3)

Let us define a metric dvar on V as follows: for B,C ∈ V

dvar (B,C) = ducp(Var(B − C), 0). (4.9.4)

Lemma 4.103 Let B,C ∈ V. Then

dem(B,C) ≤ dvar (B,C).

Proof Note that for any predictable f with | f | ≤ 1

|
∫ T

0
f d B −

∫ T

0
f dC | ≤ Var[0,T ](B − C).

The result follows from this observation. �

As a consequence of (2.5.2)–(2.5.3), it can be seen that dem(Xn, X) → 0 if and
only if for all T > 0, δ > 0

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
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lim
n→∞[ sup

f :∈S1
P( sup

0≤t≤T
|
∫ t

0
f d Xn −

∫ t

0
f d X | > δ)] = 0 (4.9.5)

and likewise that {Xn} is Cauchy in dem is and only if for all T > 0, δ > 0

lim
n,k→∞[ sup

f :∈S1
P( sup

0≤t≤T
|
∫ t

0
f d Xn −

∫ t

0
f d Xk | > δ)] = 0. (4.9.6)

Theorem 4.104 For a bounded predictable process f with | f | ≤ 1 one has

ducp(
∫

f d X,

∫
f dY ) ≤ dem(X,Y ). (4.9.7)

Proof LetK1 be the class of bounded predictable processes for which (4.9.7) is true.
Then using the dominated convergence theorem it follows that K1 is closed under
bp-convergence. Using the definition of ducp we can conclude that K1 contains S1.

Let K denote the class of bounded predictable processes g such that the process
g̃ defined by g̃ = max(min(g, 1),−1) ∈ K1. Then it is easy to see that K is closed
under bp-convergence and contains S. ThusK is the class of all bounded predictable
processes g and hence K1 contains all predictable processes bounded by 1. �

Corollary 4.105 If Xn, X are stochastic integrators such that Xn em−→ X then for all
T > 0, δ > 0, η > 0, there exists n0 such that for n ≥ n0, we have

sup
f :∈K1

P( sup
0≤t≤T

|
∫ t

0
f d Xn −

∫ t

0
f d X | > δ) < η (4.9.8)

where K1 is the class of predictable processes bounded by 1.

Linearity of the stochastic integral and the definition of the metric dem yields the
inequality

dem(U + V, X + Y ) ≤ dem(U, X) + dem(V,Y )

which in turn implies that if Xn em−→ X and Y n em−→ Y then (Xn + Y n)
em−→ (X + Y ).

We will now prove an important property of the metric dem .

Theorem 4.106 The space of stochastic integrators is complete under the metric
dem.

Proof Let {Xn} be aCauchy sequence indem metric. Then by (4.9.2) it is also Cauchy
in ducp metric and so by Theorem 2.71 there exists an r.c.l.l.adapted process X such

that Xn ucp−→ X . We will show that X is a stochastic integrator and Xn em−→ X .
Let an = supk≥1 dem(Xn, Xn+k). Then an → 0 since Xn is Cauchy in dem . For

f ∈ B(Ω̃,P), consider Y n( f ) = ∫
f d Xn . Then (in view of (4.9.7)) for bounded

predictable f with | f | ≤ c, we have

https://doi.org/10.1007/978-981-10-8318-1_2
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ducp(Y n( f ),Y n+k( f )) ≤ c an, ∀k ≥ 1 (4.9.9)

and hence for bounded predictable processes f , {Y n( f )} is Cauchy in ducp and hence
by Theorem 2.71, Y n( f ) converges to say Y ( f ) ∈ R

0(Ω, (F�),P) and

ducp(Y n( f ),Y ( f )) ≤ can, for all predictable f, | f | ≤ c. (4.9.10)

For simple predictable f , we can directly verify that Y ( f ) = JX ( f ). We will

show (using the standard ε
3 ) argument that Y ( f m)

ucp−→ Y ( f ) if f m
bp−→ f and { f m}

are uniformly bounded. Y ( f ) would then be the required extension in the definition

of stochastic integrator proving that X is a stochastic integrator. Let us fix f m
bp−→ f

where { f m} are uniformly bounded. Dividing by the uniform upper bound if neces-
sary, we can assume that | f m | ≤ 1. We wish to show that ducp(Y ( f m),Y ( f )) → 0
as m → ∞.

Given ε > 0, first choose and fix n∗ such that an∗ < ε
3 . Then

ducp(Y ( f m),Y ( f )) ≤ ducp(Y ( f m),Y n∗
( f m)) + ducp(Y n∗

( f m),Y n∗
( f ))

+ ducp(Y n∗
( f ),Y ( f ))

≤ an∗ + ducp(Y n∗
( f m),Y n∗

( f )) + an∗

≤ ε

3
+ ducp(Y n∗

( f m),Y n∗
( f )) + ε

3
.

(4.9.11)

Since f m
bp−→ f and { f m} is bounded by 1,

∫
f mdXn∗ ucp−→ ∫

f d Xn∗
and hence we

can choose m∗ (depends upon n∗ which has been chosen and fixed earlier) such that
for m ≥ m∗ one has

ducp(Y n∗
( f m),Y n∗

( f )) ≤ ε

3

and hence using (4.9.11) we get for m ≥ m∗,

ducp(Y ( f m),Y ( f )) ≤ ε.

Thus,Y ( f ) is the required extension of {∫ f d X : f ∈ S}proving that X is a stochas-
tic integrator and

Y ( f ) =
∫

f d X.

Recalling that Y n( f ) = ∫
f d Xn , Eq. (4.9.10) implies

dem(Xn, X) ≤ an

with an → 0. This completes the proof of completeness of dem . �

https://doi.org/10.1007/978-981-10-8318-1_2
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We will now strengthen the conclusion in Theorem 4.50 by showing that the
convergence is actually in the Emery topology.

Theorem 4.107 Suppose Y n,Y ∈ R
0(Ω, (F�),P), Y n ucp−→ Y and X is a stochastic

integrator. Then ∫
(Y n)−dX em−→

∫
Y−dX.

Proof As noted in Theorem 4.33,
∫
(Y n)−dX and

∫
Y−dX are stochastic integrators.

Further, we need to show that for T < ∞, δ > 0

lim
n→∞[ sup

f :∈S1
P( sup

0≤t≤T
|
∫ t

0
(Y n)− f d X −

∫ t

0
Y− f d X | > δ)] = 0. (4.9.12)

We will prove this by contradiction. Suppose (4.9.12) is not true. Then there exists
an ε and a subsequence {nk} such that

sup
f :∈S1

P( sup
0≤t≤T

|
∫ t

0
(Y nk )− f d X −

∫ t

0
Y− f d X | > δ) > ε ∀k ≥ 1. (4.9.13)

For each k get f k ∈ S1 such that

P( sup
0≤t≤T

|
∫ t

0
(Y nk )− f kd X −

∫ t

0
Y− f kd X | > δ) > ε. (4.9.14)

Now let gk = (Y nk − Y )− f k . Since Y n ucp−→ Y and f k are uniformly bounded by 1,

it follows that gk
ucp−→ 0 and hence by Theorem 4.50,

P( sup
0≤t≤T

|
∫ t

0
(Y nk )− f kd X −

∫ t

0
Y− f kd X | > δ) → 0.

This contradicts (4.9.14). This proves (4.9.12). �

We will show that indeed Y n ucp−→ Y and Xn em−→ X implies that
∫
Y ndXn em−→∫

YdX . We will first prove a lemma and then go on to this result.

Lemma 4.108 Suppose Un ∈ R
0(Ω, (F�),P) be such that

sup
n≥1

sup
0≤s≤t

|Un
s | ≤ Ht

where H ∈ R
0(Ω, (F�),P) is an increasing process. Let Xn, X be stochastic inte-

grators such that Xn em−→ X. Let Zn = ∫
(Un)−dXn and Wn = ∫

(Un)−dX. Then
(Zn − Wn)

em−→ 0.
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Proof Note that in view of Theorem 4.33 for bounded predictable f

∫ t

0
f d Zn −

∫ t

0
f dWn =

∫
(Un)− f d Xn −

∫
(Un)− f d X.

So we need to show (see (4.9.5)) for T < ∞, δ > 0 and ε > 0, ∃n0 such that for
n ≥ n0 we have

sup
f :∈S1

P( sup
0≤t≤T

|
∫ t

0
(Un)− f d Xn −

∫ t

0
(Un)− f d X | > δ) < ε. (4.9.15)

Recall, S1 is the class of predictable processes that are bounded by 1.
First, get λ < ∞ such that

P(HT ≥ λ) ≤ ε

2

and let a stopping time σ be defined by

σ = inf{t > 0 : Ht ≥ λ or Ht− ≥ λ} ∧ (T + 1).

Then we have
P(σ < T ) ≤ P(HT ≥ λ) ≤ ε

2

and for f ∈ S1 writing hn = (Un)− f 1
λ
1[0,σ ] we see that

P( sup
0≤t≤T

|
∫ t

0
(Un)− f d Xn −

∫ t

0
(Un)− f d X | > δ) (4.9.16)

≤P( sup
0≤t≤σ∧T

|
∫ t

0
(Un)− f d Xn −

∫ t

0
(Un)− f d X | > δ) + P(σ < T )

≤P( sup
0≤t≤σ∧T

|
∫ t

0
hndXn −

∫ t

0
hndX | >

δ

λ
) + ε

2
.

Finally, since Xn em−→ X , invoking Corollary 4.105 get n0 such that for n ≥ n0 one
has

sup
g∈K1

P( sup
0≤t≤T

|
∫ t

0
gdXn −

∫ t

0
gdX | >

δ

λ
) <

ε

2

where K1 is the class of predictable processes bounded by 1. Since hn ∈ K1, using
(4.9.16) it follows that

P( sup
0≤t≤T

|
∫ t

0
(Un)− f d Xn −

∫ t

0
(Un)− f d X | > δ) < ε.
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Note that the choice of λ and n0 did not depend upon f ∈ K1 and hence (4.9.15)
holds completing the proof. �

Here is our main result that connects convergence in the Emery topology and
stochastic integration.

Theorem 4.109 Let Y n,Y ∈ R
0(Ω, (F�),P) be such that Y n ucp−→ Y and let Xn, X

be stochastic integrators such that Xn em−→ X. Let Zn = ∫
(Y n)−dXn and Z =∫

Y−dX. Then Zn em−→ Z.

Proof We have seen in Theorem 4.107 that

∫
(Y n)−dX −

∫
Y−dX em−→ 0.

Thus suffices to prove that

∫
(Y n)−dXn −

∫
(Y n)−dX em−→ 0. (4.9.17)

Let bn = dem(
∫
(Y n)−dXn,

∫
(Y n)−dX). To prove that bn → 0 suffices to prove

the following: (see proof of Theorem 4.50) For any subsequence {nk : k ≥ 1}, there
exists a further subsequence {m j : j ≥ 1} of {nk : k ≥ 1} (i.e. there exists a subse-
quence {k j : j ≥ 1} such that m j = nk j ) such that

bm j = dem(

∫
(Ym j )−dXm j ,

∫
(Ym j )−dX) → 0.

So now, given a subsequence {nk : k ≥ 1}, using ducp(Y nk ,Y ) → 0, let us choose
m j = nk j with k j+1 > k j and ducp(Ym j ,Y ) ≤ 2− j for each j ≥ 1. Then as seen
earlier, this would imply

∞∑
j=1

[sup
t≤T

|Ym j
t − Yt |] < ∞, ∀T < ∞.

Thus defining

Ht = sup
0≤s≤t

[
∞∑
j=1

|Ym j
s − Ys | + |Ys |]

we have that H is an r.c.l.l.process and |Ym j | ≤ H . Then by Lemma 4.108, it follows
that ∫

(Ym j )−dXm j −
∫

(Ym j )−dX em−→ 0.

This proves bm j → 0 and thus (4.9.17), completing the proof of the theorem. �
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Essentially the same arguments also proves the following:

Proposition 4.110 Let Y n,Y ∈ R
0(Ω, (F�),P) be such that Y n ucp−→ Y and let

Xn, X ∈ V be such that dvar (Xn, X) → 0. Let Zn = ∫
(Y n)dXn and Z = ∫

YdX.
Then

dvar (Z
n, Z) → 0.

In particular,
dem(Zn, Z) → 0.

We will now show that X �→ [X, X ] and (X,Y ) �→ [X,Y ] are continuous map-
pings in the Emery topology.

Theorem 4.111 Suppose Xn, X,Y n,Y are stochastic integrators such that Xn em−→
X, Y n em−→ Y . Then

dvar ([Xn,Y n], [X,Y ]) → 0 (4.9.18)

and as a consequence
[Xn,Y n] em−→ [X,Y ]. (4.9.19)

Proof Let Un = Xn − X . Then dem(Un, 0) → 0 implies that ducp(Un, 0) → 0 and

hence as noted earlier in Proposition 4.52 (Un)2
ucp−→ 0. Also, by Theorem 4.109,∫

(Un)−dUn ucp−→ 0. Since

[Un,Un] = (Un)2 − 2
∫

(Un)−dUn,

it follows that [Un,Un] ucp−→ 0 and so

dvar ([Xn − X, Xn − X ], 0) → 0. (4.9.20)

Now, (4.6.17) gives

Var[0,T ]([Un, Z ]) ≤ √[Un,Un]T [Z , Z ]T
and hence [Un,Un] ucp−→ 0 implies that for all stochastic integrators Z

dvar ([Un, Z ], 0) → 0.

Since Un = Xn − X , one has [Un, Z ] = [Xn, Z ] − [X, Z ] and so

dvar ([Xn, Z ] − [X, Z ], 0) → 0. (4.9.21)
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Noting that

[Xn, Xn] = [Xn − X, Xn − X ] + 2[Xn, X ] − [X, X ]

we have

dvar ([Xn, Xn], [X, X ])
= dvar ([Xn, Xn] − [X, X ], 0)
= dvar ([Xn − X, Xn − X ] + [Xn, 2X ] − [X, 2X ], 0)
≤ dvar ([Xn − X, Xn − X ], 0) + dvar ([Xn, 2X ] − [X, 2X ], 0).

Thus, using (4.9.20) and (4.9.21) it follows that

dvar ([Xn, Xn], [X, X ]) → 0. (4.9.22)

Now the required relation (4.9.18) follows from (4.9.22) by polarization identity
(4.6.6). �

The following result is proven on similar lines.

Theorem 4.112 Suppose Xn, X,Y n,Y are stochastic integrators such that Xn em−→
X, Y n em−→ Y . Then

dvar ( j (X
n,Y n), j (X,Y )) → 0. (4.9.23)

Proof As seen in (4.6.11)

j (Xn − X, Xn − X)t ≤ [Xn − X, Xn − X ]t
and hence by Theorem 4.111,

dvar ( j (X
n − X, Xn − X), 0) → 0.

Now proceeding as in the proof of Theorem 4.111, we can first prove that for all
stochastic integrators Z ,

dvar ( j (X
n, Z), j (X, Z)) → 0.

Once again, noting that

j (Xn, Xn) = j (Xn − X, Xn − X) + 2 j (Xn, X) − j (X, X)

we conclude that
dvar ( j (X

n, Xn), j (X, X)) → 0.
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The required result, namely (4.9.23), follows from this by polarization identity
(4.6.12). �

Next we will prove that (Xt ) �→ ( f (t, Xt )) is a continuous mapping in the Emery
topology for smooth functions f . Here is a lemma that would be needed in the proof.

Lemma 4.113 Let Xn,Y n be stochastic integrators such that Xn em−→ X, Y n em−→ Y .

Suppose Zn is a sequence of r.c.l.l. processes such that Zn ucp−→ Z. Let

An
t =

∑
0<s≤t

Zn
s (ΔXn)s(ΔY n)s

At =
∑
0<s≤t

Zs(ΔX)s(ΔY )s .

Then dvar (An, A) → 0.

Proof Note that writing Bn = j (Xn,Y n) and B = j (X,Y ), we have

An =
∫

ZndBn, A =
∫

ZdB.

We have seen in (4.9.23) that dvar (Bn, B) → 0. The conclusion now follows from
Proposition 4.110. �

Theorem 4.114 Let X (n) = (X1,n, X2,n, . . . , Xd,n) be a sequence of R
d -valued

r.c.l.l. processes such that X j,n are stochastic integrators for 1 ≤ j ≤ d, n ≥ 1. Let

X j,n em−→ X j , 1 ≤ j ≤ d.

Let f ∈ C1,2([0,∞) × R
d). Let

Zn
t = f (t, X (n)

t ), Zt = f (t, Xt )

where X = (X1, X2, . . . , Xd), Then Zn em−→ Z.

Proof By Ito’s formula, (4.8.33) (see also (4.8.34)), we can write

Zn
t = Zn

0 + An
t + Y n

t + Bn
t + V n

t , Zt = Z0 + At + Yt + Bt + Vt

where

An
t =

∫ t

0
f0(s, X

(n)
s )ds

At =
∫ t

0
f0(s, Xs)ds
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Y n
t =

d∑
j=1

∫ t

0+
f j (s, X

(n)
s− )dX j,n

s

Yt =
d∑
j=1

∫ t

0+
f j (s, Xs−)dX j

s

Bn
t = 1

2

d∑
j=1

d∑
k=1

∫ t

0+
f jk(s, X

(n)
s− )d[X j,n, Xk,n]s

Bt = 1

2

d∑
j=1

d∑
k=1

∫ t

0
f jk(s, Xs−)d[X j , Xk]s

V n =
∑
0<s≤t

h(s, X (n)
s , X (n)

s− )

V =
∑
0<s≤t

h(s, Xs, Xs−).

Since Xn em−→ X , it follows that Xn
0 converges to X0 in probability and hence Zn

0
converges to Z0 in probability.

By continuity of f0, f j , f jk (the partial derivatives of f (t, x)w.r.t.t , x j and x j , xk ,
respectively), and Proposition 4.52 we have

f0(·, X (n)
� )

ucp−→ f0(·, X �);
f j (·, X (n)

� )
ucp−→ f j (·, X �), 1 ≤ j ≤ d;

f jk(·, X (n)
� )

ucp−→ f jk(·, X �), 1 ≤ j, k ≤ d.

Also, X (n) em−→ X implies that for all j, k, 1 ≤ j, k ≤ d, [X j,n, Xk,n] em−→ [X j , Xk]
as seen in (4.9.19), Theorem 4.111. Thus, by Theorem 4.109, it follows that

An em−→ A, Y n em−→ Y, Bn em−→ B. (4.9.24)

If Xn, X were continuous processes so that V n, V are identically equal to zero then
the result follows from (4.9.24). For the r.c.l.l.case, recall that h can be expressed as

h(t, y, x) =
d∑

j,k=1

g jk(t, y, x)(y
j − x j )(yk − xk)

where g jk are defined by (4.8.24). Thus,
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V n =
d∑

j,k=1

∑
0<s≤t

g jk(s, X
(n)
s , X (n)

s− )(ΔX j,n)s(ΔXk,n)s,

V =
d∑

j,k=1

∑
0<s≤t

g jk(s, Xs, Xs−)(ΔX j )s(ΔXk)s .

Now Lemma 4.113 implies that dvar (V n, V ) → 0 and as a consequence, V n em−→ V .
Now combining this with (4.9.24) we finally get Zn em−→ Z . �
Essentially the same proof (invoking Proposition 4.52) would yield the slightly

stronger result. Recall that for g ∈ C1,2([0,∞) × U), g0 denotes the partial derivative
of g in the t variable, g j denotes the partial derivative of g w.r.t. j th coordinate of
x = (x1, . . . , xd), and g jk denotes the partial derivative of g j w.r.t.kth coordinate of
x = (x1, . . . , xd).

Theorem 4.115 Let X (n) = (X1,n, X2,n, . . . , Xd,n) be a sequence of R
d -valued

r.c.l.l. processes such that X j,n are stochastic integrators for 1 ≤ j ≤ d, n ≥ 1 such
that

X j,n em−→ X j , 1 ≤ j ≤ d.

Let X = (X1, X2, . . . , Xd). Let f n, f ∈ C1,2([0,∞) × R
d) be functions such that

f n, f n0 , f
n
j , f

n
jk converge to f , f0, f j , f jk (respectively) uniformly on compact subsets

of [0,∞) × R
d . Let

Zn
t = f n(t, X (n)

t ), Zt = f (t, Xt ).

Then Zn em−→ Z.

4.10 Extension Theorem

We have defined stochastic integrator as an r.c.l.l.process X for which JX defined by
(4.2.1), (4.2.2) for f ∈ S admits an extension to B(Ω̃,P) satisfying (4.2.3). Indeed,
just assuming that JX satisfies

f n
bp−→ 0 implies JX ( f n)

ucp−→ 0 (4.10.1)

it can be shown that JX admits a required extension. The next exercise gives steps
to construct such an extension. The steps are like the usual proof of Caratheodory
extension theorem from measure theory. This exercise can be skipped on the first
reading.

Exercise 4.116 Let X be an r.c.l.l. adapted process. Let JX ( f ) be defined by
(4.2.1), (4.2.2) for f ∈ S. Suppose X satisfies
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f n ∈ S, f n
bp−→ 0 implies JX ( f n)

ucp−→ 0. (4.10.2)

For f ∈ S, let
ΓX ( f ) = sup{ducp(JX (g), 0) : |g| ≤ | f |} (4.10.3)

and for ξ ∈ B(Ω̃,P), let

Γ ∗
X

(ξ) = inf{
∞∑
n=1

ΓX (g
n) : gn ∈ S, |ξ | ≤

∞∑
n=1

|gn|}. (4.10.4)

Let
A = {ξ ∈ B(Ω̃,P) : ∃ f m ∈ S s.t. Γ ∗

X
(ξ − f m) → 0}

(i) Let f n, f ∈ S. Show that

f n
bp−→ f implies JX ( f n)

ucp−→ JX ( f ). (4.10.5)

(ii) Let f, f 1, f 2 ∈ S and c ∈ R. Show that

ΓX ( f ) = ΓX (| f |). (4.10.6)

ΓX (c f ) = |c|ΓX (| f |). (4.10.7)

| f 1| ≤ | f 2| ⇒ ΓX ( f
1) ≤ ΓX ( f

2). (4.10.8)

ΓX ( f
1 + f 2) ≤ ΓX ( f

1) + ΓX ( f
2). (4.10.9)

(iii) Show that for ξ1, ξ2 ∈ B(Ω̃,P)

Γ ∗
X

(ξ1 + ξ2) ≤ Γ ∗
X

(ξ1) + Γ ∗
X

(ξ2).

(iv) Show that A is a vector space.

(v) Let f n ∈ S for n ≥ 1 be such that f n
bp−→ 0. Show that

ΓX ( f
n) → 0. (4.10.10)

(vi) Let hn, h ∈ S be such that hn
bp−→ h. Show that

ΓX (h
n) → ΓX (h). (4.10.11)

(vii) Let f n ∈ S be such that f n ≤ f n+1 ≤ K for all n, where K is a constant.
Show that ∀ε > 0 ∃n∗ such that for m, n ≥ n∗, we have

ΓX ( f
m − f n) < ε. (4.10.12)
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[Hint: Prove by contradiction. If not true, get ε > 0 and subsequences
{nk}, {mk} both increasing to ∞ such that

ΓX ( f
nk − f m

k
) ≥ ε ∀k ≥ 1.

Observe that gk defined by gk = f n
k − f m

k
satisfy gk

bp−→ 0.]
(viii) For ξ 1, ξ 2 ∈ B(Ω̃,P)

|ξ 1| ≤ |ξ 2| ⇒ Γ ∗
X

(ξ 1) ≤ Γ ∗
X

(ξ 2). (4.10.13)

(ix) Let ξ j , ξ ∈ B(Ω̃,P) be such that ξ = ∑∞
j=1 |ξ j |. Then

Γ ∗
X

(

∞∑
j=1

ξ j ) ≤
∞∑
j=1

Γ ∗
X

(ξ j ). (4.10.14)

(x) Let g ∈ S and f n ∈ S, n ≥ 1, satisfy

|g| ≤
∞∑
n=1

| f n|. (4.10.15)

Show that

ΓX (|g|) ≤
∞∑
k=1

ΓX (| f k |). (4.10.16)

[Hint: Let gn = min(|g|,∑n
k=1 | f k |) and note that gn

bp−→ |g|.]
(xi) For f ∈ S show that

Γ ∗
X

( f ) = ΓX ( f ). (4.10.17)

(xii) For f ∈ S show that

ducp(JX ( f ), 0) ≤ Γ ∗
X

( f ). (4.10.18)

(xiii) For ξ ∈ A, define
JX (ξ) = lim

m→∞ JX ( f m)

in ducp where f m ∈ S are such that Γ ∗
X

(ξ − f m) → 0. Show that JX is
well defined on A and that

ducp((JX (ξ), 0) ≤ Γ ∗
X

(ξ) ∀ξ ∈ A. (4.10.19)

(xiv) Let hm = 1[0,m]. If ξ ∈ B(Ω̃,P) is such that |ξ | ≤ K , then for eachm ≥ 1
show that

Γ ∗
X

(ξ) ≤ ΓX (K |hm |) + 2−m+1. (4.10.20)
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(xv) Let ξ ∈ B(Ω̃,P) and let a j ∈ R be such that a j → 0. Show that

lim
j→∞ Γ ∗

X
(a jξ) = 0. (4.10.21)

(xvi) Let ξ, ξ n ∈ B(Ω̃,P) for n ≥ 1 be such that ξ n → ξ uniformly. Show that

lim
n→∞ Γ ∗

X
(ξ n − ξ) = 0. (4.10.22)

(xvii) Let ξ ∈ B(Ω̃,P) and ξ n ∈ A be such that limm→∞ Γ ∗
X

(ξm − ξ) = 0.
Show that ξ ∈ A.

(xviii) Let ξ n ∈ A be such that ξ n ≤ ξ n+1 ∀n ≥ 1 and let

ξ = lim
n→∞ ξ n ∈ B(Ω̃,P). (4.10.23)

(a) Given ε′ > 0, show that there exists a sequence {gm} in S such that
gn ≤ gn+1 ∀n ≥ 1 and Γ ∗

X
(gn − ξ n) ≤ ε′.

(b) Given ε show that ∃n∗ such that for n,m ≥ n∗ we have

Γ ∗
X

(ξm − ξ n) < ε.

[Hint: Use (a) above along with (vi i).]
(c) For k ≥ 1 show that ∃nk such that nk > nk−1 (here n0 = 1) and

Γ ∗
X

(ξ nk − ξ nk−1
) < 2−k .

(d) Show that

Γ ∗
X

(ξ − ξ nk ) ≤
∞∑

m=k

Γ ∗
X

(ξ nm+1 − ξ nm ) ≤ 2−k+1. (4.10.24)

(e) Show that ξ ∈ A.
(f) Show that Γ ∗

X
(ξ − ξ n) → 0.

[Hint: Use (d) above to conclude that every subsequence of
an = Γ ∗

X
(ξ − ξ n) has a further subsequence converging to 0.]

(xix) Show that A = B(Ω̃,P).
[Hint: Use Monotone Class Theorem 2.63].

(xx) Let ηn ∈ B(Ω̃,P) be a sequence such that ηn ≥ ηn+1 ≥ 0 for all n with
limn ηn = 0. Show that

Γ ∗(ηn) → 0.

[Hint: Let ξ n = η1 − ηn and use ( f ) above].

https://doi.org/10.1007/978-981-10-8318-1_2
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(xxi) Let f n, f ∈ B(Ω̃,P) be such that f n
bp−→ f . Show that

Γ ∗( f n − f ) → 0. (4.10.25)

[Hint: Let gn = supm≥n | f m − f |. Then use gn ↓ 0 and | f m − f | ≤ gm .]

(xxii) Let f n, f ∈ B(Ω̃,P) be such that f n
bp−→ f . Show that JX ( f n)

ucp−→
JX ( f ).

(xxiii) Show that X is a stochastic integrator.



Chapter 5
Semimartingales

The reader would have noticed that in the development of stochastic integration in
the previous chapter, we have not talked about either martingales or semimartingales.

A semimartingale is any process which can be written as a sum of a local martin-
gale and a process with finite variation paths.

The main theme of this chapter is to show that the class of stochastic integrators
is the same as the class of semimartingales, thereby showing that stochastic integral
is defined for all semimartingales and the Ito’s formula holds for them. This is the
Dellacherie–Meyer–Mokobodzky–Bichteler Theorem.

Traditionally, the starting point for integration with respect to square integrable
martingales is the Doob–Meyer decomposition theorem. We follow a different path,
proving that for a square integrablemartingaleM , the quadratic variation [M, M] can
be defined directly and then Xt = M2

t − [M, M]t is itself a martingale. This along
with Doob’s maximal inequality would show that square integrable martingales (and
locally square integrable martingales) are integrators. We would then go on to show
that a local martingale (and hence any semimartingale) is an integrator.

Next we show that every stochastic integrator is a semimartingale, thus proving
a weak version of the Dellacherie–Meyer–Mokobodzky–Bichteler Theorem. Subse-
quently, we prove the full version of this result.

5.1 Notations and Terminology

We begin with some definitions.

Definition 5.1 An r.c.l.l. adapted process M is said to be a square integrable
martingale if M is a martingale and

E[M2
t ] < ∞ ∀t < ∞.

© Springer Nature Singapore Pte Ltd. 2018
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Exercise 5.2 Let M be a square integrable martingale. Show that

(i) E[sup0≤t≤T M2
t ] < ∞ for each T < ∞.

(ii) sup0≤t≤T E[M2
t ] < ∞ for each T < ∞.

Definition 5.3 An r.c.l.l. adapted process L is said to be a local martingale
if there exist stopping times τ n ↑ ∞ such that for each n, the process Mn

defined by Mn = L [τ n ]; i.e. Mn
t = Lt∧τ n is a martingale. Such a sequence {τ n}

is called a localizing sequence.

Exercise 5.4 Let W be the Brownian motion and let U = exp(W 2
1 ). Let

Lt =
{
Wt if t < 1

W1 +U (Wt − W1) if t ≥ 1.

Let τ n = 1 if U ≥ n and τ n = n if U < n. Let Mn = L [τ n ] be the stopped pro-
cess. Show that

(i) For each n, τ n is a stopping time for the filtration (FW
� ).

(ii) τ n ↑ ∞.
(iii) Mn is a martingale (w.r.t. the filtration (FW

� )).
(iv) E[|Lt | ] = ∞ for t > 1

This gives an example of a local martingale that is not a martingale.

Here is a simple condition under which a local martingale is a martingale.

Lemma 5.5 Let an r.c.l.l. process L be a local martingale such that

E[ sup
0≤s≤t

|Ls | ] < ∞ ∀t < ∞. (5.1.1)

Then L is a martingale.

Proof Let τ n ↑ ∞ such that for each n, the process Mn defined by Mn = L [τ n ] is a
martingale. Then Mn

t converges to Lt pointwise and (5.1.1) implies that sup0≤s≤t |Ls |
serves as a dominating function. Thus, for each t , Mn

t converges to Lt inL1(P). Now
the required result follows using Theorem 2.23. �

Lemma 5.6 Let an r.c.l.l.process L be a local martingale such that for some p > 1

sup
τ∈Tb

E[|Lτ |p] < ∞ (5.1.2)

where Tb denotes the class of all bounded stopping times. Then L is a uniformly
integrable martingale.

https://doi.org/10.1007/978-981-10-8318-1_2
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Proof Fix σ ∈ Tb and let τn be stopping times increasing to ∞ such that L [τn ] are
martingales. Then

E[Lσ∧τn ] = E[L0] ∀n. (5.1.3)

Since {Lσ∧τn : n ≥ 1} is Lp bounded and converges to Lσ as n → ∞, it follows
that (see Exercise 1.30) E[Lσ] = E[L0]. Using Theorem 2.57 it follows that L is
a martingale. Since {Lt : t ≥ 0} is Lp bounded, we conclude that L is uniformly
integrable. �

Here is another observation on positive local martingales.

Lemma 5.7 Let L be an r.c.l.l. local martingale such that P(Lt ≥ 0 ∀t) = 1. Then

(i) For σ ∈ Tb

E[Lσ] ≤ E[L0]. (5.1.4)

(ii) L is a supermartingale.
(iii) If E[Lt ] = E[L0] for all t ≥ 0 then L is a martingale.

Proof Let τn be as in the proof of Lemma 5.6 above. Since Lt ≥ 0, (5.1.4) follows
by using Fatou’s lemma in the relation (5.1.3). As a consequence, Lt is integrable
for each t . Also, for s ≤ t we have

E[Lt∧τn | Fs] = Ls∧τn .

It follows that
E[ inf

m≥n
Lt∧τm | Fs] ≤ Ls∧τn . (5.1.5)

Since Lt∧τm converges to Lt as m → ∞, writing ξn = infm≥n Lt∧τm , it follows that
ξn increases to Lt and thus

E[ inf
m≥n

Lt∧τm | Fs] ↑ E[Lt | Fs].

Taking limit in (5.1.5), we conclude

E[Lt | Fs] ≤ Ls . (5.1.6)

This proves (i i). If E[Lt ] = E[Ls], then (5.1.6) implies E[Lt | Fs] = Ls and thus
(i i i) follows. �

Definition 5.8 An r.c.l.l. adapted process N is said to be a locally square
integrablemartingale if there exist stopping times τ n ↑ ∞ such that for each n,
the process Mn defined by Mn = N [τ n ]; i.e. Mn

t = Nt∧τ n is a square integrable
martingale.

Exercise 5.9 Show that the process L constructed in Exercise 5.4 is a locally
square integrable martingale.

https://doi.org/10.1007/978-981-10-8318-1_1
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Definition 5.10 An r.c.l.l.adapted process X is said to be a semimartingale if
X can be written as X = M + A where M is an r.c.l.l. local martingale and A
is an r.c.l.l.process whose paths have finite variation on [0, T ] for all T < ∞,
i.e. Var[0,T ](A) < ∞ for all T < ∞.

Let us denote by M the class of all r.c.l.l. martingales M with M0 = 0, M2 the
class of all r.c.l.l.square integrable martingales with M0 = 0. We will also denote by
Mloc the class of r.c.l.l. local martingales with M0 = 0 and M

2
loc the class of r.c.l.l.

locally square integrable martingales with M0 = 0. Thus, M ∈ M
2
loc (Mloc) if there

exist stopping times τ n increasing to infinity such that the stopped processes M [τ n ]
belong to M

2 (respectively belong to M). The sequence τ n is called a localizing
sequence. LetMc be the class of all continuous martingales M with M0 = 0,Mc,loc

be the class of all continuous local martingales M with M0 = 0 andM2
c be the class

of square integrable continuous martingales M with M0 = 0.

Exercise 5.11 Show that Mc,loc ⊆ M
2
loc.

Thus X is a semimartingale if we can write X = M + A where M ∈ Mloc and
A ∈ V. We will first show that semimartingales are stochastic integrators. Recall that
all semimartingales and stochastic integrators are by definition r.c.l.l. processes. We
begin by showing that square integrable r.c.l.l.martingales are stochastic integrators.
Usually this step is done involving Doob–Meyer decomposition theorem.We bypass
the same by a study of quadratic variation as a functional on the path space

5.2 The Quadratic Variation Map

Let D([0,∞),R) denote the space of r.c.l.l. functions on [0,∞). Recall our con-
vention that for γ ∈ D([0,∞),R), γ(t−) denotes the left limit at t (for t > 0) and
γ(0−) = 0 and Δγ(t) = γ(t) − γ(t−). Note that by definition, Δγ(0) = γ(0).

Exercise 5.12 Suppose fn ∈ D([0,∞),R) are such that fn converges to a
function f uniformly on compact subsets of [0,∞); i.e. sup0≤t≤T | fn(t) − f (t)|
converges to zero for all T < ∞. Show that

(i) f ∈ D([0,∞),R).
(ii) Let s ∈ [0,∞). If sn ∈ [0, s) converges to s then fn(sn) converges to

f (s−).
(iii) fn(s−) converges to f (s−) for all s ∈ [0,∞).
(iv) (Δ fn)(s) converges to (Δ f )(s) for all s ∈ [0,∞).

We will now define quadratic variation Ψ (γ) of a function γ ∈ D([0,∞),R).
For each n ≥ 1; let {tni (γ) : i ≥ 1} be defined inductively as follows: tn0 (γ) = 0

and having defined tni (γ), let

tni+1(γ) = inf{t > tni (γ) : |γ(t) − γ(tni (γ))| ≥ 2−n or |γ(t−) − γ(tni (γ))| ≥ 2−n}.
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If limi t ni (γ) = t∗ < ∞, then the function γ cannot have a left limit at t∗. Hence for
each γ ∈ D([0,∞),R), tni (γ) ↑ ∞ as i ↑ ∞ for each n. Let

Ψn(γ)(t) =
∞∑
i=0

(γ(tni+1(γ) ∧ t) − γ(tni (γ) ∧ t))2. (5.2.1)

Since tni (γ) increases to infinity, for each γ and n fixed, the infinite sum appearing
above is essentially a finite sumandhenceΨn(γ) is itself an r.c.l.l.function.Recall that
the space D = D([0,∞),R) is equipped with the topology of uniform convergence
on compact subsets (abbreviated as ucc). Let D̃ denote the set of γ ∈ D such that
Ψn(γ) converges in the ucc topology and

Ψ (γ) =
{
limn Ψn(γ) if γ ∈ D̃

0 if γ /∈ D̃.
(5.2.2)

Here are some basic properties of the quadratic variation map Ψ .

Lemma 5.13 For γ ∈ D̃

(i) Ψ (γ) is an increasing r.c.l.l. function.
(ii) ΔΨ (γ)(t) = (Δγ(t))2 for all t ∈ (0,∞).
(iii)

∑
s≤t (Δγ(s))2 < ∞ for all t ∈ (0,∞).

(iv) Let Ψc(γ)(t) = Ψ (γ)(t) − ∑
0<s≤t (Δγ(s))2. Then Ψc(γ) is a continuous func-

tion.

Proof For (i), note that for s ≤ t , if tnj ≤ s < tnj+1, then |(γ(s) − γ(tnj ))| ≤ 2−n, and

Ψn(γ)(s) =
j−1∑
i=0

(γ(tni+1(γ)) − γ(tni (γ)))2 + (γ(s) − γ(tnj ))
2

Ψn(γ)(t) =
j−1∑
i=0

(γ(tni+1(γ)) − γ(tni (γ)))2

+
∞∑
i= j

(γ(tni+1(γ) ∧ t) − γ(tni (γ) ∧ t))2

and hence
Ψn(γ)(s) ≤ Ψn(γ)(t) + 2−2n . (5.2.3)

Compare with (4.6.4). Thus (5.2.3) is valid for all n ≥ 1 and s ≤ t . Hence it follows
that the limiting function Ψ (γ) is an increasing function. Convergence of the r.c.l.l.
function Ψn(γ) to Ψ (γ) in ucc topology implies that Ψ (γ) is an r.c.l.l. function.

For (i i), it is easy to see that the set of points of discontinuity of Ψn(γ) are
contained in the set of points of discontinuity of γ for each n. Uniform convergence

https://doi.org/10.1007/978-981-10-8318-1_4
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of Ψn(γ)(t) to Ψ (γ)(t) for t ∈ [0, T ] for every T < ∞ implies that the same is true
for Ψ (γ); i.e. for t > 0, ΔΨ (γ)(t) �= 0 implies that Δγ(t) �= 0.

On the other hand, let t > 0 be a discontinuity point for γ. Let us note that by the
definition of tnj (γ),

|γ(u) − γ(v)| ≤ 2.2−n ∀u, v ∈ [tnj (γ), tnj+1(γ)). (5.2.4)

Thus for n such that 2.2−n < Δγ(t), t must be equal to tnk (γ) for some k ≥ 1 since
(5.2.4) implies Δγ(v) ≤ 2.2−n for any v ∈ ∪ j (tnj (γ), tnj+1(γ)). Let sn = tnk−1(γ)

where k (depending on n) is such that t = tnk (γ). Note that sn < t . Let s∗ =
lim infn sn . We will prove that

lim
n

γ(sn) = γ(t−), lim
n

Ψn(γ)(sn) = Ψ (γ)(t−). (5.2.5)

If s∗ = t , then sn < t for all n ≥ 1 implies sn → t . Thus limn γ(sn) = γ(t−). Second
part of (5.2.5) follows from uniform convergence of Ψn(γ) to Ψ (γ) on [0, t] (see
Exercise 5.12).

If s∗ < t , using (5.2.4) it follows that |γ(u) − γ(v)| = 0 for u, v ∈ (s∗, t) and
hence the function γ(u) is constant on the interval (s∗, t) and implying that sn → s∗.
Also, γ(s∗) = γ(t−) and Ψ (γ)(s∗) = Ψ (γ)(t−). So if γ is continuous at s∗, once
again uniform convergence of Ψn(γ) to Ψ (γ) on [0, t] shows that (5.2.5) is valid in
this case too.

Remains to consider the case s∗ < t and Δγ(s∗) = δ > 0. In this case, for n such
that 2.2−n < δ, sn = s∗ and uniform convergence of Ψn(γ) to Ψ (γ) on [0, t] shows
that (5.2.5) is true in this case as well.

We have (for large n)

Ψn(γ)(t) = Ψn(γ)(sn) + (γ(sn) − γ(t))2 (5.2.6)

and hence (5.2.5) yields

Ψ (γ)(t) = Ψ (γ)(t−) + [Δγ(t)]2

completing the proof of (i i).
(i i i) follows from (i) and (i i) since for an increasing function that is non-negative

at zero, the sum of jumps up to t is almost equal to its value at t :

∑
0<s≤t

(Δγ(s))2 ≤ Ψ (γ)(t).

The last part (iv) follows from (i i) and (i i i). �

Remark 5.14 Ψ is the quadratic variation map. It may depend upon the choice
of the partitions. If, instead of 2−n, we had used any other sequence {εn}, it
would yield another mapping Ψ̃ which will have similar properties. Our proof
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in the next section will show that if
∑

n εn < ∞, then for a square integrable
local martingale (Mt ),

Ψ (M.(ω)) = Ψ̃ (M.(ω)) a.s. P.

We note two more properties of the quadratic variation map Ψ . Recall that the
total variation Var(0,T ](γ) of γ on the interval (0, T ] is defined by

Var(0,T ](γ) = sup{
m−1∑
j=0

|γ(s j+1) − γ(s j )| : 0 ≤ s1 ≤ s2 ≤ . . . sm = T,m ≥ 1}.

If Var(0,T ](γ) < ∞, γ is said to have finite variation on [0, T ] and then on [0, T ] it
can be written as difference of two increasing functions.

Lemma 5.15 The quadratic variation map Ψ satisfies the following.

(i) For γ ∈ D̃ and 0 < s < ∞ fixed, let γs ∈ D be defined by: γs(t) = γ(t ∧ s).
Then γs ∈ D̃.

(ii) For γ ∈ D and sk ↑ ∞, γk be defined via γk(t) = γ(t ∧ sk). If γk ∈ D̃ for all
k, then γ ∈ D̃ and

Ψ (γ)(t ∧ sk) = Ψ (γk)(t) , ∀t < ∞, ∀k ≥ 1. (5.2.7)

(iii) Suppose γ is continuous, and Var(0,T ](γ) < ∞. Then Ψ (γ)(t) = 0, ∀t ∈
[0, T ].

Proof (i) is immediate. For (i i), it can be checked from the definition that

Ψn(γ)(t ∧ sk) = Ψn(γ
k)(t) , ∀t. (5.2.8)

Since γk ∈ D̃, it follows thatΨn(γ)(t) converges uniformly on [0, sk] for every k and
hence using (5.2.8) we conclude that γ ∈ D̃ and that (5.2.7) holds.

For (i i i), note that γ being a continuous function,

|γ(tni+1(γ) ∧ t) − γ(tni (γ) ∧ t)| ≤ 2−n

for all i, n and hence we have

Ψn(γ)(t) =
∞∑
i=0

(γ(tni+1(γ) ∧ t) − γ(tni (γ) ∧ t))2

≤2−n ×
∞∑
i=0

|γ(tni+1(γ) ∧ t) − γ(tni (γ) ∧ t)|

≤2−n × Var[0,T ](γ).

This shows that Ψ (γ)(t) = 0 for t ∈ [0, T ]. �
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5.3 Quadratic Variation of a Square Integrable Martingale

The next lemma connects the quadratic variation map Ψ and r.c.l.l.martingales.

Lemma 5.16 Let (Nt ,Ft ) be an r.c.l.l. martingale such that E(N 2
t ) < ∞ for all

t > 0. Suppose there is a constant C < ∞ such that with

τ = inf{t > 0 : |Nt | ≥ C or |Nt−| ≥ C}

one has
Nt = Nt∧τ .

Let
At (ω) = Ψ (N .(ω))(t).

Then (At ) is an (Ft ) adapted r.c.l.l. increasing process such that Xt := N 2
t − At is

also a martingale.

Proof Let Ψn(γ) and tni (γ) be as in the previous section.

An
t (ω) = Ψn(N .(ω))(t)

σn
i (ω) = tni (N .(ω))

Y n
t (ω) = N 2

t (ω) − N 2
0 (ω) − An

t (ω)

(5.3.1)

It is easy to see that for each n, {σn
i : i ≥ 1} are stopping times (see Theorem 2.46)

and that

An
t =

∞∑
i=0

(Nσn
i+1∧t − Nσn

i ∧t )
2.

Further, for each n, σn
i (ω) increases to ∞ as i ↑ ∞.

We will first prove that for each n, (Y n
t ) is an (Ft )-martingale. Using the identity

b2 − a2 − (b − a)2 = 2a(b − a), we can write

Y n
t = N 2

t − N 2
0 −

∞∑
i=0

(Nσn
i+1∧t − Nσn

i ∧t )
2

=
∞∑
i=0

(N 2
σn
i+1∧t − N 2

σn
i ∧t ) −

∞∑
i=0

(Nσn
i+1∧t − Nσn

i ∧t )
2

= 2
∞∑
i=0

Nσn
i ∧t (Nσn

i+1∧t − Nσn
i ∧t )

Let us define
Xn,i
t = Nσn

i ∧t (Nσn
i+1∧t − Nσn

i ∧t ).

https://doi.org/10.1007/978-981-10-8318-1_2
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Then

Y n
t = 2

∞∑
i=0

Xn,i
t . (5.3.2)

Noting that for s < τ , |Ns | ≤ C and for s ≥ τ , Ns = Nσ , it follows that

|Nσn
i+1∧t − Nσn

i ∧t | > 0 implies that |Nσn
i ∧t | ≤ C.

Thus, writing ΓC(x) = max{min{x,C},−C} (x truncated at C), we have

Xn,i
t = ΓC(Nσn

i ∧t )(Nσn
i+1∧t − Nσn

i ∧t ) (5.3.3)

and hence, Xn,i
t is a martingale. Using the fact that E(Xn,i

t |Ft∧σn
i
) = 0 and that Xn,i

t

is Ft∧σn
i+1

measurable, it follows that for i �= j,

E[Xn,i
t Xn, j

t ] = 0. (5.3.4)

Also, using (5.3.3) and the fact that N is a martingale we have

E(Xn,i
t )2 ≤ C2E(Nσn

i+1∧t − N .
σn
i ∧t )

2

= C2E(N 2
σn
i+1∧t − N 2

σn
i ∧t ).

(5.3.5)

Using (5.3.4) and (5.3.5), it follows that for s ≤ r ,

E(

r∑
i=s

Xn,i
t )2 ≤ C2E(N 2

σn
r+1∧t − N 2

σn
s ∧t ). (5.3.6)

Since σn
i increases to ∞ as i tends to infinity, E(N 2

σn
s ∧t ) and E(N 2

σn
r+1∧t ) both tend to

E[N 2
t ] as r, s tend to∞ and hence

∑r
i=1 X

n,i
t converges in L2(P). In view of (5.3.2),

one has

2
r∑

i=0

Xn,i
t → Y n

t in L
2(P) as r → ∞

and hence (Y n
t ) is an (Ft )-martingale for each n ≥ 1.

For n ≥ 1, define a process Nn by

Nn
t = Nσn

i
if σn

i ≤ t < σn
i+1.

Observe that by the choice of {σn
i : i ≥ 1}, one has

|Nt − Nn
t | ≤ 2−n for all t. (5.3.7)
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For now let us fix n. For each ω ∈ Ω , let us define

H(ω) = {σn
i (ω) : i ≥ 1} ∪ {σn+1

i (ω) : i ≥ 1} (5.3.8)

It may be noted that for ω such that t �→ Nt (ω) is continuous, each σn
j (ω) is neces-

sarily equal to σn+1
i (ω) for some i , but this need not be the case when t �→ Nt (ω)

has jumps. Let θ0(ω) = 0 and for j ≥ 0, let

θ j+1(ω) = inf{s > θ j (ω) : s ∈ H(ω)}.

It can be verified that

{θi (ω) : i ≥ 1} = {σn
i (ω) : i ≥ 1} ∪ {σn+1

i (ω) : i ≥ 1}. (5.3.9)

To see that each θi is a stopping time, fix i ≥ 1, t < ∞. Let

Akj = {(σn
k ∧ t) �= (σn+1

j ∧ t)}.

Since σn
k ,σ

n+1
j are stopping times, Akj ∈ Ft for all k, j . It is not difficult to see that

{θi ≤ t} = ∪i
k=0({σn

i−k ≤ t} ∩ Bk)

where B0 = Ω and for 1 ≤ k ≤ i ,

Bk = ∪0< j1< j2<...< jk ( (∩i−k
l=0 ∩k

m=1 Al jm ) ∩ {σn+1
jk

≤ t})

and hence θi is a stopping time.
Using (5.3.9) and using the fact that Nn

t = Nt∧σn
j
forσn

j ≤ t < σn
j+1, one canwrite

Y n and Y n+1 as

Y n
t =

∞∑
j=0

2Nn
t∧θ j

(Nt∧θ j+1 − Nt∧θ j ),

Y n+1
t =

∞∑
j=0

2Nn+1
t∧θ j

(Nt∧θ j+1 − Nt∧θ j ).

Hence

Y n+1
t − Y n

t = 2
∞∑
j=0

Zn, j
t (5.3.10)

where
Zn, j
t = (Nn+1

t∧θ j
− Nn

t∧θ j
)(Nt∧θ j+1 − Nt∧θ j ).

Also, using (5.3.7) one has
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|Nn+1
t − Nn

t | ≤ |Nn+1
t − Nt | + |Nt − Nn

t | ≤ 2−(n+1) + 2−n ≤ 2.2−n (5.3.11)

and hence (using that (Ns) is a martingale), one has

E[(Zn, j
t )2] ≤ 4

22n
E[(Nt∧θ j+1 − Nt∧θ j )

2] = 4

22n
E[(Nt∧θ j+1)

2 − (Nt∧θ j )
2]. (5.3.12)

It is easy to see thatE(Zn, j
t |Ft∧θ j ) = 0 and Zn, j

t isFt∧θ j+1 measurable. It then follows
that for i �= j

E[Zn, j
t , Zn,i

t ] = 0

and hence (using (5.3.12))

E(Y n+1
t − Y n

t )2 = 4E[(
∞∑
j=0

Zn, j
t )2]

= 4E[
∞∑
j=0

(Zn, j
t )2]

≤ 16

22n

∞∑
j=0

E[(Nt∧θ j+1)
2 − (Nt∧θ j )

2]

≤ 16

22n
E[(Nt )

2].

(5.3.13)

Thus, recalling that Y n+1
t , Y n

t are martingales, it follows that Y n+1
t − Y n

t is also a
martingale and thus invoking Doob’s maximal inequality, one has (using (5.3.13))

E[sups≤T |Y n+1
s − Y n

s |2] ≤ 4E(Y n+1
T − Y n

T )2

≤ 64

22n
E[N 2

T ]. (5.3.14)

Thus, for each n ≥ 1,

‖ [sups≤T |Y n+1
s − Y n

s |] ‖2 ≤ 8

2n
‖NT ‖2. (5.3.15)

It follows that

ξ =
∞∑
n=1

sup
s≤T

|Y n+1
s − Y n

s | < ∞ a.s.

as ‖ξ‖2 < ∞ by (5.3.15). Hence (Y n
s ) converges uniformly in s ∈ [0, T ] for every

T a.s. to an r.c.l.l. process say (Ys). As a result, (An
s ) also converges uniformly

in s ∈ [0, T ] for every T < ∞ a.s. to say ( Ãs) with Yt = N 2
t − N 2

0 − Ãt . Further,
(5.3.15) also implies that for each s, convergence of Y n

s to Ys is also in L
2 and thus
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(Yt ) is a martingale. Since An
s converges uniformly in s ∈ [0, T ] for all T < ∞ a.s.,

it follows that
P(ω : N�(ω) ∈ D̃) = 1

and Ãt = At . We have already proven that Yt = N 2
t − N 2

0 − At is a martingale. This
completes the proof. �

Exercise 5.17 Construct an example of a martingale N that is unbounded,
but satisfies the conditions of the Lemma 5.16.

Exercise 5.18 Use completeness of the underlying σ-field to show that the
set {ω : N�(ω) ∈ D̃} appearing above is measurable.

We are now in a position to prove an analogue of the Doob–Meyer decomposition
theorem for the square of an r.c.l.l. locally square integrable martingale. We will use
the notation [N , N ]Ψ

for the process A = Ψ (N .(ω)) of the previous result and call
it quadratic variation of N . We will later show that square integrable martingales
and locally square integrable martingales are stochastic integrators. Then it would
follow that the quadratic variation defined for a stochastic integrator X via (4.6.2)
agrees with the definition given below for a square integrablemartingale and a locally
square integrable martingale.

Theorem 5.19 Let (Mt ,Ft ) be an r.c.l.l. locally square integrable martingale. Let

[M, M]Ψ

t (ω) = Ψ (M.(ω))(t). (5.3.16)

Then

(i) [M, M]Ψ

is an (Ft ) adapted r.c.l.l. increasing process such that Xt = M2
t −

[M, M]Ψ

t is a local martingale.
(ii)

P(Δ[M, M]Ψ

t = (ΔMt )
2, ∀t > 0) = 1.

(iii) If (Bt ) is an r.c.l.l. adapted increasing process such that B0 = 0 and

P(ΔBt = (ΔMt )
2, ∀t > 0) = 1

and Vt = M2
t − Bt is a local martingale, then P(Bt = [M, M]Ψ

t , ∀t) = 1.
(iv) If M is a martingale and E(M2

t ) < ∞ for all t , then E([M, M]Ψ

t ) < ∞ for all
t and Xt = M2

t − [M, M]Ψ

t is a martingale.
(v) If E([M, M]Ψ

t ) < ∞ for all t and M0 = 0, then E(M2
t ) < ∞ for all t , (Mt ) is

a martingale and Xt = M2
t − [M, M]Ψ

t is a martingale.

Proof Let θn be stopping times increasing to∞ such that for each n, {Mn
t = Mt∧θn :

t ≥ 0} is a martingale with E[(Mt∧θn )
2] < ∞ for all t, n. For k ≥ 1, let τk be the

stopping time defined by

https://doi.org/10.1007/978-981-10-8318-1_4
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τk = inf{t > 0 : |Mt | ≥ k or |Mt−| ≥ k} ∧ θk ∧ k.

Then τk increases to ∞ and let Mk
t = Mt∧τk . Then for each k, Mk is a martingale

satisfying conditions of Lemma 5.16 with C = k and τ = τk . Hence Xk
t = (Mk

t )
2 −

[Mk, Mk]Ψ

t is a martingale, where [Mk, Mk]Ψ

t = Ψ (Mk
� (ω))t . Also,

P({ω : Mk
� (ω) ∈ D̃}) = 1, ∀k ≥ 1. (5.3.17)

Since Mk
t = Mt∧τk it follows from Lemma 5.15 that

P({ω : M�(ω) ∈ D̃}) = 1 (5.3.18)

and
P({ω : [Mk, Mk]Ψ

t (ω) = [M, M]Ψ

t∧τk (ω)(ω) ∀t}) = 1.

It follows that Xt∧τk = Xk
t a.s. and since Xk is a martingale for all k, it follows

that Xt is a local martingale. This completes the proof of part (i).
Part (i i) follows from Lemma 5.13.
For (i i i), note that from part (i i) and the hypothesis on B it follows that

Ut = [M, M]Ψ

t − Bt

is a continuous process. Recalling Xt = M2
t − [M, M]Ψ

t and Vt = M2
t − Bt are

local martingales, it follows that Ut = Vt − Xt is also a local martingale with
U0 = 0. Being continuous, U is locally square integrable. By part (i) above,
Wt = U 2

t − [U,U ]Ψ

t is a local martingale. On the other hand, Ut being a differ-
ence of two increasing functions has finite variation, i.e. Var(0,T ](U ) < ∞ for all
T < ∞. Continuity of U and part (i i i) of Lemma 5.15 gives

[U,U ]Ψ

t = 0 ∀t.

Hence Wt = U 2
t is a local martingale. Now if σk are stopping times increasing to ∞

such that Wt∧σk is a martingale for k ≥ 1, then we have

E[Wt∧σk ] = E[U 2
t∧σk

] = E[U 2
0 ] = 0.

and hence U 2
t∧σk

= 0 for each k. This yields Ut = 0 a.s. for every t . This completes
the proof of (i i i).

For (iv), we have proven in (i) that Xt = M2
t − [M, M]Ψ

t is a local martingale.
Let σk be stopping times increasing to ∞ such that Xk

t = Xt∧σk are martingales.
Hence, E[Xk

t ] = 0, or

E([M, M]Ψ

t∧σk
) = E(M2

t∧σk
) − E(M2

0 ). (5.3.19)
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Hence
E([M, M]Ψ

t∧σk
) ≤ E(M2

t∧σk
) ≤ E(M2

t ). (5.3.20)

Now Fatou’s lemma (or monotone convergence theorem) gives

E([M, M]Ψ

t ) ≤ E(M2
t ) < ∞. (5.3.21)

Since M2
t∧σk

converges to M2
t in L

1(P) and [M, M]Ψ

t∧σk
converges to [M, M]Ψ

t in
L
1(P), it follows that Xk

t converges to Xt in L1(P) and hence (Xt ) is a martingale.
For (v) let σk be as in part (iv). Using M0 = 0, that [M, M]Ψ

t is increasing and
(5.3.19) we conclude

E[M2
t∧σk

] = E([M, M]Ψ

t∧σk
)

≤ E([M, M]Ψ

t )

Now using Fatou’s lemma, one gets

E[M2
t ] ≤ E([M, M]Ψ

t ) < ∞.

Now we can invoke part (iv) to complete the proof. �

Corollary 5.20 For an r.c.l.l.martingale M with M0 = 0 and E[M2
T ] < ∞, one has

E[ [M, M]Ψ

T ] ≤ E[ sup
0≤s≤T

|Ms |2] ≤ 4E[ [M, M]Ψ

T ] (5.3.22)

Proof Let Xt = M2
t − [M, M]Ψ

t . As noted above X is a martingale. Since X0 = 0,
it follows that E[XT ] = 0 and thus

E[ [M, M]Ψ

T ] = E[M2
T ]. (5.3.23)

The inequality (5.3.22) now follows fromDoob’smaximal inequality, Theorem 2.26.
�

Corollary 5.21 For an r.c.l.l. locally square integrable martingale M, for any stop-
ping time σ, one has

E[ [M, M]Ψ

σ ] ≤ E[ sup
0≤s≤σ

|Ms |2] ≤ 4E[ [M, M]Ψ

σ ] (5.3.24)

Proof If {τn} is a localizing sequence, then using (5.3.22) for the square integrable
martingale Mn

t = Mt∧τn we get

https://doi.org/10.1007/978-981-10-8318-1_2
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E[ [M, M]Ψ

σ∧τn
] ≤ E[ sup

0≤s≤σ∧τn

|Ms |2] ≤ 4E[ [M, M]Ψ

σ∧τn
].

Now the required result follows using monotone convergence theorem. �
Corollary 5.22 If M ∈ M

2
loc with E[[M, M]Ψ

T ] < ∞ for all T < ∞ then M is a
square integrable martingale.

Proof Using (5.3.24), we conclude that E[sup0≤s≤T |Ms |2] < ∞. �

Corollary 5.23 If M ∈ M
2
loc then [M, M]Ψ

is locally square integrable.

Theorem 5.24 Let M be a continuous local martingale with M0 = 0. If M ∈ V then
Mt = 0 for all t .

Proof Invoking (i i i) in Lemma 5.15, we conclude that [M, M]Ψ

t = 0 for all t and
thus the conclusion follows from Corollary 5.21. �
Remark 5.25 The pathwise formula for quadratic variation of a continuous
local martingale M was proven in Karandikar [34], but the proof required the
theory of stochastic integration. A proof involving only Doob’s inequality as
presented above for the case of continuous local martingales was the main
theme of Karandikar [35]. The formula for r.c.l.l.case was given in Karandikar
[38] but the proof required again the theory of stochastic integration. The
treatment given above is adapted from Karandikar–Rao [42].

Exercise 5.26 If P is Weiner measure on C([0,∞),Rd) and Q is a probability
measure absolutely continuous w.r.t. P such that the coordinate process is
a local martingale (in the sense that each component is a local martingale),
then P = Q.
Hint: Use Levy’s characterization of Brownian motion.

For locally square integrable r.c.l.l.martingales M, N , we define cross-quadratic
variation [M, N ]Ψ

by the polarization identity as in the case of stochastic integrators
(see (4.6.6))

[M, N ]Ψ

t = 1

4
([M + N , M + N ]Ψ

t − [M − N , M − N ]Ψ

t ). (5.3.25)

It is easy to see that Mt Nt − [M, N ]Ψ

t is a local martingale. It can be checked that
[M, N ]Ψ

is the only process B in V0 such that Mt Nt − Bt is a local martingale and
P( (ΔB)t = (ΔM)t(ΔN )t ∀t) = 1. Also, [M, N ]Ψ

is locally square integrable.

5.4 Square Integrable Martingales Are Stochastic
Integrators

Themain aim of this section is to show that square integrablemartingales are stochas-
tic integrators.

https://doi.org/10.1007/978-981-10-8318-1_4
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The treatment is essentially classical, as in Kunita–Watanabe [46], but with an
exception. The role of 〈M, M〉—the predictable quadratic variation in the Kunita–
Watanabe treatment—is here played by the quadratic variation [M, M].

Recall that M2 denotes the class of r.c.l.l. martingales M such that E[M2
t ] < ∞

for all t < ∞ with M0 = 0.

Lemma 5.27 Let M, N ∈ M
2 and f, g ∈ S. Let X = JM( f ) and Y = JN (g). Let

Zt = XtYt − ∫ t
0 fsgsd[M, N ]Ψ

s . Then X,Y, Z are martingales.

Proof The proof is almost the same as proof of Lemma 3.10, and it uses Mt Nt −
[M, N ]Ψ

t is a martingale alongwith Theorem 2.59, Corollary 2.60 and Theorem 2.61.
�

Corollary 5.28 Let M ∈ M
2 and f ∈ S. Then Yt = ∫ t

0 f dM and Zt = (Yt )2 −∫ t
0 f 2s d[M, M]Ψ

s are martingales and

E[ sup
0≤t≤T

|
∫ t

0
f dM |2] ≤ 4E[

∫ T

0
f 2s d[M, M]Ψ

s ]. (5.4.1)

Proof Lemma 5.27 gives Y, Z are martingales. The estimate (5.4.1) now follows
from Doob’s inequality. �
Theorem 5.29 Let M ∈ M

2. Then M is a stochastic integrator. Further, for f ∈
B(Ω̃,P), the processes Yt = ∫ t

0 f dM and Zt = Y 2
t − ∫ t

0 f 2s d[M, M]Ψ

s are martin-

gales, [Y,Y ]Ψ

t = ∫ t
0 f 2s d[M, M]Ψ

s and

E[ sup
0≤t≤T

|
∫ t

0
f dM |2] ≤ 4E[

∫ T

0
f 2s d[M, M]Ψ

s ], ∀T < ∞. (5.4.2)

Proof Fix T < ∞. Suffices to prove the result for the case when Mt = Mt∧T . The
rest follows by localization. See Theorem 4.49. Recall that Ω̃ = [0,∞) × Ω and P
is the predictable σ-field on Ω̃ . Let μ be the measure on (Ω̃,P) defined for A ∈ P

μ(A) =
∫

[
∫ T

0
1A(ω, s)d[M, M]Ψ

s (ω)]dP(ω). (5.4.3)

Note that
μ(Ω̃) = E[ [M, M]Ψ

T ] = E[|MT |2] < ∞

and for f ∈ B(Ω̃,P) the norm on L2(Ω̃,P,μ) is given by

‖ f ‖2,μ =
√
E[

∫ T

0
f 2s d[M, M]Ψ

s ]. (5.4.4)

Clearly,B(Ω̃,P) ⊆ L
2(Ω̃,P,μ). Sinceσ(S) = P , it follows fromTheorem 2.67

that S is dense in L
2(Ω̃,P,μ). Thus, given f ∈ B(Ω̃,P), we can get f n ∈ S such

https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_2
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that
‖ f − f n‖2,μ ≤ 2−n−1. (5.4.5)

Letting Y n
t = ∫ t

0 f ndM for t ≤ T and Y n
t = Y n

T for t > T one has for m ≥ n

E[ sup
0≤t≤T

|Y n
t − Ym

t |2] ≤ 4‖ f m − f n‖22,μ ≤ 4.4−n .

It then follows that (as in the proof of Lemma 3.12) Y n
t converges uniformly in t to

Yt (a.s.), where Y is an r.c.l.l. adapted process with Yt = Yt∧T . For any g ∈ S, using
the estimate (5.4.1) for f n − g, we get

E[ sup
0≤t≤T

|Y n
t −

∫ t

0
gdM |2] ≤ 4‖ f n − g‖22,μ

and taking limit as n tends to infinity in the inequality above we get

E[ sup
0≤t≤T

|Yt −
∫ t

0
gdM |2] ≤ 4‖ f − g‖22,μ. (5.4.6)

Let us denote Y as JM( f ). Equation (5.4.6) implies that for f ∈ S, JM( f ) =∫ t
0 f dM . Also, (5.4.6) implies that the process Y does not depend upon the choice
of the particular sequence { f n} in (5.4.5). Further, taking h ∈ B(Ω̃,P), a sequence
hm ∈ S approximating h, using (5.4.6) for hm and taking limit as m → ∞

E[ sup
0≤t≤T

|(JM( f ))t − (JM(h))t |2] ≤ 4‖ f − h‖22,μ. (5.4.7)

The estimate (5.4.7) implies that if fn
bp−→ f , then JM( fn) converges to JM( f ) in

ucp topology and thus M is a stochastic integrator.
The estimate (5.4.2) follows from (5.4.7) by taking h = 0.
Remains to show that Yt = ∫ t

0 f dM and Zt = Y 2
t − ∫ t

0 f 2s d[M, M]Ψ

s are martin-

gales.We have seen in Corollary 5.28 that Y n and Zn
t = (Y n

t )2 − ∫ T
0 ( f n)2s d[M, M]Ψ

s
are martingales. Here Y n

t converges to Yt in L
2(P), and hence in L

1(P), and so Y
is a martingale. Further, (Y n

t )2 → (Yt )2 in L
1(P) and moreover ‖ f n − f ‖2,μ → 0

implies

E[
∫ t

0
|( f ns )2 − f 2s |d[M, M]Ψ

s ] → 0

and thus

E|
∫ t

0
(( f ns )2 − f 2s )d[M, M]Ψ

s | → 0.

So Zn
t converges to Zt in L1(P) and thus Z is also a martingale. Since

https://doi.org/10.1007/978-981-10-8318-1_3
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Δ(

∫
f 2s d[M, M]Ψ

s ) = f 2(ΔM)2 = (ΔY )2

where we have used Theorem 4.32 for the last equality. Using part (i i i) of Theorem
5.19, it now follows that [Y,Y ]Ψ

t = ∫ t
0 f 2s d[M, M]Ψ

s . �

Let us now introduce a class of integrands f such that
∫

f dM is a locally square
integrable martingale.

Definition 5.30 For M ∈ M
2
loc let L

2
m(M) denote the class of predictable pro-

cesses f such that there exist stopping times σk ↑ ∞ with

E[
∫ σk

0
f 2s d[M, M]Ψ

s ] < ∞ for k ≥ 1. (5.4.8)

We then have the following.

Theorem 5.31 Let M ∈ M
2
loc i.e. M be a locally square integrable r.c.l.l.martingale

with M0 = 0. Then M is a stochastic integrator,

L
2
m(M) ⊆ L(M) (5.4.9)

and for f ∈ L
2
m(M), the process Yt = ∫ t

0 f dM is a locally square integrable

martingale andUt = Y 2
t − ∫ t

0 f 2s d[M, M]Ψ

s is a local martingale, [Y,Y ]Ψ

t = ∫ t
0 f 2s d

[M, M]Ψ

s . Further, for any stopping time σ,

E[ sup
0≤t≤σ

|
∫ t

0
f dM |2] ≤ 4E[

∫ σ

0
f 2s d[M, M]Ψ

s ]. (5.4.10)

Proof Let {θk} be stopping times such that Mk = M [θk ] ∈ M
2. Then Mk is a stochas-

tic integrator by Theorem 5.29 and thus so is M by Theorem 4.49.
Now given f ∈ L

2
m(M), let σk ↑ ∞ be stopping times such that (5.4.8) is true

and let τk = σk ∧ θk ∧ k.
For n ≥ 1, let gn be a bounded predictable process with |gn| ≤ | f | such that gn

converges to 0 pointwise. Let Zn = ∫
gndM . To prove f ∈ L(M), we need to show

that ducp(Zn, 0) converges to 0. In view of Lemma 2.75, suffices to show that for
each k ≥ 1,

Y n,k = (Zn)[τk ]
ucp−→ 0 as n → ∞. (5.4.11)

Note that Y n,k = ∫
gn1[0,τk ]dMk . Also, Y n,k is a square integrable martingale since

gn is bounded and Mk is a square integrable martingale. Moreover,

E([Y n,k,Y n,k]T ) = E(

∫ T

0
(gn)

21[0,τk ]d[Mk, Mk])

≤ E(

∫ θk

0
(gn)

2d[M, M]).

https://doi.org/10.1007/978-981-10-8318-1_4
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Since gn converge pointwise to 0 and |gn| ≤ | f | and f satisfies (5.4.8), it follows
that for each k fixed, E([Y n,k,Y n,k]T ) → 0 as n → ∞. Invoking (5.3.22), we thus
conclude

lim
n→∞E[ sup

0≤t≤T
|Y n,k

t |2] = 0.

Thus, (5.4.11) holds completing the proof that f ∈ L(M).
The proof that Y is a square integrable martingale and that U is a martingale

is similar to the proof of part (iv) in Theorem 5.19. The estimate (5.4.10) follows
invoking (5.3.24) as Y ∈ M

2
loc. �

Remark 5.32 Now that we have shown that locally square integrable r.c.l.l.
martingales M are stochastic integrators, the quadratic variation of M defined
via themappingΨ is consistent with the definition of [M, M] given in Theorem
4.6. As a consequence various identities and inequalities that were proven
for the quadratic variation of a stochastic integrator in Sect. 4.6 also apply to
quadratic variation of locally square integrable martingales. Thus from now
on we will drop the superfix Ψ in [M, M]Ψ

, [M, N ]Ψ

.

Remark 5.33 When M is a continuous martingale with M0 = 0, it follows that
M is locally square integrable (since it is locally bounded). Further, [M, M]t
is continuous and hence for any predictable f such that for each t > 0

Dt =
∫ t

0
f 2s d[M, M]s < ∞ a.s., (5.4.12)

D itself is continuous. Thus D is locally bounded and hence f ∈ L
2
m(M). It is

easy to see that if f ∈ L
2
m(M) then f satisfies (5.4.12).

The estimate (5.4.10) has the following implication.

Theorem 5.34 Let Mn, M ∈ M
2
loc be such that for a sequence {σ j } of stopping times

increasing to ∞, one has for each j ≥ 1,

E[ [Mn − M, Mn − M]σ j ] → 0. (5.4.13)

Then Mn converges to M in Emery topology.

Proof Given predictable f bounded by 1, using (5.4.10) one has

P( sup
0≤t≤T

|
∫ t

0
f dMn −

∫ t

0
f dM | > δ)

≤ P( sup
0≤t≤σ j

|
∫ t

0
f dMn −

∫ t

0
f dM | > δ) + P(σ j < T )

≤ 1

δ2
E[

∫ σ j

0
| fs |2d[Mn − M, Mn − M]s] + P(σ j < T )

≤ 1

δ2
E[[Mn − M, Mn − M]σ j ] + P(σ j < T ).

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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Taking limit first as n → ∞ and then as j → ∞, we get

lim
n→∞ sup

f ∈S1
P( sup

0≤t≤T
|
∫ t

0
f dMn −

∫ t

0
f dM | > δ) = 0.

In view of the observation (4.9.5), this proves convergence of Mn to M in Emery
topology. �

Exercise 5.35 Let Mn, M ∈ M
2
loc be such that for a sequence {σ j } of stopping

times increasing to ∞, one has for each j ≥ 1,

E[ sup
t≤σ j

|Mn
t − Mt |2] → 0. (5.4.14)

Show that

(i) Mn converges to M in Emery topology.
(ii) [Mn − M, Mn − M] ucp−→ 0.

(iii) [Mn, Mn] ucp−→ [M, M].
Hint: Use Theorem (4.111) for (i i) and (i i i) above.

5.5 Semimartingales Are Stochastic Integrators

In the previous section, we have shown that locally square integrable martingales
are stochastic integrators. In this section, we propose to show that all martingales
are integrators and hence by localization it would follow that local martingales are
integrators as well.

Earlier we have shown that processes whose paths have finite variation on [0, T ]
for everyT are stochastic integrators. Itwould then follow that all semimartingales are
stochastic integrators.Here is the continuous analogue of theBurkholder’s inequality,
Theorem 1.44.

Lemma 5.36 Let Z be a r.c.l.l.martingale with Z0 = 0 and f ∈ S1, namely a simple
predictable process bounded by 1. Then for all λ > 0, T < ∞ we have

P( sup
0≤t≤T

|
∫ t

0
f d Z | > λ) ≤ 20

λ
E[|ZT | ]. (5.5.1)

Proof Let f ∈ S1 be given by

f (s) = a01{0}(s) +
m−1∑
j=0

a j+11(s j ,s j+1](s) (5.5.2)

https://doi.org/10.1007/978-981-10-8318-1_4
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where 0 = s0 < s1 < s2 < . . . < sm < ∞, a j is Fs j−1 measurable random variable,
|a j | ≤ 1, 1 ≤ j ≤ m anda0 isF0 measurable and |a0| ≤ 1.Without loss of generality,
we assume that sm−1 < T = sm . Then

∫ t

0
f d Z =

m∑
k=1

ak(Zsk∧t − Zsk−1∧t ). (5.5.3)

Let us define a discrete process Mk = Zsk and discrete filtration Gk = Fsk for 0 ≤
k ≤ m. Then M is a martingale with respect to the filtration {Gk : 0 ≤ k ≤ m}. Let us
also define Uk = ak , 1 ≤ k ≤ m and U0 = 0. Then U is predictable (with respect to
{Gk : 0 ≤ k ≤ m}) and is bounded by 1, and hence using Theorem 1.44 we conclude
that for α > 0,

P( max
1≤n≤m

|
n∑

k=1

Uk(Mk − Mk−1)| ≥ α) ≤ 9

α
E[|Mm | ] = 9

α
E[|ZT | ]. (5.5.4)

Note that for sk−1 ≤ t ≤ sk , defining V k
t = ∫ t

0 f d Z − ∫ sk−1

0 f d Z , we have V k
t =

ak(Zt − Zsk−1) and hence

sup
sk−1≤t≤sk

|V k
t | ≤ 2 sup

0≤t≤T
|Zt | (5.5.5)

Also, note that
∫ sk
0 f d Z = ∑k

j=1Uj (Mj − Mj−1) and hence

sup
0≤t≤T

|
∫ t

0
f d Z | ≤ max

1≤k≤m
|
∫ sk

0
f d Z | + max

1≤k≤m
sup

sk−1≤t≤sk
|V k

t |

≤ max
1≤k≤m

|
k∑
j=1

Uj (Mj − Mj−1)| + 2 sup
0≤t≤T

|Zt |.
(5.5.6)

Thus using (5.5.4) and (5.5.6) along with Theorem 2.26 we get

P( sup
0≤t≤T

|
∫ t

0
f d Z | > λ) ≤ P( max

1≤k≤m
|

k∑
j=1

Uj (Mj − Mj−1)| >
3

4
λ)

+ P(2 sup
0≤t≤T

|Zt | >
1

4
λ)

≤ 36

3λ
E[|ZT | ] + 8

λ
E[|ZT | ]

= 20

λ
E[|ZT | ].

(5.5.7)

�

https://doi.org/10.1007/978-981-10-8318-1_1
https://doi.org/10.1007/978-981-10-8318-1_2


182 5 Semimartingales

Lemma 5.37 Let M be a square integrable r.c.l.l.martingale with M0 = 0, and let
g be a bounded predictable process, |g| ≤ C. Then

P( sup
0≤t≤T

|
∫ t

0
gdM | > λ) ≤ C

20

λ
E[|MT | ]. (5.5.8)

Proof When g is simple predictable process, the inequality (5.5.8) follows from
Lemma 5.36. Since M is a stochastic integrator, the class of predictable processes g
bounded by C for which (5.5.8) is true is bp- closed and hence it includes all such
processes. �
Theorem 5.38 Let M be a uniformly integrable r.c.l.l. martingale with M0 = 0.
Then M is a stochastic integrator and (5.5.8) continues to be true for all bounded
predictable process g.

Proof In view of Theorem 4.34, in order to show that M is a stochastic integrator
for the filtration (F�), suffices to show that it is a stochastic integrator w.r.t. (F+

� ).

Recall that M being r.c.l.l., remains a uniformly integrable martingale w.r.t.(F+
� ).

Since M is a uniformly integrable martingale, by Theorem 2.25, ξ = limt→∞ Mt

exists a.e and in L
1(P) and further Mt = E[ξ |F+

t ]. For k ≥ 1, let Mk be the r.c.l.l.
(F+

� )-martingale given by

Mk
t = E[ξ1{|ξ|≤k} |F+

t ] − E[ξ1{|ξ|≤k} |F+
0 ].

Note that for any T < ∞, and k, j ≥ n

E[|Mk
T − M j

T | ] ≤ 2E[|ξ|1{|ξ|>n}] (5.5.9)

and
E[|Mk

T − MT | ] ≤ 2E[|ξ|1{|ξ|>n}]. (5.5.10)

Doob’s maximal inequality—Theorem 2.26 now implies that Mk converges to M in
ducp metric.

Let an = E[|ξ|1{|ξ|>n}]. Since ξ is integrable, it follows that an → 0 as n → ∞.
SinceMk is a bounded (F+

� )-martingale, it is a square integrable (F+
� )-martingale

and hence a (F+
� )-stochastic integrator. We will first prove that Mk is Cauchy in dem

metric.
Note that for any f ∈ S1, using (5.5.8) we have for k, j ≥ n,

P( sup
0≤t≤T

|
∫ t

0
f dMk −

∫ t

0
f dM j | > λ) ≤ 20

λ
E[|Mk

T − M j
T | ] = 40

λ
an

and hence, using (4.9.6) it follows that {Mk : k ≥ 1} is Cauchy in dem metric.
Since the class of stochastic integrators is complete in dem metric as seen in

Theorem 4.106, and Mk converges to M in ducp, it would follow that indeed M is
also a (F+

� )-stochastic integrator and Mk converges to M in dem .

https://doi.org/10.1007/978-981-10-8318-1_4
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Since (5.5.8) holds for Mk and for any bounded predictable g,
∫

gdMk converges
to

∫
gdM in ducp, it follows that (5.5.8) continues to be true for uniformly integrable

martingales M . �
On the same lines, one can also prove the following.

Theorem 5.39 Let N , Nk, Mk for k ≥ 1 be r.c.l.l.martingales.

(i) If for all T < ∞
E[ |Nk

T − NT | ] → 0 as k → ∞,

then Nk converges to N in the Emery topology.
(ii) If for all T < ∞

E[ |Mk
T − Mn

T | ] → 0 as k, n → ∞,

then Mk is Cauchy in the dem metric for the Emery topology.

Proof Noting that

sup
f :∈S1

P( sup
0≤t≤T

|
∫ t

0
f dNn −

∫ t

0
f dN | > δ) ≤ 20

δ
E[|Nn

T − NT | ] (5.5.11)

and

sup
f :∈S1

P( sup
0≤t≤T

|
∫ t

0
f dMn −

∫ t

0
f dMk | > δ) ≤ 20

δ
E[|Mn

T − Mk
T | ] (5.5.12)

the conclusions follow from (4.9.5) and (4.9.6) �
Here is the final result of this section.

Theorem 5.40 Let an r.c.l.l. process X be a semimartingale; i.e., X can be decom-
posed as X = M + A where M is an r.c.l.l. local martingale and A is an r.c.l.l.
process with finite variation paths. Then X is a stochastic integrator.

Proof We have shown in Theorem 5.38 that uniformly integrable r.c.l.l.martingales
are stochastic integrators and hence by localization, all r.c.l.l. local martingales are
stochastic integrators. Thus M is a stochastic integrator.

Earlier, in Theorem 4.23 we had observed that r.c.l.l. processes A with finite
variation paths are stochastic integrators and thus X = M + A is a stochastic inte-
breakgrator. �

5.6 Stochastic Integrators Are Semimartingales

The aim of this section is to prove the converse to Theorem 5.40. These two results
taken together constitute one version of The Dellacherie–Meyer–Mokobodzky–
Bichteler Theorem.

https://doi.org/10.1007/978-981-10-8318-1_4
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Let Z be a stochastic integrator. Let

Bt = Z0 +
∑
0<s≤t

(ΔZ)s1{|(ΔZ)s |>1}. (5.6.1)

Since paths of Z are r.c.l.l., for every ω, there are only finitely many jumps of Z(ω)

of size greater than 1 in [0, t] and thus B is a well-defined r.c.l.l. adapted process
whose paths are of finite variation and hence B itself is a stochastic integrator. Thus
Y = Z − B is a stochastic integrator and now jumps of Y are of magnitude at most
1. Now defining stopping times τn for n ≥ 1 via

τ n = inf{t > 0 : |Yt | ≥ n or |Yt−| ≥ n} (5.6.2)

and Y n = Y [τ n ] (i.e. Y n
t = Yt∧τ n ), it follows that for each n, Y n is a stochastic inte-

grator by Lemma 4.47. Further Y n is bounded by n + 1, since its jumps are bounded
by 1.

We will show that bounded stochastic integrators X can be decomposed as X =
M + A where M is a r.c.l.l. square integrable martingale and A is an r.c.l.l. process
with finite variation paths. We will also show that this decomposition is unique under
a certain condition on A. This would help in piecing together {Mn}, {An} obtained in
the decomposition Y n = Mn + An of Y n to get a decomposition of Y into an r.c.l.l.
locally square integrable martingale and an r.c.l.l.process with finite variation paths.

The proof of these steps is split into several lemmas.

Lemma 5.41 Let Mn ∈ M
2 be a sequence of r.c.l.l. square integrable martingales

such that Mn
0 = 0. Suppose ∃ T < ∞ such that Mn

t = Mn
t∧T for all n and

E[[Mn − Mk, Mn − Mk]T ] → 0 as min(k, n) → ∞. (5.6.3)

Then there exists an r.c.l.l. square integrable martingale M ∈ M
2 such that

lim
n→∞E[[Mn − M, Mn − M]T ] = 0, (5.6.4)

dem(Mn, M) → 0 and

lim
n→∞E[ sup

0≤t≤T
|Mn

t − Mt |2] = 0. (5.6.5)

Proof The relation (5.3.22) and the hypothesis (5.6.3) imply that

E[ sup
0≤t≤T

|Mn
s − Mk

s |2] → 0 as min(k, n) → ∞. (5.6.6)

Hence the sequence of processes {Mn} is Cauchy in ucp metric and thus in view
of Theorem 2.71 converges to an r.c.l.l. adapted process M and (5.6.5) is satisfied.
Further, (5.6.6) also implies that Mn

s converges to Ms in L2(P) for each s and hence

https://doi.org/10.1007/978-981-10-8318-1_4
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using Theorem 2.23 it follows that M is a martingale, indeed a square integrable
martingale. As a consequence (Mn

T − MT ) → 0 in L
2(P) and using (5.3.23) it fol-

lows that (5.6.4) is true. The convergence of Mn to M in Emery topology follows
from Theorem 5.34. �

The following localized version of this result follows easily.

Corollary 5.42 Let Mn ∈ M
2
loc be such that for a sequence of bounded stopping

times σi ↑ ∞, we have

E[[Mn − Mk, Mn − Mk]σi ] → 0 as min(k, n) → ∞ (5.6.7)

for all i ≥ 1, then there exists M ∈ M
2
loc such that

lim
n→∞E[ sup

0≤t≤σi

|Mn
t − Mt |2] = 0. (5.6.8)

If Mn in the Lemma above are continuous, it follows that M is also continuous. This
gives us the following.

Corollary 5.43 Let Mn ∈ M
2 be a sequence of continuous square integrable mar-

tingales such that Mn
0 = 0. Suppose ∃ T < ∞ such that Mn

t = Mn
t∧T and

E[[Mn − Mk, Mn − Mk]T ] → 0 as min(k, n) → ∞. (5.6.9)

Then there exists a continuous square integrable martingale M ∈ M
2 such that

lim
n→∞E[[Mn − M, Mn − M]T ] = 0 (5.6.10)

dem(Mn, M) → 0 and

lim
n→∞E[ sup

0≤t≤T
|Mn

t − Mt |2] = 0. (5.6.11)

Theorem 5.44 Let X be a stochastic integrator such that

(i) Xt = Xt∧T for all t ,
(ii) E[[X, X ]T ] < ∞.

Then X admits a decomposition X = M + A where M is an r.c.l.l.square integrable
martingale and A is a stochastic integrator satisfying

E[[N , A]T ] = 0 (5.6.12)

for all r.c.l.l. square integrable martingales N.

Proof The proof is very similar to the proof of existence of the projection operator
on a Hilbert space onto a closed subspace of the Hilbert space. Let

https://doi.org/10.1007/978-981-10-8318-1_2
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α = inf{E[[X − M, X − M]T ] : M ∈ M
2}.

Since E[[X, X ]T ] < ∞, it follows that α < ∞. For k ≥ 1, let M̃k ∈ M
2 be such that

E[[X − M̃k, X − M̃k]T ] ≤ α + 1

k
.

Define Mk
t = M̃k

t∧T , t ≥ 0, k ≥ 1. Then

E[[X − Mk, X − Mk]T ] = E[[X − M̃k, X − M̃k]T ] ≤ α + 1

k
.

Applying the parallelogram identity (4.6.13) to Y k = 1
2 (X − Mk), Y n = 1

2 (X −
Mn) we get

[Y k − Y n,Y k − Y n]T = 2[Y k,Y k]T + 2[Y n,Y n]T − [Y k + Y n,Y k + Y n]T
(5.6.13)

Note that Y k + Y n = X − 1
2 (M

n + Mk) and since 1
2 (M

n + Mk) ∈ M
2, we have

E[[Y k + Y n,Y k + Y n]T ] ≥ α

and hence

E[[Y k − Y n, Y k − Y n]T ] ≤ 2(
1

4
(α + 1

k
)) + 2(

1

4
(α + 1

n
)) − α (5.6.14)

Since Y k − Y n = 1
2 (M

n − Mk), (5.6.13)–(5.6.14) yields

1

4
E[[Mn − Mk, Mn − Mk]T ] ≤ 1

2
(
1

k
+ 1

n
)

Thus by Lemma 5.41, it follows that there exists M ∈ M
2 such that

lim
n→∞E[[Mn − M, Mn − M]T ] = 0. (5.6.15)

We now show that α is attained for this M . Let us define Y = 1
2 (X − M). Then we

have Y n − Y = 1
2 (M − Mn) and hence (5.6.15) yields

E[[Y n − Y,Y n − Y ]T ] → 0. (5.6.16)

Using (4.6.14) we have

https://doi.org/10.1007/978-981-10-8318-1_4
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|E[[Y n,Y n]T ] − E[[Y,Y ]T ]|
≤ E[|[Y n,Y n]T − [Y,Y ]T | ]
≤ E[√2([Y n − Y,Y n − Y ]T ).([Y n,Y n]T + [Y,Y ]T )]
≤

√
2(E[[Y n − Y,Y n − Y ]T ])(E[[Y n,Y n]T + [Y,Y ]T ]).

(5.6.17)

SinceE[[Y n,Y n]T ] ≤ 1
4 (α + 1

n ) andE[[Y,Y ]T ] ≤ 2(E[[X, X ]T + [M, M]T ]) < ∞,
(5.6.16) and (5.6.17) together yield E[[Y n,Y n]T ] → E[[Y,Y ]T ] as n → ∞ and
hence E[[Y,Y ]T ] ≤ 1

4α. On the other hand, since Y = 1
2 (X − M) where M ∈ M

2,
we have E[[Y,Y ]T ] ≥ 1

4α and hence E[[Y,Y ]T ] = 1
4α. Since Y = 1

2 (X − M) we
conclude E[[X − M, X − M]T ] = α.

By definition of α we have, for any N ∈ M
2, for all u ∈ R

E[[X − M − uN , X − M − uN ]T ] ≥ α = E[[X − M, X − M]T ]

since M + uN ∈ M
2. We thus have

u2E[[N , N ]T ] − 2uE[[N , X − M]T ] ≥ 0 for all u ∈ R. (5.6.18)

This implies E[[N , X − M]T ] = 0. Now the result follows by setting A = X − M .
A is a stochastic integrator because X is so by hypothesis and M has been proven to
be so. �

Recall that M2
c denotes the class of continuous square integrable martingales. A

small modification of the proof above yields the following.

Theorem 5.45 Let X be a stochastic integrator such that

(i) Xt = Xt∧T for all t ,
(ii) E[[X, X ]T ] < ∞.

Then X admits a decomposition X = N + Y where N is a continuous square inte-
grable martingale and Y is a stochastic integrator satisfying

E[[Y,U ]T ] = 0 ∀U ∈ M
2
c . (5.6.19)

Proof This time we define

α′ = inf{E[[X − M, X − M]T ] : M ∈ M
2
c}

and proceed as in the proof of Theorem 5.44. �

The next lemma shows that (5.6.12) implies an apparently stronger conclusion
that [N , A] is a martingale for N ∈ M

2.

Lemma 5.46 Let A be a stochastic integrator such that
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(i) At = At∧T , ∀t < ∞,
(ii) E[[A, A]T ] < ∞,
(iii) E[[N , A]T ] = 0 for all N ∈ M

2.

Then [N , A] is a martingale for all N ∈ M
2.

Proof Fix N ∈ M
2. For any stopping time σ, N [σ] is also a square integrable mar-

tingale and (4.6.9) gives [N [σ], A]T = [N , A][σ]
T = [N , A]T∧σ and thus we conclude

E[[N , A]T∧σ] = 0. Theorem 2.57 now implies that [N , A] is a martingale. �

Remark 5.47 If U is a continuous square integrable martingale and σ is a
stopping time,U [σ] is also a continuous square integrable martingale. Hence,
arguments as in the proof of the previous result yield that if a stochastic
integrator Y satisfies (5.6.19), then

[Y,U ] is a martingale ∀U ∈ M
2
c .

The next result would tell us that essentially, the integrator A obtained above has
finite variation paths (under some additional conditions).

Lemma 5.48 Let A be a stochastic integrator such that

(i) At = At∧T , ∀t < ∞,
(ii) E[B] < ∞ where B = supt≤T |At | + [A, A]T ,
(iii) [N , A] is a martingale for all N ∈ M

2(F+
� ).

Then A is a process with finite variation paths: Var[0,T ](A) < ∞ a.s.

Proof For a partition π̃ = {0 = s0 < s1 < . . . < sm = T } of [0, T ] let us denote

V π̃ =
m∑
j=1

|Asj − Asj−1 |.

We will show that for all ε > 0, ∃K < ∞ such that

sup
π

P(V π ≥ K ) < ε (5.6.20)

where the supremum above is taken over all partitions of [0, T ]. Taking a sequence
πn of successively finer partitions such that δ(πn) → 0 (e.g. πn = {kT 2−n : 0 ≤
k ≤ 2n}), it follows that V πn ↑ Var[0,T ](A) and thus (5.6.20) would imply

P(Var[0,T ](A) ≥ K ) < ε

and hence that P(Var[0,T ](A) < ∞) = 1. This would complete the proof.
Fix ε > 0. Since A is a stochastic integrator for the filtration (F�), it is also a

stochastic integrator for the filtration (F+
� ) in view of Theorem 4.44. Thus we can

get (see Remark 4.25) J1 < ∞ such that

https://doi.org/10.1007/978-981-10-8318-1_4
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sup
f ∈S1(F+� )

P(|
∫ T

0
f d A| ≥ J1) ≤ ε

6
. (5.6.21)

Since E[B] < ∞, we can get J2 < ∞ such that

P(B ≥ J2) ≤ ε

6
. (5.6.22)

Let J = max{J1, J2,E[B]} and n be such that 24
n < ε. Let K = (n + 1)J . We will

show that (5.6.20) holds for this choice of K . Note that the choice has been made
independent of a partition.

Now fix a partition π = {0 = t0 < t1 < . . . < tm = T }. Recall that for x ∈ R,
sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0, so that |x | = sgn(x)x . For 1 ≤
j ≤ m, let us consider the (F+

� )-martingale

Z̃ j
t = E[sgn(At j − At j−1) |F+

t ].

Since the filtration (F+
� ) is right continuous, the martingale Z̃ j

t admits an r.c.l.l.
version Z j

t . Then Z j
t j = sgn(At j − At j−1) and hence

Z j
t j (At j − At j−1) = |(At j − At j−1)|.

WritingC j
t = ∫ t

0 1(t j−1,t j ]d As = (At∧t j − At∧t j−1), we get by integration by parts for-
mula (4.6.7)

|(At j − At j−1)| = Z j
t j C

j
t j

=
∫ t j

0
Z j
s−dC j

s +
∫ t j

0
C j
s−dZ j

s + [Z j ,C j ]t j

=
∫ t j

t j−1

Z j
s−d As +

∫ t j

t j−1

C j
s−dZ j

s + [Z j , A]t j − [Z j , A]t j−1

and for t j−1 ≤ t ≤ t j

Z j
t C

j
t =

∫ t

t j−1

Z j
s−d As +

∫ t

t j−1

C j
s−dZ j

s + [Z j , A]t − [Z j , A]t j−1 .

Let us define

Zt =
m∑
j=1

Z j
t 1(t j−1,t j ](t),

Ct =
m∑
j=1

C j
t 1(t j−1,t j ](t),

https://doi.org/10.1007/978-981-10-8318-1_4
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Mt =
m∑
j=1

(Z j
t∧t j − Z j

t∧t j−1
).

It follows that |Cs | ≤ 2B, |Zs | ≤ 1, M is a bounded (F+
� )-martingale and

[M, A]t =
m∑
j=1

([Z j , A]t∧t j − [Z j , A]t∧t j−1).

Thus, defining

Yt =
∫ t

0
Zs−d As +

∫ t

0
Cs−dMs + [M, A]t

we get, for tk−1 ≤ t < tk , 1 ≤ k ≤ m

Yt =
k−1∑
j=1

|(At j − At j−1)| + Zk
t C

k
t

and thus Yt ≥ −2B. Also note that

YT =
m∑
j=1

|(At j − At j−1)| = V π.

LetUt = ∫ t
0 Cs−dMs + [M, A]t , it follows thatU is a (F+

� ) localmartingale since
by assumption on A, [M, A] is itself a (F+

� )-martingale, and thus
∫ t
0 Cs−dMs is a

(F+
� ) local martingale by Theorem 5.31. Further

Yt =
∫ t

0
Zs−d As +Ut .

Now defining
τ = inf{t ≥ 0 : Ut < −3J } ∧ T

it follows that τ is a stopping time (see Lemma 2.48) and

{τ < T } ⊆ {Uτ ≤ −3J }.

Since Yτ ≥ −2B, we note that

({τ < T } ∩ {B < J }) ⊆ ({Uτ ≤ −3J } ∩ {Yτ ≥ −2J }
⊆ {

∫ τ

0
Zs−d As ≥ J }.

https://doi.org/10.1007/978-981-10-8318-1_2
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Hence using (5.6.21) and (5.6.22) we conclude

P(τ < T ) ≤ P(

∫ τ

0
Zs−d As ≥ J ) + P(B ≥ J ) ≤ ε

3
. (5.6.23)

Now (ΔU )t = Ct−(ΔM)t + (ΔM)t (ΔA)t . Since M is bounded by 1, (ΔM)t ≤ 2.
Also, |Ct | ≤ 2B and |(ΔA)t | ≤ 2B. Thus |(ΔU )t | ≤ 8B. Let σn be (F+

� ) stopping
times increasing to ∞ such that U [σn ] is a (F+

� )-martingale. By definition of τ ,
it follows that Ut∧σn∧τ ≥ −(3J + 8B). Since U [σn ] is a (F+

� )-martingale, we have
E[UT∧σn∧τ ] = 0. Recall that B is integrable and hence using Fatou’s lemma we
conclude

E[UT∧τ ] ≤ 0. (5.6.24)

Since UT∧τ ≥ −(3J + 8B), it follows that E[(UT∧τ )
−] ≤ E[(3J + 8B)] (here,

(UT∧τ )
− denotes the negative part of UT∧τ ). Since J ≥ E[B], using (5.6.24) we

conclude
E[(UT∧τ )

+] ≤ 11J. (5.6.25)

Since V π = YT = ∫ T
0 Zs−d As +UT and recalling that K = (n + 1)J

P(V π ≥ K ) ≤ P(

∫ T

0
Zs−d As ≥ J ) + P(UT ≥ nJ )

≤ ε

6
+ P(τ < T ) + P(UT∧τ ≥ nJ )

≤ ε

6
+ ε

3
+ 1

nJ
E[(UT∧τ )

+]

≤ ε

2
+ 11J

n J

<
ε

2
+ ε

2
= ε

since by our choice 24
n < ε. This proves (5.6.20) and completes the proof as noted

earlier. �

Wenow put together the results obtained earlier in this chapter to get the following
key step in the main theorem of the section. We have to avoid assuming right conti-
nuity of the filtration in the main theorem. However, it was required in the previous
result and we avoid the same by an interesting argument. Here is a lemma that is
useful here and in later chapter.

Lemma 5.49 Let (Ω,F ,P) be a complete probability space and letH ⊆ G be sub-
σ-fields of F such that H contains all the P null sets in F . Let Z be an integrable
G measurable random variable such that for all G measurable bounded random
variables U one has

E[ZU ] = E[ZE[U |H]]. (5.6.26)
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Then Z isH measurable.

Proof Noting that

E[ZE[U |H]] = E[E[Z |H]E[U |H]] = E[E[Z |H]U ]

using (5.6.26) it follows that for all G measurable bounded random variables U

E[(Z − E[Z |H])U ] = 0. (5.6.27)

Taking U = sgn(Z − E[Z |H]) (here sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for
x < 0), we conclude from (5.6.27) that

E[ |(Z − E[Z |H])| ] = 0.

Since H is assumed to contain all P null sets in F , it follows that Z is H meas-
urable. �

Theorem 5.50 Let X be a stochastic integrator such that

(i) Xt = Xt∧T for all t ,
(ii) E[sups≤T |Xs | ] < ∞,
(iii) E[[X, X ]T ] < ∞.

Then X admits a decomposition

X = M + A, M ∈ M
2, A ∈ V, (5.6.28)

such that
[N , A] is a martingale for all N ∈ M

2 (5.6.29)

and
E[[X, X ]T ] = E[[M, M]T ] + E[[A, A]T ] (5.6.30)

and further, the decomposition (5.6.28) is unique under the requirement (5.6.29).

Proof As seen in Theorem 4.34, X being a stochastic integrator for the filtration
(F�) implies that X is also a stochastic integrator for the filtration (F+

� ). Also, (4.6.2)
implies that [X, X ] does not depend upon the underlyingfiltration, so the assumptions
of the theorem continue to be true when we take the underlying filtration to be
(F+

� ). Now Theorem 5.44 yields a decomposition X = M̃ + Ã with M̃ ∈ M
2(F+

� )

and E[[N , Ã]T ] = 0 for all N ∈ M2(F+
� ). Let Mt = M̃t∧T , At = Ãt∧T . Then M ∈

M
2(F+

� ) and E[[N , A]T ] = 0 for all N ∈ M2(F+
� ) since [N , A]t = [N , Ã]t∧T (by

(4.6.9)). As a consequence,

E[[X, X ]T ] = E[[M, M]T ] + E[[A, A]T ].

https://doi.org/10.1007/978-981-10-8318-1_4
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Thus E[[A, A]T ] < ∞ and then by Lemma 5.46, we have [N , A] is a (F+
� )-

martingale for all N ∈ M
2(F+

� ). Since the underlying filtration (F+
� ) is right con-

tinuous, Lemma 5.48 implies that A ∈ V; namely, paths of A have finite variation.
By construction, M, A are (F+

� ) adapted. Since for s < t , F+
s ⊆ Ft , it follows that

A−
t = At− is Ft measurable. We will show that

(ΔA)t is Ft measurable ∀t > 0. (5.6.31)

Since Xt isFt measurable, it would follow thatMt = Xt − At is alsoFt measurable.
This will also imply M ∈ M

2 = M
2(F�) completing the proof.

Fix t > 0. Let U be a bounded F+
t measurable random variable, and let V =

U − E[U | Ft ]. Let
Ns = V 1[t,∞)(s)

i.e. Ns = 0 for s < t and Ns = V for s ≥ t . It is easy to see that N ∈ M
2(F+

� ) and that
[N , A]s = V (ΔA)t1[t,∞)(s) (using (4.6.10)). Thus [N , A] is a (F+

� )-martingale, and
in particularE[[N , A]t ] = 0. Hencewe conclude that for all boundedF+

t measurable
U

E[(ΔA)tU ] = E[(ΔA)tE[U |Ft ]]. (5.6.32)

Invoking Lemma 5.49 we conclude that (ΔA)t isFt measurable and hence that At is
Ft measurable. As noted earlier, this impliesM ∈ M

2. Only remains to prove unique-
ness of decomposition satisfying (5.6.29). Let X = Z + B be another decomposition
with Z ∈ M

2, B ∈ V and [N , B] being a martingale for all N ∈ M
2.

Now X = M + A = Z + B, B − A = M − Z ∈ M
2 and [N , B − A] is a mar-

tingale for all N ∈ M
2. Let N = M − Z = B − A. By definition, M0 = Z0 = 0

and so N0 = 0. Now [N , B − A] is a martingale implies [B − A, B − A] = [M −
Z , M − Z ] is a martingale, and as a consequence, we have E[[M − Z , M − Z ]T ] =
E[[M − Z , M − Z ]0] = 0 (see Remark 4.73). Now invoking (5.3.22), we conclude
(since M − Z ∈ M

2 and M0 = Z0 = 0)

E[sup
s≤T

|Ms − Zs |] = 0.

Thus M = Z and as a consequence A = B. This completes the proof. �

Corollary 5.51 The processes M, A in (5.6.28) satisfy

Mt = Mt∧T , At = At∧T ∀t ≥ 0 (5.6.33)

Proof Note that Xt = Xt∧T . Let Rt = Mt∧T and Bt = At∧T . Then X = R + B is
also a decomposition that satisfies (5.6.28) since R is also a square integrable mar-
tingale, B is a process with finite variation paths and if R is any square integrable
martingale, then

[N , B]t = [N , A]t∧T

https://doi.org/10.1007/978-981-10-8318-1_4
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194 5 Semimartingales

and hence [N , B] is also a martingale. Now uniqueness part of Theorem 5.50 implies
(5.6.33). �

Corollary 5.52 Suppose X,Y are stochastic integrators satisfying conditions of
Theorem 5.50, and let X = M + A and Y = N + B be decompositions with M, N ∈
M

2, A, B ∈ V and [U, A], [U, B] beingmartingales for allU ∈ M
2. If for a stopping

time σ, X [σ] = Y [σ], then M [σ] = N [σ] and A[σ] = B[σ].

Proof Follows by observing that X [σ] is also a stochastic integrator and X [σ] =
M [σ] + A[σ] and X [σ] = N [σ] + B[σ] are two decompositions, both satisfying
(5.6.29). The conclusion follows from the uniqueness part of Theorem 5.50. �

We now introduce two important definitions.

Definition 5.53 An adapted process B is said to be locally integrable if there
exist stopping times τn increasing to ∞ and random variables Dn such that
E[Dn] < ∞ and

P(ω : sup
0≤t≤τn(ω)

|Bt (ω)| ≤ Dn(ω)) = 1 ∀n ≥ 1.

The condition above is meaningful even if sup0≤t≤τn(ω)|Bt (ω)| is not measurable. It is
to be interpreted as—there exists a set Ω0 ∈ F with P(Ω0) = 1 such that the above
inequality holds for ω ∈ Ω0.

Definition 5.54 An adapted process B is said to be locally square integrable
if there exist stopping times τn increasing to∞ and random variables Dn such
that E[D2

n] < ∞ and

P(ω : sup
0≤t≤τn(ω)

|Bt (ω)| ≤ Dn(ω)) = 1 ∀n ≥ 1.

Clearly, if B is locally bounded process then it is locally square integrable. It is
easy to see that a continuous adapted processes Y is locally bounded if Y0 is bounded,
is locally integrable if E[ |Y0| ] < ∞ and locally square integrable if E[ |Y0|2] < ∞.
Indeed, the same is true for an r.c.l.l. adapted process if its jumps are bounded.

We have seen that for an r.c.l.l. adapted process Z , the process Z− is locally
bounded and hence it follows that Z is locally integrable if and only if the process
ΔZ is locally integrable and likewise, Z is locally square integrable if and only if
the process ΔZ is locally square integrable.

Theorem 5.55 Let X be locally square integrable stochastic integrator. Then X
admits a decomposition X = M + A where M ∈ M

2
loc (M is a locally square inte-

grable martingale) and A ∈ V (A is a process with finite variation paths) satisfying

[A, N ] ∈ M
2
loc ∀N ∈ M

2
loc. (5.6.34)

Further, such a decomposition is unique.
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Proof Since X is a locally square integrable process, it follows that ΔX is locally
square integrable. Since Δ[X, X ] = (ΔX)2, it follows that [X, X ] is locally inte-
grable and thus so is Dt = sups≤t |Xs |2 + [X, X ]t . Letσn ↑ ∞be stopping times such
thatE[Dσn ] < ∞, and let τ n = n ∧ σn . Let Xn = X [τ n ]. Then Xn satisfies conditions
of Theorem 5.50 (with T = n), and thus we can get decomposition Xn = Mn + An

such that Mn ∈ M
2 and An ∈ V and

[U, An] is a martingale for all U ∈ M
2. (5.6.35)

Using Corollary 5.52, we can see that

P(Mn
t = Mk

t ∀t ≤ τ n ∧ τ k) = 1, ∀n, k.

Thus we can define r.c.l.l.processes M, A such that M [τ n ] = Mn and A[τ n ] = An for
all n. This decomposition satisfies the asserted properties.

Uniqueness follows as in Theorem 5.50 and the observation that if Y ∈ M
2
loc,

Y0 = 0 and [Y,Y ]t = 0 for all t then Y = 0 (i.e. P(Yt = 0 ∀t) = 1.) �
Remark 5.56 The process A with finite variation r.c.l.l. paths appearing in the
above theorem was called a Natural process by Meyer, and it appeared in
the Doob Meyer decomposition of supermartingales. Later it was shown that
such a process is indeed a predictable process. A is also known as the
compensator of X . We will come back to this in Chap.8 later.

Corollary 5.57 Let X be a locally square integrable stochastic integrator and A be
its compensator and M = X − A ∈ M

2
loc. Then for any stopping time σ such that

E[ [X, X ]σ] < ∞,
E[ [A, A]σ] ≤ E[ [X, X ]σ] (5.6.36)

and
E[ [M, M]σ] ≤ E[ [X, X ]σ] (5.6.37)

Proof If τn ↑ ∞ are as in the proof of Theorem 5.55, then by Theorem 5.50 we have

E[[X, X ]σ∧τn ] = E[[M, M]σ∧τn ] + E[[A, A]σ∧τn ]

and the required inequalities follow by taking limit as n → ∞ and using monotone
convergence theorem. �
Arguments similar to the ones leading to Theorem 5.55 yield the following (we use
Theorem 5.45 and Remark 5.47). We also use the fact that every continuous process
is locally bounded and hence locally square integrable.

Theorem 5.58 Let X be locally square integrable stochastic integrator. Then X
admits a decomposition X = N + Y with N ∈ Mc,loc; i.e. N is a continuous locally
square integrable martingale with N0 = 0, and Y is a locally square integrable
stochastic integrator satisfying

https://doi.org/10.1007/978-981-10-8318-1_8
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[Y,U ] is a local martingale ∀U ∈ M
2
c . (5.6.38)

Further, such a decomposition is unique. Indeed,

[Y,U ] = 0 ∀U ∈ M
2
c . (5.6.39)

Proof The only new part is to show that (5.6.38) yields (5.6.39). For this note that
on the one hand [Y,U ] is continuous asΔ[Y,U ] = (ΔY )(ΔU ) andU is continuous.
On the other hand by definition [Y,U ] has finite variation paths. Thus [Y,U ] is
a continuous local martingale with finite variation paths. Hence by Theorem 5.24,
[Y,U ] = 0. �

As an immediate consequence of Theorem 5.55, here is a version of the Della-
cherie–Meyer–Mokobodzky–Bichteler Theorem. See Theorem 5.89 for the final ver-
sion.

Theorem 5.59 Let X be an r.c.l.l.adapted process. Then X is a stochastic integrator
if and only if X is a semimartingale.

Proof We have already proved (in Theorem 5.40) that if X is a semimartingale then
X is a stochastic integrator.

For the other part, let X be a stochastic integrator. Let us define

Bt = X0 +
∑
0<s≤t

(ΔX)s1{|(ΔX)s |>1}. (5.6.40)

Then as noted at the beginning of the section, B is an adapted r.c.l.l. process with
finite variation paths and is thus a stochastic integrator. Hence Z = X − B is also a
stochastic integrator. By definition,

(ΔZ) = (ΔX)1{|ΔX |≤1}

and hence jumps of Z are bounded by 1. Hence Z is locally square integrable. Hence
by Theorem 5.55, Z admits a decomposition Z = M + A where M ∈ M

2
loc and A

is a process with finite variation paths. Thus X = M + (B + A) and thus X is a
semimartingale. �
The result proven above contains a proof of the following fact, which we record here
for later reference.

Corollary 5.60 Every semimartingale X can be written as X = M + A where M ∈
M

2
loc and A ∈ V; i.e. M is a locally square integrable r.c.l.l.martingale with M0 = 0

and A is an r.c.l.l. process with finite variation paths.

Exercise 5.61 Let X be a semimartingale for the filtration (F�). Let (H�) be a
filtration such that Ht ⊆ Ft for all t . Suppose X is (H�) adapted. Show that X
admits a decomposition X = N + B, where N , B are (H�) adapted, N a local
martingale and B a process with finite variation paths.
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Exercise 5.62 Let G(t) be a deterministic function. Suppose, G considered
as a stochastic process on some probability space and some filtration is a
semimartingale. Show that G is a function with finite variation on [0, T ] for
every T < ∞.
Hint: Use Exercise 5.61 with Ht = {B ∈ F : P(B) = 0 or P(B) = 1} for all t .
Every local martingale X is a semimartingale by definition. In that case, the process
A appearing in the corollary above is also a local martingale. Thus we have

Corollary 5.63 Every r.c.l.l. local martingale N can be written as N = M + L
where M is a locally square integrable r.c.l.l. martingale with M0 = 0 and L is an
r.c.l.l.process with finite variation paths that is also a local martingale, i.e. M ∈ M

2
loc

and L ∈ V ∩ Mloc.

Using the technique of separating large jumps from a semimartingale to get a
locally bounded semimartingale used in proof of Theorem 5.59, we can get the
following extension of Theorem 5.58.

Theorem 5.64 Let X be a stochastic integrator. Then X admits a decomposition
X = N + S with N ∈ Mc,loc ( N is a continuous locally square integrablemartingale
with N0 = 0) and S is a stochastic integrator satisfying

[S,U ] = 0 ∀U ∈ M
2
c . (5.6.41)

Further, such a decomposition X = N + S is unique.

Proof Let B be defined by (5.6.40), and let Z = X − B. Then Z is locally bounded,
and thus invoking Theorem 5.58, we can decompose Z as Z = N + Y with N ∈
Mc,loc and Y satisfying [Y,U ] = 0 for all U ∈ M

2
c . Let S = Y + B. It follows that

X = N + S. Since [B,U ] = 0 for all U ∈ M
2
c , [S,U ] = 0 for all U ∈ M

2
c . To see

that such a decomposition is unique, if X = M + R is another such decomposition
with M ∈ M

2
c and [R,U ] = 0 for allU ∈ M

2
c , then V = N − M = R − S ∈ Mc,loc

with [V, V ] = 0 and hence V = 0 by Theorem 5.24. �

Definition 5.65 Let X be a semimartingale. The continuous local martingale
N such that X = N + S and [S,U ] = 0 for all U ∈ Mc,loc is said to be the
continuous local martingale part of X and is denoted by X (c).

For a semimartingale X with X = X (c) + Z , we can see that [X, X ] = [X (c), X (c)]
+ [Z , Z ]. We will later show in Theorem 8.83 that [X (c), X (c)] = [X, X ](c)—the
continuous part of the quadratic variation of X .

The next result shows that if X is a continuous process that is a semimartingale,
then it can be uniquely decomposed as a sum of a continuous local martingale and a
continuous process with finite variation paths.

Theorem 5.66 Let X bea continuous process, and further let X bea semimartingale.
Then X can be uniquely decomposed as

https://doi.org/10.1007/978-981-10-8318-1_8
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X = M + A

where M and A are continuous processes, M0 = 0, M a local martingale and A a
process with finite variation paths.

Proof Without loss of generality, we assume X0 = 0. Now X being continuous,
it follows that X is locally square integrable and thus X admits a decomposition
X = M + A with M ∈ M

2
loc and A ∈ Vwith A satisfying (5.6.34). On the one hand,

continuity of X implies (ΔM)t = −(ΔA)t for all t > 0 and since A ∈ V, we have

[A, M]t =
∑
0<s≤t

(ΔA)s(ΔM)s .

Thus,
[A, M]t = −

∑
0<s≤t

(ΔA)2s = −[A, A]t .

Since A satisfies (5.6.34), it follows that [A, M] = −[A, A] is a local martingale.
If σn is a localizing sequence, it follows that E[[A, A]t∧σn ] = 0 for all n. Since
[A, A]s ≥ 0 for all s, it follows that [A, A]t∧σn = 0 a.s. for all t, n. This implies

[A, A]t =
∑
0<s≤t

(ΔA)2s = 0 a.s. ∀t

and hence A is a continuous process and hence so isM = X − A. Uniqueness follows
from Theorem 5.24. �

Exercise 5.67 Let X be a continuous semimartingale, and let X = M + A be
a decomposition as in Theorem 5.66 with M ∈ Mc,loc with M0 = 0 and A ∈
V. Let X = N + B be any decomposition with N ∈ Mloc and B ∈ V. Then
[N , N ] − [M, M] is an increasing process, i.e.

[N , N ] = [M, M] + C, for some C ∈ V
+. (5.6.42)

Hint: Observe that [M, A − B] = 0 since M is continuous. Write N = M +
(A − B) and take C = [A − B, A − B].
Definition 5.68 A local martingale M is said to be purely discontinuous if

[M, N ] = 0 ∀N ∈ Mc,loc. (5.6.43)

Let Md , M2
d , Md,loc, M2

d,loc denote the class of purely discontinuous martingales,
purely discontinuous square integrable martingales, purely discontinuous local mar-
tingales, and purely discontinuous locally square integrablemartingales, respectively.

Exercise 5.69 Let M ∈ Mloc ∩ V. Then show that M ∈ Md,loc.
Hint: Use Theorem 4.74.

https://doi.org/10.1007/978-981-10-8318-1_4
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We will now show that every local martingale can be (uniquely) decomposed as
a sum of a continuous local martingale and a purely discontinuous local martingale.

Theorem 5.70 Let X be an r.c.l.l. local martingale. Then X admits a decomposition

X = M + N , M ∈ Mc,loc, N ∈ Md,loc. (5.6.44)

Proof Let
Bt = X0 +

∑
0<s≤t

(ΔX)s1{|(ΔX)s |>1}

and let Y = X − B. Then B is an adapted r.c.l.l. process with finite variation paths,
and Y is a stochastic integrator with jumps bounded by 1 and hence is locally square
integrable. Then invoking Theorem 5.58, we get a decomposition

Y = M + A

where M ∈ Mc,loc and A is a locally square integrable stochastic integrator such that
[A, S]t = 0 for all S ∈ M

2
c . Since B ∈ V, it follows that [B, S] = 0 for all S ∈ M

2
c .

Defining N = A + B = X − M , we get that [N , S] = 0 for all S ∈ M
2
c and since

X , M are local martingales, it follows that so is N . �
Remark 5.71 Here, if X ∈ M

2
loc then M ∈ M

2
c,loc and N ∈ M

2
d,loc. We will later

show in Theorem 8.80 that in this case [M, M] is the continuous part of [X, X ]
and [N , N ] is the sum of squares of jumps of X .

5.7 The Class L(X)

In the previous section, we have given a characterization of stochastic integrators.
Like stochastic integrators, the class L(X) of integrands for the integral

∫
f d X was

defined (seeDefinition 4.17) in an ad hoc fashion.Herewe give a concrete description
of L(X).

Theorem 5.72 Let X be a stochastic integrator. Then a predictable process f
belongs to L(X) if and only if X admits a decomposition X = M + A, where
M ∈ M

2
loc (M is a locally square integrable martingale with M0 = 0) and A ∈ V

(A is a process with finite variation paths) such that

∫ t

0
| fs |d|A|s < ∞ ∀t < ∞ a.s. (5.7.1)

and there exist stopping times σk ↑ ∞ such that

E[
∫ σk

0
| fs |2d[M, M]s] < ∞ ∀t < ∞. (5.7.2)

https://doi.org/10.1007/978-981-10-8318-1_8
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Proof If f satisfies (5.7.1), then as seen in Remark 4.24 f ∈ L(A) and if f satisfies
(5.7.2), then f ∈ L

2
m(M) and hence f ∈ L(M) in view of Theorem 5.31. Thus if

X admits a decomposition X = M + A such that (5.7.1)–(5.7.2) holds then f ∈
L(M) ∩ L(A) ⊆ L(M + A).

Conversely, let f ∈ L(X). Then it is easy to see that h = (1 + | f |) ∈ L(X). So
let Y = ∫

(1 + | f |)dX . Then as noted in Theorem 4.33, Y is a stochastic integrator.
Hence by Corollary 5.60, Y admits a decomposition Y = N + B and with N ∈ M

2
loc

and B ∈ V. Let

M =
∫

(1 + | f |)−1dN ,

A =
∫

(1 + | f |)−1dB.

The two integrals are defined as (1 + | f |)−1 is bounded. Further, this also yields,
M ∈ M

2
loc and A ∈ V. Clearly

M + A =
∫

(1 + | f |)−1dY =
∫

(1 + | f |)−1(1 + | f |)dX = X.

Since g = f · (1 + | f |)−1 is bounded, g ∈ L(Y ) and hence f = g · (1 + | f |) ∈
L(X) (see Theorem 4.33). �

Exercise 5.73 Let M be a continuous martingale with M0 = 0.

(i) Let M = N + B be any decomposition with N ∈ M
2
loc and B ∈ V, and let

f ∈ L
2
m(N ). Show that f ∈ L

2
m(M).

Hint: Use (5.6.42).
(ii) Show that L(M) = L

2
m(M).

(iii) Show that

L(M) = { f : predictable such that
∫ t

0
f 2s d[M, M]s < ∞ a.s.}. (5.7.3)

Hint: Use Remark 5.33.

Remark 5.74 It follows that for a Brownian motion B,

L(B) = { f : predictable such that
∫ t

0
f 2s ds < ∞ a.s.}.

Definition 5.75 For a process A with finite variation paths, let L1
l (A) be the

class of predictable processes f satisfying (5.7.1).

Thus, L1
l (A) ⊆ L(A). Theorem 5.72 can be recast as: for a stochastic integrator X ,

f ∈ L(X) if and only if X admits a decomposition X = M + A, whereM is a locally

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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square integrable martingale with M0 = 0 and A is a process with finite variation
paths such that

f ∈ L
2
m(M), and f ∈ L

1
l (A).

As a consequence, for a semimartingale X

L(X) =
⋃

{M,A :X=M+A, M∈M2
loc, A∈V}

L
2
m(M) ∩ L

1
l (A) .

Exercise 5.76 Let X be a continuous semimartingale, and let X = M + A be
the unique decomposition with M being continuous local martingale and A ∈
V. Then show that

L(X) = L
2
m(M) ∩ L

1
l (A).

Hint: To show, L(X) ⊆ L
2
m(M) ∩ L

1
l (A) use Exercise 5.67.

The following exercise gives an example of a process A ∈ V such thatL(A) is strictly
larger than L

1
l (A).

Exercise 5.77 Let {ξk,m : 1 ≤ k ≤ 2m−1,m ≥ 1} be a family of independent
identically distributed random variables with

P(ξ1,1 = 1) = P(ξ1,1 = −1) = 0.5

and let ak,m = 2k−1
2m . Let

Ft = σ{ξk,m : ak,m ≤ t},

An
t =

n∑
m=1

2m−1∑
k=1

1

22m
ξk,m1[ak,m ,∞)(t),

At =
∞∑

m=1

2m−1∑
k=1

1

22m
ξk,m1[ak,m ,∞)(t)

and f : [0,∞) �→ [0,∞) be defined by

f (ak,m) = 2m

with f (t) = 0 otherwise. Show that

(i) For each n, (An
t ,Ft ) is a martingale.

(ii) For each t , An
t converges to At in L

2(P).
(iii) (At ,Ft ) is a martingale.



202 5 Semimartingales

(iv) A ∈ V.
(v) Let Bt = |A|t . Show that

∫ t
0 f (s)dBs = ∞.

(vi) Show that [A, A]t = ∑∞
m=1

∑2m−1

k=1
1
24m 1[an,m ,∞)(t).

(vii) Show that
∫ 1
0 f 2(s)d[A, A]s < ∞.

Thus
∫ t
0 f d A is defined as a stochastic integral but not defined as aRiemann–

Stieltjes integral.

5.8 The Dellacherie–Meyer–Mokobodzky–Bichteler
Theorem

In Theorem 5.59 we have shown that an r.c.l.l. adapted process is a stochastic inte-
grator if and only if it is a semimartingale. Even if we demand seemingly weaker
requirements on an adapted r.c.l.l. process X , it implies that it is a semimartingale.

Indeed, if we demand that f n → f uniformly implies that JX ( f n)t → JX ( f )t in
probability for every t , then it follows that X is a semimartingale. Thus demanding
continuity of the mapping JX with the strongest form of convergence on the domain
S and the weakest form of convergence on the range leads to the same conclusion.

Definition 5.78 Let X be an r.c.l.l. adapted process. Then X is said to be a
weak stochastic integrator if

f n ∈ S, f n → 0 uniformly ⇒ JX ( f n)t → 0 in probability for each t < ∞.

The Dellacherie–Meyer–Mokobodzky–Bichteler Theorem (first proven by Del-
lacheriewith contributions fromMeyer,Mokobodzky and then independently proven
by Bichteler) states that X is a weak stochastic integrator if and only if it is a semi-
martingale. If X is a semimartingale then it is a stochastic integrator. Clearly, if X is
a stochastic integrator, then it is a weak stochastic integrator. To complete the circle,
wewill now show that if X is a weak stochastic integrator, then it is a semimartingale.

Towards this goal, we introduce some notation. Let S+ be the class of stochastic
processes f of the form

fs(ω) =
m∑
j=0

a j+1(ω)1(s j ,s j+1](s) (5.8.1)

where 0 = s0 < s1 < s2 < . . . < sm+1 < ∞, a j+1 is bounded F+
s j measurable ran-

dom variable, 0 ≤ j ≤ m, m ≥ 1 and let C be the class of stochastic processes f of
the form

fs(ω) =
n∑
j=0

b j+1(ω)1(σ j (ω),σ j+1(ω)](s) (5.8.2)
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where 0 = σ0 ≤ σ1 ≤ σ2 ≤ . . . ,≤ σn+1 < ∞ are (F+
� ) bounded stopping times and

b j+1 is bounded F+
σ j

measurable random variable, 0 ≤ j ≤ n, n ≥ 1.
For f ∈ C, let us define

IX ( f )t (ω) =
n∑
j=0

b j+1(ω)(Xσ j+1∧t (ω) − Xσ j∧t (ω)). (5.8.3)

So for f ∈ S, JX ( f ) = IX ( f ). Indeed, if X is a stochastic integrator, then as noted
earlier, IX ( f ) = ∫

f d X , ∀ f ∈ C.
We start with a few observations.

Lemma 5.79 Let X be an r.c.l.l. adapted process, f ∈ C and τ be a stopping time.
Then we have, for all t < ∞

IX ( f 1[0,τ ])t = IX ( f )t∧τ . (5.8.4)

Proof Let f be given by (5.8.2), and let g = f 1[0,τ ]. Then we have

gs =
n∑
j=0

b j+11(σ j∧τ ,σ j+1∧τ ](s)

andwriting d j+1 = b j+11{σ j≤τ }, it follows that d j+1 isF+
σ j∧τ measurable andwe have

gs =
n∑
j=0

d j+11(σ j∧τ ,σ j+1∧τ ](s).

Since IX ( f ) and IX (g) are defined pathwise, we can verify that the relation (5.8.4)
is true. �

Lemma 5.80 Let X be an r.c.l.l. adapted process. Then X is a weak stochastic
integrator if and only if X satisfies the following condition for each t < ∞:

∀ε > 0 ∃Kε < ∞ s.t. [ sup
f ∈S, | f |≤1

P(|JX ( f )t | > Kε)] ≤ ε. (5.8.5)

Proof If X satisfies (5.8.5), then given f n ∈ S, an = supt,ω| f nt (ω)| → 0, we need to
show JX ( f n)t → 0 in probability. So given ε > 0, get Kε as in (5.8.5). Given η > 0
let n0 be such that for n ≥ n0, we have anKε < η. Then gn = 1

an
f n ∈ S and |gn| ≤ 1.

Hence
P(|JX ( f n)t | ≥ η) ≤ P(|JX (gn)t | > Kε) ≤ ε.

Thus X is a weak stochastic integrator. Conversely let X be a weak stochastic inte-
grator. If for some ε, t < ∞, no such Kε < ∞ exists, then for each n, we will get
f n such that | f n| ≤ 1 and
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P(|JX ( f n)t | > n) ≥ ε. (5.8.6)

Then gn = 1
n f n converges uniformly to zero, but in view of (5.8.6),

P(|JX (gn)t | > 1) ≥ ε ∀n ≥ 1.

This contradicts the assumption that X is a weak stochastic integrator. �

Lemma 5.81 Let X be an r.c.l.l. adapted process. Then X satisfies (5.8.5) if and
only if for each t < ∞the following condition holds:

∀ε > 0 ∃Kε < ∞ s.t. [ sup
f ∈C, | f |≤1

P(|IX ( f )t | > Kε)] ≤ ε. (5.8.7)

Proof Since f ∈ S implies f 1(0,∞) ∈ C, it is easy to see that (5.8.7) implies (5.8.5).
So now suppose Kε is such that (5.8.5) holds. We show that (5.8.7) holds. First

let f ∈ S
+ be given by

fs(ω) =
m−1∑
j=0

a j+1(ω)1(s j ,s j+1](s)

where 0 = s0 < s1 < s2 < . . . < sm < ∞, a j+1 is bounded F+
s j measurable random

variable, 0 ≤ j ≤ (m − 1). Let 0 < δk < 1
k be such that s j + δk < s j+1, 0 ≤ j ≤ m

and let

gks (ω) =
m−1∑
j=0

a j+1(ω)1(s j+δk ,s j+1](s).

Since F+
s j ⊆ Fs j+δk , it follows that g

k ∈ S. Noting that gk converges to f and using
the explicit formula for IX , JX along with the fact that paths of X are r.c.l.l.we see
that (the number of terms in the sum remain fixed!)

JX (gk)t → IX ( f )t pointwise.

Hence we conclude that
P(|IX ( f )t | > Kε) ≤ ε.

In other words, (5.8.5) implies

∀ε > 0 ∃Kε < ∞ s.t. [ sup
f ∈S+, | f |≤1

P(|IX ( f )t | > Kε)] ≤ ε. (5.8.8)

Let us note that if f ∈ C is given by (5.8.2) with σ j being simple stopping times,
namely taking finitely many values, then f ∈ S

+. To see this, let us order all the
values taken by the stopping times σ j , j = 0, 1, . . . , n and let this ordered list be
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s0 < s1 < s2 < s3 < . . . < sk . Recall that by construction, f is l.c.r.l. adapted and
thus

b j = lim
u↓s j

f (u)

exists and is F+
s j measurable. And then

fs =
k−1∑
j=0

b j1(s j ,s j+1](s)

proving that f ∈ S
+.

Now returning to the proof of (5.8.7), let f ∈ C be given by

fs =
n−1∑
j=0

b j+11(σ j ,σ j+1](s)

with 0 = σ0 ≤ σ1 ≤ σ2 ≤ . . . ,≤ σn < ∞ are (F+
� ) bounded stopping times and b j

is bounded F+
σ j

measurable random variable, 0 ≤ j ≤ (n − 1). Let

τm
j = [2mσ j ] + 1

2m
, m ≥ 1

be simple stopping times decreasing to σ j , 0 ≤ j ≤ n, and let

gms =
n−1∑
j=0

b j+11(τm
j ,τm

j+1](s).

Then gm converges to f , and from the explicit expression for IX (gm) and IX ( f ), it
follows that IX (gm) converges to IX ( f ). As noted above gm ∈ S

+ and hence

P(|IX (gm)t | > Kε) ≤ ε

and then IX (gm)t → IX ( f )t implies

P(|IX ( f )t | > Kε) ≤ ε.

Since this holds for every f ∈ C, (5.8.7) follows. �

The preceding two lemmas lead to the following interesting result. The convergence
for each t in the definition of weak stochastic integrator leads to the apparently
stronger result—namely convergence in ducp.

Theorem 5.82 Let X be a weak stochastic integrator. Then f n ∈ C, f n → 0 uni-
formly implies
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IX ( f n)
ucp−→ 0. (5.8.9)

As a consequence, X satisfies (4.2.20).

Proof Fix f n ∈ C such that f n → 0 uniformly. Proceeding as in the proof of Lemma
5.80, one can show using (5.8.7) that for each t ,

IX ( f n)t → 0 in probability. (5.8.10)

Fix η > 0, T < ∞. For n ≥ 1, let

τ n = inf{t ≥ 0 : |IX ( f n)t | > 2η}.

τ n is a stopping time with respect to the filtration (F+
� ). Let gn = f n1[0,τ n ]. Note that

gn ∈ C. In view of Lemma 5.79 we have

IX (gn)T = IX ( f n)T∧τ n .

Also, from definition of τ n , we have

{ sup
0≤t≤T

|IX ( f n)t | > 2η} ⊆ {|IX (gn)T | > η}. (5.8.11)

Clearly, gn converges to 0 uniformly and hence as noted in (5.8.10),

IX (gn)T → 0 in probability.

In view of (5.8.11), this proves (5.8.9). As seen in Remark 4.25, (5.8.9) implies
(4.2.20). �

Here is one last observation in this theme.

Theorem 5.83 Let X be a weak stochastic integrator, and let hn ∈ C. Then

hn
ucp−→ 0 ⇒ IX (hn)

ucp−→ 0. (5.8.12)

Proof Fix T < ∞ and let n1 = 1. For each k ≥ 2, get nk such that nk > nk−1 and

n ≥ nk ⇒ P( sup
0≤t≤T

|hnt | > 1
k ) ≤ 1

k .

For nk ≤ n < nk+1, let
σn = inf{t : |hnt | > 1

k }.

Since hn ∈ C, (a left continuous step function) it can be seen that σn is a stopping
time and that

f n = hn1[0,σn ]

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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satisfies
| f nt | ≤ 1

k for nk ≤ n < nk+1

and
{ sup
0≤t≤T

|hnt | > 1
k } = {σn ≤ T }.

So
P(σn ≤ T ) ≤ 1

k for nk ≤ n < nk+1. (5.8.13)

Thus
f n converges to 0 uniformly (5.8.14)

and
P(IX ( f n)t = IX (hn)t ∀t ∈ [0, T ]) ≥ P(σn > T ). (5.8.15)

In view of Theorem 5.82, (5.8.14) implies IX ( f n)
ucp−→ 0 and then (5.8.13) and

(5.8.15) yield the desired conclusion, namely

IX (hn)
ucp−→ 0.

�

In view of this result, for a weak stochastic integrator, we can extend IX continuously
to the closure C̄ of C in the ducp metric.

For g ∈ C̄, let IX (g) be defined as limit of IX (gn) where gn
ucp−→ g. It is easy to

see that IX is well defined. If X is a stochastic integrator, IX agrees with
∫

gdX .
We identify C̄ in the next result.

Lemma 5.84 The closure C̄ of C in the ducp metric is given by

C̄ = {Z− : Z ∈ R
0}.

Proof Let f ∈ C̄ and let f n ∈ C, f n
ucp−→ f . Then V n

t = limu↓t f nu are r.c.l.l. ada-
pted processes, and V n can be seen to be Cauchy in ducp and hence converge to V .
Further, using Theorem 2.72, it follows that a subsequence of V n converges to V
uniformly on [0, T ] for every T < ∞, almost surely. Thus V ∈ R

0. Now it follows
that f = V−. �

Theorem 5.85 Let X be a weak stochastic integrator and Z ∈ R
0. Let {τm

n : n ≥ 1}
be a sequence of partitions of [0,∞) via stopping times:

0 = τm
0 < τm

1 < τm
2 . . . ; τm

n ↑ ∞, m ≥ 1

such that for some sequence δm ↓ 0 (of real numbers)

https://doi.org/10.1007/978-981-10-8318-1_2
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|Zt− − Zτm
n
| ≤ δm for τm

n < t ≤ τm
n+1, n ≥ 0, m ≥ 1. (5.8.16)

For m ≥ 1, let

Zm
t =

∞∑
n=0

Zt∧τm
n
1(τm

n ,τm
n+1](t).

Then

IX (Zm) =
∞∑
n=0

Zt∧τm
n
(Xτm

n+1∧t − Xτm
n ∧t ) (5.8.17)

and
IX (Zm)

ucp−→ IX (Z−). (5.8.18)

Thus, if X is also a stochastic integrator, IX (Z−) = ∫
Z−dX.

Proof Let us note that given δm ↓ 0, there exist stopping times {τm
n : n ≥ 1}m ≥ 1,

satisfying (5.8.16), (say given in (4.5.12)).
For k ≥ 1, let

Zm,k
t =

k∑
n=0

Zt∧τm
n
1(τm

n ,τm
n+1](t).

Then Zm,k ∈ C and

IX (Zm,k) =
k∑

n=0

Zt∧τm
n
(Xτm

n+1∧t − Xτm
n ∧t ).

Now P(sup0≤t≤T |Zm,k
t − Zm | > 0) ≤ P(τm

k < T ) and hence Zm ∈ C̄ and

IX (Zm,k)
ucp−→ IX (Zm).

This proves (5.8.17). Now Zm converges to Z− uniformly and hence Z ∈ C̄ and

IX (Zm)
ucp−→ IX (Z−).

If X is also a stochastic integrator, using Theorem 4.62 it follows that for Z ∈ R
0,

IX (Z−) agrees with
∫
Z−dX . �

Remark 5.86 Note that while dealingwithweak stochastic integrators, we con-
sidered the filtration F+

� for defining the class C, but the definition of weak
stochastic integrator did not require the underlying filtration to be right con-
tinuous.

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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Thus for Z ∈ R
0 and a weak stochastic integrator X , we define IX (Z−) to be the

stochastic integral
∫
Z−dX . When a weak stochastic integrator is also a stochastic

integrator, this does not lead to any ambiguity as noted in the previous theorem.

Remark 5.87 A careful look at results in Sect. 4.6 shows that Theorems 4.64,
4.67 continue to be true if the underlying processes are weak stochastic
integrators instead of stochastic integrators. Instead of invoking Theorem
4.62, we can invoke Theorem 5.85. Thus weak stochastic integrators X , Y
admit quadratic variations [X, X ], [Y,Y ] and cross-quadratic variation [X,Y ].
Various results on quadratic variation obtained in Sect. 4.6continue to be true
for weak stochastic integrators.

Moreover, Theorems 5.44, 5.45 and Lemma 5.46 are true for weak
stochastic integrators as well since the proof only relies on quadratic vari-
ation. Likewise, Lemma 5.48 is true for weak stochastic integrators since
apart from quadratic variation, it relies on (4.2.20), a property that holds for
weak stochastic integrators as noted earlier in Theorem 5.82.

As a consequence, Theorems 5.50, 5.55 and 5.58 are true for weak
stochastic integrators.

This discussion leads to the following result, whose proof is same as that of
Theorem 5.59.

Theorem 5.88 Let X be a weak stochastic integrator. Then X is a semimartingale.

Here is the full version of the Dellacherie–Meyer–Mokobodzky–Bichteler Theo-
rem.

Theorem 5.89 Let X be an r.c.l.l.(F�) adapted process. Let JX be defined by (4.2.1)–
(4.2.2). Then the following are equivalent.

(i) X is a weak stochastic integrator; i.e. if f n ∈ S, f n → 0 uniformly, then
JX ( f n)t → 0 in probability ∀t < ∞.

(ii) If f n ∈ S, f n → 0 uniformly, then JX ( f n)
ucp−→ 0.

(iii) If f n ∈ S, f n
ucp−→ 0, then JX ( f n)

ucp−→ 0.

(iv) If f n ∈ S, f n
bp−→ 0, then JX ( f n)

ucp−→ 0.
(v) X is a stochastic integrator; i.e. the mapping JX from S to R0(Ω, (F�),P) has

an extension JX : B(Ω̃,P) �→ R
0(Ω, (F�),P) satisfying

f n
bp−→ f implies JX ( f n)

ucp−→ JX ( f ).

(vi) X is a semimartingale; i.e. X admits a decomposition X = M + A where M
is a local martingale and A is a process with finite variation paths.

(vii) X admits a decomposition X = N + B where N is a locally square integrable
martingale and B is a process with finite variation paths.

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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Proof Equivalence of (v), (vi), (vi i) has been proven in Theorem 5.59 andCorollary
5.60. Clearly,

(v) ⇒ (iv) ⇒ (i i i) ⇒ (i i) ⇒ (i).

Theorems 5.82 and 5.83 tell us that

(i) ⇒ (i i) ⇒ (i i i).

And we have observed in Theorem 5.88 that (i i i) implies (vi). This completes the
proof. �

5.9 Enlargement of Filtration

The main result of the section is about enlargement of the underlying filtration (F�)
by adding a set A ∈ F to each Ft . The surprising result is that a semimartingale
for the original filtration remains a semimartingale for the enlarged filtration. In
the traditional approach, this was a deep result as it required decomposition of the
semimartingale into localmartingalew.r.t. the enlarged filtration and a finite variation
process.

Let A ∈ F be fixed, and let us define a filtration (G�) by

Gt = {(B ∩ A) ∪ (C ∩ Ac) : B,C ∈ Ft }. (5.9.1)

It is easy to see that Gt is a σ-field for all t ≥ 0 and (G�) is a filtration. Using the
description (5.9.1) of sets in Gt , it can be seen that if ξ is a Gt measurable bounded
random variable, then ∃ Ft measurable bounded random variables η, η′ such that

ξ = η1A + η′1Ac . (5.9.2)

Let S(G�) denote the class of simple predictable process for the filtration (G�). Using
(5.9.2) it is easy to verify that for f ∈ S(G�) ∃ g, h ∈ S(F�) such that

f (t,ω) = g(t,ω)1A(ω) + h(t,ω)1Ac(ω) ∀(t,ω) ∈ Ω̃. (5.9.3)

With this we can now describe the connection between predictable processes for the
two filtrations.

Theorem 5.90 Let f be an (G�) predictable process.We can choose (F�) predictable
processes g, h such that (5.9.3) holds. Further, if f is bounded by a constant c, then
g, h can also be chosen to be bounded by the same constant c.
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Proof LetK be the set of (G�) predictable process f for which the conclusion is true.
We have seen that K contains S(G�). We next show that K is closed under pointwise
convergence. This will show in particular thatK is closed under bp-convergence and
hence that the conclusion is true for all bounded predictable processes. If f n ∈ K

with
f n = gn1A + hn1Ac

and f n → f then we can take

g(t,ω) = lim sup
n→∞

gn(t,ω)1{lim supn→∞ |gn |(t,ω)<∞} (5.9.4)

h(t,ω) = lim sup
n→∞

hn(t,ω)1{lim supn→∞ |hn |(t,ω)<∞} (5.9.5)

and then it follows that f = g1A + h1Ac and thus f ∈ K. As noted above, this proves
K contains all bounded predictable processes and in turn all predictable processes
since f n = f 1{| f |≤n} converges pointwise to f .

If f is bounded by c, we can replace g by g̃ = g1{|g|≤c} and h by h̃ = h1{|h|≤c}. �

Theorem 5.91 Let X be a semimartingale for the filtration (F�). Let A ∈ F and
(G�) be defined by (5.9.1).

Then X is also a semimartingale for the filtration (G�).

Proof Let us denote the mapping defined by (4.2.1) and (4.2.2) for the filtration (G�)
by HX , and let JX be the mapping for the filtration (F�). Since these mappings are
defined pathwise, it is easy to verify that if f ∈ S(G�) and g, h ∈ S(F�) are as in
(5.9.3), then

HX ( f ) = JX (g)1A + JX (h)1Ac (5.9.6)

We will prove that X is a weak stochastic integrator for the filtration (G�). For this,
let f n ∈ B(Ω̃,P(G�)) decrease to 0 uniformly. Let an ↓ 0 be such that | f n| ≤ an .
Then for each n invoking Theorem 5.90 we choose gn, hn ∈ S(F�) with |gn| ≤ an ,
|hn| ≤ an such that

f n = gn1A + hn1Ac .

As noted above this gives, for n ≥ 1

HX ( f n) = JX (gn)1A + JX (hn)1Ac . (5.9.7)

Since X is a semimartingale for the filtration (F�), it is a stochastic integrator. Thus,
JX (gn)

ucp−→ 0 and JX (hn)
ucp−→ 0 and then (5.9.7) implies HX ( f n)

ucp−→ 0. Hence X
is a weak stochastic integrator for the filtration (F�). Invoking Theorem 5.89, we
conclude that X is a semimartingale for the filtration (G�). �

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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Remark 5.92 As noted in Theorem 4.13, when f is (F�) predictable bounded
process, HX ( f ) = JX ( f ) and thus the stochastic integral

∫
f d X is unambigu-

ously defined.

Theorem 5.93 Let X be a stochastic integrator on (Ω,F ,P) with a filtration (F�).
LetQ be a probability measure on (Ω,F) that is absolutely continuous w.r.t.P. Then
X is a stochastic integrator on (Ω,F ,Q), and the stochastic integral under P is a
version of the integral under Q.

Proof Let H be the completion of F under Q, and for t ≥ 0 let Ht be the σ-field
obtained by adding allQ null sets toFt . Let ξ denote the Radon–Nikodym derivative
of Q with respect to P, and let Ω0 = {ω : ξ(ω) > 0}. Let G be the filtration defined
by (5.9.1) with A = Ω0. It can be checked that a process f is (H�) predictable if and
only if f 1Ω0 is (G�) predictable. Let

HX ( f ) = JX ( f 1Ω0) f ∈ B(Ω̃,P(H�)).

It is easy to see that HX is the required extension of the integral of simple predictable
processes. �

Remark 5.94 Suppose we start with a filtration (F̃�) that may not satisfy the
condition that each F̃t contains all null sets. Suppose X is a (F̃�) adapted
process that satisfies (4.2.3) for this filtration. Let Ft be the smallest σ-field
containing F̃t and all the null sets. It is easy to see that X continues to satisfy
(4.2.3) w.r.t. the filtration (F�) and is thus a stochastic integrator.

Exercise 5.95 Let X be a semimartingale for a filtration (F�) on (Ω,F ,P). Let
{Am : m ≥ 1} be a partition of Ω with An ∈ F for all n ≥ 1. For t ≥ 0, let

Gt = σ(Ft ∪ {Am : m ≥ 1}).

Show that

(i) For every (G�) predictable process f , there exists (F�) predictable pro-
cesses f m such that

f =
∞∑

m=1

1Am f m .

(ii) Suppose for each m ≥ 1, {Ym,n : n ≥ 1} are r.c.l.l. processes such that
Ym,n ucp−→ Ym as n → ∞. Let

Zn =
∞∑

m=1

1AmY
m,n

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4


5.9 Enlargement of Filtration 213

and

Z =
∞∑

m=1

1AmY
m .

Then prove that Zn ucp−→ Z as n → ∞.
(iii) Show that X is a stochastic integrator for the filtration (G�).



Chapter 6
Pathwise Formula for the Stochastic
Integral

In the previous chapter, we had obtained a pathwise formula for the quadratic
variation of a martingale. We will show in this chapter that the same formula yields
the quadratic variation of a semimartingale. We will also obtain a pathwise formula
for the stochastic integral.

6.1 Preliminaries

For a simple predictable process f , the stochastic integral
∫

f d X has been defined
explicitly, path by path. In other words, the path t �→ (

∫ t
0 f d X)(ω) is a function

of the paths { fs(ω) : 0 ≤ s ≤ t} and {Xs(ω) : 0 ≤ s ≤ t} of the integrand f and
integrator X . For a general (bounded) predictable f the integral has been defined as
limit in probability of suitable approximations and it is not clear if we can obtain
a pathwise version. In statistical inference for stochastic processes the estimate; in
stochastic filtering theory the filter; and in stochastic control theory the control in
most situations involves stochastic integral, where the integrand and integrator are
functionals of the observation path and to be meaningful, the integral should also be
a functional of the observation.

How much does the integral depend upon the underlying filtration or the underly-
ing probability measure? Can we get one fixed version of the integral when we have
not one but a family of probability measures {Pα} such that X is a semimartingale
under each Pα.

If we have one probability measureQ such that each Pα is absolutely continuous
w.r.t.Q and the underlying process X is a semimartingale under Q then the answer
to the question above is yes—simply take the integral defined under Q and that will
agree with the integral under Pα for each α by Remark 4.26.

© Springer Nature Singapore Pte Ltd. 2018
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When the family {Pα} is countable family, such a Q can always be constructed.
However, such a Q may not exist in general. One concrete instance where such a
situation arises and has been considered in the literature is the following. In the
context of Markov Processes, one considers a family of measures {Px : x ∈ E},
where Px represents the distribution of the Markov Process conditioned on X0 = x .
See [18]. In this context, Cinlar et al. [9] showed the following: For processes S
such that S is semimartingale under Px for every x and for f in a suitable class of
predictable processes, there exists a process Z such that Z is a version of

∫
f d S

under Px for every x .
In Bichteler [3], Karandikar [33, 34, 38] it was shown that for an r.c.l.l. adapted

process Z and a semimartingale X , suitably constructed Riemann sums converge
almost surely to the stochastic integral

∫
Z−dX . This result was recast in [41]

to obtain a universal mapping Φ : D([0,∞),R) × D([0,∞),R) �→ D([0,∞),R)

such that if X is a semimartingale and Z is an r.c.l.l. adapted process, then Φ(Z , X)

is a version of the stochastic integral
∫
Z−dX .

As in the previous chapter, we fix a filtration (F�) on a complete probability space
(Ω,F ,P) and we assume that F0 contains all P-null sets in F .

First we will prove a simple result which enables us to go from L
2 estimates to

almost sure convergence.

Lemma 6.1 Let V m be a sequence of r.c.l.l. process and τk an increasing sequence
of stopping times, increasing to ∞ such that for all k ≥ 1,

∞∑

m=1

‖sup
t≤τk

|Vm
t |‖2 < ∞. (6.1.1)

Then we have
sup
t≤T

|Vm
t | → 0 ∀T < ∞, a.s.

Proof The condition (6.1.1) implies

‖
∞∑

m=1

sup
t≤τk

|Vm
t |‖2 < ∞

and hence for each k,
∞∑

m=1

sup
t≤τk

|Vm
t | < ∞ a.s.

Since τk increase to ∞, the required result follows. �
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6.2 Pathwise Formula for the Stochastic Integral

Recall thatD([0,∞),R) denotes the space of r.c.l.l.functions on [0,∞) and that for
γ ∈ D([0,∞),R), γ(t−) denotes the left limit at t (for t > 0) and γ(0−) = 0.

Fix γ ∈ D([0,∞),R). For each n ≥ 1; let {tni (γ) : i ≥ 1} be defined inductively
as follows : tn0 (γ) = 0 and having defined tni (γ), let

tni+1(γ) = inf{t > tni (γ) : |γ(t) − γ(tni (γ))| ≥ 2−n or |γ(t−) − γ(tni (γ))| ≥ 2−n}.
(6.2.1)

Note that for eachγ ∈ D([0,∞),R) and forn ≥ 1, tni (γ) ↑ ∞ as i ↑ ∞ (if limi t ni (γ) =
t∗ < ∞, then the function γ cannot have a left limit at t∗). For γ, γ1 ∈ D([0,∞),R)

let

Φn(γ, γ1)(t) =
∞∑

i=0

γ(tni (γ) ∧ t)(γ1(t
n
i+1(γ) ∧ t) − γ1(t

n
i (γ) ∧ t)). (6.2.2)

Since tni (γ) increases to infinity, for each γ and t fixed, the infinite sum appearing
above is essentially a finite sum and hence Φn(γ, γ1) is itself an r.c.l.l. function.
We now define a mapping Φ : D([0,∞),R) × D([0,∞),R) �→ D([0,∞),R) as
follows: Let D∗ ⊆ D([0,∞),R) × D([0,∞),R) be defined by

D
∗ = {(γ, γ1) : Φn(γ, γ1) converges in ucc topology}

and for γ, γ1 ∈ D([0,∞),R)

Φ(γ, γ1) =
{
limn Φn(γ, γ1) if (γ, γ1) ∈ D

∗

0 otherwise.
(6.2.3)

Note that the mapping Φ has been defined without any reference to a probability
measure or a process. Here is the main result on pathwise integration formula.

Theorem 6.2 Let X be a semimartingale on a probability space (Ω,F ,P) with
filtration (F�) and let U be an r.c.l.l. adapted process. Let

Z�(ω) = Φ(U�(ω), X �(ω)) (6.2.4)

Then

Z =
∫

U−dX. (6.2.5)

Proof For each fixed n, define {σn
i : i ≥ 0} inductively with σn

0 = 0 and

σn
i+1 = inf{t > σn

i : |Ut −Uσn
i
| ≥ 2−n or |Ut− −Uσn

i
| ≥ 2−n}.

For all n, i , σn
i is a stopping time. Let us note that σn

i (ω) = tni (U�(ω)). Let
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Zn
� (ω) = Φn(U�(ω), X �(ω)).

Then we can see that

Zn
t =

∞∑

j=0

Ut∧σn
j
(Xt∧σn

j+1
− Xt∧σn

j
)

and thus Zn = ∫
UndX where

Un
t =

∞∑

j=0

Ut∧σn
j
1(σn

j ,σ
n
j+1](t).

By definition of {σn
i }, {Un}, we have

|Un
t −Ut−| ≤ 2−n (6.2.6)

and hence Un → U− in ucp. Then by Theorem4.50, Zn → Z = ∫
U−dX in the

ucp metric.
The crux of the argument is to show that the convergence is indeed almost sure-

sup
t≤T

|
∫ t

0
UndX −

∫ t

0
U−dX | → 0 ∀T < ∞ a.s. (6.2.7)

Once this is shown, it would follow that (U�(ω), X �(ω)) ∈ D
∗ a.s. and then by def-

inition of Φ and Z we conclude that Zn = Φ(Un, X) converges to Φ(U, X) in ucc
topology almost surely. Since Zn → Z in ucp, we have Z = Φ(U, X) completing
the proof.

Remains to prove (6.2.7). For this, first using Corollary5.60, let us decompose
X as X = M + A, M ∈ M

2
loc and A ∈ V. Now using the fact that the d A integral is

just the Lebesgue–Stieltjes integral and the estimate (6.2.6) we get

|
∫ t

0
Und A −

∫ t

0
U−d A| ≤

∫ t

0
|Un

s −Us−|d|A|t
≤ 2−n|A|t .

and hence

sup
t≤T

|
∫ t

0
Und A −

∫ t

0
U−d A| ≤ 2−n|A|T

→ 0.

(6.2.8)

Thus (6.2.7) would follow in view of linearity of the integral once we show
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sup
t≤T

|
∫ t

0
UndM −

∫ t

0
U−dM | → 0 ∀T < ∞ a.s. (6.2.9)

Let τk be stopping times increasing to ∞ such that τk ≤ k and M [τ k ] is a square
integrable martingale so that

E[ [M, M]τk ] = E[ [M [τ k ], M [τ k ]]k] < ∞. (6.2.10)

Thus using the estimate (5.4.10) on the growth of the stochastic integral with respect
to a local martingale (Theorem 5.31), we get

E[sup
t≤τk

|
∫ t

0
UndM −

∫ t

0
U−dM |2] ≤ 4E[

∫ τk

0
|Un

s −Us−|2d[M, M]s]
≤ 4(2−2n)E[ [M, M]τk ].

(6.2.11)

Thus, writing ξnt = ∫ t
0 U

ndM − ∫ t
0 U

−dM and αk = √
E[ [M, M]τk ], we have

‖sup
t≤τk

|ξnt |‖2 ≤ 2−n+1αk . (6.2.12)

Since αk < ∞ as seen in (6.2.10), Lemma 6.1 implies that (6.2.9) is true completing
the proof. �

Remark 6.3 This result implies that the integral
∫
U−dX for an r.c.l.l.adapted

process U does not depend upon the underlying filtration or the probability
measure or on the decomposition of the semimartingale X into a (local) mar-
tingale and a process with finite variation paths. An ω-path t �→ ∫ t

0 U
−dX (ω)

of the integral depends only on the ω-paths t �→ Ut (ω) of the integrand and
t �→ Xt (ω) of the integrator. The same however cannot be said in general
about

∫
f d X if f is given to be a predictable process.

Remark 6.4 In Karandikar [38, 41] the same result was obtained with tni (γ)

defined via

tni+1(γ) = inf{t ≥ tni (γ) : |γ(t) − γ(tni (γ))| ≥ 2−n}

instead of (6.2.1). The result is of course true, but requires the underlying
σ-fields to be right continuous to prove that the resulting σn

j are stopping
times.
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6.3 Pathwise Formula for Quadratic Variation

In Sect. 5.2 we had obtained a pathwise formula for the quadratic variation process
of a locally square integrable martingale—namely (5.3.16). We now observe that
the same formula gives quadratic variation of local martingales as well—indeed of
semimartingales. We will need to use notations from Sect. 5.2 as well as Sect. 6.2.

Theorem 6.5 LetΨ be themapping defined in Sect.5.2 by (5.2.2). For a semimartin-
gale X, let

[X, X ]Ψ

t (ω) = [Ψ (X.(ω))](t). (6.3.1)

Then [X, X ]Ψ

is a version of the quadratic variation [X, X ] i.e.

P( [X, X ]Ψ

t = [X, X ]t ∀t) = 1.

Proof For γ ∈ D([0,∞),R) and for n ≥ 1, let {tni (γ) : i ≥ 1} be defined inductively
by (6.2.1). Recall the Definition5.2.1 of Ψn and (6.2.2) of Φn . Using the identity
(b − a)2 = b2 − a2 − 2a(b − a) with b = γ(tni+1(γ) ∧ t) and a = γ(tni (γ) ∧ t) and
summing over i ∈ {0, 1, 2 . . .}, we get the identity

Ψn(γ) = (γ(t))2 − (γ(0))2 − 2Φn(γ, γ). (6.3.2)

Let Ψ , D̃ be as defined in Sect. 5.2 and Φ, D∗ be as defined in Sect. 6.2. Let

D̂ = {γ ∈ D : (γ, γ) ∈ D
∗}.

Then using (6.3.2) along with the definition (6.2.3) of Φ, it follows that

D̂ ⊆ D̃

and
Ψ (γ) = (γ(t))2 − (γ(0))2 − 2Φ(γ, γ) γ ∈ D̂. (6.3.3)

As noted in Sect. 6.2, (X �(ω), X �(ω)) ∈ D
∗ almost surely and

∫
X−dX = Φ(X, X) (6.3.4)

From (6.3.1), (6.3.3) and (6.3.4) and it follows that

[X, X ]Ψ

t = X2
t − X2

0 − 2
∫ t

0
X−dX. (6.3.5)

This along with (4.6.1) implies [X, X ]Ψ

t = [X, X ]t completing the proof. �
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Chapter 7
Continuous Semimartingales

In this chapter, wewill consider continuous semimartingales and show that stochastic
differential equations driven by these can be analysed essentially using the same
techniques as in the case of SDE driven by Brownian motion. This can be done
using random time change. The use of random time change in study of solutions to
stochastic differential equations was introduced in [33, 34].

We introduce random time change andwe then obtain a growth estimate on
∫

f d X
where X is a continuous semimartingale and f is a predictable process. Then we
observe that if a semimartingale satisfies a condition (7.2.2), then the growth estimate
on

∫
f d X is very similar to the growth estimate on

∫
f dβ, where β is a Brownian

motion. We also note that by changing time via a suitable random time, any semi-
martingale can be transformed to a semimartingale satisfying (7.2.2). Thus, without
loss of generality we can assume that the driving semimartingale satisfies (7.2.2) and
then use techniques used for Brownian motion case. We thus show that stochastic
differential equation driven by continuous semimartingales admits a solution when
the coefficients are Lipschitz functions. We also show that in this case, one can get
a pathwise formula for the solution, like the formula for the integral obtained in the
previous chapter.

7.1 Random Time Change

Change of variable plays an important role in calculations involving integrals of
functions of a real variable. As an example, letG be a continuous increasing function
with G[0] = 0. Let us look at the formula

f (G(t)) = f (0) +
∫ t

0
f ′(G(s))dG(s). (7.1.1)

© Springer Nature Singapore Pte Ltd. 2018
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222 7 Continuous Semimartingales

which was derived in Sect. 4.8. We had seen that when G is absolutely continuous,
this formula follows by the chain rule for derivatives. Let a : [0,∞) �→ [0,∞) be a
continuous strictly increasing one-one onto function. Let us write G̃(s) = G(a(s)).
It can be seen that (7.1.1) can equivalently be written as

f (G̃(t)) = f (0) +
∫ t

0
f ′(G̃(s))dG̃(s). (7.1.2)

Exercise 7.1 Show that (7.1.1) holds if and only if (7.1.2) is true.

So to prove (7.1.1), suffices to prove (7.1.2) for a suitable choice of a(t). Let

a(s) = inf{t ≥ 0 : (t + G(t)) ≥ s}.

For this choice of a it can be seen that G̃ is a continuous increasing function and
that for 0 ≤ u ≤ v < ∞, G̃(v)−G̃(u) ≤ v − u so that G̃ is absolutely continuous
and thus (7.1.2) follows from chain rule.

When working with continuous semimartingales, the same idea yields interesting
results—of course, the time change t �→ a(t) has to be replaced by t �→ φt , where
φt is a stopping time.

Definition 7.2 A (F�)-random time change φ = (φt ) is a family of (F�) stopping
times {φt : 0 ≤ t < ∞} such that for all ω ∈ Ω, t �→ φt (ω) is a continuous
strictly increasing function from [0,∞) onto [0,∞).

Example 7.3 Let A be a (F�) adapted continuous increasing process with
A0 = 0. Then

φs = inf{t ≥ 0 : (t + At ) ≥ s}

can be seen to be a (F�)-random time change.

Example 7.4 Let B be a (F�) adapted continuous increasing process with
B0 = 0 such that B is strictly increasing and limt→∞ Bt = ∞ a.s.. Then

φs = inf{t ≥ 0 : Bt ≥ s}

can be seen to be a (F�)-random time change.

Recall Definition 2.37 of the stopped σ-field. Given a (F�)-random time change
φ = (φt ), we define a new filtration (G�) = (Gt ) as follows:

Gt = Fφt , 0 ≤ t < ∞. (7.1.3)

Clearly, for s ≤ t , we have φs ≤ φt and hence Gs ⊆ Gt and so {Gs} is a filtration.
Further,G0 = F0.Wewill denote the filtration (G�) defined by (7.1.3) as (φF�). Given
a process f , we define the process g = φ[ f ] via

https://doi.org/10.1007/978-981-10-8318-1_4
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gs = fφs 0 ≤ s < ∞. (7.1.4)

The map f → g is linear. We also define ψ = {ψt : 0 ≤ t < ∞} via

ψt = inf{s ≥ 0 : φs ≥ t} (7.1.5)

and denote ψ by [φ]−1. Here ψ is the reverse time change.

Exercise 7.5 Show that if φu(ω) = v then ψv(ω) = u.

Given a (F�) stopping time τ , we define σ = φ[τ ] by

σ = [φ]−1
τ = ψτ (7.1.6)

that is given ω consider the map t �→ φt (ω) and consider its inverse and evaluate it
at τ (ω)—in other words, σ(ω) equals ψτ(ω)(ω). Note the appearance of [φ]−1 in the
definition above. It is not difficult to see that

φσ = τ .

Recall definition (4.4.12) of X [τ ], the process X stopped at τ . For Y = φ[X ], note
that

(φ[X [τ ]])s = X [τ ]
φs

= Xφs∧τ = Xφs∧φσ
= Xφs∧σ

= Ys∧σ = Y [σ]
s

and thus we have
Y [σ] = φX [τ ]. (7.1.7)

We will now prove few relations about random time change and its interplay
with notions discussed in the earlier chapters such as stopping times, predictable
processes, local martingales, semimartingales and stochastic integrals.

Theorem 7.6 φ = (φt ) be a (F�)- random time change. Let ψ = [φ]−1 be defined
via (7.1.5). Then we have

(i) ψ = (ψs) is a (G�)- random time change.
(ii) Let τ be a (F�) stopping time. Then σ = φ[τ ] = ψτ is a (G�) stopping time.

Further, if τ , α are (F�) stopping times, then

φ[τ ∧ α] = φ[τ ] ∧ φ[α].

(iii) Let X be a (F�) adapted r.c.l.l. process. Then Y = φ[X ] is a (G�) adapted
r.c.l.l. process.

(iv) Let f be a (F�) bounded predictable process. Then g = φ[ f ] is a (G�) bounded
predictable process. If f is a (F�) locally bounded predictable process then
g = φ[ f ] is a (G�) locally bounded predictable process.

(v) Let A be a (F�) adapted r.c.l.l. process with finite variation paths. Then B =
φ[A] is a (G�) adapted r.c.l.l. process with finite variation paths.

https://doi.org/10.1007/978-981-10-8318-1_4
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(vi) Let M be a (F�)-local martingale. Then N = φ[M] is a (G�)-local martingale.
(vii) Let X be a (F�)-semimartingale. Then Y = φ[X ] is a (G�)-semimartingale.
(viii) Let Z = ∫

f d X. Then φ[Z ] = ∫
gdY (where f, g, X,Y are as in (iv) and

(vi i) ).
(ix) [Y,Y ] = φ[ [X, X ] ], where X,Y are as in (vi i).

(x) Let Xn, X be (F�) adapted r.c.l.l. processes such that Xn ucp−→ X. Then Y n =
φ[Xn] ucp−→ Y = φ[X ].

Proof Note that by Corollary 2.52, φ is (G�) adapted. For any a, t ∈ [0,∞), note
that

{ψa ≤ t} = {a ≤ φt }.

Since φt isFφt = Gt measurable, it follows that {ψa ≤ t} ∈ Gt and hence ψa is a (G�)
stopping time. Since s �→ φs is continuous strictly increasing function from [0,∞)

onto itself, same is true of s �→ ψs , and hence, ψ = (ψs) is a random time change.
This proves (i).

Now, for s ∈ [0,∞), using Corollary 2.40, we have

{σ ≤ s} = {τ ≤ φs} ∈ Fφs = Gs .

Thus σ is a (G�) stopping time. The last part of (i i) follows since φ is an increasing
function.

For (i i i) since X is r.c.l.l., (F�) adapted and φs is a (F�) stopping time, using
Lemma 2.38, we conclude that Ys = Xφs is Gs = Fφs measurable. Thus Y is (G�)
adapted and is clearly r.c.l.l.When X is continuous, so is Y .

For (iv) the class of bounded processes f such that g = φ[ f ] is (G�) predictable
is bp-closed and by part (i i i), it contains bounded continuous (F�) adapted processes
and thus also contains bounded (F�) predictable processes. Now if f is (F�) pre-
dictable and locally bounded, let τ n be sequence of stopping times, τ n ↑ ∞ such
that fn = f [τ n ] is bounded predictable. Then as shown above, φ[ fn] is also bounded
predictable. Let σn = φ[τ n]. As seen in (7.1.7),

g[σn ] = φ[ f [τ n ]] = φ[ fn]

and thus g[σn ] is predictable. Now τ n ↑ ∞ implies σn ↑ ∞ and thus g is locally
bounded (G�) predictable process. This proves (iv).

For (v), we have already noted that B is (G�) adapted. And clearly,

Var[0,s](B(ω)) = Var[0,φs (ω)](A(ω))

and hence paths of B have finite variation.
For (vi), in order to prove that N is a (G�)-local martingale, we will obtain a

sequence σn of (G�) stopping times increasing to ∞ such that for all (G�) stopping
times β,

E[Nσn∧β] = E[N0].

https://doi.org/10.1007/978-981-10-8318-1_2
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This will prove N [σn ] is a martingale and hence that N is a local martingale. Since
M is a local martingale, let τ̃n be stopping times such M [τ̃n ] is a martingale for each
n where τ̃n ↑ ∞. Let

τn = τ̃n ∧ n ∧ φn.

Then τn ≤ τ̃n and τn ↑ ∞. Then M [τn ] is a martingale for each n and hence for all
stopping times η one has

E[Mτn∧η] = E[M0]. (7.1.8)

Now let σn = φ[τn] = ψτn . Since τn ≤ φn , it follows that σn ≤ ψφn = n. Now for
any (G�) stopping time β, we will show

E[Nσn∧β] = E[N0]. (7.1.9)

Let η = ψ[β] = φβ . Then by part (i i) above, η is a (F�) stopping time. Note that

Nσn∧β = Mτn∧η. (7.1.10)

Further, M0 = N0 and thus (7.1.8) and (7.1.10) together imply (7.1.9) proving (vi).
Part (vi i) follows from (v) and (vi) by decomposing the semimartingale X into

a local martingale M and a process with finite variation paths A: X = M + A. Then
Y = φ[X ] = φ[M] + φ[A] = N + B.

We can verify the validity of (vi i i) when f is a simple predictable process and
then easy to see that the class of processes for which (vi i i) is true is bp-closed and
thus contains all bounded predictable processes. We can then get the general case
(of f being locally bounded) by localization.

For (i x), note that

[X, X ] = X2
t − X2

0 − 2
∫ t

0
X−dX.

Changing time in this equation, and using (vi i i), we get

φ[[X, X ]]t = X2
φt

− X2
0 − 2

∫ φt

0
X−dX

= Y 2
t − Y 2

0 − 2
∫ t

0
Y−dY

= [Y,Y ]t .

For the last part, note that for T < ∞, T0 < ∞, δ > 0 one has (using Ys = Xφs )

P( sup
0≤t≤T

|Y n
s − Ys | ≥ δ) ≤ P( sup

0≤t≤T0

|Xn
s − Xs | ≥ δ) + P(φT ≥ T0)
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Now given T < ∞, δ > 0 and ε > 0, first get T0 such that P(φT ≥ T0) < ε
2 and then

for this T0, using Xn ucp−→ X get n0 such that for n ≥ n0 one has P(sup0≤t≤T0 |Xn
s −

Xs | ≥ δ) < ε
2 . Now, for n ≥ n0 we have

P( sup
0≤t≤T

|Y n
s − Ys | ≥ δ) < ε.

Remark 2.70 now completes the proof. �

Exercise 7.7 Let X be a (F�)-semimartingale, f ∈ L(X) and let φ = (φt ) be a
(F�)- random time change. Let g = φ[ f ] and Y = φ[X ]. Show that g ∈ L(Y ).

Exercise 7.8 Let X1, X2 be (F�)-semimartingales and let φ = (φt ) be a (F�)-
random time change. Let Y i = φ[Xi ]. Show that

[Y 1,Y 2] = φ[ [X1, X2] ].

Remark 7.9 It should be noted that if M is a martingale then N = φ[M] may
not be a (G�)-martingale. In fact, Nt may not be integrable as seen in the next
exercise.

Exercise 7.10 Let W be a Brownian motion and ξ be a (0,∞)-valued random
variable independent of W such that E[ξ] = ∞. Let Ft = σ(ξ,Ws : 0 ≤ s ≤ t).
Let φt = tξ. Show that

(i) φt is a stopping time for each t .
(ii) φ = (φt ) is a random time change.
(iii) E[|Zt |] = ∞ for all t > 0 where Z = φ[W ].
(iv) Z is a local martingale but not a martingale.

7.2 Growth Estimate

Let X be a continuous semimartingale and let X = M + A be the decomposition
of X with M being a continuous local martingale, A being a process with finite
variation paths. We will call this as the canonical decomposition. Recall that the
quadratic variation [M, M] is itself a continuous process and |A|t = Var[0,t](A) is
also a continuous process. For a locally bounded predictable process f , for any
stopping time σ such that the right-hand side in (7.2.1) below is finite one has

E[ sup
0≤s≤σ

|
∫ s

0+
f d X |2]

≤ 8E[
∫ σ

0+
| fs |2d[M, M]s] + 2E[(

∫ σ

0+
| fs |d|A|s)2].

(7.2.1)

https://doi.org/10.1007/978-981-10-8318-1_2
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To see this, we note
∫

f d X = ∫
f dM + ∫

f d A and for the dM integral we use
Theorem 5.31 and for the d A integral we use |∫ f d A| ≤ ∫ | f |d|A|.

For process A, B ∈ V
+ (increasing adapted processes), we define A << B ifCt =

Bt − At is an increasing process. The following observation will be used repeatedly
in the rest of this chapter: if A << B, then for all f

|
∫ t

0+
fsd As | ≤

∫ t

0+
| fs |dBs .

We introduce a notion of a amenable semimartingale and obtain a growth estimate
on integralsw.r.t. a amenable semimartingalewhich is similar to the one forBrownian
motion.

Definition 7.11 A continuous semimartingale Y is said to be a amenable
semimartingale if the canonical decomposition Y = N + B satisfies, for 0 ≤
s ≤ t < ∞

[N , N ]t − [N , N ]s ≤ (t − s), |B|t − |B|s ≤ (t − s). (7.2.2)

Remark 7.12 The condition (7.2.2) can be equivalently stated as

s − [N , N ]s ≤ t − [N , N ]t , s − |B|s ≤ t − |B|t for 0 ≤ s ≤ t < ∞ (7.2.3)

or, writing It = t , it is same as

[N , N ] << I, |B| << I. (7.2.4)

Theorem 7.13 Suppose Y is a continuous amenable semimartingale. Then for any
locally bounded predictable f , and a stopping time σ, one has

E[ sup
0≤s≤σ∧T

|
∫ s

0+
f d X |2] ≤ 2(4 + T )E[

∫ σ∧T

0+
| fs |2ds]. (7.2.5)

Proof The condition (7.2.2) implies that t − [N , N ]t and t − |B|t are increasing
processes. This observation along with (7.2.1) yields

E[ sup
0≤s≤σ∧T

|
∫ s

0+
f d X |2] ≤ 8E[

∫ σ∧T

0+
| fs |2ds] + 2(E[

∫ σ∧T

0+
| fs |ds])2.

Now the required estimate follows by the Cauchy–Schwarz inequality:

(E[
∫ σ∧T

0+
| fs |ds])2 ≤ TE[

∫ σ∧T

0+
| fs |2ds].

�

https://doi.org/10.1007/978-981-10-8318-1_5
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Remark 7.14 We see that for a amenable semimartingale X , the stochastic
integral

∫
f d X satisfies a growth estimate similar to the one when X is a

Brownian motion. Thus, results such as existence, uniqueness, approxima-
tion of solution to an SDE driven by a Brownian motion continue to hold for a
amenable semimartingale X . We will come back to this later in this chapter.

Remark 7.15 In the definition of amenable semimartingale, instead of (7.2.2)
we could have required that for some constant K < ∞

[N , N ]t − [N , N ]s ≤ K (t − s), |B|t − |B|s ≤ K (t − s). (7.2.6)

The only difference is that a constant K 2 would appear in the estimate (7.2.5)

E[ sup
0≤s≤σ∧T

|
∫ s

0+
f d X |2] ≤ 2(4 + T )K 2E[

∫ σ∧T

0+
| fs |2ds]. (7.2.7)

A simple but important observation is that given a continuous semimartingale X
one can get a random time change φ = (φ�) such that the semimartingale Y = φ[X ]
satisfies (7.2.2). Indeed, given finitely many semimartingales, we can choose one
random time change that does it as we see in the next result.

Theorem 7.16 Let X1, X2, . . . , Xm be continuous semimartingales with respect to
the filtration (F�). Then there exists a random time change φ = (φt ) (with respect to
the filtration (F�)) such that for 1 ≤ j ≤ m, Y j = φ[X j ] is a amenable semimartin-
gale.

Proof For 1 ≤ j ≤ m, let X j = M j + A j be the canonical decomposition of the
semimartingale X j with M j being a continuous local martingale, M j

0 = 0 and A j

are continuous processes with finite variation paths. Define an increasing process V
by

Vt = t +
m∑

j=1

([M j , M j ]t + |A j |t ).

Then V is strictly increasing adapted process with V0 = 0. Now defining

φt = inf{s ≥ 0 : Vs ≥ t}

it follows that φ = (φt ) is a random time change. As noted earlier, Y j = φ[X j ] is a
semimartingale with canonical decomposition Y j = N j + B j where N j = φ[M j ],
B j = φ[A j ]. Further, observing that for 1 ≤ j ≤ m, 0 ≤ s ≤ t < ∞,

[N j , N j ]t − [N j , N j ]s = [M j , M j ]φt − [M j , M j ]φs ≤ Vφt − Vφs = t − s
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and
|B j |t − |B j |s = |A j |φt − |A j |φs ≤ Vφt − Vφs = t − s,

it follows that this random time change satisfies the required condition. �

7.3 Stochastic Differential Equations

Let us consider the stochastic differential equation (3.5.1) where instead of a
Brownian motion as in Chap.3, here W = (W 1,W 2, . . . ,Wd) is a amenable semi-
martingale. The growth estimate (7.2.5) enables one to conclude that in this case too,
Theorem 3.30 is true and the same proof works essentially—using (7.2.5) instead
of (3.4.4). Moreover, using random time change, one can conclude that the same is
true even when W is any continuous semimartingale. We will prove this along with
some results on approximations to the solution of an SDE.

We are going to consider the following general framework for the SDE driven
by continuous semimartingales, where the evolution from a time t0 onwards could
depend upon the entire past history of the solution rather than only on its current
value as was the case in Eq. (3.5.1) driven by a Brownian motion.

Let Y 1,Y 2, . . . Ym be continuous semimartingales w.r.t. the filtration (F�). Let
Y = (Y 1,Y 2, . . . Ym). Here we will consider an SDE

dUt = b(t, ·,U )dYt , t ≥ 0, U0 = ξ0 (7.3.1)

where the functional b is given as follows. Recall that Cd = C([0,∞),Rd). Let

a : [0,∞) × Ω × Cd → L(d,m) (7.3.2)

be such that for all ζ ∈ Cd ,

(t,ω) �→ a(t,ω, ζ) is an r.c.l.l. (F�) adapted process (7.3.3)

and there is an increasing r.c.l.l. adapted process K such that for all ζ1, ζ2 ∈ Cd ,

sup
0≤s≤t

‖a(s,ω, ζ2) − a(s,ω, ζ1)‖ ≤ Kt (ω) sup
0≤s≤t

|ζ2(s) − ζ1(s)|. (7.3.4)

Finally, b : [0,∞) × Ω × Cd → L(d,m) be given by

b(s,ω, ζ) = a(s−,ω, ζ). (7.3.5)

Lemma 7.17 Suppose the functional a satisfies (7.3.2)–(7.3.4).

https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
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(i) For all t ≥ 0,

(ω, ζ) �→ a(t,ω, ζ) is Ft ⊗ B(Cd) measurable. (7.3.6)

(ii) For any continuous (F�) adapted process V , Z defined by Zt = a(t, ·, V )

(i.e. Zt (ω) = a(t,ω, V (ω)) ) is an r.c.l.l. (F�) adapted process.
(iii) For any stopping time τ ,

(ω, ζ) �→ a(τ (ω),ω, ζ) is Fτ ⊗ B(Cd) measurable. (7.3.7)

Proof Since for fixed t, ζ, the mapping ω �→ a(t,ω, ζ) isFt measurable and in view
of (7.3.4), ζ �→ a(t,ω, ζ) is continuous for fixed t,ω, it follows that (7.3.6) is true
since Cd is separable.

For part (i i), let us define a process V t by V t
s = Vs∧t . In view of assumption

(7.3.3), Z is an r.c.l.l.process. The fact that ω �→ V t (ω) isFt measurable along with
(7.3.6) implies that Zt = a(t, ·, V t ) is Ft measurable.

For part (i i i), when τ is a simple stopping time, (7.3.7) follows from (7.3.6). For
a general bounded stopping time τ , the conclusion (7.3.7) follows by approximating
τ from above by simple stopping times and using right continuity of a(t,ω, ζ). For
a general stopping time τ , (7.3.7) follows by approximating τ by τ ∧ n. �

Let 0 denote the process that is identically equal to zero. Since (t,ω) �→ a(t,ω, 0)
is an r.c.l.l. adapted process, using hypothesis (7.3.4), it follows that for ζ ∈ Cd

sup
0≤s≤t

‖a(s,ω, ζ)‖ ≤ K ′
t (ω)(1 + sup

0≤s≤t
|ζ(s)|) (7.3.8)

where
K ′

t (ω) = Kt (ω) + sup
0≤s≤t

‖a(s,ω, 0)‖. (7.3.9)

K ′
t is clearly an r.c.l.l. adapted process.
Here too, as in the Brownian motion case, a continuous (Rd -valued) adapted

process U is said to be a solution to the Eq. (7.3.1) if

Ut = ξ0 +
∫ t

0+
b(s, ·,U )dYs (7.3.10)

i.e. for 1 ≤ j ≤ d,

U j
t = ξ

j
0 +

m∑

k=1

∫ t

0+
b jk(s, ·,U )dY k

s

where U = (U 1, . . . ,Ud) and b = (b jk).
It is convenient to introduce matrix- and vector-valued processes and stochastic

integral
∫

f d X where f is matrix-valued and X is vector-valued. All our vectors are
column vectors, though we will write as c = (c1, c2, . . . , cm).
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Let X1, X2, . . . Xm be continuous semimartingales w.r.t. the filtration (F�). We
will say that X = (X1, X2, . . . Xm) is an R

m-valued semimartingale. Similarly, for
1 ≤ j ≤ d, 1 ≤ k ≤ m let f jk be locally bounded predictable process. f = ( f jk)
will be called an L(d,m)-valued locally bounded predictable process. The stochastic
integral Y = ∫

f d X is defined as follows: Y = (Y 1,Y 2, . . . ,Y d) where

Y j =
m∑

k=1

∫
f jkd X

k .

Let us recast the growth estimate in matrix–vector form:

Theorem 7.18 Let X = (X1, X2, . . . Xm), where X j is a amenable semimartingale
for each j , 1 ≤ j ≤ m. Then for any locally bounded L(d,m)-valued predictable f ,
and a stopping time σ, one has

E[ sup
0≤s≤σ∧T

|
∫ s

0+
f d X |2] ≤ 2m(4 + T )E[

∫ σ∧T

0+
‖ fs‖2ds ]. (7.3.11)

Proof

E[ sup
0≤s≤σ∧T

|
∫ s

0+
f d X |2]

≤
d∑

j=1

E[ sup
0≤s≤σ∧T

|
m∑

k=1

∫ s

0+
f jkd X

k |2]

≤ m
d∑

j=1

m∑

k=1

E[ sup
0≤s≤σ∧T

|
∫ s

0+
f jkd X

k |2]

≤ m(8 + 2T )

d∑

j=1

m∑

k=1

E[
∫ σ∧T

0+
| f jk(s)|2ds]

= 2m(4 + T )E[
∫ σ∧T

0+
‖ fs‖2ds]

where, for the last inequality above we have used the estimate (7.2.5). �

We will prove existence and uniqueness of solution of (7.3.1). When the driving
semimartingale satisfies (7.2.2), the proof is almost the same as the proof when
the driving semimartingale is a Brownian motion. We will prove this result without
making any integrability assumptions on the initial condition ξ0 and the uniqueness
assertion is without any moment condition. For this the following simple observation
is important.

Remark 7.19 Suppose M is a square integrable martingale w.r.t. a filtration
(F�) and let Ω0 ∈ F0. Then Nt = 1Ω0Mt is also a square integrable martingale
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and further [N , N ]t = 1Ω0 [M, M]t . Thus, the estimate (5.3.22) can be recast
as

E[1Ω0 sup
0≤s≤T

|Ms |2] ≤ 4E[ 1Ω0 [M, M]T ].

Using this we can refine the estimate (7.2.5): for a amenable semimartingale
X , any locally bounded predictable f , a stopping time σ and Ω0 ∈ F0, one
has

E[1Ω0 sup
0≤s≤σ∧T

|
∫ s

0+
f d X |2] ≤ 2(4 + T )E[1Ω0

∫ σ∧T

0+
| fs |2ds]. (7.3.12)

Here is the modified estimate for vector-valued case: if X = (X1, X2, . . . Xm)

where each X j is a amenable semimartingale and f = ( f jk) is an L(d,m)-
valued locally bounded predictable process, then

E[1Ω0 sup
0≤s≤σ∧T

|
∫ s

0+
f d X |2] ≤ 2m(4 + T )E[1Ω0

∫ σ∧T

0+
‖ fs‖2ds]. (7.3.13)

We will first prove uniqueness of solution in the special case when the driving semi-
martingale is a amenable semimartingale.

Theorem 7.20 Let Y = (Y 1,Y 2, . . . Ym) where Y j is a amenable continuous semi-
martingale for each j . Let the functional a satisfy conditions (7.3.2)–(7.3.4) and b
be defined by (7.3.5). Let ξ0 be any F0 measurable random variable. Then if U, Ũ
are (F�) adapted continuous process satisfying

Ut = ξ0 +
∫ t

0+
b(s, ·,U )dYs, (7.3.14)

Ũt = ξ0 +
∫ t

0+
b(s, ·, Ũ )dYs . (7.3.15)

then
P(Ut = Ũt ∀t ≥ 0) = 1. (7.3.16)

Proof For i ≥ 1, let τi = inf{t ≥ 0 : K ′
t (ω) ≥ i or K ′

t−(ω) ≥ i} ∧ i where K ′
t (ω) is

the r.c.l.l. adapted process given by (7.3.9). Thus each τi is a stopping time, τi ↑ ∞
and for 0 ≤ t < τi (ω), we have

0 ≤ Kt (ω) ≤ K ′
t (ω) ≤ i.

Recalling that b(t, ·, ζ) = a(t−, ·, ζ), we conclude that for ζ, ζ1, ζ2 ∈ Cd

sup
0≤s≤(t∧τi (ω))

‖b(s,ω, ζ2) − b(s,ω, ζ1)‖ ≤ i sup
0≤s≤(t∧τi (ω))

|ζ2(s) − ζ1(s)|. (7.3.17)

https://doi.org/10.1007/978-981-10-8318-1_5
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and
sup

0≤s≤(t∧τi (ω))

‖b(s,ω, ζ)‖ ≤ i(1 + sup
0≤s≤(t∧τi (ω))

|ζ(s)|). (7.3.18)

We first show that if V is any solution to (7.3.14), i.e. V satisfies

Vt = ξ0 +
∫ t

0+
b(s, ·, V )dYs (7.3.19)

then for k ≥ 1, i ≥ 1,
E[1{|ξ0|≤k} sup

0≤t≤τi

|Vt |2] < ∞. (7.3.20)

Let us fix k, i for now. For j ≥ 1, let σ j = inf{t ≥ 0 : |Vt | ≥ j}. Since V is a
continuous adapted process with V0 = ξ0, it follows that σ j is a stopping time,
lim j→∞ σ j = ∞ and

sup
0≤t≤(τi∧σ j )

|Vt |2 ≤ max(|ξ0|2, j2). (7.3.21)

Thus using the estimate (7.3.13) alongwith (7.3.18), we get for, i, j, k ≥ 1 and u ≥ 0

E[1{|ξ0|≤k} sup
0≤t≤(u∧τi∧σ j )

|Vt |2]

≤ 2[E[1{|ξ0|≤k}(|ξ0|2 + 2m(4 + i)
∫ (u∧τi∧σ j )

0+
‖b(s, ·, Vs)‖2ds)]]

≤ E[1{|ξ0|≤k}(2k2 + 8m(4 + i)i2
∫ (u∧τi∧σ j )

0
(1 + sup

0≤t≤(s∧τi∧σ j )

|Vs |2)ds)].

Writing
β j (u) = E[1{|ξ0|≤k} sup

0≤t≤(u∧τi∧σ j )

|Vt |2],

it follows that for 0 ≤ u ≤ i ,

β j (u) ≤ 2k2 + 8m(4 + i)i3 + 8m(4 + i)i2
∫ u

0
β j (s)ds

and further, (7.3.21) yields that β j is a bounded function. Thus, using (Gronwall’s)
Lemma 3.27, we conclude

β j (u) ≤ [8m(4 + i)i3 + 2k2] exp{8m(4 + i)i2u}, 0 ≤ u ≤ i.

Now letting j increase to ∞ we conclude that (7.3.20) is true.
Returning to the proof of (7.3.16), since U, Ũ both satisfy (7.3.19), both also

satisfy (7.3.20) and hence we conclude that for each i

https://doi.org/10.1007/978-981-10-8318-1_3
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E[1{|ξ0|≤k} sup
0≤t≤τi

|Ut − Ũt |2] < ∞. (7.3.22)

Now

Ut − Ũt =
∫ t

0+
(b(s, ·,U ) − b(s, ·, Ũ ))dYs

and hence using the Lipschitz condition (7.3.17) and the growth estimate (7.3.13),
we conclude that for 0 ≤ t ≤ T ,

E[1{|ξ0|≤k} sup
0≤s≤(t∧τi )

|Us − Ũs |2]

≤ 2m(4 + i)i2E[
∫ (t∧τi )

0
1{|ξ0|≤k} sup

0≤s≤u
|Us − Ũs |2]du.

Fixing i , we note that the function β defined by

β(t) = E[1{|ξ0|≤k} sup
0≤s≤(t∧τi )

|Us − Ũs |2]

satisfies, for a suitable constant Ci

β(t) ≤ Ci

∫ t

0
β(u)du, t ≥ 0.

As noted above (see (7.3.22)) β(t) is bounded. Now (Gronwall’s) Lemma 3.27
implies that β(t) = 0 for all t . Thus we conclude

P({|ξ0| ≤ k} ∩ { sup
0≤s≤(t∧τi )

|Us − Ũs | > 0}) = 0

for all i ≥ 1 and k ≥ 1. Since τi ↑ ∞, this proves (7.3.16) completing the proof. �

We have thus seen that if Y is a amenable semimartingale then uniqueness of solu-
tion holds for the SDE (7.3.14) and the proof is on the lines of Brownianmotion case.
One big difference is that uniqueness is proven without a priori requiring the solution
to satisfy a moment condition. This is important as while the stochastic integral is
invariant under time change, moment conditions are not. And this is what enables
us to prove uniqueness when the driving semimartingale may not be a amenable
semimartingale.

Using random time change we extend the result on uniqueness of solutions to the
SDE (7.3.14) to the case when the driving semimartingale may not be a amenable
semimartingale.

Theorem 7.21 Let X = (X1, X2, . . . Xm) where each X j is a continuous semi-
martingale. Let the functional a satisfy conditions (7.3.2)–(7.3.4) and b be defined

https://doi.org/10.1007/978-981-10-8318-1_3
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by (7.3.5). Let ξ0 be any F0 measurable random variable. If V, Ṽ are (F�) adapted
continuous processes satisfying

Vt = ξ0 +
∫ t

0+
b(s, ·, V )dXs, (7.3.23)

Ṽt = ξ0 +
∫ t

0+
b(s, ·, Ṽ )dXs . (7.3.24)

Then
P(Vt = Ṽt ∀t ≥ 0) = 1. (7.3.25)

Proof Let φ be a (F�) random time change such that Y j = φ[X j ], 1 ≤ j ≤ m are
amenable semimartingales (such a random time change exists as seen in Theorem
7.16). Let (G�) = (φF�), ψ = [φ]−1 be defined via (7.1.5).

We define c(t,ω, ζ), d(t,ω, ζ) as follows: fix ω and let θω(ζ) ∈ Cd be defined by
θω(ζ)(s) = ζ(ψs(ω)) and let

c(t,ω, ζ) = a(φt (ω),ω, θω(ζ)),

d(t,ω, ζ) = b(φt (ω),ω, θω(ζ)).
(7.3.26)

Since φ is continuous, it follows that d(t,ω, ζ) = c(t−,ω, ζ).
We will first observe that for all ζ1, ζ2 ∈ Cd ,

sup
0≤u≤s

‖c(u,ω, ζ2) − c(u,ω, ζ1)‖
= sup

0≤u≤s
‖a(φu(ω),ω, θω(ζ2)) − a(φu(ω),ω, θω(ζ1))‖

≤ Kφs (ω) sup
0≤v≤φs (ω)

|θω(ζ2)(v) − θω(ζ1)(v)|

≤ Kφs (ω) sup
0≤v≤φs (ω)

|ζ2(ψv(ω)) − ζ1(ψv(ω))|

≤ Kφs (ω) sup
0≤u≤s

|ζ2(u) − ζ1(u)|.

(7.3.27)

We now prove that for each ζ,

(t,ω) �→ c(t,ω, ζ) is an r.c.l.l. (G�) adapted process. (7.3.28)

That the mapping is r.c.l.l. follows since a is r.c.l.l. and φt is continuous strictly
increasing function. To see that it is adapted, fix t and let ζ t be defined by ζ t (s) =
ζ(s ∧ t). In view of (7.3.27), it follows that

c(t,ω, ζ) = c(t,ω, ζ t ) = a(φt (ω),ω, θω(ζ t )). (7.3.29)
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Note that
θω(ζ t ) = ζ t (ψs(ω)) = ζ(ψs(ω) ∧ t).

Since ψs is a (G�) stopping time, it follows that ψs ∧ t is Gt measurable and hence so
is ζ(ψs(ω) ∧ t). It follows thatω �→ θω(ζ t ) isGt = Fφt measurable. Further, since φt

is a (F�) stopping time, part (i i i) in Lemma 7.17 gives that (ω, ζ) �→ a(φt (ω),ω, ζ)

is Fφt ⊗ B(Cd) measurable. From these we get

ω �→ a(φt (ω),ω, θω(ζ t )) is Gt measurable. (7.3.30)

The conclusion (7.3.28) follows from (7.3.29) and (7.3.30). Let H = φ[K ]. Then H
is an (G�) adapted increasing process and (7.3.27) can be rewritten as

sup
0≤u≤s

‖c(u,ω, ζ2) − c(u,ω, ζ1)‖ ≤ Hs(ω) sup
0≤u≤s

|ζ2(u) − ζ1(u)|. (7.3.31)

Since d(s, ·, ζ) = c(s−, ·, ζ), (7.3.31) implies

sup
0≤u≤s

‖d(u,ω, ζ2) − d(u,ω, ζ1)‖ ≤ Hs−(ω) sup
0≤u<s

|ζ2(u) − ζ1(u)|. (7.3.32)

Let U = φ[V ], Ũ = φ[Ṽ ]. Then recall V = ψ[U ], Ṽ = ψ[Ũ ]. Let A, Ã, B, B̃
be defined by As = b(s, ·, V ), Ãs = b(s, ·, Ṽ ), Bs = Aφs and B̃s = Ãφs . Then

Bs = Aφs

= b(φs, ·,ψ[U ])
= d(s, ·,U )

and likewise B̃t = d(t, ·, Ũ ).
Thus the processes U, Ũ satisfy

Ut = ξ +
∫ t

0+
d(s, ·,U )dỸs,

Ũt = ξ +
∫ t

0+
d(s, ·, Ũ )dỸs .

Since c, d satisfy (7.3.2)–(7.3.5), Theorem 7.20 implies

P(Ut = Ũt ∀t ≥ 0) = 1

which in turn also proves (7.3.25) since V = ψ[U ] and Ṽ = ψ[Ũ ]. �

We are now ready to prove the main result on existence of solution to an SDE
driven by continuous semimartingales. Our existence result is a modification of
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Picard’s successive approximation method. Here the approximations are explicitly
constructed.

Theorem 7.22 Let X1, X2, . . . Xm be continuous semimartingales. Let the func-
tional a satisfy conditions (7.3.2)–(7.3.4) and b be defined by (7.3.5). Let ξ be any
F0 measurable random variable. Then there exists a (F�) adapted continuous process
V that satisfies

Vt = ξ0 +
∫ t

0+
b(s, ·, V )dXs . (7.3.33)

Proof Wewill construct approximations V (n) that converge to a solution of (7.3.33).
Let V (0)

t = ξ0 for all t . The processes V (n) are defined by induction on n. Assuming
that adapted r.c.l.l. processes V (0), . . . , V (n−1) have been defined, we now define
V (n): fix n.

Let τ (n)
0 = 0 and let {τ (n)

j : j ≥ 1} be defined inductively as follows: if τ (n)
j = ∞

then τ (n)
j+1 = ∞ and if τ (n)

j < ∞ then

τ (n)
j+1 = inf{s > τ (n)

j : ‖a(s, ·, V (n−1)) − a(τ (n)
j , ·, V (n−1))‖ ≥ 2−n

or ‖a(s−, ·, V (n−1)) − a(τ (n)
j , ·, V (n−1))‖ ≥ 2−n}. (7.3.34)

Since the process s �→ a(s, ·, V (n−1)) is an adapted r.c.l.l. process, it follows that
each τ (n)

j is a stopping time and lim j↑∞ τ (n)
j = ∞. Let V (n)

0 = ξ0 and for j ≥ 0 and

t ∈ (τ (n)
j , τ (n)

j+1] let

V (n)
t = V (n)

τ (n)
j

+ a(τ (n)
j , ·, V (n−1))(Xt − Xτ (n)

j
).

Equivalently,

V (n)
t = ξ0 +

∞∑

j=0

a(τ (n)
j , ·, V (n−1))(Xt∧τ (n)

j+1
− Xt∧τ (n)

j
). (7.3.35)

Thus we have defined V (n) and we will show that these processes converge almost
surely and the limit process V is the required solution. Let F (n), Z (n), R(n) be
defined by

F (n)
t = b(t, ·, V (n−1)) (7.3.36)

Z (n)
t = ξ0 +

∫ t

0+
F (n)
s d Xs (7.3.37)

R(n)
t =

∞∑

j=0

a(τ (n)
j , ·, V (n−1))1

(τ
(n)
j ,τ

(n)
j+1]

(t) (7.3.38)
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V (n)
t = ξ0 +

∫ t

0+
R(n)
s d Xs . (7.3.39)

Let us note that by the definition of {τ (n)
j : j ≥ 0}, we have

|F (n)
t − R(n)

t | ≤ 2−n. (7.3.40)

We will prove convergence of V (n) employing the technique used in the proof of
uniqueness to the SDE Theorem 7.21—namely random time change.

Let φ be a (F�) random time change such that Y j = φ[X j ], 1 ≤ j ≤ m are
amenable semimartingales (such a random time change exists as seen in Theorem
7.16). Let (G�) = (φF�), ψ = [φ]−1 be defined via (7.1.5).

Let c(t,ω, ζ), d(t,ω, ζ) be given by (7.3.26). As noted in the proof of The-
orem 7.21, c, d satisfy (7.3.2)–(7.3.5). We will transform {τ (n)

i : n ≥ 1, i ≥ 1},
{V (n), F (n), Z (n), R(n) : n ≥ 1} to the new time scale.

For n ≥ 1, j ≥ 0 let σ(n)
j = φ[τ (n)

j ], U (n) = φ[V (n)], G(n) = φ[F (n)], W (n) =
φ[Z (n)], S(n) = φ[R(n)]. Now it can be checked that

σ(n)
j+1 = inf{s >σ(n)

j : ‖a(s, ·,U (n−1)) − a(σ(n)
j , ·,U (n−1))‖ ≥ 2−n

or ‖a(s−, ·,U (n−1)) − a(σ(n)
j , ·,U (n−1))‖ ≥ 2−n}. (7.3.41)

Each σ(n)
j is a (G�) stopping time and lim j↑∞ σ(n)

j = ∞. Further, U (n)
0 = ξ0 and

U (n)
t = ξ0 +

∞∑

j=0

c(σ(n)
j , ·,U (n−1))(Yt∧σ(n)

j+1
− Yt∧σ(n)

j
), (7.3.42)

G(n)
t = d(t, ·,U (n−1)), (7.3.43)

W (n)
t = ξ0 +

∫ t

0+
G(n)

r dYr , (7.3.44)

S(n)
t =

∞∑

j=0

c(σ(n)
j , ·,U (n−1))1

(σ
(n)
j ,σ

(n)
j+1]

(t), (7.3.45)

U (n)
t = ξ0 +

∫ t

0+
S(n)
r dYr . (7.3.46)

Also, we have
|G(n)

t − S(n)
t | ≤ 2−n. (7.3.47)

Recall that we had shown in (7.3.31) that c satisfies Lipschitz condition with coeffi-
cient H = φ[K ]. For j ≥ 1, let

ρ j = inf{t ≥ 0 : |Ht | ≥ j or |Ht−| ≥ j or |U (1)
t − ξ0| ≥ j} ∧ j.
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Then ρ j are (G�) stopping times and ρ j ↑ ∞. Further, for all ζ1, ζ2 ∈ Cd we have

sup
0≤a≤(s∧ρ j )

‖c(a,ω, ζ2) − c(a,ω, ζ1)‖ ≤ j sup
0≤a≤(s∧ρ j )

|ζ2(a) − ζ1(a)|. (7.3.48)

Let us fix k ≥ 1 and j ≥ 1. We observe that for all n ≥ 2 (using (7.3.13) along with
(7.3.43) and (7.3.44))

E[1{|ξ0|≤k} sup
0≤s≤(t∧ρ j )

|W (n)
s − W (n−1)

s |2]

≤ 2m(4 + j)E[1{|ξ0|≤k}
∫ (t∧ρ j )

0
sup

0≤s≤(r∧ρ j )

|G(n)
s − G(n−1)

s |2dr ]

≤ 2m(4 + j) j2E[1{|ξ0|≤k}
∫ (t∧ρ j )

0
sup

0≤s≤(r∧ρ j )

|U (n−1)
s −U (n−2)

s |2dr ] (7.3.49)

Likewise, using (7.3.47) we get for n ≥ 1,

E[1{|ξ0|≤k} sup
0≤s≤(t∧ρ j )

|W (n)
s −U (n)

s |2]

≤ 2m(4 + j)E[1{|ξ0|≤k}
∫ (t∧ρ j )

0
sup

0≤s≤(r∧ρ j )

|G(n)
s − S(n)

s |2dr ]

≤ 2m(4 + j)4−n j. (7.3.50)

Combining (7.3.49) and (7.3.50), we observe that for n ≥ 2 (using for positive num-
bers x, y, z, (x + y + z)2 ≤ 3(x2 + y2 + z2))

E[1{|ξ0|≤k} sup
0≤s≤(t∧ρ j )

|U (n)
s −U (n−1)

s |2]

≤ 6m(4 + j)(4−n + 4−(n−1)) j

+ 6m(4 + j) j2E[1{|ξ0|≤k}
∫ (t∧ρ j )

0
sup

0≤s≤(r∧ρ j )

|U (n−1)
s −U (n−2)

s |2dr ]

Let
f (n)(t) = E[1{|ξ0|≤k} sup

0≤s≤(t∧ρ j )

|U (n)
s −U (n−1)

s |2] (7.3.51)

Then, writing Cm, j = 30m(4 + j) j2, the above inequality implies for n ≥ 2

f (n)(t) ≤ Cm, j + Cm, j

∫ t

0
f (n−1)(r)dr.

Since U (0)
t = ξ0, by the definition of ρ j , f (1)

t ≤ j2 ≤ Cm, j . Now (7.3.51) implies
(via induction on n) that
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f (n)(t) ≤ Cm, j .
(Cm, j t)n

n! (7.3.52)

and as a consequence (writing |·|2 for the L2(P) norm, and recalling ρ j ≤ j)

∞∑

n=1

‖1{|ξ0|≤k} sup
0≤s≤ρ j

|U (n)
s −U (n−1)

s |‖2 < ∞.

and as a consequence

‖1{|ξ0|≤k}
∞∑

n=1

sup
0≤s≤ρ j

|U (n)
s −U (n−1)

s |‖2 < ∞. (7.3.53)

As in the proof of Theorem 3.30, it now follows that for k ≥ 1, j ≥ 1, P(Nk, j ) = 0
where

Nk, j = {ω : 1{|ξ0(ω)|≤k} sup
0≤s≤ρ j (ω)

(

∞∑

n=1

|U (n)
s (ω) −U (n−1)

s (ω)|) = ∞}.

Since for all T < ∞

P(∪∞
k, j=1{ω : |ξ0(ω)| ≤ k, ρ j > T }) = 1

it follows that P(N ) = 0 where N = ∪∞
k, j=1Nk, j and for ω /∈ N , U (n)

s (ω) converges
uniformly on [0, T ] for every T < ∞. So let us define U as follows:

Ut (ω) =
{
limn→∞ U (n)

t (ω) if ω ∈ Nc

0 if ω ∈ N .

By definition, U is a continuous (G�) adapted process (since by assumption N ∈
F0 = G0) and U (n) converges to U uniformly in [0, T ] for every T almost surely
(and thus also ducp(U (n),U ) → 0). Also, (7.3.53) yields

lim
n,r→∞‖1{|ξ0|≤k} sup

0≤s≤ρ j

|U (n)
s −U (r)

s |‖2 = 0.

Now Fatou’s Lemma implies

lim
n→∞‖1{|ξ0|≤k} sup

0≤s≤ρ j

|U (n)
s −Us |‖2 = 0

which is same as
lim
n→∞E[1{|ξ0|≤k} sup

0≤s≤ρ j

|U (n)
s −Us |2] = 0. (7.3.54)

https://doi.org/10.1007/978-981-10-8318-1_3
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Now defining Gt = d(t, ·,U ) and Wt = ξ0 + ∫ t
0 GsdYs , it follows using the Lips-

chitz condition (7.3.48) along with (7.3.54) that

lim
n→∞E[1{|ξ0|≤k} sup

0≤s≤ρ j

|W (n)
s − Ws |2] = 0. (7.3.55)

Now (7.3.50), (7.3.54) and (7.3.55) imply that (for all j, k ≥ 1)

E[1{|ξ0|≤k} sup
0≤s≤ρ j

|Ws −Us |2] = 0

and hence that
P(Ws = Us ∀s ≥ 0) = 1.

Recalling the definition of G,W , it follows that U satisfies

Ut = ξ0 +
∫ t

0
d(s, ·,U )dYs .

It now follows that V = ψ[U ] satisfies (7.3.33). �

We have shown the existence and uniqueness of solution to the SDE (7.3.33). Indeed,
we have explicitly constructed processes V (n) that converge to V . We record this in
the next theorem

Theorem 7.23 Let X1, X2, . . . Xm be continuous semimartingales. Let a, b satisfy
conditions (7.3.2)–(7.3.5). Let ξ be any F0 measurable random variable. For n ≥ 1
let {τ (n)

j : j ≥ 1} and V (n) be defined inductively by (7.3.34) and (7.3.35) as in the
proof of Theorem 7.22. Let V be the (unique) solution to the SDE

Vt = ξ0 +
∫ t

0+
b(s, ·, V )dXs .

Then V (n) em−→ V and V (n) converges to V in ucc topology almost surely.

Proof We had constructed in the proof of Theorem 7.22 a (F�) random time
change φ and filtration (G�) = (φF�) such that U (n) = φ[V (n)] converges to U in
ucp metric: ducp(U (n),U ) → 0. Now ψ = φ−1 is also a (G�) random time change,
V (n) = ψ[U (n)] andV = ψ[U ]. It follows fromTheorem7.6 thatducp(V (n), V ) → 0.

Let Ft = b(t, ·, V ). Now the Lipschitz condition (7.3.4) on a, b implies F (n) ucp−→ F ,

where F (n) is defined by (7.3.36) and then (7.3.40) implies R(n) ucp−→ F . Hence The-
orem 4.107 implies that

∫
R(n)dX converges in Emery topology to

∫
FdX . Now

Vt = ξ0 + ∫ t
0 FsdXs and (7.3.39) together imply that V (n) em−→ V . As for almost sure

convergence in ucc topology, we had observed that it holds for U (n),U and then we
can see that same holds for V (n), V . �

https://doi.org/10.1007/978-981-10-8318-1_4
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7.4 Pathwise Formula for Solution of SDE

In this section, we will consider the SDE

dVt = f (t−, H, V )dXt (7.4.1)

for an R
d -valued process V where f : [0,∞) × Dr × Cd �→ L(d,m), H is an

R
r -valued r.c.l.l. adapted process, X is a R

m-valued continuous semimartingale.
Here Dr = D([0,∞),Rr ), Cd = C([0,∞),Rd). For t < ∞, ζ ∈ Cd and γ ∈ Dr ,
let γt (s) = γ(t ∧ s) and ζ t (s) = ζ(t ∧ s). We assume that f satisfies

f (t, γ, ζ) = f (t, γt , ζ t ), ∀γ ∈ Dr , ζ ∈ Cd , 0 ≤ t < ∞, (7.4.2)

t �→ f (t, γ, ζ) is an r.c.l.l. function ∀γ ∈ Dr , ζ ∈ Cd . (7.4.3)

We also assume that there exists a constant CT < ∞ for each T < ∞ such that
∀γ ∈ Dr , ζ1, ζ2 ∈ Cd , 0 ≤ t ≤ T

‖ f (t, γ, ζ1) − f (t, γ, ζ2)‖ ≤ CT (1 + sup
0≤s≤t

|γ(s)|)( sup
0≤s≤t

|ζ1(s) − ζ2(s)|). (7.4.4)

As in Sect. 6.2, we will now obtain a mapping Ψ that yields a pathwise solution to
the SDE (7.4.1).

Theorem 7.24 Suppose f satisfies (7.4.2)–(7.4.4). Then there exists a mapping

Ψ : Rd × Dr × Cm �→ Cd

with the following property: for an F0 measurable random variable ξ0, an adapted
r.c.l.l. process H and a continuous semimartingale X,

V = Ψ (ξ0, H, X)

yields the unique solution to the SDE

Vt = ξ0 +
∫ t

0
f (s−, H, V )dXs . (7.4.5)

Proof We will define mappings

Ψ (n) : Rd × Dr × Cm �→ C([0,∞),Rd)

inductively for n ≥ 0. Let Ψ (0)(u, γ, ζ)(s) = u for all s ≥ 0. Having defined Ψ (0),

Ψ (1), . . . , Ψ (n−1), we define Ψ (n) as follows. Fix n and u ∈ R
d , γ ∈ Dr and ζ ∈ Cd .

https://doi.org/10.1007/978-981-10-8318-1_6
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Let t (n)
0 = 0 and let {t (n)

j : j ≥ 1} be defined inductively as follows: ({t (n)
j : j ≥

1} are themselves functions of (u, γ, ζ), which are fixed for now andwewill suppress
writing it as a function) if t (n)

j = ∞ then t (n)
j+1 = ∞ and if t (n)

j < ∞ then writing

Γ (n−1)(u, γ, ζ)(s) = f (s, γ, Ψ (n−1)(u, γ, ζ)),

let

t (n)
j+1 = inf{s > t (n)

j : ‖Γ (n−1)(u, γ, ζ)(s) − Γ (n−1)(u, γ, ζ)(t (n)
j )‖ ≥ 2−n

or ‖Γ (n−1)(u, γ, ζ)(s−) − Γ (n−1)(u, γ, ζ)(t (n)
j )‖ ≥ 2−n}

(since Γ (n−1)(u, γ, ζ) is an r.c.l.l. function, t (n)
j ↑ ∞ as j ↑ ∞) and

Ψ (n)(u, γ, ζ)(s) = u +
∞∑

j=0

Γ (n−1)(u, γ, ζ)(t (n)
j )(ζ(s ∧ t (n)

j+1) − ζ(s ∧ t (n)
j )).

This defines Ψ (n)(u, γ, ζ). Now we define

Ψ (u, γ, ζ) =
{
limn Ψ (n)(u, γ, ζ) if the limit exists in ucc topology

0 otherwise.
(7.4.6)

Now it can be seen that

a(s,ω, ζ) = f (s, H(ω), ζ), b(s,ω, ζ) = f (s−, H(ω), ζ)

satisfies (7.3.2)–(7.3.5) and if V (n) is defined inductively by (7.3.34) and (7.3.35),
then

Ψ (n)(ξ0(ω), H(ω), X (ω)) = V (n)(ω).

As shown in Theorem 7.23, V (n)(ω) converges to V (ω) in ucc topology almost
surely and hence it follows that

P(Ψ (ξ0(ω), H(ω), X (ω))(t) = Vt (ω) ∀t) = 1.

�

This pathwise formula was obtained in [36, 40]. It was recast in [41] in the form
given in this section.
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7.5 Weak Solutions of SDE

Let us consider a special case of the SDE discussed in the previous section. Let
σ : [0,∞) × Cd �→ L(d, d) and h : [0,∞) × Cd �→ R

d be measurable functions.
For ζ ∈ Cd and t ≥ 0 let ζ t (s) = ζ(t ∧ s). Throughout this section, we assume that
σ, h satisfy

σ(t, ζ) = σ(t, ζ t ), ∀ζ ∈ Cd , 0 ≤ t < ∞, (7.5.1)

h(t, ζ) = h(t, ζ t ), ∀ζ ∈ Cd , 0 ≤ t < ∞. (7.5.2)

Let W be a d-dimensional Brownian motion adapted to (F�). Consider the SDE

dYt = σ(t,Y )dW + h(t,Y )dt. (7.5.3)

or equivalently

Y j
t = Y j

0 +
d∑

k=1

∫ t

0
σ jk(s,Y )dWk

s +
∫ t

0
h j (s,Y )ds. (7.5.4)

Equation (7.5.3) is said to admit a strong solution if given a Brownian motion W
on some probability space (Ω,F ,P), a filtration (F�) such that (Wt ,Ft ){t≥0} is a
Wiener martingale, and aF0 measurable random variable Y0, there exists a process Y
adapted to (F�) satisfying (7.5.4). Moreover the uniqueness of strong solution holds
if given two solution Y and Y ′ w.r.t. the same Brownian motion W ,

P(Y0 = Y ′
0) = 1

implies that
P(Yt = Y ′

t ∀t) = 1.

This is the notion of solution to an SDE that we have been considering. There is
another notion of a solution to the SDE (7.5.3), known as weak solution. It is as
follows.

We say that Eq. (7.5.3) admits a weak solution if for all y0 ∈ R
d we can construct

a probability space (Ω,F ,P), a Brownian motion W adapted to a filtration (F�)
such that (Wt ,Ft ){t≥0} is aWiener martingale and a (F�) adapted process Y such that
Y0 = y0 satisfying (7.5.4). We say weak uniqueness of solution to Eq. (7.5.3) holds
if for all y0 ∈ R

d , given two (possibly different) probability spaces (Ω,F ,P) and
(Ω̂, F̂ , P̂), filtrations (F�) on (Ω,F ,P) and (F̂�) on (Ω̂, F̂ , P̂), Brownian motions
W and Ŵ adapted to filtrations (F�) and (F̂�) on the two spaces, respectively, such
that (Wt ,Ft ){t≥0} and (Ŵt , F̂t ){t≥0} are Wiener martingales, and processes Y and Ŷ
adapted to (F�) and (F̂�), respectively, such that
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Y j
t = y0 +

d∑

k=1

∫ t

0
σ jk(s,Y )dWk

s +
∫ t

0
h j (s,Y )ds. (7.5.5)

Ŷ j
t = y0 +

d∑

k=1

∫ t

0
σ jk(s, Ŷ )dŴ k

s +
∫ t

0
h j (s, Ŷ )ds, (7.5.6)

the distributions of Y and Ŷ are the same, i.e.

P ◦ Y−1 = P̂ ◦ Ŷ−1. (7.5.7)

Clearly, existence of strong solution implies existence of a weak solution.
Note that the uniqueness of the weak solution requires equality in distribution of

any two solutions, whereas uniqueness of the strong solution requires almost sure
equality of paths. The next example illustrates the difference in these two notions.

Example 7.25 Consider the SDE

dXt = sgn(Xt )dWt (7.5.8)

where W is a Brownian motion. Recall that for x ∈ R, sgn(x) = 1 for x ≥ 0
and sgn(x) = −1 for x < 0, so that |x | = sgn(x)x . Let us note that if X is a
solution to (7.5.8), then X is a continuous martingale (since sgn is bounded)
and [X, X ]t = t since (sgn(x))2 = 1 for all x . Thus any solution X to (7.5.8)
is a Brownian motion and thus we have uniqueness of weak solution. Let us
now illustrate that we can construct X,W satisfying (7.5.8) such that W is a
Brownian motion. Start with a Brownian motion X and for t ≥ 0 let

Wt =
∫ t

0
sgn(Xs)dXs .

Then it follows that X,W satisfy (7.5.8). Thus we have existence and unique-
ness of weak solution to the SDE (7.5.8). On the other hand, easy to see that
if X is a solution then so is Y = −X . This uses that fact that P(Xs = 0) = 0 for
all s. Thus, strong uniqueness does not hold. This example is due to Tanaka
who also observed that there is no (FW

� ) adapted process X such that (7.5.8)
is true. Thus (7.5.8) does not admit a strong solution.

Ageneral result due toYamada–Watanabe says that stronguniqueness also implies
weak uniqueness. Here we will prove that under Lipschitz conditions on the coeffi-
cients, we have strong uniqueness as well as weak uniqueness. Instead of appealing
to Yamada–Watanabe result, we deduce weak uniqueness from the pathwise formula
for solution to the SDE.
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Suppose that there existsC : [0,∞) �→ [0,∞) such that σ, h appearing in (7.5.3)
satisfy

t �→ σ(t, ζ) is a continuous function ∀ ζ ∈ Cd . (7.5.9)

t �→ h(t, ζ) is a continuous function ∀ ζ ∈ Cd . (7.5.10)

‖σ(t, ζ1) − σ(t, ζ2)‖ ≤ CT ( sup
0≤s≤t

|ζ1(s) − ζ2(s)|) (7.5.11)

‖h(t, ζ1) − h(t, ζ2)‖ ≤ CT ( sup
0≤s≤t

|ζ1(s) − ζ2(s)|) (7.5.12)

Under these conditions, we can deduce the following.

Theorem 7.26 Suppose σ, h satisfy (7.5.1), (7.5.2), (7.5.9)–(7.5.12). Let W be a
d-dimensional Brownian motion adapted to (F�) such that (Wt ,Ft ){t≥0} is a Wiener
martingale and let Y0 be a F0 measurable random variable. Then

(i) Equation (7.5.3) admits a strong solution.
(ii) Strong uniqueness holds for Eq. (7.5.3).
(iii) Weak uniqueness also holds for Eq. (7.5.3).

Proof For 1 ≤ j ≤ d, defining f jk(t, γ, ζ) = σ jk(t, ζ) for 1 ≤ k ≤ d and f jk

(t, γ, ζ) = h j (t, ζ) for k = d + 1, Eq. (7.5.3) is same as (7.4.5) with ξ0 = Y0,
X j = W j for 1 ≤ j ≤ d and Xd+1

t = t . Also since σ, h satisfy (7.5.9)–(7.5.12) it
can be checked that f satisfies (7.4.2)–(7.4.4). Hence invoking Theorems 7.21 and
7.22, we conclude that existence of strong solution as well as uniqueness of strong
solution holds for the SDE (7.5.3).

Observe that Ψ (u, γ, ζ) does not depend on γ, hence denoting Ψ ∗(u, ζ) =
Ψ (u, 0, ζ), where 0 is the constant function, it follows that if Y , Ŷ satisfy (7.5.5) and
(7.5.6), respectively, then

Y = Ψ ∗(y0,W ), Ŷ = Ψ ∗(y0, Ŵ ).

As a consequence, denoting the Wiener measure on Cd by μw and the coordinate
process on Cd as X , Z = Ψ ∗(y0,W ) we have

P ◦ Y−1 = μw ◦ Z−1, P̂ ◦ Ŷ−1 = μw ◦ Z−1.

Thus weak uniqueness holds. �

7.6 Matrix-Valued Semimartingales

In this section, we will consider matrix-valued semimartingales. The notations intro-
duced here will be used only in this section and in a corresponding section later.
Recall that L(m, k) is the set of all m × k matrices. Let L0(d) denote the set of non-
singular d × d matrices.
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Let X = (X pq) be an L(m, k)-valued process. X is said to be a semimartingale
if each X pq is a semimartingale. Likewise, X will be said to be a local martingale if
each X pq is a local martingale and we will say that X ∈ V if each X pq ∈ V.

If f = ( f i j ) is an L(d,m)-valued predictable process such that f i j ∈ L(X jq)

(for all i, j, q), then Y = ∫
f d X is defined as an L(d, k)-valued semimartingale as

follows: Y = (Y iq) where

Y iq =
m∑

j=1

∫
f i j d X jq .

Likewise, if g = (gi j ) is anL(k, d)-valued predictable process such that gi j ∈ L(X pi )

(for all i, j, p), then Z = ∫
(dX)g is defined as follows: Z = (Z pj ) where

Z pj =
k∑

i=1

∫
gi j d X pi .

For L(d, d)-valued semimartingales X,Y let [X,Y ] = ([X,Y ]i j ) be the L(d, d)-
valued process defined by

[X,Y ]i jt =
d∑

k=1

[Xik,Y kj ]t .

Exercise 7.27 Let X,Y be L(d, d)-valued semimartingales. Show that

XtYt = X0Y0 +
∫ t

0+
Xs−dYs +

∫ t

0+
(dXs)Ys− + [X,Y ]t . (7.6.1)

The relation (7.6.1) is the matrix analogue of the integration by parts formula (4.6.7).
Recall our terminology: we say that a L(d, d)-valued process h is L0(d)-valued

if
P(ht ∈ L0(d) ∀t ≥ 0) = 1.

Exercise 7.28 Let X,Y be L(d, d)-valued continuous semimartingales and
let f, g, h be L(d, d)-valued predictable locally bounded processes. Further
let h be L0(d)-valued. Let W = ∫

f d X , Z = ∫
(dX)g, U = ∫

(dX)h and V =∫
h−1dY . Show that

[W,Y ]t = ∫ t
0 f d[X,Y ]. (7.6.2)

[Y, Z ]t = ∫ t
0 (d[Y, X ])g. (7.6.3)

∫ t

0
gdW = ∫ t

0 g f d X. (7.6.4)

∫ t

0
(dZ) f = ∫ t

0 (dX)g f. (7.6.5)

https://doi.org/10.1007/978-981-10-8318-1_4
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∫ t

0
f d Z = ∫ t

0 (dW )g. (7.6.6)

[U, V ]t = [X,Y ]t . (7.6.7)

In view of (7.6.6), with f, g, X,W, Z as in the previous exercise, we will denote∫
f d Z = ∫

(dW )g = ∫
f (dX)g.

We can consider an analogue of the SDE (7.3.1)

dUt = b(t, ·,U )dYt , t ≥ 0, U0 = ξ0 (7.6.8)

where nowY is anL(m, k)-valued continuous semimartingale,U is anL(d, k)-valued
process, ξ0 is L(d, k)-valued random variable and here

b : [0,∞) × Ω × C([0,∞), L(d, k)) → L(d,m).

Essentially the same arguments as given earlier in the section would give analogues
of existence and uniqueness results for Eq. (7.6.8).

Exercise 7.29 Formulate and prove analogues of Theorems 7.21, 7.22 and
7.23 for Eq. (7.6.8). Make precise and do a similar analysis for dŨt = (dỸt ) b̃
(t, ·, Ũ ).

Exercise 7.30 Let X be an L(d, d)-valued continuous semimartingale with
X (0) = 0 and let I denote the d × d identity matrix. Show that the equations

Yt = I +
∫ t

0
YsdXs (7.6.9)

and

Zt = I +
∫ t

0
(dXs)Zs (7.6.10)

admit unique solutions.

The solutions Y, Z are denoted respectively by e(X) and e′(X) and are the left and
right exponential of X .

Exercise 7.31 Let X be an L(d, d)-valued continuous semimartingale with
X0 = 0. Let Y = −X + [X, X ]. Let W = e(X) and Z = e′(Y ). Show that

(i) [Y,Y ] = [X, X ].
(ii) [X,Y ] = −[X, X ].
(iii) [W, Z ] = ∫

W (d[X,Y ])Z
(iv) WZ = I

The relation (iv) above implies that for any L(d, d)-valued continuous semi-
martingale X with X0 = 0, e(X) is L0(d)-valued and
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[e(X)]−1 = e′(−X + [X, X ]). (7.6.11)

Exercise 7.32 Let X1, X2, X3, X4 be L(d, d)-valued continuous semimartin-
gales with X j

0 = 0, j = 1, 2, 3, 4. Show that

(i) e(X1 + X2 + [X1, X2]) = e(X̃1)e(X2) where X̃1 = ∫
Y 2(dX1)(Y 2)−1

and Y 2 = e(X2).
(ii) e(X1 + X2) = e(X̃1)e(X̃2) where X̃1 = ∫

Y 2(dX1)(Y 2)−1, X̃2 = X2 − [X1,

X2] and Y 2 = e(X̃2).
(iii) e(X3)e(X2) = e(X̃3 + X2 + [X̃3, X2]) where X̃3 = ∫

(Y 2)−1(dX3)Y 2 and
Y 2 = e(X2).
Hint: For (i), start with right-hand side and use integration by parts
formula (7.6.1) and simplify. For (i i), note that X1 + X̃2 + [X1, X̃2] =
X1 + X2 and use (i). For (i i i) note that if we let X1 = X̃3 then

∫
Y 2(dX1)

(Y 2)−1 = X3.

Exercise 7.33 Let Y be an L0(d)-valued continuous semimartingale with Y0 =
I . Let Xt = ∫ t

0+ Y−1dY . Show that

Y = e(X).

For an L0(d)-valued continuous semimartingale Y with Y0 = I , we define log(Y ) =∫ t
0+ Y−1dY and log′(Y ) = ∫ t

0+(dY )Y−1. We then have

e(log(Y ) = Y, e′(log′(Y )) = Y.

Likewise, for any L(d, d)-valued continuous semimartingale X with X0 = 0, we
have

log(e(X) = X, log′(e′(X)) = X.

Exercise 7.34 Let X be an L(d, d)-valued continuous semimartingales with
X0 = 0 and Y be an L0(d)-valued continuous semimartingale with Y0 = I .
Then show that

(i) X is a local martingale if and only if e(X) is a local martingale.
(ii) X ∈ V if and only if e(X) ∈ V.
(iii) Y is a local martingale if and only if log(Y ) is a local martingale.
(iv) Y ∈ V if and only if log(Y ) ∈ V.

Exercise 7.35 Let Y be an L0(d)-valued continuous semimartingale with
Y0 = I . Show that Y admits a decomposition Y = MA where M0 = I, A0 = I ,
M is a continuous local martingale and A ∈ V. Further show that this decom-
position is unique.
Hint: Let X = log(Y ) and use Exercise 7.32 to connect multiplicative decom-
position of Y and additive decomposition of X .

The exercises given in this section are from [37].



Chapter 8
Predictable Increasing Processes

We have discussed predictable σ-field and seen the crucial role played by predictable
integrands in the theory of stochastic integration. In our treatment of the integration,
we have so far suppressed another role played by predictable processes. In the decom-
position of semimartingales, Theorem5.55, the process A with finite variation paths
turns out to be a predictable process. Indeed, this identification played a major part
in the development of the theory of stochastic integration.

In this chapter,wewillmake this identification and prove theDoob–Meyer decom-
position theorem obtaining the predictable quadratic variation 〈M ,M 〉 of a square
integrable martingale. We will also introduce the notion of a predictable stopping
time.

An important step towards the proof of Doob–Meyer decomposition theorem is:
An r.c.l.l. adapted process A with finite variation paths, A0 = 0, E[sup0≤t≤T |At| ] <

∞ is predictable if and only if it is natural, i.e. for all bounded r.c.l.l. martingales N ,
[N ,A] is also a martingale.

This result is usually stated assuming that the underlying filtration is right continu-
ous.We will prove its validity without assuming this. However, some of the auxiliary
results do require right continuity of σ-fields, which we state explicitly.

8.1 The σ-Field Fτ−

Recall that for a stopping time τ with respect to a filtration (F�), the stopped σ-field
Fτ is defined by

Fτ = {A ∈ σ(∪tFt) : A ∩ {τ ≤ t} ∈ Ft ∀t < ∞.}

We had seen that for every r.c.l.l. adapted process X and a stopping time τ , Xτ is Fτ

measurable. We now define the pre-stopped σ-field Fτ− as follows.
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Definition 8.1 Let τ be a stopping time with respect to a filtration (F�). Then

Fτ− = σ(F0 ∪ {A ∩ {t < τ } : A ∈ Ft, t < ∞}).

Exercise 8.2 Let τ be the constant stopping time τ = t, t > 0. Show that

Ft− = σ(∪s<tFs).

Exercise 8.3 Let 0 ≤ s < t. Show that F+
s ⊆ Ft−.

We note some basic properties of the pre-stopped σ-field in the next result. Recall
the definition (2.34) of fτ , (for a process f ) whereby fτ = fτ1{τ<∞}.

Theorem 8.4 Let τ , σ be stopping times with respect to a filtration (F�). Then

(i) τ is Fτ− measurable.
(ii) Fτ− ⊆ Fτ .
(iii) Let σ ≤ τ . If σ < τ on τ > 0 (i.e.τ (ω) > 0 implies σ(ω) < τ (ω)), then Fσ ⊆

Fτ−.
(iv) If A ∈ Fσ then (A ∩ {σ < τ }) ∈ Fτ− and in particular, {σ < τ } ∈ Fτ−.
(v) If f is a predictable process then fτ is Fτ− measurable.
(vi) Let W be a Fτ− measurable random variable. Then there exists a predictable

process f such that fτ1{τ<∞} = W1{τ<∞}.
(iv) Let U be a Fτ measurable random variable with E[ |U | ] < ∞ and E[U |

Fτ−] = 0. Let Mt = U1[τ ,∞)(t). Then M is a martingale.

Proof Since {t < τ } ∈ Fτ− by definition, (i) follows.
For (ii) note that if A ∈ Ft, t < ∞ and B = A ∩ {t < τ }, then for any s ∈ [0,∞),

B ∩ {τ ≤ s} is empty if s ≤ t andB ∩ {τ ≤ s} ∈ Fs if t < s. ThusB ∈ Fτ . This proves
(ii).

For (iii), let A ∈ Fσ. Note that writing Q+ to be the set of rational numbers in
[0,∞),

A = (∪r∈Q+(A ∩ {σ ≤ r} ∩ {r < τ })) ∪ {A ∩ {σ = τ = 0}}

and A ∩ {σ ≤ r} ∈ Fr . Thus A ∈ Fτ−.
For (iv) note that for A ∈ Fσ ,

(A ∩ {σ < τ }) = ∪r∈Q+((A ∩ {σ ≤ r}) ∩ {r < τ })

alongwith (A ∩ {σ ≤ r}) ∈ Fr implies (A ∩ {σ < τ }) ∈ Fτ−. TakingA = Ω wecon-
clude {σ < τ } ∈ Fτ−.

For (v), recall that P is the smallest σ-field generated by processes of the form
(see (4.2.1))

fs = a01{0}(s) +
m∑

j=0

aj+11(sj,sj+1](s)

https://doi.org/10.1007/978-981-10-8318-1_2
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where 0 = s0 < s1 < s2 < . . . < sm+1 < ∞, m ≥ 1, a0 is bounded F0 measurable
and for 1 ≤ j ≤ (m + 1), aj is a bounded Fsj−1 measurable random variable. For
such an f and α < 0,

{fτ ≤ α} = ({a0 ≤ α} ∩ {τ = 0}) ∪ (

m⋃

j=0

{aj+1 ≤ α} ∩ {sj < τ ≤ sj+1}). (8.1.1)

Now aj+1 isFsj measurable implies {aj+1 ≤ α} ∩ {sj < τ } ∈ Fτ− and since τ isFτ−
measurable, so does {aj+1 ≤ α} ∩ {sj < τ ≤ sj+1}. This and the fact that F0 ⊆ Fτ−
together imply that {fτ ≤ α} ∈ Fτ−.

For α ≥ 0, {fτ ≤ α} equals the expression on the right-hand side of (8.1.1) union
{sj+1 < τ }. Since {sj+1 < τ } ∈ Fτ−, it follows that fτ is Fτ− measurable for simple
f as given above. The result (v) follows by invoking the monotone class theorem,
Theorem 2.66.

For (vi), if W = 1B where B = A ∩ {t < τ } with A ∈ Ft , then we can take f =
1A1(t,∞) while if B ∈ F0, we can take f = 1B1[0,∞). Thus the required result holds if
W = 1B when

B ∈ H = F0 ∪ {A ∩ {t < τ } : A ∈ Ft, t ≥ 0}.

Thus ifG denotes the class of simple functions overH, if follows that the result (vi)
is true if W ∈ G. Note that H is closed under finite intersections and hence G is an
algebra. Denoting by A the class of W such that (vi) is true, it follows that G ⊆ A.
It is easy to check that A is bp-closed. Since Fτ− = σ(H), the result (vi) follows
from the monotone class theorem, Theorem 2.66.

For (vii), invokingLemma2.41 it follows thatM is an r.c.l.l. (F�) adapted stochas-
tic process. To show thatM is a martingale, suffices to show (see Theorem 2.57) that
for all bounded stopping times σ,

E[Mσ] = 0. (8.1.2)

Here Mσ = U1{τ≤σ}. Since {τ ≤ σ} = {τ > σ}c ∈ Fτ− (by part (iv) above) and
E[U | Fτ−] = 0 by assumption, (8.1.2) follows. �

The next result is a stopping time analogue of Exercise 8.3.

Theorem 8.5 Let σ be an (F+
� ) stopping time and τ be a (F�) stopping time. Then

A ∈ F+
σ ⇒ A ∩ {σ < τ } ∈ Fτ−.

As a consequence, if F+
0 = F0, {τ > 0} ⊆ {σ < τ } and {τ = 0} ⊆ {σ = 0} then

F+
σ ⊆ Fτ−.

Proof Fix A ∈ F+
σ . For t > 0, note that

https://doi.org/10.1007/978-981-10-8318-1_2
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A ∩ {σ < τ } =
⋃

{A ∩ {σ ≤ r} ∩ {s < τ } : r < s rationals in [0, t]}

Now for r < s, A ∩ {σ ≤ r} ∈ F+
r ⊆ Fs. Hence A ∩ {σ < τ } is a countable union of

sets in Fτ− and thus belongs to Fτ−. On the other hand A ∩ {σ = 0} ∈ F+
0 = F0 ⊆

Fτ−. Thus, A ∈ Fτ−. �

Remark 8.6 Note that the conditions {τ > 0} ⊆ {σ < τ } and {τ = 0} ⊆ {σ = 0}
are the same as {σ ≤ τ } and on {τ > 0}, {σ < τ }.

8.2 Predictable Stopping Times

For stopping times σ, τ we define stochastic intervals as follows. Recall that Ω̃ =
[0,∞) × Ω

(σ, τ ] = {(t,ω) ∈ Ω̃ : σ(ω) < t ≤ τ (ω)}

[σ, τ ] = {(t,ω) ∈ Ω̃ : σ(ω) ≤ t ≤ τ (ω)}

and likewise, [σ, τ ), (σ, τ ) are also defined. The graph [τ ] of a stopping time is
defined by

[τ ] = {(τ (ω),ω) ∈ Ω̃}.

With this notation, [τ , τ ] = [τ ]. Note that for any σ, τ , the processes f , g, h defined
by ft = 1[σ,τ )(t), gt = 1(σ,τ ](t) and ht = 1[0,τ ](t) are adapted processes. While f is
r.c.l.l., g is l.c.r.l. and thus g is predictable. h is also l.c.r.l. except at t = 0 and is
predictable. As a consequence we get that for stopping times σ, τ with 0 ≤ σ ≤ τ ,
we have

[0, τ ] ∈ P, (σ, τ ] ∈ P. (8.2.1)

On the other hand if τ is a [0,∞)-valued random variable such that ft = 1[0,τ )(t) is
adapted, then τ is a stopping time, since in that case {ft = 0} = {τ ≤ t} ∈ Ft .

Exercise 8.7 Let X be a continuous adapted process such that XT = 0. Let

τ = inf{t ≥ 0 : |Xt| = 0} (8.2.2)

and for n ≥ 1, let
σn = inf{t ≥ 0 : |Xt| ≤ 2−n}. (8.2.3)

Let Y be an r.c.l.l. process such that Y0 = 0 and M be a martingale such that
M0 = 0. Show that

(i) τ and σn for n ≥ 1 are bounded stopping times with σn ≤ τ .
(ii) For all n ≥ 1, {τ > 0} ⊆ {σn < τ }.
(iii) σn ↑ τ as n → ∞.
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(iv) [τ ] ∈ P.
(v) Yσn converges to Yτ− pointwise.
(vi) Mσn converges to Mτ− in L1(P).
(vii) E[(ΔM )τ |Fτ−] = 0.

The stopping time τ in the exercise above has some special properties. Such stopping
times are called predictable.

Definition 8.8 A stopping time τ is said to be predictable if

[τ ] ∈ P. (8.2.4)

We have noted that for every stopping time τ , (τ ,∞) ∈ P . Thus τ is predictable if
and only if

[τ ,∞) ∈ P. (8.2.5)

It follows thatmaximumaswell asminimumof finitelymany predictable stopping
times is predictable. Indeed, supremumof countablymany predictable stopping times
{τk : k ≥ 1} is predictable since

[ sup
1≤k<∞

τk ,∞) = ∩∞
k=1[τk ,∞).

Also, it follows that if τ is predictable, then so is τ ∧ k for all k.

Exercise 8.9 Let σ be any stopping time and a ∈ [0,∞) be a constant. Let
τ = σ + a. Show that τ is predictable.

We will be proving that predictable stopping times are characterized by properties
(ii), (iii) as well as by (vii) in the Exercise8.7 above (when the underlying filtration
is right continuous).

Towards this goal, we need the following result from Metivier [50] on the pre-
dictable σ-field, interesting in its own right. This is analogous to the result that every
finite measure on the Borel σ-field of a complete separable metric space is regular.
Even the proof is very similar, with continuous adapted processes playing the role
of bounded continuous functions and zero sets of such processes playing the role of
closed sets. See [18].

Theorem 8.10 Let μ be a finite measure on (Ω̃,P) and let

C = {{(t,ω) ∈ Ω̃ : Xt(ω) = 0} : X is a bounded continuous adapted process.}

Then for all ε > 0 and for all Γ ∈ P there exist Λ0,Λ1 such that Λ0 ∈ C, Λc
1 ∈ C,

Λ0 ⊆ Γ ⊆ Λ1

and
μ(Λ1 ∩ (Λ0)

c) < ε.
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Proof Easy to see that C is closed under finite unions and finite intersections: if
X 1,X 2 are bounded continuous processes, so are Y = X 1X 2 and Z = |X 1| + |X 2|.
Indeed, C is closed under countable intersections as X j, j ≥ 1 bounded continuous
(w.l.g.bounded by 1) yields that Z = ∑∞

j=1 2
−j|X j| is a bounded continuous adapted

process and
{Z = 0} = ∩j{X j = 0}.

Let G be the class of sets Γ in P for which the desired conclusion holds. Clearly
it is closed under complements. Now it can be checked using properties of C noted
in the previous paragraph that G is a σ-field.

For any continuous adapted process X and α ∈ R

{X ≤ α} = {Y = 0} where Y = max(X ,α) − α

and hence {X ≤ α} ∈ C. Since

{X = 0} = ∩n{|X | <
1

n
} = ∩n{−|X | ≤ −1

n
}c

it follows that C ⊆ G. Invoking Proposition 4.1, part (iii) we now conclude that
G = P . �

The following result gives some insight as towhy stopping times satisfying (8.2.4)
are called predictable.

Theorem 8.11 Let τ be (F�) stopping time. Then τ is predictable if and only if there
exist (F+

� ) stopping times τ n such that τ n ≤ τ n+1 ≤ τ , τ n ↑ τ and τ n < τ on τ > 0.

Proof Let us take the easy part first. If {τ n : n ≥ 1} as in the statement exist then
noting that

[τ ,∞) ∩ {(0,∞) × Ω} = ∩∞
n=1(τ

n,∞)

it follows that [τ ,∞) ∩ {(0,∞) × Ω} ∈ P(F+
� ). Thus using Corollary 4.6 we con-

clude
[τ ,∞) ∩ {(0,∞) × Ω} ∈ P(F�).

Since τ is a (F�) stopping time, {τ = 0} ∈ F0 and thus [0,∞) × {τ = 0} ∈ P(F�).
We can thus conclude that

[τ ,∞) ∈ P(F�).

Thus τ is predictable.
For the other part, suppose (8.2.4) holds. Consider the finite measure μ on (Ω̃,P)

defined by
μ(Γ ) = P({ω : (τ (ω),ω) ∈ Γ })

or equivalently for a positive bounded predictable f

https://doi.org/10.1007/978-981-10-8318-1_4
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∫
fdμ = E[fτ ].

For m ≥ 1, get bounded continuous adapted processes Xm such that

{Xm = 0} ⊆ [τ ] (8.2.6)

and
μ([τ ] ∩ ({Xm = 0}c)) ≤ 2−m. (8.2.7)

Let αm = inf{t ≥ 0 : |Xm
t | = 0}. Then (8.2.6) and (8.2.7) together imply that αm is

either equal to τ or ∞ and
P(τ �= αm) ≤ 2−m. (8.2.8)

Letσm,n = inf{t : |Xm
t | ≤ 2−n}. Easy to see thatσm,n ≤ αm and if 0 < αm < ∞ then

σm,n < αm and σm,n ↑ αm as n → ∞. For u, v ∈ [0,∞], let d∗(u, v) = | tan−1(u) −
tan−1(v)|. Then d∗ is a metric for the usual topology on [0,∞]. Since σm,n ↑ αm as
n → ∞, we can choose n = nm large enough so that denoting σm,nm = σm we have

P(d∗(σm,αm) ≥ 2−m) ≤ 2−m. (8.2.9)

Clearly, σm ≤ αm and further σm < αm on 0 < αm < ∞.
Let Nm = {d∗(σm,αm) ≥ 2−m} ∪ {τ �= αm} and N = lim supm→∞ Nm = ∩∞

m=1∪∞
n=m Nn.ByBorel–Cantelli Lemma and the probability estimates (8.2.8) and (8.2.9),

we conclude P(N ) = 0. For ω /∈ N , ∃m0 = m0(ω) such that for m ≥ m0, αm(ω) =
τ (ω), and d∗(σm(ω),αm(ω)) ≤ 2−m. Recall that for all m ≥ 1, σm(ω) ≤ αm(ω) for
allω. Further, for anyω such that 0 < αm(ω) < ∞, by construction σm(ω) < αm(ω).

Let τm = inf{σk : k ≥ m}. Then τm are (F+
� ) stopping times such that forω /∈ N ,

τm(ω) ≤ τm+1(ω) ≤ τ (ω), ∀m ≥ 1,

τm(ω) < τ (ω) if τ (ω) < ∞

and
d∗(τm(ω), τ (ω)) ≤ 2−m.

Thus {τ n} so constructed satisfy required properties. �

Remark 8.12 The stopping times {τ n : n ≥ 1} in the theorem above are said
to announce the predictable stopping time τ . Indeed, this characterization
was the definition of predictability of stopping times in most treatments.

Here are two observations linking the filtrations (F�), (F+
� ) with stopping times

and martingales.
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Lemma 8.13 Let τ be a (F�) stopping time. Then

[τ ] ∈ P(F+
� ) =⇒ [τ ] ∈ P(F�).

Proof Let f = 1[τ ]. Then f0 = 1{τ=0} is F0 measurable as τ is (F�) stopping time.
Now the conclusion, namely f being (F�) predictable, follows from Corollary
4.5. �
Lemma 8.14 Let M be an r.c.l.l. (F�)-martingale. Then M is also a (F+

� )-martin-
gale.

Proof Fix s < t. Let un = s + 2−n. Note that

E[Mt |Fun ] = Mun∧t .

Since F+
s = ∩nFun using Theorem 1.38 we conclude

E[Mt |F+
s ] = Ms.

�
We reiterate here that when the underlying filtration is required to be right contin-

uous, we will state it explicitly. Otherwise martingales, stopping times, predictable,
etc., refer to the filtration (F�).

Theorem 8.15 Let τ be a (F+
� ) predictable stopping time and let τ n be as in Theorem

8.11 announcing τ . Then

σ(

∞⋃

n=1

F+
τ n) = F+

τ−. (8.2.10)

Proof As seen in Theorem 8.4 (applied to the filtration (F+
� )) F+

τ n ⊆ F+
τ−. To see

the other inclusion, let B ∈ F+
τ−. If B ∈ F+

0 , then B ∈ F+
σn

for each n ≥ 1. If B =
A ∩ {t < τ }, A ∈ F+

t . Then Bn = A ∩ {t < τ n} ∈ F+
τ n− ⊆ F+

τ n . Thus

Bn ∈ σ(

∞⋃

m=1

F+
τm)

and of course easy to see that B = ∪∞
n=1Bn completing the proof. �

Exercise 8.16 Let τ be a (F�) predictable stopping time and let τ n be as in
Theorem 8.11 announcing τ . Suppose F0 = F+

0 . Show that

σ(

∞⋃

n=1

F+
τ n) = Fτ−. (8.2.11)

Thus conclude Fτ− = F+
τ−.

https://doi.org/10.1007/978-981-10-8318-1_4
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Here is a consequence of predictability of stopping times.

Theorem 8.17 Let τ be a bounded predictable stopping time. Then for all r.c.l.l.
martingales M with M0 = 0 we have

E[(ΔM )τ |Fτ−] = 0 (8.2.12)

Proof Let T be a bound for τ and let τ n be a sequence of (F+· ) stopping times
announcing τ as in Theorem 8.11 above. If τ > 0, thenMτ n converges toMτ− almost
surely whereas if τ = 0 then τ n = 0 for all n andMτ n = 0 andMτ− = 0 by definition
of M0− = 0. Thus we conclude that Mτ n converges to Mτ− almost surely. On the
other hand τ n ≤ τ and the martingale property ofM gives E[Mτ | F+

τ n] = Mτ n—see
Lemma 8.14 and Corollary 2.56. Now Theorem 1.37 along with (8.2.10) yields

E[Mτ |F+
τ−] = Mτ−. (8.2.13)

Now (8.2.12) follows from this as Mτ− is Fτ− measurable and Fτ− ⊆ F+
τ−. �

We now observe that (8.2.12) characterizes predictable stopping times when the
filtration is right continuous.

Theorem 8.18 Let τ be a bounded stopping time for the filtration (F�). Then the
following are equivalent.

(i) τ is predictable, i.e. [τ ] ∈ P(F�).
(ii) For all bounded (F+

� ) martingales M with M0 = 0, one has

E[(ΔM )τ |F+
τ−] = 0. (8.2.14)

(iii) For all bounded (F+
� ) martingales M with M0 = 0, one has

E[(ΔM )τ ] = 0. (8.2.15)

Proof If [τ ] ∈ P(F�) then of course [τ ] ∈ P(F+
� ) and hence (ii) holds as seen in

Theorem 8.17 (invoked here for the filtration (F+
� ). Thus (i) implies (ii).

That (ii) implies (iii) is obvious.
Let us now assume that (8.2.15) holds for all bounded (F+

� )-martingales M . We
will show that there exists a sequence of stopping times announcing τ . In view of
Theorem 8.11, this will prove (i) completing the proof. Since τ is be bounded, let T
be such that τ ≤ T .

Let N be the r.c.l.l. version of the martingale E[ τ |F+
t ]. Let Mt = Nt − N0 and

Zt = Nt − t. Noting that Nτ = E[ τ |F+
τ ] = τ by Theorem 2.55, we have Zτ = 0.

We will first prove that

P(Zt1{t≤τ } ≥ 0 ∀t ≤ T ) = 1. (8.2.16)

https://doi.org/10.1007/978-981-10-8318-1_2
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https://doi.org/10.1007/978-981-10-8318-1_2
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To see this note that for A ∈ F+
t , A ∩ {t ≤ τ } ∈ F+

t and using that N is a martingale
with NT = τ , we have

E[1A1{t≤τ }Nt] = E[1A1{t≤τ }τ ].

Hence
E[1AZt1{t≤τ }] = E[1A(τ − t)1{t≤τ }] ≥ 0.

Since this holds for all A ∈ F+
t and Zt1{t≤τ } is F+

t measurable, it follows that for
each t

Zt1{t≤τ } ≥ 0 a.s.

Now right continuity of t �→ Zt shows the validity of (8.2.16). It now follows that
Zτ− ≥ 0 a.s. and hence

Nτ− ≥ τ a.s. (8.2.17)

On the other hand,M is a bounded martingale withM0 = 0 and hence in view of the
assumption (8.2.15) on τ , it follows that E[(ΔM )τ ] = 0. Noting that

(ΔM )τ = (ΔN )τ1{τ>0}

we have E[(ΔN )τ1{τ>0}] = 0. Now using Nτ = τ we conclude

E[Nτ−1{τ>0}] = E[Nτ1{τ>0}] = E[τ1{τ>0}]. (8.2.18)

In view of (8.2.17) and (8.2.18) we conclude

Nτ−1{τ>0} = τ1{τ>0} a.s. (8.2.19)

Let
σn = inf{t ≥ 0 : Zt < 2−n}.

Wewill show that σn are (F+
� ) stopping times and announce τ . Clearly, σn ≤ σn+1 ≤

τ for all n. As (F+
� ) is right continuous, σn is a (F+

� ) stopping time by Lemma 2.48.
By definition of σn we have Zσn ≤ 2−n, i.e. Nσn − σn ≤ 2−n. Further, if σn > 0,

then by left continuity of paths of Z−, we also have

Zσn− ≥ 2−n. (8.2.20)

Since τ ≤ T and hence F+
T measurable , we conclude that NT = τ . Now N being

a martingale, we have E[Nσn ] = E[N0] = E[NT ] and hence E[Nσn] = E[τ ]. Since
Nσn − σn ≤ 2−n, we conclude

E[τ − σn] ≤ 2−n. (8.2.21)
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Since σn ≤ σn+1 ≤ τ for all n we conclude that

lim
n→∞ σn = τ . (8.2.22)

Remains to prove that on {τ > 0}, σn < τ .
If τ > 0 and σn > 0, then as seen in (8.2.20), Zσn− ≥ 2−n and so Nσn− > σn a.s.

In view of (8.2.19), this implies σn < τ a.s. on τ > 0. Thus {σn} announces τ and
as a consequence τ is predictable. �

Let τ be a stopping time and ξ be aFτ measurable randomvariable. Then h = ξ1(τ ,∞)

is an l.c.r.l. adapted process and hence predictable.
The next result refines this observation when τ is predictable.

Theorem 8.19 Let τ be a predictable stopping time and let ξ be a Fτ− measurable
random variable. Then f = ξ1[τ ,∞) and g = ξ1[τ ] are predictable processes.

Proof Note that f = g + h where h = ξ1(τ ,∞] and that h is predictable being l.c.r.l.
adapted. Thus suffices to show that g is predictable.

For A ∈ Fs, B = A ∩ {s < τ }, observe that

1B(ω)1[τ ](t,ω) = 1B(ω)1(s,∞)(t)1[τ ](t,ω).

The process 1B(ω)1(s,∞)(t) is l.c.r.l. adapted and hence predictable while 1[τ ](t,ω)

is predictable because τ is predictable. Thus, the desired conclusion namely g is
predictable is true when ξ = 1B, B = A ∩ {s < τ } and A ∈ Fs. It is easily seen to
be true when ξ = 1B, B ∈ F0. Since the class of bounded Fτ− measurable random
variables ξ for which the desired conclusion is true is a linear space and is bp-closed,
the conclusion follows by invoking the monotone class theorem—Theorem 2.66. �

Wewill next show that the jump times of an r.c.l.l. adapted process X are stopping
times and if the process is predictable, then the stopping times can also be chosen to
be predictable.

Lemma 8.20 Let X be an r.c.l.l. (F�) adapted process with X0 = 0. For α > 0 let

τ = inf{t > 0 : |ΔX |t ≥ α}.

Then τ is a stopping time with τ (ω) > 0 for all ω. Further, τ < ∞ implies |ΔX |τ
≥ α.

Proof Note that for any ω ∈ Ω and T < ∞

{t ∈ [0,T ] : |ΔX (ω)|t ≥ α}

is a finite set since X has r.c.l.l. paths. Thus τ (ω) < ∞ implies |ΔX (ω)|τ (ω) ≥ α.
Moreover,
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{ω : τ (ω) ≤ t} = {ω : ∃s ∈ [0, t] : |ΔX |s(ω) ≥ α}. (8.2.23)

It now follows that (writingQt = {r ∈ [0, t] : r is rational} ∪ {t}) forω ∈ Ω , τ (ω) ≤
t if and only if ∀n ≥ 1, ∃sn, rn ∈ Qt , 0 < sn < rn < sn + 1

n ,

|Xrn(ω) − Xsn(ω)| ≥ α − 1
n . (8.2.24)

To see this, if such sn, rn exist, then choose a subsequence nk such that

snk , rnk ,Xsnk
(ω),Xrnk

(ω)

converge. Using sn < rn < sn + 1
n and (8.2.24), it follows that

snk → u, rnk → u, for some u, 0 < u ≤ t.

Since |Xsnk
− Xrnk

| ≥ α − 1
nk

and Xsnk
, Xrnk

are converging, the only possibility is
thatXsnk

(ω) → Xu−,Xrnk
(ω) → Xu and |Xu(ω) − Xu−(ω)| ≥ α. Hence τ (ω) ≤ t. For

the other part, if τ (ω) = s ≤ t, using Qt is dense in [0, t] and t ∈ Qt , we can get
sn, rn ∈ Qt , 0 < sn < s ≤ rn < sn + 1

n ,

|Xs−(ω) − Xsn(ω)| ≤ 1
2n , |Xrn(ω) − Xs(ω)| ≤ 1

2n

and hence using |ΔX (ω)|s ≥ α, we get |Xrn(ω) − Xsn(ω)| ≥ α − 1
n . Thus

{τ ≤ t} = ∩∞
n=1(∪{s,r∈Qt ,0<s<r≤s+ 1

n }{|Xs − Xr| ≥ α − 1
n }).

Thus τ is a stopping time. Since X0 = 0 implies (ΔX )0 = 0, (8.2.23) implies
τ > 0. �

The next result shows that the jumps of an r.c.l.l. process can be covered by a
countable sequence of stopping times.

Lemma 8.21 Let A be an r.c.l.l. (F�) adapted process with A0 = 0. For n ≥ 1 and
ω ∈ Ω , let σn

0 = 0 and for i ≥ 1 let σn
i+1(ω) = ∞ if σn

i (ω) = ∞ and

σn
i+1(ω) = inf{t > σn

i (ω) : |(ΔA)|t(ω) ≥ 1
n }. (8.2.25)

Then

(i) For all n ≥ 1, i ≥ 1, σn
i is a stopping time and σn

i > 0.
(ii) ∀ω, σn

i (ω) < ∞ implies |(ΔA)|σn
i (ω)(ω) ≥ 1

n and σn
i (ω) < σn

i+1(ω).
(iii) ∀ω, limi→∞ σn

i (ω) = ∞.

(iv) (Recall Ω̃ = [0,∞) × Ω)

{(t,ω) ∈ Ω̃ : |(ΔA)t(ω)| ≥ 1
n } = {(σn

i (ω),ω) : i ≥ 1} ∩ Ω̃. (8.2.26)
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(v) If A is also predictable, then {σn
i : i ≥ 1, n ≥ 1} are predictable stopping

times.

Proof Fix n ≥ 1. Lemma 8.20 implies that σn
1 is a stopping time. We will prove that

σn
i are stopping times by induction. Assuming this to be the case for i = j, consider

the process Yt = At − At∧σn
j
. Applying Lemma 8.20 to the r.c.l.l. adapted process Y ,

we conclude that σn
j+1 is a stopping time. Moreover, if σn

j < ∞ then σn
j+1 > σn

j . This
completes the induction step proving (i), (ii). Since an r.c.l.l. function can have only
finitelymany jumps larger than 1

n in anyfinite interval, it follows that limi→∞ σn
i (ω) =

∞ proving (iii). Hence for a fixed ω, the set {t : |(ΔA)t(ω)| ≥ 1
n } ∩ [0,T ] is finite

for every T and is thus contained in {σn
i (ω) : 1 ≤ i ≤ m} for a sufficiently large m

and thus

{(t,ω) ∈ Ω̃ : |(ΔA)t(ω)| ≥ 1
n } ⊆ {(σn

i (ω),ω) : i ≥ 1} ∩ Ω̃.

Part (ii) proven above implies that the equality holds proving (8.2.26). For (v), if
A is predictable, then ΔA = A − A− is also predictable (since A− is l.c.r.l. adapted).
Also (σn

i−1,σ
n
i ] ∈ P as its indicator is a l.c.r.l. adapted process. In view of (8.2.26)

for i ≥ 1
[σn

i ] = {(t,ω) ∈ Ω̃ : |(ΔA)t(ω)| ≥ 1
n } ∩ (σn

i−1,σ
n
i ]

and thus if A is predictable, [σn
i ] ∈ P; i.e. σn

i is predictable. �

The previous result shows that the jumps of an r.c.l.l. adapted process can be
covered by countably many stopping times. We now show that one can choose finite
or countablymany stopping times that cover jumps and havemutually disjoint graphs.
Note that stopping times are allowed to take∞ as its value and the graph of a stopping
time is a subset of [0,∞) × Ω and thus several (or all!) may take value ∞ for an ω
without violating the requirement that the graphs are mutually disjoint.

Theorem 8.22 Let X be an r.c.l.l. (F�) adapted process with X0 = 0. Then there
exists a sequence of stopping times {τm : m ≥ 1}, such that

{(ΔX ) �= 0} =
∞⋃

m=1

[τm] (8.2.27)

and further that for m �= n, [τm] ∩ [τn] = ∅. As a consequence

(ΔX ) =
∞∑

m=1

(ΔX )τm1[τm]. (8.2.28)

Further, if the process X is also predictable, then the stopping times {τm : m ≥ 1}
can be chosen to be predictable and then (ΔX )τm are Fτm− measurable.
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Proof Let {σn
i : i ≥ 0, n ≥ 1} be defined by (8.2.25). For k = 2(n−1)(2i − 1), i ≥

1, n ≥ 1 let
ξk = σn

i .

Then the sequence of stopping times {ξk : k ≥ 1} is just an enumeration of {σn
i : i ≥

1, n ≥ 1} and thus in view of (8.2.26) we have

{(t,ω) ∈ Ω̃ : |(ΔX )t(ω)| > 0} = {(ξk(ω),ω) : k ≥ 1} ∩ Ω̃. (8.2.29)

However, the graphs of {ξk : k ≥ 1} may not be disjoint. Define τ1 = ξ1 and define
stopping times τk : k ≥ 2 inductively as follows. Having defined stopping times τk ,
1 ≤ k ≤ m let

τm+1(ω) =
{

ξm+1(ω) if ω ∈ ∩m
j=1{ξm+1(ω) �= τj(ω), τj(ω) < ∞}

∞ otherwise .
(8.2.30)

Fix t. Note that

{τm+1 ≤ t} = {ξm+1 ≤ t} ∩ (∩m
j=1{ξm+1 �= τj})

and A = ∩m
j=1{ξm+1 �= τj} ∈ Fξm+1 by Theorem 2.54. Thus,

{τm+1 ≤ t} = {ξm+1 ≤ t} ∩ A ∈ Ft .

and hence each τm+1 is also a stopping time. Thus {τk : k ≥ 1} is a sequence of
stopping times.

In view of (8.2.29) and the definition (8.2.30) of τm+1, we can check that the
sequence {τm : m ≥ 1} satisfies the required conditions, (8.2.27) and (8.2.28).

When the process X is predictable, we have seen that the stopping times {σn
i :

n ≥ 1, i ≥ 1} are predictable and thus here {ξk : k ≥ 1} are predictable. Since

[τm+1] = [ξm+1] ∩ (∪m
j=1[τj])c

it follows inductively that {τm} are also predictable. Predictability of X implies that
ΔX is also predictable and then part (v) Theorem 8.4 now shows that (ΔX )τm are
Fτm− measurable �

The sequence of stopping times {τk : k ≥ 1} satisfying (8.2.27) and (8.2.28) is
said to be enumerating the jumps of X .

Remark 8.23 It is possible that in the construction given aboveP(τm = ∞) = 1
for some m. Of course, such a τm can be removed without altering the
conclusion.

Here is an observation.

Corollary 8.24 Let A be a (F�) predictable r.c.l.l. process with finite variation paths.
Let |A| = Var(A) denote the total variation of A. Then |A| is (F�) predictable.
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Proof As seen earlier, predictability of A implies that ofΔA. Since (Δ|A|) = |(ΔA)|
it follows that (Δ|A|) is predictable and hence it follows that |A| is predictable.
Remember, |A|t is the total variation of s �→ As on [0, t]. �

The following result is essentially proven above.

Lemma 8.25 Let H be an r.c.l.l. adapted process. Then H is predictable if and only
if (ΔH ) admits a representation

(ΔH ) =
∞∑

m=1

(ΔH )τm1[τm] (8.2.31)

where {τm : m ≥ 1} is a sequence of predictable stopping times and (ΔH )τm isFτm−
measurable.

Proof One part is proven in Theorem 8.22. For the other part, if H admits such a
representation then by Theorem 8.19, (ΔH ) is predictable. Since H = H− + (ΔH )

and H− is predictable being left continuous, it follows that H is predictable. �

The following result would show that an r.c.l.l. predictable process is locally
bounded—in a sense proving that since we can predict the jumps, we can stop just
before a big jump.

Lemma 8.26 Let A be an r.c.l.l. predictable process with A0 = 0. Then for every n,
the stopping time

τn = inf{t > 0 : |At| ≥ n or |At−| ≥ n}

is predictable. As a consequence, A is locally bounded as a (F+
� ) adapted process.

Proof Wehave shown in Lemma2.42 that τn is a stopping time, τn > 0 and if τn < ∞
then |Aτn | ≥ n or |Aτn−| ≥ n. Further, it follows that limn τn = ∞. Let

Γn = {(t,ω) ∈ Ω̃ : |At| ≥ n or |At−| ≥ n}.

Since A is predictable and so is A− (being l.c.r.l.), it follows that Γn ∈ P and hence

[τn] = [0, τn] ∩ Γn ∈ P.

This shows τn is predictable.
For the second part, fix n ≥ 1. By Theorem 8.11 there exist (F+

� ) stopping times
{τn,m : m ≥ 1} that increase to τn strictly from below. Thus we can get mn such that
τ ∗
n = τn,mn satisfies

P(τ ∗
n < τn) = 1, P(τ ∗

n ≤ τn − 2−n) ≤ 2−n. (8.2.32)

https://doi.org/10.1007/978-981-10-8318-1_2


266 8 Predictable Increasing Processes

Let σn = max{τ ∗
1 , τ ∗

2 , . . . , τ ∗
n }. Then {σn : n ≥ 1} are (F+

� ) stopping times and

P(σn < τn) = 1, P(σn ≤ σn+1) = 1, P(σn ≤ τn − 2−n) ≤ 2−n. (8.2.33)

Since τn ↑ ∞, it follows that σn ↑ ∞. And σn < τn implies that |At| ≤ n for t ≤
σn. Thus A[σn] is bounded (by n) and so A is locally bounded as a (F+

� ) adapted
process. �

Here is another important consequence of the preceding discussion on predictable
stopping times.

Theorem 8.27 Let M be an r.c.l.l. martingale. If M is also predictable, then M has
continuous paths almost surely.

Proof Let τ be a bounded predictable stopping time. By Lemma 8.14, M is also a
(F+

� )-martingale. Now using Theorem 8.18, we have

E[(ΔM )τ |F+
τ−] = 0.

On the other hand, as seen in Theorem 8.4, part (v),Mτ is F+
τ− measurable and thus

so is (ΔM )τ and so (ΔM )τ = 0 a.s. and hence we getMτ = Mτ− (a.s.). Now if σ is
any predictable stopping time, σ ∧ k is also predictable and hence we conclude

(ΔM )σ∧k = 0 a.s. ∀k ≥ 1

and hence passing to the limit

(ΔM )σ = 0 a.s.

By Theorem 8.22, the jumps of M can be covered by countably many predictable
stopping times. This shows

P((ΔM )t = 0 ∀t) = 1

and hence paths of M are continuous almost surely. �

By localizing, we can deduce the following:

Corollary 8.28 Let M be an r.c.l.l. (F�) local martingale. If M is also (F�) pre-
dictable, then M has continuous paths almost surely.

Here is an interesting result.

Theorem 8.29 Let A be an r.c.l.l. (F�) predictable process with finite variation paths
with A0 = 0. If A is also a (F�)-martingale, then

P(At = 0 ∀t) = 1. (8.2.34)



8.2 Predictable Stopping Times 267

Proof Theorem 8.27 implies that A is continuous. Now Theorem 4.74 implies

P([A,A]t = 0 ∀t) = 1.

Now part (v) of Theorem 5.19 and its Corollary 5.20 together imply that (8.2.34) is
true. �

Once again, we can localize and obtain the following.

Corollary 8.30 Let A be an r.c.l.l. (F�) predictable process with finite variation
paths with A0 = 0. If A is also a (F�) local martingale, then

P(At = 0 ∀t) = 1.

8.3 Natural FV Processes Are Predictable

The main result of this section is to show that a process A ∈ V is natural if and only
if it is predictable. To achieve this, we need to consider the right continuous filtration
(F+

� ) along with the given filtration.
Recall that we had observed in Corollary 4.5 that a (F+

� ) predictable process f
such that f0 is F0 measurable is (F�) predictable.

In his work on decomposition of submartingales, P. A. Meyer had introduced a
notion of natural increasing process. It was an ad hoc definition, given with the aim
of showing uniqueness in the Doob–Meyer decomposition.

Definition 8.31 Let A ∈ V0; i.e. A is an adapted process with finite variation
paths and A0 = 0. Suppose |A| is locally integrable where |A|t = Var[0,t](A). A
is said to be natural if for all bounded r.c.l.l. martingales M

[M ,A] is a local martingale. (8.3.1)

Let W = {V ∈ V0 : |V | is locally integrable where |V |t = Var[0,t](V )}.
Remark 8.32 Let A ∈ V0 be such that [A,A] is locally integrable. Since Δ[A,A]
= (ΔA)2, it follows that (ΔA) is locally integrable and as a consequence A is
locally integrable and thus A ∈ W.

Theorem 8.33 Let A ∈ W be natural. Let σn ↑ ∞ be such that |A|[σn] is integrable.
Then [M ,A[σn]] is a martingale for all bounded martingales M and n ≥ 1.

Proof Let An = A[σn]. LetM be a bounded martingale. As seen in (4.6.9), [M ,A][σn]
t

= [M ,An]t and since A is natural, [M ,An]t is also a local martingale. Invoking
Theorem 4.74 we have

[M ,An]t =
∑

0<s≤t

(ΔM )s(ΔAn)s. (8.3.2)
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Thus if the martingale M is bounded by a constant C, (ΔM ) is bounded by 2C and
then we have

|[M ,An]t| ≤ 2C
∑

0<s≤t

|(ΔAn)s| ≤ 2C|A|t∧σn . (8.3.3)

By choice of σn, E[|A|t∧σn] < ∞. Thus

E[sup
s≤t

|[M ,An]s|] ≤ 2CE[|A|t∧σn ] < ∞.

Now Lemma 5.5 implies that the local martingale [M ,An] is indeed a martingale. �

We will first show that if A ∈ W is predictable then it is natural. The converse is
also true and would be taken up subsequently.

Theorem 8.34 Let A ∈ W be predictable. Then A is natural.

Proof Let M be a r.c.l.l. martingale bounded by C and let σn ↑ ∞ be such that
|A|[σn] is integrable. Let us write An = A[σn]. Note that A predictable implies An is
predictable for all n. Fix n.

Predictability of An implies that (ΔAn) is predictable since (An)− is predictable
being l.c.r.l.adapted. Let {τm} be predictable stopping times covering jumps of An as
constructed in Lemma 8.21. Now predictability of (ΔAn) and part (v) of Theorem 8.4
implies that (ΔAn)τm is Fτm− measurable for all m ≥ 1. Since {τm} cover the jumps
of An, it follows from (8.3.2) that

[M ,An]t =
∞∑

m=0

(ΔAn)τm(ΔM )τm1[τm,∞)(t). (8.3.4)

For each m, τm as well as (ΔAn)τm are Fτm− measurable by Theorem 8.4. Hence

E[(ΔAn)τm(ΔM )τm1[τm,∞)(t)] = E[E[(ΔAn)τm(ΔM )τm1[τm,∞)(t) |Fτm−]]
= E[(ΔAn)τm1[τm,∞)(t)E[(ΔM )τm | Fτm−]]
= 0

asM is a martingale and τm is predictable. SinceM is bounded byC,ΔM is bounded
by 2C and then we have

E[
∞∑

m=1

|(ΔM )τm(ΔAn)τm |1[τm,∞)(t)] ≤ 2CE[
∞∑

m=1

|(ΔAn
τm

)|1[τm,∞)(t)

≤ 2C|An|t
< ∞.

The dominated convergence theorem implies that the series in (8.3.4) converges
in L1(P) and as a consequence, E[[M ,An]t] = 0 for all t < ∞.

https://doi.org/10.1007/978-981-10-8318-1_5
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Now given a stopping time σ bounded by T , apply the above to N = M [σ] to get

E[[M ,An]σ] = E[[M ,An]σ∧T ] = E[[N ,An]T ] = 0

where we have used (4.6.9) for the last equality. Invoking Theorem 2.55 we conclude
that [M ,An] is a martingale. Thus [M ,A] is a local martingale for every bounded
martingale M and so A is natural. �

Our next observation will play an important role in the converse that we will take
up later.

Lemma 8.35 Let A ∈ W be natural. Then for all stopping times τ , (ΔA)τ is Fτ−
measurable.

Proof To see this, first let τ be bounded, say by k and let U be any bounded Fτ

measurable random variable and let

Wt = (U − E[U |Fτ−])1[τ ,∞)(t).

As seen in Theorem 8.4, part (vii), W is a martingale with r.c.l.l. paths. Since W is
bounded and A is natural

[W,A]t = (ΔA)τ (U − E[U |Fτ−])1[τ ,∞)(t)

is a local martingale.
Let σn ↑ ∞ be stopping times such that |A|σn is integrable for all n. As seen in

Theorem8.33, [W,A[σn]] is amartingale and since τ ≤ k wehaveE[[W,A[σn]]τ ] = 0.
Thus

E[(ΔA[σn])τU ] = E[(ΔA[σn])τE[U |Fτ−]]

for all boundedFτ measurable random variablesU . Thus by Lemma 5.49, it follows
that (ΔA[σn])τ is Fτ− measurable. Since σn ↑ ∞, we conclude that ΔAτ is Fτ−
measurable.

For a general stopping time τ , noting that (ΔA)τ∧n isFτ∧n− measurable and hence
Fτ− measurable. As seen in Theorem 8.4 part (i), {τ < ∞} ∈ Fτ−. Since

(ΔA)τ = lim
n→∞(ΔA)τ∧n1{τ<∞}

it follows that
(ΔA)τ is Fτ− measurable. (8.3.5)

�

Next we will show that if A is natural for (F�) then it is so for (F+
� ) filtration as

well.

https://doi.org/10.1007/978-981-10-8318-1_4
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Theorem 8.36 Let A be an (F�) adapted r.c.l.l. process with finite variation paths
such that A0 = 0 and |A| is locally integrable where |A|t = Var[0,t](A). Suppose that
A is natural for the filtration (F�). Then it is also natural for the filtration (F+

� ).

Proof Let σn ↑ ∞ be such that |A|[σn] is integrable and let An = A[σn]. Let us fix
a (F+

� )-martingale N bounded by C with r.c.l.l. paths. To show [N ,A] is a local
martingale, we will prove that for all n

[N ,An] is a(F+
� ) − martingale. (8.3.6)

We carry out the proof in 3 steps.
Step 1:. We will first prove that for r ≥ 0 fixed,

U = (ΔN )r1[r,∞)(t) (8.3.7)

is a (F+
� )-martingale and [U,An] is given by

[U,An]t = (ΔN )r(ΔAn)r1[r,∞)(t), (8.3.8)

and is a (F+
� )-martingale.

To see this, note that E[(ΔN )r |F+
r−] = 0 as N is a (F+

� )-martingale. Thus U is
a (F+

� )-martingale. The processU has a single jump at t = r and thus (8.3.8) holds.
Invoking Lemma 8.35 we observe that (ΔAn)r is Fr− measurable. SinceFr− ⊆ F+

r−,
we have

(ΔAn)r is F+
r− measurable. (8.3.9)

As a consequence

E[(Δ[U,An])r |F+
r−] = E[(ΔN )r(ΔAn)r |F+

r−]
= (ΔAn)rE[(ΔN )r |F+

r−]
= 0

(8.3.10)

and thus [U,An] is a (F+
� )-martingale. This completes step 1.

Step 2: Let D = {t ∈ [0,∞) : P((ΔN )t �= 0) > 0}. Then D is countable.
To see this, for t ≥ 0 let h(t) = E[ [N ,N ]t]. Then h is an [0,∞)-valued function

since N is a bounded martingale. Clearly, h is increasing. Since

h(t) − h(t−) = E[ [N ,N ]t − [N ,N ]t−] = E[((ΔN )t)
2],

it follows that t is a continuity point of h if and only if P((ΔN )t �= 0) = 0. Thus D
is precisely the set of discontinuity points of h which is countable. This completes
step 2.

Let t1, t2, . . . tm . . . be an enumeration of D. Let us write
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Zm
t =

m∑

k=1

(ΔN )tk1[tk ,∞)(t)

and Mm = N − Zm. Then Zm and [Zm,An] are (F+
� )-martingales as seen in step 1.

Note that

[Zm,An]t =
m∑

k=1

(ΔN )tk (ΔAn)tk1[tk ,∞)(t). (8.3.11)

From the definition of Zm,Mm it follows that

{t : P( (ΔMm)t �= 0) > 0} = {tk : k ≥ (m + 1)}. (8.3.12)

Next we will prove
Step 3: Zm converges to a (F+

� )-martingale Z in the Emery topology and [Z,An] is
a (F+

� )-martingale for each n ≥ 1.
To see this, for j < m we have

[Zm − Zj,Zm − Zj]t =
m∑

k=j+1

((ΔN )tk )
21[tk ,∞)(t).

Since N is a bounded martingale, it is square integrable and thus using Corollary
5.20, E[[N ,N ]t] < ∞. Hence

E[
∞∑

k=1

((ΔN )tk )
21[tk ,∞)(t)] ≤ E[[N ,N ]t] < ∞.

It follows thatE[[Zm − Zj,Zm − Zj]t] → 0 for all t < ∞ as j,m → ∞. Hence using
Lemma 5.41, we conclude that Zm converges to a (F+

� )-martingale Z such that

E[[Zm − Z,Zm − Z]t] → 0 for all t < ∞ (8.3.13)

and
Zm em−→ Z . (8.3.14)

Let us note that since N is bounded by C we have

∞∑

k=1

|(ΔN )t(ΔAn)t|1[tk ,∞)(t) ≤ 2C
∞∑

k=1

|(ΔAn)t|1[tk ,∞)(t)

≤ 2C|An|t
(8.3.15)

https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_5
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Let V n be defined by

V n
t =

∞∑

k=1

(ΔN )tk (ΔAn)tk1[tk ,∞)(t). (8.3.16)

The series defining V n converges almost surely and in L1(P) in view of (8.3.15).
Then

E[ |V n
t − [Zm,An]t| ] ≤

∞∑

k=m+1

1[tk ,∞)(t)E[ |(ΔN )tk (ΔAn)tk | ]

→ 0 as m → ∞
(8.3.17)

in view of (8.3.15). Since [Zm,An] is a (F+
� )-martingale, (8.3.17) implies that V n is

a (F+
� )-martingale. On the other hand (8.3.14) implies that

[Zm,An] → [Z,An] as m → ∞

in the Emery topology (see Theorem 4.1.1.1). Thus V n = [Z,An] is a (F+
� )-

martingale. This completes step 3.
Since Mm = N − Zm, we get Mm em−→ M where M = N − Z is also a (F+

� )-

martingale. Also, Mm ucp−→ M . It then follows from (8.3.12) that

P( (ΔM )t �= 0) = 0 ∀t ≥ 0. (8.3.18)

This observation (8.3.18) and the assumption that F0 contains all P null sets
together imply thatMt is F+

t− measurable. Since F+
t− ⊆ Ft ⊆ F+

t , we conclude that
M is a (F�)-martingale. In view of the assumption that A is natural for the filtration
(F�), we conclude that [M ,A] is a (F�)-local martingale. The process [M ,A] is r.c.l.l.
and thus is also a (F+

� )-local martingale.
Since N = M + Z , [N ,A] = [M ,A] + [Z,A]. We have already shown in step 3

that [Z,A] is a (F+
� )-local martingale and thus it follows that [N ,A] is a (F+

� )-local
martingale. �

We now come to one of the main results of this chapter.

Theorem 8.37 Let B ∈ W be natural for the filtration (F�), i.e. for all bounded
(F�)-martingales M

[M ,B] is a local martingale. (8.3.19)

Then B is (F�) predictable.

Proof Let τm ↑ ∞ be stopping times such thatBm = B[τm] satisfies |Bm|t is integrable
for all m, t. Suffices to prove that for all m, Bm is predictable. So fix m ≥ 1 and let
us write A = Bm. As seen in Theorem 8.33, for all bounded martingales M ,

[M ,A] is a martingale. (8.3.20)

https://doi.org/10.1007/978-981-10-8318-1_4
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By Theorem 8.36, (8.3.20) is true for all bounded (F+
� )-martingales M .

Let {σn
i : n ≥ 1, i ≥ 0} be the stopping times defined by (8.2.25). We are going

to prove that each of these is predictable. Note that (8.2.26) can be rewritten as

(ΔA)1{|ΔA|≥ 1
n } =

∞∑

i=0

(ΔA)σn
i
1[σn

i ]. (8.3.21)

Here, |ΔA| denotes the process s �→ |(ΔA)s|. It follows from Lemma 8.35 that

Wn,i = (ΔA)σn
i
is Fσn

i − measurable. (8.3.22)

Invoking part (vi) of Theorem 8.4, we obtain predictable processes f n,i such that

f n,iσn
i
1{σn

i <∞} = Wn,i1{σn
i <∞}.

Let

gn =
∞∑

i=1

f n,i1(σn
i−1,σ

n
i ].

Then gn is predictable since f n,i is predictable and 1(σn
i−1,σ

n
i ] is l.c.r.l. adapted process

and hence predictable. Further, note that by definition

gnσn
i
= (ΔA)σn

i
.

In view of the definition of {σn
i } as seen in (8.2.26), it follows that

gn1{|ΔA|≥ 1
n } = (ΔA)1{|ΔA|≥ 1

n }. (8.3.23)

In particular, for all m ≥ n

gn1{|ΔA|≥ 1
n } = gm1{|ΔA|≥ 1

n }

and hence defining g = lim supn→∞ gn, it follows that g is predictable and

g1{|ΔA|>0} = (ΔA)1{|ΔA|>0}. (8.3.24)

Now fix m ≥ 1 and let hm = 1{|g|>0}g−11{|ΔA|≥ 1
m }. Then h is bounded predictable and

(ΔA)hm = 1{|ΔA|≥ 1
m }. (8.3.25)

Now given a bounded (F+
� )-martingale M with M0 = 0, Nm = ∫

hmdM is also
a (F+

� )-martingale since hm is a bounded predictable process. Thus [Nm,A] is a
(F+

� )-martingale—see Theorem 8.36. On the other hand
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[Nm,A]t =
∫ t

0
hmd [M ,A] =

∑

0≤s≤t

hms (ΔM )s(ΔA)s

=
∑

0≤s≤t

(ΔM )s1{|(ΔA)s|≥ 1
m }

=
∞∑

j=0

(ΔM )σm
j ∧t .

Since [Nm,A] is a martingale, E[[Nm,A]σm
k ∧t] = 0 for all k. Thus

E[
k∑

j=0

(ΔM )σm
j ∧t] = 0

for all k. Hence for all m ≥ 1, i ≥ 1 and t < ∞

E[(ΔM )σm
i ∧t] = 0. (8.3.26)

Since (8.3.26) holds for all bounded (F+
� )-martingales M with M0 = 0, invoking

Theorem8.18we conclude that for allm ≥ 1, i ≥ 1 and t < ∞, the bounded stopping
time σm

i ∧ t is (F+
� ) predictable.

Since [σm
i ] = ∪j ∩k≥j [σm

i ∧ k], it follows that σm
i is (F+

� ) predictable for every
m, i. This along with the observation (8.3.22) gives us

(ΔA)σn
i
1[σn

i ]

is (F+
� ) predictable for each n, i. As a consequence

ξn =
∞∑

i=0

(ΔA)σn
i
1[σn

i ]

is (F+
� ) predictable. It can be seen using (8.3.21) that

lim
n→∞ ξn = ΔA

and thus ΔA is (F+
� ) predictable. Since

At = At− + (ΔA)t

and since At− is (F+
� ) predictable, being an l.c.r.l.adapted process, we conclude that

A is (F+
� ) predictable. Since B ∈ W, it follows that B0 = A0 = 0 and then Corollary

4.5 implies that A is (F�) predictable. �

https://doi.org/10.1007/978-981-10-8318-1_4
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8.4 Decomposition of Semimartingales Revisited

In view of this identification of natural FV processes as predictable, we can recast
Theorem 5.50 as follows.

Theorem 8.38 Let X be a stochastic integrator such that

(i) Xt = Xt∧T for all t.
(ii) E[sups≤T |Xs| ] < ∞.
(iii) E[[X ,X ]T ] < ∞.

Then X admits a decomposition

X = M + A, M ∈ M2, A ∈ V, A0 = 0 and A is predictable. (8.4.1)

Further, the decomposition (8.4.1) is unique.

Proof Let X = M + A be the decomposition in Theorem 5.50. As seen in Corollary
5.50, the process A satisfies At = At∧T . Since E[[M ,A]T ] = 0, we have

E[[X ,X ]T ] = E[[M ,M ]T ] + E[[A,A]T ]

and hence E[[A,A]T ] < ∞ and so A ∈ W. Thus A satisfies conditions of Theorem
8.37 and hence A is predictable. For uniqueness, if X = N + B is another decompo-
sition with N ∈ M2 and B ∈ V and B being predictable, then M − N = B − A is a
predictable process with finite variation paths which is also a martingale and hence
by Theorem 8.29, M = N and B = A. �

Remark 8.39 We note that in Theorem 8.38 we have not assumed that the
underlying filtration is right continuous.

We need two more results before we can deduce the Doob–Meyer decomposition
result. First, we need to extend Theorem 8.38 to all locally integrable semimartin-
gales. Then we need to show that when X is a submartingale, then the FV process
appearing in the decomposition is an increasing process. We begin with the second
result.

Theorem 8.40 Let U be an r.c.l.l. (F�) predictable process with finite variation
paths with U0 = 0 and

E[Var[0,T ](U )] < ∞ for all T < ∞. (8.4.2)

If U is also a (F�) submartingale, then U is an increasing process, i.e.

P(Ut ≥ Us ∀ 0 ≤ s ≤ t < ∞) = 1. (8.4.3)

Proof Let V = |U | denote the total variation process of U (Vt = Var[0,t](U )). As
seen in Corollary 8.24, V is also predictable and of course, V is an increasing process.

https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_5
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Fix T < ∞ and define measures μ and λ on (Ω̃,P) as follows. For a bounded
predictable process f ∫

fdμ = E[
∫ T

0
fsdUs] (8.4.4)

∫
fdλ = E[

∫ T

0
fsdVs]. (8.4.5)

Since V is an increasing process, λ is a positive finite measure. We shall show that
μ is also a positive measure. Note that if f = a1(s1,s2] with a being Fs1 measurable,
a ≥ 0, s1 < s2 ≤ T then

∫
fdμ = E[

∫ T

0
fsdUs]

= E[a(Us2 −Us1)]
= E[aE[(Us2 −Us1) |Fs1 ]]
≥ 0

asE[(Us2 −Us1) |Fs1 ] ≥ 0 a.s. sinceU is a submartingale and a ≥ 0. Since a simple
predictable process is a linear combination of such functions, it follows that for a
simple predictable f given by (4.2.1) such that f ≥ 0,

∫
fdμ ≥ 0. Since § generates

the predictable σ-field, it follows that μ is a positive measure (see Exercise 4.2). If f
is a non-negative bounded predictable process, then

|
∫ T

0
fsdUs| ≤

∫ T

0
fsdVs

and thus for such an f , ∫
fdμ ≤

∫
fdλ.

Thus μ is absolutely continuous w.r.t. λ and thus denoting the Radon–Nikodym
derivative by ξ, it follows that ξ is a [0,∞)-valued predictable process such that

∫
fdμ =

∫
f ξdλ. (8.4.6)

Let us define a process B by

Bt(ω) =
∫ t

0
1[0,T ](s)ξs(ω)dVs(ω). (8.4.7)

Since ξ is a [0,∞)-valued and V is an r.c.l.l. increasing process, it follows that B
is increasing as well. Since ξ and V are (F�) adapted, it follows that B is also (F�)

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4


8.4 Decomposition of Semimartingales Revisited 277

adapted. Further, let us note that

(ΔB) = ξ(ΔV ) (8.4.8)

and hence predictability of V implies that (ΔV ) and as a consequence (ΔB) is
predictable. SinceB = B− + (ΔB), andB− is l.c.r.l. and hence predictable, it follows
that B is predictable. Let C = B −U . Then C is a predictable process with finite
variation paths and C0 = 0.

We will show that C is a martingale. For this, using (8.4.6) and (8.4.7), we have
for any bounded predictable f

E[
∫ T

0
fsdBs] = E[

∫ T

0
fsξsdVs]

=
∫

f ξdλ

=
∫

fdμ.

(8.4.9)

Using (8.4.4) and (8.4.9) and recalling thatC = B −U we conclude that for bounded
predictable processes f we have

E[
∫ T

0
fsdCs] = 0.

Taking f = a1(s1,s2] with a being Fs1 measurable, s1 < s2 ≤ T , we conclude

E[a(Cs2 − Cs1)] = 0.

This being true for all T < ∞, we conclude that C is a martingale.
By Theorem 8.29, it follows that C = 0 and as a consequence, U = B. Since by

construction, B is an increasing process, this completes the proof. �
The preceding result also contains a proof of the following:

Corollary 8.41 Let U be an r.c.l.l. (F�) predictable process with finite variation
paths with U0 = 0 such that (8.4.2) is true. Let V = |U | denote the total variation
process of U ( Vt = Var[0,t](U ) ). Then there exists a predictable process ξ such that
|ξ| = 1 and

Ut =
∫ t

0
ξsdVs. (8.4.10)

Here are some auxiliary results.

Lemma 8.42 Let M be a local martingale. Then M is locally integrable.

Proof Let σn be stopping times increasing to ∞ such thatM [σn] is a martingale. Let
αn be the stopping times defined by
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αn = inf{t ≥ 0 : |Mt| ≥ n or |Mt−| ≥ n}

and let τn = αn ∧ σn ∧ n. Note that τ n also increases to ∞. Let Mn = M [τn]. Then
Mn is a martingale and for any T < ∞

sup
0≤t≤τn

|Mt| ≤ n + |Mτn | = n + |Mn
n |.

Since E[Mn
n ] < ∞, it follows that M is locally integrable. �

Lemma 8.43 Let τ be a stopping time and let ξ be a Fτ measurable [0,∞)-valued
integrable random variable. Let

Xt = ξ1[τ ,∞)(t).

Then X admits a decomposition

X = M + A, M ∈ M, A predictable, A ∈ V+. (8.4.11)

The decomposition (8.4.11) is unique. Further, for all T < ∞,

E[AT ] ≤ E[ξ] (8.4.12)

E[|MT |] ≤ 2E[ξ]. (8.4.13)

Proof Let {cn : n ≥ 1} be such that E[ξ1{ξ≥cn}] ≤ 2−n. Such a sequence exists as
ξ ≥ 0 andE[ξ] < ∞. Let ξm = ξ1{ξ≤cm} andXm

t = ξm1[τ ,∞)(t). Then,Xm is bounded
FV processes and hence a stochastic integrator. Thus by Theorem 8.38, it admits a
decomposition

Xm = Mm + Am, Mm ∈ M2, Am
0 = 0 and Am is predictable.

Also, ξm ≥ 0 implies that Xm is a submartingale. SinceMm is a martingale, it follows
that Am is a submartingale and hence by Theorem 8.40, Am is an increasing process.

Let us note that X n+1
t − X n

t = ξ1{cn<ξ≤cn+1}1[τ ,∞) and clearly it is an increasing
process. Thus, we have

E[ sup
0≤t≤T

|X n+1
t − X n

t |] ≤ E[X n+1
T − X n

T ]
≤ E[ξ1{cn<ξ≤cn+1}]
≤ 2−n.

(8.4.14)

Moreover X n+1 − X n is a submartingale. Noting that

X n+1
t − X n

t = Mn+1
t − Mn

t + An+1
t − An

t , ∀t ≥ 0 (8.4.15)
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and the fact thatMn+1 − Mn is a martingale, it follows thatAn+1 − An is a submartin-
gale. As a consequence, An+1 − An is an increasing process in view of Theorem 8.40.
Thus

E[ sup
0≤t≤T

|An+1
t − An

t |] = E[An+1
T − An

T ] (8.4.16)

Using E[Mm
0 ] = E[Xm

0 ] = E[ξ1{ξ≤cm}1{τ=0}], we conclude that

E[Mn+1
T − Mn

T ] = E[Mn+1
0 − Mn

0 ]
= E[ξ1{cn<ξ≤cn+1}1{τ=0}]
≥ 0.

(8.4.17)

As a result we have

E[An+1
T − An

T ] = E[X n+1
T − X n

T ] − E[Mn+1
T − Mn

T ]
≤ E[X n+1

T − X n
T ]

≤ 2−n.

(8.4.18)

Using (8.4.16) and (8.4.18) we conclude

E[
∞∑

n=1

sup
0≤t≤T

|An+1
t − An

t |] ≤
∞∑

n=1

E[ sup
0≤t≤T

|An+1
t − An

t |]

≤
∞∑

n=1

E[An+1
T − An

T ]

≤
∞∑

n=1

2−n

< ∞.

(8.4.19)

As seen in the proof of Theorem 2.71, we conclude that outside a null set, An
t

converges to At uniformly in t ∈ [0,T ] for every T < ∞. On the exceptional set, At

is defined to be zero. Since each An is predictable and is an increasing process, it
follows that so is A, thus A ∈ V+. The estimate (8.4.19) also implies

E[|An
t − At|] → 0 ∀t. (8.4.20)

DefiningM = X − A, using (8.4.20) and the easily checked fact thatE[|X n
t − Xt|] →

0, it follows that
E[|Mn

t − Mt|] → 0 ∀t. (8.4.21)

Since each Mn is a martingale, using (8.4.21) and Theorem 2.23 we conclude that
M is a martingale.

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_2
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The uniqueness of the decomposition follows fromTheorem 8.29—ifX = N + B
is another decomposition with a martingale N and B ∈ V with B0 = 0, then U =
M − N = B − A is a martingale as well as a predictable process with U ∈ V with
U0 = 0 and hence Ut = 0 for all t by Theorem 8.29.

Note that A0 = 0 implies M0 = ξ1{τ=0} and hence E[MT ] = E[M0] ≥ 0. Thus,

E[AT ] = E[XT ] − E[MT ] ≤ E[XT ] ≤ E[ξ].

This proves (8.4.12). For (8.4.13), note that |MT | ≤ XT + AT and hence

E[ |MT | ] ≤ E[AT ] + E[XT ] ≤ 2E[ξ].

�

Corollary 8.44 The processes A,M constructed in the previous result also satisfy

E[ sup
0≤t≤T

|At|] ≤ E[ξ] (8.4.22)

E[ sup
0≤t≤T

|Mt] ≤ 2E[ξ]. (8.4.23)

Proof Since A and X are increasing processes, sup0≤t≤T |At|=AT and sup0≤t≤T |Xt|
= XT . Thus

sup
0≤t≤T

|Mt| ≤ AT + XT .

The inequalities (8.4.22) and (8.4.23) follow from these observations. �

Corollary 8.45 Let τn be a sequence of stopping times and let ξn be a sequence of
[0,∞)-valued random variables, with ξn being Fτn measurable and

∞∑

n=1

E[ξn] < ∞. (8.4.24)

Let

Zt =
∞∑

n=1

ξn1[τn,∞). (8.4.25)

Then there exists a unique predictable increasing process B with B0 = 0 and a mar-
tingale N such that

Z = N + B.
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Proof In view of (8.4.24), it follows that

∞∑

n=1

ξn < ∞ a.s

and hence Z is an r.c.l.l. process. Let X n
t = ξn1[τn,∞) and let An be the predictable

increasing process with An
0 = 0 given by Lemma 8.43 such thatMn

t = X n
t − An

t is a
martingale. Then as seen in Lemma 8.43 and Corollary 8.44 we have

E[ sup
0≤t≤T

|An
t |] ≤ E[ξn] (8.4.26)

and hence the assumption (8.4.24) implies that Bt = ∑∞
n=1 A

n
t defines a integrable

predictable process. Indeed, (8.4.26) implies that the series defining B converges
uniformly in t ∈ [0,T ] for every T < ∞ almost surely. Thus, B is an r.c.l.l. increas-
ing predictable process. Further

∑k
n=1 M

n
t converges in L1(P) to Nt = Zt − Bt . By

Theorem 2.23 N is a martingale. This proves existence part. The uniqueness again
follows from Theorem 8.29. �

We can now extend the decomposition of semimartingales where the FV process
is predictable to a wider class of semimartingales.

Theorem 8.46 Let X be a semimartingale that is locally integrable. Then X admits
a decomposition

X = M + A, M ∈ M loc, A ∈ V,A0 = 0 and A is predictable. (8.4.27)

The decomposition as in (8.4.27) is unique. Conversely, if a semimartingale X admits
a decomposition (8.4.27), then X is locally integrable.

The process A appearing in (8.4.27) is called the compensator of the semimartingale
X .

Proof Let σn be stopping times increasing to ∞ such that

sup
0≤t≤σn

|Xt| is integrable. (8.4.28)

Let αn be the stopping times defined by

αn = inf{t ≥ 0 : |Xt| ≥ n or |Xt−| ≥ n or [X ,X ]t− ≥ n} (8.4.29)

and let τn = αn ∧ σn ∧ n. Let X n = X [τn], ξn = (ΔX )τn , U
n = (ξn)+1[τn,∞), V n =

(ξn)−1[τn,∞) and Zn = X n −Un + V n. Then

Zn
t =

{
Xt if t < τn

Xτn− if t ≥ τn.

https://doi.org/10.1007/978-981-10-8318-1_2
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Hence Zn is a bounded semimartingale. Note that [Zn,Zn] is also bounded. Thus by
Theorem 8.38, Zn admits a decomposition as in (8.4.1). In view of (8.4.28) (ξn)+ and
(ξn)− are integrable and hence by Lemma 8.43, Un, V n also admit decomposition
as in (8.4.11). Thus X n also admits a decomposition

X n = Mn + An (8.4.30)

with An
0 = 0, An being a predictable FV process. This decomposition is unique in

view of the Corollary 8.30. For n < m,

X n
t = Xm

t for t ≤ τn

The uniqueness of the decompositions (8.4.30) then shows that

Mn
t = Mm

t , An
t = Am

t for t ≤ τn.

Thus defining Mt = limn M n
t and At = limn An

t , it follows that

Mt = Mn
t , At = An

t for t ≤ τn.

ThusM is a local martingale and A is a predictable process with finite variation paths
with A0 = 0 and by construction, X = M + A. Thus a decomposition as in (8.4.27)
exists. On the other hand if a semimartingale X admits a decomposition (8.4.27),
then A, being a predictable FV process, is locally bounded (see Lemma 8.26) and
hence locally integrable and M being a local martingale is locally integrable (see
Lemma 8.42).

The uniqueness part once again follows from Corollary 8.30. �

Remark 8.47 A locally integrable semimartingale is called a Special Semi-
martingale. The previous result says that a semimartingale admits a decom-
position as in (8.4.27) if and only if it is special.

Exercise 8.48 Let X be a semimartingale such that X0 = 0 and

|(ΔX )| ≤ a

for a constant a. Show that X is locally integrable. Further, if X = M + A is
the canonical decomposition withM ∈ M loc,A ∈ V,A0 = 0 and A predictable.
Show that

|(ΔA)| ≤ a.

Hint: If αn are defined by (8.4.29), then X [αn] are bounded. Observe that for
any predictable stopping time τ ,

(ΔA[αn])τ = E[(ΔA[αn])τ | Fτ−].
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WhenM ,N are localmartingales such that the quadratic variation process [M ,N ]
is locally integrable, then the unique predictable process A ∈ V such that A0 = 0 and
[M ,N ]t − At is a local martingale (in other words the process A appearing in the
decomposition (8.4.27) is denoted by 〈M ,N 〉).
Definition 8.49 For local martingales M ,N such that [M ,N ] is locally inte-
grable, the predictable cross-quadratic variation 〈M ,N 〉 is the unique pre-
dictable process with FV paths which is zero at t = 0 and such that

[M ,N ]t − 〈M ,N 〉t
is a local martingale. When M = N and M is locally square integrable then
〈M ,M 〉 is called the predictable quadratic variation of M .

IfM ,N are locally square integrable, [M ,N ] is locally integrable as seen in (4.6.17)
and hence the predictable quadratic variation 〈M ,N 〉 is defined. It is easy to see that
(M ,N ) �→ 〈M ,N 〉 is a bilinear mapping fromM2

loc × M2
loc into V.

8.5 Doob–Meyer Decomposition

As was mentioned earlier, the Doob–Meyer decomposition was the starting point
of the theory of stochastic integration. For a square integrable martingale M , the
Doob–Meyer decomposition of the submartingale M 2 gives an increasing process
〈M ,M 〉 (also called the predictable quadratic variation ofM ) which gave an estimate
on the growth of stochastic integral w.r.t.M . In this book, we have developed the
theory of stochastic integration via the quadratic variation [M ,M ]. Nonetheless, the
predictable quadratic variation of a (locally) square integrable martingale M plays
an important role in the theory and now we will show that ifM ∈ M2

loc then 〈M ,M 〉
is an increasing process. We start with an auxiliary result.

Lemma 8.50 Let A be an adapted increasing integrable process with A0 = 0 and
let U be a predictable process, U ∈ V such that M = A −U is a martingale. Then
U ∈ V+; i.e.U is an increasing process.

Proof Let {τm : m ∈ F} be the sequence of stopping times given by Theorem 8.22
(F is a subset of natural numbers) so that (8.2.27) and (8.2.28) are true. Let

Ct =
∑

m∈F
(ΔA)τm1[τm,∞)

and
Dt = At − Ct .

It follows that C and D are adapted increasing processes, C0 = 0, D0 = 0 and D is
continuous. Since

https://doi.org/10.1007/978-981-10-8318-1_4
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0 ≤ Ct ≤ At ∀t

it follows thatC is also integrable and thus by Corollary 8.45 we can get a predictable
increasing process B such that Nt = Ct − Bt is a martingale. Thus Nt = At − Dt −
Bt . Thus N − M = U − D − B. Now N − M is a martingale and at the same time
U − D − B is an FV process that is predictable. Thus by Theorem 8.29, we have

U = D + B.

By construction, D and B are increasing processes and this shows U is incre-
asing. �

Corollary 8.51 Let M be a locally square integrable martingale. Then the pre-
dictable quadratic variation 〈M ,M 〉 (see Definition 8.49 ) is an increasing process.

Proof The result follows from Lemma 8.50 since [M ,M ] is an increasing pro-
cess. �

We are now ready to prove the classical result.

Theorem 8.52 (The Doob–Meyer Decomposition Theorem) Let N be a locally
square integrable martingale with N0 = 0 w.r.t.a filtration (F�). Then 〈N ,N 〉 is the
unique r.c.l.l. (F�) predictable increasing process A such that A0 = 0 and M defined
by

Mt = N 2
t − At (8.5.1)

is a local martingale. Further, for any stopping time σ

E[ 〈N ,N 〉σ] ≤ E[ sup
0≤s≤σ

|Ns|2] ≤ 4E[ 〈N ,N 〉σ]. (8.5.2)

Proof SinceN 2
t − [N ,N ]t is a local martingale (see Theorem 5.19), for a predictable

processA,N 2 − A is a localmartingale if and only if [N ,N ] − A is a localmartingale.
Now the first part follows from Corollary 8.51.

For the remaining part, let τn be a localizing sequence for the local martingale
M = N 2 − 〈N ,N 〉. Then for n ≥ 1

Y n
t = N 2

τn∧t − 〈N ,N 〉τn∧t
is a martingale. Hence for any bounded stopping time σ we have,

E[N 2
τn∧σ] = E[〈N ,N 〉τn∧σ] (8.5.3)

Now by Doob’s maximal inequality, Theorem 2.26, we get

E[〈N ,N 〉τn∧σ] ≤ E[ sup
0≤s≤τn∧σ

|Ns|2] ≤ 4E[〈N ,N 〉τn∧σ].

https://doi.org/10.1007/978-981-10-8318-1_5
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Now taking limit as n → ∞ and using monotone convergence theorem, we conclude

E[〈N ,N 〉σ] ≤ E[ sup
0≤s≤σ

|Ns|2] ≤ 4E[〈N ,N 〉σ]. (8.5.4)

�

Remark 8.53 Using (8.5.3), it follows that if N is a locally square integrable
martingale then for all stopping times σ,

E[ [N ,N ]σ] = E[N 2
σ ] = E[〈N ,N 〉σ]. (8.5.5)

All the quantities can be ∞, but if one is finite, so are the others and they are
equal.

Lemma 8.54 Let M be a locally square integrable martingale and let f be a pre-
dictable process such that for all t

Bt =
∫ t

0
|fs|2d〈M ,M 〉s < ∞ a.s. (8.5.6)

Then B is a predictable increasing process.

Proof Let us note that B is an r.c.l.l. increasing adapted process and for any stopping
time τ ,

(ΔB)τ = |fτ |2(Δ〈M ,M 〉)τ .

Now the result follows from Lemma 8.25 and part (v) of Theorem 8.4. �

Exercise 8.55 Let V ∈ V+ be predictable and f be a predictable process such
that

∫ t
0 |f |dV < ∞ for all t ≥ 0. Show that the process U defined by Ut =∫ t

0 fdV is predictable.

Lemma 8.56 Let M be a locally square integrable martingale and let f be a locally
bounded predictable process and let N = ∫

fdM . Then

〈N ,N 〉t =
∫ t

0
|fs|2d〈M ,M 〉s < ∞. (8.5.7)

Proof That Bt defined by (8.5.6) is predictable has been noted above. One can show
that N 2

t − Bt is a local martingale starting with f simple and then by approximation.
Thus 〈N ,N 〉t = Bt . �

Remark 8.57 For f ,M ,N as above, we have seen that

[N ,N ]t =
∫ t

0
|fs|2d [M ,M ]s < ∞ (8.5.8)
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and hence it follows that for a stopping time σ,

E[
∫ σ

0
|fs|2d〈M ,M 〉s] = E[

∫ σ

0
|fs|2d [M ,M ]s]. (8.5.9)

The estimate (5.4.10) on the growth of the stochastic integral can be recast as:

Theorem 8.58 Let M be a locally square integrable martingale with M0 = 0.
For a locally bounded predictable process f , the processes Yt = ∫ t

0 fdM and Zt =
Y 2
t − ∫ t

0 f
2
s d〈M ,M 〉s are local martingales and for any stopping time σ such that

E[∫ σ

0 f 2s d〈M ,M 〉s] < ∞,

E[ sup
0≤t≤σ

|
∫ t

0
fdM |2] ≤ 4E[

∫ σ

0
f 2s d〈M ,M 〉s]. (8.5.10)

For locally square integrable martingales M ,N , the predictable cross-quadratic
variation 〈M ,N 〉 is the uniquepredictable process inV0 such that [M ,N ]t − 〈M ,N 〉t
is a local martingale. Since MtNt − [M ,N ]t is a local martingale, it follows that
〈M ,N 〉 is the unique predictable process in V0 such that

Zt = MtNt − 〈M ,N 〉t (8.5.11)

is a local martingale. We can see that the predictable cross-quadratic variation also
satisfies the polarization identity (for locally square integrable martingales M ,N )

〈M ,N 〉t = 1

4
(〈M + N ,M + N 〉t − 〈M − N ,M − N 〉t) (8.5.12)

We had seen that (M ,N ) �→ 〈M ,N 〉 is bilinear inM and N . This yields an analogue
of Theorem 4.78 which we note here.

Theorem 8.59 Let M ,N be locally square integrable martingales. Then for any
s ≤ t

Var(s,t](〈M ,N 〉) ≤ √
(〈M ,M 〉t − 〈M ,M 〉s).(〈N ,N 〉t − 〈N ,N 〉s) (8.5.13)

and
Var[0,t](〈M ,N 〉) ≤ √〈M ,M 〉t〈N ,N 〉t, (8.5.14)

Proof Let

Ωa,b,s,r = {ω ∈ Ω : 〈aM + bN , aM + bN 〉r(ω) ≥ 〈aM + bN , aM + bN 〉s(ω)}

and
Ω0 = ∪{Ωa,b,s,r : s, r, a, b ∈ Q, r ≥ s}.

Then it follows that P(Ω0) = 1 (since for any locally square integrable martingale
Z , 〈Z,Z〉 is an increasing process) and that for ω ∈ Ω0, for 0 ≤ s ≤ r, s, r, a, b ∈ Q

https://doi.org/10.1007/978-981-10-8318-1_5
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(a2(〈M ,M 〉r − 〈M ,M 〉s) + b2(〈N ,N 〉r − 〈N ,N 〉s)
+ 2ab(〈M ,N 〉r − 〈M ,N 〉s))(ω) ≥ 0,

and since the quadratic form above remains positive, we conclude

|(〈M ,N 〉r(ω) − 〈M ,N 〉s(ω))|
≤ √

(〈M ,M 〉r(ω) − 〈M ,M 〉s(ω))(〈N ,N 〉r(ω) − 〈N ,N 〉s(ω)).

(8.5.15)
Since all the processes occurring in (8.5.15) are r.c.l.l., it follows that (8.5.15) is
true for all s ≤ r, s, r ∈ [0,∞). Now given s < t and s = t0 < t1 < . . . < tm = t,
we have

m−1∑

j=0

|〈M ,N 〉tj+1 − 〈M ,N 〉tj |

≤
m−1∑

j=0

√
(〈M ,M 〉tj+1 − 〈M ,M 〉tj )(〈N ,N 〉tj+1 − 〈N ,N 〉tj )

≤√
(〈M ,M 〉t − 〈M ,M 〉s)(〈N ,N 〉t − 〈N ,N 〉s)

(8.5.16)

where the last step follows from Cauchy–Schwarz inequality and the fact that
〈M ,M 〉, 〈N ,N 〉 are increasing processes. Now taking supremum over partitions
of [0, t] in (8.5.16) we get (8.5.13). Now (8.5.14) follows from (8.5.13) taking s = 0
since 〈M ,M 〉0 = 0, 〈N ,N 〉0 = 0 and 〈M ,N 〉0 = 0. �

And here is an analogue of (4.77). However, the proof is different from that given
earlier.

Lemma 8.60 Let U, V be locally square integrable martingales. Then for any t we
have

|〈U,U 〉t − 〈V, V 〉t| ≤ √
2〈U − V,U − V 〉t(〈U,U 〉t + 〈V, V 〉t). (8.5.17)

Proof Using bilinearity of (M ,N ) �→ 〈M ,N 〉, note that

〈U,U 〉t − 〈V, V 〉t = 〈U + V,U − V 〉t . (8.5.18)

Invoking (8.5.13) with s = 0, we get

〈U,U 〉t − 〈V, V 〉t ≤ √〈U − V,U − V 〉t(〈U + V,U + V 〉t)
= √〈U − V,U − V 〉t(〈U,U 〉t + 〈V, V 〉t + 2〈U, V 〉t).

(8.5.19)
Since

〈U − V,U − V 〉t = 〈U,U 〉t + 〈V, V 〉t − 2〈U, V 〉t ≥ 0

https://doi.org/10.1007/978-981-10-8318-1_4
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we have
2〈U, V 〉t ≤ 〈U,U 〉t + 〈V, V 〉t . (8.5.20)

Now (8.5.17) follows from (8.5.19) and (8.5.20). �

We will now prove that [M ,M ] and 〈M ,M 〉 depend continuously onM ∈ M2
loc.

Theorem 8.61 Let M n,M ∈ M2
loc be such that for a sequence {σj} of stopping times

increasing to ∞, one has for each j ≥ 1,

E[ sup
t≤σj

|Mn
t − Mt|2] → 0. (8.5.21)

Then we have

[Mn − M ,Mn − M ] ucp−→ 0 (8.5.22)

〈Mn − M ,Mn − M 〉 ucp−→ 0, (8.5.23)

[Mn,Mn] ucp−→[M ,M ], (8.5.24)

〈Mn,Mn〉 ucp−→ 〈M ,M 〉. (8.5.25)

Proof Using (5.3.24) and (8.5.2) it follows from (8.5.21) that

E[ [Mn − M ,Mn − M ]σj ] ] → 0

and
E[〈Mn − M ,Mn − M 〉σj ] → 0.

Since [Mn − M ,Mn − M ] and 〈Mn − M ,Mn − M 〉 are increasing processes,
(8.5.22) and (8.5.23) follow from these observations andLemma2.75.Using (4.6.17),
(8.5.14) along with (8.5.22) and (8.5.23), we conclude that

[Mn − M ,M ] ucp−→ 0 (8.5.26)

and
〈Mn − M ,M 〉 ucp−→ 0. (8.5.27)

Using

[Mn,Mn] − [M ,M ] = [Mn − M ,Mn − M ] + 2[Mn − M ,M ]

https://doi.org/10.1007/978-981-10-8318-1_5
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and
〈Mn,Mn〉 − 〈M ,M 〉 = 〈Mn − M ,Mn − M 〉 + 2〈Mn − M ,M 〉,

the remaining conclusions (8.5.24) and (8.5.25) follow from (8.5.22), (8.5.26) and
(8.5.23), (8.5.27), respectively. �

Using Lemma 8.25, one can show that if A is a predictable r.c.l.l. FV process and
f is a [0,∞)-valued predictable process, then B defined by

Bt =
∫ t

0
fsdAs

is predictable. Further, it can be checked (first for simple integrands and then by
limiting arguments) that for f , g predictable and locally bounded,M ,N locally square
integrable martingales, X = ∫

fdM and Y = ∫
gdN ,

Ut = XtYt −
∫ t

0
f gd〈M ,N 〉

is a local martingale. Thus

〈
∫

fdM ,

∫
gdN 〉 =

∫
f gd〈M ,N 〉. (8.5.28)

These observations lead us to the following analogue of Theorem 5.31 which we
record here for use later.

Theorem 8.62 Let M be a locally square integrable martingale with M0 = 0 and
σ be a stopping time. For a locally bounded predictable process f such that
E[∫ σ

0 f 2s d〈M ,M 〉s] < ∞, we have

E[ sup
0≤t≤σ

|
∫ t

0
fdM |2] ≤ 4E[

∫ σ

0
f 2s d〈M ,M 〉s]. (8.5.29)

Proof We had observed that Y = ∫
fdM is a local martingale above and that

〈Y ,Y 〉t =
∫ t

0
f 2s d〈M ,M 〉s.

Now the estimate (8.5.29) follows from (8.5.2). �
Definition 8.63 Two locally square integrable martingales M ,N are said to
be strongly orthogonal if 〈M ,N 〉t = 0 for all t < ∞.

Equivalently, M ,N are strongly orthogonal if Zt = MtNt is a local martingale.

Exercise 8.64 Construct an example of martingalesM ,N such that 〈M ,N 〉t =
0 for all t < ∞ but for some T < ∞, [M ,N ]T �= 0.

https://doi.org/10.1007/978-981-10-8318-1_5
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The following interesting observation is due to Kunita–Watanabe who studied struc-
ture of square integrable martingales.

Theorem 8.65 Let M ,N be locally square integrable martingales. Then N admits
a decomposition

Nt =
∫ t

0
fdM +Ut (8.5.30)

where f ∈ L2
m(M ) and U is a locally square integrable martingale strongly orthog-

onal to M .

Proof Let τn be a sequence of stopping times, τn ≤ n, such that Nt∧τn is a square
integrable martingale. Let an = E[N 2

τn
]. Let

α = inf{∑∞
n=1

1
2n(1+an)

E[(Nτn − ∫ τn
0 gdM )2] : g ∈ L2

m(M )}.

It can be seen that α < ∞, indeed, α ≤ 1 since g = 0 ∈ L2
m(M ). Now it can be

shown (proceeding as in the proof of existence of orthogonal projections onto a
closed subspace in a Hilbert space as used proof of Theorem 5.44) that the infimum
is attained, say for f ∈ L2

m(M ) and then for every n

E[(Nτn −
∫ τn

0
fdM )(

∫ τn

0
gdM )] = 0 ∀g ∈ L2

m(M ).

Thus defining U by (8.5.30) with this f we have

E[Uτn(

∫ τn

0
gdM ) = 0 ∀g ∈ L2

m(M ).

Given a stopping time σ, taking g = 1[0,σ], this yields

E[UτnNσ∧τn ] = 0

which in turn yields
E[Uσ∧τnNσ∧τn ] = 0.

Writing Zt = UtNt , we conclude that Zn
t = Zt∧τn is a martingale and thus Z is a local

martingale completing the proof. �

For N ,M ∈ Mloc, if [M ,N ] = 0 then it follows thatMN is a local martingale and
hence 〈M ,N 〉 = 0. This observation has an important consequence.

Lemma 8.66 Let N ∈ V ∩ M2
loc and M ∈ M2

loc be such that for all stopping
times τ ,

(ΔN )τ (ΔM )τ = 0 a.s.

Then 〈M ,N 〉 = 0. In particular, V ∩ M2
loc ⊆ M2

d ,loc.

https://doi.org/10.1007/978-981-10-8318-1_5
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Proof As seen in Theorem 4.74, N ∈ V implies

[M ,N ]t =
∑

0<s≤t

(ΔM )s(ΔN )s.

Using Theorem 8.22, we can get stopping times {τn : n ∈ F} (F is a finite or count-
able set) that cover the jumps of N and then it follows that

[M ,N ]t =
∑

n∈F
(ΔM )τm(ΔN )τm1{τm≤t}.

Now in view of the assumption, (ΔM )τm(ΔN )τm = 0 (a.s.) for each m and as a
consequence, [M ,N ]t = 0 (a.s.) for all t. Thus Zt = MtNt is a local martingale and
as a consequence 〈M ,N 〉 = 0. The last statement follows easily. �

8.6 Square Integrable Martingales

In this section we will obtain a decomposition of square integrable martingales into
a martingale with continuous paths and a martingale with jumps.

Theorem 8.67 Let τ be a predictable stopping time and let ξ be a Fτ measurable
square integrable random variable with E[ξ |Fτ−] = 0. Then

Mt = ξ1[τ ,∞)(t) (8.6.1)

is a martingale and 〈M ,M 〉 = A where

At = E[ξ2 |Fτ−]1[τ ,∞)(t). (8.6.2)

Proof From part (vii) in Theorem 8.4 it follows that M is a martingale. Since τ
is predictable, by Theorem 8.19 it follows that A is predictable and clearly A is an
increasing process. Noting that

M 2
t − At = (ξ2 − E[ξ2 |Fτ−])1[τ ,∞)(t)

it follows, again invoking part (vii) in Theorem 8.4, that Nt = M 2
t − At is a martin-

gale.
It is clear from the definition of A that A0 = 0 on the set τ > 0. On the other

hand, ξ is Fτ measurable and hence ξ1{τ=0} is F0 measurable. Thus E[ξ |Fτ−] = 0
implies ξ1{τ=0} = 0. Since F0 ⊆ Fτ−, we conclude that A0 = 0 on {τ = 0} as well.
Thus A0 = 0 and hence

〈M ,M 〉t = E[ξ2 |Fτ−]1[τ ,∞)(t) (8.6.3)

https://doi.org/10.1007/978-981-10-8318-1_4
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follows from the uniqueness part of the Doob–Meyer decomposition (Theorem
8.52). �

We are going to prove a structural decomposition result for square integrable
martingales. This would play an important role in the proof of Metivier–Pellaumail
inequality in the next chapter. Here are some preparatory results. Recall theDefinition
5.68—a locally square integrable martingaleM is purely discontinuous if

[M ,N ] = 0 ∀N ∈ Mc, loc.

The class of purely discontinuous square integrable martingales is denoted by M2
d

and purely discontinuous locally square integrable martingales is denoted byM2
d ,loc.

Exercise 8.68 Show that a locally square integrable martingale is purely dis-
continuous if and only if

〈M ,N 〉t = 0 ∀t ≥ 0, ∀N ∈ M2
c,loc.

Exercise 8.69 Let Mn ∈ M2
d and M ∈ M2 be such that

E[[Mn − M ,Mn − M ]T ] → 0 ∀T < ∞

then M ∈ M2
d .

Lemma 8.70 Let X be a square integrable martingale with Xt = Xt∧T for all t, for
some T < ∞ and let τ be a predictable stopping time such that

P((ΔX )τ �= 0) > 0.

Let N be defined by
Nt = (ΔX )τ1[τ ,∞)(t).

Then N ∈ M2
d . Let Y = X − N. Then P((ΔY )τ �= 0) = 0, Y is a square integrable

martingale,
〈Y ,N 〉 = 0

and
〈N ,N 〉t = E[(ΔX )2τ | Fτ−]1[τ ,∞)(t). (8.6.4)

Proof Using Xt = Xt∧T , we have

|(ΔX )τ | ≤ 2 sup
t≤T

|Xt|

and hence in view of Doob’s maximal inequality, Theorem 2.26, we have that ξ =
(ΔX )τ is square integrable. Since τ is predictable,E[(ΔX )τ | Fτ−] = 0. SoTheorem

https://doi.org/10.1007/978-981-10-8318-1_5
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8.67 implies that N is a square integrable martingale and that (8.6.4) is true. Since
N ∈ V, using Lemma 8.66 it follows that N ∈ M2

d .
It follows thatY is a square integrablemartingale and by construction,P((ΔY )τ �=

0) = 0. Hence
(ΔY )t(ω)(ΔN )t(ω) = 0, ∀t, ∀ω

and hence by Lemma 8.66, 〈Y ,N 〉 = 0. �

For X ∈ M2
loc, applying the previous result to X [σm] ∈ M2 where {σm : m ≥ 1}

is a localizing sequence we get:

Corollary 8.71 Let X be a locally square integrable martingale and let τ be a
predictable stopping time such that

P((ΔX )τ �= 0) > 0.

Let N ,Y be defined by
Nt = (ΔX )τ1[τ ,∞)(t)

and Y = X − N. Then P((ΔY )τ �= 0) = 0, N ,Y are locally square integrable mar-
tingales with

〈Y ,N 〉 = 0.

Further, 〈N ,N 〉 has a single jump at τ and if σm ↑ ∞ are bounded stopping times
such that X [σm] ∈ M2 then

〈N ,N 〉τ1{τ≤σm} = E[(ΔX [σm])2τ | Fτ−]. (8.6.5)

The following technical result will be used in the decomposition ofM ∈ M2
loc.

Theorem 8.72 Let M ∈ M2
loc be a locally square integrable martingale with M0 =

0. Let {τk : k ≥ 1} be a sequence of stopping times with disjoint graphs. Let

V j
t = (ΔM )τj 1[τj,∞) (8.6.6)

and let Aj be the compensator of V j. Let W j = V j − Aj. Then

(i) For all j ≥ 1, W j ∈ M2
d ,loc.

(ii) Sm = ∑m
j=1 W

j converges in Emery topology to W.
(iii) W ∈ M2

d ,loc and if {σi : i ≥ 1} is a sequence of bounded stopping times increas-
ing to ∞ with W [σi] ∈ M2

d , then for each i

E[ sup
t≤σi

|Sm
t − Wt|2] → 0 as m → ∞. (8.6.7)

(vi) [Sn, Sn] ucp−→ [W,W ] and 〈Sn, Sn〉 ucp−→ 〈W,W 〉.
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Proof Since graphs of {τk : k ≥ 1} are disjoint,
∞∑

j=1

[V j, V j]t =
∞∑

j=1

(ΔM )2τj1[τj,∞)(t) ≤
∑

0<s≤t

(ΔM )2s ≤ [M ,M ]t . (8.6.8)

Also, easy to see that for j �= k P(τj = τk) = 0 implies

[V j, V k ]t = 0. (8.6.9)

Let σi ↑ ∞ be bounded stopping times such that M [σi] ∈ M2 so that

E[ [M ,M ]σi ] < ∞ ∀i ≥ 1. (8.6.10)

It follows that for every i,

lim
m→∞E[

∞∑

j=m

[V j, V j]σi ] = 0. (8.6.11)

Since Aj is compensator of V j and Wj = V j − Aj, it follows that
∑n

j=1 A
j is the

compensator of
∑n

j=1 V
j and Sn = ∑n

j=1 V
j − ∑n

j=1 A
j. Using (5.6.37) along with

(8.6.8) and (8.6.9) we have

E[ [Sn, Sn]σi ] ≤ E[ [
n∑

j=1

V j,

n∑

j=1

V j]σi ]

=
n∑

j=1

E[ [V j, V j]σi ]

≤ E[ [M ,M ]σi ]
< ∞.

Thus Sn ∈ M2
loc. Since Sn ∈ V by construction, using Lemma 8.66 it follows that

Sn ∈ M2
d ,loc. Similarly, for m ≤ n we have

E[ [Sn − Sm, Sn − Sm]σi ] ≤ E[
n∑

j=m+1

[V j, Vj]σi ]. (8.6.12)

Now (8.6.11) and (8.6.12) imply that Sn is Cauchy in dem and thus converges to
say W such that W ∈ M2

loc (see Corollary 5.42) and further (8.6.7) holds. Since
(Sn)[σi] ∈ M2

d , the relation (8.6.7) implies that W [σi] ∈ M2
d and hence W ∈ M2

d , loc.
As seen in Theorem 8.61, (8.6.7) implies (iv). �

https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_5
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Lemma 8.73 Let M ∈ M2 be such that M0 = 0, Mt = Mt∧T for t ≥ 0 for some T
and let τ be a predictable stopping time. Then

Δ〈M ,M 〉τ = E[(ΔM )2τ | Fτ−] (8.6.13)

and
E[(ΔM )2τ ] = E[(ΔM 2)τ ]. (8.6.14)

Proof Let τn ↑ τ be a sequence of (F+·) stopping time announcing τ so that τn < τ
on τ > 0. Note that sinceM 2

t − 〈M ,M 〉t is a martingale, we have for m ≤ n

E[M 2
τ − M 2

τn
| F+

τm
] = E[〈M ,M 〉τ − 〈M ,M 〉τn | F+

τm
].

On the other hand, easy to see that

E[(Mτ − Mτn)
2 | F+

τm
] = E[M 2

τ − M 2
τn

| F+
τm

].

Taking limit as n → ∞ and using that Mτn → Mτ− (we need to use M0 = 0), it
follows that

E[(ΔM )2τ | F+
τm

] = E[(ΔM 2)τ | F+
τm

] = E[Δ〈M ,M 〉τ | F+
τm

].

Now taking limit as m → ∞ and using Theorem 8.15 along with Theorem 1.37, we
conclude

E[(ΔM )2τ | F+
τ−] = E[(ΔM 2)τ | F+

τ−] = E[Δ〈M ,M 〉τ | F+
τ−].

Since 〈M ,M 〉 is predictable, Δ〈M ,M 〉τ is Fτ− ⊆ F+
τ− measurable, we conclude

E[(ΔM )2τ | Fτ−] = E[(ΔM 2)τ | Fτ−] = Δ〈M ,M 〉τ .

Both the required relations (8.6.13) and (8.6.14) follow from this. �
Corollary 8.74 Let M ∈ M2

loc and let τ be a predictable stopping time. Then for
all bounded stopping times σ such that M [σ] ∈ M2

(Δ〈M ,M 〉τ )1{τ≤σ} = E[(ΔM [σ])2τ | Fτ−]. (8.6.15)

Proof Follows from (8.6.13) by observing that 〈M [σ],M [σ]〉t = 〈M ,M 〉t∧σ and as a
consequence,

(Δ〈M [σ],M [σ]〉)τ = (Δ〈M ,M 〉)τ∧σ).

�
Theorem 8.75 Let Y ∈ M2

loc be a locally square integrable martingale with Y0 = 0.
Then there exists a sequence {τk : k ≥ 1} of predictable stopping times such that the

https://doi.org/10.1007/978-981-10-8318-1_1
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local martingale Y admits a decomposition

Y = Z +U (8.6.16)

satisfying the following.

(i) Uk
t = (ΔY )τk 1[τk ,∞)(t) satisfies Uk ∈ M2

d , loc.
(ii) U = ∑∞

k=1U
k ∈ M2

d , loc (here the sum converges in the Emery topology).
(iii) [Uj,Uk ] = 0 and 〈Uj,Uk〉 = 0 for all j, k ≥ 1.
(iv) [U,U ] = ∑∞

k=1[Uk ,Uk ].
(v) 〈U,U 〉 = ∑∞

k=1〈Uk ,Uk〉.
(vi) [Z,U ] = 0 and 〈Z,U 〉 = 0.
(vii) Z is a locally square integrable martingale,

[Y ,Y ] = [Z,Z] +
∞∑

k=1

[Uk ,Uk ] (8.6.17)

and

〈Y ,Y 〉 = 〈Z,Z〉 +
∞∑

k=1

〈Uk ,Uk〉. (8.6.18)

(viii) 〈Z,Z〉 is a continuous process.

Further, 〈Uk ,Uk〉 is a process with a single jump at τk and if σm ↑ ∞ are bounded
stopping times such that Y [σm] ∈ M2

〈Uk ,Uk〉τk 1{τk≤σm} = E[(ΔY [σm])2τk |Fτk−]. (8.6.19)

Proof Let A = 〈Y ,Y 〉. By definition A is an increasing predictable process with
A0 = 0. Using Theorem 8.22, we can get predictable stopping times {τm : m ≥ 1}
with disjoint graphs that enumerate the jumps of A, i.e.

(ΔA) =
∞∑

m=1

(ΔA)τm1[τm]. (8.6.20)

For k ≥ 1, let
Uk

t = (ΔY )τk1[τk ,∞)(t). (8.6.21)

As observed in Lemma 8.70 and Corollary 8.71, Uk is a locally square integrable
martingale and (8.6.19) holds. Since graphs of {τm : m ≥ 1} are disjoint, it follows
that

[Uk ,Uj] = 0, for j, k ≥ 1 (8.6.22)
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and as a consequence

〈Uj,Uk〉 = 0 for j, k ≥ 1. (8.6.23)

We invoke Theorem 8.72. In the notation of that theorem, V j = Uj and Aj = 0
(since Uj is local martingale) and hence Wj = Uj. Thus it follows from Theorem
8.72 that

Sk =
m∑

k=1

Uk em−→ U

where U ∈ M2
d , loc. In view of (8.6.22) and (8.6.23) we have [Sn, Sn] = ∑n

k=1[Uk ,

Uk ] and 〈Sn, Sn〉 = ∑n
k=1〈Uk ,Uk〉. Part (iv) in Theorem 8.72 now implies

[U,U ] =
∞∑

k=1

[Uk ,Uk ] (8.6.24)

〈U,U 〉 =
∞∑

k=1

〈Uk ,Uk〉. (8.6.25)

Since Y − Sk and Sk do not have any common jump and Sk ∈ V,

[Y − Sk , Sk ] = 0.

Now using that Sm em−→ U we get

[Y −U,U ] = 0. (8.6.26)

We define Z = Y −U so that (8.6.16) holds and conclude using (8.6.26) that

[Y ,Y ] = [Z,Z] + [U,U ].

This along with (8.6.24) implies (8.6.17). Finally [Z,U ] = 0 also gives 〈Z,U 〉 = 0
and thus

〈Y ,Y 〉 = 〈Z,Z〉 + 〈U,U 〉

and in turn (8.6.18) follows.
Remains to prove that 〈Z,Z〉 is continuous. By the choice of the stopping times

{τk : k ≥ 1}, it follows that the 〈Y ,Y 〉does not have jumpsother than at {τk : k ≥ 1}.
From Corollary 8.74 we get

(Δ〈Y ,Y 〉τk )1{τk≤σm} = E[(ΔY [σm])2τk |Fτk−]

while from (8.6.19) it follows that

(Δ〈Uk ,Uk〉τk )1{τk≤σm} = E[(ΔY [σm])2τk |Fτk−].
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Since 〈Uj,Uj〉 has a single jump at τj and since the graphs of {τk : k ≥ 1} are
disjoint, it follows that

Δ〈U,U 〉τk = Δ〈Uk ,Uk〉τk .

Thus we conclude that for all k ≥ 1

Δ〈Y ,Y 〉τk = Δ〈U,U 〉τk .

This implies 〈Z,Z〉 is continuous. �

Remark 8.76 Note that in the decomposition (8.6.16), Z and U are such that
〈U,U 〉 is purely discontinuous and 〈Z,Z〉 is continuous.

We will explore further structure of elements inM2
d , loc and conclude with identi-

fying the continuous part [X ,X ](c) of the quadratic variation of a semimartingale X
as the quadratic variation of its continuous local martingale part, to be defined below.

Lemma 8.77 Let Z ∈ M2
loc be such that 〈Z,Z〉 is continuous. Then for any pre-

dictable stopping time σ,
(ΔZ)σ = 0. (8.6.27)

Proof Let τk ↑ ∞be stopping times such thatZk = Z [τk ] ∈ M2 and letY k
t = (Zk

t )
2 −

〈Z,Z〉t∧τk . Then Y k is a martingale and hence using Theorem 8.17 it follows that

E[(ΔY k)σ∧n] = 0.

Since 〈Z,Z〉 is continuous, we conclude

E[(Zk
σ∧n)

2 − (Zk
(σ∧n)−)2] = 0.

Since Zk ∈ M2, Lemma 8.73 now yields

E[(Zk
σ∧n − Zk

(σ∧n)−)2] = 0.

Thus
E[(ΔZ)2σ∧n∧τk

] = 0

so that
P((ΔZ)2σ∧n∧τk

= 0) = 1.

Since this holds for all n and for all k and τk ↑ ∞, this completes the proof. �

Lemma 8.78 Let Z ∈ M2
loc be such that 〈Z,Z〉 is continuous. Let σ be a stopping

time and let D = (ΔZ)σ1[σ,∞). Let A be the compensator of D, namely A is the
unique predictable process in V such that R = D − A is a local martingale. Then A
is a continuous process, R ∈ M2

d, loc and
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[R,R]t = (ΔZ)2σ1[σ,∞)(t) (8.6.28)

Proof SinceA is predictable and the discontinuities ofA can be covered by countably
many predictable stopping times (as seen in Theorem 8.22), it suffices to show that
for any bounded predictable stopping time τ ,

P((ΔA)τ = 0) = 1.

So, fix a predictable stopping time τ . By Lemma 8.77, we have (ΔZ)τ = 0. Since
D = R + A this gives

(ΔA)τ = −(ΔR)τ .

Thus (ΔR)τ is Fτ− measurable (as A is predictable). On the other hand

E[(ΔR)τ | Fτ−] = 0

by Theorem 8.17. Thus we get
(ΔA)τ = 0

for all bounded predictable stopping times. Since A is predictable, this shows that A
is continuous. Continuity of A gives [R,R] = [D,D]. �

Theorem 8.79 Let Z ∈ M2
loc be such that 〈Z,Z〉 is continuous. Then Z admits a

decomposition
Z = M + R (8.6.29)

where M ∈ Mc, loc and R ∈ M2
d , loc. Further, there exist stopping times {σj : j ≥ 1}

such that

[Z,Z]t = [M ,M ]t +
∞∑

j=1

(ΔZ)2σj
1[σj,∞)(t). (8.6.30)

Proof By Theorem 8.22, we can get stopping times {σj : j ≥ 1} that enumerates the
jumps of Z . Let

V j
t = (ΔZ)σj1[σj,∞)(t), (8.6.31)

and let Aj be the compensator of V j and Rj = Zj − Aj. By Lemma 8.78, Aj is a
continuous process, Rj ∈ M2

d , loc and

[Rj,Rj]t = (ΔZ)2σj
1[σj,∞)(t).

Since Aj,Ak are continuous, [Rj,Rk ] = [Zj,Zk ] = 0 for j �= k. Let Wn = ∑n
j=1

Rj. It follows that
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[Wn,Wn] =
n∑

j=1

[Rj,Rj]t =
n∑

j=1

(ΔZ)2σj
1[σj,∞)(t) (8.6.32)

and
[Z − Wn,Wn] = 0. (8.6.33)

Further, as seen in Theorem 8.72, Wn converges in Emery topology to R ∈ M2
d , loc

and
[Wn,Wn] → [R,R]. (8.6.34)

Theorem 4.1.1.1 along with Wn em−→R and (8.6.33) implies

[Z − R,R] = 0.

Defining M = Z − R, we conclude

[Z,Z] = [M ,M ] + [R,R]. (8.6.35)

The relations (8.6.32) and (8.6.34) yield

[R,R] =
∞∑

j=1

(ΔZ)2σj
1[σj,∞)(t). (8.6.36)

In turn, (8.6.35) and (8.6.36) together yield the validity of (8.6.30). Since (Δ[Z,Z])s
= (ΔZ)2s and as the stopping times {σj : j ≥ 1} cover jumps of Z , (8.6.30) implies
that [M ,M ] is continuous and henceM is a continuous local martingale. This com-
pletes the proof. �

Based on general considerations such as projections in a Hilbert space, we had
shown that every square integrable local martingale X can be written as a sum
of M ∈ Mc,loc and N ∈ M2

d ,loc. Now we have a more concrete description of this
decomposition.

Theorem 8.80 Let Y ∈ M2
loc be a locally square integrable martingale with Y0 = 0.

There exist predictable stopping times {τk : k ≥ 1} and a sequence of stopping times
{σj : j ≥ 1} such that Uk and V j defined by

Uk
t = (ΔY )τk 1[τk ,∞)(t)

V j
t = (ΔY )σj 1[σj,∞)(t)

satisfy the following.

(i) Uk ∈ M2
d , loc for all k ≥ 1.

(ii)
∑m

k=1U
k em−→ U ∈ M2

d , loc.

https://doi.org/10.1007/978-981-10-8318-1_4
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(iii) For all j ≥ 1, ∃ continuous process Aj ∈ V such that Rj = V j − Aj ∈ M2
d , loc.

(iv)
∑m

j=1 R
j em−→ R ∈ M2

d , loc.

(v) [Uj,Uk ] = 0 and 〈Uj,Uk〉 = 0 for all j, k ≥ 1, j �= k.
(vi) [Rj,Rk ] = 0 and 〈Rj,Rk〉 = 0 for all j, k ≥ 1, j �= k.
(vii) [Rj,Uk ] = 0 and 〈Rj,Uk〉 = 0 for all j, k ≥ 1.
(viii) [U,U ] = ∑∞

k=1[Uk ,Uk ].
(ix) 〈U,U 〉 = ∑∞

k=1〈Uk ,Uk〉.
(x) [R,R] = ∑∞

j=1[Rj,Rj].
(xi) 〈R,R〉 = ∑∞

j=1〈Rj,Rj〉.
(xii) N = R +U ∈ M2

d , loc and M = Y − N ∈ M2
c, loc.

(xii) [N ,N ]t = ∑
0<s≤t(ΔY )2s .

(xiii) [M ,M ] is continuous.
Thus Y = M + N is a decomposition with M ∈ M2

c, loc and N ∈ M2
d , loc.

Proof The proof is just putting together various parts proven in Theorem 8.75 and
Theorem 8.79. First get {τk : k ≥ 1} as in Theorem 8.75 that cover jumps of 〈Y ,Y 〉
and define Uk ,U as above. Writing Z = Y −U , we conclude 〈Z,Z〉 is continuous.
Now we get σj to cover jumps of Z . Since {τk : k ≥ 1} are predictable, for all k, j,

P(τk = σj, σj < ∞) = 0

andhence (ΔU )σj = 0 and as a consequence, (ΔZ)σj = (ΔY )σj . The rest now follows
from Theorem 8.79. �

Corollary 8.81 Let N ∈ M2
d , loc. Then

[N ,N ] =
∑

0<s≤t

(ΔN )2s .

Remark 8.82 In the decompositions Y =M + N and N = R +U , withM ,N ,R,

U ∈ M2
loc, various parts are characterized by the following :

[M ,M ] and 〈R,R〉 are continuous, [N ,N ] and 〈U,U 〉are purely discontinuous.

We now come to identify the continuous part [X ,X ](c) of quadratic variation [X ,X ]
of a semimartingale X as the quadratic variation [X (c),X (c)] of the continuous local
martingale part X (c) of X .

Theorem 8.83 Let X be a semimartingale. Then X admits a decomposition

X = X (c) + S

such that X (c) is a continuous local martingale with X (c)
0 = 0 and

[U, S] = 0 for all continuous local martingales U.



302 8 Predictable Increasing Processes

Further, such a decomposition is unique and

[X ,X ] = [X (c),X (c)] +
∑

0<s≤t

(ΔX )2s .

As a consequence, [X ,X ](c) = [X (c),X (c)].
Proof First, we invoke Corollary 5.60 and decompose X = Y + A where Y ∈ M2

loc
and A ∈ V. Then we use Theorem 8.80, we get a decomposition Y = M + N with
M ∈ M2

c, loc and N ∈ M2
d , loc. Let X

(c) = M and S = A + N . Since N ∈ M2
d , loc,

[U,N ] = 0 ∀U ∈ M2
c, loc.

Of course [U,A] = 0 by Theorem 4.74.
Uniqueness follows easily : if X = Z + R is any decomposition with Z ∈ Mc,loc

such that [U,R] = 0 for allU ∈ Mc,loc, thenW = X (c) − Z = R − S is a continuous
local martingale. Since [W, S] = 0 and [W,R] = 0 it follows that [W,W ] = 0 and
hence W = 0. �

https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_4


Chapter 9
The Davis Inequality

In this chapter, wewould give the continuous-time version of the Burkholder–Davis–
Gundy inequality −p = 1 case. This is due to Davis. This plays an important role
in answering various questions on the stochastic integral w.r.t. a martingale M—
including condition on f ∈ L(M) under which

∫
f dM is a local martingale. This

naturally leads us to the notion of a sigma-martingale which we discuss.
We will begin with a result on martingales obtained from process with a single

jump.

9.1 Preliminaries

Lemma 9.1 Let τ be a stopping time and let ξ be a Fτ measurable [0,∞)-valued
integrable random variable. Let

Xt = ξ 1[τ ,∞)(t)

Let A be the compensator of X and M = X − A.
Then for all T < ∞ we have

E[√[M, M]T ] ≤ 3E[ξ]. (9.1.1)

Proof Note that if σ is a bounded predictable stopping time, then

(ΔA)σ = E[(ΔX)σ |Fσ−]

© Springer Nature Singapore Pte Ltd. 2018
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since E[(ΔM)σ |Fσ−] = 0 by Theorem8.17 and (ΔA)σ is Fσ− measurable by The-
orem8.4. Thus, for a bounded predictable stopping time σ we have (recall that by
definition, (ΔX)τ = ξ 1{τ<∞})

E[ |(ΔA)σ| ] = E[ |E[(ΔX)σ |Fσ−]| ]
≤ E[E[ |(ΔX)σ| |Fσ−]]
= E[ |(ΔX)σ| ]
= E[ |ξ| 1{τ<∞} 1{σ=τ }].

(9.1.2)

Given a [0,∞]-valued stopping time σ, note that the set

A = {a ∈ R : P(τ = a) > 0 or P(σ = a) > 0}

is countable. Thus, for k ≥ 1,we choose ak ∈ (k, k + 1) ∩ Ac. Let τk = σ ∧ ak . Then
(9.1.2) gives us, for each k ≥ 1

E[ |(ΔA)τk | ] ≤ E[ |ξ| 1{τ<∞} 1{τk=τ }]. (9.1.3)

Since
|(ΔA)σ| ≤ lim inf

k→∞ (ΔA)τk

and
|ξ| 1{τ<∞} 1{τk=τ } ↑ |ξ| 1{τ<∞} 1{σ=τ } a.s.

we can take limit as k → ∞ in (9.1.3) and use Fatou’s lemma on left-hand side and
monotone convergence theorem on right-hand side of (9.1.3) to conclude

E[ |(ΔA)σ| ] ≤ E[ |ξ| 1{τ<∞} 1{σ=τ }]. (9.1.4)

Let σn be predictable stopping times with disjoint graphs such that

{(ΔA) 
= 0} = ∪m≥1[σm]

(existence of such stopping timeswas proven inTheorem8.22). Recall that the graphs
being disjoint means

P(σn = σm, σn < ∞) = 0 ∀n,m, n 
= m. (9.1.5)

Thus √[A, A]T =
√∑∞

m=1(ΔA)2σm

= ∑∞
m=1|(ΔA)σm |.

https://doi.org/10.1007/978-981-10-8318-1_8
https://doi.org/10.1007/978-981-10-8318-1_8
https://doi.org/10.1007/978-981-10-8318-1_8
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Noting that by Lemma4.75, [M, M]T ≤ 2([X, X ]T + [A, A]T ) and by definition of
X , [X, X ]T = ξ2 1{τ≤T } we conclude that

E[√[M, M]T ] ≤ √
2E[√[X, X ]T + √[A, A]T ]

≤ √
2E[ξ] + √

2E[
∞∑

m=1

|(ΔA)σm | ]

≤ √
2E[ξ] + √

2E[
∞∑

m=1

1{τ<∞}ξ 1{σm=τ }]

≤ √
2E[ξ] + √

2E[ξ]

(9.1.6)

where we have used (9.1.4) and (9.1.5). This completes the proof of (9.1.1). �

9.2 Burkholder–Davis–Gundy Inequality—Continuous
Time

We will prove the p = 1 case of the Burkholder–Davis–Gundy inequality: for 1 ≤
p < ∞, there exist universal constants c1p, c

2
p such that for all martingales M and

T < ∞,
c1pE[([M, M]T )

p
2 ] ≤ E[ sup

0≤t≤T
|Mt |p]

≤ c2pE[([M, M]T )
p
2 ].

We have given a proof for p = 1 in the discrete case, and here we will approximate
the continuous-time martingale by its restriction to a discrete skeleton and then pass
to the limit.

One inequality follows easily from the discrete case. For the other we first note
it for the case of square integrable martingale and then later we will prove the same
without this restriction.

Theorem 9.2 Let c1, c2 be the universal constants appearing in Theorem 1.45. Let
M be a martingale with M0 = 0. Then

c1E[([M, M]T )
1
2 ] ≤ E[ sup

0≤t≤T
|Mt | ]. (9.2.1)

Further, if E[M2
T ] < ∞, then

E[ sup
0≤t≤T

|Mt | ] ≤ c2E[([M, M]T )
1
2 ]. (9.2.2)

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_1
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Proof For 0 ≤ k ≤ 2n and n ≥ 1, let tk,n = Tk
2n and let

Qn = [
2n−1∑

k=0

(Mtk+1,n − Mtk,n )
2 ] 1

2

and
Zn = max

1≤k≤2n
|Mtk,n |.

Also let
Q = √[M, M]T .

Applying the discrete version of the inequality proven in Theorem1.45, we have

c1E[Qn] ≤ E[Zn] ≤ c2E[Qn]. (9.2.3)

We have seen in Theorem4.64 that Qn converges to Q in probability, and hence a sub-
sequence Qnk converges almost surely. Then applying Fatou’s lemma we conclude
from (9.2.3) that

c1E[Q] ≤ c1 lim inf
k→∞ E[Qnk ] ≤ lim inf

k→∞ E[Znk ].

Since Zn increases to Z , E[Znk ] converges to E[Z ] and thus (9.2.1) follows. Also
we get from (9.2.3)

E[Z ] ≤ c2 lim inf
k→∞ E[Qnk ].

If E[M2
T ] < ∞, it follows that

E[(Qn)2] = E[M2
T ] < ∞.

Hence {Qn : n ≥ 1} is uniformly integrable and thus Qn converges to Q in L
1(P)

and thus
lim inf
k→∞ E[Qnk ] = E[Q].

The inequality (9.2.2) follows. �

Remark 9.3 If M is a locally square integrable martingale, then it satisfies
(9.2.2). To see this let τn be stopping times increasing to ∞ such that Mn

t =
Mt∧τn is a square integrable martingale. Then we have from the previous
theorem that (9.2.2) holds for Mn. The desired conclusion follows by passing
to the limit and invoking monotone convergence theorem.

Our aim is to show that (9.2.2) holds for all martingales.We first consider a special
case and show that (9.2.2) holds in this case.

https://doi.org/10.1007/978-981-10-8318-1_1
https://doi.org/10.1007/978-981-10-8318-1_4
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Lemma 9.4 Let M be a martingale with M0 = 0 and let σ be a stopping time
bounded by T such that

|Mt | ≤ K ∀t < σ. (9.2.4)

and
Mt = Mt∧σ ∀t. (9.2.5)

Then E[√[M, M]T ] < ∞ and (9.2.2) holds for M.

Proof Let ξ = (ΔM)σ. Since M is a martingale and σ is bounded, it follows that ξ
is integrable. Further,

sup
0≤t≤T

|Mt | ≤ K + |ξ|

and hence sup0≤t≤T |Mt | is integrable. Hence E[√[M, M]T ] < ∞ by Theorem9.2.
Let

A j
t = ξ+ 1{|ξ|≥ j} 1[σ,∞)(t)

B j
t = ξ− 1{|ξ|≥ j} 1[σ,∞)(t)

and letC j , D j be the compensators of A j , B j , respectively, i.e.predictable increasing
processes (see Lemmas8.43 and 9.1) such that

U j
t = A j

t − C j
t

V j
t = B j

t − D j
t

are martingales. Since A j
t = A j

t∧σ , it follows that C
j
t = C j

t∧σ and henceU j
t = U j

t∧σ .
Likewise, V j

t = V j
t∧σ . As seen in Lemma9.1, we have

E[
√

[U j ,U j ]T ] ≤ 3E[ξ+ 1{|ξ|≥ j}] (9.2.6)

E[
√

[V j , V j ]T ] ≤ 3E[ξ− 1{|ξ|≥ j}]. (9.2.7)

Also, using Lemma8.43, it follows that for all t

E[ |U j
t | ] ≤ 2E[ξ+ 1{|ξ|≥ j}] (9.2.8)

E[ |V j
t | ] ≤ 2E[ξ− 1{|ξ|≥ j}] (9.2.9)

Let
M j

t = Mt −U j
t + V j

t .

https://doi.org/10.1007/978-981-10-8318-1_8
https://doi.org/10.1007/978-981-10-8318-1_8
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Then M j
σ = Mσ −U j

σ + V j
σ . Now

M j
t = Mt − (A j

t − B j
t ) + (C j

t − D j
t ).

Now |Mt − (A j
t − B j

t )|≤ K for t < σ (as in that case A j
t = B j

t = 0). Also

Mσ − (A j
σ − B j

σ) = Mσ− + ξ − ξ+ 1{|ξ|≥ j} + ξ− 1{|ξ|≥ j}
= Mσ− + ξ 1{|ξ|< j}.

Further,
Mt − (A j

t − B j
t ) = Mt∧σ − (A j

t∧σ − B j
t∧σ).

Hence
|Mt − (A j

t − B j
t )| ≤ K + j ∀t.

For each j , C j and D j , being predictable r.c.l.l. processes, are locally bounded and
hence it follows that M j is locally bounded. Thus M j is locally square integrable for
each j . Thus by Remark9.3, we have

E[ sup
0≤t≤T

|M j
t | ] ≤ c2E[([M j , M j ]T )

1
2 ]. (9.2.10)

In view of (9.2.8) and (9.2.9),U j
T → 0 and V j

T → 0 in L1(P) and hence M j
T → MT

in L1(P). Thus, by Doob’s maximal inequality, (2.3.6)

P( sup
0≤t≤T

|M j
t − Mt | > ε) → 0.

Bygoing through a subsequence and usingFatou’s lemma,we conclude from (9.2.10)
that

E[ sup
0≤t≤T

|Mt | ] ≤ c2 lim inf
j→∞ E[([M j , M j ]T )

1
2 ]. (9.2.11)

Now M − M j = U j − V j and hence (using (4.6.13))

[M − M j , M − M j ]t ≤ 2([U j ,U j ]t + [V j , V j ]t )

Thus

E[([M − M j , M − M j ]T )
1
2 ] ≤ √

2E[([U j ,U j ]T )
1
2 ] + √

2E[([V j , V j ]T )
1
2 ]

≤ 3
√
2c2E[ |ξ| 1{|ξ|≥ j}]

(9.2.12)
where we have used (9.2.6), (9.2.7) and hence

lim
j→∞E[([M − M j , M − M j ]T )

1
2 ] = 0. (9.2.13)

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_4
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Using (4.6.21), we see that

[M − M j , M − M j ]T = [M, M]T + [M j , M j ]T − 2[M, M j ]T
≥ [M, M]T + [M j , M j ]T − 2

√
[M, M]T [M j , M j ]T

≥ (
√[M, M]T −

√
[M j , M j ]T )2.

(9.2.14)
Hence in view of (9.2.13), we conclude

lim
j→∞E[

√
[M j , M j ]T ] = E[√[M, M]T ].

This and (9.2.11) together imply that (9.2.2) holds for M . �

Weare now in a position to prove p = 1 case ofBurkholder–Davis–Gundy inequality.

Theorem 9.5 There exist universal constants c1, c2 such that for all local martin-
gales M with M0 = 0 and for all T > 0 one has

c1E[([M, M]T )
1
2 ] ≤ E[ sup

0≤t≤T
|Mt | ] ≤ c2E[([M, M]T )

1
2 ]. (9.2.15)

Proof Let {τn : n ≥ 1} be stopping times increasing to ∞ such that Mt∧τn is a
martingale. For n ≥ 1 let

θn = inf{t ≥ 0 : |Mt | ≥ n or |Mt−| ≥ n}

and let σn = τn ∧ θn ∧ n. Let
Nn
t = Mt∧σn .

Then Nn is a martingale and satisfies the conditions of Lemma9.4 with σ = σn ,
K = n, T = n and hence Nn satisfies (9.2.2). We have already noted that (9.2.1)
holds for Nn in Theorem9.2. Thus we have

c1E[([Nn, Nn]T )
1
2 ] ≤ E[ sup

0≤t≤T
|Nn

t ]| ] ≤ c2E[([Nn, Nn]T )
1
2 ] < ∞. (9.2.16)

As n → ∞, ([Nn, Nn]T )
1
2 increases to ([M, M]T )

1
2 and sup0≤t≤T |Nn

t | increases to
sup0≤t≤T |Mt ]| and thus (9.2.15) follows from (9.2.16) using monotone convergence
theorem. The constants c1, c2 are the universal constants as in Theorem9.2 and do
not depend upon n or M . �

Definition 9.6 A martingale M is said to be a H1-martingale if

E[ sup
0≤t<∞

|Mt |] < ∞ (9.2.17)

https://doi.org/10.1007/978-981-10-8318-1_4
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Remark 9.7 In view of the Burkholder–Davis–Gundy inequality, it follows that
M is a H1-martingale if and only if

E[ sup
0≤t<∞

√[M, M]t ] < ∞ (9.2.18)

It also follows that if M is a H1-martingale and if f is a bounded predictable
process, then N = ∫

f dM is also a H1-martingale.

During the proof of Theorem9.5 above we have shown the following:

Corollary 9.8 Let M be a local martingale. Then there exist stopping times σn

increasing to ∞ such that for all n ≥ 1

M [σn ] ∈ H1, (9.2.19)

E[√[M, M]σn ] < ∞ ∀n ≥ 1 (9.2.20)

and
E[ sup

0≤t≤σn

|Mt ]| < ∞ ∀n ≥ 1. (9.2.21)

Corollary 9.9 Let M be a local martingale. For any stopping time σ, one has

c1E[([M, M]σ) 1
2 ] ≤ E[ sup

0≤t≤σ
|Mt | ] ≤ c2E[([M, M]σ) 1

2 ]. (9.2.22)

Corollary 9.10 If M is a local martingale and σ is a stopping time such that

E[([M, M]σ) 1
2 ] < ∞] (9.2.23)

then it follows that E[sup0≤t≤σ|Mt ]| < ∞ and hence Nt = Mt∧σ is a martingale.

Here is a consequence of Theorem9.5 that will be needed later.

Theorem 9.11 Let X be a martingale such that

E[ sup
0≤t≤T

|Xt | ] < ∞ ∀T < ∞ (9.2.24)

or equivalently, such that

E[([X, X ]T )
1
2 ] < ∞ ∀T < ∞.

Then there exists a sequence of bounded martingales Zk such that

lim
k→∞E[ sup

0≤t≤T
|Zk

t − Xt | ] = 0 ∀T < ∞. (9.2.25)
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Proof We will show that for all k ≥ 1, there exists a bounded martingale Zk such
that

E[ sup
0≤t≤k

|Zk
t − Xt | ] ≤ 1

k
. (9.2.26)

The required result follows from this.
Thus we fix an integer k < ∞. Let σn be the stopping times constructed in the

proof of Theorem9.5 with M = X and Nn denote the martingale X stopped at σn .
Since sup0≤t≤T |Nn

t | increases to sup0≤t≤T |Xt |, we can get integer n such thatY = Nn

satisfies

E[ sup
0≤t≤k

|Yt − Xt | ] ≤ 1

3k
. (9.2.27)

As noted in the proof of Theorem9.5, Nn and hence Y satisfy the conditions of
Lemma9.4. Thus for M = Y , we can get locally bounded martingales M j such that
(9.2.13) holds, i.e.

lim
j→∞E[([Y − M j ,Y − M j ]k) 1

2 ] = 0. (9.2.28)

Now using Burkholder–Davis–Gundy inequality Theorem9.5, we can get j such that
W = M j satisfies

E[ sup
0≤t≤k

|Wt − Yt | ] ≤ 1

3k
. (9.2.29)

Finally,W being locally bounded, we can get stopping times τn increasing to∞ such
that Un given by Un

t = Wt∧τn is a bounded martingale and

E[ sup
0≤t≤k

|Un
t − Wt | ] → 0 as n → ∞

and hence can get n such that Z = Un satisfies

E[ sup
0≤t≤k

|Zt − Wt | ] ≤ 1

3k
. (9.2.30)

Now (9.2.28)–(9.2.30) together imply (9.2.26) with Zk = Z . �

Remark 9.12 The martingales Zk obtained in the theorem also satisfy

lim
k→∞E[([Zk − X, Zk − X ]T )

1
2 ] → 0 ∀T < ∞. (9.2.31)

This follows from the Burkholder–Davis–Gundy inequality (Theorem9.5).
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9.3 On Stochastic Integral w.r.t. a Martingale

For a local martingale M , the stochastic integral Y = ∫
f dM for f ∈ L(M) is

defined (since M is also a stochastic integrator), and we have only observed that
when M is locally square integrable martingale and f ∈ L

2
m(M), Y is also a locally

square integrable martingale. We now explore as to when is Y a martingale or a local
martingale. We begin with an observation.

Theorem 9.13 Let M be amartingale such thatE[([M, M]T )
1
2 ] < ∞ ∀T < ∞ and

f be a bounded predictable process. Then N = ∫
f dM is also a martingale and

E[([N , N ]T )
1
2 ] < ∞ ∀T < ∞.

Proof If f is bounded by c, and N = ∫
f dM (interpreted as a stochastic integral

w.r.t. stochastic integrator M), then N satisfies

[N , N ]T =
∫ T

0
| f |2d[M, M]s ≤ c2[M, M]T

and hence E[([N , N ]T )
1
2 ] < ∞ ∀T < ∞. LetA be the class of bounded predictable

process f such that N = ∫
f dM is a martingale. It is easy to see that simple pre-

dictable processes belong to A. If gn ∈ A and gn
bp−→ g, then writing Nn = ∫

gn dM
and N = ∫

gdM , we see that

E[ (

∫ T

0
|gns − gs |2d[M, M]s) 1

2 ] → 0 as n → ∞.

Hence
E[√[Nn − N , Nn − N ]T ] → 0 as n,→ ∞

and as a consequence, (using (9.2.15))

E[ sup
0≤t≤T

|Nn
s − Ns | ] → 0 as n → ∞.

Thus N is a martingale. Thus A is closed under bp-convergence, and hence by
Theorem2.66, it follows that A is the class of all bounded predictable processes
completing the proof. �

By localizing, we immediately conclude that

Corollary 9.14 Let M be a local martingale and f be a locally bounded predictable
process. Then Y = ∫

f dM is also a local martingale.

As noted earlier, for an r.c.l.l. adapted process X , X− defined by X−
s = Xs− is a

locally bounded predictable process. Hence we conclude from the corollary above

https://doi.org/10.1007/978-981-10-8318-1_2
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Corollary 9.15 Let M be a local martingale and X be an r.c.l.l. adapted process.
Then Y = ∫

X−dM is also a local martingale.

Earlier we have defined L2
m(M) for a locally square integrable martingale M . We

now define L1
m(M) for a local martingale M .

Definition 9.16 For a local martingale M , L1
m(M) is the class of predictable

processes f such that there exist stopping times σn increasing to ∞ with

E[(
∫ σn

0
f 2s d[M, M]s) 1

2 ] < ∞. (9.3.1)

Theorem 9.17 Let M be a local martingale. Then L
1
m(M) ⊆ L(M) and for f ∈

L
1
m(M), N = ∫

f dM is a local martingale.

Proof Let f ∈ L
1
m(M) be such that (9.3.1) holds. We first show that f ∈ L(M). Let

gk be bounded predictable processes converging pointwise to g such that |gk | ≤ | f |.
For k ≥ 1, let Y k = ∫

gk dM . Then we have seen that Y k is a local martingale.
From properties of stochastic integrators, we have

[Y k,Y k]t =
∫ t

0
(gk)2d[M, M]

and hence

E[ sup
0≤t≤σn

|Y k
s | ] ≤ c2E[(

∫ σn

0
( fs)

2d[M, M]s) 1
2 ] < ∞ (9.3.2)

where σn is as in (9.3.1). It thus follows that Uk,n
t = Y k

t∧σn
is a martingale for each

k, n. Moreover, it follows that for k ≥ j ≥ 1

[Y k − Y j ,Y k − Y j ]t =
∫ t

0
(gk − g j )2d[M, M].

Hence, using (9.2.22), we get

E[ sup
0≤t≤σn

|Y k − Y j | ] ≤ c2E[(
∫ σn

0
(gks − g j

s )
2d[M, M]s) 1

2 ].

The right-hand side above goes to 0 as k, j tend to ∞ in view of the assumption
(9.3.1) and choice of gk (using Lebesgue’s dominated convergence theorem). Thus
we have for each n ≥ 1

lim
m→∞( sup

j,k≥m
E[ sup

0≤t≤σn

|Y k
t − Y j

t | ] ) = 0. (9.3.3)

Thus {Y k} are Cauchy in ducp and hence f ∈ L(M). Let Y be the limit of Y k . By
dominated convergence theorem, we get Y = ∫

gdM . We also get from (9.3.3) that
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lim
k→∞E[ sup

0≤t≤σn

|Y k
t − Yt | ] = 0. (9.3.4)

Noting thatUk,n
t = Y k

t∧σn
is amartingale for each k, n, (9.3.4) implies thatUn

t = Yt∧σn

is a martingale. Thus Y is a local martingale.
To show that N is a local martingale, let us take gk = f 1{| f |≤k}. The process

Y for this choice of {gk} equals N which has been shown to be a local martingale
completing the proof. �

Corollary 9.18 Let M be a local martingale and f ∈ L(M) be such that

E[ | fσ(ΔM)σ| ] < ∞ ∀ bounded stopping times σ. (9.3.5)

Then f ∈ L
1
m(M) and Z = ∫

f dM is a local martingale.

Proof For n ≥ 1, let

σn = inf{s : (s +
∫

[0,s)
f 2u d[M, M]u) ≥ n}.

Then f ∈ L(M) implies that σn ↑ ∞. Of course σn ≤ n and for t < σn ,
∫ t
0 f 2s d

[M, M]s ≤ n. Thus,

√∫ σn

0
f 2s d[M, M]s ≤

√
n + f 2σn

(ΔM)2σn
≤ √

n + | fσn (ΔM)σn |

and thus in view of the assumption (9.3.5) on M ,

E[
√∫ σn

0
f 2s d[M, M]s] < ∞

and thus f ∈ L
1
m(M). The second part follows from Theorem9.17. �

Corollary 9.19 Let M be a local martingale and f ∈ L(M) be such that

Zt =
∫ t

0
fs dMs

is bounded. Then Z is a martingale.

Proof Since Z is bounded, f satisfies (9.3.5). Thus by Corollary9.18, Z is a local
martingale. Since it is bounded, it follows that Z is a martingale. �

Corollary 9.20 Let M be a continuous local martingale. Then

L(M) = L
1
m(M) (9.3.6)
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Proof SinceM is continuous, (9.3.5) is trivially satisfied and hence the result follows
from Theorem9.17 and Corollary9.18. �

The Burkholder–Davis–Gundy inequality helps us to conclude the converse to The-
orem9.17:

Theorem 9.21 Let M be a local martingale and f ∈ L(M) and let N = ∫
f dM

be a local martingale. Then f ∈ L
1
m(M).

Proof Since N is a local martingale and [N , N ]t = ∫ t
0 f 2s d[M, M]s , Corollary9.8

implies f ∈ L
1
m(M). �

9.4 Sigma-Martingales

We have seen that if M is a local martingale and f ∈ L
1
m(M), then X = ∫

f dM is a
local martingale. On the other hand if f ∈ L(M) but does not belong to L1

m(M) then
X is defined and is a semimartingale but it is not a local martingale. Nonetheless, it
shares some properties of a local martingale and is called a sigma-martingale.

Definition 9.22 A semimartingale X is said to be a sigma-martingale if there
exists a local martingale N and f ∈ L(N ) such that X = ∫

f dN .

If X is a sigma-martingale with f, N as in the definition above and g ∈ L(X), then
Y = ∫

gdX = ∫
g f dN and hence Y is also a sigma-martingale. Here is an elemen-

tary observation.

Lemma 9.23 Let X be a semimartingale. Then X is a sigma-martingale if and
only if there exists a (0,∞)-valued predictable process φ such that φ ∈ L(X) and
M = ∫

φdX is aH1-martingale.

Proof If such a M , φ exist, then ψ = 1
φ

∈ L(M) and X = ∫
ψdM .

For the converse part, suppose N is a local martingale, X = ∫
f dN with f ∈

L(N ). Then taking g = (1 + | f |)−1, we observe that
∫

gdX = ∫
f gdN . Since N

is a local martingale and f g is bounded by 1, invoking Corollary9.14 we conclude
that Y = ∫

f gdN is itself a local martingale. As seen in Corollary9.8, there exist
stopping times σn increasing to ∞ such that

an = E[√[Y,Y ]σn ] < ∞.

Let h be the predictable process defined by

hs = 1

1 + |Y0| 1{0}(s) +
∞∑

n=1

2−n 1

1 + an
1(σn−1,σn ](s).
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Then h is (0, 1) valued and thus M = ∫
hdY is a local martingale. Since

[M, M]σn =
∫ σn

0
h2s d[Y,Y ]s

=
n∑

j=1

∫ σ j

σ j−1

h2s d[Y,Y ]s

≤
n∑

j=1

4− j 1

(1 + a j )2
[Y,Y ]σ j

Thus
√[M, M]σn ≤

n∑

j=1

2− j 1

(1 + a j )

√
[Y,Y ]σ j .

From the choice of a j , it now follows that

E[√[M, M]σn ] ≤ 1 ∀n ≥ 1

and as a consequence
E[sup

t<∞

√[M, M]t ] ≤ 1.

Hence, M is a martingale and M ∈ H1. Let φ = hg. Then φ is (0,∞) valued and∫
φdX = M . �

From the definition, it is not obvious that sum of sigma-martingales is also a
sigma-martingale, but this is so as the next result shows.

Theorem 9.24 Let X1, X2 be sigma-martingales and a1, a2 be real numbers. Then
Y = a1X1 + a2X2 is also a sigma-martingale.

Proof Let φ1,φ2 be (0,∞)-valued predictable processes such that

Mi
t =

∫ t

0
φi
s d X

i
s, i = 1, 2

are martingales. Then, writing ξ = min(φ1,φ2) and ηi
s = ξs

φi
s
, it follows that

Ni
t =

∫ t

0
ηi
s dM

i
s =

∫ t

0
ξs d X

i
s

are martingales since ηi is bounded by one. Clearly, Y = a1X1 + a2X2 is a semi-
martingale and ξ ∈ L(Xi ) for i = 1, 2 implies ξ ∈ L(Y ) and
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∫ t

0
ξs dYs = a1N

1
t + a2N

2
t

is a martingale. Since ξ is (0,∞)-valued predictable process, it follows that Y is a
sigma-martingale. �

The following result gives conditions under which a sigma-martingale is a local
martingale.

Lemma 9.25 Let X be a sigma-martingale with X0 = 0. Suppose there exists a
sequence of stopping times τn ↑ ∞ such that

E[ √[X, X ]τn ] < ∞ ∀n. (9.4.1)

Then X is a local martingale.

Proof Let N be a local martingale and f ∈ L(N ) be such that X = ∫
f dN . Note

that

[X, X ]t =
∫ t

0
( fs)

2d[N , N ]s . (9.4.2)

Let

Xk
t =

∫ t

0
fs 1{| fs |≤k}dNs . (9.4.3)

Noting that fs 1{| fs |≤k} is bounded, it follows that Xk is a local martingale. Since

E[
√

[Xk, Xk]t∧τn ] ≤ E[
√∫ τn

0 f 2s 1{| fs |≤k}d[N , N ]s]
≤ E[√[X, X ]τn ]
< ∞

weconclude that for k, n fixed, Zk,n
t = Xk

t∧τn
is amartingale. Let Zn

t = Xt∧τn . Clearly,
for t > 0

E[
√

[X − Xk, X − Xk]t∧τn ] ≤ E[
√∫ τn

0 f 2s 1{| fs |>k}d[N , N ]s]. (9.4.4)

The assumption (9.4.1) and the estimate (9.4.4) imply that for n fixed,

lim
k→∞E[

√
[X − Xk, X − Xk]t∧τn ] = 0. (9.4.5)

The Burkholder–Davis–Gundy inequality Corollary9.9 now gives

lim
k→∞E[sup

s≤t
|Zk,n

t − Zn
t |] = 0. (9.4.6)
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Since Zk,n is a martingale for each k, n, (9.4.6) implies Zn is a martingale and thus
X is a local martingale. �
Corollary 9.26 Let X be a sigma-martingale. Suppose that X0 is integrable and
that there exists a sequence of stopping times τn ↑ ∞ such that (9.4.1) holds then X
is a local martingale.

Proof Let Yt = Xt − X0. Observe that [Y,Y ]t = [X, X ]t for all t . Now the previous
result gives that Y is a local martingale and hence X is a local martingale. �
Corollary 9.27 A bounded sigma-martingale X is a martingale.

Proof Since X is bounded, say by K , it follows that jumps of X are bounded by
2K . Thus jumps of the increasing process [X, X ] are bounded by 4K 2 and thus X
satisfies (9.4.1) for

τn = inf{t ≥ 0 : [X, X ]t− ≥ n}.

Hence X is a local martingale and being bounded, it is a martingale. �
Exercise 9.28 Let X be a sigma-martingale. Suppose |Xt | ≤ ξ where ξ is an
integrable random variable. Show that X is a martingale.

Here is a variant of the example given by Emery [17] of a sigma-martingale that is
not a local martingale.

Example 9.29 Let τ , ξ be independent random variables with τ having expo-
nential distribution and P(ξ = 1) = P(ξ = −1) = 0.5. Without loss of general-
ity, we assume that 0 < τ (ω) < ∞ for all ω. Let

Mt = ξ 1[τ ,∞)(t)

andFt = σ(Ms : s ≤ t). Easy to see thatM is amartingale. Let ft = 1
t 1(0,∞)(t)

and Xt = ∫ t
0 f dM . Then X is a sigma-martingale and

[X, X ]t = 1

τ 2
1[τ ,∞)(t).

For any stopping time σ, it can be checked that σ is a constant on σ < τ
and thus if σ is not identically equal to 0, σ ≥ (τ ∧ a) for some a > 0. Thus,√[X, X ]σ ≥ 1

τ
1{τ<a}. It follows that for any stopping time σ, not identically

zero, E[√[X, X ]σ] = ∞ and so X is not a local martingale.

9.5 Auxiliary Results

We have seen that if M, N are locally square integrable martingales, then MN −
[M, N ] is a local martingale. We now show that the same is true for all local martin-
gales M, N .
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Theorem 9.30 Let M, N be local martingales with M0 = 0. Let Xt = Mt Nt −
[M, N ]t . Then X is a local martingale.

Proof The integration by parts formula (4.6.7) gives

Xt =
∫ t

0
Ms−dNs +

∫ t

0
Ns−dMs

and by Corollary9.15 it follows that X is a local martingale. �

Lemma 9.31 Let N be martingale such that E[sup0≤t≤T |Nt | ] < ∞ for all T < ∞.
Let A ∈ V be a predictable process with A0 = 0. Suppose for each T < ∞, there
is KT < ∞ such that |A|T ≤ KT . Here |A|T is the variation of A on [0, T ]. Then
Yt = At Nt − ∫ t

0 Ns−d As is a martingale.

Proof Invoking Theorem9.11, obtain bounded martingales Nk such that

lim
k→∞E[ sup

0≤t≤T
|Nk

t − Nt | ] = 0 ∀T < ∞.

Let Y k
t = At Nk

t − ∫ t
0 Nk

s−d As . Note that

E[ sup
0≤t≤T

|Y k
t | ] ≤ 2KTCk (9.5.1)

where Ck is a bound for Nk . Also,

E[ sup
0≤t≤T

|Y k
t − Yt | ] ≤ 2KTE[ sup

0≤t≤T
|Nk

t − Nt | ] (9.5.2)

By integration by parts formula (4.6.7),

Y k
t =

∫ t

0
As−dNk

s + [A, Nk].

The integral appearing above is a local martingale by Corollary9.15, and [A, Nk] is
a martingale by Theorem8.34. Thus Y k is a local martingale. Lemma5.5 along with
the observation (9.5.1) implies that Y k is a martingale for each k and then (9.5.2)
along with Theorem2.23 shows that Y is a martingale. �

Theorem 9.32 Let M be local martingale such that M0 = 0 and let A ∈ V be a pre-
dictable process with A0 = 0. Then Yt = AtMt − ∫ t

0 Ms−d As is a local martingale.

Proof Since A ∈ V is predictable, so is its total variation process B = |A| (seeCorol-
lary8.24). Thus B is locally bounded, and we can get stopping times τ n ↑ ∞ such
that Bτ n

is bounded. Invoking Corollary9.8, get stopping times σn ↑ ∞ such that
Mn = M [σn ] are martingales satisfying, for each n ≥ 1

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_8
https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_8
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E[ sup
0≤t≤T

|Mn
t ]| < ∞ ∀T < ∞.

Without loss of generality (by replacing σn by min(σn, τ n) if necessary), we can
assume that σn ≤ τ n and so Bn = Bσn

is bounded for each n. Let An = Aσn
. It

follows that Y n = Y [σn ] satisfies

Y n
t = An

t M
n
t −

∫ t

0
Mn

s−d A
n
s .

By Lemma9.31, Y n is a martingale for each n and thus Y is a local martingale. �

As a consequence of Theorem9.17, we have the following observation.

Lemma 9.33 Let M, N be local martingales such that M0N0 is integrable. Then the
process Z defined by Zt = Mt Nt is locally integrable if and only [M, N ] is locally
integrable.

Proof The integration by parts formula gives

Mt Nt = M0N0 +
∫ t

0
Ms−dNs +

∫ t

0
Ns−dMs + [M, N ]s .

By corollary9.15, the stochastic integral terms in the right-hand side above are local
martingales and thus the result follows. �

Remark 9.34 If M, N are local martingales such that MN is locally integrable,
then so is [M, N ] and thus 〈M, N 〉 exists and is the unique predictable process
in V0 such that

Mt Nt − 〈M, N 〉t
is a local martingale.



Chapter 10
Integral Representation of Martingales

In this chapter we will consider the question as to when do all martingales adapted to
a filtration (F�) admit a representation as a stochastic integral with respect to a given
local martingale M . This result was proved by Ito’s when the underlying filtration
is the filtration generated by a multidimensional Wiener process. Ito’s had proven
the integral representation property for square integrable martingales and this was
extended to all martingales by Clark.

Jacod and Yor investigated this aspect and proved that the integral representation
property holds if and only if there does not exist any other probability measure
Q equivalent to the underlying probability measure with the property that M is a
Q—local martingale. Such a measureQ is called an Equivalent Martingale Measure
(EMM). In other words, martingale representation property holds if and only if EMM
is unique. Jacod–Yor proved this result in one dimension and in a special case for
multidimensional local martingale, which was subsequently extended.

This result is important from the point of view of mathematical finance. We will
give brief introduction to the same and prove the second fundamental theorem of
asset pricing.

10.1 Preliminaries

Throughout this chapter, we will be working with one fixed filtration (F�) such that
F0 contains all null sets. We do not assume that the filtration is right continuous. All
notions—martingale, local martingale, stopping time, adapted process, predictable
process—are with reference to this fixed filtration. Since in this chapter, we need to
deal with martingales which may not have r.c.l.l. paths a priori, we will explicitly
assume r.c.l.l. paths when it is needed.

© Springer Nature Singapore Pte Ltd. 2018
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For r.c.l.l.semimartingales X1, X2, . . . , Xd , we introduce the class of semimartin-
gales that admit integral representation w.r.t. X1, X2, . . . , Xd :

I(X1,X2, . . . , Xd)

= {Y : ∃g j ∈ L(X j ), 1 ≤ j ≤ d with Yt = Y0 +
d∑

j=1

∫ t

0
g j d X j ∀t}

Let us note that if Y ∈ I(X1, X2, . . . , Xd) then for any stopping time τ , Ỹ defined
by Ỹt = Yt∧τ also belongs to I(X1, X2, . . . , Xd). Also, if Y ∈ I(X1, X2, . . . , Xd)

then we can always choose g j ∈ L(X j ) with g
j
0 = 0 for 1 ≤ j ≤ d such that

Yt = Y0 +
d∑

j=1

∫ t

0
g j d X j ∀t < ∞.

If Y ∈ I(X1, X2, . . . , Xd), the semimartingale Y is said to have an integral represen-
tation w.r.t. semimartingales X1, X2, . . . , Xd . Here is an elementary observation on
the class I(X1, X2, . . . , Xd).

Lemma 10.1 Let Y be a semimartingale such that for a sequence of stopping times
τn ↑ ∞, Y n defined by Y n

t = Yt∧τn admits an integral representation w.r.t. r.c.l.l.
semimartingales X1, X2, . . . , Xd for each n ≥ 1. Then Y also admits an integral
representation w.r.t. X1, X2, . . . , Xd.

Proof Let f n, j ∈ L(X j ), 1 ≤ j ≤ d, n ≥ 1 be such that for all n,

Y n
t = Y n

0 +
d∑

j=1

∫ t

0
f n, j d X j .

Define f j by

f j =
∞∑

n=1

l(τn−1,τn ] f
n, j .

Then it is easy to check (using Theorem 4.43) that f j ∈ L(X j ) and

Yt = Y0 +
d∑

j=1

∫ t

0
f j d X j .

This completes the proof. �
Exercise 10.2 Let Y be an r.c.l.l.process such that it is a localmartingale under
probability measure Q1 as well as Q2. Show that Y is a local martingale under
Q = 1

2 (Q1 + Q2).

Given r.c.l.l. adapted processes X1, X2, . . . , Xd , let E(X1, X2, . . . , Xd) denote
the class of probability measures Q on (Ω,F) such that X1, X2, . . . , Xd are
Q-local martingales.

https://doi.org/10.1007/978-981-10-8318-1_4
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For a probability measure P on (Ω,F), let EP(X1, X2, . . . , Xd) denote the
class of measures Q ∈ E(X1, X2, . . . , Xd) such that Q is equivalent to P and let
ẼP(X1, X2, . . . , Xd) denote the class of measureQ ∈ E(X1, X2, . . . , Xd) such that
Q is absolutely continuous w.r.t. P. It is easy to see that for any X1, X2, . . . , Xd , the
setsE(X1, X2, . . . , Xd), EP(X1, X2, . . . , Xd) and ẼP(X1, X2, . . . , Xd) are convex.

Elements of EP(X1, X2, . . . , Xd) are referred to as EMM- equivalent martingale
measures, though they should be called equivalent local martingale measures.

Likewise let Eσ(X1, X2, . . . , Xd) be the class of probability measures Q on
(Ω,F) such that X1, X2, . . . , Xd are sigma-martingales on (Ω,F ,Q) and E

σ
P

(X1, X2, . . . , Xd) denote the class of measure Q ∈ E
σ(X1, X2, . . . , Xd) such that

Q is equivalent to P. Eσ
P(X1, X2, . . . , Xd) is the class of equivalent σ-martingale

measures.
Jacod and Yor discovered a connection between extreme points P of E(X) and

the martingale representation property w.r.t. X . This was later generalized to multidi-
mensions under suitable conditions. We will first deal with the one-dimensional case
and then take up multidimensional case and prove integral representation theorem
for multidimensional σ-martingales. This necessitates definition of vector stochas-
tic integral. We will also discuss relevance of integral representation theorem to
mathematical finance.

10.2 One-Dimensional Case

In this section, wewill fix a local martingaleM and explore as to when I(M) contains
all martingales. The next lemma gives an important property of I(M).

Lemma 10.3 Let M be an r.c.l.l. local martingale and let Nn ∈ I(M) be martin-
gales such that E[ |Nn

t − Nt | ] → 0 for all t . Then N ∈ I(M).

Proof The assumptions imply that N is a martingale (see Theorem 2.23). In view of
Theorem 5.39 and the assumptions on Nn, N , it follows that

Nn converges to N in Emery topology.

Thus, invoking Theorem 4.111, we conclude that

[Nn − N , Nn − N ]T → 0 in probability as n → ∞. (10.2.1)

Hence, using [Nn − Nm, Nn − Nm]T ≤ 2([Nn − N , Nn − N ]T +[Nm − N , Nm −
N ]T ) (see (4.6.13)), we have

[Nn − Nm, Nn − Nm]T → 0 in probability as n,m → ∞. (10.2.2)

Since Nn ∈ I(M), there exists predictable process gn ∈ L(M) such that

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_4
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Nn
t = Nn

0 +
∫ t

0
gn dM. (10.2.3)

As a consequence, for all T < ∞,

[Nn − Nm, Nn − Nm]T =
∫ T

0
(gns − gms )2d[M, M]s .

→ 0 in probability as n,m → ∞.

By taking a subsequence, if necessary and relabelling, we assume that for 1 ≤ k ≤ n,

P((

∫ k

0
(gns − gks )

2d[M, M]s) 1
2 ≥ 1

2k
) ≤ 1

2k
. (10.2.4)

Then by Borel–Cantelli Lemma, we conclude

∞∑

k=1

(

∫ T

0
(gk+1

s − gks )
2d[M, M]s) 1

2 < ∞ a.s. (10.2.5)

for all T < ∞. Since

[
∫ T

0
(

∞∑

k=1

|gk+1
s − gks |)2d[M, M]s] 1

2 ≤
∞∑

k=1

(

∫ T

0
(gk+1

s − gks )
2d[M, M]s) 1

2

we conclude that for all T < ∞

[
∫ T

0
(

∞∑

k=1

|gk+1
s − gks |)2d[M, M]s] < ∞ a.s. (10.2.6)

and also

lim
k→∞

∫ T

0
sup
m,n≥k

|gms − gns |2d[M, M]s = 0 a.s. (10.2.7)

Let Ω̃ = [0,∞) × Ω and F̃ be the product of F and the Borel σ-field on [0,∞).
Let Γ be the (σ-finite) measure on (Ω̃, F̃) defined by, for E ∈ F̃

Γ (E) =
∫

[
∫ ∞

0
lE (s,ω)d[M, M]s(ω)]dP(ω). (10.2.8)

Now (10.2.6) implies that

∞∑

k=1

|gk+1
s (ω) − gks (ω)| < ∞ a.e. Γ.
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Thus gk converges a.e. Γ . Let

gs(ω) = lim sup
k→∞

gks (ω).

Using (10.2.7), one can conclude that for all t < ∞, for all ε > 0

lim
k→∞P((

∫ t

0
(gks − gs)

2d[M, M]s) 1
2 ≥ ε) = 0. (10.2.9)

and ∫ t

0
(gks )

2d[M, M]s →
∫ t

0
(gs)

2d[M, M]s in probability.

On the other hand convergence of Nn to N in Emery topology and Theorem 4.111
imply for all t < ∞

∫ t

0
(gks )

2d[M, M]s = [Nk, Nk]t → [N , N ]t in probability.

Thus

[N , N ]t =
∫ t

0
(gs)

2d[M, M]s . (10.2.10)

Now N being a martingale, as seen in Corollary 9.8, there exist stopping times σn

increasing to ∞ such that

E[√[N , N ]σn ] < ∞ ∀n ≥ 1 (10.2.11)

and hence (10.2.10) implies that g ∈ L
1
m(M). Let Yt = N0 + ∫ t

0 gdM . By definition,
Y is a local martingale with Y0 = N0. Now

[Nn − Y, Nn − Y ]T =
∫ T

0
(gns − gs)

2d[M, M]s

and thus as seen in (10.2.9),

[Nn − Y, Nn − Y ]T → 0 in probability (10.2.12)

On the other hand Nn converges to N in Emery topology and thus invoking Theorem
4.111 we conclude that

[Nn − Y, Nn − Y ]T → [N − Y, N − Y ]T in probability. (10.2.13)

Thus [N − Y, N − Y ]T = 0 and recalling that N ,Y are local martingales such that
N0 = Y0, it follows (once again invoking Burkholder-Davis-Gundy inequality for

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_8
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p = 1) that N = Y . Hence Nt = N0 + ∫ t
0 f dM with f ∈ L(M). This proves N ∈

I(M). �

Let us recall that M denotes the class of r.c.l.l. martingales.

Theorem 10.4 For an r.c.l.l. local martingale M and T < ∞ let

KT (M) = {NT : N ∈ I(M) ∩ M}. (10.2.14)

Then KT (M) is a closed linear subspace of L1(Ω,FT ,P).

Proof Let Nn ∈ I(M) ∩ M be such that Nn
T converges inL1(Ω,FT ,P) to ξ.Without

loss of generality, we assume that Nn
t = Nn

t∧T for all n ≥ 1 and for all t < ∞. Now
for each n, Nn is a uniformly integrable martingale. It follows that for all t

E[|Nn
t − Nm

t | ] → 0 as n,m → ∞. (10.2.15)

Thus, by Theorem 5.39, it follows that {Nn} is Cauchy in the dem metric for the
Emery topology. Since this metric is complete, the sequence Nn converges in the
Emery topology to say N . Then Nn also converges in ducp to N and in view of
(10.2.15), we conclude NT = ξ and for each t

E[|Nn
t − Nt | ] → 0 as n → ∞. (10.2.16)

Thus Lemma 10.3 implies N ∈ I(M) and thus NT = ξ ∈ KT (M). �

Exercise 10.5 Show that ξ ∈ KT (M) if and only if ξ ∈ L
1(Ω,FT ,P) and there

exist η ∈ L
1(Ω,F0,P) and g ∈ L

1
m(M) such that ξ = η + ∫ T

0 gdM .

We now come to the main result of this section, due to Jacod–Yor [29]. This charac-
terizes martingales M with property that all martingales N admit an integral repre-
sentation w.r.t. M .

Definition 10.6 A process Y is said to admit an integral representation w.r.t.
an r.c.l.l. semimartingale X if

∃ f ∈ L(X) such that Yt = Y0 +
∫ t

0
fs d Xs a.s. ∀t. (10.2.17)

Note that if Y is a process that admits a representation w.r.t. an r.c.l.l.semimartingale
X , then Y has r.c.l.l. modification since the stochastic integral is by definition an
r.c.l.l. process.

Here is an important observation on integral representation.

Lemma 10.7 Let M be an r.c.l.l. local martingale. Then all martingales N admit a
representation w.r.t. M if and only if

KT (M) = L
1(Ω,FT ,P) ∀ T < ∞. (10.2.18)

https://doi.org/10.1007/978-981-10-8318-1_5


10.2 One-Dimensional Case 327

Proof Suppose all martingales N admit a representation w.r.t. M . Given ξ ∈ L
1(Ω,

FT ,P), consider the martingale Nt = E[ξ |Ft ]. Note that N may not be r.c.l.l. to
begin with. In view of our assumption, get f ∈ L(M) such that

Nt = N0 +
∫ t

0
f dM a.s. ∀t.

This implies that Vt = N0 + ∫ t
0 f dM is an r.c.l.l.martingale and is a version of N .

Thus by definition of KT (M), it follows that NT = ξ ∈ KT (M).
Conversely, if (10.2.18) holds, then given a martingale N , fix n and let ξ = Nn .

Then ξ ∈ Kn(M) and so we get f n ∈ L(X) such that ξ = Nn = N0 + ∫ n
0 f n dM and

further that Zn = ∫
f n dM is a martingale. It follows that Zn

t = Nt − N0 a.s. for
t ≤ n. Let

fs =
∑

n

f ns l(n−1,n].

Then one can check that f ∈ L(M), Z = ∫
f dM is a martingale and Zt = Nt − N0

a.s. for all t . Hence N admits a representation w.r.t. M . �

Essentially the same proof also gives us the following.

Corollary 10.8 Let M be an r.c.l.l. local martingale. Then all bounded martingales
N admit a representation w.r.t. M if and only if

L
∞(Ω,FT ,P) ⊆ KT (M) ∀ T < ∞. (10.2.19)

Theorem 10.9 Let M be an r.c.l.l. local martingale on (Ω,F ,P) with a filtration
(F�). Suppose thatF0 is trivial andF = σ(∪tFt ). Then the following are equivalent.

(i) Every bounded martingale N admits an integral representation w.r.t. M.
(ii) Every martingale N admits an integral representation w.r.t. M.
(iii) P is an extreme point of the convex set E(M).
(iv) ẼP(M) = {P}.
(v) EP(M) = {P}.
Proof We have seen that (i) is same as L∞(Ω,FT ,P) ⊆ KT (M) ∀T ∈ (0,∞) and
(i i) is same as L1(Ω,FT ,P) = KT (M) ∀T ∈ (0,∞). As seen in Theorem 10.4,
KT (M) is a closed subspace of L1(Ω,FT ,P). Since L

∞(Ω,FT ,P) is dense in
L
1(Ω,FT ,P), it follows that (i) and (i i) are equivalent.
On the other hand, suppose (iv) holds and suppose Q1,Q2 ∈ E(M) and P =

αQ1 + (1 − α)Q2. It follows that Q1,Q2 are absolutely continuous w.r.t. P and
hence Q1,Q2 ∈ ẼP(M). In view of (iv), Q1 = Q2 = P and thus P is an extreme
point of E(M) and so (i i i) is true. Thus (iv) ⇒ (i i i).

Since {P} ⊆ EP(M) ⊆ ẼP(M), it follows that (iv) implies (v).
On the other hand, suppose (v) is true and Q ∈ ẼP(M). Then Q1 = 1

2 (Q + P) ∈
EP(M). Then (v) implies Q1 = P and hence Q = P. Thus (v) ⇒ (iv) holds.
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Till now we have proved (i) ⇐⇒ (i i) and (i i i) ⇐ (iv) ⇐⇒ (v). To complete
the proof, we will show (i) ⇒ (v) and (i i i) ⇒ (i i).

First we come to the proof of (i i i) ⇒ (i i). Suppose P is an extreme point of
E(M) but (i i) is not true. We will show that this leads to a contradiction. Since (i i)
is not true, it follows thatKT (M) is a closed proper subspace of L1(Ω,F ,P). Since
KT (M) is not equal toL1(Ω,FT ,P), by theHahn–Banach Theorem (see [55]), there
exists ξ ∈ L

∞(Ω,FT ,P), P(ξ �= 0) > 0 such that

∫
θξdP = 0 ∀θ ∈ KT (M).

Then for c ∈ R, we have

∫
θ(1 + cξ)dP =

∫
θdP ∀θ ∈ KT (M). (10.2.20)

Since ξ is bounded, we can choose a c > 0 such that

P(c|ξ| < 0.5) = 1.

Now, let Q be the measure with density η = (1 + cξ). Then Q is a probability mea-
sure. Thus (10.2.20) yields

∫
θdQ =

∫
θdP ∀θ ∈ KT (M). (10.2.21)

Let σn ↑ ∞ be bounded stopping times such that Mn
t = Mt∧σn is a P-martingale.

For any bounded stopping time τ , Mn
τ∧T = Mτ∧σn∧T ∈ KT and hence (remembering

that F0 is trivial)
EQ[Mn

τ∧T ] = EP[Mn
τ∧T ] = M0 (10.2.22)

On the other hand,
EQ[Mn

τ∨T ] = EP[ηMn
τ∨T ]

= EP[EP[ηMn
τ∨T | FT ]]

= EP[ηEP[Mn
τ∨T | FT ]]

= EP[ηMn
T ]

= EQ[Mn
T ]

= EP[Mn
T ]

= M0.

(10.2.23)

where we have used the facts that η is FT measurable, Mn is a P-martingale and
that (10.2.22) holds for τ = T . Now noting that Mn

τ = Mn
τ∧T + Mn

τ∨T − Mn
T , we

conclude
EQ[Mn

τ ] = EQ[Mn
τ∧T ] + EQ[Mn

τ∨T ] − EQ[Mn
T ] = M0.
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Thus Mn
t = Mt∧σn is a Q-martingale for every n so that M is a Q-local martingale

and thus Q ∈ E(M). Similarly, if Q̃ is the measure with density η = (1 − cξ), we
can prove that Q̃ ∈ E(M). Here P = 1

2 (Q + Q̃) and P �= Q (since P(ξ �= 0) > 0).
This contradicts the assumption that P is an extreme point of E(M). Thus (i i i) ⇒
(i i).

To complete the proof we will show that (i) implies (v). Suppose (i) is true and let
Q ∈ EP(M). Fix T < ∞ and let η be any FT measurable bounded random variable.
Since L∞(Ω,FT ,P) ⊆ KT (M) and F0 is trivial, we can get g ∈ L(M) with

η = c +
∫ T

0
gdM

such that
∫ t
0 g l[0,T ]dM is a P-martingale and c = EP[η].

Let Zt = ∫ t
0 gs l(0,T ](s)dMs . Then Zt = EP[(η − c) |Ft ] and since η is bounded,

it follows that Z is bounded. As noted earlier, since P and Q are equivalent, the
stochastic integrals underP andQ are identical. UnderQ,M being a local martingale
and Z = ∫

f dM being bounded, we conclude invoking Corollary 9.19 that Z is also
a martingale underQ. Thus, EQ[ZT ] = 0 = EP[ZT ] and thus using η = c + ZT we
get EQ[η] = c = EP[η]. Since this holds for all FT measurable bounded random
variables η, we conclude Q and P agree on FT . In view of the assumption F =
σ(∪tFt ), we get Q = P proving (v). This completes the proof. �

We can now deduce the integral representation property for Brownian motion,
due to Ito’s [25] and Clark [10].

Theorem 10.10 Let W be one-dimensional Brownian motion and letFt = FW
t and

F = σ(∪tFW
t ). Then every martingale M w.r.t. the filtration (F�) admits an integral

representation

Mt = M0 +
∫ t

0
f dW, ∀t ≥ 0 (10.2.24)

for some f ∈ L(W ).

Proof We will prove that EP(W ) = {P}. The conclusion then would follow from
Theorem 10.9. If Q ∈ EP(W ), then by definition, W is a Q-local martingale and
[W,W ]Qt = t since Q is equivalent to P and [W,W ]Pt = t , see Remark 4.81. Now
part (v) in Theorem 5.19 implies that Wt and W 2

t − t are Q-local martingales and
then Levy’s characterization of Brownian motion, Theorem 3.7 implies that W is a
Brownian motion under Q. Thus for t1, t2, . . . , tm ∈ [0,∞) and B ∈ B(Rm),

Q((Wt1 ,Wt2 , . . . ,Wtm ) ∈ B) = P((Wt1 ,Wt2 , . . . ,Wtm ) ∈ B). (10.2.25)

Hence P = Q since F = σ(Ws : s ∈ [0,∞)). Thus EP(W ) = {P}. �

https://doi.org/10.1007/978-981-10-8318-1_9
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_3
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10.3 Quasi-elliptical Multidimensional Semimartingales

The d-dimensional version of Theorem 10.9 is not true in general—the implication
(iii) implies (ii) may not be true. The difficulty is this: given a sequence ofmartingales
{Nn : n ≥ 1} such that Nn

T is converging in L
1 (say to NT ) for every T < ∞, and

{gn, j : n ≥ 1} such that

Nn
t = Nn

0 +
d∑

j=1

∫ t

0
gn, j dM j

we cannot conclude that the sequence of integrands gn, j is converging as was the
case in one-dimensional. See counter example in [29]. This prompts us to introduce
a condition under which the class of martingales that admit integral representation
is closed under L1 convergence.

For r.c.l.l. semimartingales X1, X2, . . . , Xd and λ1, . . . ,λd ∈ R, defining Y =∑d
j=1 λ j X j , note that

[Y,Y ]t =
d∑

i, j=1

λiλ j [Xi , X j ]t

and hence
d∑

i, j=1

λiλ j ([Xi , X j ]t − [Xi , X j ]s) ≥ 0 a.s. (10.3.1)

In other words, for s < t fixed, the matrix (([Xi , X j ]t − [Xi , X j ]s)) is non-negative
definite.

Definition 10.11 A d-dimensional r.c.l.l. semimartingale X = (X1, . . . , Xd) is
said to be quasi-elliptic if there exists a sequence of stopping times τn ↑ ∞
and constants αn > 0 such that ∀λ1, . . . ,λd ∈ R, ∀s < t ≤ τn, one has

d∑

i, j=1

λiλ j ([Xi , X j ]t − [Xi , X j ]s) ≥ α2
n

d∑

i=1

(λi )2([Xi , Xi ]t − [Xi , Xi ]s) a.s.

(10.3.2)

Remark 10.12 Note that if X = (X1, X2, . . . , Xd) is a quasi-elliptic semimartin-
gale on (Ω,F ,P) and Q is a probability measure absolutely continuous w.r.t.
P, then X continues to be a quasi-elliptic semimartingale on (Ω,F ,Q).

Example 10.13 Let X = (X1, X2, . . . , Xd) be a semimartingale such that
[Xi , X j ] = 0 for i �= j . Then trivially, X is a quasi-elliptic semimartingale. This
is the case when X is d-dimensional standard Brownian motion.
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Example 10.14 Let X = (X1, X2, . . . , Xd) be the solution to the SDE (3.51)
withm = d where σ, b satisfy (3.5.3) and (3.5.4). Further, suppose that ∃α > 0
such that for all t ≥ 0, x ∈ R

d , λ1,λ2, . . . ,λd

d∑

i, j=1

λiλ jσi j (t, x) ≥ α

d∑

i=1

λ2
i . (10.3.3)

Then it is easy to verify that X = (X1, X2, . . . , Xd) is a quasi-elliptic semi-
martingale.

Lemma 10.15 Let X = (X1, X2, . . . , Xd) be a quasi-elliptic semimartingale. Then
for all h j ∈ L(X j ), 1 ≤ j ≤ d, one has

d∑

j=1

∫ t

0
(h j

s )
2d[X j , X j ]s ≤ 1

α2
n

d∑

i, j=1

∫ t

0
hish

j
s d[Xi , X j ]s ∀t ≤ τn a.s. (10.3.4)

where τn and αn are as in (10.3.2).

Proof Clearly, the assumption (10.3.2) implies that (10.3.4) is true for simple pre-
dictable processes h1, h2, . . . , hd ∈ S. Now fixing h2, . . . , hd ∈ S, the class of h1 for
which (10.3.4) is true is seen to be bp-closed and hence by monotone class theorem,
(Theorem 2.66) contains all bounded predictable processes. Similarly, assuming that
(10.3.4) is true for h1, . . . , h j bounded predictable and h j+1, . . . , hd ∈ S, we can
show that the same is true for h1, . . . , h j+1 bounded predictable and h j+2, . . . , hd ∈
S. Thus by induction we conclude that (10.3.4) holds when h1, h2, . . . , hd are
bounded.

Now note that by the Kunita–Watanabe inequality (Theorem 4.80) and Remark
4.87, the right-hand side in (10.3.4) is finite a.s. for h j ∈ L(X j ), 1 ≤ j ≤ d. Let
η = ∑d

j=1|h j |2 and for 1 ≤ j ≤ d and n ≥ 1, let

hn, j = h j l{η≤n}.

Using (10.3.1), it follows that

d∑

i, j=1

∫ t

0
hn,i
s hn, j

s d[Xi , X j ]s increases to
d∑

i, j=1

∫ t

0
hish

j
s d[Xi , X j ]s

and also easy to see that

d∑

i=1

∫ t

0
(hn, j

s )2d[X j , X j ]s increases to
d∑

i=1

∫ t

0
(h j

s )
2d[X j , X j ]s .

https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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Thus validity of (10.3.4) for {hn, j : 1 ≤ j ≤ d} for all n ≥ 1 implies validity of
(10.3.4) for {h j ∈ L(X j ) : 1 ≤ j ≤ d}. �
Corollary 10.16 Let X = (X1, X2, . . . , Xd) be a quasi-elliptic semimartingale.
Suppose gn, j ∈ L(X j ), 1 ≤ j ≤ d, n ≥ 1 are such that ∀t < ∞

d∑

i, j=1

∫ t

0
(gn,i

s − gm,i
s )(gn, j

s − gm, j
s )d[Xi , X j ]s → 0 in probability as n,m → ∞.

Then ∀t < ∞
d∑

i, j=1

∫ t

0
(gn,i

s − gm,i
s )2d[Xi , Xi ]s → 0 in probability as n,m → ∞.

Proof This follows from Lemmas 2.75 and 10.15. �
We have noted that if X1, X2, . . . , Xd are r.c.l.l. semimartingales such that

[Xi , X j ] = 0 for i �= j then X = (X1, X2, . . . , Xd) is quasi-elliptic semimartingale.
In particular, if X1, X2, . . . , Xd are continuous local martingales such that Xi X j is
also a local martingale for i �= j , then X = (X1, X2, . . . , Xd) is quasi-elliptic local
martingale.

Here is the analogue of Lemma 10.3 in multidimensional case for a quasi-elliptic
semimartingale.

Lemma 10.17 Let (M1, M2, . . . , Md) be a quasi-elliptic semimartingale such that
each component is a local martingale. Let Nn ∈ I(M1, M2, . . . , Md) be martingales
such that E[ |Nn

t − Nt | ] → 0 for all t .
Then N ∈ I(M1, M2, . . . , Md).

Proof The proof follows that of Lemma 10.3. First we get gn, j ∈ L(M j ) for 1 ≤
j ≤ d, n ≥ 1 such that

Nn
t = Nn

0 +
d∑

j=1

∫ t

0
gn, j dM j .

We choose gn, j such that gn, j
0 = 0.We then conclude that Nn is converging in Emery

topology and as a consequence, for all T < ∞,

[Nn − Nm, Nn − Nm]T → 0 in probability as n,m → ∞. (10.3.5)

Here note that

[Nn − Nm, Nn − Nm]T =
d∑

j,k=1

∫ T

0
(gn, j − gm, j )(gn,k − gm,k)d[M j , Mk].

(10.3.6)

https://doi.org/10.1007/978-981-10-8318-1_2
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Now (10.3.5), (10.3.6), the assumption that (M1, M2, . . . , Md) is a quasi-elliptic
local martingale and Corollary 10.16 implies that for each j , 1 ≤ j ≤ d

∫ T

0
(gn, j

s − gm, j
s )2d[M, M]s → 0 in probability as n,m → ∞. (10.3.7)

Now, by taking a subsequence, if necessary and relabelling, we assume that for
1 ≤ k ≤ n, 1 ≤ j ≤ d

P((

∫ k

0
(gn, j

s − gk, js )2d[M, M]s) 1
2 ≥ 1

2k
) ≤ 1

2k
. (10.3.8)

Proceeding as in the proof of Lemma 10.3, defining

g j
s (ω) = lim sup

k→∞
gk, js (ω)

we can conclude that

[N , N ]t =
d∑

j,k=1

∫ t

0
g j
s g

k
s d[M j , Mk]s .

Getting σn ↑ ∞ such that (10.2.11) holds and using that (M1, . . . , Md) is quasi-
elliptic, we conclude, for a suitable sequence of stopping times τn ↑ ∞ (as in defi-
nition of quasi-elliptic semimartingales),

E[(
∫ σn∧τn

0
(g j

s )
2d[M j , M j ]s) 1

2 ] < ∞ 1 ≤ j ≤ d, n ≥ 1.

Thus g j ∈ L(M j ). Now defining Yt = N0 + ∑d
j=1

∫ t
0 g j dM j , we can show that

(10.2.12) and (10.2.13) hold and thus N = Y completing the proof that N ∈
I(M1, M2, . . . , Md). �

Now the same proof as that of Theorem 10.4 gives us the following.

Theorem 10.18 For r.c.l.l. local martingales M1, M2, . . . , Md and T < ∞ let

KT (M1, M2, . . . , Md) = {NT : N ∈ I(M1, M2, . . . , Md) ∩ M}. (10.3.9)

Suppose (M1, M2, . . . , Md) is quasi-elliptic semimartingale such that each M j

is a local martingale. Then KT (M1, M2, . . . , Md) is a closed linear subspace of
L
1(Ω,FT ,P).

We are now ready to prove the multidimensional version of Theorem 10.9.

Theorem 10.19 Let M = (M1, M2, . . . , Md) be a quasi-elliptic semimartingale
such that each component is a local martingale on a probability space (Ω,F ,P)
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with a filtration (F�). Suppose thatF0 is trivial andF = σ(∪tFt ). Then the following
are equivalent.

(i) For every bounded martingale N, ∃ f j ∈ L(M j ), 1 ≤ j ≤ d such that

Nt = N0 +
d∑

j=1

∫ t

0
f j
s dM

j
s a.s. ∀t. (10.3.10)

(ii) For every martingale N, ∃ f j ∈ L(M j ), 1 ≤ j ≤ d such that (10.3.10) is true.
(iii) P is an extreme point of the convex set E(M1, M2, . . . , Md).
(iv) ẼP(M1, M2, . . . , Md) = {P}.
(v) EP(M1, M2, . . . , Md) = {P}.
Proof The proof closely follows that of Theorem 10.9. Once again we can observe
that (i) is same as L∞(Ω,FT ,P) ⊆ KT (M1, M2, . . . , Md), ∀T ∈ (0,∞) and (i i)
is same as L1(Ω,FT ,P) = KT (M1, M2, . . . , Md), ∀T ∈ (0,∞).

Proofs of (i) ⇐⇒ (i i) and (i i i) ⇐ (iv) ⇐⇒ (v) are exactly the same.
The proof of (i) ⇒ (v) is also on similar lines, invoking Theorem 10.18 in place

of Theorem 10.4 to conclude that the class of FT measurable random variables that
admit representation is a closed subspace of L1(Ω,F ,P).

For the proof of the last part, namely (i) implies (v), assume (i) is true and let
Q ∈ EP(M1, M2, . . . , Md).

Fix T < ∞ and let η be a FT measurable bounded random variable. Since
L

∞(Ω,FT ,P) is a subset of KT (M1, M2, . . . , Md) and F0 is trivial, we can get
g j ∈ L(M j ) for 1 ≤ j ≤ d with

η = c +
d∑

j=1

∫ T

0
g j dM j

such that Vt = c + ∑d
j=1

∫ t
0 g j dM j is a P-martingale.

Let Zt = ∑d
j=1

∫ t
0 g

j
s l[0,T ](s)dM

j
s . Then Zt = E[(η − c) |Ft ] and thus Z is a

bounded P-martingale.
Since M1, M2, . . . , Md are Q-local martingales and g j ∈ L(M j ), it follows that

Z is aQ-sigma-martingale. But Z is a bounded process and now invoking Corollary
9.27we conclude that Z is aQ-martingale. The rest of the proof thatQ = P is exactly
as in Theorem 10.9. �

We can now deduce the integral representation property for d-dimensional Brow-
nian motion, due to Ito’s [25] and Clark [10].

Theorem 10.20 Let W = (W 1,W 2, . . . ,Wd) be d-dimensional Brownian motion.
Thus eachW j is aone-dimensionalBrownianmotionandmoreoverW 1,W 2, . . . ,Wd

are independent. Let Ft = FW
t and F = σ(∪tFW

t ). Then every martingale M w.r.t.
the filtration (F�) admits a representation

https://doi.org/10.1007/978-981-10-8318-1_9
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Mt = M0 +
d∑

j=1

∫ t

0
f j dW j ∀t (10.3.11)

where f j ∈ L(W j ) for 1 ≤ j ≤ d.

Proof The proof is on the same lines as in the case of one-dimensional version,
Theorem 10.10. First we note that [W j ,Wk] = 0 for j �= k implies that W is a
quasi-elliptic semimartingale so that we can use Theorem 10.19. We will show that
if Q ∈ EP(W 1,W 2, . . . ,Wd) then Q = P. Once again as in Theorem 10.10, we
deduce that for each j , W j is a square integrable martingale with [W j ,W j ]Qt = t
and for j �= k, [W j ,Wk]Qt = 0. Thus Levy’s characterization Theorem 3.8 implies
that W is a d-dimensional Brownian motion on (Ω,F ,Q). The assumption that F
is generated by {Wt : t ≥ 0} yields P = Q completing the proof. �

Example 10.21 LetW=(W 1,W 2, . . . ,Wd) be d-dimensional Brownianmotion.
Thus each W j is a real-valued Brownian motion and W 1,W 2, . . . ,Wd are
independent. Let Ft = FW

t and F = σ(∪tFt ). Let X = (X1, X2, . . . , Xd) be
the solution to the SDE (3.5.1) with m = d and b = 0 where σ satisfies
(3.5.3), (3.5.4). Further, suppose that ∃α > 0 such that for all t ≥ 0, x ∈ R

d ,
λ1,λ2, . . . ,λd

d∑

i, j=1

λiλ jσi j (t, x) ≥ α

d∑

i=1

λ2
i . (10.3.12)

Then as noted earlier, X = (X1, X2, . . . , Xd) is a quasi-elliptic semimartin-
gale. Moreover, the condition (10.3.12) implies that σ(t, x) is invertible and
then

Wt =
∫ t

0
σ−1(s, Xs)dXs . (10.3.13)

Thus, Wt is F X
t measurable and as a consequence, F X

t = Ft . Hence every
martingale M admits a representation

Mt = M0 +
d∑

j=1

∫ t

0
g j d X j ∀t (10.3.14)

where g j ∈ L(X j ) for 1 ≤ j ≤ d- just define gs = fsσ−1(s, Xs) where f is as
in (10.3.11). Since (F X

� ) = (F�), g above is also (F X
� ) predictable. As a con-

sequence, we also get that

EP(X1, X2, . . . , Xd) = {P}.

https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
https://doi.org/10.1007/978-981-10-8318-1_3
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10.4 Continuous Multidimensional Semimartingales

We will show that for continuous semimartingales X1, X2, . . . , Xd , we can get
bounded predictable processes f i j such that Y = (Y 1, . . . ,Y d) defined by

Y i
t =

d∑

j=1

∫ t

0
f i j d X j

satisfies for j �= k
[Y j ,Y k]t = 0 ∀t

and thus is quasi-elliptic. Thus, Theorem 10.19 would hold for (Y 1, . . . ,Y d) if
X1, . . . , Xd were local martingales.

Wewill first show that such a transformation is always possible. In order to achieve
this, we need some auxiliary results.

Lemma 10.22 Let N[d],O[d],D[d] be the class of d × d symmetric non-negative
definite matrices, d × d Orthogonal matrices and d × d diagonal matrices, respec-
tively. Then there exists a Borel measurable mapping θ : N[d] �→ O

[d] × D
[d] such

that
θ(C) = (B, D) satisfies C = BT DB.

Proof Given a non-negative definite C , the eigenvalue-eigenvector decomposition
gives existence of orthogonal B and diagonal D such that C = BT DB. Since for all
C ∈ N

[d], the set
{(B, D) ∈ O

[d] × D
[d] : C = BT DB}

is compact, measurable selection theorem (See [20] or Corollary 5.2.6 of [57]) yields
the existence of Borel measurable θ. �

Lemma 10.23 Let D be a σ-field on a non-empty set Γ and for 1 ≤ i, j ≤ d, λi j

be σ-finite signed measures on (Γ,D) such that for all E ∈ D, the matrix((λi j (E)))

is a symmetric non-negative definite matrix. Let Λ(E) = ∑d
i=1 λi i (E). Then for

1 ≤ i, j ≤ d there exists a version ci j of the Radon-Nikodym derivative dλi j

dΛ
such

that for all α ∈ Γ , the matrix ((ci j (α))) is non-negative definite.

Proof For 1 ≤ i ≤ j ≤ d let f i j be a version of the Radon-Nikodym derivative dλi j

dΛ

and let f ji = f i j . For rational numbers r1, r2, . . . , rd , let

Ar1,r2,...,rd = {α :
∑

i j

ri r j f
i j (α) < 0}.

Then Λ(Ar1,r2,...,rd ) = 0 and hence Λ(A) = 0 where

A = ∪{Ar1,r2,...,rd : r1, r2, . . . , rd rationals}.
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The required version is now given by

ci j (α) = f i j (α) lAc(α).

�

We are now ready to prove

Theorem 10.24 Let M1, M2, . . . , Md be continuous semimartingales. We can get
predictable processes bi j bounded by 1 such that N = (N 1, . . . , Nd) defined by

N j
t =

d∑

i=1

∫ t

0
b ji dMi (10.4.1)

satisfies
[N j , Nk]t = 0 ∀t. (10.4.2)

Further,

Mk
t =

d∑

j=1

∫ t

0
b jk dN j . (10.4.3)

Proof First let us assume that [Mk, Mk]t ≤ C for all t and 1 ≤ k ≤ d. Recall that
the predictable σ-field P is the smallest σ-field on Ω̃ = [0,∞) × Ω with respect to
which all continuous adapted processes are measurable.

Let signed measures Γi j on P be defined as follows: for E ∈ P , 1 ≤ i, j ≤ d,

Γi j (E) =
∫

Ω

∫ ∞

0
lE (s,ω)d[Mi , M j ]s(ω)dP(ω).

Let Λ = ∑d
j=1 Γ j j . From the properties of quadratic variation [Mi , M j ], it follows

that for all E ∈ P , the matrix ((Γi j (E))) is non-negative definite. In particular, for
all i, j

|Γi j (E)| ≤ Γi i (E) + Γ j j (E)

Hence, Γi j is absolutely continuous w.r.t. Λ ,∀i, j . It follows that we can get pre-
dictable processes ci j such that

dΓi j

dΛ
= ci j (10.4.4)

and that C = ((ci j )) is a non-negative definite matrix (see Lemma 10.23). By con-
struction |ci j | ≤ 1. Using Lemma 10.22, we can obtain predictable processes bi j , d j

such that for all i, k, (writing δik = 1 if i = k and δik = 0 if i �= k),)
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d∑

j=1

bi js b
k j
s = δik (10.4.5)

d∑

j=1

b ji
s b

jk
s = δik (10.4.6)

d∑

j,l=1

bi js c
jl
s b

kl
s = δikd

i
s (10.4.7)

SinceC = ((ci js )) is non-negative definite, it follows thatdi
s ≥ 0. Further, B = ((bi j ))

being orthogonal matrix the process bi j is bounded by one and hence is in L(M) for
all 1 ≤ i, j ≤ d .

For 1 ≤ j ≤ d, let N j be defined by (10.4.1). Using (10.4.6), it follows that

d∑

j=1

∫ t

0
b jk dN j =

∫ t

0

d∑

j=1

d∑

i=1

b jkb ji dMi

= Mk
t

. (10.4.8)

Note that

[Ni , Nk]t =
d∑

j,l=1

∫ t

0
bi js b

kl
s d[M j , Ml]s

and hence for any bounded predictable process h such that |hs | ≤ C l[0,T ](s) for
some T < ∞ and C < ∞ and i �= k

EP[
∫ ∞

0
hs d[Ni , Nk]s] =

∫

Ω

∫ ∞

0
hs

d∑

j,l=1

bi js b
kl
s d[M j , Ml]s dP(ω)

=
∫

Ω̄

h
d∑

j,l=1

bi j bkl dΓ jl

=
∫

Ω̄

h
d∑

j,l=1

bi j bklc jl dΛ

= 0

(10.4.9)

where the last step follows from (10.4.7). Given a bounded stopping time σ, taking
h = l[0,σ], it follows that h is predictable and thus using (10.4.9) we conclude from
(10.4.9) that for i �= k

E[ [Ni , Nk]σ] = 0.
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Thus [Ni , Nk] is a martingale for i �= k (see Theorem 2.57). Also, it is a continuous
process (as each N j is continuous) and [Ni , Nk] ∈ V with [Ni , Nk]0 = 0 by defi-
nition. Hence it follows (see Corollary 5.24) that [Ni , Nk]t = 0 for i �= k. Thus we
have proved the result for the case when [Mk, Mk]t are bounded. For the general
case, let

σn = inf{t ≥ 0 :
d∑

j=1

[M j , M j ]t ≥ n}.

Then σn ↑ ∞ and for each n,

[Mk,[σn ], Mk,[σn ]]t is bounded for 1 ≤ k ≤ d

where Mk,[σn ] is defined by Mk,[σn ]
t = Mk

t∧σn
.

Let ((b[n],i j )) be the predictable processes obtained in the preceding paragraphs
for M1,[σn ], M2,[σn ], . . . , Md,[σn ]. Then defining

bi js =
∞∑

n=1

b[n],i j l(σn−1,σn ](s)

we can verify that N defined by (10.4.1) satisfies (10.4.2) and (10.4.3). �

Remark 10.25 Let M, N be as in Theorem 10.24.
Then it follows that M1, . . . , Md are local martingales if and only if N 1, . . . , Nd

are local martingales since bik are bounded predictable processes. Further,
(10.4.1), (10.4.3) imply that

E(M1, M2, . . . , Md) = E(N 1, N 2, . . . , Nd),

EP(M1, M2, . . . , Md) = EP(N 1, N 2, . . . , Nd),

ẼP(M1, M2, . . . , Md) = ẼP(N 1, N 2, . . . , Nd).

In view of Remark 10.25, we have the following result as a direct consequence of
Theorem 10.19.

Theorem 10.26 Let M1, M2, . . . , Md be continuous local martingales on (Ω,

F ,P). Suppose that F0 is trivial and F = σ(∪tFt ). Let N 1, N 2, . . . , Nd be as in
Theorem 10.24 so that (10.4.1), (10.4.2) and (10.4.3) hold. Then the following are
equivalent.

(i) For every bounded martingale U, ∃ f j ∈ L(N j ), 1 ≤ j ≤ d such that

Ut = U0 +
d∑

j=1

∫ t

0
f j
s dN

j
s ∀t. (10.4.10)

(ii) For every martingale N, ∃ f j ∈ L(N j ), 1 ≤ j ≤ d such that (10.4.10) is true.

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_5
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(iii) P is an extreme point of the convex set E(M1, M2, . . . , Md).
(iv) ẼP(M1, M2, . . . , Md) = {P}.
(v) EP(M1, M2, . . . , Md) = {P}.

10.5 General Multidimensional Case

We have commented that in general, the multidimensional version of Theorem 10.9
is not true. In view of this, we had given a version in case of quasi-ellipticity, Theorem
10.19 and a version in the case of continuous local martingales, Theorem 10.26. We
now come to the general multidimensional case.

For r.c.l.l. semimartingales X1, . . . , Xd and h j ∈ L(X j ), we can define the vector
stochastic integral as

∫ t

0
〈h, dX〉 =

d∑

j=1

∫
h j d X j .

In order to discuss the general case of integral representation theorem, we need
to extend the notion of vector stochastic integral. See Jacod [27], Cherny and
Shiryaev [7].

Definition 10.27 For r.c.l.l. semimartingales X1, . . . , Xd , let Lv(X1, . . . , Xd)

denote the class of Rd -valued predictable processes h = (h1, . . . hd) such
that for any sequence of predictable processes φn satisfying

(i) |φn| ≤ 1,
(ii) h jφn is bounded for all j, n, 1 ≤ j ≤ d, n ≥ 1,
(iii) φn → 0 pointwise

the processes Zn = ∑d
j=1

∫
h jφn d X j converge to 0 in ducp metric.

Here is an observation.

Lemma 10.28 Let X = (X1, . . . , Xd) be r.c.l.l. semimartingales and let h =
(h1, . . . , hd) be an R

d -valued predictable process. Let

X<h> =
d∑

j=1

∫
h j l{|h|>0}

1

|h| dX
j (10.5.1)

where |h| =
√∑d

j=1(h
j )2. Then h j 1

|h| ∈ L(X j ) for 1 ≤ j ≤ d and

h ∈ Lv(X
1, . . . , Xd) if and only if |h| ∈ L(X<h>) (10.5.2)

Proof Since h j l{|h|>0} 1
|h| is bounded, clearly, h

j l|h|>0
1
|h| ∈ L(X j ) for 1 ≤ j ≤ d.

Let h ∈ Lv(X1, . . . , Xd). Let f n be bounded predictable processes with | f n| ≤ |h|
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and f n → 0 pointwise. Let φn = f n l{|h|>0} 1
|h| . Then φn are predictable processes

with |φn| ≤ 1 and φn → 0 pointwise. Also, f n = φn|h| and so
∫

f n d X<h> =∑d
j=1

∫
h jφn d X j . Thus,

∫
f n d X<h> → 0 in ducp metric and thus |h| ∈ L(X<h>)

(see Theorem 4.18).
Conversely, suppose |h| ∈ L(X<h>). Given predictable φn as in Definition 10.27,

let f n = |h|φn . Then | f n| ≤ |h| and f n → 0 pointwise and hence

Wn =
∫

f n d X<h> → 0 ducp metric.

Noting that
∫

f n d X<h> =
d∑

j=1

∫
h jφn d X j

we conclude that h ∈ Lv(X1, . . . , Xd). �
Definition 10.29 For h ∈ Lv(X1, . . . , Xd), where X1, . . . , Xd are r.c.l.l. semi-
martingales, the vector stochastic integral

∫ t
0 〈h, dX〉 is defined by

∫ t

0
〈h, dX〉 =

∫ t

0
|hs |dX<h>

s

where X<h> is defined in (10.5.1).

Note that if Zt = ∫ t
0 〈h, dX〉, then

[Z , Z ]t =
∫ t

0
|hs |2d[X<h>, X<h>]s

=
d∑

j,k=1

∫ t

0
|hs |2 1

|hs |2 (h j
s h

k
s )d[X j , Xk]s (10.5.3)

=
d∑

j,k=1

∫ t

0
(h j

s h
k
s )d[X j , Xk]s .

Likewise, for h ∈ Lv(X1, . . . , Xd) and g ∈ Lv(U 1, . . . ,Ud), Zt = ∫ t
0 〈h, dX〉

and Wt = ∫ t
0 〈g, dU 〉, we have

[Z ,W ]t =
d∑

j,k=1

∫ t

0
(h j

s g
k
s )d[X j ,Uk]s . (10.5.4)

Remark 10.30 Let X1, . . . , Xd be r.c.l.l. semimartingales and let h j ∈ L(X j )

for 1 ≤ j ≤ d. Then it is easy to see that h = (h1, . . . , hd) ∈ Lv(X1, . . . , Xd)

https://doi.org/10.1007/978-981-10-8318-1_4
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and ∫
〈h, dX〉 =

d∑

j=1

∫
h j d X j .

However, h = (h1, . . . , hd) ∈ Lv(X1, . . . , Xd) does not imply that h j ∈ L(X j )

for 1 ≤ j ≤ d.

Remark 10.31 Let h ∈ Lv(X1, . . . , Xd), where X1, . . . , Xd are r.c.l.l. semi-
martingales. For any predictable process ψ such that ψ > 0 and | h |≤ ψ,
we have ∫ t

0
〈h, dX〉 =

∫ t

0
ψs d Z (10.5.5)

where

Zt =
d∑

j=1

∫ t

0

h j

ψ
dX j . (10.5.6)

We introduce the class of semimartingales that admit a representation as vector
integral w.r.t. an R

d -valued r.c.l.l. semimartingale X = (X1, . . . , Xd). Let

I
v(X1, . . . , Xd)

= {Z : ∃g ∈ Lv(X
1, . . . , Xd), with Zt = Z0 +

∫ t

0
〈g, dX〉 ∀t < ∞}

When X = (X1, . . . , Xd), wewill alsowriteLv(X) = Lv(X1, . . . , Xd) and Iv(X) =
I
v(X1, . . . , Xd).
Here is an observation about vector integral, an analogue of Theorem 4.33.

Theorem 10.32 Let X1, . . . , Xd be r.c.l.l. semimartingales and let φ be a (0,∞)-
valued predictable process such that φ ∈ L(X j ) for 1 ≤ j ≤ d. Let Y j = ∫

φdX j

and h = (h1, h2, . . . , hd) be an R
d -valued predictable process. Let f j = φh j and

f = ( f 1, f 2, . . . , f d). Writing X = (X1, . . . , Xd) and Y = (Y 1, . . . , Y d). Then

f ∈ Lv(X) if and only if h ∈ Lv(Y ) (10.5.7)

and then ∫
〈 f, dX〉 =

∫
〈h, dY 〉. (10.5.8)

As a consequence
I
v(X) = I

v(Y ). (10.5.9)

Proof Recall that f ∈ Lv(X) if and only if | f | ∈ L(X< f >) where X< f > =∑d
j=1

∫
f j l{| f |>0} 1

| f | dX
j andh ∈ Lv(Y ) if andonly if |h| ∈ L(Y<h>)whereY<h> =

∑d
j=1

∫
h j l{|h|>0} 1

|h| dY
j . Since φ is (0,∞)-valued, it follows that for all j

https://doi.org/10.1007/978-981-10-8318-1_4
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h j l{|h|>0}
1

|h| = f j l{| f |>0}
1

| f |
and as a consequence

∫
φdX< f > =

d∑

j=1

∫
f j l{| f |>0}

1

| f |φdX
j

=
d∑

j=1

∫
h j l{|h|>0}

1

|h|φdX
j

=
d∑

j=1

∫
h j l{|h|>0}

1

|h| dY
j

= Y<h>.

Thus, using Theorem 4.33, we have

|h| ∈ L(Y<h>) if and only if | f | = |h|φ ∈ L(X< f >)

and ∫
|h|dY<h> =

∫
| f |dX< f >.

Since
∫ 〈 f, dX〉 = ∫ | f |dX< f > and

∫ 〈h, dY 〉 = ∫ |h|dY<h>, this completes the
proof. �

We observe that an analogue of Theorem 4.43 holds for vector integral as well.

Theorem 10.33 Let X1, X2, . . . , Xd be r.c.l.l. stochastic integrators and let h1, h2,
. . . , hd be predictable processes such that there exist stopping times τm increasing
to ∞ with

(h1 l[0,τm ], . . . , hd l[0,τm ]) ∈ Lv(X
1, . . . , Xd) ∀n ≥ 1. (10.5.10)

Then (h1, h2, . . . , hd) ∈ Lv(X1, . . . , Xd).

Proof Let φn be predictable processes, |φn| ≤ 1, h jφn is bounded for all j, n, 1 ≤
j ≤ d, n ≥ 1, φn → 0 pointwise. Then in view of (10.5.10), it follows that for each
m,

Zm,n =
d∑

j=1

∫
h j l[0,τm ]φn d X j → 0 in ducp metric. (10.5.11)

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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We need to show that

Zn =
d∑

j=1

∫
h jφn d X j → 0 in ducp metric. (10.5.12)

By (4.4.2) in Lemma 4.36, it follows that

Zm,n
t = Zn

t∧τm
.

Now the required conclusion, namely (10.5.12) follows from (10.5.11) and Lemma
2.75. �

Exercise 10.34 Show that the mapping (h, X) �→ ∫ 〈h, dX〉 is linear in h and
X .

In analogy with Lemma 10.1, here we have the following result, with very similar
proof.

Lemma 10.35 Let X1, X2, . . . , Xd be semimartingales and Y be a semimartingale
such that for a sequence of stopping times τn ↑ ∞, Y n defined by Y n

t = Yt∧τn satisfies

Y n ∈ I
v(X1, X2, . . . , Xd).

Then
Y ∈ I

v(X1, X2, . . . , Xd).

Proof Let f n, j ∈ L(X j ), 1 ≤ j ≤ d, n ≥ 1 be such that for all n,

Y n
t = Y n

0 +
∫ t

0
〈 f n, dX〉.

Define f j by

f j =
∞∑

n=1

l(τn−1,τn ] f
n, j .

Then it is easy to check (using Theorem 10.33) that f j ∈ L(X j ) and

Yt = Y0 +
∫ t

0
〈 f, dX〉.

This completes the proof. �

With the introduction of vector integral, we can now prove the multidimensional
analogue of Lemma 10.3.

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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Lemma 10.36 Let M1, M2, . . . , Md be r.c.l.l. local martingales. For n ≥ 1, let
Xn be martingales such that Xn ∈ I

v(M1, M2, . . . , Md). Suppose that E[ |Xn
t −

Xt | ] → 0 as n → ∞ ∀t . Then X ∈ I
v(M1, M2, . . . , Md).

Proof The proof follows that of Lemma 10.3. In view of Lemma 10.35, suffices to
consider the case when for some T < ∞,

Xt = Xt∧T , Xn
t = Xn

t∧T , ∀t ≥ 0, n ≥ 1. (10.5.13)

So let us fix a T < ∞ such that (10.5.13) holds. Without loss of generality, we can
assume that M j

t = M j
t∧T for 1 ≤ j ≤ d. We note that Theorem 5.39 implies that Xn

converges to X in Emery topology and as a consequence,

[Xn − X, Xn − X ]T → 0 in probability as n → ∞, (10.5.14)

[Xn, Xn]T → [X, X ]T in probability as n → ∞ (10.5.15)

and

[Xn − Xm, Xn − Xm]T → 0 in probability as n,m → ∞. (10.5.16)

By taking a subsequence and relabelling if necessary, we assume that

P([Xn − X, Xn − X ]T ≥ 2−k) ≤ 2−k, ∀n ≥ k. (10.5.17)

Using this estimate and invoking Borel–Cantelli Lemma it follows that

∞∑

n=1

√[Xn − X, Xn − X ]T < ∞ a.s.

Let

B =
d∑

j=1

√
[M j , M j ]T +

∞∑

n=1

√[Xn − X, Xn − X ]T + √[X, X ]T

Using (4.6.22), it follows that
√[Xn, Xn]T ≤ 2B and also

√[Xn − Xm, Xn − Xm]T ≤ 2B (10.5.18)

We are going to carry out a orthogonalization as in Theorem 10.24. However, this
time [M j , Mk] are not continuous and thus we cannot assume them to be locally
integrable. Thus we introduce an equivalent measure Q as follows: let

α = EP[exp {−B}],

ξ = 1

α
exp {−B}

https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_4
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and Q be the probability measure on (Ω,F) defined by

dQ
dP

= ξ.

Since EQ[Bk] < ∞ for all t and for all k, and [Xn − Xm, Xn − Xm]T converges to
0 in P and hence in Q probability as n,m → ∞, it follows using (10.5.18) that

EQ[ [Xn − Xm, Xn − Xm]T ] → 0 as n,m → ∞. (10.5.19)

Likewise
EQ[ [Xn − X, Xn − X ]T ] → 0 as n → ∞ (10.5.20)

and
EQ[ [Xn, Xn]T ] → EQ[ [X, X ]T ] as n → ∞. (10.5.21)

Since Xn ∈ I
v(M1 . . . , Md), we can get f n = ( f n,1, . . . , f n,d) such that f n ∈

Lv(M1 . . . , Md) and

Xn
t = Xn

0 +
∫ t

0
〈 f n, dM〉. (10.5.22)

We repeat the construction thatwe carried out in proof ofTheorem10.24,with a subtle
difference. Here we do not have continuity of [Mi , M j ] but do have integrability of
[M j , M j ]T under probability measure Q for each j . Let signed measures Γi j on P
be defined as follows: for E ∈ P , 1 ≤ i, j ≤ d,

Γi j (E) =
∫

Ω

∫ T

0
lE (s,ω)d[Mi , M j ]s(ω)dQ(ω).

Let Λ = ∑d
j=1 Γ j j . From the properties of quadratic variation [Mi , M j ], it follows

that for all E ∈ P , the matrix ((Γi j (E))) is non-negative definite. Further, Γi j is
absolutely continuous w.r.t. Λ ∀i, j . It follows that we can get predictable processes
ci j such that

dΓi j

dΛ
= ci j (10.5.23)

and that C = ((ci j )) is a non-negative definite matrix (see Lemma 10.23). By con-
struction |ci j | ≤ 1. Using Lemma 10.22, we can obtain predictable processes bi j , d j

such that for all i, k, (writing δik = 1 if i = k and δik = 0 if i �= k),

d∑

j=1

bi js b
k j
s = δik (10.5.24)
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d∑

j=1

b ji
s b

jk
s = δik (10.5.25)

d∑

j,l=1

bi js c
jl
s b

kl
s = δikd

i
s (10.5.26)

Since ((ci js )) is non-negative definite, it follows that di
s ≥ 0. For 1 ≤ j ≤ d, let N j

be defined by

N j
t =

d∑

i=1

∫ t

0
b ji dMi (10.5.27)

Using (10.5.25), it follows that for t ≤ T

d∑

j=1

∫ t

0
b jk dN j =

∫ t

0

d∑

j=1

d∑

i=1

b jkb ji dMi

= Mk
t

. (10.5.28)

Note that

[Ni , Nk]t =
d∑

j,l=1

∫ t

0
bi js b

kl
s d[M j , Ml]s

and hence for any bounded predictable process h and for i �= k

EQ[
∫ T

0
hs d[Ni , Nk]s] =

∫

Ω

∫ T

0
hs

d∑

j,l=1

bi js b
kl
s d[M j , Ml]s dQ(ω)

=
∫

Ω̄

h
d∑

j,l=1

bi j bkl dΓ jl

=
∫

Ω̄

h
d∑

j,l=1

bi j bklc jl dΛ

= 0

(10.5.29)

where the last step follows from (10.5.26). As a consequence, for bounded
predictable hi

EQ[
d∑

i,k=1

∫ T

0
hish

k
s d[Ni , Nk]s] = EQ[

d∑

k=1

∫ T

0
(hks )

2d[Nk, Nk]s] (10.5.30)
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Let us observe that (10.5.30) holds for any predictable processes {hi : 1 ≤ i ≤ d}
provided the right-hand side is finite: we can first note that it holds for h̃i = hi l{|h|≤k}
where |h| = ∑d

i=1|hi | and then let k ↑ ∞. Let us define

gn,k =
d∑

j=1

f n, j bk j (10.5.31)

and let ψn = 1 + ∑d
k=1(|gn,k | + | f n,k |). Then note that

∫
〈gn, dN 〉 =

∫
ψn dWn

where

Wn =
d∑

k=1

∫
gn,k

ψn
dNk .

Note that

Wn =
d∑

k=1

d∑

j=1

∫
1

ψn
f n, j bk j dNk

=
d∑

k=1

d∑

j=1

d∑

l=1

∫
1

ψn
f n, j bk j bkl dMl

=
d∑

j=1

∫
1

ψn
f n, j dM j

(10.5.32)

and hence ∫
〈 f n, dM〉 =

∫
ψn dWn.

Thus we have ∫
〈gn, dN 〉 =

∫
〈 f n, dM〉 (10.5.33)

and as a consequence, recalling (10.5.3), we have

[Xn − Xm, Xn − Xm]T =
d∑

j,k=1

∫ T

0
(gn, j − gm, j )(gn,k − gm,k)d[N j , Nk].

(10.5.34)
Now invoking (10.5.29) we get
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EQ[ [Xn − Xm, Xn − Xm]T ] = EQ[
d∑

k=1

∫ T

0
(gn,k

s − gm,k
s )2d[Nk, Nk]s]

=
d∑

k=1

∫
(gn,k − gm,k)2dΓkk

(10.5.35)

Since left-hand side in (10.5.35) converges to 0 (see (10.5.19)), using completeness
of L2(Ω̄,P, Γkk), we can get predictable processes gk such that

∫
(gn,k − gk)2dΓkk → 0.

As a consequence,

d∑

j,k=1

∫ T

0
(gn, j − g j )(gn,k − gk)d[N j , Nk] → 0 in Q - probability as n → ∞,

(10.5.36)
and thus for any bounded stopping time τ

d∑

j,k=1

∫ τ

0
(gn, j )(gn,k)d[N j , Nk] →

d∑

j,k=1

∫ τ

0
(g j )(gk)d[N j , Nk] (10.5.37)

in Q probability as n → ∞. Noting that Q and P are equivalent and

[Xn, Xn]τ =
d∑

j,k=1

∫ τ

0
(gn, j )(gn,k)d[N j , Nk],

we conclude that

[Xn, Xn]t →
d∑

j,k=1

∫ t

0
(g j )(gk)d[N j , Nk] in P - probability as n → ∞

and as a consequence

[X, X ]t =
d∑

j,k=1

∫ t

0
(g j )(gk)d[N j , Nk] (10.5.38)

Let us define bounded predictable processes φ j and predictable process h and a
P-martingale Z as follows:

hs = 1 +
d∑

i=1

|gis | (10.5.39)
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φ j
s = g

j
s

hs
(10.5.40)

Zt =
d∑

j=1

∫ t

0
φ j
s dN

j
s (10.5.41)

Then

Zt =
d∑

i=1

d∑

j=1

∫ t

0
φ j
s b

ji
s dMi (10.5.42)

Since φ j , b ji are predictable and bounded by 1, it follows that Z is a P-local martin-
gale. Let us note that

∫ t

0
h2s d[Z , Z ]s =

d∑

j=1

d∑

k=1

∫ t

0
h2sφ

j
sφ

k
s d[N j , Nk]s

=
d∑

j=1

d∑

k=1

∫ t

0
gks g

j
s d[N j , Nk]s .

(10.5.43)

Putting together (10.5.38) and (10.5.43), we conclude

[X, X ]t =
∫ t

0
h2s d[Z , Z ]s (10.5.44)

We now forget Q and focus only on P. Since X is a martingale, we can get stop-
ping times σn ↑ ∞ such that EP[ [X, X ]σn ] < ∞ and thus using (10.5.44), we con-
clude that h ∈ L

1
m(Z). Defining Yt = X0 + ∫ t

0 hd Z , we note that Yt = X0 + ∫ t
0 <

g, dN >. Thus Y is a local martingale and further

[Xn − Y, Xn − Y ]t =
∫ t

0

d∑

j,k=1

(gn, j − g j )(gn,k − gk)d[N j , Nk]. (10.5.45)

Using (10.5.36) and the observation that Q and P are equivalent, we conclude

[Xn − Y, Xn − Y ]t → 0 in Pprobability as n → ∞. (10.5.46)

Since for all n ≥ 1

√[X − Y, X − Y ]t ≤ √[Xn − X, Xn − X ]t + √[Xn − Y, Xn − Y ]t (10.5.47)

using (10.5.46) and (10.5.14), we conclude
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[X − Y, X − Y ]t = 0 ∀t. (10.5.48)

Since X,Y are local martingales and X0 = Y0, (10.5.48) implies Xt = Yt for all t.
To complete the proof, we will show that

Xt = X0 +
∫ t

0
〈g, dN 〉 = X0 +

∫ t

0
〈 f, dM〉

for a suitably defined f . So let

f i =
d∑

k=1

gkbki

and let ψ = ∑d
j=1(1 + | f j | + |g j |). Then

W =
d∑

i=1

∫ t

0

1

ψ
f i dMi

=
d∑

i=1

d∑

j=1

∫ t

0

1

ψ
f i b ji dN j

=
d∑

i=1

d∑

k=1

d∑

j=1

∫ t

0

1

ψ
gkbki b ji dN j

=
d∑

k=1

d∑

j=1

∫ t

0

1

ψ
gkδ jk dN

j

=
d∑

j=1

∫ t

0

1

ψ
g j d N j

where we have used (10.5.28), definition of f i and (10.5.24). Thus

∫
〈 f, dM〉 =

∫
ψdW =

∫
〈g, dN 〉.

Hence

Xt = X0 +
∫ t

0
〈 f, dM〉.

�

For semimartingales X1, X2, . . . , Xd let Kv
T (X1, . . . , Xd) be defined by

K
v
T (X1, . . . , Xd) = {NT : N ∈ I

v(X1, . . . , Xd) ∩ M}. (10.5.49)
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Note that if Q is equivalent to P the class Kv
T under Q may not be the same as the

one under P defined above as the class of martingalesM need not be the same under
the two measures.

As an immediate consequence of Lemma 10.36 we have

Theorem 10.37 For local martingales M1, . . . , Md, Kv
T (M1, . . . , Md) is a closed

linear subspace of L1(Ω,FT ,P) for every T < ∞.

Now using Theorem 10.37 instead of Theorem 10.18, we can obtain the integral
representation property for general multidimensional local martingales—rest of the
argument is essentially same as in the proof of Theorem 10.19, but we will give it
here for the reader’s convenience.

Theorem 10.38 Let M1, M2, . . . , Md be local martingales on (Ω,F ,P). Suppose
that F0 is trivial and F = σ(∪tFt ). Then the following are equivalent.

(i) For every bounded martingale S, ∃ f ∈ Lv(M1, M2, . . . , Md) such that

St = S0 +
∫ t

0
〈 f, dM〉 a.s. ∀t. (10.5.50)

(ii) For everymartingale S, ∃ f ∈ Lv(M1, M2, . . . , Md) such that (10.5.50) is true.
(iii) P is an extreme point of the convex set E(M1, M2, . . . , Md).
(iv) ẼP(M1, M2, . . . , Md) = {P}.
(v) EP(M1, M2, . . . , Md) = {P}.
Proof It can be seen that (i) is same as L∞(Ω,FT ,P) ⊆ K

v
T (M1, . . . , Md) ∀T ∈

(0,∞) and (i i) is same asL1(Ω,FT ,P) = K
v
T (M1, . . . , Md)∀T ∈ (0,∞). As seen

in Theorem 10.37, Kv
T (M1, . . . , Md) is a closed subspace of L1(Ω,FT ,P). Since

L
∞(Ω,FT ,P) is dense in L1(Ω,FT ,P), it follows that (i) and (i i) are equivalent.
On the other hand, suppose (iv) holds and let P = αQ1 + (1 − α)Q2 where

Q1,Q2 ∈ E(M1, M2, . . . , Md), 0 ≤ α ≤ 1. Then Q1,Q2 are absolutely continuous
w.r.t. P and hence Q1,Q2 ∈ ẼP(M1, M2, . . . , Md). In view of (iv), Q1 = Q2 = P
and thus P is an extreme point of E(M1, M2, . . . , Md) and so (i i i) is true. Thus (iv)

⇒ (i i i).
Since {P} ⊆ EP(M1, M2, . . . , Md) ⊆ ẼP(M1, M2, . . . , Md), it follows that (iv)

implies (v).
If (v) is true andQ ∈ ẼP(M1, M2, . . . , Md), thenQ1 = 1

2 (Q + P) ∈ EP(M1, M2,

. . . , Md). Then (v) implies Q1 = P and hence Q = P. Thus (v) ⇒ (iv) holds.
To see that (i i i) ⇒ (i i) let P be an extreme point of E(M1, M2, . . . , Md) but (i i)

is not true. Then Kv
T (M1, . . . , Md) is a closed proper subspace of L1(Ω,F ,P) and

by the Hahn–Banach Theorem (see [55]), there exists ξ ∈ L
∞(Ω,FT ,P), P(ξ �=

0) > 0 such that ∫
θξdP = 0 ∀θ ∈ K

v
T (M1, . . . , Md).

Then for c ∈ R, we have
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∫
θ(1 + cξ)dP =

∫
θdP ∀θ ∈ K

v
T (M1, . . . , Md). (10.5.51)

Since ξ is bounded, we can choose a c > 0 such that

P(c|ξ| < 0.5) = 1.

Now, let Q be the measure with density η = (1 + cξ). Then Q is a probability mea-
sure. Thus (10.5.51) yields

∫
θdQ =

∫
θdP ∀θ ∈ K

v
T (M1, . . . , Md). (10.5.52)

Let σn ↑ ∞ be bounded stopping times such that M j,n
t = M j

t∧σn
is a P-martingale.

For any bounded stopping time τ , M j,n
τ∧T = M j

τ∧σn∧T ∈ KT and hence

EQ[M j,n
τ∧T ] = EP[M j,n

τ∧T ] = M j
0 (10.5.53)

On the other hand,
EQ[M j,n

τ∨T ] = EP[ηM j,n
τ∨T ]

= EP[EP[ηM j,n
τ∨T | FT ]]

= EP[ηEP[M j,n
τ∨T | FT ]]

= EP[ηM j,n
T ]

= EQ[M j,n
T ]

= M j
0 .

(10.5.54)

where we have used the facts that η is FT measurable, M j,n is a P-martingale and
(10.5.53). Now noting that M j,n

τ = M j,n
τ∧T + M j,n

τ∨T − M j,n
T , we conclude

EQ[M j,n
τ ] = EQ[M j,n

τ∧T ] + EQ[M j,n
τ∨T ] − EQ[M j,n

T ] = M j
0 .

Thus M j,n
t = M j

t∧σn
is aQ-martingale for every n so that M j is aQ-local martingale

and thus Q ∈ E(M1, M2, . . . , Md). Similarly, if Q̃ is the measure with density η =
(1 − cξ), we can prove that Q̃ ∈ E(M1, M2, . . . , Md). Here P = 1

2 (Q + Q̃) and
P �= Q (since P(ξ �= 0) > 0). This contradicts the assumption that P is an extreme
point of E(M1, M2, . . . , Md). Thus (i i i) ⇒ (i i).

To complete the proof, we need to show that (i) implies (v). Suppose (i) is true
and let Q ∈ EP(M1, M2, . . . , Md). Fix T < ∞ and let η be any FT measurable
bounded random variable. Since L∞(Ω,FT ,P) ⊆ K

v
T (M1, M2, . . . , Md) andF0 is

trivial, we can get g = (g1, . . . , gd) ∈ Lv(M1, M2, . . . , Md) with
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η = c +
∫ T

0
〈g, dM〉

such that
∫ t
0 〈g, dM〉 is amartingale. Let hs = gs l[0,T ](s) and Zt = ∫ t

0 〈h, dM〉. It fol-
lows that Zt = EP[(η − c) |Ft ] and since η is bounded, it follows that Z is bounded.
As noted earlier, since P and Q are equivalent, the stochastic integrals under P and
Q are identical. UnderQ, M1, M2, . . . , Md being local martingales, Z = ∫ 〈h, dM〉
is a local martingale. Since it is also bounded, we conclude invoking Corollary 9.19
that Z is also a martingale under Q. Thus, EQ[ZT ] = 0 = EP[ZT ] and thus using
η = c + ZT we get EQ[η] = c = EP[η]. Since this holds for all FT measurable
bounded random variables η, we conclude Q and P agree on FT . In view of the
assumption F = σ(∪tFt ), we get Q = P proving (v). This completes the proof. �

10.6 Integral Representation w.r.t. Sigma-Martingales

In this section, we will prove an analogue of Theorem 10.38 for a multidimensional
sigma-martingale.

Let us note that if X1, X2, . . . , Xd are sigma-martingales, then we can choose
predictable (0,∞)-valued process φ such that

∫
φdX j is a local martingale for each

j . First for each j we choose φ j and then take φ = min(φ1, . . . ,φd).
Here are two observations on sigma-martingales.

Lemma 10.39 For sigma-martingales X1, X2, . . . , Xd, Eσ(X1, X2, . . . , Xd) and
E

σ
P(X1, X2, . . . , Xd) are convex sets.

Proof Let Q1,Q2 ∈ E
σ(X1, X2, . . . , Xd) and let Q0 = αQ1 + (1 − α)Q2 for 0 <

α < 1. For k = 1, 2, letψk be (0,∞)-valuedpredictable processes such that
∫

ψk d X j

is a Qk-martingale for each j . Then taking φ = min(ψ1,ψ2) and N j = ∫
φdX j , it

follows that for each j , N j is a martingale under Q1 as well as under Q2 and thus
under Q0 as well. Hence Q0 ∈ E

σ(X1, X2, . . . , Xd). Similarly, it can be shown that
E

σ
P(X1, X2, . . . , Xd) is a convex set. �

Lemma 10.40 Let X1, X2, . . . , Xd be sigma-martingales. Then there exists a pre-
dictable (0,∞)-valued process φ such that

(i) N j = ∫
φdX j is a martingale for each j .

(ii) K
v
T (X1, X2, . . . , Xd) = K

v
T (N 1, N 2, . . . , Nd).

(iii) EP(N 1, N 2, . . . , Nd) ⊆ E
σ
P(X1, X2, . . . , Xd).

(iv) Suppose that P is an extreme point of Eσ(X1, X2, . . . , Xd). Then P is also an
extreme point of E(N 1, N 2, . . . , Nd).

Proof We have seen in Lemma 9.23 that we can choose (0,∞)-valued predictable
processes φ j ∈ L(X j ) such that M j = ∫

φ j d X j are martingales. Let φ = min
(φ1, . . . ,φd). Let ψ j = φ

φ j . Note that ψ j is bounded by 1. Then N j = ∫
φdX j =

https://doi.org/10.1007/978-981-10-8318-1_9
https://doi.org/10.1007/978-981-10-8318-1_9
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∫
ψ j dM j and then using Theorem 9.13 it follows that N j is a martingale. This

proves (i). For (i i), we have seen in Theorem 10.32 that g = (g1, g2, . . . , gd) ∈
Lv(N 1, N 2, . . . , Nd) if and only if gφ = (g1φ, g2φ, . . . , gdφ) ∈ Lv(X1, X2, . . . ,

Xd) and then ∫
〈g, dN 〉 =

∫
〈φg, dX〉.

The assertion (i i) follows from this.
For (i i i), if Q ∈ EP(N 1, N 2, . . . , Nd), then X j = ∫

1
φ
N j is a Q-sigma-

martingale for 1 ≤ j ≤ d and thus Q ∈ E
σ
P(X1, X2, . . . , Xd).

For (iv), if Q1,Q2 ∈ E(N 1, N 2, . . . , Nd) with P = 1
2 (Q1 + Q2), then by part

(i i i)

Q1,Q2 ∈ EP(N 1, N 2, . . . , Nd) ⊆ E
σ
P(X1, X2, . . . , Xd) ⊆ E

σ(X1, X2, . . . , Xd).

Since P is an extreme point of Eσ(X1, X2, . . . , Xd), we conclude Q1 = Q2 = P
proving (iv) �

Part (i i) above along with Lemma 10.36 yields the following.

Corollary 10.41 Let X1, X2, . . . , Xd be sigma-martingales. Then ∀T < ∞, Kv
T

(X1, X2, . . . , Xd) is a closed subspace of L1(Ω,F ,P)

The proof of the next result is on the lines of corresponding results given in
previous sections. The proof closely follows the proof of Theorem 10.38.

Theorem 10.42 Let X1, X2, . . . , Xd be sigma-martingales on (Ω,F ,P). Suppose
that F0 is trivial and F = σ(∪tFt ). Then the following are equivalent.

(i) For every bounded martingale S, ∃g ∈ Lv(X1, X2, . . . , Xd) such that

St = S0 +
∫ t

0
〈g, dX〉 a.s. ∀t. (10.6.1)

(ii) For every martingale S, ∃g ∈ Lv(X1, X2, . . . , Xd) such that (10.6.1) is true.
(iii) P is an extreme point of the convex set Eσ(X1, X2, . . . , Xd).
(iv) Ẽ

σ
P(X1, X2, . . . , Xd) = {P}.

(v) E
σ
P(X1, X2, . . . , Xd) = {P}.

Proof Once again it can be seen that (i) is same as

L
∞(Ω,FT ,P) ⊆ K

v
T (X1, . . . , Xd) ∀T ∈ (0,∞)

and (i i) is same as

L
1(Ω,FT ,P) = K

v
T (X1, . . . , Xd) ∀T ∈ (0,∞).

https://doi.org/10.1007/978-981-10-8318-1_9
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Also, as seen in Theorem 10.18, Kv
T (X1, . . . , Xd) is a closed subspace of L1(Ω,

FT ,P). Since L∞(Ω,FT ,P) is dense in L
1(Ω,FT ,P), it follows that (i) and (i i)

are equivalent. The proofs of (iv) ⇒ (i i i), (iv) implies (v) and (v) ⇒ (iv) are
exactly the same as that given in Theorem 10.38.

To see that (i i i) ⇒ (i i) letP be an extreme point ofE(X1, X2, . . . , Xd). Letφ and
N j be as in Lemma 10.40. Part (iv) in Lemma 10.40 now implies thatP is an extreme
point of E(N 1, N 2, . . . , Nd) and then Theorem 10.38 implies that L1(Ω,FT ,P) =
K

v
T (N 1, . . . , Nd). Thus part (i i)ofLemma10.40givesL1(Ω,FT ,P) =K

v
T (X1, . . . ,

Xd) ∀T ∈ (0,∞) which is same as (i i).
To complete the proof, we will show that (i) implies (v). This is exactly as in

Theorem 10.38. Suppose (i) is true and let Q ∈ E
σ
P(X1, X2, . . . , Xd). Fix T < ∞

and let η be any FT measurable bounded random variable. Since L∞(Ω,FT ,P) ⊆
K

v
T (X1, X2, . . . , Xd) and F0 is trivial, we can get g ∈ Lv(X j ) with

η = c +
∫ T

0
〈g, dX〉

such that
∫ t
0 〈g, dX〉 is a martingale. Let hs = gs l[0,T ](s) and Zt = ∫ t

0 〈h, dX〉. It
follows that Zt = EP[(η − c) |Ft ] and since η is bounded, it follows that Z is
bounded. As noted earlier, since P and Q are equivalent, the stochastic integrals
under P and Q are identical. Under Q, X1, X2, . . . , Xd are sigma-martingales
and thus Z = ∫ 〈h, dX〉 is also a sigma-martingale. Since it is also bounded, we
conclude invoking Corollary 9.27 that Z is also a martingale under Q. Thus,
EQ[ZT ] = 0 = EP[ZT ] and thus using η = c + ZT we get EQ[η] = c = EP[η].
Since this holds for all FT measurable bounded random variables η, we conclude Q
and P agree on FT . In view of the assumption F = σ(∪tFt ), we getQ = P proving
(v). This completes the proof. �

This result has strong connections to mathematical finance and in particular to the
theory of asset pricing. We will give a brief background in the next section.

10.7 Connections to Mathematical Finance

Connections of stochastic processes and mathematical finance go back to 1900 when
Bachelier [1] studied the question of option pricing in his Doctoral Thesis. Here he
had modelled the stock price movement as a Brownian motion. This was before
Einstein used Brownian motion in the context of physics and movement of particles.
Samuelson, Merton worked extensively on this question [49, 56]. The paper by
Black–Scholes brought the connection to the forefront. The papers by Harrison and
Pliska around 1980 built the formal connection between mathematical finance and
stochastic calculus [22, 23]. The fundamental papers byKreps [45],Yan [61], Stricker
[58] laid the foundation for the so-calledFirst FundamentalTheoremofAsset Pricing.

https://doi.org/10.1007/978-981-10-8318-1_9
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The final version of this result is due to Delbaen and Schachermayer [11, 12]. Also
see [2, 30, 32, 43, 54].

We will give a brief account of the framework. We consider a market with d
stocks, whose prices are modelled as stochastic processes X1, X2, . . . , Xd , assumed
to be processes with r.c.l.l. paths. The market is assumed to be ideal where there are
no transaction costs and rate of interest r on deposits is same as rate of interest on
loans, with instantaneous compounding, so that deposit of 1$ is worth ert at time t .
Let S j

t = X j
t e

−r t , 1 ≤ j ≤ d denote the discounted stock prices. Let Ft = σ(S j
u :

0 ≤ u ≤ t, 1 ≤ j ≤ d).
A simple trading strategy is where an investor trades stock at finitely many time

points and at a time s she/he can use information available up to time s. Then it can be
seen that the strategy canbe represented as follows: the timeswhere the stockholdings
change should be a stopping time and thus the strategy f = ( f 1, f 2, . . . , f d) can
be seen to be representable as

f j =
m−1∑

k=0

a j
k l(σk ,σk+1] (10.7.1)

where σk are stopping times and a j
k are Fσk measurable bounded random variables.

For such a trading strategy, the value function (representing gain or loss from the
strategy) is given by

V f ( f ) =
d∑

j=1

m−1∑

k=0

a j
k (S

j
σk+1∧t − S j

σk∧t ). (10.7.2)

When S1, . . . S j are semimartingales, then we see that Vt ( f ) = ∫ t
0 〈 f, dS〉.

A simple trading strategy f is said to be an arbitrage opportunity if for some T the
following two conditions hold : (i) P(VT ( f ) ≥ 0) = 1 and (i i) P(VT ( f ) > 0) > 0.
One of the economic principles is that such a strategy cannot exist in a market in
equilibrium, i.e. there are many buyers and sellers at that price for if it existed, all
investors will follow the strategy as it gives an investor a shot at making money
without taking any risk, thus disturbing the equilibrium. This is referred to as the no
arbitrage principle or simply NA.

If each S j is a martingale, then Vt ( f ) is a martingale for every simple strategy
f and thus E[VT ( f )] = 0 and thus NA holds. It can be seen that NA is true even
when each S j is martingale under a probability measure Q that is equivalent to P.
The converse to this statement is not true. However, it was recognized that if one
rules out approximate arbitrage (in an appropriate sense) then indeed the converse is
true. We will not trace the history of this line of thought (see references given above
for the same) but give three results on this theme. The following result is Theorem
7.2 in [11].

Theorem 10.43 Suppose the processes S1, S2 . . . Sd are locally bounded and that
for any sequence of simple strategies f n ∈ S

d and 0 < T < ∞, the condition
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P(VT ( f n) ≥ − 1

n
) = 1, ∀n ≥ 1 (10.7.3)

implies that for all ε > 0

P(|VT ( f n)| ≥ ε) → 0 as n → ∞. (10.7.4)

Then S j is a semimartingale for each j .

The condition (10.7.3) ⇒ (10.7.4) is essentially ruling out approximate arbitrage
and has been called NFLVR—No Free Lunch with Vanishing Risk by Delbaen–
Schachermayer.

Thus we now assume that S1, S2 . . . Sd are semimartingales. Lv(S1, . . . , Sd) is
taken as the class of trading strategies and for f ∈ Lv(S1, . . . , Sd), the value process
for the trading strategy f is defined to be Vt ( f ) = ∫ t

0 〈 f, dS〉. A trading strategy f
is said to be admissible if for some constant K , one has

P(

∫ t

0
〈 f, dS〉 ≥ −K ∀t) = 1 (10.7.5)

and

∫ t

0
〈 f, dS〉 converges in probability (to sayV ( f )) as t → ∞. (10.7.6)

The following theorem for one-dimensional case was proven in [11] (Corollary 1.2).
For the multidimensional case see Theorem 8.2.1 in [13]. This also follows from
Theorem 10.45 below.

Theorem 10.44 Suppose S1, S2 . . . Sd are locally bounded semimartingales and
that for any sequence of admissible strategies f n the condition

P(V ( f n) ≥ − 1

n
) = 1, ∀n ≥ 1 (10.7.7)

implies that for all ε > 0

P(|V ( f n)| ≥ ε) → 0 as n → ∞. (10.7.8)

Then there exists a probability measure Q equivalent to P such that each S j is a
local martingale on (Ω,F ,Q).

Here is the final version of the (first) Fundamental Theorem of Asset Pricing
—Theorem 14.1.1 in [12]. Also see [30], who independently proved the result.

Theorem 10.45 Suppose the processes S1, S2 . . . Sd are semimartingales and that
for any sequence of admissible strategies f n the condition
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P(V ( f n) ≥ − 1

n
) = 1, ∀n ≥ 1 (10.7.9)

implies that for all ε > 0

P(|V ( f n)| ≥ ε) → 0 as n → ∞. (10.7.10)

Then there exists a probability measure Q equivalent to P such that each S j is a
sigma-martingale on (Ω,F ,Q).

We can recast this result as follows: for semimartingales S1, S2 . . . Sd , the set Eσ
P

(S1, S2 . . . Sd) is non-empty if and only if S1, S2 . . . Sd satisfy NFLVR (namely
(10.7.9) ⇒ (10.7.10) ).

We now come to derivative securities and the role of NA condition (and NFLVR).
A derivative security, also called a contingent claim, is a type of security traded
whose value is contingent upon (or depends upon) the prices of the stocks. Thus the
payout ξ, say at time T , could be ξ = g(S1T , S2T , . . . , SdT ) for a function g : Rd �→ R

or could be a function of the paths {S j
t : 0 ≤ t ≤ T, 1 ≤ j ≤ d}. All we require is

that ξ is FT measurable so that at time T , ξ is observed or known.
For example, ξ = (S1T − K )+ : this is called the European Call Option (on S1

with strike price K and terminal time T ). Call Options have been traded on various
exchanges across the world for close to a century. It was in the context of pricing of
options that Bachelier had introduced in 1900 Brownian motion as a model for stock
prices.

Suppose that ξ (FT measurable random variable) is a contingent claim, x ∈ R

and f ∈ Lv(S1, S2 . . . Sd) is a trading strategy with

x +
∫ T

0
< f, dS > = ξ a.s. (10.7.11)

Even if ξ is not offered for trade, an investor can always replicate it with an initial
investment x following the strategy f . If (10.7.11) holds, (x, f ) is called replicating
strategy. In such a case, the price p of the contingent claim (assuming that the market
is in equilibrium), must be equal to x . For if p > x , an investor could sell one the
contingent claim at p, keep aside p − x , invest x and follow the strategy f . At time
T the portfolio is worth exactly what the investor has to pay for the contingent claim.
Thus the investor has made a profit of (p − x) without any risk; in other words, it is
an arbitrage opportunity. The possibility p < x can be ruled out likewise, this time
the investor buys a contingent claim at p and follows strategy (−x,− f ).

Thus if (10.7.11) holds, in otherwords, a replicating strategy exists for a contingent
claim ξ, the price of the contingent claim equals the initial investment needed for the
strategy.

The market consisting of (discounted) stocks S1, S2, . . . , Sd is said to be com-
plete if for all bounded FT measurable random variables ξ, ∃x ∈ R and f ∈ Lv

(S1, S2, . . . , Sd) such that for some K < ∞,
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|
∫ t

0
< f, dS > | ≤ K ∀t ≥ 0 a.s. (10.7.12)

and

ξ = x +
∫ T

0
< f, dS > a.s. (10.7.13)

Here is the second fundamental theorem of asset pricing.

Theorem 10.46 Suppose S1, S2, . . . , Sd is a semimartingale such that

E
σ
P(S1, S2, . . . , Sd) �= φ.

i.e. S1, S2, . . . , Sd admit a Equivalent sigma-martingale measure (ESMM).
Then the market is complete if and only if the ESMM is unique, i.e. Eσ

P(S1, S2,
. . . , Sd) is a singleton.

Proof LetQ ∈ E
σ
P(S1, S2, . . . , Sd). Suppose the market is complete. Fix T > 0 and

let ξ ∈ L
∞(Ω,FT ,Q). Consider the contingent claim ξ. Using completeness of

market, obtain x, f satisfying (10.7.12) and (10.7.13). Under Q, S1, S2, . . . , Sd

being sigma-martingales Nt = ∫ t
0 < f, dS > for t ≤ T and Nt = Nt∧T is also a

sigma-martingale. Being bounded (in view of (10.7.12) ) it follows that N is a
martingale. Thus ξ ∈ K

v
T (S1, S2, . . . , Sd). Thus completeness of market is same is

K
v
T (S1, S2, . . . , Sd) ⊇ L

∞(Ω,FT ,Q).

By Theorem 10.42, this is equivalent to Eσ
Q(S1, S2, . . . , Sd) = Q. �



Chapter 11
Dominating Process of a Semimartingale

In Chap.7, we saw that using random time change, any continuous semimartingale
can be transformed into a amenable semimartingale, and then one can have a growth
estimate on the stochastic integral similar to the one satisfied by integrals w.r.t.
Brownian motion.

When it comes to r.c.l.l. semimartingales, this is impossible in view of the jumps.
Here we are faced with a difficulty as the stochastic integral is essentially created via
an L

2 estimate while the integral w.r.t. a process with finite variation is essentially
defined as anL1 object-as inLebesgue–Stieltjes integral. Theproblem is compounded
by the fact that not every semimartingale need be locally integrable.

Metivier–Pellaumail obtained an inequality that makes all semimartingales
amenable to the L

2 treatment. Indeed, P. A. Meyer in a private correspondence
had drawn our attention to the Metivier–Pellaumail inequality when he had seen the
random change technique in [34]—both have an effect of making every semimartin-
gale amenable to the L2 theory. As in earlier chapters, we fix a filtration (F�) on a
complete probability space (Ω,F ,P) and we assume thatF0 contains all P null sets
in F .

The Metivier–Pellaumail inequality relies on predictable quadratic variation
〈M, M〉of a square integrablemartingale,whichwediscussed in the previous chapter.
The inequality states that for a square integrable martingale M and a stopping times
τ , one has

E[ sup
0≤t<τ

|Mt |2] ≤ 4E[ [M, M]τ− + 〈M, M〉τ−]. (11.0.1)

Since given any adapted process A with r.c.l.l. paths, we can get stopping times τn
such that

E[ sup
0≤t<τn

|At |2] < ∞
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the estimate (11.0.1) makes it feasible to obtain an estimate on growth of stochastic
integral

∫
f d X for any semimartingale X as we will see in later in this chapter.

11.1 An Optimization Result

Let H be a sub-σ-field of F and ξ be a square integrable r.v. such that

E[ξ |H] = 0.

Let A ∈ F . Consider the class L of random variables φ such that E[φ |H] = 0 and
φ1A = ξ1A. Consider the problem of minimizing E[φ2], φ ∈ L.

Let us examine this in a special case, where H is the σ-field generated by a
countable partition {Hn : n ≥ 1} of Ω . Let En = Hn ∩ A and Fn = Hn ∩ Ac. Let
pn = P(En) and qn = P(Fn)

an = E[ξ1En ], bn = E[ξ1Fn ].

Since E[ξ |H] = 0, it follows that an + bn = 0. It follows that for any φ ∈ L,
E[φ1Fn ] = bn since E[φ |H] = 0 and φ1A = ξ1A. Since there is no other restric-
tion on φ, it is clear that in this case, the minimum is attained when φ is a constant
on each Fn , equal to 0 if pn = 0 or qn = 0 and equal to bn

qn
when qn > 0. Thus let

N ′ = {n : pn > 0, qn > 0} and

ψ = ξ1A +
∑

n∈N′

bn
qn

1Fn

and it follows that for φ ∈ L

E[φ2] ≥ E[ψ2].

We would like to get a description of ψ as well as E[ψ2] in terms of ξ,H and A. For
this, let G = σ(H, A) and η = E[ξ |G]. Then

η =
∑

n∈N′

an
pn

1En +
∑

n∈N′

bn
qn

1Fn

and
ψ = ξ1A + η1Ac .

Thus

E[ψ2] = E[ξ21A] +
∑

n∈N′

b2n
qn

.



11.1 An Optimization Result 363

Now it can be checked that (using a2n = b2n)

E[η2 |H] =
∑

n∈N′

1

pn + qn
(
a2n
pn

+ b2n
qn

)1Hn

=
∑

n∈N′

1

pn + qn
b2n(

pn + qn
pnqn

)1Hn

=
∑

n∈N′

b2n
pnqn

1Hn

It thus follows that

E[1AE[η2 |H]] =
∑

n∈N′
E[ b2n

pnqn
1En ]

=
∑

n∈N′

b2n
qn

and hence
E[ψ2] = E[ξ21A] + E[1AE[η2 |H]].

We will now show that the result is true in general. The calculations done above
give us a clue as to the answer.

Theorem 11.1 Let H be a sub-σ-field of F , and let ξ be a random variable with
E[ξ2] < ∞ such that E[ξ | H] = 0. Let A ∈ F and

L = {φ : E[φ |H] = 0, φ1A = ξ1A}.

Then for φ ∈ L

E[φ2] ≥ E[ψ2]

where G = σ(H, A), η = E[ξ |G] and

ψ = ξ1A + η1Ac .

Further,
E[ψ2] = E[ξ21A] + E[1AE[η2 |H]]. (11.1.1)

Proof Let us begin by noting that G = {(B ∩ A) ∪ (C ∩ Ac) : B,C ∈ H}. Hence

L
2(Ω,G,P) = {β1A + θ1Ac : β, θ ∈ L

2(Ω,H,P)}. (11.1.2)

Thus, η = E[ξ |G] can be written as η = β1A + θ1Ac where β, θ are H measurable
square integrable random variables. Note that
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E[φ2] = E[(φ − ψ)2 + ψ2 + 2(φ − ψ)ψ]

Now (φ − ψ)1A = 0 and hence (φ − ψ)ψ = (φ − ψ)1Acψ = (φ − ψ)1Acθ =
(φ − ψ)θ and hence

E[2(φ − ψ)ψ] = E[E[2(φ − ψ)θ |H]]
= E[θE[2(φ − ψ) |H]]
= 0

as E[ψ |H] = 0 and E[φ |H] = 0. This proves the first part. For the second part,
recall η = β1A + θ1Ac . Let α = E[1A | H]. Since E[η |H] = 0, we have

βα + θ(1 − α) = 0. (11.1.3)

Thus
E[η2 |H] = E[β21A + θ21Ac | H]

= β2α + θ2(1 − α)

and hence
E[1AE[η2 |H]] = E[E[η2 |H]E[1A |H]]

= E[β2α + θ2(1 − α)E[1A |H]]
= E[β2α2 + θ2(1 − α)α]
= E[θ2(1 − α)2 + θ2(1 − α)α]
= E[θ2(1 − α)]

(11.1.4)

where we have used (11.1.3). On the other hand

E[η21Ac ] = E[θ21Ac ]
= E[θ2E[1Ac |H]
= E[θ2(1 − α)]

(11.1.5)

Thus (11.1.4) and (11.1.5) yield

E[η21Ac ] = E[1AE[η2 |H]]. (11.1.6)

Now, from the definition of ψ, we have

E[ψ2] = E[ξ21A] + E[η21Ac ]
= E[ξ21A] + E[1AE[η2 |H]]. (11.1.7)

where the last step follows from (11.1.6). �
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Let us observe that η = E[ξ |G] and hence by Jensen’s inequality, one has.

E[1AE[η2 |H]] ≤ E[1AE[ξ2 |H]].

Thus the previous result leads to

Theorem 11.2 Let ξ be a random variable such that E[ξ |H] = 0 and E[ξ2] < ∞.
For A ∈ F , there exists a random variable ψ such that

(i) ψ1A = ξ1A.
(ii) E[ψ |H] = 0.
(iii) E[ψ2] ≤ E[1A(ξ

2 + E[ξ2 |H])].

11.2 Metivier–Pellaumail Inequality

We are now in a position to prove

Theorem 11.3 (Metivier–Pellaumail inequality) Let M be a square integrable mar-
tingale with M0 = 0 and σ be a stopping time. Then we have

E[sup
t<σ

|Mt |2] ≤ 4[E[M, M]σ− + E[〈M, M〉σ−]]. (11.2.1)

Proof Suffices to prove it for σ bounded as the general case follows by using (11.2.1)
for σ ∧ m and taking limit over m. So we assume σ ≤ T . Now we can assume that
Mt = Mt∧T .

Let {τk : k ≥ 1} be predictable stopping times as in Theorem 8.75. Let ξk =
(�M)τk ,U

k = ξk1[τk ,∞), Z = ∑
k∈F Uk , N = M − Z . Since τk is predictable,Uk is

a martingale. We have seen in Theorem 8.75 that 〈N , N 〉 is a continuous increasing
process. Moreover

[Z , Z ]t =
∑

k∈F
ξ2k1[τk ,∞)(t) (11.2.2)

and
〈Z , Z〉t =

∑

k∈F
E[ξ2k | Fτk−]1[τk ,∞)(t) (11.2.3)

For k ∈ F , let Gk = σ(Fτk−, {σ > τk}), ηk = E[ξk |Gk] and

ψk = ξk1{σ>τk } + ηk1{σ≤τk }.

Since E[ξk | Fτk−] = 0 and Fτk− ⊆ Gk , it follows that E[ψk | Fτk−] = 0 and hence

V k
t = ψk1[τk ,∞)(t)

https://doi.org/10.1007/978-981-10-8318-1_8
https://doi.org/10.1007/978-981-10-8318-1_8
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is a martingale. Since V k, V j do not have common jumps for j 
= k

[V k, V j ] = 0, 〈V k, V j 〉 = 0. (11.2.4)

Moreover, for all k ∈ F , Theorem 11.2 implies

E[(ψk)
2] ≤ E[1{σ>τk }(ξ

2
k + E[ξ2k |Fτk−])] (11.2.5)

This of course also gives
E[(ψk)

2] ≤ 2E[(ξk)2].

Let Y = ∑
k∈F V k . If F is finite, clearly, Y is a martingale. In case F is infinite, the

series converges and Y is a martingale as in the proof of Theorem 8.75. Noting that
ψk1{σ>τk } = ξk1{σ>τk }, we have

V k
t 1{t<σ} = ψk1{t<σ}1[τk ,∞)(t)

= ξk1{t<σ}1[τk ,∞)(t)

= Uk
t 1{t<σ}

(11.2.6)

As a consequence of (11.2.6), we get

Zt1{t<σ} = Yt1{t<σ}. (11.2.7)

Moreover, using (11.2.5), (11.2.2) and (11.2.3) we get

E[[Y,Y ]σ] = E[
∑

k∈F
ψ2
k1{σ≥τk }]

≤ E[
∑

k∈F
ψ2
k ]

≤ E[
∑

k∈F
1{σ>τk }(ξ

2
k + E[ξ2k |Fτk−])]

≤ E[[Z , Z ]σ− + 〈Z , Z〉σ−]

(11.2.8)

Let X = N + Y . Then in view of (11.2.7), Xt1{t<σ} = Mt1{t<σ} and hence

E[sup
t<σ

|Mt |2] = E[sup
t<σ

|Xt |2]
≤ E[sup

t≤σ
|Xt |2]

≤ 4E[[X, X ]σ]
(11.2.9)

Finally, using (11.2.8) along with [N ,Y ] = 0 and E[[N , N ]σ] = E[〈N , N 〉σ], we
get

https://doi.org/10.1007/978-981-10-8318-1_8
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E[[X, X ]σ] = E[[N , N ]σ] + E[[Y,Y ]σ]
≤ E[〈N , N 〉σ] + E[[Z , Z ]σ−] + E[〈Z , Z〉σ−] (11.2.10)

Since 〈N , N 〉 is continuous, we have 〈N , N 〉σ− = 〈N , N 〉σ . As seen in Theorem
8.75 〈N , Z〉 = 0 and hence we get

〈N , N 〉σ + 〈Z , Z〉σ− = 〈M, M〉σ−.

This along with (11.2.9) and (11.2.10) implies

E[sup
t<σ

|Mt |2] ≤ 4[E[[Z , Z ]σ−] + E[〈M, M〉σ−]] (11.2.11)

Finally, [Z , Z ] ≤ [M, M] implies (11.2.1). �

11.3 Growth Estimate

TheMetivier–Pellaumail inequality enables us to obtain a growth estimate on
∫

f d X
for any semimartingale X . Given a locally bounded predictable process f and a
decomposition X = M + A of a semimartingale X , where M is a locally square
integrable martingale with M0 = 0 and A is a process with finite variation paths,
let Y = ∫

f d X , N = ∫
f dM and B = ∫

f d A. Then Y = N + B, N is a locally
square integrable martingale and B ∈ V. Further,

[N , N ]t =
∫ t

0
f 2s d[M, M]s, (11.3.1)

〈N , N 〉t =
∫ t

0
f 2s d〈M, M〉s (11.3.2)

and thus in view of (11.2.1), we have

E[sup
t<τ

|
∫ t

0
f dM |2] ≤ 4E[

∫ τ−

0
f 2s d[M, M]s +

∫ τ−

0
f 2s d〈M, M〉s]. (11.3.3)

Writing |A|t = Var[0,t](A), we have for all t ,

|
∫ t

0
| fs |d As |2 ≤ |A|t

∫ t

0
| f 2s |d|A|s

and hence

E[sup
t<τ

|
∫ t

0
f d A|2] ≤ E[ |A|τ−

∫ τ−

0
| f 2s |d|A|s] (11.3.4)

https://doi.org/10.1007/978-981-10-8318-1_8
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We can combine the two estimates (11.3.3) and (11.3.4) as follows: let

Vt = 8(1 + [M, M]t + 〈M, M〉t + Var[0,t](A)) (11.3.5)

and then we have (compare with (7.2.5) for amenable semimartingales)

E[sup
t<τ

|
∫ t

0
f d X |2] ≤ E[Vτ−

∫ τ−

0
| f 2s |d|V |s]. (11.3.6)

The significant point about this estimate is that given any locally bounded predictable
f and any semimartingale X , we can get a sequence of stopping times τn increasing
to ∞ such that the expression on the right-hand side in (11.3.6) is finite. This may
not be the case for the estimate

E[sup
t≤τ

|
∫ t

0
f d X |2] ≤ E[Vτ

∫ τ

0
| f 2s |d|V |s]

which indeed can be obtained without any need for the Metivier–Pellaumail inequal-
ity. The process V introduced above (modulo a constant) was called a control process
of the semimartingale X by Metivier–Pellaumail.

While the control process was used to successfully deal with stochastic differ-
ential equations driven by semimartingales, the notion is not natural as even if the
semimartingale is small in Emery topology, the control process may not be small.
Further, if V is control process for a semimartingale X , for a constant c, cV may not
be a control process for cX .

Definition 11.4 An (adapted) increasing process U is said to be a dominating
process for a semimartingale X if there exists a decomposition X = M + A,
with M a locally square integrable martingale with M0 = 0, A a process with
finite variation paths such that the process B defined by

Bt = Ut − 2
√
2([M, M]t + 〈M, M〉t )1/2 − √

2|A|t (11.3.7)

belongs to V
+; i.e. B is an increasing process with B0 ≥ 0.

Theorem 11.5 Every semimartingale X admits a dominating process.

Proof As noted in Corollary 5.60, X admits a decomposition X = M + A, where
M is a locally square integrable martingale with M0 = 0 and A ∈ V. Then

Ut = 2
√
2([M, M]t + 〈M, M〉t )1/2 + √

2|A|t (11.3.8)

is a dominating process. �

Remark 11.6 One of the reasons that we did not defineU given by (11.3.8) for
some decomposition X = M + A as the dominating process is that now we
can have a common dominating process for finitely many semimartingales.

https://doi.org/10.1007/978-981-10-8318-1_7
https://doi.org/10.1007/978-981-10-8318-1_5


11.3 Growth Estimate 369

With this definition we have the following inequality.

Theorem 11.7 Let X be a semimartingale and U be a dominating process for X.
Then for any stopping time σ we have

E[ sup
0≤t<σ

|Xt |2] ≤ E[U 2
σ−] (11.3.9)

Proof Let X = M + A be a decomposition of semimartingale X as in Definition
11.4, with B defined by (11.3.7) being an increasing process with B0 ≥ 0. Then it
follows that Bt ≥ 0 for all t and hence

2
√
2([M, M]t + 〈M, M〉t )1/2 + √

2|A|t ≤ Ut

and as a result
8([M, M]t + 〈M, M〉t ) + 2|A|2t ≤ U 2

t (11.3.10)

On the other hand, for any stopping time σ, we have

E[ sup
0≤t<σ

|Xt |2] ≤ 2E[ sup
0≤t<σ

|Mt |2] + 2E[ sup
0≤t<σ

|At |2] (11.3.11)

By Metivier–Pellaumail inequality (11.2.1) we have

E[sup
t<σ

|Mt |2] ≤ 4[E[M, M]σ− + E[〈M, M〉σ−]]. (11.3.12)

At the same time |At | ≤ |A|t (where |A| is the total variation of A). As a result

E[sup
t<σ

|At |2] ≤ E[ |A|2σ−]. (11.3.13)

Combining (11.3.11)–(11.3.13), we get

E[ sup
0≤t<σ

|Xt |2] ≤ E[8([M, M]σ− + 〈M, M〉σ−) + 2|A|2σ−]. (11.3.14)

Now the required estimate (11.3.9) follows from (11.3.10) and (11.3.14). �

Ideally, wewould have liked a notion of dominating process such that ifU 1,U 2 be
dominating processes of semimartingale X1, X2, respectively, then V = U 1 +U 2 is
a dominating process for Y = X1 + X2. While this is not quite true, we will show
that Y admits a dominating processW such thatWt ≤ Vt . To prove this, we need the
following result.

Lemma 11.8 For M, N be locally square integrable martingales, let

q(M, N ) = [M, N ] + 〈M, N 〉.



370 11 Dominating Process of a Semimartingale

Then, for all t

(q(M + N , M + N )t )
1
2 ≤ (q(M, M)t )

1
2 + (q(N , N )t )

1
2 . (11.3.15)

Also, if Mi are locally square integrable martingales, i = 1, 2, . . . , k then

(q(

k∑

i=1

Mi ,

k∑

i=1

Mi )t )
1
2 ≤

k∑

i=1

(q(Mi , Mi )t )
1
2 . (11.3.16)

Proof Since M, N �→ [M, N ] and M, N �→ 〈M, N 〉 are bilinear maps, it follows
that same is true of M, N �→ q(M, N ). Further, q(M, M)t ≥ 0. Then proceeding as
in the proof of Theorems 4.77 and 8.59, we can conclude that

q(M, N )t ≤ (q(M, M)t )
1
2 (q(N , N )t )

1
2 (11.3.17)

and as a result one has

q(M + N , M + N )t = q(M, M)t + q(N , N )t + 2q(M, N )t

≤ q(M, M)t + q(N , N )t + 2(q(M, M)t )
1
2 (q(N , N )t )

1
2

= [(q(M, M)t )
1
2 + (q(N , N )t )

1
2 ]2

.

This proves (11.3.15). The estimate (11.3.16) is just the k variable version of the
same. �

Theorem 11.9 Let X1, X2 be semimartingales, and let U 1,U 2 be dominating pro-
cesses for X1 and X2, respectively. Let Y = X1 + X2. Then the semimartingale Y
admits a dominating process V such that

Vt ≤ U 1
t +U 2

t ∀t. (11.3.18)

Proof Let Xi = Mi + Ai (i = 1, 2) be decompositions of the semimartingales with
Mi being a local square integrable martingale with Mi

0 = 0 and Ai being a process
with finite variation paths such that

Di
t = Ui

t − Ci
t

are increasing processes with Di
0 ≥ 0 where

Ci
t = 2

√
2([Mi , Mi ]t + 〈Mi , Mi 〉t )1/2 + √

2|Ai |t .

Let N = M1 + M2, B = A1 + A2 and

https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_8
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Vt = 2
√
2([N , N ]t + 〈N , N 〉t )1/2 + √

2|B|t .

Then V is a dominating process for Y and to complete the proof of the first part, we
need to show (11.3.18). Clearly,

|B|t ≤ |A1|t + |A2|t ∀t. (11.3.19)

Since N = M1 + M2, it follows from Lemma 11.8 that

([N , N ]t + 〈N , N 〉t )1/2
≤ ([M1, M1]t + 〈M1, M1〉t )1/2 + ([M2, M2]t + 〈M2, M2〉t )1/2

(11.3.20)
Now estimates (11.3.19) and (11.3.20) imply

Vt ≤ C1
t + C2

t .

Since Ci
t ≤ Ui

t , the required result follows. �

We now move to exploring the connection of dominating process with stochastic
integral. Here are a sequence of auxiliary results that we need later.

Lemma 11.10 Let U, V ∈ V
+ be such that W defined by Wt = Vt −Ut belongs to

V+. Then Z defined by Zt = V 2
t −U 2

t also belongs to V+.

Proof Note that U, V ∈ V
+ implies Ut ≥ 0 and Vt ≥ 0 and

Zt − Zs = (Vt −Ut )(Vt +Ut ) − (Vs −Us)(Vs +Us)

= Wt (Vt +Ut ) − Ws(Vs +Us)

= (Wt − Ws)(Vs +Us) + Wt (Vt − Vs) + Wt (Ut −Us)

Since W,U, V ∈ V
+, it follows that Zt − Zs ≥ 0 and thus Z is increasing. Also,

easy to see that Z0 ≥ 0 and so Z ∈ V
+. �

Remark 11.11 Essentially the same argument as in Lemma 11.8 (see also
(4.6.21)) gives us for locally square integrable martingales N j , j = 1, 2, . . . k

〈Ni , N j 〉t ≤ (〈Ni , Ni 〉t ) 1
2 (〈N j , N j 〉t ) 1

2 (11.3.21)

[Ni , N j ]t ≤ ([Ni , Ni ]t ) 1
2 ([N j , N j ]t ) 1

2 (11.3.22)

and as a consequence

https://doi.org/10.1007/978-981-10-8318-1_11
https://doi.org/10.1007/978-981-10-8318-1_4
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(〈
k∑

i=1

Ni ,

k∑

j=1

N j 〉t ) 1
2 = (

k∑

i=1

k∑

j=1

〈Ni , N j 〉t ) 1
2

≤ [
k∑

i=1

k∑

j=1

(〈Ni , Ni 〉t ) 1
2 (〈N j , N j 〉t ) 1

2 ] 1
2

=
k∑

i=1

(〈Ni , Ni 〉t ) 1
2

(11.3.23)

and similarly,

([
k∑

i=1

Ni ,

k∑

j=1

N j ]t ) 1
2 ≤

k∑

i=1

([Ni , Ni ]t ) 1
2 (11.3.24)

For a locally bounded predictable process f and an increasing process V , let
θt ( f, V ) be defined by

θt ( f, V ) = (

∫ t

0
| fs |2dV 2

s )
1
2 +

∫ t

0
| fs |dVs . (11.3.25)

Note that θ( f, V ) is an increasing process,

θt ( f, V ) ≤ 2( sup
0≤s≤t

| fs |)Vt , (11.3.26)

∫ t

0
| fs |2dV 2

s ≤ θ2t ( f, V ) ≤ 2
∫ t

0
| fs |2dV 2

s + 2(
∫ t

0
| fs |dVs)

2 (11.3.27)

and also

∫ t

0
| fs |2dV 2

s ≤ θ2t ( f, V ) ≤ 2(
∫ t

0
| fs |2dV 2

s + Vt

∫ t

0
| fs |2dVs). (11.3.28)

The following result gives interplay of this notion of dominating process with that
of stochastic integral.

Theorem 11.12 Let X be a semimartingale, U be a dominating processes for X and
f be a locally bounded predictable process. Let Y = ∫

f d X. Then the semimartin-
gale Y admits a dominating process V such that

Vt ≤ θt ( f,U ) ∀t. (11.3.29)

Proof Let X = M + A be a decomposition of the semimartingale X with M being a
locally square integrable martingale with M0 = 0 and A being a process with finite
variation paths such that U − C − √

2|A| ∈ V
+ where C ∈ V

+ is given by
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Ct = 2
√
2(〈M, M〉t + [M, M]t)1/2.

Let N = ∫
f dM , B = ∫

f d A. Then N is a locally square integrable martingale
with N0 = 0, B is a process with finite variation paths such that Y = N + B. Now

〈N , N 〉t + [N , N ]t =
∫ t

0
| f |2d〈M, M〉 +

∫ t

0
| f |2d[M, M]

and |B|t = ∫ t
0 | f |d|A| and as a consequence, V defined below is a dominating pro-

cess:
Vt = 2

√
2(〈N , N 〉t + [N , N ]t )1/2 + √

2|B|
= (

∫ t

0
| f |2dC2)1/2 + √

2
∫ t

0
| f |d|A| (11.3.30)

Since U − C ∈ V
+, it follows that (using Lemma 11.10) U 2 − C2 ∈ V

+ and hence

∫ t

0
| f |2dC2 ≤

∫ t

0
| f |2dU 2 (11.3.31)

and U − √
2|A| ∈ V

+ implies

√
2

∫ t

0
| f |d|A| ≤

∫ t

0
| f |d|U | (11.3.32)

Combining (11.3.30)–(11.3.32), we get

Vt ≤ (

∫ t

0
| f |2dU 2)1/2 +

∫ t

0
| f |d|U | = θt ( f,U ). (11.3.33)

This proves (11.3.29). �
Putting together Theorems 11.7 and 11.12 we now obtain an estimate on the growth
of a stochastic integral.

Theorem 11.13 Let X be semimartingale and f be a locally bounded predictable
process. Let V be a dominating process for X. Then for any stopping time τ one has

E[sup
t<τ

|
∫ t

0
f d X |2] ≤ E[θ2τ−( f, V )] (11.3.34)

Further,

E[sup
t<τ

|
∫ t

0
f d X |2] ≤ 4E[( sup

0≤s<τ
| f 2s |)V 2

τ−] (11.3.35)

Proof As noted earlier, (11.3.34) follows from Theorems 11.7 and 11.12 and then
(11.3.35) follows from (11.3.26). �
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Remark 11.14 Before proceeding, we would like to stress that given a locally
bounded predictable f and an increasing process V ∈ V

+, one can always
get bounded stopping times τm increasing to ∞ such that

E[θ2τm−( f, V )] < ∞

and thus the estimate (11.3.34) is meaningful for any locally bounded pre-
dictable f and any semimartingale.

We can now add to the Dellacherie–Meyer–Mokobodzky–Bichteler Theorem.
Each of the seven equivalent conditions in Theorem 5.89 is equivalent to existence
of a dominating process. We will list here only two out of the seven.

Theorem 11.15 Let X be an r.c.l.l. (F�) adapted process. Let JX be defined by
(4.2.1)–(4.2.2). Then the following are equivalent.

(i) X is a weak stochastic integrator; i.e. if f n ∈ S, f n → 0 uniformly, then
JX ( f n)t → 0 in probability ∀t < ∞.

(ii) X is a semimartingale; i.e.X admits a decomposition X = M + A where M is
a local martingale and A is a process with finite variation paths.

(iii) There exists an increasing adapted process V such that for all stopping times
τ and for all f ∈ S, one has

E[sup
t<τ

|JX ( f )t |2] ≤ 2E[
∫

1[0,τ )(s)| fs |2dV 2
s + (

∫
1[0,τ )(s)| fs |dVs)

2]
(11.3.36)

Proof We have already shown that (i) and (i i) are equivalent. Using Theorem 11.13,
it follows that (i i) implies (i i i) follows. To see that (i i i) implies (i), note that given
any adapted increasing process V , s < ∞ and ε > 0, we can get a stopping time
τ such that Vτ− is bounded and P(s < τ ) ≥ (1 − ε). See Remark 11.14. Now the
result follows from Theorem 11.13 and the estimate (11.3.27). �

11.4 Alternate Metric for Emery Topology

We will now introduce another metric on the space of semimartingales in terms
of dominating process and then show that this metric is equivalent to the metric
introduced earlier for the Emery topology.

Definition 11.16 For semimartingales X,Y , let

dsm(X,Y ) = inf{ducp(V, 0) : V is a dominating process for X − Y }.

It is easy to see that ifV is a dominating process for X − Y thenV is also a dominating
process for Y − X and thus dsm(X,Y ) = dsm(Y, X). The next two results will show
that dsm is a metric.

https://doi.org/10.1007/978-981-10-8318-1_5
https://doi.org/10.1007/978-981-10-8318-1_4
https://doi.org/10.1007/978-981-10-8318-1_4
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Lemma 11.17 Let X,Y be semimartingales such that dsm(X,Y ) = 0. Then X = Y .

Proof Get V k ∈ V
+ such that V k dominates X − Y and ducp(V k, 0) ≤ 2−k .

Then ∞∑

k=1

∞∑

n=1

2−nE[ V k
n ∧ 1] ≤ 1

and as a consequence, for every n, (using Fubini’s Theorem) we have

E[
∞∑

k=1

2−n[ V k
n ∧ 1]] ≤ 1.

Thus (noting V k
t ≥ 0)

∞∑

k=1

2−n[V k
n ∧ 1] < ∞ a.s.

and hence for every t < ∞

Ut = [
∞∑

k=1

V k
t ] < ∞ a.s.

Now let τm be stopping times increasing to ∞ such that Uτm− ≤ m. In view of
(11.3.9), we have for every k

E[ sup
0≤t<τm

|Xt − Yt |2] ≤ E[(V k
τm−)2]. (11.4.1)

Now (V k
τm−)2 converges to zero in probability as k → ∞ and is dominated by m2,

and thus the right-hand side in (11.4.1) converges to zero. Thus for every m,

E[ sup
0≤t<τm

|Xt − Yt |2] = 0

showing that X = Y . �

Remains to show that dsm satisfies triangle inequality, which we do next.

Lemma 11.18 Let X,Y, Z be semimartingales. Then

dsm(X, Z) ≤ dsm(X,Y ) + dsm(Y, Z). (11.4.2)

Proof Given ε > 0, get U, V ∈ V
+ such that U is a dominating process for X − Y ,

V is a dominating process for Y − Z and
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ducp(U, 0) ≤ dsm(X,Y ) + ε

ducp(V, 0) ≤ dsm(Y, Z) + ε.

Since X − Z = (X − Y ) + (Y − Z), invoking Theorem 11.9, we can get W ∈ V
+

such that W is a dominating process for X − Z and W ≤ U + V . As a result, we
note that

ducp(W, 0) ≤ ducp(U, 0) + ducp(V, 0).

Putting these estimates together, we get

dsm(X, Z) ≤ ducp(W, 0)

≤ ducp(U, 0) + ducp(V, 0)

≤ dsm(X,Y ) + dsm(Y, Z) + 2ε.

Since ε is arbitrary, this proves (11.4.2). �

Using the previous two results, we conclude that dsm is a metric on the space of
semimartingales. We will show that this metric also induces the Emery topology.
The first step is to show that the space of semimartingales is complete in this metric.

Theorem 11.19 Let Xn be a sequence of semimartingales that is Cauchy in dsm

metric. Then there exists a semimartingale X with dsm (Xn, X) → 0.

Proof By taking a subsequence if necessary, we assume that Xn is such that (writing
X0 = 0)

dsm(Xn, Xn−1) ≤ 2−n. (11.4.3)

For n ≥ 1, let V n ∈ V
+ be dominating process for Xn − Xn−1 such that

ducp(V
n, 0) ≤ dsm(Xn, Xn−1) + 2−n ≤ 2.2−n. (11.4.4)

Thus there exists a decomposition Xn − Xn−1 = Mn + An with Mn being a locally
square integrable martingale with Mn

0 = 0, An ∈ V and such that Un defined by

Un
t = V n

t − 2
√
2([Mn, Mn]t + 〈Mn, Mn〉t )1/2 − √

2|An|t (11.4.5)

is an increasing process with Un
0 ≥ 0. In particular, for all n, t

2
√
2([Mn, Mn]t + 〈Mn, Mn〉t )1/2 + √

2|An|t ≤ V n
t (11.4.6)

As in Lemma 11.17, using (11.4.4) we can conclude that

Vt =
∞∑

n=1

V n
t < ∞ ∀t < ∞. (11.4.7)
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Let us define Bm
t = ∑m

n=1 A
n
t and Bt = ∑∞

n=1 A
n
t . Then

|B − Bm |t ≤
∞∑

n=m+1

|An|t . (11.4.8)

In view of (11.4.6) and (11.4.7), it follows that D defined by

Dt =
∞∑

n=1

(〈Mn, Mn〉t )1/2

satisfies Dt ≤ Vt , is a predictable increasing process, and D0 = 0. Thus D is locally
bounded, and we can get stopping times σ j increasing to infinity such that Dσ j is
bounded (say by c j ) for each j . Let

Dm
t =

∞∑

n=m+1

(〈Mn, Mn〉t )1/2.

Then Dm
σ j

≤ Dσ j ≤ c j and converges to zero almost surely and as a consequence

lim
m→∞E[Dm

σ j
] = 0 (11.4.9)

Let us define Nm as follows: N 0 = 0 and

Nm =
m∑

n=1

Mn.

Then Nm is also a locally square integrable martingale and Xm = Nm + Bm . Noting
that for m ≤ k, Nk − Nm = ∑k

n=m+1 M
n and hence using (11.3.23) we get

(〈Nk − Nm, Nk − Nm〉t )1/2 = (〈
k∑

n=m+1

Mn,

k∑

n=m+1

Mn〉t )1/2

≤
k∑

n=m+1

(〈Mn, Mn〉t )1/2

≤ Dm
t

(11.4.10)

and thus in view of (11.4.9), we have

lim
m→∞ sup

k>m
E[〈Nk − Nm, Nk − Nm〉σ j ] = 0. (11.4.11)

In turn, using Doob’s maximal inequality, we get
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lim
m→∞ sup

k>m
E[sup

t≤σ j

|Nk
t − Nm

t |2] = 0. (11.4.12)

Invoking arguments given in Lemma 2.75, it follows that Nk converges in ucpmetric
to an r.c.l.l. adapted process N . Further,

lim
m→∞E[sup

t≤σ j

|Nt − Nm
t |2] = 0. (11.4.13)

Thus N is a locally square integrable martingale. Using Theorem 8.61 and arguments
as in (11.4.10) we conclude

(〈N−Nm, N − Nm〉t + [N − Nm, N − Nm]t )1/2
= lim

k
(〈Nk − Nm, Nk − Nm〉t + [Nk − Nm, Nk − Nm]t )1/2

≤ lim
k

k∑

n=m+1

([Mn, Mn]t + 〈Mn, Mn〉t )1/2 (11.4.14)

Let us define X = N + B. Then X is a semimartingale. Further, X − Xm = N −
Nm + B − Bm and thus Um defined by

Um = 2
√
2([N − Nm, N − Nm]t + 〈N − Nm, N − Nm〉t )1/2 + √

2|B − Bm |t
is a dominating process for X − Xm . Using (11.4.6), (11.4.8), (11.4.14), it follows
that

Um
t ≤

∞∑

n=m+1

V n
t .

In view of (11.4.7), it follows that
∑∞

n=m+1 V
n
t converges to zero almost surely

(as m → ∞). Thus, Um
t converges to 0 in probability. Since for each m, Um is an

increasing process, we conclude that Um ucp−→ 0 and so dsm(X, Xm) converges to 0
completing the proof. �

The next result connects convergence in dsm with that in dem .

Lemma 11.20 Suppose Xn, X are semimartingales such that

∞∑

n=1

dsm(Xn, X) < ∞. (11.4.15)

Then dem(Xn, X) → 0.

Proof Let V n be a dominating process for Xn − X such that

ducp(V
n, 0) ≤ dsm(Xn, X) + 2−n.

https://doi.org/10.1007/978-981-10-8318-1_2
https://doi.org/10.1007/978-981-10-8318-1_8
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Then as seen in the proof of Lemma 11.17,

Ut =
∞∑

n=1

V n
t < ∞ ∀t.

Let σ j = inf{t > 0 : Ut ≥ j or Ut− ≥ j}. Then

Uσ j− =
∞∑

n=1

V n
σ j− ≤ j

and hence for each j ,
lim
n→∞E[(V n

σ j−)2] = 0. (11.4.16)

Now for any predictable process f bounded by 1, we have

E[sup
t<σ j

|
∫ t

0
f d Xn −

∫ t

0
f d X | ] ≤ 4E[(V n

σ j−)2] (11.4.17)

Given T < ∞, η > 0 and ε > 0, get j such that

P(σ j ≥ T ) ≤ 1

2
ε (11.4.18)

and using (11.4.16) and (11.4.17) for this fixed j , get n0 such that for n ≥ n0

P(sup
t<σ j

|
∫ t

0
f d Xn −

∫ t

0
f d X | ] ≥ η) ≤ 1

2
ε (11.4.19)

Recall that choice of n0 is independent of f and thus (note: S1 is the set of predictable
processes bounded by 1) for n ≥ n0 we have

sup
f ∈S1

P(sup
t≤T

|
∫ t

0
f d Xn −

∫ t

0
f d X | ] ≥ η)

≤ sup
f ∈S1

P(sup
t<σ j

|
∫ t

0
f d Xn −

∫ t

0
f d X | ] ≥ η) + P(σ j ≥ T )

≤ ε

As noted in the proof of Lemma 4.108, this shows dem(Xn, X) → 0. �

Now we are in a position to prove that dsm and dem give rise to the same topology.
In other words, dsm is also a metric for the Emery topology.

https://doi.org/10.1007/978-981-10-8318-1_4
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Theorem 11.21 For semimartingales Xn, X

dsm(Xn, X) → 0 if and only if dem(Xn, X) → 0.

Proof Let Xn, X be such that dsm(Xn, X) → 0.Wewill show that dem(Xn, X) → 0.
Take any subsequence {nk} and let Y k = Xnk . Since dsm(Y k, X) → 0, we can choose
a subsequence {km} such that Zm = Y km satisfies

∞∑

k=1

dsm(Zm, X) < ∞.

Now Lemma 11.20 yields that dem(Zm, X) → 0. Thus the sequence {Xn} satisfies
the property that given any subsequence, there exists a further subsequence that
converges to X in dem metric. Hence dem(Xn, X) → 0.

From the definition of the metrics dem and dsm , it follows that the space of semi-
martingales is a linear topological space under each. Further, we have shown that the
space is complete under each of the metrics. The identity mapping being continuous
is then a homeomorphism in view of the open mapping theorem. See [55]. �

The following result gives a technique to prove almost sure convergence of
stochastic integrals.

Theorem 11.22 Suppose Xn, X are semimartingales such that

V n dominates (Xn − X) (11.4.20)

and ∞∑

n=1

(V n
t )2 < ∞ ∀t < ∞. (11.4.21)

Let f n, f be locally bounded predictable processes such that for all T < ∞
∞∑

n=1

[ sup
0≤t≤T

| f nt − ft |2] < ∞ a.s. (11.4.22)

Then for all T < ∞
∞∑

n=1

[ sup
0≤t≤T

|
∫ t

0
f n d Xn −

∫ t

0
f d X |2] < ∞ a.s. (11.4.23)

and as a consequence

lim
n→∞[ sup

0≤t≤T
|
∫ t

0
f n d Xn −

∫ t

0
f d X |2] = 0 a.s. (11.4.24)
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Proof Let W be a dominating process for X and let

Vt = Wt +
√∑∞

n=1(V
n
t )2 +

√∑∞
n=1[sup0≤s≤t | f ns − fs |2] + sup0≤s≤t | fs |.

For j ≥ 1, let
τ j = inf{t ≥ 0 : Vt ≥ j or Vt− ≥ j}.

Note that sup0≤s<τ j
| fs | ≤ j , and hence

sup
0≤s<τ j

| f ns | ≤ sup
0≤s<τ j

| fs | + sup
0≤s<τ j

| f ns − fs |

≤ 2 j.

Using the fact that V is a dominating process for Xn − X as well as for X and that
Vτ j− ≤ j , we have (invoking (11.3.35))

E[ sup
0≤t<τ j

|
∫ t

0
f n d Xn −

∫ t

0
f n d X |2] ≤ 16 j2E[(V n

τ j−)2],

E[ sup
0≤t<τ j

|
∫ t

0
f n d X −

∫ t

0
f d X |2] ≤ 4 j2E[ sup

0≤s<τ j

| f ns − fs |2]

and hence

E[
∞∑

n=1

sup
0≤t<τ j

|
∫ t

0
f n d Xn −

∫ t

0
f d X |2]

≤ 2E[
∞∑

n=1

sup
0≤t<τ j

|
∫ t

0
f n d Xn −

∫ t

0
f n d X |2

+
∞∑

n=1

sup
0≤t<τ j

|
∫ t

0
f n d X −

∫ t

0
f d X |2]

≤ 32 j2E[
∞∑

n=1

(V n
τ j−)2 +

∞∑

n=1

sup
0≤s<τ j

| f ns − fs |2]]

≤ 32 j2E[V 2
τ j−]

≤ 32 j4.

(11.4.25)

Thus for all j
∞∑

n=1

sup
0≤t<τ j

|
∫ t

0
f n d Xn −

∫ t

0
f d X |2 < ∞ a.s.

Since τ j increases to ∞, this implies (11.4.23) which in turn implies (11.4.24). �



Chapter 12
SDE Driven by r.c.l.l. Semimartingales

In this chapter, wewill consider stochastic differential equations as in Sect. 7.3 where
the driving semimartingale need not be continuous.

We will consider the SDE (7.3.1), where b would be as in Sect. 7.3 but Y would
be an r.c.l.l. semimartingale. We will continue to use the conventions used in that
section on matrix–vector-valued processes and stochastic integrals.

Here we will use theMetivier–Pellaumail inequality and the notion of dominating
process introduced earlier, andwewill see that invoking these, the proofs of existence
and uniqueness are essentially same as in the case of SDE’s driven by Brownian
motion. In Sect. 7.3 we had used random time change to achieve the same.

We begin with an analogue of the Gronwall’s inequality, a key step in the study
of differential equations.

12.1 Gronwall Type Inequality

We will obtain an analogue of Gronwall’s inequality that would be useful in deal-
ing with the stochastic differential equations driven by semimartingales in the next
section. The first one is from Metivier [50], and the second one is essentially based
on the same idea.

Theorem 12.1 Let A, B ∈ V
+ (increasing processes with A0 ≥ 0, B0 ≥ 0) and a

stopping time τ be such that Bτ− ≤ M. Suppose that for all stopping times σ ≤ τ

E[Aσ−] ≤ a + βE[
∫

[0,σ)

A−dB]. (12.1.1)

For α > 0 let C(α) = ∑[α]
j=0 α j . Then we have
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E[Aτ−] ≤ 2aC(2βM) (12.1.2)

Proof Let us define Vt = 1
M Bt . Then Vτ− ≤ 1 and we have

E[Aσ−] ≤ a + βME[
∫

[0,σ)

A−dV ] (12.1.3)

For integers i ≥ 1, let τi = inf{t ≥ 0 : At ≥ i or At− ≥ i} ∧ τ . Note that Aτi− ≤ i ,
τi ↑ τ and since A is increasing process, it follows that

E[Aτi−] → E[Aτ−] as i → ∞. (12.1.4)

Fix i and δ = 1
2βM and let σk be defined inductively by σ0 = 0 and for k ≥ 0

σk+1 = inf{t > σk : (Vt − Vσk ) ≥ δ or (Vt− − Vσk ) ≥ δ} ∧ τi (12.1.5)

If σk+1 < τi , then (Vσk+1 − Vσk ) ≥ δ and hence

σN = τi , for N = [2βM] + 1. (12.1.6)

Moreover, for all k, (Vσk+1− − Vσk ) ≤ δ.
For k ≥ 0, let Zk = Aσk− and θk = E[Zk]. Then

E[Zk+1] ≤ a + βME[
∫

[0,σk )

As−dVs] + βME[(
∫

[σk ,σk+1)

As−dVs]
≤ a + βME[Zk] + βME[Zk+1]δ
≤ a + βME[Zk] + 1

2
E[Zk+1]

Thus we have for k ≥ 1 (note that a priori we know that Aσk+1− ≤ i and hence θk+1

is finite)
θk+1 ≤ 2a + 2βMθk .

Likewise, we can conclude that θ1 = E[Z1] ≤ 2a. Then by induction it follows that

θk+1 ≤ 2a(1 +
k∑
j=1

(2βM) j ).

Thus invoking (12.1.6), we have E[Aτi−] = θN ≤ 2aC(2βM). In view of (12.1.4),
this completes the proof of (12.1.2). �

The next result is an analogue of the inequality obtained in Theorem 12.1 for
(Aσ−)2.
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Theorem 12.2 Let A, B ∈ V
+ (increasing processes with A0 ≥ 0, B0 ≥ 0) and a

stopping time τ be such that Bτ− ≤ M and for all stopping times σ ≤ τ

E[(Aσ−)2] ≤ a + βE[(θσ−(A−, B))2] (12.1.7)

For α > 0, let C(α) = ∑[α]
j=0 α j . Then we have

E[(Aτ−)2] ≤ 3aC(10βM2) (12.1.8)

Proof Let us define Vt = 1
M Bt . Then Vτ− ≤ 1 and we have

E[(Aσ−)2] ≤ a + βM2E[(θσ−(A−, V ))2] (12.1.9)

For integers i ≥ 1, let τi = inf{t ≥ 0 : At ≥ i or At− ≥ i} ∧ τ . Note that Aτi− ≤ i ,
τi ↑ τ and since A is increasing process, it follows that

E[A2
τi−] → E[A2

τ−] as i → ∞. (12.1.10)

Fix δ = 1
10βM2 and let σk be defined inductively by σ0 = 0 and for k ≥ 0

σk+1 = inf{t > σk : (Vt − Vσk ) ≥ δ or (Vt− − Vσk ) ≥ δ} ∧ τi (12.1.11)

If σk+1 < τi , then (Vσk+1 − Vσk ) ≥ δ and hence σN = τi , for N = [10βM2] + 1.
Moreover, for all k, (Vσk+1− − Vσk ) ≤ δ. Noting that for f ≥ 0

(θt−( f, V ))2 ≤ 2
∫

[0,t)
f 2s dV

2
s + 2Vt

∫
[0,t)

f 2s dVs

and using the inequality (12.1.9), we have, writing Ut = V 2
t for convenience,

E[(Aσk+1−)2] ≤ a + βM2E[(θσk+1(A
−, V ))2]

≤ a + 2βM2E[(
∫

[0,σk+1)

A2
t−dUt +

∫
[0,σk+1)

A2
t−dVt )]. (12.1.12)

For k ≥ 0, let Zk = (Aσk−)2 and θk = E[Zk] = E[(Aσk−)2]. Since σk ≤ τi , θk is
finite for each k. Using (12.1.12) for k ≥ 1

θk+1 ≤ a + 2βM2E[(
∫

[0,σk )

A2
t−dUt +

∫
[0,σk )

A2
t−dVt )]

+ 2βM2E[(
∫

[σk ,σk+1)

A2
t−dUt +

∫
[σk ,σk+1)

A2
t−dVt )]

≤ a + 2βM2E[Zk(Uσk− −U0) + Zk(Vσk− − V0)]
+ 2βM2E[Zk+1(Uσk+1− −Uσk ) + Zk+1(Vσk+1− − Vσk )]

(12.1.13)
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Using Ut ≤ 1, Vt ≤ 1 for all t < τ and (Vσk+1− − Vσk ) ≤ δ and

(Uσk+1− −Uσk ) = (Vσk+1− − Vσk )(Vσk+1− + Vσk ) ≤ 2δ

the inequality (12.1.13) yields

θk+1 ≤a + 2βM2(2θk) + 2βM2(3θk+1)δ

≤a + 4βM2θk + 6

10
θk+1

(12.1.14)

Thus, for k ≥ 1

θk+1 ≤ 10

4
a + 10βM2θk ≤ 3a + 10βM2θk .

Same argument as above also yields θ1 ≤ 3a. Thus by induction it follows that

θk+1 ≤ 3a[
k∑
j=0

(10βM2) j ]. (12.1.15)

Since σN = τi as noted earlier, it follows that θN = E[(Aτi−)2]. Thus (12.1.15)
implies that, writing α = 10βM2,

E[(Aτi−)2 ≤ 3a[
[α]∑
j=0

α j ]

This proves the required estimate in view of (12.1.10). �

12.2 Stochastic Differential Equations

Let Y 1,Y 2, . . . Ym be r.c.l.l. semimartingales w.r.t. the filtration (F�). Here we will
consider an SDE

dUt = b(t, ·,U )dYt , t ≥ 0, U0 = ξ0 (12.2.1)

where the functional b is given as follows. Recall that Dd = D([0,∞),Rd). Let
B(Dd) be the smallest σ-field on Dd under which the coordinate mappings are mea-
surable. Let

a : [0,∞) × Ω × Dd → L(d,m) (12.2.2)
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be such that for all t ∈ [0,∞),

(ω, γ) 	→ a(t,ω, γ) is Ft ⊗ B(Dd) measurable, (12.2.3)

for all (ω, γ) ∈ Ω × Dd

t 	→ a(t,ω, γ) is an r.c.l.l. mapping (12.2.4)

and suppose that there is an increasing r.c.l.l. adapted process K such that for all
γ, γ1, γ2 ∈ Dd ,

sup
0≤s≤t

‖a(s,ω, γ)‖ ≤ Kt (ω) sup
0≤s≤t

(1 + |γ(s)|) (12.2.5)

sup
0≤s≤t

‖a(s,ω, γ2) − a(s,ω, γ1)‖ ≤ Kt (ω) sup
0≤s≤t

|γ2(s) − γ1(s)|. (12.2.6)

Let b : [0,∞) × Ω × Dd → L(d,m) be given by

b(s,ω, γ) = a(s−,ω, γ). (12.2.7)

Note that (12.2.6) implies

sup
0≤s≤t

‖b(s,ω, γ2) − b(s,ω, γ1)‖ ≤ Kt−(ω) sup
0≤s<t

|γ2(s) − γ1(s)|. (12.2.8)

Lemma 12.3 Suppose a satisfies (12.2.2)–(12.2.6). Then we have

(i) For an r.c.l.l. (F�) adapted process V , Z defined by Zt = b(t, ·, V ) (i.e. Zt (ω) =
a(t,ω, V (ω)) ) is an r.c.l.l. (F�) adapted process.

(ii) For any stopping time τ ,

(ω, ζ) 	→ a(τ (ω),ω, ζ) is Fτ ⊗ B(Cd) measurable (12.2.9)

Proof For part (i), let us define a process V t by V t
s = Vs∧t . Note that in view of

(12.2.6), Zt = a(t, ·, V t ). The fact that ω 	→ V t (ω) is Ft measurable along with
(12.2.3) implies that Zt is also Ft measurable. For part (i i), when τ is a simple
stopping time, (12.2.9) follows from (12.2.3). For a general bounded stopping time
τ , the conclusion (12.2.9) follows by approximating τ from above by simple stopping
times and using right continuity of a(t,ω, ζ). For a general stopping time τ , (12.2.9)
follows by approximating τ by τ ∧ n. �

Recall that we had introducedmatrix–vector-valued processes and stochastic inte-
gral

∫
f d X where f, X are matrix–vector-valued while dealing with SDEs driven

by continuous semimartingales in Sect. 7.6. We will continue to use the same nota-
tion. As in the case of continuous semimartingales, here too, an r.c.l.l. (Rd -valued)
adapted process U is said to be a solution to the Eq. (12.2.1) if

Ut = U0 +
∫ t

0
b(s, ·,U )dYs (12.2.10)

https://doi.org/10.1007/978-981-10-8318-1_7
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i.e. for 1 ≤ j ≤ d,

U j
t = U j

0 +
m∑

k=1

∫ t

0+
b jk(s, ·,U )dY k

s

where U = (U 1, . . . ,Ud) and b = (b jk).
Let us recast the growth estimate Theorem 11.13 in matrix–vector form for later

use:

Lemma 12.4 Let X = (X1, X2, . . . Xm), where X j is a semimartingale for each j ,
1 ≤ j ≤ m. Suppose V is a dominating process for each of X j , 1 ≤ j ≤ m. Then
for any locally bounded L(d,m)-valued predictable f , and a stopping time σ, one
has

E[ sup
0≤s<σ

|
∫ s

0+
f d X |2] ≤ dm2E[θ2σ−(‖ f ‖, V )]. (12.2.11)

Proof Fix T < ∞. Then

E[ sup
0≤s<σ∧T

|
∫ s

0+
f d X |2] =

d∑
j=1

E[ sup
0≤s<σ∧T

|
m∑

k=1

∫ s

0+
f jkd X

k |2]

≤ m
d∑
j=1

m∑
k=1

E[ sup
0≤s<σ∧T

|
∫ s

0+
f jkd X

k |2]

≤ m
d∑
j=1

m∑
k=1

E[θ2(σ∧T )−( f jk, V )].]

≤ dm2E[θ2σ−(‖ f ‖, V )].

(12.2.12)

The result follows taking limit as T ↑ ∞ in (12.2.12). �

We are now in a position to prove uniqueness of solution to the SDE (12.2.1). The
proof is essentially the sameas for SDEdrivenbyBrownianmotionor by a continuous
semimartingale.Herewe use the growth estimate (7.3.11) in place of (3.4.4) or (7.2.5)
for a continuous semimartingale satisfying (7.2.2). The technique of time change used
for continuous semimartingale is replaced here by the notion of dominating process
and the estimate in Theorem 12.2 replacing Gronwall’s lemma—Lemma 3.27.

Lemma 12.5 Let Y 1,Y 2, . . . Ym be r.c.l.l. semimartingales w.r.t. the filtration (F�).
Let a satisfy (12.2.2)–(12.2.6) and let b be defined by (12.2.7). Suppose H and G be
r.c.l.l. adapted processes and let X and Z satisfy

Xt = Ht +
∫ t

0+
b(s, ·, X)dYs (12.2.13)

Zt = Gt +
∫ t

0+
b(s, ·, Z)dYs . (12.2.14)

https://doi.org/10.1007/978-981-10-8318-1_11
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Let V be a (common) dominating process for Y j , 1 ≤ j ≤ m and let σ be a stopping
time such that Vσ− ≤ M and Kσ− ≤ β. Then

E[ sup
0≤s<σ

|Xs − Zs |2] ≤ 6E[ sup
0≤s<σ

|Hs − Gs |2]C(2dm2β2M2) (12.2.15)

where C(α) is as in Theorem 12.2.

Proof Using (12.2.13) and (12.2.14), we have

E[ sup
0≤s<σ

|Xs − Zs |2] ≤2E[ sup
0≤s<σ

|Hs − Gs |2]

+ 2E[ sup
0≤s<σ

|
∫ s

0
(b(u, ·, Z) − b(u, ·, X))dYu |2]

Using the Lipschitz condition (12.2.6), the fact that Kσ− ≤ β, it follows that for
s < σ

‖(b(s, ·, Z) − b(s, ·, X)‖ ≤ β sup
0≤t<s

|Xt − Zt |.

Thus writing As = sup0≤t≤s |Xt − Zt |, we get for any stopping time τ ≤ σ, using
(12.2.11),

E[A2
τ−] ≤ 2E[ sup

0≤s<τ
|Hs − Gs |2] + 2β2dm2E[θ2τ−(A−, V )].

Now Vσ− ≤ M and Theorem 12.2 together imply the required estimate (12.2.15). �

This result immediately leads to:

Theorem 12.6 Let Y 1,Y 2, . . . Ym be r.c.l.l. semimartingales w.r.t. the filtration (F�).
Let a satisfy (12.2.2)–(12.2.6) and let b be defined by (12.2.7). Let H be an adapted
r.c.l.l. process. Suppose X and Z satisfy

Xt = Ht +
∫ t

0+
b(s, ·, X)dYs (12.2.16)

Zt = Ht +
∫ t

0+
b(s, ·, Z)dYs (12.2.17)

Then X = Z.

Proof Let V be a common dominating process for Y j , 1 ≤ j ≤ m. LetUt = Vt + Kt

and σn be defined by

σn = inf{t ≥ 0 : Ut ≥ n or Ut− ≥ n}.

Then σn increases to ∞. Since Vσn− ≤ n and Kσn− ≤ n, Lemma 12.5 implies
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E[ sup
0≤s<σn

|Xt − Zt |2] = 0

for n ≥ 1. This proves X = Z . �

The same proof essentially yields the following

Theorem 12.7 Let Y 1,Y 2, . . . Ym be r.c.l.l. semimartingales w.r.t.the filtration (F�).
Let a satisfy (12.2.2)–(12.2.6) and let b be defined by (12.2.7). Let H be an adapted
r.c.l.l. process. Suppose τ is a stopping time and X and Z satisfy

Xt∧τ = Ht∧τ +
∫ t∧τ

0+
b(s, ·, X)dYs (12.2.18)

Zt∧τ = Ht∧τ +
∫ t∧τ

0+
b(s, ·, Z)dYs (12.2.19)

Then
P(Xt∧τ = Zt∧τ ∀t) = 1. (12.2.20)

Proof Let V be a common dominating process for Y j , 1 ≤ j ≤ m. LetUt = Vt + Kt

and σn be defined by

σn = inf{t ≥ 0 : Ut ≥ n or Ut− ≥ n} ∧ τ .

Then σn increases to τ . Since Vσn− ≤ n and Kσn− ≤ n, Lemma 12.5 implies

E[ sup
0≤t<σn

|Xt − Zt |2] = 0

for n ≥ 1. This proves P(Xt = Zt ∀t < τ ) = 1. The required result (12.2.20) fol-
lows from this. �

Having proven uniqueness of solution to the SDE (12.2.16), we now move onto
proving existence of solution to the equation. We will show this by showing that
Picard’s successive approximation method converges to a solution of the equation.
The proof will be very similar to the proof in the Brownian motion case.

Theorem 12.8 Let Y 1,Y 2, . . . Ym be r.c.l.l. semimartingales w.r.t.the filtration (F�).
Let a satisfy (12.2.2)–(12.2.6) and let b be defined by (12.2.7). Let H be an adapted
r.c.l.l. process. Then there exists an adapted r.c.l.l. process X such that (12.2.16)
holds. In other words, existence and uniqueness hold for the SDE (12.2.16).

Proof Let X [0]
t = Ht for all t ≥ 0 and for n ≥ 1 let X [n] be defined inductive as

follows:

X [n]
t = Ht +

∫ t

0+
b(s, ·, X [n−1])dYs (12.2.21)
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Then note that

X [n+1]
t − X [n]

t =
∫ t

0+
(b(s, ·, X [n]) − b(s, ·, X [n−1]))dYs . (12.2.22)

As in the proof of Lemma 12.5, let V be a (common) dominating process for Y j ,
1 ≤ j ≤ m. Let

Ut = Vt + V 2
t + sup

0≤s≤t
|Hs | + Kt

where K is as in conditions (12.2.5) and (12.2.6). Letσ j be the stopping times defined
by

σ j = inf{t ≥ 0 : Ut ≥ j or Ut− ≥ j}.

Note that σ j ↑ ∞ as j ↑ ∞. For n ≥ 0 let

A[n]
t = sup

0≤s≤t
|X [n+1]

s − X [n]
s |.

For s < σ j ,
‖(b(s, ·, X [n]) − b(s, ·, X [n−1])‖ ≤ j A[n−1]

s−

and thus using (12.2.22) along with the estimate (12.2.11), we get for any stopping
time τ ≤ σ j , for n ≥ 1 (using (11.3.28) for the last step)

E[(A[n]
τ−)2] = E[sup

t<τ
|X [n+1]

t − X [n]
t |2]

= E[sup
t<τ

|
∫ t

0
(b(s, ·, X [n]) − b(s, ·, X [n−1])dYs |2]

≤ dm2 j2E[θ2τ−(A[n−1]−, V )

≤ 2dm2 j2E[
∫

[0,τ )

(A[n−1]
s− )2dV 2

s + Vt

∫
[0,τ )

(A[n−1]
s− )2dVs]

≤ 4dm2 j3E[
∫

[0,τ )

(A[n−1]
s− )2dDs]

(12.2.23)

where Ds = V 2
s + Vs . Hence writing B[k]

t = ∑k
n=0 4

n(A[n]
t )2, we thus get for any

stopping time τ ≤ σ j

E[B[k]
τ−] ≤ E[(A[0]

τ−)2] + 16dm2 j3E[
∫

[0,τ )

B[k−1]
s− dU ] (12.2.24)

Also, recalling that |X [0]
t | = |Ht | ≤ j for all t < σ j , we have

https://doi.org/10.1007/978-981-10-8318-1_11


392 12 SDE Driven by r.c.l.l. Semimartingales

E[(A[0]
τ−)2] = E[sup

t<τ
|X [1]

t − X [0]
t |2]

= E[sup
t<τ

|
∫ t

0
b(s, ·, X [0])dY |2

≤ dm2E[θ2τ−( j, V )]
≤ 4dm2 j4.

Using (12.2.24) we get for any stopping time τ ≤ σ j

E[B[k]
τ−] ≤ 4dm2 j4 + 16dm2 j3E[

∫
[0, τ )

B[k]
s−dU ]

and thenusing the versionofGronwall inequality given inTheorem12.1,we conclude

E[B[k]
σ j−] ≤ C1( j, d,m)

where C1( j, d,m) = 8dm2 j4C(32dm2 j4) and C(α) = ∑[α]
j=0 α j . Taking limit as

k ↑ ∞, we conclude
E[Bσ j−] ≤ C1( j, d,m).

Thus, for each j ≥ 1,
∞∑
n=0

4nE[(A[n]
σ j−)2] < ∞

and as a consequence, for large n, E[(A[n]
σ j−)2] ≤ 4−n and hence

∞∑
n=0

√
E[(A[n]

σ j−)2] =
∞∑
n=0

‖[ sup
s<σ j

|X [n+1]
s − X [n]

s | ] ‖2 < ∞ (12.2.25)

The relation (12.2.25) implies

‖[
∞∑
n=0

sup
s<σ j

|X [n+1]
s − X [n]

s | ] ‖2 < ∞ (12.2.26)

as well as

sup
k≥1

‖[sup
s<σ j

|X [n+k]
s − X [n]

s | ]‖2 ≤ sup
k≥1

‖[
n+k∑
j=n+1

sup
s<σ j

|X [ j+1]
s − X [ j]

s | ]‖2

≤ [
∞∑

j=n+1

‖(sup
s<σ j

|X [n+1]
s − X [n]

s |)‖2]

→ 0 as n tends to ∞.

(12.2.27)
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Let N = ∪∞
j=1{ω : ∑∞

n=1 sups<σ j
|X [n+1]

s (ω) − X [n]
s (ω)| = ∞}. Then by (12.2.26)

P(N ) = 0 and for ω /∈ N , X [n]
s (ω) converges uniformly on [0,σ j (ω)) for every

j < ∞. So let us define X as follows:

Xt (ω) =
{
limn→∞ X [n]

t (ω) ifω ∈ Nc

0 ifω ∈ N .

Since P(N ) = 0, it follows that

X [n] converges to X uniformly on compact subsets of [0,∞) a.s. (12.2.28)

In view of (12.2.27), it also follows that, for each j,

lim
n→∞E[(sup

s<σ j

|Xs − X [n]
s | ])2] = 0. (12.2.29)

Recalling the Lipschitz condition (12.2.6) and the fact that Kσ j− ≤ j , we have

sup
s<σ j

‖(b(s, ·, X) − b(s, ·, X [n]))‖ ≤ j sup
s<σ j

|Xs − X [n]
s |. (12.2.30)

As a consequence, writing f ns = b(s, ·, X) − b(s, ·, X [n])

E[sup
t<σ j

|
∫ t

0
(b(s, ·, X)dYs −

∫ t

0
b(s, ·, X [n])dYs |2] ≤ E[θ2σ j−( f n, V )]

≤ j2. j2E[sup
s<σ j

|Xs − X [n]
s |2]

→ 0 as n → ∞.

This along with (12.2.21) and (12.2.28) yields that

Xt = Ht +
∫ t

0
(b(s, ·, X)dYs,

in other words X is a solution to the Eq. (12.2.16). �

Bymodifying the successive approximation scheme (evaluating the integral defin-
ing X [n] approximately) we can obtain a pathwise formula for the solution to the SDE
as obtained in Sect. 7.4 for the case of SDE’s driven by continuous semimartingales.
However, this approximation involves an iterated limit.

https://doi.org/10.1007/978-981-10-8318-1_7
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12.3 Pathwise Formula for Solution to an SDE

In this section, we will consider the SDE

dXt = g(t,G, X)dY (12.3.1)

where f, g : [0,∞) × Dr × Dd 	→ L(d,m) are such that

∀(ζ, γ) ∈ Dr × Dd , t 	→ f (t, ζ, γ) is an r.c.l.l. function, (12.3.2)

and g is related to f via
g(t, ζ, γ) = f (t−, ζ, γ) (12.3.3)

and G is anRr -valued r.c.l.l. adapted process and Y is a semimartingale. Here for an
integer k, Dk = D([0,∞),Rk).

Recall thatB(Dk) is the σ-field generated by the coordinate mappings.We assume
that

f is measurable w.r.t.B([0,∞)) ⊗ B(Dr ) ⊗ B(Dd). (12.3.4)

For t < ∞, γ ∈ Dd and ζ ∈ Dr , let γt (s) = γ(t ∧ s) and ζ t (s) = ζ(t ∧ s) and we
assume that f satisfies

f (t, ζ, γ) = f (t, ζ t , γt ), ∀ζ ∈ Dr , γ ∈ Dd , 0 ≤ t < ∞. (12.3.5)

We also assume that there exists a function C : [0,∞) × Dr 	→ R measurable w.r.t.
B([0,∞)) ⊗ B(Dr ) such that ∀ζ ∈ Dr , γ, γ1, γ2 ∈ Dd , 0 ≤ t ≤ T

‖ f (t, ζ, γ)‖ ≤ C(t, ζ)(1 + sup
0≤s≤t

|γ(s)|) (12.3.6)

‖ f (t, ζ, γ1) − f (t, ζ, γ2)‖ ≤ C(t, ζ)( sup
0≤s≤t

|γ1(s) − γ2(s)|) (12.3.7)

and for all ζ ∈ Dr ,
t → C(t, ζ) is r.c.l.l. (12.3.8)

As in Sect. 6.2, we will now obtain a mapping

Ψ : Dd × Dr × Dm 	→ D([0,∞),Rd)

such that for adapted r.c.l.l. process H,G (Rd , Rr -valued, respectively) and an Rm-
valued r.c.l.l. semimartingale Y ,

X = Ψ (H,G,Y )

https://doi.org/10.1007/978-981-10-8318-1_6
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yields the unique solution to the SDE

Xt = Ht +
∫ t

0
g(s,G, X)dY. (12.3.9)

We will define mappings

Ψ (n) : Dd × Dr × Dm 	→ D([0,∞),Rd)

inductively for n ≥ 1. Let Ψ (0)(η, ζ, γ)(s) = η for all s ≥ 0 and having defined
Ψ (0),Ψ (1), . . . , Ψ (n−1), we define Ψ (n) as follows. Fix n and η ∈ Dm , ζ ∈ Dr and
γ ∈ Dd .

Let t (n)
0 = 0 and let {t (n)

j : j ≥ 1} be defined inductively as follows: ({t (n)
j : j ≥

1} are themselves functions of (η, ζ, γ), which are fixed for now, andwewill suppress
writing it as a function) if t (n)

j = ∞, then t (n)
j+1 = ∞ and if t (n)

j < ∞, then writing

Γ (n−1)(η, ζ, γ)(s) = f (s, ζ, Ψ (n−1)(η, ζ, γ))

let

t (n)
j+1 = inf{s ≥ t (n)

j : ‖Γ (n−1)(η, ζ, γ)(s) − Γ (n−1)(η, ζ, γ)(t (n)
j )‖ ≥ 2−n

or ‖Γ (n−1)(η, ζ, γ)(s−) − Γ (n−1)(η, ζ, γ)(t (n)
j )‖ ≥ 2−n}

since Γ (n−1)(η, ζ, γ) is an r.c.l.l. function, t (n)
j ↑ ∞ as j ↑ ∞. Let

Ψ (n)(η, ζ, γ)(s) = η +
∞∑
j=0

Γ (n−1)(η, ζ, γ)(t (n)
j )(γ(s ∧ t (n)

j+1) − γ(s ∧ t (n)
j )).

Now we define

Ψ (η, ζ, γ) =
{
limn Ψ (n)(η, ζ, γ) if the limit exists in ucc topology

0 otherwise.
(12.3.10)

Now it can be seen that

a(s,ω, γ) = f (s,G(ω), γ), b(s,ω, γ) = g(s,G(ω), γ)

satisfies (12.2.2)–(12.2.7) with Kt (ω) = C(t,G(ω)). Let

X (ω) = Ψ (H(ω),G(ω),Y (ω)). (12.3.11)

Note that an ω path of X has been defined directly in terms of the ω paths of G, H,Y
via the functional Ψ . We will prove
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Theorem 12.9 X defined by (12.3.11) is the (unique) solution to the SDE (12.3.9).

Proof Let Z (0)
t = H0. The processes Z (n) are definedby induction onn. Fixn. Having

defined Z (0), . . . , Z (n−1), we define Z (n):
Let τ (n)

0 = 0 and let {τ (n)
j : j ≥ 1} be defined inductively as follows: if τ (n)

j = ∞,

then τ (n)
j+1 = ∞ and if τ (n)

j < ∞, then

τ (n)
j+1 = inf{s ≥ τ (n)

j : ‖ f (s,G, Z (n−1)) − f (τ (n)
j ,G, Z (n−1))‖ ≥ 2−n

or ‖ f (s−,G, Z (n−1)) − f (τ (n)
j ,G, Z (n−1))‖ ≥ 2−n}.

(12.3.12)
Since the process s 	→ f (s,G, Z (n−1)) is an adapted r.c.l.l. process, it follows that
each τ (n)

j is a stopping time and lim j↑∞ τ (n)
j = ∞. Let Z (n)

0 = H0 and for j ≥ 0,

τ (n)
j < t ≤ τ (n)

j+1 let

Z (n)
t = Z (n)

τ (n)
j

+ f (τ (n)
j ,G, Z (n−1))(Yt − Yτ (n)

j
).

Equivalently,

Z (n)
t = Ht +

∞∑
j=0

f (τ (n)
j ,G, Z (n−1))(Yt∧τ (n)

j+1
− Yt∧τ (n)

j
) (12.3.13)

It can be seen from the respective definitions that

Z (n)(ω) = Ψ (n)(H(ω),G(ω),Y (ω)).

Thus to complete the proof, suffices to show that Z (n) converges to a solution Z of
the SDE (12.3.9). Uniqueness would then imply that Z = X .

For n ≥ 1, let us define Wn and Sn by

S(n)
t =

∞∑
j=0

f (τ (n)
j ,G, Z (n−1))1[τ (n)

j ,τ (n)
j+1)

(t) (12.3.14)

W (n)
t = Ht +

∫ t

0
f (s−,G, Z (n−1))dYs . (12.3.15)

Let us note that

Z (n)
t = Ht +

∫ t

0
S(n)
s− dYs (12.3.16)

Noting that by definition of {τ (n)
j : j ≥ 1},

‖St − f (t,G, Z (n−1))‖ ≤ 2−n. (12.3.17)
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As in the proof of Theorem 12.8, let V be a (common) dominating process for Y j ,
1 ≤ j ≤ m. Let

Ut = Vt + V 2
t + sup

0≤s≤t
|Hs | + Kt

where Kt (ω) = C(t,G(ω)) and C is as in the Lipschitz and growth conditions
(12.3.6)–(12.3.7), Ds = V 2

s + Vs and let σ j be the stopping times defined by

σ j = inf{t ≥ 0 : Ut ≥ j or Ut− ≥ j}.

Note that σ j ↑ ∞ as j ↑ ∞. Using (12.3.15)–(12.3.17) and the fact that Vσ j− ≤ j
along with the fact that V is a common dominating process for Y j , 1 ≤ j ≤ m we
get

E[ sup
0≤s<σ j

|W (n)
t − Z (n)

t |2] ≤ dm2 j22−2n (12.3.18)

For n ≥ 0 let
A[n]
t = sup

0≤s≤t
|Z [n+1]

s − Z [n]
s |.

For any stopping time τ ≤ σ j , for n ≥ 1 (using (11.3.28) for the last step)

E[(A[n]
τ−)2] = E[sup

t<τ
|Z [n+1]

t − Z [n]
t |2]

≤ 3E[ sup
0≤s<σ j

|W (n+1)
t − Z (n+1)

t |2] + 3E[ sup
0≤s<σ j

|W (n)
t − Z (n)

t |2]

+ 3E[sup
t<τ

|W [n+1]
t − W [n]

t |2]

≤ 6dm2 j22−2n + 3E[sup
t<τ

|
∫ t

0
(g(s,G, Z [n]) − g(s,G, Z [n−1]

s )dYs |2]
≤ 6dm2 j22−2n + 3dm2 j2E[θ2τ−(A[n−1]−, V )

≤ 6dm2 j22−2n + 6dm2 j2E[
∫

[0,τ )

(A[n−1]
s− )2dV 2

s

+ Vt

∫
[0,τ )

(A[n−1]
s− )2dVs]

≤ 6dm2 j22−2n + 12dm2 j3E[
∫

[0,τ )

(A[n−1]
s− )2dDs]

(12.3.19)
Hence writing Bt = ∑∞

n=0 2
n(A[n]

t )2, we thus get for any stopping time τ ≤ σ j

E[Bτ−] ≤ E[A[0]
τ−] +

∞∑
n=0

2n6dm2 j22−2n + 24dm2 j3E[
∫

[0,τ )

Bs−dU ] (12.3.20)

https://doi.org/10.1007/978-981-10-8318-1_11
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As in the proof of Theorem 12.8, it follows that

E[A[0]
τ−] ≤ dm2 j4

and hence that

E[(Bτ−)2] ≤ dm2 j4 + 6dm2 j2 + 12dm2 j3E[
∫

[0,τ )

(Bs−)2dDs]. (12.3.21)

Now proceeding exactly as in the proof of Theorem 12.8, we can conclude that
Z (n) converges to a solution Z of Eq. (12.3.9). Since Zn(ω) = Ψ n(H(ω),G(ω),

Y (ω)), and Zn converges to Z , it follows that Z(ω) = Ψ (H(ω),G(ω),Y (ω)) com-
pleting the proof.

12.4 Euler–Peano Approximations

We are going to show that Euler–Peano approximations (for the solution to the SDE
(12.3.9) converge to the solution and indeed converge almost surely, and this yields
a pathwise formula for the solution. In the formula given in Sect. 12.3, the approx-
imation Ψ (n) depended upon Ψ (n−1), whereas in the approximation constructed in
this section, the approximation Ψ̃ (n) is defined directly in terms of the coefficients
and thus is preferable from computational point of view as compared to the formula
(12.3.10). These results were obtained in [40]. The formulation given here is taken
from [41]. We need this auxiliary lemma later.

Lemma 12.10 Let 0 = τ0 ≤ τ1 ≤ . . . ≤ τi ≤ . . . be an increasing sequence of stop-
ping times. For an r.c.l.l. adapted processes U, let S be defined by

St =
∞∑
i=0

Uτi1[τi ,τi+1)(t). (12.4.1)

Then S is an r.c.l.l. adapted process.

Proof Let σ = limi→∞ τi . Fix T < σ(ω). For t ∈ [0, T ], St (ω) is a finite sum of
r.c.l.l. functions and hence is r.c.l.l.

If σ(ω) < ∞, then for t ≥ σ(ω), St (ω) = 0 and thus S·(ω) is a right continuous
function. Remains to show that when σ(ω) < ∞, the left limit of S at σ(ω) exists. Fix
ω such that a = σ(ω) < ∞. If σ(ω) = τi (ω) for some i , then the claim is obvious.
In the other case Uτi (ω)(ω) → Ua−(ω) and if tn ↑ a with tn < a, then Stn (ω) is a
subsequence ofUτi (ω)(ω) and hence left limit of S·(ω) at a exists and equalsUa−(ω).
Since each summand is adapted, so is S. �

We will consider the framework as in Sect. 12.2. Let Y 1,Y 2, . . . Ym be r.c.l.l.
semimartingales w.r.t. the filtration (F�), H be an r.c.l.l. adapted process. Consider
the SDE

Ut = Ht +
∫ t

0+
b(s, ·,U )dYs, (12.4.2)
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where the functional b is given as follows. Let

a : [0,∞) × Ω × Dd → L(d,m) (12.4.3)

be such that for all t ∈ [0,∞)

(ω, γ) 	→ a(t,ω, γ) is Ft ⊗ B(Dd) measurable, (12.4.4)

for all (ω, γ) ∈ Ω × Dd

t 	→ a(t,ω, γ) is an r.c.l.l. mapping (12.4.5)

and suppose that there is an increasing r.c.l.l. adapted process K such that for all
γ, γ1, γ2 ∈ Dd ,

sup
0≤s≤t

‖a(s,ω, γ)‖ ≤ Kt (ω) sup
0≤s≤t

(1 + |γ(s)|) (12.4.6)

sup
0≤s≤t

‖a(s,ω, γ2) − a(s,ω, γ1)‖ ≤ Kt (ω) sup
0≤s≤t

|γ2(s) − γ1(s)|. (12.4.7)

Let b : [0,∞) × Ω × Dd → L(d,m) be given by

b(s,ω, γ) = a(s−,ω, γ). (12.4.8)

As proved in Theorem 12.6, the SDE (12.4.2) admits a unique solution X under the
conditions (12.4.3)–(12.4.8).

Let us fix ε > 0, and we will construct an ε-approximation Z = Z ε to the solution
X of the SDE. We will drop ε from the notation here and in what follows till the next
theorem, where we will give an estimate on X − Z = X − Z ε.

For i ≥ 0, let stopping times τi and processes Wi be defined inductively by:

τ0 = 0 and W 0
t ≡ H0

and having defined τ j ,W j for j ≤ i , if τi < ∞ let

Ai+1
t = (Ht − Hτi + a(τi , ·,Wi )(Yt − Yτi ))1[τi ,∞)(t)

Bi+1
t = (a(t, ·,Wi ) − a(τi ·,Wi ))1[τi ,∞)(t)

Ui+1
t = Ai+1

t (1 + Kt )

τi+1 = inf{t > τi : |Ui+1
t | ≥ ε or |Ui+1

t− | ≥ ε or |Bi+1
t | ≥ 4ε or |Bi+1

t− | ≥ 4ε}

Wi+1
t = H0 +

i+1∑
j=1

A j
τ j
1[τ j ,∞)(t)

(12.4.9)
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and if τi = ∞, then τi+1 = ∞, Ai+1 = 0, Bi+1 = 0, Ui+1 = 0 and Wi+1 = Wi .
Note that for i < k, Wi and Wk agree on [0, τi ] by definition and as a consequence,
we have

a(τi , ·,Wi ) = a(τi , ·,Wk). (12.4.10)

For i ≥ 0 define Zi+1 by Zi+1
0 = H0 and

Zi+1
t =

{
Wi+1

τ j
+ A j+1

t for τ j ≤ t < τ j+1, j ≤ i

W i+1
τi+1

for t ≥ τi+1.

Thus, by the choice of {τ j : j ≥ 1}, we have

sup
t

|W j
t − Z j

t | ≤ ε (12.4.11)

and
sup
t

Kt |W j
t − Z j

t | ≤ ε (12.4.12)

for all j ≥ 1. As a consequence of the Lipschitz condition on a we also have

sup
t

|a(t, ·,W j ) − a(t, ·, Z j )| ≤ ε. (12.4.13)

We can now check that

Zk
t = Ht∧τk +

k−1∑
i=0

a(τi , ·,Wk)(Yt∧τi+1 − Yτi ) (12.4.14)

and
Ai+1

τi+1
= Zi+1

τi+1
− Zi+1

τi
. (12.4.15)

Let us define a mapping T : Ω × Dd → Dd as follows:

T (ω, γ)(t) = γ(τi (ω)) for τi (ω) ≤ t < τi (ω).

Lemma 12.10 ensures that T (ω, γ) is an r.c.l.l. function. We now define mapping J
that maps r.c.l.l. adapted processes into r.c.l.l. adapted processes by

J (U (ω)) = T (ω,U (ω))

or equivalently,

J (U ) =
∞∑
i=0

Uτi1[τi ,τi+1). (12.4.16)
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Let us note that for all k ≥ 1, by definition of Zk,Wk we have

J (Zk) = Wk . (12.4.17)

Let us define ã : [0,∞) × Ω × Dd → L(d,m) as follows:

ã(t,ω, γ) = T (ω, a(·,ω, T (ω, γ))).

Easy to check that ã satisfies (12.2.2)–(12.2.6) and hence defining

b̃(t,ω, γ) = ã(t−,ω, γ),

it follows from Theorem 12.6 that the SDE

Zt = Ht +
∫ t

0+
b̃(s, ·, Z)dYs (12.4.18)

admits a unique solution.
We can check (using (12.4.17)) that

ã(t, ·, Zk) =
∞∑
i=0

a(τi , ·,Wk)1[τi ,τi+1)(t)

and so

b̃(t, ·, Zk) =
∞∑
i=0

a(τi , ·,Wk)1(τi ,τi+1](t).

Hence it follows from (12.4.14) that

Zk
t = Ht∧τk +

∫ t∧τk

0
b̃(s, ·, Zk)dYs (12.4.19)

Then invoking Theorem12.7, we conclude

P(Zk
t∧τk

= Zt∧τk ∀t ≥ 0) = 1. (12.4.20)

Lemma 12.11
lim
i→∞ τi = ∞ a.s.

Proof We will show that for ω such that

Zk
t∧τk

(ω) = Zt∧τk (ω) ∀t ≥ 0, ∀k ≥ 1, (12.4.21)
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limi→∞ τi (ω) = ∞. Note that if τi+1(ω) < ∞, then

Ui+1
τi+1

(ω) = (1 + Kτi+1(ω))(Zτi+1(ω) − Zτi (ω)),

Ui+1
τi+1−(ω) = (1 + Kτi+1(ω))(Zτi+1−(ω) − Zτi (ω)),

a(τi , ·,Wi )(ω) = a(τi , ·, T (Z))(ω),

a(τi+1−, ·,Wi )(ω) = a(τi+1−, ·, T (Z))(ω).

Suppose there exists anω such that (12.4.21) holds and such that θ = limi→∞ τi (ω) <

∞. Then from the definition of the sequence {τ j : j ≥ 1} it follows that at least one
of the following four inequalities

(1 + Kτi+1(ω))(Zτi+1(ω) − Zτi (ω)) ≥ ε, (12.4.22)

(1 + Kτi+1(ω))(Zτi+1−(ω) − Zτi (ω)) ≥ ε, (12.4.23)

|a(τi+1, ·,Wi )(ω) − a(τi , ·, T (Z))(ω)| ≥ 2ε, (12.4.24)

|a(τi+1−, ·, T (Z))(ω) − a(τi , ·, T (Z))(ω)| ≥ 2ε (12.4.25)

must be satisfied for countably many i . Note that in general a(τi+1, ·,Wi ))(ω) may
not be equal to a(τi+1, ·, T (Z))(ω) = a(τi+1, ·,Wi+1))(ω).

If (12.4.22) or (12.4.23) holds for countably many i , then the left limit Zθ−(ω)

at θ cannot exist—a contradiction. Likewise, if (12.4.25) holds for countably many
i , then the left limit a(θ−, ·, T (Z))(ω) cannot exist, again a contradiction, since
a(t, ·,α) is r.c.l.l. for all α.

Now for i such that (12.4.22) does not hold,

|a(τi+1, ·,Wi ))(ω)−a(τi+1, ·, T (Z)))(ω)|
= |a(τi+1, ·,Wi ))(ω) − a(τi+1, ·,Wi+1))(ω)|
≤ Kt (ω) sup

t
|Wi

t − Wi+1
t |

= Kt (ω)|Zτi+1(ω) − Zτi (ω)|
≤ ε

Thus for i such that (12.4.22) does not hold but (12.4.24) holds,

|a(τi+1,·, T (Z))(ω) − a(τi , ·, T (Z))(ω)|
≥ |a(τi+1, ·,Wi )(ω) − a(τi , ·, T (Z))(ω)|

− |a(τi+1, ·,Wi+1))(ω) − a(τi+1, ·,Wi ))(ω)| (12.4.26)

≥ 2ε − ε = ε

Thus if (12.4.24) holds for countably many i (and since we have already shown that
(12.4.22) holds at most finitely many times), it follows that (12.4.26) holds countably
many times thus a(t, ·, T (Z)) cannot have a left limit at θ—again a contradiction.
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It thus follows that θ = ∞. �

We have suppressed ε from notations but b̃ depends on {τi }which in turn depends
upon ε and the process Z also depends upon ε. Note that

b̃(s, ·, Z) =
∞∑
i=0

a(τi , ·,Wi+1)1(τi ,τi+1](s)

and hence using the Lipschitz condition (12.4.7), definition of {τ j } we get

‖b(s, ·, Z) − b̃(s, ·, Z)‖ =
∞∑
i=0

‖a(s−, ·, Z) − a(τi , ·,Wi+1)‖1(τi ,τi+1](s)

=
∞∑
i=0

‖a(s−, ·, Zi+1) − a(τi , ·,Wi+1)‖1(τi ,τi+1](s)

=
∞∑
i=0

‖a(s−, ·, Zi+1) − a(s−, ·,Wi+1)‖1(τi ,τi+1](s)

+
∞∑
i=0

‖a(s−, ·,Wi+1) − a(τi , ·,Wi+1)‖1(τi ,τi+1](s)

≤Ks

∞∑
i=0

|Zi+1 − Wi+1|1(τi ,τi+1](s) + ε

≤(Ks + 1)ε
(12.4.27)

Lemma 12.12 Let X be the solution to (12.4.2) and Z ≡ Z ε be as defined in pre-
ceding paragraphs (satisfying (12.4.27)) for fixed ε. Let V be a common dominating
process for Y j ,1 ≤ j ≤ m.LetUt = Vt + Kt (where K appears in condition (12.4.7)
on a) and for j ≥ 1 let σ j be defined by

σ j = inf{t ≥ 0 : Ut ≥ j or Ut− ≥ j}.

Then there exists a constant k( j, d,m) depending only on j, d,m such that

E[ sup
0≤s<σ j

|Xt − Z ε
t |2] ≤ ε2k( j, d,m) (12.4.28)

Proof Let us define (dropping the suffix ε on Z )

At = sup
0≤s≤t

|Xt − Zt |
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Now, for any τ ≤ σ j

E[|Aτ−|2] ≤ E[ sup
0≤t<σ

|
∫ t

0+
(b(s, ·, X) − b̃(s, ·, Z))dY |2]

≤ 2E[ sup
0≤t<σ

|
∫ t

0+
(b(s, ·, X) − b(s, ·, Z))dY |2]

+ E[ sup
0≤t<σ

|
∫ t

0+
(b(s, ·, Z) − b̃(s, ·, Z))dY |2]

≤2 j2dm2E[θ2τ−(A−, V )] + 2( j + 1)2dm2ε2

(12.4.29)

Using Theorem 12.1, it now follows that

E[|Aσ j−|2] ≤ 4( j + 1)2dm2ε2C(4 j3dm2) (12.4.30)

where C(α) = ∑[α]
j=0 α j . Thus (12.4.28) holds with

k( j, d,m) = 4( j + 1)2dm2C(4 j3dm2).

�
We have thus proved

Theorem 12.13 Let Xn denotes the approximation Z ε for ε = 2−n constructed in
the preceding paragraphs. Then Xn converges almost surely to the solution X of the
SDE (12.4.2).

This in turn helps us obtain a pathwise formula for solution to the SDE (12.4.2).
We will consider the framework from Sect. 12.3 and obtain a pathwise formula

involving a single limit rather than an iterative limit. Let f, g : [0,∞) × Dr × Dd 	→
L(d,m) be such that

∀(ζ, γ) ∈ Dr × Dd , t 	→ f (t, ζ, γ) is an r.c.l.l. function, (12.4.31)

and g is related to f via
g(t, ζ, γ) = f (t−, ζ, γ) (12.4.32)

and G is an R
r -valued r.c.l.l. adapted process and X is a semimartingale. Suppose

f is measurable w.r.t. B([0,∞)) ⊗ B(Dr ) ⊗ B(Dd). (12.4.33)

For t < ∞, γ ∈ Dd and ζ ∈ Dr , let γt (s) = γ(t ∧ s) and ζ t (s) = ζ(t ∧ s) and we
assume that f satisfies

f (t, ζ, γ) = f (t, ζ t , γt ), ∀ζ ∈ Dr , γ ∈ Dd , 0 ≤ t < ∞. (12.4.34)

We also assume that there exists a function C : [0,∞) × Dr 	→ R measurable w.r.t.
B([0,∞)) ⊗ B(Dr ) such that ∀ζ ∈ Dr , γ, γ1, γ2 ∈ Dd , 0 ≤ t ≤ T
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‖ f (t, ζ, γ)‖ ≤ C(t, ζ)( sup
0≤s<t

|γ(s)|) (12.4.35)

‖ f (t, ζ, γ1) − f (t, ζ, γ2)‖ ≤ C(t, ζ)( sup
0≤s<t

|γ1(s) − γ2(s)|) (12.4.36)

and for all ζ ∈ Dr ,
t → C(t, ζ) is r.c.l.l. (12.4.37)

For n ≥ 1, we define

Ψ̃ (n) : Dd × Dr × Dm 	→ D([0,∞),Rd)

as follows: for η ∈ Dm , ζ ∈ Dr and γ ∈ Dd (fixed) let t0 = 0 and let {t j : j ≥ 1} and
{α j : j ≥ 1}, {β j : j ≥ 1}, {ξ j : j ≥ 1} be defined inductively as follows: (these
are themselves functions of n, (η, ζ, γ), which are fixed for now andwewill suppress
writing these as a function) if t j = ∞, then t j+1 = ∞ and if t j < ∞, then

αi
t = (ηt − ηti + f (ti , ζ, ξi )(γt − γti ))1[ti ,∞)(t)

βi
t = ( f (t, ζ, ξi ) − f (ti ζ, ξi ))1[ti ,∞)(t)

(12.4.38)

ti+1 = inf{t > ti : |αi
t | ≥ 2−n or |αi

t−| ≥ 2−n or ‖βi
t ‖ ≥ 2−n or ‖βi

t−‖ ≥ 2−n}

and

ξi+1
t =

{
ξit for t < ti+1

ξit + αi
ti+1

for t ≥ ti+1.

Thus, ξi+1 is a function that has jumps at t1, ..., ti+1 and is constant on the intervals

[0, t1), . . . , [t j , t j+1), . . . [ti , ti+1), [ti+1,∞).

Also ξi and ξi+1 agree on [0, ti+1) by definition.
We finally define

Ψ̃ (n)(η, ζ, γ)(t) = ηt +
∞∑
i=0

f (t ∧ ti , ζ, ξi )(γt∧ti+1 − γt∧ti ) (12.4.39)

and for η ∈ Dd , ζ ∈ Dr and γ ∈ Dm we define

Ψ̃ (η, ζ, γ) =
{
limn Ψ̃ (n)(η, ζ, γ) if the limit exists in ucc topology

0 otherwise.
(12.4.40)

As in Sects. 6.2 and 12.3, it should be noted that the mapping

https://doi.org/10.1007/978-981-10-8318-1_6
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Ψ̃ : Dd × Dr × Dm 	→ D([0,∞),Rd)

has been defined without any reference to a probability measure or any semimartin-
gale. As in Theorem 12.9, this also yields a pathwise formula. This one is preferable
from computation point of view as here, in order to construct nth approximation, we
do not need the (n − 1)th approximation.

Theorem 12.14 Let f, g satisfy conditions (12.4.31)–(12.4.37). Let Y be a semi-
martingale w.r.t. a filtration (F�) and let H, G be r.c.l.l. (F�) adapted processes
taking values in Rd , Rr , respectively. Let Ψ̃ be as defined in (12.4.40) and let

X̃ = Ψ̃ (H,G,Y ).

Then X satisfies the SDE

X̃t = Ht +
∫ t

0+
g(t,G, X̃)dY. (12.4.41)

The proof follows from observing that

a(t,ω, γ) = f (t,G(ω), γ), b(t,ω, γ) = g(t,G(ω), γ)

satisfy (12.3.2)–(12.3.8) and further,

Ψ̃ (n)(H,G,Y ) = Xn

where Xn is the 2−n approximation constructed in this section earlier. It now follows
that

Ψ̃ (H,G,Y ) = X̃

is the unique solution to the Eq. (12.4.41). �

12.5 Matrix-Valued Semimartingales

In this section,wewill considermatrix-valued r.c.l.l. semimartingales.Wewill use the
notations introduced in Sect. 7.6. Recall that L(m, k) is the set of all m × k matrices,
and L0(d) denotes the set of non-singular d × d matrices.

Recall that when X = (X pq) is an L(m, k)-valued semimartingale and f = ( f i j )
is an L(d,m)-valued predictable process such that f i j ∈ L(X jq) (for all i, j, q), then
Y = ∫

f d X is defined as an L(d, k)-valued semimartingale as follows: Y = (Y iq)

where

Y iq =
m∑
j=1

∫
f i j d X jq

https://doi.org/10.1007/978-981-10-8318-1_7
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and that for L(d, d)-valued semimartingales X,Y let [X,Y ] = ([X,Y ]i j ) be the
L(d, d)-valued process defined by

[X,Y ]i jt =
d∑

k=1

[Xik,Y kj ].

We can consider an analogue of the SDE (12.2.1)

dUt = b(t, ·,U )dYt , t ≥ 0, U0 = ξ0 (12.5.1)

where nowY is anL(m, k)-valued continuous semimartingale,U is anL(d, k)-valued
process, ξ0 is L(d, k)-valued random variable and here

b : [0,∞) × Ω × D([0,∞), L(d, k)) → L(d,m).

Exercise 12.15 Formulate and prove analogues of Theorems 12.6, 12.8 and
12.14 for Eq. (12.5.1).

Exercise 12.16 Let X be an L(d, d)-valued semimartingale with X (0) = 0 and
let I denote the d × d identity matrix. Show that the equations

Yt = I +
∫ t

0
Ys−dXs (12.5.2)

and

Zt = I +
∫ t

0
(dXs)Zs− (12.5.3)

admit unique solutions.

The solutions Y, Z are denoted, respectively, by e(X) and e′(X) and are the left and
right exponential of X .

Exercise 12.17 Let X be an L(d, d)-valued semimartingale with X (0) = 0 and
let Y = e(X) and Z = e′(X). Show that

(i) If Y and Y− are L0(d)-valued, then (I + ΔX) is L0(d)-valued.
(ii) If Z and Z− are L0(d)-valued, then (I + ΔX) is L0(d)-valued.

For amatrix A ∈ L(d, d)wewill denote (only in this section) theHilbert–Schmidt
norm of A by ‖A‖. The following facts are standard. The norm is defined as

‖A‖2 =
d∑

i, j=1

(ai j )
2.
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If ‖A‖ < 1, then B = (I + A) belongs to L0(d). Further, for ‖A‖ ≤ α < 1, one has

‖(I + A)−1 − I + A‖ ≤ 1

1 − α
‖A‖2. (12.5.4)

Exercise 12.18 For an L(d, d)-valued semimartingale X , show that

∑
0<s≤t

‖(ΔX)s‖2 ≤ Trace([X, X ]t ).

Exercise 12.19 Let X be an L(d, d)-valued semimartingalewith X (0) = 0 such
that (I + ΔX) is L0(d)-valued. Then

(i) Show that Wt = ∑
0<s≤t [{(I + ΔX)−1} − I + (ΔX) + (ΔX)2] is well

defined.
(ii) Show that ΔW = {(I + ΔX)−1} − I + (ΔX) − (ΔX)2.
(iii) Let U = −X + [X, X ] + W . Show that

X +U + [X,U ] = 0 (12.5.5)

(iv) Show that
e(X)e′(U ) = I (12.5.6)

and
e(U )e′(X) = I. (12.5.7)

(v) Let Y = e(X) and Z = e′(X). Show that Y , Y−, Z and Z− are L0(d)-
valued.
Hint: For (i), separate jumps bigger than half, these are finitely many.
For the rest of the jumps, use estimate (12.5.4). For (iv) use integration
by parts formula, (7.6.1).

For a L(d, d)-valued semimartingale Y such that Y0 = I and such that Y and Y− are
L0(d)-valued, let

log(Y )t =
∫ t

0+
(Y−)−1dY

and

log′(Y ) =
∫ t

0+
(dY )(Y−)−1.

The next exercise is to show that e and log are inverses of each other. We will say
that a matrix-valued process is a local martingale (or a process with finite variation)
if each of its components is so.

https://doi.org/10.1007/978-981-10-8318-1_7
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Exercise 12.20 Let X be an L(d, d)-valued semimartingalewith X (0) = 0 such
that (I + ΔX) is L0(d)-valued and let Y be a L(d, d)-valued semimartingale
such that Y and Y− are L0(d)-valued. Then show that

(i) e(log(Y )) = Y, e′(log′(Y )) = Y.

(ii) log(e(X)) = X, log′(e′(X)) = X.

(iii) X ∈ M loc if and only if e(X) ∈ M loc.
(iv) X ∈ V if and only if e(X) ∈ V.
(v) Y ∈ M loc if and only if log(Y ) ∈ M loc.
(vi) Y ∈ V if and only if log′(Y ) ∈ V.

Exercise 12.21 Let Xi be L(d, d)-valued semimartingale with Xi (0) = 0 such
that (I + ΔXi ) is L0(d)-valued, for i = 1, 2. Let Y = e(X2) andU 1 = ∫

Y−(dX1)

(Y−)−1. Then show that

e(X1 + X2 + [X1, X2]) = e(U 1)e(X2) (12.5.8)

The formula (12.5.8) has an important consequence. Given a L(d, d)-valued semi-
martingale Y such that Y and Y− are L0(d)-valued, let X = e(Y ). If we can write
X = M + A + [M, A] such that M ∈ M loc and A ∈ V with (I + ΔM), (I + ΔA)

are L0(d)-valued, then it would follow that

Y = N B

where N = e(M) ∈ M loc and B = e(A) ∈ V yielding a multiplicative decomposi-
tion of Y . The next exercise is about this.

Exercise 12.22 Let Y be a L(d, d)-valued semimartingale such that Y0 = I
with Y and Y− being L0(d)-valued. Let X = e(Y ). Let

Dt =
∑
0<s≤t

(ΔX)s1{‖(ΔX)s‖≥ 1
3 }

Zt = Xt − Dt .

(i) Show that

(a) P(‖(ΔZ)t‖ ≤ 1
3 ∀t) = 1.

(b) Z is locally integrable (i.e. each component is locally integrable).

(ii) Let Z = M + A be the decomposition with M ∈ M loc and A ∈ V, Z0 = 0
and A being predictable. Show that

(a) P(‖(ΔA)t‖ ≤ 1
3 ∀t) = 1.

(b) P(‖(ΔM)t‖ ≤ 2
3 ∀t) = 1.

(c) (I + ΔM) is L0(d)-valued.
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(iii) Let Bt = At + Dt so that X = M + B. LetCt = Bt − ∑
0≤s≤t (I + (ΔM)s)

−1

(ΔB)s . Show that

(a) B = C + [M,C].
(b) Xt = Mt + Ct + [M,C]t .
(c) (I + ΔX) = (I + ΔM)(I + ΔC).
(d) (I + ΔM) and (I + ΔC) are L0(d)-valued.

Let H = e(C), N = ∫
H−(dM)(H−)−1 and R = e(N ). Show that

(a) R ∈ M loc and H ∈ V and
X = RH. (12.5.9)



Chapter 13
Girsanov Theorem

In this chapter, we will obtain Girsanov Theorem and its generalizations by Meyer.
Let M be a martingale on (Ω,F ,P) and let Q be another probability measure
on (Ω,F), absolutely continuous w.r.t. P. Then as noted in Remark 4.26, M is a
semimartingale on (Ω,F ,Q). We will obtain a decomposition of M into N and B,
where N is a Q-martingale. This result for Brownian motion was due to Girsanov,
and we will also present the generalizations due to Meyer.

13.1 Preliminaries

Let (Ω,F ,P) be a complete probability space and (F�) be a filtration such that F0

contains all P null sets. Let Q be a probability measure on (Ω,F) such that P and
Q are equivalent; i.e., for A ∈ F , P(A) = 0 if and only ifQ(A) = 0. In such a case,
P and Q are also called mutually absolutely continuous. Let ξ = dQ

dP . Let Z be the
r.c.l.l. version of the martingale EP[ξ | F+

t ]. Of course Z is a uniformly integrable
martingale with EP[Zt ] = 1. Also, for A ∈ F+

t

Q(A) =
∫
A
Zt dP. (13.1.1)

Here is a simple observation on Z .

Lemma 13.1 Z is a (0,∞) valued process, i.e. P(Zt > 0 ∀t ≥ 0) = 1.

Proof Since P and Q are equivalent, P(ξ > 0) = 1 and η = ξ−1 is the Radon–
Nikodym derivative of P w.r.t. Q. Let Y be the r.c.l.l. version of the martingale
EQ[η | F+

t ]. It follows that ZtYt = 1 almost surely for each t and since the two
processes are r.c.l.l. it follows that P(ZtYt = 1 ∀t ≥ 0) = 1. The result follows. �
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412 13 Girsanov Theorem

Lemma 13.2 Let Q, ξ, Z be as above. Suppose Z is (F�) adapted. Let M be an
adapted process. Then

(i) M is a Q-martingale if and only if MZ is a P-martingale.
(ii) M is a Q-local martingale if and only if MZ is a P-local martingale.

Proof For a stopping time σ, let η be a non-negative boundedFσ measurable random
variable. Then

EQ[η] = EP[ηZ ] = EP[ηE[Z |Fσ] = EP[ηZσ].

ThusMs isQ integrable if and only ifMsZs isP-integrable. Further, for any bounded
stopping time σ,

EQ[Mσ] = EP[MσZσ]. (13.1.2)

Thus (i) follows from Theorem 2.57. For (i i), if M is aQ-local martingale, then get
stopping times τn ↑ ∞ such that for each n, Mt∧τn is a Q-martingale. Then for any
bounded stopping time σ, we have

EQ[Mσ∧τn ] = EP[Mσ∧τn Zσ∧τn ]. (13.1.3)

Thus Mt∧τn Zt∧τn is a P-martingale, and thus MZ is a P-local martingale. The con-
verse follows similarly. �

Remark 13.3 Note that Zt = EQ[η | F+
t ] is (F�) adapted if the filtration (F�) is

right continuous or Z is a continuous process.

13.2 Cameron–Martin Formula

Let Ω̃ = Cd = C([0,∞),Rd), F̃ = B(Cd). Let Xt be defined by

Xt (ζ) = ζ(t), ζ ∈ Cd . (13.2.1)

Let μw be the Wiener measure on (Ω̃, F̃) so that X is a Brownian motion on
(Ω̃, F̃ ,μw). Let θ ∈ Cd be fixed such that θ(0) = 0. Consider the mapping

Tθ : Ω̃ �→ Ω̃

given by
Tθ(ζ) = ζ + θ.

Let Qθ = μw ◦ T−1
θ . Note that for A ∈ B(Cd),

Qθ(A) = μw(ζ : Tθ(ζ) ∈ A) = μw(A − θ) (13.2.2)

https://doi.org/_2
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where A − θ = {ζ : ζ + θ ∈ A}. The next result gives conditions under which μw

and Qθ are equivalent. In what follows the filtration is taken to be (F�) = (F X
� ).

Recall that an absolutely continuous function θ is differentiable almost everywhere
w.r.t. Lebesguemeasure, andwewill denote the derivative by θ̇.When θ isRd -valued,
absolute continuity and the derivative are interpreted coordinatewise.

Theorem 13.4 Let Tθ, Qθ be as above. Then Qθ is equivalent to μw if and only if θ
is absolutely continuous and

α =
d∑

i=1

∫ ∞

0
(θ̇is)

2ds < ∞. (13.2.3)

Further,

θit =
∫ t

0
θ̇isds ∀t < ∞. (13.2.4)

If (13.2.3) holds, then Z defined by

Zt = exp{
d∑

i=1

∫ t

0
θ̇is d X

i
s − 1

2

d∑
i=1

∫ t

0
(θ̇is)

2ds}

is a uniformly integrable martingale and for A ∈ Ft ,

∫
A
Zt d P = Qθ(A). (13.2.5)

Further,

Zt converges to
dQθ

dμw

in L1(μw). (13.2.6)

Proof Suppose that θ is absolutely continuous and (13.2.3) and (13.2.4) hold. Then
it follows that Mt = ∑d

i=1

∫ t
0 θ̇is d X

i
s is a continuous square integrable martingale

and

[M, M]t =
d∑

i=1

∫ t

0
(θ̇is)

2ds.

Thus, Zt = exp(Mt − 1
2 [M, M]t ). Further,

Zt = 1 +
∫ t

0
Z dM (13.2.7)

(see Exercise 4.101) and is thus a local martingale. As seen in Exercise 3.26, for
each t , Mt has normal distribution with mean zero and E[M2

t ] = [M, M]t . As a
consequence,

https://doi.org/_4
https://doi.org/_3


414 13 Girsanov Theorem

E[Z2
t ] = E[exp(2Mt − [M, M]t )]

= exp([M, M]t )
≤ exp(α).

Now invokingCorollary 5.22weconclude that Z is a square integrablemartingale and
further, beingL2 bounded, it is uniformly integrable. Thus bymartingale convergence
theorem, Zt converges in L1 and almost surely to, say, ξ and for t < ∞, E[ξ | Ft ] =
Zt . Clearly, E[ξ] = 1 and ξ ≥ 0 almost surely. Since

E[(Mt − Ms)
2] = [M, M]t − [M, M]s

and [M, M]t converges to α, it follows that Mt converges in L
2 to say η. So ξ =

exp(η − 1
2α) and thus μw(ξ > 0) = 1. So Q̃ is equivalent to μw.

Let Q̃ be defined by

Q̃(A) =
∫
A
ξdμw.

Then for A ∈ Ft , using E[ξ | Ft ] = Zt , we also have

Q̃(A) =
∫
A
Zt dμw. (13.2.8)

LetWt = Xt − θt . Fix (λ1,λ2, . . . ,λd) ∈ R
d such that

∑d
i=1(λ

i )2 = 1 and letUt =∑d
i=1 λi X i

t , Yt = ∑d
i=1 λiW i

t , Vt = ∑d
i=1 λiθit and φt = ∑d

i=1 λi θ̇it . Observe that
Yt = Ut − Vt and

(Ut − Vt )Zt =
∫ t

0
(Us − Vs)d Zs +

∫ t

0
Zs dUs −

∫ t

0
Zsφsds + [U − V, Z ]t .

(13.2.9)
Since Q̃ is equivalent to μw, the quadratic variation of a semimartingale is the same
under μw and Q̃. Now

[U − V, Z ]t = [U, Z ]t

=
d∑

i=1

λi [Xi , Z ]t

=
d∑

i=1

λi
∫ t

0
Zs d[Xi , M]s

=
d∑

i=1

λi
∫ t

0
Zs θ̇

i
sds

=
∫ t

0
Zsφsds.

(13.2.10)

https://doi.org/_5
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Using (13.2.9) and (13.2.10) it follows that Yt Zt = (Ut − Vt )Zt is aμw-local martin-
gale, being a sum of stochastic integrals w.r.t. continuous martingales. Using Lemma
13.2, it follows that Yt is a Q̃-local martingale. Since V is a process with finite vari-
ation paths, it follows that

[∑d
i=1 λiW i ,

∑d
i=1 λiW i ]t = [Y,Y ]t

= [U,U ]t
= [∑d

i=1 λi X i ,
∑d

i=1 λi X i ]t

=
d∑

i=1

(λi )2t.

Invoking Levy’s characterization, Theorem 3.8, we conclude that W is a d-dimen-
sional Brownian motion under Q̃. For A ∈ B(Cd), we have

Q̃(A) = Q̃(X − θ ∈ A − θ)

= Q̃(W ∈ A − θ)

= μw(A − θ)

= Qθ(A)

where the last step was noted in (13.2.2). Thus Q̃ = Qθ.
This proves one part. For the other part, let us assume thatQθ is equivalent to μw.

Now the process X is a semimartingale under μw and hence under Qθ. On the other
hand, underQθ, W = X − θ is a Brownian motion and hence aQθ-semimartingale.
Thus θ considered as a stochastic process is a semimartingale. Thus for each i , θi is
a function with finite variation on [0, T ] for every T < ∞ (see Exercise 5.62).

We will show that θ must satisfy (13.2.3) and (13.2.4). Let ξ be the Radon–
Nikodym derivative dQθ

dμw
, and let Z be the martingale

Zt = Eμw
[ξ|F+

t ].

Since θ(0) = 0, it follows that Z0 = 1. Since all (F+
� )-martingales on (Ω,F ,μw)

admit a stochastic integral representation w.r.t. X (Theorem 10.20), we can get pre-
dictable processes f j ∈ L(X j ), 1 ≤ j ≤ d such that

Zt = 1 +
d∑
j=1

∫ t

0
f j
s d X

j
s . (13.2.11)

It follows that Z is continuous and hence Zt = Eμw
[ξ|Ft ]. As noted in the previous

section, μw(Zt > 0 ∀t) = 1. Let

https://doi.org/_3
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Mt =
∫ t

0
Z−1
s d Zs . (13.2.12)

Then M is a local martingale, and writing g
j
s = (Zs)

−1 f j
s , it follows that

Mt =
d∑
j=1

∫ t

0
g j
s d X

j
s . (13.2.13)

LetV j
t = ∫ t

0 g
j
s ds, for 1 ≤ j ≤ d.Wewill next show that X j

t − V j
t is aQθ martingale

for each j . For this, using integration by parts formula, we get

(X j
t − V j

t )Zt =
∫ t

0
(X j

s − V j
s )d Zs +

∫ t

0
Zs d X

j
s −

∫ t

0
Zsg

j
s ds + [X j , Z ]t .

(13.2.14)
Now, [X j , Z ]t = ∑d

k=1

∫ t
0 f ks d[X j , Xk]. Since [X j , Xk] = 0 if j �= k and

[X j , X j ]t = t , it follows that

[X j , Z ]t =
∫ t

0
f j
s ds =

∫ t

0
Zsg

j
s ds.

Hence, using (13.2.14), we conclude

(X j
t − V j

t )Zt =
∫ t

0
(X j

s − V j
s )d Zs +

∫ t

0
Zs d X

j
s

and is thus a μw-local martingale, being a sum of stochastic integrals w.r.t. contin-
uous martingales. Hence by Lemma 13.2, (X j − V j ) is a Qθ-local martingale. As
noted earlier, X j − θ j is a Brownian motion under Qθ and thus (V j − θ j ) is itself a
continuous local martingale under Qθ. But we have noted that θ j is a function with
finite variation and by definition V j is a process with finite variation paths. Thus
invoking Theorem 5.24, we conclude μw(V j

t − θ
j
t = 0 ∀t) = 1. Thus

μw(

∫ t

0
g j
s ds = θ

j
t ∀t) = 1.

This proves θ is absolutely continuous and (13.2.4) holds. Remains to show that θ
satisfies (13.2.3) to complete the proof. Now we have

Zt = exp(Mt − 1

2
[M, M]t )

where Mt = ∑d
j=1

∫ t
0 θ̇

j
s d X

j
s and [M, M]t = ∑d

j=1

∫ t
0 (θ̇

j
s )

2ds. Further, Zt con-
verges in L

1(μw) to ξ. We are to show that [M, M]t → α < ∞. Suppose not, i.e.
[M, M]t ↑ ∞. Get tn ↑ ∞ such that [M, M]tn = n. Then

|Ztn+1 − Ztn | = Ztn |exp((Mtn+1 − Mtn ) − 1
2 ) − 1|.

Using that Ztn and (Mtn+1 − Mtn ) are independent, it follows that

https://doi.org/_5
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E[|Ztn+1 − Ztn |] = E[Ztn ]E[|exp((Mtn+1 − Mtn ) − 1
2 ) − 1|]

= E[|exp((Mtn+1 − Mtn ) − 1
2 ) − 1|]

= E[|exp(η − 1
2 ) − 1|].

whereη is a randomvariablewith standard normal distribution.As a result,E[|Ztn+1 −
Ztn |] does not converge to 0 contradicting L1(μw) convergence of Zt . Hence (13.2.3)
holds completing the proof. �
Lemma 13.5 Let M be a continuous local martingale and let f be a predictable
process such that ∫ ∞

0
f 2s d[M, M]s < ∞ a.s. (13.2.15)

Then Nt = ∫ t
0 f dM converges in probability as t → ∞.

Proof For k ≥ 1, let

τk = inf{t :
∫ t

0
f 2s d[M, M]s ≥ k}.

Note that the assumption (13.2.15) yields

μw(τk < ∞) → 0 as k → ∞. (13.2.16)

Then continuity of [N , N ]t implies that

[N , N ]t∧τk ≤ k. (13.2.17)

Since [N , N ] is increasing, this yields

lim
T→∞ sup

s,t≥T
E[ |[N , N ]t∧τk ] − E[ [N , N ]s∧τk |] = 0. (13.2.18)

Observe that for any k,

lim
T→∞ sup

s,t≥T
μw(|Ns − Nt | ≥ ε)

≤ lim
T→∞ sup

s,t≥T
μw(|Ns∧τk − Nt∧τk | ≥ ε) + μw(τk < ∞)

≤ lim
T→∞ sup

s,t≥T

1

ε2
E[|Ns∧τk − Nt∧τk |2] + μw(τk < ∞)

= lim
T→∞ sup

s,t≥T

1

ε2
E[ |[N , N ]t∧τk ] − E[ [N , N ]s∧τk |] + μw(τk < ∞).

In view of (13.2.16) and (13.2.18), we conclude that Nt is Cauchy in probability and
hence converges in probability. �
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Remark 13.6 For a semimartingale X and f ∈ L(X), if
∫ t
0 f d X converges in

probability as t → ∞, the limit is denoted by

∫ ∞

0
f d X.

The conclusion of Theorem 13.4 can be restated as

dQθ

dμw

= exp{
d∑

i=1

∫ ∞

0
θ̇is d X

i
s − 1

2

d∑
i=1

∫ ∞

0
(θ̇is)

2ds}. (13.2.19)

This is known as the Cameron–Martin formula.

13.3 Girsanov Theorem

Girsanov [19] generalized the Cameron–Martin formula to the case when the Brow-
nian motion is translated by an adapted process. We begin with a simple observation.

Lemma 13.7 Let N be a continuous local martingale such that N0 = 0. Let
Yt = exp(Nt − 1

2 [N , N ]t ). Then Y is a supermartingale, and for all τ ∈ Tb,E[Yτ ] ≤
1.

Proof Using Ito’s formula, it follows that

Yt = 1 +
∫ t

0
Y dN .

Thus Y is a local martingale. The rest follows from Lemma 5.7. �

Let Z be a d-dimensional Brownian motion adapted to a filtration (F�) such
that (Zt ,Ft ){t≥0} is a Wiener martingale. Let f = ( f j ) be an Rd -valued predictable
process such that f j ∈ L(Z j ). Suppose that

α =
d∑
j=1

∫ ∞

0
( f j

s )2ds < ∞ a.s. (13.3.1)

Mt =
d∑
j=1

∫ t

0
f j
s d Z

j
s . (13.3.2)

Then M is a local martingale, and in view of the assumption (13.3.1), it follows from
Lemma 13.5 that

Mt → η in probability

https://doi.org/_5
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where

η =
d∑
j=1

∫ ∞

0
f j
s d Z

j
s . (13.3.3)

Theorem 13.8 (Girsanov Theorem) Let f 1, . . . , f d be predictable processes satis-
fying (13.3.1). Let

ξ = exp(
d∑
j=1

∫ ∞

0
f j
s d Z

j
s − 1

2

d∑
j=1

∫ ∞

0
( f j

s )2ds). (13.3.4)

Suppose
E[ξ] = 1. (13.3.5)

Let Q be the probability measure defined by

dQ
dP

= ξ.

Then the process Y = (Y 1, . . . ,Y d) defined by

Y j
t = Z j

t −
∫ t

0
f j
s ds

is a d-dimensional Brownian motion, and (Yt ,Ft ){t≥0} is a Wiener martingale under
Q.

Proof Let
Ut = exp(

∑d
j=1

∫ t
0 f j

s d Z
j
s − 1

2

∑d
j=1

∫ t
0 ( f

j
s )2ds) (13.3.6)

As noted earlier, (13.3.1) implies thatUt converges to ξ in probability. From Lemma
13.7 it follows that U is a supermartingale. Thus, for A ∈ Fs , t → E[Ut1A] is
a decreasing function for t ∈ [s,∞). Choosing a sequence {tn : n ≥ 1} ⊆ [s,∞)

increasing to∞ such thatUtn converges to ξ almost surely, we conclude using Fatou’s
lemma that

E[ξ1A] ≤ E[Us1A]. (13.3.7)

In particular,
1 = E[ξ] ≤ E[Us] ≤ 1.

Thus, E[Ut ] = 1 for all t and as a consequence, U is a martingale. Moreover, since
(13.3.7) holds for all A ∈ Fs and E[Us] = 1 it follows that equality holds in (13.3.7)
and hence

EP[ξ | Fs] = Us . (13.3.8)
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Thus for A ∈ Fs ,

Q(A) =
∫
A
ξdP =

∫
A
Ut dP (13.3.9)

Note that by definition [Y i ,Y j ] = [Zi , Z j ] and that the quadratic variation under P
is same as that under Q. Thus, in view of the Levy’s characterization of Brownian
motion, all one needs to show is that Y j is a Q-local martingale.

Let us observe that Ut = 1 + ∫ t
0 Us dMs and so [Y j ,U ]t = [Z j ,U ]t = ∫ t

0 Us d

[Z j , M]s = ∫ t
0 Us f

j
s ds. Thus

Y j
t Ut =

∫ t

0
Y j
s dUs +

∫ t

0
Us dY

j
s + [Y j ,U ]t

=
∫ t

0
Y j
s dUs +

∫ t

0
Us d Z

j
s −

∫ t

0
Us f

j
s ds + [Y j ,U ]t

=
∫ t

0
Y j
s dUs +

∫ t

0
Us d Z

j
s

Since U and Z j are martingales under P, it follows that Y jU is P-local martingale.
Invoking Lemma 13.2 we conclude that Y j is Q local martingale. As noted above,
this implies Y is anRd -valued Brownian motion and (Yt ,Ft ){t≥0} is aWiener martin-
gale. �

A natural question that arises is: given f 1, f 2, . . . , f d , such that (13.3.1) is true
when does (13.3.5) hold?What are known as sufficient conditions, but no necessary
and sufficient condition is known.We now give sufficient conditions, due to Novikov
and Kazamaki.

Theorem 13.9 Let M be a continuous local martingale such that M0 = 0. Suppose
that

sup
τ∈Tb

E[exp( 12Mτ )] = K < ∞. (13.3.10)

Then Ut = exp(Mt − 1
2 [M, M]t ) is a uniformly integrable martingale.

Further, [M, M]t → η, Mt → φ and Ut → ξ = exp(φ − 1
2η) in probability as

t ↑ ∞ and
E[ξ] = 1. (13.3.11)

Proof Since for any α ∈ [0, 1
2 ], exp(αx) ≤ (1 + exp( 12 x)), it follows that for any

α ∈ [0, 1
2 ] and τ ∈ Tb, we have

E[exp(αMτ )] ≤ (1 + K ). (13.3.12)

Fix λ ∈ (0, 1) and let

Uλ
t = exp(λMt − 1

2λ
2[M, M]t ).
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For τ ∈ Tb, p > 1 and a > 0 (to be chosen later) let us write

(Uλ
τ )p = exp(aλMτ − 1

2λ
2 p[M, M]τ ) exp(λ(p − a)Mτ ).

For b > 1, c > 1 such that 1
b + 1

c = 1, using Holder’s inequality, we conclude

E[(Uλ
τ )p] ≤ (E[exp(abλMτ − 1

2λ
2 pb[M, M]τ )]) 1

b (E[exp(cλ(p − a)Mτ )]) 1
c .

We now choose a =
√
p√
b
so that a2b2 = pb, and hence the first factor on right-hand

side above is ≤1 in view of Lemma 13.7. We thus get

E[(Uλ
τ )p] ≤ (E[exp(cλ(p − a)Mτ )]) 1

c . (13.3.13)

For δ > 0, take p = (1 + δ2)2 and b = (1 + δ)2. Since a =
√
p√
b
, we get a = (1+δ2)

(1+δ)
.

Also c = b
b−1 = (1+δ)2

2δ+δ2
. Thus,

cλ(p − a) = (1 + δ)2

2δ + δ2
λ((1 + δ2)2 − (1 + δ2)

(1 + δ)
)

= (1 + δ)

2δ + δ2
λ(1 + δ2)((1 + δ)(1 + δ2) − 1)

= λ
(1 + δ)

2 + δ
(1 + δ2)(1 + δ + δ2)

(13.3.14)

Since λ < 1, in view of (13.3.14), we can choose δ > 0 such that cλ(p − a) ≤ 1
2 ,

and as a result we have by (13.3.12)

E[(Uλ
τ )p] ≤ (1 + K )

1
c (13.3.15)

where p > 1, a and c are as chosen above and K is as in (13.3.10). This shows

sup
τ∈Tb

E[(Uλ
τ )p] < ∞.

Invoking Lemma 5.6 we conclude that for 0 < λ < 1,Uλ is uniformly integrable
martingale and hence by Theorem 2.25 Uλ

t converges in probability for each such
λ. Using this for distinct values of λ, say 1

2 and
1
4 we can conclude that [M, M]t and

Mt converge in probability say to η and φ and then that

Uλ
t → exp(λφ − 1

2
λ2η).

Further it follows that and that for any λ < 1

https://doi.org/_5
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E[exp(λφ − 1
2λ

2η)] = 1. (13.3.16)

Thus it follows that Ut converges in probability to ξ = exp(φ − 1
2η). Remains to

show (13.3.11).
Since Mt → φ, using (13.3.12) and Fatou’s lemma (along a sequence tn ↑ ∞

such that Utn converges almost surely) we conclude that for any α ∈ [0, 1
2 ], we have

E[exp(αφ)] ≤ (1 + K ). (13.3.17)

By Lemma 13.7, for all t we have

E[exp(Mt − 1
2 [M, M]t ] ≤ 1

and hence again using Fatou’s lemma we conclude

E[exp(φ − 1
2η)] ≤ 1. (13.3.18)

Note that

exp(λφ − 1
2λ

2η) = exp(λ2φ − 1
2λ

2η) exp(λ(1 − λ)φ).

Now using this relation along with Holder’s inequality with p = 1
λ2 and q = 1

(1−λ2)
,

we get
1 = E[exp(λφ − 1

2λ
2η)]

= E[exp(λ2φ − 1
2λ

2η) exp(λ(1 − λ)φ)]
≤ (E[exp(φ − 1

2η)])λ2
(E[exp( λ

(1 + λ)
φ)])(1−λ2)

≤ (E[exp(φ − 1
2η)])λ2

(1 + K )(1−λ2)

(13.3.19)

where the first equality is (13.3.16), and in the last step we have used (13.3.17). Now
taking limit as λ ↑ 1 in (13.3.19), we conclude

1 ≤ E[exp(φ − 1
2η)].

In view of (13.3.18), this shows

E[exp(φ − 1
2η)] = 1.

�

The condition (13.3.10) is due toKazamaki [44]. Earlier, a slightly stronger condition
(13.3.20) was proposed by Novikov, which we give below. In practice, the Novikov
condition may be easier to check than the Kazamaki condition.
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Theorem 13.10 Let M be a continuous local martingale such that M0 = 0. Suppose
that

sup
T<∞

E[exp( 12 [M, M]T )] = K < ∞. (13.3.20)

Then Ut = exp(Mt − 1
2 [M, M]t ) is a uniformly integrable martingale. Further,

[M, M]t → η, Mt → β and Ut → ξ = exp(β − 1
2η) in probability with

E[ξ] = 1. (13.3.21)

Proof Wewill show that (13.3.20) implies (13.3.10). For any bounded stopping time
τ , bounded by T observe that

E[exp( 12Mτ )] = E[exp( 12Mτ − 1
4 [M, M]τ ) exp( 14 [M, M]τ )]

≤ (E[exp(Mτ − 1
2 [M, M]τ )]) 1

2 (E[exp( 12 [M, M]τ )]) 1
2

≤ (E[exp( 12 [M, M]τ )]) 1
2

≤ (E[exp( 12 [M, M]T )]) 1
2

≤ √
K .

(13.3.22)

wherewe have usedLemma13.7 andCauchy–Schwarz inequality. Taking supremum
over τ ∈ Tb on LHS, the result follows, namely that (13.3.20) implies (13.3.10). �

The results given above lead to the generalization of the Cameron–Martin for-
mula by Girsanov to the case when the Brownian motion is translated by a possibly
nonlinear predictable functional g.

In this section, we continue to denote the coordinate process on Cd by X = (Xt ).
For t ≥ 0 let Gt = σ(Xu : u ≤ t). Let

g : [0,∞) × Cd �→ R
d be (G�)-predictable. (13.3.23)

Suppose on some probability space (Ω,F ,P), we have a filtration (F�), a Brownian
motion W such that (Wt ,Ft ){t≥0} is a Wiener martingale. Note that if Y is any
continuous (F�) adapted process, then Ut = g(t,Y ) is a (F�) predictable process.
Suppose Y is a solution of the stochastic differential equation

dYt = dWt + g(t,Y )dt (13.3.24)

i.e. Y is an adapted continuous process such that

Y j
t = W j

t +
∫ t

0
g j (s,Y )ds. (13.3.25)
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Let ν = P ◦ Y−1 be the distribution of Y—thus ν is a probability measure on
(Cd ,B(Cd)). Let μw denote the Wiener measure on (Ω̃, F̃) = (Cd ,B(Cd)). Thus
X is Brownian motion under μw.

The next result, due toGirsanov, shows that under some conditions, ν is absolutely
continuous w.r.t. μw and gives a formula for the Radon–Nikodym derivative. Recall
that Tb denotes the class of all bounded stopping times w.r.t. the filtration under
consideration.

Theorem 13.11 Let g = (g1, . . . , gd) satisfy (13.3.23). Suppose Y is a solution to
the SDE (13.3.25) where W is a Brownian motion. Assume that

d∑
j=1

∫ ∞

0
(g j (s,Ys))

2ds < ∞ a.s. P. (13.3.26)

and

sup
τ∈Tb

EP[exp(−1

2

d∑
j=1

∫ τ

0
g j (s,Y )dW j

s )] < ∞. (13.3.27)

Then ν = P ◦ Y−1 is absolutely continuous w.r.t. μw and

dν

dμw

= exp(
d∑
j=1

∫ ∞

0
g j (s, X)dX j

s − 1

2

d∑
j=1

∫ ∞

0
(g j (s, X))2ds). (13.3.28)

Thus, uniqueness of weak solution to the SDE (13.3.25) holds in the class of solutions
satisfying (13.3.27). Moreover, for T < ∞

dν

dμw

|FT
= exp(

d∑
j=1

∫ T

0
g j (s, X)dX j

s − 1

2

d∑
j=1

∫ T

0
(g j (s, X))2ds) (13.3.29)

i.e. for A ∈ GT

ν(A) =
∫
A
exp(

d∑
j=1

∫ T

0
g j (s, X)dX j

s − 1

2

d∑
j=1

∫ T

0
(g j (s, X))2ds)dμw.

(13.3.30)

Proof First note that the condition (13.3.27) is same as

sup
τ∈Tb

EP[exp(−1

2

d∑
j=1

∫ τ

0
g j (s,Y )dY j

s + 1

2

d∑
j=1

∫ τ

0
(g j (s,Y ))2ds)] < ∞.

(13.3.31)
Let a process Z be defined on (Cd ,B(Cd)) via
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Z j
t = X j

t −
∫ t

0
g j (s, X)ds. (13.3.32)

Since ν = P ◦ Y−1 it follows that distribution of Z under ν is the same as that of W
under P, and in other words Z is a Brownian motion under ν.

Let T̃b denote the class of bounded (F X
� ) stopping times. The condition (13.3.31)

implies

sup
σ∈T̃b

Eν[exp(−1

2

d∑
j=1

∫ σ

0
g j (s, X)dX j

s + 1

2

d∑
j=1

∫ σ

0
(g j (s, X))2ds)] < ∞.

(13.3.33)
Let Mt = −∑d

j=1

∫ t
0 g j (s, X)d Z j

s . Then M is a ν-local martingale. Noting that

Mt = −
d∑
j=1

∫ t

0
g j (s, X)dX j

s +
∫ t

0
(g j (s, X))2ds

The relation (13.3.33) yields

sup
σ∈T̃b

Eν[exp(1
2
Mτ )] < ∞ (13.3.34)

Thus invoking Theorem 13.9 we conclude that

Ut = exp(Mt − 1

2
[M, M]t )

is a uniformly integrablemartingale andUt converges to ξ inL1(ν)withν(ξ > 0) = 1
and Eν[ξ] = 1 where

ξ = exp(−
d∑
j=1

∫ ∞

0
g j (s, X)d Z j

s − 1

2

d∑
j=1

∫ ∞

0
(g j (s, X))2ds). (13.3.35)

Note that the assumption (13.3.26) along with Lemma 13.5 ensures that for each
j ,

∫ t
0 g j (s, X)d Z j

s converges to
∫ ∞
0 g j (s, X)d Z j

s in ν probability. Let us define a
probability measure μ̃ on (Cd ,B(Cd)) by

dμ̃

dν
= ξ.

ByTheorem13.8, it follows that X j
t = Z j

t + ∫ t
0 g j (s, X)ds is a d-dimensional Brow-

nian motion on (Cd ,B(Cd), μ̃). Recalling that X is the coordinate process on Cd ,
we conclude μ̃ = μw. Since ν(ξ > 0) = 1, it follows that ν and μw are equivalent
and
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dν

dμw

= ξ−1.

Now

ξ−1 = exp(
d∑
j=1

∫ ∞

0
g j (s, X)d Z j

s + 1

2

d∑
j=1

∫ ∞

0
(g j (s, X))2ds)

= exp(
d∑
j=1

∫ ∞

0
g j (s, X)dX j

s − 1

2

d∑
j=1

∫ ∞

0
(g j (s, X))2ds)

where in the second step we have used

∫ ∞

0
g j (s, X)d Z j

s =
∫ ∞

0
g j (s, X)dX j

s −
∫ ∞

0
(g j (s, X))2ds.

Since the distribution ν = P ◦ Y−1 for any solution Y to the SDE (13.3.25) satisfies
(13.3.28), uniqueness of weak solution to SDE (13.3.25) follows. Observing that

Vt = exp(
d∑
j=1

∫ T

0
g j (s, X)dX j

s − 1

2

d∑
j=1

∫ T

0
(g j (s, X))2ds)

is a martingale under μw, we can conclude that (13.3.30) holds. This completes the
proof. �

Let us note that the condition (13.3.33) can be recast as follows in terms of integral
w.r.t. the Wiener measure.

Eν[exp(−1

2

d∑
j=1

∫ σ

0
g j (s, X)dX j

s + 1

2

d∑
j=1

∫ σ

0
(g j (s, X))2ds)]

= Eμw
ξ−1[exp(−1

2

d∑
j=1

∫ σ

0
g j (s, X)dX j

s + 1

2

d∑
j=1

∫ σ

0
(g j (s, X))2ds)]

= Eμw
[exp(1

2

d∑
j=1

∫ σ

0
g j (s, X)dX j

s )]

Thus the condition (13.3.27) implies

sup
σ∈T̃b

Eμw
[exp(1

2

d∑
j=1

∫ σ

0
g j (s, X)dX j

s )] < ∞. (13.3.36)

Indeed, if in (13.3.27), we take the underlying filtration to be (FY
� ), then (13.3.27)

is equivalent to (13.3.36). The advantage of the condition (13.3.36) is that it only
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involves integrals w.r.t. the Wiener measure. Having proven the uniqueness, we will
now show existence under suitable conditions.

Theorem 13.12 Suppose that g = (g1, . . . , gd) satisfies (13.3.23),

d∑
j=1

∫ ∞

0
(g j (s, Xs))

2ds < ∞ a.s. μw (13.3.37)

and (13.3.36). Then there exists a probability space (Ω̂, F̂ , P̂) with filtration (F̂�), a
Brownian motion Ŵ such that (Ŵt , F̂t ){t≥0} is a Wiener martingale, and an adapted
process Ŷ satisfying

d∑
j=1

∫ ∞

0
(g j (s, Ŷs))

2ds < ∞ a.s. P̂, (13.3.38)

sup
τ∈T̂b

EP̂[exp(−1

2

d∑
j=1

∫ τ

0
g j (s, Ŷ )dŴ j

s )] < ∞ (13.3.39)

and

Ŷ j
t = Ŵ j

t +
∫ t

0
g j (s, Ŷ )ds, 1 ≤ j ≤ d. (13.3.40)

Here T̂b is the class of bounded stopping times on (Ω̂, F̂ , P̂) w.r.t. the filtration (F̂�).

Proof Let us define a measure ν on (Cd ,B(Cd)) by (13.3.28). The assumption
(13.3.37) implies that ν is a probability measure and Theorem 13.8 then implies that
Z defined by (13.3.32) is a d-dimensional Brownian motion and

dXt = dZt + g(t, X)dt.

Let us take (Ω̂, F̂ , P̂) = (Cd ,B(Cd), ν), (F̂�) = (F X
� ), Ŵ = Z , Ŷ = X . It follows

that (13.3.38) and (13.3.40) hold. Retracing steps in the proof of Theorem 13.11, we
can verify that (13.3.36) implies (13.3.39). �

In other words, if g satisfies (13.3.23), (13.3.37) then existence and uniqueness
of weak solution to (13.3.40) holds in the class of solutions satisfying (13.3.38) and
(13.3.39).

We now briefly consider analogues of the results in this section for solutions
to stochastic differential equations driven by Brownian motion. Let us fix σ :
[0,∞) × Cd �→ L(d, d) and h : [0,∞) × Cd �→ R

d satisfying conditions (7.5.1),
(7.5.2), (7.5.9)–(7.5.12). Also let us fix y0 ∈ R

d . We have seen in Theorem7.26 that
the SDE,
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Y j
t = y0 +

d∑
k=1

∫ t

0
σ jk(s,Y )dWk

s +
∫ t

0
h j (s,Y )ds, (13.3.41)

whereW is a Brownianmotion, admits a unique strong solution Y and thatP ◦ Y−1 is
uniquely determined; i.e., the SDE (13.3.41) has a unique weak solution. we denote
P ◦ Y−1 = μ∗.

Wewill continue to denote by X the coordinate process onCd defined by (13.2.1).
Let Ct = σ(Xu : u ≤ t)

Here is a result extending existence of weak solutions to equation of the type
(13.3.41).

Theorem 13.13 Suppose W is a Brownian motion on some probability space
(Ω,F ,P) and Y is a solution to the SDE (13.3.41). Let φ : [0,∞) × Cd �→ R

d

be predictable (for the filtration (C�)). Suppose

d∑
j=1

∫ ∞

0
(φ j (s,Y ))2ds < ∞ a.s. P. (13.3.42)

φ = φ1{|σ|�=0} (13.3.43)

and

sup
τ∈Tb

EP[exp(1
2

d∑
j=1

∫ τ

0
φ j (s,Y )dW j

s )] < ∞. (13.3.44)

Let
f = h + σφ (13.3.45)

i.e. f j = h j + ∑d
k=1 σ jkφk . Then the SDE,

V j
t = y0 +

d∑
k=1

∫ t

0
σ jk(s, V )dUk

s +
∫ t

0
f j (s, V )ds, (13.3.46)

where U denotes a Brownian motion, admits a weak solution. Further, for such a
solution V defined on (Ω̂, F̂ , P̂),

d∑
j=1

∫ ∞

0
(φ j (s, Vs))

2ds < ∞ a.s. P̂ (13.3.47)

and

sup
τ∈T̃b

EP̂[exp(−1

2

d∑
j=1

∫ τ

0
φ j (s, V )dU j

s )] < ∞. (13.3.48)
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Proof Defining Q on (Ω,F) by

dQ
dP

= exp(
d∑
j=1

∫ ∞

0
φ j (s,Y )dW j

s − 1

2

d∑
j=1

∫ ∞

0
(φ j (s,Y ))2ds)

it follows from Theorem 13.9 thatQ is a probability measure and invoking Theorem
13.8 it follows that U defined by

U j
t = W j

t −
∫ t

0
φ j (s,Y )ds (13.3.49)

is a Brownian motion under Q. Clearly, using the definition of U and f in terms of
W and σ,φ, h we can deduce that

Y j
t = y0 +

d∑
k=1

∫ t

0
σ jk(s,Y )dUk

s +
∫ t

0
f j (s,Y )ds. (13.3.50)

Noting that

−1

2

d∑
j=1

∫ τ

0
φ j (s,Y )dU j

s +
d∑
j=1

∫ τ

0
φ j (s,Y )dW j

s − 1

2

d∑
j=1

∫ τ

0
(φ j (s,Y ))2ds

= 1

2

d∑
j=1

∫ τ

0
φ j (s,Y )dW j

s

it follows that

EQ[exp(−1

2

d∑
j=1

∫ τ

0
φ j (s,Y )dU j

s )] = EP[ dQ
dP

exp(−1

2

d∑
j=1

∫ τ

0
φ j (s,Y )dU j

s )]

= EP[exp(1
2

d∑
j=1

∫ τ

0
φ j (s,Y )dW j

s )].

Thus the condition (13.3.44) implies (13.3.48) with P̂ = Q, V = Y . Since Q is
absolutely continuous w.r.t. P, (13.3.47) holds with P̂ = Q, V = Y . �

Having proved existence, wewill now show uniqueness of the weak solution by iden-
tifying its distribution. Recall μ∗ = P ◦ Y−1, where Y is the unique strong solution
to the SDE

Y j
t = y0 +

d∑
k=1

∫ t

0
σ jk(s,Y )dWk

s +
∫ t

0
h j (s,Y )ds

with W being a Brownian motion.
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Theorem 13.14 Let U be a Brownian motion on (Ω̂, F̂ , Q̂) adapted to a filtration
(F̂�) such that (Ut , F̂t ){t≥0} is a Wiener martingale and let V be an (F̂�) adapted
continuous process satisfying the SDE (13.3.46), where f is defined by (13.3.45).
Further, suppose φ, V satisfy (13.3.47) and (13.3.48). Let ν = Q̂ ◦ V−1 be the dis-
tribution of V . Then ν is absolutely continuous w.r.t. μ∗ and for T < ∞

dν

dμ∗
|FT

= exp(L) (13.3.51)

where

L =
d∑
j=1

∫ T

0
ψ j (s, X)dX j

s −
d∑
j=1

∫ T

0
h j
sψ

j (s, X)ds − 1

2

d∑
j=1

∫ T

0
(φ j (s, X))2ds,

X is the coordinate process on Cd and ψ = φσ−11{|σ|�=0}. As a consequence, weak
solution to the SDE (13.3.46) is unique.

Proof Let us define a measure P̂ on (Ω̂, F̂) by

dP̂

dQ̂
= exp(−

d∑
j=1

∫ ∞

0
φ j (s, V )dU j

s − 1

2

d∑
j=1

∫ ∞

0
(φ j (s, V ))2ds). (13.3.52)

In view of the assumption (13.3.48), it follows from Theorem 13.9 that P̂ is a prob-
ability measure and from Theorem 13.9 that Z defined by

Z j
t = U j

t +
∫ t

0
φ j (s, V )ds. (13.3.53)

is a Brownian motion under P̂. Now recalling that V satisfies (13.3.46) and that h,
f and φ are related via (13.3.45), we note that

V j
t = y0 +

d∑
k=1

∫ t

0
σ jk(s, V )d Zk

s +
∫ t

0
h j (s, V )ds. (13.3.54)

Since Z is a Brownian motion under P̂, it follows that V is a weak solution to the
SDE (13.3.41) on (Ω̂, F̂ , P̂) and as a consequence, we have

P̂ ◦ V̂−1 = μ∗. (13.3.55)

Since P̂ and Q̂ are mutually absolutely continuous, it follows that μ∗ and ν are
mutually absolutely continuous.
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Let

St = exp(−
d∑
j=1

∫ t

0
φ j (s, V )dU j

s − 1

2

d∑
j=1

∫ t

0
(φ j (s, V ))2ds).

It then follows that S is a Q-martingale and for A ∈ F̂t

P(A) =
∫
A
St dQ. (13.3.56)

Let

Rt = exp(
d∑
j=1

∫ t

0
φ j (s, V )d Z j

s − 1

2

d∑
j=1

∫ t

0
(φ j (s, V ))2ds). (13.3.57)

Note that

S−1
t = exp(

d∑
j=1

∫ t

0
φ j (s, V )dU j

s + 1

2

d∑
j=1

∫ t

0
(φ j (s, V ))2ds)

= exp(
d∑
j=1

∫ t

0
φ j (s, V )d Z j

s − 1

2

d∑
j=1

∫ t

0
(φ j (s, V ))2ds)

= Rt .

(13.3.58)

Using (13.3.56) it follows that

Q̂(A) =
∫
A
Rt dP̂ ∀A ∈ F̂t , ∀t (13.3.59)

and thus R is a P-martingale. Using (13.3.43) and (13.3.54) and ψ = φσ−11{|σ|�=0}
it follows that

d∑
j=1

∫ t

0
φ j (s, V )d Z j

s =
d∑
j=1

∫ t

0
φ j (s, V )1{|σ|�=0}d Z j

s

=
d∑
j=1

∫ t

0
ψ j (s, V )dV j

s −
d∑
j=1

∫ t

0
h j (s, V )ψ j (s, V )ds

Thus,
Rt = exp(ζ)

where
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ζ =
d∑
j=1

∫ t

0
ψ j (s, V )dV j

s −
d∑
j=1

∫ t

0
h j (s, V )ψ j (s, V )ds− 1

2

d∑
j=1

∫ t

0
(φ j (s, V ))2ds

Let us define αt on (Cd ,B(Cd),μw) by

αt = exp(η)

where

η =
d∑
j=1

∫ t

0
ψ j (s, X)dX j

s −
d∑
j=1

∫ t

0
h j (s, X)ψ j (s, X)ds − 1

2

d∑
j=1

∫ t

0
(φ j (s, X))2ds

We would like to show that for B ∈ F X
t ,

∫
{V∈B}

Rt dP̂ =
∫

{X∈B}
αt dμ∗. (13.3.60)

If ψ j were continuous, the stochastic integral could be expressed pathwise using
Theorem 6.2 and then (13.3.60) would follow from the usual change of variable
formula. For the general case, (13.3.60) follows using Exercise 4.54.

ν(B) = Q(V ∈ B)

=
∫

{V∈B}
Rt dP̂

=
∫
B

αt dμ∗.

(13.3.61)

Thus, ν is uniquely determined on F X
t and since ∪t>0F X

t is a field that generates
B(Cd), it follows that ν is uniquely determined. Thus weak uniqueness holds for
solution to the SDE (13.3.46). �

13.4 The Girsanov–Meyer Theorem

The following result is due to Meyer building upon the idea by Girsanov in the
context of a Wiener process. We return to the framework of Sect. 13.1. Recall Q
is a probability measure equivalent to P, ξ = dQ

dP , Z is the (r.c.l.l. version) of the
martingale EP[ξ | F+

t ]. We assume that Z is (F�) adapted. Of course, if the filtration
(F�) is right continuous, this assumption is always satisfied.
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Theorem 13.15 (Girsanov–Meyer) Let M be a P-local martingale. Then

Nt = Mt −
∫ t

0
(Zs)

−1d[M, Z ]s (13.4.1)

is a Q-local martingale.

Proof Let Ut = ∫ t
0 (Zs)

−1d[M, Z ]. Then

Nt Zt = Mt Zt −Ut Zt

= (Mt Zt − [M, Z ]t ) + [M, Z ]t − (

∫ t

0
Us−d Zs +

∫ t

0
Zs−dUs + [U, Z ]t )

where we have used integration by parts formula, (4.6.7) along with U0 = 0. Now
(Mt Zt − [M, Z ]t ) is P-local martingale (see Theorem 9.30). Further,

∫ t
0 Us−d Zs is

a P-local martingale (see Corollary 9.15). It thus follows that

Nt Zt = Lt + [M, Z ]t −
∫ t

0
Zs−dUs − [U, Z ]t (13.4.2)

where Lt = (Mt Zt − [M, Z ]t ) − ∫ t
0 Us−d Zs and thus L is a P-local martingale.

SinceU ∈ V is a process with finite variation paths, [U, Z ]t = ∑
0<s≤t (ΔU )s(ΔZ)s

and as a consequence

∫ t

0
Zs−dUs + [U, Z ]t =

∫ t

0
Zs dUs . (13.4.3)

From the definition of U , it follows that

∫ t

0
Zs dUs =

∫ t

0
Zs(Zs)

−1d[M, Z ] = [M, Z ]. (13.4.4)

Thus using (13.4.2)–(13.4.4) it follows that

Nt Zt = Lt

and thus N Z is a P-local martingale. Hence N is a Q-local martingale. �
Here is the predictable version of the Girsanov–Meyer Theorem.

Theorem 13.16 (Girsanov–Meyer)Let M beaP-localmartingale. Further suppose
that MZ is locally integrable. Then

Lt = Mt −
∫ t

0
(Zs−)−1d〈M, Z〉s (13.4.5)

is a Q-local martingale.
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Proof Once againweneed to show that LZ is aP-localmartingale.Wehave observed
that (see Remark 9.34), Mt Zt − 〈M, Z〉t is a local martingale. So in order to show
that LZ is a P-local martingale, it suffices to show that N defined by

Nt = 〈M, Z〉t − Zt

∫ t

0
(Zs−)−1d〈M, Z〉s (13.4.6)

is a P-local martingale. Let Vt = ∫ t
0 (Zs−)−1d〈M, Z〉s so that

Nt = 〈M, Z〉t − ZtVt .

First we observe that V has a jump at a stopping time σ if and only if 〈M, Z〉 has a
jump at σ and then

(ΔV )σ = (Zσ−)−1(Δ〈M, Z〉)σ.

Predictability of 〈M, Z〉 implies that for a predictable stopping time σ, Vσ− is
Fσ− measurable. It follows using Lemma 8.25 that V is predictable.Then we have
(note V0 = 0)

ZtVt =
∫ t

0
Zs−dVs +

∫ t

0
Vs−d Zs + [V, Z ]t . (13.4.7)

Since
∫ t
0 Zs−dVs = 〈M, Z〉t , we conclude

Nt = −
∫ t

0
Vs−d Zs − [V, Z ]t .

Now
∫ t
0 Vs−d Zs is a P-local martingale by Corollary 9.15 and [V, Z ]t is a P-local

martingale by Theorem 9.32. Thus N is a P-local martingale. As noted earlier, this
completes the proof that L is Q-local martingale. �
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