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Preface

Currently, there are three Volumes of the BASS Book Series, spanning 45 chapters.
Chapters in this book are contributed by invited speakers at the annual meetings
of the Biopharmaceutical Applied Statistics Symposium (BASS). Volume 1 is
titled: Design of Clinical Trials and consists of 15 chapters; Volume 2 is titled
Biostatistical Analysis of Clinical Trials and consists of 12 chapters; and Volume 3
is titled Pharmaceutical Applications and consists of 18 chapters. The three volumes
include the works of seventy authors or co-authors.

History of BASS: BASS was founded in 1994, by Dr. Karl E. Peace. Dr. Peace
is the Georgia Cancer Coalition Distinguished Scholar/Scientist, Professor of
Biostatistics, Founding Director of the Center for Biostatistics, and Senior Research
Scientist in the Jiann-Ping College of Public Health at Georgia Southern University.

Originally, there were three objectives of BASS. Since the first editor founded
the Journal of Biopharmaceutical Statistics (JBS) 3 years before founding BASS,
one of the original objectives was to invite BASS Speakers to create papers from
their BASS presentations and submit to JBS for review and publication. Ergo,
BASS was to be a source of papers submitted to JBS to assist in the growth of the
new journal JBS. The additional two objectives were:

• to provide a forum for pharmaceutical and medical researchers and regulators to
share timely and pertinent information concerning the application of biostatistics
in pharmaceutical environments; and most importantly,

• to provide revenues to support graduate fellowships in biostatistics at the
Medical College of Virginia (MCV) and at the Jiann-Ping Hsu College of Public
Health at Georgia Southern University (GSU).

After the JBS was on firm footing, the first objective was formally dropped. In
addition, the third objective was expanded to include potentially any graduate
program in biostatistics in the USA.
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BASS I (1994) was held at the Hyatt Regency in Orlando, FL; BASS II–III were
held at the Hilton Beach Resort, Inner Harbor, in San Diego, CA; BASS IV–VII
were held at the Hilton Oceanfront Resort Hotel, Palmetto Dunes, in Hilton Head
Island, SC; BASS VIII–XII were held at the Desoto Hilton; and BASS XIII–XVI
were held at the Mulberry Inn, both located in the Historic District of Savannah,
GA. BASS XVII was held at the Hilton Resort Hotel at Palmetto Dunes, Hilton
Head Island, SC. BASS XVIII–XIX were held at the Mulberry Inn in Savannah. To
mark the twentieth Anniversary BASS meeting, BASS XX was held in Orlando at
the Hilton Downtown Orlando Hotel. BASS XXI was held at the Holiday Inn
Crowne Plaza in Rockville, MD, whereas BASS XXII and XXIII were held at the
Radisson Hotel in Rockville, Maryland.

BASS XXIV (www.bassconference.org) was held at the Hotel Indigo in the
charming historic Georgia city of Savannah. More than 360 tutorials and 57 1-day or
2-day short courses have been presented at BASS, by the world’s leading authorities
on applications of biostatistical methods attendant to the research, clinical develop-
ment, and regulation of biopharmaceutical products. Presenters represent the bio-
pharmaceutical industry, academia, and government, particularly the NIH and FDA.

BASS is regarded as one of the premier conferences in the world. It has served
the statistical, biopharmaceutical, and medical research communities for the past 24
years by providing a forum for distinguished researchers and scholars in academia,
government agencies, and industries to conduct knowledge sharing, idea exchange,
and creative discussions of the most up-to-date innovative research and applications
to medical and health care to enhance the health of general public, in addition to
providing support for graduate students in their biostatistics studies. Toward this
latter end, BASS has provided financial support for 75 students in completing their
Master or Doctorate degree in Biostatistics. In addition, BASS has provided
numerous travel grants to Doctorate-seeking students in Biostatistics to attend the
annual BASS meeting. This provides a unique opportunity for students to broaden
their education, particularly in the application of biostatistical design and analysis
methods, as well as networking opportunities with biostatisticians from Academia,
the Pharmaceutical Industry, and governmental agencies such as the FDA.

Volume II of the BASS Book Series, entitled Biostatistical Analysis of
Clinical Trials, consists of 12 chapters. Chapter 1 presents collaborative targeted
maximum likelihood estimation methods to assess causal effects in observational
studies. Chapter 2 discusses the use of generalized tests in clinical trials. Chapter 3
presents discrete time-to-event and score-based methods with application to a
composite endpoint for assessing evidence of disease activity-free. Chapter 4 dis-
cusses methods for imputing missing data using a surrogate biomarker and presents
an analysis of the incidence of endometrial hyperplasia. Chapter 5 deals with
advancing the interpretation of patient-reported outcomes. Chapter 6 provides a
primer on network meta-analysis with an example.

Chapter 7 presents methods for detecting safety signals among adverse events
reported in clinical trials. Chapter 8 provides methods for meta-analysis for rare
events reported in clinical trials. Chapter 9 provides a treatise on missing data.

vi Preface
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Chapter 10 discusses Bayesian subgroup analysis using hierarchical models.
Chapter 11 presents a question-based approach to the analysis of safety data.
Finally, in Chap. 12, the analysis of two-stage adaptive seamless clinical trial design
is presented.

We are indebted to all the presenters, program committee, attendees, and vol-
unteers who have contributed to the phenomenal success of BASS over its first 24
years, and to the publisher for expressing interest in and publishing the Series.

Statesboro, USA Karl E. Peace, Ph.D.
Jiann-Ping Hsu College of Public Health

Georgia Southern Univesity

Chapel Hill, USA/Pretoria, South Africa Ding-Geng Chen, Ph.D.
Professor, University of North Carolina

Extraordinary Professor, University of Pretoria

Cambridge, USA Sandeep Menon
Vice President and Head of Early

Clinical Development, Biostatistics
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Chapter 1
Collaborative Targeted Maximum
Likelihood Estimation to Assess Causal
Effects in Observational Studies

Susan Gruber and Mark van der Laan

1.1 Introduction

Randomized controlled trials (RCT) and observational studies (OS) are carried out
to address a wide variety of problems in medicine and public health. RCTs are
considered a strong source of evidence of causal associations because treatment is
randomized (Burns et al. 2011). However, if there is informative loss to follow-up or
lack of adherence, an unadjusted analysis of RCT data will be biased. Furthermore,
for some questions an RCT is not an ethical or feasible option and only observational
data are available. OS are common tools for post-market drug safety monitoring and
assessing the impact of environmental exposures on chronic disease. A naive analysis
that ignores selection bias and other sources of confounding will produce a biased
estimate of the causal effect. Targeted learning (TL) provides a framework for using
data to answer these kinds of questions (van der Laan and Rose 2011).

In the TL paradigm study data are viewed as realizations from an underlying joint
distribution of the data, P0. Common effect measures of interest such as the hazard
ratio (HR), odds ratio (OR), relative risk (RR), and additive treatment effects (ATE)
correspond to parameters of P0. Although P0 is unknown, when causal assumptions
are met these parameters can be estimated from data. The goal of TL is to con-
struct an estimator that is maximally precise and minimally biased. TL uses two core
methodologies, super learning (SL) and targeted minimum loss-based estimation
(TMLE) (van der Laan and Rubin 2006; van der Laan et al. 2007; van der Laan and
Rose 2011). SL is an ensemble machine learning algorithm for prediction that pro-
vides flexible, data-adaptive modeling. SL avoids imposing unwarranted parametric

S. Gruber (B)
Putnam Data Sciences, LLC, 85 Putnam Avenue, Cambridge, MA 02139, USA
e-mail: sgruber@putnamds.com

M. van der Laan
School of Public Health, University of California at Berkeley, 108 Haviland Hall, Berkeley, CA
94720-7360, USA
e-mail: laan@berkeley.edu

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium,
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2 S. Gruber and M. van der Laan

assumptions upon the distribution of the data that can introduce bias. TMLE is a
semi-parametric efficient double-robust (DR) substitution estimator that tailors the
estimation procedure to the target parameter of interest. Unlike maximum likelihood
estimators that optimize a global likelihood, TMLE aims to make a more favorable
bias/variance trade off with respect to the target statistical estimand. Collaborative
TMLE (C-TMLE) is an extension of TMLE designed to further improve this trade off
when there is a sparsity of information in the data for estimating the target parameter
(van der Laan and Gruber 2010; Gruber and van der Laan 2010b, 2015).

As a running example consider the problem of estimating the ATE of a binary
exposure, A, on a binary outcome, Y , adjusting for covariatesW , using observational
data. Many propensity score (PS)-based methods and outcome regression modeling
approaches to adjusting for confounding exist. PS-based estimators includingmatch-
ing, stratification, and inverse probability weighting (IPW), make use of associations
between covariates and observed treatment (Rosenbaum and Rubin 1983; Davidian
and Lunceford 2004; Hernan et al. 2000). Outcome regression modeling adjusts for
bias in the estimated association between treatment and the outcome by including
potential confounders in the model. A DR estimator such as TMLE combines these
two strategies, and is consistent if either the PS or the outcome regression model is
correctly specified.

The literature on PS-based estimators recognizes that the choice of covariates
to include in the PS model affects efficiency, and that model misspecification can
amplify bias (Caliendo and Kopeinig 2008; Sekhon 2008; Petersen et al. 2010; Pearl
2011). These problems are exacerbatedwhenwithin some strata ofW very few treated
(or untreated) subjects are available to inform the effect estimate. In other words,
when combinations of covariates are highly correlated with treatment it becomes
difficult to tease apart the causal effect of treatment versus the effect of the covariates
themselves. This lack of robust common support is known as poor overlap in the
matching literature. In the causal inference literature it is termed a near violation
of the positivity assumption that 0 < P(A = 1 | W ) < 1. Outcome regression-based
effect estimates are also impacted. They are primarily driven by untestable modeling
assumptions rather than by data.

One response to sparsity involves re-framing the question by defining an alterna-
tive target parameter. For example, one might opt to estimate the effect of treatment
among the treated (ATT), rather than among the entire study population. Another
way of re-defining the target population is to trim observations where the probability
of receiving or not receiving treatment is close to 0 or 1, under the assumption that the
treatment effect is of interest only in the population where realistic treatment options
exist (Smith and Todd 2005). However, interpretability of this parameter suffers from
a limited ability to characterize the study population (King et al. 2014).

Although DR estimators are not immune to near violations of the positivity
assumption, TMLE dampens finite sample bias and variability by virtue of being
a bounded substitution estimator (Kang and Schafer 2007b; Robins et al. 2007;
Porter et al. 2011). In addition, theoretical results indicate that when the outcome
regression model is partially informative there is opportunity for a DR estimator
to further reduce mean squared error (MSE) in these sparse data settings (van der



1 Collaborative Targeted Maximum Likelihood Estimation… 3

Laan and Gruber 2010; Gruber and van der Laan 2010a). This insight motivated the
development of the C-TMLE.

C-TMLE is an extension of TMLE that data adaptively estimate the propensity
score model in response to bias inadequately addressed by the outcome model. The
remainder of this chapter describes the underlying principles of C-TMLE and pro-
vides a general template for a C-TMLE. Several implementations of C-TMLE that
have been discussed in the literature are also presented, along with applications
simulated and real-world datasets. We begin with a brief review of TMLE.

1.2 Targeted Minimum Loss-Based Estimation

TMLE is a methodology for estimating any pathwise differentiable parameter of a
probability distribution, including common causal effect parameters (van der Laan
andRubin 2006; van derLaan andRose 2011). The parameter of interest is a feature of
the joint distribution of the data. It is defined as amapping from the class of probability
distributions under consideration, M , to the parameter space, �:M → IR. The
target parameter is evaluated by applying the mapping to the true data distribution,
ψ0 = �(P0). (In the conventions of the TMLE literature, a ‘0’ subscript indicates
a true value and the subscript ‘n’ denotes an estimate.) As a substitution estimator,
the TMLE is evaluated by applying the mapping to an estimate of P0, ψn = �(Pn).
When the data distribution factorizes into aQ component required for evaluating the
mapping, and a nuisance component g, we can also write ψ0 = �(Q0).

The TMLE procedure is carried out in two stages. In Stage 1 an initial estimate
of Q0 is obtained. If this estimated Q0

n is not consistent for Q0, then �(Q0
n) pro-

duces a biased estimate of ψ0. Stage 2 provides an opportunity to use information
in g to reduce any remaining bias for ψn in Q0

n . This is accomplished by defining
a parametric submodel with fluctuation parameter, ε. The choice of submodel and
procedure for fitting ε are judiciously crafted to ensure that the closure of the lin-
ear span of score equations solved when fitting ε by maximum likelihood includes
the efficient influence curve estimating equation, and that the updated estimate, Q∗

n
remains within the statistical model. We illustrate these general concepts within the
context of estimating the ATE.

Using TMLE to Estimate the ATE
Consider the unobservable full data X full = (W,Y0,Y1) ∼ P0, where W is a vector
of baseline covariates and Y0 and Y1 correspond to potential (or counterfactual)
outcomes that would occur under no treatment and treatment, respectively. The ATE
parameter is defined in terms of this full data as E0(Y1 − Y0). However, X full is
unobservable because only one of the potential outcomes actually occurs in the real
world.

Coarsening is the process that gives rise to the missing data structure of the
observed data, in which only the potential outcome corresponding to treatment A
at level a = 0 or 1 is recorded. The data are coarsened at random (CAR) when the
treatment assignment mechanism that gives rise to the missingness is a function of
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observed covariates only. Observed data are a coarsened version of the full data in
which binary treatment indicator A indicates which potential outcome is observed.
The observed data consists of n independently and identically distributed observa-
tions O = (W,A,Y ) ∼ P0. When causal assumptions are met Y = Ya and the cor-
responding statistical parameter is given by the mapping, ψ0 = �(P0) = E0[E0(Y |
A = 1,W ) − E0(Y | A = 0,W )].

An efficientDRestimator solves an estimating equation based in the efficient influ-
ence curve of the pathwise derivative of the target parameter,D∗(P). A DR estimator
is consistent in CAR data structures when either Q0 or g0 is consistently estimated,
and maximally efficient when both are correct (van der Laan and Robins 2003). For
parameters whereD∗(P) allows an estimating function representationD∗(ψ, η), it is
possible to directly solve PnD∗(ψ, η) = 0. The augmented-IPW estimator takes this
approach (Robins and Rotnitzky 1995, 2001; Robins 2000). In contrast, although
TMLE also ensures the efficient influence curve estimating equation is solved, i.e.,
that it satisfies PnD∗(Q∗

n, gn) = 0, the TMLE is defined as a substitution or plug-
in estimator, ψn = �(Pn). TMLE can therefore be applied to estimate parameters
where no estimating function representation of D∗(P) exists.

For the ATE parameter the Q component of the distribution factorizes as Q0 =
(Q0Y ,Q0W ), the distributions of Y and ofW , respectively. The empirical distribution
of W provides a consistent non-parametric estimate of Q0W . With regard to Q0Y

we note that the ATE mapping only requires estimates of the the conditional mean
outcome, Q̄0(A,W ) ≡ E0(Y | A,W ), not the entire density. Stage 1 ofTMLE focuses
on correctlymodeling the outcome regression. Data-adaptive SL is the recommended
approach to producing the initial estimate, Q̄0

n(A,W ). We recognize that even when
SL is used if Q̄0

n does not converge toQ0 or the rate of convergence is slow, then there
may be residual bias in ψn = �(Q̄0

n). Stage 2 of TMLE provides an opportunity to
reduce this bias.

In Stage 2 TMLE uses information in g to fluctuate the estimate of Q̄0. In this
data structure g refers to the conditional distribution of A given W . The goal of this
targeting step is to modify Q̄0

n in a way that improves estimation of ψ . The key
is crafting a parametric submodel with a fluctuation covariate Hg(A,W ) designed
so that when the ε-parameter of the submodel is fit by maximum likelihood, the
closure of the linear span of the generated score equations includes the efficient
influence curve estimating equation. This approach guarantees that (Q∗

n, gn) solves
PnD∗(Q∗

n, gn) = 0, where Q̄∗
n is the targeted update of Q̄0

n .
The efficient influence function for the ATE parameter is given by

D∗(P)(O) = H (A,W )[Y − Q̄(A,W )] + Q̄(1,W ) − Q̄(0,W ) − ψ,

with H (A,W ) = A
g(1,W )

− 1−A
1−g(1,W )

(van der Laan and Rubin 2006). Our goal of
ensuring that maximizing the likelihood when fitting ε ensures solving the empirical
efficient influence function equation is satisfied by defining the submodel

logit
[
Q̄∗

n(A,W )
] = logit

[
Q̄0

n(A,W )
] + εH (A,W ).
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The updated Q̄∗
n is given by setting

logit[Q̄∗
n(0,W )] = logit[Q̄0

n(0,W )] − εn/[1 − gn(1,W )], (1.1)

logit[Q̄∗
n(1,W )] = logit[Q̄0

n(1,W )] + εn/gn(1,W ). (1.2)

Both potential outcomes are evaluated for all subjects. The parameter estimate
is calculated as ψn = 1

n

∑n
i=1

[
Q̄∗

n(1,Wi) − Q̄∗
n(0,Wi)

]
. Note that both g(1,W ) and

g(0,W ) = 1 − g(1,W ) are in the denominator of terms in Eqs. 1.1 and 1.2. The
positivity assumption ensures that g(1,W ) is bounded away from both one and zero
in all strata of W . In an ideal RCT where randomization probabilities are known,
using g0 in Stage 2 guarantees consistency of the TMLE. In an OS where g0 is not
known SL can be used to obtain an estimate from data.

1.2.1 Inference

Influence-curve based inference is available for all TMLEs. The asymptotic vari-
ance of the estimator is given by σ 2

ψ = σ 2(D∗(P0))/n, where σ 2(D∗(P∗
n)) is the

variance of the influence function and n is the number of independent units of obser-
vation. This can be used to construct a test statistic for Wald-type hypothesis test-
ing, T = (ψn − μ)/σ̂ψ , where μ is the hypothesized parameter value. Double-sided
1 − α-level confidence intervals are given by ψn ± Zα/2σ̂ . When P∗

n is consistent,
σ 2(D∗(P0))/n is an unbiased estimator of the true variance. Otherwise, as long as gn
is consistent inference is conservative.

1.3 C-TMLE

A near violation of the positivity assumption signals a sparsity of information in
the data for identifying the target parameter. This can be detected from data by
examining whether g(1,W ) is close to zero or one within one or more strata of W .
Estimates from sparse data can be biased and highly variable, even under correct
model specification (Freedman and Berk 2008). C-TMLE addresses this problem
by fine tuning the nuisance parameter estimation procedure. The ultimate goal is to
minimize mean squared error in the target parameter estimate.

We saw earlier that modeling g within the standard TMLE procedure is indepen-
dent of how well Q0

n approximates Q0. In contrast, C-TMLE data-adaptively selects
a set of confounders to adjust for when modeling g in response to residual bias in
�(Q0

n). Depending on the consistency and rate of convergence of Q
0
n it may be pos-

sible to condition on fewer covariates in the propensity score model than would be
required to estimate the full g0. Conditioning on less will tend to yield propensity
scores that are further bounded away from zero and one. Incorporating these less
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extreme propensity scores into H (A,W ) can reduce finite sample bias and variance
in the target parameter estimate.

1.3.1 Collaborative Double Robustness

Theory teaches that when g0 is used to target any initial Q0
n the TMLE will be con-

sistent. Beyond that, there may exist one or more g estimators that condition on
less than the full g0, yet provide consistent estimation of ψ0 when used to target a
misspecified Q0

n . This collaborative double robustness property states that given a
limit Q of Qn, there exists a set of possible limits g of gn for which the estimator
satisfyingPnD∗(Qn, gn, ψn) = 0 remains consistent forψ0 (van der Laan andGruber
2010). Let G (Qn,P0) be the set of g estimators satisfying this condition. Traditional
double robustness result tells us that when Q0

n is consistent for Q0 G (Q0
n,P0) con-

tains all conditional distributions of g. At the other extreme, when Q0
n is completely

uninformative the residual bias in ψn = �(Q0
n) is equal to all of the bias in the

crude parameter estimate. In this case any g in G (Q0
n,P0) must condition on a set of

covariates sufficient to control for all confounding, and may condition on more. The
important point is that for a Q with �(Q) = ψ0 the set G (Q,P0) is defined as all g
in G such that P0D∗(Q, g) = 0. When an estimating function representation exists,
this is equivalent to all g for which P0D∗(Q, g, ψ0) = 0. If Qn converges to Q and
gn converges to a g in G (Q,P0) then the solution ψn of P0D∗(Qn, gn, ψn) will be
consistent.

Fig. 1.1 Directed acyclic graph (DAG) with arrows depicting the true causal relationships among
covariates W , treatment A, and outcome Y . The true treatment mechanism, g0 conditions on nodes
within boxes (top). Three copies of the same DAG have boxes around covariates that constitute
alternate sufficient adjustment sets (bottom)
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In addition to the true g0 there might exist several sufficient g estimators that con-
dition on different adjustment sets. For example, the directed acyclic graph (DAG)
in Fig. 1.1 shows the true causal relationships among covariates W1, . . . ,W5, treat-
ment A, and outcome Y . Common ancestors of A and Y confound the effect of
A on Y . The covariates W̃ = (W1,W2,W4,W5) in boxes at the top of Fig. 1.1 are
direct parents of treatment node A. The true g0 = P(A = 1 | W̃ ). Even when Q0

n is
uninformative, a DR estimator based on this g0 is consistent for ψ . Further exam-
ination of the DAG suggest other subsets of W that are sufficient to control for all
confounding. These include W̃ ′ = {W1,W2,W5}, W̃ ′′ = {W1,W2,W6}, . . . , W̃ ′′′ =
{W1,W2,W3,W4,W5,W6}. Despite the fact that that g(A, W̃ ′′)=P(A=1 | W1,W2,

W6) is not a consistent estimator of g0,
{
g(A, W̃ ), g(A, W̃ ′), g(A, W̃ ′), g(A, W̃ ′)

}

are all sufficient g estimators, and are members of G (Q0
n,P0).

There is a middle ground between the two extremes of a correctly specified initial
estimate and a completely uninformativeQ0

n . Consider aQ
0′
n that adjusts for some, but

not all, asymptotic bias. The set of g estimators that in collaboration with G (Q0′
n ,P0)

provide consistent estimation ofψ may be larger than the set of sufficient g estimators
for the uninformative Q0

n , G (Q0
n,P0). When Q0′

n is partially informative, the residual
bias is somewhat less than the full bias in the crude estimate. As long as g conditions
on at least (Q0

n − Q0(0,W ),Q0
n − Q0(1,W )), then in our example conditioning on

only a subset of confounders in the propensity score model is sufficient for full
asymptotic bias reduction. Collaborative double robustness is a property of all DR
estimators including TMLE.

1.3.2 Guiding Principles

Collaborative double robustness teaches us that there are certain circumstanceswhere
a DR estimator relying on amisspecified outcome regressionmodel can be consistent
for ψ even when the g estimator conditions on less than the full g0. For a given Q0

n ,
the best finite sample adjustment set for estimating g depends upon the underlying
causal structure and characteristics of the data. This implies there is an opportunity
to reduce MSE in sparse data settings, and motivated the development of C-TMLE.

The main guiding principle for a C-TMLE is that it data-adaptively generates a
g ∈ G that conditions on a necessary subset of confounders W̃ ⊆ W that explains the
difference (Q0 − Q0

n). The C-TMLE procedure consists of iteratively constructing a
sequence of TMLES (Q∗

n,k , gn,k) for which the fit for bothQn,k and gn,k is increasing
in k. The sequence or g estimators ends with the most nonparametric estimator, the
one would use in a standard TMLE. In addition, Q∗

n,k is the TMLE using gn,k in the
targeting step to update either Q0

n itself, or possibly one of the previous TMLEs in
the sequence, Q∗

n,j, j < k. Finally, the criterion for selecting gn,k+1, given the past k
in the sequence is the increase in fit for Q0 that occurs during the TMLE update step
when using gn,k+1 versus gn,k .
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For intuition consider constructing a sequence of models for g that increase in
likelihood and converge towards the true g0. For example, if the true g0 ≡ P(A = 1 |
W1,W2,W3), and W3 is the strongest predictor of A then sequences s1 and s2 both
satisfy this requirement.

s1 = {(W1), (W1,W2), (W1,W2,W3)},
s2 = {(W1), (W3), (W2,W3), (W1,W2,W3)}.

However, we also impose an additional constraint that as the model for g grows
towards g0, the likelihood forQ must also be increasing. This provides a meaningful
criterion, because it guarantees that (Q0 − Q∗

n,k) is shrinking as k increases. By
extension, bias in �(Q∗

n,k) decreases as k increases.
Given a sequence of g estimators we can calculate the corresponding fluctuation

covariate H1(A,W ), . . . ,HK (A,W ) used in Stage 2 of the TMLE procedure, then
evaluate K corresponding updates of the initial Q0

n . This produces a sequence of
targeted estimates, (Q∗

n,1, . . . ,Q
∗
n,K ). Depending on the amount of residual bias, an

early model for g might be inadequate, while later models might needlessly increase
variancewithout providing a commensurate reduction in bias. Since ourmain concern
is unbiased estimation ofψ , the C-TMLE is the candidate TMLE in the sequence that
minimizes cross-validated loss with respect to Q. We define the estimator mapping
Q̂∗

k (Pn) as the k-th TMLE in the sequence applied to data Pn. The cross-validated
risk of this candidate estimator with respect to loss functionL (Q) is as follows,

cv-Riskn(k) = 1

V

V∑

v=1

P1
n,vL (Q̂k(Pn,v)),

where P1
n,v is the validation sample and Pn,v is the training sample for the v-th split

according to the V -fold cross validation scheme. A concave function such as the
negative log likelihood is a convenient choice of loss function, but any function that
is minimized at the true Q0 is a valid loss function.

C-TMLE Template

Stage 1. Obtain an initial estimate Q0
n of Q0.

Stage 2. Target the initial estimate using a data-adaptively estimated g
1. Construct a sequence of nested g estimators and corresponding TMLEs based on updates

to Q0
n , {(gn,1,Q∗

n,1), . . . , (gn,K ,Q∗
n,K )}.

2. Identify Q∗
n,k∗ , the candidate TMLE in the sequence that minimizes the cross validated

risk, cv-Riskn(k).
Evaluate the parameter estimate: ψn = �(Q∗

n,k∗ ).

Note that although the additional constraint on the sequence of models for g
reduces the number of permissible sequences, it does not uniquely identify an opti-
mal sequence. More and less aggressive approaches to constructing the sequence
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of g estimators give rise to a family of C-TMLEs, each of which adheres to a gen-
eral template. The next section describes several implementations of C-TMLE that
follow an overall strategy of creating a sequence of nested models for g, correspond-
ing candidate TMLEs, and using cross-validation to select the best candidate in the
sequence. Each C-TMLE algorithm is motivated by the fact that TMLE is a substi-
tution estimator,ψn = �(Q∗

n), thus all aspects of the procedure can be guided by the
goodness of fit for Q.

1.3.3 Inference

Because the sequence of g-estimators is finite, with probability tending to 1 the C-
TMLE will asymptotically select the final (gn,K ,Q∗

n,K ) at the cross-validation step.
As a consequence, the C-TMLE represents a finite sample adjustment of the TMLE
and is asymptotically equivalentwith this TMLE. Thus, inference as described earlier
in Sect. 1.2.1 for TMLE remains valid for C-TMLE.

C-TMLE can at times be super efficient. Super efficiency will occur when the
initialQ0

n is theMLE for a correct parametricmodel, in the casewhere gn converges to
a stable limit. In general super efficiency will only occur on a set of data distributions
with measure zero. If the length of the sequence of g estimators were allowed to
increase with sample size rather than be set to a fixed K then an analysis of C-TMLE
would be more involved.

1.4 C-TMLE Algorithms

1.4.1 Greedy C-TMLE

The first C-TMLE introduced in the literature used a greedy targeted forward selec-
tion algorithm to construct a nested sequence of models for g in order to estimate
the ATE parameter (Gruber and van der Laan 2010a). As summarized in Algo-
rithm 1, at each step a single additional covariate is incorporated into the model for
g, until the final model that conditions on all K available covariates. This indexes
a corresponding sequence of TMLEs, {Q̄∗

n,1, . . . Q̄
∗
n,k}. The C-TMLE is evaluated as

ψn = �(Q̄∗
n,k∗), where k∗ corresponds to the k for which Q̄∗

n,k minimizesL (Q̄). The
initial article presented a penalized loss function, where the likelihood for Q was
penalized by an estimated bias and variance term that asymptotically approach zero
(Gruber and van der Laan 2010a). For ease of exposition we will refer to the negative
log likelihood loss function in our ATE example, Pn(L (Q̄)), where

L (Q̄) = −{Y log[1 − Q̄(A,W )] + (1 − Y ) log[1 − Q̄(A,W )]}.
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Thefirst targeted forward selection step is to construct amodel for g that conditions
on a single covariate. There areK possibilities, each ofwhich improves the likelihood
for g compared to an intercept-only model. From these we select the covariate that
most improves the goodness of fit for Q. We do this by carrying out the TMLE
updating step for all K univariate models for g, and evaluating the empirical loss for
each,L (Q̄∗

n,k). Identify k
∗ as the minimizer of this loss. The first model for g in our

sequence has now been identified, and the corresponding first candidate TMLE in
the sequence has been defined.

The second model for g is constructed in a similar fashion. Now we consider all
J = K − 1 bivariate models for g that have Wk∗ included by default. In conjunction
with Q̄0

n , these models index tentative candidate TMLEs Q̄∗
n,j, where this time j runs

from 1 toK − 1. As before, we evaluateL (Q̄∗
n,j) for each tentative candidate and find

j∗ that minimizes the loss. Next we compareL (Q̄∗
n,j∗)withL (Q̄∗

n,k∗). IfL (Q̄∗
n,j∗) ≤

L (Q̄∗
n,k∗) this forward selection step is complete. However, ifL (Q̄∗

n,j∗) > L (Q̄∗
n,k∗)

we conclude that no bivariate model for g offers an improvement over a univariate
model for g.

If we were restricted to using a single fluctuation covariate to update Q̄0
n ,

the forward selection procedure would have to end. However, allowing a second
fluctuation guarantees improving the likelihood for Q, and may also improve
estimation of ψ . This is accomplished by fixing εn,1 at its previously estimated
value, and adding a new fluctuation covariate to the model for Q̄, Q̄∗

n(A,W ) =
Q̄0

n(A,W ) + εn,1Hgnk∗ (A,W ) + ε2Hgnj∗ (A,W ) (on the logit scale). ε2 is fit by maxi-
mum likelihood, ensuring that the efficient influence curve equation is solved at this
new g. Anotherway to think of this is that at step jweupdate our notion of the baseline
Q̄0

n to include the fixed prior fluctuation. Let Q̃n,k∗(A,W ) = expit{logit[Q̄0
n(A,W )] +

εn,1Hgnk∗ (A,W )}, and we have that Q̄∗
n(A,W ) = expit{logit[Q̃n,k∗

(A,W )] + ε2Hgnj∗ (A,W )}.
Targeted forward selection proceeds in this manner until all K covariates have

been incorporated into the model for g. Then V -fold cross validation is used to
select the best candidate in the corresponding sequence of TMLEs. The data are
partitioned into V folds of approximately equal size, n/V . Each fold v is held out
as a validation set, val(v), in turn, with the remaining observations constituting the
training set. Targeted forward selection algorithm is run on the training set, with Q̄∗

n,k
evaluated for observations in validation set val(v). The C-TMLE corresponds to the
candidate TMLE in the sequence that minimizes the cross-validated loss, such as the
cross-validated negative log likelihood,

Lcv(Q̄) = −1

n

V∑

v=1

∑

i∈val(v)

{
YilogQ̄n,v(Ai,Wi) + (1 − Yi)log[1 − Q̄n,v(Ai,Wi)]

}
,

where Q̄n,v(A,W ) is a fit based on observations in training set v.
The greedy approach outlined in Algorithm 1 satisfies the core elements of

a C-TMLE. The sequence of nested g estimators satisfies the requirement that
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Algorithm 1 Greedy C-TMLE
procedure Greedy C- TMLE

Stage 1. Obtain initial estimate Q̄0
n

Stage 2. Targeted Forward Selection to create a sequence of g estimators
{gn,1, . . . , gn,K } and candidate TMLEs, (Q̄∗

n,1, . . . , Q̄
∗
n,K )

Find minimizer of cross validated loss: k∗ = argmin
k

Lcv(Q̄∗
n,k )

Evaluate the parameter estimate: ψn = �(Q̄∗
n,k∗ ).

end procedure

procedure Targeted Forward Selection

Initializations: Q̃n = Q̄0
n , W

′ =∅, gn = P(A = 1), k = 1
while k ≤ K do

for all Wj ∈ W do
Calculate Hgn,w , where gn,j(A, W̃,Wj) = P(A = 1 | W′,Wj)

Evaluate targeted Q̄∗
n,j = expit[logit(Q̃n) + εn,jHgn,j ]

end for
Find minimizer of empirical loss: j∗ = argmin

j
L (Q̄∗

n,j)

Set Q̄∗
n,k = Q̄∗

n,j∗
if L (Q̄∗

n,k ) > L (Q̄∗
n,k−1) then

Update baseline: Q̃n = expit[logit(Q̃n) + εn,k−1Hgn,k−1 ]
else

W = W − Wj∗
W′ = W′ + Wj∗
k = k + 1

end if
end while

end procedure

{g1n, . . . , gKn } grows towards and arrives at a consistent estimator of g0. Construction
of the sequence of g estimators ensures gk+1

n is a better empirical fit for g than gkn .
Each forward selection step maximizes (over all possible moves) the increase in fit
over the TMLE update step relative to its initial estimator, while also improving the
fit for g. Terms are incorporated into the model for g for a single fluctuation covari-
ate until there is a decrease in the likelihood for Q. At that point the sub-model is
extended to include an additional covariate. Earlier fluctuation parameter values are
fixed, and a new fluctuation parameter is fit by maximum likelihood.

The targeted forward selection algorithm chooses the strongest confounder first.
Covariates are re-ordered at each subsequent step with respect to their impact on the
shrinking residual bias. This re-ordering delays incorporation of a covariate highly
correlated with one that is already in the model for g, and covariates that are not asso-
ciated with the outcome (instrumental variables). Targeted forward selection results
in a sequence of candidate TMLEs. Cross-validated lossLcv(Q̄∗

n,k
) is evaluated based

on out of sample predictions for all n observations for each k from 1 to K . Let k∗
index the candidate minimizing Lcv(Q̄∗

n,k). The corresponding candidate TMLE fit
on all data is plugged in to the mapping to evaluate ψn = �(Q̄∗

n,k∗).
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1.4.1.1 Implementation Notes

The model for g is not restricted to main terms only, but may include higher-order
interactions and transforms of the data. If time considerations preclude defining a rich
SL library to estimate g at each step there are alternatives. One is to use a main terms
logistic regression model. Another is to define an SL library that includes logistic
regression models that regress treatment on different sets of covariates that include
transforms, such as splitting categorical or continuous covariates intomultiple binary
covariates, and defining higher order terms.

A complementary approach is to create an augmented covariate set, Waug , that in
addition to W includes select interaction terms, and perhaps a matrix of externally-
estimated SL fits for g bounded away from (0, 1) at different levels. Running the
C-TMLE algorithm on Waug allows more non-parametric modeling of W under a
main terms logistic regression modeling paradigm, and has been shown to be helpful
in some simulated scenarios (Sekhon et al. 2011).

The number of fluctuation parameters depends on characteristics of the data and
cannot be known in advance. A minor variant of this greedy C-TMLE algorithm is
to select the ideal number of steps, k∗, as described above, then evaluate the final
C-TMLEusing a single update to the initial Q̄0

n such that Q̄
∗
n is set to expit[logit(Q̄0

n) +
εnHgk∗ ]. For both variants the linear span of the score equations generated when
fitting ε includes an efficient influence function based on the largest selected model
for g. Simulation studies to date have not demonstrated compelling performance
differences.

1.4.1.2 Simulation Study

Porter, 2011 illustrated how issues of misspecification bias, near positivity viola-
tions, and lack of boundedness on the problem are addressed by TMLEs and other
DR estimators proposed in the literature (Porter et al. 2011). That article applied
many recently developed DR estimators to estimate a population mean outcome
under missingness using a Monte Carlo simulation study design proposed earlier
in the literature (Kang and Schafer 2007a). The outcome and missingness prob-
abilities were simple functions of independent and identically distributed (i.i.d.)
normally distributed covariates Z = (Z1,Z2,Z3,Z4). However, n = 1000 observa-
tions in the analytic dataset were given by O = (�Y ,�,W ), where covariates
W = (W1,W2,W3,W4) were complex non-linear functions of the actual covariates
Z .

DR estimators investigated include weighted least squares (WLS), augmented
IPCW (A-IPCW), (Robins and Zhao 1994) bounded Horvitz Thompson (BHT),
(Robins et al. 2007) a parametric regression based estimator (PRC) (Scharfstein
et al. 1999; Robins 1999), a DR estimator that internally enforces bounds on g
(Cao), (Cao et al. 2009) a bounded DR estimator developed by Tan that incorporates
either a weighted least square outcome regression model (TanWLS) or the empirical
efficiency estimator of van der Laan and Rubin (TanRV) (Tan 2006, 2010; Rubin
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and van der Laan 2008), and TMLE and C-TMLE, with and without super learning
to mitigate model misspecification.

Box plots of bias in 250Monte Carlo estimates illustrate the relative performance
of these estimators under misspecification of Q and correct specification of g, and
also under dual misspecification of Q and g (Fig. 1.2). For both analyses gn(1,W )

was bounded away from 0 at level 0.025. The unweightedmain term linear regression
model regressing Y onW produces a biasedOLS estimate due tomodelmisspecifica-
tion and informative missingness. Misspecification bias is exacerbated by weighting
with inverse probability weights based on values of gn(1,W ) that are near 0 (Porter
et al. 2011, adapted from their Fig. 2).

In contrast to OLS, all DR estimators are unbiased when g is correctly specified.
Variation in the spread around themedian estimate is largest for PRC and smallest for
the Tan estimators. Under dual misspecification most of the DR estimators are more
biased thanOLS,withCao, TanRV, andC-TMLE, exhibiting less bias than the others.

(a)

(b)

Fig. 1.2 Distribution of bias under misspecification of Q and correct specification of g (a), and
under dual misspecification (b)
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Algorithm 2 Scalable C-TMLE

Stage 1. Obtain initial estimate Q̄0
n

Stage 2.
Initialize Q̃n = Q̄0

n , k = 1
Impose an ordering over covariates W1, . . . ,WK
procedure Construct Sequence of Candidate TMLEs

while k ≤ K do
Estimate gn,k (A,W ) = P(A = 1 | W1, . . . ,Wk )

Evaluate targeted Q̄∗
n,k = expit[logit(Q̃n) + εn,kHgn,k ]

if L (Q̄∗
n,k ) > L (Q̄∗

n,k−1) then

Q̃n = expit[logit(Q̃n) + εn,k−1Hgn,k−1 ]
Evaluate at new baseline: Q̄∗

n,k = expit[logit(Q̃n) + ε′
n,kHgn,k ]

end if
k = k + 1

end while
end procedure
Identify the best candidate TMLE: Findminimizer of cross validated loss: k∗ = argmin

k
Lcv(Q̄∗

n,k )

Evaluate the parameter estimate: ψn = �(Q̄∗
n,k∗ ).

A strength of TMLE is its ability to incorporate machine learning. The two box plots
on the far left of Fig. 1.2b illustrate that combining SL with TMLE and C-TMLE
further reduced bias while also improving efficiency. C-TMLE+SL traded off bias
and variance differently than TMLE+SL. Median bias of TMLE+SL was closer to 0,
but three problematic datasets with outlying results extending beyond the whiskers
on the TMLE+SL box plot were analyzed more successfully by C-TMLE+SL.

1.4.2 Scalable C-TMLE

The greedy C-TMLE algorithm described in the previous section does not scale well
to high dimensional data. If there are k covariates, the algorithm’s time complexity is
O(k2). Ju and colleagues proposed several alternate C-TMLEs with time complexity
O(k) (Ju et al. 2016a, b). The common characteristic of these scalable C-TMLE
algorithms is that they pursue a less aggressive strategy for ordering the sequence of
g estimators. At each step k the greedy targeted forward selection strategy evaluates
the bias/variance trade-off for ψ with respect to multivariate relationships among
all k − 1 covariates previously incorporated into the model for g, treatment and
the outcome. In contrast, scalable C-TMLEs impose a one-time pre-ordering of
covariates at the outset. The decision at step k is merely whether or not an additional
fluctuation covariate is warranted.

Given a method for imposing an ordering over covariates covariates, the basic
algorithm for a scalable C-TMLE follows the procedure outlined in Algorithm 2.
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We can verify that this general scalable C-TMLE algorithm meets the guidelines
previously laid out in Sect. 1.3.2. First note that this algorithm constructs a sequence
of nested g estimators, which necessarily increases in likelihood for g. These esti-
mators non-parametrically grow towards the true g0, and flexible modeling using
SL or the more limited techniques mentioned earlier helps meet that requirement in
practice. The final requirement that the the sequence of updated candidate TMLEs,
(Q̄∗

n,1, . . . , Q̄
∗
n,K ) is increasing in likelihood for Q, is met in Step 3c.

Unlike the greedy C-TMLE, the scalable C-TMLE imposes a pre-ordering on
covariates that only takes advantage of collaborative double robustness at the outset.
This pre-ordering will account for univariate impact on residual confounding, but
ignores multivariate effects on estimator bias and variance. There are many possible
pre-ordering schemes. For example, the first of two scalable C-TMLEs developed by
Ju, et. al. pre-ordered covariates based on the log likelihood loss (Ju et al. 2016a). This
is identical to the loss function evaluated in the first targeted forward selection step
of the greedy C-TMLE algorithm. The loss function is evaluated for all K univariate
models for g. This loss is used to imposes an ordering over covariates that ensures
L(Q̄n,k)

∗ ≤ L(Q̄∗
n,k+1), for 1 ≤ k ≤ K .

Their second pre-ordering scheme ranks covariates according to the absolute value
of the partial correlation ρYWk ·A between each covariate and the outcomewithin strata
defined by treatment.

ρ(YWk · A) = ρ(R,Wk) − ρ(R,A) × ρ(Wk ,A)
√

(1 − ρ(R,A)2)(1 − ρ(Wk ,A)2)

where ρ is the Pearson correlation coefficient and R = Y − Q̄0
n(A,W ).

When all suspected confounders inW have a binary representation Bross’s multi-
plicative bias formula provides an estimate of the strength of confounding. Covariates
are ordered with respect to the absolute value of the log of multiplicative bias Bk

(Bross 1954).

Bk = PWk1(RRWkY − 1) + 1

PWk0(RRWkY − 1) + 1
,

where PWk1 is the mean value of suspected binary confounder Wk within the treated
population, and PWk0 is the mean value of Wk within the comparator population.
RRWkY is the crude relative risk of the outcome associated with Wk , or optionally
a relative risk estimate adjusted for other covariates. Covariates that have a large
value for the Bross multiplier are considered the most important confounders and
positioned earlier in the ordering.

1.4.2.1 Comparison of TMLE and C-TMLE Performance

The greedy and scalable C-TMLE procedures may not produce the same covari-
ate ordering. Thus they may exhibit different finite sample performance. An SL-
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Table 1.1 Monte Carlo simulation study results from Ju et al. under misspecification of Q and
correctly specified g

Bias SD MSE

TMLE 1.31 1.21 3.17

Greedy C-TMLE 0.25 1.01 1.27

LogLik C-TMLE 0.36 0.88 0.90

PartCor C-TMLE 0.32 0.92 0.95

SL-C-TMLE 0.37 0.88 0.90

based C-TMLE (SL-C-TMLE) was defined that uses cross-validation to identify
the C-TMLE that performs best on a given dataset (Ju et al. 2016b). The SL-
CTMLE is scalable (computational complexityO(k)) when all candidate C-TMLEs
under consideration are scalable. Ju and colleagues compared the performance of
TMLE, and several C-TMLEs in analyses of simulated and real world data (Ju et al.
2016b). In many scenarios the various C-TMLEs performed equally well. Perfor-
mance differences were apparent in Simulation Study 4, where there were near pos-
itivity violations. In this study six i.i.d, covariates W = (W1, . . . ,W6) ∼ N (0, 1)
were made available to each estimator. Treatment probabilities were generated
as g0(1,W ) = expit(2W1 + 0.2W2 + 3W3), and continuous Y was generated as
Y = A + 0.5W1 − 8W2 + 9W3 − 2W5 + N (0, 1).

Only three of the six covariates are true confounders, (W1,W2,W3). W4 and W6

are unrelated to Y and A, and W5 is predictive of Y . The initial regression model
for Q was specified as a regression of Y on A,W1,W2. Residual bias due to model
misspecification and lack of adjustment for all confounding remains a function ofW3,
W1, and W2. Results of a Monte Carlo simulation study (1000 replicates, n=1000)
show that the C-TMLEs were able to reduce finite sample bias and variance relative
to TMLE using the true g0 (Table1.1). Each C-TMLE made a slightly different
bias/variance tradeoff. The greedy C-TMLE was least biased, while overall MSE
was minimized by the scalable SL-C-TMLE and the scalable C-TMLE using a log
likelihood pre-ordering scheme.

1.5 Applications of C-TMLE in Health Care

1.5.1 Biomarker Discovery

We previously described an application of C-TMLE to assess genomic variable
importance (Gruber and van der Laan 2010a). An antiretroviral drug may be more
effective in suppressing human immunodeficiency virus (HIV) in some strains of
HIV than others. C-TMLE was applied to the problem of identifying mutations in
viral DNA that might affect the virus’s response to lopinavir. The data consisted of
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Table 1.2 Mutation name, gold standard Stanford score (2007), C-TMLE estimate for each muta-
tion. C-TMLE classification as likely/unlikely to confer resistance agrees with the Stanford score
for mutations shown in blue

∗95% CI excludes the null

401 observations O = (Y ,W ), where outcome Y is the change in log10 viral load
between baseline and post-treatment followup, and W contains binary indicators
for the presence of 26 separate mutations, and an additional 51 baseline
characteristics and treatment history covariates. 26 separate analyses were carried
out, where exposure A was set to each one of the mutation indicators in turn, and the
other 25 mutation indicators were included in the adjustment set. The goal was to
assess the impact of each mutation on the change in HIV viral load (Bembom et al.
2008).

Positivity violations due to high correlations amongmutations and a raremutations
make it impossible to estimate a true causal effect. Nevertheless, variable importance
association measures (VIM) would help rank mutations according to their impact on
the outcome. C-TMLE was the right tool to address the challenge of identifying an
adjustment set that would provide a stable, low variance estimates of the associa-
tion between A and Y . Results were compared with a 2007 gold standard assess-
ment known as the Stanford score (0–20, with 20 indicating highly associated with
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resistance as of September, 2007, subsequently modified. http://hivdb.stanford.edu).
Table1.2 shows C-TMLE VIM estimates for each mutation, ranked according to
the Stanford score. Starred estimates were statistically significant at level α = 0.05.
C-TMLE was able to correctly classify most mutations as being likely or unlikely to
confer resistance to lopinavir. C-TMLE found statistically significant positive effects
for 8 of 12 mutations with Stanford score of 10 or above. C-TMLE analyses were
consistent with the null hypothesis of no effect or a protective effect on resistance
for 12 of 13 mutations with Stanford scores below 5.

1.5.2 Drug Safety

Clinical studies required for drug approval by a regulatory agency such as the FDA
are typically under-powered for detecting rare adverse events and small risk increases
(Singh and Loke 2012). Large post-licensure observational studies fill an important
gap in conducting drug safety surveillance. C-TMLEwas used to assess the impact of
pioglitazone versus sulfonylurea on acute myocardial infarction (AMI) in a new user
population of diabetic patients without prior cardiovascular disease (Lendle et al.
2013). The outcome of interest was the occurrence of AMI within six months of
drug initiation. Minimal loss to follow-up was deemed ignorable, and C-TMLE was
used to analyze a complete case dataset.

Data on n = 27, 168 patients seen at Kaiser Permanente Northern California con-
sisted of observations O = (Y ,A,W ). Outcome Y was set to 1 for patients who
experienced an AMI within 6months, and 0 for those who did not. A was a binary
indicator of treatment with pioglitazone (A = 1, N1 = 2, 146) versus comparator
sulfonylurea (A = 0, N0 = 25, 022). Covariate vectorW consisted of approximately
50 covariates including demographic information, comorbidities, and other drugs
identified by experts as potential confounders. The outcome was rare, with only 5
(0.23%) occurrences in the treatment group, and 85 (0.34%) in the comparator group.

Table 1.3 Additive treatment effect of pioglitazone versus sulfonylurea on acutemyocardial infarc-
tion in a new user cohort of diabetic patients with no prior cardiovascular history

Method Estimate Standard Error P-value

Unadjusted −0.0011 0.0013 0.39

Outcome regression −0.0007 0.0014 0.61

PSM −0.0013 0.0017 0.45

IPTW −0.00005 0.0015 0.75

AIPTW −0.0003 0.0015 0.86

TMLE −0.0004 0.0015 0.80

C-TMLE −0.0010 0.0011 0.38

Abbreviations: PSM propensity score matching, IPTW inverse probability of treatment weighting,
AIPTW augmented-IPTW, TMLE targeted minimum loss-based estimation, C-TMLE collaborative
TMLE

http://hivdb.stanford.edu
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The unadjusted ATE estimate was −0.0011 (Table1.3, reproduced from Lendle
et al. (2013) (their Table 2). Adjusting for covariates in an outcome regression model
moved the point estimate further away from the null, with a similar standard error.
Propensity score-based estimators and DR estimators were closer to the null. With-
out knowing the truth bias cannot be assessed, however, C-TMLE had the smallest
standard error. No point estimates were statistically significant. Results support a
substantive conclusion of no evidence of difference in risk between the two drugs
studied.

1.5.3 Future Work

1.5.3.1 C-TMLE for Multiple Time Point Interventions

In a point treatment setting with non-ignorable missingness in the outcome the
data structure is given by O = (�Y ,�,A,W ) ∼ P0. � is a binary indicator of
whether the outcome is observed. �Y = Y when � is 1, and is missing when
� = 0. In this data structure g factorizes as (gA, g�). gA is the component of g
discussed up until now. g� is the distribution of missingness conditional on A and
W . The targeting step for a TMLE to estimate ATE in this data structure uses an
updated fluctuation covariate H ′

g(A,W ), that is a function of both components of g.
H ′

g(A,W ) = �/P(� = 1 | A,W )Hg(A,W ), with Hg(A,W ) as defined in Sect. 1.2.
When (A,W ) is not highly predictive ofmissingness, the same straightforward exten-
sion can be applied in the C-TMLE targeting step. Missingness probabilities are
estimated externally and incorporated into H ′

gn,k (A,W ) constructed by a greedy or
scalable C-TMLE.

This simple example of factorizing g generalizes to longitudinal data analysis,
with multiple opportunities for treatment decisions and loss to follow-up. TMLEs to
estimate the effects ofmultiple time point interventions have been developed (van der
Laan and Gruber 2012; Schnitzer et al. 2014; Petersen et al. 2014). An application of
C-TMLE in survival analysis appears in the literature (Stitelman and van der Laan
2010), however because g factorizes into t components, where t is the total number
of treatment and censoring opportunities, the approach is computationally intensive
and does not scale. Extending scalable C-TMLEs to the analysis of longitudinal data
is an active area of current research.

1.5.3.2 Further Robustifying C-TMLE

Theory suggests another fruitful avenue for C-TMLE. The estimating equation
P0D(Q∗

n, g
∗
n , ψ0) = 0 can be equivalently expressed as

P0
[
D(Q∗

n, g
∗
n , ψ0) − D(Q0, g

∗
n , ψ0)

] = 0. (1.3)
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The efficient influence curve can be decomposed as D(Q, g, ψ) = DIPTW (g, ψ) −
DCAR(Q, g) (Theorem 1.3, van der Laan and Robins (2003); Robins and Rotnitzky
(1992)). This decomposition allows rearrangement of Eq. (1.3) to give P0DCAR(Q∗

n −
Q0, g∗

n) = 0. Due to linearity of Q → DCAR(Q, g), Eq. (1.3) is equivalent with
P0DCAR(Q∗

n − Q0, g∗
n) = 0 (Theorem 1, van der Laan and Gruber (2010)). In other

words, to be effective C-TMLE should target solving P0DCAR(Q̄n − Q̄0, gn) = 0 .
For the ATE parameter DCAR(Q − Q0, g) = Hg(Q̄ − Q̄0)(A − g(1 | W )), with

Hg(Q̄ − Q̄0) ≡ (Q̄ − Q̄0)(1,W )

g(1 | W (Q))
+ (Q̄ − Q̄0)(0,W )

g(0 | W (Q))
.

This representation of DCAR teaches us how to construct a targeted estimator
(g∗

n ,Q
∗
n) such that PnD∗(Q∗

n − Q0, g∗
n) = 0. For example, for the ATE parameter

the joint TMLE of (gn,Q∗
n) involves iteratively fitting a logistic regression of A

given W with submodel logit(gk,εn ) = logit gn.k + εHgn,k(Q
k
n − Q0), simultaneously

with the usual TMLE update of Qk
n . We refer to this joint TMLE as an oracle C-

TMLE since it uses an unknown (oracle) covariate that captures the residual bias
(Qn − Q0) required for consistent estimation of ψ0. This oracle C-TMLE is always
consistent, even when gn and Qn are both inconsistent. Starting with a targeted C-
TMLE, information in f0(A,W ) = Q̄0

n(A,W ) − Q̄0(A,W ) is used to simultaneously
update Q and g. This updating step is iterated until convergence. For example, the
oracle updating procedure for the ATE target parameter is given by,

logit(gm+1
n ) = logit(gmn ) + ε1HCAR(f0, gn),

logit(Q̄m+1
n ) = logit(Q̄m

n ) + ε2H
∗
gn(A,W ),

where

HCAR(f , g) = f (1,W )

g(1 | W )
− f (0,W )

g(0 | W )
, and H ∗

gn(A,W ) = 2A − 1

g(A | W )
.

Of course, Q̄0 is not known, so this approach is not available for analyses of real
world data. However, a realistic C-TMLE is obtained by estimating the unknown
residual bias (Qk

n − Q0).
We demonstrate the properties of an oracle version of this estimator that can

evaluate the required value of the residual (Q̄n − Q̄0). We used data generated in
accordance with simulation study 4 from a paper by Van Steelandt and colleagues
to evaluate estimator performance (Vansteelandt et al. 2012). That paper proposed
a propensity score estimation procedure incorporating f (A,W ) that guarantees con-
sistency under dual misspecification of Q and g when Q̄0 happens to be a linear
combination of f (A,W ) components. This regression doubly robust (RDR) IPW
estimator is exploiting collaborative double robustness. Results of a simulation study
comparing performance of a crude and adjusted OLS estimator, G-estimation (G)
(Robins et al. 1992), IPW, RDR, augmented IPW (A-IPW), and the greedy C-TMLE
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Table 1.4 Results of simulation study under dual misspecification of Q and g not using f0(A,W )

(left) and incorporating information in the true f0(A,W ) (right).

Q̄n misspecified

gn misspecified Using true f0(A,W )

Bias Var MSE Bias Var MSE

OLS (unadj) 0.99 0.05 1.03

OLS (adj) 0.31 0.03 0.12

G −0.07 0.01 0.02

IPW −0.08 1.11 1.11 IPWs −0.17 0.03 0.06

RDR 0.02 0.10 0.10 RDRs 0.21 0.02 0.06

AIPW −0.29 17.33 17.40 AIPWs 0.15 0.02 0.04

C-TMLEgreedy −0.12 0.02 0.04 C-TMLEoracle 0.02 0.01 0.01

are shown on the left hand side of Table1.4. Results on the right hand side of the table
are for novel versions of these estimators described in Vansteelandt, et. al. that make
use of f (A,W ) to stabilize the propensity scores, and also the oracle C-TMLEoracle.
For all estimators f (A,W )was estimated from data using correctly specified models.
This greatly reduced MSE for all enhanced estimators, with C-TMLEoracle having
the smallest bias, variance, and MSE.

The insight thatQ and g together can account for all bias due to confounding even
when neither on its own can be used to consistently estimate ψ0 is very powerful.
The C-TMLEs presented in this chapter already avoid adjusting for covariates in
the nuisance parameter model that will inflate finite sample bias and variance. This
new insight that we do not even need to condition on (Qn − Q0), but instead can just
solve the right score equation, P0DCAR(Q − Q0, g) = 0, motivates a new class of
C-TMLEs. These offer an opportunity to reduce residual bias without adjusting for
additional covariates in the outcome or censoringmechanismmodels. Alongwith the
existing data-adaptive C-TMLEs that exploit collaborative double robustness, these
promising new estimators can be important tools for analysis of high dimensional
and sparse data.
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Chapter 2
Generalized Tests in Clinical Trials

Stephan Ogenstad

2.1 Introduction

Conventional statistical methods do not provide exact solutions to many statistical
problems, such as those arising in ANOVA, mixed models and multivariate analysis
of variance (MANOVA), especially when the problem involves a number of nuisance
parameters. As a result, users of these methods often resort to approximate or asymp-
totic statistical methods that are valid only when the sample size is large. With small
or ordinary sample sizes, such methods often have poor performance (Weerahandi
1994). The approximate and asymptoticmethodsmay lead tomisleading conclusions
or may fail to detect truly significance results from clinical studies.

Classical statistical tests may be insensitive to a wide range of situations occurring
commonly in practice, particularly when the effect of the factor under study is het-
erogeneous. All statistical procedures are based on some distributional assumptions.
In addition, many statistical procedures (e.g. ANOVA, ANCOVA) use the F-test and
are based on the assumption of homoscedasticity (equal variances) and relate to the
validity of the often convenient assumption that the structure of any one part of a
dataset is the same as any other part. From experience, this assumption is seldom
true when responses are different in the separate treatment groups. The assump-
tion of equal variances is usually made for simplicity and mathematical ease rather
than anything else. The outcome of using conventional statistical models when the
assumptions are not reasonable can lead to serious consequences. In many situa-
tions, these procedures can fail to detect significant therapeutic effects even when
available data provide sufficient evidence that the effects are present. In other appli-
cations, the conventional statistical models sometimes lead to incorrect conclusions,
implying that the therapeutic results are significant when they are actually not (Blair
and Higgins 1980; Brownie et al. 1990; Graubard and Korn 1987).
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For instance, in the classical handling of the statistical problem in one-way
ANOVA, it is assumed that the population variances are all equal. This is not really
a natural assumption. In fact, it is often seen in most applications that the variances
tend to be substantially different especiallywhen themean responses are substantially
different. From simulation studies, it has also been observed that the assumption of
equal variances is much more serious than the assumption of normally distributed
populations, in that the former has the greater chance of leading to wrong conclu-
sions. The classical ANOVA problems that rely on the equal variances assumption
can dramatically reduce the power of the tests. Moreover, the magnitude of the lack
of power problem of the tests based on the equal variance assumption increases
with the number of treatments being compared. We also want to point out that in
most applications, despite a common belief, it is not possible to transform data to
achieve the approximate normality and equal variances simultaneously. The p-value
produced from the classical approach is valid only if the variances are equal, and the
test is not appropriate if the variances are significantly different.

In the analysis of repeated measures, it is also, assumed that all treatment groups
have equal variances. While there is no serious problem when the assumption is rea-
sonable, the assumption can lead to serious erroneous conclusionswhen the variances
are substantially different. Moreover, in situations of higher-way ANOVA under an
incorrect heteroscedasticity assumption, one is more prone to draw misleading con-
clusions. For instance, one can be misled by the classical F-test to conclude that
a certain factor of an ANOVA is significant when in reality a different factor is
significant.

Extensions have been made to the classical methods in repeated measures involv-
ing mixed models, MANOVA, and growth curves, in particular. Repeated measures
and growth curves models are in fact special classes of mixed models. The classical
approach to solving these problems provides exact solutions to only a fraction of
the problems. Conventional methods alone do not always provide exact solutions
to even some simple problems. For instance, in the univariate analysis of variance,
the classical approach fails to provide exact tests when the underlying population
variances are unequal. In some widely used growth curve models, there are no exact
classical tests even in the case of equal variances. As a result, users of these methods
often resort to asymptotic results in search of approximate solutions even when such
approximations are known to perform rather poorly with moderate sample sizes.

Solutions to the statistical problems are addressed as extensions, as opposed to
alternatives, to conventional methods of statistical inference. In Weerahandi (1994),
each class of problems is started with a simple model under special assumptions
that are necessary for the classical approach to work. After discussing solutions
available for such special cases, these assumptions are relaxed when they are con-
sidered to be too restrictive or unreasonable in some applications, especially when
they are known to have poor size (Type I error) or power performance. For instance,
in fixed effects ANOVA, the problem is first considered under the homoscedastic
variance/covariance assumption and then later the assumption is dropped.

The generalized methods are exact in the sense that the tests and the confidence
intervals are based on exact probability statements rather than on asymptotic approx-
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imations. This means that inferences based on them can be made with any preferred
accuracy, provided that assumed parametric model or other assumptions are cor-
rect. To make this possible, solutions to problems of testing various hypotheses
are presented in terms of p-values. There is readily available computer software to
implement these exact statistical methods. Exact p-values and confidence intervals
obtained with extended definitions also serve to provide excellent approximate solu-
tions in the classical sense. From simulation studies reported in the literature, type I
error and power performance of these approximations are usually much better than
the performance of more complicated approximate tests obtained by other means.

By exact generalized inference, wemean various procedures of hypothesis testing
and confidence intervals that are based on exact probability statements. Weerahandi
(1994) uses the term ‘exact’ rather than ‘generalized’ methods because these meth-
ods are not approximations to the problems but exact solutions. Here we confine our
attention to the problems of making inferences concerning parametric linear models
with normally distributed error terms. In particular, we do not address exact non-
parametric methods that are discussed, for instance in Good (1994) and Weerahandi
(1994). The purpose of this chapter is to provide a brief introduction to the notions and
methods in the generalized inference that enable one to obtain parametric analytical
methods that are based on exact probability statements.

There is a wide class of problems for which classical fixed-level tests based on
sufficient statistics do not exist, and there are simple problems in which conventional
fixed-level tests do not exist. For instance, consider the mean μ and variance σ 2 in a
normal distribution N(μ, σ 2) and let us assume that the parameter of interest is the
second moment of the normal random variable X about a point other than the mean,
say k, then the parameter of interest is

E(X − k)2 � μ2 + σ 2 − 2kμ + k2.

Classical tests are not available for this parameter unless k �μ (Weerahandi
1994). If instead, the parameter of interest is θ �μ +kσ 2, then it is possible but not
easy to find a test statistic whose value and distribution depends on the parameters
only through the parameter of interest, since either μ or σ 2 can be considered as the
nuisance parameter.

Actually, these kinds of problems are prevalent even with widely used linear
models. For instance, in the problem of comparing the means of two or more normal
populations, exact fixed-level tests and conventional confidence intervals based on
sufficient statistics are available only when the population variances are equal or
when some additional information is available about the variances. The situation
only gets worse in more complicated problems such as the two-way ANOVA, the
MANOVA, mixed models, and in repeated measures models including crossover
designs and growth curves.

In the application of comparing two regression models, Weerahandi (1987) gave
the first introduction to the notion of generalized p-value and showed that it is an exact
probability of an unbiased extreme region, a well-defined subset of the sample space
formed by sufficient statistics. Motivated by that application, Tsui and Weerahandi
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(1989) provided formal definitions and methods of deriving generalized p-values.
In a Bayesian treatment, Meng (1994) introduced a Bayesian p-value, as a posterior
predictive p-value, which is, under the noninformative prior, numerically equivalent
to the generalized p-value. Weerahandi and Tsui (1996) showed how Bayesian p-
values could be obtained for ANOVA-type problems that are numerically equivalent
to the generalized p-values.

As discussed in detail in Weerahandi (1994), exact probability statements are not
necessarily related to the classical repeated sampling properties. In special cases, the
former may have such implications on the latter, but this is not something that one
should take for granted. For instance, in applications involving discrete distributions,
often we can compute exact p-values, but not exact fixed-level tests. Rejecting a
hypothesis based on such p-values, say at the 5% level if p<0.05, does not imply
that the false positive rate in repeated sampling is 5%. Simply, such a p-value is a
measure of false positive error and hence we can, in fact, reject the null hypothesis
when it is less than a certain threshold. However, in most applications, fixed-level
tests based on p-values, including the generalized p-values, do provide excellent
approximate fixed-level tests that are better than asymptotic tests. Indeed, consistent
with simulation studies reported in the literature (Gamage and Weerahandi 1998;
Burdick et al. 2005), generalized tests based on exact probability statements tend to
outperform, in terms of type I error or power, the more complicated approximate
tests. Moreover, in many situations, type I error of generalized tests do not exceed
the intended level. Therefore, procedures based on probability statements, that are
exact for any sample size, are always useful, regardless of if we insist on repeated
sampling properties or not. Also to those who insist on classical procedures, and
anyone who has difficulties with the meaning of exactness, we can consider the
generalized approach as a way of finding good approximate tests and confidence
intervals, which are expected to perform better than asymptotic methods. We can
benefit from the generalized approach to statistical inference, since it is an extension
of the classical approach to inference as opposed to an alternative, providing solutions
to a wider class of problems.

2.2 Test Variables and Generalized p-Values

Classical p-values as well as testing at a fixed nominal level, are based on what is
known as test statistics. Basically, a test statistic is a function of some special prop-
erties of some observable dataset, that will distinguish the null from the alternative
hypothesis. The function should not depend on any unknown parameters to qualify
to be a test statistic. In the classical methodology of testing of hypotheses, this is an
important requirement since, given a dataset, we should be able to compute such a
statistic and compare against a critical value. Test statistics provide a convenient way
of constructing extreme regions, on which p-values and tests can be based. But, this
methodology only works in a very limited set of conditions (Weerahandi 1994). For
instance, in the problem of sampling from a normal population, it is not clear how a
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test statistic could be constructed if the parameter of interest were a function such as,
θ �μ +σ 2. The Behrens-Fisher problem is a well-known example of a circumstance
where a test statistic based on sufficient statistics does not exist when the variances
are not assumed to be equal. This limitation extends well into all types of linear
models including ANOVA, regression models, and all types of repeated measures
problems.

Tsui andWeerahandi (1989) introduced the notion of test variables in the context
of generalized inference. Test variables provide a convenient way of defining extreme
regions as they play the role of test statistics in the generalized setting since test
variables are extensions of test statistics.

A generalized p-value is an extension of the classical p-value, which except in
a limited number of applications, provides only approximate solutions. Tests based
on generalized p-values are exact statistical methods in that they are based on exact
probability statements. While conventional statistical methods do not provide exact
solutions to such problems as testing variance components or ANOVAunder unequal
variances, exact tests for such problems can be obtained based on generalized p-
values (Gamage et al. 2013; Hamada and Weerahandi 2000; Krishnamoorthy et al.
2006). In order to overcome the shortcomings of the classical p-values, Tsui and
Weerahandi (1989) extended the classical definition so that one can obtain exact
solutions for such problems as the Behrens–Fisher problem and testing variance
components. This is accomplished by allowing test variables to depend on observable
random vectors as well as their observed values, as in the Bayesian treatment of the
problem, but without having to treat constant parameters as random variables.

To provide formal definitions, consider a random vector Y with the cumulative
distribution function F(y; ξ), where ξ � (θ ; δ) is a vector of unknown parameters.
θ is the parameter of interest and δ is a vector of nuisance parameters. Let y be the
observed value of the random vector Y. An extreme region with the observed sample
point on its boundary can be denoted as C(y; θ , δ). The boundary of extreme regions
could be allowed to be any function of the quantitiesy, θ , and δ, and therefore,weneed
to allow test variables to depend on all these quantities. However, an extreme region
is of practical use only if its probability does not depend on ξ. Furthermore, a subset
of the sample space obtained by more general methods should truly be an extreme
region in that its probability should be greater under the alternative hypothesis than
under the null hypothesis, as defined more formerly below.

Definition. A generalized test variable is a random variable of the form T �T (Y;
y, ξ) having the following three conditions:

1. The observed value t �T (y; y, ξ) of T does not depend on unknown parameters.
2. The probability distribution of T does not depend on nuisance parameters.
3. Given t, y and δ, P(T ≤ t; θ ) is a monotonic function of θ .
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2.3 Generalized Confidence Intervals

The classical approach to interval estimation suffers from more difficulties than that
of hypothesis testing. Even when the problem does not involve nuisance parameters
and there are exact confidence intervals, in some applications, they lead to results
that contradict the very meaning of confidence. Both Ghosh (1961) and Pratt (1961)
independently provided a very simple example of a uniformly most accurate confi-
dence interval having highly undesirable properties, and connects two fundamental
performance measures in confidence set estimation.Weerahandi (1994) showed how
such undesirable confidence intervals can be avoided by expanding the class of inter-
vals available to choose from. Just as in the case of testing of hypotheses, here we
extend the class of available procedures for any given problem by insisting on exact
probability statements rather than on sampling properties. This will enable us to solve
such problems as the Behrens-Fisher problem for which exact classical confidence
intervals do not exist. As in the Bayesian approach, the idea is to do the best with
the observed data at hand instead of discussing other samples that could have been
observed, was the process to be repeated. The generalized confidence intervals are
nothing but the enhanced class of interval estimates obtained from exact probability
statements with no special regard to repeated sampling properties that are of little
practical use (Weerahandi 1994, 2004).

The definition of a confidence interval is generalized so that problems such as
constructing exact confidence regions for the difference in two normal means can be
undertaken without the supposition of equal variances. Under certain conditions, the
extended definition is shown to preserve a repeated sampling property that a practi-
tioner expects from exact confidence intervals. The proposed procedure can also be
applied to the problem of constructing confidence intervals for the difference in two
exponential means and for variance components in mixed models. With this descrip-
tion, we can carry out fixed level tests of parameters of continuous distributions on
the basis of generalized p-values.

Thus, Weerahandi (1993) extended the conventional definition of a confidence
interval in such a way that an applicably useful repeated sampling property is pre-
served. The research into this field was prompted by the need of exact confidence
intervals in statistical problems involving nuisance parameters. For instance, even
for a simple problem such as constructing confidence intervals for the difference in
means of two exponential distributions, exact confidence intervals based on sufficient
statistics are not available. The possibility of extending the definition of confidence
intervals was suggested by the existence of p-values in this type of problem. Weer-
ahandi (1987) used an extended p-value to compare two regressions with unequal
error variances. The usefulness of generalized p-values explicitly defined by Tsui and
Weerahandi (1989) is evident from a number of studies and applications, including
those by Thursby (1992), Zhou and Mathew (1994), and Koschat and Weerahandi
(1992).

To generalize the definition of confidence intervals, we first examine the properties
of interval estimates obtained by the conventional definition. Consider a population
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represented by an observable random variable Y . Let Y � (Y 1, Y 2, …, Yn) be a
random sample of n observations from the population. Suppose the distribution of
the random variable Y is known except for a vector of parameters ξ � (θ , δ), where θ

is a parameter of interest and δ is a vector of nuisance parameters. We are interested
in finding an interval estimate of θ based on observed values of Y. The problem is
to construct generalized confidence intervals of the form [A(y), B(y)] ⊂ �, where
� is the parameter space and A(y) and B(y) are functions of y, the observed data.

In the classical approach to interval estimationwefind two functions of the observ-
able random vector, say A(Y) and B(Y) such that the probability statement

P[A(Y) ≤ θ ≤ B(Y)] � γ, (2.1)

is satisfied, where γ is specified by the desired confidence level.
If the observed values of the two statistics are a� A(y) and b� B(y), then [a, b] is

a confidence interval for θ with the confidence coefficient γ . For instance, if γ �0.95,
then the interval [a, b] obtained in this manner is called a 95% confidence interval.
If in the situation of interval estimation of the parameter θ , the interval could be
constructed a large number of times to obtain new sets of observation vectors y, then
the confidence intervals obtained using the formula (2.1) will correctly include the
true value of the parameter θ 95% of the times. After a large number of independent
situations of setting 95% confidence intervals for certain parameters of interest, we
will have correctly included the true value of the parameter in the corresponding
intervals 95% of the times. It, of course, has no implication about the coverage
based on the sample that we have actually observed. Indeed, Pratt (1961), Ghosh
(1961), and Kiefer (1977) provide examples where the current intervals violating the
very meaning of confidence. In particular, they showed that in those applications the
so-called exact confidence intervals do not contain the parameters at all. The only
thing truly exact about a confidence interval is the probability statement on which
the interval is based. If indeed repeated samples can be obtained from the same
experiment, then the claimed confidence level will no longer be valid and in the
limit, the value of the parameter will be known exactly, so that statistical inference
on the parameter is no longer an issue. In view of this, Weerahandi (1993) searched
for intervals that would enhance the class of solutions and extended the class of
candidates eligible to be interval estimators by insisting on the probability statement
only. This will allow us to find interval estimates for situations where it is difficult or
impossible to findA(Y) and B(Y) satisfying (1) for all possible values of the nuisance
parameters. He further showed how this can be accomplished by making probability
statements relative to the observed sample, as done in the Bayesian approach, but
without having to treat unknown parameters as random variables. More precisely, we
can allow A() and B() to depend on the observable random vector Y and the observed
data y both. When there are a number of parameters of interest, in general, we could
allow subsets of the sample space possibly depending on the current sample point y
of Y.

Such intervals Weerahandi referred to as generalized confidence intervals. The
construction of such regions can be facilitated by generalizing the classical definition



32 S. Ogenstad

of pivotal quantities. A random variable of the form R �R(Y; y, ξ), a function of
Y, y, and ξ, is said to be a generalized pivotal quantity if it has the following two
properties:

Property A: The probability distribution of R does not depend on unknown
parameters.
Property B: The observed pivotal, robs �R(y; y, ξ) does not depend on nuisance
parameters δ.

Property A allows us to write probability statements leading to confidence regions
that can be evaluated regardless of the values of the unknown parameters. Property
B ensures that when we specify the region with the current sample point y, then we
can obtain a subset of the parameter space that can be computed without knowing
the values of the nuisance parameters.

Suppose we have constructed a generalized pivotal R �R(Y; y, ξ) for a parameter
of interest and we wish to construct a confidence region at confidence coefficient γ .
Consider a subset Cγ of the sample space chosen such that

P(R ∈ Cγ ) � γ. (2.2)

The region defined by (2.2) also specifies a subset C(y; θ ) of the original sample
space satisfying the equation P(Y ∈ C(y; θ )) � γ. Unlike classical confidence
intervals, this region depends not only on γ and θ but also on the current sample
point y. With this generalization, we can obtain interval estimates on θ relative to the
observed sample with no special regard to samples that could have been observed
but were not. Although the generalized approach shares the same philosophy of the
Bayesian approach that the inferences should be made with special regard to the data
at hand, herewe do not treat parameters as randomvariables and hence the probability
statements are made with respect to the random vector Y. Having specified a subset
of the sample space relative to the current sample point, we can evaluate the region
at the observed sample point and proceed to solve (2.2) for θ and obtain a region �c

of the parameter space that is said to be a 100γ% generalized confidence interval for
θ if it satisfies the equation

�c(r ) � {θ ∈ �|R(y; y, ξ ) ∈ Cγ },

where the subset Cγ of the sample space of R satisfies Eq. (2.2).
It should be reemphasized that generalized confidence intervals are not alter-

natives, but rather extensions of classical confidence intervals. In fact, for a given
problem there is usually a class of confidence intervals satisfying the probability
statement (2), a feature of classical intervals as well. Weerahandi (1994) discussed
how the choice of appropriate generalized pivotals could be facilitated by invoking
the principals of sufficiency and invariance. Even after we have obtained a particular
pivotal quantity we could construct a variety of confidence regions. Depending on
the application, a left-sided interval, a right-sided interval, a two-sided interval sym-
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metric around the parameter, the shortest confidence interval, or some other interval
might be preferable.

Comparing Two Normal Populations
In order to demonstrate the approach, wewill show the case of comparing two normal
populations. In the analysis of two-sample data, it is common to choose the t-test
statistic to evaluate equality of the distributions. The test statistic is derived under the
assumption of equal variances and independent normally distributed observations.
We start by deriving the test statistic under this assumption, and later we derive a test
variable when equality of variances is no longer assumed.

LetX1,…,Xm be independent observations from a normal distribution N (μx , σ
2
x ),

and letY 1,…,Yn, be independent observations fromanormal distribution N (μy, σ
2
y ).

Then X̄ , Ȳ , S2x , and S2y are the maximum likelihood estimators of μx , μy, σ
2
x , and

σ 2
y , respectively. Since X̄ , Ȳ , S2x , and S2y are complete sufficient statistics for the

parameters of the two distributions, all inferences about the parameters can be based
on them. The four statistics are independent, and their distributions are given by

X̄ ∼ N (μx ,
σ 2
x

m
), Ȳ ∼ N (μy,

σ 2
y

n
),

mS2x
σ 2
x

∼ χ2
m−1,

nS2y
σ 2
y

∼ χ2
n−1.

Under the assumption of equal variances (σ 2 � σ 2
x � σ 2

y ), inferences about the
parameters can now be made on the basis of the complete sufficient statistics, X̄ , Ȳ ,

and

S2 �
∑m

i�1 (Xi − X̄ )2 +
∑n

i�1 (Yi − Ȳ )2

m + n
� mS2x + nS2y

m + n

and

(m + n)S2

σ 2
∼ χ2

m+n−2.

The parameter of primary interest is � � μx − μy , and the hypotheses can be
written as

H0 : � ≤ 0 versus Ha : � > 0

or

H0 : μx ≤ μy versus Ha : μx > μy .
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The family of joint distributions of X̄ , Ȳ , and S2 is both location- and scale-
invariant, so we can reduce the problem to tests based on the statistic T � (X̄−Ȳ )/S.
Because the distribution of X̄ − Ȳ can be standardized as

X̄ − Ȳ

σ

√
1
m + 1

n

∼ N (φ, 1)

the distribution of T is given by

T
√
mn(m + n − 2)√

m + n
∼ tm+n−2φ,

that is, the noncentral t-distribution with m +n − 2 degrees of freedom and the
noncentrality parameter φ � �/[σ

√
1/m + 1/n]. The p-value is

P(T ≥ (X̄ − Ȳ )s−1|� � 0) � 1 − Gm+n−2((X̄ − Ȳ )s−1
√
mn(m + n − 2)/(m + n)),

where s is the observed pooled standard deviation, and Gm+n−2 is the cumulative
distribution function of Student’s t-distribution with m +n − 2 degrees of freedom.

It is well known that the t-test is the uniformly most powerful unbiased test for
the situation above. The Wilcoxon rank-sum test is almost as efficient under these
conditions (Lehmann 1975; Hodges and Lehmann 1956). If the distributions are
heavy-tailed, theWilcoxon rank-sum test is amore efficient test.When the alternative
involves a change in scale as well as in location Fx (t) � Fy((t − �)/σ ), then both
these tests may be inefficient.

When the variances are not equal we are still interested in the inference about the
difference � � μx − μy . This problem has no exact fixed-level conventional test
based on the complete sufficient statistics (Linnik 1968; Weerahandi 1994).

For instance, consider constructing interval estimates based on functions of the
observed data. The difference in sample means is location-invariant, and its distri-
bution is X̄ − Ȳ ∼ N (�, σ 2

x /m + σ 2
y /n). The generalized pivotal quantity

R � (X̄ − Ȳ − �)

√
σ 2
x s

2
x/(mS2x ) + σ 2

y s
2
y/(nS

2
y )

σ 2
x /m + σ 2

y /n

can generate all invariant interval estimates ‘similar’ in σ 2
x and σ 2

y . Furthermore, let

Z � X̄ − Ȳ − �
√

σ 2
x /m + σ 2

y /n
, Yx � mS2x/σ

2
x , Yy � nS2y/σ

2
y

where Z ∼ N (0, 1), Yx ∼ χ2
m−1, and Yy ∼ χ2

n−1 are all independent random vari-
ables. Moreover, the random variables Yx + Yy ∼ χ2

m+n−2 and B � Yx/(Yx + Yy) ∼
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Beta[(m − 1)/2, (n − 1)/2], and Z are also independently distributed. The pivotal
quantity now becomes

R � Z
√
s2x/Yx + s2y/Yy � Z (Yx + Yy)

√
s2x/B + s2y/(1 − B).

Interval estimates of Δ based on R can be obtained from probability statements
about R. The cumulative distribution function of R can be expressed as

P{R ≤ r} � P

{

T ≤ r

√
m + n − 2

s2x /B + s2y/(1 − B)

}

� EGm+n−2

{

r

√
m + n − 2

s2x /B + s2y/(1 − B)

}

where Gm + n − 2 is the cumulative distribution function of T and the expectation, E,
is taken with respect to the beta random variable B.

The constant cγ � cγ (s2x , s
2
y ) needs to be found to satisfy

EGm+n−2

{

cγ

√
m + n − 2

s2x/B + s2y/(1 − B)

}

� γ.

A 100γ% one-sided generalized confidence interval of Δ is[
(X̄ − Ȳ) − cγ (s2x , s

2
y ),∞

]
. A symmetric confidence interval about the point

estimate (X̄ − Ȳ ) of Δ is

(X̄ − Ȳ ) − c(1+γ )/2(s
2
x , s

2
y ) ≤ � ≤ (X̄ − Ȳ ) + c(1+γ )/2(s

2
x , s

2
y )

(Ogenstad 1998; Weerahandi 1994).

2.4 Illustrations

One-Way ANOVA Comparing Three Groups
Suppose that we have a dataset such that for comparing themean effects of two active
treatments (B and C) and a placebo (A). As can be experienced from analyzing a
number of datasets, it is common that the variability in responses will increase with
increasing mean levels. Let us say that after a preliminary review of the data and the
figure we produced below (Fig. 2.1), based on equal sample sizes in the treatment
groups, our ‘intuition’ tells us that the treatment means are significantly different.

Although these data were indeed generated from normal populations with unequal
means andvariances, application of the classicalF-testwill not support our ‘intuition’
in this case at all, because the p-value of the usual F-test is as large as 0.16. Using
XPro (X-Technologies, Inc.), a software that calculates exact p-values, we compute
the p-value for testing the equality of treatment means under the more reasonable
assumption of unequal variances. TheXProSoftware produces ap-value that is 0.043,
which is in line with the impression we get from the figure that we constructed. The
discrepancy in p-values in this example is quite dramatic. It clearly demonstrates
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Fig. 2.1 Treatment group means+standard errors, based on equal sample sizes in the treatment
groups

the serious weakness of the classical F-test in the presence of heteroscedasticity.
Because the test ignores the problem of heteroscedasticity, the classical F-test fails
to detect significant differences in treatments, despite the fact that the data provides
sufficient information to do so. The complete ANOVA table to this illustration can
be found in Appendix. As a note, the F-test is even more unreliable if the sample
sizes in the treatment groups are different.

One-Way ANOVA Comparing Seven Groups
Although, based on equal sample sizes in the treatment groups, the treatment effects
to the naked eye are quite different (Fig. 2.2), the p-value when applying the classical
ANOVA to test the null hypothesis of equal means against the alternative hypothesis
that not all means are equal is 0.11, which is not statistically significant at the 5% sig-
nificance level. With the generalized F-test, the p-value without the equal variances
assumption is 0.0098, which shows a very different outcome.

Repeated Measures Under Heteroscedasticity
We will now show an example of hemodynamic monitoring, which has long formed
the cornerstone of heart failure (HF) and pulmonary hypertension diagnosis and
management. There is a long history of invasive hemodynamic monitoring initially
using pulmonary artery (PA) pressure catheters in the hospital setting, to evaluate the
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Fig. 2.2 Treatment group means+standard errors, based on equal sample sizes in the treatment
groups

utility of a number of implantable devices that can allow for ambulatory determination
of intracardiac pressures. Although the use of indwelling PA catheters has fallen out
of favor in a number of settings, implantable devices have afforded clinicians an
opportunity for objective determination of a patient’s volume status and pulmonary
pressures. Some devices, such as CardioMEMS’ and thoracic impedance monitors
present as part of implantable cardiac defibrillators, are supported by a body of
evidence that show the potential to reduce HF-related morbidity and have received
regulatory approval, whereas other devices have failed to show benefit and, in some
cases, harm (Davey and Raina 2016).

We will consider potential data on pulmonary artery pressure where patients have
been placed on one of four treatments (G � 4) to bring down the PA pressure. The
patients have five scheduled visits at weeks 1, 2, 3, 4, and 5 with their investigator.
Shown in Fig. 2.3 are bar graphs reflecting the arithmetic means, based on equal
sample sizes in each group, with standard errors of a hypothetical dataset of normally
distributed observations that was generated by simulating the following model
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Treatment 1 Treatment 2 
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Fig. 2.3 Treatment group means+standard errors, based on equal sample sizes in the treatment
groups and weeks

Yi(g)t � θg + βt + γgt + αi(g) + εi(g)t ,

where t �1, …, 5, i(g)�1, …, ng, g=1, …, 4. αi(g) is the random effect due to
among-subject variation, θg, g=1, …, 4 are the treatment effects, β t , t �1, …, 5 are
effects due to visits, γ gt are their interactions, and εit are the residual terms.

Extending the usual assumption about variance components to possibly unequal
group variances, we now have

αi(g) ∼ N (0, σ 2
α ), εi(g)t ∼ N (0, σ 2

g ),

where t �1, …, 5, i(g)�1, …, ng, g=1, …, 4.
Although the data seems typical in a repeated measures design, a closer look at

the data reveals that the treatment group variances, in this case, are substantially
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Table 2.1 Classical analysis of variance results

ANOVA table

Source DF SS MS F-value P-value

Weeks 4 86.8247 21.7062 1.289 0.284

Treatments 3 110.992 36.9972 2.137 0.136

Within
Treatment

16 276.997 17.3123

Treatment×
Weeks

12 135.048 11.254 0.668 0.775

Error 64 1078.08 16.845

Total 99 1687.94

different, which is evident in Fig. 2.3. Obviously, in this application, it is not reason-
able to assume that the variances are equal. But should it make any difference to our
conclusions whether or not the assumption is reasonable? To examine this, let us first
ignore the fact that variances are different and apply the classical ANOVA as usually
done by most people. The ANOVA table (Table 2.1) obtained by applying formulas
for classical repeated measures analysis for the case of homoscedastic variances is
shown below.

According to the p-values appearing in the ANOVA table, none of the effects
including the treatment effect are significant. Now we will drop the equal variances
assumption and retest the hypothesis that there is no difference in the mean PA pres-
sures between the different treatments. The p-value for testing the difference between
the treatments then becomes 0.0009. This means that the difference between the
treatments is highly significant despite what the classical ANOVA suggested. Usu-
ally milder assumptions make the p-value of a test larger and power of a test smaller.
But here the assumption of equal variances is so unreasonable that the p-value under
the assumption of equal variances is substantially larger. This illustration clearly
displays the reduction of the power of classical F-tests under heteroscedasticity.

2.5 Statistical Software

XPro computes exact p-values for testing hypotheses and computes confidence inter-
vals based on exact probability statements. This becomes particularly importantwhen
one is using small or unbalanced data. The assumptions uponwhich standardmethods
are based are then typically biased, resulting in unrealistic p-values and confidence
intervals. The software supports the exact inference in various linear models. It has
been proven to be able to detect significant and nonsignificant experimental results
early, even with small sample sizes. XPro procedures are complimentary to such
program as StatXact which specialize in exact non-parametric methods, such as
those dealing with contingency tables and categorical data. Most software programs
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provide exact parametric methods only under the assumption of homoscedasticity
in the ANOVA. In addition to such classical procedures, XPro provides procedures
based onmilder assumptions. Tomake this possible XPro performs high dimensional
numerical integrations and solves highly nonlinear equations. The complexities of
the underlying formulas make the problem of computing exact p-values and confi-
dence limits very tedious. XPro makes use of efficient algorithms tailor made for
exact inferences in linear models and provides an easy to use interface that facilitates
all necessary analyses without passing the burden of any such numerical methods to
the user. Themethods used are based onWeerahandi (1994).P-values and confidence
intervals, based on exact statistical calculations, are provided for a large number of
following statistical procedures, models, and relationships.

As mentioned, StatXact (Cytel Corporation), is used for a host of nonparametric
statistical procedures and sample size determination, and LogXact (Cytel Corpora-
tion), for the construction of logistic and Poisson regression models. Both StatXact
and LogXact allow the user to select exact, Monte Carlo, or regular asymptotic meth-
ods of calculating p-values and confidence intervals. If exact methods take too long
or are unavailable because of computer memory limitations, the user may select
Monte Carlo techniques. Monte Carlo results are often very close to those produced
by exact methods. XPro likewise provides the user with a Monte Carlo option for the
majority of its procedures. It is generally used under the same conditions mentioned
above.

Appendix
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Chapter 3
Discrete Time-to-Event and Rank-Based
Methods with Application to Composite
Endpoint for Assessing Evidence
of Disease Activity

Macaulay Okwuokenye

3.1 Introduction

Many clinical trials include multiple objectives for evaluating efficacy and safety of
therapies. These objectives are frequently addressed using multiple endpoints partly
because most diseases have more than one consequence on biology. Multiple end-
points are used for evaluating therapies for several reasons: They enable assessment
of consistency in treatment effects across different but critical features of a disease.
They enable assessment of different features of same underlying pathophysiology of
a disease. They characterize a disease with complex etiology better than a single end-
point (Hugue and Sankoh 1997) because a single endpoint rarely fully characterize
clinical relevant benefits of a therapy. For example, in clinical trials for evaluat-
ing effects of disease modifying therapies in relapsing-remitting multiple sclerosis
(RRMS), treatment benefits are evaluated in terms of reduction in relapse frequency,
disability worsening, and number of magnetic resonance imaging (MRI) lesions.
In clinical trials for evaluating effects of anti-neoplastic agents, treatment benefits
are evaluated in terms of overall survival, progression-free survival, and shrinkage
in tumor size by a specified amount. In clinical trials for evaluating therapies for
epilepsy, treatment benefits can be evaluated in terms of time to first epileptic seizure
and frequency of drop attacks.

Separate statistical analyses of multiple endpoints without appropriate adjustment
for type I error attractsmultiplicity of tests issues, and this could increase likelihoodof
incorrect conclusion. On the other hand, adjusting for type I error, using for example
Bonferroni test, when the treatment effects on the component endpoints are small and
the endpoints are many may be too conservative and will affect the statistical power
of tests. Designing an adequately powered study to detect small treatment effects will
not only require very large sample size, but also it will be costly and might require
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long time to recruit patients.When evaluating multiple endpoints on which treatment
effects are similar and consistent, an approach that avoids multiplicity problem is the
creation of a composite of these endpoints.

A composite endpoint is derived by collapsing multiple endpoints into a single
value at the subject level, and using the single value as the unit for statistical analy-
ses. In other worlds, it is the first occurrence of any of the component endpoints. A
composite endpoint may be chosen in a trial to capture the presentation of a disease
better than any single endpoint (Mascha and Sessler 2011); it is used to better char-
acterize a disease that manifests in complex ways when no agreement exist among
experts on the most relevant efficacy endpoint. It is used to possibly increase power
when expected treatment effect is small and consistent across the individual end-
points through increase in number of events. Sample size for a clinical trial with a
composite endpoint can considerably reduce for component endpoints that mean-
ingfully contribute similar effects to overall treatment effects. A composite endpoint
eases interpretation (Fairclouch 2010) when individual endpoints are of equal or sim-
ilar importance. A composite endpoint helps avoid the problem of competing risks
(Neaton et al. 2005).

This chapter presents statistical methods for analyzing a binary composite end-
point that is a function of continuous right censored time-to-event endpoints and
another endpoint(s) whose exact time of occurrence is(are) unknown but only known
to have occurred within an interval. In Sects. 3.2 and 3.3, respectively, the data struc-
ture and analyses methods, including estimation and inference based on discrete
time-to-event, are described. Section3.4 presents clinical trial example of the dis-
crete time-to-eventmethod; Sect. 3.5, some drawbacks of collapsed binary composite
endpointmethod of analyses. Section3.6 presents a rank-basedmethod for evaluating
binary multiple endpoints.

3.2 Data Structure

Consider a clinical trial designed to compare efficacy of two therapies over a period
of time. Suppose that for each treatment group, the study design calls for K + 1
clinic visits, and that the assessments were scheduled to occur at time-points t =
0, 1, 2, . . . , K , representing weeks or months as dictated by the study protocol. For
the endpoint with periodic assessment, let T be the time of assessment that an event
was first observed to be present. For a subject that does not have a event through
T , define T = ζ , where ζ(>K ) is some fixed integer. Hence, T ∈ {0, 1, 2 . . . K , ζ }.
Denote by C the last time prior to when a subject drops out of the study or is lost to
follow-up, and the subject was not known to have had the event; for subjects that do
not dropout, T = C . Accordingly, the observed data for each subject is min(T,C).
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3.3 Analyses Methods

3.3.1 Collapsed Binary Composite Endpoint

As noted in Sect. 3.1, the composite endpoint of interest is a function of continuous
right-censored time-to-event endpoints and another endpoint(s) assessed periodi-
cally; hence, the exact time of occurrence for the latter is unknown but only known
to have occurred within an interval.

3.3.1.1 Crude Incidence Rate

The crude incidence rate Pe = ne/N is the proportion that represents the number of
patients with the composite endpoint (ne) divided by the number of patients initially
randomized (N ) to the drug regardless of treatment duration (Kappos et al. 2011;
Nixon et al. 2014). Although crude incidence rate is simple, it is only appropri-
ate when used for short-term exposure to treatment, or when treatment duration is
same for all patients, or when the composite endpoint occur close in time following
treatment initiation.

3.3.1.2 Discrete Time-to-Event Method

As described in Okwuokenye (2015), a statistical analysis method proceeds by
first organizing (grouping) the event times since after randomization for the con-
tinuous right-censored time-to-event endpoints into intervals, Ai = [ai−1, ai ), for
i = 1, . . . ,m, where a0 = 0 and am = ∞ with the event times in Ai recorded as ti ;
the intervals are determined by the scheduled assessment visits of the periodically
assessed endpoint (Okwuokenye 2015). Following grouping of the event times into
intervals, a collapsed binary composite endpoint of any of the events versus none of
the events is created to compare treatment regimen over the study period. A subject
has the composite event if any of the component events occurs, and the composite
event time is the minimum time of occurrence of any of the component endpoint.
A discrete time-to-event (TTE) method is then applied to statistically analyze the
composite endpoint.

Unlike the crude incidence rate analysis approach that ignores subjects’ differen-
tial follow-up times and make unverifiable assumptions about event status of cen-
sored subjects, TTE approaches allow incorporation of subjects’ differential follow-
up times and appropriate handling of censoring. TTE methods allow appropriate
weighting of loss to follow-up; therefore, subjects information are incorporated into
the analyses for as long as they are known to be in the study. Additionally, beside
allowing the patterns of event occurrence to be reflected, they ensure that statis-
tical analyses are performed in the intention-to-treat population. They also enable
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adjustment for time-dependent confounding and time-varying covariate for studies
conducted over a long period.

3.3.1.3 Estimation Method for Composite Endpoint Proportion

After evaluating comparability of baseline characteristics, a suitable discrete time-to-
event methodmay be applied to estimate and compare the proportion of subjects with
the composite endpoint in the treatment groups using a reliability estimator, e.g., the
Kaplan and Meier (1958) estimator or the actuarial estimators, e.g. life-table, of the
probability of not having the composite endpoint over the study period. A difference
between the actuarial and reliability method is how withdrawals are incorporated
into the estimation of the conditional probability of the composite endpoint (events).
The life-table and Kaplan-Meier (KM) methods make different assumptions about
withdrawals. For tied events and loss to follow-up times, KM method assumes that
all subjects lost to follow-up were at risk at the time of event. Number of withdrawals
occurring in an interval are subtracted from the number at risk at the beginning of
the interval. Life-table assumes that withdrawals occurred uniformly in an interval
(Breslow and Crowley 1974). For tied events and lost to follow-up times, life-table
assumes that half (1/2) of the subjects that were lost to follow-up were at risk at the
time of events. Hence, in obtaining actuarial estimates, the number of withdrawals
are halved before subtraction from number at risk at the beginning of the interval, as
a protection against underestimation and overestimation of the proportion of subjects
with the composite endpoint (Breslow and Crowley 1974).

Neither of the two approaches is superior to the other; the choice of estimation
approach is driven by the assumption on dropouts and length of the intervals. For
considerably wide intervals and unknown actual event times, the actuarial rather than
reliability estimation may be more appropriate. Although the Kaplan-Meier estimate
is the non-parametric maximum likelihood estimate of survival function relative to
the class of all distributions (Kaplan andMeier 1958), for wide interval with grouped
event times, it may be more reasonable to consider the number at risk for an interval
to be the number at risk at the beginning of the interval minus half (1/2) the number
of withdrawals during the interval. KM uses as the number at risk for an interval,
the number at risk at the beginning of the interval minus the number of dropouts
in that interval. KM method was developed for survival times on continuous scale
with rare ties. The life-table method was developed for grouped data, where ties are
more likely. The life-table method recognizes that it is unreasonable to assume that
none of the dropouts was at risk in the interval and all were not at risk for the entire
interval.



3 Discrete Time-to-Event and Rank-Based Methods … 47

3.3.1.4 The Composite Endpoint Proportion

Let Ni denote the number at risk at the beginning of each i th interval, Di the number
known to have the event1 in the interval, and Wi the number who discontinued
in the interval not known to have had the event at time of discontinuation. The
conditional probability of having the event in the interval via actuarial estimation
method (standard life-table) is:

Qi = Di

Ni − 1/2 (Wi )
. (3.1)

No concern here that Eq. (3.1) is undefined when Ni = 0 because practical settings
typically have large sample. The conditional probability of not having the event in
the interval is Pi = 1 − Qi given by:

Ni − Di − 1/2 (Wi )

Ni − 1/2 (Wi )
(3.2)

The unconditional probability of not having the event is the product of the P ′
i s.

For Kaplan-Meier method of estimation, 1/2 (Wi ) is dropped from Eq. (3.2). Not
considering the number at risk to account for the withdrawals makes the Q′

i s smaller
(due to larger denominator), leading to larger P ′

i s and larger cumulative non-event
rates. As the length of sub-intervals becomes smaller, the actuarial estimate of event
probability approaches the Kaplan-Meier estimate as a limit, a reason the Kaplan-
Meier is referred to as the product limit estimate (Cantor 2003, p. 21).

3.3.1.5 Comparing the Composite Endpoint Proportion

A hypothesis of interest is whether the composite endpoint proportions (or patterns)
are equal (H0) versus not equal (Ha). Write H0 : FA = FB, versus any appropriate
contradiction of the null, where FA and FB are the cumulative times to composite
endpoint distributions for treatment groups A and B, respectively. Equivalently, H0

may be stated in terms of S = 1 − F , where S represents the survival curve distri-
butions. The reason for estimating the proportion having no composite endpoint is
that the cumulative distribution function, which is the proportion with the compos-
ite endpoint, cannot be directly estimated in presence of censoring; therefore, it is
estimated as 1 − S, where S is the survival function.

Inference on the difference in proportions of subjects without the composite
endpoint between two treatment groups may be obtained using non-parametric
or parametric statistical methods. An example of a non-parametric method is the
Cochran-Mantel-Haenzel (CMH) or Mantel-Cox approach (Mantel 1963; Mantel
and Haenszel 1959; Mantel 1966).

1Event and composite endpoint are used interchangeable for ease of exposition.
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Table 3.1 Data set-up for an interval for computing Mantel-Haenzel statistics

Treatment Event No event At risk

A n11i n12i n1+i

B n21i n22i n2+i

n+1i n+2i N++i

Table3.1 presents an example data structure for the i th interval. For an i th interval,
let n11i represent the number of subjects who have the composite endpoint and n12i
represent those without the composite endpoint among the number of subjects at
risk n1+i at the beginning of the interval in treatment group A. Similarly, let n21i
represent the number of subjects who have the composite endpoint and n22i represent
those without the composite endpoint among the number of subjects at risk n2+i at
the beginning of the interval in treatment group B. Let n+1i represent number of
subjects with the composite endpoint in the interval and n+2i the number without the
composite endpoint in the interval. Let n1+i + n2+i + n+1i + n+2i = N++i .

The Cochran-Mantel-Haenzel statistics (CMH) (Mantel 1963) for assessing
whether the time-to-composite endpoint pattern differs between the treatment groups
A and B is:

χ2
CMH =

[∣∣∑
i n11 − (n1+i × n+1i )/N++i

∣∣ − 0.5
]2

VCMH
(3.3)

where VCMH = ∑
i (n1+i × n+1i × n2+i × n+2i )/(N 3

++i − N 2
++i ). Subtraction

of 0.5 is a correction for continuity. See for exampleMantel (1963) and Peace (2009)
for a good exposition on utility of CMH for discrete time-to-event data.

Non-integer cell margins may arise when computing the effective sample size
for standard life-table method. The CMH test is based on the assumption that the
margins of the two-by-two tables is fixed and hence the distribution of the pivotal
cell frequency is hypergeometric. Since the hypergeometric distribution applies to
frequencies, (number of successes in n draws from a population of survival or cumu-
lative probability of event without replacement) and not improper fractions, some
will argue that CMH should not be applied to compare survival curves constructed
by the life-table method. Nonetheless, if such an argument is of concern, one could
use the discrete-time Cox’s proportional hazards model to compare event rates in the
two groups.

3.3.1.6 Assessing Covariate Effects

Cox’s proportional hazard (Cox’s PH)model (Cox 1972) is commonly used in assess-
ing covariate effects when event times are continuous. The Cox’s PH, specified in
terms of hazard function λ(t; X), is:
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λ(t; X) = λ0(t) exp(Xβ), (3.4)

where β is a vector of p unknown parameters and λ0(t) is arbitrary. The hazard
function for discrete failure time model (Hosmer and Lemeshow 1999; Prentice and
Gloeckler 1978) can be derived fromgrouping event times inmodel (3.4) into disjoint
intervals Ai = [ai−1, ai ), for i = 1, . . . , r , where a0 = 0 and ar = ∞ with the event
times in Ai recorded as ti . For a subject with covariate vector X , the probability of
observing the composite event at time ti is:

Pr(ti |X) = {1 − α
exp(X(ti )β)

i }
i−1∏

j

α
exp(X(ti )β)

i , (3.5)

where

αi = exp{−
∫ a j

a j−1

λ0(u)du} (3.6)

is the probability of composite event-free (i.e., not having the composite event)
of a subject with X(t) = 0 in interval A j . The probability of surviving (i.e., been
composite event-free) to the beginning of Ai is:

p(ti ; X) =
i−1∏

j=1

α
exp(X(ti )β)

j . (3.7)

The range of α j is such that 0 < α j < 1, j = 1, 2, . . . , r − 1; therefore, to remove
restrictions on parameter range, α j is substituted with the transformation φ j =
log[1 − logα j ]. So that the logarithm of the likelihood is:

ll = δ log[1 − exp(1 − exp(φk + Xβ))] −
k−1∑

j−1

exp(φ j + Xβ), (3.8)

where δ = 1 for observed event times; 0 for censored event times. With appropriate
data structure, the discrete analog (Eq.3.5) of the Cox’s PH can be implemented in
SAS using a binary regression model with the complementary log-log linearization
transformation (Hosmer and Lemeshow 1999; Prentice and Gloeckler 1978). Some
authors (e.g., Allison 1982) expressed the discrete-time model (3.5) describing asso-
ciation between Ti , the discrete failure time on an i th subject with covariate vector
X i , as:

ln [− ln (1 − Pti )] = β0t + X ′
i jβ, (3.9)

where X i j is a p × 1 covariate vector that may be constant over time or time-
dependent (but fixed within a specific time interval), and β is a corresponding p-
vector of parameters to be estimated. The function Pti is the discrete hazard rate
function given by
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Pit = 1 − exp(− exp(β0t + X ′
i jβ)).

The grouped discrete-timemodel in Eq. (3.5) assumes that the events are generated by
Cox’s PH (Prentice and Gloeckler 1978) and therefore yields hazard ratio estimates
that are identical to those from the continuous time Cox’s proportional hazard model.
No assumptions are made about width of grouping interval in deriving marginal
likelihood forβ (Prentice andGloeckler 1978;Allison 1982;Kalbfleisch andPrentice
1973). Although the discrete-time logistic regression model (Cox 1972) can be used
for analyzing discrete failure times data, the parameter from such a model does not
have relative risked interpretation, and the choice of grouping intervals impact the
meaning of the regression coefficients (Prentice and Gloeckler 1978; Kalbfleisch and
Prentice 1973).

3.3.2 Summary Estimate Across Studies

Pivotal proof of efficacy of a therapeutic agent typically requires two randomized
placebo-controlled trials. To estimate the proportion of subjects having the composite
endpoint from multiple studies, weighting may be applied to obtain pooled estimate
of the proportions across studies. Denote by Pji the probability of the composite
endpoint for i th interval for study j and Pj ′i the probability of the composite endpoint
for the i th interval for study j ′. The pooled estimate for interval i th is:

N ji × Pji + N j ′i × Pj ′i
N ji + N j ′i

, j �= j ′ (3.10)

Equation (3.10) above implies weighting the individual study proportion of compos-
ite endpoint estimates for each interval proportionate to the number at risk for the
interval from each study. The variance of the pooled estimate in Eq. (3.10) is:

f 2j i × Var(Pji ) + f 2j ′i × Var(Pj ′i ), (3.11)

where

f j i = N ji

N ji + N j ′i
for j = 1, 2, . . . , J ; i = 1, 2, . . . , I, (3.12)

and Var(Pji ) is determined from the Greenwood (1926) formula give by:

Var
(
P̂ji

)
≈

[
P̂ji

]2 I∑

i=1

Dji(
N ji − Dji

) × Dji
. (3.13)
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Other weights, such as inverse variance weight, may be used. For pooled estimate
of treatment effects from multiple studies adjusting for covariates, one would first
investigate treatment by study interaction using individual patient data (IPD) or
meta-analysis (MA). If little or no evidence exits to suggest that treatment by study
interaction is statistically significant, a fixed effects IPD model that blocks on study
or a fixed effect MA model may be utilized. However, if evidence exists to suggest
between study heterogeneity, then inferencemay be based on a randomeffectsmodel.
Similar conclusions are expected from both IPD and MA (Chen and Peace 2013).
When using Cox’s model to assess covariate effects, one could obtain summary
estimate across study by stratification with study as the strata.

Once a study has successfully demonstrated effectiveness on a composite end-
point, other attributes of the composite endpoint should be analyzed. An example of
such attributes are the treatment effects on individual endpoints. Analyses describ-
ing treatment effects on individual endpoints should accompany the results on treat-
ment effects on composite endpoint. The results on individual endpoints will enable
reviewers assess the extent to which the treatment effects on a composite endpoint
are driven by any of the component endpoints.

3.4 Example

Multiple sclerosis is a chronic neurological disorder characterized by clinical and
radio neurological disease activities. A treatment goal in the relapsing-remittingmul-
tiple sclerosis is the attainment of no evidence of disease activity (NEDA) following
treatment for t−years. NEDA, now increasingly used for comparing disease modi-
fying therapies, is no evidence of a clinical relapse, sustained disability worsening,
new or enlarging T2 lesions, or T1 gadolinium-enhancing (Gd) lesions on MRI scan
after a t−year exposure to treatment. Unlike relapses that have known onset dates of
occurrence, MRI lesions dates of occurrence are unknown. What is typically known
is that lesions are present or absent at the time of assessment, and that MRI lesions
emerged between scheduled assessment visits.

Data in Table3.2 are from a RRMS trial conducted over 48weeks to compare
two treatments in terms of no evidence of disease activity. In the trial, 180 patients
were randomized into active drug; 182 subjects into placebo. MRI endpoints (Gd
and T2 lesion) were evaluated at week 12, week 24, and week 48. In addition to
MRI measures, subjects’ onset dates of relapses was collected as was information
about evidence of disability worsening. The interest was to estimate the proportion
of subjects with no evidence of relapse, disability worsening, Gd, or T2 lesions after
48weeks of treatment.

The event times of relapse and disability worsening were organized into grouped
intervals, notably, (0–12], (12–24], (24–48) weeks, driven by the time ofMRI assess-
ment. The life-tablemethodwas applied to estimate the proportion of subjectswithout
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Table 3.2 Life-table estimates of proportion of subjects without evidence of disease activity

Interval weeks No event &
discontinued

Events n (%) Average # at
Risk

P(No event) SE(P)

Active drug

(0–12] 10 143 175 0.1829 0.0292

(12–24] 0 5 27 0.1490 0.0275

(24–48) 1 8 21.5 0.0936 0.0232

Placebo

(0–12] 11 129 176.5 0.2691 0.0334

(12–24] 3 9 40.5 0.2093 0.0314

(24–48) 0 9 30 0.1465 0.0281

Note Data are contrived for illustrative purpose only and do not represent any data from actual
clinical trial. P(no event) and SE(P) are the life-table estimates of proportion of patients without the
composite event and the corresponding standard error, respectively

evidence of disease activity. Life-table estimates of the proportion of subjects with
no evidence of disease activity at week 104 are 9.36% and 14.65%, respectively, for
active drug and placebo.

3.5 Drawbacks of Collapsed Binary Composite Endpoint

The collapsed binary composite endpoint makes it challenging to weight the compo-
nent endpoints based on clinical importance. It implicitly assumes equal importance
for each component endpoints leading to inadvertent overweighting of the component
endpoint that occurs more frequent than others (Mascha and Sessler 2011). Estimate
of treatment effects and results of test are driven by the component endpoint with the
largest frequencies, with potential clouding of the component endpoint that occurred
with less frequency. This is an issuewhen the overweighted component endpoint is of
little clinical value. Additionally, inconsistent treatment effects could be challenging
to interpret because treatment effects may defer for each of the component endpoint.

The collapsed binary composite endpoint does not discriminate between treatment
groups in terms of number of component endpoints experienced by each patients.
Consider six hypothetical subjects, three taking placebo and three taking active treat-
ment. Suppose that two of the three subjects in the placebo have four of the compo-
nent endpoints comprising binary composite endpoint and two subjects in the active
treatment group have only one of the four component endpoints. Under the collapsed
binary composite endpoint when patients are uncensored (for simplicity), the pro-
portion of patients without the collapse binary composite endpoint and measure of
disease activity are same; however, in the example above, a subject with only one of
the component endpoint has different level of disease activity compared with a sub-
ject with all the four component endpoints. Such a difference in the level of disease
activity can be reflected with a rank-based method.



3 Discrete Time-to-Event and Rank-Based Methods … 53

3.6 Rank-Based Method

3.6.1 Ranking Binary Endpoints to Reflect Severity

When each of the component endpoint has a binary outcome, an expression for
n-component endpoints each with binary outcome (a or b) is:

(a + b)n =
n∑

0

(
n

y

)
an−yby, (3.14)

where n represents the number of component endpoints. Equation (3.14) is the Bino-
mial Theorem, and the binomial coefficient

(n
y

)
represents the number of ways, with-

out replacement, to choose y component endpoint(s) from a set of n endpoints.When
no ordering exists in the occurrence of the events, these coefficients enable creation
of a metric for severity of disease activity depending on disease activity combina-
tions of the component endpoints. This metric induces categories or subgroups of
severity of disease activity which could be ranked according to perceived severity.
Considering the four component endpoints (n = 4) in the above RRMS trial exam-
ple, this metric induces 16 categories. Under this metric, there are four categories
for Gd lesion (Gd), T2 lesion (T2), clinical relapse (relapse) and sustained disability
worsening only–taken one at a time; six categories for Gd, T2, clinical relapse or
sustained disability worsening taken two at a time, etc. Surely, NEDA commands a
rank of 1; the category obtained by taking all four at a time would command a rank
of 16. Then ranks 2, 3, 4 and 5 would apply to the category taking one at a time, the
ranks 6, 7, 8, 9, 10 and 11 would apply to the category taking two at a time, then
ranks 12, 13, 14, 15 would apply to the category taken three at a time.

The assignment of the ranksmay be accomplished with clinical input from project
clinician. If the project clinician can not decide, the average rank of each subgroup
is assigned to each member of the group. The rank assigned to each category should
reflect the perceived severity of disease activity (SODA) score or evidence of disease
activity (EDA) score. With this ranking method, one would still be able to esti-
mate crude proportion of subjects with no evidence of disease activity, which is the
proportion of subjects with SODA score of 1. Hence, SODA provides much more
information than NEDA.

3.6.2 Statistical Analysis of the Ranks

If the data were presented as a 2 (treatment)-by-16 cross-tabulation, then one could
compute the mean score (as well as the variance) for each row and statistically
compare the rows. This can be done with the row mean scores resulting from the
PROC FREQ with CHM option. The resulting test statistics would be a Chi-square
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with one degree of freedom. For sufficiently large samples, the same inference above
could be achieved with analysis of variance (Mack and Skillings 1980) using general
linear model (GLM). In SAS this can be achieved with PROC GLM with the model
statement

Ri = Di + εi , (3.15)

where Ri and Di (i = 0, 1) are the severity scores and treatment indicator, respec-
tively. The inference in Eq. (3.15) is based on the F-distribution with d degree of
freedom, where d is the degree of freedom associated with the mean square error.
The F-distribution with one degree of freedom for the numerator approaches the
Chi-square with one degree of freedom when the denominator degree of freedom
approaches infinity. The inference would be toward one treatment group having
greater (or less) average severity than the other. If there is concern that distribution
of the ranks is not normal to rely on inference using GLM, inference based on a
permutation/randomization test or other appropriate non-parametric method may be
pursued. Missing data are imputed prior to assigning ranks. This approach for com-
paring treatment effects on multiple endpoints assumes that there is no ordering in
the events—and that occurrence of all the four events is more severe than the occur-
rence of three, which is more severe than occurrence of two, etc. Modification of the
ranking is warranted if the events can happen in a particular order.

3.7 Concluding Remarks

In this chapter, we discussed the discrete failure times and the rank-based methods
for analyzing evidence of disease activity. If a composite endpoint is of interest
during study design, the study should be designed to allow for frequent assessment
visits. To the extent possible, the component endpoints should be such that effects of
treatment are similar and consistent across the component endpoints. Due to limited
information, this might be difficult to determine a priori for a therapy been evaluated
for new indication.

In the illustration above, implicit assumption in utilizing collapsed binary com-
posite endpoint for analyses of NEDA is that the component endpoints are of approx-
imately equal importance and of similar occurrence and consistent across the com-
ponent endpoints. However, disability worsening tend to generally occur with less
frequency, and the long term goal in the management of MS is to delay or prevent
disability worsening; therefore, it would appear that disability worsening is one of
the most important endpoints.

The rank-based method discussed in this chapter assumes complete data on all
patients; therefore,missing data need to be imputed using appropriate data imputation
method. To reflect event times of the composite endpoint on inference about treatment
effects, weighted estimate may be used. An example of such a weight is a stabilized
weight using time-to-composite endpoint. If the grouping intervals are small, then
the weight could be based on Kaplan-Meir estimate or on life-table estimates for



3 Discrete Time-to-Event and Rank-Based Methods … 55

more coarse interval. It is important that the assigned ranks reflect perceived severity
of disease activity. If there is concern that the distance between the ranks might not
reflect the same magnitude of disease severity, one could specify the lowest rank and
assign value for the next rank based on perceived severity. One also could collapse
closely related endpoints. For example, in the example above, the GD and T2 could
be collapsed into one MRI endpoint, in which case this induces 8 categories; the
category having relapse, disability worsening, and MRI will then command a rank
of 8.
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Chapter 4
Imputing Missing Data Using a Surrogate
Biomarker: Analyzing the Incidence
of Endometrial Hyperplasia

P. Lim and H. Jiang

4.1 Background

A low incidence of endometrial hyperplasia is a sine qua non for a marketing appli-
cation of a new hormone replacement therapy (HRT). Biopsy and histopathological
examination of the tissue specimen is the gold standard in diagnosing endometrial
pathology associated with HRT. In published research of HRT, the non-invasive
technique of transvaginal ultrasonography (TU) has been used to detect anatomi-
cal abnormalities of the endometrium—in parallel with timed biopsies. Endometrial
thickness (ET) can be assessed ultrasonographically and a clinically useful corre-
lation between ET and the absence or presence of endometrial hyperplasia as well
as malignancy and other anatomical abnormalities has been described extensively
(Osmers et al. 1990; Varner et al. 1991; Lin et al. 1991;Malpani et al. 1990; Granberg
et al. 1991; Langer et al. 1997).

In a small percentage of cases, despite correct technical execution, endometrial
biopsy fails to collect sufficient tissue material for histopathological diagnosis. One
explanation is that an atrophic endometrium is hard to sample. Nevertheless, when
a biopsy is classified as “insufficient tissue”, its interpretation as normal, atrophic
endometriummaybe subject to suspicionwhenET is 5mmormore.ETas determined
by TU can give additional assurance in such cases (FDA HRTWorking Group 1995;
CPMP 1997). In the pivotal clinical trials with the estradiol (E2) and norgestimate
(NGM) cyclophasic HRT product, it was decided to impute a hyperplasia likelihood
in the cases that were classified as presenting “insufficient tissue” on end of treatment
biopsy and where a coincident TU outcome was available.
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ET responds to HRT by showing an increase of 1 or 2 mm and most of this change
happens over the first weeks. Also, hyperplasia incidence shows a detectable increase
within 12 weeks of unopposed E2 therapy. It was felt, therefore, that all subjects with
steroid hormone exposure of 3 months or more could be included in a validation
exercise.

The approach taken to validate TU outcomes for the purpose of imputing a like-
lihood of hyperplasia in cases of insufficient tissue resembles the evaluation of a
diagnostic test against the gold standard. The validation exercise was limited to the
specific subject population enrolled in prospective clinical trials withHRT. Results of
two clinical trials in healthy postmenopausal subjects, which included on-treatment
biopsies and coincident ET assessments by TU, were available for analysis. One was
a Phase 2 study of an experimental HRT combination of E2/NGM with E2 doses
of 1 and 2 mg and NGM doses of 0, 30, 90, and 180 μg. The other was a Phase 3
study of the same experimental HRT with E2 (mg)/NGM (μg) doses of 1/0, 1/30,
1/90, and 1/180. In addition, data of comparable prospective clinical investigations
from the published literature were reviewed. The test characteristics of the ET deter-
mination are described in terms of sensitivity and specificity versus the endometrial
biopsy diagnosis. Sensitivity is the likelihood of correctly identifying hyperplasia;
specificity is the likelihood of correctly excluding the presence of hyperplasia at a
discrete ET.

No prospective attempts were made to re-evaluate precision and accuracy of ET
assessments as TU is widely in use as part of the routine Obstetric/Gynecologic prac-
tice. Applying the technique as set out in the clinical trial protocols and investigator
instructions, the ET in healthy postmenopausal women can easily be determined in
discriminative steps of 1 mm.

4.2 Objective of the Study

In response to the guidelines issued by regulatory authorities, ET is utilized as a
second line investigation to assess the likelihood of hyperplasia, given a case of
on-therapy biopsy where insufficient tissue for diagnostic classification is obtained.

4.3 Validation

Three validation steps to evaluate the ET measurement characteristics to prospec-
tively assess hyperplasia risk are undertaken:

1. investigate the influence of potential confounding factors. Data from the Phase
2 study were used.

2. determine the sensitivity and specificity of discrete ET. Data from the Phase 3
study were used.
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Fig. 4.1 ROC curve

3. evaluate the ET measurement characteristics derived from the E2/NGM clinical
trials against comparable data from published literature.

1. Phase 2 Study

To assess potential confounding factors, ET together with patient age, post-
menopausal age, prior use of HRT and an indicator variable for continuous E2 alone
were investigated in a stepwise logistic regression analysis performed in the Phase
2 study. The final model consists of ET and the indicator variable for continuous E2.
Hence the only statistically significant predictor variables are the E2 indicator and
ET at end of treatment.

2. Phase 3 study

To determine the sensitivity and specificity of discrete 1 mm steps in ET, a receiver
operator characteristic (ROC) curvewas formed in all subjects in the Phase 3 study for
whom biopsy and coincident ET results are available. The ROC curve of sensitivity
(Y axis) versus (1-specificity) (X axis) is presented in Fig. 4.1. The optimum ET,
exceeding 75% sensitivity while maximizing specificity, is 8 mm.

Using the threshold of 5 mm in order to increase sensitivity to detect hyperplasia,
an imputed hyperplasia status was assigned for all subjects for whom biopsy and
coincident ET results are available. Among the subjects with definitive hyperpla-
sia readings based on biopsy, a logistic regression model where the probability of
imputed hyperplasia is determined by treatment group showed that treatment was
not significant. A similar logistic regression for subjects who had no hyperplasia
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from definitive biopsy readings showed that treatment was a significant predictor.
Hence, in adjusting the likelihood function for subjects with insufficient tissue read-
ings, specificity is computed for each treatment group separately while sensitivity is
computed across all treatment groups combined.

3. Langer RD, Pierce, JJ, O’Hanlan KA et al. (1997)

Most publications of HRT therapy are based on studies with a relatively small subject
sample size and studies of an observational nature, i.e. case series or case control
studies. Only the publication presenting the TU results obtained in the PEPI trial
describes a prospective, randomized, double-blind design that is comparable with
the E2/NGM studies in terms of patient population, treatment and sample size.

The percentages of endometrial thickness in categories <5 mm, 5–10 mm and
>10 mm are 42%, 45%, and 13%, respectively in the Phase 3 study. The ET distri-
bution in no hyperplasia, hyperplasia and insufficient tissue cases are given below:

No hyperplasia (N�730) Hyperplasia (N�68) Insufficient tissue (N�47)

<5 mm 329 (45%) 2 (3%) 28 (60%)

5–10 mm 340 (47%) 23 (34%) 16 (34%)

>10 mm 61 (8%) 43 (63%) 3 (6%)

As expected the normal (no hyperplasia) and abnormal (hyperplasia) categories
are not mutually exclusive.When 5mm ormore ET is used as cut-off for endometrial
abnormalities, the similarities in test characteristics betweenE2/NGMandPEPI trials
are striking (numbers in parentheses are from the PEPI trial): sensitivity 97% (90%);
specificity 45% (48%); positive predictive value 14% (9%); negative predictive value
99% (99%).

In conclusion, the validation steps described confirm ET at end of treatment as
a predictor of hyperplasia risk with sensitivity and specificity numbers consistent
with published literature. The dose of (unopposed) estrogen remains as the only
independent determinant of hyperplasia incidence. As always, the choice of a cut-off
value for ET reflects the compromise between sensitivity and specificity.

For the purpose of this exercise, it is felt that ET characteristics are satisfactory
as a second line assessment to help estimate hyperplasia risk in cases of insufficient
tissue. ET, corrected for misclassification by means of the likelihood function allows
for imputation, because:

• the proportion of subjects with insufficient tissue is relatively small
• the ET in subjects with insufficient tissue is skewed to lower values, consistent
with the expectation that atrophy rather than biopsy error is the cause

• the actual risk of hyperplasia is overestimated.
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4.4 Analysis of Incidence of Endometrial Hyperplasia

To determine the incidence of hyperplasia in the Phase 3 study, each subject’s on-
treatment biopsy results are classified either as “no hyperplasia” or “hyperplasia.”
Any endometrial cancers have been included in the hyperplasia category. For each
subject with insufficient tissue obtained (“no tissue obtained” or “no endometrial
tissue obtained”), an imputed hyperplasia status is assigned based on the subject’s
endometrial thickness if obtained on the same day as the biopsy. A threshold value of
5 mm for ET is adopted based on its clinical appeal as presented above. Subjects with
insufficient tissue from an on-treatment biopsy and an endometrial thickness greater
or equal to the threshold (5 mm) are classified as having hyperplasia; those with
endometrial thickness below the cut point are classified as having no hyperplasia.

A likelihood-based test is used to compare treatment groups. The log-likelihood
function is the sum of the log-likelihood for all subjects with definitive biopsy data
and the log-likelihood for subjects with insufficient tissue obtained. For subjects with
definitive biopsy data, the likelihood is based on a logistic regression model where
the probability of hyperplasia is determined by a single explanatory variable which
takes on values 1, 2, 3, and 4, respectively, for treatments E2/NGM 1/0, 1/30, 1/90,
and 1/180. See Tukey et al. (1985). For subjects with insufficient tissue, the likelihood
function further incorporates sensitivity and specificity to account for uncertainty in
ultrasound measurement and other sources of error. A closed test procedure (Rom
et al. 1994) for dose response was applied to maintain the overall significance level
of 5%. Using this procedure, sequential testing was performed as follows: the homo-
geneity hypothesis of four successive proportions (Ho: p1/0 �p1/30 �p1/90 �p1/180),
the two homogeneity hypotheses of three successive proportions (Ho: p1/0 �p1/30
�p1/90; Ho: p1/30 �p1/90 �p1/180), and the three homogeneity hypotheses of two
successive proportions (Ho: p1/0 �p1/30; Ho: p1/30 �p1/90; Ho: p1/90 �p1/180 in this
order). The reader is referred to the paper for the details of the procedure.

The primary analysis for endometrial histology included all subjects who had on
treatment biopsies performed, whether or not the subjects completed 12 months of
treatment. A secondary analysis included those subjects who had endometrial biop-
sies performed at month 12 of treatment or had endometrial hyperplasia diagnosed
prior to month 12. Biopsies taken within one month after the completion of treat-
ment were included in the analyses provided subjects have not received any other
progestational or estrogenic treatment prior to the biopsy.

Two-sided 95% confidence intervals for the incidence of hyperplasia were pro-
vided for each treatment group using the likelihood ratio test.

See derivation of log likelihood ratio test at end of paper.
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4.5 Results for the Phase 3 Study

Results of statistical analysis for the occurrence of endometrial hyperplasia are pre-
sented in Table 4.1 for all subjects with end-of-treatment biopsies. Subjects with
insufficient tissue were not assumed to have inactive/atrophic tissue for the purpose
of analysis; rather, an imputation was made of each subject’s endometrial status
(hyperplasia or no hyperplasia) based on the coincident ET measurement. If the ET
was ≥5 mm, the subject was assigned to the category of hyperplasia, and if <5 mm,
the subject was assigned to the category of no hyperplasia. In deriving the estimate
and 95% confidence intervals in each group, the likelihood of hyperplasia for the
imputed assignments was adjusted based on the sensitivity and specificity derived
from definitive biopsy data.

In the population of subjects with end-of-treatment biopsies, the incidence of
hyperplasia calculated for both the 1 mg E2/90 μg NGM and 1 mg E2/180 μg
NGM groups was extremely low (5×10−4% in each group), and the upper limit of
the 95% confidence interval was less than 1%. In comparisons between treatment
groups, highly significant differences (p<0.001) were found for all comparisons
shown in Table 4.1. It is noteworthy that the confidence intervals for the continu-
ous 1 mg E2 group, the 1 mg E2/30 μg NGM and 1 mg E2/90 μg NGM groups
do not overlap, confirming the dose-related efficacy of norgestimate in preventing
endometrial hyperplasia. The results clearly indicate that 90 μg is an adequate dose
of norgestimate for administration with 1 mg E2 to protect the endometrium from
the development of hyperplasia.

Acknowledgements The authors would like to acknowledge the contribution of Rosanne Lane
(JanssenResearch&Development),QingLiu (USA), andAllanSampson (University of Pittsburgh).

Derivation

Define {Y} to be the set of observations with definitive biopsy readings. The variable
y is defined as 1, if the subject had hyperplasia; 0, otherwise. Hence, we can define
pi as follows:

pi � P
(
yi � 1

) � eα+βti/(1 + eα+βti).

1 − pi � 1/(1 + eα+βti).

This implies that logit (pi)�α + βti, where

ti � {1, if treatment is E2/NGM1/0

� {2, if treatment is E2/NGM1/30
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Table 4.1 Results of statistical analysis for the incidence of endometrial hyperplasia at the end of
treatment (all subjects with biopsies performed after the start of treatment in the Phase 3 study)

Treatment
group

Number of subjects in each biopsy category at the end of treatment

Hyperplasia No
hyperplasia

Insufficient tissue

Imputed
hyperplasia

Imputed no
hyperplasia

Not
evaluablea

Continuous
1 mg E2

63 176 4 4 1

Cyclophasic
1 mg E2/30
μg NGM

13 222 8 7 1

Cyclophasic
1 mg E2/90
μg NGM

0 219 2 9 4

Cyclophasic
1 mg E2/180
μg NGM

0 220 5 8 2

Estimate of the incidence of hyperplasia (95% C.I.)

Continuous
1 mg E2

26.114% (20.848, 31.883%)

Cyclophasic
1 mg E2/30
μg NGM

5.467% (3.046, 8.837%)

Cyclophasic
1 mg E2/90
μg NGM

0.0005% (0, 0.848%)

Cyclophasic
1 mg E2/180
μg NGM

0.0005% (0, 0.866%)

Results of closed testing procedure using score test

p-value

Four regimens: 1/0, 1/30,
1/90, 1/180

<0.001

Three regimens: 1/0, 1/30,
1/90

<0.001

Three regimens: 1/30, 1/90,
1/180

<0.001

Two regimens: 1/0, 1/30 <0.001

Two regimens: 1/30, 1/90 <0.001

Two regimens: 1/90, 1/180 NSb

aEndometrial thickness measurement was not obtained on the same day as the biopsy
bNot significant
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� {3, if treatment is E2/NGM1/90

� {4}, if treatment is E2/NGM1/180.

Next, define {Z} to be the set of observations with insufficient tissue readings.
The variable z is defined as 1, if hyperplasia was imputed (i.e., endometrial thickness
≥5 mm); 0, otherwise. Hence,

qi � Pr(zi � 1)

� (ci − di) [e
α+βti/(1 + eα+βti)] + di

Note in the above formulation that ci �P(zi �1|yi �1) is sensitivity and
(1 − di)�P(zi �0|yi �0) is specificity.

The likelihood function is the product of the likelihood across all observations
{y} (definitive biopsy readings) and {z} (insufficient tissue readings), as follows:

L(α, β; Y,Z) �
∏

pyii
(
1 − pi

)1−yi ∏
qzii

(
1 − qi

)1−zi

The log-likelihood is given as:

L �
∑

yi log pi/
(
1 − pi

)
+

∑
log

(
1 − pi

)
+

∑
zi log qi +

∑
(1 − zi) log

(
1 − qi

)

�
∑

yi(α + βti) +
∑

log
(
1 − pi

)
+

∑
zi log qi +

∑
(1 − zi) log

(
1 − qi

)

The first derivatives of L with respect to α and β are:

∂L/(∂α) �
∑

yi −
∑

pi +
∑[(

zi − qi
)
/(qi(1 − qi)

]
(ci − di)

[
+eα+βti/(1 + eα+βti)2

]

∂L/(∂β) �
∑

yiti −
∑

tipi +
∑[(

zi − qi
)

(ci − di)/(qi(1 − qi)
][
tie

α+βti/((1 + eα+βti)2
]

The second derivatives of L with respect to α and β are:

∂2L/∂α2 � −
∑

∂pi/∂α +
∑

(ci − di)2
[(

2Zcqi − Zi − q2i
)
/
(
q2i

(
1 − qi

)2][
∂pi/(∂α)]2

+
∑

(ci − di)[
(
zi − qi

)
/
(
qi

(
1 − qi

)]
(∂2pi/∂α2)

∂2L/∂β2 � −
∑

ti (∂pi/∂β) +
∑

(ci − di)
2(∂Si/∂qi) (∂pi/∂β)2

+
∑

(ci − di)Si (∂
2pi/∂β2)

∂2L/∂α2∂β � −
∑

∂Pi/∂β +
∑

(∂Si/∂qi) (ci − di)
2(∂pi/∂β)(∂pi/∂α)

+
∑

(ci − di) Si (∂
2pi/∂α∂β)

The terms comprising the above derivatives are defined below:

∂pi/∂α � ∂(1 − 1/1 + eα+βti)/∂α � eα+βti/(1 + eα+βti)2
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∂pi/∂β � tie
α+βti/(1 + eα+βti)2

∂2pi/∂α2 � [eα+βti − e2(α+βti)]/(1 + eα+βti)3

∂2pi/∂α∂β � [tie
(α+βti) − tie

2(α+β ti)]/(1 + eα+βti)3

∂2pi/∂β2 � [t2i e
α+upbetati − t2i e

2(α+βti)]/(1 + eα+βti)3

∂log qi/∂α � (ci − di) (−eα+βti/(1 + eα+βti)2)/
[
(ci − di)pi + di

]

∂log qi/∂β � 1/
(
qi

)
(ci − di)∂pi/∂β

∂log
(
1 − qi

)
/∂α � [

1/
(
1 − qi

)]
(−∂qi/∂α) � −[

(ci − di)/
(
1 − qi

)]
∂pi/∂α

∂log
(
1 − qi

)
/∂β � [

1/
(
1 − qi

)]
(−∂qi/∂β) � −[

(ci − di)/
(
1 − qi

)]
∂pi/∂β

Si � (
zi − qi

)
/
(
qi

(
1 − qi

))

qi � (ci − di)pi + di

∂Si/∂qi � [
2ziqi − zi − q2i

]
/
(
q2i

(
1 − qi

)2)

∂qi/∂α � (ci − di)∂pi/∂α

∂qi/∂β � (ci − di)∂pi/∂β

∂log
(
1 − pi

)
/∂α � −eα+βti/(1 + eα+βti) � −pi

∂log
(
1 − pi

)
/∂β � −tie

α+βti/(1 + eα+βti) � −tipi
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∂log
(
1 − pi

)
/∂α2 � −eα+βti/(1 + eα+βti)2

∂log
(
1 − pi

)
/∂α∂β � −tie

α+βti/(1 + eα+βti)2

∂log
(
1 − pi

)
/∂β2 � −t2i e

α+βti/(1 + eα+βti)2

No closed form expressionswere obtainedwhen the first derivativeswere set equal
to 0. Hence, the Newton-Raphson algorithm was used to compute the maximum
likelihood estimates (MLEs) for α and β.

The score test was used for hypothesis testing as indicated in the closed testing
procedure defined above. This is obtained by substituting β�0 and forming the
quantity

V′
0I

−1
0 V0

where V0 is the vector of first derivatives and I0 is the matrix of second derivatives.
To estimate the incidence for each treatment separately, the logistic model takes

on a simple form and hence, it suffices to maximize the likelihood function with
respect to α.

To construct the 95%confidence intervals, the following procedurewas employed.
Let L0 denote the value of the log likelihood substituting the MLE for P and L1

for the log likelihood of any hypothesized P. Then T�2(L0 − L1) asymptotically
follows the chi-square distribution χ2

1 with one degree of freedom. The confidence
interval is defined by the set of null hypotheses values for which we would not reject
the hypothesis, that is, the set of values for which 1 − P(χ2

1 ≤ T ) −0.05 (or P
(χ2

1 > T ) −0.05) becomes greater than 0.
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Chapter 5
Advancing Interpretation
of Patient-Reported Outcomes

Joseph C. Cappelleri and Andrew G. Bushmakin

5.1 Introduction

A patient-reported outcome (PRO) is any report on the status of a patient’s health
condition that comes directly from the patient, without interpretation of the patient’s
response by a clinician or anyone else (Food and Drug Administration 2009). As
an umbrella term, PROs include a whole host of subjective concepts such as pain,
fatigue, depression, aspects of well-being (e.g., physical, functional, psychologi-
cal), treatment satisfaction, health-related quality of life, and physical symptoms
such as nausea and vomiting. Patient-reported outcomes are often relevant in study-
ing a variety of conditions—including pain, erectile dysfunction, fatigue, migraine,
mental functioning, physical functioning, and depression—that cannot be assessed
adequately without a patient’s evaluation and whose key questions require patient’s
input on the impact of a disease or its treatment (McLeod et al. 2018).

To be useful to patients and other decision makers (e.g., physicians, regulatory
agencies, reimbursement authorities), who are stakeholders in medical care, a PRO
measure must undergo a validation process to confirm that it is reliably measuring
what it is intended to measure. As assessments of subjective concepts, therefore,
PRO measures require evidence of their validity (the instrument measures what it is
intended to measure) and reliability (scores are stable and reproducible when they
should be) before they can be used with confidence (Cappelleri et al. 2013; de Vet
et al. 2011; Fayers and Machin 2016; McLeod et al. 2018; Streiner et al. 2015).

Given that a PRO measure has evidenced validity and reliability, this chapter
addresses interpretation of PRO measures by advancing and enriching what their
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scores mean for better understanding by stakeholders such as patients and their fam-
ilies, clinicians, researchers, payers, and regulators. Section 5.2 covers anchor-based
approaches, Sect. 5.3 targets distribution-based approaches, and Sect. 5.4 highlights
mediationmodels. Section 5.5 provides a summary. Throughout the chapter, concepts
are illuminated with illustrative and real-life examples.

5.2 Anchor-Based Approaches

An anchor is a measure or criterion related to the targeted PRO under examination
(Guyatt et al. 2003). As defined in this chapter, an anchor can be a measure different
from or part of the PRO measure under consideration. The chosen anchor should
be clearly understood in context and be easier to interpret than the PRO measure
of interest, and the anchor should be appreciably or moderately correlated with the
targeted PRO. An anchor-based approach links the targeted concept of the PRO
measure to the meaningful concept or criterion emanating from the anchor.

Anchor-based approaches are the preferred way to enhance the clinical interpre-
tation to the targeted PRO measure. They link the targeted PRO instrument under
consideration with an anchor measure or indicator that is interpretable itself or lends
itself to interpretation. Considerations for anchor-based methods include the nature
of the relationship (e.g., linear) between the anchor and targeted PRO measures, the
type of anchor, and the study population of interest. Several variants of anchor-based
approaches are available (Crosby et al. 2003; Revicki et al. 2007; Fayers andMachin
2016). What follows are five types of anchor-based methods (Cappelleri et al. 2013).

5.2.1 Percentages Based on Thresholds

One of the simplest forms of presentation and interpretation is to show the percentage
of patients above and below some specified value, which is an anchored value with
a meaningful criterion (Fayers and Machin 2016). The method of percentages based
on thresholds can be useful when the thresholds on a PRO measure are chosen
judiciously so that their values have relevance, rather than being some arbitrary
cut point. For example, a score above 25 on the erectile function domain of the
International Index ofErectile Function is regarded as having normal erectile function
(Cappelleri et al. 1999). In comparative studies, the proportion of patients in each
treatment group who fall into this normal category can be noted and compared.

Establishing thresholds of a PRO on disease severity levels is another example of
the use of an anchor-based approach. Such was the case when disease severity levels
were obtained on the Fibromyalgia Impact Questionnaire (FIQ), a disease-specific
composite developed to capture the spectrum of problems related to fibromyalgia
and responses to therapeutic intervention (Bennett et al. 2009).
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Fig. 5.1 Severity categorization of FIQ total score using pain severity as an anchor. Source: Cap-
pelleri et al. (2013)

As strong Pearson correlations (i.e., an average of 0.67) were found between
the FIQ total score and the average pain scores, it was reasonable to determine
FIQ severity categories scores using pain severity as an anchor. A FIQ severity
categorization was created corresponding to values of 3.5 and 6.5 on the pain scale
taken as prespecified boundaries between pain severity categories (averaging pain
over time transforms the original integer values from 0 to 10 to a continuous variable
from 0 to 10). A repeated-measures model was used to estimate the relationship
between the FIQ total score (outcome) and average pain scores (predictor) assessed
at pre-treatment and post-treatment. A FIQ total score from 0 to<39 was found to
represent a mild impact, ≥39 to <59 a moderate impact, and ≥59 to 100 a severe
impact (Fig. 5.1). The severity bands can be useful in assessing treatment differences,
as a criterion for study inclusion, and even to serve as an anchor to define clinically
important differences for other patient-reported outcomes.
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5.2.2 Criterion-Group Interpretation

A criterion-group interpretation, which is related to interpretation based on threshold
percentages, involves the comparison of scores from the particular group of interest
to a criterion group, a known group worthy of comparison which can serve as a
yardstick for interpretation. This method of interpretation requires that meaningfully
different groups be defined in the setting of interest.As a result, practitioners andother
informed observers will readily comprehend the practical or clinical significance of
the burden of illness or the treatment effect generated from contrasting the well-
defined and distinct groups. Thus, the method requires in part a consensus of how
meaningfully different groups are defined and who they are.

In a variation of criterion-group interpretation, PROs may use population-based
reference values, which provide expected or typical scores that are called norms, to
benchmark or anchor interpretation on PROs in the disease population of interest
(Marquis et al. 2004; Fayers andMachin 2016). Baseline scores on the Medical Out-
comes Study (MOS) Sleep Scale from two trials for the treatment of fibromyalgia
were compared with scores obtained from a nationally representative sample in the
United States (Cappelleri et al. 2009). Higher scores on the MOS Sleep Scale indi-
cate more of the attribute being assessed (e.g., more sleep disturbance, more sleep
adequacy). A one-sample z-test for the mean was also conducted to test whether
the mean of each subscale from each of the two trials differed statistically from the
corresponding normative mean, taken as a fixed targeted value.

Scores for each subscale of the MOS Sleep Scale were statistically (P<0.001)
and substantially poorer than the general population normative values in the U.S.,
suggesting that patients with fibromyalgia have greater sleep problems relative to
the general population (Fig. 5.2). For instance, patients with fibromyalgia reported
sleeping an average of 5.4 and 5.6 h per night in the two studies, while the general
population reported an average of 6.8 h of sleep per night.

5.2.3 Content-Based Interpretation

A content-based interpretation of a multi-item PRO scale uses a representative item,
along with its response categories, internal to the measure itself to understand the
meaning of different scores on that measure (Ware et al. 2007). In addition to descrip-
tive statistics, item response theory (Chang and Reeve 2005), ordinal logistic regres-
sion (O’Connell 2005) and binary logistic regression (Kleinbaum and Klein 2010)
can be used for content-based interpretation.

For example, a content-based interpretation was applied using the Rasch model,
a type of item response theory model, on the six-item near-vision subscale of the
German version of the 39-item National Eye Institute Visual Function Question-
naire in 200 patients with age-related macular degeneration (Thompson et al. 2007).
Scores ranged from 0 (worst) to 100 (best). For a given subscale score, an estimated
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Fig. 5.2 Baseline mean scores (95% confidence intervals) on the medical outcomes study sleep
scale for patientswith fibromyalgia versus values from theUnited States general population. Source:
Cappelleri et al. (2013)

probability of responding to each category of an ordinal item was obtained and the
probabilities of responding to the twomost favorable categories (no difficulty or little
difficulty) were combined.

An individual, for instance, with an estimated true score of 75 on the near-vision
subscale was expected to have approximately a 27% chance of little or no difficulty
with reading small print, a 94% chance of little or no difficulty with finding an
object on a crowded shelf, and nearly full certainty of little or no difficulty with
shaving/styling hair/applying makeup (Fig. 5.3).

5.2.4 Clinically Important Difference

Highly significant p-values indicate little about the magnitude of a difference; statis-
tical significance does not imply clinical significance. While a small p-value makes
it likely that a real difference exists, which may be driven solely by an adequate or
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Fig. 5.3 Probability of little or no difficulty on three illustrative items from near-vision subscale
of the National Eye Institute Visual Function Questionnaire Source: Cappelleri et al. (2013)

a large sample size, the observed or real difference might in fact not be clinically
relevant.

A clinically important difference is the difference in scores between two treat-
ment groups that can be considered clinically relevant (Coon and Cappelleri 2016).
An anchor-based approach to quantify a clinically important difference (CID) on a
PRO scale involves the use of an external measure—the anchor—that is clearly inter-
pretable and is appreciably correlated with the targeted PRO measure (Guyatt et al.
2003). Responses on such an anchor can come from clinical measurements, clinician
report, observer report, or, preferably, patient report. For example, patients can be
asked to rate the extent of their change in their overall health status retrospectively
since the beginning of the study on a 7-point scale [Patient Global Impression of
Change (PGIC)]: 1�“very much improved,” 2�“much improved,” 3�“minimally
improved,” 4�“no change,” 5�“minimally worse,” 6�“much worse,” 7�“very
much worse.” Then the mean changes from baseline on the PRO scale of interest
can be obtained for each of the categories on the anchor, and the differences in mean
changes on the PRO scale between adjacent categories on the anchor can be exam-
ined for a clinically important difference. Data used in the analysis would be pooled
across all treatments.
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Fig. 5.4 Estimate of clinically important difference on the FIQ total score using PGIC as an anchor.
FIQ Fibromyalgia Impact Questionnaire;CID clinically important difference; PGIC Patient Global
Impression of Change. Source: Cappelleri et al. (2013)

As an example, reconsider the FIQ for patients with fibromyalgia (Bennett et al.
2009). A repeated measures model was used to estimate the mean change from
baseline in FIQ total scores (range: 0–100 points) corresponding to each category on
the PGIC, the anchor taken as a continuous predictor (Fig. 5.4). Differences in these
mean changes between adjacent categories of PGIC corresponded to a clinically
important difference of 8.1 [95% confidence interval (CI): 7.6–8.5].

An alternative or addition to PGIC, which is asked only at follow-up, a question
can be asked serially—for example, one at baseline and one at follow-up—about the
severity of a patient’s overall current condition (e.g., none, mild, moderate, severe),
and the difference in the mean PRO scores between adjacent categories on the anchor
can be examined for a clinically important difference on the PRO scale (data should
also be pooled across treatments). Using such a serial anchor, which focuses on the
current state (either at the time when asked or over a relatively short time frame until
the present), may address potential recall issues that may arise from a retrospective
assessment, which require patients to compare their current state retrospectively
relative to the start of the study.

As an example, a repeated-measures longitudinal model using all available data
was used to estimate the relationship between Itch Severity Score (ISS), scored from0
(“no itching”) to 10 (“worst possible itching”) on a 11-point numeric rating scale, and
patient global assessment (PtGA) that was used as a continuous anchor predictor in a
study on patients with psoriasis (Mamolo et al. 2015). The PtGA, which evaluates the
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overall extent of cutaneous disease at a given time, had categories of “clear,” “almost
clear,” “mild,” “moderate,” and “severe.” It was assessed at baseline and weeks 4,
8, 12, and 16. A CID on the ISS was defined as the difference corresponding to a
one-category change on the PtGA. The CID on ISS (95% CI) was estimated to be
1.64 (1.50–1.78). By Day 10, the mean change from baseline in ISS values for doses
of the active treatment (placebo-adjusted) exceeded 1.64. A sensitivity analysis with
PtGA as a categorical anchor predictor (instead of a continuous one) gave a similar
estimate on CID and therefore supported the linearity assumption imposed by the
model when PtGA was taken as a continuous anchor.

An estimated CID may vary in different situations because of natural sampling
variation, different study populations, type of anchor or external criterion, time of
assessment, and other considerations. For the same reasons, a CID is not necessarily
a minimally clinically important difference, which is a more challenging avenue to
pursue (Copay et al. 2007; King 2011; McLeod et al. 2016).

5.2.5 Clinically Important Responder

According to the FDAfinal guidance on PROs for a label claim, it is recommended to
display individual responses using a priori responder definition: the threshold value
on an individual observed PRO change score (be it the absolute or percent) that is to
be interpreted as a treatment benefit (Food and Drug Administration 2009; McLeod
et al. 2011). The proportion of subjects meeting the responder definition can then
be reported for each treatment group and compared between groups. The responder
definition can be determined empirically using an anchor-based approach.

While the CID refers to the difference in scores between two treatment groups that
are considered clinically relevant, the clinically important responder (CIR) refers to
the amount of change an individual patient would have to report to indicate that a
relevant treatment benefit has been experienced (Coon and Cappelleri 2016). Hence
the CID is considered a group-level interpretation, whereas CIR is considered an
individual-level interpretation.

As an example, reconsider the ISS, this time in terms of its CIR threshold. In
the same study reported previously on patients with psoriasis in Sect. 2.4 (Mamolo
et al. 2015), the anchor Subject Global Impression of Change (SGIC) was created
with three categories, consistent with FDA guidance on PRO measures (Food and
Drug Administration 2009). Change from baseline on PtGAwas used to generate the
SGIC. If post-baseline PtGA improved relative to baseline PtGA, SGIC was defined
as “better” (with a value of −1); if PtGA worsened relative to baseline PtGA, SGIC
was defined as “worse” (1); and if PtGA was unchanged relative to baseline, SGIC
was defined as “same” (0). A repeated-measures model was used to estimate the
relationship between percent change from baseline ISS and the SGIC as an anchor.
The difference in percent changes on the ISS corresponding to a one-category change
on the SGIC was used to define the CIR threshold.
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The ISS CIR (95% CI) was estimated to be 29.85% (23.30–36.40). A 30%
improvement on the ISS was therefore used to define a responder. At Week 2, the
proportion of responders was 77.8, 68.8, and 76.6% for the three doses of the active
intervention versus 34.0% for placebo. This improvement was sustained through
Week 12, when the percentage of responders increased to 91.9, 87.2, and 100.0%
for three doses of the active intervention versus 29.4% for placebo; therefore, rela-
tive to placebo, the active intervention gave correspondingly an excess percentage
of responders of 62.5, 57.8 and 70.6%.

A sensitivity analysis, with SGIC taken as the categorical predictor (instead of
a continuous predictor), confirmed that the distance of “better” and “worse” was
approximately symmetric around “same,” thereby supporting SGIS as a continuous
predictor. If such a sensitivity analysis instead showed asymmetry with “better”
versus “same” not being equidistant with “same” versus “worse,” the larger of the
two differences could be used instead (to be conservative).

Responder analysis is a determined attempt to understand whether the effect of
an intervention, shown to be statistically significant on a PRO measurement scale,
has clinical significance. While it has defenders (Lewis 2004), its limitations have
been reported (Snapinn and Jiang 2007). Limitations include the expected reduc-
tion in statistical power when moving from a continuous to binary outcome and,
when not assessed empirically and justifiably, the potential for an arbitrary cutoff
score to bifurcate or separate responders from non-responders. Responder analysis
is best positioned as a descriptive display and as an adjunct to—as a complement and
supplement to—the main analysis based on the full original scale of measurement
using established statistical methods (e.g., repeated measures or random coefficient
models when the data are longitudinal). As is the case for CID, a value for CIR is
not necessarily a minimum threshold.

5.3 Distribution-Based Approaches

Themethods highlighted thus far to estimate themagnitude andmeaning of important
changes or difference make use of clinically-based, patient-centered information
on an anchor measure related to the PRO scale of interest. To complement such
information, approaches based strictly on the distribution of the data may prove
insightful. Such distribution-based methods can offer valuable insights about the
magnitude of an effect. These methods also allow for a standardization of different
scales with different ranges and ways of scoring. On the other hand, a limitation
of distribution-based methods should be noted: although their interpretation can be
meaningful, they do not provide information about clinical meaningfulness (Hays
et al. 2005). Several types of distribution-based metrics are available (Crosby et al.
2003; Revicki et al. 2007; Fayers and Machin 2016). In this section a few of them
are highlighted (Cappelleri et al. 2013).
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5.3.1 Effect Size

The effect size (ES) can be an informative metric to gauge the magnitude of dif-
ferences in a PRO scale within a group or between two groups. As presented here,
we define the ES represents any standardized metric with difference in means in its
numerator and a measure of variability in its denominator. The (standardized) effect
size is a kind of signal-to-noise ratio that quantifies the heft or amount of effect
relative to variability. Variations on this type of ES exist based on what is taken as a
measure of variability in the denominator (Fayers and Machin 2016).

When standard deviations differ in the denominator of the ES, results from dif-
ferent studies for the same PRO metric can give different ES values even though
their differences in means (numerators) may be the same. The ES should therefore
be accompanied by its constituent elements, namely, its means, standard deviations
and sample sizes.

Values of ES from different scales on the same intervention render standardized
changes whose magnitudes can be fairly compared on the same dimensionless scale,
despite the scales having different ranges of values. In addition, ES provides a general
set of thresholds or benchmarks on the impact of an intervention, with values of 0.2
standard deviation units generally regarded as “small,” 0.5 as “medium,” and 0.8 as
“large” (Cohen 1988).

For the impact of an intervention within a single group, ES values have commonly
appeared in at least two ways. One way is the mean of changes in the scores recorded
by the same subjects at two different times, divided by the standard deviation of these
changes in scores. Note that the standard deviation in this case will be affected by
the effects of the intervention over time, which some researchers argue may cloud
the interpretation of results. This way, referred as the standardized response mean,
corresponds closely to the method of calculating a paired t-test.

The second way is the same mean changes in scores but divided by the standard
deviation of the scores recorded at the first occasion. This secondway centers onmean
change in scores relative to background or natural variability of scores inherent to the
PROmeasure in the population sampled, variability that is free from an intervention’s
effect and extraneous events.

As an example for a single-group trial, the responsiveness of the SEAR question-
naire for erectile dysfunction in a single intervention study with sildenafil, with 93
subjects, was based on an ES defined as the mean change in scores from baseline
divided by the standard deviation score at baseline (Althof et al. 2003). Themagnitude
of the change was quite high for most aspects of the SEAR questionnaire [Sexual
Relationship Satisfaction, ES�1.6; Confidence, ES�1.0; Self-Esteem, ES�1.1]
and moderate for one (Overall Relationship Satisfaction, ES�0.6), suggesting that
the SEAR questionnaire is responsive for detecting psychosocial gains from a known
beneficial intervention.

These two ways of computing an ES for a single group can be modified when
comparing two interventions from two independent groups of participants. For two
independent groups, the numerator can be the difference in means between two
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independent groups, and the denominator can be the corresponding pooled stan-
dard deviations of scores from the two groups [which is how Cohen (1988) defined
effect size and its magnitude of 0.2 as “small,” 0.5 as “medium,” and 0.8 as “large”
effects]. Alternatively, the denominator can be the baseline standard deviation of
scores pooled from the two groups, which some researchers may found preferable,
where the magnitude of the mean difference between interventions is relative to the
normal variability of measurement (before intervention).

As an example from a two-group trial, in double-blind placebo-controlled study of
sildenafil, which enrolled 256 subjects, sizable treatment differences were observed
and effect sizes on the SEAR questionnaire were calculated as the difference in the
mean change scores between treatment groups divided by the pool standard deviation
of scores at baseline (O’Leary et al. 2006). Large effect sizes of the differences in
mean changes were obtained between active treatment and placebo treatment for the
Self-Esteem subscale (ES�0.84), for the Sexual Relationship Satisfaction domain
(ES�1.02), for the Confidence subscale (ES�0.86); a moderate-to-large effect size
was found for the Overall Relationship Satisfaction domain (ES�0.63).

5.3.2 Probability of Relative Benefit

Differences between treatment groups at a specific follow-up time or change from
baseline can be evaluated nonparametrically with the Wilcoxon rank-sum test using
ridit analysis (Acion et al. 2006). This type of analysis is well-suited for ordinal
responses at the item level or subscale or total scale levels. The Mann-Whitney rank-
sumU statistic from theWilcoxon rank-sum test gets converted, using ridit analysis,
to a probability that represents the chance that a randomly selected patient from
the treatment group has a more favorable response than a randomly selected patient
from the control group. For instance, the method addresses the question, what is the
likelihood that a randomly selected patient in the treatment group would have greater
reduction in pain relative to a randomly selected patient in the control group?

As an illustration based on the literature, consider again the Self-Esteem And
Relationshp (SEAR) questionnaire for menwith erectile dysfunction. Here data were
combined from two 12-week, double-blind, placebo-controlled, flexible-dose silde-
nafil trials having identical protocols: one conducted in the United States and the
other in Mexico, Brazil, Australia, and Japan (Cappelleri et al. 2008). Response cat-
egories of each SEAR item used a 4-week reference period and were based on a
five-point scale (1�almost never/never, 2�a few times, 3� sometimes, 4�most
times, 5�almost always/always). The difference (sildenafil versus placebo) in the
change from baseline to week 12 was evaluated with the Wilcoxon rank-sum test
using ridit analysis.

The probability of increased psychosocial benefit from baseline to week 12 was
higherwith sildenafil for each SEAR item (two-sided P<0.001) and ranged from0.60
(“My partner was unhappy with the quality of our sexual relations” [item reverse-
scored]) to 0.72 (“I was satisfied with my sexual performance”). Across all items, the



80 J. C. Cappelleri and A. G. Bushmakin

average probability was 0.67 (standard deviation of 0.04) that a randomly selected
patient in the sildenafil group would have a more favorable psychosocial change
relative to a randomly selected patient in the placebo group.

5.3.3 Cumulative Distribution Functions

As a graphical representation to array all possible responder cutoffs, cumulative
distribution function can display a continuous plot of the observed change (or percent
change) from baseline on the horizontal axis and the cumulative percent of patients
experiencing up to that change on the vertical axis, which negates the need for a
specific or single responder definition. In essence each of the possible change score
has a turn as a responder cutoff. Consider a situation where lower change or more
negative scores are better ormore favorable (Fig. 5.5). In Fig. 5.5, 70% of the subjects
in the experimental group had scores of 10 or less (that is, 10 or better) compared
with 55% of the subjects in the control group. The consistent horizontal separation
between the distribution functions suggests that the treatment was beneficial relative
to control over the entire range of changes.

Fig. 5.5 Illustrative cumulative distribution functions of two treatments groups where more nega-
tive change scores are better (solid line, experimental group; dashed line, control group). Source:
Cappelleri et al. (2013)
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There are multiple ways to portray cumulative distribution plots. A key point
here is that cumulative distribution plots be labeled and specified clearly to allow for
easy and clear interpretation with respect to the directionality of score changes (e.g.,
whether positive changes indicate improvement or deterioration) and their associated
cumulative percentages of patients. Such cumulative distribution response curves,
one for each treatment group, would allow for a variety of response thresholds to be
examined simultaneously and would encompass all available observed data.

Cumulative distribution plots are most compelling and best suited for interpreta-
tion when there is no or minimal overlap in the curves between treatments. When
there is some or considerable overlap, the cumulative treatment curves interact and
interpretation gets clouded. In such a case judgment is needed on what cutoff scores
are considered clinically most plausible.

5.4 Mediation Models

A mediation model is one that seeks to identify and explain the mechanism that
underlies an observed relationship between a predictor or independent variable (e.g.,
treatment group) and an outcome or dependent variable (e.g., sleep disturbance) via
the inclusion of a third explanatory variable (e.g., pain), known as amediator variable.
Any of these three variables may be a PROmeasure (e.g., sleep quality and pain may
be PRO measures; an independent variable may also be a PRO measure). Mediation
model is gaining currency in the application of PRO measures (Fairclough 2010;
Cappelleri et al. 2013) and full-length monographs have been devoted to mediation
analysis (e.g., Iacobucci 2008;MacKinnon 2008;VanderWeele 2015). In pharmaceu-
tical studies, for example, mediation models can help to elucidate the mechanism of
action of a drug or provide an understanding on the interrelationship of PROmeasures
to other variables, thereby advancing interpretation of PRO measures themselves.

Rather than hypothesizing a direct causal relationship between the predictor and
the outcome, a mediation model postulates that the predictor variable not only affects
the outcome variable directly, but also affects the mediator variable, which in turn
also affects the outcome variable. The mediator variable, therefore, serves to clarify
the nature of the relationship between predictor and outcome variables. The postu-
lated underpinning for a mediation model is driven by the theoretical or conceptual
framework and the research objective.

It should be emphasized that no technique, including mediation analysis and
other forms of structural equation models, can definitely prove causation. Rather, the
purpose of mediation analysis (and such path analyses in general) is to determine
whether the hypothesized causal inferences by a researcher are harmonious with the
data. If the mediation model does not fit the data, then revisions are needed because
then one or more of the model or content-based assumptions are not correct or need
to refined. If the mediation model is consistent with the data, this does not prove
causation. Instead, it shows that the assumptions made are not contradicted and may
be valid. It only may be valid because other models and assumptions may also fit
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the data. Making causal inferences between variables is tricky business and a serious
subject. The extent that one variable may cause another depends on the research
design, including in part the temporal sequence of the variables and the plausibility
of relations as informed by knowledge of the subject matter.

The approaches discussed in this section assume that the mediator and outcome
are continuous variables (or variables taken to be continuous). The predictor or medi-
ator or outcome may be a categorical (e.g., binary) variable, as well as continuous.
Mediation models are given detailed exposition, including for categorical variables,
elsewhere (Iacobucci 2008; MacKinnon 2008; VanderWeele 2015).

In this section, the basic elements of the single mediator model are described, the
basic model is formulated, and then a real-life application using PRO measures is
given.

5.4.1 Basic Elements

Research has often focused on the relation between two variables, say, X and Y .
Such research includes situations where the explanatory (predictor) variable X can
be considered a possible cause of the outcome variable Y , as when, for example,
subjects are randomized to interventions of the treatment group variable X.

A theoretical premise may posit that an intervening (mediator) variable is an
indicative measure of the process through which a predictor is thought to affect an
outcome. The objective is to assess the extent to which the effect of the predictor
variable on the outcome variable is indirect via the mediator or, alternatively, is
otherwise direct, which captures all other effects.

As diagrammed in Fig. 5.6, mediation in its simplest form is represented by a third
variable (M, the mediator), so that the predictor X influences the mediatorM which,
in turn, influences the outcome Y (X affects M and then M affects Y ). Therefore,
a natural question becomes what fraction of the total effect of X on Y is the direct
effect and what fraction of the total effect of X on Y is the indirect effect mediated
through the mediator M. The direct effect represents all other possible effects other
than those attributed to the mediator.

There are essentially four assumptions of mediation models: (1) no unmeasured
confounding of the predictor-outcome relationship, (2) no unmeasured confound-
ing of the predictor-mediator relationship, (3) no unmeasured confounding of the
mediator-outcome relationship, and (4) no mediator-outcome confounder that is
affected by the predictor (no interaction between the predictor and mediator on the
outcome) (VanderWeele 2015). The first 2 of these assumptions are automatically
satisfied if the treatments, as levels of the predictor variable, were randomized. For
more detail about these assumptions, including how to assess them and to use sensi-
tivity analysis to help assess how robust results are to violations in the assumptions,
the reader is referred elsewhere (VanderWeele 2015). If an assumption is not met,
interpretation of results and manifestation of conclusions should be qualified appro-
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priately, such as limiting interpretation and ensuing conclusions tomerely association
rather than causation.

5.4.2 Basic Model

The mediation model portrayed by Fig. 5.6 for the subject j can be denoted by the
following equations

Y j � i1 + b × X j + c × Mj + e1 j (5.1)

Mj � i2 + a × X j + e2 j (5.2)

where

Yj and Mj are the outcomes for subject j;
i1 and i2 are the overall intercepts;
a is the overall slope in Eq. 5.2, representing effect of the independent

variable X on the mediator variable M;
b is the overall slope in Eq. 5.1, representing direct effect of the indepen-

dent variable X on the variable Y;
c is the overall slope in Eq. 5.1, representing effect of themediator variable

M on the variable Y ; and

Fig. 5.6 Basic mediation model: the predictor X influences the outcome variable Y directly and
via the mediator (M). Source: Cappelleri et al. (2013)
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e1j and e2j are the error terms [assumed to be from normal distribution with mean
0 and variance σ 2

1 and σ 2
2 , that is, e1j ~ N(0, σ 2

1 ) and e2j ~ N(0, σ 2
2 )].

It should be emphasized that it is assumed that the mediation model is correctly
specified to answer the research question of interest from awell-defined hypothesis in
order to draw reliable inferences. Under this hypothesis framework, the data provide
empirical evidence regarding the postulated inter-relationship among variables. If the
hypothesis changes to include or exclude certain variables, with possible changes in
the linkages betweenvariables, then themodel formulationwould need to bemodified
accordingly. Hence themodel formulation should be fully aligned to its hypothesized
framework.

Replacing Mj in Eq. 5.1 by Mj from Eq. 5.2 allows Yj to be represented as

Y j � i1 + (b × X j ) + c × [i2 + (a × X j ) + e2 j ] + e1 j
Y j � [i1 + (c × i2)]+{[b + (c × a)] × X j } + [(c × e2 j ) + e1 j ]. (5.3)

Equation 5.3 can be considered as the representation of the total effect of the
variableX on variableY , after accounting for the presence of themediatorM. The first
part [i1 + (c× i2)] is constant and represents the intercept, the second part [b +(c×a)]
represents the slope of this total effect, and the third part [(c×e2j)+e1j] represents the
error term. If variable Xj represents treatment with values of 0 for placebo and value
of 1 for the active treatment, then [b +(c ×a)] represents total effect of the drug on
the outcome Y after accounting for placebo. Coefficient b represents the direct effect
of Xj on variable Yj. It is worthwhile to note that the term “direct effect” is somewhat
misleading—this effect actually represents all other possible paths (excluding path
through the mediator M) from the independent variable X to the outcome Y . And
expression (c ×a) represents the indirect effect of X on Y through the mediator M.
The mediation modeling can be viewed as an attempt to decompose the total effect
of X on Y to better understand mechanism of action of X or its inter-relationship to
M and Y .

Now we are ready to answer the main question: What fraction of the total effect
of X on Y is the direct effect and what fraction of the total effect of X on Y is the
indirect effect mediated through the mediator M? The percentage of the total effect
that is the direct effect (“the direct effect of X on Y”) can be expressed as:

direct e f f ect � 100%

(
b

b + (c × a)

)
. (5.4)

In Eq. 5.4 the fraction was multiplied by 100% to represent the effect as a per-
centage of the total effect of X on Y.

The percentage of the total effect that is an indirect effect of X on Y (“the indirect
effect of X on Y”) via the mediator M can be expressed as:

indirect e f f ect � 100%

(
c × a

b + (c × a)

)
. (5.5)
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Complete (100%) mediation is the case in which the variable X no longer directly
affects Y , so the path coefficient b is zero. On the other hand, no mediation occurs
when the total effect of X on Y exists entirely through the direct effect, so that the
coefficient b is non-zero and (c ×a) is zero. Partial mediation is the case in which
the direct path coefficient b and indirect path coefficient (c ×a) are both non-zero.

5.4.3 Example

Consider one study in which 745 patients were randomized to placebo or three
different doses of study medication over 14 weeks (Russell et al. 2009). Specifically,
we consider the direct and indirect effects of treatment with pregabalin 300, 450, and
600 mg (each versus placebo) on patient-reported sleep disturbance (range: 0–100,
where higher scores reflect more sleep disturbance) from the Medical Outcomes
Study Sleep Scale. This outcome, with a one-week recall period in this study, was
assessed at Week 14, the end of the study.

The mediator was patient-reported daily diary pain score, based on an 11-point
numeric rating scale (0�no pain to 10�worst possible pain) in the past 24 h. Like
sleep disturbance scores, pain scores were assessed and culminated at Week 14; pain
scores were based on the average rating over the last 7 days of the study (Week
14). A set of simultaneous linear multiple regression equations was postulated to
quantify treatment-related improvements in sleep disturbance that appeared to be due
to reductions in pain (indirect treatment effect) and treatment-related improvements
in sleep outcomes that were not explained, or mediated, by reductions in pain (direct
treatment effect).

Figure 5.7 depicts the pathways.
The total effect of pregabalin 300 mg, 450 mg, and 600 mg relative to placebo on

sleep disturbance scores was a mean reduction (improvement) of 9.9, 12.5, and 15.2,
respectively. The mediation model showed that 80, 73, and 75.6% (all significantly
different from zero, two-sided p<0.0001) of the reduction in sleep disturbance were
direct effects of the treatments (respectively, pregabalin 300, 450, and 600 mg; all
p<0.0001) themselves, while the remaining 20% (not significant) for 300 mg, 27%
(p=0.0153) for 450 mg, and 24.4% (p<0.0027) for 600 mg were mediated via pain.
Under the assumption that model and content-based assumptions are met, the direct
effect of study mediation on sleep disturbance reflects the effect of study medication
independent of changes in pain, while the indirect effect of the medicine on sleep
disturbance represents the part mediated via pain (prompted by the analgesic effects
of the medicine).
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Fig. 5.7 Direct and indirect effects of pregabalin on sleep disturbance with pain as the mediator.
Source: Cappelleri et al. (2013)

5.5 Summary

Useful interpretation of score values or score changes on patient-reported outcomes
can be valuable in designing studies, evaluating interventions, educating consumers,
and informing health-policy makers involved with regulatory, reimbursement, and
advisory agencies. Unlike certain objectives outcomes like blood pressure, subjective
outcomes often lack the historical, empirical, and clinical thread to draw from for
meaningful interpretation.

This chapter focuses on enriching or advancing the interpretation of patient-
reported outcomes, a topic central to and commensurate with their impact. The logic
and rationale of two broad methods—anchor-based and distribution-based—are elu-
cidated. Five anchor-based approaches are highlighted: percentages based on thresh-
olds, criterion-group interpretation, content-based interpretation, clinically important
difference, and clinically important responder. Three distributed-based approaches
are described: effect size, probability of relative benefit, and cumulative distribution
functions.

Receiving less attention, a third approach to enhance interpretation of patient-
reported outcomes—mediation models—is also described. In its simplest form,
mediation analysis enables the total effect of a predictor variable on an outcome
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variable to be partitioned into an indirect effect via a mediator variable and a direct
effect attributed to everything else. The formulation of and results from a media-
tion model depend on the assumption made and postulated framework posed by the
research objective. Throughout the chapter, illustrative and real-life applications are
provided to complement and supplement the exposition.

Acknowledgements This chapter draws directly from material in Chaps. 9 and 11 of our mono-
graph, Cappelleri et al. (2013).Patient-reported outcomes:Measurement, implementation and inter-
pretation. Boca Raton, Florida: Chapman & Hall/CRC Press.
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Chapter 6
Network Meta-analysis

Joseph C. Cappelleri and William L. Baker

6.1 Introduction

A systematic literature review encompasses an explicit and detailed description of
how a review on a topic was conducted. Systematic reviews of randomized con-
trolled trials (RCTs) are considered the standard basis for evidence-based health-care
decision-making for clinical treatment guidelines and reimbursement policies. Many
systematic reviews use meta-analysis to combine quantitative results of similar and
comparable studies in summarizing the available evidence. “Meta-analysis” may be
defined as the statistical analysis of data from multiple studies. A meta-analysis typ-
ically identifies data systematically, summarizes results, and evaluates quantitatively
sources of heterogeneity and bias (Borenstein et al. 2009; Cappelleri et al. 2010).

Meta-analysis offers several benefits. It may be used to address uncertainty and
heterogeneity when results of studies disagree, to increase statistical power for pri-
mary outcomes and subgroups, to improve estimates of treatment effect, and to lead to
new knowledge and formulation of new questions. On the other hand, meta-analysis
is based only on what information and studies are available, possible resulting in
publication bias and the “apples and oranges” phenomenon of mixing different stud-
ies that may compromise the quality and generalizability of results. To address such
criticisms, the researcher should prepare a protocol that includes well-defined criteria
and objectives for including the studies in a meta-analysis, as well as plans for sub-
group analyses and regression analyses thatmay examine differences (heterogeneity)
in treatment effect among studies. Another way to conduct a credible meta-analysis
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is to adhere to guidelines on evaluating and reporting systematic reviews and meta-
analyses (Liberati et al. 2009).

A traditional pairwise meta-analysis of RCTs typically involves a direct (head-
to-head) comparison of effects between two treatments across trials. In the absence
of direct head-to-head evidence between two treatments of interest, an indirect com-
parison can provide useful evidence for the difference in treatment effects between
competing interventions, which otherwise would be wanting, and for judiciously
selecting the best choice(s) of treatment (Snedecor et al. 2014). For example, if two
particular treatments have never been compared against each other, head-to-head,
but these two treatments have been compared against a common comparator, then an
indirect treatment comparison can use the relative effects of the two treatments versus
the common comparator. Even when some direct evidence exists, it would be useful
to combine it with results from indirect evidence on the same pair of treatments,
which may make the assessment more precise and informed.

Based on indirect evidence, with or without direct evidence, network meta-
analysis (NMA) can be conducted if both treatments have been compared to a com-
mon comparator. The estimate of treatment effect obtained from such an analysis
is referred to as “indirect evidence.” That is, an indirect estimate of the effect of
treatment A over B can be obtained by comparing trials of A versus C and B versus
C. Extending this concept, NMAs can also allow simultaneous comparison of more
than two treatments. Thus, in its broadest sense, NMA can be defined as a statistical
combination of all available evidence for an outcome from several studies across
multiple treatments to generate estimates of pairwise comparisons of each interven-
tion to every other intervention within a network (Caldwell et al. 2005; Jansen et al.
2011; Lu and Ades 2004).

In this chapterwe provide an introduction to networkmeta-analysis of randomized
controlled trials on study-level or aggregate data on the same disease of interest. In
doing we describe evidence networks; the analytic methodology with fixed-effect
and random-effects models, including from a Bayesian perspective, along with an
application; the assumptions of homogeneity, similarity, and consistency; and a few
special topics on the PRISMA (Preferred Reporting Items for Systematic Reviews
andMeta-analyses) guidance, individual patient data, and population-based adjusted
indirect comparisons.

6.2 Evidence Networks

Network meta-analyses are so named because all of the treatments analyzed are
connected to every other treatment via a network of randomized comparisons, some-
times referred to as the “evidence network.” In the evidence network, each treatment
is depicted as a node and the RCTs containing the treatments are represented as
lines connecting the nodes. There may be multiple RCTs involving the same pair of
treatments.
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Fig. 6.1 Connected
networks of randomized
controlled trials. Source
Jansen et al. Value in Health
17, 157–173 (2014)

Panel A Panel B

Panel C Panel D

An example of a disconnected network would be a network with an AB trial and
a CD trial. Because AB and CD do not share a common intervention, any indirect
assessment (e.g., BD or AC) is fraught with danger and a substantial risk of bias.
Figure 6.1, on the other hand, shows examples of connected networks of RCTs, with
varying levels of complexity. A connected networkmeans that any two treatments can
be compared indirectly through (one or more) intermediate common comparators or
directly (head to head). In Fig. 6.1, the nodes represent interventions and the edges (or
connections) imply that one or more RCTs have included their respective treatments
directly.

Figure 6.1a includes AB studies (treatment A compared directly with treatment
B) and AC studies (treatment A compared directly with treatment C) that allow the
relative effect of B–C to be obtained indirectly. The network in Fig. 6.1b adds CD
studies and, in doing so, engenders additional indirect comparisons: AD (through
C), BC (through A), and BD (through BC and CD). In Fig. 6.1c, treatment pairs AB,
AC, and BC are each compared both directly and indirectly. Figure 6.1d contains
direct and indirect evidence for all pairwise comparisons with the exception of AD
and BC, for which there is only indirect evidence.

To convey more information on the available clinical trials, the size of each node
can bemade proportional to the number of patients receiving that treatment and thick-
ness of the lines between treatments can be proportional to the number of available
RCTs informing the comparison. An analysis combining both types of data (direct
and indirect) are often referred to as mixed treatment comparisons and their joint
inclusion can help strengthen the precision of treatment effects between a pair of
treatments in the network.

The terms network meta-analysis, indirect comparisons, and mixed treatment
comparisons are often used interchangeably. Technically, network meta-analysis is
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a broader concept and can be used whenever the evidence base consists of two or
more trials connecting three or more treatments. Indirect treatment comparisons and
mixed treatment comparisons can be considered as sub-classificationswithin network
meta-analyses.

6.3 Methodology and Application

6.3.1 Fixed-Effect Model

Examples of relative treatment effect for two groups include risk ratio, odds ratio and
risk difference for binary outcomes; the natural logarithm of risk ratio and odds ratio
are typically used to address the normality assumption and thereby to strengthen
statistical inference before they are converted to their original metric for interpre-
tation and final results. Corresponding examples of treatment effect for continuous
outcomes include the mean difference and standardized mean difference (Borenstein
et al. 2009).

With a fixed-effect model, it is assumed that there is no variation in the true (popu-
lation) relative treatment effects across studies for a particular pairwise comparison;
each estimate of treatment effect in each study is measuring the same underlying
treatment effect common to all studies, with inferences pertaining to the same fixed
set of studies. Observed differences for a particular comparison across studies occur
solely due to chance (Borenstein et al. 2009).

When the evidence network consists of multiple pairwise comparisons (i.e., AB
trials, AC trials, BC trials, and so on), the set of comparators usually varies among
studies, complicating the notation. One approach labels the treatments A, B, C, and
so on, and uses A as the primary reference treatment in the analysis. For each study,
the approach then designates one treatment, b, as the base treatment. The labels
can be assigned to treatments in the network in such a way that the base treatments
followA (i.e., B, C, and so on) and the non-base treatments in turn follow all the base
treatments in the alphabet. In the various models, “after” refers to this alphabetical
ordering. The general frequentist fixed effect model for network meta-analysis can
then be specified as follows (Hoaglin et al. 2011):

η jk �
{

μ jb b � A, B,C, i f k � b

μ jb + dbk � μ jb + dAk − dAb k � B,C, D, i f k is “after” b

where

η jk reflects the underlying outcome for treatment k in study j,
μ jb is the outcome for treatment b in study j, and
dbk is the fixed effect of treatment k relative to treatment b.
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The dbk are identified by expressing them in terms of effects relative to treatment
A : dbk � dAk − dAb, with dAA � 0. For the underlying effects, this relation is
a statement that explicitly assumes consistency between the direct effect and the
indirect effect: the “direct” effect dbk and the “indirect” effect dAk − dAb are equal.

The corresponding general Bayesian fixed effect model would place a prior distri-
bution on dAk . Bayesian methods combine the likelihood (roughly, the probability of
the data as a function of the parameters) with a prior probability distribution (which
reflects prior belief about possible values of those parameters) to obtain a posterior
probability distribution of the parameters (Hoaglin et al. 2011; Sutton and Abrams
2001), which also holds for a random-effects model (next subsection, Sect. 6.3.2).
The posterior probabilities provide a straightforward way to make predictions, and
the prior distribution can incorporate various sources of uncertainty. For parameters
such as treatment effects, the customary prior distributions are non-informative. The
assumption that, before seeing the data, all values of the parameter are equally likely
minimizes the influence of the prior distribution on the posterior results. However,
when information on the parameter is available (e.g., from observational studies or
from a previous analysis), the prior distribution provides a natural way to incorporate
it.

6.3.2 Random-Effects Model

If there is heterogeneity and, therefore, variation across trials in true (or underlying)
relative treatment effects for a particular pairwise comparison, random effects mod-
els are appropriate. A random-effects model approach assumes that the trial-specific
treatment effect can be described as each having its own normal distribution, which
can differ from different studies (unlike the fixed-effect case), and whose estimate
constitutes a point of an overall normal distribution whose central position represents
the combined effect and whose standard deviation reflects the heterogeneity of treat-
ment effects (Borenstein et al. 2009). With a random-effects model for a network
meta-analysis, the variance reflecting heterogeneity is often assumed to be constant
for all pairwise comparisons.

As an extension of the frequentist fixed-effect model, the frequentist random-
effects model replaces dbk with δ jbk , the trial-specific effect of treatment k relative
to treatment b (Hoaglin et al. 2011). These trial-specific effects are drawn from a
random-effects distribution: δ jbk ∼ N

(
dbk, σ 2

)
. Again, values of dbk are identified

by expressing them in terms of the primary reference treatment, A (again with dAA �
0). As noted in the prior paragraph, this model typically assumes the same random-
effect variance σ 2 for all treatment comparisons, but the constraint can be relaxed.
(A fixed-effect model results if σ 2 � 0.) Hence:

η jk �
{

μ jb b � A, B,C, i f k � b

μ jb + δ jbk k � B,C, D, i f k is “after” b
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δ jbk ∼ N
(
dbk, σ

2
) � N

(
dAk − dAb, σ

2
)

The corresponding random-effects Bayesian model would add a prior distribution
on not only dAk (as is the case for the fixed-effect Bayesian model) but also σ .

6.3.3 Reporting and Interpreting

Results of random-effects models, as well as fixed-effect models, can be portrayed
in a league table for each possible treatment comparison. Frequently, each cell of the
table can contain the estimated treatment effect for an outcome and its 95% credible
interval (if a Bayesian approach is taken) or 95% confidence interval (if a frequentist
approach is taken) to account for uncertainty. This set of treatment effect sizes can
be also presented in a forest plot against a common comparator.

Figure 6.2 illustrates a league table with five treatments (four active agents and
placebo) and two outcomes (efficacy and withdrawal). Results are the odds ratio
in the column-defining treatment compared with the odds ratio in the row-defining
treatment. For results on efficacy, found in the lower diagonal, odds ratios higher
than 1 favor the column-defining treatment. For example, the odds of successfully
responding on an efficacy outcome for Drug C is 1.37 times that of Drug D (95%
credible interval, 1.19–1.65). For results on withdrawal, found in the upper diagonal,
odds ratios lower than 1 favor the column-defining treatment. For instance, the odds
ofwithdrawing on placebo is 0.75 times (three-quarters) that ofDrugB (95%credible
interval, 0.55–0.95).

In the Bayesian framework, probabilities regarding the distribution of parameters
can be calculated. In each Markov chain Monte Carlo cycle, each treatment k is
ranked according the estimated effect size. Then the proportion of the cycles in
which a given treatment ranks first out of the total gives the probability P(k=1) that
treatment k ranks first as the best among the available treatment options. Similar
probabilities can be calculated for the being second best, third best, and so forth.
All of these probabilities sum to one for each treatment and each rank. For each
treatment, rank probabilities can be plotted against the possible ranks for a given
treatment, resulting in “rankograms” (Salanti et al. 2011). In addition, cumulative
ranking for each treatment enables the ranking of each treatment overall, thereby
indicating which treatment is best overall, second best, and so forth. It is important
to emphasize the effect sizes (from the league table or forest plot) over the ranking,
because a good rank does not necessarily imply a large or clinically important effect
size.
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PLACEBO 1.01
(0.78-1.28)

0.75
(0.55-0.95)

1.06
(0.86-1.32)

0.87
(0.74-0.98)

0.99
(0.79-1.24)

DRUG A 0.74
(0.52-0.99) 

1.07
(0.86-1.31)

0.90
(0.73-1.09)

1.09
(0.83-1.43)

1.15
(0.90-1.47)

DRUG B 1.42
(1.09-1.85)

1.09
(0.91-1.27)

0.80
(0.65-0.98)

0.82
(0.71-1.00)

0.75
(0.60-0.93)

DRUG C 0.80
(0.72-0.93)

1.08
(0.92-1.31)

1.10
(0.86-1.47)

0.99
(0.69-1.34)

1.37
(1.19-1.65)

DRUG D

Efficacy (response rate)
(95% CrI)

Comparison
(95% Crl)

Withdrawal (dropout rate)
(95% Crl)

Fig. 6.2 Illustrative league table on odds ratios for five treatments and two outcomes. Crl�
credibility interval

6.3.4 Application

As an example, a random-effects network meta-analysis was implemented within
a Bayesian framework using Markov chain Montel Carlo methods in WinBUGS
(MRC Biostatistics Unit, Cambridge, UK) and applied to assess the effects of 12
new-generation antidepressants on major depression (Ciprani et al. 2009). Based on
a systematic review of 117 randomized controlled trials (25,928 participants), anti-
depressants were quantified, compared, and ranked with respect to proportion of
patients who responded to allocated treatment (efficacy) and, separately, the propor-
tion who dropped out of the allocated treatment (acceptability). Clinically important
differences existed between commonly prescribed antidepressants for both efficacy
and acceptability.

6.4 Assumptions

Network meta-analyses combine data of multiple interventions across several RCTs
to synthesize estimates of relative treatment effects to generate pairwise comparisons.
The validity and accuracy of estimates from NMAs depend on the requirement that
trials in the network are sufficiently comparable and similar to yield meaningful
unbiased estimates. To that end, three assumptions underlie NMA methodology and
should always be tested when possible: homogeneity, similarity, consistency (Jansen
et al. 2011, 2014; Hoaglin et al. 2011; Donegan et al. 2013).
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6.4.1 Homogeneity

Homogeneity, the first assumption, assumes that there is no significant variation (or
if present, it is due to random chance) in treatment effects among studies of the
same comparison. In other words, for example, are all AB trials (and, separately
and independently, all AC trials) “comparable” and estimating the same treatment
effect? This assumption is applicable to network meta-analyses as it is in pairwise
meta-analyses. Homogeneity can be separately assessed for each collection of iden-
tical comparisons within the network using standard statistical measures, such as Q
statistic or I2 (or both) (Borenstein et al. 2009). If heterogeneity exists, then the pos-
sible sources should be explored and implementation of random-effects modeling,
sensitivity analyses, subgroup analyses, or meta-regression should be considered if
sufficient data are available.

6.4.2 Similarity

Trial evidencemay be homogeneous within certain pairwise comparisons, but signif-
icant variation in trial characteristics across different comparisons within a network
can still lead to biased estimates. This leads to the second assumption—similarity
(or, sometimes referred to as transitivity)—that requires all trials included within
a network to be “comparable” in terms of key factors that can be potential effect
modifiers (such as patient baseline characteristics, trial design, outcome definition
and/or measurement, and follow-up time) that may affect (relative) treatment effect.
Here, different levels of an effect modifier may modify or differentially affect the
treatment effect for a given pair of treatment, with the treatment effect depending on
the level of the effect modifier.

Similarity—which cannot be formally tested and verified—can be gauged (though
not proven) through quantitative techniques (sensitivity analysis, meta-regression,
subgroup analysis) and assessed qualitatively using summary tables documenting
relevant baseline characteristics of patients and description of studies. Therefore,
substantial (or systematic) differences in effectmodifiers can be judged by comparing
study specific inclusion and exclusion criteria, baseline patient characteristics, and
study characteristics that are expected to modify treatment effect.

The assumption of similarity is not violated if differences in baseline or study
characteristics between trials do not modify or influence treatment effect. It is only
when such characteristics are treatment effect modifiers that the estimated treatment
effect becomes biased.

In RCTs the observed outcome with an intervention is the result of study charac-
teristics, patient characteristics, and the treatment itself. In a placebo-controlled trial,
the result of the placebo arm reflects the impact of study and patient characteristics
on the outcome of interest, say outcome y, as shown in Fig. 6.3.



6 Network Meta-analysis 99

Fig. 6.3 Treatment effects, study effects, effect modifiers and prognostic factors in a randomized
placebo-controlled trial. Source Jansen et al. Value in Health 17, 157–173 (2014)

In other words, the placebo response is the result of all known and unknown
prognostic factors other than active treatment. We can call this the study effect. In
the active intervention arm of the trial, the observed outcome y is a consequence
of the study effect and a treatment effect. By randomly allocating patients to the
intervention and placebo group, both known and unknown prognostic factors (as
well as both measured and unmeasured prognostic factors) between the different
groups within a trial are on average balanced. Hence, the study effect as observed
in the placebo intervention arm is expected to be the same in the active intervention
arm and, therefore, the difference between the active intervention arm and placebo
intervention arm (say delta y) is attributable to the active intervention itself, resulting
in a treatment effect (the blue box in Fig. 6.3).

Although a networkmeta-analysis is based on RCTs, randomization does not hold
across the set of trials used for the analysis because patients are not randomized to
different trials. As a result, there are situations where there are systematic differences
in study characteristics or the distribution of patient characteristics across trials. In
general, if there is an imbalance in the distribution of the effect modifiers across the
different types of direct comparisons in a network meta-analysis, the corresponding
indirect comparisons are biased.

Figure 6.4 provides an illustration where disease severity is known to be an effect
modifier. Consider an indirect comparison of treatmentsB andC through anAB study
(trial 1) and AC study (trial 2) where these two studies have different proportions of
patients with moderate and severe disease. The indirect comparison of B versus C
for the moderate disease population and, separately, the severe population are both
valid. But the indirect comparison of B versus C for the overall population is biased
because the distribution of the effect modifier severity is different for the AB and AC
studies.
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Fig. 6.4 Indirect comparisons with severity of disease known to be an effect modifier. Source
Jansen et al. Value in Health 17, 157–173 (2014)

Suppose, on the other hand, that disease severity was not considered an effect
modifier in a separate network meta-analysis. In this case, even if the set of pro-
portions on disease severity was clearly different between AB and AC studies, as
is the case in Fig. 6.4, then the indirect comparison of B versus C for the overall
population would be unbiased instead of biased. It is important to acknowledge that
there is always some risk of imbalances in unknown or unmeasured effect modifiers
between studies evaluating different interventions. Accordingly, there is always a
small risk of such residual confounding bias, even if all observed effect modifiers
are balanced across the direct comparisons.
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6.4.3 Consistency

When direct and indirect evidence are combined for a particular comparison, it
is assumed that there is agreement between direct and indirect comparisons. This
assumption is termed consistency, and it should be assessed in every NMA when-
ever possible. Figure 6.1c shows a simple closed loop network, where both direct and
indirect evidence is possible for all pairwise comparisons. For example, an estimate
of effect for B versus C can be obtained directly from the BC trial and can also be
estimated indirectly from AC and AB trials. For this loop to be consistent, the direct
estimate should be equivalent to the indirect estimate (i.e., dBC �dBA – dCA). Of
note, consistency is a property of closed loops of evidence and not individual com-
parisons. It is possible to state that AB, BC and AC comparisons are each separately
consistent but stating that the AB comparison is consistent with the AC comparison
has no meaning.

Inconsistencies can be caused by differences in treatment effect modifiers among
the studieswithin a loop. Three independent studies forming a closed loopof evidence
are unlikely to generate exact equality within a consistency evaluation. Published
methods are available for evaluating consistency and its acceptable ranges (Dias
et al. 2010, 2013).

6.5 Special Topics

6.5.1 PRISMA Guidance

Several guidances are available for conducting a proper NMA and for appraising a
NMA (Ades et al. 2013; Jansen et al. 2014; Salanti et al. 2014;Hutton et al. 2015). For
example, as an extension of the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) for traditional pairwise treatment comparison (only
two treatments given), a modified 32-item PRISMA extension checklist was devel-
oped to address what was deemed immediately relevant to the reporting of network
meta-analyses (Hutton et al. 2015). Current PRISMA items were also clarified. This
document presents the extension and provides examples of good reporting, as well
as elaborations regarding the rationale for new checklist items and the modification
of previously existing items from the original PRISMA statement.

Specifically, a checklist of items is includedwhen reporting a systematic review of
a NMA. Each checklist item pertains to particular section or topic that includes title,
abstract, introduction, methods, results, discussion, and funding; in turn, each section
or topic may have its subsections or subtopics. For instance, the Methods section
includes a subsection on “risk of bias within individual studies” whose checklist item
pertains to the description of methods for assessing risk of bias of individual studies
and how this information is to be used in any data synthesis. Another subsection
on Methods is “assessment of consistency” whose checklist item pertains to the
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description of statisticalmethods used to evaluate the agreement of direct and indirect
evidence in the treatment networks studies and to describe efforts taken to address
its presence when found.

6.5.2 Individual Patient Data

Applications of study-level or aggregate meta-analysis cannot fully capitalize on the
deeper information contained in the primary studies. A challenge in using aggregate
data is that the association (or lack of association) between a patient-level covari-
ate and (relative) treatment effects at the study level may be different from the true
individual-level patient modification. A major benefit of meta-analysis with individ-
ual patient data is the ability to discern and quantify effect modification with more
confidence and accuracy than can be performed with study-level meta-analysis. Indi-
vidual patient data can be also performed within the context of NMA. Although it
would add an additional layer of complexity to the analytical task, detailed formula-
tion and direction are available on the theoretical and practical approaches relevant to
the conduct of NMA with individual patient data (Veroniki et al. 2014). While exist-
ing methods appear suitable, more methodological advancements and improvements
are welcomed.

Methods are also available for NMA of individual-level and aggregate-level data
taken together (Jansen 2012). Non-linear network meta-analysis methods for com-
bining both data types have been developed to reduce bias and uncertainty of direct
and indirect treatment effects in the presence of heterogeneity. One method uses the
same form for both types. Another method develops the model for aggregate data by
integrating an underlying individual patient data model over the joint within-study
distribution of covariates. This second method seems less affected by bias in situa-
tions with large interactions between treatment and patient-level covariates, probably
at the cost of greater uncertainty. Having individual patient data available for a subset
of studies can improve estimates of treatment effects in the presence of patient-level
heterogeneity. Additional research remains.

6.5.3 Population-Adjusted Indirect Comparisons

Matched Adjusted Indirect Comparisons (MAICs) and Simulated Treatment Com-
parisons (STCs) have been increasingly applied in health technology assessment and,
more specifically, to submissions to the National Institute for Health and Care Excel-
lence (Phillippo et al. 2016). MAIC and STC are based, respectively, on propensity
score reweighting and outcome regression (Ishak et al. 2015). Both are established
methods of mapping a treatment effect observed in one population to an estimate of
what would be observed in another, with a different distribution of prognostic factors
and effect modifiers.
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The novelty in MAIC and STC is first to apply these methods in the context
of indirect comparisons, and second to rework them for a very specific scenario,
in which a manufacturer has access to individual patient data from its own trial of
product B against standard treatment A, but has access only to aggregate data on
outcomes and covariates from a competitor AC trial.

MAIC and STC attempt to adjust for imbalances in baseline characteristics when
forming an indirect comparison of treatments B and C. Standard methods for indirect
comparisons assume that there is no imbalance in the distribution of effect modifiers
in the AB and AC trials. Where effect modifiers are in imbalance, there is therefore
a sound rationale for population-adjustment.

Nevertheless, based on a NICE technical support document on MAIC and STC
that has been produced recently, a series of weaknesses in the MAIC and STC meth-
ods have been identified (Phillippo et al. 2016). Such limitations on these methods
include the following: (1) they typically carry out indirect comparisons on the natural
outcome scale, rather than on the usual linear predictor scale (i.e., log-odds scales
for probabilities, log scale for rates), which raises questions about the interpreta-
tion of the model and of the indirect comparison; (2) they are often carried out in
unconnected networks or with one-arm studies, called an “unanchored” or “unad-
justed” indirect comparisons, with the degree of residual systematic error unknown;
and (3) they can only deliver an estimate of the relative treatment effects in the AC
population, which is very unlikely to be the target population for decision.

To address these concerns, recommendations for use of population-adjusted indi-
rect comparisons have been rendered (Phillippo et al. 2016). These recommenda-
tions cover five areas: (1) the rationale for the use of population adjustment in NICE
submissions, (2) justifying the use of population adjustment in both anchored and
unanchored scenarios, (3) variables for which population adjustment is required,
(4) generation of indirect comparison for the appropriate target population, and
(5) reporting guidelines for analyses involving population adjustment. Moreover,
research recommendations are given about the need for alternative approaches to
population-adjusted indirect comparison and population-adjusted network meta-
analysis intended to overcome the limitations of existing methods and, given this,
the need for a plan on a comprehensive set of simulation studies, empirical studies,
and illustrative applications of the new methods.

6.6 Summary

This chapter provides an introduction on NMA and targets its key concepts. In doing
so, a descriptive framework is given on evidence networks; the analytic methodology
with fixed-effect and random-effects models, including from a Bayesian perspective,
along with an application; the assumptions of homogeneity, similarity, and consis-
tency; and a few special topics on the PRISMA guidance, individual patient data,
and population-based adjusted indirect comparisons.
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Network meta-analysis can be considered an extension of traditional meta-
analysis that includes multiple different pairwise comparisons across a range of
different interventions to allow for multiple treatment comparisons in the absence
of head-to-head evidence. Furthermore, the methodology can combine direct with
indirect treatment comparisons, thereby synthesizing a greater share of the available
evidence than traditional meta-analysis. Although the evidence networks underlying
NMA typically include RCTs, randomization does not hold across trials and there
is a risk of confounding bias, compromising internal validity. Accordingly, a NMA
must be considered observational evidence, although a well-conducted NMA can
provide a high quality assessment on the best available evidence.
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Chapter 7
Detecting Safety Signals Among Adverse
Events in Clinical Trials

Richard C. Zink

7.1 Introduction

Gaining a clear picture for the safety of any drug can be challenging, but when the
necessary understanding of patient safety is at its greatest, sufficient insight into the
tolerability of a treatment is often more difficult to attain. Establishing the effective-
ness of a new therapy is often limited to a single primary outcome, with a hand-
ful of other secondary outcomes providing additional evidence of benefit. Safety
outcomes, on the other hand, include the myriad of other data that are collected
during the course of clinical development. Death and disease progression are obvi-
ous safety endpoints, and data for adverse events (AEs), laboratory abnormalities,
vital signs, physical examinations, hospitalizations, electrocardiograms (ECGs), and
patient-reported outcomes for quality-of-life can suggest other safety and tolerabil-
ity concerns for the patient. Safety considerations can comprise efficacy outcomes
as well, as there is the potential for these endpoints to worsen during the trial. The
inherent multiplicity problem present when analyzing numerous endpoints is further
complicated in several ways. First, and similar to efficacy endpoints, safety outcomes
can be repeatedly measured over time. Second, safety outcomes have important char-
acteristics to consider including duration, severity, and investigator’s assessment of
causal relationship to drug, resulting in numerous sensitivity analyses. Further, it is
unclear which collection of event attributes would warrant consideration as the pri-
mary analysis. Third, many safety issuesmay occur spontaneously at any time during
the trial, and often transpire between study visits. This adds complexity for summa-
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rizing results across time, and may result in some level of missing data for events
which, depending on the assumptions, could impact inference between study arms.

Though the previous paragraph suggests that multiplicity adjustments should be
applied to limit the potential for type I errors, the analyst should proceed cautiously.
Recall that most clinical trials are designed to establish efficacy for one or perhaps
a small number of primary endpoints. Given the rarity of many safety outcomes,
however, the sample sizes that are appropriate for efficacy endpoints, even when
combined across several trials, result in treatment comparisons for safety that are
often underpowered. The potential to observe severe safety outcomes may be further
limited due to the patients that are enrolled in the trial. To make it straightforward to
observe an effect of the prescribed treatments, patients with severe disease, other co-
occurring disease, or taking one or more concomitant medications are often excluded
from study participation. Further, while the disease under investigation may suggest
safety issues likely to occur over the duration of the trial, unplanned safety issues
can and often do materialize. This makes it challenging to pre-specify appropriate
analyses in advance, with the additional burden of further limiting the available type
I error for anticipated events.

Death and disease progression, while important indicators of patient safety, are
often analyzed as primary endpoints in clinical trials. Because the strong control
of type I error is well understood in these situations, even in the presence of one or
more interim analyses, we avoid further discussion specific to these endpoints within
this chapter. Here, we focus on the efficient reporting of the considerable volume
of safety endpoints that are collected within a clinical trial, with a primary focus
on AEs. Because of the limitations described above, the traditional means of data
summary—tables and listings—are often ineffective for communicating the story
hidden within the data. Data visualization is the key to efficient communication of
safety outcomes; we reinforce this idea through the examples below.

Our rationale for the focus on AEs is due to the fact that occurrences of clinically-
relevant worsening in other safety endpoints are reported as AEs. For example,
significant changes in the laboratory test alanine aminotransferase, an important
indicator of liver health, can be represented by the preferred terms Alanine Amino-
transferase Abnormal, Alanine Aminotransferase Increased, or Alanine Aminotrans-
feraseDecreasedwhen using theMedical Dictionary for RegulatoryActivities (Med-
DRA) (Brown et al. 1999). We illustrate the various methodologies using a clinical
trial of patients who experienced an aneurysmal subarachnoid hemorrhage, which
is described in Sect. 7.2. Section 7.3 summarizes analysis approaches for safety
which are then applied to the sample data in Sect. 7.4. Section 7.5 provides a brief
conclusion. All analyses were performed using JMP Clinical 6.1.
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7.2 Sample Data

Nicardipine hydrochloride, available in oral and intravenous forms, belongs to the
class of calcium channel blockers which are used to treat high blood pressure and
angina. Nicardipine was examined in a clinical study of patients experiencing an
aneurysmal subarachnoid hemorrhage, which is bleeding between the brain and
the tissues that surround the brain (Hayley et al. 1993). The primary endpoint was
improvement in patient recovery according to the Glasgow Outcome Scale, with
the incidence of cerebral vasospasm, and the incidence of death or disability due
to vasospasm serving as important secondary endpoints (Jennett and Bond 1975).
The study was a two-week trial in 906 patients randomly assigned to intravenous
nicardipine or placebo; 902 patients ultimately received treatment.

The 902 treated patients experienced a total of 4472 treatment emergent AEs
(TEAEs), events that occurred on or after the first dose of study drug. Coding with
the MedDRA dictionary led to 188 distinct preferred terms contained within 22
system organ classes. This classification of AEs into preferred terms and system
organ classes will be used throughout the analyses and figures in this chapter. While
the analysis of adverse events hinges on the quality of this coding step, the mechanics
and issues surrounding this activity are outside the scope of this chapter.

Please note that the analyses and results summarized here are for illustrative
purposes only; no formal conclusions on the safety or effectiveness of nicardipine
should be made as a result of this chapter.

7.3 General Considerations for Safety Analyses

7.3.1 Initial Steps

GuidelineE2A from the InternationalConference onHarmonisation (ICH) defines an
AE as “any untoward medical occurrence in a patient or clinical investigation subject
administered a pharmaceutical product and which does not necessarily have to have
a causal relationship with this treatment” (ICH 1994). Additionally, serious adverse
events (SAEs) are AEs that “result in death, are life threatening, require inpatient
hospitalization or prolongation of hospitalization, result in disability or permanent
damage, or are congenital anomalies or birth defects” (ICH 1994). Guidelines from
the EMA define the additional term adverse drug reaction (ADR) for those events
that are viewed by the investigator to have a causal relationship with treatment (EMA
2016).

Adverse events that occur since the previous study visit are reported to the clini-
cian by the patient or care-giver. Additional AEs may be identified by the clinician
through in-clinic or laboratory assessments that haveworsened since baseline.Details
on the severity or toxicity grade (perhaps using the National Cancer Institute’s Com-
mon Terminology Criteria of Adverse Events, NCI-CTCAE), seriousness, outcome,
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duration, the action taken with study drug due to the event, and the investigator’s
opinion on the relationship to study medication are recorded (NCI 2010). Verbatim
event text is coded using MedDRA to maintain consistency in the reporting and
grouping of AEs within and across studies and development programs. AEs are tra-
ditionally summarized by preferred terms, and grouped by system organ class in
order of decreasing frequency of occurrence. In MedDRA Version 19.1, released in
September 2016, 22,210 preferred terms are grouped within 27 system organ classes.
The binary outcomes as to whether a patient experienced a particular AE or not, are
often reported using a risk difference ( p̂t j − p̂cj ), risk ratio ( p̂t j/ p̂cj ), or odds ratio(
p̂t j

(
1 − p̂cj

)
/
(
1 − p̂t j

)
p̂cj

)
, where p̂i j is the probability of experiencing event j of

J possible AEs for treatment i (Chuang-Stein et al. 2014; Zhou et al. 2015). Pros
and cons for the various measures are discussed in Zhou et al. (2015). This chapter
presents risk differences throughout.

Given the large number of potential comparisons of treatment arms for adverse
events, Crowe and co-authors suggested a 3-tier approach for the analysis of AEs
(Crowe et al. 2009). Pre-planned hypotheses for Tier I events, those AEs expected
to occur or of considerable clinical relevance for the disease, would typically not
receive adjustment for multiple comparisons unless there were numerous Tier 1
events to consider. Treatment comparisons for unexpected but commonly-occurring
(4 or more patients in a single treatment arm) Tier 2 events should consider multiple
comparisons. Tier 3 events (those not in Tiers 1 or 2) are rare and should be sum-
marized in a listing. Appropriate multiplicity adjustment for Tier 1 (if required) and
Tier 2 events should achieve a reasonable balance between committing type I errors
without overly sacrificing the power to detect potential safety signals. The False
Discovery Rate (FDR) provides a more balanced approach between type I error and
power, since it does not control the familywise error rate (Benjamini and Hochberg
1995). The FDR, typically pre-specified at α � 0.05, is the proportion of erroneous
rejections among the rejected null hypotheses from a set of multiple tests. In general,
with J treatment comparisons of ordered (smallest to largest) p-values p( j), the FDR
p-value for the jth hypothesis is

p∗
( j) �

⎧
⎨

⎩

p(J ) for j � J

min
(
p∗

( j),
j

( j−1) p( j−1)

)
for j � 1, 2, . . . (J − 1)

Corresponding simultaneous 95% FDR confidence intervals can be defined by
finding the largest j where p( j) ≤ jα/J and using α∗ � jα/J for all J confidence
intervals (2005). An alternate FDR methodology, the double FDR, could also be
considered to account for the relationship among AEs through a grouping variable
such as system organ class (Mehrotra and Adewale 2012).
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7.3.2 Further Analyses

Given the numerous characteristics present for AEs, it is worthwhile to perform addi-
tional analyses to determine the impact of event seriousness, severity, or causality
on safety assessments between the study treatments. For example, in trials of oncol-
ogy, it is recommended to summarize AE incidence for all grades as well as for
those events that are considered more severe, NCI-CTCAE grade 3 and above (EMA
2016). Similar analyses are often presented for the subset of events determined to
be ADRs. Additionally, summaries of AEs may be performed for different stages of
the trial, describing safety before, during, and after treatment.

However, apart from summarizing events for different trial stages, the influence
of time tends to be ignored in most presentations of AEs. Since patients with longer
follow-up have greater opportunity to experience one or more safety outcomes, it
is important to consider exposure-adjusted incidence rates or time-to-first events,
particularly in studies with varying patient exposure (Koch et al. 1993; Liu et al.
2006; Stokes et al. 2012; Zhou et al. 2015; Allignol et al. 2016; EMA 2016; Proctor
and Schumacher 2016). However, these methodologies do have limitations. Time-to-
first event analyses are limited in that they only describe when the first event occurs.
Exposure-adjusted incidence rates assume a constant hazard rate across time. Liu
and co-authors (2006) suggest that this assumption is likely to hold for rare events,
though it should be assessed in practice since this expectation may not apply for
many events. Breaking the study period up into meaningful mutually-exclusive time
intervals allows for the possibility of constant hazards to hold within smaller time
intervals.

In general, however, analyseswithin time intervals can provide amore informative
analysis that makes it possible to view how the risk of AEs changes over the course of
a clinical trial. For example, the risk of certain events may reduce as patients develop
tolerability to the study medications. Alternatively, greater exposure to drug may
result in an increased likelihood of certain events. Zink et al. (2013) illustrates how
multiple plots or animation can be used to communicate the instantaneous risk within
time intervals. Similar presentations can be used to present analyses of cumulative
risk over time. For example, guidance suggests presentations of cumulative AE rates
for oncology studies at 3, 6, and 12 months, with the addition of other time points
depending on the underlying nature of the disease and the duration of the trial (EMA
2016). Presenting AEs by time intervals serves an additional purpose, since differ-
ential rates of drop out between the treatment arms can spawn misleading results for
the entire treatment period. After all, patients responding to treatment with longer
follow-up times have greater opportunity to experience one or more safety outcomes.
Presentations of instantaneous risk by time interval is also one way to account for
and summarize the recurrence of events observed during the clinical trial, though
more formal analyses to assess the average number of events experienced over time
are available (Johnston and So 2003; Nelson 2003; Diao et al. 2015; Hengelbrock
et al. 2016). Finally, Koch et al. (1993) present a large-sample method to summarize
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the total number of events experienced accounting for the correlation between event
frequency and patient exposure.

Given the rarity of many individual events, an alternative strategy to identify
safety signals is to analyze groupings of preferred terms by analyzing higher level
terms or higher level group terms from the MedDRA hierarchy. In MedDRA 19.1,
there are 1732 and 335 higher level and higher level group terms, respectively. Sim-
ilarly, the analyst could examine the incidence of standardised MedDRA queries
(SMQs), which are groups of lower level and preferred terms that describe a par-
ticular medical condition (Mozzicato 2007). MedDRA 19.1 documents 217 SMQs.
Analyzing higher-levelMedDRA terms or other groups of events may not allow us to
make conclusions about individual events at the preferred term level, but it may sig-
nal the potential for increased risk of contributing AEs once sufficient sample size is
obtained. Other safety analyses consider the co-occurrence of sets of events observed
on study, without the formal classifications of a medical dictionary (DuMouchel and
Pregibon 2001; Goldberg-Alberts and Page 2006).

In lieu of grouping sets of events, itmaybeworthwhile to examine safety outcomes
within more homogeneous groups of patients. Subgroups are frequently considered
for the analysis of safety and efficacy endpoints, with 70% of clinical trials reporting
at least some results within subgroups (Pocock et al. 2002). Subgroup analyses are
beneficial in that they provide clinicians with information on the potential for dif-
ferential treatment response within important demographic, genetic, disease, envi-
ronmental, behavioral or regional characteristics (Chuang-Stein et al. 2014; Quan
et al. 2010). In addition, recent data-driven methodologies can be used to identify
subgroups using combinations of individual factors to characterize sets of patients
with differential response to treatment, though the importance of these subgroups
need to be confirmed in further study (Battioui et al. 2013; Dusseldorp andMechelen
2014; Foster et al. 2011; Loh 2011; Lipkovich et al. 2011; Lipkovich and Dmitrienko
2014; Negassa et al. 2005; Su et al. 2009; Zink et al. 2015). For safety outcomes, the
exploration of effects within subgroups can identify groups of patients for whom the
new therapy may be inappropriate.

From a regulatory perspective, subgroup analyses are important to show that the
estimated overall effect is broadly applicable to patients and to assess risk-benefit
across the proposed indication, particularly when the study population is heteroge-
neous (CHMP 2014). Further, examining results within subgroups allows the study
team to assess the consistency and robustness of results obtained for the entire study
population, as well as to generate hypotheses for future research (Cui et al. 2002).
Subgroup analyses would likely be considered for important Tier I events.

When reporting resultswithin subgroups, transparency is key for appropriate inter-
pretation of results. Details on the number of subgroups assessed (not just reported),
whether subgroups were determined pre or post hoc, multiplicity adjustments were
applied, stratified randomizationwas used, or heterogeneitywas assessed and through
what method should be clearly described (Lagakos 2006;Wang et al. 2007). For mul-
tiplicity, details as to whether adjusted or unadjusted p-values are presented or simul-
taneous or unadjusted confidence or credible intervals should be clearly described.
However, regulatory guidance appears to prefer presenting unadjusted p-values and
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intervals for subgroup analyses as they are “investigations [that] serve as an indicator
for further exploration” (CHMP 2014). Even though power tends to be low for tests
of interaction, many authors suggest that heterogeneity of treatment effects should
always be evaluated, and regulatory guidance encourages reporting estimates and
confidence intervals for these interaction tests (Pocock et al. 2002; Lagakos 2006;
CHMP 2014). Further, the literature highlights that the presence and the size of inter-
action depends on the choice of the measure of divergence between the treatment
groups (Chuang-Stein et al. 2014; CHMP 2014).

7.4 Safety Analysis of Sample Data

7.4.1 Initial Steps

In this section, we illustrate the effectiveness of data visualization for communicating
the results of AE analyses for the nicardipine trial. For example, Fig. 7.1 presents a
volcano plot to summarize the incidence of adverse events (Zink et al. 2013). The
x-axis represents the nicardipine minus placebo risk difference while the y-axis rep-
resents the –log10 transformation of the unadjusted p-value from a Cochran-Mantel-
Haenszel correlation statistic. The smaller the p-value, the larger the value on the
y-axis; y can be thought of as the number of decimal places or number of zeros in
the p-value derived from the comparison of risk between the treatments. References
lines are drawn to show significant events with no-adjustment (−log10(0.05)�1.3)
or FDR adjustment (−log10(0.0013)�2.876, where α∗ � 5/188×0.05 � 0.0013);
events are significant if the center of the bubble is above a particular reference line.
Given the location of events relative to the 0 point (no difference) on the horizon-
tal axis, Vasoconstriction and Hypertension exhibit elevated risk on placebo, while
Phlebitis, Hypotension, and Isosthenuria have elevated risk on nicardipine. Though
an asymptotic test is used here for illustration purposes, analysts should consider
using exact methods when sample sizes are small or when events are rare, and
should consider a test that accounts for the stratification applied to treatment ran-
domization. Bubble area is proportional to the total number of patients on either
treatment that experience a particular adverse event. Of the five signals identified in
Fig. 7.1, Vasoconstriction and Isosthenuria were experienced by the most and least
patients, respectively. Bubble color communicates the system organ class, red for the
Vascular Disorders of Hypotension, Hypertension, Phlebitis, and Vasoconstriction,
and green for the Renal and Urinary Disorder of Isosthenuria. An alternate approach
could color bubbles according to event tier. Figure 7.2 is identical to Fig. 7.1 except
that the bubble size is proportional to the inverse of the variance of the treatment

difference
(

pn(1−pn)
nn

+
pp(1−pp)

np

)− 1
2
. This plot helps the team assess the amount of

information available relative to the magnitude of the treatment effect for safety
signals.
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Fig. 7.1 Volcano plot comparing the proportion of treatment emergent adverse events between
treatments with bubbles sized according to event frequency. Unadjusted reference line drawn at
−log10(0.05)�1.3. FDR reference line drawn at −log10(0.0013)�2.876, where α∗ � 5/188 ×
0.05 � 0.0013. Alternatively, the FDR reference line could be drawn at −log10(maximum unad-
justed p-value ≤ α∗) as in Zink et al. (2013). Bubble areas are proportional to the total number
of patients that experience an adverse event for both treatments combined. Bubbles are colored
according to system organ class with red or green bubbles referring to vascular disorders or renal
and urinary disorders, respectively

Now that we have identified differential safety responses between the treatments
in Figs. 7.1 and 7.2, we can explore these events in greater detail. For example,
Fig. 7.3 presents a forest plot and dot plot to communicate the variability around
treatment effects and the individual event incidence (Amit et al. 2008). Here, blue
intervals highlight the events with greater risk for nicardipine, while red highlights
events with greater risk for placebo. Further, forest plots help communicate the sen-
sitivity of findings within important demographic subgroups; Fig. 7.4 presents an
analysis of Isosthenuria within subgroups. The left panel summarizes unadjusted
95% confidence intervals which highlights elevated risk for Isosthenuria across most
demographic subgroups. Based on recommendations from the CHMP (2014), inter-
action tests are summarized using a forest plot in the right panel and are based on
unadjusted 95% confidence intervals for the difference in treatment effects between
the two subgroup levels (level 1 minus level 2). Finally, the heat map in Fig. 7.5
assesses the sensitivity of analysis findings by examining the standardized effect

(pn − pc)
(

pn(1−pn)
nn

+
pp(1−pp)

np

)− 1
2
across SAEs, events of varying levels of severity,

and events with varying levels of causality to drug. Darker blue highlights the sce-
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Fig. 7.2 Volcano Plot Comparing the Proportion of Treatment Emergent Adverse Events Between
Treatments with Bubbles Sized According to Variability. Unadjusted reference line drawn at
−log10(0.05)�1.3. FDR reference line drawn at −log10(0.0013)�2.876, where α∗ � 5/188 ×
0.05 � 0.0013. Bubble areas are proportional to the inverse of the variance of the treatment differ-

ence
(

pn (1−pn )
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+
pp(1−pp)
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)− 1
2
. Bubbles are colored according to system organ class with red or

green bubbles referring to vascular disorders or renal and urinary disorders, respectively

narios with greater risk for nicardipine, while darker red highlights scenarios with
greater risk for placebo. However, it is important to not over-interpret the results in
Fig. 7.5, since reduced risk (colors closer to gray) may be due to scenarios with a
greatly reduced number of events.

7.4.2 Accounting for Time and Patient Exposure

Up until now, there has been no consideration for time or exposure in the analysis of
AEs. We being our assessment of the effects of time on safety with Fig. 7.6, which
summarizes the instantaneous risk of events with 3 day intervals (Zink et al. 2013).
To improve the presentation, only events that are significant in at least one interval
using the FDR reference are displayed. Over the 4 intervals, one can observe a steady
reduction or increase in the risk of Hypotension or Phlebitis, respectively, when com-
paring nicardipine to placebo. Further, there is one period (days 7–9) where there
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Fig. 7.3 FDR confidence intervals and event incidence for identified safety signals. Presentation
suggested as in Amit et al. (2008). Left panel displays a forest plot of FDR intervals for nicardipine
minus placebo for signals identified from Fig. 7.1. Reference line is drawn at 0 to indicate no
difference between nicardipine and placebo, with blue or red intervals showing elevated risk on
nicardipine or placebo, respectively. Right panel presents a dot plot to communicate the incidence
of each AE for each treatment arm

appears to be some elevation of Intracranial Pressure Increased in placebo compared
to nicardipine by FDR; this event was not observed in Figs. 7.1 and 7.2. However, if
Intracranial Pressure Increased had been a Tier I event, therewould appear to be some
evidence of increased risk for placebo across all time intervals. Though informative
on its own merits, Fig. 7.6 may suggest further scrutiny of some AEs with addi-
tional exploratory analyses. It is important to note that Fig. 7.6 clearly demonstrates
the importance for checking the constant hazards assumption for exposure-adjusted
incidence rates. As an aside, a similar presentation could summarize the cumulative
risk of events across time.

As an alternative approach to accounting for time, Fig. 7.7 summarizes a Kaplan-
Meier analysis of time-to-first event, summarizing the log-rank or Wilcoxon test
along the y-axis in the left or right panel, respectively. Here, the x-axis represents
the maximum distance (nicardipine minus placebo) between the two Kaplan-Meier
curves, though other measures can be used to emphasize the differences between the
treatments. Both analyses identify the same five signals that were identified above,
with the inclusion of Pleural Effusion for the log-rank test. Which test should be
used in practice? In some instances, it may not be clear which test may be most
appropriate for a given data set. The log-rank test assumes proportional hazards
between the two treatments which may not hold; the Wilcoxon test places greater
emphasis on earlier event times (Collett 2015). Ultimately, whichever test is selected
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Fig. 7.4 Subgroup analysis of Isosthenuria. Unadjusted 95% confidence intervals are based on the
risk difference of isosthenuria for nicardipine minus placebo using a normal approximation, with
blue intervals highlighting events with elevated risk for nicardipine. Interaction tests are based on
unadjusted 95%confidence intervals for the difference in treatment effects between the two subgroup
levels (level 1 minus level 2). Bubble areas for subgroups in the left panel are proportional to the
total number of patients within each subgroup level

for the primary analysis should be pre-specified, with the other test serving as an
important sensitivity analysis. Alternatively, a bivariate test of log-rank andWilcoxon
scores can be applied (Tangen and Koch 1999). Finally, event recurrence can be
assessed using similar plots. For example, a proportional means model can be used
to compare the mean cumulative function between the treatments (Johnston and So
2003).

7.4.3 Standardised MedDRA Queries

We briefly mentioned SMQs above. Recall, that SMQs are groups of lower level and
preferred terms that describe a particular medical condition. For example, the pre-
ferred terms Agitation, Delirium, Disorientation, Hallucination, and Psychotic Dis-
order contribute to the SMQDementia. Here, our goal is to potentially gain power for
statistical comparisons by combining related events in order to describe a particular
disease state or syndrome. It may not be possible to make formal conclusions about
the SMQ itself (say, to report in a drug label), but these analyses provide insight
into the ways in which the treatments affect various aspects of safety. Potentially,
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Fig. 7.5 Sensitivity analysis comparing the proportion of treatment emergent adverse events

between treatments. The standardized effect is (pn − pc)
(

pn (1−pn )
nn

+
pp(1−pp)

n p

)− 1
2
. Darker blue

or red indicates higher risk on nicardipine or placebo, respectively. Cells are white when the stan-
dardized effect cannot be calculated, most often when no events occur. Due to space limitations,
only the events with at least one significant unadjusted p-value for any analysis are presented

differential SMQ response between study treatments may serve as an early warning
for individual contributing events once sufficient data are accumulated. Searches for
SMQs can take various forms: narrow, which limits the set of terms to those most
likely to identify patients with a given condition, or broad, which contains additional
terms in order to “cast a wide net”. Further, in MedDRA Version 19.1, there are 10
SMQs with algorithms, which often amounts to accumulating a sufficient number
and variety of events of various subtypes. There are 25 hierarchies among the SMQs,
though not all queries have a hierarchical relationship with other queries. Here, we
pay no consideration to the hierarchical relationships of observed SMQs. Figure 7.8
summarizes the frequency of 58 SMQs that were observed based on an analysis of
treatment emergent preferred terms.

Similar to Fig. 7.1, Fig. 7.9 contains a volcano plot summarizing the difference in
the incidence of SMQs between nicardipine and placebo. Here, bubbles are colored
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Fig. 7.6 Volcano Plot Comparing the Proportion of Treatment Emergent Adverse Events Between
Treatments Across Time Intervals. Unadjusted reference line drawn at −log10(0.05)�1.3. FDR
reference line drawn at −log10(0.0015)�2.8297, where α∗ � 18/608 × 0.05 � 0.0015. Bubble
areas are proportional to the total number of patients that experience an adverse event for both
treatments combined. Bubbles are colored according to system organ class. Starting at the upper-
left hand corner, volcano plots summarize the incidence of events in time intervals for study days
1–3, 4–6, 7–9 and 10–12. Only events that are significant in at least one interval using the FDR
reference are displayed

according to the number of distinct preferred terms that contribute to each query. As
mentioned above, Dementia has 5 preferred terms associated with it, which is why
it is a light blue color. For the other query signals: Thrombophlebitis is composed of
preferred terms Thrombophlebitis and Phlebitis; Hostility/aggression is composed of
Agitation, Paranoia, Personality Disorder, and Psychotic Disorder; and Anaphylactic
Reaction is composed of Cardiac Arrest, Choking, Cough, Dyspnoea, Hyperventi-
lation, Hypotension, and Laryngeal Oedema. This raises an interesting question, is
it possible to apply the 3-tier system described in Sect. 7.3.1 to SMQs? One recom-
mendation is that any SMQs that contains a Tier 1 event would itself be considered
Tier 1, with all other SMQs of sufficient numbers relegated to Tier 2. However, given
that these analyses are exploratory beyond the testing of individual event terms,
applying an FDR correction across all queries may be appropriate. However, as we
have observed in this simple example, the terms Agitation and Psychotic Disorder
contribute to both Dementia and Hostility/aggression, which creates a dependency
among the individual tests. In these cases, FDR methods that formally consider the
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Fig. 7.7 Volcano plot comparing the time-to-first-event for treatment emergent adverse events
between treatmentswith bubbles sized according to event frequency.Kaplan-Meier analysis of time-
to-first event summarizing the log-rank or Wilcoxon tests on the y-axis in the left or right panel,
respectively. The x-axis represents the maximum distance (nicardipine minus placebo) between
the Kaplan-Meier curves. Unadjusted reference line drawn at −log10(0.05)�1.3. FDR reference
line for the log-rank test is drawn at −log10(0.0016)�2.7970, where α∗ � 6/188 × 0.05 �
0.0016. FDR reference line for the Wilcoxon test is drawn at −log10(0.0013)�2.8762, where
α∗ � 5/188 × 0.05 � 0.0013. Bubble areas are proportional to the total number of patients that
experience an adverse event for both treatments combined. Bubbles are colored according to system
organ class

association of multiple tests may provide a more appropriate adjustment for mul-
tiple comparisons (Yekutieli and Benjamini 1999; Benjamini and Yekutieli 2001).
Finally, a similar presentation in Fig. 7.5 could be applied to SMQs, subsetting to
specific events that meet various criteria. Further, additional columns could be added
to summarize the findings across broad or algorithmic queries.

7.5 Conclusions

This chapter summarized analysis and reporting approaches for adverse events, and
illustrated methodologies using data from a sample clinical trial. Due to space con-
siderations, several issues were not addressed in the text above. These points are
briefly listed here so that interested readers can explore these topics in greater detail
in the references that follow.

• It is important to proactively plan for a comprehensive safety evaluation at the start
of any development program, a plan that considers the underlying challenges of
the disease, as well as the unique features of treatment and patient management.
Though not a regulatory requirement, the Safety Planning, Evaluation and Report-
ing Team (SPERT) recommends a Program-wide Safety Analysis Plan (PSAP) to
document the statistical aspects of safety during clinical development and post-
marketing activities (Crowe et al. 2009).
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Fig. 7.8 Bar chart summarizing the percent of patients with treatment emergent standardisedMed-
DRA queries by treatment. Standardised MedDRA queries are defined using only preferred terms
using a narrow search at the individual query level

• The methods described attempt to identify population shifts in important safety
parameters between the treatments. Ethically, it is necessary to identify individual
patients experiencing severe outcomes in order for them to receive appropriate care.
The EudraVigilance Expert Working Group maintains a list of important medical
events (IMEs) for which it may be important to screen AE data for the presence
of individual cases (EudraVigilance 2016a Aug, b Sept). Ongoing screening of
serious and unexpected suspected adverse reactions is suggested in the Federal
Register and the recent draft FDA guidance on safety assessment (US FDA 2010,
2015).

• All therapies carry some level of risk, and formore severe diseases, patientsmay be
more willing to accept a greater degree of toxicity in order to obtain an important
benefit than they would be for less grievous conditions. Balancing the potential
benefits and risks of new therapies is challenging, and is an area of active research
(Jiang and He 2016; Bender et al. 2016).

• The rarity ofmany safety endpoints will require ameta-analysis ofmultiple studies
for sufficient power to generate meaningful inference for the safety population, as
well as more precise estimates of the treatment response within various subgroups.
(Koch et al. 1993; Crowe et al. 2009; Berlin et al. 2012; Chuang-Stein et al. 2014).
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Fig. 7.9 Volcano plot comparing the proportion of treatment emergent standardised MedDRA
queries between treatments with bubbles sized according to query frequency. Unadjusted reference
line drawn at −log10(0.05)�1.3. FDR reference line drawn at −log10(0.0034)�2.4624, where
α∗ � 4/58×0.05 � 0.0034. Bubble areas are proportional to the total number of patients that expe-
rience a standardisedMedDRA query for both treatments combined. Bubbles are colored according
to the number of distinct preferred terms that are observed for each query. Here, standardised Med-
DRA queries are defined using only preferred terms and using a narrow search at the individual
query level

Meta-analyses should be pre-planned in the PSAP and assess the heterogeneity
and poolability of the included clinical trials, not simply reflect a naïve grouping of
patients frommultiple studies, ignoring the variability in treatment effects between
studies.

Though AEs are an important part of the safety assessment for any new drug,
device, or biologic, there are numerous other safety endpoints to consider. Readers
interested in greater detail on the analysis and reporting of AEs and other safety
outcomes can explore texts by Jiang and Xia (2014) or Gould (2015), or revisit
Gilbert (1993). For greater therapeutic focus, readers can review a recent examina-
tion of safety specific to clinical trials in oncology (Ivanova et al. 2017). See Turner
et al. (2017) for an in-depth overview of cardiovascular safety. Finally, this chapter
emphasized the importance of data visualization for summarizing, interpreting and
communicating analyses of safety outcomes. Those individuals interested in addi-
tional graphical presentations of safety data can review Chuang-Stein et al. (2001),
Amit et al. (2008), Krause and O’Connell (2012), Duke et al. (2015), or Matange
(2016).
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Chapter 8
Meta-analysis for Rare Events
in Clinical Trials

Ding-Geng Chen and Karl E. Peace

8.1 Introduction

Meta-analysis (MA) in clinical trials is defined as a statistical procedure for sys-
tematically combining data from multiple trials to reach a single conclusion with
greater statistical power than any of the component trials. Specifically, the purpose
of a meta-analysis is to combine the estimates of study effect-sizes using well-
established approaches of the fixed-effects and random-effects models, which dif-
fer fundamentally on whether between-study heterogeneity is incorporated. These
traditional meta-analysis models have played an increasingly important role in bio-
pharmaceutical and medical sciences, and meta-analyses of clinical trial data have
led to numerous scientific discoveries.

This chapter is organized to present an overview of methods and then an illustra-
tion of the methods. Section 8.2 gives an overview of meta-analysis using summary
statistics using fixed-effects and random-effects models along with the quantifica-
tion of heterogeneity with Q-statistic, τ 2 index, H index and I 2 index with empha-
sizing on binary data. Section 8.3 then illustrates the potential problems when these
methods are used for clinical trials with rare events using the well-known Rosiglita-
zone meta-analysis data. We then introduce theR package gmeta for meta-analysis
of rare events. Detailed analysis using open source R software is illustrated in
this section so readers can follow the meta-analysis for their own data analysis.
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Section 8.4 concludes with a summary. Most of the materials of this chapter are
summarized from Chen and Peace (2013) and the readers can read this chapter in
connection with the book for greater understanding.

8.2 Overview of Meta-analysis

We encourage readers to first read Chap. 2 of Chen and Peace (2013) before embark-
ing on a particular meta-analysis.

8.2.1 Summary Statistics and the Sources of Variations

In a typical meta-analysis with summary statistics, K independent studies are
obtained to estimate a parameter of interest, such as the effect-size (ES) of efficacy
βk (k = 1, 2, . . . , K ) between new treatment and a control. This analytic approach
can be applied to a broad range of study designs, including single-arm or multiple-
arm studies, randomized controlled trials, and observational studies. For ease of
illustration, this discussion focuses on MA with two-arm studies, where βk is some
form of the effect-size between the two groups. The most popular choices for βk

for a continuous outcome are the mean difference or the standardized mean dif-
ference; for a dichotomous outcome, the most popular choices are odds ratio, risk
ratio, and risk difference. In most cases, an estimated ̂βk of the true βk and its asso-
ciated standard error could be directly extracted from each study. The ultimate goal
of meta-analysis is to produce an optimal estimate of the overall population effect-
size by pooling the estimates ̂βk (k = 1, 2, . . . , K ) from individual studies using
appropriate statistical models.

Two sources of errors or variations exist in these summary statistics of ̂βk

from different studies with one source being the within-study variation and the
other source the between-study variation. Within-study variation is caused by sam-
pling error, which is random or non-systematic within each study. In contrast,
between-study variation may result from systematic differences among studies. If
the between-study variation can be verified as being zero, the effect estimates ̂βk

are considered homogeneous; Otherwise, the effect estimates are heterogeneous. In
MA, the assumption of homogeneity states that βk (k = 1, 2, . . . , K ) is the same in
all studies, that is

β1 = β2 = · · · = βK = β. (8.1)

If these studies are homogeneous, then two commonly used meta-analysis mod-
els can be used: the fixed-effects MA model and random-effects MA model.
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8.2.2 Effect-Size Calculations for Binary Data

8.2.2.1 Data Structure

For illustration purpose, let’s detail the effect-size (ES) calculation with binary data
for a clear understanding of meta-analysis models in the later sections.

Binary data are typically presented in a 2 by 2 table which is usually used to
report the number of events and non-events in experimental treatment group (i.e.,
E) versus the control group (i.e., C).

From a total of K studies, the data from the kth study (k = 1, . . . , K ) can be
represented as cells xEk , nEk − xEk , xCk , nCk − xCk as shown in Table 8.1.

Commonly used ESs for binary data are the risk ratio, the risk-difference, and
the odds-ratio. To simplify the notations, let’s drop the subscript k.

8.2.2.2 ES with Risk-Ratio

The effect size (i.e., βk) for the risk-ratio (RR) of experimental treatment the stan-
dard control is defined as:

ES = pE
pC

= xE/nE

xC/nC
(8.2)

where pE is the so-called risk (or risk probability) for the experimental treatment
(E) which is computed as the total number of events (xE ) divided by the total number
of patients (nE ), i.e., pE = xE

nE
with similar notations for control (C).

To construct an approximate confidence interval based on the normal distribution,
ES is transformed using the natural logarithm and then employing the delta-method
where lnES = ln(ES). The variance for lnES can be shown to be

VarlnES = 1

xE
− 1

nE
+ 1

xC
− 1

nC
(8.3)

Therefore, the approximated standard error is

SElnES = √

Var(lnES) (8.4)

Table 8.1 Nomenclature for 2 × 2 table of outcome by treatment

Events Non-events Total event

Experimental
treatment

xEk nEk − xEk nEk

Control xCk nCk − xCk nCk
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With this, the 95% CI for lnES can be expressed as

(lnES − 1.96 × SElnES, lnES + 1.96 × SElnES). (8.5)

We then transform back to the original scale for risk-ratio(RR) as:

RR = exp(lnES)

LRR = exp(lnES − 1.96 × SElnES)

URR = exp(lnES + 1.96 × SElnES)

8.2.3 ES with Risk-Difference

Even though the risk-ratio is the most commonly used in binomial data, the risk
difference is an ES which is easily understandable. The definition of risk difference
(RD) is simply the difference of the risks between two treatments as:

ESRD = p̂E − p̂C = xE
nE

− xC
nC

(8.6)

using notations from previous section.
The variance of ESRD can be estimated as:

Var (ESRD) = p̂E (1 − p̂E )

nE
+ p̂C(1 − p̂C)

nC
(8.7)

and the standard error (SE) is then calculated as SEESRD = √
Var (ESRD). With the

point estimate from Eq. (8.6) and its variance in Eq. (8.7), we can frame the same
procedures for statistical inference similar to the risk ratio.

8.2.3.1 ES with Odds-Ratio

The odds-ratio (OR) associated with an event is defined as the ratio of the odds of
the event in one study group to the odds of the event in another study group. The
odds of the event for the treatment group is

OddsE = pE
1 − pE

= xE
nE − xE

(8.8)

Similarly the odds of the event for the control group is

OddsC = pC
1 − pC

= xC
nC − xC

(8.9)
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Then the odds-ratio (OR) of the treatment group to the control group is as fol-
lows:

OR = OddsE

OddsC
(8.10)

To approximate the normal distribution in using odds-ratios, we usually convert
the odds-ratio to the log scale and estimate the log odds-ratio and its standard error
and use these numbers to perform the meta-analysis. Then we transform the results
back into the original metric.

With this direction, the log odds-ratio is

LogOR = ln(OR) (8.11)

The approximate variance can be derived using the delta method to expand (via
Taylor series) the log-odds for both treatment and control about their expected val-
ues and the variance can then be obtained as follows:

var(logOR) = 1

xE
+ 1

nE − xE
+ 1

xC
+ 1

nC − xC
(8.12)

Therefore the approximate standard error is:

SElogOR = √

VlogOR (8.13)

With these calculations in the log-scale, we then transform them back to original
scale for odds-ratios (OR) using

OR = exp(logOR) (8.14)

LLOR = exp(LLlogOR) (8.15)

and
ULOR = exp(LLlogOR) (8.16)

where LL and UL represent the lower and upper limits, respectively.

8.2.4 Fixed-Effects Meta-analysis

As shown in Eq. (8.1), a fixed-effects meta-analysis assumes homogeneity when
the underlying population effect-sizes βk are constant across all studies. A typical
fixed-effects model is described as
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̂βk = β + εk; k = 1, 2, . . . , K , (8.17)

where ̂βk represents the effect-size for study k and β is the overall global population
effect-size. The εk are the sampling error with mean 0 and KNOWN variance σ̂ 2

βk

which can be extracted or calculated from the individual studies. In general, the εk
is assumed to follow a normal distribution N (0, σ̂ 2

βk
). A pooled estimate of β in

fixed-effects MA models is given by the weighted least squares estimation

β̂F = �K
k=1wk ̂βk

�K
k=1wk

, (8.18)

and the variance of β̂F can be expressed as

Var
(

β̂F

)

= 1/�K
k=1wk (8.19)

where a popular choice of weight is wk = 1/σ̂ 2
βk
and variance σ̂ 2

βk
is estimated from

study k. Hence, the 95% confidence interval of βF is given by

β̂F − z0.025

√

Var
(

β̂F

)

≤ β ≤ β̂F + t0.025
√

Var
(

̂βF
)

, (8.20)

where z0.025 denotes the 2.5%-percentile of the standard normal distribution. Simi-
larly, a statistical z-test can be formulated as:

z = β̂F − β
√

Var
(

β̂F

)

(8.21)

to be used to test H0 : β = 0.

8.2.5 Random-Effects Meta-analysis

When meta-analyzing effect-sizes from a group of studies, it may be impractical
to follow the assumption of the fixed-effects model that the K true effect-sizes are
the same for all studies. When attempting to synthesize a group of studies using
meta-analysis, we assume that the studies have enough in common to allow the data
from those studies to be combined for statistical inference; however, it would be
impractical to require that all studies in the group have identical true effect-sizes.
It is impossible for independent studies to be identical in every respect. Therefore,
heterogeneity is likely to exist in many meta-analyses. The model that takes hetero-
geneity into account is the following random-effects meta-analysis models:
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̂βk = β + bk + εk, k = 1, 2, . . . , K , (8.22)

where for study k, ̂βk represents the observed effect-size and β the global population
effect-size. bk is now the random-effects with mean 0 and variance τ 2 represent-
ing the between-study heterogeneity, and εk is the sampling error with mean 0 and
variance σ̂ 2

βk
. It is assumed that bk and εk are independent and follow normal dis-

tributions N (0, τ 2) and N (0, σ̂ 2
βk

), respectively. Let βk = β + bk, k = 1, 2, . . . , K .

Then the random-effects model (8.22) can be simplified as

̂βk = βk + εk, (8.23)

where βk represents the true effect-size for study k. All βk (k = 1, 2, . . . , K ) are
random samples from the same normal population

βk ∼ N (β, τ 2) (8.24)

rather than being a constant in the fixed-effects MA in Eq. (2.2). Further, the
marginal variance of ̂βk is given by

Var
(

̂βk
) = τ 2 + σ̂ 2

βk
, (8.25)

which is composed of two sources of variation, i.e., the between-study variance τ 2

and within-study variance σ̂ 2
βk

. If the between-study variance τ 2 = 0, the random-
effects MA models (8.22) would reduce to the fixed-effects MA models (8.17).

Similar to the fixed-effects MA models, the within-study variance σ̂ 2
βk

can be
obtained or calculated from each study k (k = 1, 2, . . . , K ). However, the infor-
mation for determining between-study variance τ 2 is often not available, and the
methods commonly used for assessing between-study heterogeneity include the
DerSimonian-Laird’s method of moments (MM) in DerSimonian and Laird (1986),
the maximum likelihood estimation (MLE) method in Hardy and Thompson (1998),
and the restricted maximum likelihood (REML) method in Raudenbush and Bryk
(1985). As the most commonly used estimator, MM is a distribution-free and non-
iterative approach whereas both MLE and REML are parametric methods and need
iteration for estimating τ 2.

The Method-of-moments (MM) uses the Q-statistic for testing the assumption of
homogeneity:

Q = K
�
k=1

wk

(

̂βk − β̂F

)2
(8.26)

where wk = 1/σ̂ 2
βk

is the weight from the kth study, ̂βk is the kth study effect-size,

and β̂F is the global overall effect estimated from Eq. (8.18). It can be seen that Q is
calculated as: (1) compute the deviations of each effect-size from the meta-estimate
and square them (i.e., (β̂k − β̂F )2 ), (2) weight these values by the inverse-variance

http://dx.doi.org/10.1007/978-981-10-7826-2_2
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for each study, and (3) then sum these values across all K studies to produce a
weighted sum of squares (WSS) to obtain the heterogeneity measure Q.

From Eq. (8.26), it can be shown that the expected value of Q is

E(Q) = (K − 1) +U × τ 2 (8.27)

where U = ∑K
k=1 wk −

∑K
k=1 w2

k
∑K

k=1 wk
.

Under the assumption of no heterogeneity (all studies have the same effect-size),
then τ 2 would be zero and E(Q) = d f = K − 1. Based on this heterogeneity mea-
sure Q, the test of heterogeneity is conducted to address the null hypothesis that the
effect-sizes βk from all studies share a common effect-size β (i.e., the assumption
of homogeneity) and then test this hypothesis where the test statistic is constructed
using Q as a central χ2 distribution with degrees of freedom of d f = K − 1. How-
ever, a cautionary note is warranted: This χ2-test using the Q-statistic has poor
statistical power to detect true heterogeneity for a meta-analysis with a small num-
ber of studies K , but excessive power to detect negligible variability with a large
number of studies as discussed in Harwell (1997) and Hardy and Thompson (1998).
Thus, a nonsignificant test using Q-statistic from a small number of studies can lead
to an erroneous selection of a fixed-effects model when possible true heterogeneity
exists among the studies, and vice versa. The inability to conclude statistically sig-
nificant heterogeneity in a meta-analysis of a small number of studies at the 0.05
level of significance is similar to failing to detect statistically significant treatment-
by-center interaction in an MRCT. In these settings, many analysts might choose to
conduct the test of homogeneity at the 0.10 level as a means of increasing the power
of the test.

From Eq. (8.27), the method-of-moments (MM) estimate of τ 2 can be shown as
follows:

τ̂ 2 = max

(

0,
Q − (K − 1)

U

)

(8.28)

The truncation at zero in (8.28) ensures the variance estimate is non-negative.
Therefore, the estimate of the global population effect-size in random-effects MA

is given by

̂βR = �K
k=1w

∗
k
̂βk

�K
k=1w

∗
k

(8.29)

where w∗
k = 1/

(

σ̂ 2
βk

+ τ̂ 2
)

. The variance of ̂βR is simply

Var
(

̂βR
) = 1/

K
�
k=1

w∗
k

and the 95% confidence interval can be constructed by ̂βR − z0.025
√

Var
(

̂βR
)

≤ β ≤ ̂βR + z0.025
√

Var
(

̂βR
)

.
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The statistical test can be similarly formulated by:

z = β̂R − β
√

Var
(

β̂R

)

(8.30)

to be used to test H0 : β = 0 in the random-effects MA framework.

8.3 Meta-analysis with Rare-Events

8.3.1 Potential Problems

All the methods presented thus far for meta-analysis in Sect. 8.2 are based on large
sample theory as well as the theory of large sample approximations. For rare events,
these methods usually break down.

For example, when events are zeros, the methods for risk-ratio and odds-ratio
cannot be used and when the events are rare, but not all zeros, the variance estimates
for these methods are not robust which may lead to unreliable statistical inferences.
The typical remedies are to remove the studies with zero events from the meta anal-
ysis, or add a small value, say 0.5, to the rare events which could lead to biased
statistical inferences as pointed out by Tian et al. (2009) and Cai et al. (2010).

In this chapter, we use the well-known Rosiglitazone meta-analysis data to illus-
trate the bias when classical meta-analysis methods are used for rare events.

8.3.2 The Rosiglitazone Meta-analysis

In a meta-analysis for the effect of rosiglitazone on the risk of myocardial infarction
(MI) and death from cardiovascular causes, Nissen and Wolski (2007) searched the
available published literature and found 116 potentially relevant studies where 42 of
these met the inclusion criteria. Data were then extracted from the 42 publications
and combined using a fixed-effects meta-analysis model. This yielded an odds-ratio
for the rosiglitazone group to the control group of 1.43 with 95% CI of (1.03, 1.98)
and p-value = 0.03 for MI; and 1.64 with 95% CI of (0.98, 2.74) and p-value =
0.06 for death from cardiovascular causes. Based on these results, the authors con-
cluded that rosiglitazone use was statistically significantly associated with risk of
myocardial infarction, and was borderline statistically significant with death from
cardiovascular causes. Therefore using rosiglitazone for the treatment of Type-2
diabetes could lead to serious adverse cardiovascular effects.

Since its publication, numerous authors questioned the validity of the anal-
ysis and interpretation of the results. For example, Shuster and Schatz (2008)
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(which is online available at http://care.diabetesjournals.org/content/31/3/e10.full.
pdf) pointed out that the fixed-effects meta-analysis was inappropriate. They rean-
alyzed 48 (not 42) eligible studies via a new random-effects method (Shuster et al.
2007) that yielded different conclusions; i.e., a strong association with cardiac death
was found, but there was no significant association with myocardial infarction.
Other meta-analyses of data from the studies can be found from Dahabreh (2008),
Tian et al. (2009), Cai et al. (2010) and Lane (2012) (online publication available at
http://www.ncbi.nlm.nih.gov/pubmed/22218366).

In this section, we further illustrate meta-analysis for rare events using this data
with R implementations in gmeta.

8.3.3 Step-by-Step Data Analysis in R

8.3.3.1 Load the Data

The data from Tian et al. (2009), which is available as the supplementary mate-
rial at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648899/bin/kxn034_index.
html. This data can be loaded into R with the following R code chunk:

> # Load the Rosiglitazone data from excel file
> require(gdata)
> # Print the first 6 studies
> head(dat)

ID Study n.TRT MI.TRT Death.TRT n.CTRL MI.CTRL Death.CTRL
1 49653/011 357 2 1 176 0 0
2 49653/020 391 2 0 207 1 0
3 49653/024 774 1 0 185 1 0
4 49653/093 213 0 0 109 1 0
5 49653/094 232 1 1 116 0 0
6 100684 43 0 0 47 1 0

With this dataframe, we perform meta-analyses of both the risk difference
(RD) and odds-ratio (OR) for myocardial infarction (MI) and cardiovascular death
(Death). We contrast the results from the classical fixed-effects and random-effects
models using the R package meta to the results from the confidence distribution
(CD) implemented in the R package gmeta.

8.3.3.2 Meta-analysis for Myocardial Infarction (MI)

To analyze the data for MI, we first create a dataframe (only for MI) as follows:

> datMI = dat[,c("MI.TRT","MI.CTRL","n.TRT","n.CTRL")]

http://care.diabetesjournals.org/content/31/3/e10.full.pdf
http://care.diabetesjournals.org/content/31/3/e10.full.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22218366
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648899/bin/kxn034_index.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2648899/bin/kxn034_index.html
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For classical fixed-effects and random-effects meta-analysis, we make use of the
R library meta, introduced in previous chapters, and use the inverse weighting
method to combine studies. This is implemented in the following R code chunk:

> # Load the library
> library(meta)
> # Call metabin with RD=risk difference
> MI.RD.wo = metabin(MI.TRT,n.TRT,MI.CTRL,n.CTRL,data=datMI,

incr=0, method="Inverse", sm="RD")
> # Print the summary
> summary(MI.RD.wo)

Number of studies combined: k=48

RD 95%-CI z p.value
Fixed effect model 0.002 [0.001; 0.003] 3.24 0.0012
Random effects model 0.002 [0.001; 0.003] 3.24 0.0012

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0% [0%; 0%]

Test of heterogeneity:
Q d.f. p.value

27.9 47 0.9879

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2

As seen from the summary, the combined RD = 0.0018 with 95% CI of (7e −
04, 0.0028) and a p-value = 0.0012 for both fixed-effects and random-effects
models—since the Test of heterogeneity is not statistically significant (p-
value = 0.9879 and τ̂ 2 ≈ 0). Even though the RD is small and the left endpoint of
the CI is just to the right of 0, these results are consistent with the conclusion that
MIs in rosiglitazone group are statistically significantly higher than in the control
group.

Note that in the above R code chunk, the option incr is set to zero which means
no value is added to the zero MIs. In this dataframe, there are 10 studies with zero
MIs for both rosiglitazone and control. The standard errors for the RD correspond-
ing to these studies cannot be computed which is set to zero as default in this R
function call.

A typical way to adjust the zero MIs is to add a small increment of 0.5 to them
as a correction for lack of continuity, which is the default setting in the R function
call to metabin as follows:



138 D.-G. Chen and K. E. Peace

> # Call metabin with default setting to add 0.5
> MI.RD = metabin(MI.TRT,n.TRT,MI.CTRL,n.CTRL,data=datMI,

method="Inverse", sm="RD")
> # Print the summary
> summary(MI.RD)

Number of studies combined: k=48

RD 95
Fixed effect model 0.001 [0; 0.003] 1.73 0.0834
Random effects model 0.001 [0; 0.003] 1.73 0.0834

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0

Test of heterogeneity:
Q d.f. p.value

17.98 47 1

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2

With 0.5 added to the zero cells, we see from the output that the combined RD
is now 0.0014 with 95% CI of (−2e − 04, 0.0029) and p-value = 0.0834 for both
fixed-effects and random-effects models. The conclusion changed from statistically
significant to statistically non-significant. Readers may want to try to add differ-
ent increments to the zero cells and examine the effects of this artificial correc-
tion (although well founded in history of the analysis of contingency table data) for
lack of continuity. In fact, Sweeting et al. (2004) provided compelling evidence that
imputing arbitrary numbers to zero cells in continuity correction can result in very
different conclusions.

Tian et al. (2009) developed an exact and efficient inference procedure to use
all the data without this artificial continuity correction. This is a special case of the
confidence distribution (CD) framework as proved in the Supplementary Notes
at http://stat.rutgers.edu/home/gyang/researches/gmetaRpackage/. This method is
implemented into gmeta as method=“exact2”. The R code to implement this
method is as follows:

> # Call "gmeta" with method="exact2"
> MI.exactTianRD = gmeta(datMI,gmi.type="2x2",method="exact2",

ci.level=0.95,n=2000)

http://stat.rutgers.edu/home/gyang/researches/gmetaRpackage/
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The summary of this modeling can be printed as follows:

> summary(MI.exactTianRD)

Exact Meta-Analysis Approach through CD-Framework
Call:
gmeta.default(gmi = datMI, gmi.type = "2x2", method = "exact2",

n = 2000, ci.level = 0.95)

Combined CD Summary:
mean median stddev CI.1 CI.2

exp1 -4.53e-03 -5.81e-03 0.00619 -0.01777 0.020567
exp2 6.12e-04 -1.16e-03 0.00878 -0.01396 0.018077
exp3 5.97e-03 3.73e-03 0.00727 -0.00565 0.025406
exp4 1.12e-02 1.05e-02 0.01256 -0.01489 0.044330
exp5 -2.44e-03 -4.30e-03 0.00819 -0.01949 0.031133
exp6 1.75e-02 1.95e-02 0.03239 NA NA
exp7 -7.89e-03 -7.47e-03 0.01245 -0.03842 0.029153
exp8 -2.24e-02 -3.27e-02 0.02650 NA 0.027238
exp9 -2.50e-03 -2.56e-03 0.00389 -0.01194 0.009509
exp10 -1.84e-03 -4.05e-03 0.00694 -0.01605 0.026811
exp11 3.49e-03 3.79e-03 0.00504 -0.01164 0.016145
exp12 -1.53e-03 -3.44e-03 0.00622 -0.01209 0.017555
exp13 -3.08e-03 -5.39e-03 0.01073 -0.02021 0.012985
exp14 -3.91e-03 -4.61e-03 0.00536 -0.01519 0.017104
exp15 1.00e-03 -1.08e-03 0.00861 -0.01378 0.019149
exp16 5.87e-03 5.62e-03 0.01363 -0.01808 0.039631
exp17 9.03e-03 6.97e-03 0.02226 -0.03358 0.055565
exp18 -7.81e-03 -9.18e-03 0.01055 -0.02966 0.033602
exp19 -1.35e-02 -1.61e-02 0.01769 -0.05159 0.025194
exp20 2.48e-03 -3.53e-04 0.00951 -0.01477 0.030524
exp21 8.63e-03 7.78e-03 0.01272 -0.02793 0.040218
exp22 6.09e-03 5.53e-03 0.00878 -0.01952 0.028042
exp23 -1.46e-02 -1.71e-02 0.02632 NA NA
exp24 -1.49e-02 -2.85e-02 0.03846 NA 0.049259
exp25 8.28e-03 7.01e-03 0.00615 -0.00254 0.023689
exp26 7.00e-03 5.72e-03 0.02451 -0.04541 NA
exp27 -6.34e-03 -7.63e-03 0.01003 -0.03105 0.025329
exp28 -4.22e-03 -4.17e-03 0.00649 -0.01995 0.015046
exp29 -1.03e-02 -1.18e-02 0.01668 -0.05235 0.040833
exp30 -5.72e-03 -5.40e-03 0.00893 -0.02750 0.021104
exp31 2.79e-03 -1.43e-06 0.01502 -0.02461 0.047615
exp32 -9.28e-05 -8.58e-04 0.00241 -0.00421 0.009685
exp33 8.12e-04 -8.25e-05 0.00287 -0.00417 0.009115
exp34 5.67e-03 3.73e-03 0.01191 -0.01673 0.030232
exp35 -3.27e-03 -3.84e-03 0.00512 -0.01577 0.013017
exp36 -3.90e-03 -4.15e-03 0.00592 -0.01818 0.013397
exp37 -1.72e-03 -3.43e-03 0.00589 -0.01445 0.023542
exp38 1.56e-04 -1.94e-04 0.00651 -0.01712 0.018428
exp39 6.13e-04 -2.07e-03 0.00806 -0.01238 0.024941
exp40 -2.41e-04 -2.33e-03 0.00715 -0.01234 0.021490
exp41 -2.39e-03 -2.52e-03 0.00200 -0.00651 0.001540
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exp42 -4.70e-03 -4.70e-03 0.00445 -0.01419 0.003493
exp43 2.94e-03 -6.03e-07 0.01802 -0.02813 0.056682
exp44 2.10e-03 -1.27e-04 0.00812 -0.01255 0.025546
exp45 -3.43e-04 -5.37e-04 0.01453 -0.03956 0.038902
exp46 -8.29e-05 -4.24e-03 0.04255 NA NA
exp47 1.16e-04 -5.10e-07 0.00532 -0.01408 0.015145
exp48 1.43e-03 -1.07e-05 0.00424 -0.00507 0.013882
combined.cd -1.77e-03 -2.21e-03 0.00188 -0.00386 0.000878

Confidence level= 0.95

The last row contains the combined estimates and can be produced as follows:

> summary(MI.exactTianRD)$mms[49,]

mean median stddev CI.1 CI.2
combined.cd -0.00177 -0.00221 0.00188 -0.00386 0.000878

We see that the mean difference is −0.00177 with 95% CI of (−0.00386,
0.00088) indicating no statistically significantly difference between rosiglitazone
group and the control group on MI.

We now analyze the MI dataframe using the odds ratio. Similarly, the classical
fixed-effects and random-effects models can be implemented as follows:

> # Call metabin without 0.5 correction
> MI.OR.wo = metabin(MI.TRT,n.TRT,MI.CTRL,n.CTRL,data=datMI,

incr=0,method="Inverse", sm="OR")
> # Summary
> summary(MI.OR.wo)

Number of studies combined: k=38

OR 95
Fixed effect model 1.29 [0.895; 1.85] 1.36 0.1736
Random effects model 1.29 [0.895; 1.85] 1.36 0.1736

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0

Test of heterogeneity:
Q d.f. p.value

5.7 37 1

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2

> # Call metabin with default 0.5 correction
> MI.OR = metabin(MI.TRT,n.TRT,MI.CTRL,n.CTRL,data=datMI,

method="Inverse", sm="OR")
> # Print the Summary
> summary(MI.OR)
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Number of studies combined: k=38

OR 95
Fixed effect model 1.29 [0.94; 1.76] 1.57 0.1161
Random effects model 1.29 [0.94; 1.76] 1.57 0.1161

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0

Test of heterogeneity:
Q d.f. p.value

16.22 37 0.9988

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2

We see that with or without the default 0.5 continuity correction, the 95% CIs
and p-values are slightly different, but yield the same conclusion that there is no
statistically significantly difference between the rosiglitazone group and the control
group on MI.

We now can call gmeta for the exact method using the odds ratio, which is
implemented as follows:

> # Call "gmeta" for "exact1" on OR
> MI.exactLiuOR = gmeta(datMI,gmi.type="2x2",

method="exact1", ci.level=0.95,n=2000)
> # Print the summary
> summary(MI.exactLiuOR)

Exact Meta-Analysis Approach through CD-Framework
Call:
gmeta.default(gmi = datMI, gmi.type = "2x2", method = "exact1",

n = 2000, ci.level = 0.95)

Combined CD Summary:
mean median stddev CI.1 CI.2

exp1 Inf NA Inf -1.951 Inf
exp2 0.1141 -0.0044 1.360 -2.525 3.446
exp3 -1.4316 -1.4333 1.631 -5.110 2.233
exp4 -Inf NA Inf -Inf 2.274
exp5 Inf NA Inf -3.636 Inf
exp6 -Inf NA Inf -Inf 3.033
exp7 Inf NA Inf -2.920 Inf
exp8 0.9942 0.9346 0.888 -0.669 3.002
exp9 Inf NA Inf -2.939 Inf
exp10 Inf NA Inf -3.687 Inf
exp11 -Inf NA Inf -Inf 2.971
exp12 Inf NA Inf -2.625 Inf
exp13 0.7556 0.6374 1.360 -1.882 4.088
exp14 Inf NA Inf -1.922 Inf
exp15 0.0593 -0.0592 1.360 -2.581 3.392
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exp16 -0.6514 -0.6520 1.634 -4.320 3.018
exp17 -0.8065 -0.6886 1.366 -4.143 1.840
exp18 Inf NA Inf -1.928 Inf
exp19 1.1847 1.0326 1.266 -1.135 4.398
exp20 NaN NA Inf -Inf Inf
exp21 -Inf NA Inf -Inf 2.928
exp22 -Inf NA Inf -Inf 2.933
exp23 Inf NA Inf -2.909 Inf
exp24 Inf NA Inf -2.970 Inf
exp25 -Inf NA Inf -Inf 0.534
exp26 -0.4690 -0.4347 0.978 -2.603 1.466
exp27 Inf NA Inf -2.979 Inf
exp28 Inf NA Inf -2.898 Inf
exp29 Inf NA Inf -2.956 Inf
exp30 Inf NA Inf -2.921 Inf
exp31 NaN NA Inf -Inf Inf
exp32 Inf NA Inf -4.084 Inf
exp33 NaN NA Inf -Inf Inf
exp34 -0.8514 -0.7333 1.362 -4.183 1.788
exp35 Inf NA Inf -2.973 Inf
exp36 Inf NA Inf -2.876 Inf
exp37 Inf NA Inf -3.656 Inf
exp38 NaN NA Inf -Inf Inf
exp39 Inf NA Inf -4.306 Inf
exp40 Inf NA Inf -4.107 Inf
exp41 0.5133 0.5055 0.428 -0.314 1.385
exp42 0.2739 0.2760 0.251 -0.226 0.762
exp43 NaN NA Inf -Inf Inf
exp44 NaN NA Inf -Inf Inf
exp45 NaN NA Inf -Inf Inf
exp46 NaN NA Inf -Inf Inf
exp47 NaN NA Inf -Inf Inf
exp48 NaN NA Inf -Inf Inf
combined.cd 0.3300 0.3301 0.184 -0.028 0.694

Confidence level= 0.95

The combined results from this summary are on the log scale, and we transform
back to the OR as follows:

> # Use `exp' function to transform back
> exp(summary(MI.exactLiuOR)$mms[49,])

mean median stddev CI.1 CI.2
combined.cd 1.39 1.39 1.2 0.972 2

This give the OR of 1.39 with 95% CI of (0.972, 2) which again indicates that there
is no statistically significantly difference between the rosiglitazone group and the
control group on MI.

We summarize the analyses using the novel confidence distributions
approach implemented in gmeta in Fig. 8.1 with the followingR code chunk where
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Fig. 8.1 Confidence Distributions from Both Exact Methods

we only include the CDs for studies 1, 10, 15, 30, 40 as well as the combined con-
fidence distribution:

> # Plot the gmeta confidence distributions
> par(mfrow=c(1,2))
> plot(MI.exactLiuOR, trials=c(1,10,15,30,40), option=T,

xlim=c(-5,5),xlab="Liu et al's Exact log(OR) for MI")
> plot(MI.exactTianRD, trials=c(1,10,15,30,40), option=T,

xlim=c(-0.04,0.04), xlab="Tian et al's Exact RD for MI")

8.3.3.3 Data Analysis for Cardiovascular Death (Death)

Similarly we use the same steps to analyze the data for cardiovascular death (Death).
We first create a dataframe only for Death as follows:

> datDeath = dat[,c("Death.TRT","Death.CTRL","n.TRT","n.CTRL")]
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For risk difference, the classical fixed-effects and random-effects meta-analysis
can be performed using the following R code chunk:

> # Call metabin with RD=risk difference
> Death.RD.wo = metabin(Death.TRT,n.TRT,Death.CTRL,n.CTRL,

data=datDeath,incr=0, method="Inverse", sm="RD")
> # Print the summary
> summary(Death.RD.wo)

Number of studies combined: k=48

RD 95
Fixed effect model 0.001 [0; 0.002] 2.6 0.0094
Random effects model 0.001 [0; 0.002] 2.6 0.0094

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0

Test of heterogeneity:
Q d.f. p.value

13.69 47 1

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2

> # Call metabin with default setting to add 0.5
> Death.RD = metabin(Death.TRT,n.TRT,Death.CTRL,n.CTRL,

data=datDeath, method="Inverse", sm="RD")
> # Print the summary
> summary(Death.RD)

Number of studies combined: k=48

RD 95
Fixed effect model 0.001 [-0.001;0.002] 0.943 0.3455
Random effects model 0.001 [-0.001;0.002] 0.943 0.3455

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0

Test of heterogeneity:
Q d.f. p.value

7.92 47 1

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2

Again, we see from the summaries that the combined RD = 0.001 with 95%
CI of (0, 0.002) and a p-value = 0.0094 for both fixed-effects and random-effects
models without continuity correction. This statistical significance vanishes when 0.5
is added to the zero cells in 25 studies. The combined RD is now 0.001 with 95% CI
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of (−0.001, 0.002) and a p-value = 0.943 for both fixed-effects and random-effects
models.

With gmeta the risk difference is implemented as follows:

> # Call "gmeta" with method="exact2"
> Death.exactTianRD = gmeta(datDeath,gmi.type="2x2",

method="exact2", ci.level=0.95,n=2000)

The summary for this modeling is printed as follows:

> summary(Death.exactTianRD)

Exact Meta-Analysis Approach through CD-Framework

Call:
gmeta.default(gmi = datDeath, gmi.type = "2x2", method = "exact2",

n = 2000, ci.level = 0.95)

Combined CD Summary:
mean median stddev CI.1 CI.2

exp1 -1.55e-03 -2.97e-03 0.005132 -0.01274 0.02063
exp2 1.08e-03 -1.15e-06 0.004528 -0.00749 0.01427
exp3 2.08e-03 -9.16e-07 0.005188 -0.00554 0.01723
exp4 1.81e-03 -4.80e-07 0.008317 -0.01362 0.02693
exp5 -2.94e-03 -4.31e-03 0.008163 -0.01947 0.03113
exp6 1.31e-04 -1.19e-03 0.023533 NA NA
exp7 6.87e-05 -5.92e-07 0.008521 -0.02292 0.02371
exp8 -6.73e-03 -1.45e-02 0.026914 NA NA
exp9 4.45e-05 3.23e-05 0.002701 -0.00718 0.00772
exp10 1.78e-03 -4.23e-04 0.006930 -0.01028 0.02180
exp11 -3.02e-03 -5.11e-03 0.010069 -0.01917 0.01200
exp12 2.52e-03 -3.20e-07 0.006694 -0.00725 0.02227
exp13 3.81e-03 4.10e-03 0.005403 -0.01231 0.01747
exp14 1.11e-03 -4.11e-07 0.004256 -0.00700 0.01394
exp15 -4.12e-03 -5.03e-03 0.005708 -0.01607 0.01830
exp16 4.84e-03 5.62e-03 0.013645 -0.01808 NA
exp17 2.48e-04 -1.00e-03 0.010064 -0.02675 0.02961
exp18 -3.44e-03 -4.51e-03 0.009007 -0.02128 0.03371
exp19 -6.44e-03 -7.02e-03 0.010694 -0.03353 0.02605
exp20 -3.97e-03 -5.54e-03 0.009487 -0.02297 0.03750
exp21 1.54e-04 -3.44e-04 0.008721 -0.02279 0.02449
exp22 1.47e-04 -1.65e-04 0.006004 -0.01583 0.01705
exp23 8.78e-05 -7.53e-07 0.018110 NA NA
exp24 -3.63e-05 -1.75e-03 0.026734 NA NA
exp25 -9.62e-04 -1.89e-03 0.003275 -0.00815 0.01320
exp26 -4.80e-03 -1.32e-02 0.025969 NA 0.03232
exp27 -1.21e-02 -1.46e-02 0.012116 NA 0.02518
exp28 -4.21e-03 -4.17e-03 0.006489 -0.01995 0.01505
exp29 1.58e-04 -3.29e-04 0.011882 -0.03109 0.03325
exp30 -5.62e-03 -5.39e-03 0.008944 -0.02750 0.02110
exp31 1.27e-03 -9.28e-07 0.015018 -0.02465 NA
exp32 -9.40e-05 -8.58e-04 0.002395 -0.00421 0.00968
exp33 -6.91e-04 -1.52e-03 0.002826 -0.00651 0.01123



146 D.-G. Chen and K. E. Peace

exp34 5.64e-03 4.19e-03 0.008280 -0.01679 0.02624
exp35 -3.28e-03 -3.86e-03 0.005116 -0.01577 0.01302
exp36 -7.01e-05 -1.60e-04 0.003964 -0.01086 0.01088
exp37 1.57e-03 -1.90e-04 0.006005 -0.00930 0.01914
exp38 1.51e-04 -1.95e-04 0.006493 -0.01709 0.01843
exp39 3.30e-04 -2.08e-03 0.008065 -0.01239 0.02494
exp40 -6.02e-04 -2.33e-03 0.007125 -0.01233 0.02149
exp41 -8.61e-04 -9.91e-04 0.001884 -0.00499 0.00301
exp42 1.71e-04 1.26e-04 0.001499 -0.00377 0.00351
exp43 8.82e-04 -3.89e-07 0.018000 -0.02815 NA
exp44 1.87e-03 -1.20e-04 0.008131 -0.01253 0.02555
exp45 -3.66e-04 -5.37e-04 0.014531 NA NA
exp46 -3.34e-04 -4.23e-03 0.042551 NA NA
exp47 1.23e-04 -5.15e-07 0.005314 -0.01412 0.01515
exp48 1.43e-03 -6.97e-06 0.004238 -0.00507 0.01388
combined.cd -7.59e-04 -8.93e-04 0.000622 -0.00233 0.00135

Confidence level= 0.95

The last row contained the combined estimates and is produced as follows:

> summary(Death.exactTianRD)$mms[49,]

mean median stddev CI.1 CI.2
combined.cd -0.000759 -0.000893 0.000622 -0.00233 0.00135

We see that the mean difference is −0.000759 with 95% CI of (−0.00233,
0.00135) indicating no statistically significant difference between rosiglitazone
group and the control group on cardiovascular death.

Similarly for the odds ratio, the classical fixed-effects and random-effects models
are implemented as follows:

> # Call metabin without 0.5 correction
> Death.OR.wo = metabin(Death.TRT,n.TRT,Death.CTRL,n.CTRL,

data=datDeath,incr=0,method="Inverse", sm="OR")
> # Summary
> summary(Death.OR.wo)

Number of studies combined: k=23

OR 95%-CI z p.value
Fixed effect model 1.2 [0.642; 2.24] 0.568 0.5699
Random effects model 1.2 [0.642; 2.24] 0.568 0.5699

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0% [0%; 0%]

Test of heterogeneity:
Q d.f. p.value

1.02 22 1

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
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> # Call metabin with default 0.5 correction
> Death.OR = metabin(Death.TRT,n.TRT,Death.CTRL,n.CTRL,

data=datDeath, method="Inverse", sm="OR")
> # Print the Summary
> summary(Death.OR)

Number of studies combined: k=23

OR 95%-CI z p.value
Fixed effect model 1.31 [0.805; 2.13] 1.08 0.2783
Random effects model 1.31 [0.805; 2.13] 1.08 0.2783

Quantifying heterogeneity:
tau^2 < 0.0001; H = 1 [1; 1]; I^2 = 0% [0%; 0%]

Test of heterogeneity:
Q d.f. p.value

4.79 22 1

Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2

We see that with or without the default 0.5 continuity correction, the 95% CIs
and p-values are slightly different, but yield the same conclusion that there is no
statistically significant difference between the rosiglitazone group and the control
group on cardiovascular death.

Now we call gmeta for the exact method for the odds ratio which is imple-
mented as follows:

> # Call "gmeta" for "exact1" on OR
> Death.exactLiuOR = gmeta(datDeath,gmi.type="2x2",

method="exact1", ci.level=0.95,n=2000)
> # Print the summary
> summary(Death.exactLiuOR)

Exact Meta-Analysis Approach through CD-Framework

Call:
gmeta.default(gmi = datDeath, gmi.type = "2x2", method = "exact1",

n = 2000, ci.level = 0.95)

Combined CD Summary:
mean median stddev CI.1 CI.2

exp1 Inf NA Inf -3.651 Inf
exp2 NaN NA Inf -Inf Inf
exp3 NaN NA Inf -Inf Inf
exp4 NaN NA Inf -Inf Inf
exp5 Inf NA Inf -3.636 Inf
exp6 NaN NA Inf -Inf Inf
exp7 NaN NA Inf -Inf Inf
exp8 0.461 0.426 0.979 -1.473 2.59
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exp9 NaN NA Inf -Inf Inf
exp10 NaN NA Inf -Inf Inf
exp11 0.779 0.661 1.360 -1.859 4.11
exp12 NaN NA Inf -Inf Inf
exp13 -Inf NA Inf -Inf 2.95
exp14 NaN NA Inf -Inf Inf
exp15 Inf NA Inf -1.934 Inf
exp16 -0.651 -0.652 1.634 -4.320 3.02
exp17 NaN NA Inf -Inf Inf
exp18 Inf NA Inf -3.627 Inf
exp19 Inf NA Inf -2.937 Inf
exp20 Inf NA Inf -3.657 Inf
exp21 NaN NA Inf -Inf Inf
exp22 NaN NA Inf -Inf Inf
exp23 NaN NA Inf -Inf Inf
exp24 NaN NA Inf -Inf Inf
exp25 Inf NA Inf -3.653 Inf
exp26 0.712 0.594 1.365 -1.934 4.05
exp27 Inf NA Inf -1.278 Inf
exp28 Inf NA Inf -2.898 Inf
exp29 NaN NA Inf -Inf Inf
exp30 Inf NA Inf -2.921 Inf
exp31 NaN NA Inf -Inf Inf
exp32 Inf NA Inf -4.084 Inf
exp33 Inf NA Inf -3.719 Inf
exp34 -Inf NA Inf -Inf 2.85
exp35 Inf NA Inf -2.973 Inf
exp36 NaN NA Inf -Inf Inf
exp37 NaN NA Inf -Inf Inf
exp38 NaN NA Inf -Inf Inf
exp39 Inf NA Inf -4.306 Inf
exp40 Inf NA Inf -4.107 Inf
exp41 0.183 0.180 0.435 -0.672 1.05
exp42 -0.246 -0.186 0.877 -2.235 1.40
exp43 NaN NA Inf -Inf Inf
exp44 NaN NA Inf -Inf Inf
exp45 NaN NA Inf -Inf Inf
exp46 NaN NA Inf -Inf Inf
exp47 NaN NA Inf -Inf Inf
exp48 NaN NA Inf -Inf Inf
combined.cd 0.385 0.385 0.343 -0.268 1.09

Confidence level= 0.95

The combined results from this summary are on the log scale. We transform back to
the OR as follows:
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> exp(summary(Death.exactLiuOR)$mms[49,])

mean median stddev CI.1 CI.2
combined.cd 1.47 1.47 1.41 0.765 2.97

This gives an OR of 1.47 with 95% CI of (0.765, 2.97), which again indicates
that there is no statistically significant difference between the rosiglitazone group
and the control group on cardiovascular death.

8.4 Discussion

In this chapter, we discussed meta-analysis of rare events based upon the well-
known rosiglitazone dataset using the novel confidence distribution approach devel-
oped to unify the framework of meta-analysis. We pointed out that the classical
fixed-effects and random-effects models are not appropriate for rare events. We rec-
ommend the new confidence distribution procedure which can combine test results
based on exact distributions. The application of this new procedure is made easy
with the R package gmeta.

For further reading, we recommend Sutton et al. (2002) which provides a review
of meta-analyses for rare and adverse event data from the aspects of model choice,
continuity corrections, exact statistics, Bayesian methods and sensitivity analysis.
There are other newly developed methods for meta-analysis of rare-events. Cai
et al. (2010) proposed some approaches based on Poisson random-effects models
for statistical inference about the relative risk between two treatment groups. To
develop fixed-effects and random-effects moment-based meta-analytic methods to
analyze binary adverse-event data, Bhaumik et al. (2012) derived three new methods
which include a simple (unweighted) average treatment effect estimator, a new het-
erogeneity estimator, and a parametric bootstrapping test for heterogeneity. Readers
may explore these methods for other applications.
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Chapter 9
Missing Data

Steven A. Gilbert and Jared C. Christensen

Investigators, sponsors, and regulators should design clinical trials consistent with the goal
of maximizing the number of participants who are maintained on the protocol-specified
intervention until the outcome data are collected (National Research Council 2010).

9.1 Introduction

Missing data in clinical trials are defined as planned information that was not col-
lected. Examples of these include a subject withdrawing consent before the end of a
trial or a laboratory test that cannot be obtained. Depending on why and how much
data are missing, the results and interpretability of the trial can be jeopardized. For-
tunately, there is a vast literature about statistical methods that can handle missing
data. Probably the most important—and least technical—point in this literature is
to do everything possible beginning at the trial design stage to avoid missing data.
Even when the trial is designed to minimize missing data, the analysis plan should
address how the analysis will proceed in the presence of missing data. This chapter
should be viewed as a springboard into understanding the minimal amount of theory
needed to apply these methods and begin reading the source literature.

In order to have a short exposition of the necessary theory, we will limit most of
or discussion to analyses with missing continuous response data. Missing covariates
will not be addressed since covariates in clinical trials are almost always baseline
variables that are either completely collected, or not collected at all. Though missing

S. A. Gilbert (B)
Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
e-mail: Steven.A.Gilbert@Pfizer.com

J. C. Christensen
e-mail: Jared.Christensen@Pfizer.com

© Springer Nature Singapore Pte Ltd. 2018
K. E. Peace et al. (eds.), Biopharmaceutical Applied Statistics Symposium,
ICSA Book Series in Statistics, https://doi.org/10.1007/978-981-10-7826-2_9

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-7826-2_9&domain=pdf


152 S. A. Gilbert and J. C. Christensen

covariates may be an important factor in epidemiological and other studies, they are
not addressed in this chapter.

While this chapter is a review of common methods; its unique aspect is in orga-
nizing the material around two common overlapping themes:

1. Missing data can require the consideration of multiple models that we call the
analysis model, missingness model and the complete data model.

2. Missing data is best viewed in terms of an entire data set and thought of as
incomplete data. This allows us to ‘borrow’ information from observed vari-
ables to reduce bias and increase efficiency. Mathematically, this often results
in writing down a likelihood for the complete data, that is both observed and
missing, and then integrating (i.e., averaging) out the missing data. Therefore,
instead of only considering missing responses and observed responses we also
consider covariates and auxiliary variables. Auxiliary variables help predict who
will have missing data or predict which observations will be missing but are not
included in the analysis model.

In the sections that follow we link these themes to methods from the literature.
A running example is used to show that the choices made for the three models and
how they are used to obtain a treatment effect (Sect. 9.8) will effect the final results
and requires thoughtful consideration.

9.2 Preliminaries

Before explaining the multiple models enumerated above, we introduce some basic
concepts and nomenclature.

9.2.1 Monotone Versus Non-monotone Missing Data

The longer a trial runs, themore opportunity there is to havemissing data.Many trials
measure an outcome at multiple times producing longitudinal or repeated measures
data. Each subject contributesmultiple observations producing a trajectory over time.
Even a studywith only baseline and follow-up can be considered a repeatedmeasures
study.

If measurements are taken as planned and then stop completely before the study
ends, the subject is said to have amonotonemissing data pattern.Whenmeasurements
aremissing at an intermediate time point followed by observedmeasurements at least
one additional time point, the missing data pattern is said to be non-monotone. As an
example consider a publicly available synthetic data set based on a clinical trial for the
treatment of depression available at www.missingdata.org.uk. In this trial subjects
had their Hamilton Depression Rating Scale (HAM-D) measured at baseline and

www.missingdata.org.uk
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Fig. 9.1 Monotone missing data

weeks 1, 2, 4 and 6. As seen in the spaghetti plot, Fig. 9.1, with separate panels for
each combination of treatment (Drug or Placebo) and last visit (week 1, 2, 4 or 6),
the data set has all monotone missing data. The panels on the bottom row are the
completers, the panels above that group subjects by the time of their last visit.

The distinction between monotone and non-monotone is important for three rea-
sons. First, not all missing data methods can be applied to non-monotone missing
data. Secondly, non-monotone missing data is often handled in a two part fashion,
first dealingwith the early gaps in the data and then going on to usemethods that work
with monotone missing data. Third, monotone and non-monotone missing data pat-
terns can be created by different underlying causes. Subjects may intermittently miss
visits to a clinic for reasons unrelated to their health status, for example, inclement
weather; while withdrawing from a trial early is more likely related to their health
and study drug (e.g., an adverse event or an exacerbation of their symptoms).
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9.2.2 Missing Data Versus Missing Information

Missing data does not necessarily imply we are missing information, particularly in
‘outcome’ trials. Trials can be grouped into outcome trials and symptomatic trials
(O’Neill and Temple 2012). Outcome trials evaluate easily measured endpoints such
asmortality in cardiac subjects.While our depression trial or a trial for a skin disease,
plaque psoriasis, would be classified as symptomatic trials.

As a hypothetical example, suppose subjects with a history of heart disease were
enrolled in a trial testing a new cardiac drug. The primary endpoint is a 6minute
walk test, where a subject is asked to walk quickly on a hard surface for 6minute and
the total distance walked is recorded. Subject A withdraws consent prior to the last
visit and leaves the trial. Subject B dies from a cardiac arrest before their last visit.
Subject A has missing data and provides no information for their final visit, subject
B on the other hand provides compelling information about their cardiac status at
their last visit even though they have missing data.

In contrast, consider the same scenario in a plaque psoriasis trial measuring the
Psoriasis Area Severity Index (PASI), a measure of the extent and severity of a
subject’s skin lesions. Again subject A withdraws consent and subject B dies from
a cardiac arrest. Now neither subject provides data or information on the course of
their plaque psoriasis. Scientific judgment is necessary to put the data into context,
statistical methods alone are not sufficient.

9.2.3 Notation

Wenowconsider notation that can describe longitudinal data and distinguish between
a vector of values, denoted with capital letters and single data points denoted with
lowercase letters. This notation can also be used for single responses aswell if vectors
of length 1 are used. The complete response data is Y = {Y1, . . . ,Yn} where each Yi
is a vector containing the complete data on the endpoint of interest for subject i and
yit is the response for subject i at time t . Similarly R = {R1, . . . , Rn} contains the
response indicator for all subjects at all time points with rit the response indicator
equal to 1 if the data are observed for subject i at time t and 0 otherwise.1

It is convenient to have notation separating the observed from the missing data;
define Y = {YO ,YM } where YO = {Y1O , . . . ,YnO} are the observed responses for
subjects i = 1, . . . , n and YM = {Y1M , . . . ,YnM } are the unobserved or missing
responses for these subjects. We will refer to Yi = {YiO ,YiM } as the complete data
for subject i . Furthermore, let X = {X1, . . . , Xn} contain the treatment assignment
and other baseline covariates.

1The model can be extended further by allowing R to take on more than two values indicating
multiple response patterns. This will be necessary for applying pattern mixture models.
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9.3 Analysis Model

Using the depression data as an example begin by examining basic summary statistics
of change from baseline HAM-D and baseline HAM-D grouped by gender and drug
treatment; these summaries are displayed in Table9.1. First note that about 25%
of the total response data are missing. This is a substantial amount and cannot be
ignored. Furthermore, the male placebo subjects have the highest rate of missing
data (100% − 69% = 31%) and the smallest decrease from baseline, −4.73. They
also have the lowest mean baseline depression score, 16.97.

Based on the summary statistics in Table9.1 a treatment effect contrast can be
calculated. Using equal weights the contrast is:

(0.5 × −5.35 + 0.5 × −4.73) − (0.5 × −8.89 + 0.5 × −7.69) = 3.25.

Contrast weights calculated with randomized proportions (47/84, 37/84, 56/88,
32/88) or observed proportions (35/64, 29/64, 43/65, 22/65) provide similar results.

Table9.1 also shows there are small differences in the average baseline HAM-D
scores in gender by treatment groups. Examining the relationship between baseline
and change scores can be done with Fig. 9.2, where there is a relationship between
baseline and change scores only in the treated subjects.

Because change from baseline HAM-D at week 6 can be regarded as a continuous
variable we choose to analyze the data with an analysis of covariance (ANCOVA),
with treatment, baseline HAM-D and gender as fixed effects. Using R’s modeling
syntax, the model can be written as,

Change ∼ Drug + Gender + Baseline,

indicating that the categorical variables, Drug (Drug or Placebo), Gender (Male or
Female) and the continuous baseline HAM-D score are all main effects.

A naive approach is to ignore the missing data and analyze only the complete
cases (CC), that is we fit a linear model to the subjects that have data through week
6 as follows:

Table 9.1 Summary of change from baseline scores

Drug Gender N Nobs Mean
baseline

Mean
change

SD
change

Percent
observed
(%)

DRUG F 47 35 18.77 −8.89 8.42 74

DRUG M 37 29 18.46 −7.69 6.10 78

PLACEBO F 56 43 17.32 −5.35 6.31 77

PLACEBO M 32 22 16.97 −4.73 5.91 69
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Fig. 9.2 Depression data by gender and treatment

lmcc <- lm(Change_wk6 ˜ Drug + Gender + Baseline)

The estimated treatment difference from the model is taken as the β coefficient
for the drug effect, an overall contrast comparing drug to placebo. The resulting
treatment contrast from this analysis is displayed in Table9.2 along with treatment
contrasts from three reduced models. The model with only a drug effect which
directly compares the average change scores without adjustments for baseline or
gender is 3.21, almost identical to the contrast derived above from summaryTable9.1.

Table 9.2 Summary Complete cases treatment differences

Model Estimate Standard error

Drug 3.21 1.20

Drug + Baseline 2.66 1.17

Drug + Gender 3.31 1.21

Drug + Gender + Baseline 2.76 1.19
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Including gender in themodel increases the contrast slightly, however, the twomodels
that adjust for baseline have significantly lower treatment contrasts, 2.66 and 2.76.
We return to the reason for these differences later, after introducing the missingness
and complete data models.

9.4 A Model for Missingness

A model for missingness is simply a model for the responder variable R. In practice
this will be a logistic regression or similar model such as probit regression. As an
example consider the following logistic model with a three way interaction between
the continuous baseline score, drug and gender with an additional additive term for
site included to illustrate the fact that the missingness model can contain different
covariates than the analysis model. The model can be fit with the following R code,

mmodel1 <- glm(r ~ Drug:Gender:Baseline +
Site , family=binomial(link="logit")).

The first use we have for this model is inverse probability weighting, the topic of the
next session.

9.5 Inverse Probability Weighting

Inverse probability weighting (IPW) was proposed for survey inference by Horvitz
and Thompson in the 1950s and is also used in Monte Carlo simulations under the
guise of importance sampling (Kang and Schafer 2007).

To gain intuition, suppose we can obtain a random sample, {yi , . . . , yn} drawn
from a continuous distribution f (y), then the mean of the distribution can be esti-
mated using the sample mean,

μ f (y) = E[Y ] =
∫

y f (y)dy � 1

n

∑
yi .

Now suppose we want the mean under a different distribution, g, then consider
the following,

μg(y) =
∫

yg(y)dy

=
∫

y
g(y)

f (y)
f (y)dx

� 1

n

∑ g(yi )

f (yi )
yi

= 1

n

∑
wi yi ,
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where wi = g(yi )/ f (yi ). Each wi is a ratio of the probabilities of yi being drawn
from density g instead of f . Values that are likely under g get large weights, while
unlikely values get small weights in just the right proportion so that expected values
are consistent estimates of their population average under g. Therefore, theweighting
can be used to take samples drawn from one distribution and calculate a mean or any
expectation under a second distribution, if the distributions have the same support.
When data are missing, this method can be used to take the complete cases who
may no longer represent the entire population and adjust the mean to represent the
population.

In practice, a logistic regression or similar model is fitted to the response indicator
to obtain predicted probabilitiesπi that each observationwill be observed conditional
on the terms in the logistic regression model. Observations with a small πi are very
valuable (they are not observed often), therefore they require a largeweight calculated
as wi = 1/πi . There are two basic estimators that incorporate these weights;

μ̂(y)I PW1 = 1

n

∑ ri yi
πi

= 1

n

∑
wi ri yi , (9.1)

μ̂(y)I PW2 =
[∑ ri

πi

]−1 ∑ ri yi
πi

=
[∑

wi ri
]−1 ∑

wi ri yi , (9.2)

which are both consistent forμ if the weights are correctly modeled (Cao et al. 2009)
Returning to the depression example, we use logistic regression to model the

probability that each patient has week 6 data, P(ri = 1). The probabilities are output
from the model and transformed into inverse probability weightswi = 1/P(ri = 1),

weight1 <- 1/predict(mmodel1, type="response")

which can then be used as weights to a regression function.
It is good practice to examine the weights used in an analysis. Boxplots of the

weights for the depression analysis are seen in Fig. 9.3, alongwith the average weight
displayed in each box. It is clear that the male placebo group which had the greatest
missing data rate has the highest weights on average. The intuitive justification is
that the weights are recreating the original sample, assuming that the missing data
looks like the observed data. For example, if we only used the treatment and gender
information in the model, then the probability of observing data for any of the male
placebo subject is 22/32 ≈ 0.69, so that the weights would be 32/22 ≈ 1.45 for
each male placebo subject. That is each completely observed male placebo subject
counts for 1.45 subjects in the analysis.

Looking again at Fig. 9.3 one possible drawback of this method is some outlying
weights. An IPW analysis can suffer from the undue influence of a small number of
large weights. In addition, the further the weights differ from equal weighting, 1/n,
the greater the standard error of the mean estimate.
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Fig. 9.3 Inverse probability weights

As described earlier an IPW analysis can be combined with the analysis model
by introducing the weights into a standard regression. For example, the weights can
be used with an analysis of variance model (ANOVA) as follows,

ipw1 <- lm( Change_wk6 ˜ Drug, weights= weight1) .

The regression output has a mean difference of 3.3 and standard error of 1.21.
However, the standard error is not correct because of the use of estimated weights.
The regression analysis treats the weights as fixed known quantities and does not
adjust for the fact they are estimated and not known. Analytical calculations of the
standard error are difficult but numerical estimation with a bootstrap algorithm can
be implemented. Using a nonparametric bootstrap, the estimated standard error is
slightly higher, 1.31, as expected.

The IPW weighting can also be applied to models with covariates. Using these
weights with the original analysis model including Drug, Gender and Baseline,
resulted in a estimated mean difference of 2.9 and a bootstrapped standard error
of 1.34.

Like the complete case estimates using the analysis model alone in the previous
section, the results change depending on our choices for themissingness and analysis
models. We return to this topic later, but first look at complete data models.
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9.6 Complete Data Model

A model for the complete data describes both the observed and missing data. This
may or may not be the same as the analysis model. An analysis model could be
much simpler, such as an ANOVA model with only a treatment effect, ignoring all
other variables. The complete data model makes use of the second theme from the
introduction, viewingmissing data as incomplete data. The entire data set hasmissing
values, but the data has structure and that structure allows us to borrow information
from observed data to help infer what happens in unobserved data.

As an illustration for the depression data consider a linear model that allows a
different slope for each combination of gender and drug treatment. This model can
be fitted in R as follows,

cd1 <- lm( Change_wk6 ˜ Drug:Gender:Baseline),

Predicted values can be calculated for all subjects based on this model and used to
calculate a treatment contrast,

Predicted <- predict(cd1, hamd.la)

reg1 <- lm(Predicted ˜ Drug)

The treatment contrast is calculated to be 3.6. The reported standard error from the
regression on the predicted values does not accurately reflect the true standard error,
since information on the variability of the data is lost when looking only at fitted
values which do not include random error. As before, a bootstrap can used to obtain
a valid estimate of 1.6.

The analysis was repeated using a complete data model with a single slope,

cd2 <- lm( Change_wk6 ˜ Drug + Gender + Baseline) .

The treatment contrast is now 3.16 with a standard error of of 1.17.

9.7 It Is All About the Weighting

The missing data methods examined so far all apply different weightings to the
observed responses. The weighting methods obviously specify weights for each
observation in an explicit manner. Linear models do so in an implicit manner. Recall
that for a linear model,

Y = Xβ + e,

where; Y is an n × 1 column vector of responses, X is an n × p design matrix, e
is an n × 1 column vector of error terms with E(e) = 0 and Var(e) = V an n × n
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covariance matrix. The solution of the normal equation for the parameter vector β

is,
β̂ = (XT V−1X)XT V−1Y. (9.3)

The p × n matrix
(XT V−1X)XT V−1,

has a row for each β parameter and a column for each observation yi , therefore,
the regression estimates (i.e., the β’s) are calculated as weighted sums of the obser-
vations. If V is a diagonal matrix and all error terms have equal variability, (i.e.,
V = σ 2 I ), where I is an n × n identity matrix, the V−1 terms cancel out and

β̂ = (XT X)XTY.

The β estimates are still weighted sums of observations, but now the weights are
determined by the X matrix alone.

Suppose we want to estimate a mean response of a simple random sample, Y =
{y1, . . . , yn} using IPW weights. The linear model framework above can be used
with a single vector of 1’s as the design matrix and replacing V−1 with a diagonal
matrix of weights, W , in Eq.9.3 to obtain

β̂ = (XTW X)XTWY.

showing that adding weights is equivalent to specifying a particular form of het-
eroscedasticity. When considering longitudinal data, correlations between observa-
tions on a single subject need to be accounted for, therefore the calculations will need
to incorporate both a correlation structure and weights. This can done by replacing
V in Eq.9.3 with W−1/2VW−1/2.

Weighting of the observations is even more transparent when examining the fitted
or predicted values used in Sect. 9.6,

Ŷ = (XT V−1X)XT V−1Y = HY,

where H is the n × n hat matrix that transforms the data Y to estimates Ŷ by matrix
multiplication. Each row of H is an n vector {Hi1 . . . , Hin}, where Hi j is the row i ,
column j element of H . The entries of H define each ŷi as weighted average of the
observed yi as follows,

ŷi =
n∑
j=1

Hi j y j .

There is a further level of weighting in the Sect. 9.6 analysis induced by averaging
over predictions for all subjects including thosewithmissing data. This re-weights the
contrast to reflect the original randomized proportion in each treatment arm instead
of the observed proportions in the CC data.
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The point of this discussion is that regression modeling and IPW weighting both
produce estimates by calculating weighted linear combinations of the data. Regres-
sionmethods highlight the contributions of the variables in the analysis and define the
weights implicitly while weighting methods focus on the weights and use covariates
implicitly. However, both methods depend heavily on our choice of models and how
we use the models to calculate a treatment contrast, the topic of the next section.

9.8 Treatment Contrast

Let us return to the question of why the treatment contrasts illustrated so far dif-
fer from one another. Empirically, the treatment differences depended primarily on
whether baseline was included in the modeling, while gender had a minor effect. A
graphical representation of two models for change from baseline that depend only
on drug and baseline value can shed some light on what is happening.

Fig. 9.4 ANCOVA with single slope
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Fig. 9.5 ANCOVA with two slopes

The first model, graphed in Fig. 9.4, constrains both regression lines to a single
slope, while the second model, graphed in Fig. 9.5, allows a different slope for each
drug group (note that the placebo slope is very close to zero in the figure). The
figures have the individual data as well as the drug group specific regression lines.
The larger filled in circle and triangle lying on the regression lines are placed at the
average baseline score for each group indicating the predicted change score averaged
over the baseline values for a treatment group.

For linear models and generalized linear models (GLMs) with an identity link,
the average of the response is equal to the response calculated at the average value of
the covariates. For example, consider the average of the placebo subjects predicted
values,



164 S. A. Gilbert and J. C. Christensen

1

nPlb

∑
i∈Plb

ŷi = 1

nPlb

∑
i∈Plb

βI nt + βPlb + βSlopePlb baselinei

= βI nt + βPlb + βSlopePlb
1

nPlb

∑
i∈Plb

baselinei

= βI nt + βPlb + βSlopePlb μ̄BaselinePlb .

Making the same calculation for treated subject would result in

βI nt + βDrug + βSlopeDrug μ̄BaselineDrug .

It can be argued that a fair treatment comparison in a controlled clinical trial should
hold the baseline score fixed, since we want to isolate the effect of treatment from
all other factors. In terms of the ANCOVAmodels, this means looking at the vertical
separation between the regression lines at a fixed baseline value on the x-axis. If
there is a single slope, as in Fig. 9.4, the result is the same for any baseline value,
as long as it is the same for both treatment groups. This type of comparison is done
automatically when comparing groups with least squares means in SAS. Even with
a single slope, if the treatment contrast is made using different baseline averages
the treatment difference can be made larger or smaller depending upon where the
averages fall. Figure9.4 shows that using the observed treatment specific baseline
averages would increase the treatment contrast.

Different slopes, as in Fig. 9.5, present a more difficult problem. Even if the
baseline score is held fixed across treatment groups, the treatment difference will
vary widely depending upon where the comparison is made. Applying the least
squares means strategy, contrasting the groups at the average baseline HAM-D score
of 17.90 (dashed vertical line) in all subjects, the estimated treatment contrast is 2.70.

To sum up, even after an analysis model and missing data strategy have been
chosen, the details of how the analysis model will be used to estimate the treatment
contrast still needs to be carefully chosen.

9.9 Selection Model Factorization

A full likelihood based approach contains a probability model for both the complete
data and the missingness process that are combined into a single joint likelihood. A
selection model factorization of this joint likelihood is used to classify missing data
as missing completely at random (MCAR), missing at random (MAR) or missing not
at random (MNAR). In practice, MCAR, MAR and MNAR determine how difficult
it is to analyze the data with missing values and what type of statistical methods are
appropriate. If the data are MCAR, the missing data can be ignored and any type
of modeling, including summary statistics such as the mean and median provide
consistent estimates of the population parameters. If the data areMNAR, the observed
data alone is not enough to provide consistent estimates of population parameters;
un-testable assumptions about the missing data are needed to obtain estimates. MAR
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is a middle ground where simple summary statistics are not consistent but correctly
specified likelihood based analyses can be used ignoring themissing datamechanism.

The selection model factors the joint likelihood of the complete data and response
indicators as follows:

P[YO ,YM , R|X ] = P[R|YO ,YM , X ] × P[YO ,YM |X ]. (9.4)

The first term on the right hand side (RHS) determines the probability that an obser-
vation is observed (i.e., the missingness model) while the second term on the RHS
is the complete data model.

The distinctions between MCAR, MAR and MNAR are clearer if you consider
using (9.4) to build a Monte Carlo simulation of missing data. Start with a fixed
design matrix of covariates X ; next generate the complete data, Y = {YO ,YM } from
the complete data model P[Y |X ]. The last step is to use the missingness model as a
filter to select which of simulated yi ’s will be retained in the data set. This is where
MCAR, MAR and MNAR come into play.

1. The model is MCAR if the missingness model is does not depend on X or Y .
Equivalently, the observed data are a random sample from the complete data.Any
type of analysis can be used to obtain an unbiased estimate, however, efficiency
is decreased because the sample size has been reduced.

2. The model is MAR if the missingness model depends on X and YO but not YM

or other unobserved variables. If in addition, the parameters of the complete data
and missingness models are distinct, the missing data mechanism is ignorable
and the complete data model can be fitted alone without incurring bias.

3. The model is MNAR if the missingness model depends on YM . This is the most
difficult case since themissingnessmodel depends on unobserved data. Inference
can only proceed under strong assumptions that cannot be tested.

The results enumerated above are obtained by marginalizing the likelihood to
remove the contribution of the missing data. Marginalizing is done by integrating
out YM which in general can be difficult but, under the selection model assuming the
data are MCAR or MAR, simplifications occur.

P[YO , R|X, θ ] =
∫

P[YO ,YM , R|X, θ ]dYM

MAR=
∫

P[YO ,YM |X, θ ]P[R|YO , η]dYM ,

MCAR=
∫

P[YO ,YM |X, θ ]P[R|η]dYM ,

where we now include the parameters θ and η of the complete data and missingness
models. Under MAR and MCAR, the missingness model does not depend on YM

and can pass through the integral while YM can be integrated out of the complete
likelihood. We show this for MAR,



166 S. A. Gilbert and J. C. Christensen

∫
P[YO ,YM |X, θ ]P[R|YO ,YM , η]dYM =

∫
P[YO ,YM |X, θ ]P[R|YO , η]dYM

= P[R|YO , η]
∫

P[YO ,YM |X, θ ]dYM

= P[R|YO , η]P[YO |X, θ ].

The likelihood now has two terms, if in addition, θ and η are distinct, the likelihood
of the complete data model can be maximized independently from the missingness
model. Since in most cases the missingness model is not of interest, the complete
data model can be fitted as usual ignoring the missing data model completely.

Selection models are not often fitted directly for clinical trials data. However,
an argument that the data are MAR and the parameters are functionally distinct, or
equivalently the missing data are ignorable can be used to justify modeling methods
such as a mixed model repeated measures analysis (MMRM) which we take up in
the next section.

9.10 Linear Mixed Model Repeated Measures Analysis

Mixed model repeated measures (MMRM) analyses have been recommended when
the missing data are MAR (National Research Council 2010). These models define a
joint probability distribution over the complete response vector and naturally incor-
porate the incomplete data view, borrowing information from observed responses
to help make inference where data are missing. Studies have shown that MMRM
analyses can work well in the presence of missing data (Mallinckrodt et al. 2001).

The use of an MMRM takes advantage of the fact that the MMRM can function
as both the complete data and analysis model. Although, these are regression models
they define a multivariate distribution for the responses over time, conditional on
the covariates. The assumption that the response at an earlier post-baseline visit is
informative about a missing visit later in the trial is reasonable. An important point is
that the model includes information from all observed visits but does not condition
on that data. To be more explicit, week 4 change scores are likely to be predictive
of week 6 change scores in the depression data. Week 4 scores can be included
in the MMRM as a response, Y variable, without changing the interpretation of a
treatment contrast. On the other hand if week 4 scores were added to anANCOVA for
change at week 6 as a covariate, they would change the interpretation of the treatment
comparison. The MMRM can work with monotone and non-monotone missing data
and fits the data in a single step (i.e., a separate missingness and imputations models
are not needed).

There are some shortcomings to the MMRM approach. The first is that we still
need to minimize the number of covariates to avoid complicating the interpretation
of the treatment contrast. Even more important is that post-baseline data cannot be
included as covariates. Incorporating as much auxiliary data as possible is referred
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to as ‘inclusive’ modeling as opposed to ‘restrictive’ modeling (Collins et al. 2001).
MMRM analyses encourage a restrictive approach while multiple imputation (MI),
to be covered shortly, encourages a more inclusive approach.

Next, we define a linear MMRM and present results for the depression data. A
linear MMRM model can be defined as

Y = Xβ + Zγ + e,

e ∼ N (0, P)

γ ∼ N (0,G)

where we are again using vector and matrix notation. The γ term is vector of random
effects,while Z is a design matrix for random effect. The covariance matrix, V for
Y now has the structure,

V = Var(Y ) = ZTGZ + P.

If the model contains Z and γ but P is a diagonal covariance matrix2 it is called a
random effects model. Random effects for categorical variables such as subject can
be coded in a Z matrix with entries entirely made of 0’s and 1’s and are called vari-
ance components. These components model clustering of data well, where groups of
observations share a positive correlation. However, they do not model correlations
that change over time. For example you would expect the responses at weeks 2 and
4 to be more highly correlated than weeks 2 and 6. These types of correlations can
be modeled using correlation structures from time series analysis such as an autore-
gressive (AR) structure. These time series structures describe correlations within a
single subject and are therefore included in the P matrix in a block diagonal fashion.
The block diagonal structure models correlations between visits for a single subject
but keeps data from different subjects independent.

Software to fit MMRMs is readily available. The following code uses the nlme
package in R

mixedfit3 <- lme(change ˜ WEEK +Drug:WEEK +

Baseline:WEEK,random= ˜1|SUBJID,

cor=corSymm( form=˜1|SUBJID) ,

control=list(opt="optim"))

The MMRM above (where we have dropped gender to simplify the model) allows
for an arbitrary correlation structure over time in addition to a random subject effect.
We choose a flexible correlation structure because that is the part of the model that
determines how information will be borrowed from the observed data. The resulting
treatment contrast is 2.72 with a standard error of 0.95. This is all reported directly
from the model fit, bootstrapping or other post-fitting procedures are not needed.

2Common notation for the Var(e) is R but has been changed to P to avoid confusion with the
response vector R.
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The MMRM approach requires the missing data to be MAR. This translates into
the assumption that subjects with missing week 6 data, have unobserved responses
similar to other subjects in their treatment group with similar covariates and change
from baseline trajectories up until the time of dropout. Clinically, this assumes that
subjects with missing data have similar responses to subjects who stay on protocol
and maintain their drug effect. This may not be a good assumption if subjects cannot
tolerate a drug intended for a chronic condition since they will receive no benefit
from the drug after withdrawal.

9.11 Generalized Linear Mixed Models

Binary data is often analyzed in clinical trials. For example did the subject have a
30% decrease from baseline, yes or no. It is tempting to claim the data are MAR
and use a logistic version of the MMRM. Unfortunately, these models estimate a
different effect than linear mixed models. A little background information is needed
to understand why this is so.

Linearmixedmodels specify amodel for the observations directly, while GLMMs
specify a model for the mean structure directly,

E[Y |γ ] = g−1(Xβ + Zγ ), (9.5)

where g(·) is the link function, a monotone invertible function linking the mean to a
linear function of the predictors, Xβ + Zγ , called the linear predictor. The crux of
the issue is that

E[g−1(Xβ + Zγ )] �= g−1(Xβ + ZE[γ ]), (9.6)

unless g(·) is the identity function, then

E[Xβ + Zγ ] = Xβ + ZE[γ ]. (9.7)

The implication of this, is that for linear mixed models the β coefficients can be
interpreted at both a subject level and a population level. Consider a model with
an additive treatment effect, βDrug and random subject effect. Conditional on the
random subject effect, the treatment effect is βDrug; it is also the population effect
(how large is the treatment over all subjects) since the random subject effect can
be averaged out without effecting βDrug . This is not so for other link functions. The
GLMM specifies the β coefficients as the effect conditional on the other predictors in
the model including random effects. To get a population level estimate, the random
effect needs to be averaged out. Unfortunately, a non-linear link function will, for a
lack of a better term, ‘link’ the random effect with the treatment effect.

The goal of clinical trials is to estimate population level effects, therefore the
use of GLMMs requires care. For example, suppose binary data were analyzed, the
approach used in Sect. 9.6 could be taken by calculating the predicted probability
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of response for each subjects and averaging results on the probability scale instead
of on the linear predictor scale. Unfortunately, this detracts from a major advantage
of the MMRM approach which its ease of use. Generalized estimating equations
(GEEs) can be used for longitudinal binary data and directly produce population
level estimates. However, the estimates are only valid if the data are MCAR, this can
be overcome by combining IPW with GEE into a weighted GEE (wGEE) procedure
(Molenberghs and Verbeke 2005) or using multiple imputation.We close this section
by noting there are two approaches to wGEE, weighting individual observations and
weighting subjects, both are available in commercially available software including
SAS and other products.

9.12 Multiple Imputation

No discussion of missing data is complete unless it includes multiple imputation
(MI). MI is a general procedure and is applicable for almost any type of missing
data, not just MAR and missing response data. MI is to be distinguished from sin-
gle imputation methods such as last observation carried forward (LOCF), baseline
observation carried forward (BOCF), mean imputation or other methods that fill in
the missing observation once and then analyze the data set as if it were complete.
These methods are discouraged because they ignore the uncertainty in the imputed
data and underestimate the variance (National Research Council 2010).

Retaining our concentration on missing response data, consider a statistic Q of
the complete data of interest, (e.g., the sample mean or treatment contrast) and
associated variance estimate U which is a single number if Q is a scalar, (e.g., a
variance estimate for a single β coefficient), or a a matrix if Q is vector valued (e.g.,
the covariance matrix of the entire β coefficient vector). The basic result justifying
multiple imputation is,

P(Q|YO) =
∫

P(Q|YO ,YM)P(YM |YO)dYM , (9.8)

(Rubin 1996), using the second theme in the introduction, averaging over the missing
data. In practice, data simulated from P(YM |YO) are used to fill in themissing values,
YM , and the the complete data Y = {YO ,YM } are analyzed as usual. This filling in
and analyzing are repeated B ≥ 2 times recording the results {Q̂1, Û1, . . . , Q̂B, ÛB}.
The results from the individual imputations are combined with ‘Rubin’s rules’,

QImp = 1

B

∑
Q̂i (9.9)

Var [Q]Imp = UW + B + 1

B
UB, (9.10)
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where UW is the average within imputation variability and UB is the between impu-
tation variability; calculated as,

UW = 1

B

∑
Ûi

UB = 1

B − 1

∑
(Q̂i − QImp)(Q̂i − QImp)

T

(Rubin 1996).
MI was originally derived from a Bayesian perspective, where we are simulating

from the posterior predictive distribution of missing data conditional on the observed
data. However, MI is often used in a frequentist setting and sampling distributions
are substituted for predictive distributions.

A description of the imputation algorithm itself, instead of the mathematical jus-
tification will make the method more understandable. Consider a regression setting
with a response vector Y = {y1, . . . , yn} that has observed and missing values along
with a fully observed covariate matrix X with entries xi j . The regression model for
each yi is

yi = β0 + β1xi1 + · · · + βpxip + ei .

1. Fit the regression model to the observed yi ’s, retaining the fitted parameters
β̂, covariance matrix of the parameters, Var [β̂] = σ̂ 2XT X and the variance
estimate σ̂ 2.

2. Draw a new set of parameters β� from N (β̂, σ 2�XT X) and σ 2� from σ̂ 2(nO −
k + 1)/gwhere g is aχ2

nO−k−1 randomvariable and nO is the number of observed
yi .

3. Fill in the missing yi with

y�
i = β�

0 + β1x
�
i1 + · · · + β�

i px p + σ 2�z�
i ,

where the z�
i are independent standard normal variables.

4. Repeat B times and combine the results.

(SAS Institute 2015).
Note that the algorithm accounts for two sources of variability, the variability in

the parameter estimates, β̂ and σ̂ 2 at step 2, and variability in the data themselves in
step 3.

MI algorithms such as the one above can be used for data that are MAR, but MI
can also be used for data that are MNAR. The central idea, is that if you can estimate
or define the posterior predictive distribution, MI can be applied.

We close with a note about the number of imputations needed for an analysis.
We have been concerned about Monte Carlo error since this is a simulation method.
Classic results based on efficiency (Rubin 1996) and ignoring Monte Carlo error
indicate that 3–5 imputations are sufficient. Others have suggested the number of
imputations should equal the percentage of missing data (e.g., if 10% of the data is
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missing use 10 imputations). The number of imputations needed to address Monte
Carlo error is less clear. If the primary result from a trial is close to statistically
significant (e.g. p = 0.05), then changing the random number seed for the imputa-
tion algorithm can swing the inference in one direction or another if there are an
insufficient number of imputations. We suggest either specifying a large number of
imputations or increasing the number until the results of interest are stable.

9.13 Pattern Mixture Factorization

Pattern mixture models (PMMs) reverse the order of conditioning of the selection
model,

P[YO ,YM , R|X ] = P[R|X ] × P[YO ,YM , |R, X ], (9.11)

(Carpenter and Kenward 2012). Pattern mixture models often use a categorical ri
instead of a binary response indicator. This allows grouping of subjects based on
time of dropout or reason for dropout. The primary assumption is that the missing-
ness patterns, captured by the ri can be identified easily and the modeling effort
goes into P[YO ,YM , |R, X ] the distribution of the complete data conditional on the
dropout pattern and covariates. For example in the depression data, the natural cat-
egories would be how many weeks the subject remains in the study. In other trials
the categories could include the reason a subject withdraws from the study, such as
lack of efficacy, drug reaction etc.

In its simplest form, a PMM stratifies the data set by dropout patterns, estimates
the response data and finally combines the information back together. However,
there may be too many patterns to efficiently draw inference for each pattern. If
subjects are observed at k occasions, there are 2k possible patterns based on when
data are observed, including reason for dropout increases the number even further.
Therefore patterns may need to combined on scientific and clinical grounds to make
the modeling process tractable.

TheMCAR,MAR,MNAR taxonomy is specific to selection models and does not
carry over to PMMs, therefore they need to be described in an alternative manner.
One way to describe PMMs is by ‘identifying restrictions’ (Molenberghs and Ver-
beke 2005). Assume monotone missing data, as in the depression example. One set
of possible restrictions are complete case missing values (CCMV), neighboring case
missing values (NCMV) and available case missing values (ACMV). Viewed from
our borrowing information standpoint the restrictions indicate where information is
borrowed from to make inference. The CCMV restriction implies missing informa-
tion is only borrowed from completers. The NCMV restriction borrows from the
nearest pattern, for example if you have a missing week 2 visit, information from
the subjects with week 4 but not week 6 are used. Lastly, ACMV is the available
case missing data restriction which implies that information is borrowed from all
patterns with information at that time point, for example if you have a missing week
2 visit, information from the subjects with week 4 and week 6 are used. In the special
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case of monotone missing data ACMV is “the counterpart of MAR in the PMM con-
text” (Molenberghs andVerbeke 2005). Other restrictions such asmissing non-future
dependent (MNFD) require dropout to depend on current unobserved data and not
future unobserved data are also used. We do not discuss these further since they are
not often used in the pharmaceutical industry, but rather proceed to using PMMs for
MNAR data.

A combination of PMMs and MI has become popular for sensitivity analyses of
clinical trials when data are MNAR. Suppose subjects withdraw from the depression
trial because they cannot tolerate the drug. Clinically we assume they no longer ben-
efit from the drug after they withdraw; therefore their missing data is not expected to
be similar to other subjects in their treatment group with similar covariates and pre-
withdrawal change from baseline scores. This is a violation of the MAR assumption,
hence the data is MNAR. This scenario is well suited to a ‘controlled imputation’
approach (Mallinckrodt et al. 2012) where information from a reference group is
used to impute the missing values. One such approach, jump to control, imputes
missing week 6 change scores from the distribution of week 6 change scores in the
placebo group. There are many variations of this idea and they need to be justified on
clinical and scientific grounds. Once data are declared MNAR, the analysis becomes
highly dependent on the models used and the assumptions built into those models;
for example do treated subjects lose all treatment effect immediately or does their
disease slowly return? Which assumptions are correct cannot be tested, but sensi-
tivity analyses can be performed to see how model results differ under differing
assumptions.

We close this sectionwith some comments about calculations of the standard error
of estimates in the PMM framework. If pattern specific estimates for l patterns are
obtained, {θ1, . . . , θl}, they need to be combined to obtain an overall estimate. This
is done by weighting the θi by the pattern specific proportions {p1, . . . , pl} to get
θPMM = ∑

piθi . This is a simple calculation, however, obtaining the standard error is
more difficult because the pi are estimates themselves and have variability associated
with them. We do not illustrate the procedure here but state that the standard error
can be calculated by the delta method or by bootstrap (Fairclough 2010). When
PMMs are combined with MI, the standard errors are correctly calculated by the MI
algorithm without further corrections.

9.14 Discussion

This chapter has been a short synopsis of what we feel is important material on
missing data for clinical trials run in the pharmaceutical industry. As a result many
topics have been omitted, including a few major topics. One such topic that has been
omitted is shared parameter models (Ibrahim andMolenberghs 2009). These models
link the longitudinal data model and the missigness model with random effects or
latent classes. Although a considerable amount of literature exists, they are rarely
used in industry trials. Another topic of interest that has been omitted is double
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robust estimation (Kang and Schafer 2007). These methods combine the complete
datamodel andmissingnessmodel in such away that estimates are consistent if either
model but non necessarily both are correct. This is an interesting area with a great
deal of research activity, but has not been regularly incorporated into pharmaceutical
trials as of the writing of this chapter. A related topic that was not covered in this
chapter is the use of causal estimands, which focus on the target of the estimation
process. That is, what is the θ we are trying to consistently estimate.

We close by encouraging the interested reader to learn more about missing data
methods. An area of great importance when analyzing clinical trials. We hope the
simple framework of complete data, missingness and analysis models will serve the
reader well.
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Chapter 10
Bayesian Subgroup Analysis
with Hierarchical Models

Gene Pennello and Mark Rothmann

10.1 Introduction

In studies of investigational treatments, patients are frequently heterogeneous in
demographics, disease characteristics, biomarkers, or other variables that are poten-
tially prognostic for a clinical outcome of interest or predictive of the treatment effect
on the outcome. Thus, a common practice is to examine if the treatment effect varies
in subgroups defined by such variables (Alosh et al. 2015). However, if the treatment
is ineffective, and each subgroup is tested for significance at level α (=0.05, say),
then the probability of observing one or more falsely significant effects within the
subgroups (familywise error rate) can be much higher than α. This objection has
led to the development of significance testing procedures that control the familywise
error rate at α. However, if the treatment effects are heterogeneous among the sub-
groups, a familywise procedure lowers what is already usually inadequate power to
detect significant effects within subgroups due to small sample size.

In addition, due to their uncertainty, the sample estimates of the treatment effects
will tend to have toomuch variation relative to the treatment effects themselves. Thus
a sample estimate of the treatment effect within a subgroup may be a random high,
that is, large in magnitude when in fact the treatment effect itself is small or null.
In summary, separate analyses of treatment effects within subgroups are difficult to
interpret for statistical and clinical significance.
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Table 10.1 LIFE study summary data

Population Treatment N Person-
yearsa

Events Event
percent

Event rateb

Overall Atenolol 4588 21090.4 588 12.82 27.88

Losartan 4605 21344.5 508 11.03 23.80

Non-Black Atenolol 4325 19975.0 559 12.92 27.98

Losartan 4335 20249.3 462 10.66 22.82

Black Atenolol 263 1115.4 29 11.03 26.00

Losartan 270 1095.2 46 17.04 42.00

aCalculated from label information (US FDA 2003a, b, c), subject to rounding error
bper 1000 person-years

To address the difficulty with interpreting separate analyses of subgroups, we con-
sider Bayesian subgroup analysis with hierarchical models. In such models, a prior
distribution is placed on the subgroup treatment effects according to an assumed
exchangeability structure implemented with random effect distributions. The result-
ing posterior mean of a subgroup treatment effect borrows strength from all the data,
giving it increased precision (as measured by the posterior standard deviation) rela-
tive to the sample estimate for that subgroup. In a one-way exchangeability structure,
a subgroup treatment effect has a posterior mean that shrinks the sample estimate
toward the overall estimate in aweighted averaging of the two quantities. The amount
of shrinkage increases with decreased evidence of treatment effect heterogeneity, as
measured by the variation between relative to within the subgroups.

Unlike the sample estimates, the shrinkage estimates of the subgroup treatment
effects do not (in expectation) have more variation than the treatment effects them-
selves and are more precise. Therefore, their values may be more clinically inter-
pretable than very high or very low sample estimates that may be due to high impre-
cision or multiplicity.

Moreover, the amount of shrinkage can vary from subgroup to subgroup. Thus the
rank order of the posterior means may be different than those of the sample estimates
and may more accurately reflect the true rank order of the treatment effects (Efron
and Morris 1975).

10.2 Example

Consider the LIFE study of patients with hypertension, in which losartan was com-
pared with atenolol on time to first major adverse cardiac event (MACE) (US FDA
2003a, b, c). A total of 9193 subjects were randomized to losartan (4605) or atenolol
(4588). Most subjects (80%) were European Caucasians between 55 and 80 years
old. A total of 1096 MACE events was observed, 508 and 588 in the losartan and
atenolol arms, respectively, among 21344.5 and 21090.4 person-years of follow-up
(Table 10.1).
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Table 10.2 Hazard Ratio (HR) analyses, time to first MACE, Losartan versus Atenolol

Population Analysisa logHRb SE/SD HR 95% CIc p-valued Pr
HR>1e

Overall F −0.14 0.06 0.87 0.77, 0.98 0.021

Non-
black

F −0.19 0.06 0.83 0.73, 0.94 0.003

EB −0.18 0.06 0.83 0.74, 0.93 0.001

B −0.18 0.06 0.83 0.74, 0.94 0.002

FB −0.20 0.06 0.82 0.72, 0.92 0.001

Black F 0.51 0.24 1.67 1.04, 2.66 0.033

EB 0.43 0.21 1.53 1.01, 2.33 0.978

B 0.38 0.27 1.46 0.87, 2.46 0.914

FB 0.39 0.24 1.52 0.93, 1.47 0.948

SE standard error
SD posterior standard deviation
aF frequentist (unadjusted for multiplicity), EB empirical Bayes (Sect. 10.4), B more fully Bayes
(Sect. 10.5), FB fully Bayes for event rate ratio≈hazard ratio (Sect. 10.7)
bFor the frequentist analysis, log HR is the Cox model estimate adjusted for covariates Cornell
product, Sokolow-Lyonvoltage, andFraminghamscore. The empiricalBayes andBayesian analyses
were based on these estimates and their standard errors
cFor frequentist and Bayesian analyses, 95% CI is respectively the 95% confidence interval and the
95% central posterior credible interval
dTwo-sided p-value
ePosterior probability that HR>1

In the overall frequentist analysis, the covariate-adjusted hazard ratio (HR) com-
paring losartan with atenolol on MACE was 0.87 with 95% confidence interval (CI)
(0.77, 0.98) and two-sided p-value 0.021, indicating that at level 0.025 losartan was
significantly more effective than atenolol at lowering MACE risk (Table 10.2). The
same analysis was considered within race subgroups. For non-blacks, HR was 0.83
with 95%CI (0.73, 0.94) and p-value 0.003, consistent with the overall results. How-
ever, for blacks, HRwas 1.67 with 95%CI (1.04, 2.66) and p-value 0.033, suggesting
that losartan is worse than atenolol at lowering MACE risk in this subpopulation. Is
this finding real?

10.3 Bayesian Hierarchical Modeling for Subgroup
Analysis

Wenowdescribe general assumptions for aBayesianhierarchicalmodel usingnormal
data. We provide some analytical results on Bayesian posterior distributions, interval
estimates and hypothesis tests for subgroup analysis given that the parameters of the
model are known.
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For simplicity, we assume that for subgroups j � 1, 2, . . . , J we can by suffi-
ciency reduce the data to sample estimates y � (y1, . . . , yJ ) of the treatment effects
μ � (μ1, . . . , μJ ) given that the variances σ 2 � (

σ 2
1 , σ 2

2 , . . . , σ 2
J

)
of y are known.

The sample estimates are assumed independent with

y j |μ j ∼ N
(
μ j , σ 2

j

)
, (10.1)

j � 1, 2, . . . , J . In a Bayesian hierarchical model, a prior distribution is placed
on the treatment effectsμ. Specifically, the treatment effects are assumed independent
with

μ j ∼ N
(
μ0, σ 2

μ

)
(10.2)

where μ0 is the mean and σ 2
μ is the between-subgroup variance of the treatment

effects. Because the treatment effects are independent and identically distributed in
their prior distribution, they are exchangeable, that is, any ordering of their values is
equally plausible a priori.

Posterior Distribution. Assume the values of μ0, σ 2
μ, and σ 2 �(

σ 2
j , j � 1, 2, . . . , J

)
are known. Let θ j �

(
μ0, σ 2

μ, σ 2
j

)
. Then for subgroup

j the posterior distribution of the treatment effect μ j is given by

μ j |y, θ ∼ N
((
1 − Sj

)
μ0 + Sj y j , Sjσ

2
j

)

≡ N
(
E j , Vj

) (10.3)

where Sj � 1−Φ−1
j is a shrinkage factor and Φ j � (σ 2

j +σ 2
μ)/σ

2
j the “true” F ratio

for subgroup j . The posterior mean E j � (
1 − Sj

)
μ0 + Sj y j is a weighted average

of the sample estimate y j and the prior mean μ0. As the variation σ 2
μ between the

subgroups decreases, the weight Sj on y j decreases in favor of more weight on mean
μ0.

Hypothesis Testing. In Bayesian hypothesis testing, we conclude μ j > 0 if pos-
terior probability

Pr (μ j > 0|y, θ j ) > 1 − α

for someα ∈ (0, 0.5). For example, ifα � 0.025. we concludeμ j > 0 if its posterior
probability is greater than 0.975. From the posterior distribution (10.3),

Pr
(
μ j > 0|y, θ j

)

� Pr
(
Z > −E j/

√
Vj |y, θ j

)

� ϕ
(
E j/

√
Vj

)

(10.4)
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where Z ∼ N (0, 1) is a standard normal variable with cumulative distribution
function ϕ(•).

Interval Estimation. From 10.3, a 1 − α Bayesian credible interval on μ j is

E j ± z1−α/2

√
Vj (10.5)

where ϕ
(
zγ

) � γ, 0 < γ < 1. That is, the posterior probability that μ j is in the
interval (10.5) is 1 − α. In symbols,

Pr (μ j ∈
[
E j ± z1−α/2

√
Vj

]
|y, θ j ) � 1 − α

10.4 Empirical Bayes Subgroup Analysis

In an empirical Bayes analysis, the parameters of the model—mean treatment effect
μ0, between subgroup variance σ 2

μ, and within-subgroup variances σ 2—are replaced
by empirical estimates. For example, in the LIFE study, σ 2

j can be set to the square
of the standard error on the log hazard ratio y j . for subgroup j, j � 1, 2, . . . , J .
Given these estimates are substituted for σ 2, we now describe weighted least squares
(WLS) estimators of μ0 and σ 2

μ. From 10.1 and 10.2, the marginal distribution of the
sample estimate y j is given by

y j ∼ N
(
μ0, w

−1
j

)
,

where wj � 1/
(
σ 2
j + σ 2

μ

)
. For this marginal model, the mean square error is

MSE
(
σ 2

μ

) � (J − 1)−1
J∑

j�1

wj
(
y j − μ̂0

(
σ 2

μ

))2

where

μ̂0
(
σ 2

μ

) �
⎛

⎝
J∑

j�1

wj

⎞

⎠

−1
J∑

j�1

wj y j .

For all values of σ 2 and σ 2
μ, MSE

(
σ 2

μ

)
has expectation 1. Thus, given σ 2, the

WLS estimates of σ 2
μ and μ0 are σ̂ 2

μ and μ̂0
(
σ̂ 2

μ

)
where MSE

(
σ̂ 2

μ

) � 1.
Life Study Results. To illustrate, for the LIFE study, the log hazard ratios were

y1 � −0.19 and y2 � 0.51 for the non-black and black subgroups (Table 10.2).
Asymptotically, they follow a normal distribution, permitting analysis under the
model defined by 10.1 and 10.2. The sample variances for the log hazard ratios
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were σ 2
1 � 0.0036 and σ 2

2 � 0.0576, the squares of the standard errors. Given
these values, the weighted least squares estimates are μ̂0 � 0.1214 for the mean
and σ̂ 2

μ � 0.2144 for the between subgroup variance. (see Appendix, Matlab

code, MathWorks® 2014). Thus, the estimates of the “true” F ratios are Φ̂1 �
(σ 2

1 + σ̂ 2
μ)/σ

2
1 � (0.0036 + 0.2144)/0.0036 � 60.6 and Φ̂2 � (σ 2

2 + σ̂ 2
μ)/σ

2
2 �

(0.0576 + 0.2144)/0.0576 � 4.72. Accordingly, the estimates of the shrinkage fac-
tors are Ŝ1 � 1 − Φ̂−1

1 � 0.9835 and Ŝ2 � 1 − Φ̂−1
2 � 0.7882.

Using the weighted average formula for posterior mean E j given in (10.3),
the posterior mean of the log hazard ratio is E2 � 0.43 for blacks, consid-
erably smaller than the sample estimate y2 � 0.51. Using the formula for
Vj , the corresponding posterior standard deviation (SD) is 0.2131. The haz-
ard ratio estimate is exp(E2) � 1.53. The 95% Bayesian credible interval is
exp(0.43 ± 1.96(0.2131)) � exp(0.0101, 0.8453) � (1.01, 2.33). The posterior
probability that the hazard ratio is greater than 1 is ϕ(0.43/0.2131) � 0.978. In this
analysis, MACE risk is concluded to be larger for black patients on losartan than
those on atenolol. However, the uncertainty of the estimates for the mean μ̂0 and the
between subgroup variance σ̂ 2

μ is not being considered. These estimates are highly
uncertain, especially when considering that they estimate the parameters of the prior
distribution (10.2) based on the data for just two subgroups.

10.5 A More Fully Bayes Subgroup Analysis

In a more fully Bayesian analysis of the LIFE study,μ0 and σ 2
μ are given diffuse prior

distributions to estimate them essentially from the data with a posterior distribution
that accounts for estimation uncertainty. To this end,we assume the prior distributions
for μ0 and σ 2

μ are independent with

μ0 ∼ N (0, 16), and

σ−2
μ ∼ �(0.001, 0.001).

Under these priors, obtaining the posterior distribution of μ j |y, σ 2 is difficult
analytically, involving integration of the posterior distribution (10.3) over the appro-
priate conditional distribution of μ0 and σ 2

μ. Instead, we used Gibbs sampling to
sample parameter values of μ j , μ0, and σ 2

μ (Tanner 1996). The sampled values of
μ j converge to its posterior distribution. We implemented the Gibbs sampler with
code (Appendix) written for the software package OpenBUGS (Lunn et al. 2000).

As before, we have assumed that the within subgroup variances σ 2 are known and
equal to the sample variances. If uncertainty in estimating σ 2 is a concern, then the
likelihood for the sample variances could be used for analysis in combination with
a diffuse prior on σ 2 to obtain the posterior distribution of μ j |y that accounts for
estimation uncertainty of all the parameters in a fully Bayes analysis.

Life Study Results. For blacks, the posterior mean of the log hazard ratio is 0.38,
considerably smaller than the sample estimate y2 � 0.51 (Table 10.2). The cor-
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responding posterior SD of 0.27 reflects more uncertainty than its empirical Bayes
counterpart (0.21). The hazard ratio estimate is exp(0.38) � 1.46.The 95%Bayesian
credible interval, given by the 2.5 and 97.5 percentiles of the posterior distribution, is
(0.87, 2.46). (In general, this central posterior interval is different from the highest
posterior density interval, which can be shorter.)

The posterior probability that the hazard ratio is greater than 1, obtained by mon-
itoring the Gibbs samples for I

(
μ j > 0

)
, is 0.914 which is, smaller than empirical

Bayes estimate 0.978. Thus, the possibility is left open that the observation in blacks
that MACE risk was higher for losartan than atenolol could have been due to chance.
Still, among blacks the probability still comfortably favors a larger treatment effect
for atenolol than for losartan.

10.6 Difference in Treatment Effect Between Subgroups

Consider the posterior distribution for the difference in treatment effects δ12 � μ1 −
μ2 between subgroups 1 and 2 given the parameters θ12 � (

μ0, σ 2
μ, σ 2

1 , σ 2
2

)
. From

Eq. 10.3,

δ12|y, θ12 ∼ N
(
(S2 − S1)μ0 + S1y1 − S2y2, S1σ

2
1 + S2σ

2
2

)
(10.6)

In the balanced case when σ 2
j ≡ σ 2

y for all j � 1, 2, . . . , J , Sj ≡ S, and the
posterior distribution reduces to

δ12|y, θ12 ∼ N
(
Sd12, Sσ 2

d

)

≡ N (E12, V12),
(10.7)

where d12 � y1− y2 is the difference between sample treatment effects with variance
σ 2
d � 2σ 2

y . Note the posterior mean of δ12 shrinks the sample difference d12 toward
0 by the shrinkage factor S.

Hypothesis Testing. In Bayesian hypothesis testing, δ12 > 0 is concluded when

Pr(δ12 > 0|y, θ12) > 1 − α

for some α ∈ (0, 0.5). From 10.7,

Pr
(
δ12 > 0|y, θ12

)

� Pr
(
Z > −E12/

√
V12|y, θ12

)

� ϕ
(
E12/

√
V12

)

� ϕ
(
z12

√
S
)
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where z12 � d12/σd is the standardized difference. Thus δ12 > 0 is concluded when

z12 >
z1−α√

S
.

where z1−α is the nominal α level critical value (1 − α th quantile) of the standard
normal distribution. Notice, the Bayesian critical value z1−α/

√
S for declaring that

standardized difference z12 is “significant” is always larger than the nominal value
z1−α unless σ 2

μ � ∞ (S � 1) and increases as ratio σ 2
μ/σ 2

y of the variation between
to the variation within subgroups decreases. In a more fully Bayesian analysis in
whichμ0 and σ 2

μ are unknown and given diffuse prior distributions, the critical value
can be less than the nominal critical value when the variation between relative to
within the subgroups is large enough (Waller and Duncan 1969, 1972).

Interval Estimation. From 10.7, a 1 − α Bayesian credible interval on δ12 is

Sd12 ± z1−α/2σd

√
S (10.8)

Because S ≤ 1, the half-width of this interval, z1−α/2σd

√
S, is no wider and perhaps

considerably narrower than the half-width z1−α/2σd of the nominal 1−α frequentist
confidence interval. The narrower width is due to assuming in the prior that treatment
effects within subgroups are exchangeable, which enables information borrowing,
which in turn increases precision of estimation relative to the sample estimates within
subgroups.

Life StudyResults.For theLIFE study, the ratio of the black hazard ratio to the non-
black hazard ratio comparing losartan with atenolol has from 10.6 empirical Bayes
posterior mean exp(E21) � exp(0.6126) � 1.8452, which is shrunk relative to the
sample estimate exp(0.51 + 0.19) � 2.01. From the delta method the corresponding
posterior SD is exp(E21)

√
V21 � 1.8452(0.2212) � 0.4082, approximately. The

95% credible interval is exp(0.6126 ± 1.96(0.2212)) � (1.196, 2.847). The poste-
rior probability that ratio of the hazard ratios is greater than 1 is ϕ(0.6126/0.2212) �
ϕ(2.769) � 0.9972, indicating that the hazard ratios are quantitatively different,
according to this analysis.

10.7 Effect Modifiers in Subgroup Analysis

A criticism of univariate subgroup analyses is that each factor that defines a set of
subgroups is evaluated in isolation, with potential effect modification of the other
factors ignored (Varadhan andWang 2014). Generally, a treatment by covariate inter-
action may be due to the covariate being correlated with one or more treatment effect
modifiers (variables causally relatedwith treatment effect size) evenwhile the covari-
ate itself is not a treatment effect modifier. Without adjustment for the covariate (or
the effect modifiers), resulting inference on the treatment effect may be underpow-
ered, biased, or both (Senn 1989). Generalizing, if several factors contribute small
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or moderate effect modification, a marginal evaluation of heterogeneous treatment
effects across the levels of one of the factors in isolation of the others could be
underpowered or biased. This point is important as an individual patient may have
a collection of characteristics that are individually correlated with treatment effect.
However, evaluating the treatment effect withinmany potential treatment effect mod-
ifiers simultaneously would require including them all in a model along with cor-
responding interactions with treatment. When evaluating a treatment effect within
levels of covariates suspected or known to be treatment effect modifiers, a reasonable
assumption is that the treatment by covariate interactions are exchangeable (Dixon
and Simon 1991, 1992; Simon 2002).

To illustrate modeling of random interactions with treatment, we implement a
fully Bayesian analysis of the LIFE study incident rate λaj � exp

(
μaj

)
of MACE

per person-year for treatment arms atenolol and losartan a � 1, 2 within non-black
or black race subgroups j � 1, 2. For small event rates, the rate ratio ρ j � λ2 j/λ1 j

is approximately equal to the hazard ratio when hazards are proportional (Holford
1980; Jewell 2004, p. 36, Eq. 4.6).

For atenolol and losartan, theMACEevent counts
{
xaj

}
were x11 � 559 and x21 �

462 in non-blacks and x12 � 29 and x22 � 46 in blacks. Corresponding person-years
were yaj � 19975.0, 20249.3, 1115.4, 1095.2, accumulated for patient samples
sizes naj � 4325, 4335, 263, 270 (Table 10.1). Estimates are λ̂aj � xaj/yaj for the

MACE rate per person-year and μ̂aj � log
(
λ̂aj

)
for the log rate.

In a quasi-likelihood analysis based on the Poisson distribution, an event count x
has mean and variance

Ex � yλ, V x � φyλ,

where y is the number of person-years and φ is potential over- or under-dispersion
relative to Poisson variation. Under this model,

μ̂aj ∼ N
(
μaj , φaj/xaj

)

approximately. If person-years yajk and events xajk were available for each individual
patient k � 1, 2, . . . , naj , then φaj may be estimated as φ̂aj � S2aj/ fa j , where S

2
aj �

f −1
aj

∑naj
k�1 yajk

(
λ̂ajk − λ̂aj

)2
is a weighted sum of squares over the replications with

fa j � naj − 1 degrees of freedom and λ̂ajk � xajk/yajk (McCullagh and Nelder
1989, Sect. 4.5.2). The statistic S2aj is independent of μ̂aj with data distribution given
by

S2aj/φaj ∼ χ2( fa j
)

approximately. Because we did not have individual patient data, for the sake of
analysis we presumed φ̂aj � 1 for all a, j � 1, 2.

We assume that μaj is linear in the predictors. Specifically,
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μaj � τa + β j + γaj

where {τa} are fixed treatment effects,
{
β j

}
are random race effects, and

{
γaj

}
are

random treatment by race interaction effects. We assume the random effect distribu-
tions are given by

β j ∼ N
(
0, σ 2

β

)
γaj ∼ N

(
0, σ 2

γ

)

To implement a fully Bayesian analysis, we place independent, diffuse prior dis-
tributions on the unknown parameters:

τa ∼ N (0, 1000),

1/σ 2
β , 1/σ 2

γ , 1/φaj ∼ �(0.01, 0.01).

The code for implementation in OPENBugs is given in the Appendix.
Life Study Results. For blacks, the Bayes posterior mean of log rate ratio is 0.39

(Table 10.2). The 95% Bayesian central posterior credible interval is (0.93, 1.47).
The posterior probability that the rate ratio is greater than 1 is 0.948, leaving open
the possibility that in black patients MACE rate may in fact not be higher for losartan
than atenolol, although the rate ratio may be no more smaller than 0.93 in favor of
losartan.

10.8 Multi-way Bayesian Subgroup Analysis

For two or more factors that define sets of subgroups (e.g., age group, sex,
race/ethnicity, region), hierarchical modeling can be extended to accommodate an
exchangeability structure for the factors. For example, in a one-way analysis, treat-
ment effects within combinations of race and region are considered completely
exchangeable, with the structure of the factors ignored. Alternatively, the factors
may be additive or may interact in their modification of treatment effect. For race
and region factors A and B, a two-way model can be used with main effects of race
(A), main effects of region (B) and interaction effects of race by region (C) each
separately considered exchangeable. As shown below, the Bayesian posterior mean
of the difference in treatment effect between subgroups defined by factor A is an
intuitive linear combination of marginal and interaction contrasts that are shrunk
according to evidence for main A effects and interaction C effects. As an individ-
ual patient belongs to many subgroups, these more complex models can be used to
estimate the treatment effect an individual patient can expect.

To illustrate the behavior of multi-way hierarchical models, we briefly describe
some analytical results for the two-way hierarchical model of normal data assuming
the parameters of the model are known.
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Consider two separate factors A and B having levels i �1, …, I and j �
1, …, J in a balanced design of normally distributed sample treatment effects
y � {

yi j , i � 1, 2, . . . , I, j � 1, 2, . . . , J
}
with homogeneous error variance

σ 2
y . A two-way Bayesian hierarchical model is

yi j ∼ N
(
μi j , σ 2

y

)

μi j � μ0 + αi + β j + γi j

with independent priors

αi ∼ N
(
0, σ 2

α

)
, β j ∼ N

(
0, σ 2

β

)
, γi j ∼ N

(
0, σ 2

δ

)
, μ0 ∼ N

(
θ, σ 2

θ

)

and
(
σ 2
y , σ 2

α , σ 2
β , σ 2

δ

)
assumed known. According to Pennello (1997), under this

model the posterior distribution of the difference in treatment effect

δ12, j � μ1 j − μ2 j

between levels 1 and 2 within subgroup j is given by

δ12, j | y, σ 2 ∼ N
(
SAd̄12,• + SCdC , (SA + (J − 1)SC)σ 2

d /J
)

where

d̄12,• � ȳ1• − ȳ2•, dC � d12, j − d̄12,•, d12, j � y1 j − y2 j , σ
2
d � 2σ 2

y ,

SA � 1 − 1/�A, �A � σ 2
A/σ

2
y , σ 2

A � σ 2
C + Jσ 2

α

SC � 1 − 1/�C , �C � σ 2
C/σ 2

y , σ 2
C � σ 2

y + σ 2
δ

In Bayesian hypothesis testing, δ12, j > 0 is concluded if

Pr(δ12, j > 0|y, σ 2) > 1 − α

for some α ∈ (0, 0.5). Equivalently, δ12, j > 0 is concluded if

z12, j >
z1−α√
SC

{
SA
J SC

+
J − 1

J

}
− z̄12,•√

J

{
SA
SC

− 1

}
(10.9)

where

z12, j � d12, j/σd ,

is the standardized difference between levels 1 and 2 within subgroup j and

z̄12,• � d̄12,•/
(
σd/

√
J
)
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is the marginal standardized difference.
The Bayesian critical value for z12, j (right-hand term in Eq. 10.9) decreases lin-

early as marginal standardized difference z̄12,• increases. The coefficient on z̄12,•
increases as the ratio SA/SC of the shrinkage factors for the marginal A and inter-
action C effects increase, indicating less evidence for interaction relative to main
effects, and decreases with the number of subgroups J .

In the limit as the marginal main A effect variance σ 2
α tends toward zero, the

posterior distribution reduces to

δ12, j | y, σ 2 ∼ N
(
SCd12, j , SCσ 2

d

)

which corresponds to the posterior distribution for the difference in a one-way model
of sample effects

{
yi j , i � 1, 2, . . . , I

}
. Thus, the one-way model in Sect. 10.3 can

be seen to be an approximation to the two-way model if evidence for interaction
effects dominates evidence for main effects.

In a fully Bayesian analysis, the likelihood for σ 2 may be utilized in combination

with Jeffreys prior on
(
μ0, σ

2, σ 2
α , σ 2

β , σ 2
δ

)
(Box and Tiao 1973) to obtain the

posterior distribution of δ12, j | y that fully accounts for estimation uncertainty for
these variance components (Pennello 1997).

10.9 Discussion

Bayesian subgroup analysis offers efficiency in estimation and generally provides
more precise point estimates and narrower interval estimates than standard frequen-
tist analyses unadjusted for multiplicity. Increased precision is possible because
subgroups are analyzed jointly rather than separately, invoking information borrow-
ing. Treatment effects within subgroups are assumed exchangeable (random with
a common distribution), allowing the treatment effects to be different, but related.
When estimating the effect in a given subgroup, the outcomes of all patients are
considered relevant, more so for those subjects within the subgroup of interest.

Using a Bayesian hierarchical model, a sample estimate of a subgroup treatment
effect that is large and clinically impressive in magnitude could be shrunk to a much
smaller, less compelling value. Such dramatic shrinkage could suggest that the large
point estimatemayhave been a randomhigh due tomultiple testing and large standard
errors within subgroups. Additionally, we can account for the correlation structure
of covariates that are effect modifiers by using a multi-way hierarchical model.

Bayesian hierarchical models enjoy good frequentist properties. In particular,
under a loss function inwhich the losses formaking directional decisions on the treat-
ment effects within subgroups are additive and the loss is 0, 1, and A(0 < A < 1)
for correct, incorrect, and non-committal decisions on treatment effect direction, the
Bayes rule for the one-way hierarchicalmodel controls the directional false discovery
rate at A (Lewis and Thayer 2004).
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In one-way or multi-way random effects models with unknown variance compo-
nents, Gibbs samples of the parameters may mix poorly (be highly autocorrelated),
resulting in slow convergence of the samples to the posterior distribution. Strate-
gies for improving mixing include reparameterizations that are hierarchically cen-
tered (Gelfand et al. 1996) or that sweep random effects means to lower order terms
(Gilks andRoberts 1996).We employed hierarchical centering in ourGibbs sampling
code of the one-way model (Appendix), which helped to accelerate convergence. As
explained by the references just cited, without such reparameterizations of random
effect models, Gibbs samples of some parameters will be highly auto-correlated if
the sample error variances are small relative to the between effect variances, which
was the case for the LIFE study (for log hazard ratio, WLS estimate of between sub-
group variance 0.2144 was large compared with error variances 0.0036 and 0.0576
for non-blacks and blacks).

Gilks et al. (1996) provide an excellent introduction toMarkov chainMonte Carlo
methods, including Gibbs sampling. Tanner (1996) provides many worked examples
of how to construct Gibbs sampling algorithms for frequently encountered data mod-
els and prior distributions. For survival models, Kuo and Smith (1992) provide useful
Gibbs sampling algorithms. For implementation of the counting process approach
for modeling baseline hazard and regression parameters, see the example Leuk in
the OPENBugs package.

To promote the use of Bayesianmethods for subgroup analysis in patient-centered
outcomes research, web-based software tools have been developed (Henderson et al.
2016;Wang et al. 2018). Such software is designed to lower barriers in implementing
Bayesian subgroup analysis.

For a small number of subgroups, inferences may be sensitive to the prior placed
on the variance between subgroups in the treatment effect. For a one-way model
of subgroup-specific treatment effects in a cross-over design structure, Hsu et al.
(2017) compare the posterior distributions of the treatment effects under several
priors for the between subgroup variance. They also obtain the posterior distribution
for the subgroup with the smallest treatment effect in an assessment of treatment
effect consistency across subgroups. Similarly, the largest mean problem has been
considered in a Bayesian decision theoretic framework of a one-way hierarchical
model (Bland and Duncan 1964).

In the LIFE study, the validity of the shrinkage estimates for the hazard ratios
among blacks and non-blacks is predicated on exchangeability of the subgroups,
that is, not expecting a worse treatment effect in blacks than in non-blacks a pri-
ori. A more flexible model than complete exchangeability of the treatment effects
considered here is to place a Dirichlet prior on the distribution of the treatment
effects. Such “non-parametric” Bayesian analyses do not force sample estimates to
shrink excessively when similarity of treatment effects is not supported but can still
result in greater precision (narrower credible intervals) than separate analyses of the
subgroups (Gamalo-Siebers et al. 2016).

Exchangeability of treatment effects within subgroups may not be reasonable a
priori. For example, for a binary biomarker that is the target of a treatment, the treat-
ment effect may a priori be expected to be greater in subjects who are biomarker
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positive than those who are biomarker negative. Prior distributions have been devel-
oped that are tailored to treatment effects within subgroups defined by predictive
biomarkers (Karuri and Simon 2012).

Appendix

Section 10.4Analysis.Matlab code (MathWorks® 2014) for empirical Bayes analysis
for LIFE Study log hazard ratios.

lhr=[-0.19; 0.51]; % log hazard ratios
se2=[0.0036; 0.0576]; % squared standard errors
z=-abs(lhr)./sqrt(se2) % standardized z value
pr=normcdf(z) % 1-sided p value for null HR = 1

the=[lhr' se2']; % parameter
mseminus1 = @(s2mu) msewls(the(1:2), the(3:4), s2mu) - 1; % parameterized function
s2mu=fzero(mseminus1, 0.1) % WLS estimate of between subgroup variance s2mu=0.2144
mu0=mu0wls(lhr, se2, s2mu) % WLS estimate of mu0

if 0 % code to check fzero result
mse=msewls(lhr, se2, s2mu) % =1, if fzero result is correct
v=se2+s2mu; w=1./v
lhr0hat=sum(w.*lhr)/sum(w) % should = mu0
end;

Phi=1+s2mu./se2 % F ratios
S=1-1./Phi % shrinkage factors
E=(1-S).*mu0 + S.*lhr % posterior mean
V=S.*se2 % posterior variances
zB=E./sqrt(V) % posterior z values
prB=normcdf(zB) % posterior probability HR > 1

smypr=[pr prB] % summary of p values, posterior probabilities
prhyp=1-smypr

alp=0.025; zalp=norminv(1-alp);
cilhr=E*ones(1,2) + zalp*sqrt(V)*[-1 1]
cihr=exp(cilhr) % credible interval on HR
smy=[exp(E) exp(E).*sqrt(V) cihr]

lam=[-1; 1]; % contrast for difference in log HR between 2 subgroups
lhrdif=lam'*E % difference in posterior mean log HR between subgroups
lhrdifsd=sqrt(sum(V)) % posterior SD of difference
zlhrdif=lhrdif/lhrdifsd % posterior z value
cilhrdif=lhrdif*ones(1,2) + zalp*lhrdifsd*[-1 1]
hrdif=exp(lhrdif) % posterior estimate of ratio of HRs
cihrdif=exp(cilhrdif) % credible interval for ratio of HRs
smylhrdif=[lhrdif lhrdifsd cilhrdif normcdf(-zlhrdif)]
smyhrdif=[hrdif hrdif*lhrdifsd cihrdif]



10 Bayesian Subgroup Analysis with Hierarchical Models 189

mu0=sum(w.*y)/sum(w);

Output of Matlab Analysis
smypr =

0.0008 0.9991
0.0168 0.0224

prhyp =
0.9992 0.0009
0.9832 0.9776

cihr =
0.7397 0.9340    -0.1849
1.0101 2.3288 0.4277

smyhr -  
0.8312 0.0495 0.7397 0.9340
1.5337 0.3268 1.0101 2.3288

hrdif =
1.8452

cihrdif =
1.1960 2.8467

smylhrdif =
0.6126 0.2212 0.1790 1.0462 0.0028

smyhrdif =
1.8452 0.4082 1.1960 2.8467

function mse=msewls(y, se2, s2mu);
% function msewls(y, se2, s2mu)
% gets weighted mean square error
% under 1-way random effects model
% of vec y with sample variances se2 and between variance s2mu.
a=length(se2); f=a-1; %o=ones(a,1);
v=se2+s2mu; w=1./v;
mu0=sum(w.*y)/sum(w); %mu0=mu0wls(y, se2, s2mu)
mse=sum(w.*(y-mu0).^2)/f;

function mu0=mu0wls(y, se2, s2mu);
% function mu0wls(y, se2, s2mu)
% gets weighted least squares estimate of
% overall mean under 1-way random effects model
% of vec y with sample variances se2 and between variance s2mu.
a=length(se2); f=a-1; o=ones(a,1);
v=se2+s2mu; w=1./v;

Section 10.5 Analysis. OpenBUGS code (Lunn et al. 2000) for analysis of LIFE
study log hazard ratiomu[s] in one-way normal-normal hierarchical model of sample
log hazard ratios sest[s] with variances s2.sest[s] assumed known and equal to square
of standard errors for subgroups s�1, 2.
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Model
model
{ for(s in 1:S) { # S= race subgroup 1, 2

prec.sest[s] <- 1/s2.sest[s] # prec[s] = sample precision of sest [s]
sest[s] ~dnorm(mu[s], prec.sest[s]) # sest[s] = sample es mate of log HR [s]
mu[s] ~dnorm(mu0, prec.mu) # mu[s] = log HR are random normal (exchangeable)
prob[s] <- step(opc - mu[s]); # prob[s]=probability mu[s] > opc
rr[s] <- exp(mu[s]) # rr[s]= HR[s]

}
tau2.mu0 <- 1/var.mu0 # common variance of log HR[s]
mu0 ~ dnorm(0, tau2.mu0) # prior on common mean for log HR[s]
prec.mu ~ dgamma(.001,.001) # prior on prec.mu= log HR precision subgroups
tau2.mu <- 1/prec.mu # variance between subgroups in log HR

}

Data, log hazard ra os
list(S=2, sest=c(-0.19, 0.51), s2.sest=c(0.0036, 0.0576 ), var.mu0=16, opc=0)

Data, log rate ra os
list(S=2, sest=c(-0.2042, 0.4796), s2.sest=c(0.00395, 0.05622 ), var.mu0=16, opc=0)

Inits
list(mu0=0, prec.mu=1)

Section 10.7 Analysis. OpenBUGS code (Lunn et al. 2000) for analysis of LIFE
studyMACE rate based on quasi-likelihood for canonical Poisson generalized linear
model with fixed treatment effects, random race effects, and random treatment by
race interaction effects.

Model
model
{

for(r in 1 : R ) {rac[r] ~ dnorm (0, tau[1]) }# rac = race effects, random
for(t in 1 : T ) { trt[t] ~ dnorm (0, ooo1) } # trt = treatment effects, fixed

for( r in 1 : R ) { for(t in 1 : T ) { # x[r, t]= events for rac r, trt t
rate[r, t] <- x[r, t] / py[r, t] # py[r, t]= person-years for rac r, trt t

lograte[r, t] <- log(rate[r, t])
lograte[r, t] ~ dnorm(mu[r, t], prec.dat[r, t])

mu.gam[r, t] <- trt[t]+rac[r]
mu[r, t] ~ dnorm(mu.gam[r, t], tau[2]) # hierarchical centering of gam

# gam=rac by trt interacƟons, random
lam[r, t] <- exp(mu[r, t]) # lam= rate per py by rac r, trt t

gam[r, t] <- mu[r, t]-mu.gam[r, t]
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prec.dat[r, t] <- x[r, t]/phi[r, t] # prec.dat[r,t]= precision of lograte[r,t]
f[r, t] <- n[r, t] - 1 # f = dof on phihat = n-p (p=1 here)

#phi[r,t]<- 1/prec[r,t] # phi = overdispersion
#phisig[r,t]<- sqrt(phi[r,t]) # phisig= overdispersion sd
#aa[r,t]<- f[r,t]/2 # phihat[r, t]= X2 or deviance / n - p
#bb[r,t]<- aa[r,t]*prec[r,t]
#phihat[r,t]~dgamma(aa[r,t],bb[r,t]) # phihat[r, t] likelihood
#prec[r,t]~dgamma(o1,o1)

for(r in 1:2) { rr[r] <- lam[r,2] / lam[r,1] # rr[r] = rate raƟo for rac r
logrr[r] <- log(rr[r])

prb[r] <- step(opc - rr[r]); } # probability rr[r] > opc
for(k in 1:2) {

tau[k] ~ dgamma(o1, o1) # tau[k] = prec on random effect k
sig[k] <- 1 / sqrt(tau[k]) } # sig[k] = sd on random effect k

}
Data, MACE Event Rate
list(R=2, T=2, o1=0.01, ooo1=0.001, a=0.01, b=0.01, opc=1,
phihat = structure(.Data = c(1,1,1,1), .Dim = c(2,2)),

n = structure(.Data = c(4325, 4335, 263, 270), .Dim = c(2,2)),
py = structure(.Data = c(19975,20249.3,1115.4,1095.2), .Dim = c(2,2)),
x = structure(.Data = c(559,462,29,46), .Dim = c(2,2)) )

Inits
list(tau = c(1,1), prec = structure(.Data = c(1,1,1,1), .Dim = c(2,2)) )

# prior on 1/phi
}}
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Chapter 11
A Question-Based Approach
to the Analysis of Safety Data

Melvin S. Munsaka

11.1 Introduction

A primary objective in the analysis of safety data is to establish a comprehensive
safety profile of a drug. This is a key consideration and an area of focus in both the
pre-marketing drug development and post-approval life cycle management phases.
In the pre-market setting, the primary safety information comes from clinical trials
data covering several domains and other supporting information, such as, safety
pharmacology, toxicology, historical control data, and the literature on the therapeutic
area and drug class. Reports of clinical data in the form of tables, listings, and
graphs in some cases are often the main sources for assessing drug safety in the
development phase. In the post-marketing setting, safety data can come froma variety
of sources, including spontaneous adverse event reports, electronic health records,
the literature, epidemiology studies, and more recently social media resources. Data
sources for safety assessment from pre-marketing and post-marketing sources both
have advantages and disadvantages that can affect generalizability of results and
conclusions drawn about safety. Some regulatory guidelines are available describing
expectations of how safety data are to be analyzed and reported. Often, analysis,
presentation, and reporting of safety data in clinical reports tends to follow these
guidelines. Whereas it is recognized that the detection of safety signals early in the
drug development process is essential to minimize harms to patients and reduce
late attrition due to safety issues, it is also well acknowledged that the analysis
of safety data is challenging and the usual approaches may not be sufficient for a
variety of reasons. In this chapter, we will discuss some considerations that pertain to
the analysis and reporting of safety data. Thereafter we discuss a question-based
approach to the analysis of safety data that can be used to more appropriately and
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systematically look at safety data as part of the process of establishing the safety
profile and informing the risk-benefit of a drug, focusing on data from clinical trials.

11.2 The Role of and a Need to Improve the Analysis
and Reporting of Safety Data in Drug Development

Patient safety has always been a primary focus in drug development and there is a
general consensus that patient safety must always come first. Stopping drug devel-
opment for a drug candidate, drug recalls, and safety warnings in drug labels have
become commonwith the increased scrutiny of safety data and suggests inadequacies
in the characterization of the safety profiles of drugs. In fact, the adequacy of assess-
ment of safety data had long been recognized as lacking and requiring improvement
(see for example, Scherer andWiltse 1996;Wittes 1996; Northington 1996; Tremmel
1996). This points out to an important need for a more comprehensive characteriza-
tion of a drug safety profile. In this regard, there have been many efforts dedicated to
finding ways of enhancing drug safety assessment and reporting in the form of new
methodology and regulatory guidance. Some of the efforts on methodology for anal-
ysis of safety data, particularly those efforts directed towards quantitative methods
can be seen in Jiang and Xia (2014), Gould (2015) and Gibbons and Amatya (2015).
Along the same lines, regulatory and non-regulatory guidance documents have been
proposed to aid in enhancement of safety analysis and reporting, for example, the
FDA (2005) draft guidance for Safety Assessment for IND Safety Reporting and the
Council for International Organizations of Medical Sciences Ten (CIOMS X 2017)
document of meta-analysis of safety data.

The resulting and emerging recent theme is that of a need for an efficient safety
analysis that facilitates for identification and characterization of the safety profile
of a drug as early as possible in the development process. This includes identifying
risk factors related to increased toxicity and characterization of temporal relations
of adverse drug experiences and exposure and assessing magnitude of risk and its
management. This heightened effort should provide information to support appro-
priate labeling of drugs and prevent costly consequences when a drug is marketed.
In order to achieve this goal, the bar on the analysis of safety data needs to be raised
by applying, or developing appropriate formal statistical methods that are helpful in
identifying and characterizing safety signals in terms of various considerations such
as magnitude and intensity, thereby providing a comprehensive characterization of
the safety profile. In essence, there is a need to continuously monitor safety on an
ongoing basis pre- and post-approval taking into account many considerations. As a
matter of fact, the safety profile of a drug can evolve over time. Most importantly, the
analysis of safety data should facilitate a clinician’s assessment of the risk-benefit
profile of the drug, classes of patients and patient management.
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11.3 The Nature of Safety Data and Core Safety Data
Domains

11.3.1 The Nature of Safety Data

Compared to efficacy data, safety data tend to be much more complex and highly
inter-related. They are not easy to analyze with conventional statistical methods
because many of the standard assumptions are not necessarily satisfied. Addition-
ally, there are many pathological features frequently seen in safety data, including,
non-normal data, high variability, and heterogeneous sub-populations. For example,
patients are differentially prone to adverse events depending on their prognosis and
two patients with the same prognosis can exhibit differences in their safety response
and experience to treatment. Further, differences in standards of care and clinical
assessment can also contribute to high variability in clinician’s reporting and assess-
ment of safety data. For example, in the assessment of severity of an adverse event,
for same patient, two different clinicians can give different accounts of severity
assessments and may recommend different treatment regimens for the same progno-
sis. A further complicating factor is that a specific adverse condition may manifest
itself in different ways, or may require several pieces of related safety information
to conclusively ascertain harm and causal effects.

It is worth noting that in a typical clinical trial study designed primarily to show
efficacy, the majority of the data collected pertains to safety. However, based on the
standard analyses of safety data in clinical trial reports, it is evident that although a
lot of safety data are collected, the overall treatment of safety data is not reflective of
this and it is probably and not necessarily the most appropriate data upon which to
conclusively base safety decisions. In essence, the appropriate data to demonstrate the
safety of a product will depend on the proposed indication, life-threatening potential,
or quality of life enhancement, intended duration of use (one time versus short-
term versus long-term versus intermittent versus recurrent use) and diversity of the
patient population (age, race, gender, disease history,medicationhistory, concomitant
medication, concomitant disease, standard of care, genetic disposition, and many
other factors).

11.3.2 Core Safety Data Domains

The core safety data domains include adverse events, clinical laboratory data, vital
signs, and electrocardiograms. Other specialty safety data based on indication and
class of medication may also be collected to help assess specific drug adverse effects.
For example, an assessment of the eyes collected using specialty equipment may
be performed to ascertain opthalmologic safety. Various adverse events of special
interest, for example, the drug’s effect on hypogylcemia in diabetes patients, may
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require additional collection of fasting blood glucose data and systematic review for
a more definitive assessment and severity classification. Below, we discuss each of
the core data domains.

Adverse Events

ICH-E6 defines an adverse event as: An adverse event (AE) is any untoward medical
occurrence in a patient or clinical investigation subject administered a pharmaceu-
tical product and which does not necessarily have a causal relationship with this
treatment. An adverse event (AE) can therefore be any unfavorable and unintended
sign (including an abnormal laboratory finding), symptom, or disease temporally
associated with the use of a medicinal (investigational) product, whether or not
related to the medicinal (investigational) product. There are many considerations
that need to be taken into account in the analysis and clinical assessment of adverse
events, including, seriousness, severity, relatedness to drug, frequency, outcome, and
expectedness. Often, analysis of adverse events revolves around magnitude of the
count data (crude rates) and focuses on these aforementioned considerations with
tabular output. The use of count data for adverse events as an outcome variable is
complicated by the large number of possible events and incidence on placebo.

In essence, a proper analysis of adverse events requires that other considerations
be addressed in order to assess degree and magnitude of potential safety signals
adequately. Tremmel (1996) discussed some considerations that should be taken
into account to adequately and appropriately analyze and clinically assess adverse
events. These include type of event and clinical trial that is being conducted and dura-
tion of the trial. Taken together, these considerations should drive the appropriate
metric, measure of risk and consequently the method of analysis. These considera-
tions are given below in: Table11.1 (event type), Table11.2 (type of clinical trial and
meaningful measure), and Table11.3 (event type and analysis).

Note that in some cases, it makes more sense to look at a medical concept or
adverse event of special interest (AESI) defined by a collection of adverse events
that constitute or define that medical concept. This can be done through a Standard-
ized MedDRA Query (SMQs) or a custom MedDRA Query. Some of the med-
ical concepts may also require additional information including clinical labora-
tory or may involve an algorithmically-based definition. Common AESI’s include:
hepatotoxicity, QT interval prolongation (Torsade de Pointe), renal failure,

Table 11.1 Adverse event considerations: event type

Event type Example Question

Absorbing Death Will I get it?

Absorbing Blindness When will I get it?

Repeating Seizure How often will I get it?

Repeating Seizure Will I develop tolerance?

Long duration Depressive disorders How much time?

Long duration Neutropenia How much time?
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Table 11.2 Adverse event considerations: type of trial and meaningful measure of risk

Type of trial Type of AE Meaningful measure

Short term All Crude rate

Short term All Cumulative rate

Long term Absorbing Hazard function

Long term Recurring Hazard function

Long term Long duration Prevalence

Table 11.3 Adverse event considerations: event type, trial duration, and analysis method

Event type Analysis

Absorbing events Crude incidence rate

Events per unit time

Survival rate (cumulative rate)

The hazard as a function of time

Recurrent events of short duration Events per unit time

Expected number of events as a function of the hazard

Hazard—simple Anderson-Gill model

Modeling the effect of preceding events

Heterogeneity among subjects

Recurrent events of long duration Prevalence rates

Markov models

Hazard—simple Anderson-Gill model

Modeling the effect of preceding events

Heterogeneity among subjects

(nephrotoxicity), abuse potential, bonemarrow toxicity, drug-drug interactions, poly-
morphic metabolism, rhabdomyolysis, pancreatitis, cardiotoxicity, hypersensitivity,
serious skin reactions, non-cytotoxic bone-marrow toxicity, anaphylaxis, blindness,
deafness, hemoplytic neumonia, and suicidality.

Clinical Laboratory Data

Various, laboratory data can be a manifestation of potential safety concerns. For
example, increased levels of alanine aminotransferase (ALT), aspartate aminotrans-
ferase (AST), total bilirubin, and other hepatic safety parameters can be indicative
of potentially compromised hepatic safety. Clinical laboratory data are essentially
multivariate, non-normal, and correlated time series for a given patient. They are typ-
ically assessed on the basis of normal ranges. These limits are a univariate approach
that is well known from basic multivariate distribution theory to be problematic
where variables are correlated. It is quite typical to accept normal ranges at face
value and can be in this sense be misinterpreted. Due to high variability in these data
especially when looking across different patient populations and subgroups, it may
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be more appropriate to consider using markedly abnormal values (MAVs) to identify
outlying values for analysis purposes.

The usual analysis of laboratory data typically includes three standard approaches
that focus on measures of central tendency (mean change from baseline), shifts
from normal to abnormal, and markedly abnormal values. Per the ICH-E3 guideline,
markedly abnormal values (sometimes referred to as clinically significant or marked
outlier) should be defined by the sponsor. MAVs may be expressed as a proportional
change above or below the reference range or as an absolute value outside the refer-
ence range that has clinical meaning. MAVs can also be defined in terms of relative
change from baseline or as persistent abnormalities occurring at a specified number
of visits (consecutive or not).

Vital Signs and Electrocardiogram Data

Vital signs data consisting of heart rate, blood pressure, respiration rate, temperature,
height, and weight are usually collected at multiple times over the course of a clinical
trial. In some cases vital signs may be collected more frequently, for example, in
Phase 1 studies where there may be a need to correlate these measurements with
other data such as pharmacokinetic data. Electrocardiogram (ECG) parameters are
derived from ECG tracings are also increasingly collected in many studies. The
key ECG parameters include: heart rate, RR, QT Interval, and QTc Intervals. ECG
parameters are usually derived from traces measured at two or three time points. The
derivation of these measures needs a certain skill which introduces another source of
variation and interpretation. Like clinical laboratory data, both vital signs and ECG
parameters data are multivariate and non-normal and like clinical laboratory data, the
analysis of vital signs and ECG parameter data will typically include three standard
approaches that focus on measures of central tendency (mean change from baseline),
shifts from normal to abnormal, and markedly abnormal values.

Other Data Sources Important for Safety Analysis

Many other types of data domains may be collected for safety analysis purposes,
including specialty safety data. Of note, there are also several other data sources
that are specifically important in reporting clinical data and useful in putting safety
data into some context, or for subgroup analysis, prognosis, etiology, or predictions
purposes. These include demographic characteristics, drug exposure information,
concomitant medications, concurrent disease, medical and medication history.

11.4 Guidance on Analysis and Inference of Safety Data

11.4.1 Guidance on Analysis of Safety Data

Suggestions for analyzing safety data are discussed in various regulatory guid-
ance documents. For example, ICH-E9 recommends descriptive statistical methods
supplemented by confidence intervals and points out that p-values are useful for
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Table 11.4 Adverse event analysis method

Source Analysis

ICH-E3 • Adverse events occurring after initiation of study treatment

• Changes in vital signs considered as serious adverse events
(SAEs)

• Changes in laboratory parameters that were considered
SAEs

• Listing of AEs by patient

• Listing of deaths, SAEs, and other significant AEs

FDA safety clinical review guideline • Incidence of common AEs

• Common AE tables

• Identify common and drug related AEs

• Additional analyses and explorations—age, gender, etc

CIOMS • Rates of AEs

• Relative risk and odd ratio

• Confidence intervals

• Time-to-event methods

evaluating specific differences of interest. ICH-E9 further states that if hypothesis
tests are used, statistical adjustments for multiplicity to quantitate the Type I error are
appropriate, but argues the Type II error is usually of more concern. It also suggests
that p-values sometimes are useful as a flagging device applied to a large number of
safety variables to highlight differences worthy of further attention. Some examples
of guidance for analysis of adverse events and clinical laboratory parameters are
provided in Tables11.4 and 11.5, respectively.

Regarding the IntegratedAnalysis of Safety (IAS), specific guidance for integrated
analyses of safety are provided in CFR 21 314.50 (d) (5) (vi) (a). Of note, it is stated
that: The applicant shall submit an integrated summary of all available information
about the safety of the drug product, including pertinent animal data, demonstrated
or potential adverse effects of the drug, clinically significant drug/drug interactions,
and other safety considerations, such as data from epidemiological studies of related
drugs. The safety data shall be presented by gender, age, and racial subgroups. When
appropriate, safety data from other subgroups of the population of patients treated
also shall be presented, such as for patientswith renal failure or patientswith different
levels of severity of the disease. A description of any statistical analyses performed
in analyzing safety data should also be included.

Integrated analyses of safety are different from study level analysis due to large
amounts of data. It is common to analyze these data using predefined groupings
(pooling strategy) of studies with common elements. The pooling strategy is often
detailed in the integrated analysis of safety statistical analysis plan. It takes into
account various factors, such as the designs (e.g., double-blind versus open label),
treatment, and duration of exposure, and so on. The basic idea is to pool data from rel-
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Table 11.5 Clinical laboratory data analysis method

Source Analysis

ICH-E3 • Listing of individual labs and abnormal lab values

• Evaluation of each lab parameter

• Laboratory values and changes from baseline over time
(descriptive and categorical based abnormal values)

• Shift tables

• Graphs comparing initial value and on-treatment values

• Individually clinically significant abnormalities

FDA safety clinical review guideline • Analyses focused on measures of central tendency

• Analyses focused on outliers or shifts from normal to
abnormal

• Marked outliers and dropouts for laboratory
abnormalities

• Additional analyses and explorations—dose
dependency, time dependency, drug-demographic, drug
disease and drug-drug interactions

CIOMS • ANCOVA for lab data with baseline value as covariate
with observed value or change from baseline or
maximum value (most severe value)

• Analyze binary values of lab data based on various
cutoffs

• Graphical displays—scatter plots of baseline versus
post-baseline

evant/similar studies and summarize the data as if they came fromone source. Pooling
data can help improve the precision of incidence estimates especially for rare adverse
events. It also enables assessment of trends in small subgroups of patients, such as
the elderly, that may not be possible with study-level data. Outputs from pooled
analyses are used to populate various sections of the common technical document
(CTD), including sections 5.3.5.3 (Integrated Summary of Safety), 2.7.4 (Summary
of Safety), and 2.5 (Summary of Efficacy and Safety) and the label. It is important to
exercise caution when looking at analyses of safety based on pooled data and results
should be cautiously interpreted as they can lead to challenges in conclusions drawn
that are based on naive cumulative information. An analysis based on naively-pooled
data can lead to misleading results as a consequence of Simpson’s Paradox. Various
suggestions have been proposed to analyze these data more appropriately, see for
example, Chuang-Stein and Beltangady (2009) and Rosenkranz (2010).
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Table 11.6 On the question of inferential testing

Source Recommendation

Enas (1991) • While not required for every AE, inferential statistical
methods can be used both formally and informally to help
characterize the safety profile of a new drug and help guide the
resulting inferences to the broader population

FDA Guidance on conducting
a safety review

• Although not strictly hypothesis testing, p-values give some
feeling for the strength of the finding and should be produced
for all new drug/placebo pair-wise comparisons and any
p-values meeting a p < 0.05 level of significance should be
noted

SPERT Team Crowe et al.
(2009)

• For TIER 1 and TIER 2 AEs—an estimate of the risk
difference, relative risk, or odds ratio is reported together with
corresponding confidence intervals or p-values

ICH-E9 • Section 6.4 Statistical Evaluation—The calculation of
p-values is sometimes useful, either as an aid to evaluating a
specific difference of interest or as a flagging device applied to
a large number of safety and tolerability variables to highlight
differences worthy of further attention

Multiplicity question
(Carragher 2014)

• Classical and Bayesian methods to control false positive
results. An R package was developed for the methods

11.4.2 Guidance on Statistical Inference of Safety Data

The question of statistical inference in safety data is one that is often considered con-
troversial. There are many questions and challenges and controversies and varying
opinions when it comes to statistical inference of safety data. There are questions on
what, when, and how to perform inference in safety data coupled with challenges in
interpretation given the many statistical challenges and in general a difficult statisti-
cal testing framework. The majority of clinical studies are often powered to assess
efficacy, except in those cases where the primary outcome of interest is safety, such as
in the case of cardiovascular outcome studies in diabetes. There are many arguments
that have been put forward, see for example, Huster (1991), against performing any
form of inference when looking at safety data. On the other hand, there are many
suggestions pointing out to inclusion of some form of inference for safety data.
Table11.6 is an abstraction of some of these suggestions.

In the present discussion, we take the position that statistical inference is a plausi-
ble thing to do when looking at safety data. Indeed, the use of inference appears to be
the current norm in the analysis of safety data. However, caution should be exercised
in the findings from such inference and must be balanced with clinical implications,
discernement, and plausibility.
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11.5 A Tiered Approach to the Analysis of Safety Data

The 3-tier system (see for example, Crowe et al. 2009) for analyzing safety data is
based on the premise that it is important to report all adverse events. However, not
all adverse events need to be analyzed in the same manner. Based on this three tier
system, adverse events are classified into 1 of 3 tiers for analysis purposes. A key
important feature of this approach is to distinguish between prespecified hypotheses
which fall into the Tier 1 category and events that are not prespecified, the Tier 2 and
Tier 3 categories. The key consideration is that is prespecified hypotheses should be
handled differently from those not prespecified. The specification of the three tiers
should be included in each trial protocol and the prospective safety analysis plan.
Note that serious adverse events are included in each tier. The definitions of the 3
tiers of AEs are as follows:

Tier 1 events are prespecified for detailed analysis and hypothesis testing. These
are events for which a pre-specified hypothesis has been defined. In general, mul-
tiplicity adjustment are not to be used for Tier 1 events, but this can be considered
if there are numerous Tier 1 events. Of note, appropriate metrics of absolute risk
should be reported, such, frequency, subject incidence, or incidence rate per person-
time of exposure. Estimates of the risk difference, relative risk, or odds ratio can be
reported together with corresponding confidence intervals or p-values. Additionally,
risk factors such as age, sex, and co-morbidities can be investigated as predictors of
these events within each treatment group and overall.

Tier 2 are targeted for signal detection among common events. This tier of adverse
events are those that do not have a pre-specified hypothesis and are common. The Tier
2 events should be reported with risk differences, risk ratios, or odds ratios including
confidence intervals and/or p-values. The events in Tier 2 are the events for which
signal detection and multiplicity adjustment, if necessary, should be considered.

The Tier 3 events are those events that are not in the Tier 1 or Tier 2 designation.
These events are reportedwith descriptive statistics, typically, number and percent (n,
%) and possibly rates per person-time, but without p-values or confidence intervals.
It is important to note that inclusion in Tier 3 does not imply lack of importance,
particularly for clinically serious events.

The three tier approach to the analysis of safety data provides a general framework
on how one might categorize the types of adverse events for analysis purposes.
However, complex safety issues may need more than a single, or even multiple,
Tier 1 event to be fully understood. As noted earlier, comprehensive assessment of
certain medical concepts may need to be looked into using SMQs or customized
MedDRA queries and draw upon other evidentiary data. For example, to perform a
comprehensive assessment of liver safety, one needs to look at not only individual
adverse events. Rather, one should consider the SMQ for hepatic events and also look
at supporting evidence from laboratory abnormalities associated with hepatic safety,
and make use of various analyses such as Hy’s law in combination with AE data, and
various other considerations such as those outlined in the FDA (2009) guidance for
drug induced liver injury (DILI) or the DILIN network criteria (Aithal et al. 2011).
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11.6 Challenges in Reporting and Analysis of Safety Data

11.6.1 Reporting Safety Data

There are many challenges in the analysis and reporting of safety data and some
of these have already been highlighted in earlier sections and are discussed widely
in the literature, see for example Singh and Loke (2012). They include lack of an
evidentiary gold standard, limited statistical power, lack of adequate ascertainment
and classification of adverse events, and limited generalizability. Also, as noted in
the earlier sections, clinical trials collect a great deal of data relating to the safety of
the trial participants. The data are complex in nature and traditional approaches to
data review involve using summary tables and listed data. Safety data also present
many challenges with regard to analysis and interpretation. The very nature of safety
data makes it challenging to analyze using conventional statistical methods because
many standard assumptions may not be fulfilled.

Additionally, a typical clinical trial is generally not sufficient to detect safety sig-
nals, unless a study is specifically powered for safety. The pathological features
of diseases lead to asymmetric nonnormal distributions and heterogeneous sub-
populations. Often descriptive tabular outputs with lots of exploration and review
of individual patient data are primary source for safety assessment. This use of
tabular outputs for safety data often results in large volumes of output leading to
problems in generation, assessment, validation, assembly and last and worst of all
interpretation, comprehension, and communication of key safety findings, leading to
challenges in the overall interpretation and decision making. The simple descriptive
summary tables and review of individual patient data are rarely analytical with lots of
exploration and estimation. As pointed out byWittes (1996):A plethora of tables and
graphs that describe safety may bury some true signal in a cacophony of numbers.
The simple descriptive summary tabular outputs and the review of individual patient
data are rarely analytical. Rarely is there comprehensive analytical approaches and
inference to better ascertain the safety profile of the drug which can aid in decision
making.

Reporting of AEs in randomized clinical trials (RCTs) is often lacking and with
limited application in the real world, as RCTs are of short duration, include small
numbers of patients, and are selective for subjects lacking in comorbid conditions. It
is not surprising that new and unexpected safety concerns emerge with any new drug
after it has been launched and used by many more patients. Part of the problem is
inherent to the way safety data are reported in RCTs. The typical clinical trial is gen-
erally not sufficient to detect safety signals, unless study is specifically powered for
safety—zero observed events does not mean drug is safe. The pathological features
leading to asymmetric non-normal distributions, heterogeneous sub-populations,
high variability in measurements, and multi-dimensional and inter-related in nature
of the safety data make it difficult to analyze. The key safety endpoints of concern
may not be known prior to trial.
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It is also difficult to design a clinical trial to simultaneously provide for complete
and comprehensive inference about all safety effects and efficacy of a drug. In fact,
for the most part, clinical trial entry criteria and designs are targeted at efficacy
assessment. There are also challenges in reporting and in general, typical study-level
clinical trial data are generally not sufficient to conclusively assess safety. Even for
those studies that are specifically geared for safety, the focus is often on a specific
adverse event of special interest. In any event, some adverse events of interestmay not
be known a priori. Often, safety analysis tends to be somewhat ad hoc and exploratory
in nature. Interestingly, there is often more safety related data collected than efficacy
data in terms of volume, but even with this large quantity of safety data acquired
during clinical drug testing, safety data are rarely harvested to their fullest potential.

11.6.2 Analysis of Safey Data

It is evident that the characterization of the safety profile of a drug requires analyses,
both descriptive and inferential, that go beyond the usual common tabular presen-
tation of safety data. In general, these additional analyses may be targeted analyses
geared towards addressing one ormore specific safety considerations. It is alsowidely
acknowledged that there is some room for improvement in the analysis and reporting
of safety data from clinical trials and that safety data needs to be given a more rigor-
ous treatment similar to efficacy. In fact, much is written in old and recent literature
about the inadequacies and incompleteness of the statistical evaluation and reporting
of clinical safety data. This evolution in safety data analysis needs and reporting has
resulted in a shift in the roles within regulatory science and sponsor companies, with
both parties needing to allocate more resources to look into safety data in a more
systematic way in an attempt to appropriately provide a comprehensive assessment
of the safety profile of a drug.

The analysis of safety data typically hinges on individual AEs often looking at
these in isolation of other AEs, pointing out various notable differences between
treatment where deemed appropriate. AE analysis focuses on how many subjects
experience the AE in question and in some cases the total number of reports of the
AE in question. This analysis approach to AEs neglects the fact that AEs are not
independent of each other. Specifically, this analysis approach ignores the potential
concurrence of AEs within patients as well as other information such as the number
of occurrences and time-course of the AEs within patients. Further, information
about the concurrence or constellation of AEs within patients is a valuable piece of
information but this is usually neglected. The information regarding AEs that occur
together or in some constellation can have potential applications in patient treatment
and care. For the most part, results from both efficacy and safety analyses eventually
end up in the label in one form or another, but really do not speak much to the data
in terms of the issues mentioned above, including patient management and care.
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Standard/typical analysis of clinical trial data often follows the usual approach of
separately analyzing efficacy and safety datawhich does not really render itself useful
when assessing patient management and risk-benefit. The predominant method for
statistical evaluation and interpretation of safety data collected in a clinical trial is
the tabular display of descriptive statistics. There is a great opportunity to enhance
evaluation of drug safety through, for example, the use of graphical displays, which
can convey multiple pieces of information concisely and more effectively than can
tables.

Many suggestions have been put forward to use alternative quantitative methods
as an alternative to the common tabular outputs for exploring safety data and that
these methods present a great opportunity to enhance evaluation of drug safety. To
this end quantitative statistical evaluation of safety data is evolving into a major com-
ponent of the totality of evaluation of drug product. The analysis of safety data from
clinical trials offers uniquemethodological opportunities. Some common approaches
for analyzing adverse events are described in Cao and He (2011), including crude
percentage (rate) and adverse events adjusted by exposure time or recurrent. Overall,
the analyses of safety data are not often rigorously done and often fail to account for
a variety of characteristics that are pertinent to safety data. The general consensus is
that there is room for improvement in the analysis and reporting of safety data from
clinical trials and that safety data are often not adequately and appropriately assessed
with more focus given to efficacy and with often selective reporting for safety data.
There is insufficient use of more appropriate methodological approaches for safety
data with more rigor given to analysis of efficacy data despite the current atmosphere
of more scrutiny on safety, both pre- and post-approval. As a consequence, various
methods have been proposed in the literature aimed at addressing some of the safety
considerations. To this end, we highlight below three examples of some suggestions
to improve analysis of safety data.

Harrell (2005) pointed out that it is difficult to see patterns in tables and substituting
graphs for tables can help increase efficiency of review. Graphs can be used to aid
in inference and communicating safety results and to help display large amounts
of safety data coherently and maximize the ability to detect unusual features or
patterns. They can also play a big role in facilitating communication of safety results
with regulators, investigators, Data Monitoring Committees, and other stakeholders.
Visualization of safety data can help conveymultiple pieces of information concisely
and more effectively than tables. Graphical exploration can substantially improve
information gain from safety data.

The usual standard analysis of adverse events using crude rates is known to be
problematic. For example, the required statistical assumptions of constant hazard rate
over time for valid estimates of incidence rates are not likely to be met in practice by
adverse events data of clinical trials. In this setting, a non-parametric approach called
the mean cumulative function can provide a valid statistical inference on recurrent
adverse event profiles of drugs in randomized clinical trials, see for example, Cao
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and He (2011) and Siddiqui (2009). Wang and Quartey (2012) also proposed use
of a nonparametric method to estimate the mean cumulative duration based on the
nonparametric cumulative mean function estimate.

In practice, the usual inferential approach for safety data analysis involves the
comparison of the proportion of subjects who experience an AE between treatment
groups for each type of AE. This involves a large number of analyses with inadequate
statistical power and no meaningful control of type 1 error. Unadjusted analyses
can lead to false positive results, while using simple adjustments, for example, the
Bonferroni adjustment, are generally too conservative and counterproductive for
considerations of safety. Thus, an important consideration in the analysis of AE
data is to address concerns about multiplicity and the imprecision of data inherent
in the AE data. Analyses of AE data are routinely analyzed using p-values. If p-
values are reported and interpreted without multiplicity considerations, there can be
incorrect conclusions due to false positive findings which can needlessly muddy the
safety profile of an otherwise safe drug. Various approaches for dealing with the
multiplicity question have been proposed within the safety data setting. Although
there is no harmonized agreement on using one method over the other, they provide
a reasonable balance between no adjustment versus adjustment. Several frequentist
and Bayesian methods have been proposed to address the multiplicity issue. For an
overview of thesemethods, see for example, Carragher (2015)who also developed an
R package that implements these methods (https://cran.r-project.org/web/packages/
c212/index.html).

11.7 A Question-Based Approach to the Analysis
of Safety Data

11.7.1 A Question-Based Approach

As noted in the previous sections, analysis and reporting of safety data is much more
complex than efficacy data and wrought with many challenges. Various suggestions
have been proposed to tackle those challenges and there is a reasonable level of
mathematical sophistication and processes that can be put into place to facilitate
better analysis of safety data. The degree of detail, sophistication of analysis, and
language used should in general be determined by target audience which can be, for
example, regulatory authorities or pharmacovilance personnel evaluating the safety
of the drug.

Additionally, it is clear that every analysis that is performed for safety data can
clearly be associated with a specific safety concern or concerns. It thus makes sense
to systematically tackle the analysis of safety data taking all these into account and

https://cran.r-project.org/web/packages/c212/index.html
https://cran.r-project.org/web/packages/c212/index.html
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employing various planning, analysis, and reporting suggestions that have been put
forward such as those pertaining to the use of the tiered approach and multiplicity
adjustments. We suggest the use of a question-based approach in analyzing safety
data. The approach can be used in conjunction with the various proposals made to
help improve the analysis of safety data. The premise is that each safety concern
can best be addressed by asking appropriate questions and then identifying the data
that can be used to address the question followed by identifying a methodological
approach (descriptive, graphical, analytical or inferential) to address the question
and ultimately reporting and decision-making associated with the findings.

It is worth to note that asking questions about safety data is not a new idea. Many
authors have discussed questions that need to be addressed and also proposed some
ways to address those questions when looking at safety data. For example, Durham
and Turner (2008) discuss a set of patient-centric questions as part of the rationale
for evaluating safety data in clinical trials. For example, one question that they ask
is: how likely is that my patient will experience an adverse event reaction that is
so serious that it may be life threatening? Merz et al. (2014) also discuss a set of
questions that they consider in their paper on methodology to assess clinical liver
safety data. For example, one question that they ask is:Are there anyHy’s law cases in
the dataset?Harrell (2005) also considered this approach in addressing safety issues.
Among the questions he discussed are:Who is having the selected AEs? Which AEs
occur together? Which AEs tend to occur in the same patient?Within the context of
subgroup analysis, Chow and Liu (2009) also posed the following questions among
others: Are the AE rates the same across a subgroup for patient taking the drug?
Within subgroup levels, are AE rates the same across treatment groups? Is the time
of occurrence of the AE the same across levels of a subgroups?

The specific approach that we are proposing here is that the analysis of safety
data can be done more appropriately and systematically by asking a set of question
surrounding a safety issue of concern. These questions will then dictate the data that
can be used to address the question at hand and consequently the method to be used
(descriptive, graphical, analytical, or inferential). By employing various analysis
approaches that have been proposed in the literature to address safety concerns, this
can best be done within a question-based setting. In fact any given analysis method
of safety data can be associated with a specific question that it is trying to address
and hence the data that is needed and conclusions and decisions that will be drawn
regarding the question being asked. The following graphic in Fig. 11.1 summarized
this approach.
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Fig. 11.1 Clinical laboratory data analysis method

11.7.2 Sample Questions

For illustration purposes, below we provide some questions that one may ask for
adverse events and separately for clinical laboratory data and subgroups.

Questions on Adverse Events

• What is the temporal relation of drug experience and exposure?
• Which AEs are elevated in treatment versus control?
• Is there any evidence of a dose-response relationship?
• Is there a difference in the time to the first event across treatment groups?
• What are the AE durations?
• What are the trends of time to the first event among different AEs?
• What is the severity of the AEs?
• Which AEs tend to occur in the same patient?
• Are there withdraws and/or interruption due to AE of interest?
• Is there a relationship with other AEs?
• Which AEs are occurring together in clusters or in a constellation?
• Is the potential AE of interest increasing over time?
• What are the risk factors of the AE?
• Is there a relationship with use of concomitant medications?
• Are the most prevalent AEs suggestive of more serious events or medical
concern?
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Questions on Clinical Laboratory Data

• Howmany patients exceed certain threshold values of clinical laboratory data
across treatment groups?

• Are distributions of clinical laboratory data and incidence of out-of-range
values different across treatment groups?

• Are there subjects with elevation on multiple clinical laboratory data?
• What is the distribution and magnitude of clinical laboratory data elevations?
• Is there any evidence of a dose-response relationship in clinical laboratory
data elevations?

• What is the timing of clinical laboratory data abnormalities?
• Is there a characteristic time to event for clinical laboratory data elevations?
• Are shifts from baseline different between treatment groups for some clinical
laboratory data?

• Is there any evidence for a dose-response-relationship for clinical laboratory
data exceeding thresholds?

• What is the time-course of clinical laboratory data elevations?
• What are the patterns of elevations, e.g., single versus multiple/recurrent?
• What is the duration of elevations?
• Are clinical laboratory data elevations transient?
• Do the clinical laboratory data elevations resolve on treatment or off-
treatment?

• Can we identify potential risk factors or subgroups of patients associated with
clinical laboratory data elevations?

Questions on Subgroups

• Are adverse event rates the same across a subgroup for patients taking exper-
imental drugs?

• In which subgroups do the AEs occur?
• Within subgroup levels, are AEs the same across treatment groups?
• Is there a consistent association between the treatment group and the adverse
event response across levels of a subgroup?

• Does the subgroup predict an adverse event response?
• Is the time the occurrence of the adverse event the same across levels of a
subgroup?
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11.7.3 Examples

For illustration purposes, we consider some examples of the question-based approach
by drawing on some graphs from the website: http://www.ctspedia.org/do/view/
CTSpedia/StatGraphHome. Specifically, we consider how each graphic can be used
to address a safety question of interest.

Question:What are the frequencies, magnitudes, and differences between treatment
and control in some pre-specified adverse events?Note that in this particular setting,
we are looking a some pre-specified events, possibly Tier 1 events. One approach
to address this question is to use a risk plot, such as the one shown below which
would provide answers to the question being asked. An additional detail here is the
provision of confidence intervals for the risk difference.

Question:Are there any other events that we should be concerned about?Note that in
this particular setting, we are not pre-specifying the events. Hence one can envisage
that we are looking at Tier 2 events. One approach to address this question is to use
a volcano plot, such as the one shown below which would provide answers to the
question being asked. The general idea is to focus on the AEs whose p-value exceeds
a particular threshold, in this case p = 0.05 and odds ratios exceeding 1. One would
then focus on the AEs in the upper right quadrant. The thresholds can be modified
as deemed appropriate and the risk difference and relative risk can be used in place
of the odds ratio. Further, this can be used in conjuction with methods to accounting
for multiplicity.

http://www.ctspedia.org/do/view/CTSpedia/StatGraphHome
http://www.ctspedia.org/do/view/CTSpedia/StatGraphHome
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Question: What is the timing of headache, dizziness, nausea, and vomiting? One
approach to address this question is to simply plot the cumulative incidence of each
adverse event and visually inspect the plots to see if there are differences in the
pattern of timing of the events. Other types of plots can also be used to address this
question, including the Kaplan-Meier plot, hazard-plot, and event charts, with each
type of plot having different interpretation. Once can also use the same the figure to
plot all the events for ease of comparison.
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Question: Are there subjects meeting Hy’s law? The most common approach to
address this question is to use the eDISH (evaluation of Drug-Induced Serious Hepa-
totoxicity) plot. One form of the e-DISH plot is shown below. Basically one focuses
on the upper quadrant to see if any subjects fall in that quadrant, known as Hy’s Law
Range, which is indicative of a potential liver safety problem. This can then be used
with other information to conclusively rule out other causes besides the drug. This
often includes looking at the individual patient data that include the time course of
elevations of liver safety-related clinical laboratory parameters and how these param-
eters track together. Examples of individual patient figures of time course of clinical
laboratory parameters for liver safety clinical laboratory and a figure how to assess
how these track together are given after the eDISH plot, respectively.

Question:What is the time course of liver safety laboratory parameters for selected
patients?
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Question: Which liver safety laboratory parameters have some elevations?

All the graphs presented above to address different questions can be accompa-
nied or supplemented by appropriate and/or additional analytical methods to further
elucidate the safety issue of concern. Each graph can also address more than one
question.
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11.8 Conclusion

This chapter discussed several considerations associated with the analysis of safety
focusing on the pre-market setting. It was noted that the analysis of safety data is
challenging and the usual approaches may not be sufficient for a variety of reasons. It
was also noted that some regulatory guidelines are available describing expectations
of how safety data are to be analyzed and reported and often, analysis, presentation,
and reporting of safety data in practical settings tends to follow these guidelines.
Various considerations and challenges that pertain to the analysis and reporting of
safety data were highlighted. It was also noted that it is well recognized that current
standard approaches to the analysis of safety data are lacking in various aspects and
there is room for improvement. In particular, it was noted that safety analyses should
not only provide rapid answers to pre-specified questions, but also insight into the
structure of raw data and also generate new questions and provide information on
safety profile of the drug, at a minimum point out what risks are associated with the
drug. It should also facilitate formore efficient identification of potential signals early
in development process, convey safety information more efficiently, identify trends
and patterns in potential adverse events of interest. It would make safety results more
understandable quantitatively, increase likelihood of detecting key safety signals,
improve ability tomake clinical decisions, help in decisionmaking regarding specific
safety concerns, provide basis for systematic exploration safety concerns.

In this regard, there have been many concerted efforts dedicated to finding better
ways of enhancing drug safety assessment and reporting in the formof newmethodol-
ogy, particularly those efforts directed towards quantitative methods, and regulatory
guidance. We discussed a question-based approach to the analysis of safety data
that can be used to more appropriately and systematically look at safety data as
part of the process of establishing the safety profile of a drug. Examples based on
graphical approaches were provided to help illustrate the question-based approach. It
was argued that the question-based approach used in conjunction with the emerging
quantitative methodology for safety data can play a big role for an efficient safety
analysis. This in turn can facilitate for identification and characterization of the safety
profile of a drug as early as possible in the development process and result in less
attrition of drugs due to safety issues and enable a well thought-out process for safety
analysis. Most importantly, this approach can also help in facilitating for clinicians
assessment of the risk-benefit profile of the drug and classes of patients and patient
management.
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Chapter 12
Analysis of Two-Stage Adaptive Trial
Designs

Shein-Chung Chow and Min Lin

12.1 Introduction

In the past decade, adaptive design methods in clinical research have attracted much
attention because it offers not only the principal investigators potential flexibility for
identifying clinical benefit of a test treatment under investigation, but also efficiency
for speeding up the development process. The FDA adaptive design draft guidance
defines an adaptive design as a clinical study that includes a prospectively planned
opportunity for modification of one or more specified aspects of the study design
and hypotheses based on analysis of data (usually interim data) from subjects in
the study (FDA 2010). As it is recognized by many investigators/researchers, the
use of adaptive design methods in clinical trials may allow the researchers to correct
assumptions used at the planning stage and select the most promising option early. In
addition, adaptive designs make use of cumulative information of the on-going trial,
which provide the investigator an opportunity to react earlier to surprises regardless
of positive or negative results Thus, the adaptive design approaches may speed up
the drug development process.

Despite the possible benefits for having a second chance to modify the trial at
interim when utilizing an adaptive design, it can be more problematic operationally
due to bias that may have introduced to the conduct of the trial. As indicated by the
FDA draft guidance, operational biases may occur when adaptations in trial and/or
statistical procedures are applied after the review of interim (unblinded) data. As a
result, it is a concern whether scientific integrity and validity of trial are warranted.
Chow and Chang (2011) indicated that trial procedures include, but not limited
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to, inclusion/exclusion criteria, dose/dose regimen and treatment duration, endpoint
selection and assessment, and/or laboratory testing procedures employed. On the
other hand, statistical procedures are referred to as study design, statistical hypothe-
ses (which can reflect study objectives), endpoint selection, power analysis for sample
size calculation, sample size re-estimation, and/or sample size adjustment, random-
ization schedules, and statistical analysis plan (SAP). With respect to these trial and
statistical procedures, commonly employed adaptations at interim include, but are
not limited to, (1) sample size re-estimation at interim analysis, (2) adaptive random-
ization with unequal treatment allocation (e.g., change from 1:1 ratio to 2:1 ratio),
(3) deleting, adding, or modifying treatment arms after the review of interim data,
(4) shifting in patient population due to protocol amendment, (5) different statistical
methods, (6) changing study endpoints (e.g., change response rate and/or survival to
time-to-disease progression in cancer trials), and (7) changing hypotheses/objectives
(e.g., switch a superiority hypothesis to a non-inferiority hypothesis). Therefore, the
use of the adaptive design methods in clinical trials seems promising because of its
potential flexibility for identifying any possible clinical benefit, signal, and/or trend
regarding efficacy and safety of the test treatment under investigation. However,
major adaptations may have an impact on the integrity and validity of the clinical
trials, which may raise some critical concerns to the accurate and reliable evaluation
of the test treatment under investigation. These concerns include (1) that the control
of the overall type I error rate at a pre-specified level of significance, (2) that the
correctness of the obtained p-values, and (3) that the reliability of the obtained confi-
dence interval. Most importantly, major (significant) adaptations may have resulted
in a totally different trial that is unable to address the scientific/medical questions
the original study intended to answer.

Chow (2011) indicated that a seamless trial design is defined as a trial design
that combines two independent trials into a single study that can addresses study
objectives from individual studies. An adaptive seamless design is referred to as a
seamless trial design that would use data collected before and after the adaptation
in the final analysis. In practice, a two-stage seamless adaptive design typically
consists of two stages (phases): a learning (or exploratory) phase (Stage 1) and
a confirmatory phase (Stage 2). The objective of the learning phase is not only to
obtain information regarding the uncertainty of the test treatment under investigation
but also to provide the investigator the opportunity to stop the trial early due to safety
and/or futility/efficacy based on accrued data or to apply some adaptations such as
adaptive randomization at the end of Stage 1. The objective of the second stage is
to confirm the findings observed from the first stage. A two-stage seamless adaptive
trial design has the following advantages that (1) it may reduce lead time between
studies (the traditional approach); (2) it provides the investigator the second chance
to re-design the trial after the review of accumulated date at the end of Stage 1. Most
importantly, data collected from both stages are combined for a final analysis in
order to fully utilize all data collected from the trial for a more accurate and reliable
assessment of the test treatment under investigation.
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12.2 Types of Two-Stage Adaptive Designs

Chow and Tu (2008) and Chow (2011) classified two-stage seamless adaptive trial
designs into the following four categories depending upon study objectives and study
endpoints at different stage.

Table 12.1 indicates that there are four different types of two-stage adaptive trial
designs depending upon whether study objectives and/or study endpoints at different
stages are the same. For example, Category I designs (i.e., SS designs) include those
designs with same study objectives and same study endpoints, while Category II and
Category III designs (i.e., SD and DS designs) are referred to those designs with
same study objectives but different study endpoints and different study objectives
but same study endpoints, respectively. Category IV designs (i.e., DD designs) are
the study designs with different study objectives and different study endpoints. In
practice, different study objectives could be treatment selection for Stage 1 and
efficacy confirmation for Stage 2. On the other hand, different study endpoints could
be biomarker, surrogate endpoints, or a clinical endpoint with a shorter duration at the
first stage versus clinical endpoint at the second stage. Note that a group sequential
design with one planned interim analysis is often considered an SS design.

In practice, typical examples for a two-stage adaptive seamless design include
a two-stage adaptive seamless phase I/II design and a two-stage adaptive seamless
phase II/III design. For the two-stage adaptive seamless phase I/II design, the objec-
tive at the first stage may be for biomarker development and the study objective for
the second stage is usually to establish early efficacy. For a two-stage adaptive seam-
less phase II/III design, the study objective is often for treatment selection (or dose
finding) while the study objective at the second stage is for efficacy confirmation.
In this article, our focus will be placed on Category II designs. The results can be
similarly applied to Category III and Category IV designs.

It should be noted that the terms seamless and phase II/III were not used in
the FDA draft guidance as they have sometimes been adopted to describe various
design features (FDA 2010). In this article, a two-stage adaptive seamless phase II/III
design only refers to a study containing an exploratory phase II stage (Stage 1) and
a confirmatory phase III stage (Stage 2) while data collected at both phases (stages)
will be used for final analysis.

One of the questions that are commonly askedwhen applying a two-stage adaptive
seamless design in clinical trials is sample size calculation/allocation. For the first
kind (i.e. Category I, SS) of two-stage seamless designs, the methods based on

Table 12.1 Types of
two-stage adaptive designs

Study Endpoint

Study objectives Same (S) Different (D)

Same (S) I�SS II�SD

Different (D) III�DS IV�DD

Source Chow (2011)
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individual p-values as described in Chow andChang (2011) can be applied. However,
for other kinds (i.e. Category II to Category IV) of two-stage seamless trial designs,
standard statisticalmethods for group sequential design are not appropriate and hence
should not be applied directly. For Category II–IV trial designs, power analysis
and/or statistical methods for data analysis are challenging to the biostatistician.
For example, a commonly asked question is “How do we control the overall type
I error rate at a pre-specified level of significance?” In the interest of stopping trial
early, “How to determine stopping boundaries?” is a challenge to the investigator
and the biostatistician. In practice, it is often of interest to determine whether the
typical O’Brien-Fleming type of boundaries is feasible. Another challenge is “How
to perform a valid analysis that combines data collected from different stages?” To
address these questions, Cheng and Chow (2016) proposed the concept of a multiple-
stage transitional seamless adaptive designwhich takes into consideration of different
study objectives and study endpoints.

12.3 Analysis SS Two-Stage Adaptive Designs

Category I design with same study objectives and same study endpoints at different
stages is considered similar to a typical group sequential design with one planned
interim analysis. Thus, standard statistical methods for group sequential design are
often employed. It, however, should be noted that with various adaptations that
applied, these standard statistical methods may not be appropriate. In practice, many
interesting methods for Category I designs are available in the literature. These
methods include (1) Fisher’s criterion for combining independent p-values (Bauer
and Kohne 1994; Bauer and Rohmel 1995; Posch and Bauer 2000), (2) weighted
test statistics (Cui et al. 1999), (3) the conditional error function approach (Liu and
Chi 2001; Proschan and Hunsberger 1995), and (4) conditional power approaches
(Li et al. 2005).

Among these methods, Fisher’s method for combining p-values provides great
flexibility in selecting statistical tests for individual hypotheses basedon sub-samples.
Fisher’s method, however, lacks flexibility in the choice of boundaries (Muller and
Schafer 2001). For Category I adaptive designs, many related issues have been stud-
ied. For example, Rosenberger and Lachin (2003) explored the potential use of
response-adaptive randomization. Chow et al. (2005) examined the impact of popu-
lation shift due to protocol amendments. Li et al. (2005) studied a two-stage adaptive
design with a survival endpoint, while Hommel et al. (2005) studied a two-stage
adaptive design with correlated data. An adaptive design with a bivariate-endpoint
was studied by Todd (2003). Tsiatis and Mehta (2003) showed that there exists a
more powerful group sequential design for any adaptive design with sample size
adjustment.

For illustration purpose, in what follows, we will introduce the method based on
sum of p-values (MSP) by Chang (2007) and Chow and Chang (2011). The MSP
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follows the idea of considering a linear combination of the p-values from different
stages.

12.3.1 Theoretical Framework for Multiple-Stage Adaptive
Designs

Consider a clinical trial utilizing a K-stage design. This is similar to a clinical trial
with K interim analyses, while the final analysis is the K th interim (final) analysis.
Suppose that at each interim analysis, a hypothesis test is performed. The objective of
the trial can be formulated as the following intersection of the individual hypothesis
tests from the interim analyses

H0 : H01 ∩ · · · ∩ H0K ,

where H0i , i � 1, . . . , K is the null hypothesis to be tested at the ith interim analysis.
Note that there are some restrictions on H0i , that is, rejection of any H0i , i �
1, . . . , K will lead to the same clinical implication (e.g. drug is efficacious); hence
all H0i , i � 1, . . . , K are constructed for testing the same endpoint within a trial.
Otherwise the global hypothesis cannot be interpreted.

In practice, H0i is tested based on a sub-sample from each stage, and without
loss of generality, assume H0i is a test for the efficacy of a test treatment under
investigation, which can be written as

H0i : ηi1 ≥ ηi2 versus Hai : ηi1 < ηi2,

where ηi1 and ηi2 are the responses of the two treatment groups at the ith stage and
we assume bigger values are better. It is often the case that when ηi1 � ηi2, the
p-value pi for the sub-sample at the ith stage is uniformly distributed on [0, 1] under
H0. Under the null hypothesis, Bauer and Kohne (1994) used Fisher’s combination
of the p-values to construct a test statistic for multiple-stage adaptive designs. Fol-
lowing similar idea, Chang (2007) and Chow and Chang (2011) considered a linear
combination of the p-values as follows

Tk �
K∑

i�1

wki pi , i � 1, . . . , K , (12.1)

where wki > 0 and K is the number of interim analyses planned. If wki � 1, this
leads to

Tk �
K∑

i�1

pi , i � 1, . . . , K . (12.2)
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Tk can be viewed as cumulative evidence against H0. Thus, the smaller the Tk is,
the stronger the evidence is. Alternatively, we can consider Tk � ∑K

i�1 pi/K , which
is an average of the evidence against H0. Intuitively, one may consider the stopping
rules

⎧
⎪⎨

⎪⎩

Stop for efficacy if Tk ≤ αk

Stop for futility if Tk ≥ βk

Continue otherwise

, (12.3)

where Tk, αk, and βk are monotonic increasing functions of k, αk < βk, k �
1, . . . , K − 1, and αK � βK . Note that αk and βk are referred to as the efficacy
and futility boundaries, respectively. To reach the kth stage, a trial has to pass 1 to
(k − 1)th stages. Therefore, a so-called proceeding probability can be defined as the
following unconditional probability:

ψk(t) � P(Tk < t, α1 < T1 < β1, . . . , αk−1 < Tk−1 < βk−1)

�
∫ β1

α1

· · ·
∫ βk−1

αk−1

∫ t

−∞
fT1···Tk (t1, . . . , tk)dtkdtk−1 · · · dt1, (12.4)

where t ≥ 0, ti , i � 1, . . . , k is the test statistic at the ith stage, and fT1···Tk is the
joint probability density function. Thus, the error rate at the kth stage can be obtained
as

πk � ψk(αk). (12.5)

Since the type I error rates at different stages are mutually exclusive, the
experiment-wise type I error rate is sum of πk, k � 1, . . . , K . Thus, we have

α �
K∑

k�1

πk . (12.6)

Note that stopping boundaries can be determined with appropriate choices of αk .
The adjusted p-value calculation is the same as the one in a classic group sequential
design (Jennison and Turnbull 2000). The key idea is that when the test statistic at
the kth stage Tk � t � αk (i.e. just on the efficacy stopping boundary), the p-value
is equal to alpha spent

∑k
i�1 πi . This is true regardless of which error spending

function is used and consistent with the p-value definition of the traditional design.
As indicated in Chang (2007), the adjusted p-value corresponding to an observed
test statistic Tk � t at the kth stage can be defined as

p(t ; k) �
k−1∑

i�1

πi + ψk(t), k � 1, .., K . (12.7)
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Note that pi in Eq. (12.1) is the stage-wise (unadjusted) p-value from a sub-sample
at the ith stage, while p(t ; k) are adjusted p-values calculated from the test statistic,
which are based on the cumulative sample up to the kth stage where the trial stops,
Eqs. (12.6) and (12.7) are valid regardless how pi are calculated.

12.3.2 Two-Stage Design

In this section, for simplicity, we will consider the method of sum of p-values (MSP)
and apply the general framework to the two-stage designs as outlined inChang (2007)
and Chow and Chang (2011) which are suitable for the following adaptive designs
that allow (1) early efficacy stopping, (2) early stopping for both efficacy and futility;
and (3) early futility stopping. These adaptive designs are briefly described below.

Early efficacy stopping—For simplicity, consider K � 2 (i.e., a two-stage design)
which allows for early efficacy stopping (i.e., β1 � 1). By (12.5), the type I error
rates to spend at Stage 1 and Stage 2 are given by

π1 � ψ1(α1) �
∫ α1

0
dt1 � α1, (12.8)

and

π2 � ψ2(α2) �
∫ α2

α1

∫ α1

t
dt2dt1 � 1

2
(α2 − α1)

2, (12.9)

respectively. Using Eqs. (12.8) and (12.9), (12.6) becomes

α � α1 +
1

2
(α2 − α1)

2. (12.10)

Solving for α2, we obtain

α2 � √
2(α − α1) + α1. (12.11)

α1 is the stopping probability (error spent) at the first stage under the null hypoth-
esis condition and α − α1 is the error spent at the second stage. As a result, if the
test statistic t1 � p1 > α2, it is certain that t2 � p1 + p2 > α2. Therefore, the trial
should stop when p1 > α2 for futility.

Based on relationship among α1, α2, and α as given in (12.10), various stopping
boundaries can be considered with appropriate choices of α1, α2, and α. For illus-
tration purpose, Table 12.2 provides some examples of the stopping boundaries from
Eqs. (12.10) and (12.11).

By (12.7)–(12.11), the adjusted p-value is given by
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Table 12.2 Stopping boundaries for two-stage efficacy designs

One-sided
α

α1 0.005 0.010 0.015 0.020 0.025 0.030

0.025 α2 0.2050 0.1832 0.1564 0.1200 0.0250 –

0.05 α2 0.3050 0.2928 0.2796 0.2649 0.2486 0.2300

Source Chang (2007). Statistics in Medicine, 26, 2772–2784

Table 12.3 Stopping boundaries for two-stage efficacy and futility designs

One-sided α β1 �0.15

0.025 α1 0.005 0.010 0.015 0.020 0.025

α1 0.2154 0.1871 0.1566 0.1200 0.0250

β1 �0.20

0.05 α2 0.005 0.010 0.015 0.020 0.025

α2 0.3333 0.3155 0.2967 0.2767 0.2554

Source Chang (2007). Statistics in Medicine, 26, 2772–2784

p(t ; k) �
{
t if k � 1

α1 + 1
2 (t − α1)2 if k � 2

, (12.12)

where t � p1 if the trial stops at Stage 1 and t � p1 + p2 if the trial stops at Stage 2.
Early efficacy or futility stopping—For this case, it is obvious that if β1 ≥ α2,

the stopping boundary is the same as it is for the design with early efficacy stopping.
However, futility boundary β1 when β1 ≥ α2 is expected to affect the power of the
hypothesis testing. Therefore,

π1 �
∫ α1

0
dt1 � α1, (12.13)

and

π2 �
⎧
⎨

⎩

∫ β1

α1

∫ α2

t1
dt2dt1 for β1 ≤ α2

∫ α2

α1

∫ α2

t1
dt2dt1 for β1 > α2

(12.14)

Thus, it can be verified that

α �
⎧
⎨

⎩
α1 + α2(β1 − α1) − 1

2 (β
2
1 − α2

1) for β1 < α2

α1 + 1
2 (α2 − α1)2 for β1 ≥ α2

(12.15)

Similarly, under (12.15), various boundaries can be obtained with appropriate
choices of α1, α2, β1, and α (Table 12.3). The adjusted p-value is given by



12 Analysis of Two-Stage Adaptive Trial Designs 225

Table 12.4 Stopping boundaries for two-stage futility design

One-sided α β1 0.1 0.2 0.3 ≥0.4

0.025 α2 0.3000 0.2250 0.2236 0.2236

0.05 α2 0.5500 0.3500 0.3167 0.3162

Source Chang (2007). Statistics in Medicine, 26, 2772–2784

p(t ; k) �

⎧
⎪⎪⎨

⎪⎪⎩

t if k � 1

α1 + t(β1 − α1) − 1
2 (β

2
1 − α2

1) if k � 2 and β1 < α2

α1 + 1
2 (t − α1)2 if k � 2 β1 ≥ α2

(12.16)

where t � p1 if the trial stops at Stage 1 and t � p1 + p2 if the trial stops at Stage 2.
For a trial design with early futility stopping, it is a special case of the previous

design, where α1 � 0 in Eq. (12.15). Hence, we have

α �
⎧
⎨

⎩
α2β1 − 1

2β
2
1 for β1 < α2

1
2α

2
2 for β1 ≥ α2

(12.17)

Solving for α2, we have

α2 �
⎧
⎨

⎩

α
β1

+ 1
2β1 for β1 <

√
2α

√
2α for β1 ≥ α2

(12.18)

Table 12.4 gives examples of the stopping boundaries generated using Eq. (12.18).
The adjusted p-value can be obtained from Eq. (12.16), where α1 � 0, that is,

p(t ; k) �

⎧
⎪⎪⎨

⎪⎪⎩

t if k � 1

α1 + tβ1 − 1
2β

2
1 if k � 2 and β1 < α2

α1 + 1
2 t

2 if k � 2 β1 ≥ α2

(12.19)

12.3.3 Conditional Power

Conditional power with or without clinical trial simulation is often considered for
sample size re-estimation in adaptive trial designs. As discussed earlier, since the
stopping boundaries for the most existing methods are either based on z-scale or p-
value, to link a z-scale and a p-value, we will consider pk � 1− �(zk) or inversely,
zk � �−1(1− pk), where zk and pk are the normal z-score and the p-value from the
sub-sample at the kth stage, respectively. It should be noted that z2 has asymptotically
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normal distribution with N (δ/se(δ̂2), 1) under the alternative hypothesis, where δ̂2 is
the estimation of treatment difference in the second stage and

se(δ̂2) �
√
2σ̂ 2/n2 ≈

√
2σ 2/n2.

The conditional power can be evaluated under the alternative hypothesis when
rejecting the null hypothesis H0. That is,

z2 ≥ B(α2, p1). (12.20)

Thus, the conditional probability given the first stage naïve p-value, p1 at the
second stage is given by

PC (p1, δ) � 1 − �

(
B(α2, p1) − δ

σ

√
n2
2

)
, α1 < p1 ≤ β1. (12.21)

As an example, for themethod based on the product of stage-wise p-values (MPP),
the rejection criterion for the second stage is

p1 p2 ≤ α2, i.e., z2 ≥ �−1(1 − α2/p1).

Therefore, B(α2, p1) � �−1(1 − α2/p1).
Similarly, for the method based on the sum of stage-wise p-values (MSP), the

rejection criterion for the second stage is

p1 + p2 ≤ α2, i.e., z2 � B(α2, p1) � �−1(1 − max(0, α2 − p1)).

On the other hand, for the inverse normalmethod (Lehmacher andWassmer 1999),
the rejection criterion for the second stage is

w1z1 + w2z2 ≥ �−1(1 − α2),

That is, z2 ≥ (�−1(1− α2)−w1�
−1(1− p1))/w2, where w1 and w2 are prefixed

weights satisfying the condition of w2
1 + w2

2 � 1. Note that the group sequential
design and CHW method (Cui et al. 1999) are special cases of the inverse-normal
method. Since the inverse normal method requires two additional parameters (w1

and w2), for simplicity, we will only compare the conditional powers of MPP and
MSP. For a valid comparison, the same α1 is used for both methods. As it can be
seen from Eq. (12.21), the comparison of the conditional power is equivalent to the
comparison of function B(α2, p1). Equating the two B(α2, p1), we have

α̂2

p1
� α̃2 − p1, (12.22)
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where α̂2 and α̃2 are the final rejection boundaries for MPP and MSP, respectively.
Solving (12.22) for p1, we obtain the critical point for p1

η �
α̃2 ∓

√
α̃2
2 − 4α̃2

2
. (12.23)

Equation (12.23) indicates that when p1 < η1 or p2 > η2, MPP has a higher
conditional power than that of MSP. When η1 < p1 < η2, MSP has a higher
conditional power than MPP.

Note that the unconditional power Pw is nothing but the expectation of conditional
power, i.e.

Pw � Eδ[PC (p1, δ)]. (12.24)

Therefore, the difference in unconditional power betweenMSP andMPP is depen-
dent on the distribution of p1, and consequently, dependent on the true difference δ,
and the stopping boundaries at the first stage (α1, β1).

Note that in Bauer and Kohne’s method using Fisher’s combination (Bauer and
Kohne 1994), which leads to the equationα1+ln(β1/α1)e−(1/2)χ2

4,1−α � α, it is obvious
that determination of β1 leads to a unique α1, consequently α2. This is a non-flexible
approach. However, it can be verified that the method can be generalized to α1 +
α2 ln β1/α1 � α, where α2 does not have to be e−(1/2)χ2

4,1−α .

12.4 Analysis SD Two-Stage Adaptive Designs

For illustration purpose, consider a two-stage phase II/III seamless adaptive designs
which have same study objectives but different study endpoints. In what follows, we
will consider the cases of continuous, binary responses, and time-to-event endpoints,
respectively.

12.4.1 Continuous Endpoints

Let xi be the observed value of the study endpoint (e.g., a biomarker) from the ith
subject in phase II (Stage 1), i � 1, . . . , n and y j be the observed value of the study
endpoint (i.e. the primary clinical endpoint) from the jth subject in phase III (Stage
2), j � 1, . . . ,m. Suppose that x ′

i s and y′
j s are independently and identically dis-

tributed with E(xi ) � ν and Var (xi ) � τ 2, and E(y j ) � μ and Var (y j ) � σ 2,
respectively. Chow et al. (2007) proposed obtaining predicted values of the clinical
endpoint based on data collected from the biomarker (or surrogate endpoint) under an
established relationship between the biomarker and the clinical endpoint. These pre-
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dicted values are then be combined with the data collected at the confirmatory phase
(Stage 2) to derive a statistical inference on the treatment effect under investigation.
For simplicity, suppose that x and y can be correlated in the following straight-line
relationship

y � β0 + β1x + ε (12.25)

where ε is the random error with zero mean and variance ς2. ε is assumed to be
independent of x. In practice, we assume that this relationship is well-established. In
other words, the parameters β0 and β1 are assumed known. Based on Eq. (12.25), the
observations xi observed in the first stage can then be transformed β0 +β1xi (denoted
by ŷi ). ŷi is then considered as the observation of the clinical endpoint and combined
with those observations yi collected in the second stage to estimate the treatment
mean μ. Chow et al. (2007) proposed the following weighted-mean estimator,

μ̂ � ω ¯̂y + (1 − ω)ȳ (12.26)

where ¯̂y � 1
n

∑n
i�1 ŷi , ȳ � 1

m

∑m
j�1 y j and 0 ≤ ω ≤ 1. It should be noted that μ̂

is the minimum variance unbiased estimator among all weighted-mean estimators
when the weight is given by

ω � n/(β2
1τ

2)

n/(β2
1τ

2) + m/σ 2
(12.27)

if β1, τ
2 and σ 2 are known. In practice, τ 2 and σ 2 are usually unknown and ω is

commonly estimated by

ω̂ � n/s21
n/s21 + m/s22

(12.28)

where s21 and s22 are the sample variances of ŷi ’s and y j ’s, respectively. The corre-
sponding estimator of μ, which is denoted by

μ̂GD � ω̂ ¯̂y + (1 − ω̂)ȳ, (12.29)

and is referred to as the Graybill-Deal (GD) estimator ofμ (Graybill and Deal 1959).
Note that Meier (1953) proposed an approximate unbiased estimator of the variance
of the GD estimator, which has bias of order O(n−2 +m−2). Khatri and Shah (1974)
gave an exact expression of the variance of this estimator in the form of an infinite
series, which is given as.

Var
∧(

μ̂GD
) � 1

n/S21 + m/S22

[
1 + 4ω̂

(
1 − ω̂

)( 1

n − 1
+

1

m − 1

)]
.
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Based on the GD estimator, the comparison of the two treatments can be made by
testing the following hypotheses

H0 : μ1 � μ2 versus Ha : μ1 �� μ2. (12.30)

Let ŷi j be the predicted value (based on β0 +β1xi j ), which is used as the prediction
of y for the jth subject under the ith treatment in phase II (Stage 1). From Eq. (18.29),
the GD estimator of μi is given by

μ̂GDi � ω̂i
¯̂yi + (1 − ω̂i )ȳi , (12.31)

where ¯̂yi � 1
ni

∑ni
j�1 ŷi j , ȳi � 1

mi

∑mi
j�1 yi j and ω̂i � ni/S21i

ni/S21i+mi/S22i
with S21i and S22i

being the sample variances of (ŷi1, . . . , ŷini ) and (yi1, . . . , yimi ), respectively. For
hypotheses (12.30), consider the following test statistic

T̃1 � μ̂GD1 − μ̂GD2√
Var
∧(

μ̂GD1
)
+ Var
∧(

μ̂GD2
) , (12.32)

where

Var
∧(

μ̂GDi
) � 1

ni/S21i + mi/S22i

[
1 + 4ω̂i

(
1 − ω̂i

)( 1

ni − 1
+

1

mi − 1

)]

is an estimator of Var (μ̂GDi ), i�1, 2. Consequently, an approximate 100(1 − α)%
confidence interval of μ1 − μ2 is given as

(
μ̂GD1 − μ̂GD2 − zα/2

√
VT , μ̂GD1 − μ̂GD2 + zα/2

√
VT

)
(12.33)

where VT � Var (μ̂GD1)+Var (μ̂GD2). As a result, the null hypothesis H0 is rejected
if the above confidence interval does not contain 0.

12.4.2 Binary Responses

Consider the casewhere the primary study endpoint is a binary responsewith different
treatment durations at different stages. Suppose that the study duration of the firstt

stage is L, while the study duration of the second stage is CL with C>1. Assume
that the response is determined by the lifetime t, and the corresponding lifetime
distribution for the test treatment is G1(t, θ1), while for the control is G2(t, θ2).
Denote by ri the number of responders among ni individuals in the ith stage for
the test treatment, i=1, 2. Similarly, denote by si the number of responders among
mi individuals in the ith stage for the control treatment. Based on the observed
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data, suppose G1(t, θ1) � G(t, λ1) and G2(t, θ2) � G(t, λ2). Then the likelihood
functions become

L(λi ) � (
1 − e−λi cL

)ri e−(ni−ri )λi cL
(
1 − e−λi L

)si e−(mi−si )λi L (12.34)

Let λ̂i be the maximum likelihood estimate (MLE) of λi . Utilizing numerical
methods such as Newton-Raphson method, λ̂i can be found by the solving the fol-
lowing equation

ri c

eλi cL − 1
+

si
eλi L − 1

− (ni − ri )c − (mi − si ) � 0, (12.35)

which is obtained by setting the first order partial derivative with respect to the
parameter to zero. Note that the MLE of λi exist only and only if ri/ni and si/mi

does not equal 0 or 1 at the same time.
Based on asymptotic normality of MLE, λ̂i asymptotically follows a normal dis-

tribution. In particular, as ni and mi tend to infinity, (λ̂i − λi )/σi (λi ) follows the
standard normal distribution where

σi (λi ) � L−1
(
nic

2(eλi cL − 1)−1 + mi (e
λi L − 1)−1

)−1/2
.

Let σi (λ̂i ) be the MLE of σi (λi ). Then based on the consistency of MLE, by
the Slutsky’s Theorem (λ̂i − λi )/σi (λ̂i ) asymptotically follows the standard normal
distribution. Consequently, an approximated (1−α) confidence interval of λi is given

as
(
λ̂i − zα/2σi (λ̂i ), λ̂i + zα/2σi (λ̂i )

)
, where zu is the upperu-quantile of the standard

normal distribution. Under the exponential model, comparison of two treatments
usually focuses on the hazard rate λi . As a result, hypotheses testing for different
types of comparison can be derived.

Test for equality—For equality testing, the hypotheses are formulated as

H0 : λ1�λ2 versus H1 : λ1 �� λ2 (12.36)

Since λ̂i is asymptotically normal distributed, and λ̂1 and λ̂2 are independent, it

follows that under the null hypothesis, (λ̂1 − λ̂2)/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2) asymptotically
follows the standard normal distribution. Thus, the null hypothesis in (12.36) is
rejected at approximate α level of significance if

∣∣∣λ̂1 − λ̂2

∣∣∣/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2) > zα/2.

Test forSuperiority—Under the exponentialmodel, a smaller hazard rate indicates
a better performance of the treatment. As a result, to identify superiority of the new
treatment over the control, the following hypotheses are considered.
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H0 : λ2 − λ1 ≤ δ versus H1 : λ2 − λ1 > δ, (12.37)

where δ > 0 is a difference of clinical importance. Obviously, the null hypothesis

should be rejected for large value of (λ̂2 − λ̂1 − δ)/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2). Under the null

hypothesis, (λ̂2 − λ̂1 − δ)/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2) is asymptotically normal distributed.
Thus, the null hypothesis is rejected at approximately α level of significance if

(λ̂2 − λ̂1 − δ)/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2) > zα.

Test for Non-inferiority—To show that the new treatment is not worse than the
control, we may consider the following hypotheses H0 : λ1 − λ2 ≥ δ versus H1 :
λ1 − λ2 < δ, which are equivalent to

H0 : λ2 − λ1 ≤ −δ versus H1 : λ2 − λ1 > −δ, (12.38)

where δ > 0 is a difference of clinical importance. The hypotheses in (12.38) are of
similar form as those for superiority testing. Therefore, the null hypothesis is rejected
at approximate α level of significance if

(λ̂2 − λ̂1 + δ)/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2) > zα,

Test for Equivalence—In clinical trial, it is commonly unknown whether the
performance of new treatment is better than the (active) control, especiallywhen prior
knowledge of the new treatment is not available. In this case, it is more appropriate
to consider the following hypotheses for therapeutic equivalence:

H0 : |λ1 − λ2| ≥ δ versus H1 : |λ1 − λ2| < δ. (12.39)

The above hypotheses can be tested by constructing the confidence interval of
λ2 −λ1. It can be verified that the null hypothesis is rejected at a significance level α

if and only if the 100(1 − 2α)% confidence interval λ̂2 − λ̂1 ± zα

√
σ 2
1 (λ̂1) + σ 2

2 (λ̂2)
falls within (−δ, δ). In other words, the test treatment is concluded to be equivalent
to the control if

(λ̂2 − λ̂1 − δ)/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2) < −zα,

and

(λ̂2 − λ̂1 + δ)/
√

σ 2
1 (λ̂1) + σ 2

2 (λ̂2) > zα.
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12.4.3 Time-to-Event Endpoints

For illustration purpose, we will consider a two-stage adaptive clinical trial design
for comparing two treatment groups, i.e., a test (T ) treatment and a control or refer-
ence (R) treatment under Cox’s proportional hazards model. The case under Weibull
distribution can be similarly derived (see, e.g., Lu et al. 2012).

Let nj be total sample size for the two treatments in the jth stage, j �1, 2 and dj
be number of distinct failure times in the jth stage, which are denoted by t j1 < t j2 <

· · · < t jd j . Furthermore, denote the observation based on the kth subject in the jth
stage by

(
Tjk , δ jk , z jk (t), 0 ≤ t ≤ Tjk

) � (
min(T̃ jk ,C jk ), I (T̃ jk < C jk ), z jk (t), 0 ≤ t ≤ Tjk

)
,

where, correspondingly, Tjk is the observed time, T̃ jk is time-to-event, δ jk is the
indicator for the observed failure, C jk is a censoring time which is assumed to be
independent of T̃ jk , and z jk(t) is a covariate vector at time t. Let h( t |z) be the hazard
rate at time t for an individual with a covariate vector z. The Cox proportional hazard
model (Cox 1972) assumes

h( t |z(t)) � h( t |0)eb′z(t),

where the baseline h( t |0) is unspecified and b is a coefficient vector with the same
dimension as z(t). Thus, the partial likelihood function is

L(b) �
2∏

j�1

d j∏

k�1

P
(
observed failure at time t jk

∣∣R(t jk)
)

�
2∏

j�1

d j∏

k�1

exp(b′z( jk)(t jk))∑
l∈R(t jk ) exp(b

′zl(t jk))
,

where the risk set R(t jk) � {
js : T̃ js ≥ Tjk

}
is the collection of subjects still on

study just prior to t jk in the j-th stage. Furthermore, the partial likelihood equation is

U (b) �
2∑

j�1

d j∑

k�1

[
z( jk)(t jk) − e(b, t jk)

]
(12.40)

where e(b, t jk) �
∑

l∈R(t jk )
exp(b′zl (t jk ))zl (t jk )

∑
l∈R(t jk )

exp(b′zl (t jk )) . Based on (12.40), the corresponding

observed information matrix is
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I (b) �
2∑

j�1

d j∑

k�1

[∑
l∈R(t jk ) exp(b

′zl(t jk))zl(t jk)z′
l(t jk)∑

l∈R(t jk ) exp(b
′zl(t jk))

− e(b, t jk)e
′(b, t jk)

]

(12.41)

Test for Equality—Based on the formulation of the Cox model, the testing of
equality can be conducted through the comparison of the coefficient vector b. Thus,
consider the following hypotheses

H0 : b � b0 versus H1 : b �� b0. (12.42)

To test the above hypotheses, the score statistic Ts � U ′(b0)I−1(b0)U (b0) is
considered. Under the null hypothesis H0, Ts asymptotically follows a chi-squared
distribution with p degrees of freedom where p �dim(b) (Cox and Hinklet 1974).
Thus, H0 is rejcted at an approximate α level of significance if Ts > χ2

p(α), where
χ2
p(α) is the α-upper quantile of a chi-squared random variable with p degrees of

freedom.
Consider the special case that the treatment indicator is the only covariate con-

sidered in the study. Let zjk �1 for the test treatment and zjk �0 for the control
treatment. Then, the baseline h( t |0) is the hazard in the control treatment and b is
the log relative risk which measures the relative treatment effect. In particular, b>0
(<0) implies the test treatment increases (decreases) the risk of failure and b �0
means no difference in risk between the two treatments. Define Pjk �nTjkeb/(nTjkeb

+nRjk), where nTjk and nRjk denotes the number of subjects at risk, i.e., those who
have not failed or censored just prior to the kth observed failure in the jth stage in
the test and the control treatment, respectively. Consequently, the score function in
(12.42) and the observed Fisher information matrix can be simplified to

U (b) �
2∑

j�1

d j∑

k�1

[
z( jk) − Pjk

]
and I (b) �

2∑

j�1

d j∑

k�1

Pjk(1 − Pjk),

respectively, where z(jk) is the treatment indicator for the kth observed failure in the
jth stage. For the testing of the hypotheses of the equality of the two treatments
defined in (12.42), the corresponding score test statistic is

Ts � U 2(0)

I (0)
�
[∑2

j�1

∑d j

k�1 (z( jk) − nT jk

nR jk+nT jk
)
]2

∑2
j�1

∑d j

k�1
nRjknT jk

(nRjk+nT jk )2

. (12.43)

Under the null hypothesis in (12.43), Ts is asymptotically distributed as a chi-
squared distribution with 1 degree of freedom. Equivalently, consider the statistic
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Tz(b) � U (b)

I 1/2(b)
�

∑2
j�1

∑d j

k�1 (z( jk) − Pjk)√∑2
j�1

∑d j

k�1 Pjk(1 − Pjk)
. (12.44)

Tz(0) is asymptotic standard normal distributed. Therefore, the null hypothesis in
(12.44) is rejected at an approximate α level of significance if Tz(0) > zα/2, where
zu is the upper u-quantile of the standard normal distribution.

Test for Superiority/Non-inferiority—Note that the log relative risk b >0 implies
worse treatment effect (inferiority) of the test treatment and b<0 indicates bet-
ter treatment effect (superiority) of the test treatment. In order to demonstrate
superiority/non-inferiority, the following hypotheses are considered

H0 : b ≥ δ versus H1 : b < δ, (12.45)

where δ is a given superiority or non-inferiority margin. For δ < 0 (> 0), the rejec-
tion of the null hypothesis implies superiority (non-inferiority) of the test treatment
against the control. If δ−b is of order O(n−1/2

1 ), then following similar arguments in
Schoenfeld (1981), Tz(b) is asymptotically normally distributed with unit variance
and mean μ(b) given by

n1/21 (b − δ)

[∫ cL

0
π1(t, δ)(1 − π1(t, δ))V1(t)dt + ρ

∫ L

0
π2(t, δ)(1 − π2(t, δ))V2(t)dt

]1/2

(12.46)

Consequentlywhenb � δ, the test statisticTz(b) approximately follows a standard
normal distribution for sufficiently large sample size. Thus, the null hypothesis H0

is rejected at an approximate level α of significance if Tz(δ) < −zα .

Test for Equivalence—If the question of interest is to assess whether the perfor-
mance of the test treatment is better than the (active) control, especially when prior
knowledge of the test treatment is not available, it is more appropriate to consider
the following hypotheses for the testing of therapeutic equivalence:

H0 : |b| > δ versus H1 : |b| < δ. (12.47)

Since |b| > δ is equivalent to b > δ or b < −δ. The above hypotheses can be
tested by two one-sided test procedures. In particular, the null hypothesis is rejected
at an approximate α level of significance if Tz(δ) < −zα and Tz(−δ) > zα .

12.5 Analysis DS and DD Two-Stage Adaptive Designs

For a Category III DS two-stage adaptive design, the study objectives at different
stages are different (e.g., dose selection versus efficacy confirmation) but the study
endpoints are same at different stages. For aCategory IVdesign, both study objectives
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and endpoints at different stages are different (e.g., dose selection versus efficacy
confirmation with surrogate endpoint versus clinical study endpoint).

As indicated earlier, how to control the overall type I error rate at a pre-specified
level is one of the major regulatory concerns when adaptive design methods are
employed in confirmatory clinical trials. Another concern is how to perform power
analysis for sample size calculation/allocation for achieving individual study objec-
tives originally set by the two separate studies (different stages). In addition, how
to combine data collected from both stages for a combined and valid final analysis.
Under a Category III or IV phase II/III seamless adaptive design, in addition, the
investigator plans to have an interim analysis at each stage. Thus, if we consider
the initiation of the study, first interim analysis, end of Stage 1 analysis, second
interim analysis, and final analysis as critical milestones, the two-stage adaptive
design becomes a 4-stage transitional seamless trial design. In what follows, we will
focus on analysis of a four-stage transitional seamless design without (non-adaptive
version) and with (adaptive version) adaptations, respectively.

12.5.1 Non-adaptive Version

For a given clinical trial comparing k treatments groups, E1, . . . , Ek with a control
group C, suppose a surrogate (biomarker) endpoint and a well-established clinical
endpoint are available for assessment of the treatment effect. Denoted by θi and
ψi , i � 1, . . . , k the treatment effect comparing Ei withC assessed by the surrogate
(biomarker) endpoint and the clinical endpoint, respectively. Under the surrogate and
clinical endpoints, the treatment effect can be tested by the following hypotheses:

H0,2 : ψ1 � · · · � ψk, (12.48)

which is for the clinical endpoint, while the hypothesis

H0,1 : θ1 � · · · θk, (12.49)

is for the surrogate (biomarker) endpoint. Cheng and Chow (2016) assumed that ψi

is a monotone increasing function of the corresponding θi and proposed to test the
hypotheses (12.48) and (12.49) at 3 stages (i.e., Stage 1, Stage 2a, Stage 2b, and
Stage 3) based on accrued data at 4 interim analyses. Their proposed tests are briefly
described below. For simplicity, he variances of the surrogate (biomarker) endpoint
and the clinical outcome are denoted by σ 2 and τ 2, which are assumed known.

Stage 1—At this stage, (k + 1)n1 subjects are randomly assigned to receive either
one of the k treatments or the control at a 1:1 ratio. In this case, we have n1 subjects
in each group. At the first interim analysis, the most effective treatment will be
selected based on the surrogate (biomarker) endpoint and proceed to subsequent
stages. For pairwise comparison, consider test statistics θ̂i,1, i � 1, . . . , k and S �
argmax1≤ j≤k θ̂i,1. Thus, if θ̂S,1 ≤ c1 for some pre-specified critical value c1, then the



236 S.-C. Chow and M. Lin

trial is stopped and we are in favor of H0,1. On the other hand, if θ̂S,1 > c1,1, then
we conclude that the treatment ES is considered the most promising treatment and
proceed to subsequent stages. Subjects who receive either the promising treatment
or the control will be followed for the clinical endpoint. Treatment assessment for
all other subjects will be terminated but will undergo necessary safety monitoring.

Stage 2a—At Stage 2a, 2n2 additional subjects will be equally randomized to
receive either the treatment ES or the control C. The second interim analysis is
scheduled when the short term surrogate measures from these 2n2 Stage 2 subjects
and the primary endpointmeasures from those 2n1 Stage 1 subjectswho receive either
the treatment ES or the control C become available. Let T1,1 � θ̂S,1 and T1,2 � ψ̂S,1

be the pair-wise test statistics from Stage 1 based on the surrogate endpoint and the
primary endpoint, respectively, and θ̂S,2 be the statistic from Stage 2 based on the
surrogate. If

T2,1 �
√

n1
n1 + n2

θ̂S,1 +

√
n2

n1 + n2
θ̂S,2 ≤ c2,1,

then stop the trial and accept H0,1. If T2,1 > c2,1 and T1,2 > c1,2, then stop the trial
and reject both H0,1 and H0,2. Otherwise, if T2,1 > c2,1 but T1,2 ≤ c1,2, then we will
move on to Stage 2b.

Stage 2b—At Stage 2b, no additional subjects will be recruited. The third interim
analysis will be performed when the subjects in Stage 2a complete their primary
endpoints. Let

T2,2 �
√

n1
n1 + n2

ψ̂S,1 +

√
n2

n1 + n2
ψ̂S,2,

where ψ̂S,2 is the pair-wise test statistic from Stage 2b. If T2,2 > c2,2, then stop the
trial and reject H0,2. Otherwise, we move on to Stage 3.

Stage 3—At Stage 3, the final stage, 2n3 additional subjects will be recruited and
followed till their primary endpoints. At the fourth interim analysis, define

T3 �
√

n1
n1 + n2 + n3

ψ̂S,1 +

√
n2

n1 + n2 + n3
ψ̂S,2 +

√
n1

n1 + n2 + n3
ψ̂S,3,

where ψ̂S,3 is the pair-wise test statistic from Stage 3. If T3 > c3, then stop the
trial and reject H0,2; otherwise, accept H0,2. The parameters in the above designs,
n1, n2, n3, c1,1, c1,2, c2,1, c2,2, and c3 are determined such that the procedure will
have a controlled type I error rate of α and a target power of 1 − β.

In the above design, the surrogate data in the first stage are used to select the most
promising treatment rather than assessing H0,1. This means that upon completion of
stage one a dose does not need to be significance in order to be used in subsequent
stages. In practice, it is recommended that the selection criterion be based onprecision
analysis (desired precision or maximum error allowed) rather than power analysis
(desired power). This property is attractive to the investigator since it does not suffer
from any lack of power because of limited sample sizes.
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As discussed above, under the 4-stage transitional seamless design, two sets of
hypotheses, namely H0,1 and H0,2 are to be tested. Since the rejection of H0,2 leads
to the claim of efficacy, it is considered the hypothesis of primary interest. However,
in the interest of controlling the overall type I error rate at a pre-specified level of
significance, H0,1 need to be tested following the principle of closed testing procedure
to avoid any statistical penalties.

In summary, the two-stage phase II/III seamless adaptive design is attractive due
to its efficiency, such as potentially reducing the lead time between studies (i.e., a
phase II trial and a phase III study) and flexibility, such as making an early decision
and taking appropriate actions (e.g. stop the trial early or delete/add dose groups.

12.5.2 Adaptive Version

The approach for trial design with non-adaptive version discussed in the previous
section is basically a group sequential procedure with treatment selection at interim.
There are no additional adaptations involved. With additional adaptations (adaptive
version), Tsiatis and Metha (2003) and Jennison and Turnbull (2006) argue that
adaptive designs typically suffer from loss of efficiency and hence are typically not
recommended in regular practice. Proschan et al. (2006), however, also indicated that
in some scenarios, particularly when there is not enough primary outcome informa-
tion available, it is appealing to use an adaptive procedure as long as it is statistically
valid and justified. The transitional feature of the multiple stage design enables us
not only to verify whether the surrogate (biomarker) endpoint is predictive of the
clinical outcome, but also to modify the design adaptively after the review of interim
data. A possible modification is to adjust the treatment effect of the clinical outcome
while validating the relationship between the surrogate (e.g. biomarker) endpoint and
the clinical outcome. In practice, it is often assumed that there exists a local linear
relationship between ψ and θ , which is a reasonable assumption if we focus only on
the values at a neighborhood of the most promising treatment ES . Thus, at the end
of Stage 2a, we can re-estimate the treatment effect of the primary endpoint using

δ̂S � ψ̂S,1

θ̂S,1

T2,1.

Consequently, sample size can be re-assessed at Stage 3 based on a modified
treatment effect of the primary endpoint δ � max{δS, δ0}, where δ0 is a minimally
clinically relevant treatment effect. Suppose m is the re-estimated Stage 3 sample
size based on δ. Then, there is no modification for the procedure if m ≤ n3. On the
other hand, if m > n3, then m (instead of n3 as originally planned) subjects per arm
will be recruited at Stage 3. The detailed justification of the above adaptation can be
found in Cheng and Chow (2016).
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12.5.3 A Case Study of Hepatitis C Virus Infection

A pharmaceutical company is interested in conducting a clinical trial for evaluation
of safety, tolerability and efficacy of a test treatment for patients with hepatitis C virus
(HCV) infection. For this purpose, a two-stage seamless adaptive design is consid-
ered. The proposed trial design is to combine two independent studies (one phase IIb
study for treatment selection and one phase III study for efficacy confirmation) into a
single study. Thus, the study consists of two stages: treatment selection (Stage 1) and
efficacy confirmation (Stage 2). The study objective at the first stage is for treatment
selection, while the study objective at Stage 2 is to establish the non-inferiority of
the treatment selected from the first stage as compared to the standard of care (SOC).
Thus, this is a typical Category IV design (a two-stage adaptive design with different
study objectives at different stages).

For genotype 1 HCV patients, the treatment duration is usually 48 weeks of
treatment followed by a 24 weeks follow-up. The well-established clinical endpoint
is the sustained virologic response (SVR) at week 72. The SVR is defined as an
undetectable HCV RNA level (<10 IU/mL) at week 72. Thus, it will take a long time
to observe a response. The pharmaceutical company is interested in considering
a biomarker or a surrogate endpoint such as a regular clinical endpoint with short
duration tomake early decision for treatment selection of four active treatments under
study at end of Stage 1. As a result, the clinical endpoint of early virologic response
(EVR) at week 12 is considered as a surrogate endpoint for treatment selection at
Stage 1. At this point, the trial design has become a typical Category IV adaptive trial
design (i.e., a two-stage adaptive design with different study endpoints and different
study objectives at different stages). The resultant Category IV adaptive design is
briefly outline below (Fig. 12.1):

Stage 1—At this stage, the design begins with five arms (4 active treatment arms
and one control arm). Qualified subjects are randomly assigned to receive one of the
five treatment arms at a 1:1:1:1:1 ratio. After all Stage 1 subjects have completed
Week 12 of the study, an interim analysis will be performed based on EVR at week
12 for treatment selection. Treatment selection will be made under the assumption
that the 12 week EVR is predictive of 72 week SVR. Under this assumption, the most
promising treatment arm will be selected using precision analysis under some pre-
specified selection criteria. In other words, the treatment armwith highest confidence
level for achieving statistical significance (i.e., the observed difference as compared
to the control is not by chance alone) will be selected. Stage 1 subjects who have not
yet completed the study protocol will continue with their assigned therapies for the
remainder of the planned 48 weeks, with final follow-up at Week 72. The selected
treatment arm will then proceed to Stage 2.

Stage 2—At Stage 2, the selected treatment arm from Stage 1 will be test for
non-inferiority against the control (SOC). A separate cohort of subjects will be ran-
domized to receive either the selected treatment from Stage 1 or the control (SOC)
at a 1:1 ratio. A second interim analysis will be performed when all Stage 2 subjects
have completed Week 12 and 50% of the subjects (Stage 1 and Stage 2 combined)
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Fig. 12.1 A diagram of 4-stage transitional seamless trial design

have completed 48 weeks treatment and follow-up of 24 weeks. The purpose of this
interim analysis is twofold. First, it is to validate the assumption that EVR at week 12
is predictive of SVR at week 72. Second, it is to perform sample size re-estimation to
determinewhether the trial will achieve study objective (establishing non-inferiority)
with the desired power if the observed treatment preserves till the end of the study.

Statistical tests as described in the previous section will be used to test non-
inferiority hypotheses at interim analyses and at end of stage analyses. For the two
planned interim analyses, the incidence of EVR at week 12 as well as safety data,
will be reviewed by an independent data safety monitoring board (DSMB). The
commonly used O’Brien-Fleming type of conservative boundaries will be applied
for controlling the overall Type I error rate at 5% (O’Brien and Fleming 1979).
Adaptations such as stopping the trial early, discontinuing selected treatment arms,
and re-estimating the sample size based on the pre-specified criteria may be applied
as recommended by the DSMB. Stopping rules for the study will be designated by
the DSMB, based on their ongoing analyses of the data and as per their charter.
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12.6 Concluding Remarks

Chow and Chang (2011) pointed out that the standard statistical methods for a group
sequential trial (with one planned interim analysis) is often applied for planning and
data analysis of a two-stage adaptive design regardless whether the study objectives
and/or the study endpoints are the same at different stages. As discussed earlier,
two-stage seamless adaptive designs can be classified into four categories depending
upon the study objectives and endpoints used at different stages. The direct applica-
tion of standard statistical methods leads to the concern that the obtained p-value and
confidence interval for assessment of the treatment effect may not be correct or reli-
able. Most importantly, sample size required for achieving a desired power obtained
under a standard group sequential trial design may not be sufficient for achieving the
study objectives under the two-stage seamless adaptive trial design, especially when
the study objectives and/or study endpoints at different stages are different. Detailed
information regarding sample size requirement for two-stage adaptive designs can
be found in Chow et al. (2007).

As indicated in the 2010 FDA draft guidance on adaptive clinical trial design,
adaptive designs were classified as either well understood designs or less well under-
stood designs depending upon the availability of well-established statistical methods
of specific designs (2010). In practice, most of the adaptive designs (including the
two-stage seamless adaptive designs discussed in this article) are considered less well
understood designs. Thus, the major challenge is not only the development of valid
statisticalmethods for those lesswell understood designs, but also the development of
a set of criteria for choosing an appropriate design among these less well understood
designs for valid and reliable assessment of test treatment under investigation.
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