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Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has pro-
duced is revealing a much wider range of applications reaching across diverse re-
search areas and scientific disciplines, such as: biomechanics, haptics, neuroscience,
virtual simulation, animation, surgery, and sensor networks among others. In return,
the challenges of the new emerging areas are proving an abundant source of stimula-
tion and insights for the field of robotics. It is indeed at the intersection of disciplines
that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical re-
search developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

Advances in Bimanual Manipulation edited by Bruno Siciliano provides the sci-
entific community with the principal results of the DEXMART European project.
This project brought together teams of European robotics researchers to pursue
a concentrated four-year effort on the development of dexterous and autonomous
dual-hand manipulation capabilities in personal and service robotics.

This volume covers a host of highly important topics in bimanual manipulation.
These include issues concerned with (i) modeling and learning of human manipula-
tion skills, (ii) algorithms for task planning, human-robot interaction, and grasping,
(iii) hardware design of dexterous anthropomorphic hands. The thorough discus-
sion, rigorous treatment, and wide span of the work unfolding in these areas reveal
the significant advances in the theoretical foundation and technology basis of biman-
ual robotic manipulation. DEXMART culminates with this important reference to
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the robotics community on the current developments and new directions undertaken
by this project’s teams of European robotics researchers!

Stanford, California Oussama Khatib
February 2012 STAR Editor



Preface

DEXMART (DEXterous and autonomous dual-arm hand robotic manipulation with
sMART sensory-motor skills: A bridge from natural to artificial cognition) is a
European research project which started in February 2008 and ended in January
2012. The ambition of the project was to fill the gap between the use of robots in
industrial environments and the use of future robots in everyday human and un-
structured environments, contributing to reinforce European competitiveness in all
those domains of personal and service robotics where dexterous and autonomous
dual-hand manipulation capabilities are required.

DEXMART contributed to the development of robotic systems endowed with
dexterous and human-aware dual-arm/hand manipulation skills for objects, operat-
ing with a high degree of autonomy in unstructured real-world environments. These
were the main objectives of the project:

• allow a dual-arm robot including two multi-fingered redundant hands to grasp
and manipulate the same objects (different shape, dimension and weight) used
by human beings;

• manipulation will take place in unsupervised, robust and dependable manner so
as to allow the robot to safely cooperate with humans for the execution of given
tasks;

• a robotic system able to autonomously decide between different manipulation
options, and to learn new action sequences aimed at creating a consistent and
comprehensive manipulation knowledge base;

• possible exploitation of high power-to-weight ratio of smart materials and struc-
tures, aimed at design of new hand components (finger, thumb, wrist) and sensors
for the next generation of dexterous robotic hands.

The goal of this volume is to present the principal results of the project during the
latest four years to the scientific community of people working in the field of grasp-
ing and dual arm/hand manipulation. The topics dealt with in this edited collection
include:

• original approaches to interpretation, learning, and modelling, from the observa-
tion of human manipulation at different levels of abstraction;
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• effective techniques for task planning, coordination and execution so as to confer
to the robotic system self-adapting capabilities and reactivity to changing envi-
ronment and unexpected situations, also in the case of humans cooperating with
it;

• novel grasping force optimisation algorithms and posture-based control strategies
for multi-fingered hands with management of redundant degrees of freedom;

• design of new actuators, as well as smart force and tactile sensors, able to over-
come the limitations of current manipulation devices, and their integration in a
new dexterous anthropomorphic hand;

• meaningful benchmarks for dual-hand manipulation.

The volume is based on the well-attended workshop ”The DEXMART Project for
Advanced Bimanual Manipulation” held on 26 October 2011 at the 11th IEEE–RAS
International Conference on Humanoid Robots in Bled, Slovenia. The five presen-
tations at the workshop are reflected into the five chapters in this collection. No-
ticeably, the workshop program was enriched by two plenary talks by well-known
experts in the field: the cognitive aspects of manipulation were surveyed in the first
presentation by Michael Beetz, while the final presentation by Oussama Khatib
opened a human-centered perspective in view of the future robotics applications.

Further information about the results generated by the project can be found at
www.dexmart.eu, including videos illustrating experiments on the available set-ups
which are naturally associated to the research described in this volume: the new
DEXMART hand at University of Bologna, the humanoid Rollin’ Justin at DLR, the
dual-robot system Adero with two KUKA lightweight arms and two Schunk anthro-
pomorphic hands at FZI, and the mobile manipulator Jido with a KUKA lightweight
arm at LAAS.

From my observing point as coordinator of this project, I trust that the results
achieved by DEXMART have a great potential for European robot manufacturers, as
typical assembly procedures in automotive industry require dual-arm manipulation
of objects and tools similar to those generally used by production workers. The
new dexterous hand will be appealing to SMEs for manipulation of work pieces of
different sizes, shapes and weights currently requiring different grasping tools and
frequent changes. Human–robot cooperation is to be adopted in aeronautic industry
to assist humans in simple repetitive tasks, e.g. riveting and assembly. In the future,
the results of the project will be useful for executing human-centered tasks in service
robotics scenarios.

I hope readers will find the material contained in this volume useful for the de-
sign, modelling, planning and control of advanced bimanual robotic systems, and I
would like to take this opportunity to express my sincere appreciation and warmest
thanks to all those who have contributed to the success of the DEXMART project!

Naples, Italy Bruno Siciliano
February 2012 DEXMART Coordinator
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Humanoids and Intelligence Systems Lab, Institut für Anthropomatik
Karlsruher Institut für Technologie
Adenauerring 4, 76131 Karlsruhe, Germany
e-mail: martin.loesch@kit.edu

Emilio Maggio
Oxford Metrics Group
14 Minns Business Park, West Way, Oxford OX2 0JB, United Kingdom
e-mail: emilio.maggio@omg3d.com

Jim Mainprice
LAAS–CNRS
7 Av. Col. Roche, 31077 Toulouse, France
e-mail: jim.mainprice@laas.fr

Chris May
Lehrstuhl für Prozessautomatisierung
Universität des Saarlandes
Campus A5 1, 66123 Saarbrücken, Germany
e-mail: c.may@lpa.uni-saarland.de

Claudio Melchiorri
Dipartimento di Elettronica Informatica e Sistemistica
Alma Mater Studiorum Università di Bologna
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Layered Programming by Demonstration
and Planning for Autonomous Robot
Manipulation

Rainer Jäkel, Steffen W. Rühl, Sven R. Schmidt-Rohr, Martin Lösch,
Zhixing Xue, and Rüdiger Dillmann

Abstract. We propose a layered system for autonomous planning of complex
service robot environment manipulation challenges. Motion planning, logic-based
planning and probabilistic mission planning are integrated into a single system
and planning models are generated using Programming by [human] Demonstra-
tion (PbD). The strength of planning models arises from the flexibility they give the
robot in dealing with changing scenes and highly varying sequences of events. This
comes at the cost of complex planning model representations and generation, how-
ever. Manually engineering very general descriptions covering a large sets of chal-
lenges is infeasible as is learning them exclusively by robot self-exploration. Thus,
we present PbD for planning models together with generation of parameters from
analysis of geometric scene properties to tackle that difficulty. Experimental results
show the applicability of these techniques on natural learning and autonomous exe-
cution of complex robot manipulation challenges.

1 Learning and Reasoning in a Layered System
for Autonomous Environment Manipulation
of Service Robots

The hierarchical system for autonomous environment manipulation consists of three
layers:

1. Manipulation strategy learning and execution, performing skills by constrained
motion planning for manipulators in geometric scenes.
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Humanoids and Intelligence Systems Lab, Institut für Anthropomatik,
Karlsruher Institut für Technologie, Adenauerring 4, 76131 Karlsruhe, Germany
e-mail: {rainer.jaekel,martinloesch,ruediger.dillmann}@kit.edu,

srsr@ira.uka.de
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2. Scene driven logic-based reasoning for scheduling and monitoring strategies de-
pending on scene configurations and unfolding events.

3. Probabilistic mission-level decision making and learning thereof, selecting ab-
stract tasks based on situations.

Within the scope of this chapter, a skill is considered being a trajectory level self-
contained action, e.g. a pour-in-from-bottle or unscrew-bottle-lid. A manipulation
strategy is a constrained motion planning representation of such a skill in the form of
a graph organizing constraints in a temporal and causal manner. The strategy graph
allows motion flexibility while guaranteeing important motion aspects of a skill.
Qualitative properties are encoded in a quantitative manner with constraints e.g. be-
ing intervals of geometric object relations, velocities, forces etc. That way, a skill
can be executed in different scenes and under different courses of events. Yet, the
representation is so complex that it is infeasible to be generated manually or by self-
explorative robot learning alone. Instead, natural human demonstrations of exactly
these skills can be recorded, analyzed and a suitable strategy graph inferred from
several demonstrations. A fine grained sensor setup, recording human manipulation
skills is used in the presented system. First, demonstrations are analyzed for impor-
tant geometric, temporal and force relations. Then, constraint sets are generalized
and finally refined by trials in dynamics simulation. By these means, an alphabet
of common manipulation skills can be created, which serve as elementary actions
for higher layers of abstraction. During runtime, a collision-free motion trajectory,
valid according to the strategy, given a geometric scene setup, can be planned on-
line. Thus, in summary the manipulation strategy layer provides easy access to a
discrete alphabet of complex manipulation skills during runtime situations for high
level planning. It is presented in detail in Sect. 2.

Scene driven reasoning and planning manages execution of manipulation strate-
gies in a given scene. Given a primary strategy to be executed or a more abstract
task pattern, scene driven reasoning checks the applicability of a strategy on a given
scene and may schedule auxiliary strategies, which transform the scene. These can
be strategies which rearrange the scene in a way that a primary strategy can be ap-
plied: e.g. moving objects blocking other objects to be manipulated, out of the way.
To achieve this, expressions suitable for logic-based planning are generated reflect-
ing a scene configuration. Dynamics simulation is used to predict effects of certain
strategies on the overall scene. A logic-based planner is then able to determine se-
quences of strategies which can transform the scene into a configuration suitable
for application of a primary strategy. A monitoring process continuously checks the
scene for the need of replanning. Scene driven reasoning is discussed in detail in
Sect. 3.

On the most abstract level, strategic, mission level decision making selects coarse
actions based on a situation belief. Such a coarse action is modeled being a whole
strategy complex, as being executed by scene driven reasoning. Additionally, the
strategic level integrates mobility and natural human-robot interaction to provide
a complete autonomous behavior framework to a service robot. Strategic mission
level decision making is modeled as a partially observable Markov decision process
(POMDP). Description of discrete states is achieved by a filtering system which
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Fig. 1 A scheme of the autonomous planning system.

maps all perception component observation onto distinct state symbols. By these
means, a situation belief state is updated continuously during execution time. A
new, abstract action is selected by query to a pre-computed policy after the previ-
ous action terminated. However, POMDP models grow very complex for typical
missions including autonomous manipulation. The model from which the policy is
computed encompasses state space description and mapping, action space descrip-
tion, effect and observation probabilities as well as reward values. As with manipu-
lation strategies it is infeasible to generate these models manually or to derive them
from autonomous robot self-exploration. Accordingly, these models are also gen-
erated by PbD. In this case, the demonstration observation is more coarse grained,
but includes more observation channels. Multiple demonstrations are analyzed, ab-
straction is performed, followed by model space exploration, refinement and finally
policy computation. This process is described more closely in Sect. 4.

2 Programming by Demonstration of Robot Manipulation
Strategies

In the human environment, the workspace of a service robot is typically restricted by
self-collisions, collisions with objects and additional constraints, which are relevant
to a given task. In order to execute a skill, i.e. a trajectory level self-contained action,
in this restricted workspace and to be able to adapt it to different objects, local search
techniques won’t be sufficient since the full configuration space of the robot has to
be considered. Constrained motion planning allows searching globally for a path
from a start configuration to a work space goal region while considering constraints
in task and joint space. The manual definition of all relevant task constraints in a
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subsymbolic representation, which can be used in the constrained motion planner,
is time-consuming, error-prone and requires expert knowledge about manipulation
and motion planning.

In the proposed DEXMART system, a skill will be represented as a manipulation
strategy, which contains all relevant task constraints in a subsymbolic representation
suitable for constrained motion planning. A symbolic action will be mapped auto-
matically to a learned manipulation strategy during the PbD of mission planning
models process, see Sect. 4. A manipulation strategy represents an action on the
lowest level of abstraction and will be executed in a given scene using constrained
motion planning. It will be learned based on the observation of a human teacher, who
performs the manipulation task with his/her own hands in a natural way observed by
different sensor systems. The basis of the flexibility of the learned planning model
is the set of task constraints, which has to be obeyed to execute the task success-
fully. One of the key problems is to automatically deduce a minimal set of task
constraints, which admits a successful execution of the manipulation task in differ-
ent environments with varying objects and obstacles. Two different, complementary
approaches will be discussed. In the first approach, additional, more complex human
demonstrations are used to prune inconsistent constraints, following the idea of cur-
riculum learning. In the second approach, the human teacher demonstrates example
problems, which the robot has to solve autonomously. In this optimization process, a
minimal number of task constraints is removed until a valid solution to the example
problem can be found. The resulting planning model is executed in new environ-
ments using constrained motion planning. Planning times will be reduced online by
learning search heuristics, which can be regarded as a specialization of the learned
task constraints to the robot. Multiple experiments on the bimanual, dexterous FZI
DEXMART demonstrator Adero with a total of 40 DOFs show the validity of the
approach.

2.1 Related Work

Manipulation strategies represent a planning model for constrained motion plan-
ning. The configuration space of anthropomorphic robots with two arms and two
human-like hands is high, e.g. 7 DOFs for each Arm and 13 DOFs in each hand in
the FZI DEXMART demonstrator. Efficient algorithms, e.g. RRT [50] or PRM [45],
to solve the path planning problem in such high dimensional spaces exist. In recent
years, the algorithms were adapted to consider geometric and dynamic task con-
straints. In [83], different projection techniques were introduced to project a given
configuration into the space defined by a set of task constraints. The projection tech-
niques were integrated into a bidirectional RRT planner [9] to efficiently plan on
constraint manifolds. In our work, an additional projection technique is introduced
to consider contact constraints in the planning process. In [8], the constraint rep-
resentation from [83] is used to efficiently represent goal regions for the planning
process. In our work, the planning model representation was extended to represent
skills requiring more than one planning step and additional constraints.
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In PbD, different representations to represent motions on the trajectory level were
developed, e.g. Gaussian Mixture Models (GMM) [15] and Dynamic Movement
Primitives (DMP) [40]. A GMM represents a set of example trajectories as a Gaus-
sian distribution on a temporal-spatial space. It represents explicitly the mean and
variance of the set of example trajectories and the correlation between state vari-
ables. A DMP describes a set of example trajectories as the solution space of a set
of differential equations. The algorithms were applied to different tasks, e.g. table
tennis [62], playing pool [63], performing a chess move [16] or archery [49]. The
state space is usually defined manually to capture only relevant aspects of the set
of examples trajectories, e.g. in the chess example the orientation of the chess piece
and the hands was ignored, which is a precondition to generalize learned knowledge
to new environments. GMMs and DMPs are executed using a fast control algorithm,
which allows adapting to changes in the start and goal configuration but doesn’t al-
low for global obstacle avoidance.

Since the variety of objects is large and infinite object arrangements can be en-
countered in typical household settings, sufficient generalization capabilities of the
robot are necessary to execute a task successfully. In contrast to a control approach
with a reference trajectory, goal-directed reproduction of skills [27] offers poten-
tially higher generalization capabilities since only the effects of the manipulation
will be reproduced. The definition of the state space is the basis of the definition
of the goals and task constraints, which should be reproduced by the robot. Manual
definition of the state space is unfeasible for an autonomous robot and non-expert
teachers. An unnecessary large state space hinders generalization since all features
have to be present in the execution environment, e.g. if the manipulation was learned
on a desk pad but the pad is missing in the execution environment, the skill cannot
be executed. Different techniques to automatically reduce the number of features in
the state space are available. In [60], task space pools are described, which consist
of a set of predefined learning features, e.g. the motion of the hand relative to the
object of attention, from which a set of relevant features will be chosen based on
a selection criterion. Three different criteria were defined: an attention, a variance
and a kinematics criterion. The criteria can be used to weight the features as well as
remove features from the state space. They were applied to a single example but no
data about the reduced set of features or the result in the reproduction is available.

Additionally, gazing at an object [13] and pointing gestures [10] were used to
clarify ambiguities in interaction with the robot system. Since the robot has to ex-
plicitly interact with the human, a semantic representation of the learning features
is required and only a small set of features can be considered. In our work, an ini-
tially large set of features, i.e. task constraints, will be incrementally pruned using
additional demonstrations by the human teacher and a large set of simulation trials
to deduce a minimal set of features, which admits a successful reproduction of the
skill on a set of example problems.

In [82], a dexterous manipulation task, in which a lid had to be removed from
a glass with the fingertips, was partially learned based on human observation. The
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Start

1
arm_left_direction in Cone(flasche),

hand_position in Cube(flasche, arm_left_tcp_buffer),
collision in Cube()

{ collision in Cube() }

2

{ autograsp,
attach }

End
flasche_direction in Cube(start_flasche),

flasche_position in Cube(kuehlschrank_door_open),
collision in Cube(),

flasche_contact in Cube(kuehlschrank)

{ flasche_direction in Cube(start_flasche),
collision in Cube() }

(a) Strategy graph (b) Visualization of the region R
of the node position constraint

Fig. 2 Manipulation strategy to grasp a bottle and place it in a fridge door [41].

correspondence problem, i.e. the problem of mapping a motion to an actor with dif-
ferent geometrics, kinematics and dynamics, was considered by manually adapting
the human motion until the mapping was visually valid in simulation. In contrast
to this work, we consider the correspondence problem in the planning process by
automatically enlarging the search space for finger and hand motions while keeping
the constraints restricting the object motion.

2.2 Manipulation Strategies

In the human environment, an autonomous service robot has to be able to adapt
a manipulation motion to a large variety of objects, different object poses and a
restricted workspace. In order to plan a robot motion in a goal-directed way the
goals and task constraints of the task have to be represented explicitly.

In this section, a manipulation strategy will be defined based on a set of position,
orientation, direction, force, contact and force closure constraints. The manipulation
strategy will be executed using a bidirectional constrained motion planner and novel
projection techniques for contact and force constraints.

2.2.1 Representation

The definition of manipulation strategies is based on the definition of temporal and
domain constraints. Let CR be the configuration space of the robot. The configura-
tion space with a temporal component C is defined as C = CR×R.
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A temporal constraint is defined as (l,u) ∈ R
2, l ≤ u. It will be obeyed in a con-

figuration (θ , t) ∈ C if and only if l ≤ t ≤ u.
Six different types of domain constraints exist: configuration, position, orienta-

tion, direction, force and contact constraints.
Configuration constraints restrict the joint angles of the robot with n DOFs di-

rectly. Similar to temporal constraints, they are written as (l j,u j) ∈ R
2n,1 ≤ j ≤ n

and will be obeyed, if and only if l j ≤ θ j ≤ u j ∀ j.
Position, orientation, direction and force constraints will be represented as (a,b,R)

with the (coordinate) frames a and b and a region R⊆ R
3. They restrict the value of

the frame a, expressed in the frame b, to stay in the region R. Let gTf be the homoge-
nous transformation matrix, which describes the position and orientation of frame f
relative to frame g. bTa will be transformed into a 3D vector bta depending on the type
of constraint. The constraint will be valid, if and only if bta ∈R. For position and force
constraints bta is the translational part of bTa and for orientation and direction con-
straints, the rotational part of bTa will be converted into a scaled axis representation,
see [42].

A contact constraint is defined as (a,b,R). It will be obeyed, if and only if the
two unique 3D models associated with a and b are in contact and the contact normal
from b to a is included in R.

The common structure of all constraints, i.e. a vector t has to be included in a
predefined region R of the same dimension is exploited to define a distance mea-
sure. For each constraint c, d(c,θ , t) will be the distance to the constraint manifold
described by c in the configuration (θ , t):

d(c,θ , t) = min
y∈R
‖x− y‖

A manipulation strategy is defined as (N,E,Ct ,Cd), where N is a set of nodes, E ⊆
{(u.v)∈ N×N} a set of edges, Ct assigns a set of temporal constraints to each node
u ∈ N and each edge (u,v) ∈ E and Cd assigns a set of task constraints to each node
u ∈ N and each edge (u,v) ∈ E . It can be visualized as a directed graph, which will
be called strategy graph [43], see Fig. 2(a). Each node v represents a subgoal of the
manipulation task, i.e. the goal G(v) for the constrained motion planner is implicitly
defined by all configurations, in which all task and temporal constraints are obeyed:

G(v) = {(θ , t) ∈ C |d(c,θ , t)< ε ∀c ∈Ct(v)∪Cd(v)}

Edges represent the transition from one subgoal to the next. The motion associated
with the transition is also restricted by a set of task and temporal constraints, which
implicitly defines the search space for the constrained motion planner:

{(θ , t) ∈ C |d(c,θ , t)< ε ∀c ∈Ct(u,v)∪Cd(u,v)}

Manipulation strategies can be regarded as a temporal constraint satisfaction prob-
lem with domain constraints, see [42].
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Example 0.1. In Fig. 2(a), a manipulation strategy to place a bottle inside a fridge
door is shown. The goal of the manipulation is described by a direction constraint,
which restricts, that the symmetry axis of the bottle has to be aligned to the world’s
z axis, a collision constraint, which restricts, that no collision occurs, a contact con-
straint, which enforces, that the bottle bottom and the fridge door are in contact, and
a position constraint, which restricts the position, where the bottle can be placed in
the fridge door. The latter is visualized in Fig. 2(b) as a cubic region.

2.2.2 Instantiation

In the learning environment, for each object in the KIT ObjectModels web database
[44] a set of coordinate frames is predefined, e.g. for a bottle a frame in the
opening, the center of mass and the bottom is defined. In a learned manipulation
strategy, which belongs to the created alphabet of common manipulation skills,
all objects will be replaced by variables, e.g. flasche opening will be replaced by
object1 opening. In order to execute the manipulation strategy on a robot system
in a new environment, all variables have to be instantiated. The mapping of frames
referring to objects in the scene will be done by the caller of the planner, e.g. the ex-
ecution time system in section 4, by assigning values to the variables. The mapping
will be valid, if the object contains all referenced frames.

Constraints restricting frames of the human, i.e. fingertips and wrists, will be
mapped automatically to the current robot system. The correspondence problem, i.e.
the problem how a motion can be mapped to a manipulator with different geomet-
rics, kinematics and dynamics, is considered by relaxation of constraints restricting
the motion of the human fingers or wrists. The relaxation depends on the human
teacher and the robot hands. For the SAH, finger position constraints will be relaxed
by 5 mm to consider the different finger widths, wrist position constraints will be
relaxed by 40 mm due to the different hand sizes and wrist orientation constraints
will be relaxed by 15◦. Since force, contact constraints as well as constraints, which
restrict the motion of the manipulated objects, the qualitative effects of the manip-
ulation motion are not altered but the search space for finger and wrist motion is
enlarged to enable the planner to find a similar robot finger and hand motion, which
produces the same qualitative effects.

2.2.3 Execution

Manipulation strategies will be executed using a constrained bidirectional RRT
based on CBiRRT [9]. The projection technique to project an arbitrary configuration
to a constraint manifold is RGD [83], which approximates the gradient of the dis-
tance to the constraint manifold online based on a sample strategy. Although slower
than Jacobian-based approaches, e.g. TS or FR [83], RGD allows considering arbi-
trary constraints in the planning process.
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For contact constraints (a,B,R), a (special) contact projection is defined, which
enforces, that the two referenced 3D models assigned to a and b will have a contact.
Let (θ , t) ∈ C be the configuration before projection. If θ is in collision, the nearest
collision-free configuration is generated using a library by Min Tang based on the
penetration depth [47]. The collision free configuration is incrementally refined by
moving each 3D model in opposite direction of the contact normal sampled from R
until a contact occurs.

Learned manipulation strategies have a unique start node Start and end node
End, which are connected by a single path Start 	→ 1 	→ ... 	→ n− 1 	→ End. Each
segment u 	→ v will be planned sequentially. The set of goal configurations for the
constrained motion planner will be a subset of G(v). Due to the interaction of con-
straints, G(v) cannot be sampled directly. Since the constraint manifold may be thin,
drawing a sample from C and rejecting it if not in G(v) is also not sufficient. An
initial configuration will be generated based on a subset of constraints using inverse
kinematics. The initial configuration will be projected to the constraint manifold
G(v) using RGD and the contact projection. If all constraints are obeyed, the final
configuration will be stored as a goal configuration. In the planning process, random
samples will be drawn and the RGD and contact projection will be used to project
the configuration to the constraint manifold G(u,v), i.e. the search space for the
manipulation planner.

If the planning process is successful, the solution is guaranteed to obey all task
constraints, i.e. the arc constraints Cd(u,v) will be obeyed in all points of the solution
and the node constraints Cd(v) will be obeyed in the final point of the solution.

2.3 Observation

The human teacher demonstrates the skill with his/her own hands in a sensory en-
vironment, see Fig. 3, in a natural way. The demonstrations are recorded using a
stereo camera system with DragonFly II cameras, two Fastrak motion trackers, two
Cyberglove II datagloves and a custom-built glove with tactile sensors based on an
elastomer with changing electrical conductivity.

The vision library IVT [6] is used to detect and localize objects in the scene. In
order to calculate contact points in the fingertips of the human based on the joint
measurements with the datagloves, a model of the human hand is used. The hand
model was generated using a high-accuracy laser scanner, see Fig. 4(a). The bone
structure was added manually, see Fig. 4(b). Contacts are calculated based on a 3D
visualization of the observation result using PQP [33].

Each demonstration is represented as a trajectory of two 6d poses for the left and
right human wrist, two sets of 20 joint angles for each human hand, one 6d pose for
each recognized object and a set of contact pairs.
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(a) Stereo camera with pan-tilt unit, two datagloves, two motion
trackers and 3D visualization of observation result

(b) Tactile measure-
ments

Fig. 3 Sensory environment: human demonstration to place a bottle in a crate.

(a) High-accuracy laserscanner scanning a
plastercast of the human hand

(b) Bone structure for
the hand model

Fig. 4 Generation of 3D human hand model for the observation of dexterous manipulation
tasks.
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Fig. 5 Constraint volume types [43].

2.4 Preliminary Manipulation Strategy Generation

In order to learn a new skill, the human teacher demonstrates the skill multiple times
in the sensory environment generating two sets of demonstrations. In the first set,
the goal is to demonstrate the skill on a simple setup, e.g. with no collision and
common object poses. In the second set, the teacher demonstrates the skill on more
complex or different setups, e.g. with different objects of the same type. The first
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(a) Arc constraints (b) Node constraints

Fig. 6 Task constraints for a (non-dexterous) pour-in task generated using the initial set of
task constraints and cubic regions.

set of training data will be used to generate the initial manipulation strategy. The
second set will be used to reduce the number of learning features automatically in
order to improve the generalization capabilities of the skill. In the remainder of this
section, the first set of training data will be used.

The demonstrations will be segmented in order to generate the structure of the
initial manipulation strategy. Based on the structure and the recognized objects, the
state space, i.e. the set of task constraints to learn, will be generated. For each task
constraint, the parameters, i.e. the region R of minimal volume will be generated, so
that all constraints are obeyed on the demonstrated trajectories.

In general, non-dexterous tasks, in which only grasping, transporting and un-
grasping of objects is necessary, will be treated differently to dexterous tasks, in
which force interaction with the fingertips and object motion without rigid contact,
e.g. pushing, are important.

2.4.1 Segmentation

The demonstrations will be segmented based on the assumption that the velocity
of fingers, hand and forces is low at important points of the demonstration. The
motivation is based on the common assumption in motion planning, that the robot
is at rest before and after the planning process.

Based on a simple velocity based threshold algorithm, see [29], the demonstra-
tions are segmented. For non-dexterous tasks, grasp classification will be applied in
each segmentation point and will be removed, if the grasp classification is inconsis-
tent. In general, demonstrations will be rejected, if the segmentation is different to
the segmentation of the first demonstration.

For each segmentation point, a node will be generated in the initial manipula-
tion strategy. For two consecutive segmentation points, an edge will be generated,
connecting the nodes assigned to the segmentation points.

For non-dexterous task, in each segmentation point either a grasp was detected
or not. For each hand, a segment will be labelled as grasp, if no grasp was detected
in the first segmentation point and a grasp was detected in the second segmentation
point. The labels ungrasp, transport and free will be assigned accordingly.
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(a) Arc constraints (b) Node constraints

Fig. 7 Reduced set of task constraints, see Fig. 6, using Teaching.

2.4.2 State Space

In order to generalize a skill to different environments and robots, the goals and task
constraints have to be explicitly represented. In the manipulation strategy, goals
and task constraints will be represented as sets of constraints. Since each constraint
has to be obeyed in the execution environment and the referenced coordinate frames
have to exist, one of the key problems is to generate a minimal set of task constraints,
which allows executing the task successfully.

A large set of task constraints will be generated automatically, similar to task
space pools [60], for each node and arc in the strategy graph. The set will be gen-
erated based on three sets of coordinate frames: A, B and C. For dexterous tasks, all
sets contain the frames in the human fingertips, the human wrists and all frames (in
the database) of all recognized objects. For non-dexterous tasks, A will contain the
human wrist, if a grasp or move was detected on the current or ingoing arc, other-
wise all frames of the grasped object will be added. B and C are equal and contain
all frames of the recognized objects in the database. For all frames in B and C start
frames will be added, which represent the value of the frame at the beginning of the
current or ingoing arc.

For each constraint type and each (a,b,c) ∈ A×B×C a constraint will be gener-
ated, where a is the first frame of the constraint and the second frame has the position
vector of b and the rotation matrix of c. The set of constraints will be filtered to en-
sure that the resulting manipulation strategy can be used in the constrained motion
planner, e.g. constant constraints will be removed, resulting in the initial set of con-
straints. For dexterous tasks, force constraints will be added constraining the force
in the five fingertips of the human hand relative to the frame in the center of mass of
the nearest object.

2.4.3 Parameters

For each constraint (a,b,R) in the initial set, the parameters of the region R have
to be determined, so that R has minimal volume and the constraint is valid on
the corresponding segments of all demonstrations. Following a bag of algorithms
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Start

1
arm_left_direction in Cone(flasche),

hand_position in Cube(flasche, arm_left_tcp_buffer),
collision in Cube()

{ collision in Cube() }

2

{ autograsp,
attach }

End
flasche_direction in Cube(start_flasche),

flasche_position in Cube(kuehlschrank_door_open),
flasche_position_shelf_0 in Cube(kuehlschrank_shelf_0),
flasche_position_shelf_1 in Cube(kuehlschrank_shelf_1),
flasche_position_shelf_2 in Cube(kuehlschrank_shelf_2),

collision in Cube(),
flasche_contact in Cube(kuehlschrank)

{ flasche_direction in Cube(start_flasche),
collision in Cube() }

Fig. 8 Planning model to grasp a bottle and
place it in a fridge door [41].

Fig. 9 Non overlapping constraints (circles)
for a different door angle in the fridge
experiment [41].

approach, a region with minimal volume for different region types, e.g. cube, sphere,
cone and cylinder cuts, see Fig. 5, is generated and the minimal result is taken.

2.5 Generalization

The initial manipulation strategy is overspecialized. It contains a large number of
automatically generated task constraints, which describe the subgoals and the tran-
sitions between subgoals of the skill. Since all referenced coordinate frames have to
exist and all generated task constraints, even if not relevant to the task, have to be
obeyed in the execution environment, generalization is limited. In Fig. 6, the initial
set of task constraints in the pour-in task are shown.

Two complementary approaches to reduce the number of task constraints in the
initial manipulation strategy were investigated: Teaching [43] and Robot Tests [41].

2.5.1 Teaching

Following the idea of curriculum learning [7], the second set of demonstrations,
which represents human solutions to more complex problems or problems, the robot
should be able to generalize to, is exploited to remove irrelevant task constraints.
The second set is segmented in the same way as the first set. A constraint will be
removed, if it is not obeyed on the corresponding segment on one of the second
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Fig. 10 Test: different
door angles [41].
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0.040.000.000.540.00
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0.000.000.510.000.00
0.011.000.000.000.72

Population

Planner Statistics

0.000.000.000.000.82
0.000.000.000.000.82

...

10 0 1 0
11 0 0 1

6.

Fig. 11 Example of the evolutionary algorithm applied to the ex-
ample in Fig. 8 using 2 states. Left: population in iteration 1 to 6.
After iteration 1, the mutation operator is applied. Right: calculated
planning statistics for each individual in iteration 1 to 5 [41].

set of demonstrations. In Fig. 7, the resulting set of task constraints after applying
Teaching to the example in Fig. 6 is shown. More details can be found in [43].

2.5.2 Robot Tests

Since the number of human demonstrations is limited, the set of task constraints of
the manipulation strategy after teaching is in general not minimal. In the example
in Fig. 8, a bottle has to be grasped and moved to a position in a fridge door. As-
suming that the door angles were similar during learning and teaching, the last goal
of the manipulation task, i.e. that the bottle has to reside in the fridge door, is de-
scribed by one position constraint, which restricts the bottle bottom relative to the
fridge door, and three position constraints, which restrict the bottle position relative
to the shelves. This ambiguity was not resolved automatically but greatly influences
the generalization capabilities of the skill. In a new environment with different door
angle, the planning process will fail since both constraints, i.e. relative to the door and
relative to the shelves, cannot be obeyed at the same time, see Fig. 9. Statistics about
such inconsistencies will be gathered and used to remove irrelevant task constraints
automatically.

In order to further generalize the learned manipulation strategy, the human
teacher defines a set of robot tests. Each robot test consists of a set of objects, a
set of object poses and a mapping of objects to objects in the manipulation strategy,
which is used to instantiate the manipulation strategy. In the fridge example, each
robot test corresponds to a specific door angle, see Fig. 10.

The goal of the generalization algorithm is to deduce a maximal subset of con-
straints, which admits a successful solution to all robot tests. By using the maximal
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(a) Arc constraints (b) Node constraints

Fig. 12 Reduced set of task constraints, see Fig. 6, using Robot tests.

subset, it will be ensured, that as many as possible learned task constraints will be
maintained. In order to test whether a subset of constraints fulfills the goal condition,
the manipulation strategy will be used in the constrained motion planner to generate
a solution to all robot tests. If no solution can be found, statistics about which con-
straints were inconsistent will be gathered. The resulting high-dimensional combi-
natorial optimization problem will be solved using Evolutionary Computation [25],
which allows the computation of the goal condition to be parallelized. In Evolu-
tionary Computation, an initial set of states, called initial population, will be incre-
mentally modified using different operators, e.g. mutation of single states, and the
value of the objective function of each modified state, called fitness, will be used to
determine the follow-up population.

The manipulation strategy will be mapped to a binary state, where each bit cor-
responds to one task constraint, which can be deactivated potentially. In order to de-
termine the fitness of a state, the corresponding manipulation strategy will be used
in the constrained motion planner to calculate a solution for each robot tests. If the
planning process fails, statistics about which constraints failed during the planning
process will be gathered.

The initial population consists of n states, where each bit is set to 1, i.e. the opti-
mization process focuses on the deactivation of constraints, which is more beneficial
since only statistics about which constraints should be deactivated are available.

In each iteration, all states will be mutated using a custom mutation operator. If
the planning was successful, a random deactivated constraint will be activated, i.e.
the corresponding bit set to 1, to maximize the number of constraints. If planning
failed, each active constraint will be deactivated according to the failure probability,
which corresponds to the fraction of unsuccessful constraint evaluation on the total
number of constraint evaluations in the planning process.

The fitness of each state is calculated based on the number of active constraints
in each arc and node, the planning result and the progress in the planning process.

The algorithm will be stopped, if the best individual hasn’t changed in 20 itera-
tions or a time threshold was met.

The optimization algorithm was implemented using the library evolving objects
[46]. The calculation of the constraint statistics was parallelized to 24 CPU cores.
An example of the execution is shown in Fig. 11.
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Fig. 13 Training examples for constraint
specialization.

Fig. 14 Temporal alignment of paths in one
cluster.

Finally, the solutions are demonstrated to the human teacher, sorted by fitness,
who picks the first valid solution. In the experiments, the 1.1th solution was chosen
on average.

In Fig. 12, the resulting set of task constraints after using Robot tests for the
example in fig 7 is shown. More information can be found in [41].

2.6 Specialization Using Trials in Dynamics Simulation

The resulting manipulation strategy contains a maximal set of learned task con-
straints, which admits a successful execution of the skill in different environments
and with different objects with similar geometry. It can be interpreted as a qualita-
tive description of the goals and constraints of the given task. By using constrained
motion planning, the robot infers in a goal-directed way a joint motion for which
all constraints are obeyed and all subgoals will be reached. Additionally, the joint
limits of the robot, obstacles in the execution environment and the geometry of the
manipulated objects are automatically considered, which is an advantage compared
to a low-level mapping of joint trajectories on the control level. The drawback of
this flexibility are high planning times, especially for dexterous manipulation tasks,
in which hand and finger motion have to be planned at the same time. In this sec-
tion, the learned manipulation strategies will be specialized to the robot and task
by refining each position, orientation or direction constraint based on multiple trials
in dynamics simulation or on the real robot. The refined constraints will be used to
execute the manipulation strategies with a fast control algorithm. Planning with the
original manipulation strategy in parallel ensures, that a speed up can be guaranteed.

In the manipulation strategy, each position, orientation and direction constraint
will be refined by learning a Gaussian Mixture Model (GMM) on the 3D constraint
manifold. The training data is generated by executing the generalized manipulation



Layered PbD and Planning for Autonomous Robot Manipulation 17

Fig. 15 Learned GMM on the tempo-
rally aligned data in Fig. 14.

Fig. 16 The start configuration is not included
in the GMM (1), a path is planned to a configu-
ration in the GMM (2) and the controller is used
to generate a motion to the goal (3).

strategy in different environments in simulation, e.g. using the object arrangements
in the human demonstrations or defined robot tests, and on the real robot. Each
demonstration is segmented according to the structure of the manipulation strategy.
For each constraint c ∈Cd(u,v) of the arc (u,v), the corresponding segment is pro-
jected to the constraint manifold of c and the resulting 3-dimensional trajectory is
stored as an training example. In Fig. 13, a bottle has to be placed in a crate. The
resulting training examples for the position constraint, which restricts the bottle rel-
ative to the crate, are shown.

For each constraint, the training data is temporally aligned using Dynamic Time
Warping (DTW) [73] and clustered using the DTW distance and hierarchical ag-
glomerative clustering. In Fig. 14, a single, temporally aligned cluster is shown. A
cluster is chosen and a GMM with fixed number of Gaussians will be generated for
each position, orientation and direction constraint on the segment using the EM-
algorithm. Each GMM is transformed using Gaussian Mixture Regression [14] re-
sulting in a representation of each GMM by a mean vector and covariance matrix for
each time point. Based on this representation, a set of GMMs can be executed using
a simple controller, which iteratively tries to move the robot closer to the mean of all
GMMs weighted with the covariance matrices in the corresponding time point, see
[14]. Experimental results show, that the execution is more than 20 times faster than
planning for GMMs with narrow covariance matrices but will in general fail, if the
initial robot configuration is not included in the GMM, represented by the covari-
ance ellipsoids with 3 standard deviations, see Fig. 15. Based on this observation, an
additional planning step will be executed, if the initial configuration is not included
in the GMM. The goal of the additional planning step contains the set of GMMs, i.e.
the robot will move to a configuration, which is included in the GMM, see Fig. 16.
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Table 1 Results on robot test approach [41].

Constraints Chosen Valida- Success
Exp. Tests before/after solution tion set (%)
Fridge 2 5 / 2 1 10 100
Pour-in 2 174 / 60 2 15 67
Crate 3 15 / 13 1 20 100
Key 3 362 / 28 1 15 100
Cup 4 26 / 15 1 24 88
Bottle 1 16 / 8 1 20 90
Chair 1 12 / 6 1 10 100

Starting from the new configuration, the controller will be used to generate a motion
for the robot system.

The controller implements a local optimization technique, which offers fast exe-
cution times for environments, which the robot system has encountered previously.
Global collision avoidance, narrow passages and environments with differing object
arrangements are problematic. If the controller fails, which indicates that the learned
search heuristics could not be applied, the explicit knowledge about the goals and
constraints of the task will be exploited to plan a motion in a goal-oriented way. By
executing the controller and the constrained motion planner in parallel, the speed up
for previously encountered environments as well as the generalization capabilities
to novel scenes are maintained.

2.7 Evaluation

Learning and execution of manipulation strategies was evaluated on multiple tasks
on the FZI DEXMART demonstrator Adero. Adero consists of two KUKA
Lightweight Arm with 7 DOFs and two Schunk Anthropomorphic Hands (SAHs)
with 13 DOFs. Object models were taken from the KIT ObjectModels Web Database
[44]. The evaluation of the teaching algorithm can be found in [43]. The robot tests
approach was evaluated on multiple examples in [41] and will be summarized here.
The section will end with results about learning and execution of the dexterous ma-
nipulation task: opening a bottle with the fingertips.

2.7.1 Generalization

In [41], the robot test approach was applied to seven tasks: place a bottle in the fridge
door, bimanual pour-in, place a bottle in a crate, pressing a key on a keyboard, grasp-
ing a cup, opening a bottle and lifting a chair. The human teacher demonstrated a
set of robot tests, which was split into a training and a validation set. The training
set was used to determine the maximal subset of task constraints. The resulting ma-
nipulation strategy was executed on the validation set. The results are summarized
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Fig. 17 Human demonstration of the task to place a bottle in a crate.

Fig. 18 Execution of planning model for placing a bottle in a crate on Adero.

in Tab. 1. The human teacher picked the 1.1th solution on average, which indicates,
that human interaction is reduced to a minimum, i.e. the human is necessary to
check the result for failure of implicit constraints but (s)he is not involved in finding
the maximal subset of consistent task constraints. The number of constraints in all
manipulation strategies could be reduced effectively and the average success rate of
92% indicates, that the heuristic to find a maximal subset of learned task constraints
is valid. For manipulation strategies with a small number of constraints, the optimal
solution can be found in a small number of iterations. The pour-in example showed,
that a suboptimal can be found due to violation of implicit constraints.

The bottle in crate task will be discussed in more detail as an example. A bottle
was grasped with the left hand and placed in a crate at random positions. The hu-
man demonstration is shown in Fig. 3(a) and the observation result is visualized in
Fig. 17. In the learned manipulation strategy, the motion of the wrist was restricted
relative to the bottle opening and bottom and the motion of the bottle opening and
bottom were restricted relative to the crate. In the robot test, a bottle with different
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Fig. 19 Human demonstration of bottle opening task in sensory environment and simulation
environment.

Fig. 20 Planning result for opening a bottle using physics simulation.

size was used, i.e. the bottom and opening frame were at different positions. The
described constraints were inconsistent and no solution could be found to the robot
test initially. In the optimization process, the constraint, which restricts the wrist
relative to the bottom of the bottle will be removed since no collision-free configu-
ration for grasping or no force-closure grasp could be found. The constraint, which
restricts the motion of the bottle opening relative to the crate is also removed since
no configuration, in which the bottle and the crate are in contact, could be found.
After removing both constraints, the manipulation strategy could be executed suc-
cessfully on the real robot, see Fig. 18.

2.7.2 Learning and Execution of Dexterous Manipulation Tasks

In this experiment, a bottle cap had to be removed by using the fingertips. In the
human demonstrations, see Fig. 19, only the thumb and the index finger were used
to rotate the cap. The task was considered dexterous, i.e. the motion of the human
wrist and the human fingers is learned and abstracted to a set of task constraints.
The constraints restricting the human wrist and fingers were enlarged to consider
the correspondence problem. Since sliding contacts could not be observed with the
tactile sensors force constraints, which restrict the force in the fingertips to be per-
pendicular to the cap surface were added in the appropriate nodes and arcs. The
motion of the cap could not be tracked consistently due to occlusions and a posi-
tion and orientation constraint, which restrict the cap motion relative to the bottle,
were added manually. The position constraint restricts, that the cap stays at the same
position during rotation. The orientation constraints restricts, that the cap is rotated
between 0◦ and 45◦. The corresponding node constraints, which represents the goal
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Fig. 21 Execution of planning result for opening a bottle on Adero.

Fig. 22 Execution of planning result for lifting and opening a bottle on Adero.

orientation of the cap, restricts the cap to be 40◦ rotated. The resulting manipulation
strategy was executed using constrained motion planning with dynamics simulation,
see Fig. 20. In each planning step, i.e. each small extension of the search tree, the
dynamic simulation is used to predict the movement of the cap when the motion
of the fingertips is applied. The planning step will be successful if all constraints
restricting the motion of the hand, the fingers, the objects and the forces are obeyed.

The manipulation strategy contained four arcs, which can be interpreted as: move
the hand above the cap and open the fingers, close the fingers, rotate the cap and open
the fingers. Since the rotation of the cap with the fingertips can only be executed in
a small subset of the workspace of the hand, a valid hand posture has to be found
in the planning process, which requires a large amount of planning time. Although
dynamics simulation is used in the planning process, the finger rotation motion can
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be planned in only a few minutes due to the restriction of the search space based on
the observation of the human. The total planning time was 5.2 minutes. The planned
rotation motion is shown in Fig. 20. The whole manipulation strategy was executed
on Adero, see Fig. 21.

The experimental results indicate, that dexterous manipulation skills can be
learned and mapped to a robot in a goal-oriented way using a planning-based ap-
proach. For dexterous tasks, planning times are high but efficient heuristics, see
Sect. 2.6, can be learned automatically based on the planning results.

3 Scene Driven Logic-Based Reasoning for Robot Manipulation
Tasks

When the mission level decision making has selected a coarse action for execution,
it is handled by the scene driven planning. The scene driven planning in the DEX-
MART system is responsible for mapping a coarse action to a sequence of symbolic
actions and parameters, for which strategies exist which are able to execute the in-
tended action in a given setup.

The need for such a mapping comes from the high level of abstraction at the
mission level. The scene driven planning bridges the gap between the model of a
coarse action on the one hand and the robot and scene on the other. Especially the
following aspects are considered by scene level planning:

Kinematics. On the high level of abstraction, the manipulation of an object is easily
described e. g. by Grasp(Object). In order to execute such a strategy, the robot
has to move its gripper to a pose near the grasped object. Therefore, an arm con-
figuration has to be calculated, which reaches that pose. This problem is known
as inverse kinematics. Anyhow, such a solution may not exist. The object may be
out of reach or just at a hard to reach pose in the workspace. In such a case, using
the other arm of the robot is an option which must be considered, or, if the robot is
mobile, moving the whole robot. Additionally, the calculated configuration must
be executable without self-collisions.

Obstacles. If a robot should approach an arm configuration, it has to assure that
there are no collisions between itself and obstacles in the scene. Therefore, it
must model its environment and plan strategies based on that model.

Scene setup. In a case of stacked objects, if an object from the lower part of the
stack is to be manipulated, the robot must not simply grasp that object. Such an
action may cause the stack to collapse and damage the objects. In such a situation,
the reasoning has to create a sequence of strategies, which decomposes the stack
an finally allow the desired manipulation.

Since the actual scene setup is not known before execution, scene driven planning
has to be done on-line. It refines an abstract description of an action to an abstrac-
tion level, where it can be evaluated, that there are configurations for the robot
which could execute the associated strategy in a given scene. As pointed out, this
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refinement might require the scheduling of additional actions. In order to gener-
ate a sequence of actions leading to a desired goal state, a logic-based planner is
employed. Queries to a classic manipulation planner ensure the feasibility of sin-
gle plan steps, meaning that there is a strategy for the robot that implements the
symbolic action.

The introduction of logic-based planning introduces a new challenge: the com-
plex continuous scene in which the robot operates has to be mapped to a small but
sufficiently descriptive set of symbols on which the planning operates. Since the
cardinality of the symbolic space is smaller than that of the continuous space, such
a mapping is an approximation of the real world. In order to verify the actual feasi-
bility of a planned strategy, classic manipulation planner are employed to map back
from the symbolic domain to the continuous. Finally, when planned strategies are
executed on the robot, it has to be assured that resulting world states develop accord-
ing to the generated plan. Therefore, the logic-based planner schedules monitoring
assertions which are on-line monitored during the execution of strategies. In or-
der to adapt those monitoring constraints to initially unknown actions, a supervised
learning method is utilized.

Based on the analysis of the scene driven planning, we structure the component
into three sub-components. The major part is the symbolization of the observed
scene and possible actions. It is described in Sect. 3.2. Based on the symbolic de-
scription, planning domains have to be defined and a logic-based planer is integrated
into the system as described in Sect. 3.3. Finally, the monitoring component ensures
consistency between a plan and its execution. It is described in Sect. 3.4.

3.1 Related Work

The scene driven logic-based reasoning for robot manipulation tasks combines clas-
sical symbolic AI planning methods in robotics [37] with continuous planning meth-
ods [11]. Approaches from the AI world tend to ignore the problems associated
with grasping and kinematics, while robotic planning algorithms lack the versatility
of configurable, arbitrary goals. Different approaches, which exploit the advantages
from both worlds are known in literature and discussed here briefly.

Choi et al. [20] propose a system, where action symbols are automatically gen-
erated by a motion planner. Point pairs are sampled from the workspace of a robot.
A path planner is utilized to ensure that there is a path connecting those points. If
there is one, a pick-and-place action transporting an object between those points is
generated. This approach has difficulties to scale to real world complexity.

A reverse approach is taken by Dornhege et al. [24]. A symbolic planner plans
with an action, which can approach arbitrary locations. A “semantic attachment”
for such an action utilizes a motion planer to ensure the feasibility of the action.
Grasping and object geometries are not considered in this approach.

The extension of a motion planner to account for re-grasp operations is pro-
posed in [87]. The system considers kinematics, collisions and grasps, but is limited
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to the domain of pick-and-place with re-grasp operations. A similar approach for
pick-and-place operations in complex environments is taken in [84]. In [78], a ma-
nipulation planer based on probabilistic road maps is presented. It accounts for
grasps, object placement and collisions. Therefore, in the collision free space CS f ree

the subset CG containing grasps and CP containing place positions are generated
and paths between their intersections searched. The approaches in this section have
no outlook for higher level goals, which would be required to combine multiple
operations.

For workspace discretion in the context of symbolization, we rely on the rating
of workspace pose for the robot. Known research in this area includes the work of
Zacharias et al. [92]. The inverse kinematic of a manipulator is used to sample the
3D Cartesian space around the robot. For each sampled point, different approach
directions are evaluated, the amount of feasible directions defines the reachability.
The reachability of all sampled points define the reachability map.

Guilamo [35] uses the forward kinematics for sampling to account for sub-
optimal distribution in Cartesian space, and a prioritization is introduced. Guan [34]
extends the approach for a biped robot, considering also stability.

In the area of symbolic scene description, [28] introduces “spacial relation”, in-
cluding a supports relation for two dimensional images. A qualitative description
for complex mechanical systems is proposed in [48]. Concepts like impulse, colli-
sion and friction are included and it allows reasoning about the modeled scene. The
model has to be created manually.

A taxonomy of monitoring systems is presented in [65]. It distinguishes between
analytical and knowledge-based systems. In [59] the difference between predicted
and measured joint torques under impedance control is used to detect undesired
collisions. In [31], a path planer in a simulation is used to generate sensor value
expectations for a mobile robot.

3.2 Symbolization

A symbolic description of the world in which a manipulation task takes place is re-
quired for logic-based planning. The generation of such a description is presented in
this section. The graspability is introduced to reduce the continuous, 6-dimensional
workspace of the robot to a small set of symbolic locations which are likely to be
suitable for manipulation in context of the task. Mechanical relations are used to
generate and transfer mechanical domain knowledge into the planning domain, for
example that moving an object A, which carries another object B, will also move
B. For learned actions, a free-space representation is developed, which is used as a
precondition for those actions.
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(a) (b) (c)

(d) (e) (f)

Fig. 23 Top row: Graspability for the Sauerkraut object. Three different stable planes are
visualized. The bottom row shows the corresponding orientations of the Sauerkraut tin. It
rendered on three different stable planes.

3.2.1 Graspability: A Symbolic Description of a Robot’s Workspace

The graspability is based on the assumption that manipulation usually happens on
horizontal planes. It is referred to as the “table assumption”. The table assumption
is justified by gravity. If an object is not manipulated, it is stored on a horizontal, flat
surface. Horizontal, since otherwise the object would slip. And flat, since that way
the object can be placed at different positions and yaw-orientations. Observation
of humans performing manipulation tasks support the assumption that flat surfaces
are preferred for placing objects. Look for example at a workbench or a working
surface in a kitchen environment. Anyhow, there are some exceptions to this rule,
for example a bench vise can not be modeled as a plane. Such devices usually have
special semantics which must be modeled differently. A shelf on the other hand
could easily be modeled as a set of planes.

From the table assumption, we can also yield constraints for the manipulated
object. Since it is placed on a plane, the contact surface of the object has to be flat.
This observation reduces the number of possible orientations in which an object
may be placed to a set of stable planes of the object and a the rotation around the
normal of such a stable plane. That rotation is referred to as yaw orientation. A set
of three stable planes for a tin object is displayed in Fig. 23.

A third, weaker, assumption can be concluded from the previously described sce-
narios: for many tasks, the yaw orientation of an object is irrelevant. This holds
particularly for a temporally stored object.

Based on the last assumption, we define the graspability Go(r) of an object o at
the pose r (r contains the 3D Cartesian coordinates x,y,z and the orientation with
roll, pitch, yaw convention) as in the following definition (from [70]):
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go(r) =
{

1 if o is graspable at r
0 otherwise

τ(γ) =

⎛
⎝ cos(γ) −sin(γ) 0

sin(γ) cos(γ) 0
0 0 1

⎞
⎠

Go(r) =
∫ 2π

0
go (τ(γ)◦T (r))dγ (1)

Herein, τ(γ) models the rotation of the object around the gravitational vector and
T (r) is the corresponding matrix transformation for a pose r. Due to the integration
over 2π , the yaw orientation is lost. Verbally, the graspability can be interpreted as
the fraction of yaw orientations at a given pose, where an object can be grasped.

The function go decides, whether an object is graspable at a given position r.
This function depends on the robot’s arm and hand kinematic, the robot placement
and the objects geometry. Additionally, a scene setup, in which the object should be
graspable must be specified. We use an empty scene with just a simple table surface
under the object, the robot and the object.

For the calculation of go, grasp planning algorithms from [90] and inverse kine-
matics are employed. Since a specific pose or configuration has to be supplied they
cannot be used in an equation using integration. Therefore, a discretization of the
graspability is formulated. The orientation around yaw is sampled and the results
are accumulated. We are interested in algorithmic exploitation of the graspability,
thus a map with a discretization of x and y is generated. With those presumptions,
the result is a 5-dimensional map. Its computation would be expensive, therefore we
further reduce the sampled angles roll and pitch. Using the table assumption, those
orientations are reduced to a finite set of stable planes for each object. The average
object in our database has 12 stable planes, leading to 12 3-dimensional graspability
maps. It is calculated as follows:

Ḡo(r) =
1
n

� 2π
Δγ �
∑
n=0

go (τ(nΔγ)◦T (r))

r = (x,y,z,0,0,0)

x ∈ {xmin + i ·Δx|i ∈ N}∩ [xmin,xmax]

y ∈ {ymin + i ·Δx|i ∈ N}∩ [ymin,ymax]

z ∈ {zmin + i ·Δx|i ∈ N}∩ [zmin,zmax] (2)

for each stable plane.
Graspability maps for a cylindrical object on three different planes are shown

in Fig. 23, for a different, box shaped object, the graspability is projected into the
robots workspace in Fig. 24. A typical feature is the arc around the projected shoul-
der pose which is caused by the length of the arm.
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Fig. 24 Graspability of the ceylon tea box with the left arm.

Table 2 Time and space consumption for the graspability map.

Object # Grasps # Planes # Map entries Build time [h]
Ceylon Tea 24 6 1848 1 h
Sauerkraut 59 23 7084 6 h

In Tab. 2, the performance of the graspability calculation is evaluated. The cal-
culation is executed for one table height. Sampling is done in a 5 cm grid, Δγ is
rounded to 15◦. The calculation is performed on an Intel Core i7 CPU with 3GB of
RAM. With 12 stable planes for a typical object, the average graspability map has
3696 entries. The calculation can be done offline and massively parallel for multiple
objects.

3.2.2 Symbolic Scene Description

In the classical AI planning example domain of the “Blocks World” [72, 79] objects
are connected with the On relation, which describes the location of an object as
well as its availability for manipulation. Objects can only occur on top of other
objects and only the top object of a stack can be manipulated. Real world scene
configurations are by far more complex and such a simple representation is not
sufficient. A more detailed description can be found in [69].

Locations. The geometrical aspects of the scene are the poses of the objects.
Therefore a symbolic representation of the continuous workspace is required. We
use Location entities to describe poses objects can potentially have. A Location
consists of a name for the location and a 6-dimensional pose. Only poses that have
a location in the scene model can be considered by the planner, thus locations for
the initial position of the objects have to be provided as well as potential goal poses.
Further locations, e.g. for a temporary placement of an object, are generated. There-
fore, in a greedy way, locations are selected which have the highest graspability
rating and are not yet in the location set already used.
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(a) (b) (c)

Fig. 25 Static scene relations. In (a), the tea box is on the ham tin: Support(tin, box). in (b),
the tin leans against the box, still Supports(box, tin) holds. In (c), the relation On becomes
ambiguous: Is the box leaning against the box or already on the box? Either way: Support(tin,
box) holds.

Objects are specified by Object symbols which consist of a name identifying an
object in the scene and an At relation. At(location) models that the object is at the
specified location.

In order to model the mechanical dependencies in a scene, the object model is ex-
tended by mechanical relations. The relations between the objects are divided into two
categories. In each category, different relations are possible to determine. We selected
a small set of relations based on their suitability for the given manipulation task:

Static mechanical relations. A static relation is defined by the fact that one object
is exerting a force onto another object and the objects are in contact. We define
the Supports(object1,object2) relation, meaning object2 cannot be statically at its
position without object1. Typical examples are object2 resting on object1 or object2
leaning against object1. By this definition, the Supports. relation is anti-symmetric
(Supports(object1, object2)⇒¬Supports(object2, object1)). To determine the order
of the objects, we assume, that the observed forces are caused solely by gravity.
Supports(object1,object) means object2 rests on object1, in case of an On relation,
object2 is the upper object. For the case of a horizontal force (within a threshold)
between the object as in Fig. 26(b), we define that both objects support each other.
This breaks the anti-symmetry of the Supports. relation but reflects the fact that we
do not know which, if any, of the two objects can be manipulated safely.

Dynamic mechanical relations. A dynamic relation describes the consequences
of the motion of one object to another. The considered dynamic relation in this
chapter is Unstabilize(object1, object2), meaning that a small motion of object1
leads to a larger motion of object2. That motion has to be caused by gravity and thus
object2 falls due to the motion of object1. Examples for the Unstabilize relation are
shown in Fig. 26.

We use the open-source Bullet Physics Engine [12] to generate the described
relations. Therefore, we have to deal with the inaccuracy from the perception. To
compensate it, we run the simulation until all objects rests without motion before
the tests are executed (rest phase). For this approach to be feasible, the initial scene
has to be static. Anyhow, we have made this assumption on the scene for it to
be able to manipulate in it, so for the scene relation generation, it introduces no
new restrictions. The dynamic tests are run multiple times with different randomly
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(a) (b) (c)

Fig. 26 Dynamic scene relations. All scenes contain unstable relations. In (a), objects are
stacked but in a local unstable balance. Movement of the tin will almost certainly break the
balance. The scene in (b) shows a setup, where to objects lean symmetrically against each
other: Unstablelize(box1, box2) and Unstablelize(box1, box2). Since the acting force against
the objects is horizontal, Support(box1, box2) and Support(box2, box1) holds, too. A scene,
where the two cylindrical objects have no physical contact but still cause a fall of the other is
shown in (c).

selected parameters. The number of runs where a observed relation holds defines
the believe of the system that the relation holds.

The Unstabilize relation is generated by applying a motion operator to the tested
object. The motion operator performs a motion of the object with a distance δ at
a velocity v in axis parallel directions. We use x, −x, y, −y, z as directions and
random distances between 1 cm and 4 cm. There is no use to simulate a motion along
the negative z axis direction, since it will move the supporting object. An object
A unstabilizes another object B, if the motion of B is not zero and the difference
between the applied motion operator and the motion of B is bigger than a threshold.

The presented scene description has been integrated in the scene driven plan-
ning system. Experiments are carried out on a test system equipped with a Intel(R)
Core(TM)2 Duo T7800 CPU running at 2.60 GHz and 4 GB of RAM.

The shown scene in Fig. 27 contains five objects. In order to generate the scene
relations, 1052 simulation steps with a simulated duration of 1/60 s are calculated.
On the test system, this process takes 33 seconds, plus 5 seconds for the initialization
of the scene for the physics simulation. The 33 seconds for the scene relation gen-
eration can be split into a shot fraction (less than one second) for the static relations
and the rest for dynamic relations.

3.2.3 Representation for Arbitrary Strategies

To generate a symbolic description for arbitrary strategies, they are represented by
possible execution trajectories. The strategies have to be feasible in a minimal scene,
containing the manipulated objects, a table and the robot.

Using the table assumption, we reduce the manipulation to a representation on
the sampled surface of table. The geometric model and kinematics of the robot are
used to calculate for each configuration the distance between arm and table for
each cell. Those maps are fused for all configurations in the trajectory using a
minimal function. A threshold, based on the obstacle height is used to create a binary
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(a) (b)

(c)

Fig. 27 Evaluation of the mechanical scene relations generation. A photo of an evaluated
scene is shown in (a). (b) shows its simulation in the Bullet Physics Engine and (c) a tree
representation of the generated symbolic description of the scene. The table cannot be ma-
nipulated, so we do not check for dynamic relations.

representation of that map. Finally, the intersection of the location set generated by
the symbolization and the set of locations in the map, which falls under the thresh-
old is used as a precondition for that executing trajectory. Since the execution of a
strategy is able to adapt the executed trajectory, a set of possible execution trajec-
tories is used, leading to a set of preconditions, from which the planner is able to
choose one with few effort to fulfill.

3.3 Changing the Course of Actions by Logic-Based Planning

A planner based on time lines is used to adapt the course of actions an keep track of
the symbolic scene state. A time line is defined as a set of predicates with temporal
extensions, where at every time exactly on predicate holds. Time lines are therefore
a suitable representation for actions which require resources for execution as well
as for state variables. To model dependencies of the predicates, Allen relations are
used [2].
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Fig. 28 Initial scene setup with the graspability projected onto the table surface. The gray
area has to be free of objects in order to grasp the bottle.

Fig. 29 An example for a plan generated by the scene driven reasoning. The goal is to place
the tin in the center of the table, which is blocked by the box. The pick-and-place action to
archive the goal requires the target spot to be free, therefor a second pick-and-place is planed
to fulfill this condition.

The action model used for planning is divided into three abstraction layers. A
fragment is visualized in the example in Fig. 29. The highest level represents the
course of actions in the scene, containing objects, locations, symbolic properties
such as on/off and mechanical relations, as described in Sect. 3.2.2.

On the mid level, the robot layer, robot actions on a abstraction level of pick-
and-place are modeled. Here the robot is viewed as a set of abstract components,
which are able to execute actions. Resource requirements and bimanual dependency
is modeled on this layer.
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Table 3 The proposed feature vector to monitor.

Name Description Dimension
ΔxTCP Difference TCP Pose 6
|ΔxTCP| Distance TCP Position 1
ΔFTCP Difference TCP Force/Torque measured/expected 6
|ΔFTCP| Distance of TCP Force 1
Δτ Difference hand joint configuration 16
Δτ Difference hand joint torque 16
|Δxtip| Distance between finger tip and thumb tip 4
Σ Sum 50

From the robot layer, abstract actions have to be mapped to strategies. For exam-
ple a pick-and-place action is mapped to a grasp, and a place strategy.

In order to apply the planer for a manipulation problem, a set of goal has to be
defined, which specifies a sub-set of the desired scene state. Pick-and place opera-
tions for example lead to an “At(object,location)” predicate at the end of a plan. For
the execution of learned actions, the representation presented in Sect. 3.2.3 is used
to generate a set of “LocationFree(location)” predicates which have to be fulfilled,
then the execution of the action can be modeled as a goal itself.

We employ the Europa PSO planning framework [21] for the implementation
of the proposed planning system. Europa is a constraint based planner which im-
plements the time line concept. The planning domain, as described in this section
is implemented in the new domain description language NDDL. Static robot and
action knowledge is coded manually, while the scene knowledge is compiled into
NDDL online. For the execution of the planed action sequences, the framework
from [71] is used.

3.4 Execution Monitoring

The symbolic scene model and planning uses an approximation of the scene and
applied strategies. Unmodeled physicals effects, inaccuracy of perception and user
interference may lead to divergence between the planed course of action and the
eventually executed strategies. In order to act goal directed, the robot must be able
to detect differences between planed actions executed strategies and react to it by
generating new plans based on newer data. In this section, we present a method to
classify ongoing strategies based on user classification of examples of successful
and failed executions of those strategies.

In sensor data generated during execution of a grasp strategy, one observes, that
some sensors determine the success state of the strategy at a point in time. Anyhow,
their meaning differs in the state of the strategy. E. g. no force at a finger tip is cor-
rect in the approach phase, but would indicate an error, when the object should be
graped. Further, for different grasps different forces may occur on different fingers.
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Table 4 Result for SVMs on different training data bases. A grasped object is transported
by the robot. The action fails, if the object is drop. The success rate describes the share of
sample, where the SVM classified the situation correctly.

Objects trained 1 5
Grasps trained 2 13
Samples 244 795
Rate on training data 100 % 100%
Rate on test data 45% 93.4%
Number of support vectors 43 159
Training time 3.7 s 16.9 s
Demonstration time 10 min 50 min

Fig. 30 Sketch of the generated plan for the problem of moving the box from a stack. At first,
the tin on top is removed to a generated position by the robot.

For meaningful interpretation of sensor values, we require a segmentation of the
action, and a flexible evaluation of the current sensor state.

A segmentation of the action sequence is provided by the planner. Further seg-
mentation of strategies could be provided by learning methods [57].

The selected features use impedance control to execute the strategies on the robot.
External forces cause offsets from commanded positions and configurations. The
approach would also be applicable to different hardware configurations using force
and torque sensors. The evaluated features are shown in Tab. 3.

For the generation of execution examples, the robot executes a strategy in dif-
ferent setups multiple times. A user classifies the execution into “successful” and
“failure”. In the case of a failure, he has to specify the time, when the failure occurs.

The classified data points of the examples are then used to train a support vector
machine. We use the implementation from LIBSVM[18].

The proposed method has been evaluated on a set of 6 objects. The results of two
experiments are summarized in Tab. 4. The evaluated scenario is grasping different
objects. Segmentation is provided by the logic-based planner, failure cases are gener-
ated by the experimenter manually removing the object either form the table or from
the gripper. In the first experiment, a single object is used to train the svm. As seen
in the table, this is insufficient for correct classification (45% accuracy on test data).
Training on 5 objects leads to a better performance of 93% percent correctly clas-
sified data points. This experiment still includes one untrained object. The training
time takes about 10 minutes per object, where the user has to supervise the robot.
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(a) (b)

(c) (d)

(e)

Fig. 31 Successful execution of the plan on the bimanual demonstrator. The tin is grasped
(Fig. 31(b)) and placed to a temporary location (Fig. 31(c)). Then the box can be grasped
(Fig. 31(d)) and transported to the goal location (Fig. 31(e)).

3.5 Evaluation

In this section, the subsystem for scene driven logic-based reasoning is evaluated.
The evaluation scenario is a stack of different objects as depict in Fig. 31(a). The
task is to move the box from the middle of the stack to a predefined position. In the
experiment, suitable mechanical relations are generated within 30 seconds. They are
consistent with the experimenters perception of the scene.

Based on that description, the logic-based planner is able to find a plan as shown
in Fig. 30. It takes 15 seconds, where 8 seconds are spent in grasp and path planning,
leaving 7 seconds for the logic-based planning. The execution on the demonstrator
is shown in Fig. 31.

In a second experiment on the same setup, the experimenter removes the tin
object from the top of the stack at the beginning of the execution. The monitoring
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(a) (b)

Fig. 32 Execution with errors: The same setup and plan as in Fig. 29 and Fig. 30 are used.
When the robot starts executing the generated plan, the experimenter removed the top tin.
The execution of the grasp strategy fails, which is detected by the monitoring. A new plan is
generated, which achieves the goal, the execution of a pick-and-place action, directly.

unit is able to detect a flaw in the execution. After replanning, the desired strategy
can be executed directly on the robot.

4 Programming by Demonstration of Probabilistic Decision
Making in Robot Missions

To achieve true autonomy, an anthropomorphic service robot has to be able to select
manipulation tasks and subsumed strategies proactively depending on a situation.
Consequently, on the highest level of reasoning, a decision making system has to
assess the current state of the world continuously and permanently, selecting new
tasks from the task repertoire, when a previously executed task has terminated -
which may include just idling. Such a level of abstraction, called mission or strate-
gic level here, typically uses symbolic representations to model states, actions and
general planning in literature.

Symbolic representations are able to group and classify complex characteristics
of world and robot into easily processable chunks, for which powerful planning
algorithms exist. Furthermore, vastly different aspects, e.g. human-robot interaction
and object manipulation, can be modeled in the same representation and thus be
directly related during planning computations. Therefore, symbolic representations
are suitable especially for the abstract, strategic level.

POMDPs are a framework for symbolic decision making, which in contrast to
some other paradigms, allows considering quantified uncertainty in situation as-
sessment and robot action effect prediction. By these means, more robust action
selection can be performed in the face of real world uncertainty.

To compute decision making policies in that framework, explicit mission mod-
els containing these properties are necessary. However, representing a mission set-
ting with sufficiently grounded symbols as well as appropriate quantification of real
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world uncertainties leads to complex models, generation of which is manually or
with explorative learning alone infeasible.

Instead, as with manipulation strategies, recording and analysis of human mission
demonstrations is performed, which, in combination with some explorative learning
refinement steps, generates a full mission model.

In summary, strategic mission level decision making has to provide symbolic ac-
tion selection while considering situative uncertainty and covering multiple, distinct
skills domains. Mission model generation is made feasible utilizing PbD.

4.1 Related Work

Information processing architectures for autonomous service robots have been in-
vestigated in detail. Strictly hierarchical, three-layer architectures with a low-level
reactive skill control layer, an intermediate sequencing layer and a deliberative
strategic planning layer are suitable for autonomous robot control [30]. In three-
layer architectures, the lowest control level can mediate a vast range of different
perception and actuation components which are coordinated by the sequencer [1].
Planning in the deliberative layer then just has to schedule abstract functionalitities.
On anthropomorphic and humanoid service robots, tight integration between layers
is achieved by sharing many properties of models and environment information [3].

POMDPs are an action planning framework for autonomous agents considering
uncertainty both in measurements of the current state of the world as well as pre-
dicted results of actions [4]. Employing an action selection policy, reflecting these
uncertainties together with quantified mission objectives (rewards), an agent can be
able to assess risks and opportunities to optimize long-term success [80]. For dis-
crete space and time POMDP representations, so called policies, can be computed
from an explicit model representation including discrete sets of true world states S,
action choices A, measurements M, stochastic action effect probabilities T , stochas-
tic measurement-state correlations O and mission rewards/costs R [17]. Comput-
ing exactly optimal policies is highly intractable, thus approximate techniques have
to be applied, with point-based approaches being most promising [66]. Good ap-
proximations can be achieved computing the policy preferably only in areas of all
potential subjective situation experiences an agent might encounter (belief states),
which are highly likely to happen according to a model. Such an approach is taken
by SARSOP [51], the algorithmic procedure also used to compute a policy from a
model in the presented system.

With approximate policy computation, real world application is feasible, how-
ever modeling real task and mission domains is still challenging. A manually
crafted model setup for an autonomous service robot, though without manipula-
tion, is presented in [67]. State and action grounding along skill domains to derive
symbol-world relations in a suitable and well established manner along perception
and actuation skill capabilities is of foremost importance for technical robust real
world applications [38]. Manipulation is a skill domain, especially challenging, with
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low-level modeling explored in [23] and [39]. Furthermore, striving for informa-
tion gain, realized by actions explicitly exploring and gathering more knowledge
about world states to reduce uncertainty and apply subsequent actions in a more di-
rected manner, is a crucial concept in POMDPs, which should be reflected in model
design [81].

Persistent knowledge storage, organisation and inference beyond short term, spe-
cific mission models can enhance robot capabilities, enabling easier generation of
more complex planning models. Description logic (DL) based ontologies are the ter-
minology best investigated organising abstract level, symbolic, general knowledge
covering all aspects of service robot reasoning. Such reasoning systems can be hi-
erarchically organized themselves and utilized for online planning [85]. Integration
with functional skill-level components, using different, more specific algorithmic
methods e.g. considering uncertainty is feasible [86]. DL-ontology based reasoning
can easily be modularized and made portable over different robot architectures and
planning paradigms [52]. Scalability to robotic domains beyond service robots has
also been investigated [64], [19].

PbD of symbolic, abstract task and mission representations (in contrast to tra-
jectory level representations discussed in Sect. 2) has been investigated for various
task sequencing and planning methodologies. Symbolic Hierarchical Task Networks
(HTNs) can be learned from segmentation of human demonstrations of manipula-
tion tasks [93]. Hierarchical PbD systems can integrate manipulation-motion-level
learning with learning of symbolic sequences [61]. Visual interaction and group-
ing of abstract subtasks can help to organise representations suitable for logic-
based planning [26]. Furthermore, logic-based planning representations can be in-
ferred from observed sequences of human task representations and in turn used
for flexible task execution [88]. Finally, DL-ontologies and abstract-level learning
from human demonstrations can be integrated, using strengths of both paradigms
complementary [86].

4.2 Execution Time Decision Making System

By utilizing a proven three-layer architecture design, the autonomous execution rea-
soning system is able to integrate skill level, sequencing and task reasoning as well
as mission-level decision making in a clearly organized manner. The skill domain
of autonomous object manipulation is tightly integrated with natural human-robot
interaction and mobility on the strategic level. All layers share information from
basic environment perception, of which localization of small objects [5], furni-
ture objects [58], known walls (map) and forces in arm and hand are relevant for
autonomous manipulation. Object models and symbols for common reference are
shared among manipulation strategies, scene driven reasoning and mission-level de-
cision making as shown in Fig. 33.

Nonetheless, each layer performs different kinds of planning on these situa-
tion models. Manipulation strategy execution utilizes geometric models directly for
collision-free constraint based motion planning. Scene driven reasoning performs
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Fig. 33 The execution-time three-layer architecture.

moderate abstraction on the geometric representation to derive predicates usable for
logic-based planning.

In turn, being on the highest level of abstraction and integrating distinct skill
domains, the grade of abstraction is highest for mission-level action selection. Yet,
states, actions and measurements have to be defined unambiguously and clearly
grounded in quantifiable world properties. Furthermore, to consider real world un-
certainties, reflected by probabilities given by low-level perception components,
those probabilities have to be passed up to the most abstract belief state.

Therefore, a state description has to be grounded on modes of perception, pro-
vided by available skill components. Concerning just object manipulation, these are
object localization, self-localization, force detection and state of actuator joints in
the given system. For each of these skill domains dk ∈D, sets of quantified values are
delivered, denominating certain properties of the world, typically by real numbers
in continuous domains: dk := {val1...valn}. Based on that, a feature is defined here
as a discretizing function f f eat j , mapping a specified, fixed input space of domain
members onto a set of discrete, symbolic categories: f f eat j : (valx1 ∈ dk, ...,valxn ∈
dk, ...,valy1 ∈ dl , ...,valyn ∈ dl)→ {c1, ...cm}. This set of categories forms a feature
state space, f eat j = {c1, ...cm}. Symbolic state grounding can then be achieved by
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mapping each distinct combination of feature categories onto precisely one state,
called feature-state map: f f smap : (cz1 ∈ f eat1, ...,czp ∈ f eatp)→ si. That mapping
is surjective, but not injective and a unique combination of categories must never
map onto more than one distinct state. By these means, the whole space of values,
the robot is not agnostic about, can be mapped to one discrete set of states S.

However, with perception skill components, delivering estimations of measure-
ment uncertainty derived from sensor and algorithmic characteristics, domain
members are not described by crisp values, but probability distributions. Continuous
values are typically described by parametric (e.g normal) or non-parametric sam-
pling (e.g. particle) distributions. Accounting for this, the feature definition above
has to be extended considering two aspects: 1) not just values, but probability distri-
butions have to be discretized, and 2) Bayesian filters which combine measurement
distributions with prediction distributions may occur in a stacked way, thus condi-
tional independence of stacked filters has to be assured.

Discretization can be achieved by approximating distributions by Gaussian Mix-
ture Models and then integrating individual Gaussians over discrete regions by
state-of-the-art numerical methods [32]. Alternatively, sampling based methods can
approximate a discrete representation by summing up samples in regions. Predic-
tion (transition) models may be already applied within a skill component (e.g. a
Kalman filter for self-localization) with the distribution then already being a fil-
tered, though continuous belief. Or in contrast, an additional predictive element
p(ct |ut−1,ct−1)∈ Texternal , which is conditionally independent from any in-skill pre-
diction, is included after observation discretization into bskill(ct):

b f eat(ct) = α bskill(ct)(∑
ct−1

Texternal(ct ,ut−1,ct−1)b f eat (ct−1)) (3)

As a result, for each feature, a discrete probability distribution, a feature belief over
all categories b f eat(Es) := {p(c1), ..., p(cn)} with ∑i p(ci) = 1 is obtained by such
a feature filter model. The feature-state ci� f eati , j → sk mapping can then be used to
compute the state belief:

b f ilter(sk) =
| f eat|
∏
i=1

∑
j,ci, j∈sk

p(ci, j) (4)

A discussion of implemented, practical feature filter models can be found in [75].
While the filter structure, especially the set of input {vali} is highly reusable,

more specific state grounding, the precise discretization { f f eat j} has to be deter-
mined for each mission model. Automating the latter step by means of PbD is dis-
cussed in the next section.

Furthermore, by using this low-level uncertainty information preserving filter
concept, the high-level POMDP observation model may not be well grounded
anymore. While it is always just an approximation of real world observation un-
certainty, grounding can be achieved by deriving an average observation uncer-
tainty model from detailed analysis of probabilities delivered by a skill component.
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Table 5 Evaluation of filterPOMDP against other behavior control methods [75].

�������Type
Method

FSM MDP POMDP fPOMDP

Correct fetch/put 8 12 12 16
Incorrect fetch/put 2 4 6 2

Reassurance 15 7 10 5

Such an analysis and model was derived for a furniture localization system, de-
scribed in [58].

Action grounding is more straight forward: symbolic actions represent primary
strategies, transformed into HTN sequences by scene driven reasoning. Cost (neg-
ative rewards representing effort and duration) as well as effect probabilities can
be derived from typical execution behavior as discussed in the next section. The
available action repertoire is formed by all learned strategies and their execution in
typical scenes.

Evaluation of filterPOMDP against other behavior control methods like finite
state machine (FSM) and MDP on the same robot in the same setting has indicated
superior robustness of the filterPOMDP [75], see Tab. 4.2.

4.3 Probabilistic Mission Planning Model PbD

As with manipulation strategy PbD, mission model PbD consists of: recording of
demonstrations, abstraction and analysis, generalization and model refinement. Fi-
nally, based on a generated model, policy computation is performed which can sub-
sequently be used for execution time decision making.

In contrast to manipulation strategy PbD, mission recording is not performed in
a specialized sensor setup, but solely robot-based as shown in Fig. 34. As human
motion observation is more coarse grained than with manipulation strategy PbD,
marker-less, robot-based tracking is sufficient. Furthermore, missions encompass
more agent mobility in space, thus the robot follows demonstrating humans with its
head —and potentially also with its mobile base.

The human is tracked using the MS Kinect sensor and the NITE body-tracking
framework [68], providing h.pose. Object locations of small objects and furniture
objects are tracked using execution-time perception as mentioned in the previous
section, providing ob j.poses. Robot head movement always tries to keep the human
demonstrating the robots role and surrounding objects in its view. Additionally to
human pose, a body movement activity classification systems interprets the human
body pose constantly, providing h.activity, as discussed next.

This leads to the following recording data point vector relevant for object manip-
ulation: rec(t) = h.pose(t),ob j.poses(t),h.activity(t).
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Fig. 34 Mission demonstration recording setup (left) and body model data output (right).

Fig. 35 Feature Extraction Modules for human body activity classification training scheme
(right) and example (left).

4.3.1 Human Activity Recognition

Human body movement activity recognition labels a time series of human skele-
ton kinematics (see Fig. 34) with probabilities of affiliation to a certain, symbolic
type of activity. There are basically two stages for this process: training and usage.
During training, a human demonstrates a set of exemplary motions, some reflecting
activities to be trained and some reflecting counterexamples [53].

A set of over 300 features, which are derived from recorded skeleton poses, is
used to train the classifiers. A feature is represented as a tree of Feature Extraction
Modules (FEMs), where each FEM represents a certain derivation technique (e.g.
difference, derivation, calculation of mean value etc.). An example for such a feature
tree is shown in Fig. 35 (left). The initial feature set is determined by an automatic,
iterative feature space exploration (depicted in Fig. 35 (right)), which is used to find
potentially relevant features in a domain.

Naturally, the initial feature set contains many features which are not relevant to
describe a certain activity besides the relevant features. Thus, extraction of a small
subset of features, relevant for classification within a set of activities, which can be
used with classification learning techniques like Support Vector Machines (SVMs)
is critical. The employed approach combines the Fast Correlation based Filter [91],
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which determines a small subset of relevant features by calculating features with a
high correlation to the class and a low correlation to each other, with an interactive
approach involving user hints to guide the feature selection process [54].

Finally, given the refined set of features, classifiers can be trained on the recorded
data with manually labeled activities. Depending on the complexity of the move-
ments which define the activity, different classifiers can be used. For complex ac-
tivities which involve a sequence of very diverse motions, HMMs are better suited,
while for other activities, SVMs perform better.

To allow for later reuse of recognizers for activities in other settings, the train-
ing process treats the learning problem as a one-class problem (i.e. each classifier
is trained to recognize the probability that a movement belongs to one specific ac-
tivity), instead of a multi-class problem (where the recognizer would return a prob-
ability distribution over all learned activites for the current movement). This way,
classifiers for different activities can be combined independently.

Activity classifier usage then takes place during recording of human mission
demonstrations, thus leading to two distinct demonstration stages: first classifier
training and then mission training. Manipulation strategy training can be performed
in another, distinct stage. Activity classifiers can be reused for demonstrations of
multiple missions, though. The most likely symbolic human activity at a given
time can then be considered as a representative of the agents manipulation task
(activity) performed. Subsequently, a mission demonstration recording time series
obs(t), called trace, is obtained with environment situation Es and agent activity Ga:
obs(t) = (Es,Ga) = ((h.pose(t),ob j.poses(t)),h.activity(t)).

4.3.2 Demonstration Based State and Action Grounding

With traces Es,Ga of several demonstrations being available, the next step has to
determine feature and action mappings, thus providing state and action grounding
as well as preliminary state and action space determination.

State grounding generates feature mappings for observed human poses onto
discretized robot self-localisation categories as well as mappings from observed
object poses onto discretized object regions: f f eatpose (h.pose) → csel f−pose

x and

f f eatob js(ob j.poses)→ cob jposes
x . Category sets and category limits in the domain

value space suitable for a demonstrated mission are determined. Furthermore, a lim-
ited automatic choice of input domain values relevant for a feature can be performed.

Like in any following step, a set of recording traces, Demo := Obs1, ...,Obsn of n
different demonstrations of possible courses of events in the corresponding mission
is required.

First, data preparation takes place, beginning with dimensionality reduction of
h.pose : (x,y,z,r, p, j)→ (x,y,θ ). Object pose dimensions, on the other hand, will
be automatically assessed in the following steps —e.g. for a chair, always standing
in a mission, only (x,y,θ ) are relevant for state distinction. Then, temporal and spa-
cial interpolation of pose data balances frequency irregularities in trace data points,
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Fig. 36 Exemplary f f eatsel f−pose generation: demonstration data (top left), filtered standing
(top right), filtered walking (middle left), DBScan stationary clusters (middle right), k-means
transition clusters and limits (bottom left) and final, merged region categories after BSP (bot-
tom right).

resulting from perception component temporal peculiarities. Subsequently human
and object velocities and accelerations can be computed.

Next, derived attributes can be computed for data point components. Concerning
human mobility state, two thresholds thress, thresw are used to distinguish between
standing: v(h.pose) < thress, walking: v(h.pose) ≥ thresw and moving: thress ≤
v(h.pose)< thresw. As limitations in object localization may indicate moving object
poses temporally shifted, an additional object moving attribute is derived from the
beginning of corresponding human activities. Accordingly, objects can be tagged
being manipulated (both moving or stationary) at a given data point.

Based on these attributes, data points of all demonstrations can be selected for
further processing, labelled Obsproc, using motion or activity filters ψ f ilter .

Spacial clustering, being the most crucial process step for state grounding follows
subsequently. To determine category limits and category sets automatically, cluster-
ing algorithms which do not only compute cluster limits, but also identify suitable
cluster numbers k have to be applied. Furthermore, relevant groups of points rep-
resenting moving stages of human and objects have geometric properties differing
significantly from stationary groups.
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Consequently, different types of clustering methods are applied in a comple-
mentary manner. Primary clustering applies DBScan [22] on points filtered by
stationary motion filters as defined previously. Checking the continuous DBScan
ε-environment parameter over a large value range 0 < ε < maxε gives a maxi-
mum range plateau corresponding to one specific number of clusters ki = dbs(ε) :
εmin(ki)< ε ≤ εmax(ki) which corresponds to the optimum kopt . In practise, cluster-
ing has to be performed for discretized samples of the ε-range with the maximum
plateau being evaluated on that discretized range.

In contrast to compact stationary pose aspects, pose point groups representing
motions (see Fig. 36), e.g. transition regions of human or objects, are not suitable
for DBScan clustering, but instead k-means [55] and EM clustering. As those are
fixed-k clustering methods, secondary clustering has to be performed on the motion-
filtered data for ranges or k, estimated based on primary clustering kopt . For each k,
clustering results are evaluated on compactness and separability, using a balanced
vote including DB-index [22], XB-index [89] and SD-index [36] metrics.

After determining clusters and thus category sets, category limits are computed
using Binary Space Partitioning on the clustered points (see Fig. 36). Subsequently,
activities occurring during the majority of data points in certain categories can be
used to further enhance the description or, if not present in the majority of points,
split up categories into pragmatically more complete ones. As an example, a ma-
nipulation action might take place only in one spacially distinct part of a previously
clustered single region.

Finally, with category sets and category limits on domain input values defined,
f f eat j definitions can be exported and subsequently used for demonstration segmen-
tation as well as execution-time belief state computation.

Generating f f eat j can also be interpreted as a switch in point of view: h.pose is
transferred into robot self-pose pragmatics, thus the robot puts itself into the position
of the demonstrating human in further interpretations of traces using the set of f f eat j .
Objects are then also interpreted along characteristics as relevant from the robots
point of view.

Action grounding concerning manipulation has to map observed human activities
to manipulation strategy skills executable by the robot. As mission demonstrations
and strategy demonstrations are not immediately correlated, a dedicated process
stage has to create such a connection.

Basically, object-relative trajectories acquired during strategy training are
matched with object-relative trajectories which are classified as certain symbolic
activities during mission demonstration recording. A finite set of learned manipula-
tion strategies with given demonstration trajectories relative to a set of objects and
a finite, trained set of human activity classifiers are assumed as input and output do-
mains. Subsequently, a mapping is computed for one specific set of mission demon-
stration recordings. Thus, mappings from classifiers to strategies are not universally
valid, but in different missions, distinct strategies may be suited to take the role of a
human activity classifier as the latter is only coarsely defined and not object-relative.
Furthermore, with finger joint angles not available from coarse grained tracking, rel-
evant trajectories can only regard the hand center.
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First, all trajectories of a strategy demonstration are normalized temporally, con-
cerning data points |xi| and in relation to the manipulated object. Next, a Gaussian
Mixture Model (GMM) is computed for the trajectory bundle according to the ap-
proach presented in [16]. Accordingly. the GMM is transformed into a Gaussian
Mixture Regression (GMR) representation, suitable for distance metric computa-
tion. Any recorded mission demonstration activity has to be normalized in respect
to each GMR-represented strategy it is compared with so that both contain the same
number of data points.

Based on the GMR representation Φ , a suitably normalized mission activity tra-
jectoryΨ and a weight matrix ω , the Mahalanobis [56] distance metric between the
bundle and the trajectory can be determined:

D(Φ,ω ,Ψ ) =
∑n

i=1ωi

√
(ψi− μΦi )T ∗Σ−1

i ∗ (ψi− μΦi )

∑n
i′=1ωi′

. (5)

The weight matrix ω determines how much individual points xi contribute to the
overall trajectory distance metric. Four different varieties have been considered:

1. Equally distributed weights
2. Constraint density weighting
3. Object distance weighting
4. A combination of constraint and object weights

The combination of constraint variance and object distance (and normalizers α):

ωi = αc det(Σi)
−1 +αo d(ψi− pose(ob j))−1 (6)

has empirically delivered superior results on typical simple manipulation activities
as it preferably considers trajectory parts which are especially relevant to the object
manipulation action.

Another approach of comparing mission demonstration trajectories directly with
strategy graphs, without the intermediate GMR representation, to achieve matching
of more complex and bi-manual manipulation actions, is currently investigated.

Again as in state grounding, action pragmatics change from observing a different
agents action to assessing the agents own skill action being performed in a certain
situation. Therefore, after state and action grounding is completed, the robot is able
to assess demonstration traces for abstract model generation from a point of view as
if it had executed a sequence itself. This concept of a student putting himself/herself
into the teachers point of view is also crucial in humans learning from demonstra-
tions of human teachers.

4.3.3 Segmentation and Demonstration Model Generation

With f f eat j available and a generic f f smap : (cz1 ∈ f eat1, ...,czp ∈ f eatp)→ si for any
category combination, a mapping st = φ(obs(t)),φ : f f smapmission( f f eat1 , ..., f f eatn )
can be applied for trace segmentation [76]:
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Q′(t) =

{
/0, φ(obst−1) = φ(obst )

st , φ(obst−1) �= φ(obst ), st = φ(obst ).
(7)

By removing /0 from Q′, e.g. Q′ = ( /0, /0,s3, /0,s5, . . .), a discrete, abstract time se-
quence of states is derived Q = (sx1 , ...,sxn) = (s3,s5, . . .).

Next, abstract actions correlated to state transitions are determined. Concerning
object manipulation, three types of actions are possible: 1) mobility (goto) only,
2) manipulation only, 3) mobility with concurrent manipulation. Therefore, it is
determined if ci ∈ st : self-pose �= c j ∈ st+1 : self-pose and if true, a mobility action
amobil is generated. In case a mapped manipulation strategy was performed while
st occurred, a manipulation action amanip is generated. When both cases hold, a
mobile manipulation action is compiled: amobilmanip, containing both corresponding
goto and manipulation actuation parameters in a task sequencer description.

Fully observable recordings are assumed here, although an extension was devel-
oped, accounting for recording errors with HMM-based smoothing, using causal
meta-models reflecting impossible and unlikely transitions and observations.

A preliminary state space SD, including all non robot-specific states inferable
from demonstrations can then be accounted for: ∀si ∈Q1...Qn : si ∈ SD. In the same
manner, a preliminary action set AD is compiled: ∀ak ∈ Q1...Qn : ak ∈ AD. Subse-
quently, absolute frequencies of transitions are reflected in the counting transition
model TCD which is initialized to 0:

∀Q1..Qn : ∀st ∈ Qi : TCD(st−1,at ,st)+ 1. (8)

Stochastic effects, observable in demonstrations, can then be derived by considering
frequencies of outcomes of each pair (s,a):

∀(s,a,s′) : TD(s,a,s
′) =

TCD(s,a,s′)
∑s′i TCD(s,a,s′i)

. (9)

Finally, the preliminary reward model RD has to account for goals and costs. As
action costs are known only from background knowledge and goal values computed
from costs on causal paths, goals can only be flagged at this point. Accordingly, for
each final pair, a goal is flagged (sr,ak)xn ∈ Qd ;RD(sr,ak) = 1.

To account for missing courses of events which could potentially occur in a mis-
sion, but are missing from a set of demonstrations, techniques to automatically ex-
plore the transition space of the preliminary model based on state and action sim-
ilarities have been developed. Transition hypotheses beyond the observed ones are
generated, which in turn are validated by further demonstrations requested verbally
by the robot from human demonstrators. A detailed discussion is beyond the scope
of this chapter, however.
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Fig. 37 An ontology excerpt, with reward model costs for manipulation of certain object
types.

4.3.4 Mission Model Refinement

Robot specific model aspects cannot be inferred from human —an agent with dif-
ferent capabilities— demonstrations. Such aspects include:

• robot capability specific error transition effects ∈ T ,
• resulting additional error states ∈ S,
• subsequent, generic recovery actions ∈ A,
• information gain actions ∈ A,
• information gain transitions ∈ T ,
• action cost penalties ∈ R,
• skill component perception characteristics O.

Merging these aspects from a background knowledge source can transform a generic
preliminary mission model as generated from demonstration analysis SD,AD,TD,RD

into a final, robot specific POMDP mission model S,A,M,T,R,O [74]. As discussed
in the related work section, ontologies are a technique well investigated to organize
general-purpose, symbolic knowledge about the world. Therefore, an ontology de-
scribed by the OWL 2 language, based on the description logic expression system
SROIQ is employed. Consistency checking as well as inference is done by the rea-
soner Pellet and the primary query interface provided by the RDF-System Jena.

A combination of three basic description types encodes the ontology: TBox,
ABox and RBox. Abstract concepts, their class hierarchy, including both physi-
cal objects, e.g. types of manipulable objects, and model specific aspects, e.g. state
definitions, are encoded by the TBox as shown in Fig. 37.

The ABox models specific instances, e.g. actual manipulable objects object:
model:Chair(model:WoodenChair) and as with the following example, relations be-
tween physical and model specific properties:

model:ObjStatePresent(model:ObjStatePresentChair)
model:subject(model:ObjStatePresentChair, model:WoodenChair)
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Further dependencies and relations beyond basic ones have to be modeled using
Horn clauses called DL-Safe-Rules in an RBox, being a DL extension and expressed
by the SWRL language. The following example relates a model specific aspect (ac-
tion) with a tangible object class:

Grasp(?action) ∧ ObjStatePresent(?os) ∧ subject(?os, ?obj) ∧ object(?action, ?obj)
⇒ dependsOnObjState(?action, ?os)

By these means, an ontology structure can be created, relating physical world prop-
erties, reoccurring in multiple mission with model specific, intangible aspects like
states, actions and observations. Hierarchy allows inferring shared properties of sim-
ilar types of classes —e.g. for all types of chairs handled in manipulation.

Furthermore, as mission models are both symbolic and numeric, quantities re-
flecting properties in T , O and R have to be stored in and inferred from the knowl-
edge base. To be able to infer quantities for new instances from their parent classes
und thus exploit the relationship concept in the acquisition of new knowledge, such
numeric information can be “tagged” to subjects and objects. A relation defined as
Rel(x,y,v) with x being the subject, y the object and v the value. An exemplary
transition frequency t(s,a,s′), f req(t), expressing the probability of the robot being
stuck at the origin is 0.1 when trying to reach position PullStartPos from LookPos,
can be modeled thus as: TransRel(TransRelId0); subject(TransRelId0, GotoPullStartPos)
state0(TransRelId0, LookPos); state1(TransRelId0, PullStartPos);
intValue(TransRelId0, 9)

TransRel(TransRelId1); subject(TransRelId1, GotoPullStartPos)
state0(TransRelId1, LookPos); state1(TransRelId1, LookPos)
intValue(TransRelId1, 1)

There are two directions for knowledge transfer: a) knowledge added to the on-
tology from analysis of mission demonstrations or explorative refinement, and b)
knowledge inferred from the ontology to complete a model.

To account for a), actions can be verbally commented during demonstrations,
e.g. while grasping a chair with the utterance “this is furniture manipulation”, and
thus this new activity can be connected to a matching parent class, e.g. furniture
manipulation. Generalized transition knowledge, stored as relations to that parent
class can be extended, from transition knowledge derived from the new action. On
the other hand, concerning b), further information concerning this new action can
be derived from related actions in the ontology while generating model parameters.
Error states like “jamming manipulator and object during manipulation due to exe-
cution errors”, not occurring during human demonstrations can be inferred from re-
lated action objects. Exploiting transitive relations in the ontology, further instances
can be inferred and previously listed aspects as recovery actions, information gain
actions and coarse transition probability estimates derived.

Costs can be derived from length and effort associated with an action. Goal re-
ward values have to consider the effort (sum of costs) of action sequences, accom-
plishing certain goals, otherwise the robot might never risk the associated costs.
Costs of sequences of actions ai occurring in demonstrations and leading to flagged
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Table 6 Execution with POMDP (P) and FSM (F), performance times (Mi, Av, Mx) and
failures (Fl).

Mi.P Av.P Mx.P Fl.P Mi.F Av.F Mx.F Fl.F
Mi1 4:25 4:50 5:50 1/10 4:40 5:10 5:35 2/10
Mi2 4:05 4:25 5:00 1/10 4:10 4:35 4:50 0/10
Mi3 5:35 6:00 7:25 2/10 5:50 6:20 7:00 3/10

goals are added up with the scaled absolute value replacing the previous flag-value
in the preliminary model: R(sr,ak) = ν ∑i |R(si,ai)| with ν > 1.

Observation model probabilities in certain situation can be derived from empiri-
cal perception skill analysis and stored and retrieved from the ontology in the same
manner as transition models.

After robot-specific knowledge is incorporated, the demonstration model is turned
into a complete final model.

Techniques were developed for further refinement of robot-specific transition
probabilities using geometric analysis of action trajectories (both concerning mobil-
ity and manipulation strategies), followed by execution trials in dynamics simula-
tion, detailed description of which is beyond the scope of this presentation, however.

4.3.5 Results

In an evaluation of model generation —without automatic grounding though— three
missions sharing common background information were studied [76]. Assessment
explored the execution performance of automatically generated POMDP models
with manually expert-crafted FSM controllers. Each mission included mobility, sim-
ple manipulation actions and human-robot interactions. Demonstration courses of
events had to follow a script while execution-time interacting human behavior was
sampled randomly from script behavior frequencies. Real, robot based recordings
of ten demonstrations of each mission were used for model generation, resulting in

1. Mi1: |S|= 500, |A|= 12, |M|= 18
2. Mi2: |S|= 50, |A|= 6, |M|= 12
3. Mi3: |S|= 350, |A|= 14, |M|= 19

as well as T , R, O.
Real, robot based autonomous execution of policies, which were computed with

SARSOP from these models, was performed successively with both POMDP (P)
and FSM (F) ten times and performance times (Mi, Av, Mx) and failures (Fl) were
recorded, see Tab. 6.
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Fig. 38 A scheme of PMPM-PbD with components not discussed here, greyed out.

On average, learned POMDP performance was superior to delicately handcrafted
FSM.

In summary, a process to compile abstract POMDP strategic action selection
models by means of PbD as shown in Fig. 38 tackles the challenge of model gener-
ation complexity.

5 Conclusion

The proposed layered system for autonomous environment manipulation of service
robots will be summarized based on the execution of a complex manipulation task
with focus on Manipulation strategy learning and execution, see Sect. 2, and scene
driven logic-based reasoning, see Sect. 3. In the manipulation task, the robot has to
prepare a drink for the human, i.e. the action sequence consists of opening a bottle,
pouring liquid into a cup and placing the bottle into a crate. For each action, a manip-
ulation strategy was learned and automatically assigned, see Sect. 4.3.2. Assuming
that the manipulation task was commanded by the Execution Time Decision Mak-
ing System, see Sect. 4.2, the execution starts with the robot configuration and scene
shown in Fig. 39(a). In the given scene, the workspace is restricted by self-collisions
and collisions with multiple obstacles in different arrangements, which makes
the execution of predefined trajectories unfeasible. Additionally, the execution of
the pour-in manipulation strategy is impossible due to collisions with objects near
the cup and the robot has to actively change the course of actions and schedule aux-
iliary actions to rearrange the scene in a way, that the learned pour-in manipulation
strategy can be applied.

For the scene driven logic-based reasoning, the symbolic scene description is
generated, see Fig. 39(b), and the preconditions of the learned manipulation strate-
gies are calculated by projecting example trajectories on the table surface. Since the
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(a) Initial scene (b) Symbolic scene de-
scription

(c) Generated placement
positions

(d) Execution of auxiliray
pick-and-place action

(e) Rearranged scene

(f) Bottle opening: plan-
ning

(g) Bottle opening: execu-
tion

(h) Pouring-in: planning

(i) Pouring-in: execution (j) Placing the bottle in a
crate: planning

(k) Placing the bottle in a
crate: execution

Fig. 39 Execution of a complex manipulation task with the proposed layered system for
autonomous environment manipulation of service robots.
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cereals box blocks a part of the projected map, the symbolic planner evaluates the
mechanical relations to determine, that the cereals box can be moved, and decides,
that the cereals box has to be placed somewhere else on the table. Multiple place-
ment positions are generated using the offline-computed graspability database, see
Fig. 39(c), and finally an auxiliary pick-and-place action is introduced to grasp the
cereals box, move it to a placement position and ungrasp it, see Fig. 39(d).

Since the preconditions of all actions are established, see Fig. 39(e), the learned
manipulation strategies will be executed one after another using constrained mo-
tion planning. First, the manipulation strategy to lift a bottle and remove the bottle
cap, which was learned in Sect. 2.7.2, is planned, see Fig. 39(f), and executed, see
Fig. 39(g). Second, a manipulation strategy to use the grasped bottle to pour-in liq-
uid into the cup on the table is executed. The manipulation strategy was learned
based on multiple human demonstrations and generalized using teaching and robot
tests, see the experiments in Sect. 2.7.1. Since the cereals box was removed, the con-
strained motion planner successfully finds a robot trajectory, see Fig. 39(h), which is
executed, see Fig. 39(i). Finally, the bottle is regrasped and the manipulation strat-
egy to place the bottle into the crate is planned, see Fig. 39(j), and executed, see
Fig. 39(k), which was learned in the experiments in Sect. 2.7.1.
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56 R. Jäkel et al.
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1 Introduction

One of the major ideas followed in DEXMART was to make use of the observation
of human manipulation actions to guide an optimize the execution of the same ac-
tions on a bimanual robotic platform. This principle to use humans to demonstrate
actions to be later adapted to robot programs is well known as the PbD paradigm.
In DEXMART this principle has been studied on different levels of abstraction. On
lower levels of trajectory observation a special focus is set on the observation of fin-
ger movement during the task execution. For similar kinematic constraints of human
and robot hand such generalized manipulation trajectories might be tried directly to
program a robotic hand.

For dissimilar kinematics such approach needs a proper mapping to the differ-
ent workspace of the robotic device. Such a mapping is difficult to be found for
arbitrary kinematics. Therefore we tried to extract invariant task constraints from
demonstrations in various setups to store the essentials of the task in newly devel-
oped representations. This abstract information is then combined with the kinematic
constraints of the robot to be successfully executed on the robot.

This chapter is organized in two parts. The first is focusing on the observation
part of human hands combining the observation of finger movements with tactile
information essential for the successful task execution. Models that allow the adap-
tion to slightly changing situations regarding the kinematics as well as geometry of
the object due to uncertainties are presented. In cases where the mapping of the tra-
jectories to heavily changing kinematics is needed a model based approach using the
extracted task constraints combined with intelligent planning to optimally using the
kinematics of the robot is used. This is presented in the second part of the chapter
where the execution of constrained tasks with a limited robotic manipulation device
is the main focus.

2 Human Observation

The robotic systems of the next decade will be, potentially, a part of everyday life as
our appliances, servants and assistants, as our helpers and elder-care companions,
assisting surgeons in medical operations, intervening in hazardous or life-critical
environments for search and rescue operations, and operating in field areas like
forestry, agriculture, cleaning, mining, freight transport, construction and demoli-
tion, and so on. In this scenario, bringing a robot to the same manipulation skills as
those of human beings is recognized as the crucial issue for transferring the robots
from industry to the service robotics application domain. Several researchers work
towards this objective within the DEXMART project. It attempts to extend a bridge
from research on natural cognition to research on artificial cognition, as it will pri-
marily contribute to the development of robotic systems endowed with dexterous
and human-aware dual-arm/hand manipulation skills for objects, operating with a
high degree of autonomy in unstructured real-world environments.
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Fig. 1 Architecture of the sensor fusion system used for observation.

The approach followed in the project to pursue this challenging goal is based
on PbD-like strategies, which require development of original methods for inter-
pretation, learning, and modelling, from the observation of human manipulation at
different levels of abstraction [9]. At the state of the art, the observation of the hu-
man hand motion during the execution of complex manipulation tasks, is a very
difficult problem, handled through two main approaches

• optical position measurements based on motion capture systems, which require
many markers and many cameras, for trying to reduce the marker occlusion phe-
nomenon, very frequent in hand tracking problems;

• direct angular measurements, which require complex and expensive sensorized
gloves.

In this chapter, a novel architecture, based on sensor fusion of kinetostatic data,
is proposed that overcomes the limitations of the classical systems. As shown in
Fig. 1, the system is constituted by a low-level sensor fusion module that estimates
the hand posture and a high-level module that exploits the knowledge of fingertip
contact forces to refine the initial estimation. The low-level module is in charge to
observe human hand motion combining, through a Bayesian senor fusion technique,
both the classic approach described above with a significantly decreased hardware
complexity, i.e. using a small number of markers (typically only three markers per
finger) and cameras, and only three low-cost angular sensors per finger, specifically
designed and realized for this purpose. Usually, extracting the joint angles requires
reliable marker data due to the high number of human hand DOFs.

Figure 2 shows the marker sets required by the proposed low-level algorithm.
Evidently, on some occasions the positional data of some of the markers will not
be available due to occlusions. This lack of data could lead to unconstrained kine-
matics and finally to unreliable hand pose estimates. To cope with this challenge
the proposed approach not only exploits the additional information coming from the
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Fig. 2 Marker set used in
the project for the entire
hand.

data glove, thus filling the data gaps, but also usefully exploits the kinematic model
of the hand. The algorithm is constituted by two steps. The first is devoted to esti-
mate the constant kinematic parameters exploiting the recursive nature of the open
kinematic chains. The second step consists of estimating the joint angles through a
finger-centralized sensor fusion algorithm which takes into account also the marker
slipping over the glove surface.

The approach followed within the low-level sensor fusion component presents
three key innovations:

• design and realization of an optoelectronic low-cost data glove;
• estimation of the model parameters by methods that exploit the recursive nature

of open kinematic chains;
• real-time joint angle tracking by Bayesian sensor fusion algorithms for nonlinear

systems.

Until now, only few papers have addressed the problems of kinematic model pa-
rameter and joint angle estimation in human complex manipulation tasks; none of
these papers uses approaches based on the sensor fusion. In [29] a protocol to deter-
mine the link structure of human hand using motion capture data is proposed. [52]
describes a global optimization method for off-line assessing joint angles in human
hand and for calibrating instrumented glove from motion capture system measure-
ments. The papers [6] and [57] use, respectively, a deterministic and a stochastic
global optimization algorithm to determine the centers and the axes of rotation for
fingers in a simplified model of the human hand. In [8] an anatomic-based cost met-
ric is proposed to identify a model of the carpometacarpal joint of the thumb, that
is suitable for measuring mobility. [24] and [7] try to estimate the whole body mo-
tion from the measurement by a Kalman-like approach, but without focusing on the
hand motion. [16] is one of the first works that address the real-time finger tracking
problem; it uses a Kalman approach to track the marker positions for an augmented
reality application.

Concerning the realization of the low-cost data glove, the optoelectronic technol-
ogy has been selected not only for cheapness sake, but also for its typical interesting
properties such as immunity to electromagnetic field, low power consumption and
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lightness. The data glove proposed is equipped with sensing elements whose devel-
opments is based on the use of angle-varying radiation pattern of common LEDs
(Light Emitting Diodes) and responsiveness pattern of PDs (PhotoDetectors). The
effectiveness and advantages of using a solution that exploits this property of op-
toelectronic components has already been shown in [34], [33] and [5], where the
measurement of different physical variables is proposed.

The high-level sensor fusion module aims at improving the observation of the
human hand motion, exploiting the measurements of fingertip contact forces and a
virtual environment. The main idea of the proposed algorithm is to compare the fin-
gertip contact information, obtained by commercial tactile sensors, with the contact
information computed in a virtual environment, that reproduces the real one. In case
the estimation of the joint angles and the relative pose between the hand and the ob-
ject are accurate, the contact information in the virtual and in the real environment
are fitting, i.e the contact-consistence condition is satisfied. On the other hand, when
the two sources of information are not consistent, a correction of the hand posture is
carried out. The correction is constituted by two steps. The first step consists in com-
puting, on the basis of the geometry of the grasped object and of the hand posture,
the fingertip position and orientation, such that the contact-consistence condition is
satisfied. The second step finds the posture of the hand (i.e. position, orientation and
joint angles) such that the end-effectors assume the poses computed in the first step.
To tackle this Inverse Kinematics (IK) problem, a Jacobian-based technique known
as CLIK (closed-loop inverse kinematics) has been used, which is suitable for the
on-line implementation of the correction algorithm. Since the starting point of the
IK algorithm is given by the data from the sensors, only a local correction is required
and Jacobian based methods, that are fast to find local minima, are particularly suit-
able to this application. It is important to emphasize that in the inverse kinematics
algorithm, the hand is modeled not as five independent kinematic chains, but as a
“kinematic tree” with a root and five branches. The root is composed by six 1-DOF
joints, describing the pose of the hand in space and the branches are the five serial
chains describing the five fingers. The correction brings two advantages: improve of
the accuracy of the hand observation and guarantee of the coherence between hand
posture and measured force in the virtual environment, which is very important for
PbD applications. In order to correctly tune the parameters of the CLIK algorithm,
the results of the study found in [17] on the stability of CLIK algorithms have been
exploited.

3 The Sensory Environment

The measurement system adopted for tracking human hand motions uses two differ-
ent types of sensing systems. The first one is a commercial optical motion capture
system. The second one is a sensorized glove equipped with three angular sensors
per finger and with three reflective markers per finger. Marker positions are mea-
sured through a Vicon optical motion capture system (see Fig. 3), composed by four
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Fig. 3 The motion capture system: cameras and data glove.

Fig. 4 Picture of a single
sensing element of the data
glove.

CMOS cameras, a workstation and a host PC, on which a real-time engine and the
software for calibration and management are installed. The workstation is connected
to a PC through an Ethernet cable, with TCP/IP protocol. The data glove has been
principally designed to be used in a sensor fusion system and the concept is pre-
sented in Sect. 3.1. The calibration curve of the sensor can be estimated according
to the specific procedure described in [11]. Both the motion capture system and the
data glove work with a sampling rate of 60Hz.
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Fig. 5 Picture of the data
glove prototype with angular
sensors and markers used for
motion capture system.

Fig. 6 Typical measured
voltages on joint angular
sensors pointed out in Fig. 5
for a repeated pick and place
task.

3.1 Data Glove Design

A prototype of a data glove has been realized installing sensing elements based on
optoelectronic technology (see Fig. 4) on the joints of a commercial neoprene glove.
More details on this technology can be found in [11]. Figure 5 shows a picture of
the realized prototype. Figure 6 reports typical measured voltages for all index finger
joints in a simple pick and place task. In order to calibrate the data glove, a recursive
inverse kinematic algorithm has been used. It elaborates measurements from a mo-
tion capture system and exploits the recursive nature of the open kinematic chains
to calculate the joint angles. ¿From the user point of view, a calibration session con-
sists of observing, by an optical motion capture system, repeated flexion-extension
motion of all the fingers. It is important to underline that the result of the calibra-
tion procedure depends on the shape and dimension of the user’s hand. Then, for a
different performer, a new calibration procedure is required.

Figures 7, 8, 9 report examples of calibration curves for the index finger joints of
the data glove prototype, which have been obtained through the calibration proce-
dure which can be found in [11]. Obviously, the range of angular motion is different
for each joint and also the sensitivity.
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Fig. 7 Calibration curve of
the sensor on joint 1 of the
index finger.

Fig. 8 Calibration curve of
the sensor on joint 2 of the
index finger.

Fig. 9 Calibration curve of
the sensor on joint 3 of the
index finger.

3.2 Tactile Sensors

The glove is equipped with tactile sensors is based on the Pressure Profile Fin-
gerTPS, see Fig 10. In each fingertip, a tactile sensor pad is used to measure the
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Fig. 10 Tactile sensors
installed into the data glove.

Fig. 11 Human hand skeleton and articulations.

force intensity applied to an object. Due to the size and location of the pads, the
human operator has to consider the sensor pads and adapt the manipulation motion
in order to make consistent force measurements. An additional wrist sensor is avail-
able but has not been used in this work. The system is calibrated using a provided
dynamometer. The repeatability is < 4% of the full scale range, which is 4.55 to
22.73kg [40].

4 Kinematic Model of the Hand

In order to reconstruct the motion of the human hand, a kinematic model has to be
selected. Then, its parameters have to be estimated, including the joint angles nec-
essary to animate the model. The articulations of the human hand are more complex
than the comparable articulations of other animals. In fact, the skeleton only con-
sists of 27 bones, 14 for the fingers, five metacarpal forming the palm and eight
carpal bones in the wrist (Fig. 11). With respect to the main goal of the DEX-
MART project, i.e., improve robotic manipulation capabilities, a necessity arises
for a model that can reproduce the vast majority of the manipulation tasks and that
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Fig. 12 Kinematic model
and marker set for one finger.

Table 1 Denavit-
Hartenberg table for all
the fingers.

link a d ϑ α
1 0 0 ϑ1

π
2

2 a2 0 ϑ2 0
3 a3 0 ϑ3 0
4 a4 0 ϑ4 0

can be measured with the motion capture technology presented in the previous sec-
tions. Unfortunately, a model that emulates in toto human hand is not desirable as
the subtle movements of the carpal bones are difficult to measure using non-invasive
techniques. However measuring at such a details is not required as state of the art
robotic hands are usually much simpler (in terms of kinematics) than the human
ones; therefore an approximated kinematic model might suffice. The next section
defines such a model.

4.1 Model Definition

A universally recognized as an accurate model of the human hand is the one pro-
posed in [39], which allows describing also palm arching movements. A simplified
version of the model is adopted in this chapter assuming a rigid palm. In detail, for
each finger, the selected 4-DOF kinematic model is depicted in Fig. 12, where also
the markers attached to each bone are reported. The above kinematic model assumes
that the first two joints of each finger are two consecutive pin joints with orthogonal
axes. Another key assumption of the adopted kinematic model is that the flexion
axes of each finger are all aligned. The method adopted to define the kinematic
model, i.e. the relationship between the joint angles and the fingertip poses, is the
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Fig. 13 Denavit-Hartenberg
frames and markers attached
to the finger.

so-called Denavit-Hartenberg technique [12], which is widely used both in robotics
and biomechanics. The reader unfamiliar with this method can refer to, e.g., [46].
The resulting Denavit-Hartenberg (D-H) parameter table is the one in Tab. 1. The
D-H reference frames fixed to the links of the finger are depicted in Fig. 13, together
with two intermediate frames used in the calibration algorithm.

4.2 Modeling Marker Local Motion

When the hand flexes, due to skin stretch, glove sliding over the skin, and muscles
deformations, the distance between markers and the center of rotation of the articu-
lations changes, i.e., the markers “slide” over the bones while the hand moves, and
this might cause large residual errors during calibration and fitting with the optical
system.

The results in Fig. 14(a)–(c) form a range of motion trial show the motion behav-
ior of three different markers. Each graph displays time instances of a component of
the fitting residual vector plotted against its maximally correlated joint angle. The
plots clearly show that a dependency between marker motion and joint angles in
θ indeed exists. In one case (Fig. 14 (a)) a linear function could possibly approxi-
mate the relationship between the variables. This is valid as long as the joint angle
range is small. In other cases a non-linear mapping function might be more appro-
priate (Fig. 14 (b)). Finally, as shown by residual-parameter correlation matrix in
Fig. 14 (d) marker motion can be highly correlated with more than one joint param-
eter (i.e., matrix rows with more than one red cell). Consequently a model with a
single input cannot provide good predictions (Fig. 14 (c)).
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Fig. 14 Visual analysis of the relationship between joint parameters and unnormalised
marker to reckon residuals. (a)-(c): sample residual components (in mm) plotted against the
maximally correlated joint parameter (in radians). (d): correlation coefficient absolute values.

The analysis of the residual error shows that it may be possible to improve the
predictive power of the kinematic model by explicitly accounting for marker move-
ment. To this extent we propose to model li the position of the i-th marker in the
local coordinate system of its parent segment as a parametric function of some joint
angles θ and a set of regression parameters wi ∈W . In particular we chose a linear
form, li = F(θ )wi, where

F(θ ) =

⎡
⎢⎢⎣
φx(θ )T 0 0 0

0 φy(θ )T 0 0
0 0 φz(θ )T 0
0 0 0 1

⎤
⎥⎥⎦

contains the regressor vectors φ(θ ) for each of the three positional coordinates. In
our implementation the regressors are simple polynomial components. The marker
residual used by the optimization procedure becomes

di = mi− Si(θ )li = mi− Si(θ )F(θ )wi. (1)
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Algorithm 1. Active inputs pre-selection

1: INPUT: {θ ,d(u)}
2: OUTPUT: set of active inputs Au

3: Compute the correlation c(u)j between d(u)
k and θ j,k (a row in Fig. 14 (d)).

4: for all j do
5: if c(u)j > T then
6: Add j to the set of active inputs Au.
7: end if
8: end for

where mi is the measured marker position and Si(θ ) is the function dependent on
the kinematic chain that maps a 3D point in the local coordinate system onto the
coordinate system of the world. Note that, if the polynomials are zero-order (i.e.,
F(θ ) = I) Equation (1) reduces to a standard kinematic model.

In general for a specific residual not all the joint angles in θ convey useful in-
formation to improve the predictive power of the model. As shown in Fig. 14, each
residual is usually correlated to a limited number of joint angles and in some cases
non-linear components may not be necessary. At the same time favouring simpler
models with a low number of extra parameters might help preventing model over-
fitting problems. To this end we implemented a model selection procedure which
selects only those parameters which contribute to a significant residual reduction.

We treat the marker motion modeling as a post-progessing step to the standard
calibration procedure. Given a calibrated standard model and a range of motion trial
we treat the residual components independently. To the purpose of this explanation
it is convenient to define dk = [d1,k . . .dnm,k] as the concatenation of the residuals

at frame k and an index u = 1, . . . ,U for the single residual components d(u)
k . Also,

we define the 1D polynomial function g(u)(θ ,w(u)) = φ (u)(θ )T w(u) modelling the
marker motion for the component u. For each residual the model selection procedure

is composed of two steps: (i) first we analyse the correlation between θk and d(u)
k ;

those parameters with correlation larger than a threshold T are selected as active
inputs for the skin model function g(u) (Algorithm 1); (ii) then we initialise the set
φ (u) = {1}with the zero order regressor only and for each input we add higher order
regressors (i.e., θ , θ 2, θ 3, etc.) in a greedy fashion (Algorithm 2); the greedy pro-
cedure comes to a halt when none of the more complex models under test improves
the performance with respect to the current best model.

The performance of two models g′ and g′′ on the data d is compared by comput-
ing the Bayes factor

p(d|g′)
p(d|g′′) =

∫
p(d|w′,g′)p(w′|g′)dw′∫

p(d|w′′,g′′)p(w′′|g′′)dw′′
. (2)

As in (1) we use a Gaussian noise model with independent marker residuals. Thus
we can write the likelihood as
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Algorithm 2. Greedy selection of the polynomial components

1: INPUT: {θ ,d(u),Au}
2: OUTPUT: set of regressors φ (u)
3: Initialize zero order model: φ (u) = {1}
4: Regress model g(u)(θ ,w(u)) to the data d(u).
5: repeat
6: φ (best)(θ ) = φ (u)(θ )
7: for all active inputs v ∈ Au do
8: Add a component: φ (test) = φ (u)∪θ ov+1

v with order ov +1
9: Regress model g(test)(θ ,w(test)) to the data d(u).

10: if p(d(u)|g(test))
p(d(u) |g(best))

> 1 then

11: φ (best)(θ ) = φ (test)(θ )
12: end if
13: end for
14: if p(g(best)|d(u))

p(g(u)|d(u))
> 1 then

15: φ (u)(θ ) = φ (best)(θ )
16: stop = f alse
17: else
18: stop = true
19: end if
20: until stop

p(d|w,g) =∏
k

N (dk|g(θk,w),σ),

where N is a Gaussian with mean g(θk,w) and variance σ evaluated in dk. The
definition of the prior p(w|g) requires some preliminary considerations. The model
selection step does not recalibrate the subject for each marker motion model, but
compares the models on a fixed residual obtained assuming static markers. There-
fore we can expect a bias between this approximated residual and the actual one.
The bias magnitude is unknown a priori and should not affect the model selection
result. Consequently we use a uniform prior for the zero order parameter w0 ∈ w
while for all the other parameters we use a standard Gaussian regulariser, that is

p(w|g) ∝N (ŵ|0,Σŵ), (3)

where ŵ is the vector containing all the parameters but w0 (i.e., w = [w0 ŵ]), and
Σŵ is a diagonal prior covariance. Also, note that the regression steps 4 and 9 in
Algorithm 2 use the same regulariser.

We evaluate the regression model on capture data acquired with a rig of nine 4
megapixel Vicon MX cameras. As a proof of concept we limited the capture to two
fingers: the right thumb and index of one healthy subject. 31 markers with 3mm di-
ameter were glued to the latex glove wore by the subject as showed in Fig. 15. Also,
to ensure accuracy we of the global position we glued one larger (7mm) marker
over the wrist and limited the capture volume to about 1m. Finally, to reduce the
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Fig. 15 High density markerset. The thumb and the index are sensorised with 32 markers.
The markers are glued to a latex glove.

Table 2 Performance comparison between the standard model with static markers and the
proposed moving marker model. The RMSE are in millimeters.

RMSE
Static Markers Moving Markers Perc. difference

Trial 1 0.91 0.66 27.8%
Trial 2 1.02 0.79 23.0%
Trial 3 0.97 0.80 18.2%
Trial 4 0.92 0.74 19.7%

occurrence of marker occlusions under wrist rotations we pointed two of the nine
cameras upwards.

We compared the results of the standard Static Marker (SM) model and the en-
hanced model with Moving Markers (MM) (refCB:eq:modelSkin) on three capture
trials. Trial 1, 2 and 3 are three ROM trials. In Trial 4 the subject repeatedly picks a
piece of plastic cutlery (a knife) from a small container that he holds with the other
hand. For our experiments we used 100 frames from Trial 1 to calibrate the two
subjects. Then, for the remaining frames in Trial 1 and for the other two trials, we
computed the joint angles and the Root Mean Square Error (RMSE) of the unnor-
malised marker residuals. Also, we set the maximal degree of the polynomials in the
marker motion model to three. Figure 16 and Table 2 summarise the results. For all
four trials MM has a significant lower RMSE than SM. The reduction was expected
on Trial 1 as this is the trial used to calibrate the subject and the proposed model
has a larger number of free parameters than the standard one. However the improve-
ment on the other three trial shows that MM generalises well on unseen data. This
result is consistent for motions similar to the training ones (i.e., Trial 2 and Trial 3)
as well as for fairly dissimilar movements as in Trial 4. Also, Figure 16 shows that
the performance improvement is consistent over time. The marker motion model
outperforms the standard model both on extreme poses, when the fingers are fully
flexed (see RMSE peaks in Fig. 16), and near the mean pose.
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Fig. 16 RMSE comparison between the standard calibration model with static markers (SM)
and the proposed model with polynomial moving markers (MM). For all test trials MM better
predicts the marker positions.

5 Low-Level Sensor Fusion Algorithm

Since the motion capture system presents the problem of marker occlusion and the
angular sensors are less accurate and can not be applied to all the hand DOFs, the
sensor fusion seems to be the best approach to tackle the problem of the real-time
observation of human manipulation. The first step to deal with a Bayesian sensor
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fusion problem is defining a stochastic model of the system. Then, with the aid of
computer simulations, an EKF-based sensor fusion algorithm has been designed.

5.1 System Modelling

To limit the notation complexity, the algorithm will be presented for a single finger.
Firstly, define a state-space model of the system with state vector

x =
(
ϑ ϑ̇ l h

)T
(4)

being

ϑ =
(
ϑ1 ϑ2 ϑ3 ϑ4

)T
(5)

ϑ̇ =
(
ϑ̇1 ϑ̇2 ϑ̇3 ϑ̇4

)T
(6)

l =
(
l1 l2
)T

(7)

h =
(
h1 h2

)T
(8)

where (l1,h1) and (l2,h2) are the (x,y) coordinates of markers m1 and m2 in the
frames c2− x2y2z2 and c3− x3y3z3 respectively and have been considered as state
variables to be estimated, instead of system parameters, to take into account the
sliding of the markers with respect to the finger bones.

As usual in tracking problems tackled via state estimation techniques, in the state
update model, the joint variables to be tracked are assumed to vary with a constant
velocity, while the unknown parameters are assumed to be constant. Hence the state
update equations are

ϑk+1 = ϑk + ϑ̇kΔ t +wϑ
k

ϑ̇k+1 = ϑ̇k +wϑ̇
k (9)

lk+1 = lk +wl
k

hk+1 = hk +wh
k

with Δ t the sampling time of the filter, chosen as the minimum of the sampling times
of the sensors, in case the sensors have different sampling rates.

It is easy to see that (9) is linear, then it can be written in matrix form as

xk+1 = Fxk +wk (10)

where

F =

⎡
⎣ I4 Δ tI4 O4

O4 I4 O4

O4 O4 I4

⎤
⎦ , (11)



76 C. Borst et al.

and

wk =
[
(wϑ

k )
T
(wϑ̇

k )
T
(wl

k)
T
(wh

k
)T
]T

(12)

is a (12× 1) vector of stochastic processes. The hypothesis under the Kalman-like
filters is that nk and wk are additive Gaussian white noise (AGWN). The measure-
ment equation is

yk =

⎡
⎢⎢⎢⎢⎢⎢⎣

mb
1(xk)

mb
2(xk)

mb
3(xk)

v2(xk)
v3(xk)
v4(xk)

⎤
⎥⎥⎥⎥⎥⎥⎦
+nk = h(xk)+nk (13)

where vi(x) is the voltage measured by the angular sensor applied to i-th joint and its
analytic expression has been obtained as a result of the data glove calibration phase.
The marker positions with respect to the D-H frame 0 are computed as

m̃b
1 = Tb

w(k)T
w
p Tp

0 T0
2(k)m̃

2
1 (14)

m̃b
2 = Tb

w(k)T
w
p Tp

0 T0
3(k)m̃

3
2 (15)

m̃b
3 = Tb

w(k)T
w
p Tp

0 T0
4(k)m̃

4
3 (16)

where Tb
w(k) and Tw

p result from the glove calibration phase, Ti−1
i (k), i = 0,1,2,3,4

are the D-H transformations, Tp
0 can be computed as

Tp
o = Tp

1(1)

[
Rx(π/2) 0

0T 1

]
,

being Tp
1(1) the constant matrix calculated again during the calibration phase, and,

by definition,

m̃2
1 =

(
l1 h1 0 1

)
m̃3

2 =
(
l2 h2 0 1

)
m̃4

3 =
(
0 0 0 1

)
.

According to the Kalman filter framework, state variables are assumed to be Gaus-
sian stochastic processes, with zero mean and diagonal covariance matrix, set by
aid of computer simulations. The hypothesis of Gaussian pdf measurement error, on
which the Kalman-like filters are based, is a restrictive hypothesis, since the mea-
surement model is strongly nonlinear and the angular sensor characteristics may be
not accurate. An improvement of filter performance can be obtained through more
complex filtering techniques like particle filters [41], which allow estimating ef-
fectively the state of nonlinear systems even if the noise pdf is not Gaussian. The
aim of the Extended Kalman Filter (EKF) is to track joint angular positions and
velocities in a way robust to occlusions and marker slipping phenomena. Occlusion
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marker problem is handled by fusion of camera measurements and angular sensors
measurements; the sensor fusion algorithms improve the measurement system ro-
bustness, since one sensor can contribute information while others are unavailable,
jammed, or lack coverage of a target or event. The marker slipping phenomenon is
handled by inserting in the state vector the marker positions expressed in the refer-
ence frames fixed to the finger links, hence they are estimated by the EKF as well.
To model a system for filtering or data fusion purposes it is very important to evalu-
ate the variance of measurement errors. If the error variance of the sensors is badly
evaluated, the sensor fusion algorithm may become ineffective. It is assumed that the
measurement noises are independent from each other, hence the covariance matrix is
assumed diagonal. The experimentally estimated variances of camera measurement
noises are

σ2
m1

= 9 ·10−6 m2

σ2
m2

= 9 ·10−6 m2

σ2
m3

= 9 ·10−6 m2,

(17)

assumed equal in all the directions. Whereas, the experimentally estimated variances
of angular sensor noises are

σ2
v2
= 3.5 ·10−5 V2

σ2
v3
= 4.7 ·10−5 V2

σ2
v4
= 2.3 ·10−5 V2.

(18)

5.2 Filter Design

Whenever a marker is occluded, the model of the system changes, then also the sen-
sor fusion algorithm parameters have to change in order to estimate effectively the
joint angles. The whole system is then modelled as a switching nonlinear system,
in which each state of a finite state machine matches a nonlinear set of differential
equations describing the system. The state of the finite state machine is represented
by the variable Si jk, where i, j, k are equal to zero if the marker m1, m2, m3, respec-
tively, is not occluded and they are equal to one otherwise. As a consequence, to
cope with the problem of marker occlusion, a switching EKF (SEKF) has been pro-
posed. When no marker occlusion occurs, i.e. when the system is in the state S000,
we can design the EKF by setting the covariance measurement matrix Q as a diag-
onal (12× 12) matrix, having measurement noise covariance as diagonal element

Q = diag{σ2
m1

I3,σ2
m2

I3,σ2
m3

I3,σ2
v2
,σ2

v3
,σ2

v4
}. (19)

Instead, it is more difficult to choose the model covariance matrix V; the simplest
method, adopted here, is to set the model covariance matrix as a diagonal matrix,
i.e. to assume that the process modelling errors are mutually independent. In [41] a
set of empirical and semi-empirical methods for selecting the V matrix entries are
described, while [31] proposes a method which ensures convergence of the filter.
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Fig. 17 Flowchart of the switching EKF used as sensor fusion algorithm for estimation of
the hand joint angles.

The entries of V have been set through the aid of computer simulations; the rule of
thumb most frequently adopted for tuning the V matrix is that decreasing the value
of elements of V, implies that the filter “bandwidth” decreases and the measurement
noise is attenuated; increasing the values of V entries process modelling error is
attenuated and the filter “bandwidth” increases. The performed simulations show
that the filter presents good performance when V is set as

V = diag{5 ·10−8,5 ·10−8,1 ·10−7,1 ·10−6,5 ·10−8,5 ·10−8, (20)

10−6,10−7,5 ·10−11,10−11,10−11,10−11}.

In presence of marker occlusions (i.e. when the finite state machine is not in state
S000), the filter receives in input the value NaN. Computer simulation has been used
also to tune the filter in presence of occlusions, by using a circular movement in 2D
space. It is important to specify that in the general case of a movement in 3D space,
since no abduction angular sensor is present, measurement of ϑ1 is not possible and
thus accurate tracking of the finger abduction movement is not possible in presence
of permanent occlusion. The algorithm to switch from an EKF model to another is
based on camera measurement observations. In detail, when ymi

k = NaN, the filter
sets

ymi
k = ŷmi

k ,
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where ymi
k is the vector containing the components of yk corresponding to marker

mi and ŷmi
k is its estimate computed by taking the same components of the vector

h(x̂k−1) in (13), with x̂k−1 the estimated state at step k− 1. Moreover, since the
angular sensor measurements are less reliable than the camera measurements, the
model covariance matrix is modified as

Vmi
occlusion = 0.1 ·Vmi (21)

Qmi
occlusion = 10 ·Qmi , (22)

where Vmi
occlusion and Qmi

occlusion are the sub-matrices of Vocclusion and Qocclusion con-
taining the elements corresponding to the occluded marker mi, being Vocclusion and
Qocclusion the model and the measurement covariance matrices, respectively, when
an occlusion happens. Whereas, Vmi and Qmi are the sub-matrices of V and Q which
contain the elements corresponding to the marker mi when the marker is not oc-
cluded. The algorithm flow chart is sketched in Fig. 17.

6 High-Level Sensor Fusion Algorithm

The high-level sensor fusion module aims at improving the observation of the hu-
man hand motion, exploiting the measurements of fingertip contact forces and a
virtual environment. The main idea of the proposed algorithm is to compare the fin-
gertip contact information, obtained by commercial tactile sensors, with the contact
information computed in a virtual environment, that reproduces the real one. In case
the estimation of the joint angles and the relative pose between the hand and the
object are accurate, the contact information in the virtual and in the real environ-
ment are fitting, i.e the contact-consistence condition is satisfied. On the other hand,
when the two sources of information are not consistent, a correction of the hand
posture is carried out. The high-level module is completely independent from the
particular technology adopted by the lower level, then can be integrated with any
other low-level measurement system that provides estimation of the hand posture
and of fingertip contact forces.

6.1 Correction Method

The observation phase including the proposed correction algorithm is constituted by
three steps:

1. data acquisition and set up of the virtual environment that reproduce the “real”
one;

2. use of the geometric information and contact information to define the correction
of the fingertip positions and orientations;
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3. use of an inverse kinematic algorithm, that finds the pose of the hand and the
joint angles required to implement the correction.

The virtual environment is constituted by the 3D models of the hand and of the ob-
jects involved in the observed task. The hand is animated with the estimated pose
and joint angles during the observation phase and the position of the object is ob-
tained by the stereo vision system. Nevertheless, the proposed algorithm is abso-
lutely general and can be adopted with every measurement system able to estimate
the hand posture and the position of the object. With no measurement error and
no 3D modeling error, the virtual environment reproduces exactly the real one. In
this work, the errors in object 3D models are supposed to be much smaller than the
measurement errors. These often cause inconsistencies between measured contact
forces and hand posture relative to the object. In order to improve the accuracy of
the observed data and specifically to make the motion data consistent with the con-
tact force data, corrections of the hand pose and finger configurations have to be
computed and implemented.

The pseudo-code of the correction method is described in Algorithm 3. When a
measured fingertip contact force exceeds the empirical defined threshold, the finger
is considered in contact with the object (line 5). In this work, the threshold has
been fixed at 0.5N. After the contact checking in the “real environment”, in order
to determine if a collision in the virtual environment occurs, the collision checker
described in Sect. 6.2 is called for each finger (line 10). When the collision checker
is called, for each finger f , it requires as input two 3D models (see Algorithm 4). The
first 3D model, CAf, is the tactile sensor pad model, which is a thin plate modeling
the expected contact area of the finger f . The second 3D model, O is the model of
the grasped object.

If in the real world, according to the force measurement, a finger is considered
in contact with the object and in the virtual environment no collision is detected
or vice-versa (line 11), the finger is considered not-consistent and the correction is
computed on the basis of the information provided by the collision checker, i.e. the
unit vector n̂, the point p0 and the scalar d, defined in Sect. 6.2.

As explained in Algorithm 4, these data allow finding the point p f on the object
O, such that the distance between the pad model of the finger f and the object is
minimum.

The object point p and two of three components of the unit vector n̂ are included
in the vector xgoal. Its elements specify the desired poses of the fingertips for the
correction step.

In line 15, the vector xgoal is given as input to the CLIK algorithm (see Algo-
rithm 5 in Sect. 6.3), which is in charge of finding the hand configuration qgoal such
that, for each non-consistent finger, the fingertip position is p f and the unit vector
normal to the pad CA f is aligned with the unit vector n̂ f . The starting configuration
q0 of the CLIK algorithm is taken as the hand configuration measured by the sensor
setup.
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Algorithm 3. Correction algorithm
1: for each frame k do
2: (q0, force) = readSensorData()
3: xgoal = []
4: for each finger f do
5: if f orce f > threshold then
6: realContact f = true
7: else
8: realContact f = f alse
9: end if

10:
(

n̂ f ,coll f ,d f ,p0 f

)
= checkCollision(CAf,O)

11: if coll f �= realContact f then
12: p f = p0 f

+d f · n̂ f {correction required}
13: xgoal = append(xgoal, [pf, n̂f(1 : 2)])
14: end if
15: qgoal = CLIK

(
xgoal,q0,W,α

)
16: end for
17: moveHand(qgoal)
18: end for

6.2 Geometric Information from the Scene

To obtain the geometric information necessary to define the correction of the finger-
tip poses, the collision checker Proximity Query Package (PQP) [27] has been used
in combination with Openrave [13]. Algorithm 4 describes the high level behav-
ior of the collision checker, based on PQP. The input data of the collision checker
module are two 3D models: model1 and model2.

Algorithm 4. Collision checker behaviour
1: (n̂,coll,d,p0)=checkCollision(model1,model2) :
2: collision = isColliding(model1,model2)
3: if collision == f alse then
4: p0 = computePoint(model1,model2)
5: d = computeDistance(model1,model2)
6: n̂ = computeNormal(model1,model2)
7: return (n̂,collision,d,p0)
8: else
9: p0 = computePenetrationPoint(model1,model2)

10: d = computePenetrationDepth(model1,model2)
11: n̂ = computeNormal (model1,model2)
12: return (n̂,collision,d,p0)
13: end if
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The output variables p0, n̂, d are such that:

• When model1 and model2 are not in collision, the point p = p0 +d · n̂ is the point
on model2 closest to model1, d is the minimum distance between model1 and
model2, p0 is the point on model1 closest to model2, n̂ is the unit vector of the
line connecting p and p0.

• When model1 and model2 are in collision, the translation p−p0 brings model1
outside model2 and it is d = 0.

Since, for each non-consistent finger f , the point p f and the unit vector n̂ f will be set
as corrected positions and orientations in the task space, the correction is computed
according to a minimum distance criterion.

6.3 Inverse Kinematics Method

Algorithm 5 explains the pseudo-code for the inverse kinematics. Line 1 is the defi-
nition of the function, which specifies the input and output variables.

The task space goal xgoal contains, for each not-consistent finger, the desired
position and orientation, computed by calling the collision checker. For a finger, the
position is the point p and the orientation is represented by the first two components
of the vector n̂, defined in Sect. 6.2.

The authors have empirically observed that the performance in terms of velocity
and stability is often better, if the orientation is specified only for one or two fingers.
In fact, when the size of Jacobian matrix increases too much, a significant decreasing
in the performance may occur. Hence, in all the experiments presented in Sect. 7,
the orientation has been fixed only for the first two not-consistent fingers.

The vector q0 contains the measured hand posture, i.e. position, orientation and
joint angles. It is the starting point of the IK algorithm. The more accurate the mea-
surement system is, the closer q0 is to the correct minimum and then the faster and
more effective the search is.

To take into account the differences in variances of the sensors and in magnitude
order, the weighted pseudo-inverse can be computed instead of the simple right
pseudo-inverse:

J† = W−1JT(JW−1JT)−1 (23)

where the weight matrix W can be chosen in this form:

W = f (Σ) (24)

with f monotonically increasing function of the sensor standard deviationsσ1, ...,σn

and
Σ = diag(σ1,σ2, ...,σn) . (25)

The simplest choice for W is the following:

W = wΣ (26)

where w is a positive scalar.
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Fig. 18 Pictures of the
manipulated objects: can
(top left); big bottle (top
right); small bottle (middle
left); box (middle right);
plastic bottle (bottom left);
pencil (bottom right).

With this choice, the algorithm will tend to modify more the variables whose
measurement are less reliable and less the variable whose measurements are more
reliable. On the other hand, when the magnitude order of the sensor variance is too
different, a possible choice is

W = KΣ (27)

K = diag(k1,k2, ...,kn) . (28)

With this choice, the parameters k1,k2, ...,kn have usually to be fixed empirically.
The scalar α is the so-called CLIK gain. The gain strongly influences the speed

of convergence and the stability of the algorithm. In [17], a theoretical study
on the stability of closed loop inverse kinematics algorithms is proposed and it
can be an useful tool to correctly tune the parameters of the IK algorithm and,
in particular, the gain α . The last input parameter is k(.), the direct kinematics
function. In this application, k is a function of the position of the hand phand , the

Algorithm 5. Inverse Kinematics Algorithm

1: qgoal = CLIK
(
xgoal,q0,W,α,k(.)

)
:

2: e = xgoal −k(q0)
3: while ‖e‖> ε do
4: J(q) = computeJacobian (k(.),q)
5: q = q+αJ†(q)(xgoal −k(q))
6: e = xgoal −k(q)
7: end while
8: return qh
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Fig. 19 Index joint angles
and estimated tactile forces
for the box shown in Fig. 18.
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Fig. 20 Index joint angles
and estimated tactile forces
for the empty plastic bottle
in Fig. 18.
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orientation of the hand Φhand and the finger joint angles q joint . It is defined as:

x = k(q), q =
[
phand Φhand q joint

]T
and x =

[
xpos xorientation

]T . The main advan-
tage to have as input the direct kinematics function is that the algorithm does not
require any changes if a different hand kinematic model is adopted. For this reason,
the Jacobian is also numerically evaluated (line 4). Since the Jacobian computation
is much faster than the pseudo-inverse computation, the Jacobian numerical evalua-
tion does not cause a significant delay in finding the IK solution.

7 Experimental Results

After the encouraging results of the preliminary experiments, a repository of ob-
served grasp and manipulation tasks has been set up. For each trial, it contains es-
timations of the hand pose in the space, joint angles and normal components of
fingertip contact forces. The grasp and manipulation tasks have been performed on
a set of elementary objects, which includes a cup, a pencil, a soft empty bottle, a soft
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Fig. 21 Index joint angles
and estimated tactile forces
for the half-filled plastic
bottle shown in Fig. 18.
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half-filled bottle, a small empty rigid bottle and a large empty rigid bottle. Some ob-
jects can be distinguished only through contact force measurements, e.g. soft empty
bottle and soft half-filled bottle. This choice has been made in order to empathize
the importance of contact force knowledge in the observation of human grasping
and manipulation.

The gathered data has been used within DEXMART to tackle several problems
such as PbD, object recognition, segmentation of elementary actions, activity recog-
nition, low-level trajectory generation and other learning issues, by using not only
the kinematic data, but also contact force information.

The number of the objects has been kept intentionally low, since each objects
is representative of an entire class. For example a can represents all the cylindric-
shaped object involved in typical manipulation tasks. Some of the objects involved
are shown in Fig. 18. Figures 19, 20 and 21, show examples of the estimated joint
angles and the measured contact force for the index finger.

8 Robotic Execution

As long as the robotic hand has a very similar kinematic and very similar strength to
apply the recognized contact forces during the manipulation action, the previously
described very direct application of observed manipulation trajectories and forces
works quite well. If the kinematic and force constraints posed by the robotic de-
vice are different form those of the human beeing an additional uncertainty through
the direct mapping to the robotic device occurs. In such cases it is more useful to
segment the observed action and try to extract the human and robot independent
(geometric) task constraints and try to use them in the execution phase.

This of course makes it necessary to plan and generate the grasps and motion tra-
jectories of the robot from scratch considering the information stored from the ob-
servation. For some special cases where the start and goal configurations are clearly
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defined in the task constraints this can be solved by state of the art geometric mo-
tion planners. If the manipulation plan just implicitly describes a continuous set of
configurations implementing the given task constraints the robotic system needs a
software module to choose a certain configuration which is promising to be success-
fully reached and executed. A certain manipulation action, filling a glass of water
from a bottle for example might be simple to plan and execute in some situations,
while in other cases the scene might be blocked through obstacles. The task con-
straints given by the observation are only that the bottle has to be moved in a certain
way above the glass to avoid spilling. Where in the workspace of the robot this is
executed or if the table is cleared before the action might be decided by the smart
robotic system. Figure 22 shows variations of the pouring task execution.

Fig. 22 The task of pouring water into a glass might result in different action plans according
to the found scene.

One way to solve this mixed logic-geometric problem is to use a hybrid planning
approach. The logical planner queries a motion planning system, an RRT planner for
example to verify if the plan is executable by the system. This however drastically
increases the time used to generate the plan. The time to find a motion plan might
be bound to make sure the system does not get locked but this poses the risk that for
complicated planning problems no solution is found even if there exists one. Tuning
the parameters is then a difficult procedure for robotic experts.

In DEXMART we tried to solve the problem with implementing an intermediate
layer that allows reasoning on the task plan using compact and pre-computed rep-
resentations. These representations allow matching task and robot constraints in a
simple way to speed up the generation of a valid manipulation plan. In the following
a representation to cover the reachable workspace of a robotic system is presented,
ways are shown to search for task constrained trajectories in such workspaces and
the treatment of obstacles and grasp capabilities are discussed.
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9 Workspace Representations to Support Planning

9.1 Criteria Used in Robot Design Optimization

In the design stage, a robot manipulator is optimized with respect to its kinematic
and dynamic properties. As the envisioned application area in DEXMART is the
dexterous manipulation of light objects compared to the robot the focus is only on
kinematic aspects here. This is also aligned with the intention to exploit geometric
planning methods to enhance flexibility of the system in different scenarios. The
kinematic design process of a robot can be furthermore divided into task-oriented
robot design (e.g.[36]) and the design of general purpose manipulators to accom-
modate a large variety of tasks.

In general, the robot kinematics can be optimized to maximize its workspace or to
maximize various dexterity indices with respect to specific positions or with respect
to the entire workspace. Park et al. [35] introduce general performance criteria for
workspace volume and dexterity using differential geometry. Global indices are ob-
tained through the integration of local criteria. Sturges et al. [49] define a dexterity
measure that relates the difficulty of an assembly task to the capabilities of a planar
robot arm. Some distinction about from which direction to execute the considered
tasks is included in this task-dependent difficulty measure, especially concerning
the accuracy of TCP movements at specific positions. However, these indices are
hard to extend to redundant spatial manipulators for service tasks.

A popular means used in robot design is the analysis of the Jacobian matrix
of a manipulator. Several indices describing the dexterity of the manipulator are
based on this method. Klein et al. [25] examined the relationship of the determinant,
the condition number and the smallest singular value as a dexterity measure. With
the goal to obtain a global isotropy design parameter, Stocco et al. [48] optimized
the ratio of the maximum and the minimum singular value of the Jacobian in the
entire workspace to obtain a global version of the condition number.
For representing the robot workspace according to grasping or manipulation task,
the positions and directions where the manipulator can carry out the task best are of
special interest. This is in principle addressed by the manipulability ellipsoid intro-
duced by Yoshikawa [53]. In the following this will be given a closer look.

9.1.1 The Manipulability Measure

The manipulability ellipsoid in the m-dimensional Euclidean space is intended to
quantify how easily, by means of joint movements necessary, the end-effector of
the robot can change its position and orientation. The measure is also based on the
analysis of the Jacobian matrix of the manipulator (29). The Jacobian matrix relates
the joint velocities q̇ with the total end-effector velocity in the Cartesian space (the
angular velocity ωE and the translational velocity ṗE ) at a single configuration q of
the manipulator.
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(
ṗE
ωE

)
= J(q)q̇ (29)

J = UΣVT . (30)

The principal axes and singular values σi of the Jacobian define the orientation
and the shape of the so-called manipulability ellipsoid. They can be obtained by
singular-value decomposition of the Jacobian matrix J (30). Here U and VT are
orthogonal matrices, and Σ is a diagonal matrix containing the singular values of J.

The extension of the ellipsoid and its major and minor axes are assumed to rep-
resent an ability of manipulation at a certain configuration. The singular values are
interpreted as the radius of the ellipsoid in the direction of the corresponding prin-
cipal axis. The ratio of the minimum and maximum singular value can be used to
describe the directional uniformity of the ellipsoid and thus the uniform ability of
the robots end-effector to move in any desired direction given a certain joint config-
uration. The volume of the ellipsoid is known as the manipulability measure and can
be interpreted as a distance of the manipulator from a singular configuration. One
major drawback of the original manipulability measure is that joint limits of the
manipulator are neglected, so the capabilities of the system are somehow overesti-
mated. To overcome this Abdel-Malek et al. [1] augment the Jacobian matrix with
joint limit criteria and redefine the manipulability measure. The resulting measure is
then used in a way also intended here to evaluate a good or optimal robot placement
with respect to certain manipulation goal.

9.1.2 Evaluation of Jacobian-Based Approaches as Workspace
Representation for Planning

Criteria used for manipulator design often aim either at reaching an isotropic per-
formance of the manipulator in its whole workspace or maximizing some global
performance index derived from local ones. These criteria are naturally not aimed
for representing directional structure in the workspace, as they are used to opti-
mize the uniformity of the workspace. The manipulability measure (volume) itself
is directionless making it impossible to discern directional preferences at certain
positions in the workspaces

Figure 23 shows the volume of the manipulation ellipsoid for the right arm of the
DLR Humanodd Justin [32]. To compute the measure for the whole arm workspace
a large number of joint configurations is sampled and the TCP position is calculated
using the forward kinematics. For such configuration the value of the manipulabil-
ity ellipsoid is stored in a map evenly discretising the arm workspace. The figure
shows the minimal manipulability measure across the workspace. This way it is a
conservative approximation of the capabilities of the robot.

Areas colored red or close to red, mark regions where the manipulability of the
arm is low. They are coincident with the singularities of the arm. However, when
evaluating the manipulability measure, the choice of the TCP influences the areas
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Fig. 23 Manipulability measure for the right arm of DLR’s Justin with tool center point
(TCP) placed at the wrist. The red areas show the singularities in the workspace of the arm.

and structure of the singularities. In the figure here the TCP is placed in the wrist,
therefore only the translational part of the Jacobian get’s rank deficient. Choosing a
different TCP changes the kinematics and therefore also the manipulability measure
through the workspace.

The main question that appears now, is how suitable is the manipulability mea-
sure for instructing geometric and logic planners where to plan and execute manip-
ulation actions?

The manipulability measure outlines only areas where the overall manipulability
is high, there are no preferred directions given. If the principal axes provide such
information but the interpretation of link velocities related to translational and rota-
tional velocities in the Cartesian space is not very intuitive. Furthermore the mea-
sure is local and bound to a certain link configuration. The measure is only valid
in a small for a small ε-neighborhood. For different configurations resulting in the
same TCP position the measure is different.

To overcome these drawbacks we try to specify the needs on the workspace rep-
resentation more detailed and define a new measure for the capabilities of a robotic
manipulator in its workspace.

9.1.3 Specifying the Needs for a Workspace Representation

For supporting logical or geometric planners the kinematic design of the robot is
already given and cannot be optimized any more. What has to be accounted during
the manipulation planning and execution are the kinematic constraints of the robot.
Figure 24 illustrates the problem faced while planning a simple grasping action.
Take a rotational symmetric object like the bottle. Given a relative position of the
arm there are grasp directions which can be more easily reached than others. Such
information should be reflected in the chosen representaion.
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This reflects that an arm’s workspace is not uniform with respect to reachability.
There are regions that can only be reached from specific directions.This directional
information needs to be captured.

Fig. 24 A simple grasping action on a bottle, illustrates the choices to be made by the robotic
system concerning arm usage and approach direction.

As the robot has two redundant arms with 7 DOF each the decision which arm
to use for the manipulation action should also be supported. Moreover, due to the
redundancy of the robot arms it has to choose among an infinite number of alterna-
tive configurations that can be used to approach and grasp an object. Considering
a mobile manipulator the question arises how best to position the mobile platform
to have optimal manipulation capabilities with respect to the operating area, e.g. a
table.

In general, we need a representation of manipulator capabilities that can be used
to characterize which places in the workspace can be easily reached. If only a spe-
cific direction is of interest, this direction should be applicable to the map, resulting
in a filtered representation that masks all information but that lying in the requested
direction. Structure inherent to the robot arm’s capabilities inside its workspace
should be easily recognizes. Using this representation the robotic system will be
able to choose good approach directions for objects to grasp and manipulate.

Representing the reachable workspace has already received attention from other
research groups. A Monte Carlo approach to represent the reachable workspace by
randomized sampling was introduced by Guan et al. [22]. However, this approach
only provides true/false information concerning the reachability of regions. No di-
rectional structure can be discerned from the representation.
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9.2 The Capability Map Approach

The ability of humans to manipulate objects depends on the position of their
arm in the workspace. Two-handed manipulation is limited to a region where the
workspaces of both arms overlap. The best performance is achieved in an even
smaller subspace. The same is true for two armed robots like Justin, whose kine-
matic design is oriented at the human example. While humans seem to have internal
models of their arm’s capabilities in the workspace, such models are still missing
for humanoid robots.

In general, every robot arm is designed differently, and therefore has different
capabilities. We show that these capabilities result in directional structures specific
to workspace regions, and that these structures can be captured and represented in
the form of a directional map. As a first step, we propose an algorithm to calculate
such a workspace map and a visualization scheme to show the inherent structure.
The approach will be illustrated using the right arm of the DLR humanoid robot
Justin.

In a nutshell, the workspace structure is extracted through discretisation, random-
ized sampling, analysis and optimization processes. The robot arm reachability in a
certain region of the workspace is examined using inverse kinematics.

9.2.1 Discretisation

The workspace of the robot arm can be encapsulated by a cube with a sidelength of
two arm lengths centered at the robot arm base (Fig. 25). The maximum workspace
of the arm is thereby overestimated. The envelopping cube is then subdivided into
equally sized smaller cubes (voxels). Using this discretisation, we make the compu-
tation and visualization of the structure within the workspace possible and clear the
way for the analysis of specific workspace regions in task planning processes.

9.2.2 Randomized Sampling to Fill the Workspace Representation

The configuration space is randomly sampled according to a uniform distribution.
For each configuration the position of the TCP is computed via the direct kinematics.
In Fig. 25 the TCP position is indicated by the coordinate frame in the hand. The
TCP position is then mapped to the subcube that contains this position.

It could be considered to use the number of randomly sampled configurations
mapped to a subcube as a measure of reachability for a region. The hope would be
that the number of sampled configurations assigned to a specific subcube correlates
with that region being easily reachable especially with respect to exploiting redun-
dancy and versatile manipulation. However this is a false conclusion. When a robot
is in a singular configuration, large steps in the configuration space for the links,
causing the singularity, result only in small motions in the Cartesian workspace.
Thus especially in regions containing singularities a large amount of sampled
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Fig. 25 The maximum workspace of the right arm is enveloped by a cube which is further
subdivided into smaller cubes of 300 mm sidelength.

configurations are mapped to subcubes. Therefore the number of configurations
mapped to a cube cannot be used to distinguish regions where versatile manipula-
tion is possible. Furthermore such a mapping does not allow discerning the searched
directional structure of the workspace. As a consequence, instep we use inverse
kinematics to examine the workspace.

9.2.3 Using the Inverse Kinematics to Examine the Workspace

To get an evenly mapping of the directional information of the workspace we use
another approach. We inscribe a sphere into each cube with a diameter equal to the
width of the cube (Fig. 26(a)). Using the spiral point algorithm proposed by Saff et
al. [43] we generate N equally distributed points on the sphere. For each point thus
obtained, we generate a frame. In Fig 26(b) the frame is shown with the x-axis (red)
and the y-axis (green) tangential to the sphere and the z-axis (blue) pointing towards
its center. The frame is then turned around its z-axis according to a fixed step size.
Each resulting frame is considered to constitute a TCP frame to be reached by the
arm in question and an inverse kinematics solution is computed. If for one of the
rotated frames at a specific point p on the sphere an inverse kinematics solution is
available, that point p is marked in the underlying data structure. It is important to
mention that the z-orientation of the TCP with respect to the sphere center is stored
in the map but cannot be visualized in the graphical representations of the map.

The inverse kinematics for our 7-DOF redundant robot arm is computed by com-
bining an analytical solution as proposed by Craig [10] with procedures to optimize
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(a) (b) (c)

Fig. 26 A sphere is inscribed into the cube (a), exemplary frames for a point on the sphere
(b), valid inverse kinematics solutions on a sphere (c).

the redundant DOF [26]. The randomly sampled configuration is taken as the initial
configuration supplied to the inverse kinematics. Since an inverse kinematics for
redundant robots does not have a single unique solution and involves some iterative
optimization, a starting solution, that is already near the desired solution is beneficial
for the computation.

9.2.4 Reachability Spheres to Characterize the Workspace

In the visualization, for each valid inverse kinematics solution on a sphere, a line
is drawn originating in the sphere center (Fig. 26(c)). The spheres visualize the
reachability for a region. We therefore call them reachability spheres. We assign a
measure called the reachability index D as in (31) to each sphere characterizing the
reachability of the region enclosed by the sphere. In equation 31, N is the total num-
ber of points on a sphere and R is the number of valid inverse kinematics solutions
recorded. The resulting value informs about the percentage of points on the sphere,
having an inverse kinematics solution:

D =
R
N
·100 with R≤ N. (31)

Using the reachability index, already some structure inherent to the robot workspace
can be visualized. To achieve this, the spheres are colored with respect to their reach-
ability index D.

Figure 27 presents the change of the reachability index across the robot arm
workspace. As expected, as we move into the interior of the workspace the index
gets better reaching its optimum in the blue region. Near to the robots arm base
the more the index gets again smaller. The reachability index D for our robot arm
ranges from 0 to 76. For better visibility, the full workspace is again cut in half
along the arm. Figure 28 (left) shows all spheres with an index D in the lowest
10 percent of the reachability index (D ∈ [0,8]) across the workspace. As expected
the spheres with the lowest index are on the border of the workspace. Figure 28
(right) shows spheres with an index D in the top 10 percent of the reachability index
(D ∈ [68,76]) across the workspace. It can be seen that spheres with a good index
D lie on somewhat more than a half a sphere shell around the robot arm base (also
compare Fig. 27) with a diameter of approximately half the robot arm length. We
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Fig. 27 Shows the reachability spheres across the workspace. The workspace representation
was cut as shown on the right for better visibility of the structure.

Fig. 28 Shows the spheres with an index D in the lowest 10% of the reachability index (left)
and in the upper 10% of the reachability index (right).

would get a complete sphere shell when disregarding the link limits. For Figs. 27
and 28, 106 random samples were drawn. The spheres have a radius of 25 mm and
200 points are distributed on a sphere. The stepsize for turning the frame around its
z-axis is 30 degrees.

9.3 Remarks on the Workspace Representation

The above described representation gives some insight in the structure of the kine-
matic capabilities of a robotic manipulator. However the detailed information can be
also easily obtained by state of the art inverse kinematic solvers if the interest is only
local. The nice property of the representation is that it can be pre-computed once for
the manipulator and then can be quickly used for subsequent queries of logical or
geometric planners. It also allows separating low level geometric algorithms and in-
verse kinematics from higher level planning. The following sections will illustrate
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how the structure can be exploited for task plans more complex than just a simple
pick and place operation.

10 Representing and Searching of Task Constrained
Trajectories

Tasks to be executed by bimanual robots should include more complex operations
than just pick and place with a multifingered hand. Kitchen tasks for instance require
beyond fetching and carrying things also the manipulation and interaction with the
environment, like doors, drawers, can or bottle fasteners. To accomplish these tasks,
the robot has to use knowledge about the specific environment, which we assume to
come from human demonstration and knowledge about its own capabilities, which
we want to retrieve from the above described capability map.

Another interesting question is which part of the kinematic chain of a more com-
plex bimanual robot like Justin must participate in the execution of a certain task.
One aspect is here the potential speedup of the geometric planning action, which
has been already shown for walking robots and humanoid upper bodies by Diankov
[14] and Pettre [37].

We argue that not only the question when to include the upper body is important
to accomplish tasks but also when to use the mobility of the base. To execute simple
trajectories it is not always necessary to use the mobile base. On the contrary, if the
mobile base is unnecessarily used, e.g., while opening a kitchen closet, additional
forces have to be compensated. These forces arise if the handle is grasped in a form
closure grasp and the potential navigation or localization errors of the mobile base
have to be compensated by a compliant arm.

In the following we propose an online method to determine the optimal base po-
sition to execute a constrained trajectory as well as methods to search for bimanual
trajectories in the overlapping workspace. Therefore the method enables a planner
to reason whether the mobile base is needed in a given task.

In a previous work [54], a mobile manipulator is positioned to execute linear
constrained trajectories. However, more general types of trajectories, are needed in
environments like a kitchen for opening doors and cupboards. The approach might
also help in order to imitate prototypical movements demonstrated by humans to
reach an object [51]. In such cases the task planner has also to reason about where
to place the robot.

We propose an algorithm that uses a model of the reachable workspace of a robot
arm to determine where the robot can be placed or if a given task is solvable at all.
We present results for 3D trajectories using the example of opening a closet. Once
the mobile manipulator is positioned, the trajectory is executed without using the
mobile base.
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10.1 Related Work

The use of models encapsulating robot specific knowledge was recently taken up
by several research groups. Pettré et al. [37] make the animation of a digital actor
more efficient by dividing the large number of DOFs of a humanoid into functional
units providing the locomotion and the manipulation capabilities. Diankov et al.
[14] use a similar functional structure for their humanoid robot to plan a path from a
given start position to an object to be manipulated. In the process they furthermore
consider a model of the reachable workspace of the robot arm to decide where the
robot may stand to grasp an object and thus focus the search. Gienger et al. [20]
use an object-specific model of the grasping capabilities of their humanoid robot to
optimize the whole body motion to reach and grasp an object.

Most approaches to constrained trajectory planning for mobile manipulators
combine the positioning of the robot with the search for feasible trajectories for
the robot arm in the configuration space (C-space). Optimization and path planning
techniques are used. Optimization techniques are applied to the whole kinematic
chain. Multi-criteria optimization can also be used for positioning a mobile manipu-
lator to reach a point. However choosing criteria weights, competing criteria, and the
resulting local minima pose a great challenge [38]. When planning constraint mo-
tions for a mobile manipulator Stilman [47] uses the Jacobian transpose to project a
given sample configuration into the subspace of configurations valid for the motion.
However, the system always moves the mobile base to accomplish a task. For sim-
ple tasks this may not always be necessary. This one the one hand slows down the
planning process as more DOFs have to be planned. On the otherhand the potential
positioning inaccuracy of the mobile base might pose large forces on the manipu-
lator when opening geometric constraint drawers for example. Diankov et al. [15]
claim that fixed grasps on objects limit manipulation capabilities. They propose to
use a set of caging grasps during path planning and execution to extend the possi-
bilities of a mobile manipulator to fulfill the task. Whether or not a trajectory exists
is determined by a timeout for the path search.

In contrast, we aim at providing a decision module that can predict with high
probability whether or not and where a trajectory can be conducted in the workspace
of the manipulators. The module is based on a reachability model for a robot arm
and not on traditional path planning techniques.

10.2 A Closer Look on the Execution of Task Constrained
Trajectories

In contrast to a pick and place operation, where the path the object is moved between
the fixed fetching and parking position has only to provide no collisions, the open-
ing of a drawer or cupboard is subject to constraints that come from the nature of the
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Fig. 29 (Left) Trajectory for opening a closet. (Right) A zoomed view.

object or task. For the first case a standard path planning algorithms can be queried
for a suitable path. What are the specific properties for the second case?

For opening a closet, the tool center point (TCP) attached to the last link of a
robot arm is constrained to move on a circular path (Fig. 29). For a frame attached
to the handle of the closet, the orientation of the z-axis (blue arrow) constantly
changes. The radius and orientation of this path are connected with the design of the
closet. Due to the robot arm kinematics and link limits, executing such a constrained
trajectory might not be possible at arbitrary positions in a robot arm’s workspace.
Depending on a robot arm’s capabilities or the arm’s attachment to an upper body,
some mobile manipulators may not be able to perform certain tasks at all, like open-
ing a closet at a certain height. A method is needed to analyze the capabilities of a
robot given the environment and typical tasks performed therein.

Also for the execution of bimanual tasks like the unscrewing of a bottle fastener
or the pouring action to fill water from a bottle into a grasped glass, the task de-
termines the trajectory to be executed by the robot. The place in the overlapping
workspace as well as the directions and contacts where to grasp the objects are to
be chosen by the task planning module.

In the following a way to represent such task constraint trajectories and a way
to match them with the capabilities of the robot, extending previous work [54], will
be presented. Section 10.5 describes how regions are extracted where the given 3D
Cartesian space trajectory is possible. These are used to infer placements for the
mobile manipulator. In the second stage, the placements are checked for collision-
free execution of the trajectory. Results are reported in Sect. 10.8.

10.3 Definition of the Search Pattern

We will use the example of opening a closet introduced in Sect. 10.2 to illustrate our
method. If a closet has to be opened, the end-effector grasps the handle and moves
on an arc (Fig. 29). We assume the trajectory template followed by the robot arm
TCP to be given as a sampled sequence of frames Fl , l > 0 with respect to a local
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reference system. A frame Fl is represented as a homogenous matrix Fl =

(
Rl tl
0T 1

)

with Rl = (x, y, z) ∈ SO(3) and tl ∈ IR3 describing rigid body rotation and transla-
tion. The frames are mapped to their discrete representations in the model. The set
of accordingly mapped frames Fl is called search pattern p hereafter. The mapping
works in the following manner. For each position of the Cartesian trajectory we first
determine the sphere it maps to. Fig. 30 (left) exemplarily shows a trajectory super-
imposed on the workspace discretisation underlying the reachability sphere maps.
The 2-d projection was chosen for illustration. The filled spheres symbolize those
spheres the trajectory is mapped to.

f (tl) : IR3−> IN3 with f (tl) = (p[l].x, p[l].y, p[l].z) (32)

Let f be the function that maps tl to a sphere in the pattern given the discretisation,
i.e. the sphere diameter, also underlying the reachability sphere map.

Fig. 30 Discretisation of a trajectory. (Left) 2-d view of mapping translations on the sphere
map grid. (Right) Mapping of the frame orientation to a point on the sphere.

Each sphere is represented by an offset in p[l].x, p[l].y, p[l].z of the sphere space
with respect to the point of reference of the pattern.

The frame F can equally well be interpreted as a coordinate system base F =(
x y z t
0 0 0 1

)
with x, y, z, t ∈ IR3. In a second step, the z-axis zl of frame Fl is

mapped to the best fitting point on the sphere and determines the pattern element
p[l].k ∈ [1,n]. Let Fi,0 be the coordinate system attributed to point i and nominal
orientation 0 around zi,0. Note that zi,0 = zi,m = zi and |zi| = |zl | = 1. Equation 33
describes the mapping which is illustrated in Fig. 30 (right)

p[l].k = argmini∈[1,n](acos(zi
T · zl)) (33)

For the computation of the reachability sphere map the orientation around the z-axis
of a frame (Fig. 26(b)) was discretised into m steps. In the last part of the mapping
process the orientation around the z-axis of frame Fl has to be mapped to the sphere
data structure, i.e. to one of these m orientations. Let Fk,0 be the frame belonging
to the previously computed sphere point k and nominal orientation 0. The x-axis xl
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of frame Fl is projected onto the xy-plane of the coordinate system defined by the
frame Fk,0 in (34). Let Pxy be the projection matrix for projection onto the xy-plane.

xnew
l = Rk,0 ·Pxy ·R−1

k,0 ·xl (34)

α = acos

(
xnewT

l ·xk,0

|xnew
l | · |xk,0|

)
. (35)

The angle between the projected axis and the x-axis of frame Fk,0 is then com-
puted as in (35) and discretised. It determines the pattern element p[l].o ∈ [1..m]
with p[l].o = � αΔo +0.5�. Δo denotes the discretisation step width of the orientation
around z.

Fig. 31 (Left) The trajectory mapped to spheres. (Right) A zoomed view showing the sphere
points mapped.

Figure 31 shows an example trajectory for opening a cupboard and the search
pattern in the space of spheres. In Fig. 31 (left) the large coordinate frames represent
the original trajectory frames. The smaller frames represent the mapped frames in
the sphere data structure. In Fig. 31 (right) the red lines show to which lines on the
sphere the frames were mapped.

10.4 The Search for the Trajectory in the Workspace
Representation

Cross-correlation is a standard technique in signal processing to determine the shift
between two signals. The signals are specified over the same domain, e.g. IR→ IR
for audio signals over time or IR2→ IR for static grey images. The result of a corre-
lation is a signal in the same domain, showing peaks at those locations where the two
signals best match each other. We use this idea to find the search pattern obtained
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in Sect. 10.3 in the reachability sphere map. The search is done by correlating the
sphere data structure with the given search pattern. Figuratively speaking, the pat-
tern is moved across the 3D data structure and compared with the data present.
Equation (36) implements the correlation between the two signals. Let D be the 3D
data structure which represents the reachability sphere map. The search pattern p is
obtained as described in the last section:

(D∗ p) = ∑
ix
∑
iy
∑
iz

p.length

∑
l=0

S(ixl , iyl , izl)[p[l].k][p[l].o] (36)

S(ix, iy, iz) = D[ix]D[iy]D[iz] (37)

ixl = ix+ p[l].x, iyl = iy+ p[l].y, izl = iz+ p[l].z (38)

S(ix, iy, iz) in (37) describes the location of a sphere in the 3D reachability sphere
map. ix, iy, iz iterate over the whole workspace D minus the dimension of the 3D
search pattern. In (38) the sphere offset of the pattern element l is added to the cur-
rent starting point of the pattern in the 3D sphere space. Given a number of discre-
tised orientations around the z-axis (Fig. 26(b)) the value of S(ix, iy, iz)[p[l].k][p[l].o]
encodes for point p[l].k on the sphere whether the orientation p[l].o around the z-
axis is reachable. The variable is 1 if the orientation is reachable and 0 if it is not
reachable. As a result (D∗ p) is a representation of how well the trajectory fits across
the map. We search those places in the robot arm workspace where the pattern fits
completely. Figure 32 exemplifies the correlation result for opening a closet at a cer-
tain height. Justin’s torso is in its zero position and the trajectory is at about shoulder
height (Fig. 32 (top)). Since the trajectory is composed of 20 frames, the correlation
result ranges from 0 to 20 (Fig. 32 (middle), (bottom)). Note that the positive x-axis
indicates the front of the robot. A value of 20 (dark red) means all frames of the
trajectory are predicted to be reachable if the trajectory is started at the correspond-
ing point in the robot arm workspace. It can be seen that the region in which the
trajectory can be performed completely is quite small in this example.

Note that with this method, the pattern will not be found if it occurs in the image
in a different orientation. The standard solution to this is to rotate the pattern using
a fixed step size. Accordingly, the original Cartesian space trajectory can be rotated
before being mapped into the sphere space.

10.5 Computing the Robot Base Position for Optimal Execution

The reachability map is computed with respect to the robot arm base. Thus if the
robot arm base is moved, the map moves accordingly. Once we have the position of
the trajectory in the robot arm workspace with respect to the robot arm base, the po-
sition of the mobile manipulator with respect to the world can be determined easily.
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Fig. 32 (top) Justin in the Kitchen. (middle) Correlation result for the trajectory. (bottom)
Contour view of correlation result.
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The z-axis of the world system is assumed to point upwards. The transformation
from the old to the new robot base position involves only a rotation R around the
z-axis of the world system and a translation t in the xy plane. Let t = (x,y,z)T be
the translation and R be the rotation of the search pattern with respect to the map
space for which the correlation of (36) reaches the maximum. Equation (39) gives
the target position of the arm base in a reference frame F0, e.g. the world base. The
placement of the mobile base follows directly

T 0
arm = T 0

ob ject · (T arm
ob ject)

−1 = T 0
ob ject

(
R t
0T 1

)−1

(39)

10.6 Computational Complexity

In this section we present the examination of complexity that led us to perform the
search in position space as opposed to in frequency domain. Cross-correlation in
image processing customarily transforms two images into frequency domain using
fourier transformation. The reachability sphere map and the search pattern are the
correspondences of the image. In frequency domain the spectra are multiplied and
the result is transformed back using inverse Fourier transformation.

It is known that the fast discrete fourier transform (FFT) using Cooley-Tuckey’s
radix-2 algorithm has a time complexity of O(N log(N)), where N is a power of
factor 2. Let N3

D denote the volume of the discretised robot workspace with side
length ND constraint to be a power of factor 2. The complexity is highest if the search
pattern has the dimension of the workspace, i.e. NP = ND. According to the number
of multiplications for a single FFT [3], the total cost for two fourier transformations
and for the multiplication in frequency domain involved are

Costfreq = |O|N3
D log2(N

3
D)+ |O|N3

D . (40)

where |O| = n ·m. n is the number of discretised orientations, i.e. points on the
sphere and m the number of discretised orientations around z. Note that the cost
of the fourier transformation of the reachability map is neglected because it can be
computed once and used for different planning tasks. In the case of the discretisation
of Justin’s arm workspace with side length ND = 40 spheres and |O| = 200 · 12
orientations, the total number of multiplications Costfreq amount to 2.6 ·109.

In contrast, the number of multiplications for general cross-correlation in the
space domain amount to |O| ·N3

D ·N3
P = 1.5 · 1011, whereas a side length NP = 10

of the trajectory map is assumed. Contrary to the general case, significant optimiza-
tions can be applied here because only a few entries in the trajectory volume are
non-zero. Let |p| denote the length of the discretised trajectory, then the multiplica-
tions amount to

Costspace = (ND−NP)
3 · |p| . (41)
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Only a subvolume of the robots reachability map is considered, because the tra-
jectory is requested to be completely within the workspace of the robot. Whenever
|p|=NP, the costs reach its maximum at NP =ND/4. In the case of Justin’s arm, this
corresponds to only 2.7 · 105 multiplications1, which are four orders of magnitude
fewer then assessed for the correlation with the fourier transformations.

10.7 Discretisation Issues

In this section we describe the requirements for the data representation and the tra-
jectory representation that have to be met to ensure the success of our approach.
The requirements for the reachability map concern the workspace discretisation step
width, the number of points on the spheres and the orientations around the z-axis.
In general it can be stated the greater the workspace discretisation step width, i.e.
the sphere diameter, the worse the prediction performance. A corner stone of our
approach is that the spheres inscribed in a subcube describe the reachability for
this region. Due to memory consumption the spheres cannot be arbitrarily small.
Therefore a sphere diameter of 0.05 m was empirically chosen. If too few points are
distributed on the sphere, then direction-specific reachability is not represented well
anymore. Here the orientation of the z-axis is captured by uniformly distributing
200 points across a sphere. In this case the minimum angle between two points is
8.12◦. The orientation around the z axis was discretised into 12 steps.

To unambiguously represent the task-specific trajectory template, the trajectory
has to be sampled according to the Nyquist-Shannon sampling theorem [45]. If this
theorem is violated and too few frames characterize the trajectory, the trajectory
cannot be correctly reproduced, i.e. the pattern does not correctly represent the tra-
jectory. In this case the trajectory is aliased with a less frequent one (Fig. 33 left).
The search results are not valid for the original trajectory. In this case the ratio of
predicted to actually reachable trajectories is low.

Fig. 33 (Left) The aliasing effect when sampling a 2-d trajectory. (Right) A trajectory with a
low amplitude.

For trajectories with low amplitude i.e. amplitude< sphere radius (Fig. 33 right)
we assume that the interpolation assumption holds which underlies the discretisation
of the robot arm workspace. It is assumed that at each point of a subcube the same
orientations are reachable as on the sphere located at its center.

1 Since both volumes are binary, the multiplication can be replaced with a simple binary
AND operation.
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10.8 Evaluation

In this section we evaluate the presented approach for different types of tasks and
corresponding trajectories on the mobile Humanoid Rollin’ Justin [18]. For refer-
ence the approach is summarized in Fig. 34.

Fig. 34 The algorithm at a glance.

10.8.1 Naive Search vs. Model-Based Search

Without a reachability map, a brute force search could be thought of, to determine
whether a given trajectory can be performed by the robot. The start point is ran-
domly sampled using a uniform distribution. The trajectory is attached to this start
point. However the sample only contributes to the computed success rate if the po-
sition of the first and last frame of the trajectory lies within the hull of the reachable
workspace of the robot arm. The trajectory is checked for reachability using inverse
kinematics. A relative success measure is computed from the number of successes.
In Tab. 3 we report the likelihood to find the arc for opening a closet at a certain
height in the workspace. Results are reported for the brute force search and the
reachability model based search for the trajectory in one orientation.The results for
the brute force approach show that a lot of effort is wasted to find valid trajecto-
ries. While our efficient approach needs 1.6 s to find and verify the 96 trajectories,
the naive approach finds the same number of valid trajectories in 20 s. Consider-
ing that the trajectories may still be inconsistent or colliding, the advantages of our
model-based approach are emphasized.



Observation and Execution 105

Table 3 Results of the brute force search are compared with the reachability model-based
approach.

brute force search reachability model
samples valid % predicted valid %
1 ·106 39807 3.98 119 96 80.7

10.8.2 Validation of Solutions

The correlation process itself is very efficient. It needs 25 ms to find all occurrences
of an arc trajectory (Fig. 29) with 20 frames in one orientation within the discretised
workspace. Only those correlation results are considered that lie in an area of the
workspace that is of interest for the given task. The solutions have to be validated
because of the following:

10.8.3 Generalization Assumption

The correlation process provides a number of starting points for trajectories. These
need to be checked for actual reachability since the reachability sphere map assumes
that entries in the map generalize over the complete subregion, i.e. subcube. It is
assumed that at each point of a subcube the same orientations are reachable as on
the sphere located at its center, i.e. that the reachability structure does not change
for small increments in space. Normally, this assumption will hold. However at the
inner and outer border of the reachable workspace or at the border of structurally
different regions, this assumption may be violated.

10.8.4 Collision-Free and Consistent Trajectories

Using the reachability sphere map, reachability of the trajectory is independently
evaluated for the individual frames. It is not guaranteed that the robot is able to
follow a smooth trajectory between frames, e.g., in the vicinity of singularities re-
configurations of the robot arm will occur. Therefore each trajectory is checked for
consistency by setting a threshold on the allowed link-wise change of two config-
urations for two adjacent path steps. Additionally the trajectory is also checked for
collisions for the robot with the environment and the robot arm with e.g. the head or
the upper body.

10.8.5 Robots Working in the Kitchen

A robot working in a kitchen is required to be able to open cupboards to extract
dishes or fill the dishwasher. Robot placements of the mobile manipulator are com-
puted and validated for opening the door of a cupboard (Fig. 29). The trajectory
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Table 4 The set of solutions is analyzed with respect to different criteria.

nr. of solutions
torso conf. predicted real reconf. colliding valid

C1 119 96 70 82 7
C2 204 195 97 157 27

search is only performed for the original orientation of the trajectory. Results in Tab.
4 are reported for two different configurations of the movable upper-body of the
robot Rollin’Justin. The results show significant differences for the two torso con-
figurations. For configuration C2 more reachable solutions are found. These results
indicate that the presented approach is able to decide on a beneficial torso configu-
ration for a given task. Fig. 35 exemplarily shows a robot placement for each torso
configuration. After the validation step, a set of valid solutions remain, that a task
planner can choose from. In both cases, the number of collisions is striking.

Since the workspace of the arm is nearly symmetric solutions are found in front
of and behind the torso of Justin (Fig. 32). In the latter case Justin has to be placed
inside the kitchen closets to execute the trajectories. Furthermore often collisions of
the arm and the head were encountered. The results for the check for consistency and
freedom of collision should be seen as a proof of concept. Our inverse kinematics
currently computes independent solutions for the individual frames and does not ex-
ploit the null space of the 7-DOF robot arm to avoid collisions. For trajectories that
are currently invalid, we expect that there exist alternative arm configurations that
lead to consistent and collision-free solutions. We measured the time consumption
for each part of the algorithm for the torso in configuration C1. The computation

(a) (b)

Fig. 35 Rollin’ Justin is placed to open a closet. (a) The torso is in configuration C1. (b) The
torso is in configuration C2.
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Table 5 Computation times for the steps of the algorithm.

correlation reachability reconfiguration collision total
25 ms 1564 ms 0.113 ms 31 ms 1620 ms

times are summarized in Tab. 5. The test was performed on an Intel Pentium D 3
GHz computer with 2 GB memory.

10.9 Remarks on the Trajectory Search

The presented approach allows a mobile manipulator to be optimally positioned
to execute 3D trajectories determined by a certain task to be executed. The used
model describes the capabilities of a robot arm and the trajectories to be executed
accordingly. This allows using cross correlation to immediately find all possible
positions in the workspace of the robot where the task trajectory can be executed.
Once a trajectory is found, deriving the corresponding mobile manipulator position
is straight forward.

The proposed algorithm is not only relevant for service robotic tasks. It can also
be used for online positioning industrial robots e.g. for welding tasks or to compare
the capabilities of different robot arms. The determined number of solutions for the
constrained task can be assumed to correlate with the ability of the robot to cope
with disturbances e.g. objects left behind by a human, or a human standing in the
way. It could be argued that the mobile base can always be used for compensation.
However, then the robot cannot operate in tight spaces and has to compensate forces
occurring at the TCP.

The method is especially suited to decide whether or not a task e.g., opening a
door, can be done without using the mobile base. This information could be used by
a task planner to decide which planner or execution component to trigger.

11 The Influence of Obstacles on the Reachable Workspace

11.1 Considering Obstacles in Grasping and Manipulation
of Objects

The previously described approaches add the constraints coming from the robotic
system to the planning problem. Classical motion planners however deal with the
problem of collision free pathes in the presence of obstacles. The above mentioned
solutions are not considering any obstacles. Therefore in scenarios with targeted ob-
jects and several obstacles the solutions and implications derived from the capability
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map and task trajectories might no longer hold for the actual situation. A way of
determining if obstacles prevent the execution of a task has to be found. This is again
helpful for the simple case of pick and place where certain grasp directions might
be blocked as well as for the execution of certain task trajectories. In the following
the influence of obstacles to the capability map is shown and a representation is
proposed to reflect the resulting restricted capabilities of robotic manipulator.

11.2 An Obstacle’s Region of Influence

Obstacles have an influence on the reachability of neighboring regions. Depending
on size and location of the obstacle in the workspace, different regions of influence
can be expected. The capability map showed that the workspace of the right arm
of the humanoid robot ”Justin” has regions with different structural properties. We
examine the influence of obstacles on the reachability using a simple object. We use
a cube (height:0.3m, width: 0.06m, depth: 0.06m ) that is positioned upright in the
workspace. In rough approximation bottles or glasses can be represented by similar
cubes. The influence of the obstacle is examined at the outer workspace border, in
the center of the reachable workspace and near the inner border of the reachable
workspace. Fig. 36 shows the position of obstacles and the positions p1 and p2 for
objects to be grasped.

Fig. 36 Obstacles are positioned in structurally different regions of the workspace.

For reason of fitting through doors and avoiding self-collisions, the arm of the
robot ”Justin” is attached at an angle of 150 degree to the upper body of ”Justin”.
Thus the workspace is oriented askew with respect to a table surface. For the analysis
presented here, the arm was attached at an angle of 90 degrees to the robot to obtain
more easily interpretable results. Simplified 3D models of the robot links were used
in the collision tests.

The reachability sphere map will be used to visualize the influence of obsta-
cles. All target positions in the workspace for which the inverse kinematics solution
collided with the obstacle are marked in the data structure and are reflected in the
visualization. By randomly sampling an initial solution for the inverse kinematics,
different arm configurations for the same Cartesian position are computed by the
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inverse kinematics and the redundancy is explored. This is a conservative estima-
tion of the region of influence of the object. Due to the redundancy of the robot arm,
some of the target positions may be reachable without collisions using a different
configuration of the robot arm. The resulting representation approximates the max-
imum region of influence of an obstacle. At the moment it is computed off-line. In
view of our long term goal with respect to reasoning, the exploitation of these re-
gions of influence should be seen as a proof of concept.

Outer obstacle

Center obstacle

Inner obstacle

Fig. 37 The region of influence with respect to collisions is visualized for the considered
obstacle (gray cube).

For each obstacle (gray cube) this maximum influence region is visualized. The
right-hand side of Fig. 37 shows a cut through the representation to enable an im-
pression of the structure. The color encodes the percentage of points on the sphere
that are reachable and in collision. Thus blue spheres accumulate many reachable
positions where the arm collided with the obstacle.
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As expected, it can be seen that the shape of the region of influence of an ob-
stacle changes when the obstacle is placed in the structurally different regions of
the workspace. The region of influence increases as the obstacle is placed closer
to the robot arm base. The region of influence of the obstacle placed near the in-
ner workspace border is the largest. This region is often swept when the robot arm
operates in the center of its workspace, therefore an obstacle placed in this region
causes many collisions. If the obstacle is placed at a different position in the specific
structural region of the workspace, similar structures of the region of influence can
be observed. This is shown in Fig. 38 using the center obstacle and placing it at
two additional positions. For this example, these regions of influence are computed
off-line. If their changes could be analytically described when placed at a differ-
ent position in the considered structural region, it would be possible to perform the
collision checks against the environment outside of the grasp planner. Thus system
modularity would be preserved. The performance that could be achieved with such
a system will be examined in the following sections.

Fig. 38 The center obstacle is placed at different positions in the same structural region and
the region of influence with respect to collisions is visualized.

11.2.1 Obstacles and the Influence on the Capability Map

The obstacle’s region of influence is subtracted from the original reachability sphere
map. Figure 39 (top) shows the original reachability sphere map. The color encodes
the percentage of points reachable on the sphere, i.e. the reachability index [55].
After subtracting the region of influence for the center obstacle from the original
map we get the map visualized in Fig. 39 (bottom). The influence of the center
obstacle in the reachability is clearly visible. Using this modified reachability sphere
map, the capability map is recomputed.

By giving this modified capability map to the grasp planner collision avoidance
for the robot arm is added to the grasp planner without actually including the robot
and object models into the grasp planner. However the capability map is not a per-
fect representation of the reachability sphere map and our robot arm is redundant.
Therefore the robot arm configurations are still checked for collisions in a final step.
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Fig. 39 (Top) The original reachability sphere map. (Bottom) The reachability sphere map
minus the collision representation of the center obstacle.

Table 6 Time to generate a collision-free grasp in the presence of one obstacle.

tight integration loose integration cap. map
position p1

inner obstacle 31 ms 119 ms 60 ms
center obstacle 28 ms 91 ms 46 ms
outer obstacle 26 ms 61 ms 33 ms

position p2
inner obstacle 33 ms 115 ms 92 ms
center obstacle 58 ms 202 ms 94 ms
outer obstacle 34 ms 120 ms 71 ms
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11.3 Remarks on the Obstacle Representation

The calculation of the obstacle representation in the workspace is of high computa-
tional cost. Therefore an online computation which would be preferable for chang-
ing scenarios, seems not appropriate. If for a number of positions in the workspace
certain geometric classes of obstacles are pre-computed, these generic regions of
influence could be used for a geometric reasoning system to decide wether a certain
manipulation action is likely to succeed or to fail. However such an operation can
only give an approximative view on the real scenario. It has to be stated that the
approach cannot lead to an optimal solution as the approximation of the blocked
area by the obstacle is only a rather rough estimate. However, for a task planner this
can be still a substantial benefit if potential penetrating objects for the execution of a
task can be identified and a removal operation is instantiated. This is somewhat sim-
ilar to the instruction of humans to try to keep a tidy workspace, not to unintendedly
knock over spare objects.

12 Optimizing Grasp and Motion Planning

In the previous sections it has been shown how the constraints of the robotic arm
can be taken into account when planning human demonstrated or otherwise speci-
fied tasks on a robotic platform. The topics of pick and place actions grasping and
releasing an object have been tackled from the robotics arm perspective. The inte-
gration of an efficient grasp planner has not been intensively studied. Grasp plan-
ning poses additional problems. The geometry of the grasped object together with
the kinematics and geometry of the grasping device is a well-known and complex
planning problem itself. If task execution on bimanual robotic system should be ad-
dressed, the grasp and motion planning as well as the overlaying task planner must
interplay well. Therefore in the following section it is shown how the concept of the
capability map can be adopted and integrated efficiently.

12.1 Related Work on Grasping and Grasp Planning

If the model of the object is known beforehand, such as in applications with semi-
structured environments (e.g. a home environment), information useful for speeding
up the online computation of a valid grasp can be obtained and stored off-line, to be
consulted when the online task planner requires it. For instance, the Columbia grasp
database stores thousands of grasps for different objects and hands [21]. Using this
database, a grasp planning algorithm looks for objects similar to the object to be
grasped, and synthesizes new FC grasps based on the grasps stored in the database.

The object geometry has a large influence on the final FC grasps. In [56], it is
considered that some regions on the object surface contribute to high quality grasps
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more than others. This information is represented in an object-specific grasp map,
which can later be used to bias the generation of force closure precision grasps by
concentrating on the most promising regions.

The construction of a task map for representing feasible power grasps on a partic-
ular object was previously proposed in [19]. The 6-dimensional space of positions
and orientations for a particular hand with respect to an object frame is explored
using Rapidly exploring Random Trees (RRTs). For a given initial pose, the hand
moves forward towards the object until a contact is detected. Then, the fingers are
closed until a sufficient enclosing force is achieved, and the object is lifted and
slightly rotated to verify that the power grasp is successful. The exploration using
RRTs allows the detection of contiguous regions of valid parameters in the pose
space. The specification of continuous regions, defined as boxes in the pose space,
has also been used for meeting task specifications despite of pose uncertainties [2].

12.2 Generation of the Graspability Map

This section presents the approach for computing the graspability map. First, the
assumptions and considerations on the hand workspace are presented. Then, the
algorithm for computing the graspability map is explained, and the implementation
details are discussed, including the sample generation and the verification of the
force closure condition.

12.2.1 Assumptions

In this work the following assumptions are considered. The object surface is repre-
sented by a setΩ of N points, specified by position vectors pi measured with respect
to a reference system located in the center of mass CM of the object, and each point
pi has an associated surface normal direction n̂i pointing towards the interior of the
object. N is assumed to be large enough to accurately represent the object.

The frictional contact between each finger and the object is considered punctual.
Coulomb’s friction model is used, which states that to avoid slipping, the force f i
applied at pi must lie inside the friction cone defined by f t

i ≤ μ f n
i , where μ is the

friction coefficient and f t
i and f n

i are the tangential and normal components of f i.
In the 3-dimensional space this model is nonlinear and, to simplify it, the friction
cone is linearized using an m-side polyhedral convex cone. Thus, by representing
the unitary vector along the j-th edge of the convex cone at the i-th contact with n̂i j,
the grasping force is

f i =
m

∑
j=1

αi j n̂i j , αi j ≥ 0. (42)

The force f i applied on the object at pi generates a torque τ i = pi× f i with
respect to CM. f i and τ i are grouped together in a wrench vector given by
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ω i = ( f i τ i)
T . The wrench ω i j generated by a unitary force f i along the edge j of

the linearized friction cone is called a primitive wrench. A grasp defined by the set
of contact points C = {p1, . . . , pn} is associated with the set W of primitive contact
wrenches W = {ω11, . . . ,ω1m, . . . ,ωn1, . . . ,ωnm}.

12.2.2 Force Closure Workspace of the Hand

The workspace of the hand depends only on its kinematic configuration. For the
computation of precision grasps, however, the whole hand workspace is not ex-
ploited, as not all the configurations of the fingers can lead to force closure precision
grasps. Let Φ be a set of spatial points located with respect to the base coordinate
system of the hand, and reachable for a defined set of hand configurations. The
set Φfc is defined as the set of reachable points for the fingertips, which potentially
allow a force closure grasp [42].

Fig. 40 Workspaces for the Barrett Hand: a) Reachable points for the fingertips; b) Set of
points Φfc.

To compute Φfc, the hand configuration space is uniformly sampled, and the
position of the fingertip region is computed via the direct kinematics of the hand.
The FC condition can be tested using the normals to the fingertips, a predefined
coefficient of friction μp, and a common coordinate system with its origin located
at the centroid of the considered fingertip points. The artificially imposed μp should
be the maximal value expected for the applications of the real hand-object system.
As an example, Fig. 40a shows for a Barrett hand [50] the set of reachable points for
a patch defined on each fingertip. Figure 40b shows for the same hand the set Φfc,
computed with a friction coefficient of μp = 0.5. Note that in this case the set Φfc

is composed by three different subsets of points, hereafter called φi, one for each
fingertip (Φfc = φ1∪φ2∪φ3).
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12.2.3 Algorithm

The computation of the graspability map requires the following data:

• A 3D object model (with the assumptions described in Sect. 12.2.1).
• A set Φfc of reachable points for the fingertips of a mechanical hand, which

potentially lead to force closure precision grasps (Sect. 12.2.2).
• A friction coefficient μc that estimates the friction between the fingertips and the

object.

The algorithm to compute the graspability map works as follows. First, the space
surrounding the object that allows a contact between the robot hand and the object
is enveloped by a parallelepiped (which is a scaled version of the bounding box of
the object). A number of poses for the hand base frame are defined inside this par-
allelepiped. For each pose, a collision detection between the object and the hand is
performed, with the fingers in the configuration of maximum aperture of the hand. If
there is no collision, then the intersection ψi between the object and the workspace
φi for each finger is computed. The set ψi includes all the points on the object reach-
able for each finger i. The next step creates the sets ψ ′i of intersected points whose
normals are within the potential directions of force that the fingertip can apply, as
shown in Fig. 41. If at least two sets ψ ′i are not empty, then it is verified whether
the reachable points lead to a force closure grasp. The steps in the algorithm are as
follows.

Algorithm: Computation of the graspability map

1. Voxelize the parallelepiped delimiting the possible locations of the hand base
frame around the object.

2. Define a set Γ of potential locations and orientations for the hand base frame.
3. For each pose of the hand base frame in Γ :

a. Check for collisions between the hand and the object. If there is a collision,
discard the pose.

b. For each finger i compute ψi = φi∩Ω .
c. Obtain the sets ψ ′i ⊂ ψi of points with normals within the directions of force

that each fingertip can apply.
d. If at least two sets ψ ′i are not empty

Verify the force closure condition
Else

Discard the pose.

4. Return all the poses in Γ that lead to FC grasps

Figure 42 illustrates some steps in the computation of the graspability map for a
banana, using a DLR hand II [4]. Figure 42a shows different orientations for one
potential location of the origin of the hand base frame. Figure 42b shows the hand
in one of these potential poses. Figure 42c shows the intersection of the workspaces
φi with the object, and Figure 42d shows the corresponding sets ψ ′i . A modified
version of the Voxmap-Pointshell (VPS) algorithm [44] was used to compute the
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Fig. 41 Reachable directions for a fingertip i: a) Workspace φi for the fingertip; b) Directions
of forces that the fingertip can apply on the object.

Fig. 42 Steps in the computation of the graspability map: a) Different orientations for the
same location of the hand base; b) Hand in one of the potential poses; c) Intersection of the
workspaces φi with the object; d) Sets of reachable points ψ ′i .
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intersections, due to the fast responses (below 1 ms) to collision queries. This al-
gorithm basically computes the intersections between voxmaps, voxelized volume
structures for static objects, and pointshells, point clouds describing moving objects.
For Step 3b, the computations are performed considering the workspaces φi as static
objects, i.e. the global coordinate system is located in the hand base, and the coordi-
nates of the points inΩ are transformed to that system via the transformation matrix
describing the relative pose of the object with respect to the hand. The outcome of
the VPS algorithm is the set ψi of intersection points between the workspaces and
the object.

The following subsections provide more details on the generation of the set Γ ,
and on the force closure verification.

12.2.4 Potential Poses for the Hand Base Frame

The generation of the set Γ of potential positions and orientations for the hand base
frame works similar to the discretisation of the capability map. The space surround-
ing the object that allows grasping the object with a robot hand is enveloped by a
parallelepiped. This space is subdivided into equally-sized cubic voxels. To gener-
ate postures, a sphere is inscribed inside each voxel and on this sphere n points are
uniformly distributed. Frames are generated for each point on the sphere, which de-
scribe the desired pose of the hand base frame. The normal to the sphere at a sphere
point determines the z-axis (blue arrow) of the hand frame. The orientation of the
x- and y-axis around the z-axis are sampled equidistantly. If a force closure grasp is
found for one specific frame, this fact (but not the associated finger configurations)
is saved in the data structure of the graspability map. The availability of a force clo-
sure grasp for a hand frame is visualized by a black line perforating the sphere at
the corresponding point. The spheres visualize the graspability for a region of the
space. The graspability map is the aggregation of all the considered spheres.

12.2.5 Force Closure Verification

Given one contact force at each fingertip, a necessary and sufficient condition for
the existence of an FC grasp is that the origin O of the wrench space lies strictly
inside the convex hull of the set W of primitive contact wrenches [30], from now on
represented as CH(W ). Several FC tests based on this necessary and sufficient con-
dition have been proposed, for instance solving linear optimization problems [28],
linear matrix inequalities [23], or using collision checks [58].

For the generation of the graspability map, the problem is more complex. Given
the sets ψ ′i of reachable points per finger, we must find out if there exist at least one
set of contact points C = {p1, . . . , pn} such that its corresponding wrenches allow
an FC grasp. We use the following proposition.
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Proposition: Given sets of points {ψ ′1, . . . ,ψ ′n}, a necessary condition for the ex-
istence of a force closure grasp for a contact set C = {p1, . . . , pn}, where pi ∈ ψ ′i , is
that the convex hull CH(Wψ ′) contains the origin of the wrench space, with Wψ ′ the
set of primitive contact wrenches for all the points in ψ ′1∪ . . .∪ψ ′n.

For the implementation of Algorithm 1, speed in testing the FC condition in
Step 3d is important, as a large number of sample poses is required to generate
the graspability map. To speed up the process, Proposition 1 is tested not in the
6-dimensional wrench space, but in the 3-dimensional force and torque subspaces,
which leads to an empirical speed increase of about 100x. This option is chosen
despite the loss of accuracy due to this approximation.

12.3 Remarks on the Graspability Map

We proposed an algorithm for the off-line computation of the graspability map, a
representation of the poses for a mechanical hand that might lead to a precision
force closure grasp. The map is specific for an object and hand. The algorithm is
based on computing the intersection between the object and the workspaces for the
fingertips. When a valid set of reachable points is obtained for each finger, a neces-
sary condition for obtaining FC grasps is applied. The map can also be obtained by
representing a database of FC grasps on the same object using the specified hand.
Although that representation is not exhaustive, it allows the visualization of other
type of information, such as the maximum grasp quality obtainable from a given
position of the hand.

This approach can be used to do cross-correlation with the capability map of a
manipulator to get clear distinction where to place the robot to most likely succeed in
pick and place operations. This shows that the storing of discretised workspace and
graspability information might be a beneficial way to efficiently plan manipulation
tasks for bimanual robotic systems.

13 Conclusion

One aim of the DEXMART project was to make the observation of human manip-
ulation actions available for the planning and execution of the same manipulation
actions on a dual armed robotic platform. A strong focus was also on the represen-
tations used for storing the observed information as well as the representations to
assist the planning and their comparison and potential harmonization. This has been
successfully demonstrated for the lower level hand trajectories (Sect. 7) observed
from human demonstration and executed on a robotic hand with similar kinematic
structure. For the higher levels we followed an approach where the task constraints
haven been tried to extract from the motions observed. This way the kinematics
of the human have been abstracted away. On the one hand this allows passing
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the information to the planning and execution engines of the robotic system directly
but the kinematic and geometric constraints arising from the robot and the scene
have to be added. If the problem is passed directly to a motion planning system sit-
uations where the task cannot be executed with the current robot position in front
of the scene or due to blocking obstacles might not be regarded and end up with
unwished long planning times. Therefore representations have been developed that
allow reflecting the constraints posed by the robot and the influence of obstacles
in the scene on those constraints. Combined with the task constraint information
derived from human observation the robot is capable of generating a manipulation
plan for complex tasks. To establish a real intelligent reasoning component a pre-
diction module relying on a very fast and robust physical simulation engine would
have been necessary. This way the robotic system could choose among the various
solutions fulfilling all constraints the one with the highest probability to succeed
with the task. In the current implementation of the DEXMART execution system
such an engine is not available but could be added and therefore improve the system
further more.
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Human–Robot Interaction

Daniel Sidobre, Xavier Broquère, Jim Mainprice, Ernesto Burattini, Alberto Finzi,
Silvia Rossi, and Mariacarla Staffa

Abstract. To interact with humans, robots will possess a software architecture much
more complete than current robots and be equipped with new functionalities. The
purpose of this chapter is to introduce some necessary elements to build compan-
ion robots that interact physically with humans and particularly for the exchange
of object tasks. To obtain soft motion acceptable by humans, we use trajectories
represented by cubic functions of time that allow mastering and limiting velocity,
acceleration and jerk of the robot in the vicinity of the humans. During a hand-over
task and to adapt its trajectory to the human behavior, the robot must adjust the
time motion law and the path of the trajectory in real time. The necessity of real
time planning is illustrated by the task of exchanging an object and in particular
by the planning of double grasps. The robot has to choose dynamically a consis-
tent grasp that enables both robot and human to hold simultaneously the exchanged
object. Then, we present a robotic control system endowed with attentional mod-
els and mechanisms suitable for balancing the trade-off between safe human–robot
interaction (HRI) and effective task execution. In particular, these mechanisms al-
low the robot to increase or decrease the degree of attention toward relevant ac-
tivities modulating the frequency of the monitoring rate and the speed associated
to the robot movements. In this attentional framework, we consider pick-and-place
and give-and-receive attentional behaviors. To assess the system performances we
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via Cintia, 80126 Napoli, Italy
e-mail: {ernb,finzi,srossi}@na.infn.it

Mariacarla Staffa
PRISMA Lab, Dipartimento di Informatica e Sistemistica,
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introduce suitable evaluation criteria taking into account safety, reliability, effi-
ciency, and effectiveness.

1 Introduction

Until very recently, it was impossible to consider humans and robots living together.
But now, robots start to become companions or co-workers of humans, opening an
important research domain to build safe and intuitive cooperation. In this chapter we
intend to introduce some elements to build such robots that are able to intuitively
interact with humans.

In the context of HRI, intuitive and natural exchanges of objects between robots
and humans represent a canonical task. But, as we will see, such a robot system
is much more complex than the current industrial robots that repeat the same tasks
separated from humans by cages. We present some bricks that are necessary to give
to the robots the necessary autonomy to react to the human motions and behavior.
We focus the presentation on three key points. Firstly the necessity for a software
architecture to coordinate and synchronize the different pieces of software. Then, we
details the importance of the geometric reasoning in the case of the dynamic choice
of a double grasp. In fact, to exchange an object, both the robot and the human must
grasp simultaneously the object. So the robot must adapt its grasp and its motion to
the human behavior in real time.

This introduces the importance of motion, which is then addressed from the geo-
metric aspect of paths to the kinematic aspect of trajectories. Usually, motion plan-
ners compute a path, which is then executed by the robot controller, generally at a
constant speed or across a dynamic simulator. But in both cases the time evolution is
not taken into account at the planning level. For real time interaction with humans,
the robot must master its time evolution and control where and when it hands over
an object. To do this, we propose to integrate a simple model of trajectories based
on series of cubic functions in a more standard random motion planner.

Finally, the human motions and the external environment should be continuously
monitored by the robotic system looking for interaction opportunities while avoid-
ing dangerous and unsafe situations. In this context, attentional mechanisms can
play a crucial role: they can direct sensors towards the most salient sources of infor-
mation, filter the available sensory input, and provide implicit sensory-motor coor-
dination mechanisms to orchestrate and prioritize concurrent activities. In this work,
we propose to deploy an attentional system to modulate the robotic arm motion and
perception. The attentional system is expected to monitor and regulate multiple con-
current activities in order to achieve an effective coordination and interaction with
the human movements in the operative space. We assume a frequency-based model
of the executive attention, where each behavior is endowed with an adaptive internal
clock that regulates the sensing rate and action activations. The frequency of sensor
readings is here interpreted as a degree of attention towards a behavior: the higher
the clock frequency, the higher the resolution at which the behavior is monitored
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and controlled. In this context, we consider attentional models for pick and place,
give and receive, search and track (humans and salient objects).

2 Software Architecture

Clearly, to interact with humans, robots must be able to adapt in real time their
movements to the behavior of the humans. Moreover, the robots must ensure safety
and comfort for the humans all the while realizing socially acceptable movements.
As tasks are not entirely defined in advance, but computed and adapted in real time,
the robot must have all the software components to compute and adapt all the ele-
ments of an interactive manipulation task from supervision and task planning level
to the hardware control one. The software architecture of such a robot is a key point
for the efficiency of the communication between software modules. According to
the evolution of the task and to the behavior of the human, the system should re-
act at the right level to provide the correct response in an acceptable time. In such
a context the data exchanged between the software modules must be relevant and
concise to make their processing fast enough. Also we propose to build the architec-
ture around the concept of trajectory to take into account the time and synchronize
the movements.

At the lower level, the robot must respond with reflex actions like reducing ve-
locity or recoiling when the human approaches the robot. But for more important
changes, the robot must replan its action and then switch from the previous tra-
jectory to the new one satisfying HRI constraints. For more reactive tasks like the
exchange of an object with a human, the robot must be able to compute and choose
a good grasp and to compute a trajectory to reach and grasp the object in real time.
These different robot behaviors must be integrated in the global robot architecture.

In this section, we present a quick review of the state of the art and then introduce
our architecture to control a robot interacting with human.

The introduction of robots that work among humans gives rise to new con-
cepts and designs that were studied in recent years. The physical hardware as
well as software components of the robot need to be designed by considering hu-
man’s safety [1, 51]. Besides ensuring safety in robot hardware with compliant de-
signs [39, 6, 68], the motions of the robot need to be “planned” and “executed” in a
“human-aware” way by limiting the velocity at potential collision impact [33].

In [58] we have proposed a planning and control framework for synthesizing
safe and socially acceptable robot motions. This framework was shown to gener-
ate human-aware motion for a static model of the human. In [44], we have ex-
tended the approach using a sampling-based “human-aware“ path planner, which
was based on a set of geometrical HRI constraints [60]. These constraints, taking
as input the human kinematics and state, lead to safety, visibility and “arm com-
fort” costmaps defined over the robot configuration space. Sampling-based costmap
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Fig. 1 The Jido robot interacting with a human. The robot model of the scene is displayed on
the wall-screen. The Kinect monitors the human kinematics and the human gaze is perceived
using a motion capture system. Robot motions take the human into account at planning and
execution level.

planning techniques [40] were used to find good quality paths regarding the com-
puted HRI cost criterion. Using users studies, Cakmak et al. [18, 17] have shown
the importance of spatial and temporal pose of the robot for the exchange.

Executing motion bounded in jerk, acceleration and speed is also a way to pro-
duce human friendly robot motions. In [30], Flash and Hogan showed that the mo-
tion of the humans is by default limited in jerk and acceleration. Moreover human–
robot object exchange studies [37] suggest that robot motion with minimum-jerk
profile of the end-effector are preferred. In [11, 12], we have introduced a soft mo-
tion framework bounding the robot motion in jerk, acceleration and speed to ensure
the human safety (speed) and comfort (jerk and acceleration).

The motion planning and execution frameworks of [58, 44] do not account for
possible human motions during the trajectory execution. In motion planning lit-
erature, algorithms for dynamic environments have been introduced to take into
account such changes in the robot workspace [9, 28, 69]. However, the human be-
haviors, which are considered in this chapter, do not lead to the same constraints as
the moving obstacles taken into account by dynamic environments motion planning
methods. In [9], a continuous set of homotopic paths is determined in which the
initial path is deformed. Virtual forces are applied to the initial path by a control
algorithm, the process can be viewed as an elastic band being stretched to gain op-
timality regarding clearance and length criteria. More recently in [28, 69], RRT-like
algorithms have been introduced for motion planning with a limited time horizon
well suited for dynamic environments. When executing the robot trajectory the hu-
man may come closer to the robot as shown in Fig. 1, changing the safety and
legibility constraints that have been taken into account by the path planner. Also,
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in handover situations the human may want to change the object transfer position
(OTP), making the target configuration irrelevant to the task.

The HRI constraints [60] modeled as cost functions represent the amount of dan-
ger and how the human feels about a given robot configuration. Hence, as the danger
of injuries increases and humans are frightened with high velocities, we propose to
slow down the robot motion for high cost configurations by modifying on-line the
timing-law without stopping the robot motion. This reactive scheme enables a safe
and legible behavior according to human movements but it is not always efficient
to account for the changes in the HRI costs. Hence we also propose to use the path
perturbation variant of [44] to optimize the executed solution regarding the current
safety and comfort costs. In order to guarantee the jerk, acceleration and velocity
bounds, we introduce an efficient way to replace a soft motion trajectory by a new
one.

2.1 Architecture

From the high level decisional system that plans tasks and supervises execution to
the actuators and sensors levels, the robot needs to compute many elements and dis-
seminate data. As the robot must react at different levels, the architecture should
irrigate software modules with the right flow of data, which is composed of sensors
data, module results and decisions. Figure 2 shows the architecture that we propose
for tasks like pick and give or receive and place. This architecture and the associated
modules can be improved and extended, but the properties described are sufficient
to demonstrate the proposed functionalities. At the top level, task planner and su-
pervision are intended to plan a task like “clear the table” or “pick this object and
give it to this person” and then supervise the execution of the plan.

An important part of the data exchanged represents movements, which can be
described by trajectories. As the human environment is changing, the robot must
adapt its trajectories in real time. For example, if the human is approaching the
robot, the velocity of the trajectory should be slowed. We present further in Sect. 4.2
an interesting solution consisting in the use of series of cubic functions of time to
represent trajectories.

The “path planner” uses RRT and T-RRT (see Sect. 4) to plan path as broken
line for the whole robot in Cartesian or joint spaces. It is used to plan a first path
and then to compute new paths in real time. For example if the robot is grasping an
object from a human, and the “grasp planner” proposes a better grasp, this module
computes a new path.

The “trajectory planner” transforms a broken line in soft motions satisfying the
bounds in jerk, acceleration and velocity. It runs the “collision checker” and adapts
jerk, acceleration and velocity limits from the costs associated to the position and
behavior of the humans.
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The human aware manipulation planner module (MHP) brings together the “path
planner”, the “grasp planner” and the “trajectory planner” to build a valid trajectory
from the definition of the task and from the state of the robot provided by the SPARK
module.

The SPARK module maintains a 3D model of the robot and of its environment
(pose of objects, behavior of humans, position and posture of humans, visibility,
etc.). This model is composed of known models and updated from data provided by
the robot sensors.

The trajectory controller that monitors the execution of the trajectories is build
on top of the controller provided by the robot manufacturer.

Trajectory 
Controller

Sensor data

collision checker

3D Models

Actuators
ROBOT

Cost

q

Path Planner

Trajectory 
planner

Fig. 2 Architecture: from a robot movement defined by the task planner and supervision
module and the state of the robot maintained by the SPARK element, the MHP module com-
putes in real time a trajectory for the trajectory controller and the Attentional System monitors
the execution.

The “attentional system” uses sensors data that are preprocessed by the SPARK
module to monitor and interpret the humans positions and behaviors. Given a model
of the human behavior and the configuration of the robotic system, the attentional
system can change the task that the robot is doing or the way the robot executes
the task. For example, it can adapt the frequency of the clock that regulates the
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execution/control of the task. Finally, from the trajectory and state of the scene it
can modify the trajectory, move the end position or adapt the cost to accelerate or
decelerate the motion law. This possibilities are described in Sect. 5.

In this architecture, the “grasp planner” has an important place as the choice of
the initial grasp impacts all the task. For example, the position of the platform of the
robot must be chosen so that the arm can achieve the grasp while avoiding obstacles.
In the next section we detail a grasp planner developed in this context.

3 Grasp Planning

As the choice of a grasp to grab an object greatly determines the success of the task,
we present here some aspects of the grasp planner module. For a complex object
and simple tasks like pick and place or pick and give to a human, a lot of constraints
have to be taken into account. But one essential point for human robot interaction
(HRI) is the necessity of double grasp in many situations. Of course, both hands are
required to lift a heavy object, but during the exchange of an object with a human
the object is also grasped by two hands. Sometimes, the robots needs to change the
hand that holds an object and transitorily uses double grasp.

Grasp planning basically consists in finding a configuration for the hand(s) or end
effector(s) that will allow picking up an object. If we consider a complete robotic
platform, not only the grasp configuration is needed but also the configuration of
the robot base and arm. To replace our work in the existing one, we give a brief
overview of the state of the art concerning grasp planning in the next section.

3.1 Related Work

Most of the early grasp planning methods did not take into account finger nor arm
kinematics and are often referred as contact-level techniques [50, 29, 26]. The con-
tacts are regarded as freely-moving points with no link to any mechanical chain.
Many grasp stability criteria have been introduced for this model of point/surface
contact, the most common being certainly the force closure criterion [29, 5]. Force
closure criterion is verified if a grasp can resist arbitrary force/torque perturbation
exerted on the grasped object and is tested for a specific set of contacts (positions
and normals). To integrate the notion of robustness of the grasp stability with respect
to the contact positions, the concept of independent regions of contact has been in-
troduced [50]. These regions are such that a grasp always verifies force closure as
long as the contacts stay within the region. The computation of these regions has
been solved for different object surfaces modelization (2D discrete surface [23], 2D
polygonal surface [22], 3D polyhedral surface [54, 55]).

All these contact-level techniques were not very well-suited for real applications.
Therefore, many new methods have appeared that integrate considerations on finger
and/or arm kinematics.
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Miller et al. [47] proposed to decompose the object into a set of primitives
(spheres, cylinders, cones and boxes). With each primitive is associated a pregrasp
configuration of the hand. A set of parameters is sampled in order to test the differ-
ent possible approaches of the hand, then, for each approach, the fingers are closed
on the object until collision. The quality of the obtained grasp is then computed
according to the measure described in [29].

The idea of object decomposition was widely used and is still the base of many
grasp planners. It offers a heuristic to reduce the possible relative palm/object poses
to test. In [32], the authors decompose the object model into a superquadric decom-
position tree employing a nonlinear fitting technique. Grasps are then planned for
each superquadric with a heuristic approach close to the one in [47]. The grasps are
then simulated on the original object model using the GraspIt! dynamics simulator
[46], to sort them by quality.

Huebner et al. [38] proposed a technique to build a hierarchy of minimum volume
bounding boxes from 3D data points of the object envelop. This method offers a
interesting robustness with respect to the quality of the object 3D model, acquired
from sensors (here laser scan).

In [36], the object is decomposed into a set of boxes called OCP (Object Con-
vex Polygon). Each box of the OCP is compared to a GRC (Grasping Rectangular
Convex), which gives an estimation of the maximum size of the object that the hand
can grasp. Different GRCs are defined corresponding to different grasping styles.
Xue et al. [66] presented a method to optimize the quality of the grasp while tak-
ing into account the kinematics of the fingers during the optimization phase. They
use a swept volume precomputation associated with a continuous collision detection
technique to compute, for a given hand/object relative pose, all the possible contacts
of each finger on the object surface. After obtaining an initial grasp provided by the
GraspIt! software [46], they locally optimize the quality of the grasp in the finger
configuration space.

Some works gave more focus on arm and/or robot base inverse kinematics is-
sues. Berenson et al. [4] are interested in finding grasp configurations in cluttered
environments, for a given robot base position in the object range. From different
object approaches, the authors precompute a set of grasps, all verifying the force
closure property. Instead of trying to solve the arm inverse kinematics and checking
for collisions for each grasp of the set in an arbitrary order, the authors propose to
compute a grasp scoring function for each grasp. The function is used to evaluate
the grasps that are more likely to succeed the inverse kinematics and collision tests
and is based upon a force closure score, a relative object-robot position score and an
environment clearance score.

The authors of [25] focused on path planning for the robot base (or body) and arm
and presented a planning algorithm called BiSpace. Like in [4], they first compute
a set of grasp configurations for the hand alone. Once one or more collision free
configurations for the hand are found, they become the start nodes of several RRTs
(Rapidly Random-exploring Tree [43]) that will explore the hand workspace while
another RRT is grown from the robot base start configuration, that explores the robot
configuration space.
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Some recent works were inspired by results in neuroscience [56, 65] which have
shown that humans mainly realize grasping movements that are restricted in a con-
figuration space of highly reduced dimensionality. From a large data set of human
pregrasp configurations, Santello et al. [56] performed a principal component anal-
ysis revealing that the first two principal components account for more than 80% of
the variance. Ciocarlie et al. [20] called the components eigengrasps and use them
as a base to represent the reduced configuration space of the hand. They also add
the six DOF’s of the wrist pose. Then, they use a simulated annealing based opti-
mization method, in eigengrasp space, to find the best grasp according to an energy
function. The energy function takes into account two parameters. First, the distance
between specified points on the hand and the object surface. Secondly, a quality
metric based on the one in [29].

A frequent difficulty associated with grasp planning concerns the 3D model re-
construction of the object to be grasped. This reconstruction is not an easy task and
the resulting model can be very noisy. In order to avoid the need for 3D model re-
construction, Saxena et al. [57] proposed a method to find good grasps of objects
being seen for the first time, that does not require such a model. This method is
based on a learning approach that uses image features to predict good points where
to grasp the object. These features are based on edges, textures and colors. A set of
generated synthetic images of various objects is used to learn the feature values of
region labeled as grasping points. For a novel object, a probabilistic model of the
grasping point features is used to find grasping points in the image. A triangulation
is then performed that uses images from different points of view to find the region
where to grasp the object in 3D space.

3.2 The Grasp Planner

As explained above, for HRI, grasp planning has several uses and is not only devoted
to basic pick-and-place tasks. In particular, in a planning point of view, the context
is very important in order to choose a valid grasp. Therefore, the proposed approach
does not rely exclusively on a heuristic that can introduce a bias on how the object
is grasped. Our objective is to build a grasp list to capture the variety of the possible
grasps. It will then allow finding a grasp, even in a cluttered environment, for an
object with a complex shape. In the following, we illustrate the method with the
Schunk Anthropomorphic Hand (SAH) depicted in Fig. 3 as it is the one used in
our laboratory. It has four fingers. Each finger, except for the thumb, has four joints.
Only the three first joints are actuated, the last one being coupled with the third
one. The thumb has an additional actuated joint to place it in opposition to the other
fingers. The method however applies to other hand kinematic structures, after some
small numeric adaptations.

A single grasp is defined for a specific hand type and for a specific object. The
object model is supposed to be a triangle mesh: A set (array) of vertices (three



132 D. Sidobre et al.

Fig. 3 Left: The Schunk Anthropomorphic Hand used to illustrate our grasp planning
method. Right: A grasp is defined by a transform matrix Tgrasp, the finger joint parameters of
each finger i (θ i

1,θ
i
2, . . .) and a set of contact points (p1, p2, . . .).

coordinates) and a set of triangles (three indices in the vertex array). It is assumed to
be a minimum consistent, i.e. it has no duplicate or isolated vertices nor degenerate
triangles.

3.2.1 Grasp Definition

In the following, we define a grasp by (see Fig. 3):

• A transform Tgrasp between the object and the hand frame.
• A set of finger joint parameters (θ i

1,θ
i
2, . . .) where i is the ID of the finger.

• A set of contact points (p1, p2, . . .) that can be deduced from the two previous
items.

A contact contains the following information:

• Position: both a 3D vector and a set (triangle index + barycentric coordinates) to
store the position.

• Normal: the plane normal of the triangle the contact belongs to.
• Coulomb friction: used further to compute the grasp stability.
• Finger ID: to store which finger is responsible of the contact.
• Curvature: it is interpolated from the curvature of the vertices of the triangles.

As the main concern of the grasp planner is motion planning, it is not possible to rely
on the computation of an only grasp or to compute grasps according to a heuristic
that could introduce a bias on the choice of the grasp. It is preferable to compute a
grasp list that aims to reflect the best the variety of all possible grasps of the object.
Our algorithm applies the following steps that will be detailed further:

• Build a set of grasp frame samples.
• Compute a list of grasps from the set of grasp frames.
• Perform a stability filter step.
• Compute a quality score for each grasp.
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3.2.2 Grasp Frame Sampling

For manipulation planning, it is important to avoid biasing the possible approach of
the hand when we compute the grasp. Therefore, we choose to sample the possible
grasp frames uniformly. This is done by the mean of a grid. We have chosen, for our
hand, a grasp frame that is centered on the intersection of the finger workspaces so
that it is roughly centered where the contacts may occur. We set as an input the num-
ber of positions and the number of orientations, each couple position-orientation
defining a frame. The positions are uniformly sampled in the object axis-aligned
bounding box with a step computed to fit the desired number of position samples.
The orientations are computed with an incremental grid like the one in [67]. For
each grasp frame, a set of grasps will be computed.

3.2.3 Grasp List Computation

As the proposed grasp planning method does not restrict the possible hand poses
or surfaces of contact on the object, it requires a lot of computation. Therefore, we
have to introduce some data structures to reduce the computation times. Except for
collision test, the most expensive computation is the finger inverse kinematics. One
has to be able to know the fastest possible if, for a specified hand pose (relative to
the object), a finger can establish a contact on the object surface and, if it is the case,
where. The contacts can only occur in the intersection of the finger workspace and
the object surface. For each finger, it is consequently crucial to find this intersection
or at least an approximation. We use two data structures to model the object surface
and finger workspaces.

3.2.4 Object Surface Model

We propose to approximate the object surface with a contact point set, keeping trace
of where it is on the object mesh to be able to get some local information (surface
normal and curvature) later. The set is obtained by a uniform sampling of the object
surface. The sampling step magnitude is chosen from the fingertip radius. A space-
partitioning tree is built upon the point set in order to have a hierarchical space
partition of the points (Fig. 4). It is similar to a kd-tree. Starting from the original set
of points, we compute the minimal axis-aligned box containing all the points. Such
a box is usually referred as Axis-Aligned Bounding Box or AABB. This first AABB
is the tree root. The root AABB is then splitted in two along its larger dimension.
This leads to two new nodes, children of the root, containing each a subset of the
original point set. The splitting process is then recursively applied to each new node
of the tree. The process ends when a node AABB contains only one point.

We then need to find the intersection of each finger workspace with the ob-
ject surface tree. So we introduce another data structure to approximate the finger
workspace and compute this intersection quickly.
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Fig. 4 The object mesh is uniformly sampled with a point set (top images). The point set is
then partitioned using a kind of kd-tree (bottom images).

3.2.5 Finger Workspace Model

As spheres are invariant in rotation, they are interesting to build an approximation of
the finger workspace. Starting from a grid sampling of the finger workspace (Fig. 5),
we incrementally build a set of spheres fitting strictly inside the workspace. First,
points of the grid are marked as being boundary points (on the workspace envelope)
or inner points (strictly inside the workspace volume). For each inner point, the
smallest distance to the boundary points is computed, referred as dmin. The inner
point having the biggest dmin is the center of the first sphere S1, of radius dmin.
For all the inner points that are not inside S1, a new dmin is computed, that is the
minimum of the old dmin and the minimal distance to S1. The point that has the
biggest dmin is the center of the second sphere S2, of radius dmin. This process is
repeated until we have reached the maximal desired sphere number or the last com-
puted sphere has a radius less than a specified threshold. We keep the ordering of the
construction so that the sphere hierarchy starts from the biggest ones, correspond-
ing to workspace parts that are the farthest to the finger joint bounds. These bounds
were first slightly reduced (Fig. 5) in order to eliminate configurations where the
fingers are almost completely stretched.

Fig. 5 The finger workspace, discretized with a grid (forefinger workspace, left image). The
grid is converted to a volumetric approximation as a set of spheres (right image).

Once we have both the contacts tree and the workspace sphere hierarchy, it is
very fast and easy to determine the intersection of the two sets and so the contact
points.
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3.2.6 Intersection between Object Surface and Finger Workspace

All the operations that have to be performed are sphere-box intersection tests. The
intersection is tested from the biggest to the smallest sphere, guaranteeing that the
best parts of the workspace will be tested first, i.e. the ones farthest to singularities
due to the joint bounds. Starting from the tree root, we test if there is a non-null
intersection between a AABB-node and the sphere. If not, we stop exploring this
branch, otherwise we test the sphere against the two node children, until we arrive
to a leaf node, i.e. a single point. We then just have to test if the point is included
in the sphere volume. Figure 6 shows the contact point candidates for two different
grasp frames with the same object. At this stage, we just know that the points will
pass the finger inverse kinematics test. No collision tests have been performed yet.
For a given grasp frame, the grasp is computed finger by finger, that means that, if

Fig. 6 The potential finger contacts, drawn in red, green, blue and magenta for the thumb,
forefinger, middle finger and ring finger respectively. On the left image, no contact can be
found for the ring finger because of its limited workspace.

we have the contact and configurations of the fingers 1 to i− 1, we search a contact
point for finger i and test collision only with the fingers 1 to i as the other finger
configurations are not yet known. We start from the thumb as no stable grasp can be
obtained without it. If a finger can not establish a contact, it is left in a rest (stretched)
configuration. If we have three contacts or more, we can proceed to the stability test.
Note that, at this stage, we have a collision-free grasp, i.e. no collision between the
hand and the object and do not yet consider collision with the environment or the
robot arms or body.

3.2.7 Stability Filter and Quality Score

The stability test is based on a point contact with friction model, that explains why
at least three contacts are required. From the contact positions and normals, we
compute a stability score. It is based on a force closure test and stability criterion [7].
All the grasps that do not verify force-closure are rejected. We also compute and
add a second score that is the distance to the mass center of the object. The stability
score is not sufficient to discriminate good grasps so we build a more general quality
score.
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Several aspects can be taken into account to compute a grasp quality mea-
sure [63]. A trade-off is often chosen with a score that is a weighted sum of several
measures. We chose to combine the previous stability criterion with two other cri-
teria: A finger force ellipsoid major axis score and a contact curvature score. The
idea behind the first one is that it is preferable to favor contact such that the contact
normal is in a direction close to the direction of the major axis of the force ellip-
soid, corresponding to the better force transmission ratio. Figure 7 shows the force
ellipsoids computed for a configuration of the SA Hand.

Fig. 7 Left: the finger force ellipsoids must fit the contact normal to ensure a good grasp.
Right: the mean curvature of the object surface is used as a quality criterion on the con-
tact position. Surface color varies from red (low curvature) to blue (high curvature), through
green.

The curvature score is used to favor contacts where the mean curvature of the ob-
ject surface is low. In real situation, it will reduce the impact of a misplaced contact
as the contact normal will be susceptible to smaller change in a low curvature area
than in a high curvature one. Figure 7 shows, on some objects, how low curvature
areas are preferable to establish contacts. Curvature is computed for each vertex and
then interpolated for each point on the surface from its barycentric coordinates. The
curvature is then normalized to be always included in [0;1].

3.2.8 Double Grasp Planning

A double grasp is a grasp involving both hands. It is computed from two single grasp
lists L1 and L2, obtained for each hand. The model for double grasp simply derives
from the single grasp model: it is defined by a valid grasp for each hand and the two
associated quality.

Each single grasp pair sg1 and sg2, belonging to L1 and L2 respectively, is tested.
All colliding pairs are rejected. The list can be filtered once we have more informa-
tion about the environment or task to realize. For instance, if the task is to pick up
an object with one hand, give it to the other hand before placing it on a support, we
can remove all the grasps that lead to a collision with the environment for the given
initial and final object poses. For instance, all the grasps that take the object from
below will be removed as they lead to a collision between the object support (e.g. a
table) and the hand. For each double grasp, a score is then computed based on two
scores: The quality of each single grasp and an inverse kinematics (IK) score.
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• The minimum of sg1 and sg2 quality is used as a stability score for the double
grasp.

• An IK score is computed for sg1 and sg2. It is based on how natural is the way to
grasp the object in its start and goal configuration using sg1 and sg2. The score
is a distance of the arm configuration to a predefined rest configuration. For the
double grasp, we take the minimum of the IK scores of sg1 and sg2.

After normalizing these two scores separately for all the computed double grasps,
we sum them for each double grasp to obtain its score.

Figure 8 shows a double grasp computed with our algorithm.

Fig. 8 An example of double grasp computed for right and left SAHs with friction cones
displayed in colors.

3.2.9 Double Grasp for Object Transfer

First, a double grasp list must be computed for the object of interest. This list is
computed for a hand pair composed of the robot hand and a human hand (his/her
right hand a priori). The human hand model is of course a simplification as our
modelization only deals with rigid bodies. We use the SAH as it is already available,
but with a scaled kinematic structure to approximate the human hand.

Let note a double grasp of the list dg = (sgr, sgh) where sgr is a grasp of the
robot hand while sgh is a grasp of the human hand. For a given object, placed on
a support in a particular environment, we remove, from the previously computed
double grasp list, all the double grasps such that sgr does not allow the robot to
grasp the object. From each remaining double grasp, knowing the positions of both
human and robot, we can deduce how to hand over the object to the human as the
grasp gives the direction of the human wrist to grasp the object. The robot still has
to choose a double grasp from the list and an exchange pose for the object. The
choice of the double grasp is based on the notion of intention legibility. It must be
easily interpreted as an object transmission. The best double grasps appear then to
be the ones where the wrist directions of human and robot are opposed. The choice
of the exchange pose is based on the notion of comfort. It must allow the human to
grasp the object with a comfortable wrist/arm direction, i.e. directed from the human
position to the object position (Fig. 9).
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Fig. 9 A good object transmission must be easily interpretable from the human point of view
and must not require an uncomfortable arm movement for the human.

3.2.10 Dual-Arm Manipulation

Dual hand/arm grasps are at least required in two situations, when the object to carry
is too heavy to be carried with only one hand and when the robot has to transfer the
object from one hand to the other to take advantage of the workspaces of the two
arms. In this re-grasping case, a first solution consists in placing the object on a
support and then picking it up again with the other hand. But a better solution is to
use the second hand to realize a temporary dual-handed grasp before removing the
first hand.

For a given manipulation task, the robot will start with a one-handed grasp gi

and end with a one-handed grasp g f . The regrasping task will be achieved with the
help of a double grasp obtained by combining gi and g f . As the hands must not
collide during the regrasping task, gi and g f must be chosen appropriately. Grasps
that were ideal in the case of single-handed manipulation are generally no more
usable for dual-handed manipulation. Indeed, for stability reason it is preferable to
use contacts that are close to the object center of mass. This leads to configurations
where the hand is centered on the object, that do not let enough room to take the
object with the other hand. When the robot uses dual-handed grasps, it will modify
the initial and final single-handed grasps in order to take the object on its extrem-
ities. Such an example is depicted in Fig. 10 where the DLR’s robot Justin [53]
manipulates a horse statuette. The best grasps, in term of stability, are on the body
of the horse. However, it is not possible to place two hands on this part of the object.
Consequently, the robot has to choose to grasp the extremities of the object (leg and
head on the example).

It is also possible to perform regrasping to just modify the grasp of one hand. Let
us suppose the robot holds the object with the right hand and with a grasp gright . The
robot also needs to change the grasp. It can take the object with its left hand and a
grasp gle f t , release the first grasp, possibly re-orient the object, and grasp the object
with right hand again but with a different grasp g′right . Two dual-handed grasps will
thus be required: [gright , gle f t ] and [g′right , gle f t ]. The grasp selection uses the same
principle as above but is more combinatorially complex.
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Fig. 10 If the robot (DLR, [53]) has to realize a regrasping task, it must select initial and final
grasps that let enough room to perform a dual-handed grasp.

This technique has been implemented for the robot Justin1 equipped with two
SAHs, within our simulator, (Fig. 10) to plan pick-and-place tasks that require re-
grasping.

We have presented a grasp planner for single and double grasp that allows choos-
ing a grasp in real time according to the behavior of the human. As we have seen,
grasp planning is complex and greatly determines the succes of a manipulation task.
In particular, the choice of a grasp compatible with the whole task is crucial. In the
next section, we introduce how to plan and adapt a displacement after the move is
defined in an interactive context.

4 Motion Planning

HRI introduces real challenges for the motion planning problem. While motion
planning is not yet largely used in industry where most robots are still programmed
by learning, for HRI we need to plan and adapt in real time motions that take into
account human movements and behaviors. Traditional motion planners plan only
a path that a controller executes at constant velocity. To take into account human
motion, we propose here to plan trajectories that satisfy the HRI constraints: safety
and comfort.

1 Justin is a robot of DLR that gracefully made the model available for LAAS-CNRS.
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From an elementary task like “pick an object”, “place an object” or “give an
object”, the motion planner must precise initial and final conditions for each move,
plan a trajectory and then adapt the trajectory in real time. For example, to plan the
first movement of a pick and give task, the planner must firstly choose an initial
grasp that takes into account the double-grasp needed to give the object and then
adapt the movement to the human behavior.

In this section, we present a first skeleton of a planner for human–robot interac-
tive motions.

4.1 Planning the Path

The first step of the motion planning is the computation of the path P . In our case,
the motion planner is based on the planner initially proposed by Sisbot [60]. The
motion planner takes explicitly into account the constraints of HRI to synthesize
navigation movements (movement of the platform) and handling (fixed robot plat-
form). HRI constraints are for example the human–robot distance or field of view of
the human. This planner is based on case studies in HRI [42] and on existing theories
on the proxemic behavior of humans [34]. The HRI constraints are represented by
cost functions based respectively on the posture of the human, his/her field of view
and accessibility. These costs are represented by costs maps defined in the working
space of the robot. In [60], to solve a manipulation task like passing an object to
a human, the path of the object is first planned using grids methods defined in the
workspace. Then the path of the robot is planned from the inverse kinematic of the
robot. However, as the path of the object is defined by the first step of the method,
the original planner is not efficient in cluttered environment. We use the extension
proposed by Mainprice [44]. This extension consists in extending the capabilities
of the planner through the use of planning algorithms based on random sampling to
compute the moves taking into account human in cluttered environments.

4.1.1 Random Path Planner

When the robot shares the workspace with humans, the path planner must take into
account the costs of HRI constraints. We perform this planning with the T-RRT
method [40] which takes advantage of the performance of two methods. First, it
benefits from the exploratory strength of RRT-like planners [43] resulting from their
expansion bias toward large Voronoi regions of the space. Additionally, it integrates
features of stochastic optimization methods, which apply transition tests to accept
or reject potential states. It makes the search follow valleys and saddle points of
the cost-space in order to compute low-cost solution paths (Fig. 11). This planning
process leads to solution paths with low value of integral cost regarding the costmap
landscape induced by the cost function.

In a smoothing stage, we employ a combination of the shortcut method [3] and
of the path perturbation variant described in [44]. In the latter method, a path P(s)
(with s ∈ R

+) is iteratively deformed by moving a configuration qperturb randomly
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Fig. 11 T-RRT constructed on a 2D costmap (left). The transition test favors the exploration
of low-cost regions, resulting in good-quality paths (right).

selected on the path in a direction determined by a random sample qrand . This pro-
cess creates a deviation from the current path, The new segment replaces the current
segment if it has a lower cost. Collision checking and kinematic constraints verifi-
cation are performed after cost comparison because of the longer computing time.

The path P(s) computed with the human-aware path planner consists of a set
of via points that correspond to robot configurations. Via points are connected by
localpaths (straight line segments). Additional via points can be inserted along long
path segments to enable the path to be better deformed by the path perturbation
method. Thus each localpath is cut into a set of smaller localpaths of maximal length
lmax.

4.1.2 Taking into Account Geometric Constraints

We use costmaps to model HRI. These costs are important when the configuration
of the robot is not safe or comfortable for the human. We retain three constraints:

• Safety constraint (Fig. 12(a)): This constraint ensures the safety of interaction by
monitoring the distance between the robot and the human. The human is mod-
eled by approximating the bounding volume of his/her body (regardless of the
geometry of the arm). To reduce the risk of collision between the human and the
robot, this safety constraint keeps the robot away from the head and body. The
distance to be considered is the minimum distance between the robot (all parts
of the robot are taken into account) and the simplified model of human (cylin-
der + sphere). When this distance is small, the cost is high and conversely when
the distance increases the cost decreases to a minimum threshold after which it
becomes null.
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• Visibility constraint (Fig. 12(b)): This constraint aims at limiting the effect of
surprise that may experience a human while the robot moves in the workspace. A
human feels less surprised if the robot remains visible and the interaction is safer
and more comfortable. Thus, each point of the workspace has a cost proportional
to the angle between the gaze of the human and his/her position in the Cartesian
space;

• Constraint of “comfort of the human’s arm”: The third constraint is taken into
account for object exchange tasks between robot and human. It allows determin-
ing an object transfer point (OTP) in the workspace. This constraint is also taken
into account during the path planning of the exchange task to facilitate the ex-
change of the object at any time during the move. For this, the robot must reason
on the kinematic and the accessibility capabilities of the human. The assumed
reachable volume of the human can be pre-computed using generalized inverse
kinematics. For each point inside the reachable volume of the human, the deter-
mined configuration of the torso remains as close as possible to a given resting
position. Collision detection with the environment is then used to validate these
postures. At each valid position, a comfort cost is assigned through a predictive
model for human posture introduced in [45].

(a) Simplified model of
a human for the safety
cost.

(b) Visibility model of a
human.

Fig. 12 Cost models of safety and visibility.

Each constraint is represented by a three-dimensional cost map, these basic
costmaps are then combined with a weighted sum:

cost(h,q) =
3

∑
i=1

wici(h,q) (1)

where wi are the weights, h the human posture, q the robot configuration and ci, the
costs.

In the current implementation, the weights are empirically defined and cost func-
tions are evaluated “on the fly” during planning.
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4.1.3 Path Planning

According to the presence or the absence of the human in the scene, the path plan-
ning is performed using T-RRT if human is present or RRT if not.

In both cases, the path resulting P(s) (s ∈ R
+) is composed of a set of robot

configurations (nodes) connected by straight lines (edges). Consider the example
of a two-dimensional system solved by the method RRT. Figures 13(a) and 13(b)
respectively represent the initial and final positions of the yellow puck. The path
obtained is shown in Fig. 13(c) (green lines connecting the spheres). The spheres
represent the intermediate configurations of the path.

(a) Initial configuration (b) Final configuration (c) Obtained path

Fig. 13 Example of a the planning of a path in a 2D space.

4.2 From the Path to the Trajectory

We propose to generate a trajectory from a path using the soft motion trajectory
planner designed by Broquère [12], [11], [10].

4.2.1 Trajectory Model

A trajectory TR(t) is represented by a combination of n series of cubic polynomial
curves. The use of polynomial cubic defined by the Soft Motion Trajectory Planner
provides a solution in the context of HRI where the task introduces numerous con-
straints. From the trajectory generation point of view the safety constraint is ensured
by bounding the velocity and the comfort constraint by bounding the jerk and the
acceleration.

The trajectory jTR(t) corresponds to the evolution of the j axis and is composed
of N cubic polynomial segments (curves) (Fig. 14). We consider that each axis has
the same number of segments since they can be divided.

Functions jJk(t), jAk(t), jVk(t), jXk(t) respectively represent the jerk, accelera-
tion and velocity evolution over the k segment for the j axis. Ti is the initial time of
the trajectory and TF the final one.
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Fig. 14 The jerk evolution for the j axis of the TR(t) trajectory.

A segment is defined by Eq. (2) and depends on its duration Tk and on five
parameters:

• the initial time tlk with tlk = tI +∑k−1
i=1 Ti,

• the initial conditions (3 parameters: jAk(tlk), jVk(tlk), jXk(tlk)),
• the jerk value jJk.

∀t ∈ [tlk, tlk +Tk] :

jXk(t) =
jJk

6
(t− tlk)

3 +
jAk(tlk)

2
(t− tlk)

2 + j Vk(tlk)(t− tlk)+ j Xk(tlk) (2)

where jJk, jAk(tlk), jVk(tlk), jXk(tlk) and tlk are constant ∈ R.
The initial conditions of the trajectory jTR(t) are:

jA1(tI) = j AI

jV1(tI) = j VI (3)

jX1(tI) = j XI

and the final conditions:

jAN(tF) = j AF

jVN(tF) = j VF (4)

jXN(tF) = j XF

where tF − tI = ∑N
i=1 Ti.

The multidimensional trajectory is then a composition of trajectories as:

TR(t) = [1T R(t) 2T R(t) ... nT R(t)]T (5)

where n is the number of axes.
From the N couples ( jJk,Tk) and the initial conditions (3) of the trajectory jTR(t)

we can compute the kinematic state along the j axis at a given time with (6), (7)
and (8). In order to simplify the notation, the j index representing the axis will be
omitted.
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∀t ∈ [tlk, tlk +Tk], with tI = 0:

Ak(t) = Jk(t−
k−1

∑
i=1

Ti)+
k−1

∑
i=1

JiTi +AI (6)

Vk(t) =
Jk

2

(
t−

k−1

∑
i=1

Ti

)2

+
k−1

∑
i=1

JiTi

(
t−

i

∑
j=1

Tj

)
+

k−1

∑
i=1

JiT 2
i

2
+AIt +VI (7)

Xk(t) =
Jk

6

(
t−

k−1

∑
i=1

Ti

)3

+
k−1

∑
i=1

JiTi

2

(
t−

i

∑
j=1

)2

+
k−1

∑
i=1

JiT 2
i

2

(
i

∑
j=1

Tj

)
+

k−1

∑
i=1

JiT 3
i

6

+
AI

2
t2 +VIt +XI (8)

4.2.2 The Kinematic Constraints

The trajectory generation method is based on constraints satisfaction (velocity, ac-
celeration and jerk). Each constraint is supposed constant along the planned motion.
In the multidimensional case, each axis can have different constraints. We also sup-
pose that the constraints are symmetrical:

jJmin = − jJmax

jAmin = − jAmax (9)

jVmin = − jVmax.

Hence, the jerk, acceleration and velocity must respect:

| jJ(t)| ≤ jJmax

| jA(t)| ≤ jAmax (10)

| jV (t)| ≤ jVmax.

4.3 Basic Concepts of the Trajectory Generation

This section describes breifly the core of the trajectory generator bounding the jerk,
the acceleration and the velocity. Details can be found in [12], [11], [10]. The three
introduced methods do not use optimization steps, they are designed to be used on-
line in a control loop to modify the trajectory and, for example, track and catch an
object handled by the human.
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4.3.1 The Canonical Case: The Kinematically Constrained Point–to–Point
Motion

In the basic case a motion between two points where initial and final kinematic con-
ditions are null, Figure 15 represents the optimal point-to-point motion (according
to the imposed kinematic constraints). This point–to–point motion is composed of
seven segments of cubic polynomial functions at most [12].

Fig. 15 Jerk, acceleration, speed and position curves and motion in the acceleration-velocity
frame for a single axis.

In the multidimensional case each axis has also seven cubic polynomial segments
at most. Computation details can be found in [10].

4.3.2 The Minimal Time Motion between Two Non-null Kinematic
Conditions

From the canonical point–to–point case we extend the monodimensional algorithm
to compute minimal time motion between two non-null kinematic states (non-null
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acceleration and velocity). An overview of this algorithm is presented in [12] and
the details in [10]. This kind of motion is composed of a set of elementary motions
saturated in jerk, acceleration or velocity. The number of elementary motions is
also seven at most. For the multidimensional case, we propose in [10] a solution to
synchronise the axis motions.

4.3.3 The Time Imposed Motion between Two Non-null Kinematic
Conditions: The 3-Segment Method

The method for computing a motion with an imposed duration was previouly pre-
sented in [11]. This method does not bounds the jerk, acceleration nor velocity. It
uses three cubic polynomial curves to define such a motion. This simple definition
provides a solution to compute analytically the motion.

4.3.4 Smoothing an Input Function

We use the method proposed in [12] to compute online a smooth movement from
an input defined by acceleration and velocity. At each update of the set function, a
move is computed from the current state of the system. This move is bounded by the
kinematic constraints (Jmax, Amax and Vmax). Under this kinematic constraints, the
minimal time motion is defined by the critical movement associated to the critical
length dc [12].

Thus, in order to allow a mono-dimensional system to reach its set value in min-
imal time, the critical movement is computed at each iteration.

An example of a smoothed signal is plotted in Fig. 16. The blue dotted curve is
the input and the green curve is the smoothed velocity. The method acts like a filter
for the acceleration.

Input (t)
Smoothed (t)

Fig. 16 Example of the smoothing of a set function.
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4.4 Trajectory Generation

The trajectory generation is based on the three main methods introduced in the pre-
vious section. The input is the path P computed by the path planner (Sect. 4.1.1).

Fig. 17 From the path P to the smoothed trajectory T R.

The first step is to calculate a trajectory passing through all the nodes of the
path P . This trajectory, which we call T Rpt p consists of point–to–point movement
(Sect. 4.3.1) and therefore includes stop motions at each configuration defining a
node.

The second step consists in smoothing these stop motions to obtain a shorter
trajectory in time T R. Smoothing uses the same 3D model than the research phase of
the path. Thus, collisions are tested during the computation of the transition moves
at each node. If a collision appears during the smoothing of the stop move at node
qi, then the movement will not be smoothed for this node and the stopping move
will be kept.

In the following, we detail a method for smoothing stop motions based on the
computation of a fixed time movement using the 3-segment method presented in
previous work.

4.4.1 Smoothing of the Stop Motions

We propose a method based on the minimum time algorithm for trajectory gener-
ation (Sect. 4.3.2) [12] and on the 3-segment method (Setion 4.3.3) to smooth the
stopping motions [11].

The trajectory T Rpt p (Fig. 17) between the first two nodes qinit and q1 is a point–
to–point motion in a straight line of duration T(qinitq1). Similarly the motion be-
tween q1 and q2 is a point–to–point motion of duration T(q1q2). The stop motion
is smoothed between the points M1,2 et M2,1.
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Notation: We note the points that limit the smoothing Mi, j, the index i is the index
of the point–to–point motion (the first of the trajectory has an index of 1). The index
j ∈ {1,2} is 1 if this point is the final extremity of the transition motion with the
previous point–to–point motion and conversely for j = 2.

Choice of the Points Mi, j

Let us consider the transition motion in the neighborhood of q1 located at time tq1:

tq1 = tI +T(qinitq1) (11)

To simplicity, we choose tI = 0 as the time origin of the trajectory.
The time positions tM1,2 and tM2,1 of the points M1,2 and M2,1 are determined from

a given parameter τ such that:

M1,2 = T Rpt p(tq1−max(τ,
T(qinit q1)

2
)) (12)

M2,1 = T Rpt p(tq1 +max(τ,
T(q1q2)

2
)). (13)

So when τ is null, the movement stops at the point q1. When τ satisfies (14), the
transition motion connects the midpoints of the line segments (qinit ,q1) and (q1,q2)
because of the symmetry of the velocity profile about this point.

τ ≥ max

(
T(qinitq1)

2
,

T(q1q2)

2

)
(14)

In practice, unless otherwise specified, by default we choose the points Mi, j such
that the transition movement begins at the end of the constant velocity segment
of the first point–to–point movement (P1,P2); the transition movement ends at the
beginning of the constant velocity segment of the second point–to–point movement
(P2,P3).

Notice that, for a given value of the parameter τ , the Euclidean distance between
the points Mi, j and the corresponding point qi varies according to kinematic param-
eters of the point–to–point movement.

4.4.2 Computation of the Transition Movement

Let us consider a trajectory of dimension n. The instants tMi−1,2 and tMi,1 , start and
end of the transition movement at the configuration qi, are identical for all n dimen-
sions. The computation method is described by Algorithm 6. The first step consists
in computing, for each axis, the optimal time motion to determine the duration Timp

of the transition movement. The 3-segment method to compute the movement in
fixed time is then applied to each axis.
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Algorithm 6. Computation of a transition movement near of a node qi

begin
Determining the switching points Mi−1,2 et Mi,1 (eq. 13 and 12)
for each dimension ni do

Computation of the one-dimensional movement in minimum time
(Section 4.3.2)
Computation of the duration of the one-dimensional movement in
minimum time Topt [i]

end
Determination of the duration of the transition movement
Timp = max(∀ i ∈ [1,n] | Topt [i])
for each dimension ni do

Computation of triplets of cubic curve segments from the method
3-segments (Section 4.3.3)

end
end

Figure 18 illustrates an application of the method for the case of a movement
defined by three points P1, P2, P3 and by the kinematic constraints Vmax = 0.1m/s,
Amax = 0.3m/s et Jmax = 0.9m/s. The transition movements are computed for dif-
ferent values of the parameter τ .

Fig. 18 Transition movement for two lines that form an angle of about 127 (top), graph of
position, velocity and acceleration as function of time for a point–to–point motion for τ = 0
(bottom-left) and τ = 1s (bottom-right).
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The proposed method ensures the continuity in velocity and acceleration for each
dimension. The initial and final velocities of the transition movements can be differ-
ent and acceleration not zero. The duration of the transition movement is computed
by taking into account the kinematic constraints of each dimension using the min-
imum time algorithm (Sect. 4.3.2). Therefore this method guarantees that changes
in velocity, acceleration and jerk are limited. However, in some cases, constraints
can be exceeded by the 3-segment method. In practice, we introduce a percentage
(10%) of exceeding for each constraint. If, for a transition movement, the exceeding
of kinematic constraints is too large, this movement is not smoothed to comply with
the constraints of human comfort.

4.5 Application to Robot Manipulators

To better explain the method, we apply it to an example of task of grasping an ob-
ject, the grey tape cassette of Fig. 19. The path of the center of the end effector of
the robot (hand) is described by the green line segments in Fig. 20. On this path, the
spheres represent the initial, final and intermediate configurations (nodes). The path
of the point–to–point trajectory TRpt p is identical to the path planned. This trajec-
tory stops at each intermediate node. The smoothed path TR is represented by the
black curve. We note that the trajectory stops at the first node as a smoothing in its
neighborhood would have introduced to a collision2 between the hand of the robot
and the environment. The planning of the path of the trajectory was performed in the
Cartesian space of the robot by considering the platform was fixed. The following
section presents the methodology to take into account the redundancy of the robot.

Fig. 19 Initial configuration and grasp configuration of the robot Jido.

2 Another solution would be to compute a path that goes farer from the obstacle but it is not
the purpose here.
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Fig. 20 Trajectories T Rpt p et T R in the Cartesian space to grasp the cassette.

4.6 Planning in the Cartesian Space

4.6.1 Generation of the Smoothed Trajectory T R in Cartesian Space

To represent the complete configuration of the robot in Cartesian space, we propose
to use a vector Xi with:

• the position of the robot base,
• the pose of the end effector(s),
• the configuration of the redundancy axis of the arms if they have more than six

degrees of freedom (DOFs),
• the configuration of the hand(s),
• the configuration of the head.

In the following, we consider that the platform is fixed. For a system operating in
3D space, six independent parameters are used to define the position of the end ef-
fector. For the planning, the system is decomposed into passives and actives parts
corresponding respectively to dependent and independent variables [24], [35]. Thus
a robot manipulator with six DOFs is decomposed as follows: the independent vari-
ables (active) are the six DOFs (position and orientation) of the end effector and the
joint variables are the dependent variables (passive) .

In the case of our Jido3 robot, as the robot arm is composed of seven DOFs, it
is therefore redundant. In addition to the pose of the end effector, an articulation
of the arm is chosen and becomes an active variable. Notice that, f the motion of a
holonomic platform was considered, then these DOFs would be active variables.

During the planning of the path in the Cartesian space, only the active variables
are sampled using, according to the circumstances, the RRT or the T-RRT algo-
rithm. The passive variables are computed in a second step by solving the inverse
kinematics of the arm prior to test the validity of the sampled configuration of the

3 Jido is an MP-L655 platform from Neobotix, equipped with a KUKA LWR arm.
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robot (bounds and collision) (see Sect. 4.1.1). During the test of the validity of a
local path between two configurations, the inverse kinematic function is also called.

To perform the interpolation between two configurations, we represent the po-
sition of the end effector by a displacement: three parameters for the position and
three parameters for the orientation (vector and angle representation with the norm
of the vector equal to the angle [12]). We have implemented a local method of in-
terpolation between two configurations. This method takes as parameters two local
configurations (with their kinematic conditions) and the imposed kinematic con-
straints (Jmax, Amax et Vmax) for each active axis. After applying the local method
between each intermediate configuration, the obtained trajectory T Rpt p is composed
of point–to–point movement of dimension n (n is the number of active axes), that
is for Jido n = 22 parameters (6 for the end effector, 1 for the axis of the redundant
manipulator, 13 for hands and 2 for the head).

The smoothed trajectory T R in Cartesian space is then obtained by the method
described in the previous section applied to the active axes (Sect. 4.4).

4.6.2 Conversion of the Trajectory in the Joint Space of the Robot

As most of the robot controllers operate in the joint space, it is important to provide
a solution to convert Cartesian trajectories into joint ones. To perform this transfor-
mation, the trajectories of passive axes are obtained by discretizing the trajectory T R
defined in Cartesian space and performing inverse kinematics for each sample. The
trajectory T R is discretized at the period of operation of the robot controller. This
allows obtaining the position, and by derivation, the velocity and the acceleration of
all the DOFs of the robot.

However, this discretization removes the notion of time and requires a large
amount of data to represent the trajectory.

We can use the approximation method of trajectory presented in [11] and [10]
to approximate this discretized trajectory and thus obtain a compact description of
the trajectory. Unlike the approximation in the Cartesian space, the trajectory error
taken into account by the approximation algorithm is the maximum error of the
trajectory of each DOF.

The obtained approximated trajectory T Rapp is a function of time, it is composed
of series of segments of cubic curves for each joint variable of the robot.

However, movements of the passive axes are not planned, they can exceed the
kinematic limits of the robot. In this case, the trajectory cannot be directly per-
formed. To adapt the trajectory when the task allows it, we replace the time parame-
ter t of the trajectory by applying a function α , R−→ R. The function α will make
it possible to change the time increment during the execution of the trajectory and
therefore allow slowing down the execution.
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The period of the trajectory controller is denoted ΔT . In the case of a classical
execution, the application α is defined by:

α(t) = t (15)

or, in discrete notation:

α(kΔT ) = α((k− 1)ΔT )+ΔT (16)

The trajectory carried out is T Rapp(α(t)).
The introduction of the function α makes it possible to modify the motion law of

the trajectory T Rapp and thus to adapt the evolution of each joint of the robot in a
synchronized way.

To determine the function α in the case where one wishes to adapt the motion
law, we first determine for each instant of the trajectory T Rapp exceeding β the
velocity of each axis relatively to the corresponding maximum velocity (maximum
values used here are the default limits accepted by the system). We obtain:
∀kΔT ∈ [tI , tF ],

β (kΔT ) =

{
1 if ∀ j ∈ [1,n], jV (kΔT )≤ j V mot

max

min
(
∀ j ∈ [1,n] | jV mot

max

jV (kΔT)

)
otherwise

(17)

where n is the number of controlled DOFs, jV (t) the evolution of the velocity of the
articulation j and jV mot

max , the maximum velocity of the articulation j.
Thus we obtain:

α(kΔT ) = α((k− 1)ΔT )+β (kΔT )ΔT (18)

with α(0) = 0.
However, the trajectory T Rapp(α(t)) cannot be executed directly because it

would introduce discontinuities in velocity due to the discontinuity of β . To smooth
the evolution of β , we apply a variant of the method described in Sect. 4.3.4 that
anticipates the change in β . The smoothed function β is denoted by βsmooth. The
smoothing is performed in three steps by Algorithm 7.

The method presented above allows modifying the velocity of each joint of the
robot to satisfy the velocity bounds. We have supposed that the resulting path re-
spects the constraints of acceleration. Otherwise, it is possible to identify a function
β acc equivalent to β to take into account overtaking accelerations. In practice, for
HRI, the kinematic constraints of the trajectory are small in comparison to the capa-
bilities of the system and it is not necessary to check for overtaking of acceleration.

In this section we have presented a method to compute a trajectory from a path
that can be defined either in the joint space or in Cartesian space of the robot.
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Algorithm 7. Smoothing the variation of the motion law

begin
Applying the method in Sect. 4.3.4 on the evolution of β by varying the time from
tI to tF with a step of ΔT , the resulting curve is named β f orward :

β f orward(kΔT) =

{
β (kΔT ) if β (kΔT)< β ((k−1)ΔT )

fsmooth(β ) otherwise
(19)

Applying the method in Sect. 4.3.4 on the evolution of β by varying the time from
tF to tI with a step of −ΔT , the resulting curve is named βbackward :

βbackward(kΔT ) =

{
β (kΔT ) if β (kΔT )> β ((k+1)ΔT )

fsmooth(β ) otherwise
(20)

βsmooth is finally obtained by taking the minimum between β f orward and βbackward:

βsmooth(kΔT ) = min(β f orward(kΔT ),βbackward(kΔT )) (21)

end
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4.7 Adaptation of the Motion Law during the Execution

During the trajectory execution, humans located in the workspace of the robot can
move, so the robot can put them in danger. We propose to use the geometric models
of the robot and of the human, updated at each iteration during the execution to en-
sure the safety and comfort of humans. We choose to take into account the weighted
average cost of the security and visibility constraints introduced in Sect. 4.1.2. The
method to adapt the motion law is the same as the one presented in the previous sec-
tion. The costs are high when the human–robot distance is short or when the robot is
outside the field of view of the human, the cost taken into account is costinv ∈ [0,1]
such that:

costinv(kΔT ) = 1− cost(kΔT) (22)

The cost costinv is then smoothed on-line by the function fsmooth presented in
Sect. 4.3.4.

When the trajectory TR(α(t)) is planned in Cartesian space, the law α(t) is eval-
uated at each iteration:

α(kΔT ) = α((k− 1)ΔT )+ fsmooth(min(costinv(kΔT ),βsmooth(kΔT )).ΔT (23)

In this section, we have presented a human aware motion planner. In a first part
we have introduced some elements to take into account the relative position of the
robot and the human, and the human behavior. Using a ramdom motion planner
and cost map to represent the human constraints, this motion planner begins by
computing a broken line path that is then transformed in feasible trajectories. The
trajectory generator allows limiting velocity, acceleration and jerk. This generator is
integrated in the motion planner and firstly presented in the case of planning in the
configuration space. It is then extended to planning in Cartesian space.

The approach is general and can be applied to complex systems with two
hands/arms. We have proposed an original method to convert a Cartesian trajec-
tory in a joint trajectory. Finally, we have presented an approach to modify online
the evolution of the time law of the trajectory and shown its usefulness for taking
into account the presence of humans during the execution of the movement.

In the next section, we introduce an attentional system to monitor the robot ac-
tivity from the perspective of the software components.

5 Attentional System

A robotic system designed to physically interact with humans should adapt its be-
havior to the human actions and the environmental changes in order to provide a
safe, natural, and effective cooperation. The human motions and the external en-
vironment should be continuously monitored by the robotic system searching for
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interaction opportunities while avoiding dangerous and unsafe situations. In this
context, attentional mechanisms [52, 21] can play a crucial role: they can direct
sensors towards the most salient sources of information, filter the available sensory
input, and provide implicit sensory-motor coordination mechanisms [41] to orches-
trate and prioritize concurrent activities.

In this project, we have deployed an attentional system suitable for balancing
the trade off between safe human-robot interaction and effective task execution.
The attentional system is to supervise and orchestrate the human-robot interaction
activities monitoring their safety and effectiveness. Our attentional execution mon-
itoring system is obtained as a reactive, behavior-based system, endowed with sim-
ple, bottom-up, attentional mechanisms. We assume a frequency-based model of the
executive attention [15, 16, 13] where each behavior is endowed with an adaptive
internal clock that regulates the sensing rate and action activations. The frequency
of sensor readings is here interpreted as a degree of attention towards a behavior:
the higher the clock frequency, the higher the resolution at which the behavior is
monitored and controlled. In particular, we consider robot manipulation tasks pro-
viding the attentional monitoring strategies for behaviors like pick and place, give
and receive, search and track (humans and salient objects).

5.1 Related Work

Human aware manipulation [59, 61] and human–robot cooperation in manipulation
tasks [27] are very relevant topics in HRI literature, however cognitive control and
attentional mechanisms suitable for safe and effective interactive manipulation are
less explored. A number of recent contributions about close HRI are based on mo-
tivational and cognitive models [8]. However, attentional mechanisms in HRI have
been mainly investigated focusing on visual and joint attention [49, 8] for social
interaction. In contrast, our main concern is on (supervisory) executive attention
for monitoring and action orchestration [52, 21]. Attentional mechanisms applied to
autonomous robotic systems have been proposed in the literature for vision-based
mobile robotics (e.g. [48, 19, 31]), but here we are interested in artificial attentional
processes suitable for monitoring the execution of multiple concurrent behaviors in
human interaction tasks [14].

5.2 Attentional Model

Our aim is to develop an autonomous robotic system suitable for human-robot
interaction in cooperative manipulation tasks. Achieving autonomy and safety in
such an environment requires adaptation. For this purpose, we propose to deploy an
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attentional system, a kind of supervisory attentional system a la [52], to modulate the
robotic arm motion and perception. The attentional system is expected to monitor
and regulate multiple concurrent activities [41] in order to achieve an effective co-
ordination and interaction with the human movements in the operative space. More
specifically, our attentional model combines the following design principles:

• Behavior-based system. The executive control is obtained from the interaction of
a set of multiple parallel behaviors working at different levels of abstraction.

• Attentional monitoring. Attentional mechanisms are to focus monitoring and
control activities on relevant internal behaviors and external stimuli.

• Internal and external sources of salience. The sources of salience are behav-
ior and task dependent; these can be dependent by either internal states (e.g.
resources, processes, goals) or external stimuli (e.g. obstacles, unexpected varia-
tions of the environment).

• Adaptive sensory readings. For each behavior, the process of changing the rate
of sensory readings is interpreted as an increase or decrease of attention towards
a particular aspect of the environment the robotic system is interacting with.

• Emergent attentional behavior. The overall executive attention should emerge
from the interrelations of the attentional mechanisms associated with the
behaviors.

5.2.1 A Frequency-Based Model of Attention

The frequency-based model of the executive attention [15, 16] adopted in this chap-
ter can be represented in a schema theory framework in terms of Adaptive Innate
Releasing Mechanisms (AIRMs) [16]. In the following we briefly recall this model.

In Fig. 5.2.1, the AIRM is represented through a Schema Theory representation
[2], where each behavior is composed of a Perceptual Schema (PS), which reads
and processes incoming data from sensors, a Motor Schema (MS), producing com-
mands to be given to motors, and a control mechanism, based on a combination of a
releasing mechanism [64] and an internal adaptive clock. In particular, the releaser
acts as a trigger signal that enables or disables the activation of the MS, according to
the sensory data σ(t). For example, a detected obstacle releases the obstacle avoid-
ance MS. Instead, sensor readings are sampled by the adaptive clock. That is, the
robot reads data just when necessary (reducing sensory readings and elaborations)
with a period that can change according to the salience of the perceived stimuli. In
this way, each behavior can independently monitor the environment and modulate
its outputs following the clock frequency changes.
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Fig. 21 AIRM Model: each behavior is composed of an adaptive clock, a releasing function,
a perceptual schema and a motor schema.

Assuming a discrete time model for the adaptive clock, the way the clock adapts
its period is called monitoring strategy and is characterized by:

• A period pt for each behavior, ranging in an interval [pmin, pmax],
• An updating function f (t) : Rn→ R that changes the clock period pt , according

to the parameters the behavior depends on (sensors, internal state, environmental
features, and the behavioral goal).

• A trigger function ρ(t, pt−1), which enables/disables the data flow σr(t) from
sensors to PS, at every pt−1 time unit:

ρ(t, pt−1) =

{
1, if t mod pt−1 = 0
0, otherwise

(24)

• Finally, a support function φ( f (t)) : R→ N that maps the values generated by
the updating function f (t) in the allowed range for the period [pmin, pmax]:

φ(x) =

⎧⎨
⎩

pmax, if x≥ pmax

�x�, if pmin < x < pmax

pmin, if x≤ pmin

(25)

Now, starting from the clock period at time 0, p0 = pmax, the clock period at time t
is regulated as follows:

pt = ρ(t, pt−1)∗φ( f (t))+(1−ρ(t, pt−1))∗ pt−1. (26)

That is, if the behavior is disabled, the value of the clock period at time t remains un-
changed at the previous value pt−1. Instead, when the trigger function is equal to 1,
the behavior is activated and, subsequently, its activation period changes according
to the φ( f (t)) function.

5.2.2 Attentional HRI

Based on the model introduced above, we have designed a behavior-based control
system endowed with attentional monitoring strategies for human-robot interaction.
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In this model, the attentional mechanisms regulates the executive system trading off
between two conflicting requirements:

• safe interaction with the humans;
• effective cooperation in interactive tasks.

Each requirement is associated with a motivational drive that affects the attentional
and executive state of the robotic behavior. The first one corresponds to the fear of
hurting people, hence it determines caution, slow movements and intensive mon-
itoring (in case of danger it blocks the robot motion), instead, the second one is
associated with a desire to interact with people and manipulate objects, thus this
attitude provides an attraction towards moving and close persons or objects.

Depending on the disposition, movements, and the attitude of a person in the
robot workspace, each behavior changes its activation frequency, affecting the over-
all attentional state of the system. In this way, a person walking across the interaction
area or a fast movement of a human head (or hand) can modify the behaviors’ at-
tentional state causing an accelerated elaboration of the associated perceptual input
(human movements) and more frequent behaviors’ activations.

Test-bed domain. We have considered a robotic manipulator that is to cooperate
with humans in pick-and-place and give-and-receive (hand-over) tasks. Depending
on the context, the robotic system should: look for an operator to interact with;
give or receive an object to/from the operator; pick or place an object from/into a
location. Each of these tasks are to be monitored in order to avoid dangerous/unsafe
situations.

In this context, the attentional mechanisms allow us to combine the robot at-
traction towards human operators (to be effective and cooperative) and the robot
repulsion from unexpected events and abrupt environmental changes. For each be-
havior, the simple perception-action response to an external stimulus may pro-
duce different patterns of interactions depending on different internal states of the
robot given by the combination of the fear of hurting the user and the desire of
helping him.

Environment. In our setting, the robot base is kept fixed (the mobile base is not
exploited) and close to a small table where the robot can pick and place objects. De-
pending on the proximity, we have defined three areas in the workspace: a proximity
area which is too close to the robot body and unsafe for HRI; an interaction area,
where physical human-robot interaction is possible (here we refer to both visual
and physical interaction in the robotic arm workspace); a far workspace area where
humans and object are in the robot field of view, but too far for handover tasks.

5.3 Control Architecture

We have designed a control architecture suitable for the primitive interactive manip-
ulation tasks introduced above. The control system integrates modules for forward,
inverse kinematics, and visual servoing along with modules for face recognition,
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hand detection/tracking, object recognition/tracking. Given these functionalities, the
attentional state of the robot is affected by the following sources of saliency: face,
hands, object detection, proximity.

5.3.1 Attentional Behaviors

The behavior-based architecture is depicted in Fig. 22. This model integrates atten-
tional behaviors for pick and place, give and receive, but also behaviors for search
and track (humans and objects) as well as behaviors regulating the avoid attitude of
the robotic system.

The robot attentional behavior is obtained as the combination of the following
primitive behaviors (see Fig. 22): AVOID, PICK and PLACE, GIVE and RECEIVE,
SEARCH and TRACK. For each behavior, we have to define the activation function
and the updating policy that represents the associated attentional model.

Fig. 22 Behavior-based architecture for HRI.

Behaviors settings. SEARCH controls the pan-tilt (PTU) providing an attentive
scan of the environment looking for humans and objects. It is active whenever the
robotic system is idling and no interesting things (objects or humans) are in the
robot field of view. Its activation is periodic, but not adaptive, hence it is associated
with a constant clock:
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pt
sr = ksr. (27)

Once a human is detected in the robot workspace (through face detection and/or
hand detection), the TRACK behavior is enabled. This behavior allows the robot to
monitor human motions before they enter in the interaction space. TRACK focuses
the system attention on the operator movements, hence the adaptive clock should be
regulated in accordance with the human motion and position. Here, the input signal
σhm(t) represents the human distance from the robot camera, in our test-bed it is
the minimal distance of human faces and hands. The TRACK clock period changes
according to σhm(t) and the increment of σhm(t), that is, the period ptr is updated as
follows:

pt
tr =Θtr(σhm(t),

σhm(t)−σhm(t− pt−1
tr )

pt−1
tr

), (28)

where pt−1
tr is the period at the previous clock cycle,Θtr(x,y) is a functionΘtr(x,y)=

φtr(αx+(1−α)1/y+β ), where α and β are behavior-specific parameters used to
weight the importance of position and velocity in the attentional model, while φtr(z)
is the scaling function that introduces suitable thresholds to keep the clock period
within the allowed interval [ptr min, ptr max]. Intuitively, a human that moves fast and
close needs to be carefully monitored (high frequency, foreground), while a human
that moves far and slow can be monitored in a more relaxed manner (low frequency,
background).

The AVOID behavior checks for safety in human-robot interaction, it controls
the arm motion speed and can stop the motion whenever a situation is assessed as
dangerous. AVOID is enabled when a human is detected in the robot interaction
area. It is endowed with an internal clock whose frequency depends on the operator
proximity and motion. The associated clock frequency changes proportionally to
the situation saliency. That is, if the operator is close and/or its position σop (i.e.
minimal distance of face and hands) becomes closer between successive readings
of sensory data, then the clock is accelerated, while it is decelerated if the operator
moves away from the robot. The period of this clock changes as follows:

pt
av =Θav(σop,

σop(t)−σop(t− pt−1
av )

pt−1
av

), (29)

where Θav is defined as for TRACK. The output of this behavior results in a speed
deceleration associated with high frequencies:

speed =

{
max speed×pt

av
pav max

if prox.sp. < σop ≤ inter.sp.
0 σop ≤ prox.space

(30)

where speed is the current speed, max speed is the maximum allowed value for
the arm speed, prox.sp. and inter.sp. are the proximity and the interaction space
respectively. Moreover, the arm will stop if the operator is inside the robot proximity
space.



Human–Robot Interaction 163

The PICK behavior is activated when the robot is not holding an object, but there
exists a reachable object in the robot interactive space. PICK moves the robot’s
end-effector towards the object, activates a grasping procedure and, once the robot
holds the object, moves this in a predefined safe position close to the robot body.
For PICK, the input signal σob j(t) represents the distance of the object from the
robot end effector which can be detected by the stereo camera. In this case the clock
period is associated with the distance of the object. That is, the period pt

pk is updated
as follows:

pt
pk = φpk(α σob j(t)), (31)

with φpk(x) is the scaling function used to scale and map σob j(t) in the allowed
range of periods [ppk min, ppk max]. Furthermore, the clock frequency determines
also speed variations. In particular, the speed is related to the period according to
the following relation:

speed =
max speed× pt

pk

ppk max
. (32)

In this way, the arm moves with max speed at the beginning, when there is free
space for movements (and a low monitoring frequency), and smoothly reduces its
speed to a minimum value in order to execute a precision grip with more frequent
camera information (higher monitoring frequency).

As for PLACE, it is activated when the robot is holding an object in the absence of
interacting humans in the interactive space. It moves the robot end effector towards
a target position, it places the object and moves the robot arm back to a predefined
position close to the robot body. The clock period is regulated by a function anal-
ogous to that of (31) with the distance to the target σtr as the input signal. Also in
this case, the speed is decelerated at high clock frequencies according to (32).

The GIVE and RECEIVE behaviors are activated by object and gesture detec-
tion. These behaviors are responsible for monitoring and regulating the activities of
giving and receiving objects taking into account both the humans’ proximity and
their movements. In this case, the clock period is associated with the distance of
both the objects and the speed of the operator hand. In particular, GIVE is activated
when the robot holds an object and perceives a reachable human hand in its oper-
ative space. When activated, this behavior moves the end effector in the direction
of the operator’s hand with a trajectory and velocity which depends on the human’s
proximity and operator’s hand movements. The GIVE sampling rate is regulated by
the following function:

pt
gv =Θgv( γob j(‖σob j(t)− eepos(t)‖),γop(

σop(t)−σop(t−pt−1
gv )

pt−1
gv

) ), (33)

where σob j(t) and eepos(t) are the positions of the object and the end effector at time
t, σop(t) is the hand operator position, θgv, γob j, γop are suitable functions defined
as follows. The function γob j sets the period proportional to the object position, i.e.,
the closer the object, the higher the sampling frequency:
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γob j = (pgv max− pgv min)
d

maxd
+ pgv min, (34)

with d, maxd are, respectively, the distance (σob j(t)− eepos(t)) and the maximal
distance between the end effector and the object. Instead, γop depends on the hand
speed v (in terms of the incremental ratio of the hand position towards the value
of the period), i.e., the higher the speed, the higher the sampling frequency. The
following function is used to set and normalize the values within the allowed interval
[pmin, pmax]:

γop =

{
(pgv max− pgv min)(1− v)+ pgv min if v≤ 1
pgv min otherwise

(35)

Finally, theΘgv(x) combines the two functions γ with a weighted sum regulated by
an α parameter

Θgv(x) = φgv(αγob j +(1−α)γop)), (36)

also in this case the resulting period is limited within the allowed interval [pgv min,
pgv max] by the scaling function φgv.

The clock frequency regulates not only the sampling rate, but also the velocity of
the arm movements. More specifically, the execution speed is related to the period
according to an inversely proportional relation (32). This means that the higher the
sampling rate, hence the attention, the slower the hand movement. Intuitively, here
we assume that when attention is needed the movement should be more carefully
monitored, thus slower.

As for the RECEIVE behavior, it is activated when the robot perceives a human
in the operative space holding a reachable object in his/her hand. The behavior sam-
pling rate is regulated by a function analogous to (33) (set with different parameters)
with an adaptive velocity inversely proportional to the current period, as in (32).

5.4 Execution Example

We now illustrate how the system works in typical interactive situations. In Fig. 23
we plotted part of the execution of the RECEIVE behavior. In particular, Figure 23a
represents the variation of the distance between the end effector of the robotic arm
and the operator’s hand. In the execution cycle 80, the robot has almost reached
the human hand, however the operator moves his/her arm away. The execution of
the behavior ends at the execution cycle 162 when the robot delivers the object to the
operator. Figure 23b represents the hand speed variation of the same execution, as
evaluated by the RECEIVE behavior. The hand is almost stationary between the cy-
cle 30 and the cycle 70, then it starts moving with different speeds until it stands still
at cycle 162 and receives the object. Finally, Figure 23c represents the activations
of the behavior at each cycle. Whenever there is a bar in the plot, this means that
the behavior perceptual schema is active. Let us note that both the distance and the
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a)

b)

c)

Fig. 23 a) End effector-hand distance; b) Hand speed as evaluated by the Receive Behavior;
c) Activations of the Receive behavior.

hand speed are sampled and evaluated only when the behavior perceptual schema
is active. The frequency of activation will increase when the distance is small (for
example between cycles 40 and 80) or when the hand speed is high (for example
between cycles 105 and 125) following the updating function of the behavior.

5.5 Evaluation Criteria and Experimental Results

To evaluate the performance of the attentional system and of the HRI system, we
introduce some evaluation criteria considering safety, reliability, effectiveness and
efficiency.

• Safety is measured counting dangerous human-robot interaction events (i.e. a safe
robot should avoid collisions between human and a moving robot and it should
minimize interactions where the two are too close).

• Reliability is evaluated considering unrecoverable world/robot states encountered
during the tests (the robot is stuck, the object falls down, the object is not reached
or located by the robot).

• Effectiveness is assessed considering the time needed to achieve the task (the
system should minimize the time to achieve the task).

• Efficiency is associated with the number of behavior activations needed to achieve
the task (for us, an attentional system is efficient, when it can distribute computa-
tional resources among different processes, focusing only on relevant activities).
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Parameters Setting. Given the attentional model introduced in the previous section,
the overall attentional behavior is obtained once we tune the parameters associated
with the behaviors’ monitoring strategies.

To assess the performance of the system with respect to the previous set of criteria
we introduce a suitable optimization function:

f = M1×NSa f e +M2×NRel +M3×TE f f e+M4×NE f f i.

Here, M1 > · · · > M4 specify the priorities in terms of weights; NRel represents the
number of unrecoverable situations with respect to the number of accomplished
activities (pick, place, etc.); Nsa f e the HRI unsafe situations with respect to the ex-
ecuted activities; TE f f e is for the time spent to achieve the tasks with respect to the
overall mission time; NE f f i is for the number of behavior activations with respect to
the maximal possible activations (for each behavior pmin).

This function can be exploited, on the one hand, to learn the system parameters
and, on the other hand, to validate the overall system behavior. Different learning
algorithms can be deployed for parameter learning (e.g. genetic algorithms, parti-
cle swarm optimization, simulated annealing etc.), currently, we are investigating
Differential Evolution algorithms (DE) [62] which are particularly suitable for both
boundedness and granularity problems, indeed DE manages unrestricted and un-
bounded range of values. More details about DE methods used to set attentional
monitoring strategies can be found in [13].

Experimental Setup. In order to evaluate the performance of the AIRM archi-
tecture we compare it with a classical non-rhythmic architecture (P1Vmed) in
which the behaviors perceptual schema are always active. For the adaptive ver-
sion (AIRM) we consider adaptive concurrent clocks with pmin = 1, pmax = 10 and
speed = max−speed×p

pmax
for all the behaviors. For the (P1Vmed), we assume that the

behaviors’ perceptual schema are always active (i.e., pmin and pmax are both equal to
1) and the arm speed is set to a constant value (speed = max−speed

2 ). Moreover, in the
case of the AIRM architecture, the updating policies of the behaviors are those spec-
ified in the previous section. The range of values for the speed is [0;0.3] m/s. For
the experiments, we have used the robotic platform available in the PRISCA Lab,
endowed with a 7DOF robotic arm (Cyton Arm by Energid: payload 300 g, hight 60
cm, reach 48 cm, joint speed 60 rpm), a gripper (size 3.25 cm) as end effector, and
a kinetic device. In this context, the proximity, interaction, and workspace distances
were set, respectively, at 20 cm from the robot body, 10−50 cm, and 50 cm to 6 m.

Empirical Results. During the empirical evaluation, we have tested each behavior
20 times with 5 different operators unaware of the robot behavior. Operators are re-
quired to observe the robot and move around in the case of Pick and Place behaviors,
and interact, without any specific requirement, for the Give and Receive behaviors.
In these final cases all the hand movements, made by the operators, were sponta-
neous. For each test we have evaluated the parameters defined above: effectiveness,
efficiency, reliability, and safety.

Notice that not only are the attentional mechanisms associated with better per-
formance in terms of effectiveness and efficiency (Fig. 24 and Tab. 1), but we have
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Table 1 Evaluation of the Effectiveness, Efficiency, Reliability, and Safety criteria.

Effectiveness Efficiency Reliability Safety
AIRM P1VMED AIRM P1VMED AIRM P1VMED AIRM P1VMED

Receive 7.66s±0.54s 9.69s±0.31s 14.5±1.57 41.7±1.42 100% 100% 100% 100%
Give 4.87s±1.4s 7.27s±2.9s 6.05±2.65 14.65±5.59 83% 80% 90% 84%
Pick 9.14s±2.07s 10.48s±0.67s 16.2±6.58 32.65±5.99 77% 54% 100% 100%
Place 6.03s±1.05s 8.96s±0.6s 12.95±5.03 58.65±10.17 100% 100% 100% 100%

Fig. 24 Effectiveness (time taken) and Efficiency (activations) evaluation criteria.

also observed better results regarding reliability and safety (Tab. 1) compared with
the non-adaptive architecture in which the perceptual schemas are always active
(P1Vmed). In particular, the adaptive modulation of the robotic arm speed allows
us to accomplish the task faster than keeping the speed to a constant value, further-
more the adaptive trajectory is safer and more comfortable from the operator point
of view. As we expected, a small number of activations has a big impact in the ef-
ficiency for the adaptive system. This is particularly evident in the Place behavior,
since interaction and precision are not requested, the task can be accomplished with
minimal activations. The critical operations for the Safety and Reliability are the
Give and Pick operations. As for safeness, we have observed that the Give interac-
tion requires more care in HRI (where the robot has to pass an object to the operator)



168 D. Sidobre et al.

than the Receive one (where the robot has to receive an object from the operator)
causing more frequent unsafe interactions. The same happens for reliability, indeed,
passing an object to a human is more difficult than receiving an object. Although
in these cases the success rate is not equal to 100% (as in the cases of Receive and
Place behaviors), the architecture endowed with AIRMs seems more reliable than
the P1Vmed standard architecture. For example, in the picking behavior the slower
speed of the adaptive architectures permits a more accurate grip of the object.

In this section, we have illustrated a human–robot interactive system endowed
with attention mechanisms used to coordinate simple manipulation tasks. In the
proposed attentional model, each behavior is equipped with an adaptive clock and
an updating policy that changes the frequency of sensory readings (focusing the
attention towards relevant aspects of the external environment) and modulates the
emergent behavior in terms of variations of the robot arm speed. We have defined a
simple control architecture for HRI considering pick-and-place and give-and-receive
attentional behaviors. To assess the system performance we have also introduced
suitable evaluation criteria taking into account safety, reliability, efficiency, and ef-
fectiveness. The role of the attentional system is to find a trade-off between safety,
effectiveness, and reliability in human-robot interaction and cooperation.

6 Conclusion

We have presented some concepts to build an interactive robot capable to share
the workspace with humans and to become a companion or a co-worker. We have
focused on the exchange of object between human and robot, which is a funda-
mental task for HRI. We have addressed firstly the architecture aspect and shown
the importance of the communication between the different software modules. The
grasp planning has then been studied to exhibit the importance of double grasp to
exchange an object.

Then, we have presented how to plan and adapt robot motion to take into account
the human and his/her behavior. The motion planner we have presented produces
trajectories as series of cubic functions in joint or Cartesian space. This trajectory
can then be adapted or modified to cope with the human changes in real time.

The last section has presented an attentional mechanism used to coordinate ma-
nipulation tasks. We have shown its interest to trade off between safety, effective-
ness, and reliability in HRI and cooperation.

Of course, this approach of HRI is not complete and lots of points still need to
be investigated like the exchange of information, the manipulation of more complex
objects with two hands or the accomplishment of more complex tasks. For exam-
ple, for a robot and a human intuitively exchange an object, they must exchange
tactile information and the robot must be capable to generate and understand this
information. This point is a challenge to build reliable and efficient robots that pick-
and-give or receive-and-place objects in industrial environment. So, we can see that
to realize simple daily tasks in interaction with human, robots need a lot of function-
alities from human attention systems and supervision to tactile dialog and control.
But such a robot cannot only share the space safely with humans but also do tasks
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for humans or help humans do tasks in an intuitive way. In this sense, the main re-
sult of this work is to have demonstrated the possibility to build intuitive and safe
manipulator robots.
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23. Cornellà, J., Suárez, R.: Determining independent grasp regions on 2D discrete objects.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton
(2005)

24. Cortés, J., Siméon, T.: Sampling-based motion planning under kinematic loop-closure
constraints. In: 6th International Workshop on Algorithmic Foundations of Robotics,
Utrecht (2004)

25. Diankov, R., Ratliff, N., Ferguson, D., Srinivasa, S., Kuffner, J.: Bispace planning: Con-
current multi-space exploration. In: Robotics: Science and Systems, Zurich (2008)

26. Ding, D., Liu, Y.H., Wang, S.: The synthesis of 3D form-closure grasps. In: IEEE Inter-
national Conference on Robotics and Automation, San Francisco, CA (2000)

27. Edsinger, A., Kemp, C.C.: Human–robot interaction for cooperative manipulation: Han-
dling objects to one another. In: 16th IEEE International Symposium on Robot and Hu-
man Interactive Communication, Jeju Island, Korea (2007)

28. Ferguson, D., Stentz, A.: Anytime RRTs. In: IEEE/RSJ International Conference on In-
telligent Robots and Systems, Beijing (2006)

29. Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on
Robotics and Automation, Nice (1992)

30. Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed
mathematical model. Journal of Neuroscience 5, 1688–1703 (1985)

31. Frintrop, S., Jensfelt, P., Christensen, H.I.: Attentional landmark selection for vi-
sual slam. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
Beijing (2006)



Human–Robot Interaction 171

32. Goldfeder, C., Allen, P., Lackner, C., Pelossof, R.: Grasp planning via decomposition
trees. In: IEEE International Conference on Robotics and Automation, Roma (2007)
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Innovative Technologies for the Next Generation
of Robotic Hands
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Abstract. With the aim of reproducing the grasping and manipulation capabilities
of humans, many robotic devices have been developed all over the world in more
than 50 years of research, starting from very simple grippers, normally used in in-
dustrial activities, to very complex anthropomorphic robotic hands. Unfortunately,
the reduced functionality and/or reliability of the devices developed so far prevent,
together with the cost, their usability in unstructured environments, and in particular
in human everyday activities. The adoption of design solutions inherited from con-
ventional mechanics and the lack of purposely developed sensors and actuators are
among the main causes of the partial fail in achieving the final goal of reproducing
human manipulation capabilities. Our research activity aims at developing inno-
vative solutions concerning the mechanical design, the sensory equipment and the
actuation system for the implementation of anthropomorphic robotic hands with im-
proved reliability, functionality and reduced complexity and cost, considering also
aspects related to safety during human–robot interaction, paving the way toward the
next generation of robotic hands.

Gianluca Palli · Claudio Melchiorri
Dipartimento di Elettronica Informatica e Sistemistica,
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Fig. 1 The DEXMART Hand prototype and its CAD virtual design including 24 twisted
string actuators.

1 Introduction

Historically, the reproduction of the human functional capabilities and appearance
can be considered among the main reasons for the development of robotic hands.
Nevertheless, despite the relevant efforts for the study and design of robotic hands
developed all over the world [46], the reproduction of human capabilities in terms
of dexterous manipulation seems still far from being achieved.

The aim of the DEXMART project is to develop a robotic bimanual manipula-
tion system able to operate in a unstructured human-like environment and to in-
teract safely with humans. In such a case, the robotic end-effector is expected to
provide high flexibility and adaptability to the environment and to the manipulated
objects, ideally replicating the overall functionality of the human hand. Therefore,
issues such as dexterity, anthropomorphism, sensing capability and human-like mo-
tion become fundamental. The general perception, however, is that current hands,
especially those aiming at an anthropomorphic aspect, are too complex, bulky and
unreliable to really represent effective solutions. Note that, besides their mechanical
or electronic/sensing features, also general tools for their use and programming are
missing, making their application to real tasks even more difficult.

Many robot hands have been designed in the past, trying often to reproduce or
enhance specific features of the human hand. Researches have been interested in de-
signing hands with reduced number of actuators [12], with anthropomorphic aspect
[16], with high dexterity potentialities [15], with very high speed [49], or compli-
ance [8], or many other specific aspects. As a matter of fact, dozens of different
designs have been proposed, and it is difficult to learn some lessons from this wide
scenario. Some of the robot hand prototypes developed so far possess rigid and hard
structures and complicated sensori-motor systems, design solutions being mainly
based on non-biologically inspired mechanics, with abundance of gears, pulleys,
bearings, and similar hardware, nonetheless the sensing devices are often inher-
ited from other fields and not purposely suited for this particular application. This
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“classical” approach leads to efficient devices that are yet very complex, expensive
and many times not sufficiently reliable.

Within the DEXMART project, the simplification of the robot hand mechanics
is obtained by the introduction of non conventional joints, compliant structures and
transmission systems based on tendons, together with the use of innovative actua-
tion systems like the twisted strings principle [53]. This innovative anthropomorphic
robot hand is the fourth version of the UB Hand and has been called DEXMART
Hand, see Fig. 1 where a prototype of this innovative device is shown. The adopted
design choices imply the use of an appropriate sensory equipment, purposely de-
signed to fit into the DEXMART Hand structure from the point of view of both
the mechanical and the electronic integration. With the aim of improving the grasp-
ing capabilities of the DEXMART Hand, purposely designed soft pads have been
developed for the integration into the hand structure. Moreover, the adoption of suit-
able control strategies for the compensation of the side effects given by these design
choice must be considered. This fact is a direct consequence of the needs in terms
of increased reliability and reduced costs, that moves the complexity of the system
from the time-consuming mechanical design to the easy-reprogrammable device
control strategies.

In this chapter, a general overview of the design solutions and innovative devices
and technologies that have been developed within the DEXMART project for the
implementation of a new generation of robotic hands will be given.

2 DEXMART Hand Design

The general design philosophy that has been followed within the DEXMART
project is to aim at reduction of the device complexity and the costs. In particu-
lar, the DEXMART Hand has been inspired by the following driving issues:

• To adopt an endoskeletal structure articulated by means of non conventional
joints, sliding or compliant.
• To actuate the joints by means of remotely located actuators with tendon-based

transmissions routed by sliding paths (sliding tendons) integrated within the fin-
ger structure.
• To exhibit surface compliance through a purposely designed soft cover mimicking

the human dermal-epidermal layers.
• To reduce manufacturing and assembly complexity by systematic parts integra-

tion adopting proper advanced materials and technologies (e.g. polymers and
additive manufacturing technologies like Fused Deposition Manufacturing or
stereo-lithography).
• To reduce weight and cost of the overall hand system, increasing its

“affordability”.

A general view of the present DEXMART Hand prototype is shown in Fig. 1,
whereas in Fig. 2 an insight view of the design of this innovative robot hand is
shown. The development of this innovative anthropomorphic robot hand has been
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Fig. 2 Prototype of the DEXMART Hand with enhanced surface compliance (a). Hand and
palm soft cover (b). Sliding tendons network (c).

started from the design of the finger searching for the maximum achievable integra-
tion between the various components, like the mechanical structure, the sensors, the
electronics, the actuation and the soft pads, in the perspective of a structural simpli-
fication, allowing one-step monolithic manufacturing and consequent reduction of
the assembly complexity.

Particular attention has been given to the design of the joints to simplify this
fundamental component, avoiding the use mechanical parts, such as bearings and
similar hardware, that may cause problems in the integration of the sensors and the
tendon network in the proximity of the joint itself. In general, joint design is heav-
ily dependent on the inseparable binomial material-technology. At present, different
technologies and a wide range of materials (including lightweight metal alloys) can
be used in order to produce the articulated finger structure in a single production step
(fully integral finger). Such technologies include CNC machining, plastic molding
(such as Shape Deposition Manufacturing (SDM)), Selective Laser Sintering (SLS),
Fused Deposition Modeling (FDM), Stereo-Lithography (SLA) and Electron Beam
Melting (EBM). Nevertheless, recent advances in the plastic materials technology
suggest that the use of polymers might be well suited for the production of artificial
hands once a lightweight, relatively economical solution is sought. For instance,
plastic materials recently developed for SLA and FDM are beginning to offer ac-
ceptable performance and costs allowing the production of complex joint shapes (as
it is remarked by the introduction of plastic grippers obtained though FDM within
the robotic industry).

In detail, two concepts for the development of fully integral fingers have been
explored:

• Monolithic fingers with integral Compliant Joints (CJs) made of the same ma-
terial of the phalanx structure (Fig. 3(b)). It can be recalled that a CJ consists
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in a flexible region that provides displacement (rotational and/or translational)
between two rigid parts through material deformation.
• Fingers with pin joints integrated into the phalanx body (Fig. 3(c)) simply consist-

ing in a plastic shaft which slides on a cylindrical surface (Integrated Pin Joints
(IPJs)).

In both cases, tendons are routed through a series of sliding paths which are obtained
directly within the finger structure (sliding tendons, Fig. 2(c), 3(b), 3(c)) as will
be detailed in Sect. 4.1. A complete analysis of the tendon transmission modeling,
control and material selection is reported in [51]. As for the IPJs, in spite of the
sliding contacts, the joint shows very good reliability. On the other hand, stiction
and dynamic friction may deteriorate the open-loop position control of the finger
and can lead to mechanism locking as the contact pressure between the shaft and the
hub increases (due to increased tendon traction). To prevents this undesired effects,
suitable control strategies will be adopted.

Clearly, the use of large-displacement CJs [29, 39] within the hand endoskele-
ton is very attractive as long as it can allow the generation of very slender and
light mechanisms that are more safe, robust to impact and better respect the goal of
reproducing biological structures. In addition, the CJ can store energy during the ac-
tuation phase, restituting it during the return stroke. In such a way, as demonstrated
in [46, 48], the joint can be actuated by means of one single-acting backdrivable ac-
tuator instead of a couple of agonistic-antagonistic ones (with obvious advantage in
terms of weight and cost). Despite this consideration and after the evaluation of sev-
eral solutions for the implementation of the finger joints, the IPJ solution has been
selected because of its simplicity and reliability, see Fig. 3(c) where a detail of the
joints implemented in the DEXMART Hand finger’s is shown. The benefits of IPJ
when compared to traditional kinematic pairs (like bearing couplings) include the
simplification of the manufacturing and assembly process ensuring size and weight
reduction in spite of a larger friction that will be compensated by control [14].

Since the tendons go from the forearm, where the actuators are placed, to the fin-
gers traversing the wrist, particular attention has been given in the design of this cru-
cial component of the hand. Also in this case both CJs and IPJs have been evaluated,
together with a solution based on a combination of CJs and conjugated profiles, but
also in this case IPJs have been preferred because of their simplicity and reliability.

3 Sensorial Apparatus

Generally speaking, a robotic hand can be equipped with position/velocity sensors
for the measurement of the joints and/or actuators configuration, with force sensors
for measuring the force applied on the wrist, the palm, the phalanges and/or the
joints, and with tactile sensors for reconstructing the pressure map during the con-
tact (usually restricted to the fingertip) by means of an array of sensible elements. In
some limited cases, also proximity and single pressure sensors are part of the robot
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Fig. 3 Fully integral finger: dimensions when compared to human finger (a), finger with
integrated compliant joints (b), finger with pin joints integrated into the phalanx.

hand sensory equipment. Since the first prototypes of robotic hands, it was clear how
important were the requirement of limited invasiveness for every kind of sensor to
be integrated into the device. From the first solutions provided for tendon-driven fin-
gers [35] only limited progress has been made [33] and the sensor solutions adopted
appear still cumbersome and quite invasive.

For many reasons, the use of sensible elements with intrinsic high immunity to
electromagnetic disturbances and with limited requirements in terms of both con-
ditioning electronics and amplification is preferable to improve the reliability, to
ease the miniaturization and the integrated design, and to simplify the sensory sub-
system. This is the main reason why, within the DEXMART project, the use of
optoelectronic components has been widely studied for all the sensors needed in the
DEXMART Hand. In particular a LED and PhotoDetector (PD) couple with wide
angle-of-view has been adopted for the implementation of the joint position sensors
[18] described in Sect. 3.1, whereas components with narrow angle-of-view have
been used for the force sensors [54, 55] reported in Sect. 3.2. Finally, many dif-
ferent principles can be used for the implementation of tactile sensors [40], but the
problem is still the integration of all the electronics and acquisition system within
the limited space of the fingertip. To solve this issue, a tactile sensor based on dis-
crete SMD optoelectronic components has been developed [58]. This sensor allows
acquiring information directly on the deformation, due to the contact forces, of the
soft pads mounted above the sensible grid without any amplification circuit. A de-
tailed description of this sensor is reported in Sect. 3.3.

The adoption of optoelectronic components for the implementation of all the sen-
sors allows achieving a fundamental simplification of the condition and acquisition
electronics of the robotic hand, exploiting the same conditioning circuit for all the
sensors and avoiding the use of amplifiers. The scheme of the acquisition electron-
ics adopted for all the sensors developed for the DEXMART Hand is reported in
Fig. 4: the data collected from the sensors are, in this way, directly digitalized and
transmitted through a digital SPI bus to the hand control system.
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Fig. 4 Measuring circuit for the sensors based on optoelectronic components.

3.1 Angular Sensor Based on LED-Photodetector Couple

The proposed angular position sensor is based on a LED-PD couple, mounted to two
contiguous phalanges of a DEXMART Hand’s finger. When the joint between the
considered phalanges flexes, the photocurrent measured by the PD changes with the
angular displacement, since it depends on the distance among the two components
and on their mutual orientation. In order to reduce sensitivity to ambient light in
actual applications of the sensor, the components have selected with relative radiant
intensity and relative spectral sensitivity located in the infrared wavelength range.
The reduced working distance prevents from using the optical radiation patterns of
the devices reported by the datasheets and thus an experimental model is proposed.
The obtained model is then used to select the optimal placement of the components
over the phalanges. A calibration technique, based on an optical motion capture
system, is described and applied. Finally, the sensor performance is assessed by
estimating its repeatability and the obtainable linearity by inverting the calibration
curve via software. Also, the noise characteristic is evaluated showing a signal-to-
noise level higher than 60dB.

3.1.1 Working Principle

Figure 5(a) shows a single joint of a finger in the rest position. The LED and the PD
are placed respectively on the first and second phalanx attached to the joint, facing
each other with mechanical axes overlapping.

In this state a certain amount of light emitted by the LED reaches the PD and it
is proportionally converted into an electrical current, I0. As the joint starts to flex
(see Fig. 5(b)), the mechanical axes of the emitter and of the receiver experience
some angular displacement. In this new condition a different amount of light will
be sensed by the PD and converted into a current different from I0. This happens
because the radiation pattern of the LED varies with the observation angle, so that
the receiver detects different values of radiant flux in the two cases. At the same
time also the way the PD senses received light varies, as its relative position and
orientation respect to the source change according to its responsivity pattern. The
combination of these two effects leads to the observed variations of the photocurrent.
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Fig. 5 Schematics of the angular sensor using a LED-PD couple.

Being the electrical current of the PD (the photocurrent) variable with the flexure
angle of the joint, it is possible to introduce the function I(α). If I(α) is a mono-
tonic function of its argument, a measure of its value is uniquely associated to a
value of the joint rotation angle α . Thus if the power of light emitted by the LED
is kept constant and the PD current is measured, the flexure angle of the joint at ev-
ery instant can be reconstructed. A LED-PD couple is needed for each joint whose
angular displacement has to be detected.

Figure 5 shows that the LED and the PD have a fixed displacement from the
axis of the phalanx to which they are attached. The position of the emitter and the
detector can be specified with respect to a fixed Cartesian coordinate system Oxyz.
The origin O of the system is chosen to coincide with the center of rotation of the
joint, the x-axis overlapping the axes of the phalanges when α = 0◦. Assuming
the devices to lie symmetrically with respect to the z-axis, their angle-dependent
coordinates are (px, pz) for the PD and (−px, pz) for the LED. Their variation with
α has been subtended. When the joint is in its rest position (α = 0◦), it is px = px0

and pz = pz0. As α varies both px and pz vary, together with the distance d between
the tips of the LED and PD. In particular

d(β ) = 2px(β ) = 2 [px0 cos(β )+ pz0 sin(β )] , (1)

which for β = α = 0◦ gives the initial distance between the devices d = d0 = 2px0.
The initial positioning of the devices (in terms of px0 and pz0) represents a degree of
freedom that can be used to alter the d-β characteristic and in particular its mono-
tonicity, consequently changing the sensitivity of the sensor.

Owing to the symmetry of the system, with elementary geometric considera-
tions on the basis of Fig. 5, when the joint exhibits a certain bending angle α , the
mechanical axes of both the LED and the PD form an angle β with the x axis.
The symmetric positioning of the components with respect to the center of rota-
tion of the joint is not a mandatory condition to have a well working sensor. The
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Fig. 6 (a) Sketch of the measurement apparatus used to sample the function F(d,β ). (b)
Measurement apparatus used to sample the function F(d,β ).

choice made here only simplifies the geometric considerations used to optimize the
positioning and the calibration of the sensor. In general the couple LED-PD can be
used as an angular displacement sensor also without a symmetric positioning.

3.1.2 Modeling

Due to the limited distance between the LED and the PD, the modelling of the pro-
posed sensor has been carried out on an experimental basis rather than on a physical
basis. In detail, the photocurrent has been measured for different values of the ge-
ometrical parameters characterizing the distance and the mutual orientation of the
LED and the PD. A function interpolating measured data is then found. In gen-
eral, the photocurrent is a function of three variables: the distance d between the
tips of the devices and the two angular displacements θT and θR. Let this func-
tion be G(d,θT ,θR). As observed before, the symmetry of the system imposes the
constraints θT = β and θR = −β . Hence, the problem reduces to look for another
function of the sole variables d and β , let it be F(d,β ).

A preliminary testing phase has been performed to select the components among
various commercially available devices. The selection has been made taking into
account the nominal beam angle of the LED and the acceptance angle of the PD
so as to guarantee an acceptable sensitivity in the whole angular range of inter-
est. The selected devices used for experimental implementation are branded Avago
Technologies Inc. and are spectrally matched with an infrared peak wavelength of
875 nm. Such a choice in terms of wavelength range guarantees a sufficient robust-
ness against ambient light. The LED (manufacturer code number HSDL-4400) is
an AlGaAs flat-top light emitting diode featuring a nominal beam angle of 110◦,
an on-axis radiant intensity of 6 mW/sr corresponding to a 100 mA maximum for-
ward current, and a bandwidth of about 7 MHz. The PD (manufacturer code number
HSDL-5420) is a domed PIN photodiode characterized by a 28◦ acceptance angle
and a nominal optical bandwidth of 50 MHz.
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A suitable apparatus has been realized allowing to alter the spatial configuration
of the devices and register the correspondent photocurrent values, i.e. samples of the
function F(d,β ). A schematic of the measurement system is depicted in Fig. 6(a)
while in Fig. 6(b) a picture is shown. As these figures show, the tips of both de-
vices are kept on a circumference of diameter d0 and center O. The diameter d0 can
be varied by means of two micropositioning stages to which the LED and PD are
respectively attached. At every measurement step the same amount of linear dis-
placement Δ is applied on both stages, resulting into an increment of 2Δ over d0.
However, while the LED is simply translated, the PD is also rotated around O by an
angle δ . The mechanical axes of both devices pass through the center of the circum-
ference so that the source and the receiver are both looking at O. It can be noted that
in such a system θT = θR for every value of δ . This is exactly the constraint needed
for the sampling of F(d,β ). Moreover, from Fig. 6(a) it is evident that δ = α = 2β ,
which can be measured using a goniometer. The distance d between the tips of the
devices is instead indirectly measured by knowing d0 as d = d0 cos(β ). In conclu-
sion, by imposing the values of the parameters d0 and α , the presented apparatus
allows setting a couple of values of the independent variables d and β . Recalling
that α = 2β , it follows that

F(d,β ) = H(d0,α)|d0=d/cos(β ),α=2β (2)

In correspondence to each couple (d0,α) a value of the photocurrent is measured
and point by point the function H(d0,α) is sampled over a grid of points obtained
by scanning α ∈ [−90◦,90◦] with a step of 2◦, and d0 ∈ [4.5,14.5]mm with a step of
1 mm. Finally the function F(d,β ) is reconstructed by means of (2). The measured
samples have been interpolated through a universal approximator based on a fuzzy
system with 3 rules for the input d0 and 7 rules for the input α using Gaussian mem-
bership functions [74]. Figure 7(a) shows the measured data and the interpolating
surface, where the photocurrent has been normalized with respect to its maximum.
Negative values of α were included to investigate the symmetry of the radiation
process. The slight asymmetry of the function with respect to α = 0◦ is attributable
to a small asymmetry present in the measurement apparatus itself and to the mis-
alignment between mechanical and optical axes of the components.

3.1.3 Optimal Positioning

The proposed model is general enough to allow for an optimization of the geometri-
cal parameters px0 and pz0, in order to obtain the best sensitivity for the sensor over
the range of interest for angular displacements. In view of (1), for fixed values of
px0 and pz0, the surface F(d,β ) is reduced to a curve F(d(β ),β ; px0, pz0), where
the design parameters px0 and pz0 appear explicitly. In order to optimize the place-
ment of the devices, a cost function has to be defined taking into account the sensor
sensitivity, i.e.

σ(β ) =−1
2

d
dβ

F(d(β ),β ; px0, pz0). (3)
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Fig. 7 (a) Measured data and H(d0,α) interpolating surface. (b) Cost function J values for
optimal positioning.

Note that for the optimal positioning of the devices only a symmetric half of the
surface F(d,β ) is necessary and the sign of σ(β ) has to be chosen in order to
obtain positive values. Therefore defining m(px0, pz0) = minβ∈[0◦,45◦]σ(β ), the cost
function to be maximized can be defined as

J(px0, pz0) =

{
0, if m(px0, pz0)≤ σ

m(px0, pz0)−σ , if m(px0, pz0)> σ (4)

where σ is the minimal desired sensitivity. As a consequence, the optimal location is
identified as (p∗x0, p∗z0) = argmaxpx0,pz0 J(px0, pz0). Figure 7(b) shows a color scaling
representation of the cost function J with the couple (px0, pz0) that varies for all
values physically admissible to mount the devices on a joint of the DEXMART
Hand. It is evident that the optimal position is px0 = 2.5 mm and pz0 = 0 mm.

3.1.4 Sensor Characterization

The components have been mounted to the DEXMART Hand’s joint according to
the optimal position computed in the previous section. Fig. 8(a) reports a picture of
the mounted sensor. The sensor has been calibrated using a Vicon 460 optical motion
capture system. An optical marker has been attached to each phalanx contiguous to
the joint with the mounted devices. A set of experiments has been made with the
motion capture system in order to reconstruct the 3D space position of each marker
when the joint is flexed. First of all, the center of rotation for the considered joint has
been estimated using a least mean square algorithm to identify the circumference in
the three-dimensional space that is the best fit for the measured marker position
(see Fig. 8(b)). The same measured marker coordinates have been transformed into
the joint angle α using the estimated center of rotation and elementary trigonometric
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Fig. 9 (a) Calibration curve of the sensor. (b) Evaluation of sensor linearity.

relations. Two different measurements have been carried out to calibrate the sensor
varying the angle from 0◦ to 90◦ and vice versa so as to evaluate also repeatabil-
ity of the sensor. The obtained measurements are reported in Fig. 9(a) showing the
reconstructed angle α versus the voltage measured on the output of the PD circuit.
The repeatability appears quite satisfactory and also no drift is experienced after
several repetitions of the measurement. The sensor linearity can be easily improved
by inverting the calibration curve via software. In fact, estimating the angular dis-
placement through the 7-th order polynomial interpolating the calibration data, a
maximum linearity error of 2.5% is obtained as shown in Fig. 9(b).

3.2 Optoelectronic Force Sensor

Since the dawn of robotics, the availability of joint torque sensors improve the dy-
namic performance of the servomechanisms that are basic components of any robot,
from the industrial manipulators to antropomorphic robotic hands [61, 31, 41, 8, 3].
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Fig. 10 Working principle of the proposed force sensor.

The main reason can be attributed to the rejection capabilities of disturbance torques
acting on the transmission chain of the motion from the motor to the load via torque
feedback. The most relevant disturbance affecting transmission systems, and in par-
ticular tendon-based ones, is known to be the dry friction, and when a force/torque
feedback is not available, the only possibility is the friction compensation usually
based on more or less accurate friction models [1]. Unfortunately, most of the fric-
tion compensation algorithms require a good model of the phenomenon whose pa-
rameters are usually very difficult to identify.

An important field of application of force/torque sensors is the control of robotic
hands, in fact such complex systems are specifically designed to allow the robot
to interact with the environment, usually very unstructured and so generic that a
safe interaction can be ensured only if the mechanism possesses a compliant be-
haviour. Such a compliance has to be provided by force/torque control, hence fin-
ger joint force/torque sensors appear mandatory [43, 15, 26]. The same objective
exists for tendon-driven artificial hands which are the most used solutions for pros-
thetic applications [17] and when the torque/force control could be useful not only
for overcoming friction and other disturbances but specifically also for reproducing
nonlinear characteristic of human-like tendons [28].

The proposed solution makes use of an optoelectronic components couple, an
infrared LED and a PD, mounted on a compliant frame that is deformed under the
action of the tendon tension. The compliant frame is a monolithic metallic structure
suitably designed to obtain an angular displacement of the optical axes of the op-
toelectronic components linearly proportional to the force applied in the direction
of the tendon. Compliant mechanisms are often used also for the implementation of
linear actuators using smart materials [7], for the development of compliant trans-
mission systems [50] or as displacement/force magnifiers [25, 42]. The designed
compliant frame has been mounted between the actuation module and the tendon
that drives the phalanx.

3.2.1 Working Principle

Figure 10 shows a LED and a PD positioned with an initial relative angle between
their mechanical axes θ = β1 +β2. In this figure, β1 represents the angle between



186 G. Palli et al.

Angular Displacement [deg]

R
ad

ia
nt

In
te

ns
it

y
Pa

tt
er

n

Δθ

ΔI

I (β1)

(a)
Angular Displacement [deg]

R
es

po
ns

iv
it

y
Pa

tt
er

n

Δθ

ΔR

R(β2)

(b)

Fig. 11 Characteristics of the Honeywell optoelectronic components taken from datasheets:
normalized LED radiant intensity pattern (a) and normalized PD responsivity pattern (b).

the LED mechanical axis and the segment that indicates the distance d from the
tip of the PD to the tip of the LED, and β2 representing the angle between the PD
mechanical axis and the same segment. In this state a certain amount of light emitted
by the LED reaches the PD and it is proportionally converted into an electrical
current Iθ .

When the angle θ between the mechanical axes of the emitter and of the receiver
experiences a variation with respect to its initial value, a different amount of light
will be sensed by the PD and converted into a current different from Iθ . This hap-
pens because the radiation pattern of the LED varies with the angle β1, so that the
receiver detects different values of radiant flux for different values of β1. At the
same time, also the way the PD weights received light varies, according to the vari-
ations of its responsivity pattern with β2. The combination of these two effects leads
to the observed variations of the photocurrent. Recalling the theory on LED radia-
tion patterns [37], it is possible to model the system in order to optimize the design
of the sensor, selecting initial relative angle θ between the mechanical axes of the
two devices. In particular, if the distance d is large enough to render the far-field
approximation valid, the LED could be regarded as a point source. In this case, the
photocurrent Iθ (and thus the received radiant flux by the PD) will be proportional
to the product between the radiant intensity pattern of the LED, evaluated in β1 (de-
noted as I (β1)) and the responsivity pattern of the PD, evaluated in β2 (denoted as
R(β2)

1), and inversely proportional to the square of the distance d

Iθ ≈ I (β1)R(β2)

d2 . (5)

For the specific sensor here presented, optoelectronic components with a very nar-
row angle of view have been chosen with the aim of obtaining a large sensitivity
of the sensor with a very limited angular variations. In particular the selected LED,

1 The ϕ-dependence of the radiation and responsivity patterns is here omitted since the
devices only move within a plane at constant ϕ .
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manufactured by Honeywell (code SEP8736), is an aluminum gallium arsenide in-
frared emitting diode molded in a side-emitting smoke gray plastic package. The
selected PD, manufactured by Honeywell (code SDP8436), is an NPN silicon PD
molded in a black plastic package. The LED and PD have a nominal beam angle
of 10◦ and 18◦, respectively. They are mechanically and spectrally matched with a
peak wavelength of 880nm. Figure 11 reports the characteristics of the LED and
of the PD, taken from the datasheets. In these figures, the large variation of radiant
intensity pattern and responsivity pattern of the selected optoelectronic components
over a very limited variation of the angular displacement in a suitably selected re-
gion has been highlighted. This characteristics have been exploited to implement the
force sensor based on these optoelectronic components. As shown in Fig. 13(a) that
will be detailed later, the LED and the PD has been mounted with an initial relative
angle θ = 15◦, such that the no-load working point (I (β1) and R(β2) for the LED
and the PD respectively) is located in the lower part of the response characteris-
tics indicated by the blue stars in Fig. 11. By rotating the axes of the optoelectronic
components of an angle Δθ , the relative response of the LED and of the PD changes
of ΔI and ΔR respectively, as highlighted in windows of Fig. 11. These changes
can be detected by measuring the output voltage Vout of the simple circuit shown in
Fig. 4.

As simplifying assumption adopted during the compliant frame design, the char-
acteristics of the optoelectronic components have been considered linear within the
region of interest highlighted in Fig. 11 and the compliant frame has been designed
to achieve a variation of the angle between the optical axes of the optoelectronic
components linearly proportional to the external traction force applied to the sensor
within the range of interest (0 ∼ 80N). To achieve the symmetry of the structure,
the compliant frame has been split into two identical parts, each of those can be
seen as a compliant Slider-Crank Mechanism (SCM), see Fig. 12(a), and the opto-
electronic components have been mounted on only one of this two parts. Each part
can be schematized as reported in Fig. 12(a), where the scheme of the half com-
pliant frame equivalent pseudo-rigid SCM is reported. In the compliant frame, the
linear torsional springs K1, K2 and K3 have been implemented by means of corner-
filleted Flexural Hinges (FHs) [45], anyway due to the very small fillet radius, the
FHs have been designed considering the simple beam model (flexural pivot [29]).
From Fig. 12(a) it is clear that the tendon tension causes the slider movement in the
upward direction. For a detailed description of the compliant frame design please
refer to [54].

A suitable Finite Element Method (FEM) analysis has been performed with the
aim of both verifying the accuracy of the design procedure and to check if the limits
of the adopted materials (Aluminum 7075-T6) in terms of yield strength are satis-
fied. The measured elongation is reported in Fig. 12(b): it is worth noting that also
the FEM analysis confirms the effectiveness of the proposed design. The final di-
mensions of the selected compliant frame are reported in Fig. 13, whereas a picture
of the manufactured frames and a sensor prototype provided with the optoelectronic
components are reported in Fig. 14(a) and 14(b) respectively. The frames has been
manufactured by means of wire electro-erosion adopting aluminum 7075-T6. The
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slender parts marked as “Support” in Fig. 13(a) are designed to place in the correct
initial position the optoelectronic components. These component are simply bonded
with a cyanoacrylate-based glue on the support and aligned using as reference the
compliant frame borders.

3.2.2 Sensor Characterization

During the sensor calibration, a suitable load has been applied to the force sensor
and the corresponding output voltage Vout of the circuit shown in Fig. 4 has been
measured. These data have been then compared with the information coming from
a strain gauge load cell. The calibration curve obtained during the experiments is



Innovative Technologies for the Next Generation of Robotic Hands 189

(a) (b)

Fig. 14 (a) Prototypes of the compliant frame. (b) A prototype with the optoelectronic com-
ponents.

reported in Fig. 15(a), together with the characteristics obtained by means of a 3-rd
order polynomial interpolation. This plots show that this interpolation is suitable for
describing the response of the sensor. In Fig. 15(a) the output signal of the sensor is
shown to highlight that, since it is of 1 V order, amplification is not strictly required.
The shape of the signal is given by the controller and control objective used during
this experiments. This particular signal has been selected because of its non-trivial
harmonic content. By using a 16-bit analog-to-digital conveter over the 5 V supply,
it is then possible to achieve a sensor resolution of about 0.01 N, that is suitable for
our application. With the aim of showing the effect of the electromagnetic noise on
the sensor, in Fig. 15(b) the tendon force measured (without any filtering) close to
the maximum force range by means of both the strain-gauge and the optical load cell
is reported: from this comparison it is quite evident the effects of the electromegnetic
noise generated by the linear motors on the strain-gauge load cell, due also to the
high amplifier gain needed to achieve a suitable signal level with respect to the
optical based load cell. It follows that, for our application, other than the reduced
dimensions, the reduced cost and the simplified conditioning electronics achievable
with the proposed sensor, the signal-to-noise ratio of the optical load cell is more or
less an order of magnitude better that the one of the strain-gauge load cell.

3.3 Force/Tactile Sensor for Robotic Applications

Tactile sense is used by humans to grasp and manipulate objects avoiding slippage,
or to blindly operate in a dynamic environment. An artificial tactile sensor, by mim-
icking the human touch, should possess the capability to measure both dynamic
and geometric quantities, i.e. contact forces and torques as well as spatial and ge-
ometrical information about the contacting surfaces. Each of these may be measured
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Fig. 15 (a) Calibration curve of the of the load cell based on optoelectronic components. (b)
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either as an average quantity for some part of the robot or as a spatially resolved,
distributed quantity across a contact area [67]. A definition of tactile sensor is given
by Lee and Nichols [40]: a device or system that can measure a given property of an
object or contact event through physical contact between the sensor and the object.
The one above is probably the best, and at the same time the broadest definition of
a tactile sensor.

The force/tactile sensor here proposed exploits the thorough study based on Fi-
nite Element (FE) modelling conducted in [23] where the working principle has
been presented for the first time. There, only a simplified prototype with limited
sensing capabilities was tested with the aim of showing only the feasibility of the
approach, whereas the main focus was on the mechanical characterization and opti-
mization of the device. The sensor is based on the use of optoelectronic technologies
and it aims to overcome most of the problems encountered in the works cited above,
mainly: difficulty of the integration into small spaces, high costs, repeatability and
complex conditioning electronics. The sensor has different capabilities, i.e. it can
measure the six components of the force and torque vectors applied to it, and it can
be used as a tactile sensor providing a spatial and geometrical information about
the contact with a stiff external object. In fact, an approximated analytical model
of the physical contact is derived, that is usefully exploited to extract information
on the contact geometry from the sensor signals. Experimental characterization re-
sults are presented to both validate the model and to show how the sensor, with a
proper algorithm, can be used to provide a complete characterization of the contact
between the sensor and a stiff external object.
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Fig. 16 (a) Structure of the force/tactile sensor. (b) Sketch of the working principle.

3.3.1 Working Principle

The proposed tactile sensor is based on the use of LED-PD couples and a deformable
elastic layer positioned above the optoelectronics devices (see Fig. 16). The opto-
electronic components are organized in a matrix structure. For each couple, the LED
illuminates the reflecting surface which coincides with the bottom facet of the de-
formable layer. Practically, the deformable layer transduces an external force and/or
torque into a deformation of its bottom facet through its stiffness. An external force
applied to the deformable layer produces local variations of the bottom surface of
the elastic material and the couples of optical devices measure the deformations in
a discrete number of points. In particular, these deformations produce a variation
of the reflected light intensity and, accordingly, of the photocurrent flowing into the
PD. The deformations can be positive or negative, i.e. the photocurrent can locally
increase or decrease (see Fig. 16), depending on amplitudes of tangential and normal
force components, as well as on torque components. FE analysis, which has been
carried out in [23], demonstrated that the latter relationship can be used to actually
reconstruct the external force and/or torque components by measuring the elastic
layer deformations in a discrete number of points. The paper cited above reports an
experimentally identified model of the material used to realize the elastic layer, and
then adopted in a FE analysis aimed at optimizing the shape of the deformable layer
in order to obtain a satisfactory sensitivity for both normal and tangential compo-
nents of the contact force vector.

3.3.2 Sensor Prototype

The realization of the sensor prototype (see Fig. 17(c)) took into account the results
of the FE analysis to manufacture the deformable layer and some observations to
select the optoelectronic components.
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Concerning the deformable layer of the realized prototype, it is made of black
silicone in order to avoid cross-talk problems between taxels and ambient light
disturbances, since the black colour guarantees the maximum absorption for ev-
ery wavelengths. Only the surface which faces each devices pair is white to increase
the sensor sensitivity (see Fig. 17(b)), ensuring the maximum reflection for every
wavelengths. According to the FE analysis results, the aspect ratio of the black walls
between taxels has been selected in order to reduce the horizontal deformations with
respect to the vertical ones. In particular, for the presented prototype, the thickness
of the black walls is 1mm, whereas the extension of the white reflecting surfaces
is 1.6mm, which results in a total size for the deformable layer of 11.4× 11.4mm.
The height of the reflecting surfaces from the base of the deformable layer, in order
to respect the necessary aspect ratio, is 1.5mm. The top of the deformable layer is
a section of a sphere with a radius of 11.4mm. With the silicone choice modelled
above, according to the numerical simulations, the expected measurement range of
the sensor prototype is [0,4]N. The maximum force level can be adapted by chang-
ing the hardness of the deformable layer. The maximum measurable force is limited
by the maximum vertical deformation of the reflecting surface of each taxel, so the
former can be changed by acting on the deformable layer geometry. A linear rela-
tion between the Shore hardness and the logarithmic of the Young’s modulus has
been derived in [2] for elastomeric materials. Using this relation, the maximum pre-
dictable force level, with the current geometry, goes from 2N to 40N by changing
the hardness of the deformable layer from 4A to 60A.

Recalling the theory on LED and PD radiation pattern [37] described also in
Sect. 3.2.1, the optoelectronic components suitable for this sensor should have very
large viewing angles in order to minimize the effects of LED radiation pattern and
PD responsivity pattern on the photocurrent and to leave only the dependence with
the distance. Considering these aspects, the realized prototype uses optoelectronic
components manufactured by OSRAM (see Fig. 17(a)). The LED (code SFH480)
is an infrared emitter with a typical peak wavelength of 880nm, whereas the PD
is a silicon NPN phototransistor (code SFH3010) with a maximum peak sensitivity
at 860nm wavelength. Both the components have a viewing angle of ±80◦. The
conditioning electronics of the sensor is depicted in Fig. 4.

3.3.3 Prototype Characterization as Force/Torque Sensor

The objective of this section is to show all the potentiality of the presented proto-
type sensor and a calibration procedure necessary to use it as a 6-axes force/torque
sensor. The characterization of the sensor has been made in the hypothesis that the
contact surface can be approximated by a plane with an high stiffness with respect
to the deformable layer. The hypothesis that the contact surface is a plane can be
considered verified each time the external object has a curvature radius larger than
that of the deformable layer. This condition is true for a large number of objects
used in everyday manipulation and grasping tasks. Taking into account the hardness
of the silicone, estimated in [23], used to realize the presented prototype, also the
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(a) (b)

(c) (d)

Fig. 17 A tactile sensor prototype: (a) electronic layer, (b) bottom view of deformable layer,
(c) top view of assembled sensor, (d) bottom view of assembled sensor.

hypothesis of the high stiffness for the contact surface can be considered true for
most of the daily use objects.

Figure 18(a) shows a sketch of the sensor, where the position of each cell with
respect to the reference axes is indicated. The position of the k-th taxel can be iden-
tified with the (xk,yk) coordinates of the center position of the taxel. At rest position,
for each taxel, a certain amount of light emitted by the LED is reflected from the
white surface and reaches the PD, generating an initial voltage value on the col-
lector. When an external force and/or torque is applied to the sensor, the distance
of the reflecting surface of each cell from the corresponding LED-PD couple on the
electronic layer can be subjected to a positive or a negative variation. These distance
variations imply changes of the reflected light and, accordingly, of the voltages mea-
sured on the PD collector. Denoting with vk the voltage variation of the k-th taxel,
vk > 0 denotes an increasing distance (and then a decreasing photocurrect), whereas
vk < 0 denotes a decreasing distance (and then an increasing photocurrect) between
the reflecting surface and the electronic layer (obviously vk = 0 denotes no varia-
tion). Figure 18(b) reports typical values of a voltage vk, for the realized prototype.
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Fig. 18 (a) A scheme of the sensor taxels with respect to reference axes. (b) Voltage variations
vk for a generic taxel.
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Fig. 19 Calibration system as force/torque sensor.

To calibrate the prototype for use as a six-axes force/torque sensor, the proposed
approach is based on the use of a neural network to interpolate a number of data
sufficient to model the relationship between the applied forces and torques and the
PD measurements. The sensor has been mounted on a six-axes load cell used as
reference sensor. The model used is the FTD-Nano-17 manufactured by ATI, with a
measurement range equal to±12N and±17N for horizontal and vertical force com-
ponents, respectively, whereas the measurement range for all torque components is
equal to ±120Nmm. The reference axes, reported in Fig. 18(a), are located on the
plane that separates the prototype from the reference sensor. Figure 19 shows the
calibration system used to collect data for neural network training. An operator car-
ried out various experiments, using a stiff plane, applying different external forces
and torques and simultaneously acquiring all the voltage variations on the PD and
all the forces and torques components measured by the reference load cell. These
data, acquired at a sample rate of 100Hz, have been organized in a training set and a
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Fig. 20 Neural network testing with the stiff plane: force components estimation (a) and
torque components estimation (b).

validation set to be used as input data (voltage variations) and target data (forces and
torques components) of the neural network. A testing set has been prepared using
data from experiments other than those used to collect the training and the validation
sets, in order to assess the trained network.

A standard two-layer feed-forward neural network fNN , trained with the
Levenberg-Marquardt method, has been used to fit training data

H = fNN(V ), (6)

where H = [Fx Fy Fz Tx Ty Tz]T is the output vector, Fi and Ti with i= x,y,z are force
and torque components with respect to the reference axes and V = [v1 v2 . . . v16]

T is
the input vector containing the voltage variations of the taxels. The network is con-
stituted by 24 neurons for the hidden layer and 6 neurons for the output layer. The
trained network testing results are reported in Fig. 20(a) for the force components
and in Fig. 20(b) for the torques.

The estimation is good for all force and torque components, especially when
force and torque values are high enough. In fact, in the performance analysis it must
be also taken into account that the training data are very noisy when the measured
values are small compared to the full scale of the reference sensor.

In different experiments the trained neural network has been tested with objects
that have a finite curvature radius. In particular, Figure 21 shows a standard bottle
and a classic can used to collect additional testing data.

Figure 22 shows the real and the estimated forces and torques for the bottle and
the can. The estimation is accurate also in these cases, obviously with a minimal
reduction in performance when the curvature radius of the contact surface decreases.
It is important to underline that these performances have to be evaluated along with
the fact that compared to commercially available sensors, the proposed one is more
compact, low cost, low power consumption, provided with a digital interface, and
the deformable layer guarantees good adaptability and stability during grasping and
manipulation application.
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(a) (b)

Fig. 21 Pictures of testing objects: (a) a standard bottle and (b) a classic can.
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Fig. 22 Neural network testing with a standard bottle: force components estimation (a) and
torque components estimation (b). Neural network testing with a classic can: force compo-
nents estimation (c) and torque components estimation (d).



Innovative Technologies for the Next Generation of Robotic Hands 197

3.3.4 Prototype Characterization as Tactile Sensor

The proposed prototype can be also used as tactile sensor, estimating not only force
and torque components as described in Sect. 3.3.3, but also the contact geometry. In
some applications, e.g., complex robotic manipulation tasks, the availability to the
control system of an estimate of contact plane position and orientation together with
the interaction forces exchanged by the sensor and the external object are fundamen-
tal to successfully execute the task. To obtain this information from the sensor, an
approximated physical model is first derived and validated to describe the contact
between a stiff surface and the deformable layer.

The deformable layer is considered as an elastic homogeneous hemisphere of
known radius R and the external object as a stiff plane. Figure 23(a) shows a generic
contact where the stiff external object deforms the elastic hemisphere until, at equi-
librium, the contact plane coincides with the plane π2. The full characterization of
the contact geometry means to estimate the position and orientation of the plane
π2 and the direction of the force F with respect to π2. In particular, the plane π2

can be uniquely defined by θ and φ angles and by its distance TO from the origin
of the reference frame. Considering the axial symmetry of the deformable layer,
the angle φ can be directly estimated from the measured Fx and Fy components,
reducing the three-dimensional problem in a two-dimensional one in the zp-plane,
where the p axis is defined by the direction of the vector (Fx,Fy,0) with magnitude

Fp =
√

F2
x +F2

y . Thus it is φ = atan2(Fy,Fx),where atan2(b,a) is the argument of

the complex number a+ ib.
Note that the force F direction in Fig. 23(a), from the contact geometry point

of view, is related only to the position of point H, for a fixed contact plane. As
a consequence, being F related to the vk taxel voltage variations, as described in
Sect. 3.3.3, it is possible to relate point H coordinates directly to the vk voltage
variations. The set of voltage variations represents a tactile image that, for example,
could be used to estimate a pressure map using an appropriate reference sensor.
In addition, the information contained in the tactile image is used to estimate the
coordinates of the point H in the xy-plane, i.e. the coordinate couple (xH ,yH). From
this information and by exploiting the knowledge of the Fz and Fp force values, that
can be calculated by the neural network (6), the variables θ , dn and dt , that determine
the contact geometry, can be estimated. For more details about the methodology for
reconstructing the tactile image from the sensor information please refer to [24].

Forces with different directions and magnitudes have been applied to the proto-
type sensor using different plane contacts, whose positions and orientations have
been fixed with the mechanical structure shown in Fig. 23(b). In particular, the go-
niometer has been used to fix the θ angle values, while the micrometric stage to
fix the dn and dt deformations values. In a first set of experiments, the θ , dn and
dt values, measured with the mechanical structure, have been collected and used to
estimate the tactile image parameters.

A second data set has been collected from experiments to test the model per-
formance. Figures 24(a) and 24(b) compare the reconstructed Fz and Fp with the
force values measured by the reference sensor. The error is less than 0.15N for the
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Fig. 23 (a) Geometric characteristics of the contact model. (b) Mechanical system for contact
geometry characterization.

vertical force component and less than 0.08N for the horizontal force component.
The same procedure can be applied using the force information reconstructed by
means of the neural network (6) on the basis of the proposed sensor measurements.
The comparison between measured and modelled force components is presented in
Figs. 24(c) and 24(d). For this case the reconstruction error is only slightly worse
than the previous case, due to the additional error introduced by the neural network.

Then, the algorithm for the reconstruction of the tactile image, and in particular
of the parameters xH and yH , has been tested with different measurements and the
results are reported in Figs. 25(a) and 25(b). The maximum estimation error is less
than 0.5mm for xH and less than 0.6mm for yH . In order to verify the effectiveness
of the algorithm for the reconstruction of the tactile image, the procedure has been
tested with experimental input data collected from the reference sensor (regarding
Fz and Fp) and from the mechanical structure shown in Fig. 23(b), (regarding pH).
The results of the θ , dn and dt variables estimation are reported in Fig. 25(c), where
the high accuracy obtained in the contact geometry reconstruction is evident. In
particular, the maximum error is less than 0.2 ◦ for θ , less than 100μm for dn and
less then 20μm for dt . Afterwards, the proposed procedure has been tested also with
force data computed by the neural network (6). The results are shown in Fig. 25(d).
In this case, the maximum error is less than 2 ◦ for θ , less than 200μm for dn and
less then 60μm for dt , due to errors in the estimation of the force components and
of the (xH ,yH) coordinates.

4 The Robotic Hand Actuation

The actuation system of an anthropomorphic dexterous hand should enable the
whole system to move with human-like agility and speed as well as empower the
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Fig. 24 Vertical force component (a) and horizontal force component (b) using the reference
load cell measurements. Vertical force component (c) and horizontal force component (d)
using prototype sensor measurements.

hand to grasp with human-like strength. These performance criteria should be ful-
filled by a robotic construction resembling the human hand and forearm at least in
terms of dimensions and weight but if possible also in terms of form and aesthetics.
These constructional guidelines translate into challenging specifications for the ac-
tuation system. In particular, the actuation system should fit within the dimensions
corresponding to the human hand and arm, with an overall weight of less than 1 kg.

Current technology does not allow arranging twenty or more actuators in a robot
hand with dimensions similar to those of a human hand and with suitable require-
ments in terms of speed and forces. The tendon-based transmission system allows
placement of the actuators within the forearm, which corresponds with the location
of the most powerful muscles in the biological model. This placement simplifies
the hand construction, frees up space in the fingers for the integration of the sen-
sors as well as achieves a more anthropomorphic weight distribution. Consequently,
the tendon-based transmission system represents the most promising solution for
dexterous anthropomorphic robotic hands.

As will be detailed in the next section, the DEXMART Hand fingers are ac-
tuated by means of four tendons each. Four additional tendons are necessary for
the wrist actuation, resulting in a requirement of 24 independent actuators; refer to
Fig. 1 where a general overview of the DEXMART Hand design in shown. In the
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Fig. 25 (a) Estimation performance for coordinate x and(b) estimation performance for coor-
dinate y. (c) Estimation of contact variables. (d) Estimation of contact geometry information
for a generic experiment.

following, the tendon-based transmission system of the DEXMART Hand will be
detailed and the twisted string actuators will be described, showing also the results
of the tests performed to show the effectiveness of this actuation system.

4.1 Tendon Network

Due to the quite complicated human tendon network, instead of directly imitating
the biological model, many different simplified solutions have been proposed in the
literature. Moreover, whereas in the biological model the tendons slide around the
bones, for the optimization of the transmission system in terms of reducing both
the friction and the coupling among the hand movements, it is preferable for the
tendon to traverse the endoskeleton and to be routed close to the center of rotation
of the joints by means of suitable channels. In tendon actuation systems, different
movements can be easily coupled by simply connecting two or more tendons to the
same actuator, thus obtaining a defective actuation, avoiding additional mechanisms,
and reducing both costs and complexity.
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Fig. 26 DEXMART Hand: Details of the tendon network.

A fundamental problem in tendon-based actuation is the way the tendons are
routed from the motors to the joints. Usually, tendons are routed by means of pul-
leys, sheaths or sliding surfaces: whereas pulleys reduce at minimum the friction
forces acting along the tendon, this approach implies a more complicated mechan-
ical design due to the presence of bearings and similar hardware partially reducing
the advantages introduced by the use of tendons. The use of sheaths is a convenient
solution due to its simplicity, but it introduces distributed friction along the ten-
don, that means hysteresis and dead-zones in the transmission system characteristic
[34, 51].

The selection of the tendon material plays a crucial role. Usually, very thin steel
ropes are used allowing to obtain a linear force-elongation behavior of the tendon
but introducing some design and assembly constraints due to the limited curvature
radius of steel cables. In the last years, polymeric fibers have been largely used to
improve the design flexibility of tendon transmissions. Despite the comparable elas-
tic module with respect to alloy cables, polymeric tendons present hysteresis in the
force-elongation characteristic that introduces stability problems in the transmission
system control [51]. Different studies confirm that the total amount of friction acting
along the tendon depends only on the friction coefficient and on the total curvature
of the tendon path from the motor to the joint [34, 51]. Whereas the friction coeffi-
cient can be reduced by a suitable selection of the path coating and tendon materials
(other than introducing lubricants), the path curvature minimization is a non-trivial
design problem.

A detailed view of the N+1 tendon network of the DEXMART Hand is presented
in Fig. 26. In an N+1 tendon network, each finger (and its joints) is actuated by a
number of tendons equal to the number of joints plus one. This configuration allows
using of the minimum number of actuators and, at the same time, to avoid preten-
sion mechanisms. Moreover, the N+1 configuration allows both the independent
regulation of the joint torques and the regulation of the internal forces. Fig. 26(a)
shows the straight path of the tendons from the finger base to the wrist center so as
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to avoid tendon curvature inside the palm (no friction is introduced) and minimize
the coupling between the wrist and the finger movements. The optimization of the
tendon path inside the finger is reported in Fig. 26(b). With reference to this figure,
the tendons that actuate the base joint (T1 and T2) are connected directly to the
proximal phalanx, whereas the antagonistic tendon (T4) slides over the joints on the
back finger side. The tendon that actuates the medial joint (T3) is routed very close
to the center of the proximal joint to limit as much as possible the coupling between
the movements of these two joints. The path of the tendon (T5) that connects the
proximal to the medial joint is straight to avoid contacts between the tendon and
the endoskeleton and to limit friction. Finally, Fig. 26 reports a 3D view of the fin-
ger and a detail of the joints location (refer to [13] for a complete description of
the DEXMART Hand’s finger kinematics and tendon network characteristics). Note
that, in order to reduce the path curvature, part of the tendon path is formed directly
within the endoskeletal structure of the finger.

4.2 The Twisted String Actuation System

Different solutions concerning the actuation system of robotic hands have been pro-
posed in the past, based essentially on rotative electric motors [44, 38, 22] or linear
pneumatic actuators [30, 63, 60], usually McKibben motors [19]. Although actua-
tion solutions adopted in robotic hands developed so far each have their own benefits
and shortcomings, the so-called twisted string actuation system has been developed
within DEXMART, aiming at fitting with project requirements.

In contrast to these similar actuation concepts reported in literature [32, 59, 47,
69, 68], the twisted string actuation system adopts very thin and long strings twisted
around themselves allowing a displaced location of the motors (with respect to the
joints) and the use of very small high-speed motors without speed-reducer, facts that
make the actuation concept proposed here particularly suited for the development
of innovative tendon-driven robotic hands.

As a design parameter, the actuation force was derived from the consideration of
a 10 N load applied perpendicularly to and at the tip of an outstretched finger. Tak-
ing into consideration the kinematic design of the fingers and the tendon routing,
this load translates into a tendon force as high as 80 N. Moreover, the tendon dis-
placement corresponding to full closure of the hand is on the order of 20–25 mm for
each tendon. As a matter of fact, with an appropriate choice of the rotative electric
motors and of some design parameters of the strings (in particular the radius and
length), the actuation system presented here can satisfy all of the tight requirements
for the implementation of miniaturized and highly-integrated mechatronic devices,
paving the way for the next generation of multifingered robotic hands. With re-
spect to conventional solutions, the main advantages of this actuation system consist
in the direct connection between the motor and the tendon without any intermedi-
ate mechanisms such as gearboxes, pulleys or ballscrews, in the direct transforma-
tion from rotative to linear motion, in the extremely reduced friction (only an axial
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Fig. 27 (a) Basic concept (top) and schematic representation of the twisted string actuation
system (bottom). (b) Experimental setup.

bearing is needed), in the very high reduction ratio, in its intrinsic compliance and
in the use of very small high-speed motors.

The basic idea of the quite simple actuation system is illustrated schematically
in Fig. 27(a): two or more strands are connected in parallel on one end to a rota-
tive electrical motor and on the other end to the load to be actuated. Twisting the
strands at the one end by means of the motor reduces the length of the transmission,
resulting in a linear motion of the other end.

This actuation concept, because of its high (though configuration dependent) re-
duction ratio, permits the use of very small and lightweight electric motors and
therefore is very interesting in applications where size and weight are of crucial
importance. This concept was firstly implemented in an experimental setup for ver-
ifying its main properties, see Fig. 27(b). The setup consists of a small rotative DC
motor (Faulhaber 2233) and a string pair aligned along the rotation axis of the mo-
tor and connected at one end to the motor output shaft (without any speed reducer),
as schematically shown in Fig. 27(a), and at the other end to the load, which in
the test bed is emulated by a linear motor (LinMot P01-37×120) able to apply a
force up to 160 N along the motion axis of the slider and equipped with a load cell
for measuring the actuation force. The rotative motor is equipped with an optical
encoder to measure the rotation angle, whereas the encoder integrated in the lin-
ear motor is used to measure the actuation elongation with a resolution of 1μm. A
suitable controller is used to drive the load (the linear motor) so that it behaves as
a mass-spring-damper system with adjustable parameters —refer to [52] for addi-
tional details on the linear motor driving technique. Note that the encoders are used
only for monitoring purposes and serve as position reference for the linear motor
load controller.

From the control point of view, an important aspect here considered is the possi-
bility of controlling the system using only force feedback. For this reason, the design
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of a controller based on the measurement of the actuation force only is faced. In fact,
neither measurement of the system state (motor angular displacement and velocity,
load position and velocity) nor accurate knowledge of the system parameters (e.g.
string or actuation length, string radius, motor or string preload angle, load param-
eters) are required. Moreover, due to the finite stiffness of the strings and to the
particular implementation, a non-negligible configuration-dependent compliance of
the proposed transmission systems was observed during the early experimentation.
This phenomenon has been measured and modeled to allow future evaluation for
control and safety purposes [11].

4.2.1 Modeling of the Actuation System

As a simplifying hypothesis, it is assumed here that some strands do not contribute to
the total axial force: these fibers form the core of radius rc of the helix, see Fig. 28(a).
The load force Fz is balanced by the n external strands of radius rs which form
n coaxial helices of radius r = rs + rc. As a limit case, Fig. 28(b) shows a string
formed by a pair of twisted strands, for which rc = 0 and thus r = rs, considering
the helices formed by the strand axes.

In order to obtain the relationships describing the statics of the actuation system,
assume that the strands constituting the string form an ideal helix of constant radius
r = rc + rs along the whole range of the motor angular position θ . The kinematic
relationship between the motor angle and the load position can be easily derived
from the geometry of the helix formed by the strands —see in particular Fig. 28—
which implies the following straightforward relations:

L =
√
θ 2 r2 + p2, sinα =

θ r
L
, cosα =

p
L
, tanα =

θ r
p
, (7)

where α is the helix slope, L is the strand length and p is the length of the trans-
mission system or, in other words, the load position. Note that (7) can be easily
obtained by “unwrapping” the helix of total length L and radius r and applying
Pythagoras’ theorem to the resulting triangle in Fig. 28(d). From (7) it follows that
L̇ = ṗcosα+ θ̇ r sinα.

The static model of the actuation system can be easily obtained looking at
Fig. 28(c), where the external torque τL is balanced by the tangential force Fτ , i.e.
Fτ = τL/r. Assuming that the load is equally distributed over the n strands that form
the string, one obtains

Fτ/n = Fi sinα ⇒ τL = r nFi sinα (8)

where Fi is the longitudinal feasible force in each strand. The resulting total axial
force Fz acting on the transmission system is

Fz = nFi cosα ⇒ τL = Fz r tanα = Fzθ r2/p. (9)
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Fig. 28 Schematic representation of the helix formed by the strands that compose the twisted
string. (a) String section with n = 6. (b) Two-string section with null core radius (n = 2). (c)
Lateral and axial view. (d) Unwrapped helix.

In order to take into account the finite stiffness of the string, the strands are assumed
to act as linear springs, with the capability of resisting tensile (positive) forces only
and not compressive (negative) forces, as is usual for cable-based transmission sys-
tems. Therefore, the total length of a strand L (each strand has the same length of
the untwisted string) changes with respect to the unloaded length L0, according to
the fiber tension Fi and the strand stiffness K (normalized with respect to the length
unit), i.e.

Fi =
K
L0

(L−L0) =
K
L0

(√
p2 + r2θ 2−L0

)
. (10)

From (10), it is possible to note that each strand acts as a spring whose deforma-
tion is defined as

√
p2 + r2θ 2−L0 and which can be modulated through the motor

angular position θ . It follows that the actuation elongation p (i.e. the load position)
is given by

p =

√
L2

0

(
1+

Fi

K

)2

−θ 2r2 (11)

whereas, from the helix geometry, the pitch q of the helix is related to the string
length p and to the motor rotation angle θ by the relation 2π p = qθ .

The stiffness S at the load side of the twisted string transmission system can be
modeled by considering (7) and (10), and computing the derivative of the load force
Fz in (9) with respect to the load position p:

Fz = n
K
L0

(√
p2 + r2θ 2−L0

)
p
L
= n

K
L0

(
p− L0 p√

p2 + r2θ 2

)
,

S =
∂Fz

∂ p
= nK

(
1
L0
− 1√

p2 + r2θ 2
+

p2

(p2 + r2θ 2)3/2

)
. (12)
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Fig. 29 (a) Evaluation of the static relation (1 N constant load). (b) Transmission contraction
(top) and stiffness (bottom) vs motor angle for different load conditions.

4.2.2 Experimental Validation

The string used during the experiments is a commercial ∅0.2mm Dyneema fishing
line with L0 = 0.2m. Figure 29(a) reports the comparison between the theoretical
model (11) and the experimental data obtained in very low load (1 N) condition.
Note that the error between the theoretical model and the experimental data is very
small. The first plot of Fig. 29(b) shows the effect of the load force Fz on the trans-
mission contraction observed during experiments in comparison with the unloaded
theoretical model result: it is evident that the string compliance is not negligible
with respect to the expected transmission load force. Anyway, the capability of
moving the load by twisting the string is preserved. Figure 29(b) also shows the
corresponding transmission stiffness variation with respect to the motor angular po-
sition measured during the experiments: these data have been computed numerically
by forming the ratio between the transmission load force and the incremental vari-
ation in the measured load position. It can be clearly noted how the stiffness of the
actuation system varies with the motor angle and the transmission load. The the-
oretical value of the stiffness of the twisted string transmission system, computed
according to (12), for a load of 50 N is also reported in this plot for comparison with
the experimental results.

The results of the experiments performed on the twisted string actuation system
driven by the controller proposed in [53] are reported in Fig. 30(a). In these plots, it
is possible to distinguish between three different phases: 1) the peaking avoidance
action is active from t = 0s when the experiment starts, since the initial reference
value differs from the initial conditions and the system output reaches the desired
value very smoothly at t � 4s. Then, the response to a setpoint step variation at
t = 6.5s can be appreciated and, finally, the system is evaluated with a 20N ampli-
tude sinusoidal setpoint at 0.5Hz. The very good fitting between simulation results
and experiments can be clearly seen, even if the nominal value of the system param-
eters are considered in the control system design and no identification procedure has
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Fig. 30 (a) Comparison between simulation and experimental results. (b) Experimental eval-
uation of the dynamic performance of the twisted string actuation: the setpoint is a sinusoidal
signal with time-varying frequency from 0.1 to 2 Hz.

been used to evaluate the real value of these parameters. Figure 30(a) also reports
the comparison between the simulated and the experimentally measured actuation
displacement L− p and motor position θ (string twist angle): in the case of these
two variables, the differences between the theoretical and the real values are more
noticeable due to the uncertainties affecting the system parameters.

With the aim of showing more clearly the dynamic performance of the twisted
string controller, an experiment in which the force setpoint is a sinusoidal signal
with time-varying frequency (also called chirp signal) in the range 0.1–2 Hz has
been performed, and the results are shown in Fig. 30(b). The force setpoint presents
a mean value of 25 N and the amplitude of the setpoint oscillations is 10 N. From
the plots reported in Fig. 30(b) it is possible to note that the system presents good
performance in terms of setpoint tracking over the whole signal frequency range,
and in particular within the controller design bandwidth that is 1 Hz. Also the com-
manded motor current has been reported in Fig. 30(b) to highlight the quite limited
control effort (the maximum motor current is less than 1 A).

5 Soft Covers Based on Differentiated Layer Design

The adoption of soft covers (pads) for artificial hands and fingers is important pri-
marily for three reasons: functionality in some specific tasks, safety, and acceptance
by the users.

Concerning functionality, the presence of a surface compliance can highly in-
fluence the performance of the hand when contacting the environment during
force/position controlled task, similarly to what happens in human fingers or feet
which are covered by pulpy tissues [66, 71, 76, 36]. First of all, the presence
of a passive compliant surface is beneficiary in terms of contact effectiveness. In
fact an increased pad compliance (or, inversely, a low pad stiffness) means larger
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Distal

Medial

Proximal
Fig. 31 DEXMART Hand’s finger endoskeletal structure and soft layer (proximal, medial,
distal phalanx cover).

contact areas for a given load and therefore reduced contact pressure, reduced mate-
rial stress and better contact stability [20, 65, 21]. Furthermore, the soft pad allows
local shape adaption in case of contact with sharp edges or objects with morpholog-
ical irregularities and can contribute to vibration damping [70]. At last, a compliant
covering surface helps protecting both the mechanical structure of the hand (includ-
ing the transmission system) and the delicate sensory apparatus (if present).

Concerning safety, as demonstrated and quantified in [10], the soft pad can be
seen as a passive device which reduces possible injuries in case of accidental impacts
with humans.

Finally, concerning acceptance, a soft-touch feeling can be important in the case
of human-machine interaction. This issue is particularly evident in the prosthetic in-
dustry where hand-like gloves providing enhanced functionality and increased cos-
metic appeal are usually chosen at the expense of efficiency, cost and weight of the
overall prosthesis.

In terms of design requirements, the properties of an ideal soft cover are hardly
definable. For instance, the overall stiffness of a robotic fingertip, which is designed
for manipulation purposes, can be different if compared to the stiffness of an arm
soft cover, whose main functionality is limited to safety issues. In addition, a com-
plete characterization of a robotic pad must include investigation on many properties
and behavioral aspects [72]. However a primary role is played by the behavior of the
pad under normal contact load, in interaction with a rigid planar object. Therefore,
in the following, the investigation will regard the contact behavior of soft fingerpads
pressed against a rigid flat surface.

Concerning robotic hands, the majority of soft pads studied so far were made by
viscoelastic polymers homogeneously shaped over an internal rigid core mimicking
the bone or the robotic finger inner rigid structure [64, 73, 5]. In such a case [9],
the parameters that mainly contribute to the pad compliance, for a given external
geometry, are:
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Fig. 32 Experimental results [9]. Displacement (mm) versus normal load (N) for the human
fingertip and for soft pads with different hardness (materials a and b) and different thickness,
t. Material A = soft silicon rubber (hardness 18 shore a). Material B = very soft silicon rubber
(hardness 20 shore 00).

• The material hardness. An higher material hardness, which is beneficiary in terms
of surface reliability, signifies lower compliance.
• The layer thickness. An higher thickness signifies higher compliance which is

beneficiary in terms of safety and increases grasp stability/sustainability. On the
other hand, high pad thickness signifies high overall limb dimension. As a matter
of fact, thickness reduction is a significant goal for the robotic limb designer, that
cannot easily reduce the overall size of the internal rigid core (hosting actuators,
transmissions, sensors, etc.) but wants to obtain slender bio-mimetic limbs at the
same time.

As an example, let us consider the behavior of the human fingertip [56, 75, 62]
(distal phalanx, Fig. 31) which is shown on the left diagram in Fig. 32. In order to
replicate the compression behavior of the human fingertip, it is necessary to employ
a very soft silicon rubber (hardness 20 Shore 00) with very high thickness (6,0 mm).

Usually the adopted pad design is a trade-off between the need of slender robotic
limbs and good material properties. Still, it is sometimes impossible to tailor the pad
properties to the specific application by simply using an homogeneous viscoelastic
layer.

Looking for alternative solutions to homogeneous soft covers, the authors have
previously proposed the concept of Differentiated Layer Design (DLD) [6, 57]
which allows both increasing the pad compliance and minimizing its thickness. The
concept of DLD consists in the adoption of a single solid material dividing the over-
all thickness of the pad into layers with different structural design (i.e. an external
continuous skin layer coupled with an internal layer with voids). Figure 33 shows a
DLD soft pad.

In particular, a methodology have been proposed in [4] which allows minimizing
the designer effort when trying to replicate the non-linear relationship F = f (δ )
between the applied normal Load, F and the contact Deformation, δ (LD curve),
which is representative of endoskeletal structures covered by pulpy tissues.

Given the allowable pad thickness and the overall contact area, the purpose is to
tailor the pad properties to the specific application by:
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Fig. 33 Differentiated layer design concept.

• Selecting a skin material characterized by proper tribological features (hardness);
• Designing an internal layer geometry (Fig. 33) so as to obtain a specific static

compliance (increased with respect to a non structured pad).

The methodology adopted for designing the internal layer is composed of two
steps:
• Firstly, the cover surface (overall contact area) is conceptually split into finite

elementary triangular sub-regions;
• Secondly, the internal layer of each Triangular Element (TE) is designed in order

to replicate the shape of the given non-linear relationship f (δ ). A series of sym-
metrically disposed inclined micro-beams is used for the purpose.

Once the compression law of each triangular element is known, the overall pad
compliance can be modulated by correctly choosing the number and, consequently,
the size of the elements composing the pad.

5.1 Selection of a Skin Material with Proper Hardness

Following the conceptual procedure outlined in the previous section, the design of
the pad starts with the selection of a suitable polymer with proper hardness. Two
solutions have been considered:

• Silicone rubber Wacker ELASTOSIL RT 623 A/B: two component silicone that
vulcanizes at room temperature whose hardness can be varied in a very wide
range by adding a third component (silicone fluid AK). Various pad geometries
can be obtained through injection moulding.
• Tango Plus Fullcure 930 (hardness 27 Shore A): polymeric resin used for stereo-

lithography. This stereo-lithographic technique allows to get complex shape in a
short producing time.

By using Rapid Prototyping or injection moulding, the intermediate layer can be
obtained with various geometries with exception of closed-cell structures. In fact,
concerning rapid prototyping, a removable wax must be deposited as a sustaining
additional material in case of negative slope of the lateral surfaces. Concerning
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Fig. 34 Triangular grid for a fingertip contact area (a). Soft pad based on pattern with equally
spaced micro-beams (b) and associated te (c).

injection moulding the possible geometries are limited by the extraction of the
mould. In addition, silicon pad must be carefully cured in order to avoid the pres-
ence of air within the mould. Nonetheless, beside the technological limitation
and production difficulties, different DLD pads depicted are realizable with both
materials.

5.2 Design of the Structured Pad Inner Layer

The basic idea concerning the choice of the inner layer geometry is that it is simpler
to design and analyze a simple shape element and then to replicate it as many times
as needed. Therefore, it is suggested to conceptually divide the overall contact planar
area into finite elementary regions. Once the element LD curve is known (by means
of numerical analysis or experiments), the number of elements, N, can be chosen
such that:

F = N ·Ft (13)

where Ft = ft(δ ) is the non-linear LD curve of each element. Hence, it is proposed
to divide the pad contact area into finite TEs by using a triangular grid [27].

A triangular grid is defined as an isometric grid formed by tiling the plane reg-
ularly with equilateral triangles. The grid cells that fall outside the object are re-
moved. The result is a mesh with equal interior TEs. If needed, the grid cells that
intersect the object boundary can be adjusted or trimmed so that they fit into the ob-
ject. Nevertheless, deformed TEs which are located on the boundary might present
an LD curve which slightly differs from the LD curve of interior TEs. An example
of a triangular grid for meshing a fingertip contact area is shown in Fig. 34(a).

Obviously, smaller TEs are beneficiary for two reasons:

• The object boundaries can be better captured by a fine mesh than by a coarse
mesh.
• Whatever will be the inner layer geometry of each TE, the contact pressure will

tend to be a uniform function (i.e. a continuous function) as N→ ∞.
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Fig. 35 Numerical analysis of te based on a series of inclined micro-beams. model mesh (a),
collapsed micro-beam (b,c). material: tango plus rubber [57].

Note that: 1) the procedure outlined in the following regards the definition of an
overall pad contact force (i.e. overall pad compliance) which is an integral (rather
than a local) property of the Pad; 2) N elements are involved in the contact simulta-
neously and the contact area is displacement independent. The smallest size, Amin

T E , of
feasible TEs is determined by the technological feasibility of the pads. On the other
hand, Equation 13 constraints the number of elements which must be contained
within a given contact area and therefore the element size AT E . If the size AT E re-
quired by 13 is lower than Amin

T E , a practical solution cannot be achieved for the given
TE inner-layer geometry. On the other hand, if AT E > Amin

TE , the TE outer-layer (skin)
can be enlarged without altering the TE LD curve. As for the TE internal layer, it
is designed in order to replicate the qualitative shape of the non-linear compression
law which is typical of endoskeletal structures covered by pulpy tissues. This be-
havior is well exemplified by the LD curve of the human finger shown in Fig. 32: it
is possible to note an initial, quasi-linear LD curve for small displacement followed
by a rapid load increase. In order to replicate this particular compression law, it is
proposed to use a series of micro-beams inclined of ϑ = 45◦ with respect to the nor-
mal to the external surface (normal axis, Fig. 33(b)), thus transforming normal loads
acting on the contact into bending actions applied on each beam. The micro-beams
are placed on the edge of the TE as depicted in Fig. 34 (artificial pad internal layer
surface and associated TE). This peculiar geometry presents a quasi-linear LD curve
for small displacements which is characterized by a very low stiffness. On the other
hand, the load rapidly increases once the micro-beams collapse on the outer skin.
In such situation, the TE behave similarly to a pad made of a uniform soft material.
A finite element model of the TE is shown in Fig. 35. In particular, Figs. 35(b) and
35(c) depicts one collapsed micro-beam.

5.3 Soft Pad Realization

The smallest TE which is considered realizable by means of SLA is an equilateral
triangle having surface area of 6.9 mm2 (i.e. 4mm side). The pad thickness is chosen
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Fig. 36 Displacement (mm) versus normal load (n) for DLD pad and human fingertip (a),
TE made of inclined micro-beams for uniform pad (b), Artificial soft pad (c). Experimental
(exp.) and FEM results.

to be 3.0 mm (i.e. half the thickness of previously published solutions, see Fig. 32).
The TE design is exactly the one depicted in Figs. 34, 36 (t = 0.5mm,h = 2mm,k =
1mm,θ = 45◦, l to be designed) and numerical relationship between the applied
normal force F and the consequent displacement δ is shown in Fig. 36(b) (FEA
results).

Let us consider first the distal phalanx. The contact area to be meshed is a 20mm
x 15mm rectangle which is meshed by means of 36 TEs in order to obtain the de-
sired compliance. Such TE presents a surface area of 8.3333 mm2. Figure 36(a)
shows the numerical relationship between the normal load (N) and the resulting dis-
placement (mm) for: 1) the structured pad depicted in Fig. 34(b); 2) a uniform PAD
of the same thickness (3mm) made of a softer material (refer to Fig. 32); 3) for the
human finger. It can be seen that a 3mm thick structured pad represents a substantial
step forward in human finger mimicry in terms of stiffness, when compared to pre-
viously published solutions where different materials and higher pad thickness are
used. Finally, the first pad prototype is shown in Fig. 36(c). Concerning the medial
phalanx the number of TEs is reduced to 30. Concerning the distal phalanges, the
overall contact area is split into two 20mm x 15mm rectangles and the number of
TEs for each rectangle is 15.

The potentialities of the DLD concept have been experimentally evaluated on
hemispherical soft pads shaped over a rigid core [6]. The pad to be mounted on the
DEXMART Hand prototype are shaped as in Fig. 36(c) and their physical imple-
mentation is shown in Fig. 2(a).
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6 Conclusion

What can be summarized from an analysis of the currently available anthropomor-
phic human-sized robot hands is that a design approach based on conventional me-
chanics and commercially available actuators and sensors are not suitable for the im-
plementation of these devices, because of the needs in terms of integration among
the components, simplification of the overall structure, reduction of the cost and
of the power consumption to name a few. The impression is that new approaches
should be identified for the design of anthropomorphic dexterous robot hands. In
this chapter, possible solutions and innovative technologies and sensors developed
within the DEXMART project for improving the design of robot hands have been
presented. On the basis of the results of this research activity it is possible to con-
clude that innovative approaches based on non-conventional structures and on the
study of the biological model can significantly simplify the design, enhance the reli-
ability and the performance, reduce the costs of robotic hands. Moreover, innovative
actuators and sensors that can be directly integrated and used in anthropomorphic
hands are fundamental for achieving the general goal of improving the reliability
and the functionality of the device reducing its complexity and the overall costs for
the development and the production process. Finally, the results of the experiments
performed for the evaluation of the proposed solutions have been presented, aiming
at giving practical answers to the outlined problems.
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5. Berselli, G., Piccinini, M., Vassura, G.: Tailoring the viscoelastic properties of soft pads
for robotic limbs through purposely designed fluid filled structures. In: IEEE Interna-
tional Conference on Robotics and Automation, Anchorage, AK (2010)



Innovative Technologies for the Next Generation of Robotic Hands 215

6. Berselli, G., Vassura, G.: Differentiated layer design to modify the compliance of soft
pads for robotic limbs. In: IEEE International Conference on Robotics and Automation,
Kobe (2009)

7. Berselli, G., Vertechy, R., Vassura, G., Parenti Castelli, V.: Design of a single-acting
constant-force actuator based on dielectric elastomers. ASME Journal of Mechanisms
and Robotics 1(3) (2009)

8. Biagiotti, L., Lotti, F., Melchiorri, C., Palli, G., Tiezzi, P., Vassura, G.: Development of
UB Hand 3: Early results. In: IEEE International Conference on Robotics and Automa-
tion, Barcelona (2005)

9. Biagiotti, L., Tiezzi, P., Melchiorri, C., Vassura, G.: Modelling and controlling the com-
pliance of a robotic hand with soft finger-pads. In: IEEE International Conference on
Robotics and Automation, New Orleans, LA (2004)

10. Bicchi, A., Tonietti, G.: Fast and soft arm tactics: Dealing with the safety-performance
tradeoff in robot arms design and control. IEEE Robotics & Automation Magazine 11(2),
22–33 (2004)

11. Bicchi, A., Tonietti, G., Bavaro, M., Piccigallo, M.: Variable stiffness actuators for fast
and safe motion control. In: Dario, P., Chatila, R. (eds.) The Eleventh International Sym-
posium on Robotics Research, pp. 527–536. Springer, Heidelberg (2005)
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Grasping and Control of Multi-Fingered Hands

Luigi Villani, Fanny Ficuciello, Vincenzo Lippiello, Gianluca Palli,
Fabio Ruggiero, and Bruno Siciliano

Abstract. An important issue in controlling a multi-fingered robotic hand grasping
an object is the evaluation of the minimal contact forces able to guarantee the sta-
bility of the grasp and its feasibility. This problem can be solved online if suitable
sensing information is available. In detail, using finger tactile information and con-
tact force measurements, an efficient algorithm is developed to compute the optimal
contact forces, assuming that, during the execution of a manipulation task, both the
position of the contact points on the object and the wrench to be balanced by the
contact forces may change with time. Since manipulation systems can be redun-
dant also if the single fingers are not –due to the presence of the additional degrees
of freedom (DOFs) provided by the contact variables– suitable control strategies
taking advantage of such redundancy are adopted, both for single and dual-hand
manipulation tasks. Another goal pursued in DEXMART is the development of a
human-like grasping approach inspired to neuroscience studies. In order to simplify
the synthesis of a grasp, a configuration subspace based on few predominant postural
synergies of the robotic hand is computed. This approach is evaluated at kinematic
level, showing that power and precise grasps can be performed using up to the third
predominant synergy.

1 Grasping Force Optimization

The control of a robotic system equipped with multi-fingered hands involves several
aspects which range from the synthesis of the optimal grasping contact points and
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Università degli Studi di Napoli Federico II, via Claudio 21, 80125 Napoli, Italy
e-mail: {luigi.villani,fanny.ficuciello,vincenzo.lippiello,

fabio.ruggiero,bruno.siciliano}@unina.it
Gianluca Palli
Dipartimento di Elettronica Informatica e Sistemistica,
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grasp planning, to the load sharing and grasp control. With respect to this last, the
evaluation of the grasping forces able to guarantee the stability of the grasp and its
feasibility, in the face of the external disturbances, represents a crucial problem. The
complexity of the problem relies on the necessity of resolving online an optimization
problem where both constraints and objective functions are nonlinear, the number
of variable and constraints are relatively large, and the grasp configuration and the
load wrench may change with time.

The force closure [41] and the optimal grasp configuration selection problems
are not considered here, as they would be in charge of the grasp planner. On the
other hand, the grasping force optimization problem has been intensively investi-
gated only for relative simple robotic systems and not yet explicitly in the case of
bimanual human-like robotic systems. For this last, the computational complexity
becomes a major issue to be considered for an efficient online solution.

The nonlinearity of the contact friction models (point contact with friction or
soft-finger contact) complicates the solution of the optimal contact force distribu-
tion problem. In [26] the friction cone constraints have been formulated in terms
of linear matrix inequalities (LMIs), and the grasping optimization problem is ad-
dressed as a convex optimization problem involving LMIs with the max–det func-
tion as objective function. This problem can be efficiently solved with the interior
point algorithm for a small number of fingers.

Starting from the observation that verifying the friction cone constraints is equiv-
alent to testing the positive definiteness of certain symmetric matrices, in [11] the
grasp force optimization has been formulated as a convex optimization problem on a
Riemannian manifold with linear constraints. Several gradient flow type algorithms
have been proposed to provide solutions suitable for real-time applications [12]; to
reduce complexity of matrix inversion, the computation of the solution can be split
into an on-line phase and an off-line phase, and sparse matrix techniques can be
adopted [30]. This technique has been employed and experientially tested with an
impedance control approach addressing the regrasping problem for dextrous manip-
ulation tasks [54].

A further improvement has been presented in [27], consisting in a new compact
semidefinite representation of the friction cone constraints which allows a signif-
icant reduction of the dimension of the optimization problem. Moreover, an esti-
mation technique and a recursion method for selecting the step size in the gradient
algorithm are proposed, together with the proof of the quadratic convergence of the
algorithm.

In [50] and [53] a method based on the minimization of a cost function, which
gives an analytical solution but does not ensure by itself the satisfaction of the fric-
tion constraints is presented. An iterative correction algorithm allows modifying
this function until the internal forces enter the friction cone, resulting in a fast sub-
optimal solution suitable for real-time applications. The grasping force optimization
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problem in the case of power grasp is addressed in [60]. In this case, the optimization
problem is formulated as a convex optimization problem involving LMIs similarly
to [26], but considering a decomposition of the contact force space into four orthog-
onal subspaces of active and passive forces.

The method proposed in [11] requires the on-line pseudo-inversion of a con-
strained matrix whose dimension linearly increases with the number of fingers with
a factor that depends on the contact type. By adopting the frictional cone constraint
matrix representation proposed in [27], the dimension of the problem decreases and
the solution can be computed in real time. However, if torque limits constraints are
considered, the complexity of the problem increases more than quadratically with
the number of joints, which is higher in a dual-hand system, making it unsuitable for
real-time applications. Moreover, all the proposed solutions require, at each itera-
tion, the evaluation of an initial point that satisfies the frictional cone constraints and
the joint torque limits. The initial point can be computed with the method proposed
in [34], but at the expense of a significant computational effort.

The proposed algorithm is based on the compact formulation of [27] and on the
solution of a convex optimization case as in [12], and it extends to bimanual ma-
nipulation systems our previous works on single-hand manipulation [32], [33]. The
method allows considering also joint torque constraints, with a minimum increase
of computation complexity, compatible with real-time constraints. Moreover, the it-
erative formulation does not require the evaluation at each step of a new initial point.
Finally, a sub-optimal single-hand optimization algorithm is proposed to cope with
very limited computational hardware availability, and compared with the optimal
solution. In particular, a new criterion for load sharing [61], [58], [56] between the
hands is here introduced to improve the solution. The feasibility and the effective-
ness of this approach have been tested in a simulation scenario where a robotic torso
equipped with two dextrous hands is used to empty a half-filled bottle.

1.1 Problem Formulation

Consider a bimanual robotic system equipped with two multi-fingered hands grasp-
ing an object with n contacts between the object and the fingertips, the links of the
fingers and the palm. Denote the contact wrench of the grasp with c =

[
cT

r cT
l

]T
=[

cT
1 . . . cT

n

]T ∈ R
nm, where ci ∈ R

m is the wrench vector of the i-th contact with
dimension m depending from the adopted contact model, and cr and cl are the cor-
responding wrench vectors of all the contact points of the right and left hand, re-
spectively.

The grasping force optimization problem (GFO) consists in finding the set of
contact wrenches balancing the generalized external force he ∈ R

6 acting on the
object (including object inertia and weight), which are feasible with respect to the
kinematic structure of the hand and to the corresponding joint torque limits, and
minimize the overall stress applied the object, i.e, the internal forces. Moreover, to
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avoid the slippage of the fingers on the object surface, each contact wrench has to
be confined within the friction cone.

The balance equation for the generalized forces applied to the object can be writ-
ten in the form

he = Gc, (1)

where G =
[

Gr Gl
] ∈ R

6×nm is the grasp map composed of the the grasp matices
of the right and left hand, which is full rank for force-closure grasps [41]. It is
assumed that the contact point configurations ensuring the force-closure constraint
are assigned at each time by the planning system.

Although several contact models can be used, the two usually adopted are the
point contact with friction (PCWF) model and the soft finger contact (SFC) model.

In the PCWF case, the contact wrench has three DOFs (m = 3): the normal com-
ponent ci,z to the object surface and the two components ci,x, ci,y on the tangent
plane. The friction constraint is represented by the law

1

μ2
i

(
c2

i,x + c2
i,y

)≤ c2
i,z and ci,z > 0, (2)

where μi is the friction coefficient at the i-th contact point.
In the SFC case, the contact wrench has an additional DOF ci,t (m = 4), corre-

sponding to the torsional component of the moment about the contact normal. In
this case, the friction constraint in an elliptic approximation can be expressed in the
form

1
μi

(
c2

i,x + c2
i,y

)
+

1
μt,i

c2
i,t ≤ c2

i,z and ci,z > 0, (3)

where μi and μi,t denote the tangential and torsion friction coefficients at the i-th
contact point, respectively.

The balance equation for the torques applied to fingers joints of the hand can be
written in the form

JT(q)c+ τe = τ, (4)

where and J(q) =
[

JT
r JT

l

]T
is the (nm× l) hands Jacobian matrix, depending on the

(l-dimensional) vector q of the joint variables, being l the total number of the joints,
τe is the external torque, including gravity, Coriolis, centripetal and inertia effects
at the fingers joints, and τ is the torque provided by the actuators. For simplicity, it
is assumed that N (JT) = /0, meaning the absence of structurally dependent forces,
namely, contact forces not caused by joint torques but depending on hand mechanics
(see, e.g., [41]).

To ensure that the joint actuators are able to provide the required torques, a joint
torque constraint must also be considered

τL ≤ τ ≤ τU , (5)

where τL (τU ) is the lower (upper) joint torque limit.
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The simultaneous satisfaction of the force balance equation (1), with the friction
constraints (2) and (3), and of the joint torque balance equation (4) with constraint (5),
implies that the grasp is stable and feasible. The GFO problem considered here con-
sists in finding the optimal grasp wrench that minimizes the internal forces acting on
the object, under the above constraints. The internal forces are contact wrenches that
satisfy the friction cone constraints and belong to the null space of the grasp matrix
G. These wrenches cint do not contribute to the balance equation (1), being Gcint = 0,
but are used to satisfy the friction cone constraints at the contact points.

1.2 Grasping Constraints and Cost Function

The frictional inequalities (2) and (3) are equivalent to the positive definiteness of
the block-diagonal matrix [27]

F(c) = diag(F1(c1), . . . ,Fn(cn))> 0, (6)

where Fi(ci) is the symmetric (2× 2) matrix

Fi(ci) =

[
ci,z +

ci,x
μi

ci,y
μici,y

μi
ci,z− ci,x

μi

]
(7)

in the PCWF case, while it is the Hermitian (2× 2) matrix

Fi(ci) =

[
ci,z +

ci,x√μi

ci,y√μi
− j

ci,t√μi,t
ci,y√μi

+ j
ci,t√μi,t

ci,z− ci,x√μi

]
, (8)

in the SFC case.
Similarly, the torque limit constraint (5), in view of the torque balance equa-

tion (4), is equivalent to the positive definiteness of the diagonal matrix

T(c,q,τe) = diag(τB)> 0, (9)

where

τB =

[
τB,L

τB,H

]
=

[
JT(q)c− τL + τe

−JT(q)c+ τH − τe

]
(10)

contains the distances of actuator torques from the lower (τB,L) and upper (τB,H)
limits, respectively.

Hence, the simultaneous satisfaction of both frictional and joint torque con-
straints is equivalent to the positive definiteness of the linearly constrained block-
diagonal matrix

P = diag(F,T)> 0. (11)
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Notice that the elements of the matrices F and T are linearly dependent, because
both depend on c. Moreover, the force balance equation (1) and the torque balance
equation (4) corresponds to linear constraints imposed on matrix P.

By denoting with c(F) the contact wrench vector extracted from the frictional
constraint matrix, with τB(T) the vector composed by the diagonal elements of T,

and defining vector ξ (P) =
[
c(F)T τB(T)T

]T
, the linear constraints on matrix P

imposed by (1) and (4) can be represented in the following affine general form

Aξ (P) = b (12)

with

A =

[
G 06×2l

Aτ

]
b =

⎡
⎣ he

τL− τe

τH − τe

⎤
⎦ , (13)

where Aτ is a (2l× nm+ 2l) matrix defined as follows

Aτ =

[
J(q)T −Il 0l

J(q)T 0l Il

]
, (14)

being 0× the null matrix and I× the identity matrix of the indicated dimensions.
The optimization procedure is based on the minimization of the cost function

Φ(P) : P(r)→R, being P(r) the set of positive definite symmetric (r×r) matrices
P = PT > 0, defined as

Φ(P) = tr
(
WpP+WbP−1) , (15)

where tr(·) denotes the trace operator, Wp and Wb are positive definite symmetric
matrices. Notice that Φ is a strictly convex twice continuously differentiable func-
tion on P(r) and Φ(P)→ +∞ for P→ ∂P(r), being ∂P(r) the boundary of
P(r).

By noting that the sum of the elements of T (i.e. of τB) is constant for each c,
because the sum of the two joint torque constraints for the i-th joint is constant
and equal to τH,i− τL,i, the diagonal weighting matrix Wp = diag(wpI6,02l), with
wp > 0, is considered. In this way, the term WpP weights only the normal forces
ci,z at each contact point, i.e. the pressure forces on the object. If required, different
weights can be used allowing higher contact forces for strongest fingers.

The second term WbP−1 represents a barrier function, which goes to infinity
when P tends to a singularity, i.e. when friction or torque limits are approached. The
barrier weight matrix is also chosen diagonal Wb = diag(Wb,F ,Wb,T ), with

Wb,F = wb,F diag(μ1, . . . ,μn)

Wb,T = wb,T diag
(
τH,1− τL,1, . . . ,τH,l − τL,l ,

τH,1− τL,1, . . . ,τH,l − τL,l
)
,

(16)

being wb,F > 0 and wb,T > 0.
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Hence, the minimization of the cost function (15) with the linear constraint (12)
corresponds to the minimization of the normal contact wrench components applied
to the object while satisfying the friction and torque constraints.

1.3 Semidefinite Programming

The minimization problem can be solved using the linearly constrained gradi-
ent flow approach on the smooth manifold of positive definite matrices presented
in [28], [11]. In particular, it is possible to prove that Φ(P) presents a unique min-
imum that can be reached through the linear constrained exponentially convergent
gradient flow

ξ (Ṗ) = Qξ (P−1WbP−1−Wp), (17)

where Q = (I−A†A) is the linear projection operator onto the tangent space of
A, and A† = AT(AAT) is the pseudo-inverse of A. Consequently, AQ = 0 and
Aξ (Ṗ) = 0; hence, if the solution satisfies the constraint (12) at t = 0, it will satisfy
the constraint for all t > 0.

A discrete-time version of (17) based on the Euler numerical integration algo-
rithm is

ξ (Pk+1) = ξ (Pk)+αkQξ (P−1
k WbP−1

k −Wp), (18)

where the step size αk is chosen to ensure down hill steps. Notice that the choice of
αk strongly affects the performance of the optimization algorithm. A wrong choice
could determine a very slow convergence or the break of the barrier. Several strate-
gies have been proposed for the self-tuning of αk at each iteration (see [34] for
details). The sensitivity to the step size choice can be reduced by adopting a Dikin-
type recursive algorithm [12], [19], that leads to the discrete flow

ξ (Pk+1) = ξ (Pk)−αkQ
ξ (P−1

k WbP−1
k −Wp)

‖P−1
k WbP−1

k −Wp‖Pk

, (19)

where ‖X‖Y = tr(Y−1XY−1X), and 0 ≤ αk ≤ 1 can be evaluated with a bounded
line search minimizing Φ(Pk+1).

The online implementation of the proposed algorithm requires the inversion of a
(6+ 2l) square matrix AAT needed for the evaluation of A† at each iteration, also
when the grasping configuration is unchanged, i.e. when G is constant, due to the
variation of J(q).

Starting from the discrete version of the gradient flow (18), the following new
formulation can be derived

ck+1 = ck +αkQ̄ξ (P−1(ck)WbP−1(ck)−Wp), (20)

where Q̄ = (I−G†G)[Inm02l](I−A†
τAτ) is the result of the projection onto the

null space of matrix Aτ in (14), which guarantees the coherence of the elements of
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matrix P, and of the subsequent projection onto the null space of the grasp matrix,
ensuring the force balance constraint (1). Therefore, the evaluation of the inverse
of a 6+ 2l square matrix is decomposed into the evaluation of the inverse of two
matrices of lower dimensions (6 and 2l, respectively). Moreover, if the grasp config-
uration remains unchanged, the projector depending on G can be evaluated off-line.
A similar decomposition can be easily achieved for the gradient flow (19).

1.4 Improvements for Real-Time Applications

An iterative technique for the on-line evaluation, at each sampling time, of the ini-
tial point —the initial solution P0 for the optimization gradient flow algorithm—
is proposed here, based on the optimal solution at the previous sampling time. The
quantities that can vary between successive sampling times are the hand configura-
tion q, the external torque τe, and the grasp map G, while they are taken constant
during the iterations of the optimization algorithm between two consecutive sam-
pling times (optimization cycle).

To avoid the evaluation of an initial point at each sampling time, the following
approach is proposed. Initially, at time t0, the method proposed in [34] (or an equiv-
alent one) is used to evaluate off-line a first valid initial solution, which is employed
for the first optimization cycle. For the next sampling times tk, the initial point is
computed from the optimal solution ck−1 computed at the end of the previous opti-
mization cycle, through the iterative algorithm

c̄ j =(I−G†
kGk)c̄ j−1+γ jG

†
khe,k +(1− γ j)G

†
k−1he,k−1

τ̄ j =JT(γ jqk+(1−γ j)qk−1)c̄ j+γ jτe,k+(1−γ j)τe,k−1,
(21)

with initial condition c̄0 = ck−1, where the subscript k is referred to the current
optimization cycle, while the subscript j and the variables with the bar are referred
to the iterations within the cycle. The coefficient γ j ∈ (0,1] is chosen at each iteration
according to a monotone sequence, using a simple linear search algorithm, as the
maximum value that does not produce invalid solutions (P0 ≤ 0). In the worst case,
γ0 must be set to a value close to zero.

In detail, at each step of the optimization cycle, the first equation of (21) grad-
ually modifies the external wrench component of the current solution until the full
external wrench he,k is balanced (i.e., γ j = 1). Obviously, the optimization cycle can-
not be terminated until γ j does not reach 1. If the solution evaluated at the previous
sampling time (ck−1) is sufficiently far from the boundaries (the distance depends
also from the weights assigned to Wb), γ0 can be set to 1 at the first iteration, and
thus the initial point has the same internal wrench component of the previous op-
timal solution. On the other hand, when γ0 < 1, the effect of the barrier function
produces a new solution that, at each iteration of the optimization cycle, goes away
from the boundaries; this guarantees that γ j increases at each step, until γ j = 1. The
second equation is required to modify the joint torque with the same rationale of



Grasping and Control of Multi-Fingered Hands 227

the first equation. In sum, the sequence γ j produces an effect similar to a low-pass
filter on the variation of the solutions between subsequent optimization steps that
are recovered directly within the recursive optimization algorithm.

From the practical experience, if the weight Wb of the barrier function in the cost
function (15) is chosen high enough and the sampling period is small, in most cases
the last optimal solution is a valid initial solution, i.e. γ0 = 1.

Under the reasonable assumption that the solutions of the optimization algorithm
evaluated at successive sampling times are quite close, the joint torque constraints
can be simplified observing that not all the joint torque constraints can be effective
simultaneously. For example, if, for the current optimal solution, the actuator of joint
i provides a torque close to the upper bound τH,i, the constraint on the lower bound
τL,i can be deactivated at the next sampling time, being negligible the corresponding
barrier term in the cost function. More in general, if for a grasp configuration a given
contact force is required along a certain direction, it is reasonable to assume that
the corresponding joint torques will not change significantly at the next sampling
time. Starting from this observation, the number of joint torque constraints can be
dynamically reduced at each sampling time, by using the distance of the torque
evaluated at the previous sampling time from the lower and upper bounds as the
criterion for selecting the constraint (the lower or the upper one) that needs to be
activated. Only those constraints with a distance higher than a torque limit threshold,
that can be chosen as a fraction στ > 0 of the corresponding torque limit, will be
activated.

Wherever required, to reduce chattering phenomena during the activation and
deactivation of a constraint, that can introduce noise in the solution, a simple double
threshold (στ,L > 0 and στ,H > 0) with a hysteretic threshold can be employed.

For applications with limited computational resource, a further simplification in
the algorithm can be introduced by splitting the bimanual optimization problem
into two simpler single-hand problems. In this case, the initial point iterative self-
evaluation algorithm presented above can be employed to find the initial common
solution. Then two independent optimization procedures can be started separately
for each hand, and the corresponding solutions are composed only at the end to
achieve a unique wrench vector solution. The price to pay with the simplified algo-
rithm is that the solution is not optimal in a global sense.

A significant improvement in the solution can be reached by considering a suit-
able weighted pseudo-inverse of the grasp matrix in (21), with the goal of achieving
a load sharing between the hands in reason of the actual load of the hand actuators.
In detail, at each sampling time, the minimum distance of the joint torques with re-
spect to the corresponding limits is evaluated for each hand, namely δτ,r and δτ,l for
the right and for the left hand, respectively. Then a weighting matrix

WG = diag

(
δτ,r + δτ,l

δτ,r
Inrm,

δτ,r + δτ,l
δτ,l

Inl m

)
, (22)

with nr and nl the number of contact points for the right and for the left hand, is
adopted for the evaluation of the weighed pseudo-inverse of the grasp matrix.
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Fig. 1 The DEXMART Hand prototype.

G# = W−1
G G(GW−1

G GT)−1. (23)

With this choice, the quadratic form cTWGc is minimized, reducing the load re-
quirement on the hand closest to its torque limits. This approach, as demonstrated
in the following case study, can produce a reduction up to 50% of the computational
time when a large number of joint torque constraints are active.

1.5 Case Study

The proposed GFO algorithm has been tested in simulation using two models of the
DEXMART Hand (see Fig.1), mounted on an anthropomorphic torso, as shown in
Fig. 2. It is assumed that the hands grasp a cylinder representing a bottle half filled
with water and the task consists in pouring water by reorienting the bottle. The bottle
is initially grasped with the main axis aligned to the vertical direction; then the task
can be decomposed into three steps:

• a rotation of 135 deg about the horizontal axis through the geometric center of
the cylinder is commanded;

• the hand is stopped while some water is poured from the bottle (the mass and
inertia of the bottle change accordingly);

• the opposite rotation is commanded to set the bottle back to the initial pose.

A dynamic simulation has been performed using Matlab/Simulink, where the vari-
ation of the position of the center of mass of the water and that of its weight have
been considered. Figure 2 shows on the right a section of the bottle half filled with
water. In the figure, the intensity of the gravity force is proportional to the black
vertical arrow applied to the instantaneous center of mass (of length proportional to
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Fig. 2 Left: anthropomorphic torso with two DEXMART Hands grasping a bottle. Right:
section of the grasped bottle with graphical representation of the gravity force and torque
(black arrows), of the resultant force and torque applied by the fingers (red arrows), of the
optimal contact forces (green arrows if not interested by joint torque constraints, orange arrow
otherwise), and of the friction cones (yellow triangles).

the intensity of the force), while the intensity of the gravity torque with respect to
the center of the bottle is proportional to the black circular arrow. The red arrows
represent the external force and torque balancing the gravity effects and resulting
from the contact forces applied by the fingers, represented by green arrows if not
interested by joint torque constraints, orange arrow otherwise. The sections of the
friction cones in the contact points are colored in yellow. A sequence of significant
configurations of the bottle during task execution is shown in Fig. 3.

The effectiveness of the friction and of joint torque limits constraints is shown
by considering two different simulations: in the first one only the friction constraint
is considered, without any constraint on the joint torque limits, while in the second
one different torque limits are set for the fingers. In particular, the thumb actuators
are considered stronger than the corresponding actuators of the other fingers of the
hand (±0.5 vs. ±0.075 Nm), like for the human hand.

In Fig. 4 the trajectory and the areas covered by the contact force vector of each
finger in the corresponding contact point during the bottle motion are shown, in blue
(red) color for the case without (with) torque constraints. As expected, the frictional
constraints are always respected in both simulation cases accordingly to the barrier
function considered into the cost function (15).

The time history of the minimum distance of the joint torques for all the actuators
from the corresponding limits is shown in Fig. 5, with the red (blue) line refers to
the case with (without) torque constraints. The effect of the barrier function settled
up also on torques insures the full respect of the adopted limits, without affecting
significantly the contact wrenches as shown in Fig. 6.
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Fig. 3 Sequence of significant configurations of the bottle and of the forces during the task
execution.

In Fig. 6 a comparison of the norm of the contact wrenches (on the left) and of
the joint torques (on the right) is shown for both simulation cases. The differences
for the norm of the torque between the two cases is very limited, while the contact
wrenches are improved (smaller in norm), due to a better balancing of the load
between the fingers.

The benefits resulting from the adoption of the online joint-torque constraints
selection are shown in Fig. 7, where the time history of the computational time
effort are represented on the left and the number of employed constraints are rep-
resented on the right. To remove the dependence on the employed hardware, all the
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Fig. 4 Areas covered by the contact forces of each finger (Top: right hand, Bottom: left hand;
from the left side: from the thumb to the little finger) without (blue color) and with (red color)
torque constraints with respect to the friction cones (represented with green lines).
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Fig. 5 Time history of the minimum distance of the joint torques from the corresponding
limits for all the actuators, in red (blue) color for the case with (without) torque constraints.
Negative values (the yellow area) correspond to the violation of one or more joint torque
limits.

considered cases are normalized with respect to the maximum value of the fully
constrained case (black line) to the value 100 (corresponding about to 23 ms on an
Intel Pentium IV at 2.8 Ghz). In particular, four different cases are compared: all
constraints (black lines), στ = 0 (red lines), στ = 0.5 (green lines), στ = 0.8 (blue
lines), and unconstrained (gray lines), where στ is the threshold for the activation
of the joint torque constraints. The achieved reduction of the mean of the computa-
tional time varies from a minimum of about 30% for στ = 0 to a maximum of about
90% for στ = 0.8.

The adoption of the sub-optimal single-hand GFO algorithm can provide a signif-
icant reduction on the computational time with respect to the optimal one, as shown
in Fig. 7 for the case of all joint torque constraint simultaneously active. However,
the drawback is that the sub-optimal solution has reduced performance in terms of
both the norm of contact wrenches and of joint torque (see Fig. 8). Consequently,
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Fig. 6 Time history of the norm of the contact wrenches (on the left) and of the joint torques
(on the right), in red (blue) color for the case with (without) torque constraints.
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Fig. 7 Time history of the normalized computational-time effort (left) and of the number of
employed joint torque constraints (right) for the cases with all constraints (black), στ = 0
(red), στ = 0.5 (green), στ = 0.8 (blue), unconstrained (gray), and single-hand local opti-
mization with (violet) and without (cyan) weighted pseudo-inverse of the grasp matrix.
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Fig. 8 Time history of the norm of the contact wrenches (on the left) and of the joint torques
(on the right) for the cases of local single-hand optimization without (blue) and with (green)
weighted pseudo-inverse of the grasp matrix, and global optimization (red).

also the distance with respect to the joint torque limits result reduced significantly, as
shown in Fig. 9), but without violating the imposed constrained. As shown in these
figures, the adoption of the weighted pseudo-inverse of the grasp matrix in (23)
can improve the achieved solution resulting in a well-shared load between the two
hands. This behavior is mainly due to the reduction of the DOFs available to the
optimization algorithm considering separately the the two hands instead of both
together.
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Fig. 9 Time history of the minimum distance of the joint torques from the corresponding
limits for all the actuators for the cases of local single-hand optimization without (blue) and
with (green) weighted pseudo-inverse of the grasp matrix, and global optimization (red).
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Fig. 10 Time history of the norm of the load force (on the left) and moments (on the right) for
the right (red) and left (blue) hand in the cases of local (continuous lines) and global (dashed
lines) method.

On top of Fig. 10 the time history of the normalized load-sharing coefficients
δτ,r/(δτ,r +δτ,l) (red) and δτ,l/(δτ,r +δτ,l) (blue) employed in (23) is shown, while
the time history of the norm of the load force and moments for the right (red) and
left (blue) hand in the cases of sub-optimal (continuous lines) and optimal (dashed
lines) method are shown in Fig. 10. As expected, the whole balancing of effort
between the hands is degraded with respect to the optimal solution (dashed lines),
but the adopted load sharing method allows an online load repartition according to
the current load capability of each hand.

2 Kinematic Control with Force Feedback

Dual-arm/hand object manipulation with multi-fingered hands is a challenging task,
especially in service robotics applications, but it has not investigated as extensively
as it should deserve. In order to achieve the desired motion of the manipulated ob-
ject, arms and fingers should operate in a coordinated fashion. In the absence of
physical interaction between the fingers and the object, simple motion synchroniza-
tion shall be ensured. Further, the execution of object grasping or manipulation re-
quires controlling also the interaction forces to ensure grasp stability [43], [49].
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From a kinematics point of view, an object manipulation task can be assigned in
terms of the motion of the fingertips and/or in terms of the desired object motion.
The planner (or the controller) has to map the desired task into the corresponding
joint trajectories of the fingers and the arms, thus requiring the solution of an inverse
kinematics problem.

In this work, starting from the framework presented in [31], a kinematic model for
object manipulation using a dual-arm/hand robotic system is derived, which allows
computing the object pose from the joint variables of each arm and each finger (ac-
tive joints), as well as from a set of contact variables, modelled as passive joints [40].
Suitable conditions are derived ensuring that a given motion can be imposed to the
object using only the active joints. Exploiting also the information provided by force
sensors mounted inside the fingertips, a two-stage control scheme is proposed so as
to achieve the desired object motion and to maintain the desired contact normal
forces.

The kinematic redundancy of the system, deriving also from the presence of the
passive joints, is suitably exploited to satisfy a certain number of secondary tasks
with lower priority, aimed at ensuring grasp stability and manipulation dexterity
—without violating system constraints— besides the main task corresponding to
the desired object motion. To this aim, a prioritized task sequencing with smooth
transitions between the different tasks [36] is employed.

At the best of authors knowledge, the focus of previous works on kinematics of
multi-fingered manipulation was on constrained kinematic control [25], [40], or ma-
nipulability analysis [8], without considering redundancy resolution and the benefits
of integrating a force feedback in a kinematic control loop. The effectiveness of the
proposed approach is demonstrated in simulation by considering an object exchange
task for a planar bimanual system.

2.1 Kinematic Model

Consider a bimanual manipulation system, e.g., the humanoid manipulator of Fig. 11
composed by a three DOFs torso and two DLR manipulators (each with seven
DOFs). The direct kinematics can be computed as reported in [55], by introduc-
ing a frame Σb fixed with the base of the torso, two frames, Σr and Σl , attached at
the base of the right and left arm, respectively, and two frames, Σrh and Σlh, attached
to the palms of the right and left hand, respectively. Moreover, assuming that each
arm ends with a robotic hand composed by N fingers, it is useful to introduce a
frame Σr fi (Σl fi), attached to the distal phalanx of finger i (i = 1 . . .N) of the right
(left) hand.

The pose of Σr fi with respect to the base frame Σb can be represented by the
well known (4× 4) homogeneous transformation matrix Tb

r fi
(Rb

r fi
,ob

r fi
), where Rb

r fi
is the (3× 3) rotation matrix expressing the orientation of Σr fi with respect to the
base frame and ob

r fi
is the (3×1) position vector of the origin of Σr fi with respect to

the base frame. Hence, the direct kinematics can be expressed as

Tb
r fi = Tb

r (qt)T
r
rh(qrh)T

rh
r fi(qr fi) (24)
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Fig. 11 Kinematic structure of a humanoid manipulator with torso and arms inspired to the
DLR Justin.

where Tb
r is the matrix relating the frame at the basis of the right arm to the base

frame (which depends, in turn, on the torso joint vector, qt ), Tr
rh(qrh) is the matrix

relating the right palm frame to the base frame of the right arm (which depends, in
turn, on the joint vector of the right arm, qrh), and Trh

r fi
is the matrix relating the

frame attached to finger i to the palm frame of the right hand (which depends, in
turn, on the joint vector qr fi , where the fingers are assumed to be identical). An
equation similar to (24) holds for the left hand fingers, with subscript l in place of
subscript r.

Due to the branched structure of the manipulator, the kinematic equations of both
the right and the left arm depend on the joint vector qt of the torso and, thus, they
are not independent. Without loss of generality, hereafter it is assumed that the torso
is motionless, i.e., qt is constant; therefore, the kinematics of the right and of the
left hand can be considered separately. Hence, in the sequel, the superscripts r and
l will be omitted and will be used explicitly only when it is required to distinguish
between the right and the left arm.

The velocity of frame Σ fi with respect to the base frame can be represented by
the (6× 1) twist vector v fi = [ȯT

fi
ωT

fi ]
T , where ω fi is the angular velocity, such that

Ṙ fi = S(ω fi)R fi , with S(·) the skew-symmetric operator representing the vector
product. The superscript b, denoting the base frame, has been omitted to simplify
notation.

The differential kinematics equation relating the joint velocities to the velocity of
frame Σ fi can be written as

υ fi =

[
JPi(qi)
JOi(qi)

]
q̇i = JFi(qi)q̇i, (25)

where qT
i =
[
qT

h qT
fi

]T
and JFi is the Jacobian of the arm, ending with finger i.
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Fig. 12 Local parametrization of the object surface with respect to Σo.

Therefore, the differential kinematics equation of the whole arm-hand system,
considering the N fingers as end-effectors, can be written in the form

ṽ f = J(q)q̇, (26)

where ṽT
f =
[
vT

f1
· · ·vT

fN

]T
, qT =

[
qT

h qT
1 · · ·qT

N

]T
, and J is the Jacobian of the overall

arm-hand system.
Assuming that the hand grasps a rigid object, to derive the kinematic mapping

between the joint variables of the arm-hand system and the pose (position and ori-
entation) of the object, it is useful introducing an object frame Σo attached to the
object, usually chosen with the origin in the object center of mass. Let Ro and oo

denote respectively the rotation matrix and the position vector of the origin of Σo

with respect to the base frame, and let vo denote the velocity twist vector.
Grasping situations may involve moving rather than fixed contacts: often, both

the object and the robotic fingers are smooth surfaces, and manipulation involves
rolling and/or sliding of the fingertips on the object surface, depending on the con-
tact type. If the fingers and object shapes are completely known, the contact kine-
matics can be described introducing contact coordinates defined on the basis of a
suitable parametrization of the contact surfaces [39], [41].

In this work, it is assumed that the fingertips are sharp (i.e. they end with a point,
denoted as tip point) and covered by an elastic pad. The elastic contact is modeled by
introducing a finger contact frame, Σki , attached to the soft pad and with the origin
in the tip point oki , and a spring-damper system connecting oki with the origin of
frame Σ fi , attached to the rigid part of the finger (see Fig. 13) and with the same
orientation of Σki . The displacement between Σ fi and Σki , due to the elastic contact
force, can be computed as

o fi− oki = (li−Δ li)Ron̂o(ξ ), (27)
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where li and 0 ≤ Δ li ≤ li are the rest position and the compression of the spring,
respectively, and n̂o is the vector representing the outward normal to the object’s
surface at the contact point, referred to Σo.

Let Σci be the contact frame attached to the object, with the origin at contact point
oci . Notice that, instantaneously, the object contact point oci and the finger contact
point oki are coincident. One of the axes of Σci , e.g., the Z axis, is assumed to be the
outward normal to the tangent plane to the object surface at the contact point.

It is assumed that, at least locally, the position of the contact point with respect to
the object frame oo

o,ci
= oo

ci
−oo

o can be parameterized in terms of a coordinate chart
co

i : Ui ⊂R
2 	→R

3 which maps a point ξ i = [ui vi]T ∈Ui to the point oo
o,ci

(ξ i) of the
surface of the object.

Assuming that co
i is a diffeomorphism and that the coordinate chart is orthogonal

and right-handed, the contact frame Σci can be chosen as a Gauss frame [39], where
the the relative orientation expressed by the rotation matrix Ro

ci
is computed as a

function of the orthogonal tangent vectors co
ui
= ∂co

i /∂ui and co
vi
= ∂co

i /∂vi [31].
Consider the contact kinematics from the object point of view. Let co

i (ξ i(t))
denote a curve on the surface of the object, with ξ i(t) ∈ U (see Fig. 13). The
corresponding motion of Σci with respect to the base frame can be determined as
a function of: object motion, geometric parameters of the object and the curve geo-
metric features. Namely, the velocity of the contact frame can be expressed as

υci =

[
ȯci

ωci

]
= GT

ξi
(ξ i)υoi + Jξi

(ξ i)ξ̇ i, (28)

where Gξi
(ξ i) and Jξi

(ξ i) are respectively (6× 6) and (6× 2) full rank matrices,
whose expressions can be found in [31].

Consider now the contact kinematics from the fingers point of view. The contact
can be modeled with an unactuated 3-DOF ball and socket kinematic pair centered
at the origin oki of Σki , fixed to the soft pad of the finger; the origin may also move
on the surface, if sliding is allowed. Therefore, the relative orientation Rki

ci
of Σci

with respect to Σki can be computed in terms of a suitable parametrization of the
ball and socked joint, e.g., Euler angles.

A vector θ i =
[
θi1 θi2 θi3

]T
of XYZ Euler angles can be considered, and thus

Rki
ci
= Rki

ci
(θ i). Singularities occurs for θ2i = ±π/2, but they do not correspond to

physical singularities of the kinematic pair.
Notice that, in the presence of a contact force, because of the tip elasticity, frame

Σki translates from the finger frame Σ fi according to (27), but the orientation does

not change. Therefore, Rki
ci
= R fi

ci . Moreover, the angular velocity of Σci relative

to Σ fi can be expressed as ω fi
fi,ci

= H(θ i)θ̇ i, where H is a transformation matrix
depending on the joint parameterization. In view of the decomposition ωci = ω fi +

R fi(qi)ω
fi
fi,ci

, and from (25), the angular velocity of Σci can be computed also as a
function of joint and contact variables in the form

ωci = JOi(qi)q̇i +R fi(qi)H(θ i)θ̇ i, (29)
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with JOi defined in (25). Moreover, since the origins of Σci and Σki coincide, the
following equalities hold:

oci = oki = o fi − (li−Δ li)Ron̂o
i (ξ i)

ȯci = JPi(qi)q̇i + Δ̇ liRon̂o
i (ξ i) (30)

+(li−Δ li)S(Ron̂o
i (ξ i))ωo− (li−Δ li)Ro

∂ n̂o
i (ξ i)

∂ξ i
ξ̇ i,

with JPi defined in (25). Using (29) and (30), the velocity of the contact frame can
be expressed as

υci = JFi(q)q̇+ Jθi(θ i,qi)θ̇ i + JΔ li(ξ i)Δ̇ li

− J′ξi
(ξ i,Δ li)ξ̇ i−GT

Δ li(ξ i,Δ li)υo, (31)

where Jθi is a (6× 3) full rank matrix, whose detailed expression can be found
in [31], JΔ li is a (6× 1) vector

JΔ li =

[
Ron̂o

i (ξ i)
0

]
,

J′ξi
is a (6× 2) full rank matrix

J′ξi
=

⎡
⎣(l−Δ li)Ro

∂ n̂o
i (ξ i)

∂ξ i
0

⎤
⎦ ,

and GΔ li is the (6× 6) matrix

GΔ li =

[
0 0

(Δ li− li)S(Ron̂o
i (ξ i)) 0

]
.

Hence, from (28) and (31), the contact kinematics of finger i has the form

JFi(qi)q̇i + Jηi(η i,qi,Δ li)η̇ i + JΔ li(ξ )Δ̇ li = GT
i (η i,Δ li)υo, (32)

where η i =
[
ξT

i θT
i

]T
is the vector of contact variables, Jηi =

[
−(Jξi

+ J′ξi
) Jθi

]
is a

(6×5) full rank matrix, and Gi = Gξi
+GΔ li is a (6×6) full rank grasp matrix. This

equation can be interpreted as the differential kinematics equation of an “extended”
finger corresponding to the kinematic chain including the arm and finger joint vari-
ables (active joints) and the contact variables (passive joints), from the base frame
to the contact frame [40].

It is worth noticing that equation (32) involves all the 6 components of the veloc-
ity, differently from the grasping constraint equation usually considered (see, e.g.,
[41]), which contains only the components of the velocities that are transmitted by
the contact. The reason is that the above formulation takes into account also the
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velocity components not transmitted by contact i, parameterized by the contact vari-
ables and lying in the range space of

[
Jηi JΔ li

]
. As a consequence, Gi is always a

full-rank matrix.
Depending on the considered contact type [49], some of the parameters of ξ i and

θ i are constant. Hence, assuming that the contact type remains unchanged during
the task, the variable parameters at each contact point are grouped in an (nci × 1)
vector η i of contact variables, with nci ≤ 5.

Differently form the classical grasp analysis, in this work the elasticity of the soft
pad has been explicitly modeled (although using a simplified model). This means
that the force along the normal to the contact surface is always of elastic type. The
quantity Δ li, at steady state, is related to the normal contact force fni by the equation
Δ li = fni/ki, being ki the elastic constant of the soft pad of finger i.

Object dynamic manipulation is, in general, a difficult task, since the number of
the control variables (the active joints) is lower than the number of configuration
variables (active and passive joints). However, in some particular situations, it is
possible to simplify the analysis, considering only the kinematics of the system.

To this purpose, assume that force sensors are available on the fingertips and a
force control strategy is employed to ensure a desired constant contact forces fdi

along the direction normal to the contact point. Therefore, Δ li = Δ ldi = fdi/ki can
be assumed to be fixed (Δ̇ li = 0) and equation (32) can be rewritten as

JFi(qi)q̇i + Jηi(η i,qi,Δ li)η̇ i = GT
i (η i,Δ li)υo. (33)

On the basis of (33), it is possible to make a kinematic classification of the
grasp [49].

A grasp is redundant if the null space of the matrix
[
JFi Jηi

]
is non-null, for at

least one finger i. In this case, the mapping between the joint variables of “extended”
finger i and the object velocity is many to one: motions of active and passive joints
of the extended finger are possible when the object is locked.

A grasp is indeterminate if the intersection of the null spaces of [−Jηi GT
i ], for

all i = 1, . . . ,N, is non-null. In this case, motions of the object and of the passive
joints are possible when the active joints of all the fingers are locked.

It is worth noticing that, also in the case of redundant and indeterminate grasps,
for a given object pose and fingers configuration, the value of the contact variables
is uniquely determined. More details can be found in [31].

2.2 Control Scheme with Redundancy Resolution

In the case of a kinematically determinate and, possibly, redundant grasp, a two-
stage control scheme is proposed for the dual arm-hand manipulation system. The
first stage is an inverse kinematics scheme with redundancy resolution, which com-
putes the joint references for the active joints corresponding to a desired object’s
motion —assigned in terms of the homogeneous transformation matrix Td and the
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corresponding twist velocity vector vod— and to the desired normal contact force
fT
d =

[
fd1 · · · fdN

]
. The second stage is a parallel control composed of a PD posi-

tion controller and a PI tip force controller, ensuring the desired object motion and
desired contact forces on the basis of the previously computed joint references.

Namely, in ideal conditions, the joint references computed by the kinematic stage
ensure tracking of the desired object motion, with the desired contact forces. In the
presence of modeling errors and parameters uncertainty, the contact forces may dif-
fer from those planned. Using the force sensors at the fingertips, a force control
strategy is adopted to ensure the desired contact force by modifying the joint ref-
erences computed by the inverse kinematics stage. In principle, the joint references
of the overall manipulation system could be involved; however, it is reasonable to
design a force controller acting only on the joints of the fingers.

In order to derive the equations of the first stage, starting from (32), it is useful
to write the differential kinematic equations of the whole (right or left) arm-hand
system as

J(q)q̇+ Jη(η ,q,Δ l)η̇ = GT(η ,Δ l)ṽo, (34)

where J is the Jacobian of the arm-hand system defined in (26), Jη is a block diag-
onal matrix Jη = diag{Jη1 , · · · ,JηN} corresponding to the vector of passive joints

ηT =
[
ηT

1 · · ·ηT
N

]T
, G is the block diagonal grasp matrix G = diag{G1, · · · ,GN},

Δ lT =
[
Δ l1· · ·Δ lN

]T
and ṽT

o =
[
vT

o · · ·vT
o

]T
.

From (34), the following closed-loop inverse kinematics algorithm can be de-
rived: [

q̇d
η̇d

]
= J̃

†
(qd ,ηd ,Δ ld)G

T(ṽod +Koẽo)+Noσ , (35)

where J̃ =
[
J Jη

]
, the symbol † denotes a right (weighted) pseudo-inverse, ṽT

od
=[

vT
od
· · ·vT

od

]T
, Ko is a diagonal and positive definite matrix gain, ẽT

o =
[
eT

o1
· · ·eT

oN

]T
,

being eoi the pose error between the desired and the current object pose computed

on the basis of the direct kinematics of the extended finger i, and No = I− J̃
†
J̃ is a

projector in the null space of the Jacobian matrix J̃. The quantity Δ ld in (35) is the
vector collecting the finger soft pad deformations Δ ldi = fdi/ki corresponding to the
desired contact force fdi.

Equation (35) is used to compute the joint reference vector qd for the controller
of the second stage.

In view of the above considerations, any kind of joint motion control can be
adopted for the arms of the bimanual manipulation system, receiving as input the
joint references computed by the inverse kinematics scheme. In this chapter, the
joint torques for finger i are set according to the parallel force/position control law

τ i = JT
i (qi)

(
kPΔpi + fdi + kFΔ fni + kI

∫ t

0
Δ fnidτ

)
− kdq̇i + gi(qi) (36)
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where gi(qi) is the vector of the gravity torque of finger i, Δpi denotes the posi-
tion error of finger i between the desired value computed through direct kinematics
starting from qdi

and the current one, and Δ fni is the projection of the force error
along the normal to the object surface at the contact point. The above control law
regulates the contact force to the desired value at the expense of a position error
(i.e., a displacement of the positions of the fingers with respect to the palm), in the
presence of uncertainties.

Since the system may be highly redundant, multiple tasks could be fulfilled, pro-
vided that they are suitably arranged in a priority order, according to the augmented
projection method [1]. Consider m secondary tasks, each expressed by a task func-
tion σ th(q̃) (h = 1, . . . ,m), where q̃ =

[
qT

d ηT
d

]T
. According to the augmented pro-

jection method [1], the control law (35) can be replaced by

˙̃q= J̃
†
(q̃,Δ ld)G

T(ṽod+Koẽo)+
m

∑
h=1

N(JA
th
)J†

th Kth eth , (37)

where Jth is the Jacobian of the hth task, JA
th is the augmented Jacobian, given by

JA
th(q̃,Δ ld) =

[
J̃

T
(q̃,Δ ld) JT

t1(q̃) . . . JT
th−1

(q̃)
]T

.

N(JA
th
) is a null projector of the matrix JA

th
, Kth is a positive definite gain matrix

and eth = σ thd
−σ th is the task error, being σ thd

the desired value of the h-th task
variable.

The augmented projection method can be also adopted to fulfill mechanical or
environmental constraints, such as joint limits and obstacle avoidance (other fingers
or the grasped object). To this aim, each constraint can be described by means of
a cost function, C (q̃), increasing when the manipulator comes close to violate the
constraint. In order to minimize the cost function, the manipulator could be moved
according to the opposite of the gradient −∇T

q̃ C (q̃), that could be considered as
a fictitious force moving the manipulator away from configurations violating the
constraints. In order to include the constraints in (37), an overall cost function CΣ
given by

CΣ (q̃) =∑
cs

γcsCcs(q̃), (38)

is introduced, where γcs and Ccs are a positive weight and a cost function, respec-
tively, referred to the csth constraint.

2.3 Task Sequencing

If the system comes close to violate a constraint, a high level supervisor has to re-
move some secondary tasks and relax enough DOFs to fulfill the constraint [36].
To manage in a correct way removal/insertion of tasks from/into the stack (task
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sequencing), a suitable task supervisor can be designed, based on a three layers
architecture: the lower layer computes the motion variables on the basis of a stack
of active tasks; the intermediate layer determines which tasks must be removed from
the stack in order to respect the constraints; the upper layer verifies if the previously
removed tasks can be pushed back in the stack.

A task must be removed from the stack when the predicted value of the overall
cost function at the next time step is above a suitable defined threshold, C . Let T be
the sampling time adopted to implement the control law and κT the actual time, the
configuration at time instant (κ+ 1)T can be estimated as follows

̂̃q(κ+ 1) = q̃(κ)+T ˙̃q(κ). (39)

Hence, a task must be removed from the stack if

CΣ

(̂̃q(κ+ 1)
)
≥ C . (40)

Once it has been ascertained that a task must be removed from the stack, the problem
is to detect which task has to be removed. To the purpose, several criteria have been
proposed in [36], with the aim of verifying the conflict between the constraints and
each task. In this chapter, the overall cost function gradient is projected in the null
space of the task Jacobian, i.e.,

Pth =
∥∥∥N
(
Jth

)(−∇T
q̃ CΣ

)∥∥∥ h = 1, . . . ,m ; (41)

the task corresponding to the minimum of Pth is then removed, since its projection
into the null-space of Jth should be, ideally, zero to ensure constraint fulfillment.

The tasks removed by the second layer must be reinserted in the stack as soon as
possible, provided that the constraints will not be violated. A prediction of the CΣ
evolution at the next time step has to be evaluated by considering the effect of each
task currently out of the stack, i.e.

̂̃qth(κ+ 1) = q̃(κ)+ J†
th eth(κ) . (42)

Therefore, let C < C be a suitably chosen threshold; a task is pushed back in the
stack if

CΣ

(̂̃qth(κ+ 1)
)
≤ C . (43)

Task sequencing might cause discontinuities in the commanded joint velocities
due to the change of active tasks in the stack. For each task a variable gain ρth is
introduced to achieve a smooth behavior of the controller output

ρth(t)=

{
1−e−μ(t−τ) if the h-th task is in the stack
e−μ(t−τ ′) if the h-th task is out of the stack,

where τ and τ ′ are the time instant in which the task is inserted in the stack and the
time instant in which it is removed, respectively, and 1/μ is a time constant.
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Fig. 13 Manipulation system.

Hence, the first stage control law can be written in its complete form

˙̃q = J̃
†
(q̃,Δ ld)G

T(ṽod +Koẽo)+
m

∑
h=1

ρth N(JA
th
)J†

thKth eth − k∇N(JA
tm+1

)∇T
q̃ CΣ ,

where k∇ is a positive gain.

2.4 Case Study

The presented control scheme has been tested on a manipulation system grasping
a certain object, represented in Fig. 14, composed by two identical planar grippers,
each with two branches and 7 DOFs, resulting in a total of N = 4 fingers and 14
active joints. The idea is that of performing an object exchange.

In its initial configuration, it is assumed that the system grasps the object with
only tips 1 and 2, which are in a force closure condition, since the contact normal
forces are acting on the same straight line [41]. Tips 3 and 4 approach the object
until they reach a condition in which all the tips are in contact with the object. The
main task consists in keeping the object still, while Tips 3 and 4 move in order
to achieve a force closure condition upon the object in a dexterous configuration,
without violating a certain number of limits and constraints. Then, Fingers 1 and 2
can leave the object, simulating in this way an hand-to-hand object passing.

The force control loop ensures that the planned forces are applied on the object.
In this case study, the desired forces for Tips 3 and 4 are negligible, since they have
to slide on the object’s surface so as to reconfigure themselves to reach force closure
condition. The desired forces for Tips 1 and 2 are dynamically planned, on the basis
of the current value of the forces exerted by the fingers, in order to produce zero net
force and moment on the object and to balance disturbances caused by movements
of the other two fingertips.

A sequence of snapshots representing the described task are shown in Fig. 14. It
can be noticed that, in the final configuration (fifth snapshot), Fingers 3 and 4 are
in a force closure condition, since the normals at the contact points act on the same
straight line.



244 L. Villani et al.

1 2

3 4

5 6

Fig. 14 Snapshots describing the case study.

Four different subtasks have been considered: the first two, aimed at choosing
the optimal contact points, are related to the grasp quality; the others regard the
manipulability and the distance between the palm and the grasped object.

Unit frictionless equilibrium. The grasp quality can be guaranteed by moving the
contact points on the object surface until the unit frictionless equilibrium is reached.
This condition is a special case of a force-closure grasp; it is satisfied when two
positive indices, called frictionless force (ε f ) and moment (εm) residuals, are zero:
[16], [45]

ε f =
1
2

fT f f =
4

∑
i=1

n̂o
i (44)

εm=
1
2

mT m m =
4

∑
i=1

co
i × n̂o

i , (45)

where i = 1, . . . ,4, and where n̂o
i (ξ i) and co

i (ξ i) are the surface normal and the
position of the ith contact point, respectively, both referred to the object frame. It
has been shown that, for two or more contact points, unit frictionless equilibrium is
a force closure condition for any nonzero friction coefficient [45], [46].

Manipulability. In order to keep the manipulator far from singularities, a manipu-
lability index of each finger can be considered. In detail, the following manipulability
measure, which vanishes at a singular configuration, is adopted for the i-th finger [55].
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wi(qi) =
√

det
(
Ji(qi)JT

i (qi)
)

i = 1, . . . ,4 . (46)

The considered task function is then

σwi =

{
1
2(wi−wi (qi))

2 ifwi (qi)< wi

0 otherwise,
(47)

where wi is a threshold for the task activation. The desired value, σwid , is zero.
Distance between palm and object. Consider the position po

c of the palm centroid
in the object frame and a suitably chosen surface S surrounding the object char-
acterized by the equation F (po) = 0. When the centroid is inside the surface S , a
collision can occur; therefore, the centroid must be moved on the boundary, i.e, in a
position such that F (po

c) = 0. Hence, the task function is the following

σP(po
c) =

{
F (po

c) if the centroid is inside S
0 otherwise.

(48)

In the following the two considered constraints are described.
Joint-limit avoidance. A physical constraint to the motion of the system is im-

posed by the mechanical joint limits. The system configuration is considered safe if
q j ∈ [qj

,q j], for j = 1, . . . ,14, with q
j
and qj suitable chosen values far enough from

the limits. The cost function, directly defined in the joint space, is the following:

CJL(q) =
14

∑
j=1

c j(q j), (49)

c j(q j) =

⎧⎪⎪⎨
⎪⎪⎩

k j e
δ (q j−q j)

2− 1 if q j ≤ q
j

0 if q
j
< q j ≤ qj

k j eδ (q j−q j)
2− 1 if q j > qj,

where k j and δ are positive constants.
Collision avoidance. In order to avoid collisions between the fingers, it is im-

posed that the distance between the fingers be larger than a safety value, ds; hence,
if dii′ denotes the distance between the ith and the i′th finger, the following cost
function can be formalized

CCA(q̃) =∑
i,i′

cii′(q̃), (50)

where the sum is extended to all the couples of fingers,

cii′(dii′) =

⎧⎨
⎩

kii′
ds− dii′

d2
ii′

if dii′ ≤ ds

0 if dii′ > ds,
(51)

and kii′ is a positive gain.
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Fig. 15 Object’s pose errors for each finger.
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Fig. 16 Finger force errors.
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Fig. 17 Force and moment residuals.

The parameters of the elastic contact are: 5 ·104 N/m for the springs elastic co-
efficients, 5 Ns2/ m for the springs damper coefficients and li = 5 · 10−3 m for the
springs rest condition. The parameters used to define the subtasks are chosen as fol-
lows: wi = 2.55 for the manipulability subtask, q

j
=−110o,q j = 110o,k j = 5,δ = 2

for the joint-limit avoidance and kii′ = 1,ds = 5 cm for the collision avoidance. In
the system of Fig. 13 the palm is represented by the ramification point of the right
manipulator. The task has a duration of 4.5 s; a Runge-Kutta integration method,
with a step size of 2 ms, has been used to simulate the system.
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Fig. 18 Subtask functions.
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Fig. 19 Time history of the stack status: 1 is the main task, corresponding to keep the object
fixed; 2 and 3 are the force and moment residual tasks, respectively; 4 is the manipulability
task; 5 is the task about the distance between palms and object.

Figure 15 shows the time history of the norm of the object’s pose error for each
finger (position on the left, orientation on the right). Figure 16 shows the evolution
of the force error for each finger: in detail, Finger 1 is much more affected by the
motion of Fingers 3 and 4 than that of Finger 2; the desired value for the normal
force at Tips 3 and 4 is very small and it is impossible to see remarkable variations
in the time history.

Figure 17 shows the force and moment residuals, ε f and εm, respectively. Since
both residuals asymptotically converge to zero, it is clear that Fingers 3 and 4 reach
a force closure condition.

Figure 18 shows the time history of the manipulability measure (left) and the dis-
tance from the palm function σP in (48) (right). The manipulability measure of each
finger is above the limit value wi, while σP is zero when the task is not activated,
since the palm is sufficiently far from the object.

Finally, Figure 19 depicts the time history of the stack status during the simula-
tion. It can be noticed that the main task is never removed from the stack, while the
other tasks are removed when some constraints are near to be violated. When the
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system is in a safe condition with respect to the constraints, the tasks are re-inserted
in the stack maintaining their previous priorities. Notice that the label assigned at
each task denotes its priority in the stack.

3 Control Using Postural Synergies

Recent works on the application of human hand postural synergies to a robotic hand
demonstrate that understanding human prehension is a promising way to simplify
and optimize the control of multiple-DOF limbs. In order to interact with humans
directly, the robots of the future will require enhanced manipulation capabilities
similar to those of human beings. For this purpose, complex dexterous hands with
advanced sensorimotor skills and human-like kinematics are needed. The human
hand is an excellent example of dexterous bio-mechanical architecture with versa-
tile capabilities to perform different kinds of tasks. The undergoing research in the
field aims at the reproduction of human’s abilities not only by means of anthropo-
morphic design but also by the adoption of human-inspired control strategies. To this
purpose postural synergies have been identified to be the key strategies in planning
and control of the robotic and prosthetic hands of the future.

The studies on grasp taxonomy carried out by scientists such as Napier [42],
Cutkosky [17] and Iberall [29] aim at defining which fingers (and which parts of the
fingers) are used by humans to generate forces on the grasped object. According to
this classification, the hand configuration during grasping operation can be decom-
posed in a limited set of basic postures. On the other hand, recent advances in neuro-
science have shown that control of the human hand during grasping is dominated by
movements in a continuous configuration space of highly reduced dimensionality
with respect to the number of DOFs [52], [37].

In this work, the eigengrasps of the DEXMART Hand (Fig. 1) have been de-
rived using the principal component analysis (PCA) by considering a set of 36 hand
configurations among precision, intermediate and power grasps of common (for hu-
mans) objects contained in a comprehensive human grasp taxonomy [51]. A method
is proposed to derive the postural synergies of the DEXMART Hand from experi-
ments and the kinematic patterns connected to the three predominant eigenpostures.
Moreover, the temporal variation of the three synergies weights is exploited for real-
time execution of the grasps.

From the data analysis it can be argued that the introduction of the third predomi-
nant synergy significantly improves the grasp synthesis and performance, especially
with regard to the improvement of the adduction/abduction motion of the thumb.
Experimental results show that grasp planning and control of the DEXMART Hand
performed by using the three predominant postural synergies allows not only re-
producing the set of postures adopted to derive the eigengrasps with a high level
of fidelity, but also synthesizing and performing a wide set of grasps, namely pre-
cision, intermediate and power grasps of objects with different shapes and dimen-
sions. Indeed, in order to prove the efficiency of the method, the synthesis of new
grasp/object pairs not contained in the reference set of postures used for PCA has
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been realized. The intent here is to imitate the typical attitude of humans in manip-
ulation as well as to cover the entire grasp variety in recently proposed taxonomies,
e.g. [20]. All the data from experiments are obtained using a prototype of the DEX-
MART Hand without sensors. Thus, the motivation of this study is to test the method
for deriving synergies and the potential of the anthropomorphic design of the DEX-
MART Hand to work efficiently in a synergies based framework for grasp planning
and prehension control during reach to grasp.

3.1 Related Work

Recently, the studies on kinematic synergies have collected the interest of many
researchers not only belonging to the field of neuroscience but also working on
control theory and mechanical design of artificial hands. Preliminary studies on the
human hand had pointed out that the combination of tendon coupling and muscle
activation patterns exhibited by humans lead to significant joint coupling and inter-
finger coordination, or, in other words, to postural synergies, that are evidence of
simplified control schemes occurring at neurological level for the organization of
the hand movements.

In [52] the PCA has been used to calculate the postural synergies from real-world
data collected on a variety of human hand postures by means of a data glove. More-
over, the authors show that a wide set of hand postures during grasping operation
evolves continuously within a linear space spanned by few postural synergies that
account for most of the hand configurations variance, without distinguishing be-
tween power and precision grasps. In [37] it is shown that even if higher principal
components account for a small percentage of the variance, they give critical details
not only for the static grasp when the hand adapts to the object shape, but also for
the act of preshaping during the grasp. In [15], [13], [14] the authors extend the
concept of postural synergies to robotic hands showing how a similar dimensional-
ity reduction can be used to derive comprehensive planning and control algorithms
that produce stable grasps for a number of different robot hand models. Synergies
have been used to solve the dimensionality reduction problem in control and coordi-
nation of a 16-DOF underactuated prosthetic hand prototype (CyberHand), in order
to perform the three prehensile forms mostly used in activities of daily living [38].

Other applications have been made in order to simplify the design and analy-
sis of robotic hand structures [10]. In [47] the authors investigate how the number
and types of synergies are related to the possibility of controlling the contact forces
and the object motion in grasping and manipulation tasks. In [22], using the defi-
nition of force-closure for underactuated hands and the definition of grasping force
optimization, the authors investigate the role of different postural synergies in the
ability of obtaining force closure grasps and the quality of the grasps in two case
studies addressing a precision and a power grasp. The manipulability analysis has
been extended to synergy-actuated hands, where compliance is utilized in order to
solve the force distribution problem [48]. The authors introduce new manipulability
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indices which take into account underactuation and compliance. A modified model
of synergies including the mechanical compliance of the hand’s musculotendinous
system has been proposed in [7] in order to account in the synergy model for the
force distribution in the actual grasp. In [59] a synergy impedance controller has
been derived and implemented on the DLR hand.

Recent work on mapping synergies from the human hand to the robot hand has
been addressed in [24]. The proposed mapping strategy between the synergies of a
paradigmatic human hand and a robotic hand is carried out in the task space and it
is based on the use of a virtual sphere. This approach has the advantages to be in-
dependent of the robotic hand and depends only on the specific operation, and thus
it can be used for robotic hands with very dissimilar kinematics. In [23] three syn-
ergies from data on human grasping experiments have been extracted and mapped
to a robotic hand. Then a neural network with the features of the objects and the
coefficients of the synergies has been trained and employed to control robot grasp-
ing. Neural networks have been utilized also in other papers in order to simulate
temporal coordination of human reaching and grasping. In [57] the neural network
model includes a synergistic control of the whole fingers during prehension and the
design of a library of hand gestures.

3.2 Postural Synergies of the DEXMART Hand

Postural synergies describe patterns occurring at the joint displacement level. In
[52], the authors measure a set of static human hand postures by recording 15 joint
angles and, by means of the PCA, they show that the first two principal components
account for >80% of the hand postures. Thus the use of the principal components,
also called postural synergies, holds great potential for robot hands control, imply-
ing a substantial reduction of the grasp synthesis problem dimension with respect to
the case of considering the entire number of DOFs of the robotic hand.

Drawing inspiration from the studies on the human hand motion, and since the
DEXMART Hand presents human-like kinematics, we have found a set of princi-
pal components of the DEXMART Hand configuration space. The study of the two
predominant synergies of the DEXMART Hand was carried out in [21], where ex-
perimental results showed that it is possible to obtain grasp synthesis for a large set
of objects in the case of both precision and power grasps.

More recently, the third synergy has been experimentally obtained and evaluated.
It has been shown that, by exploiting the third synergy, the movement of adduc-
tion/abduction of the thumb covers the whole range of joint limits without violating
the limits of the other joints. This improves the correct opposition of the thumb and
allows synthesizing and executing more precisely complex grasps and reproducing
the set of postures adopted to derive the eigengrasps with higher accuracy with re-
spect to the case in which only two synergies are used.

The first two synergies found for the DEXMART Hand account for >77% of the
hand postures, thus matching quite well the results reported in [52]. Therefore, since
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the three predominant postural synergies account for >85% of the hand postures, a
robot hand control strategy that uses also the third synergy will significantly improve
the grasping performance, as experiments reported in this work show.

The DEXMART Hand kinematics is rather close to that of the human hand.
Hence, with the aim of deriving the PCA, a set of grasps similar to those illus-
trated in [51] has been considered. The choice of the reference set of postures has
been made by taking into account all the most common human grasps considered
in the grasp taxonomy literature. This set is composed of grasps of objects such
as spheres of different dimensions involving a different number of fingers in both
power and precise grasp configuration. Cylindrical grasps have been considered as
well, distinguishing also between different positions of the thumb. Moreover, several
configurations for precise grasps with index and thumb opposition as well as inter-
mediate side grasps have been included. Following the taxonomy adopted in [20], a
comprehensive hierarchical human grasp classification used for the PCA is reported
in Fig. 20. Furthermore, a suitable number of open-hand configurations with dif-
ferent positions of the thumb and of the adduction/abduction fingers joint has been
added in order to find synergies that allow the hand to moves continuously also to-
ward open-hand configurations which are equally important to reach and grasp the
objects. A total amount of n = 36 hand configurations have been evaluated to de-
rive the fundamental eigenpostures. Each grasp configuration of the reference set of
postures has been experimentally reproduced with the DEXMART Hand as close
as possible to a natural human-like grasp, and the vector ci ∈ R

15 of the joint an-
gle values corresponding to each reproduced grasp has been measured. Once the
set of the DEXMART Hand configurations matrix C = {ci | i = 1 . . .n} has been
built, the vector c̄ representing the mean hand position in the grasp configurations
space (zero-offset position) and the matrix F = {ci− c̄ | i = 1 . . .n} of the grasp
offsets with respect to the mean configuration have been computed. The PCA has
then been performed on F and a base matrix E of the postural synergies subspace
has been found. The PCA can be performed by diagonalizing the covariance matrix
of F as

FFT = ES2 ET . (52)

The (h×h) orthogonal matrix E gives the directions of variance of the data, and the
diagonal matrix S2 is the variance in each direction sorted in decreasing magnitude,
i.e. the element on the diagonal represents the eigenvalue of the covariance matrix.

To verify the effectiveness of the synergy-based modeling approach, the percent-
age σ of the total variance of the data described by the first j-th principal compo-
nents can be obtained by means of the following equation

σ j =
j

∑
k=0

sk

/ 15

∑
k=0

sk (53)

where sk is the k-th element of the diagonal of the matrix S2. Since the three principal
components account for >85% of the postures (σ3 = 0.8503), the posture matrix C
can be reconstructed with good accuracy by adopting the matrix
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Fig. 20 Reference set of comprehensive human grasps and open-hand configurations used
for PCA.

Ê = [e1 e2 e3] (54)

composed of the three principal components of E as a base of the robotic hand con-
figuration space, thus allowing the control of the robotic hand motion in a configura-
tion space of highly reduced dimensions with respect to the DOFs of the hand itself.
Each hand grasp posture ci can be obtained by a suitable selection of the weights
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Fig. 21 In this figure, the angular change in degrees for each joint due to a positive uni-
tary variation in α1, α2, and α3 for the first three synergies is represented. The adduc-
tion/abduction, proximal and medial flexion joints are indicated from 1 to 3 for the thumb,
from 4 to 6 for the index finger, from 7 to 9 for the middle finger, from 10 to 12 for the ring
finger and finally from 13 to 15 for the little finger.

[α1 α2 α3]
T ∈ R

3 of the postural synergies. Therefore, the projection ĉi of each
robotic hand configuration ci on the postural synergies subspace can be evaluated as

ĉi = c̄+ Ê

⎡
⎣α1,i

α2,i

α3,i

⎤
⎦ . (55)

In the following, the three fundamental synergies derived for the DEXMART Hand,
i.e. the robotic hand motions spanned by e1, e2 and e3 respectively, are briefly de-
scribed, referring to the minimum and maximum configuration of each synergy as
the hand configurations obtained by means of, respectively, the minimum and max-
imum value of the corresponding synergy weights without violating the joint limits
[21]. When the weights of the synergies are zero, the hand posture corresponds to
the zero-offset position c̄. The vectors of the three synergies and the zero-offset
vector of the DEXMART Hand are reported in Tab. 1.

The circular graphs represented in Fig. 21 are a useful tool for identifying the
joints whose rotations are more involved in each synergy. From left to right, the
angular variations in degrees for each joint due to a unitary variation of the corre-
sponding synergy weight is represented for the first, the second and the third syn-
ergy. It is easy to observe how the adduction/abduction thumb joint motion (Joint 1)
is more involved in the third synergy rather than in the first two. Moreover, in the
third synergy the movement of the index and of the thumb are more engaged than for
the other fingers. This justifies the use of the third synergy in order to grasp objects
more precisely, especially for precision grasps and intermediate side grasps, where
the position of the thumb and of the index is crucial, as the experiments reported in
Sect. 3.4 demonstrate.
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(a) First postural synergy. (b) Second postural synergy. (c) Third postural synergy.

Fig. 22 Representation of the DEXMART Hand postural synergies. On the top of each figure,
from left to right, a sequence of hand postures going form the minimum to the maximum
configuration are represented. On the bottom the lateral views are reported.

3.3 Control with Postural Synergies

In order to perform the desired grasp, the value of the three eigenpostures weights
[α1 α2 α3]

T are computed by projection of the desired grasp posture in the synergies
subspace: ⎡

⎣α1,i

α2,i

α3,i

⎤
⎦= Ê† (ci− c̄) (56)

where Ê† is the Moore-Penrose pseudo-inverse of the base matrix Ê. It is straightfor-
ward to note that the motions shown in Fig. 22(a), 22(b) and 22(c), derived by con-
sidering separately the three synergies, are obtained from (55) by assuming α2 = 0
and α3 = 0 for the first synergy, α1 = 0 and α3 = 0 for the second synergy and
finally α1 = 0 and α2 = 0 for the third synergy.

The temporal value of the weights α1, α2, α3 during grasp operations has to be
chosen in such a way that, starting from the zero-offset position c̄ (i.e. α1 = α2 =
α3 = 0), the hand opens during the reach in preparation for object grasp, and then
closes reaching a suitable shape determined from (56) and depending on the original
grasp configuration ci for the considered object. In the open-hand configuration,
namely c0, all the flexion joint angles are close to zero, and the corresponding values
of α1, α2 and α3 can be determined from (56) by posing ci = c0.

The intermediate values of the synergy weights have been determined by assum-
ing a suitable time interval for the grasp operation (six seconds for the whole reach
to grasp phase, three seconds for both the opening and closing phases) and by lin-
ear interpolation of the α1, α2 and α3 values in the three reference configurations
{c̄, ĉ0, ĉi}.

Three synergies, shown in Figs. 22(a), 22(b) and 22(c) respectively, are now an-
alyzed in detail. With reference to the first postural synergy (column e1 in Tab. 1),
in the minimum configuration the proximal and medial flexion joint angles of all
the fingers are all almost zero and increase their value during the motion toward the
maximum configuration. The adduction/abduction movements are not very involved
in this synergy. In Fig. 22(a) the minimum, zero-offset and maximum configuration
in frontal and lateral view of the first postural synergy are represented. The second
postural synergy (column e2 in Tab. 1) is characterized by a movement in opposite
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Table 1 First three eigenpostures and zero offset vectors of the DEXMART Hand postural
synergies subspace (data in degrees).

e1 e2 e3 c̄[deg]
adduction/abduction 0.0282 0.0235 -0.2454 -0.833

Thumb proximal 0.0674 0.1874 -0.3639 20.5
medial 0.2004 -0.3853 0.6991 34.7

adduction/abduction -0.0266 -0.0647 0.0228 2.92
Index proximal 0.1575 0.2893 0.3648 34.9

medial 0.3220 -0.3494 -0.0735 50.5
adduction/abduction -0.0404 0.0069 -0.0675 -0.694

Middle proximal 0.3405 0.3794 0.0304 41.4
medial 0.2999 -0.2948 -0.3034 42.2

adduction/abduction -0.0374 0.0343 -0.0778 -1.11
Ring proximal 0.3775 0.3977 0.0200 45.5

medial 0.3766 -0.2568 -0.1675 49.2
adduction/abduction 0.0364 -0.0738 0.0720 0.694

Little proximal 0.3892 0.3213 0.1273 48.7
medial 0.4235 -0.2026 -0.1491 51.7

directions of the proximal and medial flexion joints. In this synergy, the adduc-
tion/abduction movements of all the fingers are more involved with respect to the
first synergy for the index and the little finger. In Fig. 22(b) the minimum, zero-
offset and maximum configurations of the second postural synergy are depicted in
frontal and lateral views. In the third postural synergy (column e3 in Tab. 1) the
movement involves especially the index and the thumb. Thanks to this synergy, the
movement of adduction/abduction of the thumb covers the whole joint range with-
out violating other joint limits. This characteristic is crucial because the correct
index/thumb opposition allows increasing the grasp accuracy, and thus achieving
more stable grasps. This justifies the use of three predominant synergies for the
hand control in order to improve the grasp performance. Finally, the excursion of
the angles of adduction/abduction of the middle and ring fingers are quite involved
in this synergy, more than in the first two. In Fig. 22(c) the minimum, zero-offset
and maximum configuration in frontal and lateral views of the third postural synergy
are represented.

3.4 Experimental Evaluation

The hand controller developed in the Matlab/Simulink environment is based on the
RTAI-Linux realtime operating system. The Matlab Realtime Workshop toolbox
has been used for the automatic generation of the real-time application of the DEX-
MART Hand controller. The user interface to the real-time application has been
implemented by means of the Simulink External Mode capabilities, for which the
RTAI-Linux support has been purposely developed.
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Fig. 23 Reproduced power grasps from the reference set of postures using the first three
synergies.

Fig. 24 Reproduced precision grasps from the reference set of postures using the first three
synergies.

In the experiments, starting from the zero-offset position, the hand moves contin-
uously in the synergies configuration subspace and goes in an open-hand configu-
ration. Then, it closes reaching a configuration that depends on the particular grasp
to be performed. During the closing phase, the weights of the three postural syner-
gies are obtained by linear interpolation from those corresponding to the open-hand
configuration to those suitable values unique for each object and computed using
(56).

Experimental results reveal that, by using the three predominant eigengrasps, it
is possible to reproduce several grasp configurations more precisely than in the case
of using two synergies only [21].

The linear combination of the three synergies allows a power grasp of both cylin-
ders and spheres of different dimensions by means of suitable opposition of the
thumb, see Fig. 23.
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Fig. 25 Reproduced intermediate side grasps from the reference set of postures using the
first three synergies.

In Fig. 24, the performance of precise grasp operations is reported considering
different objects, achieving opposition of the thumb and index as well as precise
grasps using from two to five fingers for prismatic and circular objects.

The reproduced intermediate side grasps from the reference set of postures is
depicted in Fig. 25. All the evaluations of the experiments data have been carried out
with the aid of the following tables. Table 2 reports the first three synergy weights
computed by projection of the reference set of postures in the synergies subspace.
In Tab. 3 the absolute value of the angle error of the adduction/abduction joint of the
thumb obtained comparing the reference set of configurations and the reproduced
configurations using two and three synergies are reported. Finally, the average of
the joint errors in the case of using two and three synergies are reported in Tab. 4.
The average of the joint errors is computed using the Euclidean norm

e =
‖ci− ĉi‖

15
.

By observing the first image from the left (pen, Configuration C27 in Tab. 2) of
Fig. 25, it is interesting to note that this posture is very close to the minimum con-
figuration of the third synergy; indeed the weight of the third synergy is high with
respect to the other grasps, and thus the use of the third synergy is essential for this
performance.

By looking at Tab. 3, it is possible to note that the use of the three predominant
synergies reduces the error on the angular position of the adduction/abduction thumb
joint for almost all the 36 configurations with respect to the case in which only two
synergies are used.

In Tab. 3, the grasp configurations executed using only two synergies are marked
with a star, while the new grasp configurations that have been performed success-
fully adding the third synergy are marked with a diamond. This table shows that,
by introducing the third predominant synergy, the joint angle error of the thumb
is reduced for almost all the grasps configurations marked with a star, except for
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C10 (box), C16 (credit card) and C19 (pen). Nevertheless, a global improvement
obtained using also the third synergy is evident observing the average joint angle
errors reported in Tab. 4. Only for the configuration C14 no improvement has been
obtained and this is confirmed by the very small value of the third synergy weight;
this means that the third synergy gives almost no contribution to the variance of this
posture. The improvement on the adduction/abduction thumb joint angle using the

Table 2 Synergy weights of the grasps from the reference set of postures.

Conf. C1 C2� C3 C4� C5 C6 C7 C8

α1 0.90 63.7 64.7 38.0 21.9 42.7 53.1 68.2

α2 -3.47 28.1 -24.5 36.5 -33.6 -5.76 -8.21 -8.66

α3 7.06 3.61 7.95 -21.2 -65.9 -2.33 -4.68 -8.56

Conf. C9� C10� C11� C12� C13� C14� C15 C16�

α1 -30.8 -4.00 58.8 12.3 -7.89 -18.9 8.86 63.7

α2 -12.0 -117 9.39 -63.5 -59.0 8.47 1.36 39.3

α3 21.4 -2.30 44.3 -14.0 27.6 0.15 -23.7 -8.38

Conf. C17 C18 C19� C20� C21 C22 C23� C24

α1 13.7 42.7 67.4 -29.8 -18.4 -30.4 82.8 39.8

α2 44.2 -43.2 28.4 122 -0.103 -30.2 2.58 23.3

α3 -37.6 -13.2 16.0 25.3 17.7 11.2 31.7 18.3

Conf. C25� C26 C27� C28 C29 C30 C31� C32

α1 35.4 65.3 75.9 81.8 -103 -120 26.3 -134

α2 -17.8 1.82 19.8 26.4 -28.0 29.5 -0.933 4.10

α3 27.6 18.8 -68.0 -20.3 27.8 18.7 31.0 -9.15

Conf. C33 C34 C35 C36

α1 -134 -127 -134 -135

α2 4.20 18.3 4.96 3.73

α3 -10.2 -36.5 -5.04 -5.26

third synergy is very clear at least for the configurations marked with a diamond.
For what concerns Configuration C27 (pen, intermediate side grasp), the improve-
ment can be seen mainly in the error average and it is spread on the thumb and index
joints. These results show that the use of the third synergy allows grasping objects
more precisely, especially when the position of the thumb and index is crucial, as
in the case of precision grasps. The confirmation of this is given by the observa-
tion that the configurations marked with a diamond correspond to precision grasps,
except for C27.

In Fig. 26, the distribution of the synergy weights adopted for executing the
grasping experiments is shown in the space of the three predominant eigengrasps,
and an example of a complete hand trajectory computed by linear interpolation of
the synergies weights in the three reference configurations for the grasp of a generic
object (a CD) is reported by the red dashed line. For the sake of clarity, only the
weights of the grasps obtained during the experiments are reported, and only some
of them are named. In this figure the full bullets represent the final configuration
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Table 3 Adduction/abduction thumb joint angle error (in degrees) in the reproduced grasps
from the reference set of postures obtained using two and three synergies.

Conf. C1 C2� C3 C4� C5 C6 C7 C8

two syn 9.11 11.6 9.59 8.89 11.0 9.76 9.53 9.11

three syn 7.38 10.7 11.5 3.69 5.16 9.19 8.38 7.01

Conf. C9� C10� C11� C12� C13� C14� C15 C16�

two syn 8.02 6.30 11.0 12.0 7.56 8.83 10.5 1.88

three syn 2.77 6.87 0.17 8.54 0.77 8.80 4.73 3.94

Conf. C17 C18 C19� C20� C21 C22 C23� C24

two syn 9.41 9.35 8.26 11.2 8.65 7.60 11.6 10.8

three syn 0.186 12.6 12.2 4.97 4.30 4.84 3.79 6.33

Conf. C25� C26 C27� C28 C29 C30 C31� C32

two syn 9.74 8.95 8.23 7.91 5.59 6.48 9.89 14.5

three syn 2.98 13.6 8.46 2.93 1.22 1.88 2.28 12.3

Conf. C33 C34 C35 C36

two syn 14.5 14.0 5.50 5.45

three syn 12.0 5.02 6.74 6.74

Table 4 Average joint angle errors (in degrees) in the reproduced grasps from the reference
set of postures obtained using two and three synergies.

Conf. C1 C2� C3 C4� C5 C6 C7 C8

two syn 1.81 1.84 1.83 2.70 4.89 2.25 2.24 2.12

three syn 1.75 1.82 1.75 2.30 2.16 2.24 2.22 2.05

Conf. C9� C10� C11� C12� C13� C14� C15 C16�

two syn 2.21 1.38 3.48 1.90 2.64 1.63 3.62 1.56

three syn 1.69 1.37 1.84 1.65 1.89 1.63 3.26 1.46

Conf. C17 C18 C19� C20� C21 C22 C23� C24

two syn 4.11 2.01 3.20 2.19 2.06 3.78 2.77 2.34

three syn 3.26 1.81 3.02 1.40 1.68 3.70 1.79 1.99

Conf. C25� C26 C27� C28 C29 C30 C31� C32

two syn 2.95 2.31 4.83 4.27 3.29 4.05 2.60 2.00

three syn 2.31 1.94 1.66 4.05 2.72 3.86 1.57 1.90

Conf. C33 C34 C35 C36

two syn 1.92 4.99 1.99 1.70

three syn 1.80 4.35 1.97 1.66

weights corresponding to the grasps performed also in the previous work [21]. The
triangles represent the final configuration weights corresponding to the objects that
have been grasped thanks to the use of the third synergy also. Finally, the circles rep-
resent the final synergy weights corresponding to the synthesized grasps of different
grasp/object pairs (Fig. 28(b)) not included in the table of Fig. 20 and obtained by
projection in the synergies subspace of the desired configuration of the hand. This
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Fig. 26 The distribution of hand postures in the space of the first three postural synergies
is represented, distinguishing between the object graspable also using the first two synergies
only (full bullets), the objects graspable thanks to the use of the third synergy (triangles), and
the synthesized grasps obtained by projection (circles).

desired configuration is obtained experimentally, moving singularly the joints in or-
der to realize the desired grasp.

In Fig. 27 two grasp configurations executed using both two and three synergies
are represented. From left to right the first pictures of the ball and of the CD are the
ones executed using three synergies. From these pictures, the improvement on the
position of the thumb can be noticed thanks to the introduction of the third synergy
in the hand control.

The grasps realized above show that through the use of three synergies we can
reproduce the matrix of the reference set of postures (Fig. 20) with accuracy greater
than 85%.

The idea now is to extend the method in order to grasp any object not necessarily
contained in the reference table. The advantage of the synergies subspace is that
of simplifying grasp synthesis of common objects using also complex hand shapes
typical of human manipulation.

To accomplish this goal, we have selected grasps of five common objects in
Fig. 28(a). The object/grasp pairs have been chosen so as to cover the entire va-
riety in recently proposed taxonomy [20], namely a power palm grasp, a power
pad grasp, an intermediate side grasp, a precision pad grasp, and a precision side
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Fig. 27 Comparison between two grasps configuration executed using both two and three
synergies. From left to right the first pictures of the ball and of the CD are the ones executed
using three synergies.

(a) Reference set of human grasps.

(b) Synthesized grasps with the DEXMART Hand.

Fig. 28 On the top the reference set of human grasps, not included in the PCA analysis,
covering the entire variety of grasps in recently proposed taxonomies, is depicted. On the
bottom the synthesized grasps realized with the DEXMART Hand using synergies subspace
projection is shown. A power palm grasp, a power pad grasp, an intermediate side grasp, a
precision pad grasp and a precision side grasp are reported from left to right.

grasp. Moreover, the choices have been made with the intent to imitate the typical
modality of human manipulation.The selected grasp configurations are unusual for a
typical application of robotic manipulation as they are carried out by a robotic hand
with high dexterity and anthropomorphism. In fact, they constitute a high standard
for robotic hands currently on the market and designed for applications of service
robotics and prosthetics. On the other hand, the synthesis of this kind of grasps in-
volves complex problems of planning and control. The high number of DOFs and
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complex kinematics similar to that of the human hand is essential for this specific
type of tasks. Despite this, the DOFs have to be managed.

Through a teaching-by-showing technique, the use of synergies allows reducing
significantly synthesis complexity. By singularly guiding the finger joints, the hand
has been carried to the desired grasp configuration and the joint displacement vec-
tor has been recorded. Through the projection of the desired configuration in the
synergies subspace we have derived their weights in the final configuration ĉi. The
weights are subsequently used in the control algorithm that performs motion during
reach to grasp and realize the desired final grasp configuration, see Fig. 28(b).

Table 5 Synergy weights of the grasps in Fig. 28(b) (from left to right).

Conf. G1 G2 G3 G4 G5

α1 84.3 -6.61 16.7 -14.4 42.8

α2 34.8 8.96 20.6 7.93 18.5

α3 -37.3 18.6 -47.1 12.9 -16.2

The weights shown in Tab. 5 indicate the contribution rate of each synergy to
achieve the final configuration. Referring to what we have previously argued about
the use of the third synergy, for the grasp represented in the third image of Fig. 28(b)
(G3), the weight of the third synergy greatly influences the success of the grasp, see
Tab. 5.

The experimental results demonstrate a good choice of the reference set of
postures to retrieve the synergies subspace, and confirm that the planning/control
method based on synergies can work efficiently for every object and grasp choice
throughout a complete taxonomy. During reach to grasp, the hand behaves like a
human hand reaching impressive human like shape using a small effort in planning.

4 Conclusion

In this chapter, some issues related to the control of anthropomorphic sensorised
hands have been addressed. First, the problem of computing online the optimal con-
tact forces to grasp an object has been considered, assuming that these forces may
vary during task execution, thanks to the availability of force/torque sensors at the
fingertips of the DEXMART Hand. The proposed algorithm takes into account the
maximum joint torques that can be provided by the fingers and has been extended
to bimanual manipulation tasks with a limited increase of the computational com-
plexity, thanks to a novel load sharing technique. The other interesting feature of
anthropomorphic manipulation, especially in the bimanual case, is the availability
of redundant degrees of freedom. These have been suitably exploited to design a
multi-priority control approach that allows satisfying a certain number of secondary
tasks, aimed at ensuring grasp stability and manipulation dexterity, besides the main
task corresponding to the desired object motion. Finally, anthropomorphism has
been exploited for the development of a human-like grasping approach based on the
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synergic motions that can be observed in the human hand. In detail, the synthesis
and control of grasping for the DEXMART Hand have been simplified by comput-
ing a reduced configuration subspace based on few predominant postural synergies.
This approach has been evaluated at kinematic level, showing that both power and
precise grasps can be performed using up to the third predominant synergy.
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5. Berselli, G., Vassura, G.: Differentiated layer design to modify the compliance of soft
pads for robotic limbs. In: IEEE International Conference on Robotics and Automation,
Kobe (2009)

6. Biagiotti, L., Lotti, F., Melchiorri, C., Palli, G., Tiezzi, P., Vassura, G.: Development of
UB Hand 3: Early results. In: IEEE International Conference on Robotics and Automa-
tion, Barcelona (2005)

7. Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and artificial hands with syn-
ergies. Philosophical Transactions of the Royal Society B: Biological Sciences 366,
3153–3161 (2011)

8. Bicchi, A., Prattichizzo, D.: Manipulability of cooperative robots with unactuated joints
and closed-chain mechanisms. IEEE Transactions on Robotics and Automation 16, 336–
345 (2000)

9. Borghesan, G., Palli, G., Melchiorri, C.: Design of tendon-driven robotic fingers: Mod-
elling and control issues. In: IEEE International Conference on Robotics and Automa-
tion, Anchorage, AK (2010)

10. Brown, C., Asada, H.: Inter-finger coordination and postural synergies in robot hands via
mechanical implementation of principal components analysis. In: IEEE/RSJ Interational
Conference on Intelligent Robots and Systems, San Diego, CA (2007)



264 L. Villani et al.

11. Buss, M., Hashimoto, H., Moore, J.B.: Dextrous hand frasping force optimization. IEEE
Transactions on Robotics and Automation 12, 406–418 (1996)

12. Buss, M., Faybusovich, L., Moore, J.B.: Dikin-type algorithms for dextrous grasping
force optimization. International Journal of Robotics Research 17, 831–839 (1998)

13. Ciocarlie, M., Allen, P.: Hand posture subspaces for dexterous robotic grasping. Interna-
tional Journal of Robotics Research 28, 851–867 (2009)

14. Ciocarlie, M., Allen, P.: On-line interactive dexterous grasping. In: 6th International Con-
ference on Haptics: Perception, Devices and Scenarios, Madrid (2008)

15. Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction for hand-independent
dexterous robotic grasping. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Diego (2007)

16. Coelho, J., Grupen, R.: A control basis for learning multifingered grasps. Journal of
Robotic Systems 14, 545–557 (1997)

17. Cutkosky, M.: On grasp choice, grasp models, and the design of hands for manufacturing
tasks. IEEE Transactions on Robotics and Automation 5, 269–279 (1989)

18. DEXMART Project website, http://www.dexmart.eu/
19. Faybusovich, L.: Dikin’s algorithm for matrix linear programming problems. In: Henry,

J., Yvon, J.-P. (eds.) System Modelling and Optimization, pp. 237–247. Springer, New
York (1994)

20. Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.: The generation of a
comprehensive grasp taxonomy. In: Robotics: Science and Systems, Workshop on Un-
derstanding the Human Hand for Advancing Robotic Manipulation, Seattle, WA (2009)

21. Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: Experimental evaluation of pos-
tural synergies during reach to grasp with the UB Hand IV. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, San Francisco, CA (2011)

22. Gabiccini, M., Bicchi, A.: On the role of hand synergies in the optimal choice of grasping
forces. In: Robotics: Science and Systems, Zaragoza (2010)

23. Geng, T., Lee, M., Hulse, M.: Transferring human grasping synergies to a robot. Mecha-
tronics 284, 272–284 (2011)

24. Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: Mapping synergies from hu-
man to robotic hands with dissimilar kinematics: An object based approach. In: IEEE
International Conference on Robotics and Automation, Workshop on Manipulation Un-
der Uncertainty, Shanghai (2011)

25. Han, L., Trinkle, J.C.: The instantaneous kinematics of manipulation. In: IEEE Interna-
tional Conference on Robotics and Automation, Leuven (1998)

26. Han, L., Trinkle, J.C., Li, Z.X.: Grasp analysis as linear matrix inequality problems.
IEEE Transactions on Robotics and Automation 16, 663–674 (2000)
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