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Öttingerstr. 67, 80538 München, Germany

ISSN 0172-6218

ISBN-10 3-540-28187-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28187-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microf ilm or in any other way, and storage in data banks. Duplication of this publication or
parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in
its current version, and permission for use must always be obtained from Springer. Violations are liable to
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specif ic statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Typesetting: Camera-ready by the Author and SPI Publisher Services, Pondicherry
Cover concept: eStudio Calamar Steinen
Cover production: design & production GmbH, Heidelberg

Printed on acid-free paper SPIN: 10930519 57/3100/SPI - 5 4 3 2 1 0

Library of Congress Control Number:  2006925435



Preface

In this monograph, the density fluctuation theory of transport coefficients of
simple and complex liquids is described together with the kinetic theory of
liquids, the generic van der Waals equation of state, and the modified free
volume theory. The latter two theories are integral parts of the density fluc-
tuation theory, which enables us to calculate the density and temperature
dependence of transport coefficients of liquids from intermolecular forces. The
terms nanoscience and bioscience are the catch phrases currently in fashion in
science. It seems that much of the fundamentals remaining unsolved or poorly
understood in the science of condensed matter has been overshadowed by the
frenzy over the more glamorous disciplines of the former, shunned by novices,
and are on the verge of being forgotten. The transport coefficients of liquids
and gases and related thermophysical properties of matter appear to be one
such area in the science of macroscopic properties of molecular systems and
statistical mechanics of condensed matter. Even nano- and bio materials, how-
ever, cannot be fully and appropriately understood without firm grounding
and foundations in the macroscopic and molecular theories of transport prop-
erties and related thermophysical properties of matter in the condensed phase.
One is still dealing with systems made up of not a few particles but a multitude
of them, often too many to count, to call them few-body problems that can be
understood without the help of statistical mechanics and macroscopic physics.
In the density fluctuation theory of transport coefficients, the basic approach
taken is quite different from the approaches taken in the conventional kinetic
theories of gases and liquids. Yet, it provides us with a practical method of
computing transport coefficients of fluids in the liquid density regime in terms
of intermolecular and intramolecular forces.

As is well known, the trail of the molecular theory of transport processes
in matter began with J. C. Maxwell closely followed by L. Boltzmann. It
was Maxwell who obtained theoretical results for the transport coefficients of
normal state gases, which were found independent of density. His theory set
into motion the ever-widening frontiers of scientific investigation in the subject
matter in many directions. We have seen in the literature numerous molecular
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and statistical mechanical theories of transport coefficients in dense gases and
liquids that include the theory of D. Enskog, the theory of N. N. Bogoliubov,
the theories of J. G. Kirkwood and his school, and the linear response the-
ory. We have also seen developments in the opposite direction of decreasing
density, namely, rarefied gas dynamics. These theories aim to account for the
density and temperature dependence of transport coefficients of dense gases
and liquids, first of all, in the linear regime near equilibrium. Except for the
Enskog theory formulated for moderately dense gases, the aforementioned
theories have not been fully demonstrated to qualitatively account even for
the desired density and temperature dependence of the transport coefficients
of liquids, which have been extensively measured by laboratory experiments
and collated by many research workers in the fields. It is true that the desire
to understand transport properties of matter is what has been a long running
motivation for statistical mechanics and, especially, for kinetic theory, but the
field has been stalled at numerous stumbling blocks that have been created
by our difficulties in treating many-particle dynamic problems underlying the
theories mentioned. If the subject matter related to the problem in question
is examined in depth, it becomes clear that it will be difficult to make further
progress unless our viewpoint is altered from the traditional one and different
methodologies are employed.

The desired alternative viewpoint toward the problem in question is pro-
vided by recognizing the role of voids in liquids, which becomes important in
creating density fluctuations in relatively high compaction of particles around
a given point of observation in the liquid. Density fluctuations in such con-
ditions are made possible by the creation of voids, and vice versa, and such
density fluctuations drive diffusion of particles through the liquid. Therefore,
diffusion of particles sets the time- and spatial scales for the transport of
momentum and energy in liquids. This implies that the transport coefficients
of the liquid depend on the self-diffusion coefficient of the liquid. This view-
point has given rise to the density fluctuation theory of transport coefficients
of liquids discussed in this work, in which all transport coefficients have been
expressed in terms of a diffusion coefficient of one kind or another, in addition
to the equilibrium pair correlation function and intermolecular force. Thus,
we have a potentially completely molecular theory of transport coefficients of
liquids and a semiempirical theory if the diffusion coefficient is treated as an
empirical input. The modified free volume theory, developed subsequently to
the density fluctuation theory, takes the theory steps closer to a completely
ab initio molecular theory, thanks to the generic van der Waals equation of
state, which enables us to quantify the mean free volume by the equilibrium
statistical mechanics of the liquid. The combination of the density fluctua-
tion theory, the modified free volume theory, and the generic van der Waals
equation of state has been validated by comparison with experiment whenever
possible.
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1

Introduction

The kinetic theories of James Clerk Maxwell [1] and Ludwig Boltzmann [2],
formulated in the mid nineteenth century, were successful in giving atomistic
theory accounts of the transport phenomena and thermal properties then
known of dilute gases. Together with the theory of Willard Gibbs [3] for mat-
ter in equilibrium, which was developed subsequent to the kinetic theories
of Maxwell and Boltzmann, statistical mechanics based on the particulate
hypothesis of matter remains one of the principal theoretical tools for study-
ing diverse natural phenomena in the macroscopic world of matter. Because
the Maxwell–Boltzmann kinetic theory is for dilute gases in normal states,
their theories have seen numerous theoretical efforts and studies to remove
the limitations thereof in the latter half of the twentieth century. They have
been made in the directions of rarefied gases, on the one hand, and of higher
density gases and liquids, on the other hand, in addition to the efforts in
rendering the theory capable of describing the thermophysical properties of
complex molecular structures. Such efforts are still continuing, and this work
constitutes a contribution to the kind of studies mentioned earlier in statistical
mechanics.

In particular, in the post-World War II, era, we have seen the theories
designed to generalize the Maxwell–Boltzmann kinetic theory to dense gases
and liquids. The Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hier-
archy theory [4–7], the linear response theory of Green [8], Kubo [9], and
Mori [10], and the mode coupling theory [11] are important examples of such
efforts toward the generalization mentioned. The basic ideas fundamental to
the Boltzmann kinetic theory also have been taken in the formulation of gen-
eralized Boltzmann equations [12–14], which have been employed for studying
irreversible thermodynamics and transport processes in condensed matter in
recent years [15, 16]. The aims of these theories have been to enable us to
calculate and account for thermophysical properties, such as transport co-
efficients and thermodynamic properties, of dense gases and matter in the
condensed phase (e.g., liquids and solids) with regard to their density and
temperature dependence as well as other thermophysical behavior of matter.
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The aforementioned theories invariably require solutions of many-particle dy-
namics if the thermophysical properties are to be adequately studied in the
density range of dense gases or liquids, but acquiring such solutions with good
accuracy poses an enormous theoretical challenge.

For this practical reason, in recent years, they have been largely supplanted
by computer simulation methods, which have become practicable with readily
available computer resources. Computer simulation methods [17–19], however,
have their own practical and theoretical limitations when they are applied to
calculate, for example, transport coefficients of liquids (e.g., viscosity, thermal
conductivity, diffusion coefficients) as functions of temperature and density.

For dynamic problems, such as transport coefficients, molecular dynamics
(MD) simulation methods are used principally in conjunction with the linear
response theory, whereas for equilibrium thermophysical properties Monte
Carlo (MC) simulation methods [20,21] are widely employed. MC simulation
methods have fewer limitations than the former and yield robust results in
many cases if, for example, large density fluctuations are not involved. How-
ever, the same cannot be said with assurance about MD simulation methods
because there are some subtle questions regarding the definition of tempera-
ture and the use of constraints imposed on the system as external forces (e.g.,
shear). Nevertheless, computer simulation methods are akin to laboratory ex-
periments on thermophysical properties, but still require numerous concepts
and procedures to put them on firmer theoretical foundations of statistical
mechanics and irreversible thermodynamics. Therefore, there is still consider-
able need to develop formal theories and practical, sometimes approximate,
theories of nonequilibrium statistical mechanics to overcome the limitations
posed by computer simulation methods and also by the aforementioned sta-
tistical mechanics theories for dense gases and liquids. At least, such practical
theories would supplement computer simulation methods, if not serve as an
alternative to MD simulation methods.

The aim of this work is to describe statistical mechanics theories for trans-
port properties of dense gases and liquids in which the desired transport coef-
ficients can be computed with sufficiently good accuracy if either equilibrium
statistical mechanics methods or MC simulation methods are employed only
for some equilibrium properties of the fluids. In other words, in the theories
presented in this work, dynamic transport properties of dense gases and liquids
are computed with acceptable accuracy as functions of density and temper-
ature in terms of equilibrium quantities alone, which can be computed by
either approximate equilibrium theories (e.g., integral equation theories for
equilibrium correlation functions) or MC simulation methods. Monte Carlo
simulation methods or integral equation theories for equilibrium properties
enable us to get around the enormous difficulty posed by many-particle colli-
sion dynamics involved in the BBGKY hierarchy and linear response theory
approaches.
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Historically, all important concepts and basic principles have been for-
mulated for transport processes in fluids by following the trails pioneered by
Maxwell and Boltzmann and extending the theories of Chapman [22] and
Enskog [23] based on the Boltzmann equation for dilute gases or the Enskog
equation [24] for moderately dense gases. It is most natural to follow Maxwell
and Boltzmann’s lead and Chapman and Enskog after them because dilute
gas transport processes are limiting phenomena at low density of the corre-
sponding processes in dense gases or liquids. Therefore, it is important to have
them firmly anchored in the Maxwell and Boltzmann kinetic theories for his-
torical and heuristic reasons and also for the practical reason of obtaining a
comprehensive theory of transport processes in fluids in general that includes
dilute gas phenomena.

For this reason, we discuss the kinetic theory of transport processes in
dilute gases by employing the Boltzmann kinetic equation for monatomic
gases in Chap. 2. In Chap. 2, we quickly review the Chapman–Enskog the-
ory of solution for the Boltzmann equation for monatomic gases and present
formal expressions for various linear transport coefficients. The theory of non-
linear transport processes is also discussed within the framework of general-
ized hydrodynamics [15, 16, 25], which the present author has developed and
applied to various flow problems in gases for a number of years. The transport
coefficients associated with nonlinear transport processes can be calculated
from generalized hydrodynamic equations, given the linear transport coeffi-
cients associated with them. Thus, we have a well-defined methodology for
computing nonlinear transport coefficients, such as non-Newtonian viscosity,
non-Fourier thermal conductivity, and non-Fickian diffusion coefficients, from
knowledge of linear transport coefficients if related flow problems are solved
with the generalized hydrodynamic equations mentioned. The formulas for
transport coefficients are given for monatomic gases in Chap. 3, where some
examples of nonlinear transport processes are also discussed to illustrate how
the generalized hydrodynamic equations might be employed to study flows far
removed from equilibrium. The results of these examples suggest a consider-
able potential for generalized hydrodynamics in the fields of gas dynamics in
transient and hypersonic regimes of flow as demonstrated in the literature;
see, for example, [15,16,25] and other references cited therein.

The kinetic theory of dilute gases discussed in Chaps. 2 and 3 applies to
monatomic gases. The subject of dilute polyatomic gases is briefly discussed
in Chaps. 4 and 5. The discussions are brief because the subject matter is
less extensively developed in the literature and the development can be made
parallel to those given in the previous chapters. Another important reason is
that the present work is not principally for either monatomic or polyatomic
gases, but for liquids. Therefore topics related to gases are discussed only
to the extent they provide insights into the theories of transport processes in
liquids and serve as the limiting theories of the more general theories developed
for liquids. In these two chapters, we discuss some applications of dilute gas
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transport processes, which may be employed for measuring the dilute gas
transport coefficients of non monatomic gases.

In Part II, topics on gases discussed in Chaps. 2–5, are followed by chap-
ters dealing with transport processes and, in particular, transport coefficients
of liquids, the principal topics of this work. As intimated earlier, the basic
approach taken for transport properties of liquids in this work is not that
of the traditional one that extends the Chapman–Enskog line, in which the
kinetic equation is solved, or that of the linear response theory, either one of
which requires a solution of many-particle collision dynamics. Whereas the
Chapman–Enskog approach builds the theory on the theory of gases and ex-
tends it, in the present approach, we begin from the liquid density end of
the density spectrum and build the theory on the basis of what we believe
the structure of liquids is while ensuring that the theory recovers the di-
lute gas results for the transport coefficients as the density is reduced to the
state of dilute gases. This approach, which is diametrically opposite to that
of the Chapman–Enskog theory based on the kinetic equation, requires accu-
rate knowledge of equilibrium structures of liquids. This requires theories to
handle equilibrium structure problems for liquids. For this important reason,
we begin Part II with a chapter dealing with equilibrium structures of liquids
under the title of equation of state and equilibrium properties of liquids.

The van der Waals equation of state has played an extremely important
role in liquid physics, but it also has well known defects when the subcriti-
cal properties of liquids are studied with it. There have also been numerous
attempts to derive it rigorously by statistical mechanics, but unsuccessfully.
It is not an exact equation, and one does not derive an approximate equa-
tion rigorously. In Chapter 6, we discuss how to construct the canonical form
of the equation of state and the statistical mechanical representation of free
volume, which will occupy a central position in the theory of transport coeffi-
cients of liquids developed in later chapters. The canonical equation of state,
also called the generic van der Waals (GvdW) equation of state, builds on
the concept of mean free volume, first introduced by van der Waals himself.
It is a statistical mechanics expression, which can be computed on the basis
of only the intermolecular force at a given temperature and density of a liq-
uid. The GvdW equation of state is the keystone in the density fluctuation
theory of transport coefficients developed later in this work. In Chapter 6, an
integral equation theory is also discussed, which ensures a thermodynamically
consistent equation of state for liquids. Such a theory, it is hoped, will serve
eventually as a computational means for pair distribution functions and the
GvdW equation of state. Because the solution theory for the integral equa-
tion has not yet reached full maturity, only the general methodology will be
discussed and only limited computational results will be presented for hard
sphere fluids.

In the BBGKY hierarchy theory of dense gases and liquids, the goal is
to achieve a systematic kinetic theory. It is based on the Liouville equation
and aims to develop a theory of transport processes and other thermophysical
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phenomena in dense gases and liquids. Because the Liouville equation is time-
reversal invariant, the theory, viewed from the rigorous standpoint of irre-
versibility, is incapable of describing the irreversibility of thermal phenomena
in liquids, although one may be able to achieve the goal by using suitable
approximations. In this regard, it is important to observe the fundamental
and qualitative difference between the Boltzmann equation and the Liouville
equation. This difference should be regarded as something fundamental that
cannot be derived from the equations of motion, either classical or quan-
tum. Based on this important observation, a generalized Boltzmann equation
was proposed for dense gases and liquids and applied to study irreversible
phenomena in such fluids. The initial canonical ensemble formulation of the
generalized Boltzmann equation was later further generalized to grand en-
sembles, and the meanings of the irreversible collision operator term in the
kinetic equation were made more cogent. Because the generalized Boltzmann
equation can be employed to formulate a theory of transport processes in
dense gases and liquids, as shown in the literature, we provide a chapter
summarizing the theory in Chapter 7 for simple fluids and in Chapter 8 for
polyatomic fluids. Because of the difficulty of solving the many-particle col-
lision dynamics problem required by this generalized Boltzmann equation
approach, there are only limited results for transport coefficients of hard
sphere fluids available in the literature. Nevertheless, this line of theory pro-
vides a theory of transport coefficients that recovers the transport coefficients
by the traditional Boltzmann equation approach in the limit of low density.
For this reason and because of the generalized hydrodynamic equations, which
furnish the backdrop of the density fluctuation theory and rest on the sup-
port of the aforementioned kinetic equation, the kinetic theories based on the
generalized Boltzmann equations are presented for simple and complex fluids,
respectively, in Chaps. 7 and 8. The transport coefficients obtained by the gen-
eralized Boltzmann equations are given in terms of collision bracket integrals
consisting only of equilibrium fluid attributes, although they involve many-
particle collision dynamics. The subject matter is presented in the hope that
computational algorithms will be developed for such collision bracket inte-
grals in the future, so that the transport coefficients can be directly computed
therewith.

The difficulty of solving the many-particle collision problem associated
with the collision bracket integrals in the generalized Boltzmann equation
approach provides motivations to seek an alternative approach. One alterna-
tive would be to take a viewpoint opposite to that in the traditional approach.

We observe that voids play an important role in thermal phenomena in
liquids, and evidence for it can be seen in the early literature on the flu-
idity of liquids. For example, Batschinsky [26] proposed that the viscosity
increases with third power of free volume, and later all phenomenological
theories [27–30] of fluidity use the concept of free volume one way or an-
other. This clearly suggests that the behavior of voids in liquids plays a cen-
tral role in the transport of matter in the condensed phase. As the sizes
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of void in liquids vary, the density fluctuates from position to position. Thus,
we relate constitutive variables, such as stress tensors and heat fluxes, to den-
sity fluctuations by using the nonequilibrium ensemble distribution function
provided by the generalized Boltzmann equation. The results are constitutive
equations for transport coefficients. Comparing them with phenomenological
constitutive equations, such as Newton’s law of viscosity and Fourier’s law
of heat conduction, we derive statistical mechanical expressions for transport
coefficients of liquids. This approach constitutes the density fluctuation the-
ory of transport coefficients of liquids and dense gases described in Chapter 10
for simple liquids and in Chapter 11 for complex liquids, more specifically, for
rigid diatomic liquids.

In this theory, the dynamic pair distribution functions appear in the con-
stitutive equations. Because a general theory of treating the dynamic pair
distribution functions is desirable, an integral equation for dynamic pair cor-
relation functions that looks like the Ornstein–Zernike equation is derived,
and its general properties are discussed in Chapter 9. The full potential of the
dynamic Ornstein–Zernike equation has not yet been exploited for nonequi-
librium statistical mechanics of transport processes. The topic is presented
again in the hope that it will form the basis of a more comprehensive theory
of transport processes in liquids in the future.

In the density fluctuation theory, transport coefficients consist of a kinetic
part representative of the gas and a potential energy part representative of the
liquid. The potential energy part is inversely proportional to the self-diffusion
coefficient of the liquid. It resembles the well-known Stokes–Einstein relation
between viscosity and the diffusion coefficient. However, the density fluctua-
tion theory does not provide a readily computable theory for the self-diffusion
coefficient. Thus the transport coefficients obtained need inputs from another
source for the self-diffusion coefficient, and it renders the theory semiempirical
if experimental data are used for the self-diffusion coefficient. Nevertheless, the
theory is accurate and reliable in accounting for the density and temperature
dependence of transport coefficients of the systems examined.

It is possible to remove the semiempiricism of the density fluctuation the-
ory of transport coefficients mentioned if the modified free volume theory is
used. As mentioned earlier, free volume theories have been around for many
decades, but have not been successful as molecular theories of fluidity, primar-
ily, because of the difficulty of quantifying the mean free volume in terms of
statistical mechanical quantities and, secondarily, numerous other adjustable
parameters. The free volume theory of Cohen and Turnbull [30] is in this cat-
egory of theories, but it puts the essential point of free volume in a more lucid
form than any other free volume theory in the literature. The modified free
volume theory of diffusion mentioned reinterprets various parameters in the
Cohen–Turnbull theory and provides a statistical mechanical representation
of mean free volume with the help of the generic van der Waals equation of
state. In Chap. 12, this modified free volume theory of diffusion is developed
and applied to compute the transport coefficients obtained by the density
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fluctuation theory in the previous chapters. The modified free volume theory
contains two parameters, the free volume overlap factor α and the minimum
free volume v∗, which appear together as a product αv∗. Therefore, this prod-
uct may be interpreted as the critical free volume v0 that activates diffusion.
The appearance of such a parameter is welcome because it is possible to
comprehend diffusion in a physical term reflecting the molecular structure in
the liquid. With such an interpretation, the self-diffusion coefficient sets time-
and spatial scales for transport processes in a liquid. With thus calculated self-
diffusion coefficient, various transport coefficients are computed according to
the density fluctuation theory described in Chaps. 10 and 11. Although the
range of validation is narrower than those in Chaps. 10 and 11 because there
has not been much time for a more complete validation, it is clear from the
results of validation made with empirical self-diffusion coefficients of various
liquids in Chaps. 10 and 11 that the density fluctuation theory with the help
of the modified free volume theory and the generic van der Waals equation
of state is a reliable and robust molecular theory of transport coefficients of
liquids. Albeit limited, the theory is successfully validated in comparison with
experiment in Chap. 12. The implication of this limited validation is clear and
resounding in the light of the successful semiempirical comparison of theory
and experiment in Chaps. 10 and 11.

Therefore, it is fair to state that we now have a molecular theory of trans-
port coefficients in the density range covering gases and liquids and in the
temperature range including both supercritical and subcritical regimes. To
achieve this goal, by providing the statistical mechanics expression for the
mean free volume, the generic van der Waals equation of state holds together
the density fluctuation theory and the modified free volume theory as a func-
tioning and practical molecular theory structure, simply because it is capable
of rigorously quantifying the notion of voids in liquids by statistical mechan-
ics. In addition to this important role in the molecular theory of transport
coefficients of liquids, the generic van der Waals equation of state holds up
an alluring potential for fruitfully studying equilibrium thermodynamics of
liquids that we can look forward to.
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Part I

Transport Coefficients of Dilute Gases



2

Boltzmann Equation for Dilute
Monatomic Gases

Simple fluids consisting of monatomic molecules form a rather special class
among the gases and liquids we encounter routinely in our daily life and in
the laboratory. However, they occupy an important position in the statisti-
cal mechanics of fluids because they can be represented by the simplest model
both mathematically and physically and, for this reason, they have been stud-
ied more in depth than other kinds of fluids. In many cases of more realistic
nonmonatomic fluids, which may be termed complex fluids, some of their
thermophysical properties can be fairly well approximated by the properties
predicted by the theory of simple fluids. For example, there are diatomic or
polyatomic molecules whose thermophysical properties can be rather close to
those of monatomic fluids. In such cases, the theory of simple fluids can be
a useful guide for understanding the macroscopic thermophysical behavior of
such fluids. Of course, there are properties of such fluids which cannot be
understood with a model good for monatomic fluids. Nevertheless, for the
aforementioned reason, simple fluids are naturally the first subject to discuss
in a kinetic theory of matter and statistical mechanics in general. In this
work, the Boltzmann equation for monatomic gases will be discussed, espe-
cially, in relation to the predictions for both linear and nonlinear transport
coefficients. By linear transport coefficients, we mean those associated with
linear irreversible processes occurring near equilibrium and describable by lin-
ear constitutive equations for nonconserved variables such as the stress tensor,
heat flux, and diffusion fluxes, whereas nonlinear transport coefficients mean
those associated with the nonlinear constitutive equations for nonconserved
variables mentioned earlier.

In their chapter, we will assume that the reader has a rudimentary un-
derstanding of the Boltzmann equation and its solution procedure for linear
transport processes. So, we will simply proceed to a brief review of the pro-
cedures for acquiring linear transport coefficients and then a little more de-
tailed discussion of nonlinear transport coefficients. Various technical details
of obtaining linear transport coefficients are referred to in many excellent
monographs [1–3] on the kinetic theory of gases.
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2.1 Boltzmann Equation and Boltzmann Entropy

Assume that the fluid of interest is an r-component mixture of monatomic
gases. Irreversible processes evolving in a macroscopic simple fluid mixture
may be described by the well-known Boltzmann equation [4]. It is an evolution
equation for the singlet distribution function of finding a monatomic molecule
(particle) at a point in molecular phase space at time t. Let us denote the phase
point of a particle by (r,va), where r is the position and va is the velocity of
molecule a in a suitably fixed coordinate system. Here, the subscript a plays
a dual role of simultaneously indicating the species and a particle of that
species, and the asterisk will be used to denote the postcollision value. Then
the Boltzmann equation for the singlet distribution function fa(r,va, t) for
species a is given by

∂tfa + va·∇fa + Fa·∇vafa = RB [fa] , (2.1)

where Fa is the external force per mass on molecule a and the term RB [fa]
stands for the collision integral defined by

RB [fa] =
r∑

b=1

C(fafb) (2.2)

with the definition

C(fafb) =
∫

dvb

∫ 2π

0

dϕ
∫ ∞

0

db bgab[f∗
a (v∗

a, r; t)f
∗
b (v∗

b , r; t)

−fa(va, r; t)fb(vb, r; t)]. (2.3)

In these expressions, the operators for differentiations are abbreviated by
the symbols ∂t = ∂/∂t,∇ = ∂/∂r, and ∇va = ∂/∂va. Other symbols are
gab = |va − vb|, the relative speed of particles a and b; Fa is the external
force on unit mass of species a; b is the impact parameter of collision; and
ϕ is the azimuthal angle of scattering. The external force is assumed to be
changing slowly over the distance of the intermolecular force range, so that
the molecular collisions are not significantly affected by the external force. It
is also assumed that there is no chemical reaction in the fluid. The singlet
distribution functions are spatially coarse-grained over the collision volume
on the order of the intermolecular force range. For this reason, they remain
unchanged over the collision volume, and this is why the singlet distribution
functions in the Boltzmann collision integral (2.3) have the same position
dependence before and after collision. It is important to remember this spa-
tial coarse-graining, especially, when one derives the Boltzmann equation from
the Liouville equation, as often attempted in the kinetic theory of gases, and
also when the Boltzmann equation is applied to macroscopic flow problems.

The mean local value of observable A (va) is defined by the average of the
observable over the velocity space
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〈A〉 =
∫

dvaA (va) fa (va, r; t) . (2.4)

Therefore, the mass density ρ is defined by the average of mass ma of species
a summed over all species

ρ (r, t) =
r∑

a=1

〈mafa (va, r; t)〉 =
r∑

a=1

ρa (r, t) , (2.5)

where ρa denotes the mean mass density of species a. The mean velocity of
the fluid is similarly given by the average

ρu =
r∑

a=1

〈mavafa (va, r; t)〉 =
r∑

a=1

ρaua (r, t) . (2.6)

Here, ua (r, t) is the mean velocity of species a. Therefore u is the barycentric
velocity of all species. The internal energy is defined by

ρE =
r∑

a=1

〈
1
2
maC

2
afa (va, r; t)

〉
, (2.7)

where Ca is the peculiar velocity defined by

Ca = va − u. (2.8)

According to the definition here, the internal energy is the mean kinetic
energy—in dilute gases—of the gas in the coordinate system moving at fluid
velocity u. The macroscopic variables ρ, ρu, and ρE are the so-called conserved
variables that occupy special status in the theory of macroscopic processes in
matter because they obey the conservation laws of mass, momentum, and
energy.

One of the most important properties of the Boltzmann equation is the H
theorem. In local form, the Boltzmann entropy1 is expressible as

S (r, t) = −kB

r∑
a=1

〈fa (va, r; t) (ln fa − 1)〉 , (2.9)

where S is the Boltzmann entropy per unit volume, kB is the Boltzmann
constant, and the angular brackets stand for integration in the velocity space.
This local density of the Boltzmann entropy obeys the balance equation

∂tS (r, t) = −∇ · (Js + uS) + σent (r, t) , (2.10)
1 The Boltzmann entropy, apart from the factor −1, has the same form as in-

formation entropy in information theory. The important difference between the
Boltzmann kinetic theory and the information theory of Shannon [5] and his fol-
lowers [6,7] is that the Boltzmann kinetic theory has a kinetic equation, whereas
the latter does not. This difference has important consequences.
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where Js is the Boltzmann entropy flux defined by the statistical mechanical
formula

Js (r, t) = −kB

r∑
a=1

〈Cafa (va, r; t) (ln fa − 1)〉 (2.11)

and σent is the Boltzmann entropy production defined by

σent (r, t) = −kB

r∑
a=1

〈ln faRB [fa]〉 . (2.12)

The local form of the H theorem is then expressed by the inequality

σent (r, t) ≥ 0. (2.13)

The equality holds only for equilibrium reached in an infinitely long time. The
term equilibrium should be understood to mean the state described by the
steady-state solution of the Boltzmann equation. At this point of development
in the theory, what that steady state means exactly is not clarified, but it can
be shown that the steady state corresponds to an equilibrium state if the
notion of temperature corresponds to the mean internal energy in a thermo-
dynamically consistent manner. Here, the term thermodynamic consistency
means that the formalism, constructed with the distribution function obeying
the Boltzmann equation and the H theorem, is compatible with the laws of
thermodynamics. For the details of this line of study, the reader is referred
to the literature on the theory of irreversible thermodynamics formulated on
the basis of the Boltzmann equation [8, 9].

2.2 Equilibrium Solution

At equilibrium, the distribution function is uniform in space and invariant
with respect to time. If such a solution to the Boltzmann equation is denoted
by f eq

a , because the left-hand side of the Boltzmann equation (2.1) is evidently
equal to zero, the following equation holds:

RB [f eq
a ] = 0. (2.14)

The equilibrium solution satisfying this equation is unique because it follows
from the H theorem that, as a gas reaches equilibrium,

r∑
a=1

〈ln f eq
a RB [f eq

a ]〉 = 0. (2.15)

By using the symmetry properties of the Boltzmann collision integral with
respect to the dynamic reversal and interchange of species, (2.15) can be recast
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in the form
r∑

a=1

r∑
b=1

∫
dΓ ln

(
f eq∗

a f eq∗
b

f eq
a f eq

b

)[
f eq∗

a (v∗
a)f eq∗

b (v∗
b ) − f eq

a (va)f eq
b (vb)

]
= 0.

(2.16)
Here the following abbreviation is used:∫

dΓ · · · ≡
∫

dva

∫
dvb

∫ 2π

0

dϕ
∫ ∞

0

db bgab · · · .

Equation (2.16) is then satisfied if and only if

f eq∗
a (v∗

a)f eq∗
b (v∗

b ) = f eq
a (va)f eq

b (vb). (2.17)

This solution for (2.16) holds at equilibrium and implies that
ln f eq

i (i = a, b) is a linear combination of collision invariants of the Boltzmann
collision integral, namely, mass, momentum, and energy. Because the colli-
sion invariants obey the conservation laws of mechanics, the solution (2.17)
uniquely yields the equilibrium distribution function in terms of collisional
invariants of the gas. It should be noted that this uniqueness could not be
deduced if there were no collision term as defined by (2.3) in the kinetic equa-
tion because a vanishing streaming term of the kinetic equation would not be
sufficient for the uniqueness.

As it stands, the condition (2.17) is for the global equilibrium, but it can
be shown to hold even if the condition is relaxed to the situation in which the
system is described in the coordinate system moving at the mean velocity of
the fluid u. Such equilibrium is the local equilibrium. The local equilibrium
solution will be denoted by f e

a and is given by the local equilibrium Maxwell–
Boltzmann distribution function

f e
a(va, r) = na

(
ma

2πkBT

)2/3

exp
(
− 1

2kBT
maC

2
a

)
, (2.18)

provided that na and T are, respectively, the local density and temperature,
which are dependent on position and time and are determined so that these
are relations hold:

〈maf
e
a〉 = 〈mafa〉 = ρa, (2.19)

r∑
a=1

〈mavaf
e
a〉 =

r∑
a=1

〈mavafa〉 = ρu, (2.20)

r∑
a=1

〈
1
2
maC

2
af

e
a

〉
=

r∑
a=1

〈
1
2
maC

2
afa

〉
= ρE . (2.21)

These conditions imply that the nonequilibrium parts of the distribution func-
tions, fne

a = fa − f e
a, are orthogonal to the conserved variables for the system
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in the sense that

〈maf
ne
a 〉 =

r∑
a=1

〈mavaf
ne
a 〉 =

r∑
a=1

〈
1
2
maC

2
af

ne
a

〉
= 0. (2.22)

It should be emphasized here that the local equilibrium distribution function
f e

a(va, r) given in (2.18) is unique and the H theorem is essential for the
uniqueness of f e

a . Historically, Boltzmann [4] used his kinetic equation and the
H theorem, first, to prove the uniqueness of the Maxwell distribution function.
He then showed that the H function, with the help of the equilibrium (i.e.,
Maxwell) distribution function, could be related to the Clausius entropy with
regard to its temperature and density dependence, which was introduced in
equilibrium thermodynamics by Clausius [10] about seven years earlier.

The local equilibrium solution (2.18) is a solution in the phase space of
a particle that gives rise to the equilibrium thermodynamic description of
the system consistent with the laws of thermodynamics. Solutions giving rise
to the thermodynamic description of the system will be called the thermo-
dynamic branch of solutions that live in the phase space of molecules. It is
important to distinguish the thermodynamic branch of a solution and a gen-
eral solution in the phase space to understand thermodynamic fluctuations
properly. For details of constructing the local equilibrium solution, see [8, 9],
and for thermodynamic uncertainties associated with thermodynamic fluc-
tuations see Sect. 7.5 of [9], where thermodynamic uncertainty relations are
derived. The theory of transport processes in the gas phase discussed in this
work is built on the local equilibrium distribution function.

2.3 Linear Transport Processes

If a system is slightly displaced from equilibrium, the distribution function can
be obtained by applying a perturbation method of solution to the Boltzmann
equation. If the perturbation solution is limited to the first order, then the
corresponding transport processes are described to the linear order. Such non-
equilibrium processes involve the transport of mass, momentum, and energy
and are called linear transport processes. The perturbation solution method is
built on and around the equilibrium solution. The Chapman–Enskog method
of solution [1,3] is the celebrated perturbation solution method developed for
the Boltzmann equation that yields a theory of linear transport processes.
It is fully confirmed to be reliable by experiments performed for near equi-
librium processes. We will sketch the method here and present the formulas
for transport coefficients of dilute monatomic gases because they serve as the
dilute gas limits of the transport coefficients of dense gases and liquids. For
the details of the theory, the reader is referred to [9]. The linear transport
coefficients for dilute gases are in the foundations of the nonlinear transport
coefficients of gases and the linear transport coefficients of dense gases and
liquids that will be discussed in subsequent chapters in this work.
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It is convenient to introduce the nonuniformity parameter, denoted by ε,
for the purpose of systematically developing the Chapman–Enskog method
of solution. This parameter can be identified and given an explicit physical
meaning if the Boltzmann equation is suitably nondimensionalized. It can
be shown that this parameter is related to the Knudsen number defined as
the ratio of the mean free path to the characteristic length of the system.
Because of such an identification is not required for the discussion of linear
transport processes, we will defer it to later sections where nonlinear trans-
port processes are discussed. There, the identification of the aforementioned
expansion parameter will be unavoidable for a systematic description.

To implement the perturbation solution method in mind, we multiply the
collision term of the Boltzmann equation by ε. Thus, it is written in the form

∂tfa + va·∇fa + Fa·∇vafa = εRB [fa] , (2.23)

and fa is sought to first-order in ε in the form

fa = f e
a (1 + εφa) , (2.24)

where f e
a is the local equilibrium Maxwell–Boltzmann distribution function

defined earlier and f
(1)
a = f e

aφa is the first-order correction of f e
a.

On the basis of the functional hypothesis which states that fa is a function
of the conserved variables and their derivatives of all orders, the Chapman–
Enskog method requires a special way of computing time derivatives. To ex-
plain this rule of computing the time derivatives, first we express the conser-
vation laws in matrix form

∂M
∂t

= E (r, t) , (2.25)

where M = (ρ, ρu, E) with E denoting the internal energy and E is the
column vector made up of the right-hand sides of the mass, momentum, and
energy conservation laws [11]:

∂ρ

∂t
= −∇ · ρu, (2.26)

∂ρca

∂t
= −∇ · (Ja + ρuca) , (2.27)

∂ρu
∂t

= −∇ · (P + ρuu) + ρF, (2.28)

∂ρE
∂t

= −∇ · (Q + ρEu) − P : ∇u +
r∑

a=1

Ja · Fa. (2.29)

Here, P is the stress tensor, Q is the heat flux, Ja is the diffusion flux of
species a, and F is the total external force density

F =
r∑

a=1

caFa, (2.30)
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where ca is the mass fraction of species a defined by ca = ρa/ρ.
Under the functional hypothesis, the time derivative of fa is computed

through M,∇M, and so on, as in the formula

∂fa

∂t
= E · ∂fa

∂M
+ ∇E · ∂fa

∂∇M
+ · · · . (2.31)

If the distribution function f is expanded in the series

f = f (0) + εf (1) + ε2f (2) + · · · , (2.32)

then according to the rule used by the Chapman–Enskog method, the time
derivative of f is computed as follows:

∂f

∂t
=

∂0f
(0)

∂t
+ ε

(
∂1f

(0)

∂t
+

∂0f
(1)

∂t

)
+ ε2

(
∂2f

(0)

∂t
+

∂1f
(1)

∂t
+

∂0f
(2)

∂t

)
+ · · · , (2.33)

where various derivatives are computed according to the rule

∂kf
(j)

∂t
= E(k) · ∂f

(j)

∂M
+ ∇E(k) · ∂f (j)

∂∇M
+ · · · (2.34)

with E(k) denoting the kth-order coefficient in the expansion

E = E(0) + εE(1) + ε2E(2) + · · · .

The species subscript is omitted from the distribution function in (2.33) for
notational brevity. This rule of computing the time derivatives stems from
the aforementioned functional hypothesis underlying the Chapman–Enskog
method. Note that the functional hypothesis is generally applicable to other
solution methods for the kinetic equation, such as the moment method, be-
cause macroscopic variables evolve more slowly than the variables of molecules
in the phase space.

Substituting fa in (2.24) and using the aforementioned rule for calculating
time derivatives, the Boltzmann equation yields the equations to first order
in ε

r∑
b=1

C (f e
af

e
b ) = 0, (2.35)

r∑
b=1

[C (f e
af

e
bφb) + C (f e

af
e
bφa)] = (Dfa)(0) , (2.36)

where

(Dfa)(0) =
∂0f

(0)
a

∂t
+ va · ∇f e

a + Fa · ∇vaf
e
a. (2.37)
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Equation (2.35) is the zeroth-order equation, which yields the local equilibrium
solution for the kinetic equation. We have already discussed the solution of this
equation. Equation (2.36) is a first-order equation, which yields a first-order
correction to the equilibrium distribution function. It is an inhomogeneous
linear integral equation and can be solved by the standard method of solution
for linear integral equations.

The first-order correction of the distribution function should satisfy the
conditions arising from (2.19)–(2.21), that is,〈

maf
(1)
a

〉
= 0, (2.38)

r∑
a=1

〈
mavaf

(1)
a

〉
= 0, (2.39)

r∑
a=1

〈
1
2
maC

2
af

(1)
a

〉
= 0. (2.40)

Similar conditions, of course, hold for higher order solutions of distribution
functions.

The stress tensor, heat flux, and diffusion fluxes are computable in a series
in ε by using the expansion for fa:

P =
r∑

a=1

Pa =
r∑

a=1

[〈maCaCaf
e
a〉 + ε 〈maCaCaf

e
aφa〉 + · · · ]

≡ P(0) + εP(1) + · · · , (2.41)

Q =
r∑

a=1

Qa =
r∑

a=1

[〈
1
2
maC

2
aCaf

e
a

〉
+ ε

〈
1
2
maC

2
aCaf

e
aφa

〉
+ · · ·

]
≡ Q(0) + εQ(1) + · · · , (2.42)

Ja = 〈maCaf
e
a〉 + ε 〈maCaf

e
aφa〉 + · · ·

≡ J(0) + εJ(1) + · · · . (2.43)

The first terms Q(0) and J(0) in (2.42 ) and (2.43) vanish because of symmetry
and

P(0) = 〈maCaCaf
e
a〉 =

2
3
ρEδ = pδ (2.44)

where p is the hydrostatic pressure and δ is the unit second-rank tensor.
The inhomogeneous integral equation must satisfy the solvability condi-

tions [12]. The homogeneous integral equation has five eigenfunctions ϕa =(
ma,mava,maC

2
a/2 : 1 < a < r

)
for each species. These eigenfunctions should

be orthogonal to the inhomogeneous term of the integral equation for the
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integral equation to be solvable. Therefore,〈
ma (Dfa)(0)

〉
= 0,

r∑
a=1

〈
mava (Dfa)(0)

〉
= 0, (2.45)

r∑
a=1

〈
1
2
maC

2
a (Dfa)(0)

〉
= 0

for every a. These are the solvability conditions and give rise to the conser-
vation laws of mass, momentum, and internal energy for the first order in
ε; they are the Navier–Stokes, Fourier, and Ficks equations of classical hy-
drodynamics [13] in which the transport coefficients are expressed in terms
of the Boltzmann collision integral—collision bracket integrals. They will be
presented later.

For the zeroth order the conservation laws are simply nondissipative Euler
equations [13]

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.46)

∂ρca

∂t
+ ∇ · (ρuca) = 0 (1 ≤ a ≤ r) , (2.47)

∂ρu
∂t

+ ∇ · (pδ + ρuu) = ρF, (2.48)

∂ρE
∂t

+ ∇ · (ρEu) + p∇ · u = 0. (2.49)

The first-order solution of the Boltzmann equation gives rise to the classical
hydrodynamic equations of Navier, Stokes, Fourier, and Fick [13]

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.50)

∂ρca

∂t
+ ∇ ·

(
J(1)

a + ρuca

)
= 0, (2.51)

∂ρu
∂t

+ ∇ ·
(
pδ + P(1) + ρuu

)
= ρF, (2.52)

∂ρE
∂t

+ ∇ ·
(
Q(1) + ρEu

)
+
(
pδ + P(1)

)
: ∇u −

r∑
a=1

J(1)
a · Fa = 0,

(2.53)

where we have set ε = 1, as is the usual practice, when the solution is obtained
for the Boltzmann equation because ε is merely a bookkeeping parameter in
the perturbation method employed. The first-order quantities P(1), Q(1), and
J(1)

a are obtained from the integral equation (2.36). They are proportional to
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the first-order spatial gradients of u, T , and ca or na, the number density of
species a. Because of symmetry, the equation for the second-rank tensor P(1)

is decoupled from those for the vectors Q(1) and J(1)
a , and we obtain them in

the forms [8, 9, 11],

P(1) = −η0
b (∇ · u) δ − 2η0 [∇u](2) , (2.54)

Q(1) = −λ0∇ lnT − p

r∑
a=1

DTada +
5
2
kBT

r∑
a=1

1
ma

J(1)
a , (2.55)

J(1)
a = −ρa

r∑
b=1

Dab (db + kTb∇ lnT ) , (2.56)

where η0
b , η0, λ0, DTa, Dab, and kTb are the bulk viscosity, shear viscosity,

thermal conductivity, thermal diffusion coefficient, diffusion coefficient, and
thermal diffusion ratio. Other symbols are defined by2

[∇u](2) =
1
2

[
∇u + (∇u)t

]
− 1

3
δ∇ · u, (2.57)

da = ∇
(na

n

)
+
(
na

n
− ρa

ρ

)
∇ ln p +

ρa

p
(F − Fa) . (2.58)

The notation [∇u](2) stands for the traceless symmetric part of the second-
rank tensor ∇u, and this notation will be used for the traceless symmetric
part of the second-rank tensor A throughout this work:

[A](2) =
1
2
(
A + At

)
− 1

3
δTrA,

where the superscript t denotes the transpose.
If the constitutive equations (2.54)–(2.56) are substituted in the first-order

conservation laws (2.50)–(2.53) there arise the Navier–Stokes, Fourier, and
Fick’s hydrodynamic equations, which constitute classical hydrodynamics.
Therefore, it can be said that the classical hydrodynamics of gases corresponds
to the first-order Chapman–Enskog solution of the Boltzmann equation at the
kinetic theory level and to the linear constitutive equations for the stress ten-
sor, heat flux, and diffusion fluxes at the level of irreversible thermodynamics
because the linear constitutive equations are the linear thermodynamic force–
flux relations in the linear theory of irreversible thermodynamics. Hydrody-
namics describes macroscopic flow processes that must be subject to the laws
2 The external force term in the definition of thermodynamic force da in (8.13)

of [9] is in error. It should read

ρa

p
(F − Fa) .
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of thermodynamics. If a theory describing such processes conforms fully with
the laws of thermodynamics, then the theory is said to be thermodynamically
consistent. The thermodynamic consistency of a macroscopic theory is an im-
portant criterion by which to judge the truthfulness of the theory. The classical
hydrodynamic equations on the support of the linear constitutive equations
presented earlier are completely thermodynamically consistent, although they
are only applicable to near-equilibrium flow phenomena. Subjecting the con-
stitutive equations for linear processes to the laws of thermodynamics the
positivity conditions on linear transport coefficients follow.

The transport coefficients appearing in the constitutive equations (2.54)–
(2.56) are obtained from (2.36) in terms of collision bracket integrals. Because
the procedure is rather involved in the way it is described in monographs
dealing with the subject matter, it is useful to give a sketch of it and present
the usual results for the transport coefficients that we will employ later in
this work, when nonlinear transport processes in gases and linear transport
processes in liquids are discussed.

For the purpose in mind, it is convenient to define the abbreviation for the
integral operator involved:

Iab (G) =
1

nanb

∫
dvb

∫ ∞

0

dbb

∫ 2π

0

dϕgabf
e
af

e
b (Ga + Gb −G∗

a −G∗
b) ,

(2.59)

where G is a function of velocities, the impact parameter of collision, and the
scattering angle. It is also convenient to define the bracket integral

[G,H] =
r∑

a=1

r∑
b=1

∫
dvaIab (G)

=
1

4n2

r∑
a=1

r∑
b=1

∫
dva

∫
dvb

∫ ∞

0

dbb

∫ 2π

0

dϕgabf
e
af

e
b

× (Ga + Gb −G∗
a −G∗

b) (Ha + Hb −H∗
a −H∗

b ) . (2.60)

The inhomogeneous term (Dfa)(0) of the integral equation for the first-
order solution, Eq. (2.36), is readily calculated by using the equilibrium solu-
tion (2.18) in Eq. (2.37):

(Dfa)(0) = f e
a

[
n

na
Ca · da +

(
maC

2
a

2kBT
− 5

2

)
Ca · ∇ lnT

+
ma

kBT
[CaCa](2) : ∇u

]
. (2.61)

Because the thermodynamic forces d1, d2, · · · , dr are linearly dependent
vectors and because the following equation holds:

r∑
a=1

da = 0 (2.62)
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it is useful to construct linearly independent vectors. Let d∗
1,d

∗
2, · · · ,d∗

r be a
new set of linearly independent vectors for the thermodynamic gradients (or
thermodynamic forces) for diffusion. An acceptable relation of da to d∗

a is [3]

da = d∗
a − ρa

ρ

r∑
b=1

d∗
b , (2.63)

because it satisfies the condition (2.62). Here, the precise expression for d∗
a

is not necessary because d∗
a may be replaced with da after linearly indepen-

dent integral equations are obtained for the diffusion part of the first-order
correction for the distribution function, as will be seen.

(Dfa)(0) is linear with respect to thermodynamic gradients, so the first-
order solution φa for fa should also be linear with respect to ∇ lnT , ∇u, and
d∗

b . Therefore, it can be sought in the form,

φa = − 1
n

r∑
b=1

Db
a · d∗

b −
1
n
Aa · ∇ lnT − 1

n
Ba : ∇u, (2.64)

where Db
a, Aa, and Ba are functions of momentum, density, and temperature.

Upon substituting this form of φa in the integral equation (2.36), because the
gradients d∗

b , ∇ lnT , and ∇u are linearly independent, three independent
linear integral equations follow:

r∑
b=1

nanb

n2
Iab(Dc) =

1
na

f e
a

(
δac −

ρa

ρ

)
Ca (1 ≤ a, c ≤ r) , (2.65)

r∑
b=1

nanb

n2
Iab(A) =

1
na

f e
a

(
ma

2kBT
C2

a − 5
2

)
Ca (1 ≤ a ≤ r) , (2.66)

r∑
b=1

nanb

n2
Iab(B) =

ma

nkBT
f e

a [CaCa](2) (1 ≤ a ≤ r) . (2.67)

It is convenient to put these equations in scalar form. For the purpose let us
introduce vector functions D

c

a and Aa and tensor function Ba and take the
scalar product of the vector or tensor function with the integral equation of
interest to obtain

r∑
a=1

r∑
b=1

nanb

n2
Iab (Dc) · Dk

a =
[
Dc,D

k
]

(1 ≤ c, k ≤ r) , (2.68)

r∑
a=1

r∑
b=1

nanb

n2
Iab (A) · Aa =

[
A,A

]
, (2.69)

r∑
a=1

r∑
b=1

nanb

n2
Iab(B) : Ba =

[
B,B

]
. (2.70)
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Using these collision bracket integrals, the integral equations (2.65)–(2.67) can
be written as[

Dc,D
k
]

=
1
nc

〈
f e

c Cc · D
k

c

〉
− 1

ρ

r∑
a=1

〈
f e

amaCa · Dk

a

〉
, (2.71)

[
A,A

]
=

1
n

r∑
a=1

〈
f e

a

(
ma

2kBT
C2

a − 5
2

)
· Aa

〉
, (2.72)

[
B,B

]
=

1
nkBT

r∑
a=1

〈
f e

ama [CaCa](2) : Ba

〉
. (2.73)

Equations (2.71)–(2.73) are inhomogeneous linear integral equations for
Dc, A, and B, respectively. The solvability conditions (2.45) for these linear
integral equations are satisfied. These functions must also satisfy conditions
(2.38)–(2.40). For diffusion components Dc, these conditions do not determine
Dc uniquely because it can be shown that

r∑
c=1

ρc

ρ
Dc = 0. (2.74)

This follows since if ρc/ρ is multiplied by (2.65) and the resulting equation is
summed over c, then the right-hand side is equal to zero, and it means that
the sum on the left in (2.74) is a constant, which may be taken equal to zero.
Therefore, (2.74) suggests that it is possible to replace d∗

b in (2.64) with

d∗
b −

ρb

ρ

r∑
c=1

d∗
c

with no effect on the outcome of the theory. This expression is simply db, so
the first-order solution φa may be written as

φa = − 1
n

r∑
b=1

Db
a (C)Ca · db −

1
n
Aa (C)Ca · ∇ lnT

− 1
n
Ba(C) [CaCa](2) : ∇u. (2.75)

In this expression for φa the unknowns are written in the forms

Db = CDb (C) ,
A = CA (C) , (2.76)

B = [CC](2) B(C),

where Db (C) ,A (C), and B(C) denote scalar functions of C to be determined
from (2.71)–(2.73).
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The integral equations (2.71)–(2.73) may be solved, for example, by the
Galerkin method in which the unknowns are expanded in Sonine polynomials3

of the peculiar velocity. Because this aspect of the solution method is well
documented, refer to the literature [1, 3, 9].
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3

Transport Processes in Monatomic Gases

Assuming that the solutions of (2.71)–(2.73) are obtained according to the
method mentioned in Chap. 2, we present the formal expressions for the trans-
port coefficients in this chapter. The theory of linear transport processes is
abundantly discussed in the literature, so the description of the theory will
be brief and confined to the essential points of the formal feature that will
help us comprehend the parallel theory for dense gases and liquids treated in
later chapters. It will be also helpful for understanding the theory of nonlinear
transport processes discussed later because we build it on the foundations of
linear transport processes.

3.1 Diffusion Processes

The first-order diffusion flux J(1)
a is given by

J(1)
a = 〈maCaf

e
aφa〉 . (3.1)

Therefore, inserting of the first-order solution (2.64) and using the symmetry
of the integral, there follows the equation

J(1)
a = − 1

3n

r∑
b=1

〈
f e

amaC
2
aDb

a (C)
〉
db −

1
3n
〈
f e

amaC
2
aAa (C)

〉∇ lnT. (3.2)

This is the linear constitutive equation for the diffusion flux of gaseous species
a derived from the Boltzmann kinetic equation. On the other hand, the diffu-
sion coefficients and the thermal diffusion coefficients are phenomenologically
defined by the linear constitutive relation for velocity Va = J(1)

a /ρa:

Va = −
r∑

b=1

Dabdb −DTa∇ lnT, (3.3)
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where Dab and DTa are the diffusion and thermal diffusion coefficients , re-
spectively. Comparing (3.3) with (2.56), we find

DTa =
r∑

b=1

DabkTb. (3.4)

On comparison of the kinetic theory relation (3.2) with the phenomenological
relation (3.3), the phenomenological coefficients Dab and DTa are identified
with the kinetic theory expressions for them as follows:

Dab =
1
3n
〈
f e

amaC
2
aDb

a (C)
〉
, (3.5)

DTa =
1
3n
〈
f e

amaC
2
aAa (C)

〉
. (3.6)

Because by the condition arising from (2.19)–(2.21), there hold the equations,

r∑
a=1

〈
f e

amaC
2
aDb

a (C)
〉

= 0,

r∑
a=1

〈
f e

a

1
2
maC

2
aAa (C)

〉
= 0,

(3.7)

on replacing D
k

in (2.71) with Dk, it follows that〈
f e

amaC
2
aDb

a (C)
〉

=
[
Da,Db

]
. (3.8)

Similarly, on replacing D
k

in (2.71) with A, we obtain〈
f e

amaC
2
aAa (C)

〉
= [Da,A] . (3.9)

Therefore, Dab and DTa can be expressed in compact form as

Dab =
1
3n
[
Da,Db

]
, (3.10)

DTa =
1
3n

[Da,A] . (3.11)

With the solutions for the integral equations (2.71) and (2.72), the diffusion
and thermal diffusion coefficients can be calculated in terms of collision bracket
integrals. Because this work is not concerned with the evaluation of transport
coefficients of gases and their formal expressions will be sufficient for our
purpose, we will not dwell on the question here.

The constitutive equation for a diffusion flux can be expressed in terms of
thermodiffusion ratios by using the ratio of DTa to Dab:

Va = −
r∑

b=1

Dab (db + kTb∇ lnT ) . (3.12)
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In our later studies of transport processes in liquids, the self-diffusion and
binary diffusion coefficients of hard sphere fluids will be of interest because
hard repulsive forces play a dominant role in momentum and energy transport
in liquids where particles are close to each other.

3.2 Thermal Conduction

The first-order heat flux in gases is given by

Q(1) =
r∑

a=1

〈
1
2
maC

2
aCaf

e
aφa

〉
. (3.13)

Substituting φa in (2.75), rearranging terms, and employing the expression
for J(1)

a in (3.2), there follows the expression

Q(1) = −kBT

3n

r∑
a=1

r∑
b=1

〈
f e

a

(
maC

2
a

2kBT
− 5

2

)
C2

aDb
a (C)

〉
db

−kBT

3n

r∑
a=1

〈
f e

a

(
maC

2
a

2kBT
− 5

2

)
C2

aAa (C)
〉

∇ lnT (3.14)

−5kBT

2

r∑
a=1

1
ma

J(1)
a .

Comparing it with the phenomenological constitutive equation for Q(1) in
(2.55), the phenomenological coefficients λ0 and DTa are identified with their
kinetic theory expressions

λ0 =
kBT

3n

r∑
a=1

〈
f e

a

(
maC

2
a

2kBT
− 5

2

)
C2

aAa (C)
〉
, (3.15)

pDTa =
kBT

3n

r∑
b=1

〈
f e

b

(
mbC

2
b

2kBT
− 5

2

)
C2

bDa
b (C)

〉
. (3.16)

Since the kinetic theory expression of DTa as in (3.16) has to be compatible
with the expression in (3.6) it follows that there holds the relation

1
n

r∑
b=1

〈
f e

b

(
mbC

2
b

2kBT
− 5

2

)
C2

bDa
b (C)

〉
=
〈
fe

amaC
2
aAa (C)

〉
.

Moreover, in the light of (3.4) the kinetic theory expression for the thermal
diffusion ratio may be expressed as

kTb =

〈
f e

b

(
mb

2kBT C2
b − 5

2

)
C2

bDa
b (C)

〉
n 〈f e

amaC2
aDb

a (C)〉 . (3.17)
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If the bracket integral notation is used, the thermal conductivity λ0 and the
thermal diffusion ratio kTb may be written as

λ0 =
kBT

3n
[A,A] , (3.18)

kTb =
1
n

[
A,Db

]
[Da,Db]

. (3.19)

As is for diffusion coefficients, these formal expressions can be explicitly cal-
culated as functions of temperature and density by using the solutions of the
linear integral equations (2.65) and (2.66).

3.3 Viscous Phenomena

The first order correction to the stress tensor results in the shear viscosity
coefficient of gases. The first order stress tensor is given by the kinetic theory
expression

P(1) =
r∑

a=1

〈maCaCaf
e
aφa〉 . (3.20)

On substitution of φa in (2.75) and exploiting the symmetry properties of
integrands associated with the heat flow and diffusion we obtain

P(1) = − 1
5n

r∑
a=1

〈
f e

ama [CaCa](2) : [CaCa](2) Ba(C)
〉

[∇u](2) . (3.21)

Comparing this expression with the phenomenological constitutive equation
for the stress tensor (2.54) we find the first order kinetic theory results for the
shear viscosity η0 and the bulk viscosity η0

b :

η0 =
1

10n

r∑
a=1

〈
f e

ama [CaCa](2) : [CaCa](2) Ba(C)
〉
, (3.22)

η0
b = 0. (3.23)

It is remarkable that the bulk viscosity coefficient η0
b is equal to zero for

dilute monatomic gases for the solution of the kinetic equation at this order
of approximation. The shear viscosity formula may be written in terms of a
collision bracket integral as follows:

η0 =
kBT

10
[B,B] . (3.24)

This collision bracket integral can be calculated by using the solution of the
linear integral equation (2.70) or, equivalently, (2.73).
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3.4 Nonlinear Transport Processes

We have reviewed in some detail the Chapman–Enskog first-order solution
of the Boltzmann equation, which has been quite successful in accounting
for linear transport processes that occur near equilibrium in gases. The the-
ory provides the statistical mechanical expressions to compute all transport
coefficients of dilute monatomic gases, given information on intermolecular
forces. The reliability of the transport coefficients so obtained has been suc-
cessfully verified [1–3] by laboratory experiments. Moreover, the first-order
Chapman–Enskog solution furnishes the kinetic theory foundations [4–6] of
linear irreversible processes, which are mathematically represented by the lin-
ear constitutive equations presented in the previous section for the stress
tensor, heat flux, and diffusion fluxes. Therefore, the kinetic theory of lin-
ear irreversible thermodynamics [5, 6, 10] can be satisfactorily understood for
monatomic gaseous mixtures with the help of the first-order solution of the
Boltzmann equation.

As the system is increasingly displaced from equilibrium, it is not sufficient
to use linear constitutive equations developed in the previous section because
higher order thermodynamic gradients or thermodynamic forces must be taken
into consideration if flow phenomena far removed from equilibrium are to be
adequately explained from the standpoint of statistical mechanics. Efforts
have been made to develop an extension of the Chapman–Enskog method of
solution of the Boltzmann equation by including higher order perturbation
terms in the solution. The solution in the second-order theory is called the
Burnett solution [1, 3], and the third-order solution the super-Burnett solu-
tion [1, 3]. The second-order solution, the Burnett solution, involves second-
order thermodynamic gradients, whereas the third-order (super-Burnett)
solution involves third-order thermodynamic gradients among others. The
corresponding hydrodynamic equations are called the Burnett equations and
the super-Burnett equations, respectively. The Burnett and super-Burnett
equations are not thermodynamically consistent [6] in the sense of the term
defined earlier. Furthermore, they require additional boundary conditions on
flow variables which are not available experimentally. For these reasons, we
rule them out as an adequate theory of macroscopic flow processes in gases
far removed from equilibrium. This is also why we have not considered the
Chapman–Enskog method beyond first order.

In this section, we describe a thermodynamically consistent theory of non-
linear hydrodynamic processes and accompanying constitutive equations for
the stress tensor, heat flux, and diffusion fluxes in monatomic gaseous mix-
tures. The constitutive equations will also provide nonlinear transport co-
efficients appropriate for flow processes. They will be generally nonclassical
and dependent on thermodynamic gradients, unlike the linear transport co-
efficients that are independent of thermodynamic gradients, as we have seen
earlier.
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The basic strategy for developing such a theory is to avoid the Chapman–
Enskog expansion for the distribution functions and macroscopic variables
and the manner in which the time derivatives are calculated. Nevertheless, it
is necessary to assume the functional hypothesis underlying the Chapman–
Enskog method, namely, that the distribution functions evolve as functionals
of macroscopic variables. If we wish to study macroscopic flow processes from
the viewpoint of statistical mechanics, this hypothesis seems to be unavoid-
able to reduce the sheer amount of information contained in the phase space
distribution function to a level compatible with the macroscopic description
of systems consisting of many molecules. If the distribution functions evolve
through macroscopic flow variables, then it is natural to look for their evolu-
tion equations, and the kinetic equation for the distribution functions should
give the desired evolution equations for macroscopic flow variables.

3.4.1 Generalized Hydrodynamic Equations

Derivation of such evolution equations has been well described in the literature
[5,6], so we will present them without going into their derivation in this work.
In the notation used in this work, they are made of the mass, momentum,
and internal energy balance equations—conservation laws—in addition to the
complete set of constitutive equations for nonconserved variables of the fluid
of interest. In the absence of chemical reactions,

ρ
dv
dt

= ∇ · u
(
v = ρ−1

)
, (3.25)

ρ
dca

dt
= −∇ · Ja (1 ≤ a ≤ r) , (3.26)

ρ
du
dt

= −∇ · P + ρF, (3.27)

ρ
dE
dt

= −∇ · Q − P : ∇u +
r∑

a=1

Ja · Fa, (3.28)

ρ
dΦ̂ka

dt
= −∇ · ψka + Zka + Λka (k ≥ 1, r ≥ a ≥ 1) , (3.29)

where d/dt is the substantial time derivative defined by

d
dt

= dt =
∂

∂t
+ u · ∇, (3.30)

Φka represents the kth nonconserved variable of species a, and Φ̂ka is the
density of Φka defined by

Φ̂ka = Φkaρ
−1.

The set of nonconserved variables includes the complete set of macroscopic
nonconserved variables that are necessary for appropriate description of the
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flow process of interest. It includes stress tensors, heat fluxes, diffusion fluxes
of various species, and other higher order variables, if necessary.

To define Φka specifically, it is necessary to split the stress tensor P into
species components, which are then decomposed into trace and traceless sym-
metric parts:

P =
r∑

a=1

Pa =
r∑

a=1

(paδ + Δaδ + Πa) , (3.31)

where pa is the partial hydrostatic pressure of species a

Δa =
1
3
TrPa − pa, (3.32)

Πa = [Pa](2) . (3.33)

The heat flux Q is also decomposed into species components:

Q =
r∑

a=1

Qa. (3.34)

The set of nonconserved variables Φka is then arranged in the order

Φ1a = Πa, Φ2a = Δa, Φ3a = Q′
a ≡ Qa − ĥaJa , Φ4a = Ja, · · · , (3.35)

where ĥa = 5kBT/2ma, the enthalpy density per unit mass of species a. Let
us denote by h

(k)
a the molecular expression corresponding to the macroscopic

variable Φka. The statistical mechanical expression for Φka then is given by

Φka =
〈
fah

(k)
a

〉
(k ≥ 1) . (3.36)

Leading examples of the molecular expression for h
(k)
a are

h(1)
a = ma [CaCa](2) , h(2)

a =
1
3
Tr (maCaCa) −mapa/ρa,

h(3)
a = ma

(
1
2
C2

a − ĥa

)
Ca, h(4)

a = maCa, · · · .

(3.37)

With this notation, the various terms on the right-hand side of the constitutive
equations (3.29) are defined by the statistical mechanical formulas

ψka =
〈
faCah

(k)
a

〉
, (3.38)

Zka =
〈
faDth

(k)
a

〉
, (3.39)

Λka =
〈
h(k)

a RB [fa]
〉
, (3.40)
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where
Dt = dt + Ca · ∇ + Fa · ∇va. (3.41)

The physial meaning of ψka is the flux of h(k)
a , and mathematically it is a mo-

ment one order higher than Φka. However, it is generally a reducible moment,
which is expressible as a combination of irreducible moments. Such combina-
tions may be exploited to obtain closure of the open hierarchy of evolution
equations for the nonconserved variables Φka presented. Zka is called the kine-
matic term, which on explicit evaluation consists of nonlinear terms made up
of gradients of velocity, density, and temperature. Λka is called the dissipation
term because it is closely associated with, and thus the seat of, energy dissi-
pation arising from the process Φka. The dissipation terms Λka do not vanish
for nonconserved variables because h

(k)
a are not summational invariants of the

kinetic equation, more specifically, the Boltzmann equation. The kinematic
terms and ψka can be explicitly calculated by substituting h

(k)
a , as given in

(3.37), and examples of the kinematic terms are given in Table 3.1 for the
constitutive equations for the stress tensors, heat fluxes, and diffusion fluxes.

In Table 3.1, ϕ(3)
a is a third-rank tensor defined by

ϕ(3)
a = 〈maCaCaCafa〉 .

Note that, when linearized with respect to the thermodynamic gradients, the
kinematic terms Zka are approximated by thermodynamic forces:

Z1a � −2pa [∇u](2) , Z2a � −padt ln
(
pav

5/3
)

+ padt ln ca,

(3.42)

Z3a � −paĈpaT∇ lnT, Z4a � −pda, etc.

These approximate forms of kinematic terms imply that nonconserved vari-
ables are primarily driven by thermodynamic forces stemming from a velocity
gradient, volume change, temperature gradient, concentration gradients, and
so on. Driven by these thermodynamic forces, the fluid evolves along the
trajectory described by nonconserved and conserved variables while dissipat-
ing energy because the nonconserved variables are not collision invariant and

Table 3.1. Leading kinematic terms for dilute monatomic gases

Z1a = −2 [Ja (dtu − Fa)](2) − 2
[
Πa · [∇u](2)

](2) − 2Δa [∇u](2)

− 2
3
Πa∇ · u − 2pa [∇u](2)

Z2a = − 2
3
Ja · (dtu − Fa) − 2

3
Πa : ∇u − 2

3
Δa∇ · u

−Ja · ∇ (pa/ρa) − padt ln
(
pav5/3

)
+ padt ln ca

Z3a = − (dtu − Fa) · (Πa + Δaδ) − Q′
a · ∇u − ϕ(3)

a : ∇u

−Jadtĥa − (Πa + Δaδ) · ∇ĥa − paĈpaT∇ ln T
Z4a = ∇ · Pa + ρa

ρ
∇ · (Π + Δδ) − ∇ · (Πa + Δaδ)

−Ja · ∇u − pda
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hence not conserved. Nonlinear transport processes can be understood by the
generalized hydrodynamics equations (3.25)–(3.29).

The set of macroscopic evolution equations (3.25)–(3.29) is thermodynam-
ically consistent because they satisfy the local form of the second law of ther-
modynamics, if exact solutions are used for the distribution functions obeying
the Boltzmann equation. However, if an approximate solution is employed,
there is no assurance that the second law of thermodynamics is rigorously
satisfied. In the following, we will discuss an approximate solution that will
yield thermodynamically consistent evolution equations. The point to empha-
size here is that a careless approximation of the distribution function does not
guarantee the desired thermodynamic consistency, and the inevitable approx-
imation method must be developed to maintain thermodynamic consistency.

As the first step in developing a thermodynamically consistent approxi-
mation of the Boltzmann equation, we seek the distribution function in expo-
nential form, the nonequilibrium canonical form,

f c
a = exp

⎧⎨⎩βμa − β

⎡⎣1
2
maC

2
a +
∑
k≥1

Xkah
(k)
a (Ca)

⎤⎦⎫⎬⎭ , (3.43)

where Xka is the macroscopic variable conjugate to Φka; it does not depend
on Ca but may depend on β = 1/kBT and density. It is called the generalized
potential conjugate to Φka and it is akin to the chemical potential μa. The
distribution function is normalized to density na

〈f c
a〉 = na.

Therefore, the nonequilibrium chemical potential μa is given by the normal-
ization factor of f c

a through the relation

μa = maμ̂a (3.44)

= −kBT ln

⎧⎨⎩n−1
a

〈
exp

⎡⎣−β

⎛⎝ 1
2maC

2
a +
∑
k≥1

Xkah
(k)
a

⎞⎠⎤⎦〉⎫⎬⎭ .

If the Boltzmann entropy production,

σent = −kB

r∑
a=1

〈ln faRB [fa]〉 (3.45)

is calculated by substituting the nonequilibrium canonical form in ln fa in
(3.45), then it follows that σent takes a bilinear form:

σent = T−1
r∑

a=1

∑
k≥1

XkaΛka ≥ 0. (3.46)

This positive bilinear form further elucidates the significance of the dissipation
term Λka mentioned earlier. The dissipation terms Λka must be approximated
so that this inequality is preserved.
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It has been found that if the cumulant expansion method [5, 6] is ap-
plied to the dissipation terms in ( 3.46), the first- or the third-order cumulant
approximation produces thermodynamically consistent dissipation terms. In
particular, the first-order cumulant approximation of Λka is given by

Λka = (βg)−1
q (X)

r∑
b=1

∑
l≥1

R
(kl)
ab Xlb, (3.47)

where

g =
1

n2d2

√
m

2kBT
, (3.48)

q(X) =
sinhκ

κ
(3.49)

with κ2 denoting the quadratic form

κ2 =
r∑

a,b=1

∑
k,l≥1

XkaR
(kl)
ab Xlb. (3.50)

R
(kl)
ab are given in terms of the collision bracket integrals and m denotes the

reduced mass. They are listed in Table 3.2 for the leading nonconserved vari-
ables. In Table 3.2, collision bracket integrals are expressed in terms of the
reduced variable

τ a =
√

ma

2kBT
Ca =

1√
2
wa. (3.51)

S
(1)
3/2(τ) denotes the Sonine polynomial S(1)

3/2(τ) = 5/2 − τ of order
(

3
2 , 1
)
; see

Table 3.2. Collision bracket integrals for the leading moments

R
(11)
aa = 4

5
{[[τ aτ a](2) : [τ aτ a](2)]aa′ +

∑
a�=b

[[τ aτ a](2) : [τ aτ a](2)]′ab}
R

(11)
ab = 4

5
[[τ aτ a](2) : [τ bτ b]

(2)]′′ab (a �= b)

R
(33)
aa = 2

3
(βma)−1

{[
S

(1)

3/2(τ
2
a )τ a · S(1)

3/2(τ
2
a )τ a

]
aa′

+
∑

a�=b

[
S

(1)

3/2(τ
2
a )τ a · S(1)

3/2(τ
2
a )τ a

]′
ab

}
R

(33)
ab = 2

3
(β

√
mamb)

−1[S
(1)

3/2(τ
2
a )τ a · S(1)

3/2(τ
2
b )τ b]

′′
ab

R
(44)
aa = 2

3

√
mambβ{[τ a·τ a]aa′ +

∑
a�=b

[τ a·τ a]′ab}
R

(44)
ab = 2

3

√
mambβ[τ a · τ a]′′ab

R
(34)
aa = R

(43)
aa = − 2

3

{[
S

(1)

3/2(τ
2)τ a·τ a]aa′ +

∑
a�=b

[S
(1)

3/2(τ
2
a )τ a · τ a

]′
ab

}
R

(34)
ab = R

(43)
ba = − 2

3
[S

(1)

3/2(τ
2
a )τ a · τ b]

′′
ab
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Footnote 3 in Chap. 2 regarding Sonine polynomials. The following abbrevia-
tions are also used for collision bracket integrals:

[Aa, Ba]ab =
nanb

4n2

〈
(ΔAa + ΔAb) (ΔBa + ΔBb)

〉
c
,

[Aa, Ba]′ab =
nanb

2n2
〈ΔAaΔBa〉c ,

[Aa, Ba]′′ab =
nanb

2n2
〈ΔAaΔBb〉c ,

where
ΔAa = Aa −A∗

a,

etc.,

〈· · · 〉c = (2π)−3
d−2

√
ma

2kBT

∫
dwa

∫
dwb

∫ 2π

0

∫ ∞

0

dbbgabe−
1
2 w2

a− 1
2 w2

b · · · .

The quadratic form κ2 is the Rayleigh dissipation function [7], and the Boltz-
mann entropy production in the first cumulant approximation is given by

σent = kBκ sinhκ. (3.52)

It is positive and vanishes only if κ = 0, which occurs at equilibrium at which
Xka = 0 for all k and a. If the hyperbolic sine function is approximated by κ
to the lowest order, the Boltzmann entropy production is simply proportional
to the Rayleigh dissipation function.

When the first-order cumulant approximation of the dissipation term Λka

given in (3.47) is used in (3.29), a thermodynamically consistent set of macro-
scopic evolution equations is obtained. Because the constitutive equations
for the nonconserved variables thus arising from (3.29) generalize the linear
constitutive equations (2.54)–(2.56), which we have seen give rise to the clas-
sical hydrodynamic equations, together with the balance equations for the
conserved variables, they represent a generalization of the classical hydro-
dynamics to nonlinear transport processes. They are called the generalized
hydrodynamic equations in the first-order cumulant approximation or simply
generalized hydrodynamic equations.

The generalized potentials Xka in the dissipation terms are not yet deter-
mined. They should be obtained in terms of variables {ρ, β, Φka} describing
the processes of interest. For this purpose, we recall that the nonequilibrium
canonical form gives rise to the nonequilibrium partition function [6]

Za = n−1
a

〈
exp

⎡⎣−β

⎛⎝1
2
maC

2
a +
∑
k≥1

Xkah
(k)
a

⎞⎠⎤⎦〉 . (3.53)
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This nonequilibrium partition function gives the chemical potential of species
a in the form

μ̂a = − (maβ)−1 ln Za.

If there are N1, N2, · · · , Nr molecules, respectively, for each species in the
mixture, the total partition function is given by the product

Z =
∏
a

Z
Na
a , (3.54)

and it can be shown that the nonconserved variables are related to the gen-
eralized potentials by the relation [6]

Φka = −kBT

V

(
∂

∂Xka
ln Z

)
T,p,N,X

(k ≥ 1; r ≥ a ≥ 1) . (3.55)

Thus by calculating the nonequilibrium partition function and inverting this
relation, the generalized potentials can be computed in terms of T, p,Na, and
Φka. However, it is not trivial to solve this problem because the nonequi-
librium partition function is not known explicitly, although it is possible to
implement the procedure precisely for some particular flow configurations. For
this reason, rigorous forms for the generalized potentials are not known yet in
generality. Therefore, we will discuss a general theory with approximate forms
for the generalized potentials.

The generalized potentials Xka may be written as [5, 6]

Xka = −Φkag
(k)
a , (3.56)

where the scalar function g
(k)
a generally depends on the nonconserved variables

{Φka} in addition to temperature and density. In particular, to the lowest order
approximation, g(k)

a may be approximated as

g(1)
a � 1

2pa
, g(2)

a � 3
2pa

, g(3)
a � 1

paĈpaT
, g(4)

a � 1
ρa

. (3.57)

Here Ĉpa is the isobaric heat capacity per unit mass of species a. We will
use these approximations for g

(k)
a in the dissipative terms of the constitutive

equations. In these approximations for Xka, the leading examples of the first-
order cumulant approximation of Λka are

Λ1a = −2paq (Φ)
r∑

b=1

R
(11)
ab Πb,

Λ2b = −2
3
paq (Φ)

r∑
b=1

R
(22)
ab Δb, (3.58)

Λ3a = −paĈpaTq (Φ)
r∑

b=1

(
R

(33)
ab Q′

b + R
(34)
ab Jb

)
,

Λ4a = −ρaq (Φ)
r∑

b=1

(
R

(43)
ab Q′

b + R
(44)
ab Jb

)
,
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where the coefficients R
(qk)
ab are defined by

R
(qk)
ab = (βg)−1

g(q)
a R

(qk)
ab g

(k)
b (3.59)

and q (Φ) is defined by (3.49) and (3.50), where the generalized potentials are
approximated as in (3.57).

At this point, it is useful to examine the flux ψka of nonconserved variable
Φka, which when calculated explicitly may be expressible in a combination of
irreducible moments. The leading examples corresponding to stress tensors,
heat fluxes, and diffusion fluxes are

ψ1a = 〈famaCaCaCa〉 −
2
3
δQa, (3.60)

ψ2a =
2
3
Qa − pa

ρa
Ja, (3.61)

ψ3a =
1
2
Tr(2) 〈famaCaCaCaCa〉 − ĥaPa, (3.62)

ψ4a = Pa, etc., (3.63)

where Tr(2) denotes taking the trace of the first two or the last two vectors of
the fourth-rank tensor. Therefore, the flux tensor ψka consists of the rank k
Cartesian tensor made up of Ca and lower rank tensors. The rank k tensor is
irreducible unless the trace is taken.

The evolution equations for the nonconserved variables—the constitutive
equations—form an open hierarchy of equations. To obtain a theory of irre-
versible processes, it is necessary to close the open hierarchy. Although the
choice is not unique, we choose the closure so that the flux tensors ψ1a and
ψ3a vanish identically [6, 8, 9]:

〈famaCaCaCa〉 =
2
3
δQa,

(3.64)

Tr(2) 〈famaCaCaCaCa〉 = 2ĥaPa.

Similarly, for higher order flux tensors. Then all the moments of orders higher
than Pa are expressible only in terms of Pa, Qa, and Ja. Thus the theory
is closed to the first thirteen moments or equivalent. The theory of nonlinear
transport processes discussed below is formulated under this closure of the
open hierarchy of evolution equations for nonconserved variables.

In summary, the evolution equations for nonconserved variables limited to
Φka (k = 1, · · · , 4) and under the closure just mentioned are [5, 6]

ρdtΦ̂1a = Zka − 2paq (Φ)
r∑

b=1

R
(11)
ab Πb, (3.65)

ρdtΦ̂2a = Z2a − 2
3
paq (Φ)

r∑
b=1

R
(22)
ab Δb, (3.66)
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ρdtΦ̂3a = Z3a − paĈpaTq (Φ)
r∑

b=1

(
R

(33)
ab Q′

b + R
(34)
ab Jb

)
, (3.67)

ρdtΦ̂4a = Z4a − ρaq (Φ)
r∑

b=1

(
R

(43)
ab Q′

b + R
(44)
ab Jb

)
, (3.68)

where the kinematic terms are summarized in Table 3.1. This set combined
with the conservation laws (3.25)–(3.28) constitutes the generalized hydro-
dynamic equations for irreversible processes described by the macroscopic
variable set (ρ, ca,u, E , Φka : k = 1, · · · , 4; 1 ≤ a ≤ r). This set represents the
thermodynamic variables because a generalized theory of irreversible thermo-
dynamics can be formulated on the manifold spanned by them.

It is convenient to introduce the composite hydrodynamic parameter Nδ—
the nonuniformity parameter—defined by [5,6, 10]

Nδ = γ0N
2
MN−1

Re =
√

2π
γ0

NMNKn, (3.69)

where NM, NKn, and NRe are the Mach, Knudsen, and Reynolds number,
respectively, defined by

NM =
ur√
γ0kBT

,

NKn =
l

L
,

NRe =
ρrurL

η
,

γ0 is the polytropic ratio, ur is the reference flow velocity, l is the mean free
path, L is the characteristic length, and ρr is the reference density. Then it can
be shown that the generalized hydrodynamic equations reduce to the classical
hydrodynamic equations in the limit of Nδ tending to zero. This is the reason
for the terminology of generalized hydrodynamics used here.

3.4.2 Nonlinear Constitutive Equations

The nonconserved variables Φka of the thermodynamic variable set gener-
ally evolve on a faster timescale than the conserved variables consisting of
(ρ, ca,u, E : 1 ≤ a ≤ r). Therefore on the timescale of evolution for Φka, the
conserved variables remain virtually constant. Therefore, the nonconserved
variables reach their steady-state values before the conserved variables change
significantly. On such timescales, we may then set the substantial time deriva-
tives of Φ̂ka equal to zero in the generalized hydrodynamic equations. Further-
more, it can be also shown [5,6,10] that in the limit of small Nδ, the kinematic
terms Zka may be approximated by the forms given in (3.42). In such a limit
of Nδ, the constitutive equations for nonconserved variables become
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− [∇u](2) − q (Φ)
r∑

b=1

R
(11)
ab Πb = 0 (3.70)

−∇ lnT − q (Φ)
r∑

b=1

(
R

(33)
ab Q′

b + R
(34)
ab Jb

)
= 0, (3.71)

− p

ρa
da − q (Φ)

r∑
b=1

(
R

(43)
ab Q′

b + R
(44)
ab Jb

)
= 0, (3.72)

where the constitutive equation for Δa is not listed because Δa = 0 identically
for dilute monatomic gases and there thus holds the relation

pv5/3 = constant, (3.73)

a well known relation in the adiabatic expansion of an ideal gas. These nonlin-
ear constitutive equations in the adiabatic approximation [5,6,10] at small Nδ

form the basis of a theory of nonlinear transport processes considered in this
work. For large Nδ, the full set of generalized hydrodynamic equations pre-
sented must be solved, but then the problem defies relatively simple treatment
as done here and hence must be handled numerically.

3.4.3 Nonlinear Transport Coefficients

To calculate nonlinear transport coefficients from (3.70)–(3.72), it is necessary
to solve them for Πa, Q′

a, and Ja. For the purpose, we examine the argument of
the nonlinear factor q(Φ), the dissipation function κ2, which is in the quadratic
form,

κ2 = gβ

r∑
a=1

r∑
b=1

[
Πa : R

(11)
ab Πb + Q′

a ·
(
R

(33)
ab Q′

b + R
(34)
ab Jb

)
+Ja ·

(
R

(43)
ab Q′

b + R
(44)
ab Jb

)]
. (3.74)

It is useful to note that there follow from the definitions of the collision bracket
integrals the symmetry relations

R
(lk)
ab = R

(kl)
ba (3.75)

because the collision bracket integrals are symmetrical with respect to inter-
change of species indexes and concurrent interchange of indexes l and k. These
symmetry properties underlie the Onsager reciprocal relations of the coeffi-
cients. On using the constitutive equations (3.70)–(3.72) in (3.74), κ2 can be
written as

κ2 = −q−1gβ

r∑
a=1

[
Πa : [∇u](2) + Q′

a · ∇ lnT + Ja · p

ρa
da

]
. (3.76)
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Equations (3.70)–(3.72), which are quasi-linear, can be solved for Πa, Q′
a, and

Ja. The solutions may be written as

Πa = −q−1
r∑

b=1

(
S−1
)
ab

[∇u](2) , (3.77)

Q′
a = −q−1

r∑
b=1

(
M−1

)(33)
ab

∇ lnT − q−1
r∑

b=1

(
M−1

)(34)
ab

p

ρb
db, (3.78)

Ja = −q−1
r∑

b=1

(
M−1

)(43)
ab

∇ lnT − q−1
r∑

b=1

(
M−1

)(44)
ab

p

ρb
db, (3.79)

where S is the matrix consisting of R
(11)
ab

S =
(
R

(11)
ab

)
(3.80)

and similarly M is a matrix defined by

M =
(

R(33) R(34)

R(43) R(44)

)
, (3.81)

where the submatrices R(33) and so on are matrices made up of R
(33)
ab and so

on like matrix S. If the nonlinear factor q (Φ) were equal to unity, (3.77)–(3.79)
would be the linear constitutive equations for Πa, Q′

a, and Ja. The nonlinear
factor q (Φ) now can be expressed in terms of thermodynamic forces. To this
end, we substitute (3.77)–(3.79) in (3.76) to obtain κ2 in the form,

q2 (κ)κ2 = χ2,

where

χ =
√

gβ

⎡⎣ r∑
a,b=1

(
S−1
)
ab

[∇u](2) : [∇u](2)

+
r∑

a,b=1

(
M−1

)(33)
ab

∇ lnT · ∇ lnT +
r∑

a,b=1

p

ρb

(
M−1

)(34)
ab

db · ∇ lnT

+
r∑

a,b=1

p

ρa

(
M−1

)(43)
ab

da · ∇ lnT +
r∑

a,b=1

p2

ρaρb

(
M−1

)(44)
ab

da · db

⎤⎦1/2

.

(3.82)

Therefore the dissipation function κ is now given only in terms of thermody-
namic forces and collision bracket integrals:

κ = sinh−1 χ.
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Substituting this result in (3.77)–(3.79) and noting that

q−1 (κ) =
κ

sinhκ
=

sinh−1 χ

χ
≡ qχ, (3.83)

we obtain the solutions of the quasi-linear constitutive equations

Πa = −qχ

r∑
b=1

(
S−1
)
ab

[∇u](2) , (3.84)

Q′
a = −qχ

r∑
b=1

[(
M−1

)(33)
ab

∇ lnT +
p

ρb

(
M−1

)(34)
ab

db

]
, (3.85)

Ja = −qχ

r∑
b=1

[(
M−1

)(43)
ab

∇ lnT +
p

ρb

(
M−1

)(44)
ab

db

]
. (3.86)

These nonlinear constitutive equations suggest the following nonlinear trans-
port coefficients1:

η = qχ

r∑
a,b=1

(
S−1
)
ab

, (3.87)

λ = qχ

r∑
a,b=1

(
M−1

)(33)
ab

, (3.88)

DTa = qχ

r∑
b=1

1
ρb

(
M−1

)(34)
ab

, (3.89)

Dab = qχ
p

ρb

(
M−1

)(44)
ab

, (3.90)

kTb =
ρb

p

(
M−1

)(43)
ab

(M−1)(44)ab

. (3.91)

These nonlinear transport coefficients, except for the thermal diffusion ratio
kTb, depend on thermodynamic gradients (forces) and tend to the first-order
Chapman–Enskog transport coefficients, as can be readily verified by using
the definitions of matrices S and M. Thus,

η0 =
r∑

a,b=1

(
S−1
)
ab

, (3.92)

λ0 =
r∑

a,b=1

(
M−1

)(33)
ab

, (3.93)

1 These nonlinear transport coefficients were derived by the present author in the
early 1980s in connection with the theory of irreversible thermodynamics [11–15].
Especially, the non-Newtonian viscosity derived has been applied rather exten-
sively to rarefied gas dynamics and the rheology of fluids. See [5, 6, 10] and the
references cited therein.



44 3 Transport Processes in Monatomic Gases

D0
Ta =

r∑
b=1

1
ρb

(
M−1

)(34)
ab

, (3.94)

D0
ab =

p

ρb

(
M−1

)(44)
ab

. (3.95)

Substituting these limiting values in the expressions for the nonlinear trans-
port coefficients in (3.87)–(3.90), nonlinear transport coefficients can be ex-
pressed in insightful forms:

η = η0qχ, (3.96)
λ = λ0qχ, (3.97)

DTa = D0
Taqχ, (3.98)

Dab = D0
abqχ, (3.99)

in which the χ in the nonlinear factor qχ may be also expressed in terms of
η0, λ0, Dab, and so on as well as various gradients such as [∇u](2) and so on.
In this manner, we now have derived thermodynamic force dependent nonlin-
ear transport coefficients, namely, non-Newtonian shear viscosity, non-Fourier
thermal conductivity, non-Fickian diffusion coefficients, and so on. These non-
linear transport coefficients reduce to the first-order Chapman–Enskog trans-
port coefficients as χ → 0 and also require only linear transport coefficients to
describe nonlinear transport processes. This is interesting because nonlinear
transport coefficients are characterized only by linear transport coefficients
and thermodynamic forces in addition to thermodynamic variables such as
temperature and density. Some examples of the application of nonlinear trans-
port coefficients will be shown.

3.5 Applications of Nonlinear Transport Coefficients

It is well known that the Chapman–Enskog viscosity and thermal conductivity
do not depend on density. However, non-Newtonian viscosity and non-Fourier
thermal conductivity depend on density because χ is inversely proportional to
n or pressure. Therefore we have the limiting behavior of η and λ as follows:

η ∼ n lnn−1, (3.100)
λ ∼ n lnn−1,

that is, η and λ vanish as the gas rarefies. This indicates that the regime of
density in which transport coefficients are independent of density is rather
limited in contrast to the prediction by Maxwell’s kinetic theory [16]. Such a
regime is confined to the rather narrow range around the normal density of
fluids because transport coefficients also increase rapidly with density beyond
normal density as the fluid becomes dense. The particular behavior indicated
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by the density dependence in (3.101) has significance for rarefied gas dy-
namics, as demonstrated by various applications [17–21] of the generalized
hydrodynamics equations from which the nonlinear transport coefficients pre-
sented here are derived. In the following, we give brief discussions of their
applications to nonlinear flow processes in rarefied gases.

3.5.1 Non-Newtonian Flow in Rarefied Gases

It is generally known in rheology [22,23] that if a fluid is complex, that is, has
an internal structure, its viscosity tends to be non-Newtonian and requires a
constitutive equation other than the Newtonian law of viscosity for Newtonian
flow. Dynamically, such behavior arises from complicated interactions between
constituent components making up the molecules.

Even if the fluid is so dilute as to be regarded as rarefied, non-Newtonian
behavior can also arise because of the nonlinear dynamics necessitated by a
large value of the nonuniformity parameter Nδ. This non-Newtonian behavior
in viscous flow is clearly indicated by the viscosity formula presented earlier,
(3.87). If the nonlinear viscosity η is plotted against

γ ≡
∥∥∥[∇u](2)

∥∥∥ =
[
[∇u](2) : [∇u](2)

]1/2

, (3.101)

which is the shear rate, then η decreases as the shear rate γ increases, that
is, the fluid is thixotropic. Unfortunately, because such shear-thinning non-
Newtonian viscosity is not directly measured for dilute gases, it is not directly
verifiable in comparison with experimental data on η. However, it is possible
to infer such shear-thinning behavior by examining gas flows in various flow
configurations. Here we briefly discuss examples flow behavior exhibited by
the non-Newtonian viscosity formula (3.87).

First, we plot η as a function of γ with a hard sphere gas as an example
to show the shear-thinning behavior mentioned. It is preferable to use non-
dimensionalized quantities, so we reduce relevant flow variables as follows:

ξ = rL−1, u∗ = u/ur, T ∗ = T/Tr,

p∗ = p/pr, ρ∗ = ρ/ρr, η∗0 = η0/ηr,

where the subscript r refers to the reference variable, L is a characteristic
length of the flow, and the reference speed may be chosen with the gas kinetic
mean speed at reference temperature Tr

ur =

√
8kBTr

πm
. (3.102)

For a hard sphere gas, the shear viscosity is given by

η0 =
5
√
mkBT

16
√

πσ2
. (3.103)
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If we choose ηr as

ηr =
5
√
mkBTr

16
√

πσ2
,

then it follows that
η0 = T ∗1/2ηr.

Furthermore, because
∇u =

ur

L
∇ξu∗,

if only the shear flow is considered, we obtain χ in the reduced form

χ = Nδ
4 (2π)1/4

√
10

T ∗1/2

φ
γ∗, (3.104)

where γ∗ is the reduced shear rate defined by

γ∗ =
[
(∇ξu∗)(2) : (∇ξu∗)(2)

]1/2

.

Therefore, the reduced non-Newtonian shear viscosity of a rarefied gas, defined
by η∗ = η/ηr, is given by the formula

η∗ = T ∗1/2 sinh−1 χ

χ

=
√

10φ

4 (2π)1/4
Nδγ∗

lnH (Nδ, φ, T
∗) , (3.105)

where

H (Nδ, φ, T
∗) =

4 (2π)1/4
NδT

∗1/2

√
10φ

γ∗ +

√
1 +

8 (2π)1/2
N2

δ T
∗

5φ2
γ∗2. (3.106)

The reduced viscosity η∗/T ∗1/2 is plotted against the reduced shear rate γ∗

in Fig. 3.1 when NδT
∗1/2

φ−1 = 10. Clearly, the reduced viscosity is shear rate
dependent and therefore non-Newtonian, decreasing with increasing reduced
shear rate γ∗. The non-Newtonian behavior is exhibited even by a hard sphere
gas if either the nonuniformity number Nδ is sufficiently large or φ is small,
namely, the gas is rarefied, although the shear rate is not too high. Unfortu-
nately, such non-Newtonian behavior of rarefied gas viscosity is not measured
directly. Therefore it is necessary to deduce it from other experimental evi-
dence, such as the boundary layer structure [24], the flow rate through a duct,
or the flow profile.
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Fig. 3.1. Reduced non-Newtonian viscosity vs. reduced shear rate for a hard sphere
fluid. NδT

∗1/2φ−1 = 10

3.5.2 Non-Poiseuille Flow in a Channel

Non-Newtonian flow behavior can manifest itself in the velocity profile of flow
in a channel. By considering the steady-state flow in a rectangular channel of
infinite length for a gas obeying the non-Newtonian viscosity formula (3.105),
it is possible to derive a velocity profile formula. Since details of the analy-
sis are available in the literature [5, 6, 25] and the present work is not aimed
at fluid dynamics discussions, we do not repeat the derivation, but present
only the result. We consider a rectangular channel of width D in the y di-
rection in a suitably chosen coordinate system, which is aligned along the x
axis. The channel length L is assumed to be sufficiently long compared with
the width so that it may be regarded as infinitely long. Its extension in the
z direction is also assumed to be infinite. The gas is subject to a pressure dif-
ference in the x direction. The gas flow is assumed to be laminar. Then flow is
neutral in the z direction but subject to a velocity gradient in the y direction.
In this flow configuration, the flow is reduced to one dimension, and it is neces-
sary to determine the velocity component ux of u along the x axis. This com-
ponent depends on y. The stick boundary conditions are assumed for ux(y) at
the channel walls at y = ±D/2. This means that a steady velocity profile arises
along the y axis, which is not necessarily the well-known Poiseuille type [26].

Upon substituting the non-Newtonian viscosity formula (3.105) in the con-
stitutive equation for the stress tensor

Π = −η [∇u](2) , (3.107)
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which is in turn substituted in the steady momentum balance equation appro-
priate for the flow configuration, there follows the reduced differential equation
for reduced velocity u = ux/ur:

∂

∂ζ

[
Nδ

τ
sinh−1

(
τ
∂u

∂ζ

)]
+ ε

∂φ

∂ξ
= 0. (3.108)

In this equation,

τ =
2 (2π)1/4

Nδ√
5φ

(3.109)

with φ = p/pr (pr = reference pressure), ζ = y/D, ξ = x/L, ε = D/L,
and ur =

√
8kBTr/πm. Also note that ∂φ/∂ξ < 0. Solving this differential

equation subject to the stick boundary conditions u (ζ) = 0 at ζ = ±1/2 on
the reduced velocity u, we obtain the formula for the velocity profile

u = um

(
cosh δ

2 − cosh δζ
)(

cosh δ
2 − 1

) , (3.110)

where

um =
1
τδ

(
cosh

δ

2
− 1
)

(3.111)

with δ defined by

δ =
2 (2π)1/4

ε√
5φ

(
−∂φ

∂ξ

)
. (3.112)

Therefore it follows that

(τδ)−1 =
5φ2

4 (2π)1/2
εNδ

(
−∂φ

∂ξ

) .
Note that um is the maximum velocity of flow in a channel and u reduces to
a parabolic Poiseuille profile [26] as δ becomes small

u = um

(
1 − 4ζ2

)
. (3.113)

In the rarefied gas limit, the velocity profile tends to be rectangular. For
example, if δ = 10, the reduced profile u/um has the form shown in Fig. 3.2.
The tendency for the channel flow profile to become rectangular is therefore a
manifestation of the non-Newtonian viscosity of the gas as it rarefies. In such
a limit, the gas flow becomes ballistic, and a beam is formed.

3.5.3 Non-Poiseuille Flow in a Tube

The rectangular channel flow considered in the previous subsection is an ide-
alization of channel flows in the laboratory or natural conditions. A more
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Fig. 3.2. Reduced velocity profile for the flow of a dilute gas in a rectangular
channel when δ = 10. As δ decreases, the flow profile tends to the Poiseuille profile
of a Newtonian fluid

realistic flow configuration is achieved if tube flow is examined . Such a flow
configuration was carefully studied by Knudsen [27] for rarefied gases. We con-
sider a thin tube aligned along the z axis in the laboratory coordinate system
in which a rarefied gas flows laminarly. The radius of the tube is assumed to
be R, and its length is L, which is sufficiently long, so that the aspect ratio
R/L is very small. The gas is subject to a pressure difference between the inlet
and the outlet. In the approximation in which L may be regarded as being
infinitely long, the flow variables do not depend on z or on the angle θ of the
cylindrical coordinates. Furthermore, if it is assumed that the normal stress
differences are absent to an approximation, it is easy to find

rρur = constant, (3.114)

where ur is the radial velocity component. Since ur = 0 at the boundary—
the tube wall—and the density ρ �= 0 everywhere, it follows that ur = 0.
The angular velocity component is also absent, so it follows that there exists
only the z component uz of velocity u that is nonvanishing. The momentum
balance equation is then decomposed into two equations

∂p

∂r
= 0,

(3.115)

−∂p

∂z
− 1

r

∂

∂r
rΠ = 0,

where p is the pressure and Π = Πrz = Πzr is the rz or zr component of the
stress tensor that is symmetrical. These momentum balance equations must
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be supplemented by the constitutive equation for Π

Π = −η
∂uz

∂r
, (3.116)

where η is the non-Newtonian viscosity, (3.87), in the cylindrical coordinate
system used for the description of the flow in hand. Since the solution of these
equations subject to the stick boundary condition uz(r) = 0 at r = R is well
described in the literature [10, 20, 21, 28, 29], we present only the result. The
flow velocity uz(r) is given by

uz(r) =
R

τδ

[
cosh δ − cosh

(
rδ

R

)]
, (3.117)

where

τ =
[
2η0 (mkBT/2)1/2

]1/2 (√
2nkBTσ

)−1

,

(3.118)

δ =
τRΔp

2Lη0
.

In the limit of small δ, this flow velocity formula reduces to the well-known
parabolic Poiseuille formula [26]

uz(r) =
Δp

4Lη0

(
R2 − r2

)
. (3.119)

Deviation from this velocity profile by the formula (3.117) therefore is a man-
ifestation of the non-Newtonian viscosity of the gas.

It is more instructive to see this effect if we calculate the volume flow rate
defined in the tube flow configuration by

f = 2πn
∫ R

0

drruz(r)

which is easily evaluated by substituting uz(r) given in (3.117)

f =
πR4Δp

8Lη0RT
(1 + Δf) p (3.120)

where

Δf = 8δ−2

[
1
2

cosh δ + δ−2 (cosh δ − 1) − δ−1 sinh δ

]
− 1. (3.121)

For the flow profile given in (3.119), the Hagen–Poiseuille volume flow rate [26]
is obtained
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fhp =
πR4Δp

8Lη0RT
p. (3.122)

Therefore Δf represents deviation from the Hagen–Poiseuille flow rate for a
Newtonian gas. If the non-Newtonian gas flow rate f in (3.120) is plotted
against pressure, a minimum appears in the low-pressure regime, the appear-
ance of which is known as the Knudsen phenomenon —originally called the
Knudsen paradox; see Fig. 3.3. The Knudsen phenomenon is a manifestation
of the non-Newtonian viscosity of a gas in the rarefied density regime. The
Ostwald viscometry is based on the measurement of fhp. The formula for f
can be employed for measuring non-Newtonian viscosity [28].

3.5.4 Shock Wave Width in Dilute Gases

Study of shock wave structures is important for practical engineering in aero-
dynamics and gas dynamics and also for developing the hydrodynamic theory
of flows in general. The ability of a hydrodynamic theory to understand shock
wave structures correctly can serve as a touchstone for testing the truthful-
ness of the hydrodynamic theory. From the standpoint of nonlinear transport
processes, the study of shock structures in gases provides an indirect test
of whether or not the nonlinear transport coefficients or the corresponding
constitutive equations for the stress tensor, heat flux, and diffusion fluxes em-
ployed are useful. Studies of shock wave structures in the literature [6, 8–10]
used the constitutive equations for the stress tensor and heat flux that give
rise to the non-Newtonian and non-Fourier transport coefficients presented in
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Fig. 3.3. Flow rate vs. pressure for a rarefied gas flow through a long thin tube.
Qk is the flow rate experimentally observed by Knudsen and Q = f is the gener-
alized hydrodynamics prediction. [Reproduced with permission from Byung Chan
Eu, Phys. Rev. A 40, 6395 (1989). Copyright 1989 American Physical Society.]
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(3.84) and (3.85) for a single-component gas. Because the process of calculat-
ing shock wave structures is lengthy, we will describe the procedure and then
present the most relevant result, the shock wave width as a function of Mach
number, which is generally used as a gauge of the reliability of a hydrody-
namic theory for shock waves. In the context of transport coefficients, it tests
the correctness of the nonlinear transport coefficients employed.

For steady one-dimensional shock waves in monatomic gases, the steady-
state balance equations for mass, momentum, and energy are employed. If the
wave is taken in the direction of the x coordinate with velocity u, the steady
mass, momentum, and energy balance equations are

d
dx

ρu = 0, (3.123)

d
dx
(
ρu2 + p + Πxx

)
= 0, (3.124)

d
dx

[
ρu

(
E +

1
2
u2

)
+ u (p + Πxx) + Qx

]
= 0, (3.125)

where Πxx and Qx are the xx component of the stress tensor and the x
component of the heat flux, respectively, and E is the internal energy density.
These balance equations are supplemented by constitutive equations for Πxx

and Qx, which we assume are non-Newtonian and non-Fourier:

p

η0
Πxxq (κ) = −4

3
Πxx − 4

3
p
∂u

∂x
, (3.126)

ĥp

λ0
Qxq (κ) = −Qx

∂u

∂x
−Πxxu

∂u

∂x
− ĥ (p + Πxx)

∂

∂x
lnT, (3.127)

where ĥ is the enthalpy per mass per molecule and other symbols have already
been defined. Equations (3.126) and (3.127) are the one-dimensional versions
of the steady-state constitutive equations for stress tensor Π and heat flux Q
in the adiabatic approximation [6, 10]. The set of equations (3.123)–(3.127)
therefore is the steady-state one-dimensional version of the generalized hydro-
dynamic equations in the adiabatic approximation. These equations can be
reduced to a pair of ordinary nonlinear differential equations for velocity and
temperature [6, 8–10]. It can be shown that the shock solutions exist for the
differential equations. The pair of differential equations can be solved numer-
ically and flow profiles can be calculated from the solutions. If the upstream
and downstream densities are denoted by n1 and n2, respectively, the shock
wave width δ may be defined by

δ = (n2 − n1)
(

dn
dζ

)−1

max

(3.128)

where ζ =
√

6/5πx/ (lNM) with l denoting the mean free path defined by
l = (η0/ρu) upstream = η01/ρ1u1. The maximum of dn/dζ occurs at the shock
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Fig. 3.4. Inverse shock width vs. Mach number for argon (a variable hard sphere
model with s = 0.75). The experimental data are from [31–33]. [Reproduced with
permission from Mazen Al-Ghoul and Byung Chan Eu, Phys. Rev. E 56, 2981
(1997). Copyright 1997 American Physical Society.]

transition point. The inverse shock wave width has been measured in experi-
ments by various authors. In Fig. 3.4, the theoretical prediction by the general-
ized hydrodynamic equations (3.123)–(3.127) is compared with experimental
values. The symbols in Fig. 3.4 are experimental data and the solid curve is
the theoretical prediction. The Navier–Stokes hydrodynamic equations have
been applied to calculate shock structures in the literature, but they have been
unsuccessful in correctly predicting the shock structures; most importantly,
the inverse shock wave width predicted by the Navier–Stokes equation has
been much too large, usually, by over a factor of 2, compared with the exper-
imental value. The comparison in Fig. 3.4 indicates that the non-Newtonian
and non-Fourier constitutive equations, namely, the generalized hydrodynamic
equations, are correct for the constitutive equations for the stress tensor and
heat flux of the gas studied. We can conclude that the successful comparison
is another indicator of the correctness of the non-Newtonian viscosity and
non-Fourier heat conductivity discussed in this subsection.

There are more examples of the effects of nonlinear transport coefficients,
but we will not discuss them in this work for lack of space. We refer the reader
to the literature [17–19,30].
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4

Boltzmann Equation for Dilute
Polyatomic Gases

In the kinetic theory of polyatomic gases, internal degrees of freedom must
be taken into account to describe the internal motions, such as rotational
and vibrational motions, of the molecules in collision. For the desired aim, for
example, the Boltzmann equation must be suitably generalized by including
the internal degrees of freedom in the description. Internal degrees of freedom
generally require a quantum mechanical description, but, if the conditions
are appropriate, it is possible to treat them classically. For example, if the
temperature is not so low as to warrant a quantum mechanical description, a
classical theory is permissible except for vibrational degrees of freedom.

In practice, it is sufficient in many cases to blend a classical treatment of
translational degrees of freedom with a quantum mechanical treatment of the
internal degrees of freedom. Such a semiclassical generalization of the Boltz-
mann kinetic equation has been achieved by Waldmann [1] and Snider [2].
They derived a kinetic equation, now called the Waldmann–Snider (WS) ki-
netic equation [3], in which the translational distribution function is described
by a phase space distribution function, whereas the distribution of internal
states is given by the density matrices . When a complete classical treatment
is permitted, it is possible to make the generalization fully classical by postu-
lating a Boltzmann equation for polyatomic gases. In both cases, the kinetic
theory of molecular gases at the formal theory level can be developed in a
parallel manner because the kinetic equations in the two approaches have the
same formal structure except for the details, most importantly, of the collision
terms; the kinematic streaming terms of the kinetic equations are only slightly
different because in the classical formalism, the internal motions are described
with the classical Liouville operator, whereas in the quantum treatment, the
quantum mechanical Liouville operator is used in place of the classical Liou-
ville operator. For this reason and because the classical kinetic equations are
sufficient for the topic discussed in this work, we will formulate the theory
with a classical Boltzmann equation for nonsimple gases. There is a formal
parallelism in the WS kinetic equation and the classical Boltzmann equation
for polyatomic gases, as pointed out earlier, so the generalized hydrodynamics
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equations obtained with the classical kinetic equation can be readily trans-
lated into the forms appropriate in the WS kinetic equation approach if the
classical collision operator is replaced by the Waldmann–Snider collision op-
erator. In this chapter, we will limit our discussion to the Boltzmann–Curtiss
equation [4] after presenting the classical Boltzmann equation for polyatomic
gases and the H theorem. The kinetic theory of polyatomic gases remains to
be studied further in depth.

4.1 Kinetic Equation for Polyatomic Gases

Before presenting the kinetic equation for polyatomic gases, it is necessary to
define some symbols and abbreviations for the set of position and momentum
variables. The position and momentum variables of the polyatomic molecule
consisting (c+ 1) atoms will be denoted, respectively, by {R, rl : l = 1, . . . , c}
and {P,pl : l = 1, . . . , c}, where R and P are the center-of-mass position
and momentum vectors, respectively, and rl and pl the coordinates and
momenta of internal degrees of freedom, respectively. The center of mass
and internal phases will be abbreviated, respectively, by X = (R,P) and
x (rl,pl : l = 1, . . . , c). The combined phase of internal degrees of freedom for
two particles will be abbreviated by x(2) = (x1, x2) in which the subscripts
refer to the molecules involved. It will be convenient to further abbreviate the
phases in the following discussion, so we will also define the symbols

ξ = (P, x) = (P, rl,pl : l = 1, . . . , c) ,

so that the full phase of a molecule is denoted by

(X,x) = (R, ξ) ,

that is, ξ stands for the dynamic variables of a molecule that include the
center of mass momentum and the phase (i.e., coordinates and momenta) of
internal motions of the molecule. The subscript 1 or 2 to ξ will refer to the
molecule involved.

The Poisson brackets for internal degrees of freedom of a molecule, multi-
plied by −i = −

√
−1, will be denoted by

L = −i [HI, ]PB = −i
∑

l

(
∂HI

∂pl

∂

∂rl
− ∂HI

∂rl

∂

∂pl

)
, (4.1)

where HI denotes the classical Hamiltonian for the internal degrees of freedom.
The operator L, called the Liouville operator for the internal degrees of free-
dom, is the classical limit of its quantum analog, the Liouville–von Neumann
operator.

The dilute gas of interest in this chapter will be described by the sin-
glet distribution function f (X,x, t), which is assumed to obey the classical
Boltzmann equation
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∂

∂t
+

P
m
·∇ + mF · ∇P + iL

)
f (R, ξ, t) = R [f ] . (4.2)

In this Boltzmann equation for polyatomic gases, R [f ] is the collision integral
defined by [5]

R [f ] =
∫

dξ2

∫
dξ(2)∗

[
W
(
ξ(2)∗|ξ(2)

)
f∗ (R, ξ∗

1, t) f
∗ (R, ξ∗

2, t)

− W
(
ξ(2)|ξ(2)∗

)
f (R, ξ1, t) f (R, ξ2, t)

]
, (4.3)

where the asterisked quantities are postcollision variables and distribution
functions

ξ(2) = (ξ1, ξ2) ,

and W
(
ξ(2)|ξ(2)∗

)
is the transition probability of finding the final state ξ(2)∗

in the range ξ(2)∗ ∼ ξ(2)∗ + dξ(2)∗ at the end of the collision process, which
transforms ξ(2) to ξ(2)∗. In this mode of notation, W

(
ξ(2)∗|ξ(2)

)
then is the

transition probability of the reversed collision event.
It is important to keep in mind that the transition probability W includes

the Dirac delta functions ensuring the conservation of energy and momentum
in the course of collision. Note that the distribution functions for polyatomic
gases remain uniform within the collision volume in the configuration space
of the center of mass of the molecule, and this is the reason that the same
R is taken for both molecules 1 and 2 in the distribution functions in the
collision integral R [f ]. The kinetic equation is coarse-grained in space in the
aforementioned sense.

When summed (integrated) over all final states, the transition probability
then gives the total cross section σt multiplied by the flux of the collision
process ξ(2) → ξ(2)∗:1∫

dξ(2)∗W
(
ξ(2)|ξ(2)∗

)
= |ξ1 − ξ2|σt. (4.4)

This total cross-section is invariant to variable transformations—canonical
transformations. For the scattering theory foundation for this relation, see
Sec. A.2 of Appendix A.

The transition probability should be invariant to time-reversal transfor-
mation because the equations of motion are invariant to time reversal. Let us
distinguish the time-reversed variables by an overbar. Therefore, there holds
1 Cercignani and Lampis in [5] define the total cross section times flux as the inte-

gral of W (ξ(2)∗|ξ(2)) over ξ(2)∗ in the collision process ξ(2)∗ → ξ(2), which is the
reverse of the process ξ(2) → ξ(2)∗ corresponding to W (ξ(2)|ξ(2)∗). If W (ξ(2)∗|ξ(2))
is the transition probability for the collision process ξ(2)∗ → ξ(2) in which ξ(2)∗ is
the initial state, then integrating over the phase ξ(2)∗, the initial phase, is inap-
propriate. Integration should be over the final phase, namely, ξ(2) of the particular
collision process under consideration.
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the relation between the transition probability of process ξ(2) → ξ(2)∗ and
that of the time-reversed process ξ

(2)∗ → ξ
(2)

W
(
ξ(2)|ξ(2)∗

)
= W

(
ξ

(2)∗|ξ(2)
)
. (4.5)

Integrate this equation over ξ(2) to obtain∫
dξ(2)W

(
ξ(2)|ξ(2)∗

)
=
∫

dξ(2)W
(
ξ

(2)∗|ξ(2)
)
, (4.6)

but because the phase volume remains invariant:∫
dξ(2) =

∫
dξ

(2)
,

the dummy integration variable ξ
(2)

can be renamed ξ(2) and hence it follows
that ∫

dξ(2)W
(
ξ

(2)∗|ξ(2)
)

=
∫

dξ(2)W
(
ξ

(2)∗|ξ(2)
)
. (4.7)

The right-hand side of this equation is proportional to the total cross section,
which is invariant to transformation ξ

(2)∗ → ξ(2)∗. Therefore, from (4.6) and
(4.7) follows the relation∫

dξ(2)W
(
ξ(2)|ξ(2)∗

)
=
∫

dξ(2)W
(
ξ(2)∗|ξ(2)

)
. (4.8)

This relation is necessary to prove the H theorem for the kinetic equation (4.2)
for polyatomic gases and deriving macroscopic evolution equations consistent
with the laws of thermodynamics.

If the classical Liouville operator on the left side of the kinetic equation
(4.2) is replaced by the quantum mechanical Liouville operator for the internal
motion of the molecule

Lq = −�
−1 [HI, ] , (4.9)

where HI is the Hamiltonian operator for the internal degrees of freedom of the
molecule and [A,B] is the commutator of operators A and B. If the collision
integral R [f ] is replaced by the WS collision integral, then (4.2) becomes
the WS kinetic equation for diatomic gases, provided that the polyatomic
molecule is assumed to be diatomic. The abstract operator form for the WS
collision operator is given by [6]

Tρ1ρ2 ≡ Tr2
[
T ρ1ρ2 − ρ1ρ2T † + 2πiT ρ1ρ2δ (K) T †] (4.10)

where ρi are the density matrix for molecule i(i = 1, 2), T is the transition ma-
trix which obeys the quantum mechanical Lippmann–Schwinger equation [7],
K is the free superoperator2—free quantum mechanical Liouville operator,
2 In the notation of Appendix A, the superoperator K can be written in terms of

tetradic Hamiltonian operators as follows:
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and the subscripted trace operator Tr2 means taking a trace over the Hilbert
space of molecule 2; see Sect. A.2 of Appendix A for the scattering theory
derivation of (4.10). When the Wigner transform [8] is taken to put the trans-
lational part of the density matrix into the Wigner distribution function, the
abstract form of the collision operator (4.10) yields the WS collision operator
in the WS kinetic equation [6]

Tρ1ρ2 ⇒ RWS [f ] .

For details of the derivation, refer to the original literature. The point we
emphasize here is that if RWS [f ] replaces R [f ] and Lq is used on the left
side of (4.2), the WS kinetic equation is obtained. Thus the kinetic theory
couched in (4.2) can be readily translated into the kinetic theory based on the
WS kinetic equation.

We also note that, if a rigid rotator is assumed for the polyatomic molecule
and the coordinate variables are appropriately chosen, the kinetic equation
(4.2) becomes the kinetic equation derived by Curtiss [4], which will be used
later, when transport coefficients of rigid diatomic fluids are considered.

4.2 The H Theorem

The kinetic equation for polyatomic gases (4.2) satisfies the H theorem, and
this implies that it is possible to construct a thermodynamic theory of irre-
versible processes in polyatomic gases in a manner parallel to the thermody-
namic theory for simple gases discussed in the previous chapter.

Define the Boltzmann entropy density for the polyatomic gas

ρS = −kB

∫
dξ (ln f − 1) f. (4.11)

We can then show
−
∫

dξ (ln f − 1) R [f ] ≥ 0. (4.12)

Note here that ∫
dξR [f ] = 0. (4.13)

Differentiating (4.11) with t and using the kinetic equation, we obtain the
Boltzmann entropy balance equation for polyatomic gases,

∂

∂t
ρS = −∇ · (JS + ρSu) + σent, (4.14)

K = H0 −H∗
0,

where H0 = H0⊗ I with H0 denoting the free Hamiltonian operator—dyadic—in
the Hilbert space and I is the unit (dyadic) diagonal operator.
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where ρ and u denote the mass density and the mean velocity, respectively,
defined by

ρ =
∫

dξmf (R, ξ, t) , (4.15)

ρu =
∫

dξ
P
m

f (R, ξ, t) , (4.16)

whereas

JS = −kB

∫
dξ

(
P
m

− u
)

(ln f − 1) f (R, ξ, t) , (4.17)

σent = −kB

∫
dξ ln f (R, ξ, t) R [f ] . (4.18)

Here, JS is the statistical mechanics formula for the Boltzmann entropy flux,
and the H theorem is about the positivity of Boltzmann entropy production
σent. By using the relation (4.8), it is easy to show that

σent =
1
4
kB

∫
dξ(2)

∫
dξ(2)∗W

(
ξ(2)|ξ(2)∗

)
ln
(
f∗
1 f

∗
2

f1f2

)
(f∗

1 f
∗
2 − f1f2)

≥ 0. (4.19)

The equality holds at equilibrium, reached as t → ∞. The subscripts 1 and 2
on the distribution functions refer to molecules 1 and 2. The equality holds if
and only if

f eq∗
1 f eq∗

2 = f eq
1 f eq

2 , (4.20)

which holds at equilibrium reached as t → ∞. The superscript eq on the
distribution functions in (4.20) refers to equilibrium.

One important consequence of the H theorem is that by virtue of the
equilibrium condition (4.20), the equilibrium solution for the kinetic equation
(4.2) can be uniquely determined. The argument for the uniqueness of the
equilibrium distribution function proceeds similarly to that for monatomic
dilute gases described on the basis of the Boltzmann equation, which was
presented in Chap. 2. Therefore we may simply present only the result. When
normalized to density in the center-of-mass velocity space, the local equilib-
rium distribution function satisfying (4.20) and the conservation laws of mass,
momentum, and energy are given by

f eq
i (r,pi) =

ni

qc
i

(
miβ

2π

)3/2

exp
(
−3

2
βmiC

2
i

)
exp (−βHI) , (4.21)

where β = 1/kBT and qc
i is the classical internal molecular partition function

qc
i =
∫

dx exp (−βHI) . (4.22)
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If the WS kinetic equation is used, then the classical partition function qc
i

should be replaced by the quantum mechanical version.
Equation (4.14) is the Boltzmann entropy balance equation for polyatomic

gases, which can be the starting point of a thermodynamic theory of irre-
versible processes in polyatomic gases. Such a theory can be formulated in a
manner parallel to that of simple fluids described in [9] to which the interested
reader is referred. The statistical mechanical definitions of S, JS , and σent are
formally identical with the monatomic gas versions except for the internal
degrees of freedom implicit, so it is expected that the theory of irreversible
thermodynamics should also be formally parallel to that for monatomic gases.
In this connection, we note that the theory of irreversible processes consis-
tent with the laws of thermodynamics is formulated in terms of calortropy,
calortropy flux, and calortropy production instead of S, JS , and σent; see [9]
on this subject.

4.3 Generalized Hydrodynamic Equations

The kinetic equation (4.2) can be employed to derive the evolution equa-
tions for macroscopic variables for polyatomic gases in general, which can
also be made consistent with the laws of thermodynamics. The procedure is
completely parallel to that employed for simple fluids based on the Boltzmann
equation for simple gases [9]. Since such a theory of irreversible thermodynam-
ics is not the aim in this work nor is the kinetic theory of general polyatomic
gases going to be studied in comparison with experiment, the theory will be
couched in a special case of polyatomic gases, namely, rigid linear diatomic
molecular gases. It is the simplest example of nonsimple fluids, which allows us
to explain the important basic differences between transport processes in sim-
ple and polyatomic gases. It also will provide the generalized hydrodynamic
equations for hydrodynamic variables, namely, macroscopic variables, which
are required to obtain transport coefficients of rigid diatomic gases that we are
going to use in Chaps. 11 and 12. Therefore, we will describe their derivation
with a particular form of the kinetic equation (4.2 )—the Boltzmann–Curtiss
equation—for such gases and show how the transport coefficients can be ex-
tracted from the generalized hydrodynamic equations derived.

The Boltzmann–Curtiss equation for rigid diatomic gases [4] can be ex-
pressed in terms of Euler angles a, b, and c that specify the orientation of
the rigid molecule. We choose a and b as the polar angles of the angular mo-
mentum j of the molecule, namely, a = θ and b = φ. Then c is the azimuth
specifying the orientation of the molecule in the plane perpendicular to the j
vector. The unit vector of the body axis is denoted by R̂, whose polar angles
will be denoted by ϑ and ϕ. Therefore,

R̂ = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) .
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The center-of-mass position vector will be denoted by r and its conjugate
momentum by p. Therefore in the notation of kinetic equation (4.2), we have
the correspondence (R,P) ⇒ (r,p). This notation puts the kinetic equation
into a more readily recognizable form vis á vis the Boltzmann equation for
simple gases. In this notation, the distribution function f is a function of
variables (p, r, j, c, t), and the kinetic equation (4.2) becomes the Boltzmann–
Curtiss equation with the identification of the internal Liouville operator in
the form

L = −i [HI, ]PB =
j

I

∂

∂c
+ (ωB × j) · ∂

∂j
(4.23)

and the collision integral with the expression

R [f ] =
∫∫∫∫

dp2dΩ2dp∗
rdΩ

∗
2dΩ∗ pr

μr

×σ (p∗r , j
∗, j∗2 |pr, j, j2) (f∗f∗

2 − ff2)
≡ RBC [f ] , (4.24)

where
dΩ = jdjdc sin θ dθ dφ,

pr = p − p2, and μr is the reduced mass. The subscript 2 refers to the
second molecule. For the rigid linear molecular gas considered in the following,
the kinetic equation (4.2) is understood with the aforementioned meanings
for the collision integral term and the internal Liouville operator with the
meanings of coordinates mentioned earlier. We also identify ξ with (p, j, c) for
the abbreviation of variables indicated.

With this preparation, the procedure for deriving generalized hydrody-
namic equations for a molecular gas is completely parallel to that of simple
dilute gases. Therefore, we will be as brief as possible but emphasize the
points of difference from the simple fluid theory. For the aim we have in mind,
we first observe that the collision integral R [f ] given in (4.24) has the same
collision invariants as those for the collision integral in (4.3). The collision
invariants are the mass, momentum,3 and energy of a molecule, which will be
collectively denoted by ψ = (m,P, Ekin + Erot), where Ekin and Erot are the
center-of-mass energy and the rotational energy of a molecule, respectively.
For such collisional invariants,∫

dξψR [f ] = 0. (4.25)

3 By the momentum in this connection is meant the center-of-mass momentum.
The center-of-mass momentum, however, is not in general a collision invariant in
collision processes of polyatomic molecules if there is a transfer of the center-of-
mass momentum to the internal degrees of freedom of the molecule, that is, if
the collision is inelastic. Inelastic collisions giving rise to a portion of the center-
of-mass momentum tranferred to internal degrees of freedom are excluded in the
formulation here.
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4.3.1 Conservation Equations

With the identity (4.25), the kinetic equation (4.2) gives rise to the equation of
continuity, the momentum balance equation, and the energy balance equation

∂ρ

∂t
= −∇ · ρu, (4.26)

∂ρu
∂t

= −∇ · (P + ρuu) , (4.27)

∂ρE
∂t

= −∇ · (Q + ρEu) − P : ∇u, (4.28)

where various macroscopic variables are defined as follows:

ρE (r, t) =
∫

dξ

(
1
2
mC2 + HI

)
f (r, ξ, t) , (4.29)

P (r, t) =
∫

dξmCCf (r, ξ, t) , (4.30)

Q (r, t) =
∫

dξ

(
1
2
mC2 + HI

)
Cf (r, ξ, t) . (4.31)

In these expressions, E is the internal energy density, which includes the contri-
bution from the internal degrees of freedom; P is the pressure (stress) tensor;
and Q is the energy flow, namely, the heat flux. It should be emphasized that
the balance equations are for a single-component gas free of external fields.
In addition to the balance equation for the energy density E , it is useful to
consider the evolution equation for the internal energy of the molecule. For
this purpose, we first define the mean angular momentum and its deviation
from the mean. If the molecule is rigid and has an angular momentum j, the
mean angular momentum J can be defined by

J =
∫

dξjf (R, ξ, t) . (4.32)

The deviation of j from the mean is then denoted by

J = j − J. (4.33)

The total angular momentum of the fluid is equal to the sum of the orbital
and molecular angular momenta,

L = r × p + j. (4.34)

Its mean value will be denoted by

ρL (r, t) =
∫

dξLf (r, ξ, t) . (4.35)
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The mean rotational energy density is defined by

ρErot (r, t) =
∫

dξHrotf (r, ξ, t) , (4.36)

where the rotational Hamiltonian Hrot is given by

Hrot =
J · J
2I

(4.37)

with I denoting the moment of inertia.
The evolution equations for Eint and J can be readily derived by employing

their definitions and the Boltzmann–Curtiss equation. They are, respectively,
given by

∂

∂t
ρErot = −∇· (Qr + uρErot) + Λrot, (4.38)

∂

∂t
ρL = −∇ · ML, (4.39)

where

Qr =
∫

dξC (Hrot −mErot) f (r, ξ, t) , (4.40)

ML =
∫

dξCLf (r, ξ, t) , (4.41)

Λrot =
∫

dξHrot RBC [f ] . (4.42)

The source term in the balance equation for Erot appears because Hrot is not
a collisional invariant. The balance equations (4.38) and (4.39) are absent for
simple fluids.

4.3.2 Evolution Equations for Nonconserved Variables

Nonconserved variables, such as the stress tensor and heat flux, appear in the
conservation laws—the balance equations—presented earlier, so it is neces-
sary to derive the evolution equations for nonconserved variables. To derive
them, first we define molecular moments, which are arranged in the following
manner:

h(1) = m [CC](2) , h(2) = 1
3mC2 − p/n,

h(3) =
[

1
2mC2 + Hrot −mĥ

]
C, h(4) = [JJ](2) , etc.,

(4.43)

where p is the hydrostatic pressure, ĥ is the enthalpy per mass, and n is the
number density. For the dilute gas of interest here, the equation of state is
given by

p = nkBT,
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and the enthalpy per mass by

ĥ =
5kBT

2m
+

Erot

m
.

Mean values of the moments h(i) defined are then given by the formula

Φi =
∫

dξh(i)f (r, ξ, t) , (4.44)

which are identified with the traceless part of the stress tensor and so on

Π = Φ1, Δ = Φ2, Q = Φ3, Θ = Φ4, etc. (4.45)

The evolution equation for Φi (i ≥ 1) is then easily derived if Φi is differenti-
ated with time and the Boltzmann–Curtiss equation is used:

ρ
d
dt

Φ̂i = −∇ · ψ(i) + Zi + Λi, (4.46)

where Φ̂i = Φi/ρ and

ψ(i) =
∫

dξCh(i)f (r, ξ, t) , (4.47)

Zi =
∫

dξf (r, ξ, t)
(

∂

∂t
+

p
m

· ∇ + iL
)
h(i), (4.48)

Λi =
∫

dξh(i)RBC [f ] . (4.49)

Equation (4.46) represents the constitutive equations for nonconserved vari-
ables for the rigid diatomic molecular fluid under consideration. By explicitly
working out the kinematic terms Zi, we obtain the leading members of the
constitutive equations for nonconserved variables:

ρ
dΠ̂
dt

= −∇ · ψ(1) − 2 (p + Δ) [∇u](2) − 2 [Π·∇u](2) + Λ1, (4.50)

ρ
dΔ̂
dt

= −2
3
∇ ·
(
Crot

Cv
Q − Qr

)
− 2Crot

3Cv
(Π + Δδ) : ∇u

−2Crot

3Cv
p∇ · u + Λ2, (4.51)

ρ
dQ̂
dt

= −∇ · ψ(3) − Q · ∇u − ϕ(3) : ∇u − ϕ(J) : ∇J

− (Π + Δδ) · du
dt

− S
I
· dJ

dt
− P · ∇ĥ + Λ3, (4.52)

ρ
dΘ̂
dt

= −∇ · ψ(4) − 2 [S · ∇J](2) + Λ4, (4.53)
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where

ϕ(3) =
∫

dξCCCf (r, ξ, t) , (4.54)

ϕ(4) =
∫

dξCCJf (r, ξ, t) , (4.55)

S =
∫

dξCJf (r, ξ, t) , (4.56)

and

Cv =
(
∂E
∂T

)
v

, Crot =
(
∂Erot

∂T

)
v

. (4.57)

Equation (4.53) for Θ̂ was absent for simple fluids. It describes the evolution of
the stress produced by the rotation of rigid molecules. The constitutive equa-
tions presented here are adequate for describing transport processes in the
rigid diatomic gas under consideration. For the purpose in mind, it is neces-
sary to close the set of nonconserved variables by suitably expressing the non-
conserved variables ψ(i) (i = 1, 3, 4) ,ϕ(3), and ϕ(4) in terms of the variables
included and to calculate the dissipation terms Λi (i = 1, · · · , 4) in a suitable
approximation. The constitutive equations (4.50)–(4.53) together with (4.26)–
(4.28), (4.38), and (4.39) constitute the generalized hydrodynamic equations
for dilute rigid diatomic fluids, which are described by the Boltzmann–Curtiss
equation.

To calculate the dissipation terms Λi, the distribution function f (r, ξ, t)
is first expressed by the nonequilibrium canonical form

f c (r, ξ, t) = exp

⎡⎣βμ− β

⎛⎝1
2
mC2 + Hrot +

∑
k≥1

Xkh
(k)

⎞⎠⎤⎦ , (4.58)

where μ is the nonequilibrium chemical potential, which is the normalization
factor

μ = mμ̂

= −kBT lnQ, (4.59)

Q = n−1

∫
dξ exp

⎡⎣−β

⎛⎝1
2
mC2 + Hrot +

∑
k≥1

Xkh
(k)

⎞⎠⎤⎦ , (4.60)

with Xk denoting generalized potentials characterizing the degree of displace-
ment of the fluid from equilibrium. The generalized potentials were introduced
in a similar context for simple fluids in Chap. 2. As Xk vanish, the fluid ap-
proaches local equilibrium. The theory of irreversible thermodynamics can be
developed on the basis of the nonequilibrium canonical form f c (r, ξ, t) given
in (4.58) in the same manner as for simple fluids. The details of the theory
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of irreversible thermodynamics are not described here because the subject is
not the aim of this work. The general method used for monatomic fluids is
described in the literature [9]. By using the nonequilibrium canonical form f c

in the expression for σent, it is possible to obtain a cumulant expansion [10,11].
The first-order cumulant approximation for σent gives rise to the form for Λi

in the form
Λi = (βg)−1

q (X)
∑
k≥1

R(ik)Xk, (4.61)

where g and q (X) are defined by (2.120) and (2.121) of Chap. 2, but the
dissipation function κ for the fluid of interest here is defined by

κ2 =
∑

k,l≥1

XkR
(kl)Xl (4.62)

where the coefficients R(kl) are the collision bracket integrals given in terms
of RBC [f ] defined by (4.24). With the abbreviation of the collision bracket
integrals

[AB]c =
βg

4 (2s + 1)

∫
dξ

∫
dΓ2f1eqf2eq (A1 + A2 −A∗

1 −A∗
2)

×�s (B1 + B2 −B∗
1 −B∗

2) , (4.63)

where s is the rank of the tensors involved and∫
dΓ2 · · · =

∫∫∫∫∫
dp2dΩ2dp∗

rdΩ
∗
2dΩ∗ pr

μr
σ (p∗r , j

∗, j∗2 |pr, j, j2) · · · ,

the coefficients R(kl) are given by the collision bracket integrals

R(kl) =
[
h(k)h(l)

]
c
. (4.64)

The generalized potentials Xk may be calculated if the nonequilibrium
partition function Q is calculated. To the lowest order approximation, it is
found that

Xi = −giΦi, (4.65)

g1 � 1
2p

, g2 � 3CrotΔ

2pCv
, g3 � 1

ĈpTp
, g4 � 3

2I
,

etc., (4.66)

where g1 and g3 are found in the same forms as those for simple fluids, whereas
g2 differs from the simple fluid form by the factor Crot/Cv and g4 is new.
These results for the generalized potentials can be found if the nonequilib-
rium partition function Q is calculated [12] to first order in Xi. It should be
noted that Ĉp for a rigid diatomic fluid consists of translational and rotational
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parts. With these approximations for Xi and Λi, the the generalized hydro-
dynamic equations (4.26)–(4.28), (4.38), (4.39), and (4.50)–(4.53) presented
here are closed, provided that closure relations are suitably taken for the non-
conserved variables ψ(i) (i = 1, 3, 4) ,ϕ(3), and ϕ(4). These closure relations
are not unique and appear to depend on the flow process under consideration
according to the hydrodynamic flow problems examined so far [9, 13]. This
aspect will be discussed later when specific flow problems are examined.

Because the collision bracket integrals for a single-component fluid are
diagonal with regard to indexes k and l because the collision bracket integrals
corresponding to nonconserved moments belonging to different tensorial ranks
vanish owing to symmetry, the dissipation terms Λi are given by

Λi = − (βg)−1
giR

(ii)Φiq (X) . (4.67)

It will be found convenient to define the material parameters η0, ηb, λ0

η0 =
4p2βg

R(11)
, (4.68)

η0
b =

p2βg

R(22)
, (4.69)

λ0 =
(CpTp)

2
βg

R(33)
, (4.70)

which will turn out to be the linear transport coefficients of the rigid di-
atomic gas of interest when we discuss linear transport processes within the
context of the present theory: η0 will be identified with the shear viscosity,
η0

b with the bulk viscosity, and λ0 with the thermal conductivity. In this set
of linear transport coefficients, the material parameter corresponding to the
second-rank tensor [JJ](2) does not appear owing to the absence of a linear
thermodynamic driving force in the evolution equation for [JJ](2) because the
term [S · ∇J](2) is nonlinear; see (4.53). For this reason, the theory of linear
transport processes of rigid diatomic fluids and associated hydrodynamics can
be discussed with the generalized hydrodynamic equations, excluding (4.53).
In this connection, we note that the relaxation of Θ in the linear approxima-
tion may be discussed with the evolution equation

dΘ̂
dt

= − 1
τΘ

Θ̂, (4.71)

where the relaxation time τΘ is given by the kinetic theory formula,

τΘ =
2Iβgρ
3R(44)

. (4.72)

This relaxation time should be of interest if the effects of rotational motions
in the rigid diatomic fluid are desired. It is expected to be rather short for
dilute gases.
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4.4 Linear Transport Processes

As for the kinetic theory of simple fluids, the constitutive equations (4.50)–
(4.53) contain the essence of most transport processes considered in the lab-
oratory and observed in nature. This is rather evident if we compare them
with their simple fluid counterpart from which we have extracted the infor-
mation on linear transport processes in simple fluids. Therefore, we proceed
to the subject in a manner similar to the theory of linear transport processes
in simple fluids.

Upon linearization of the constitutive equations with respect to the non-
conserved variables and gradients and closing the set with the closures

ψ(1) = ψ(3) = ϕ(3) = ϕ(J) = 0, (4.73)

there follow the linearized constitutive equations

ρ
dΠ̂
dt

= −2p [∇u](2) − 2p
η0

Π, (4.74)

ρ
dΔ̂
dt

= −2Crotp

3Cv
∇ · u − 2Crotp

3Cvη0
b

Δ, (4.75)

ρ
dQ̂
dt

= −ĈpTp∇ lnT − ĈpTp

λ0
Q, (4.76)

ρ
dΘ̂
dt

= − ρ

τΘ
Θ̂. (4.77)

Noted that (4.74)–(4.76) are rigid diatomic fluid generalizations of the Maxwell
equations [14] for Π,Δ, and Q under consideration.

If the substantial time derivatives on the left side are neglected or at the
steady state in the coordinate system moving at the fluid velocity u—namely,
the adiabatic approximation in effect—there arise the constitutive equations
for linear transport processes from (4.74)–(4.76)

Π = −η0 [∇u](2) , (4.78)
Δ = −η0

b∇ · u, (4.79)
Q = −λ0∇ lnT, (4.80)

and we see that η0, η
0
b , and λ0 defined in (4.68)–(4.70) are, respectively, iden-

tified with the shear viscosity, bulk viscosity, and thermal conductivity of the
fluid of interest.

4.5 Remarks

The theory presented here represents the simplest example of the classical
kinetic theory of nonsimple fluids. Although only for the particular case of
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polyatomic fluids, rigid diatomic molecules, it is now quite clear that the
kinetic theory of polyatomic fluids can be similarly developed, and generalized
hydrodynamic equations can be derived for polyatomic fluids in general. It
is also evident that the Waldmann–Snider equation for diatomic fluids can
be used to derive the balance equations and the constitutive equations for
the shear stress Π, excess normal stress Δ, heat flux Q , and so on, in the
same manner as that for the Boltzmann–Curtiss equation. By linearizing the
constitutive equations so derived, it is possible to extract the kinetic theory
formulas for the transport coefficients of polyatomic fluids of interest from
the constitutive equations so derived. Since the methodology is rather clear
by now, we leave their derivations to the reader as exercises. The reader is
also referred to the literature [3] on the subject.
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5

Transport Processes in Dilute Polyatomic
Gases

The kinetic theory of polyatomic gases presented in Chap. 4 indicates that
once the collision cross section is calculated for collision between polyatomic
molecules, the collision bracket integrals can be evaluated as functions of tem-
perature and density. However, such calculations are technically not trivial
because of, first of all, the time- and labor-consuming many-body collision
problem to solve. Recent progress on the subject matter is described in the
literature [1]. There is much theoretical work to be done on the topics. In
this chapter, we will instead devote the space to discuss how flow processes in
dilute nonsimple gases can be studied and transport coefficients of such gases
may be empirically deduced. These are not subjects new to the kinetic theory
of polyatomic gases. The subjects discussed may be regarded as methods for
measuring transport coefficients in the laboratory through the flow processes
discussed, although they may be also regarded as hydrodynamic applications
of the constitutive equations of the nonsimple gases presented in Chap. 4. In
this chapter, ultrasonic wave absorption in nonsimple gases will be discussed
as well as shock wave propagation in them. The former phenomenon repre-
sents a practical method of measuring the bulk viscosity of nonsimple gases,
which is the only practicable method of measuring bulk viscosity. The latter
phenomenon is of practical importance in engineering problems in gas dynam-
ics and aerodynamics, but their continuum mechanics treatment has posed an
interesting challenge to theory.

5.1 Ultrasonic Absorption in Rigid Diatomic Gases

As a sound wave propagates through a fluid, the medium is longitudinally
compressed and decompressed periodically. If an energy dissipation mecha-
nism is present in the medium, the sound wave can be absorbed and dissi-
pated. The subject of sound wave absorption and dispersion has been studied
within the framework of the classical Navier–Stokes theory [2–4] or equivalent
forms of kinetic theory [5–8]. In these theories, a local equilibrium assumption
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is made for the entropy of the fluid. Because as we have seen throughout this
work, the classical hydrodynamics of Navier and Stokes is a limiting theory
of generalized hydrodynamics and the local equilibrium assumption can be
removed, it is expected that the theory of sound wave absorption and dis-
persion should be suitably generalized so as to accommodate situations in
which the aforementioned assumptions become too restricted. The general-
ized hydrodynamics presented in the previous chapter provides a theoretical
tool for achieving the desired aim. Besides the inherent theoretical interest
posed by the phenomena of sound wave absorption and dispersion, exper-
imenters have found that the phenomena provide a practicable method of
measurements [9–11] for bulk viscosity. Since our interest in this work lies in
transport coefficients and theories of their measurements, we discuss a gen-
eralized hydrodynamic theory of sound wave absorption and dispersion in
this section, by which the bulk viscosity of the fluid can be measured more
generally than that in classical theory.

5.1.1 Linearized Generalized Hydrodynamic Equations

Since sound wave absorption and dispersion phenomena necessarily require an
energy dissipation mechanism, it is necessary to consider a nonsimple fluid as
a medium of wave propagation. For this reason, the generalized hydrodynamic
equations (4.26)–(4.28) and (4.50)–(4.53) presented in Chap. 4 meet the min-
imum requirement. Because it is estimated that the relaxation time for Θ,
the mean value of [JJ](2), is rather short compared to those of the stress and
heat flux, the evolution equation for Θ may be ignored from the standpoint
of timescale—the hydrodynamic timescale—appropriate for the phenomena
of interest. For the phenomena under consideration, we will also assume the
following closure relations:

∇ · ψ(1) = −2p0v0λ0

T0Ĉp

[∇∇T ](2) , (5.1)

ψ(2) =
2ρ0Ĉrot

3Ĉv

Q̂, (5.2)

ψ(3) = −p0v0

(
2η0 [∇u](2) + η0

bδ∇ · u
)
, (5.3)

where the subscript 0 for p, v, and T denotes the equilibrium value for
pressure, specific volume, and temperature, respectively, and the specific
heat per mass Ĉp = Cp/m and the rotational specific heat per mass Ĉrot =
Crot/m are assumed constant. With these closure relations, the generalized
hydrodynamic equations mentioned are closed. Their solutions, subject to
suitable initial and boundary conditions, will provide the desired information
on sound wave absorption and dispersion as well as other flow characteristics
if the latter are of interest in the given flow configuration. For this discussion,
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it is assumed that the external shear and temperature gradients are absent
and the fluid is initially in equilibrium. To make the analysis as simple as pos-
sible, we will also assume that the sound wave does not displace the fluid too
far from equilibrium, so that linearized generalized hydrodynamic equations
are sufficient for the description of the process. Thus the relevant generalized
hydrodynamic equations are for the set

(
v,u, E , Π̂, Δ̂, Q̂

)
of macroscopic vari-

ables, and they are linearized as follows [12] :

ρ0
∂v

∂t
= ∇ · u, (5.4)

ρ0
∂u
∂t

= −∇ (p + Δ) − ∇ · Π, (5.5)

ρ0
∂T

∂t
= − 1

Ĉv

∇ · Q − T0αp

κTĈv

∇ · u, (5.6)

ρ0
∂Π̂
∂t

= −∇ · ψ(1) − 2p0 [∇u](2) − p0ρ0

η0
Π̂, (5.7)

ρ0
∂Q̂
∂t

= −∇ · ψ(3) − p0Ĉp∇T − p0Ĉpρ0

λ0
Q̂, (5.8)

ρ0
∂Δ̂

∂t
= −∇ · ψ(2) − 2Ĉrot

3Ĉv

p0∇ · u − 2Ĉrotp0ρ0

3Ĉvη0
b

Δ̂, (5.9)

where the subscript 0 for quantities other than the transport coefficients de-
notes the equilibrium value, κT and αp are the equilibrium isothermal com-
pressibility and isobaric expansion coefficient, respectively,

κT = −v−1
0

(
∂v

∂p

)0

T

,

(5.10)

αp = v−1
0

(
∂v

∂T

)0

p

,

and the closure relations (5.1) and (5.3) are to be taken for ψ(1) and ψ(3). The
transport coefficients η0, η

0
b , and λ0 are the Chapman–Enskog viscosity, bulk

viscosity, and thermal conductivity of a rigid diatomic gas, given in terms
of the collision bracket integrals in Chap. 4. These transport coefficients may
be regarded as phenomenological coefficients, which may then be determined
experimentally. Note that in the present set, the evolution of the internal ro-
tational motion is ignored. Therefore Qr, which appear in (4.38) is neglected
to be consistent with the approximation that does not explicitly take into
account the rotational energy evolution. If the internal rotational motion is of
interest, then the moments Erot, L̂, Θ̂ as well as Q̂r must be chosen as inde-
pendent variables. Also note that the evolution equations are still consistent
with the constraints of the thermodynamic laws represented by the extended
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Gibbs relation for calortropy and the positive calortropy production Ξc. This
constraint appears as the positivity conditions for the transport coefficients
because Ξc for a linear process is given by the expression

Ξc =
1

η0T0
Π:Π +

1
λ0T0

Q · Q +
1

η0
bT0

Ĉrot

Ĉv

Δ2. (5.11)

In this form, the positivity of Ξc implies that the transport coefficients are
positive: η0, λ0, η

0
b > 0.

5.1.2 Solution by Fourier Transform

The linearized evolution equations presented can be solved by the Fourier
transform in time and space. Various variables are transformed as follows:

s(r, t) =
(

1
2π

)4 ∫
dk
∫ ∞

−∞
dω exp (−iωt + ik · r) s̃(k, ω). (5.12)

Inserting it in the linearized generalized hydrodynamic equations (5.4)–(5.9)
and performing a Fourier transform, we obtain

ρ0ωṽ = −k·ũ, (5.13)

ωk·ũ = v0k
2 + k2Δ̃ + kk :Π̃, (5.14)

ĈvωT̃ +
T0αp

κT
ωṽ = k · Q̃, (5.15)

(
iω + τ−1

s

)
kk : Π̃ = iv0kkk �3 ψ̃

(1) − i
4p0

3
k2ωṽ, (5.16)

(
iω + τ−1

q

)
k · Q̃ = iv0kk :ψ̃

(3)
+ ip0v0Ĉpk

2T̃ , (5.17)

(
iω + τ−1

b

)
Δ̃ = iv0k · ψ̃(2) − i

2γ′p0

3
ωṽ, (5.18)

where �3 denotes triple contraction, other symbols are defined by

γ′ =
Ĉrot

Ĉv

, τ−1
s =

p0

η0
, τ−1

b =
2γ′p0

3η0
b

, τ−1
q =

p0Ĉp

λ0
, (5.19)

and a scalar product with k and a double contraction with kk are formed,
respectively, for vector equations and for second-rank tensor equations. The
expressions are also simplified with the following abbreviations:



5.1 Ultrasonic Absorption in Rigid Diatomic Gases 75

Γs =
η0

1 + iωτs
, Γq =

λ0

1 + iωτq
, Γb =

η0
b

1 + iωτb
. (5.20)

Equations (5.13)–(5.18) can be reduced to a pair of algebraic equations for ṽ

and T̃ , which may be written in the following forms:

A11ṽ + A12T̃ = 0,
(5.21)

A21ṽ + A22T̃ = 0

for which we have used

p̃ =
1

v0κT

(
v0αpT̃ − ṽ

)
.

Here, the coefficients are defined by

A11 = −ω2

v0
+ k2

(
1
κT

+ iωΓb +
4i
3
ωΓs

)
,

A12 = −v0αp

κT
k2 +

λ0v0k
4

p0

(
Γb +

4
3
p0v0

T0Ĉp

Γs

)
,

(5.22)

A21 =
T0αpω

κT
− v0ωk

2

Ĉp

(
4
3
η0 + η0

b

)
Γq,

A22 = Ĉvω − iv0k
2Γq.

Therefore the solvability condition is

A11A22 −A12A21 = 0 (5.23)

from which the dispersion relation follows.
It is convenient to use the following dimensionless parameters:

c0 =

√
γkBT0

m
, ω∗ =

ωη0v0

c20
, r∗ =

1
γω∗ , k∗ =

kc0
ω

and abbreviations

ξs =
(

1 +
7
5
iω∗
)−1

, ξq =
(

1 +
19
10

iω∗
)−1

, ξb =
(

1 +
21
4

ifbω
∗
)−1

.

The two parameters r∗ and k∗ are introduced to compare the theoretical
results with experimental data in the literature, where the sound wave ab-
sorption is given in terms of |Im k∗|, whereas the sound wave phase speed
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is given in terms of |Re k∗|. The two quantities mentioned can be calculated
from the dispersion relation (5.23). Because the gas is ideal, we use

p0 = n0kBT0, Ĉv = 5kB
2m , αp = 1

T0
, κT = 1

p0
,

γ = 7
5 , γ′ = 2

5 , ĥ0 = γĈvT0.

We also define the Eucken number

fE =
9γ − 5

4
(5.24)

and denote the Eucken ratio [13] of the bulk viscosity to the shear viscosity
by

fb =
η0

b

η0
. (5.25)

The dispersion relation then can be expressed as a polynomial of k∗

B6k
∗6 + B4k

∗4 + B2k
∗2 + B0 = 0, (5.26)

where the coefficients are given by the formulas

B0 = −5
2
,

B2 =
5
2

+ iω∗
(

5
2
fbξb +

10
3
ξs +

19
4
ξq

)
,

B4 = −i
95
28

ω∗ξq −
19
3
ω∗2
(

2
7
ξs +

2
7
ξq +

3
4
fbξb

+
3
14

fbξq − ξsξq −
3
4
fbξqξb

)
,

B6 =
361
30

ω∗4ξq

(
8
21

ξs + fbξb

)(
1 +

3
4
fb

)
. (5.27)

Although (5.26) can be solved in closed analytic form, the solutions are not
in forms readily interpretable physically. It is therefore useful to consider the
limiting case of low frequency before the equations are solved numerically.

Before proceeding to the question, it appears useful to note the relation of
the present set of evolution equations to the result obtained on the basis of the
Navier–Stokes theory in the literature. Clearly, the present set generalizes the
classical Navier–Stokes theory [6, 7] because the latter is recovered from the
former as the time derivatives of Π̂, Q̂, and Δ̂ and the higher order moments
ψ(1) and ψ(3) are neglected.

Moraal and McCourt used a moment method in their work [5], in which
approximations were made directly on the kinetic equation. They derived a set
of evolution equations comparable to (5.4)–(5.9), although the details are dif-
ferent, including the closure relations for higher order moments. Because of the
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differences in the details of the evolution equations, their dispersion relation
[(4.10 ) in [5]] is different from the present dispersion relation (5.26). A salient
difference between the Moraal–McCourt theory and the present theory is that
their dispersion relation in the second-order approximation, which they use
in their comparison with experiment, is quartic with respect to k, whereas
the present theory predicts a dispersion relation of order six. This indicates
that their kinetic theory treatment amounts to a further approximation with
regard to the ωτ dependence. Therefore, the present method of generalized
hydrodynamics, although using the same number of moments as the theory of
Moraal and McCourt, differs from it in the way the kinetic equation is treated;
in the present method, the generalized hydrodynamic equations are first de-
rived and then suitably approximated, whereas the Moraal–McCourt method
first approximates the kinetic equation and then derives the moment equations
therefrom. The generalized hydrodynamics approach is more convenient for
inevitable approximations in a thermodynamically consistent manner because
the generalized hydrodynamic equations derived from the kinetic equation are
exact within the framework of the kinetic theory used and thus allow us to
see the macroscopic implications directly when they are approximated. The
possibility of making the theory thermodynamically consistent at the order of
approximation taken is another advantage of the generalized hydrodynamics
approach.

In the low-frequency limit, that is, as ω∗ → 0,

B6 → 0,

B4 → −i
95
28

ω∗ −
(

205
56

+
19
14

fb

)
ω∗2,

B2 → 5
2

+ i
(

97
12

+
5
2
fb

)
ω∗ +

(
1643
120

+
105
8

f2
b

)
ω∗2. (5.28)

This means that the solutions of the dispersion relation in this limit yield the
sound modes,

k∗ = ±
[
1 − i

1
2

(
197
105

+ fb

)
ω∗ −

(
8563
4200

+
16
35

fb + 3f2
b

)
ω∗2
]
, (5.29)

and the thermal modes,

k∗ = ± (1 − i)

√
7

19ω∗ . (5.30)

5.1.3 Application of the Theory

As a test of the theory presented, the sound wave absorption coefficient and
dispersion calculated from the dispersion relation (5.26) have been compared
with the experimental data on nitrogen gas by Greenspan [14] in Fig. 5.1. The
temperature of nitrogen was T = 300K. For the figure, the value of fb was
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Fig. 5.1. Sound wave absorption coefficient log |Im k∗| and dispersion log |Re k∗|
vs. reduced inverse frequency log r∗ for nitrogen at T = 300 K. The ordinate is for
either log |Re k∗| or log |Im k∗| in the common scale as indicated. The solid curve is
from generalized hydrodynamic theory, the dotted curve is from the Navier–Stokes
theory, and the broken curve is from the Moraal–McCourt theory. The symbols are
experimental values reported by Greenspan [14]. The value of fb is 0.8. [Reproduced
with permission from Byung Chan Eu and Young Gie Ohr, Phys. Fluids 13, 744
(2001). Copyright 2001 American Institute of Physics.]

adjusted so that the classical theory and the generalized hydrodynamic the-
ory coincide at the large r∗ = 1/γω∗ limit, where the classical Navier–Stokes
theory is adequate. It was found that fb = 0.8 is an adequate value for the
purpose. This also means that the value of the bulk viscosity is η0

b = 0.8η0

according to the sound wave absorption measurement. In effect, it amounts to
measurement of bulk viscosity. This is tantamount to treating the constitutive
equations (5.7)–(5.9) as empirical constitutive equations where the transport
coefficients are empirically determined. The solid curve is the result of the
present theory and the symbols are the Greenspan data for sound wave absorp-
tion (lower curve) and sound wave dispersion (upper curve). The linearized
generalized hydrodynamic theory is much improved over the Moraal–McCourt
theory result in the small r∗ (high-frequency) region. But there is still room for
improvement, especially, for the sound wave absorption coefficient. Because a
small r∗ means a long relaxation time for nonconserved variables, the linear
approximations for the dissipation terms Λ(k) in the present linear analysis
may be inadequate in the small r∗ regime. However, because removal of the
linear approximation produces nonlinear evolution equations, which require
numerical solution of nonlinear evolution equations, the method of extracting
the sound wave absorption and dispersion coefficients will differ [15] from the
Fourier transform method used here.
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The Navier–Stokes theory yields a qualitatively correct result for the ab-
sorption curve, whereas it is poor for the dispersion curve in the small r∗ re-
gion. The comparison presented indicates that there is still room for improve-
ment in the theory in some aspects of the phenomena, such as the role of inter-
nal energy relaxation and the effects of nonlinearity in the dissipation terms
in the stress and heat flux evolution equations. These aspects can be readily
included in the generalized hydrodynamic approach but will require numerical
solution techniques different from that employed in the present theory.

To show the utility of the theory for other gases, the sound wave absorption
intensity of normal H2, para H2, normal D2, ortho D2, and HD gases have
been calculated and the results have been compared with the data reported by
Sluijter et al. [9]. T = 293K was chosen in the light of the high-temperature
approximations for γ, γ′, Cv, and so on, which were used in the derivation of
the dispersion relation.

In Fig. 5.2, comparison is made between the experimental and theoretical
values for |Im(k∗)|, plotted against r∗ = 1/γω∗ for normal H2 and para H2

at T0 = 293K. The open circles denote the values for normal H2 and the
filled circles are for para H2. The solid curve is the prediction by the present
theory and the broken curve is the prediction by the Navier–Stokes theory.
The values of fb for both curves were fb = 35. The present theory is much
better than the Navier–Stokes theory in the low-frequency regime.

In Fig. 5.3, a similar comparison is made for normal D2, ortho D2, and
HD at T0 = 293K. The open circles are for normal D2, the filled circles
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Fig. 5.2. Sound wave absorption coefficient log |Im k∗| vs. inverse reduced frequency
log r∗. The open circles are for normal H2 and the filled circles are for para H2. The
solid curve is the prediction by the generalized hydrodynamic theory and the broken
curve is the prediction by the Navier–Stokes theory. fb = 3.5 and η0 = 88.2 μP.
[Reproduced with permission from Byung Chan Eu and Young Gie Ohr, Phys.
Fluids 13, 744 (2001). Copyright 2001 American Institute of Physics.]
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Fig. 5.3. Sound wave absorption coefficient log|Im k∗| vs. inverse reduced frequency
log r∗ for normal D2, ortho D2, and HD at T0 = 293K. The open circles are for
normal D2, the filled circles are for ortho D2, and the dotted circles are for HD.
The solid curve is the prediction by the generalized hydrodynamic theory and the
broken curves are the predictions by the Navier–Stokes theory. fb = 22 for D2 and
η0 = 123 μP for D2, whereas fb = 2 and η0 = 108 μP for HD. [Reproduced with
permission from Byung Chan Eu and Young Gie Ohr, Phys. Fluids 13, 744 (2001).
Copyright 2002 American Institute of Physics.]

are for ortho D2, and the dotted circles are for HD. The solid curves are
from the present theory and the broken curves are the Navier–Stokes theory
predictions. The following values were taken for fb and η0 : fb = 22 and
η0 = 123μP for D2; fb = 2 and η0 = 108μP for HD, which indicate the values
of the bulk viscosity. The shear viscosity values are from the paper of Sluijter
et al. [9]. Again for the gases examined, the present theory predicts fairly
accurate behavior of the sound wave absorption intensity.

In addition to being a measure of the bulk viscosity, the Eucken ratio
fb = η0

b/η0 is related to the rotational relaxation time τb defined by (5.19),
which may be recast in the form

τb =
15fbη0

4p0
, (5.31)

for which we have used γ′ = 2/5. The numerical values of τb corresponding to
the values of fb, the bulk viscosity, are summarized for N2,H2,D2, and HD in
Table 5.1.

Prangsma et al. [10], for example, report τb = 2.2 × 10−8 s at T = 293K
for ortho-hydrogen. Herzfeld and Litovitz [2] quote τb = 2 ∼ 2.8 × 10−8 s
for hydrogen. Therefore, the aforementioned values are comparable with the
literature values, and the difference may be attributed to the difference in
the sound wave absorption formulas used because the present theory is a
generalization of the classical theory that the authors in the literature use.
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Table 5.1. Rotational relaxation times

molecule τb (s) η0 (μP ) fb

N2 0.084 × 10−8 178.6 0.8
H2 1.2 × 10−8 88.2 35
D2 1.0 × 10−8 123 22
HD 0.08 × 10−8 108 2

The point here is that the values chosen for fb are not so strange as they might
appear at first glance. This aspect may be examined from another direction.
Chapman and Cowling [13] define a quantity ζr = τb/τs, which is comparable
with fb. For the present cases,

ζr =
15
4
fb,

which yields the values ζr = 3 for N2, 131 for H2, 82.5 for D2, and 7.5 for
HD. Generally, the value of ζr ranges from 3 to 20, but Chapman and Cowling
quote 300 for H2 and 200 for D2. This again affirms that the values chosen
for fb do not differ greatly from the literature values. However, the cause
for the noticeably smaller value for HD is not understood at present. It may
have to do with the fact that the HD molecule acts as if it is a loaded sphere
because the center of mass is significantly shifted toward deuterium owing
to the large disparity in the masses of H and D. In any case, the present
comparison indicates that, on the basis of the experimental data employed for
the analysis, H2 and D2 have abnormally large bulk viscosities. To understand
this property better, it is necessary to calculate the bulk viscosity on the basis
of the kinetic theory formula, which would require computation of scattering
cross sections for the molecules concerned. This remains to be done.

In summary, it is shown in this section that generalized hydrodynamic
equations derived from the Boltzmann–Curtiss kinetic equation for dilute rigid
diatomic gases can be employed in an experimental procedure to determine
the bulk viscosities of rigid diatomic gases, such as nitrogen, hydrogen, deu-
terium, and deuterium hydride, from measurements of ultrasonic wave absorp-
tion and dispersion by the gases. The model set of generalized hydrodynamic
equations is applied to study sound wave absorption and dispersion in nitro-
gen, normal H2, para H2, normal D2, ortho D2, and HD or nitrogen. In all
the cases studied, the generalized hydrodynamic theory predicts better results
for the absorption intensity as a function of frequency, although for nitrogen,
the prediction of the absorption curve by the generalized hydrodynamic the-
ory is poorer than that by the Navier–Stokes theory in the high-frequency
regime. This feature is not yet fully understood, but the discrepancy may be
attributed to neglecting the rotational energy relaxation effect. This aspect
remains to be studied. The present generalized hydrodynamic theory may be
applied without linearization to study sound wave absorption phenomena, but
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then it will require numerical solutions of the nonlinear generalized hydrody-
namic equations subject to oscillating velocity and temperature fields. Such a
numerical solution method is not yet developed to determine bulk viscosities
from ultrasound absorption and dispersion measurements.

5.2 Nonlinear Transport Coefficients and Shock Waves

Propagation of shock waves in fluids is influenced by the transport of energy
and momentum in them and can be a source of information on transport
properties of fluids and, in particular, their nonlinearity, as is ultrasonic wave
propagation in fluids discussed in the previous subsection. In most engineering
problems, the situation is reversed because given transport properties of fluids,
one is interested in shock wave structures and their influence on the flow prop-
erties of fluids. In the history of chemical kinetics, shock waves were employed
to study the rates of chemical reactions [16–20], which may be regarded as a
kind of transport property, and to learn about molecular relaxation processes
behind the shock front. To understand shock wave structures, it is necessary
to have correct constitutive equations for the stress tensor and heat flux of
the fluid of interest, and in this sense the study of shock waves is relevant to
the investigation of transport properties of fluids and their nonlinear aspects.
In this spirit, we discuss and show that the generalized hydrodynamic equa-
tions for diatomic gases presented in the previous chapter are quite relevant to
the study of shock structures in the fluids, and the kinetic theory evaluation
of transport coefficients can be valuable for such studies from the completely
molecular theory standpoint. However, because there is only a limited number
of results for computation of transport coefficients as a function of tempera-
ture and density by using the collision cross-section, which is a rather laborious
task to achieve adequately, we can discuss only how shock structures can be
calculated given the information on the transport coefficients at this point.
The discussion is also limited to the cases in which chemical reactions are
absent.

As is the case for ultrasonic wave absorption and dispersion, the gener-
alized hydrodynamic equations presented in (4.26)–(4.28) and (4.50)–(4.53)
in Chap. 4 are the basis of the theory of shock wave propagation in diatomic
fluids. However, to study the topic of interest in this section, we assume the
closure relations,

ψ(1) = ψ(2) = 0,

Qr =
Crot

Cv
Q, (5.32)

and that the rotational angular momentum relaxes so fast that its evolution
can be ignored. We will also employ the adiabatic approximation for noncon-
served variables such as the stress tensor and heat flux—which is tantamount
to the assumption that on the timescale for variation of conserved variables,
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the nonconserved variables are at a steady state in the moving coordinate
system. We consider a one-dimensional shock wave, which is directed along
the x axis in the suitably fixed coordinate system.

5.2.1 Steady Generalized Hydrodynamic Equations

Under the aforementioned conditions, flow velocity has only the x component
which is denoted by u. Then the generalized hydrodynamic equations for the
steady shock wave are given by [21,22]

d
dx

ρu = 0, (5.33)

d
dx
(
ρu2 + p + Δ + Πxx

)
= 0, (5.34)

d
dx

[
ρu

(
E +

1
2
u2

)
+ u (p + Δ + Πxx) + Qx

]
= 0, (5.35)

4
3
p∂xu +

4
3
Πxx∂xu +

4
3
Πxx∂xu +

p

η0
Πxxq(κ) = 0, (5.36)

Qx∂xu + (Πxx + Δ)u∂xu + ĥ (Πxx + Δ) ∂x lnT

+ ĥp∂x lnT +
ĥp

λ0
Qxq(κ) = 0, (5.37)(

Πxx + Δ +
1
3
p

)
∂xu +

p

3ηb
Δq(κ) = 0, (5.38)

where for the flow configuration under consideration

q(κ) =
sinhκ

κ
,

κ =
(mkBT )1/4

√
2pd

(
1

2η0
Π2

xx +
Ĉrot

Cvηb
Δ2 +

1
λ0

Q2
x

)1/2

. (5.39)

Equations (5.33)–(5.35) are the steady-state balance equations for mass den-
sity, momentum, and energy, whereas (5.36)–(5.38) are the constitutive equa-
tions for shear stress, heat flux, and excess normal stress. Here, pressure is
given by the ideal gas equation of state,

p = ρRT (5.40)

and the internal energy by the caloric equation of state,

E =
5
2
RT, (5.41)

where R is the gas constant per unit mass. The linear transport coefficients
η0, λ0, and η0

b can be calculated from the formulas in the previous chapter
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[see (4.68)–(4.70)] if the scattering cross section is known as a function of
energy and scattering angles. Because there is no analytic form for it known
at present, to solve the shock wave equations (5.33)–(5.38) suitable forms must
be assumed for them. One may pattern them after the Sutherland model for
transport coefficients [13].

Integrating the balance equations (5.33)–(5.35), we obtain

ρu = M, (5.42)
ρu2 + p + Δ + Πxx = P, (5.43)

2ρu
(
E +

1
2
u2

)
+ 2u (p + Δ + Πxx) + 2Qx = Q, (5.44)

where M , P , and Q are integration constants with the dimension of momen-
tum per volume, momentum flux per volume, and energy flow per volume,
respectively. Since it is convenient to work with dimensionless equations the
following dimensionless variables are defined:

v = uMP−1, θ = RTM2P−2, φ = pP−1, r = ρPM−2,

σ = ΠxxP
−1, ϕ = QxQ

−1, ψ = ΔP−1, α = MQP−2.
(5.45)

The reduced distance is given by ξ = xl−1 where the length scale is provided
by the mean free path l defined by

l =
η01

ρ1ur
. (5.46)

In this expression and henceforth, the subscript 1 refers to upstream, whereas
downstream will be designated by subscript 2; therefore, ρ1 is the upstream
density and η01 is the upstream Newtonian viscosity at the upstream tem-
perature T1; ur is the reference speed which is taken as the sound speed in
the upstream, and so on. Therefore, if the constants M and P are specifically
chosen so that M = ρ1ur and P = ρ1u

2
r ≡ pr, then

r =
ρ

ρ1
, v =

u

ur
, φ =

p

pr
. (5.47)

Furthermore, if we choose

Q =
λ01Δr

T1l
(Δr = Tr − T1) (5.48)

and
λ01 = ρ1u

3
rl, (5.49)

where Tr is a reference temperature which may be taken as the temperature
at the transition point, then Q may be written as

Q = ρ1u
3
r

Δr

T1
. (5.50)
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Thus Q may be regarded as ballistic energy transport under the temperature
difference Δr.

The transport coefficients η0, η0
b , and λ0 are reduced with respect to the

upstream transport coefficients η01 and λ01, respectively

η∗ =
η0

η01
, η∗b =

η0
b

η01
, λ∗ =

λ0

λ01
. (5.51)

With the reduced variables, the equation of state, the balance equations
(5.42)–(5.44), and the constitutive equations (5.36)–(5.38) may be cast into
six equations with six variables φ, θ, v, σ, ϕ, and ψ:

φv = θ, (5.52)
v + φ + σ + ψ = 1, (5.53)
v2 + 7θ + 2σv + 2ψv + 2αϕ = α, (5.54)
1
η∗

φσq(κ) +
4
3

(σ + ψ + φ) ∂ξv = 0, (5.55)

αβ

λ∗ θϕφq(κ) + (αϕ + vσ + vψ) ∂ξv +
7
2
θ (φ + σ + ψ) ∂ξ ln θ = 0, (5.56)

1
η∗b

φψq(κ) +
(
σ + ψ +

1
3
φ

)
∂ξv = 0. (5.57)

Here, the new dimensionless parameter β is defined by

β =
NPr

θ1
(5.58)

with θ1 denoting the reduced upstream temperature and NPr the Prandtl
number defined with the upstream quantities

NPr =
(
Cp

Cv

)
f−1
E . (5.59)

In this formula fE is the Eucken number [13] defined for a diatomic gas as

fE =
5
2
Ctr

Cv
+

Crot

Cv
, (5.60)

where Ctr is the translational part of Cv. The Eucken number is usually tem-
perature and density dependent. However, we will assume that it is a constant.
Therefore, NPr = 14/19 for a rigid diatomic gas.

The Rayleigh dissipation function κ2 is reduced as follows:

κ = NMπ1/4

√
γ0

2
θ1/4

φ
√
η∗

(
σ2 +

4
5
η∗

η∗b
ψ2 + 2ε

η∗

λ∗ϕ
2

)1/2

, (5.61)
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where

ε =
49
24

√
πγ0

2
NM

[
1 − 25

(
N2

M − 1
7N2

M + 5

)2
]
, (5.62)

γ0 is the polytropic ratio defined by γ0 = Cp/Cv, and NM is the upstream
Mach number defined by

NM =
u1√
7
5RT1

. (5.63)

Therefore, the parameter α is related to NM as follows:

NM =

√
1 + 1

7μ

1 − 1
5μ

, (5.64)

where
μ =

√
49 − 24α. (5.65)

The parameter μ ranges from 0 to 5 at which NM = ∞. Therefore, α = 1 at
NM = ∞.

The boundary conditions for the differential equations (5.55)–(5.57) can be
determined upon observing that σ → 0 and ϕ → 0 as ξ → ±∞. Because (5.55)
and (5.56) are identically satisfied in the limits if v and θ become independent
of ξ at the boundaries, as ξ → ±∞,

σ, ϕ, ψ → 0, (5.66)
θ = φv, (5.67)

v + φ = 1, (5.68)
v2 + 7θ = α. (5.69)

Solving these algebraic equations yields the boundary conditions

v =
1
12

(7 ± μ) , (5.70)

φ =
1
12

(5 ∓ μ) , (5.71)

θ =
1

144
(7 ± μ) (5 ∓ μ) . (5.72)

The upper sign is for upstream and the lower sign is for downstream. On
account of the equation of state, the reduced densities at the boundaries are
given by

r =
12

7 ± μ
. (5.73)

With these boundary conditions, the differential equations (5.55)–(5.57) can
be solved.
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5.2.2 Differential Equations for Reduced Velocity
and Temperature

With the help of (5.52)–(5.57), the reduced excess normal stress ψ can be
calculated as a function of only v and θ:

ψ =
(1 − v − 2θ/3v) (1 − v − θ/v)[

4
3 (η∗/η∗b ) (1 − v) + (1 − v − 2θ/3v)

] . (5.74)

Eliminating variables other than v and θ, the differential equations (5.55) and
(5.56) may be cast into a pair of ordinary differential equations

dv
dξ

=
3θ

4η∗v2 (1 − v)
(
v2 − v + θ + vψ

)
q(κ), (5.75)

dθ
dξ

= − θ

7v2 (1 − v)2

[
3
(
α− v2 − 7θ

) (
v2 − v + θ

)
4η∗

(5.76)

+
βθv (1 − v)

(
α + v2 − 5θ − 2v

)
λ∗ +

3
(
α− v2 − 7θ

)
vψ

4η∗

]
q(κ).

These evolution equations for reduced velocity and temperature can be solved
for shock profiles, subject to the boundary conditions in (5.70 )–(5.73). They
generalize the evolution equations for v and θ in the Navier–Stokes–Fourier
theory [8,23] of shock wave propagation and also those in the generalized hy-
drodynamic theory of one-dimensional shock waves for monatomic gases [22].
These equations for reduced velocity and temperature show that transport
coefficients are directly related to the velocity and temperature, and hence
the measurements of velocity and temperature profiles can yield information
on the linear and nonlinear transport coefficients of the fluid. Examination of
the directional fields of the pair of differential equations for v and θ shows that
shock solutions for the pair exist for all Mach numbers. Therefore, the gener-
alized hydrodynamic equations employed are capable of describing shock wave
propagation in the diatomic fluid under consideration over the entire regime
of Mach number.

5.2.3 Shock Wave Structure

The shock wave structure can be effectively characterized by the shock width,
which is defined by

δ =
n2 − n1

(dn/dz)max

. (5.77)

Here δ is the inverse shock width; n1 and n2 refer to the upstream and down-
stream densities, respectively; and z = x/l1, where l1 is the upstream mean
free path defined with the upstream velocity instead of the upstream sound
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speed. The origin of the coordinate system is fixed at the point where the
density derivative is maximum. This point corresponds to the inflection point
in the density profiles.

Solving the differential equations (5.75) and (5.76) numerically, subject to
the boundary conditions mentioned earlier, the density profiles and the profiles
of other flow variables can be computed as functions of the Mach number, and
the inverse shock width in particular can be calculated. For this purpose, the
linear transport coefficients are modeled after the Sutherland model [13] in
the forms

η∗ =
(

θ

θ1

)0.78

, η∗b =
2
3
η∗, λ∗ =

(
θ

θ1

)1.78

. (5.78)

These forms facilitate the numerical solutions of the differential equations.
Otherwise, the kinetic theory formulas for the transport coefficients (4.68)–
(4.70) must be computed over a wide temperature range. Because of the com-
plexity of computing the scattering cross sections involved, it becomes an
extremely laborious procedure. For this reason, it has not been implemented
for the present shock structure study. The model assumed for the transport
coefficients makes it possible to avoid the practical difficulty mentioned. The
present discussion, at least, illustrates how information on transport coef-
ficients and relaxation processes in nonsimple fluids can be extracted from
measurements of shock wave structures in such fluids. In Fig. 5.4, the inverse
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Fig. 5.4. Inverse shock width vs. Mach number. The solid curve connects the theo-
retical values (filled circles) to guide the eyes, and the broken curve is the prediction
by the Navier–Stokes theory. Other symbols are experimental data. [Reproduced
with permission from Mazen Al-Ghoul and Byung Chan Eu, Phys. Rev. Lett. 86,
4294 (2001). Copyright 2001 American Physical Society.]
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shock width is plotted against the Mach number, and the theoretical results
are compared with the experimental values for various diatomic fluids. The
filled circles (•) are theoretical values for the inverse shock width predicted
by the present generalized hydrodynamic theory, and the broken curve is the
prediction by the Navier–Stokes theory, which yields values much too large if
the Mach number NM exceeds approximately 1.5. Other symbols are experi-
mental data: � by Greene and Hornig [16]; � by Linzer and Hornig [24]; �
by Camac [25]; × by Robben and Talbot [26]; and © by Alsmeyer [27]. The
present theory is capable of predicting the shock structures beyond NM = 10,
but because no experimental data are available for NM ≥ 10, a comparison of
theory with experiment is not feasible in the region.

In summary of this chapter, we have seen how classical kinetic theory can
give rise to generalized hydrodynamic equations, which have been made con-
sistent with the laws of thermodynamics, and they can be used to extract
information on transport coefficients from ultrasonic wave propagation and
also shock wave propagation in nonsimple gases. Inversely, if transport coef-
ficients are calculated from the kinetic theory formulas in generalized hydro-
dynamic equations, then ultrasonic and shock wave propagation phenomena
in nonsimple fluids can be predicted on the basis of the kinetic theory. We
note that the generalized hydrodynamic equations underlying the present the-
ory can be numerically solved by the numerical code developed and available
in the literature [28] and the flow characteristics can be computed with the
solutions. Information on linear and nonlinear transport coefficients can be
thereby extracted with the help of relevant experimental data.

References

1. F. R. W. McCourt, J. J. M. Beenakker, W. E. Köhler, and I. Kuscer, Nonequi-
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Part II

Transport Coefficients of Liquids



6

Equation of State and Equilibrium
Properties of Liquids

We have seen in the previous chapters devoted to dilute gases that transport
properties are expressed in terms of collision bracket integrals, which are equi-
librium ensemble averages of moments weighted by the collision cross section
of bimolecular collisions. However, the equilibrium ensemble distribution func-
tion is Maxwellian because the gas is dilute, and also the equation of state
involved is that of an equilibrium ideal fluid, the ideal gas equation of state.
Therefore, we see that, although the transport coefficients, are physical quan-
tities pertaining to systems in nonequilibrium states, they can be obtained
if equilibrium ensemble averages of dynamic observables—the collision cross
section and moments representative of dynamic events—are calculated with
the help of the equation of state of the gas in equilibrium. This characteris-
tic feature of using an equilibrium distribution function and the equilibrium
equation of state remains unchanged, even if the fluid is not a dilute gas but a
liquid. However, the equilibrium ensemble distribution function involved is no
longer Maxwellian but that of interacting molecules. Neither is the equation
of state that of an ideal gas made up of noninteracting molecules, but for
molecules that are interacting and correlated in space. Therefore, we will find
that the calculation of the transport coefficients of dense gases and liquids
requires the equilibrium pair correlation functions and the equation of state
of interacting molecules.

For this reason, if we are to implement a proper kinetic theory of trans-
port processes in dense gases and liquids, it is essential to pay attention to
and develop methods for calculating equilibrium properties of dense gases
and liquids and, in particular, equilibrium pair correlation functions and the
equation of state because they are indispensable components of the theory.
They will be the subject of discussion in this chapter as an important prepa-
ration for calculating transport coefficients of dense gases and liquids. The
discussion, however, will be limited to the topics that are indispensable for
calculating transport coefficients because equilibrium statistical mechanics is
wide in scope and therefore cannot be covered in a limited space which this
monograph has for the subject.
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6.1 Virial Equation of State

Consider a monatomic (simple) fluid consisting of N molecules contained in
volume V at temperature T . The molecules are assumed to interact through
pairwise additive potentials, such as the Lennard-Jones interaction potential.
The pairwise additivity of potential energies is not essential for the present
theory, but the formalism becomes simpler if it is assumed. The theory can be
easily generalized to include three-body interaction potentials, for example.

The equation of state under the assumption is then given by the expression
[1, 2]

pβ

n
= 1 − 2π

3
βn

∫ ∞

0

drr3 du (r)
dr

exp [−βu(r)] y (r, n, β) , (6.1)

where p is the pressure, n is the number density, β = 1/kBT , u (r) is the
intermolecular potential, and y (r, n, β) is the cavity function defined by its
relation to the pair correlation function g (r, n, β)

y (r, n, β) = exp [βu(r)] g (r, n, β) . (6.2)

This statistical mechanics formula for pressure is called the virial equation
of state. It is exact for the pairwise additive potential assumed and often is
the starting point for numerous theoretical studies in equilibrium statistical
mechanics. Given the intermolecular potential, if the pair correlation function
or the cavity function is known for a fluid, then the equation of state can
be calculated at every value of n and β. For normal states of fluids, the pair
correlation function is routinely computed by Monte Carlo simulation meth-
ods [3] at present. There are also some well-developed approximation methods
based on integral equation theories [4] for the pair correlation function, which
even give analytic equations of state [5, 6, 9, 10] if the interaction potential is
of hard spheres. However accurately the virial equation of state may be com-
putable by simulation methods, it is not suitable for developing a statistical
mechanical theory of transport coefficients for liquids that takes the effects of
excluded volume into consideration because then the excluded volume effects
must be calculated as accurately as possible to achieve the desired aim. But
the virial form (6.1) is unsuitable for calculating the excluded volume. It does
not even enable us to define it properly if the form given in (6.1) is used.

6.2 Generic van der Waals Equation of State

Well before the virial expansion for the equation of state for real fluids was
proposed by Kammerlingh-Onnes [11] and its statistical mechanical derivation
from the virial equation of state (6.1) was given by later workers [12, 13]
in statistical mechanics, van der Waals [14] in 1873 obtained the celebrated
equation of state named after him on the basis of heuristic arguments:(

p + an2
)
(1 − bn) = nkBT, (6.3)
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where a and b are the van der Waals parameters, which are independent of
density and temperature. In particular, nb is the measure of excluded volume
attributable to the finite size of the molecule. Careful studies, however, have
shown that b is not a reliable measure for the excluded volume of a fluid.
The correct measure of excluded volume has been elusive in thermodynamics
and statistical mechanics, although excluded volume plays an important role
in understanding the structure of fluids at high density, as will be seen later
in this work. Science historians [15, 16] report that van der Waals himself
labored unsuccessfully for many years to calculate accurately the excluded
volume. Despite this difficulty and some glaring defects in describing critical
and subcritical behavior of fluids, the van der Waals equation of state has
been a powerful influence in the thermodynamics of fluids ever since its in-
ception. Much effort has been expended to derive it exactly by using methods
of statistical mechanics, but it has not been possible to derive it rigorously
from statistical mechanics. There cannot be an exact derivation of it by sta-
tistical mechanics, and there is an important reason for it, as will be shown
shortly.

6.2.1 A Potential with a Hard Core

The van der Waals equation of state presumes the existence of a hard core for
the molecule and an attractive potential operating in the range of distance
beyond the hard core. To be consistent with this picture of intermolecular
interaction potential, let us assume that the potential energy has the form

u(r) = uh(r) + ua(r),
uh(r) = ∞ for r � σ

= 0 for r > σ, (6.4)
ua(r) = 0 for r � σ

= w(r) for r > σ,

where w(r) is a negative function of r that vanishes as r−m (m ≥ 4) as r → ∞.
The required asymptotic behavior of w(r) ensures convergence of the integral
in the virial equation of state. Then the virial equation of state can be written
in the form

βp

n
= 1 +

2πσ3

3
ny (σ, n, β) +

2π
3
n

∫ ∞

σ

drr3y (r, n, β)
d

dr
f(r) (6.5)

where f(r) is the Mayer function defined by

f(r) = exp [−βua(r)] − 1. (6.6)

In the integration range of the integral in (6.5), the potential energy ua(r) in
the Mayer function may be replaced by w(r), the attractive potential, if the
potential model (6.4) is employed.
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Define the following functions of density and temperature

A (n, β) = − 2π
3β

∫ ∞

σ

drr3y (r, n, β)
d
dr

f(r), (6.7)

B (n, β) =
(2π/3)

∫ σ

0
drr3y (r, n, β) d

drf(r)
1 + (2π/3)n

∫ σ

0
drr3y (r, n, β) d

drf(r)
. (6.8)

Upon using these definitions of parameters A and B, the virial equation of
state (6.5) can be rearranged to the form [17][

p + A (n, β)n2
]
[1 −B (n, β)n] = nkBT, (6.9)

which is formally isomorphic to the van der Waals equation of state (6.3). It
must be emphasized that this form of the equation of state is as exact as the
virial form (6.5). As will be shown shortly, if the density is sufficiently low and
the temperature is sufficiently high, the parameters A and B approach the
van der Waals parameters a and b, respectively, and hence the form in (6.9)
tends to the van der Waals equation of state. For this reason, (6.9) is called
the generic van der Waals (GvdW) equation of state1, and the parameters A
and B are the generic van der Waals (GvdW) parameters. We now see clearly
that the van der Waals equation of state cannot follow from the virial equation
of state (6.5) unless some approximations are made for the derivation, and it
explains why numerous previous attempts at exact derivation of the van der
Waals equation of state have failed.

If the potential is simply hard instead of having a repulsive soft core for
r < σ, then GvdW parameter B must be modified to the form

B (n, β) =

(
2πσ3/3

)
y (σ, n, β)

1 + (2πσ3/3)ny (σ, n, β)
. (6.10)

For a c-component mixture, the equation of state can be expressed in
canonical form if the GvdW parameters are defined by [18]

A =
c∑

i,j=1

Aij (n, β)XiXj , (6.11)

B =
c∑

i,j=1

Bij (n, β)XiXj

⎡⎣1 + n

c∑
i,j=1

Bij (n, β)XiXj

⎤⎦−1

, (6.12)

where Xα (α = i, j) is the mole fraction of species α and
1 Previously, it was proposed to call it the canonical equation of state because it is a

canonical form. All equations of state for fluids that have attactive and repulsive
parts in intermolecular potential energy can be put into the form of the GvdW
equation of state. We propose to use this terminology henceforth for the brevity
of the term.
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Aij (n, β) = − 2π
3β

∫ ∞

σij

drr3yij (r, n, β)
d
dr

fij(r), (6.13)

Bij (n, β) =
2π
3

∫ σij

0

drr3yij (r, n, β)
d
dr

fij(r), (6.14)

with the definition of Mayer function

fij(r) = exp [−βuij(r)] − 1 (6.15)

and σij denoting the contact distance between molecules of species i and j.
This shows that the canonical equation of state (6.9) follows from the virial
equation of state as long as the potential energy has positive repulsive and
negative attractive parts. This further reinforces the notion that (6.9) is the
canonical form for the equation of state of matter.

6.2.2 A Square-Well Potential

Square-well (SW) potentials are simple to use and sometime yield some in-
sightful theoretical results, although they require care in application because
of their inherent discontinuity. We will apply them to examine the canoni-
cal equation of state derived by using the potential model (6.4) given in the
previous subsection. We assume the square-well potential

u(r) = uh(r) + ua(r)

with the hard core (uh) and attractive (ua) parts of the potential given by

uh(r) = ∞ for r � σ

= 0 for r > σ,

ua(r) = 0 for r � σ (6.16)
= −ε for λ > r > σ,

= 0 for r > λ,

where ε and λ are the well depth and width of the attractive potential, re-
spectively.

Because this potential model (6.16) yields the Mayer function in the form

f(r) = −1 for r < σ

= exp (βε) − 1 for σ < r < λ (6.17)
= 0 for λ < r,

it is convenient for performing computation to express this form of Mayer
function in terms of Heaviside step functions
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f(r) = 1 − θ (r − σ) + [exp (βε) − 1] [θ (r − σ) − θ (r − λ)] . (6.18)

Here, θ(x) is the Heaviside step function defined by

θ(x) = 1 for x > 0
= 0 for x < 0. (6.19)

Because

d
dr

f(r) = −δ (r − σ) + [exp (βε) − 1] [δ (r − σ) − δ (r − λ)] , (6.20)

the virial equation of state for the SW potential is given by the expression

βp

n
= 1 +

2πσ3

3
ny (σ, n, β) +

2πσ3

3
n [exp (βε) − 1]

×
[
y (σ, n, β) − γ3y (λ, n, β)

]
, (6.21)

where γ = λ/σ is the range of the potential well reduced by the diameter σ
of the hard core of the molecule. This form of equation of state may be easily
put into the canonical form, and the GvdW parameters A and B are given
by the expressions [17]

A (n, β) =
2πσ3

3β
(
eβε − 1

) [
γ3y (λ, n, β) − y (σ, n, β)

]
, (6.22)

B (n, β) =

(
2πσ3/3

)
y (σ, n, β)

1 + (2πσ3/3)ny (σ, n, β)
. (6.23)

Because of the hard core, the GvdW parameter B has the same form as the
expression in (6.8). These GvdW parameters for the SW potential model will
be useful for studies of transport properties of liquids and, in particular, of
supercooled liquids; see, for example, [19].

Because the GvdW parameters A and B in the SW potential model become
fairly simple, they enable us to examine their limiting behavior in a definite
manner. It is easy to deduce that the cavity function tends to unity as the
density of the fluid decreases. Thus we obtain the limiting behavior of A and B

lim
n→0

A (n, β) =
2πσ3

3β
(
eβε − 1

) (
γ3 − 1

)
=

2πσ3

3
(
γ3 − 1

)
ε [1 + O (εβ)] , (6.24)

lim
n→0

B (n, β) =
2πσ3

3
. (6.25)

Because the volume of the hard sphere is

v0 =
πσ3

6
,



6.2 Generic van der Waals Equation of State 99

the limiting value of B is easily identified with the van der Waals covolume

b = 4v0, (6.26)

whereas the limiting value of A to the lowest order in εβ may be identified
with the van der Waals parameter a:

a = 4v0

(
γ3 − 1

)
ε. (6.27)

This clearly indicates that the van der Waals parameter a is directly related
to the attractive potential energy. The identification here of the van der Waals
parameters a and b clearly shows why rigorous derivation of the van der Waals
equation of state from Gibbsian statistical mechanics has not been possible;
the van der Waals equation of state is an approximate form that can be ob-
tained only if suitable approximations are made to the canonical form of equa-
tion of state (6.9), which is a rigorous result of Gibbsian statistical mechanics
for the potential model assumed. A rigorous derivation of an approximate
equation is an oxymoron.

For completeness, we present the GvdW parameters for mixtures obeying
the square-well models for interaction potentials

uij(r) = u
(h)
ij (r) + u

(a)
ij (r), (6.28)

where the repulsive and attractive parts are defined by

u
(h)
ij (r) = ∞ for r � σij

= 0 for r > σij , (6.29)

u
(a)
ij (r) = 0 for r � σij

= −εij for λij > r > σij ,

= 0 for r > λij . (6.30)

Then because

d
dr

fij(r) = −δ (r − σij) + [exp (βεij) − 1] [δ (r − σij) − δ (r − λij)] ,

the GvdW parameters for mixtures are easily shown to have the forms

A =
c∑

i,j=1

Aij (n, β)XiXj , (6.31)

B =
c∑

i,j=1

Bij (n, β)XiXj

⎡⎣1 + n
c∑

i,j=1

Bij (n, β)XiXj

⎤⎦−1

, (6.32)



100 6 Equation of State and EquilibriumProperties of Liquids

where

Aij (n, β) =
2πσ3

ij

3β
[exp (βεij) − 1] (6.33)

×
[
γ3

ijyij (λij , n, β) − yij (σij , n, β)
]
,

Bij (n, β) =
2πσ3

ij

3
yij (σij , n, β) (6.34)

with γij = λij/σij . If the cavity functions yij (σij , n, β) and yij (λij , n, β)
are evaluated by either simulation methods or integral equations [10, 20, 21]
for pair correlation functions, the equation of state given in terms of GvdW
parameters may be used for studying the thermodynamics of mixtures in the
square-well potential model.

6.3 Free Volume

For the first time in the history of science van der Waals [14] used the notion
of excluded volume, which was attributed to the inherent molecular structure
that results in the repulsive force exerted between molecules. This notion
logically gave rise to the concept of free volume. In the van der Waals line of
thought, the excluded volume of the fluid is given by nb in the van der Waals
equation of state (6.3). Therefore the free volume is naturally defined by the
formula,

vf = v (1 − bn) , (6.35)

where v is the specific volume. This definition suggests that the free volume de-
creases linearly with density and vanishes altogether at a characteristic value
of density given by b−1. It is now well recognized that this behavior of free vol-
ume is unsatisfactory as are some other features of the van der Waals theory.
According to Levelt-Sengers [16], van der Waals himself made considerable
effort to remove the unsatisfactory feature of vf but unsuccessfully.

Numerous authors [22–24] in the literature developed free volume theories
of the macroscopic properties of matter, but free volume has been a rather
elusive quantity to capture quantitatively from the viewpoint of statistical
mechanics. For this reason, free volume theories have been reduced to theories
laden with empirical parameters, which obscure the physics of liquids, and
consequently they have fallen into disuse.

The isomorphism of the canonical equation of state to the van der Waals
equation of state and the unambiguous association of the GvdW parameter
B with the hard core of molecules and, more generally, the repulsive potential
energy naturally suggests that the mean free volume per molecule of the fluid
should be defined by [17]

vf = v [1 −B (n, β)n] , (6.36)

where B (n, β) is defined by (6.8) for fluids with a hard core repulsive potential
or by (6.10) for a soft sphere repulsive potential. Because either of the expres-
sions for B is a rigorous statistical mechanical representation of the GvdW
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parameter B, we now have a rigorous statistical mechanical representation of
mean free volume per molecule :

vf = v

[
1 +

2π
3
n

∫ σ

0

drr3y (r, n, β)
d
dr

f(r)
]−1

(6.37)

for potentials that are repulsive where r < σ. Because the cavity function or
the pair correlation function, given the intermolecular potential, can be com-
puted as accurately as possible by computer simulation, the mean free volume
of a fluid can be accordingly known accurately as a function of temperature
and density. This statistical mechanical representation of the mean free vol-
ume per molecule has been made possible because of the canonical equation of
state (6.9). Because B (n, β) is density and temperature dependent, the mean
free volume is no longer linear with respect to n in contrast to the van der
Waals theory. It can be also a discontinuous function [17, 25, 26] of density if
the temperature is below the critical temperature. The statistical mechani-
cal representation of vf obtained here will be indispensable in calculating the
transport properties of dense gases and liquids later in this work.

6.4 Temperature and Density Dependence of A and B

The van der Waals parameters a and b are constants independent of density
and temperature, as is well known and shown earlier. Their constancy is the
principal reason that makes the van der Waals equation of state defective in
the critical and subcritical phenomena of fluids. Because it is unrealistic to
hope to obtain rigorous closed forms for them by using statistical mechanics
methods, it will be practical to develop some useful models for the GvdW
parameters A and B. Given this motivation, it is logical to investigate their
temperature and density dependence by integral equation methods or com-
puter simulation methods, so that we gain some valuable insights into their
behavior.

To perform such numerical studies, it is convenient to reduce the vari-
ables and equations involved to dimensionless forms. Thus we define reduced
variables

η = v0n, β∗ = T ∗−1 = βε, p∗ = pv0/ε,
A∗ = A/εv0, B

∗ = B/v0.
(6.38)

Then the canonical equation of state can be written in the reduced form:(
p∗ + A∗η2

)
(1 −B∗η) = ηT ∗. (6.39)

For example, the GvdW parameters for the SW potential model have the
reduced forms,

A∗ (η, β∗) = 4β∗−1
(
eβ∗ − 1

) [
γ3y (γ, η, β∗) − y (1, η, β∗)

]
, (6.40)

B∗ (η, β∗) =
4y (1, η, β∗)

1 + 4ηy (1, η, β∗)
. (6.41)
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Fig. 6.1. Density dependence of mean free volume. The solid curve is for T ∗ =
1.25; the dash-dotted curve is for T ∗ = 1.1; and the broken curve is for T ∗ = 0.9.
The broken and dash-dotted curves are for the subcritical regime. [Reproduced with
permission from Byung Chan Eu and Kyunil Rah, Phys. Rev. E 63, 031203 (2001).
Copyright 2001 American Physical Society]

The cavity functions in these expressions for A∗ and B∗ can be calcu-
lated, for example, from the solutions of the Percus–Yevick (PY) integral
equation [20] for the pair correlation function. Such solutions have been ob-
tained for an SW potential, and the cavity functions computed therefrom. As
expected, the free volume is nonlinear with respect to n. The density and tem-
perature dependence of vf/v is shown in Fig. 6.1 for γ = 1.5 and three different
temperatures. Because the critical point is located at T ∗

c ≈ 1.2, ηc ≈ 0.12, the
free volume is for the liquid phase when T ∗ = 1.1 and ηc = 0.9.

The calculated temperature and density dependence of A∗ and B∗ show
interesting and rather insightful behavior, which can guide us in devising
a semiempirical theory of canonical equation of state. The results for the
same potential model as that for the free volume shown are given in Figs.
6.2 and 6.3. The numerical results for them indicate that A∗ and B∗ are
continuous functions of temperature and density if T ∗ > T ∗

c , but become
discontinuous functions if T ∗ < T ∗

c ; the GvdW parameters are discontinuous,
nonanalytic functions in the subcritical regime of temperature. This is the
reflection of the first-order liquid–vapor phase transition that the fluid must
undergo as the density changes from the gas regime to the liquid regime,
and vice versa, if T ∗ < T ∗

c . This behavior should be contrasted with the van
der Waals parameters a and b that remain constant regardless of changes in
temperature and density. It is one of the glaring defects of the van der Waals
theory.
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Fig. 6.2. A∗ vs. ρ∗. The dotted curve is for T ∗ = 1.25, the solid curve is for
T ∗ = 1.218, the dash-dotted curve is for T ∗ = 1.1, and the broken curve is for T ∗ =
1.0. The last two curves are subcritical and undefined in the interval enclosing the
critical point and hence are disjointed. This reflects the discontinuity of subcritical
isotherms. The symbol represents the critical point and ρ∗ = ρσ3. [Reproduced with
permission from Byung Chan Eu and Kyunil Rah, Phys. Rev. E 63, 031203 (2001).
Copyright 2001 American Physical Society]
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Fig. 6.3. B∗ vs. ρ∗. The meanings of the symbol and curves are the same as those
for Fig. 6.2. [Reproduced with permission from Byung Chan Eu and Kyunil Rah,
Phys. Rev. E 63, 031203 (2001). Copyright 2001 American Physical Society]
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The points of discontinuity η1 and η2 (η1 < η2) are, respectively, a little
larger and smaller than the coexisting vapor and liquid density, which ap-
pear to be roughly of the same orders of magnitude as the spinodal densities.
The appearance of discontinuity in A∗ and B∗ is not unique to the PY in-
tegral equation but is present in the other integral equation theories such as
the hypernetted chain integral equation [21] and also in computer simulation
methods [3]. Besides the discontinuities in A∗ and B∗, there are some notice-
able features present in them. For example, the B∗ curves invariably tend to
a nonvanishing asymptote as density increases, which is a manifestation of a
hard core. Another feature is that A∗ becomes negative as the density passes
a threshold value, say, ρ∗th, where ρ∗ = σ3n. This means that, as molecules
in the liquid are packed further and further, the attractive force is gradually
overpowered by the repulsive force and eventually rendered impotent. As a
consequence, the behavior of A∗ is determined by the repulsive hard core. In
such a density regime, the definition of free volume may have to be changed
as follows:

vf = v (1 −B∗
f η) , (6.42)

where

B∗
f = B∗

[
1 + (1 −B∗η)χab

1 + B∗η (1 −B∗η)χab

]
, (6.43)

χab = −A∗β∗

B∗ > 0. (6.44)

The corresponding equation of state is then given by

p∗ (1 −B∗
f η) = ηT ∗, (6.45)

which is akin to the van der Waals equation of state for a hard sphere fluid.

6.5 Model Canonical Equation of State

The numerical study presented in Figs. 6.1–6.3 clearly indicates that the
GvdW parameters A and B are nonanalytic functions of density and tem-
perature at the critical point and in the subcritical regime of real fluids.
Therefore, by incorporating the nonanalyticity into A and B, it should be
possible to construct a model canonical equation of state that is capable of
describing critical and subcritical phenomena. This line of investigation is in
the early stage of development, but there is a development [26] well worth
discussing here to bring it to the fore.

For the aim in mind, it is useful to employ reduced variables defined relative
to the critical parameters (p∗c , ηc, T

∗
c ) . Thus we define

φ = ψ − 1, x = y − 1, t = θ − 1, (6.46)
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where
ψ =

p∗

p∗c
=

p

pc
, y =

η

ηc
=

n

nc
, θ =

T ∗

T ∗
c

=
T

Tc
. (6.47)

The relative reduced variables therefore vanish at the critical point by defini-
tion. It is also useful to define the dimensionless variables

ν = B∗
c ηc, τ =

A∗
cη

2
c

p∗c
, ζ =

ηcT
∗
c

p∗c
, (6.48)

where
A∗

c = A∗ (t = 0, x = 0) , B∗
c = B∗ (t = 0, x = 0) , (6.49)

the values of A∗ and B∗ at the critical point. If the GvdW parameters are
treated as empirical quantities, A∗

c and B∗
c may be chosen as empirical para-

meters. It is useful to observe that the reduced parameter ζ is free of A∗
c and

B∗
c . The relations in (6.48) may be cast into the forms

ηc =
ν

B∗
c

, p∗c =
ν2A∗

c

τB∗2
c

, T ∗
c =

ζνA∗
c

τB∗
c

, (6.50)

which may be compared with the van der Waals theory counterparts

(ηc)vdw =
1

3b∗
, (p∗c)vdw =

a∗

27b∗2
, (T ∗

c )vdw =
8a∗

27b∗
, (6.51)

where a∗ = a/εv0 and b∗ = b/v0. According to the limiting behaviors of A
and B discussed earlier, the constants A∗

c and B∗
c are qualitatively comparable

to the van der Waals parameters a∗ and b∗, and the dimensionless parame-
ters

(
ν, ν2/τ, ζν/τ

)
should correspond to the van der Waals theory values

(1/3, 1/27, 8/27). The former tend to the latter in a special case, as can be
shown later. This correspondence suggests the advantage of building a model
canonical equation of state on the van der Waals equation of state, which is
successful in providing a qualitatively correct theory [27] of critical phenom-
ena. It should be relatively easier to build an improved model on the van der
Waals theory if the canonical form is used for the equation of state.

If the aforementioned reduced variables and parameters ν, τ , and ζ are
used, the reduced canonical equation of state takes the reduced form,[

1 + φ + τ (1 + x)2 A (x, t)
]
[1 − ν (1 + x)B (x, t)] = ζ (1 + x) (1 + t) , (6.52)

where
A =

A∗

A∗
c

, B =
B∗

B∗
c

. (6.53)

If A = B = 1, ν = 1/3, τ = 3, and ζ = 8/3, then (6.52) becomes the
nondimensionalized van der Waals equation of state[

1 − 1
3

(1 + x)
] [

1 + φ + 3 (1 + x)2
]

=
8
3

(1 + x) (1 + t) , (6.54)

which is obviously in the corresponding state form.
The spinodal densities are denoted by ηsl and ηsv, where the subscripts

l and v, respectively, refer to the liquid and vapor branch. These spinodal
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densities are reduced with respect to the critical density ηc:

zk =
ηk

ηc
(k = sl, sv) . (6.55)

Because the spinodal curve shares the same tangent as the critical isotherm
at the critical point, there holds the limit for zk

lim
t→0

zk = 1 (k = sl, sv) . (6.56)

Taking into account the discontinuity of A∗ and B∗ in the subcritical regime,
the following forms may be assumed for the subcritical GvdW parameters:

A∗

A∗
c

=
la∑

i=0

a
(sl)
i (t) (y − zsl)

i + A(sl)
na (t, y − zsl)

for y > zsl, t ≤ 0 (6.57)

=
la∑

i=0

a
(sv)
i (t) (y − zsv)

i + A(sv)
na (t, zsv − y)

for y < zsv, t ≤ 0,

B∗

B∗
c

=
lb∑

i=0

b
(sl)
i (t) (y − zsl)

i + B(sl)
na (t, y − zsl)

for y > zsl, t ≤ 0 (6.58)

=
lb∑

i=0

b
(sv)
i (t) (y − zsv)

i + B(sv)
na (t, zsv − y)

for y < zsv, t ≤ 0,

where a
(k)
i and b

(k)
i (k = sl, sv) are temperature-dependent parameters such

that the liquid and vapor branches of the coefficients coincide with each other
at the critical temperature:

a
(sl)
i (0) = a

(sv)
i (0) ≡ ai �= 0, b

(sl)
i (0) = b

(sv)
i (0) ≡ bi �= 0,

limt→0 a
(k)
0 (t) = 1 (k = sl, sv) , limt→0 b

(k)
0 (t) = 1 (k = sl, sv) .

(6.59)

The terms A(k)
na and B

(k)
na (k = sl, sv) are nonanalytic parts that are responsible

for the nonanalytic—discontinuous—behavior of the equation of state and the
nonclassical critical exponents, which differ from the mean field theory values
for the exponents. The presence of the non-analytic terms in A∗ and B∗ is
essential for the equation of state to exhibit a discontinuity in the subcritical
regime in sharp contrast to the van der Waals equation of state, which is
continuous throughout the entire fluid density range. Therefore, the present
model for A∗ and B∗ is expected to exhibit a liquid–vapor phase transition.
Reasonable forms for the nonanalytic terms of A∗ and B∗ are
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A(k)
na = a(k)

na (t) (y − zk)3 |y − zk|1+δ
,

(6.60)
B(k)

na = b(k)
na (t) (y − zk)3 |y − zk|1+δ (k = sl, sv) ,

where a
(k)
na (t) and b

(k)
na (t) denote temperature-dependent coefficients, which

become constants on the critical isotherm:

a(sl)
na (0) = a(sv)

na (0) ≡ αna, b(sl)na (0) = b(sv)
na (0) ≡ βna, (6.61)

and the exponent δ is a fractional number less than unity, which is deter-
mined from the critical isotherm. This exponent is intimately related to the
asymptotic behavior φ ∼ x4+δ experimentally observed near the critical point.
If δ = 0.3, then the critical exponent for φ is 4.30, as experimentally ob-
served [27, 28]. This indicates that the models for A∗ and B∗ can be con-
structed by employing the critical and subcritical data on the fluid of interest.

Because of the properties of the coefficients a
(k)
i , b(k)

i , A(k)
na , and B

(k)
na , the

expressions for A∗ and B∗ on the critical isotherm (t = 0) reduce to the forms

A∗

A∗
c

= 1 +
la∑

i=1

aix
i + αnax

3 |x|1+δ
, (6.62)

B∗

B∗
c

= 1 +
lb∑

i=1

bix
i + βnax

3 |x|1+δ
. (6.63)

By employing these forms for the GvdW parameters on the critical isotherm,
it is possible to determine the coefficients in terms of critical parameters.

6.5.1 Quadratic Model

If ai = bi = 0 and αna = βna = 0 in (6.62) and (6.63), then the model is
reduced to the van der Waals parameters. Therefore, the model is expected
to improve the van der Waals theory. It is useful to show how the coefficients
can be determined from the critical data. For the purpose in hand, we assume
that the sums in (6.62) and (6.63) are truncated at i = 2, that is, A∗ and
B∗ are quadratic with respect to x, apart from the nonanalytic term. For this
reason, the model is called the quadratic model [26].

To apply this quadratic model, it is necessary to generalize the conven-
tional definition of the critical point, which requires that the first two density
derivatives of pressure on the critical isotherm vanish. The generalization is
such that the first four density derivatives vanish instead of the first two. This
generalization of the definition of critical point was originally made by van
Laar [29] and later used by Baehr [30] and Planck [31]. The thermodynamic
stability of the system then requires that the fifth density derivative not van-
ish, which is in contrast to the conventional definition where the third density
derivative does not vanish. In this generalized definition of the critical point,
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there are five algebraic equations on the critical isotherm:

p∗cβ
∗
c =

ηc

1 −B∗
c ηc

− β∗
cA

∗
cη

∗
c , (6.64)(

∂ip∗

∂ηi

)
t=0,φ=0

= 0 (i = 1, · · · , 4) .

To calculate the algebraic equations more explicitly, it is convenient to define
the function P (x, t):

P (x, t) = φ [1 − ν (1 + x)B (x, t)] . (6.65)

Then, the reduced canonical equation of state is rearranged to the form,

P (x, t) = ζ (1 + x) (1 + t)

−
[
1 + τ (1 + x)2 A (x, t)

]
[1 − ν (1 + x)B (x, t)] . (6.66)

The function P (x, t) is now sought in a power series,

P (x, t) =
∑
i�0

Pix
i, (6.67)

where the expansion coefficients can be readily identified by expanding P (x, t).
Then because φ = 0 at the critical point and(

∂ip∗

∂ηi

)
t=0,φ=0,x=0

=
(
∂iφ

∂ηi

)
t=0,x=0

(i = 1, · · · , 4) ,

the conditions in (6.64) are equivalent to the conditions(
∂iP

∂xi

)
t=0,x=0

= 0 (i = 1, · · · , 4) . (6.68)

The derivatives of P (x, t) are then evaluated with (6.66) by using the quadratic
model for A and B on the critical isotherm. This procedure yields the following
five algebraic equations:

ζ − (1 + τ) (1 − ν) = 0,

ν + ζ + τ (νb1 − a1 + νa1 + 3ν − 2) + νb1 = 0,

τν (b2 + 3b1 + a1b1 + 3a1 + a2 + 3)

−τ (a2 + 2a1 + 1) + 2ν (b2 + b1) = 0, (6.69)

τν (a2 + 3a1 + 3) b1 + τν (3 + a1) b2 + νb2 + 6τν

+3τν (a1 + a2) − τ (a1 + 2a2) = 0,

τν (3a1 + 3a2 + 1) b1 + τν (3a1 + a2 + 3) b2

+τν (a1 + 3a2) − τa2 = 0.
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The left-hand sides of these equations are, respectively, P0, P1, · · · , and
P4. Because there are seven variables a1, a2, b1, b2, τ , ν, and ζ for five equa-
tions, two variables remain undetermined and thus act as free variables. These
free variables may be fixed with the help of experimental critical parameters
(pc, ηc, Tc) and the Monte Carlo simulation value for B∗

c determined for a
potential, for example, an SW potential model.

It is worthwhile to elaborate on this procedure. We note that if (6.69) is
solved for τ , ν, and ζ, then a pair of algebraic equations for a1, a2, b1, and
b2 is obtained, and a2 and b2 can be expressed in terms of a1 and b1. To
determine the latter, first, the Monte Carlo simulations are performed for the
fluid obeying a potential model, say, the SW potential model on the critical
isotherm. Then B∗

c is determined from its statistical mechanical formula. In
the next step, (6.69) is iteratively solved so that B∗

c = νηc is in agreement
with B∗

c determined by the Monte Carlo simulations and also the critical
compressibility factor ζ−1 [see (6.48)] is in agreement with the experimental
value. Thus the simulated B∗

c and the experimental critical compressibility
factor provide a pair of equations for a1 and b1. In this way, a1 and b1 are
uniquely determined as

a1 = −0.336, b1 = −0.618,

and, by using the aforementioned pair of algebraic equations for a2 and b2,
the values of a2 and b2 are determined

a2 = −0.360, b2 = 0.0436.

This procedure, of course, simultaneously determines a2, b2, and A∗
2 as well

as τ , ν, and ζ so that the critical parameters agree with experimental values.
The values of τ , ν, and ζ thus determined are

τ = 6.424, ν = 0.535, ζ = 3.448,

which in turn yield

T ∗
c = 0.287

A∗
c

B∗
c

, ηc =
0.535
B∗

c

,
p∗c

ηcT ∗
c

= 0.290.

These results with the values for experimental T ∗
c and ηc yield

A∗
c = 30.25, B∗

c = 4.01.

In this manner, the quadratic model for the GvdW parameters is determined
except for the nonanalytic coefficients, which can be empirically fixed by fitting
the experimental critical isotherm to the quadratic model.

The quadratic model was excellent for accuracy. We quote the numerical
test made for argon by Rah and Eu in Fig. 6.4, where the prediction by the
quadratic model is compared with the experimental data by Michels et al. [32]
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Fig. 6.4. Critical isotherms for argon predicted by the quadratic model are com-
pared with experiment, the van der Waals equation of state, and the cubic model.
[Reproduced with permission from K. Rah and B. C. Eu, J. Phys. Chem. B 107,
4382 (2003). Copyright American Chemical Society]
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Fig. 6.5. The critical isotherm predicted by the quadratic model for methane.
[Reproduced with permission from K. Rah and B. C. Eu, J. Phys. Chem. B 107,
4382 (2003). Copyright 2003 American Chemical Society]

and Gilgen et al. [33]. The filled diamond represents the critical point. The
solid curve is for the quadratic model with αna = 0.01 and βna = −0.015.
The dotted curve (QM0) in the inset is the quadratic model without the
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nonanalytic terms. The dashed curve is for the van der Waals theory and
the dash-dot curve is for the cubic model [26] for which the same values of
the nonanalytic coefficients are used. The symbols are the experimental data:
� by Michels et al. [32] and © by Gilgen et al. [33]. The triangles (�) in the
inset are experimental data computed by employing the empirical equation of
state for argon proposed by Tegeler et al. [34]. The curve CM in Fig. 6.4 is the
result predicted by the cubic model, which is obtained by setting a2 = b2 = 0
and ai = bi = 0 for i ≥ 4 in (6.62) and (6.63). Therefore it is cubic, apart from
the nonanalytic terms. It is not good except near the critical point because
the quadratic coefficients are absent.

The quadratic model is also excellent for methane, which may be approx-
imated as a spherical fluid, according to the test in [26]. Figure 6.5 shows the
prediction of the quadratic model in comparison with the experimental data
by Händel et al. [35] and Kleinrahm et al. [36]. The parameter values for the
critical isotherm of methane are as follows:

a1 = −0.336 b1 = −0.618

a2 = −0.360 b2 = 0.0436

σsw = 0.345 nm εsw = 115.0 kB

A∗
c = 23.5 B∗

c = 4.08

Tc = 190.56K ρc = 0.163 g cm−3

ζ−1 = 0.286

The comparison with experiments here indicates the robustness of the quadratic
model, and the GvdW equation of state constructed as described extends the
original van der Waals equation of state quite successfully. The quadratic
model must be extended to account for experimental data on isotherms other
than critical isotherms. Such a study is not available at present except for
supercooled liquids discussed in [19]. It clearly is worth a study in the future.

6.5.2 Conclusion on the Canonical Form

It is shown in this section that the rearrangement of the virial equation of state
to the canonical form engenders a powerful form for the equation of state that
preserves all insightful aspects of the van der Waals equation of state, yet can
be endowed with a form that can far exceed the latter in its capability, flex-
ibility, and numerical precision with regard to critical phenomena. Phenom-
enological models for A and B can be expected to be very useful for studying
the subcritical and supercritical behavior of real fluids and also dynamic ther-
mophysical properties, such as transport coefficients of liquids, as will be seen.
As will be shown in Chap. 12, the canonical equation of state plays a crucial
and keystone role in the density fluctuation theory of transport coefficients of
liquids. Therefore, it should be worth a serious study.
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6.6 Integral Equations for Pair Correlation Functions

We have seen that the equilibrium pair correlation function or the cavity
function related to it is an essential input to the GvdW parameters and the
canonical equation of state. It is, of course, true for any theory of equilibrium
statistical mechanics of dense gases and liquids. Therefore, computation of the
pair correlation function is a central issue in the equilibrium theory of liquids.
For this reason, it has been studied widely and in depth in the literature,
and a considerable body of knowledge has been accumulated. Nevertheless,
there are still many aspects to be investigated, especially, in the subcritical
regime of temperature. This is the region of temperature where computer sim-
ulation methods become less and less effective as the temperature is lowered
toward the melting point and below. In addition to the equilibrium theory
mentioned, we will see that the equilibrium pair correlation function is also
an input required in the theory of transport coefficients of liquids presented in
Chaps. 10–12. With such problems in view and to provide general mathemat-
ical machinery to treat the problems in the future, we formulate an integral
equation theory2 more general than those available hitherto in the literature
on equilibrium pair correlation functions of liquids and present some numerical
results [10] to show its utility and potential.

6.6.1 Ornstein–Zernike Equation

Historically, the statistical mechanics approach to dense gases and liquids
in its early stage has taken the Bogoliubov–Born–Green–Kirkwood–Yvon
(BBGKY) hierarchy method [37–40]. Because the BBGKY hierarchy is open,
it requires closure for the open hierarchy, and the Kirkwood superposition
approximation has been the most popular closure conventionally taken in the
literature. Any other closure gives rise to a complicated theory which is dif-
ficult to handle. The Kirkwood superposition approximation, however, does
not yield sufficiently satisfactory values for the pair correlation function.

Many years before the advent of the BBGKY hierarchy, Ornstein and
Zernike [41], in connection with their work on light scattering by liquids,
introduced the concept of direct correlation function and, together with it,
the Ornstein–Zernike (OZ) equation in which the direct correlation function
is related to the total correlation function. It is a circular relation between
the direct and total correlation functions, requiring a closure relation. How-
ever, because the direct correlation function was short ranged, by assuming
a suitable form for it on physical grounds, they were able to derive from the
equation a long-ranged total correlation function, which adequately accounted
for the light scattering by the fluid in the critical regime. Since then, the OZ
2 The material presented in this and subsequent sections in this chapter is an

outgrowth of the author’s work initiated about 5 years ago before the numerical
work was carried out to examine its potential in [10].
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equation has been given statistical mechanical derivations by using a resum-
mation method of the cluster expansion or a functional derivative method.
The functional derivative method of Percus [42] gives an especially elegant
derivation of the equation from the grand canonical ensemble distribution
function. This derivation shows that the OZ equation may be regarded as a
kind of resummation of the BBGKY hierarchy of correlation functions.

The OZ equation thus derived for a simple liquid has the form

h(r) = c(r) + n

∫
dr′c (|r − r′|)h (r′) , (6.70)

where h(r) and c(r) are, respectively, the total and the direct correlation
function for a particle pair at relative distance r.

As for the BBGKY hierarchy theory, a closure must be assumed for the
OZ equation, and it is usually done by assuming a suitable form for the direct
correlation function. A closure frequently taken is the Percus–Yevick (PY)
closure [2, 20,43]

c(r) = f(r)y(r), (6.71)

where f(r) is the Mayer function and y(r) is the cavity function. There is
another well-known closure called the hypernetted chain closure [21]

c(r) = h(r) − ln y(r). (6.72)

For example, with the PY closure substituted in the OZ equation, we obtain
the PY integral equation for h(r):

h(r) = f(r)y(r) + n

∫
dr′f(|r − r′|)y(|r − r′|)h (r′) . (6.73)

This was the integral equation for h(r) that was solved for an SW potential to
compute the GvdW parameters A and B in [17]; see Figs. 6.2 and 6.3. The PY
integral equation can be readily solved by Fourier transform combined with
iteration. With the solution obtained for h(r), the virial equation of state (6.1)
can be computed numerically, but the results are not sufficiently satisfactory,
especially, if the density is high. Another problem with the PY closure and also
with the hypernetted chain closure is the lack of thermodynamic consistency.

The direct correlation function is related to the isothermal compressibility
as follows:

(nkBTκ)−1 = β

(
∂p

∂n

)
T

= 1 − n

∫
drc(r), (6.74)

where κ is the isothermal compressibility. With knowledge of the direct cor-
relation function, it is possible to compute the equation of state of the fluid.
If, for example, the PY closure is used, the equation of state obtained thereby
differs from the virial equation of state computed with the same closure. The
same situation arises for the hypernetted chain closure. This kind of difference
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in the equations of state computed by the two modes mentioned is called the
thermodynamic consistency problem. There have been numerous articles [44]
in the literature in which attempts have been made to resolve the thermody-
namic consistency problem. In this backdrop of the integral equation approach
to the equilibrium statistical mechanics of simple dense gases and liquids, we
discuss an integral equation theory in a more general context than available
in the recent literature.

6.6.2 Thermodynamic Consistency

In most of the approaches [44] taken to resolve the thermodynamic consistency
for a closure assumed so far, a bridge function is introduced so that the desired
thermodynamic consistency is achieved. Somewhat different in spirit from
the bridge function approaches, the virial equation of state is used together
with the energy equation [45] to obtain the closure preserving thermodynamic
consistency.

Instead of these methods, we may directly impose thermodynamic consis-
tency on the virial and isothermal compressibility equation of state. In other
words, the direct correlation function is determined so that the two equations
of state mentioned are equal to each other for all values of r. Upon integrat-
ing (6.74) with respect to n, there follows the isothermal compressibility (IC)
equation of state

βp

n
= 1 − n−1

∫ n

0

dn′n′
∫

drc(r, n′). (6.75)

Because the density is uniform in space, the two integrals on the right of
(6.75) are interchangeable. The pressure calculated from this equation must
be equal to the pressure calculated from the virial equation of state (6.1), so
upon equating them there arises the local form of constraint on the direct
correlation function [26]

c(r) =
1

6nr2

∂

∂n
n2f(r)

∂

∂r
r3y(r, n) +

1
nr2

∂q(r, n)
∂r

, (6.76)

where q(r, n) is an arbitrary function of r and n, which vanishes at r = 0 and
r = ∞. It is called the gauge function, which must be suitably assumed or
determined by another means. However, determining it exactly is tantamount
to solving the liquid structure problem exactly, a task that is unlikely to be
achieved in a sufficiently general form. A suitable assumption for the gauge
function is tantamount to a closure for the OZ equation, and it is a more
practical approach.

With the gauge function satisfying the boundary conditions at r = 0 and
r = ∞, the direct correlation function given in (6.76) ensures thermodynamic
consistency. Therefore, it is a thermodynamically consistent closure. We will
discuss a choice for the gauge function later in this chapter. With such a
choice of q(r, n), the OZ equation can be solved and the equation of state can
be determined in a thermodynamically consistent manner.
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Working out the first term on the right of (6.76), its relation to the PY
closure is better exposed:

rc(r) = rf (r) y (r) + rf (r)
(

1
3

∂y

∂ ln r
+

1
2

∂y

∂ ln η
+

1
6

∂2y

∂ ln η∂ ln r

)
+

1
nr2

∂q(r, n)
∂r

, (6.77)

where the first term on the right is the PY closure.
As it is for pressure, the chemical potential can be calculated in two ways.

If the grand canonical partition function is employed, the excess chemical
potential can be obtained in the form [1],

βμex = n

∫ 1

0

dλ
∫

drβu(r)g∗ (r, λ) , (6.78)

where λ is the charging parameter and g∗ (r, λ) is the pair correlation function
in the grand canonical ensemble theory, which is defined by

g∗ (r, λ) =
〈N〉

n2Ξ (z, λ)

∫ z

0

dz′
Ξ (z′, λ) ρ(2) (r, λ, z′)

z′
. (6.79)

In this expression, 〈N〉 denotes the grand canonical ensemble average [1] of
N , z is the (equilibrium) activity defined by

z = eβμΛ−3 = eβμ (2πmkBT )3/2
/h3, (6.80)

Ξ (z, λ) is the grand canonical partition function at charging parameter λ,

Ξ (z, λ) =
∑
N≥0

zN

N !

∫
dr(N) exp

[
−βU (N) (λ)

]
, (6.81)

and the pair distribution function ρ(2) (r, λ, z) is defined by

ρ(2) (r, λ, z) =
1

Ξ (z, λ)

∑
N≥2

zN

(N − 2)!

∫
dr3 · · · drN exp

[
−βU (N) (λ)

]
(6.82)

with U (N) (λ) denoting the N particle potential energy at charging parameter
λ

U (N) (λ) =
N∑

i=2

λu1i (r1i) +
N∑

2≤i<j

uij (rij) . (6.83)

If the canonical ensemble theory is employed, the excess chemical potential is
given by

βμex = n

∫ 1

0

dλ
∫

drβu(r)g (r, λ) , (6.84)
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which is clearly seen as an approximation of the grand canonical ensemble
excess chemical potential.

On the other hand, the thermodynamically derived excess chemical poten-
tial is given by

βμex =
(
βp

n
− 1
)

+
∫ n

0

dn′ 1
n′

(
βp

n′ − 1
)
, (6.85)

which by using of (6.75) can be written as

βμex = −
∫ n

0

dn′
∫

drc(r, n′). (6.86)

The direct correlation function must be also such that the excess chemical
potential calculated via (6.78) is identical with that calculated via (6.86).
This constraint gives rise to the equation for c(r) as follows:

c(r) =
∂

∂n
n

∫ 1

0

dλf(r, λ)
[
y∗(r, λ)δ (λ− 1) − ∂y∗(r, λ)

∂λ

]
−r−2 ∂qμ(r, n)

∂r
, (6.87)

where qμ(r) is another arbitrary gauge function that must satisfy the boundary
conditions qμ(0, n) = 0 and qμ(∞, n) = 0 and y∗(r, λ) is the cavity function
defined by

y∗(r, λ) = exp [λβu(r)] g∗ (r, λ) . (6.88)

This cavity function y∗(r, λ), however, is much more complicated to calculate
than y(r, λ) because the grand canonical ensemble pair correlation function
g∗ (r, λ) by definition requires a much more elaborate equation than that for
g (r, λ). Because the direct correlation function requires a closure, or the gauge
function suitably postulated, it is permissible to assume that the direct cor-
relation functions in both, grand and canonical ensembles, are identical. This
is the viewpoint we have tacitly taken when (6.86) is obtained for the excess
chemical potential from (6.85), which is a thermodynamical relation. After all,
thermodynamical relations should be independent of the ensembles employed
to derive them by statistical mechanics, if the fluctuations are negligible.

There consequently follows from (6.76) and (6.87) the relation

−βu(r)
∂

∂n
n 〈g∗〉 =

1
r2n

∂

∂r
(q + nqμ) +

1
6nr2

∂

∂n

1
6
n2f(r)

∂

∂r
r3y(r, n), (6.89)

where

〈g∗〉 =
∫ 1

0

dλg∗(r, λ). (6.90)
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Therefore, (6.89) yields 〈g∗〉, the average of g∗(r, λ) over the charging parame-
ter, from knowledge of y(r, n), once the gauge functions q and qμ are known
or suitably chosen. This, of course, means that the thermodynamically con-
sistent excess chemical potential can be calculated from (6.86) by using the
closure (6.76).

Thus, we have formally achieved a complete thermodynamic consistency
for pressure and excess chemical potential, and there now remain the tasks of
determining the cavity function and finding the gauge function.

6.6.3 Wiener–Hopf Method

The Wiener–Hopf method [46–48] is a procedure used for solving integral
equations or differential equations by Fourier transform. This method is rele-
vant to solving the OZ equation because the OZ equation is generally solved
by a combination of Fourier transform and iteration. Use of Fourier transforms
implies that the knowledge of analyticity in the Fourier space of the functions
involved becomes indispensable for acquiring the solutions of the OZ equation
by Fourier transform.

Let us define Fourier transforms of h(r) and c (r) by

ĥ (k) =
∫

dr exp (ik · r)h(r),
(6.91)

ĉ (k) =
∫

dr exp (ik · r) c(r).

If the auxiliary functions H (r) and C (r) are defined by the integrals

H (r) =
∫ ∞

r

dtth(t),
(6.92)

C (r) =
∫ ∞

r

dttc(t),

the Fourier transforms ĥ (k) and ĉ (k) for fluids of spherically symmetrical
molecules can be expressed as one-dimensional Fourier transforms of H(r)
and C(r) by suitably extending the latter into the negative axis of r

ĥ (k) = 4π
∫ ∞

0

dr cos (kr)H(r) = 2π
∫ ∞

−∞
dr exp (ikr)H(r),

(6.93)
ĉ (k) = 4π

∫ ∞

0

dr cos (kr)C(r) = 2π
∫ ∞

−∞
dr exp (ikr)C(r).

Using the Fourier transform, the OZ equation can be written, by virtue of the
convolution theorem, as

[1 − nĉ (k)]
[
1 + nĥ (k)

]
= 1. (6.94)



118 6 Equation of State and EquilibriumProperties of Liquids

Provided [1 − nĉ (k)] �= 0, it can be solved for ĥ (k) as follows:

nĥ (k) =
nĉ (k)

1 − nĉ (k)
. (6.95)

In the Wiener–Hopf method, the denominator of the right-hand side in (6.95)
is factored into a product of two functions of k that should not have zeros
in a strip of the k plane enclosing the real axis, but tend to a finite limit as
Re (k) → ±∞. These properties of the factorization functions are essential
for the validity of the Wiener–Hopf method. When the factorization functions
are suitably determined, the solution of the integral equation is obtained.

Baxter [9] applied the Wiener–Hopf method to the OZ equation subject to
the PY closure, namely, the PY integral equation, for a hard sphere fluid and
obtained a pair of integral equations for h(r) and the factorization function,
which he was able to solve exactly. With the solution thus obtained, he derived
an equation of state for a hard sphere fluid, which turned out to be the same
as that Thiele [5] and Wertheim [6] previously obtained for a hard sphere fluid
by using the Laplace transform method:

pβ

n
=

1 + η + η2

(1 − η)3
. (6.96)

Here η is the packing fraction defined by η = πσ3n/6 with σ denoting the
hard sphere diameter. Thus established for hard sphere fluids, Baxter’s factor-
ization in the Wiener–Hopf method has become the starting point of solution
methods based on the Wiener–Hopf method for the OZ equation under the
assumption of closures other than the PY closure; for example, the mean
spherical approximation (MSA) closure and the generalized mean spherical
approximation (GSMA) closure [7, 8] for which the potential energy is as-
sumed no longer to be of hard spheres but involves an attractive potential
representative of real fluids. For the GSMA closure, an attractive Yukawa
type potential function3 is assumed without theoretical justification under
the argument that hard spheres have an attractive potential tail. There is a
considerable body of literature on the subject.

The factor M (k) ≡ 1 − nĉ (k), however, is not always invertible every-
where in the k plane if the fluid is real. Particles therein interact through
an attractive force as well as a repulsive force, and consequently there ex-
ists a first-order liquid–vapor phase transition admissible. The reason for this
can be easily seen by the following reasoning. Because the inverse isothermal
compressibility can be written as(

∂βp

∂n

)
T

= 1 − nĉ(0), (6.97)

3 The analysis made later on the basis of a generalized Wiener–Hopf theorem shows
that the Yukawa type potential function in the GSMA is not a potential energy,
but part of the correlation function that is related to the potential of mean force.
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and if a liquid–vapor phase transition is possible for the fluid—this is possible
for all real fluids—then as the state of the fluid tends toward the critical point,
there holds the limit

lim
T→Tc,n→nc

M (0) ≡ lim
T→Tc,n→nc

[1 − nĉ (0)] = 0. (6.98)

This is an experimental fact for real fluids [49]. Therefore there appears, at
least, a zero of M(k) at the origin of k plane as the critical state is approached.
In other words, the zeros of M(k), which might have been in the complex k
plane, may tend to the origin as the critical state is approached by the fluid,
and if that happens, then the mathematical operation leading to (6.95) from
(6.94) is no longer valid. From the viewpoint of the Wiener–Hopf method, the
factorization of M (k) into a product of functions of k, as done for hard sphere
fluids, is no longer applicable. It must be suitably modified.

Wiener–Hopf Factorization Theorem

A mathematical way of looking at the property (6.98) required of M(k) is that
for a disordered fluid, M(k) has zeros in the complex k plane—for example, on
the imaginary axis—which tend to the origin as the critical state is approached
by the fluid. Because ĉ (k) must be real, the roots of M (k) must appear in
conjugate pairs. Therefore, it is plausible to conjecture that M (k) may be
written as

M (k) = 1 − nĉ (k) = B(k)
∏
j

(
k2 + k2

j

)
, (6.99)

where ±ikj are zeros of M(k) on the imaginary axis4 and B(k) is a nonva-
nishing function of k in a strip of k enclosing the real axis of the complex k
plane. This function factorizes to a product of functions of k. There is at least
a pair of kj ’s that vanishes at the critical point, that is,

lim
T→Tc,n→nc

kj (T, n) = 0

4 The zeros need not be distributed on the imaginary axis, but we may instead
have

M(k) = B(k)
∏

j

[
(k − κj)

2 + k2
j

]
,

where κj and kj are, respectively, the real and imaginary parts of the jth zero.
Moreover, the number of zeros need not be finite. The real parts of the zeros
may remain constant, but the imaginary parts may tend to the real axis, as
temperature and density vary. Such a situation may occur if the fluid makes a
transition to a crystal with well-defined lattice spacing. We do not consider such
cases in this work for simplicity of the formalism. In this generalized approach,
the thermal properties of fluids and their behavior are turned into questions of
the analyticity of both direct and total pair correlation functions in the Fourier
space, and the thermal properties of matter may be classified according to the
analyticity of M(k).



120 6 Equation of State and EquilibriumProperties of Liquids

and the phenomenology of first-order phase transition suggests that [49]

k2
j (T, n) = c (n− nc)

δ (T − Tc)
γ

where δ and γ are the critical exponents characteristic of the inverse isother-
mal compressibility. The discussion presented here clearly indicates that the
form in (6.99) is plausible for M(k). For the sake of simplicity of the formal-
ism without sacrificing the essential physical consequences for M(k), we will
assume that there is only a pair of zeros of M(k) on the imaginary axis of
the k plane. This assumption can be removed for nonhard sphere fluids by
including more zeros and also real parts in the zeros.

The physics of matter in a disordered state requires that ĉ(k) vanish with
increasing k along the real axis. According to the Wiener–Hopf factorization
theorem [46–48], if M(k) has a pair of complex zeros within the strip −ε <
Imk < ε and if

M(k) → exp (iμ) as k → +∞
(6.100)

→ exp (−iν) as k → −∞,

where μ and ν are real constants, then there exist functions K+(k) and K−(k)
such that

c1|k|−1−λ < |K+ (k)| < c2|k|−1−λ (Imk > c, c > −ε) ,
(6.101)

c3|k|−1+λ < |K− (k)| < c4|k|−1+λ (Imk < d, d < ε)

with c1, c2, c3, and c4 denoting constants and

λ = (2π)−1 (μ− ν) .

Then the function B(k) is factored into the product

B(k) = K+ (k)K− (k) (k + iε)−1 (k − iε)−1
. (6.102)

Here
ε > kc,

where kc is the absolute value of the zeros of M(k) taken for the present
discussion. For more than one pair of complex zeros, ε must be taken such
that ε > max |Imkn| with kn denoting the complex zeros. In the present case,
λ = 0 because ĉ(k) is even in k and hence μ and ν should be equal.

Functions K+ (k) and K− (k) are regular and free from zeros, respectively,
in the half plane Imk > −ε and Imk < ε, and by virtue of inequalities (6.101)

1 −K±(k) → 0 as Rek → ±∞. (6.103)
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Furthermore, because ĉ(k) is an even function of k according to (6.93), it also
follows that

K+ (k)K− (k) = K+ (−k)K− (−k) (6.104)

and
K− (k) = K+ (−k) ≡ K̂(−k). (6.105)

Thus we find that under the assumption of a pair of complex zeros of
M(k), the Fourier transform of the direct correlation function factors to the
form

1 − nĉ(k) =

(
k2 + k2

c

)
(k − iε) (k + iε)

K̂(k)K̂(−k) (6.106)

if there is only a pair of imaginary zeros. For hard sphere fluids, according to
Baxter [9], factorization takes the form

1 − nĉ(k) = K̂(k)K̂(−k). (6.107)

This factorization is permissible in the liquid density regime because hard
sphere fluids do not have liquid–vapor (first-order) phase transitions. Hence
M(k) does not vanish as k → 0, and the temperature is lowered at a liquid
density. However, if a hard sphere solidifies to a crystal or an amorphous solid
and the transition is first order, then the factorization must be modified ap-
propriately. The factorization (6.106) is different from (6.107) used by Baxter
for hard sphere fluids by the factor(

k2 + k2
c

)
(k − iε) (k + iε)

,

and the factor
(
k2 + k2

c

)
is responsible for the possibility that M(k) vanishes

under suitable circumstances and gives rise to a description of a first-order
phase transition.5 Therefore the present factorization of M(k) in (6.106) is
more general than Baxter’s and should still remain valid even for hard sphere
fluids.

With the factorization, (6.94) can be rearranged to the form[
1 + nĥ(k)

] (
k2 + k2

c

)
K̂(k) =

[
K̂(−k)

]−1

(k − iε) (k + iε) , (6.108)

5 There should be some connection between the Wiener–Hopf factorization theorem
leading to (6.58) and the Yang–Lee theorem [50]. Consideration on the basis of the
grand canonical partition function and in the light of the Yang–Lee theorem on
the zeros of the grand canonical partition function in the complex activity plane
suggests that, even for hard sphere fluids, M(k) should have zeros in the complex
k plane. This author believes that one may seek the theoretical foundations of the
analyticity postulates made here in the Yang–Lee theorem on the distribution of
zeros of the grand canonical partition function.
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whereas (6.106) may be cast into the form

(
k2 + ε2

)
[1 − nĉ(k)] =

(
k2 + k2

c

)
K̂(k)K̂(−k). (6.109)

These two equations give rise to a pair of integral equations for the total and
the direct correlation function, respectively.

Before proceeding further, it is useful to define the Fourier transform of
the factorization function. Because according to (6.103), K(k) is bounded and

∣∣∣K̂(k)
∣∣∣→ 1 as |k| → ∞,

it is possible to define K(r) for r > 0 such that

2πnK(r) =
1
2π

∫ ∞

−∞
dk
[
1 − K̂(k)

]
exp(−ikr). (6.110)

The inverse of this relation is

K̂(k) = 1 − 2πn
∫ ∞

−∞
drK(r) exp(ikr). (6.111)

Because K(k) is regular in the strip −ε < Imk < ε,
∣∣∣K̂(k)

∣∣∣→ 1 as |k| → ∞,
and has no zeros within the strip—this latter condition is not necessary for
the property of K(r) below—by closing the contour in the upper half in the
k plane for r < 0, we find

K(r) = 0 (r < 0) . (6.112)

This is one of the important properties of the factorization function K(r).
Because of this property, K̂(k) may be written as

K̂(k) = 1 − 2πn
∫ ∞

0

drK(r) exp(ikr). (6.113)

This will be found useful.

Integral Equation for the Direct Correlation Function

To derive the integral equation for the direct correlation function, it is useful
to rearrange (6.109) to the form(

k2 + k2
c

) [
nĉ (k) + K̂(k)K̂(−k) − 1

]
=
(
ε2 − k2

c

)
[1 − nĉ (k)] . (6.114)
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Upon inserting (6.110) in (6.114) and taking the inverse Fourier transform,
we obtain for r > 0(

− ∂2

∂r2
+ k2

c

)
φ(r) =

(
ε2 − k2

c

)
2πn

[δ (r) − 2πnC (r)] , (6.115)

where the function φ(r) is defined by

φ(r) = C(r) −K(r) + 2πn
∫ ∞

r

dtK(t)K (t− r) . (6.116)

Equation (6.115) is an inhomogeneous wave equation for an evanescent wave
of correlation. Physically, it is a kind of potential of mean force in the fluid.
Because

C(r), K(r) → 0 as r → ∞

it follows that
φ(r) → 0 as r → ∞. (6.117)

Differentiating (6.115) with respect to r yields the differential equation(
∂2

∂r2
− k2

c

)
∂φ(r)
∂r

= −
(
ε2 − k2

c

)
2πn

[
∂

∂r
δ (r) + 2πnrc (r)

]
, (6.118)

for which we impose the boundary condition at r = 0[
dφ(r)

dr

]
r=0

= finite. (6.119)

Equation (6.118) will be used to determine φ (r) in the present theory.
Differentiation of (6.116) with respect to r yields the integral equation for

the direct correlation function c(r):

rc(r) = −K ′(r) + 2πn
∫ ∞

r

dtK ′(t)K (t− r) − ∂φ

∂r
, (6.120)

where the prime on K(r) denotes differentiation with respect to r, the variable
of the factorization function K (r). Equation (6.120) is one of the integral
equations sought in the Wiener–Hopf method. The third term on the right
of (6.120) arises from the presence of zeros in M(k), and it is the point of
departure from the integral equation for rc(r) obtained by Baxter [9] for hard
sphere fluids. This equation indicates that for a disordered system the direct
correlation function decays exponentially as r → ∞, as will be shown, and
the correlation range of this function has to do with the zero of the inverse
isothermal compressibility.
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Integral Equation for the Total Correlation Function

Equation (6.108) can be rearranged similarly to the direct correlation function:

(
k2 + k2

c

){[
K̂ (k) − 1

]
+ nĥ(k) + nĥ(k)

[
K̂ (k) − 1

]
−
[

1

K̂ (−k)
− 1

]}

=

(
ε2 − k2

c

)
K̂ (−k)

. (6.121)

Upon taking the inverse Fourier transform of this equation, there follows the
equation for H (r), which may be written as(

∂2

∂r2
− k2

c

)
ψ(r) =

(
k2
c − ε2

)
2πn

δ (r) , (6.122)

where ψ(r) is defined by

ψ(r) = H(r) −K(r) − 2πn
∫ ∞

0

dtK(t)H (|r − t|) . (6.123)

The boundary conditions on ψ(r) at r = ∞ and at r = 0 are

ψ(∞) = 0 ψ′(0) = 0. (6.124)

To obtain this result, we have used the following:

1
2π

∫ ∞

−∞
dk exp(−ikr)

[
1/K̂ (−k) − 1

]
= 0, (6.125)

where the integral vanishes because K̂(−k) is regular and bounded in the strip
−ε < Imk < ε, tending to unity as |k| → ∞.

Equation (6.122) is solved with the help of Green’s function defined by the
differential equation(

∂2

∂r2
− k2

c

)
G(r, r′) = −4πδ (r − r′) . (6.126)

Green’s function is easily obtained by the method of Fourier transform and
contour integration:

G(r, r′) =
π
kc

exp [−kc |r − r′|] . (6.127)

According to the Green’s function method [47], the solution for (6.122) can
be readily obtained:

ψ(r) =

[
ψ0 −

(
k2
c − ε2

)
8πnkc

]
exp (−kcr) . (6.128)
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The boundary condition at r = 0 implies that

ψ0 −
(
k2
c − ε2

)
8πnkc

= 0. (6.129)

Therefore, the integral equation involving H(r) and K(r) turns out to be sim-
ply the same equation as that when the zeros of the isothermal compressibility
are absent:

H(r) = K(r) + 2πn
∫ ∞

0

dtK(t)H (|r − t|) . (6.130)

This is the other of the integral equations in the Wiener–Hopf method, which
this time involves H(r) and K(r). It is coupled to (6.116) for C(r).

Differentiating (6.130) with respect to r yields the equation for the total
correlation function [10]

rh(r) = −K ′(r) − 2πn
∫ ∞

0

dt (t− r)K(t)h (|r − t|) . (6.131)

This equation is coupled to (6.120).
Equations (6.118), (6.120), and (6.131) are equivalent to the OZ equation,

but there are three equations for four functions, h(r), c(r), K(r), and φ (r),
to be determined. For this reason, a closure relation must be imposed before
the solution procedure is implemented.

Thermodynamically Consistent Closure

It was shown earlier that thermodynamic consistency is satisfied by the clo-
sure relation given in (6.76). Because the gauge function q(r) vanishes at the
boundaries at r = 0 and r = ∞, it follows that∫ ∞

0

dr
∂q

∂r
= 0.

This gauge function cannot be determined within the framework of the present
integral equation theory unless the partition function is calculated exactly.
Therefore, it must be suitably guessed or approximated, if the integral equa-
tion theory is to be implemented successfully.

When the function rd−1φ(r), in which d is the dimensionality of the system,
is carefully examined, we observe that it satisfies the requirement for the gauge
function exactly because φ vanishes exponentially as r → ∞ because of the
property of φ at r = ∞. The function φ, moreover, contains the information
on the internal dynamics of the fluid, being a kind of potential of mean force,
as will be shown. Therefore just as for the gauge function, there holds the
condition ∫ ∞

0

∂rd−1φ

∂r
= 0. (6.132)
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Consequently, inasmuch as the gauge function is arbitrary although it should
contain dynamic information about the fluid, it seems reasonable to identify
the gauge function as follows [10]:

q = nr2σ−1φ(r), (6.133)

for d = 3. This identification is still an assumption of closure. Then the ther-
modynamically consistent closure (6.76) becomes

c(r) =
1

6nr2
f (r)

∂2

∂r∂n
n2r3y(r, ρ) +

σ

r2

∂ (r/σ)2 φ
∂r

. (6.134)

This is the proposition for thermodynamically consistent closure in this work.
Just as for any other closure in the theory of liquids, it is only a proposition,
and its correctness must be checked with its consequences for the thermody-
namics of liquids. Elimination of c(r) from (6.118) and (6.120) by using (6.134)
gives rise to a closed set of integro-differential equations for h(r), K(r), and
φ(r); see (6.135)–(6.139) below.

To implement a solution procedure for this set of integral equations, it is
convenient to cast them in dimensionless reduced variables, so that we can
work with nondimensionalized equations. Thus, if we define the nondimen-
sionalized quantities

x = r/σ, η = π
6σ

3ρ, ξ = kcσ, α = εσ,

p∗ = pv0/ε, T ∗ = kBT/ε, K∗ = Kσ−2, ϕ = φσ−2,

where β∗ = 1/T ∗, v0 = πσ3/6 is the volume of the hard core, and ε is the
well depth (or interaction strength) of the potential (e.g., the Lennard-Jones
potential), then the reduced integral equations are

xh(x) = −K∗′(x) − 12η
∫ ∞

0

dt (t− x)K∗(t)h (|x− t|) , (6.135)

f (x)
6ηx

∂2

∂x∂η
η2x3y(x, η) = −K∗′(x) + 12η

∫ ∞

x

dtK∗′(t)K (t− x)

− 2ϕ(x) − (1 + x)
∂ϕ

∂x
, (6.136)

(
∂2

∂x2
− α2

)
Ψ (x) = −

(
α2 − ξ2

)
12η

R(x), (6.137)

where

Ψ (x) =
∂ϕ(x)
∂x

, (6.138)

R(x) =
∂

∂x
δ (x) − 12ηK∗′(x) + 144η2

∫ ∞

x

dtK∗′(t)K∗(t− x). (6.139)
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We have used the closure relation (6.134) to recast (6.120) and (6.118) into
(6.136) and (6.137), respectively. The set (6.135)–(6.137) is the main for-
mal result of the present theory. It should be emphasized that these integro-
differential equations are valid for any finite-range potential model.

The parameter kc, namely, the zeros of M(0), must be determined as
a function of density and temperature so that the solution of the integro-
differential equations exists. In other words, kc or ξ must be determined from
the solvability condition of the integro-differential equations. To deduce what
we mean by this condition, we will examine the equation of the gauge function,
(6.137).

6.6.4 Gauge Function

Inspection of (6.137) indicates that because ϕ (x) is indirectly coupled to h(x)
through K∗(x), the three coupled equations (6.135)–(6.137) can be reduced
to two coupled equations for h(x) or y(x) and K∗(x), if (6.137) is formally
solved. The formal solution of (6.137) is given by

Ψ (x) = c1e−αx +

(
α2 − ξ2

)
24ηα

[
e−αx

∫ x

0

dtR(t)eαt + eαx

∫ ∞

x

dtR(t)e−αt

]
,

(6.140)

where c1 is an integration constant. This solution suggests that Ψ (x) is well
behaved with respect to

(
α2 − ξ2

)
and regular in

(
α2 − ξ2

)
.

In the Wiener–Hopf method, ±α determine the width of the strip in the
complex k plane, but the width is arbitrary except that −α < ξ < α, because
α can be as close to ξ as can be. Therefore, having obtained the general
solution which is regular with respect to

(
α2 − ξ2

)
and well behaved, it now

is appropriate to take the limit α → ξ + 0. Then the solution in the limit is

Ψ (x) = c1e−ξx. (6.141)

This solution now suggests that ϕ(x) is a correlation function decaying expo-
nentially and ξ has to do with the inverse correlation range. Because we are
at present interested in hard sphere fluids we will determine Ψ (x) and ϕ(x)
for hard sphere fluids in the following. For nonhard sphere fluids, they can be
similarly determined.

Because the potential energy for hard sphere fluids is given by the form

u(x) = ∞ for x < 1
= 0 for x > 1

the total correlation function h(x) must be such that

h(x) = −1 for x < 1
= h2(x) �= 0 for x > 1,
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where h2(x) is to be determined in the range x > 1 by the integro-differential
equations (6.135)–(6.137). This property of h(x) suggests that ϕ (x) should
be taken equal to zero for x < 1 so as to make it consistent with the total
correlation function for hard sphere fluids. Because the behavior of ϕ (x) must
be consistent with h(x) and its properties are also closely associated with those
of K(x) for x > 1, as will be seen later, it is appropriate to look for ϕ (x) such
that

ϕ (x) = 0 for x < 1,
�= 0 for x > 1. (6.142)

This means that it is necessary to examine (6.137) only in the range 1 < x <
∞. It is emphasized that (6.142) is only for hard sphere fluids or fluids with
a hard core.

Because Ψ (1) must be finite at x = 1 and Ψ (∞) = 0 by the boundary
conditions, it follows from the solution ( 6.141) that

ϕ (x) − ϕ (1) =
∫ x

1

dxΨ (x) = ξ−1e−ξ
[
1 − e−ξ(x−1)

]
c1

and we find
ϕ (x) = ϕ (1) + ξ−1e−ξ

[
1 − e−(x−1)ξ

]
c1.

But
ϕ (∞) = 0,

it follows that
c1 = −ξeξϕ (1)

and
ϕ (x) = ϕ (1) e−ξ(x−1) (x > 1) . (6.143)

This is the solution of the gauge function for hard sphere fluids. Normalizing
it, we obtain ϕ (1) = ξ and thus

ϕ (x) = ξe−ξ(x−1), (6.144)

Ψ(x) = −ξ2e−ξ(x−1). (6.145)

These show that the gauge function is closely associated with correlations of
particles and also with the zeros of [1 − ρĉ (k)]. The parameter ξ should be
determined within the framework of the present theory. This can be done, as
will be shown.

The result presented for ϕ (x) turns out to be independent of the potential
energy models for fluids, except that it is given only in the range 1 < x < ∞
for hard sphere fluids. For nonhard sphere potentials, the range is 0 ≤ x < ∞,
and ϕ (x) is determined from (6.141) in the whole x range, irrespective of the
potential models. Consideration for ϕ (x) and Ψ(x) up to this point implies
that ϕ (x) is a potential of mean force describing correlations of particles in the
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fluid. It is therefore a mean field in the fluid, but not an additional potential
tail for hard spheres. Clearly, even hard spheres should create such a mean
field if a multitude of them are confined close to each other in a volume, and
this is one of obvious advantages of the Wiener–Hopf factorization (6.106) in
the present theory.

6.7 Equation for Inverse Correlation Length

The inverse correlation length ξ appearing in the gauge function should be
determined within the framework of the theory based on the integral equations
presented. Equation (6.97) in the limit of α → ξ + 0 becomes(

∂β∗p∗

∂η

)
T

= K̂2(0). (6.146)

Because K̂(0) is related to the zeroth moment of K∗(x),

K̂(0) = 1 − 12η
∫ ∞

0

dxK∗(x) ≡ m0, (6.147)

we may write (6.146) as

m2
0 =

(
∂β∗p∗

∂η

)
T

. (6.148)

Furthermore, because the Fourier transform of the OZ equation at k = 0 may
also be written as(

∂β∗p∗

∂η

)
T

[
1 + 24η

∫ ∞

0

dxx2h(x)
]

= 1, (6.149)

with the help of (6.148) this equation may be written as

m2
0

[
1 + 24η

∫ ∞

0

dxx2h(x)
]

= 1. (6.150)

Either this equation (6.150) or (6.148) may be used to determine ξ because
they must be satisfied by the solutions of the integral equations presented, and
the solutions are functions of the yet undetermined parameter ξ. Either one
of these equations will be called the constraint equation, which is an algebraic
equation relating ξ to η and β∗ for the fluid of interest.

Either (6.148) or (6.150) must be combined with the integral equations
(6.135) and (6.136) in developing the solution algorithm. Solving (6.135) and
(6.136) subject to the condition (6.148) or (6.150) is a kind of eigenvalue
problem, for which there is only one value of ξ at a given value of η that
satisfies the equations. It must be emphasized that (6.148) and (6.150), as
they stand, are exact and valid independently of interaction potential energy
models for fluids. They become approximate when approximations are made
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of the moment m0 and the total correlation function h(x) or p∗, but such
approximations must be made so that the exact relation implied by the OZ
equation is satisfied. In this sense, the approximate solutions for the inte-
gral equations are renormalized to satisfy the relation demanded by the OZ
equation.

The formal theory of integral equations for pair correlation functions is
now complete. It can be shown with hard sphere fluids as an example how
this theory works for liquids.

6.8 Application to Hard Sphere Fluids

Equations (6.135)–(6.137) become somewhat simpler for hard sphere fluids
than for fluids obeying other potential models. Because the theory has not
yet been applied to nonhard sphere potential models, it will be discussed
for hard sphere fluids. For hard sphere fluids, the aforementioned solvability
condition (i.e., the constraint equation) and also the determination of kc can
be more readily seen than the nonhard sphere potential models. Here the
solution procedure is sketched briefly, and the results for the equation of state
and pair correlation function are presented. The details are referred to the
original work [10].

6.8.1 Integro-Differential Equations for Hard Sphere Fluids

For hard sphere fluids, the total correlation function is discontinuous in the
following manner:

h(x) = [θ (x− 1) − 1] + θ (x− 1)h2(x), (6.151)

where h2(x) = h(x > 1) and θ (t) is the Heaviside step function defined
earlier; see (6.19). Because of this property of the correlation functions and
the intimate relation of φ to them, we have argued that it is appropriate to
seek φ such that φ(x) = 0 for x < 1 and the range of x for φ(x) can be taken
as 1 < x < ∞ instead of 0 < x < ∞, which should be taken for continuous
intermolecular potentials. Because of these properties of h(x) and φ(x), there
arise two sets of integro-differential equations [10] from (6.135) and (6.136):

In the range of x < 1

K∗′(x) = x− 12η
∫ ∞

0

dt (t− x)K∗(t)h(|x− t|), (6.152)

−1
6ηx

∂2

∂x∂n
n2x3y(x, n) = −K∗′(x) + 12η

∫ ∞

0

dtK∗′ (t)K∗(t− x), (6.153)

ϕ(x) = 0 (6.154)
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and in the range of x > 1

x [y(x, n) − 1] = −K∗′(x) − 12η
∫ ∞

0

dt (t− x)K∗(t)h(|x− t|), (6.155)

K∗′(x) = 12η
∫ ∞

0

dtK∗′ (t)K∗(t− x) − 2ϕ (x) − (1 + x)
∂ϕ

∂x
, (6.156)

where ϕ (x) is given by (6.144).
The factorization function K∗(x) also should have two different forms in

the ranges of x < 1 and 1 < x < ∞. Therefore, it is appropriate to define two
functions

K1(x) = K∗(x) for x < 1
(6.157)

K2(x) = K∗(x) for 1 < x < ∞.

Because K∗(x) must be continuous, it is required that

K1(1) = K2(1). (6.158)

Therefore K∗(x) may be expressed as

K∗(x) = [1 − θ (x− 1)]K1(x) + θ (x− 1)K2(x). (6.159)

The integro-differential equations (6.152)–(6.156) immediately provide some
formal results for thermodynamic functions that can be useful for developing
solution procedures. We discuss them first.

6.8.2 Differential Equation for Pressure

The integro-differential equation (6.153) gives rise to a differential equation for
pressure, which can be determined if K∗ (x) is determined from Eqs. (6.152),
(6.155), and (6.156), which also yield the total correlation function in the
range of x > 1. Because the virial equation of state for hard sphere fluids is
given by [2]

p∗β∗ = η + 4η2y(1, η), (6.160)

upon integration of (6.153) over x ∈ [0, 1], there follows the differential equa-
tion for pressure:

∂

∂η
(p∗β∗ − η) = 24η

∫ 1

0

dxxR(i) (x) + 288η2

∫ 1

0

dxxR(o)(x), (6.161)

where

R(i) (x) = K ′
1(x) − 12η

∫ 1

x

dtK ′
1(t)K1(t− x), (6.162)

R(o)(x) = −
∫ x+1

1

dtK1(t− x)K ′
2(t) −

∫ ∞

x+1

dtK2(t− x)K ′
2(t). (6.163)
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Superficially, R(i) (x) is the contribution from the inner region (x < 1), which
is made up of K1(x) in the inner region corresponding to the hard core,
whereas R(o)(x) represents in the main the contribution from the outer region
(x > 1). There now remains the task of calculating K1(x) and K2(x) to obtain
the equation of state by integrating (6.161) with respect to η. The integral
of R(i) (x) in (6.161) constitutes the principal contribution to the equation of
state for hard sphere fluids. Note that the equation of state determined by
(6.161) is thermodynamically consistent regardless of whether it is calculated
exactly or approximately because there is only one equation of state possible in
the present theory. Note also that the cavity function y(1, η) can be calculated
only through p∗β∗ or the right-hand side of (6.161) in the present theory.

6.8.3 Pair Correlation Function

The total correlation function, and hence the pair correlation function, can be
calculated from the integral equations (6.152), (6.155), and (6.156), but this
approach is rather cumbersome. Instead, because it is permissible to take the
limit α → ξ + 0, it may be calculated directly with the Fourier transform of
the OZ equation

ρĥ (k) =
ρĉ (k)

1 − ρĉ (k)
, (6.164)

with ĉ (k) given by the Fourier transform of the thermodynamically consistent
closure (6.134), which for hard sphere fluids takes the form

c(x) = −y(x, η) −
(

1
3

∂y

∂ lnx
+

1
2

∂y

∂ ln y
+

1
6

∂2y

∂ lnx∂ ln η

)
for x < 1

=
1
x

[
2ϕ (x) + x

∂ϕ

∂x

]
for x > 1 (6.165)

with ϕ (x) given in (6.144). This approach is found more readily amenable
to an approximation with good accuracy, which is also independent of the
approximation for K1(x) and K2(x). In regard to the closure (6.165), it is
useful to note that inasmuch as the closure is an assumption, it is permissible
to simply take, instead of the closure (6.165), the closure

c(x) = −y(x, η) for x < 1

=
1
x

[
2ϕ (x) + x

∂ϕ

∂x

]
for x > 1, (6.166)
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which is a modification of the PY closure.6 This form of closure, which is an
approximation of (6.165), will give rather accurate pair correlation functions.

6.8.4 A Perturbation Solution Method

To solve the integro-differential equations approximately for hard sphere
fluids, (6.152), (6.155), and (6.156) are cast into the forms

K ′
1(x) = m0x + m1 (6.167)

−12η
∫ ∞

x+1

dtK2(t)(t− x)y2 (t− x) ,

x [y2(x) − 1] = −K ′
2(x) + 12ηL(x) + 12ηΛ(x), (6.168)

K ′
2(x) = 12ηΠ2(x) − 2ϕ(x) − (x + 1)

∂ϕ

∂x
, (6.169)

where y2 (t) is the cavity function in the outer range. Equation (6.167) is
defined in the range x < 1, whereas (6.168) and (6.169) are defined in x > 1.
The moment m0 of K∗(x) has been already defined [see (6.147)] and the first
moment m1 of K∗(x) is defined by

m1 = 12η
∫ ∞

0

dxxK∗(x). (6.170)

The symbols Π2(x) and Λ(x) are the abbreviations for the convolution inte-
grals defined below

Π2(x) =
∫ x+1

x

dtK ′
2(t)K1 (t− x)+

∫ ∞

x+1

dtK ′
2(t)K2 (t− x) (x > 1) , (6.171)

and

L(x) = [1 − θ (x− 2)]L1(x) + θ (x− 2)L2(x), (6.172)

Λ(x) = [1 − θ (x− 2)]Λ1(x) + θ (x− 2)Λ2(x) (6.173)

6 This is a kind of GSMA closure [7] with c(x) given for x > 1 by the gauge
function and its derivative. Not only is the form of c(x) for x > 1 different from
Waisman’s form, but also its mathematical origin is rooted in the Wiener–Hopf
method, unlike the original GSMA closure.
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with the definitions

L1(x) =
∫ 1

x−1

dtK1(t)(t− x) +
∫ x+1

1

dtK2(t)(t− x) (1 < x < 2) , (6.174)

L2(x) =
∫ x+1

x−1

dtK2(t)(t− x) (x > 2) , (6.175)

Λ1 (x) =
∫ x−1

0

dtK1(t)(x− t)h2(x− t)

−
∫ ∞

x+1

dtK2(t)(t− x)h2(t− x) (1 < x < 2) , (6.176)

Λ2 (x) =
∫ 1

0

dtK1(t)(x− t)h2(x− t) +
∫ x−1

1

dtK2(t)(x− t)h2(x− t)

−
∫ ∞

x+1

dtK2(t)(t− x)h2(t− x) (x > 2) . (6.177)

One feature that is immediately obvious in this set of equations is that
because temperature does not appear in the equation, ξ must be independent
of it, but depends only on η. Therefore, ξ does not change as the temperature
of the system changes. This is expected as mentioned earlier, because hard
sphere fluids are athermal and have no first-order liquid–vapor phase tran-
sition although there can be a liquid–crystal, or a liquid–amorphous solid,
transition. However, because the closure is no longer given by (6.165) for po-
tentials other than the hard sphere potential, ξ is expected to depend generally
on both temperature and density. A first-order liquid–vapor phase transition
is therefore expected as the zeros close onto the origin of the complex k plane.

The inhomogeneous terms of (6.167) consist of simple algebraic forms in
the inner region, whereas the contribution from the outer region on the right-
hand side—the integral term—is a correction for the contribution from the
inner region (hard core) made up of only K1(x) and its integral. The role
of (6.168) and (6.169) in the outer region is then to provide a correction for
(6.167) and for the differential equation for pressure. These features of the in-
tegral equations suggest that the equation of state may be calculated by a per-
turbation technique that treats the contribution from the outer region as a per-
turbation, and the packing fraction may be treated as a perturbation parame-
ter for the purpose. Because the integral equations are of the Volterra type [51],
it is sufficient to generate iterative series to obtain a perturbation series.

Thus the lowest order iterative solution for K1(x) is

K1(x) � κ +
1
2
m0x

2 + m1x, (6.178)

where
κ = K2(1) − 1

2
m0 −m1. (6.179)
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Similarly, we obtain from (6.169) K2(x) to the same order:

K2(x) = [1 − ξ (x + 1)] e−ξ(x−1) + O (η) (6.180)

and from (6.169)

xy2(x) = x + ξ [2 − ξ (1 + x)] e−(x−1)ξ + O (η) . (6.181)

In this order of approximation

κ2 ≡ K2(1) = 1 − 2ξ. (6.182)

This will provide us with ξ as will be seen later, when κ2 is determined as a
function of η.

To obtain the equation of state beyond that of the ideal gas, it is necessary
to calculate the differential equation to the order of η. This means that at least
the integral of R(i) (x) must be calculated with the lowest order solution for
K1(x), and the term involving R(o)(x) may be neglected. Thus on using the
result for K1(x), the differential equation for pressure (6.161) becomes

∂

∂η
(p∗β∗ − η) = 4η (2m0 + 3m1) (2ηm0 + 3ηm1 + 1)

−12η2 (3m0 + 4m1)κ2. (6.183)

The density dependence of the moments m0 and m1 must be determined from
their definitions, (6.147) and (6.170). With the lowest order solutions given
earlier for K1(x), K2(x), and y2(x), we obtain the moments as(

m0

m1

)
=

1
(η − 1)2

(
2η + 1
− 3

2η

)
+

6ηκ2

(η − 1)

(
2
−1

)
. (6.184)

Equation (6.183) is then given by

∂

∂η

[
p∗β∗ − η

(
1 + η + η2

)
(1 − η)3

]
=

12 (η + 5) η2

(η − 1)3
κ2 +

144η3

(η − 1)2
κ2

2. (6.185)

To determine κ2 or ξ, we now use the constraint equation (6.148). Using
(6.184) and (6.185), the physically acceptable solution for ξ is

ξ =
1
2
,

that is, κ2 = 0, and the corresponding equation of state is

p∗β∗ =
η
(
1 + η + η2

)
(1 − η)3

. (6.186)

This is the well-known equation of state for hard sphere fluids obtained via
the isothermal compressibility route in the PY closure. In the present theory,
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it is thermodynamically consistent, that is, it is the same as that obtained via
the virial route. When this result is substituted in (6.160), the cavity function
is obtained. It is the only way to obtain y(1, η) for hard sphere fluids because
the cavity function for x < 1 is defined by (6.153), which gives rise to the
differential equation for pressure.

The equation of state (6.186) can be improved even if the higher order
solutions are not employed for K1(x) and so forth. We notice that only a
very small correction for κ2 is necessary. Therefore, we may take κ2 on the
right-hand side of (6.185) as a small number, say,

κ2 =
(4 − η) η
c (1 − η)

(6.187)

where c is a sufficiently large number that assures the smallness of κ2: it may
be taken as c = 60 or 120, for example. Then (6.148) is used together with
(6.184) and (6.185). For c = 60, this yields the inverse correlation length ξ in
the form

ξ =
1
2
− 2η + 1

24η (1 − η)
+

1
24η (1 − η)

√
1 + 4η + 4η2 − 4η3 + η4 + ω, (6.188)

ω =

(
5 − 4η2 + η3

)
(η − 4) η3

25
. (6.189)

Suppose that the equation of state is known as a function of density, as
it is for the Carnahan–Starling (CS) equation of state [52]. By using the CS
equation of state for (∂p∗β∗/∂η)T in (6.148),

ξ =
1
2
− 2η + 1

24η (1 − η)
+

√
4η + 4η2 − 4η3 + η4 + 1

24η (1 − η)
. (6.190)

The difference between these ξ values is rather minor, and ξ is about 0.5 in
the liquid density range.

Substituting κ2 given in (6.187) in (6.185) and integrating the equation,
we obtain the equation of state in closed form

(p∗β∗)th1 =
η
(
1 + η + η2

)
(1 − η)3

+
7
5

ln (1 − η) (6.191)

+
η
(
1050η − 770η2 + 165η3 + 21η4 − 25η5 + 3η6 − 420

)
300 (η − 1)3

.

If c = 120, then the equation of state is given by

(p∗β∗)th2 =
η
(
1 + η + η2

)
(1 − η)3

− 1
4

ln (1 − η) (6.192)

+

(
550η2 − 750η + 525η3 + 81η4 − 25η5 + 3η6 + 300

)
η

1200 (η − 1)3
.
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Fig. 6.6. p∗β∗ vs. η for a hard sphere fluid

The PY equation of state is corrected in these equations of state, although
the corrections are minor. In Fig. 6.6, the equation of state (p∗β∗)th1(O) and
(p∗β∗)th2(�) are compared with the MC simulation results [53] and CS equa-
tion of state (broken curve). Note that the CS equation of state is comparable
with the MC simulation results.

6.8.5 Numerical Results for the Pair Correlation Function

The perturbation solution for the total correlation function for x > 1, (6.181),
is not sufficiently accurate to use for calculating quantities other than K1(x).
To calculate a sufficiently accurate total correlation function, (6.164) may be
used together with an approximation of the closure (6.165), for example, an
approximate form corresponding to the iterative solution used for the equation
of state presented earlier.

It was found that the approximate closure (6.166) was simple from the
computational standpoint yet sufficiently accurate for the total correlation
function. We will first examine to what order of approximation of the ther-
modynamically consistent closure (6.165) the aforementioned closure (6.166)
corresponds. It can be shown that for hard sphere fluids∫ 1

0

dxx
(

1
3

∂y

∂ lnx
+

1
2

∂y

∂ ln y
+

1
6

∂2y

∂ lnx∂ ln η

)
= 0 (6.193)

and, moreover,

x

(
1
3

∂y

∂ lnx
+

1
2

∂y

∂ ln y
+

1
6

∂2y

∂ lnx∂ ln η

)
� O (η) . (6.194)
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Because the terms of O (η) are neglected in approximations (6.178) and (6.180)
for K1(x) and K2(x) and the cavity function y(x, η) is at least O (1), the
second term in the first line of closure (6.165) may be neglected to obtain
closure (6.166).

On the basis of this analysis, the OZ equation (6.164) with closure (6.166)
for the direct correlation function was solved in [10]. Equation (6.164) can be
solved iteratively together with (6.166) for an arbitrarily chosen value of ξ
until the solution is convergent, and then the consistency of the solution with
the constraint equation is checked[

2η + 1
(η − 1)2

+
12η

(η − 1)
(1 − 2ξ)

]2 [
1 + 24η

∫ ∞

0

dxx2h(x)
]

= 1. (6.195)

If this constraint equation is not satisfied within the given tolerance for a
chosen value of ξ, then the value of ξ is suitably altered and the OZ equation
is solved repeatedly until the constraint equation is satisfied within the given
tolerance. It was found that for hard sphere fluids in the liquid density range
ξ � 0.5, the pair correlation function thus calculated compares with the MC
simulation results [53] in Fig. 6.7. As is evident, the pair correlation function
by the method described is quite accurate.

In view of the results obtained for the equation of state and the pair cor-
relation function, it is quite evident that the integro-differential equations
(6.167)–(6.169), which correspond to the OZ equation with a thermodynami-
cally consistent closure, are expected to yield reliable and accurate results for
the equation of state and the pair correlation function for liquids, if they are
solved exactly.
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Fig. 6.7. Comparison of g(r), computed by solving the OZ equation with (6.166) for
the closure, with the MC simulation results of Barker and Henderson [53]. The open
circles (©) are the MC simulation results, whereas the solid curve is theoretical
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6.8.6 The Laguerre Transform Method

Having ascertained that the integro-differential equations (6.167)–(6.169) are
capable of yielding a correctly behaved equation of state and total pair cor-
relation function, it is appropriate to seek a more accurate method of solving
them. Because the gauge function obtained earlier is given as an exponen-
tial function, which may be regarded as the weight function for Laguerre
polynomials, it seems reasonable to develop a transform method by employ-
ing Laguerre polynomials. Laguerre polynomials are orthogonal functions, so
the method [54] we have in mind is a Galerkin method based on orthogonal
polynomials. This particular transform method will be henceforth called the
Laguerre transform method. The range of variable x is from x = 1 to infinity
for the problem involving hard sphere, so it is appropriate to expand h2(x)
and K2(x) as follows:

xh2(x) =
√

2ξ
∑
k≥0

Hk exp [−ξ (x− 1)]Lk [2ξ (x− 1)] , (6.196)

K2(x) =
√

2ξ
∑
k≥0

Kk exp [−ξ (x− 1)]Lk [2ξ (x− 1)] , (6.197)

where Lk (s) is the Laguerre polynomial of order k and argument s and the
amplitudes Hk and Kk are the Laguerre transforms of xh2(x) and K2(x),
respectively. The Laguerre transforms Hk and Kk should be determined from
the Laguerre transforms of (6.168) and (6.169), which must be subject to con-
straint (6.150) determining the value of ξ. The Laguerre polynomials are or-
thogonal and normalized according to Bateman’s definition of Laguerre poly-
nomials [55]: ∫ ∞

0

dse−sLk(s)Lj(s) = δjk. (6.198)

The Laguerre transforms Hj and Kj are obtained upon multiplying√
2ξ exp [−ξ (x− 1)]Lj [2ξ (x− 1)]

by (6.196) and (6.197) and integrating over x ∈ [1,∞]:

Hj =
√

2ξ
∫ ∞

1

dxxh2(x)e−ξ(x−1)Lj [2ξ (x− 1)] , (6.199)

Kj =
√

2ξ
∫ ∞

1

dxK2(x)e−ξ(x−1)Lj [2ξ (x− 1)] . (6.200)

In this connection, note that

h(x) = h2(x) = y2(x) − 1 for x > 1
= −1 for x < 1.

Therefore, the cavity function can be similarly expanded in Laguerre polyno-
mials.
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Equations for Moments

We begin the solution algorithm based on Laguerre transforms with the equa-
tions for the moments m0 and m1. If the definitions of the moments are used,
they are expressible in terms of the Laguerre transforms of xh2 and K2(x).
In matrix form, the equations for m0 and m1 are given by(

m0

m1

)
=
(
μ0

μ1

)
+ 12

√
2ξη
∑
k≥0

Kk

(
μ0k

μ1k

)
, (6.201)

where (
μ0

μ1

)
=

1
(η − 1)2

(
2η + 1
− 3

2η

)
, (6.202)

(
μ0k

μ1k

)
=

−1
(η − 1)2

(
ΔM

(0)
k

1
2ΔM

(1)
k

)
. (6.203)

In (6.203), ΔM
(0)
k and ΔM

(1)
k are defined by quantities consisting of Laguerre

transforms of xh2 and K2(x) and quadratures of Laguerre polynomials. They
are given by [54]

ΔM
(0)
k = 1 − η +

(−1)k

ξ2
[ξ (2η + 1) − 12η (1 + k)]

+
12η
ξ5

[
ξ (2η + 1) J (0)

k − 6ηJ (1)
k

]
+

12
√

2η
ξ

7
2

∑
j≥0

[
ξ (2η + 1)J (0)

jk − 6ηJ (1)
jk

]
Hj , (6.204)

ΔM
(1)
k = −1 + 7η +

(−1)k

ξ2
[3ηξ − 4 (1 − 4η) (1 + k)]

+
12η
ξ5

[
3ηξJ(0)

k − 2 (1 − 4η) J (1)
k

]
+

12
√

2η
ξ

7
2

∑
j≥0

[
3ηξJ(0)

jk − 2 (1 − 4η) J (1)
jk

]
Hj , (6.205)

where J
(l)
k and J

(l)
jk (l = 0, 1) are quadratures of Laguerre polynomials defined

by

J
(l)
k (ξ) =

∫ ξ

0

dxxl

∫ ξ

x

ds
∫ ∞

s

du (u + ξ − s) e−uLk (2u) , (6.206)

J
(l)
jk (ξ) =

∫ ξ

0

dxxl

∫ ξ

x

dse−s

∫ ∞

0

due−2uLj (2u)Lk (2s + 2u) . (6.207)
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These quadratures can be evaluated exactly as functions of ξ by using the
properties of Laguerre polynomials, but the results are rather complicated
polynomials of ξ weighted by exp (−ξ); they are expressible as linear combi-
nations of Laguerre polynomials of ξ.

With the help of the formulas for m0 and m1 it is now possible to express
K1(x) as follows:

K1(x) =
1
2
μ0

(
x2 − 1

)
+ μ1 (x− 1) + 12

√
2ξη
∑
k≥0

KkK
(0)
k (ξx)

+
24η
ξ

∑
j,k≥0

HjKkK
(1)
jk (ξx) , (6.208)

where

K
(0)
k (ξx) = 1 +

μ0k

2ξ2

[
(ξx)2 − ξ2

]
+

μ1k

ξ
(ξx− ξ) +

1
ξ3

A
(1)
k (ξx) , (6.209)

K
(1)
jk (ξx) =

√
2

ξ3/2

∑
j≥0

HjA
(2)
jk (ξx) . (6.210)

In these expressions, A(1)
k (s) and A

(2)
jk (s) are the abbreviations for the linear

combinations of Laguerre polynomials as follows:

A
(1)
k (s) = (ξ + 1)

[
e−sLk(2s) − e−ξLk(2ξ)

]
−2k (2ξ + 3)

k∑
j=0

(
k

j

)(−1
2

)j [
e−sLk−j−1(s) − e−ξLk−j−1(ξ)

]

+2k (ξ + 2)
k∑

j=0

(
k

j

)(−1
2

)j [
e−sLk−j−2(s) − e−ξLk−j−2(ξ)

]

−2k
k∑

j=0

(
k

j

)(−1
2

)j [
e−sLk−j−3 (s) − e−ξLk−j−3 (ξ)

]
, (6.211)

A
(2)
jk (s) =

1
2
δj0

{
e−s [Lk(s) − Lk−1(s)] − e−ξ [Lk(ξ) − Lk−1(ξ)]

}
+

e−s

2

k−1∑
m=0

(δm,k−j − δm,k−j−1) [Lm(s) − Lm−1(s)]

−e−ξ

2

k−1∑
m=0

(δm,k−j − δm,k−j−1) [Lm(ξ) − Lm−1(ξ)] . (6.212)
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In connection with the quadratures presented earlier, it is useful to note that

J
(l)
k =

∫ ξ

0

dsslA
(1)
k (s) ,

(6.213)

J
(l)
jk =

∫ ξ

0

dsslA
(2)
jk (s) ,

which on evaluation yield linear combinations of Laguerre polynomials if the
expressions in (6.211) and (6.212) are used. Thus we see that K1(x) is at most
quadratic with respect to the Laguerre transforms of xh2(x) and K2(x).

Amplitude Equations

The Laguerre transforms, namely, the amplitude equations, of (6.168) and
(6.169) can be obtained similarly to the equations for moments m0 and m1.
The amplitude equations will be a pair of algebraic equations for Laguerre
transforms Hj and Kj but involve numerous quadratures. They may be ex-
pressed in the forms [54]∑

k≥0

(SnkHk + ΘnkKk) =
η√

2ξ9/2
I(H)
n +

24
√

2η
ξ1/2

∑
j,k≥0

N
(H)
jkn HjKk

+
24
√

2η
ξ1/2

∑
j,k,l≥0

N
(H)
jknlHjKkHl, (6.214)

∑
k≥0

MnkKk =
√

2ξ
4

[(4ξ − 3) δn0 − δn1] + 24
√

2ξη
∑

j,k≥0

N
(K)
jkn KjKk

+ 288
√

2ξη2
∑

j,k,l≥0

N
(K)
jknlKjKkHl, (6.215)

where

Dnk = δnk + 2
k−1∑
j=0

δnj , (6.216)

the inhomogeneous term I
(H)
n is defined by

I(H)
n = μ0Λ

(1/1)
n + 4ξμ1Λ

(1/2)
n , (6.217)

linear coefficients by the formulas

Θnk = −ξDnk − 24η
ξ2

(
Λ

(1/3)
nk + 12ηξΛ(1/7/0)

nk + Λ
(2/1)
nk

)
,

Snk = δnk − 12η
ξ3

[
μ0

(
Λ

(1/4)
nk + Λ

(2/2)
nk

)
+ 2μ1ξ

(
Λ

(1/5)
nk + Λ

(2/3)
nk

)]
,

Mnk = −ξDnk − 12η
ξ2

(
μ0Q

(1)
nk + 2μ1ξQ

(2)
nk

)
, (6.218)
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and nonlinear coefficients by the formulas

N
(H)
jkn = 12ηΛ(1/8/0)

jkn + 12ηΛ(2/6/0)
jkn − Λ

(1/6)
jkn − Λ

(2/4)
jkn − Λ

(2/5)
jkn +

Λ
(1/7/1)
jkn√
2ξ3/2

,

N
(H)
njkl = 12ηΛ(1/8/1)

njkl + 12ηΛ(2/6/1)
njkl ,

N
(K)
jkn = Q

(3)
jkn + 12ηQ(4/0)

jkn ,

N
(K)
njkl = Q

(4/1)
njkl . (6.219)

All linear and nonlinear coefficients consist of various quadratures of Laguerre
polynomials, Λ(1/1)

n , etc. and Q
(1)
nk , etc. All can be exactly evaluated by using

the properties of Laguerre polynomials but give rise to fairly complicated
algebraic series of ξ. The quadratures may be classified into the following
three classes:

Λ(1/p), Λ(1/p/q) =
∫ ξ

0

dse−sLn (2s)F (s), (6.220)

Λ(2/p), Λ(2/p/q) =
∫ ∞

ξ

dse−sLn(2s)G(s), (6.221)

Q(p), Q(p/q) =
∫ ∞

0

dse−sLn (2s)P (s), (6.222)

which are summarized in Tables 6.1–6.3. Inspecting these tables for quadra-
tures, we notice that some of the quadratures in Class

(
Q(p), Q(p/q)

)
can be

expressed in terms of quadratures in Classes
(
Λ(ω/p), Λ(ω/p/q)

)
(ω = 1, 2).

Table 6.1. Quadratures of Laguerre polynomials Class Λ

Λ(1/p), Λ(1/p/q) F (s)

Λ
(1/1)
n (s + ξ) (s + 5ξ) (s − ξ)2

Λ
(1/2)
n (s + 2ξ) (s − ξ)2

Λ
(1/3)
nk

∫ s+ξ

ξ
du(u − s)e−uLk (2u)

Λ
(1/4)
nk

∫ s

0
due−uLk (2u)

[
(s − u)2 − ξ2

]
Λ

(1/5)
nk

∫ s

0
due−uLk (2u) (s − u − ξ)

Λ
(1/6)
jkn e−ξ

∫∞
0

due−2uLk [2 (u + s + ξ)] Lj (2u)

Λ
(1/7/0)
nk

∫ ξ

s
du(u − s − ξ)K

(0)
k (u)

Λ
(1/7/1)
jkn

∫ ξ

s
du(u − s − ξ)K

(1)
kj (u)

Λ
(1/8/0)
jkn

∫ s

0
due−uLj (2u) K

(0)
k (s − u)

Λ
(1/8/1)
jknl

∫ s

0
due−uLj (2u) K

(1)
kl (s − u)
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Table 6.2. Quadratures of Laguerre polynomials Class Λ

Λ(2/p), Λ(2/p/q) G(s)

Λ
(2/1)
nk

∫ s+ξ

s−ξ
du(u − s)e−uLk(2u)

Λ
(2/2)
nk

∫ s

s−ξ
du
[
(u − s)2 − ξ2

]
e−uLk(2u)

Λ
(2/3)
nk

∫ s

s−ξ
du (u − s − ξ) e−uLk(2u)

Λ
(2/4)
jkn eξ

∫ s−ξ

0
duLk [2 (s − u − ξ)] Lj(2u)

Λ
(2/5)
jkn e−ξ

∫∞
0

due−2uLk [2 (s + u + ξ)] Lj(2u)

Λ
(2/6/0)
jkn

∫ ξ

s−ξ
du K

(0)
k (s − u) e−uLj (2u)

Λ
(2/6/1)
jknl

∫ ξ

s−ξ
du K

(1)
kl (s − u) e−uLj (2u)

Table 6.3. Quadratures of Laguerre polynomials Class Q

Q(p), Q(p/q) P (s)

Q
(1)
nk

∫ s+ξ

s
du
[
(u − s)2 − ξ2

]
d
du

e−uLk (2u)

Q
(2)
nk

∫ s+ξ

s
du (s − u − ξ) d

du
e−uLk (2u)

Q
(3)
jkn eξ

∫∞
s+ξ

du e−uLj [2 (u − s − ξ)] d
du

e−uLk (2u)

Q
(4/0)
jkn

∫ s+ξ

s
duK

(0)
1k (u − s) d

du
e−uLj (2u)

Q
(4/1)
njkl

∫ s+ξ

s
duK

(1)
kl (u − s) d

du
e−uLj (2u)

The amplitude equations are subject to the constraint equation

1
(η − 1)4

⎡⎣1 + 2η − 12
√

2ξη
∑
k≥0

ΔM
(0)
k (ξ)Kk

⎤⎦2

×

⎧⎨⎩1 − 8η +
24
√

2η√
ξ

∑
k≥0

(−1)k

[
1 +

1
ξ

(2k + 1)
]
Hk

⎫⎬⎭ = 1, (6.223)

where the Laguerre transforms Hk and Kk are the solutions of the ampli-
tude equations presented and ΔM

(0)
k (ξ) is defined by (6.204). This constraint

equation makes it possible to determine ξ. The point made here is that the am-
plitude equations (6.214) and (6.215) are nonlinear algebraic equations with
coefficients that can be evaluated exactly as functions of ξ. The algorithm for
solving the integro-differential equations (6.167)–(6.169) is now complete. The
amplitude equations may be solved iteratively in the region of ξ away from
the singular points of ξ where ξ vanishes.

With the solutions for (6.214), (6.215), and (6.223), K1(x), K2(x), and
h2(x) can be calculated and therewith the thermodynamically consistent
equation of state can be computed from (6.161), (6.162), and (6.163). The
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Laguerre transform Hk of xh2(x), namely, the solutions of the amplitude
equations, also provides the structure factor of the liquid, which is defined by

S(q) = 1 + 8π3σ−3ρ∗δ (q) + ρ∗ΔS(q) (6.224)

where ρ∗ = ρσ3 and

ΔS(q) =
∫

dx exp(iq · x)h(x). (6.225)

This integral can be readily evaluated in terms of the Laguerre transforms
Hj , and the wave number q as follows:

ΔS(q) = −4π
q
j1 (q) (6.226)

+
4π

√
2ξ

q (q2 + ξ2)1/2

∑
j≥0

(−1)j sin
[
q + (2j + 1) arctan

(
q

ξ

)]
Hj ,

where j1 (q) is the spherical Bessel function of order one:

j1 (q) = q−2 (sin q − q cos q) .

This shows that knowledge of the Laguerre transforms Hj and Kj and the
parameter ξ, which is the magnitude of the zeros of [1 − ρĉ(k)], will enable
us to compute all the thermodynamic properties of the hard sphere fluid as
functions of density.

6.9 Concluding Remarks

As will be shown in the subsequent chapters, because transport coefficients of
liquids, although dynamic in origin, can be expressed in terms of equilibrium
quantities such as the pair correlation function and the equation of state, it
is important to be able to calculate them by statistical mechanics methods.
In this chapter, as an important preparation for that aim, we have developed
the generic van der Waals equation of state, namely, the canonical equation of
state, which, together with the MC simulation methods for the pair correlation
functions of liquids, provides a crucial ingredient for computing transport
properties of liquids. As will be seen later, the canonical equation of state
occupies the keystone position in the edifice of the statistical mechanics theory
of transport coefficients of liquids we will present, and we have now equipped
ourselves with that crucial theoretical tool in this chapter.

It is also shown that the pair correlation functions of liquids can be studied
by integral equations derived from the OZ equation with a thermodynamically
consistent closure for the direct correlation function. This theory is different
from the conventional integral equation theories in the literature [4]. The
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present integral equations derived from the OZ equation for pair correlation
functions take into account the possibility of isothermal compressibility of real
fluids to become infinity as the system approaches the critical point for a first-
order phase transition. The theory can be easily made to include more zeros
in the complex plane off the imaginary axis instead of a single pair on the
imaginary axis. The result of this generalization would describe how the sys-
tem approaches the real axis at a finite nonzero wave number, as temperature
and density vary. It might thus provide a way to examine freezing phenomena
of disordered liquids. The example taken with hard sphere fluids and for sim-
plicity of the formalism, although limited because of the type of zeros (i.e.,
zeros on the imaginary axis) and their number, shows that even if there is no
first-order liquid–vapor phase transition, the Wiener–Hopf factorization taken
for the theory presented is appropriate and physically acceptable because it
still foretells the possibility of transition to a disordered solid. Furthermore, it
also describes the long-range correlation of particles in hard sphere fluids and
yields the potential of mean force. In any case, the idea that the analyticity
of correlation functions in the complex k plane—Fourier space—should be
taken into consideration has far reaching theoretical consequences in develop-
ing the statistical mechanical theory of matter in general, which is worthwhile
studying in depth. Aside from these points, the theory presented for correla-
tion functions and the thermodynamically consistent equation of state may
be used as theoretical tools to study the transport properties of dense gases
and liquids and the structures of liquids in general.
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7

Generalized Boltzmann Equation

The Boltzmann equation has been shown to provide the kinetic theory foun-
dations [1, 2] of irreversible processes in dilute monatomic gases, but also,
as described in Chap. 3, yields statistical mechanical formulas for transport
coefficients of dilute gases, which are known capable of accounting for exper-
imental data on them. Since nonlinear transport processes in gases can be
built on the linear transport coefficients as shown in Chaps. 3 and 5 and in
the literature [1,2], the Boltzmann equation is a good mathematical model for
description of nonequilibrium monatomic gases far removed from equilibrium.
As shown in Chap 5, the Boltzmann kinetic theory of monatomic gases can
be satisfactorily extended to molecular gases. Therefore, the Boltzmann ki-
netic theory suggests the direction in which the kinetic theory of dense gases
and liquids may proceed to describe transport phenomena in them. Such a
theory [1,2] has been already proposed and used by the author in formulating
the thermodynamics of irreversible processes and generalized hydrodynamics.
The kinetic equation used for the purpose is called the generalized Boltzmann
equation. This kinetic equation has features basic to the Boltzmann equation,
the most important of which is the irreversibility and, because of it, enables
the kinetic equation to serve as the kinetic theory foundations of irreversible
thermodynamics of liquids. In this chapter, we introduce and describe the
generalized Boltzmann equation for nonreacting monatomic dense fluids.

The generalized Boltzmann equation was initially formulated in a canoni-
cal ensemble, but it was possible to formulate it in the grand ensemble [2, 3].
The grand ensemble kinetic theory appears to be more appropriate and inter-
esting. In [3], the generalized Boltzmann equation in the grand ensemble was
employed to formulate only a theory of irreversible processes and generalized
hydrodynamics, but the theory of transport processes was left unformulated
because the main aim of the monograph [2] was in formulating the thermo-
dynamics of irreversible processes. In this work, we will consider transport
processes to make the theory serve as the foundation of the study of trans-
port coefficients of nonreacting liquids.
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7.1 Grand Ensemble and Kinetic Equation

We consider a nonreacting fluid mixture composed of N1, N2, · · · , Nr monatomic
molecules of species 1, · · · , r contained in volume V . The system is open, ex-
changing matter as well as energy with its surroundings. Therefore, the num-
bers of particles are not fixed. The species will be distinguished by lower case
italic subscripts a, b, and so on, and the particles of species will be denoted
by lower case italic subscripts i, j, and so on. For example, the composite
subscript ja denotes particle j ∈ a. The position and conjugate momentum
vectors of particles will be denoted, respectively, by rja and pja and so on.
The phases will be denoted by xja = (pja, rja) for particle j ∈ a, and the

total phase by x(N) =
(
x

(N1)
1 , · · · , x(Nr)

r

)
, where N = (N1, N2, · · · , Nr) and

x
(Na)
a = (x1a, · · · , xNaa).

The Liouville operator for the system consisting of N particles is then
defined by

L(N) =
r∑

a=1

Na∑
ja=1

⎡⎢⎢⎣vja · ∇ja +
1
2

r∑
b=1

Nb∑
kb=1

(ja�=kb)

Fjakb(rjakb) · (∇pja − ∇pkb)

⎤⎥⎥⎦
+

r∑
a=1

Na∑
ja=1

maFa(rja) · ∇pja, (7.1)

where rjakb = rja − rkb, vja = pja/ma with ma denoting the mass of species
a, and Fjakb(rjakb) denoting the intermolecular force

Fjakb(rjakb) = − ∂

∂rjakb
Vjakb(rjakb),

(7.2)

∇ja =
∂

∂rja
, ∇pja =

∂

∂pja
.

Here, Vjakb(rjakb) denotes the intermolecular potential energy of particle pair
(ja, kb), and Fa(rja) the external force on a unit mass of particle ja at rja. The
external forces are assumed to vary slowly over the range of intermolecular
interactions. Therefore, molecular collisions from intermolecular forces will
not be affected by the slowly changing external forces—the body forces. The
Hamiltonian of molecule ja will be abbreviated by H ′

ja:

H ′
ja =

1
2
maC

2
ja +

1
2

r∑
b=1

Nb∑
kb=1

(kb �=ja)

Vjakb (rjakb) + V (ex)
a (rja) , (7.3)
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with Cja denoting the peculiar velocity of particle ja: Cja = vja − u, and
V

(ex)
a (rja) denoting the external potential on particle ja. The kinetic energy

is therefore defined relative to the frame of reference moving at fluid velocity
u, which is the average particle velocity.

Because the number of particles in the system changes as the system inter-
acts with the surroundings and hence the dimension of the phase space keeps
on changing, it is not possible to describe the dynamic evolution of the system
in a phase space of fixed dimensions. This difficulty can be overcome if the
idea of Gibbs [4] is followed. Gibbs constructs a petit ensemble consisting of
representative systems of N particles in volume V . Because N is fixed for the
petit ensemble, the phase space of the petit ensemble has well-defined dimen-
sions. He then constructs a grand ensemble made up of petit ensembles of all
possible values of N, that is, the value of N changes from petit ensemble to
petit ensemble. The petit ensembles are subsystems of the grand ensemble. If
there are n(N) subsystems (petit ensembles) of N particles in V , then in the
grand ensemble there are petit ensembles numbering

ω =
∑
N≥0

n(N)

and the total number of particles in the grand ensemble is

N =
∑
N≥0

Nn(N).

This grand ensemble is isolated. Therefore, the grand ensemble has a phase
space of fixed dimensions corresponding to N . As the petit ensembles weakly
interact and exchange energy and particles with each other within the grand
ensemble, the latter reaches equilibrium. Letting the petit ensembles exchange
particles changes only the distribution of n(N) but does not affect the dimen-
sions of the phase space of the grand ensemble because it is closed. Neither
does the exchange of particles alter the phase space dimensions of the petit
ensembles.

The distribution function of finding the N particles of the grand ensemble
at x(N ) and t will be denoted by F (N )

(
x(N ), t

)
. This distribution function is

normalized as ∫
dx(N )F (N )

(
x(N ), t

)
= 1. (7.4)

It is appropriate to consider the distribution function for a representative
system (subsystem) to acquire a value of N and phase x(N) corresponding to
N regardless of the distribution of the rest of the subsystems in the grand
ensemble. The distribution function of the subsystem of N particles at time t
will be denoted by F (N)(x(N); t). It is the probability of finding N particles in
the phase volume dx(N) around phase x(N) at time t. This distribution func-
tion F (N)(x(N); t) clearly is a reduced distribution function of F (N )

(
x(N ), t

)
.
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It may be obtained from F (N )
(
x(N ), t

)
according to the definition

F (N)(x(N); t) =
N !

(N −N)!

∫
dx(N−N)F (N )

(
x(N ); t

)
, (7.5)

where

N =
r∑

a=1

Na.

Therefore, it follows that∫
dx(N)F (N)(x(N); t) =

N !
(N −N)!

. (7.6)

It was shown in [3] that analogous to the Boltzmann equation, the kinetic
equation for F (N)(x(N); t) may be assumed to be(

∂t + L(N)
)
F (N)(x(N); t) = R

[
F (N)

]
, (7.7)

where the collision term on the right stands for the phase integral over
(N −N) phases

R
[
F (N)

]
=

N !
(N −N)!

∫
dx(N−N) (−i)T (N )F (N )(x(N ); t), (7.8)

F (N )(x(N ); t) =
∏

ω={N,N′··· }
F (ω)(x(ω); t). (7.9)

The product in (7.9) is formed with the distribution functions F (N), F (N′), · · ·
for all petit ensembles in the grand ensemble. A derivation of this kinetic equa-
tion is described in Appendix A. In this expression for the collision integral
R
[
F (N)

]
, the operator T (N ) is the classical collision operator describing the

collision process of particles in ω subsystems making up the isolated grand en-
semble. The operator T (N ) obeys the classical Lippmann–Schwinger integral
equation for the scattering operator in the phase space. The reader is referred
to [1] in which a considerable space is devoted to classical scattering theory
in connection with T (N ). Here it is sufficient to note that a useful model for
it is

R
[
F (N)

]
=

N !
(N −N)!

∫
dx(N−N)

[
W
(
x(N )∗|x(N )

)
F (N )∗(x(N )∗; t)

−W
(
x(N )|x(N )∗

)
F (N )(x(N ); t)

]
, (7.10)

where W
(
x(N )|x(N )∗) is the transition probability that describes the dynamic

transition of the systems in the ensemble from the precollision state x(N ) to
the postcollision state x(N )∗ in the time interval dt. In semiclassical theory,
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in which only the particles collisions are treated quantum mechanically, it is
possible to show that W

(
x(N )|x(N )∗) is the classical limit of the quantum

mechanical quantity

W
(
x(N )∗|x(N )

)
=
[
2πT †

ifδ
(
H0

i −H0
f

)
Tif

]
�→0

, (7.11)

where H0
i and H0

f are the free particle super-Hamiltonian operators for the
initial (i) and the final (f) state in the superspace, respectively, and Tif is the
quantum mechanical Lippmann–Schwinger transition operator describing the
collision process i → f in the Hilbert space. See Appendix A for a discussion
of this relationship.

The transition probability W
(
x(N )|x(N )∗) satisfies the symmetry property∫

dx(N )∗W
(
x(N )|x(N )∗

)
=
∫

dx(N )∗W
(
x(N )∗|x(N )

)
. (7.12)

This is a generalization of the symmetry property described in (4.8) in Chap. 4.
Henceforth, we will assume that the collision operator T (N ) represents (7.10).
The transition probability W

(
x(N )|x(N )∗) is such that when the subsystems

consist of a single particle in the dilute gas limit, the collision integral (7.10)
reduces to that of the Boltzmann equation. In other words, if W

(
x(N )|x(N )∗)

is expanded in cluster contributions, its leading term consists of binary colli-
sion operators, from which the Boltzmann collision integral is recovered. With
this understanding, it is possible to develop a theory of transport processes in
dense gases and liquids. The transition probability may then be more specif-
ically modeled when the transport coefficients are computed for specific sys-
tems. We note that it is possible to formulate the theory with the quantum
mechanical Liouville–von Neumann operator and then take the classical limit
(� → 0, � = Planck constant/2π) of the results to recover the classical formu-
lation.

Property (7.12) gives rise to the inequality1

−
∑

{N}≥0

1
N!

∫
dx(N) lnF (N)

(
x(N), t

)
R
[
F (N)

]
≥ 0, (7.C1)

where

N! =
r∏

a=1

Na!.

This inequality is basically the H theorem satisfied by the kinetic equation.
The equality holds only at equilibrium, which is reached in a long time:

R
[
F (N)

eq

]
= 0. (7.C2)

With the help of mechanical conservation laws of mass, momentum, and en-
ergy, this equation uniquely defines the equilibrium distribution function. We
1 In [2], N ! does not appear in the condition below.
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have used such an equilibrium distribution function to calculate the equation
of state of the fluid in Chapter 6. If the densities of conserved quantities, such
as mass, total momentum, and energy, are collectively denoted by

I
(
x(N); r

)
=

r∑
a=1

Na∑
ja=1

Ija

(
x(N)

)
δ (rja − r) , (7.13)

where Ija can be equal to unity, Ija

(
x(N)

)
= ma for mass, Ija

(
x(N)

)
= pa for

momentum, and Ija

(
x(N)

)
= H ′

ja for energy, then the collision term R
[
F (N)

]
is such that∑
{N}≥0

1
N!

∫
V

dr
∫

dx(N)
r∑

a=1

Na∑
ja=1

Ija

(
x(N)

)
δ (rja − r) R

[
F (N)

]
= 0 (7.C3)

identically. This condition also follows from the symmetry properties of
W
(
x(N )|x(N )∗) under interchanges of particle phases and (7.12).
In [2], the kinetic equation (7.7) equipped with Conditions (7.C1)–(7.C3)

was employed to develop a thermodynamic theory of irreversible processes in
liquids. Condition (7.C1) assures the existence of Boltzmann entropy satisfy-
ing the H theorem and consequently the asymptotic stability of equilibrium
characterized by F

(N)
eq , which is uniquely determined by Condition (7.C2).

Condition (7.C3) guarantees the conservation laws of mass, momentum, and
energy—namely, the equation of continuity, the momentum balance equation,
and the internal energy balance equation. Recall that these conditions are also
met by the Boltzmann kinetic equation and many variants of it known in the
literature.

In the literature [5] on the foundations of kinetic theory and, in particular,
the Boltzmann equation, one gets the impression that the Boltzmann equation
is derivable from mechanical equations of motion for the system of interest.
It must be emphasized that the Boltzmann equation is a postulate for the
fundamental evolution equation for the probability distribution function of a
fluid system consisting of statistically uncorrelated subunits, each of which
is made up of a single particle. It is not derivable from the time-reversal
invariant Newtonian dynamic equations of motion for the system consisting
of the same subunits mentioned, if one takes the strict sense of word for
the term derivation. The kinetic equation (7.7) is a fundamental postulate in
the same spirit as originally taken for the Boltzmann equation by its inventor
Boltzmann [6]. The kinetic equation (7.7) is inclusive of the equilibrium Gibbs
ensemble theory in which only equilibrium is of interest since at equilibrium
(7.C1) holds and

∂F
(N)
eq

∂t
= 0. (7.14)

In this connection, it must be noted that because Condition (7.C2) ensures
that F

(N)
eq must be a function of the Hamiltonian of the system, (7.14) natu-

rally follows from the kinetic equation (7.7).
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7.2 Conservation Laws

The kinetic equation presented gives rise to the conservation laws of mass, mo-
mentum, and internal energy owing to the conditions on the kinetic equation
listed earlier, if the macroscopic variables appropriately defined are employed.

Phase space averages of dynamic quantities for the grand ensemble are in
general defined by the formula〈

F (N)M
(
x(N); t

)〉
=
∑

{N}≥0

1
N!

∫
V

dx(N)F (N)
(
x(N); t

)
M
(
x(N); t

)
.

(7.15)
The grand ensemble phase space averages of dynamic quantities will hence-
forth be denoted by angular brackets. We define various conserved and non-
conserved variables:

Mass density

ρ (r, t) =
r∑

a=1

ρa (r, t)

=
r∑

a=1

〈
Na∑

ja=1

maδ (rja − r)F (N)

〉
; (7.16)

Momentum density

ρu (r, t) =
r∑

a=1

ρaua (r, t)

=
r∑

a=1

〈
Na∑

ja=1

mavjaδ (rja − r)F (N)

〉
; (7.17)

Energy density

ρE (r, t) =
r∑

a=1

〈
Na∑

ja=1

H ′
jaδ (rja − r)F (N)

〉
. (7.18)

It is also convenient to define a generalized virial tensor operator Wjakb by
the formula

Wjakb =
∫ 1

0

dζ rjakbFjakb exp (−ζrjakb · ∇) . (7.19)

This tensor operator acts on delta function δ (rkb − r) in statistical mechanics
expressions for macroscopic variables. With the definition of peculiar velocity

Cja = vja − u, (7.20)
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we then define the diffusion fluxes, stress (pressure) tensor, and heat flux as
follows:

Diffusion fluxes

Ja =

〈
Na∑

ja=1

maCjaδ (rja − r)F (N)

〉
, (7.21)

Stress tensor

P = Pk + Pv

=
r∑

a=1

(
P(k)

a + P(v)
a

)
, (7.22)

Pk =
r∑

a=1

P(k)
a

=
r∑

a=1

〈
Na∑

ja=1

maCjaCjaδ (rja − r)F (N)

〉
, (7.23)

Pv =
r∑

a=1

P(v)
a

=
1
2

r∑
a,b=1

〈
Na∑

ja=1

Nb∑
kb=1

(ja�=kb)

Wjakbδ (rkb − r)F (N)

〉
, (7.24)

Heat flux

Q = Qh + Qw

=
r∑

a=1

(
Q(h)

a + Q(w)
a

)
, (7.25)

Qh =
r∑

a=1

Q(h)
a

=
r∑

a=1

〈
Na∑

ja=1

H ′
jaCjaδ (rja − r)F (N)

〉
, (7.26)

Qw =
r∑

a=1

Q(w)
a

=
1
2

r∑
a,b=1

〈
Na∑

ja=1

Nb∑
kb=1

(ja�=kb)

Wjakb · Cjaδ (rkb − r)F (N)

〉
. (7.27)
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To this list of macroscopic nonconserved variables, we add the mean inter-
molecular force Fa on species a:

ρaFa =
r∑

b=1

〈
Na∑

ja=1

Nb∑
kb=1

(ja<kb)

Fjakbδ (rkb − r)F (N)

〉
. (7.28)

The intermolecular interaction energy part Pv of stress tensor P did not
appear for dilute gases. The virial tensor contribution Qw of heat flux Q
represents a flow of energy in excess of the potential energy flow contained
in Qh and accounts for the flow of energy arising from the work of inter-
molecular forces. This component appears only in statistical mechanics, but
its appearance is not obvious in the phenomenological theory. It is possible
to derive the balance equations for the conserved variables from the kinetic
equation (7.7) by using the statistical mechanical definitions (7.16)–(7.27) and
the method of Irving and Kirkwood [7]. Their derivation is well documented
in the literature [1, 2], so we will simply list them here:

∂tρ = −∇ · ρu or ρdtv = ∇ · u, (7.29)

ρdtca = −∇ · Ja, (7.30)

ρdtu = −∇ · P + ρF, (7.31)

ρdtE = −∇ · Q − P : ∇u +
r∑

a=1

Ja · Fa. (7.32)

Fa is the external force on a unit mass of species a defined by

Fa = −m−1
a ∇V (ex) (r) ,

and F is the mean external force

ρF =
r∑

a=1

ρaFa.

These conservation laws of mass, momentum, and energy are superficially
identical to those for dilute gases considered in Chaps. 2 and 4. However, the
statistical mechanical definitions of the macroscopic quantities involved are
different in the sense that for dilute gases the singlet distribution function
is used and the potential energy contributions are absent, whereas for dense
gases and liquids a many-particle distribution function is employed and the
potential energy contributions are present. The potential energy contributions
in the stress tensor and the heat flux contain the virial tensor contributions,
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which are often neglected in dense fluid kinetic theories in the literature (e.g.,
linear response theory [8] and the BBGKY approach [5]), but they contribute
a major portion to the stress tensor and the heat flux and are important in
elucidating the mechanism of momentum and energy transfers between mole-
cules, as will be shown later when the density fluctuation theory is discussed
for transport processes in Chaps. 10–12.

7.3 Constitutive Equations

To discuss transport processes in dense fluids it is necessary to have non-
conserved variables appropriately defined and their evolution equations de-
rived from the kinetic equation. These evolution equations are the constitu-
tive equations for the nonconserved variables of the system, which describe
the constitutive properties of the substance of interest. We collectively denote
the molecular formulas of nonconserved variables, such as the stress tensors,
heat fluxes, diffusion fluxes, and so on, of various species by

h̄(q)
a =

Na∑
ja=1

h
(q)
ja δ (rja − r) (q ≥ 1). (7.33)

Its mean value is then computed by the formula

Φqa = ρΦ̂qa =

〈
Na∑

ja=1

h
(q)
ja δ (rja − r)F (N)

〉
. (7.34)

Here, the symbols Φqa have the same meanings and are ordered in the same
manner as those in Chaps. 3 and 5. The explicit forms for h(q)

ja can be system-
atically obtained by deriving the hierarchy of macroscopic evolution equations
starting with the equation of continuity, which leads us to the definition of
velocity, the evolution of which gives rise to the definition of the stress tensor,
and so on. In this manner, the entire set of molecular expressions

{
h

(q)
ja

}
can

be generated for macroscopic variable densities. We assume that there is a
complete set of functions h

(q)
ja , q ≥ 1. If the sequence of mechanical expres-

sions so derived for the macroscopic variables is arranged according to the
order of nonconserved variables in this work (see Chap. 2 for the order), we
obtain the leading members of the set relevant to the present work as follows:

The traceless, symmetric part of the stress tensor Φ1a = Πa:

h
(1)
ja δ (rja − r) = [maCjaCja](2) δ (rja − r)

+
1
2

r∑
b=1

Nb∑
kb=1

(ja�=kb)

[Wjakb]
(2)

δ (rkb − r) ; (7.35)
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The excess normal stress Φ2a = Δa:

h
(2)
ja δ (rja − r) =

(
1
3
maC

2
ja −mapa/ρa

)
δ (rja − r)

+
1
6

r∑
b=1

Nb∑
kb=1

(ja�=kb)

TrWjakbδ (rkb − r) ; (7.36)

The heat flux Φ3a = Q′
a = Qa − ĥaJa:

h
(3)
ja δ(rja − r) = (H ′

ja −maĥa)Cjaδ(rja − r)

+
1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

Wjakb · Cjaδ (rkb − r) ; (7.37)

The diffusion flux Φ4a = Ja:

h
(4)
ja δ(rja − r) = maCjaδ(rja − r). (7.38)

The molecular expressions for higher order moments can be obtained similarly.
The hydrostatic pressure of species a is denoted by pa, and ĥa is the enthalpy
per unit mass of species a.

The evolution equations for Φqa can be derived from the kinetic equation
and the statistical mechanics formula (7.34):

ρdtΦ̂qa = −∇ · ψqa + Zqa + Λqa, (7.39)

where the dissipation term Λqa is defined by

Λqa =
Na∑

ja=1

〈
h

(q)
ja δ (rja − r) R[F (N)]

〉
(7.40)

the kinematic term Zqa by

Zqa =
Na∑

ja=1

〈
F (N)δ (rja − r)D(N)

t h
(q)
ja

〉
(7.41)

with operator D(N)
t denoting the operator sum

D(N)
t = dt + L(N) + Cja · ∇, (7.42)
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and ψqa is defined by the statistical mechanical formula

ψqa =
Na∑

ja=1

〈
Cjah

(q)
ja δ (rja − r)F (N)

〉
. (7.43)

Physically, this quantity is the flux of Φka, but, mathematically, it is a moment
one order higher than Φka. The physical meaning of the term Λqa is also the
same as for the dilute gas counterpart; it is the term responsible for energy
dissipation in the system and is closely related to the calortropy production
of the system; see [2] for this aspect.

We would like to add the following remark regarding the dissipation term.
The dissipation term Λqa is the dense fluid generalization of the dissipation
term arising from the Boltzmann equation, which we have seen in Chap. 2 If
the Irving–Kirkwood procedure [7] is used to derive the evolution equations
for Φqa with the Liouville equation, as Irving and Kirkwood have done in their
work, instead of the kinetic equation (7.7), then the dissipation term Λqa will
be missing from (7.39), and there will be no energy dissipation mechanism in
the theory formulated therewith. Of course, this has to do with the absence of
irreversibility in the Liouville equation. The term Zqa in (7.39) is the kinematic
term, which is also the dense fluid generalization of the kinematic term that
appears in the dilute gas theory discussed in Chap. 2. It can be explicitly
evaluated, given its molecular definition.

Because the interaction energy contributions involve rather complicated
expressions, it is useful and convenient to define the following quantities re-
lated to potential energy contributions to the kinematic terms. First with the
abbreviations of tensor operators akin to and closely associated with the virial
tensor operator Wjakb already introduced:

Rjakb =
∫ 1

0

dζCjakbFjakb exp (−ζrjakb · ∇) , (7.44)

Sjakb =
∫ 1

0

dζrjakb [Cjakb · ∇rjakbFjakb] exp (−ζrjakb · ∇) , (7.45)

Njakb =
∫ 1

0

dζζ [rjakbFjakb]
(2) exp (−ζrjakb · ∇) , (7.46)

Wjakblc =
∫ 1

0

dζFjalcrjakb exp (−ζrjakb · ∇) , (7.47)

we define the macroscopic quantities

ψ(w)
qa = ψ(w1)

qa + ψ(w2)
qa (q = 1, 3) , (7.48)
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where

ψ
(w1)
1a =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)CjakbNjakbδ (rkb − r)

〉
, (7.49)

ψ
(w2)
1a =

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)rjakb [Rjakb]

(2)
δ (rkb − r)

〉
, (7.50)

ψ
(w1)
3a =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

[〈
F (N)Wjakb · CjaCjaδ (rkb − r)

〉

+
〈
F (N)

(
H ′

ja

ma
− ĥa

)
Wjakbδ (rkb − r)

〉]
, (7.51)

ψ
(w2)
3a =

1
2

r∑
b,c=1

Na∑
ja=1

Nb∑
kb=1

Nc∑
lc=1

(ja�=kb �=lc)

〈
F (N) 1

ma
Wjakb · Wjakblcδ (rkb − r)

〉
, (7.52)

and

V(1)
a = V(1)

Ca + 1
2V

(1)
Fa , (7.53)

V(3)
a = V(3)

a1 + V(3)
a2 + V(3)

a3 + V(3)
a4 + V(3)

a5 , (7.54)

ϕ(3)
a = ϕ(3k)

a + ϕ
(3w)
a1 + ϕ

(3w)
a2 + ϕ

(3w)
a3 . (7.55)

In these sums of tensors, various terms are defined by expressions involving
intermolecular forces

V(1)
Fa =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N) [Rjakb + Sjakb] δ (rkb − r)

〉
, (7.56)

V(1)
Ca =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)FjakbCjakbδ (rja − r)

〉
, (7.57)
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V(3)
a1 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)Fjakb · CjaCjaδ (rja − r)

〉

+
1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)Fjakb · CjaCjaδ (rkb − r)

〉
, (7.58)

V(3)
a2 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

[〈
F (N)

(
H ′

ja

ma
− ĥa

)
Fjakbδ (rja − r)

〉

+
〈
F (N)

(
H ′

ja

ma
− ĥa

)
Fjakbδ (rkb − r)

〉]
, (7.59)

V(3)
a3 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)δ (rja − r)Cjakb · (∇rjakbWjakb) · Cja

〉
,

(7.60)

V(3)
a4 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N) 1

ma
Wjakb · Fjakbδ (rkb − r)

〉
, (7.61)

V(3)
a5 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

Nc∑
lc=1

(ja�=kb �=lc)

[〈
F (N) 1

ma
Wjakb · Fjalcδ (rkb − r)

〉

+
〈
F (N) 1

ma
Wjakb · Fjalcδ (rlc − r)

〉]
. (7.62)

And lastly

ϕ(3k)
a =

Na∑
ja=1

〈
F (N)CjaCjaCjaδ (rja − r)

〉
, (7.63)

ϕ
(3w)
a1 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)WjakbCjaδ (rkb − r)

〉
, (7.64)
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ϕ
(3w)
a2 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)CjaWjakbδ (rkb − r)

〉
, (7.65)

ϕ
(3w)αβγ
a3 =

1
2

r∑
b=1

Na∑
ja=1

Nb∑
kb=1

(ja�=kb)

〈
F (N)Wαγ

jakbC
β
jaδ (rkb − r)

〉
. (7.66)

The lower case Greek superscripts α, β, γ affixed to the tensors in (7.66)
denote their Cartesian tensor components. The leading examples of kinematic
terms are given in Table 7.1, which should be compared with their dilute gas
counterparts in Table 3.1.

Table 7.1. Leading kinematic terms for liquids

Z1a −2pa [∇u](2)

−2 [dtuJa](2) + 2 [FaJa](2) − 2 [Πa · ∇u](2)

−2Δa [∇u](2) + 2
[
V

(1)
a

](2)
−∇ · ψ(w)

1a

Z2a − 2
3
pa∇ · u − padt (pav)

− 2
3
Πa : ∇u − 2

3
Δa∇ · u − 2

3
(dtu − Fa) · Ja

−Ja · ∇ (pa/ρa) + 2
3
TrV

(1)
a

−∇ · 1
3
Trψ

(w)
1a

Z3a −paĈpaT∇ ln T

−dtu· (Pa − paδ) − Jadtĥa − Q′
a · ∇u

− (Pa − paδ) · ∇ĥa − ϕ(3)
a : ∇u

+(Pa − paδ) · Fa + V
(3)
a

−∇ · ψ(w)
3a

Z4a −pda + ρaFa

− (xa − ca) ∇ · (Δδ + Π) − Π · ∇xa

−Δ∇xa − Ja · ∇u

+∇ · P(k)
a

We note that they are formally the same except for the intermolecular
force contributions in the last line for each Zqa in Table 7.1. The term in the
first line for each kinematic term represents the thermodynamic driving force
for the nonconserved variable, such as the velocity gradient, pressure gradient,
temperature gradient, and density gradient or mean force on the particle of
the species. The divergence terms

−∇ · ψ(w)
qa , +∇ · P(k)

a
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in Table 7.1 add up to the divergence term −∇ ·ψqa (q = 1, · · · , 4) in (7.39),
respectively. Therefore, the intermolecular force contributions to the kine-
matic terms in the constitutive equations are made up only of V(1)

a , TrV(1)
a ,

and V(3)
a . As shown in Chap. 8 for polyatomic molecules, these molecular force

contributions include intramolecular interaction energy contributions that de-
scribe conformational changes in the molecules arising from the interactions.
The effects of these terms may have significance in the rheological behavior
of polyatomic molecules, including polymers.

The evolution equation for Φ̂qa is a constitutive equation. If transport
properties of the fluid are desired, then explicit forms for the constitutive
equations are required. For this reason, we will examine them in more detail
later in this chapter.

7.4 Generalized Hydrodynamics

When the evolution equations for the set of macroscopic variables that in-
cludes the conserved and nonconserved variables presented earlier are sub-
jected to the laws of thermodynamics, then they ensure a macroscopic de-
scription of irreversible processes that is thermodynamically consistent. The
set of macroscopic evolution equations is called the generalized hydrodynamic
equations, and the hydrodynamic theory based on them is called generalized
hydrodynamics. The linear transport coefficients in which we are interested
in this work can be extracted from the constitutive equations presented for
nonconserved variables by linearizing them with regard to nonconserved vari-
ables. To implement this line of approach to transport of matter and energy,
it is necessary to express the dissipation terms in the constitutive equations
for the nonconserved variables in terms of the macroscopic variables chosen.

The physical mechanism of energy dissipation in the system is vested in
the dissipation terms or the collision term in the kinetic equation. It, however,
is not practically feasible to calculate the dissipation terms in an exact form
because to realize them in such forms it will be necessary to solve in analytic
form the many-body dynamic problem involved. It is therefore imperative
to bring out, at least formally, the essential and major contribution in an
appropriate form. It has been found that the first-order cumulant approxima-
tion achieves the desired aim for the dissipation terms because it provides
sufficiently adequate formal descriptions of nonlinear and linear transport
processes in liquids, as the applications of the present line of kinetic theory
have demonstrated in the literature [9–14].

To develop the first-order cumulant approximation [1,2,15] for the dissipa-
tion terms, we begin by expressing the grand ensemble distribution function
F

(N)
c

(
x(N), t

)
in the form

kB lnF (N)
c

(
x(N), t

)
= −

∫
V

dr
r∑

a=1

Na∑
ja=1

Hjaδ (rja − r) − kB ln (cΞ) , (7.67)
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where

Hja = T−1

⎛⎝H ′
ja +

∑
q≥1

Xqah
(q)
ja −maμ̂a

⎞⎠ , (7.68)

c = h3N
r∏

a=1

Na!, (7.69)

Xqa is the generalized potential conjugate to h
(q)
ja , and

Ξ =

〈
exp

⎡⎣−k−1
B

∫
V

dr
r∑

a=1

Na∑
ja=1

Hjaδ (rja − r)

⎤⎦〉 . (7.70)

Then it can be shown that in the first-order cumulant approximation [2] the
dissipation term is given by the expression

Λqa = (βg)−1
q (X)

r∑
b=1

∑
s≥1

R
(qs)
ab Xsb, (7.71)

where

g =
1

n2d2

√
m

2kBT
, (7.72)

q(X) = κ−1 sinhκ, (7.73)

κ =

⎡⎣ r∑
a,b=1

∑
q,s≥1

XqaR
(qs)
ab Xsb

⎤⎦1/2

, (7.74)

R
(qs)
ab are collision bracket integrals associated with the collision operator

R
[
F

(N)
c

]
, and κ2 again denotes the Rayleigh dissipation function. The mean-

ing of g is the same as in the dilute gas theory, in particular, with d denoting
the characteristic size of the molecule. The formulas for R

(qs)
ab , which are as-

sociated with shear viscosity, bulk viscosity, thermal conductivity, thermal
diffusion, and diffusion are presented in Table 7.2, where the subscripted an-
gular brackets stand for the collision bracket integral,

〈AB〉c =
1

n2d2

∑
{N}≥0

1
N!

∫
dx(N)F (N)

eq AR̂[B], (7.75)
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with R̂ denoting the reduced collision operator

R̂[B] = d

√
mr

2kBT
R[B], (7.76)

and

ĥ
(α)
ja = δ (rja − r)h(α)

ja (α = 1, · · · , 4) . (7.77)

The collision bracket integral in (7.75) is a dense fluid generalization of the col-
lision bracket integral in the dilute gas kinetic theory based on the Boltzmann
equation, which was discussed in Chaps. 2 and 3.

Since Xqa can be shown to be proportional to the fluxes Φqa, it is appro-
priate to express them in the forms

Xqa = −g(q)
a (Φ)Φqa (q ≥ 1) , (7.78)

where g
(q)
a (Φ) then are functions of Φqa. These functions can be explicitly

calculated if the nonequilibrium grand canonical ensemble partition Ξ is cal-
culated. For the nonequilibrium statistical thermodynamics relations between
Xqa and the nonequilibrium grand canonical partition function, see [2,16]. In
this work, we are interested mostly in linear transport processes and associ-
ated transport coefficients. In such cases, it is sufficient to approximate the
nonlinear dissipation term in (7.71) to the linear order in Φqa, and g

(q)
a (Φ)

are given approximately by the formulas

g(1)
a � 1

2pa
, g(2)

a � 3
2pa

, g(3)
a � 1

ĈpTpa

, g(4)
a � 1

ρa
, (7.79)

so that

X1a � − 1
2pa

Πa, X2a � − 3
2pa

Δa,

(7.80)

X3a � − 1

ĈpTpa

Q′
a, X4a � − 1

ρa
Ja.

Table 7.2. Collision bracket integrals for constitutive equations

C.B.I. kinetic theory formula type

R
(11)
ab

β2

5

∑Na

ja=1

∑Nb

kb=1

〈
−ĥ

(1)
ja : h

(1)
kb

〉
c

shear viscosity

R
(22)
ab β2

∑Na

ja=1

∑Nb

kb=1

〈
−ĥ

(2)
ja h

(2)
kb

〉
c

bulk viscosity

R
(33)
ab

β2

3

∑Na

ja=1

∑Nb

kb=1

〈
−ĥ

(3)
ja · h(3)

kb

〉
c

heat conductivity

R
(34)
ab

β2

3

∑Na

ja=1

∑Nb

kb=1

〈
−ĥ

(3)
ja · h(4)

kb

〉
c

thermal diffusion

R
(43)
ab

β2

3

∑Na

ja=1

∑Nb

kb=1

〈
−ĥ

(4)
ja · h(3)

kb

〉
c

thermal diffusion

R
(44)
ab

β2

3

∑Na

ja=1

∑Nb

kb=1

〈
−ĥ

(4)
ja · h(4)

kb

〉
c

diffusion
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Note that these are first-order approximations obtained from the nonequilib-
rium partition function Ξ, which hold near equilibrium. Since linear transport
processes hold near equilibrium, the approximation for Xqa here is appropri-
ate.

Since we will have an opportunity to discuss nonlinear transport processes
built on linear transport processes, first we present the constitutive equations
in the first-order cumulant approximation. Then they will be specialized to
linear transport processes and used to obtain linear transport coefficients. In
the first-order cumulant approximation the constitutive equations for nonlin-
ear transport processes are as follows:

ρdtΦ̂qa = −∇ · ψqa + Zqa −
(
βgg(q)

a

)−1

q (Φ)
r∑

b=1

∑
s≥1

R
(qs)
ab Φsb, (7.81)

where 1 ≤ a ≤ r, q ≥ 1 and

R
(qs)
ab = g(q)

a R
(qs)
ab g

(s)
b . (7.82)

The set of evolution equations for macroscopic variables (7.29)–(7.32) and
(7.81) is the first-order cumulant approximation version of generalized hydro-
dynamic equations, consistent with thermodynamic laws.

7.5 Linear Transport Coefficients

The constitutive equations (7.81) contain the linear thermodynamic force–flux
relations because the former are constitutive equations for macroscopic fluxes.
The thermodynamic force–flux relations can arise from the aforementioned
constitutive equations if the steady-state constitutive equations are linearized
with respect to the fluxes and the thermodynamic gradients. Therefore, in the
linear limit there follow the linear constitutive relations

Z(l)
qa −

(
βgg(q)

a

)−1 r∑
b=1

∑
s≥1

R
(qs)
ab Φsb = 0 (q ≥ 1; r ≥ a ≥ 1) , (7.83)

where Z(l)
qa are the thermodynamic gradients that drive linear irreversible

processes, that is, the linear transport processes [17]:

Z(l)
1a = −2pa [∇u](2) ,

Z(l)
2a = −2

3
pa∇ · u,

(7.84)
Z(l)

3a = −paĈpaT∇ lnT,

Z(l)
4a = −pda + ρaFa, etc.
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Note that −∇ · ψ4a + ∇ · Pa = 0. Linear transport coefficients are readily
identified from the linear constitutive relations (7.83). To simplify the dis-
cussion, we consider a single-component fluid to obtain expressions for the
transport coefficients. The procedure can be easily generalized to mixtures
in the same manner as that for dilute gas mixtures discussed in Chap. 3 if
the constitutive equations (7.83) are used. Therefore derivation of transport
coefficients for mixtures will be left to the reader as an exercise.

Since fluxes of different tensorial ranks do not couple with each other for
reasons of symmetry in the linear approximation and, moreover, there are no
diffusion fluxes present for a single-component fluid, we have three indepen-
dent constitutive equations if the fluids are pure. Therefore, the constitutive
equations (7.83) for a single-component fluid read

Z(l)
q −

(
βgg(q)

)−1

R
(qq)Φq = 0 (q = 1, 2, 3) , (7.85)

where the subscripts pertaining to the species have been omitted.

7.5.1 Shear Viscosity

The shear viscosity of a single-component fluid can be readily obtained by
comparing the constitutive equation (7.85) for q = 1 with the phenomenologi-
cal thermodynamic force–flux relation for shear flow—namely, the Newtonian
law of viscosity

Π = −2η [∇u](2) . (7.86)

We thereby identify the viscosity coefficient with the kinetic theory formula

η =
βg

2R(11)
. (7.87)

To calculate the shear viscosity of liquids, it is required to compute the colli-
sion bracket integral R

(11) as a function of density and temperature. Computa-
tion of collision bracket integrals such as R

(11) remains one of the outstanding
problems in dense fluid kinetic theory because of the well-known difficulty of
solving many-body collision dynamics.

7.5.2 Bulk Viscosity

The phenomenological constitutive equation for the excess normal stress Δ of
a single-component fluid is

Δ = −ηb∇ · u, (7.88)

which should be compared with the kinetic theory constitutive equation (7.85)
for q = 2. The comparison yields the bulk viscosity formula

ηb =
βg

R(22)
. (7.89)

As for shear viscosity, the collision bracket integral R
(22) is required for bulk

viscosity.
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7.5.3 Thermal Conductivity

As for viscosities, the kinetic theory formula for the thermal conductivity
of a single-component dense fluid can be identified if the phenomenological
constitutive equation for the heat flux

Q = −λ∇ lnT (7.90)

is compared with the kinetic theory counterpart given in (7.85) for q = 3. This
comparison yields the kinetic theory formula for the thermal conductivity of
a dense single-component fluid:

λ =
βg

R(33)
. (7.91)

Therefore, as for viscosities, it is sufficient to compute the collision bracket
integral R

(33) as a function of density and temperature to obtain a molecular
theory expression for the thermal conductivity.

It is now clear how the procedure employed to derive the kinetic theory
expressions for the transport coefficients for a single-component fluid can be
generalized to those of a mixture: it is only required to solve formally the
constitutive equations (7.85), a linear set of equations, to obtain the fluxes in
terms of thermodynamic gradients and identify the transport coefficients in
comparison with the phenomenological constitutive equations. This procedure
was, in fact, carried through in detail in Chap. 3 for dilute gases. Therefore,
we will not repeat it here.

7.6 Formal Consideration of the Collision Bracket
Integrals

In this section, some formal aspects of the collision bracket integrals, which
will help to evaluate them by numerical methods, will be examined. For the
purpose, we will recast the collision bracket integrals into forms more suitable
for numerical methods, for example, computer simulation methods such as
Monte Carlo or molecular dynamics simulation methods. Because, as we have
seen earlier, thermal conductivity may be related to shear viscosity—note that
bulk viscosity can also be related to shear viscosity—it is sufficient to consider
the collision bracket integral for shear viscosity for the example.

If the collision bracket integral R
(11) for shear viscosity is explicitly written

out for a single-component monatomic fluid in the collision operator
(
T (N )

)
representation, it is given by the formula involving the many-particle collision
operator [1]

R
(11) =

4p2

5n2σ3 (kBT )2

√
2kBT

mr
(7.92)

×
∑
N≥0

(N
N

)∫
dx(N )F (N )

eq

N∑
j=1

δ (rj − r)h(1)
j : iT̂ (N )

N∑
k=1

h
(1)
k .
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The operator T̂ (N ) is the reduced collision operator

T̂ (N ) = T (N )σ

√
mr

2kBT
, (7.93)

where T (N ) denotes the collision operator of N particles obeying the clas-
sical Lippmann–Schwinger equation [1]. Because particles are identical, this
formula for R

(11) may be written as

R
(11) =

4p2

5n2σ3 (kBT )2

√
2kBT

mr

∫
dx(N )F (N )

eq

N∑
j,k=1

δ (rj − r)h(1)
j : iT̂ (N )h

(1)
k

(7.94)

for which we have used

∑
N≥0

(N
N

) N∑
j=1

δ (rj − r)h(1)
j =

N∑
j=1

δ (rj − r)h(1)
j . (7.95)

With this identification, the formula for R
(11) in Eq. (7.94) is a microcanonical

average of
N∑

j,k=1

δ (rj − r)h(1)
j : iT̂ (N )h

(1)
k .

We may take for T (N ) the model given in (7.10). In (7.92) and (7.94) for
the collision bracket integral it should be understood that i =

√
−1 and h

(1)
j is

the single-component version of the traceless, symmetric part of the pressure
tensor:

h
(1)
j = [mCjCj ]

(2) − 1
2

N∑
l �=j

[rjlrjl]
(2)

rjl
V ′

jl (rjl) , (7.96)

V ′
jl (rjl) =

∂Vjl (rjl)
∂rjl

.

Note that in the Chapman–Enskog method for transport coefficients, the pres-
sure tensor does not include the displacement operator because the displace-
ment operator [see (7.19)] should be neglected in the first-order Chapman–
Enskog solution. The collision operator T (N ) requires solving the classical
N -particle Lippmann–Schwinger equation, so it is not trivial to calculate the
collision bracket integrals. For this reason, the problem of calculating η by
using formula (7.87) remains largely unresolved at present except for hard
sphere fluids [1], for which an approximate solution is available [1, 18].
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It is found convenient to decompose the shear viscosity of fluids into two
parts; the kinetic and potential contributions,

η = ηk + ηv. (7.97)

Both contributions depend on density n as well as temperature T . However,
there exists a density-independent limit at low (normal) density:

lim
n→0

η (n) = η0
k, (7.98)

which is the Chapman–Enskog viscosity for a dilute gas. Therefore, we may
identify η0

k with the Chapman–Enskog shear viscosity η0 for a dilute gas [19].
To put the collision bracket integral in a form parallel to the decomposition

of η given in Eq. (7.97), we define the collision bracket integral R
(11)
0 for the

kinetic part by the formula

R
(11)
0 =

4p2

5n2σ3(kBT )2

√
2kBT

mr

N∑
j,k=1

∫
dx(N )F (N )

eq δ (rj − r)

× [mCjCj ]
(2) : iT̂ (N ) [mCkCk](2) . (7.99)

Then, it is possible to identify ηk in the form,

ηk =
g

kBTR
(11)
0

(7.100)

and ηv with the statistical mechanical formula

ηv =
(

g

kBT

)
1

R
(11)
0

(
R

(11)
0 − R

(11)
) 1

R(11)
, (7.101)

where
ΔR = R

(11)
0 − R

(11). (7.102)

If the density expansion2 of the collision bracket integral R
(11) is calcu-

lated by using a cluster expansion of the collision operator T (N), the leading
term in the density expansion [1] of the collision bracket integral R

(11)
0 is

the Chapman–Enskog collision bracket integral of the Boltzmann kinetic the-
ory [19]. Since the density-dependent part of ηk is much smaller than the
strongly density-dependent potential part ηv in the liquid density regime,

2 If N > 2 and a simple binary collision expansion is carried out for T (N ), then
the series contains divergence-causing terms and thus gives rise to a divergence
difficulty. This is discussed in [20]. See also Chap. 9 of [1] for discussions of this
aspect.
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the Chapman–Enskog shear viscosity η0 may be used for η0
k in the lowest

order approximation, especially, for the kinetic part without significantly af-
fecting ηv in the liquid density regime:

ηk ≈ η0 (T ) . (7.103)

The potential contribution ηv has to do with the intermolecular interactions.
The expression for ηv in (7.101) may be rewritten as

ηv =
kBTη

2
0

g

ΔR(
1 − kBTη0

g ΔR

) . (7.104)

To obtain this form, the collision bracket integrals are eliminated from (7.101)
with the help of (7.87) and (7.100).

We examine ΔR a little more closely. If the cross terms between the mo-
mentum and potential parts of the pressure tensor are neglected to the lowest
approximation of the effects of collisions, then we obtain ΔR in the form

ΔR � β2p2

5n2σ3

√
2kBT

mr
(7.105)

×
〈
F (N )

eq

N∑
l �=j=1

[rjlrjl]
(2)

rjl
V ′

jlδ (rj − r) : iT̂ (N )
N∑

m �=k=1

[rkmrkm](2)

rkm
V ′

km

〉
,

which is a collision bracket integral of virial tensors. Thus, we see that ΔR

is determined by the collisional evolution of intermolecular forces and related
virial tensors. The operator T̂ (N ) may be replaced by the transition probability
W
(
x(N )∗|x(N )

)
introduced earlier. This collision bracket integral ΔR may be

amenable to Monte Carlo simulation. Investigation of this possibility is left
for work in the future.

7.7 A Monte Carlo Method for the Stress Tensor

Instead of calculating the collision bracket integral by a numerical method,
we may compute the stress tensor and, in particular, the shear stress tensor
by employing Monte Carlo simulation. Application of Monte Carlo simulation
to calculate the shear viscosity is made feasible by the nonequilibrium grand
canonical ensemble distribution function or the nonequilibrium canonical en-
semble distribution function provided by the generalized Boltzmann equation,
particularly because the nonequilibrium distribution functions in the absence
of thermal conduction resemble those used in equilibrium problems. One draw-
back is that this method cannot yield the zero shear rate viscosity, the New-
tonian viscosity, which should be calculated or supplied from another source.
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The method is implemented in the paper by Farhat and Eu [21]. We briefly
describe the method and present the numerical results for the non-Newtonian
shear viscosities of simple liquids.

A single-component simple liquid is subjected to shearing at constant tem-
perature in the same flow configuration as that considered in Section 3.2.4 in
Chap. 3, where a non-Poiseuille velocity profile is obtained for channel flow.
Because temperature is uniform for the flow, it is sufficient to use the non-
equilibrium canonical distribution function for N particles given by

F (N)
c = exp

⎡⎣−β
N∑

i=1

⎛⎝1
2
mC2

i +
N∑

i�=j=1

Vij + X1 : h(1)
i −mÂ

⎞⎠⎤⎦ , (7.106)

where Vij is the potential of particle pair (ij), the molecular moment h(1)
i is

defined by

h(1)
i = m [CiCi]

(2) +
N∑

k>i

Fikrikrik, (7.107)

Fik = − 1
rik

∂Vik

∂rik
, (7.108)

and Â is the work function per unit mass. We have approximated the virial
tensor Wik with its lowest order form in (7.107)

Wik � Fikrikrik.

This approximation is necessary to implement the MC simulation method.
We will assume a soft repulsive potential

Vik(rik) = ε

(
σ

rik

)12

. (7.109)

This potential model can be readily generalized to include an attractive po-
tential.

To implement the MC simulation method, only the potential energy part
of the distribution function is necessary, which in the flow configuration under
consideration may be written as

F (N)
p =

1
Z

exp

[
−βε

N∑
i>k=1

(
σ

rik

)12(
1 + 24w

xikyik

r2
ik

)]
, (7.110)

where

Z =
∫

dr(N) exp

[
−βε

N∑
i>k=1

(
σ

rik

)12(
1 + 24w

xikyik

r2
ik

)]
. (7.111)
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In the flow configuration considered, the generalized potential X1 has only an
xy component, which is denoted by

w = X1xy. (7.112)

The distribution function F
(N)
p therefore looks formally the same as the equi-

librium distribution function except that the potential energy is dressed up
by the generalized potential times the virial;

24w
(

σ

rik

)12
xikyik

r2
ik

.

This formal similarity is what makes the MC simulation method applicable,
even if the system is not at equilibrium.

The relation useful to recall in this connection is the formal result,

X1 = −kBT

(
∂ lnΞ

∂Π̂

)
T,V

, (7.113)

where Π̂ = Π/ρ and

Ξ =
1

h3NN !

∫
dx(N) exp

⎡⎣−β
N∑

i=1

⎛⎝1
2
mC2

i +
N∑

i�=j=1

Vij + X1 : h(1)
i

⎞⎠⎤⎦ .
(7.114)

Therefore, shear stress Π̂ may be regarded as a function of the generalized
potential X1 and vice versa.

Now, if the shear stress is decomposed into kinetic and potential energy
parts

Πxy = Πkin
xy + Πpot

xy , (7.115)

then the kinetic part can be calculated exactly by using the kinetic part of
the nonequilibrium partition function

Πkin
xy = −2nkBT

w

1 − w2
. (7.116)

This result suggests that it is possible to look for Πxy in the form,

Πxy = − a0w

1 − a1w2
, (7.117)

where a0 and a1 are constants. a0 may be calculated by calculating the limit:

lim
w→0

Πxy

w
= −a0

= −2

⎡⎣nkBT +
1

V kBT

〈(
N∑

i<k

rx
ikF

y
ik

)2〉
eq

⎤⎦ . (7.118)
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In this expression, 〈· · · 〉eq denotes the equilibrium average, and the super-
scripts x and y denote the Cartesian components. By using the constitutive
equation for Π presented earlier—the steady state form of (7.81)—it can be
shown that the non-Newtonian viscosity is given by the formula,

η (γ) = −Πxy

γ
=

η0qe (τγ)
1 − a1 (η0γ/a0)

2
q2
e (τγ)

, (7.119)

where γ is the shear rate defined by γ = (∂ux/∂y) and

qe (τγ) =
sinh−1 (τγ)

τγ
,

τ =
√

2βgpη0

a0
, (7.120)

g =
√

m

2kBT
(nσ)−2

.

We recall that a similar formula for the non-Newtonian viscosity was ob-
tained and discussed for a dilute gas. The reason for the similarity is in the
constitutive equation for the shear stress, which remains more or less the same
in form for both gases and liquids except for the difference in the meaning of
the Newtonian viscosity and the term related to intermolecular forces, which
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Fig. 7.1. Reduced non-Newtonian viscosity vs. reduced shear rate. The symbols are
MD simulation results and the curve is the MC simulation result. [Reproduced from
Hikmat Farhat and Byung Chan Eu, J. Chem. Phys. 110, 97 (1999). Copyright 1999
American Institute of Physics.]
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do not play a significant role in lower order theories. The parameters a0 and
a1 are determined by fitting Πxy computed by MC simulation to the relation
given in (7.117). Their values are

a0 = 30.2, a1 = 48.

To calculate the non-Newtonian viscosity with regard to density and temper-
ature it is necessary to know the density and temperature dependence of the
Newtonian viscosity η0. The MC simulation method does not supply them.
They should be obtained from another source. In [21], they are obtained from
molecular dynamics simulations. However, we now know that the Newtonian
viscosity may be computed by the modified free volume theory discussed in
Chap. 12. The non-Newtonian viscosity of a soft-repulsive liquid calculated
by MC simulation for Πxy and MD simulation for η0 is compared with MD
simulation data in Fig. 7.1, where η∗ = ησ2 (mε)−1/2 and γ∗ = γσ (m/ε)1/2.
The symbols with error bars are the nonequilibrium molecular dynamics sim-
ulation results—filled circles for 864 particle simulations and filled triangles
for 500 particle simulations—and the curve is the MC simulation results de-
scribed earlier. The agreement is excellent, indicating the validity of the MC
simulation method coupled with the generalized hydrodynamics described in
this section. In particular, it validates the non-Newtonian viscosity formula
(7.119) derived from the constitutive equation for shear stress [1, 2, 21,22],

−2p [∇u](2) − 2 [Π · ∇u](2) −
(
βgg(1)

)−1

R
(11)Πq (Π) = 0, (7.121)

which is the adiabatic approximation of (7.81) or the steady-state form in the
coordinate system moving at u.
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8

Generalized Boltzmann Equation
for Polyatomic Liquids

In this chapter, the kinetic theory developed for simple liquids in the previous
chapter is extended to polyatomic liquids consisting of molecules with inter-
nal structures. Since both translational and internal degrees of freedom are
involved, they must be properly taken into account for the molecular theoret-
ical description of the thermophysical evolution of complex liquids. Neverthe-
less, the formal development of the theory, albeit more complicated, is parallel
to the kinetic theory of simple liquids. For this reason and for lack of space,
we will be as brief as possible in describing the theory. We will present the
generalized hydrodynamic equations and map out the general methodology
for studying transport and flow processes in complex fluids.

As in the previous chapter, we will begin the discussion with the assump-
tion of no chemical reaction in the fluids. This assumption will then be re-
moved in the last part of this chapter where we will formulate a generalized
theory in which chemical reactions are allowed. This generalization is an im-
portant motivation for including this chapter in this work. The generalized
Boltzmann equation for reacting fluids will enable us to study chemical ki-
netics and attendant transport phenomena in solutions, although we will not
discuss its application to the subjects for lack of time and space and also for
the reason that we have not had an opportunity to apply the theory to chem-
ical kinetics in liquid solutions. We hope that this theory of reacting fluids
will ultimately enable us to study in detail chemical kinetics and attendant
transport processes in solutions in the future and thereby bring us closer to
the eventual study of transport processes in biological systems where chemical
reactions occur concurrently with the transport of matter and energy.

8.1 Notational Preliminary

To prepare for the development of the theory we define various symbols beyond
those necessary for the simple liquid theory. We consider an r-component
liquid mixture of N = (N1, N2, · · · , Nr) polyatomic molecules contained in
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volume V . There are la atoms (sites) in the molecule of species a. We reserve
lower case Roman subscripts a, b, c, · · · for species, and lower case Greek
subscripts ν, σ, τ , · · · for sites (e.g., atoms or groups) on molecules. Thus
the subscripts (aiν) stand for site ν of molecule i of species a (ν ∈ i ∈ a).
The position of the νth site (atom) in molecule i of species a therefore will
be denoted by raiν , and its momentum by paiν . It is convenient to abbreviate
the set of positions and momentum vectors, respectively, by

r(N) = (ra11, ra12, · · · , ra1la ; · · · ; raNa1, raNa2, · · · , raNala) ,
(8.1)

p(N) = (pa11,pa12, · · · ,pa1la ; · · · ;paNa1,paNa2, · · · ,paNala) ,

where 1 ≤ a ≤ r. In addition to the abbreviations defined, it is useful to
collect the definitions of other symbols used for discussing the kinetic theory
of polyatomic fluids.

Since the mass maν of site ν is the same for all molecules of species a, we
will find it useful to express the mass of (ajν) as maν ≡ majν to simplify the
equations involved, which may require multiple summations. Thus,

ma =
la∑

ν=1

maν = molecular mass of a polyatomic molecule;

for the position variables

Raj = center-of-mass position vector of moleculej of species a,

ξajν = distance of theνth site of molecule j ∈ afrom the center of mass
located at Raj relative to the coordinate origin,

rajνbkγ = relative distance vector between sites ν ∈ j ∈ a and γ ∈ k ∈ b;

for velocity variables

vajν =
.
rajν ,

= velocity vector of particle (site) ν ∈ j ∈ a,

Vaj =
.

Raj

= center of mass velocity vector of molecule j ∈ a

relative to the coordinate origin;

and for momentum and related variables

u = mean fluid velocity of the fluid,
Paj = maVaj = momentum conjugate to Raj ,

Pajν = maν

.

ξajν = momentum conjugate to
.

ξajν ,

Cajν =
.
rajν − u = peculiar velocity of particle (site) a ∈ j ∈ a,

Caj = Vaj − u = peculiar velocity of molecule j ∈ a.
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The gradient operators will be abbreviated as follows:

∇rajν = ∂/∂rajν , ∇pajν = ∂/∂pajν .

In a space-fixed coordinate system adopted for the polyatomic fluid considered
here, there then holds the relation

rajν = Raj + ξajν . (8.2)

Consequently, it follows: that

la∑
ν=1

maνξajν = 0 (8.3)

and
la∑

ν=1

maν

.

ξajν = 0. (8.4)

The Hamiltonian function H can then be written for the system of interest
as follows:

H =
r∑

a=1

Na∑
j=1

la∑
ν=1

1
2maν

pajν · pajν + UN

(
r(N)

)
, (8.5)

where UN

(
r(N)

)
is the potential energy of the mixture. We assume that the

potential energy UN

(
r(N)

)
is pairwise additive:

UN

(
r(N)

)
=

1
2

r∑
a=1

Na∑
j=1

la∑
ν=1

la∑
γ=1

(ν �=γ)

wajνajγ(rajνbjγ)

+
1
2

r∑
a,b=1

Na∑
j=1

Nb∑
k=1

(j �=k)

la∑
ν=1

lb∑
γ=1

(ν �=γ)

Vajνbkγ (rajνbkγ)

+
r∑

a=1

Na∑
j=1

la∑
ν=1

V(ex)
a (rajν), (8.6)

where rajνbkγ is the distance between the pair of sites (ajν, bkγ), rajνbkγ =
|rajνbkγ | = |rbkγ − rajν |; wajνajγ(rajνajγ) is the intramolecular potential for
the two sites (atoms) ν and γ of molecule j; Vajνbkγ (rajνbkγ) is the inter-
molecular (site–site) interaction potential of the pair of sites ν ∈ j ∈ a and
γ ∈ k ∈ b on different molecules j ∈ a and k ∈ b, respectively; and V(ex)

a (rajν)
is the external potential on jν ∈ a. The intramolecular potential energies
wajνajγ(rajνajγ) are of two qualitatively different kinds, one responsible for
the bonding of adjacent sites and the other for van der Waals type interac-
tions between nonbonded sites on the molecule. These two types of potentials
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are not distinguished by different symbols for brevity of notation; they can be
recognized by the subscripts once a suitable numbering convention is adopted
for the molecule. The latter type of interaction potential may be modeled by
the Lennard-Jones potential which may be assumed for site–site interactions,
whereas the former type may be assumed to be harmonic or anharmonic po-
tentials. According to the site–site interaction model, the interaction between
two atomic sites on different molecules or nonbonded sites on a molecule is
assumed to consist of the same type; for example, the Lennard-Jones potential

Vajνbkγ(rajνbkγ) = 4εaνbγ

[(
σaνbγ

rajνbkγ

)12

−
(

σaνbγ

rajνbkγ

)6
]
, (8.7)

where −εaνbγ is the well depth and σaνbγ is the size parameter for the site
pair ν ∈ a and γ ∈ b.

The Liouville operator for the system is then given by

L(N) =
r∑

a=1

Na∑
j=1

la∑
ν=1

Lajν +
1
2

r∑
a,b=1

Na∑
j=1

Nb∑
k=1

la∑
ν=1

lb∑
γ=1

(ajν �=bkγ)

L
(v)
ajνbkγ

+
r∑

a=1

N∑
j=1

la∑
ν=1

L
(ex)
ajν , (8.8)

where

Lajν = vajν · ∇ajν +
1
2

la∑
γ=1(α�=γ)

L
(s)
ajνajγ , (8.9)

L
(s)
ajνajγ = F(s)

ajνajγ · (∇pajν − ∇pajγ) , (8.10)

L
(v)
ajνbkγ = Fajνbkγ(rajνbkγ) · (∇pajν − ∇pbkγ) , (8.11)

L
(ex)
ajν = maνFa(rajν) · ∇pajν . (8.12)

In these formulas, vajν = pajν/maν and the forces are defined by

Fajνbkγ(rajνbkγ) = − ∂

∂rajνbkγ
Vajνbkγ(rajνbkγ),

F(s)
ajνajγ (rajνajγ) = − ∂

∂rajνajγ
wajνajγ(rajνajγ), (8.13)

maνFa(rajν) = − ∂

∂rajν
V(ex)

a (rajαν).
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The isolated molecule and intermolecular Liouville operators are separated
out in the Liouville operator L(N). The intramolecular Liouville operator Lajν

may be further separated into the bonded part and the nonbonded interaction
part accounting for the interaction of nonbonded sites within the molecule.
The presence of the interaction Liouville operator, the second term on the right
in (8.9) for Lajν , is the major point of difference between the simple and com-
plex fluid Liouville operators, apart from the differences in the meanings of the
subscripts in the intermolecular interaction Liouville operator L(v)

ajνbkγ . Except
for the extra subscripts having to do with the sites in the molecules, the inter-
action Liouville operator L

(v)
ajνbkγ has the same form as that for simple fluids.

We notice that, apart from the Hamiltonian and the corresponding Liou-
ville operator for bonded particles, the Hamiltonian and Liouville operator for
the nonbonded particles— for relative motions and interparticle interactions—
are formally similar to those for mixtures of simple fluids. If the indexes for
the sites on the polyatomic molecule are regarded as the indexes for species
in a mixture, the Hamiltonian and the Liouville operator in question may be
regarded as those for the mixture of simple fluids of interest. For this reason,
except for the contributions made by bonded particles, the kinetic theory rel-
evant to relative intermolecular motions can be readily translated into those
of polyatomic fluids. To exploit this feature we compress the composite sub-
scripts into single subscripts j = (ajν), k = (bkγ), and so forth. Then the
Liouville operator L(N) may be expressed in the form

L(N) =
N∑

j=1

Lj +
1
2

N∑
j�=k=1

L
(v)
jk +

N∑
j=1

L
(ex)
j , (8.14)

where Lj, L
(v)
jk , and L

(ex)
j stand for the Liouville operators defined, respec-

tively, in (8.9)–(8.12). It will be convenient to split Lj into free and interactions
parts as in

Lj = L
(0)
j +

1
2

∑
j′ �=j

L
(s)
jj′ , (8.15)

where the sum over the primed subscript j′ is understood to be over the sites in
molecule j. One may, of course, combine the intramolecular Liouville operator
L

(s)
jj′ with the Liouville operator L

(v)
jk , the intermolecular interaction Liouville

operator. In this compact form, the Liouville operator L(N) formally acquires
the same form as that for the Liouville operator of simple fluids, and with
the subscripts and the summations appropriately understood we may simply
transcribe the kinetic theory results for simple fluids into those for polyatomic
liquid mixtures.

We now consider a grand ensemble consisting of petit ensembles of fixed
N, which varies from zero to an arbitrarily large value. If there are n(N) petit
ensembles of N, there are

ω =
∑
N≥0

n(N)
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representative systems in the grand ensemble. The total number of molecules
is then given by

N =
∑
N≥0

Nn(N).

We shall denote by F (N )
(
x(N ), t

)
the probability distribution function of

finding N molecules in dx(N ) around x(N ). This distribution function is nor-
malized to unity: ∑

N≥0

∫
dx(N )F (N )(x(N ); t) = 1. (8.16)

The reduced distribution functions are obtained from F (N )
(
x(N ), t

)
by inte-

grating over a portion of the phase space. For example, the reduced distribu-
tion function F (N)

(
x(N), t

)
is defined by

F (N)
(
x(N), t

)
=

N !
(N −N)!

∫
dx(N−N)F (N )(x(N ); t). (8.17)

This is the probability of finding N particles at x(N) regardless of (N −N)
particles distributed in the phase space of x(N ). As it is for simple liquids,
this distribution function obeys the generalized Boltzmann equation(

∂t + L(N)
)
F (N)(x(N); t) = R

[
F (N)

]
, (8.18)

where the collision operator R is, as for simple liquids, given by

R
[
F (N)

]
=

N !
(N −N)!

∫
dx(N−N) (−i)T (N )F (N )(x(N ); t) (8.19)

with T (N ) denoting the collision operator for N particles making up the grand
ensemble and

F (N )(x(N ); t) =
∏
{N}

F (N)(x(N); t).

The product is over {N}, the set of petit ensembles of N particles in the grand
ensemble of N particles. This collision operator has the meaning extended to
include the internal degrees of freedom beyond the meaning of the collision
operator we have used for simple liquids in Chap. 7. Nevertheless, it can be
still assumed that it fulfills the conditions (7.C1)–(7.C3). As a matter of fact,
the collision operator (−i)T (N ) may be taken as W

(
x(N )|x(N )∗), so that

R
[
F (N)

]
=

N !
(N −N)!

∫
dx(N−N)

[
W
(
x(N )∗|x(N )

)
F (N )∗(x(N )∗; t)

−W
(
x(N )|x(N )∗

)
F (N )(x(N ); t)

]
, (8.20)
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where W
(
x(N )|x(N )∗) has the properties discussed in Chap. 7. The kinetic

equation can be obtained, as described in Appendix A. See also Section A.2
of Appendix A for the scattering theory meaning of W

(
x(N )|x(N )∗).

The structural similarity of the kinetic equation to that of the kinetic
equation for simple liquids indicates that the kinetic theory of polyatomic
liquids will be parallel to that of simple liquids developed in Chap. 7, although
there are features related to the internal degrees of freedom for polyatomic
molecules. They will be pointed out at appropriate places. For this reason,
we will present the evolution equations and indicate where the differences lie,
even if they appear formally the same as their simple fluid counterparts.

8.2 Evolution Equations for Macroscopic Variables

The method of deriving evolution equations from the kinetic equation (8.18)
is the same as that used for simple fluids in Chap. 7. Therefore, we will simply
present only the result in this chapter. For the purpose, it is convenient to
summarize the definitions of the molecular expressions for various macroscopic
variables, which are obtained when the molecular expressions are averaged
with the nonequilibrium grand ensemble distribution function obeying the
kinetic equation postulated. The leading members of the set for the molecular
expressions are listed in Table 8.1, where we use the notation of composite
subscripts used in connection with the Liouville operators in Eq. (8.14) under
the understanding that mi ≡ maν , pi ≡ pa, and ĥi = ĥaν , and the primed
index means that only one of the composite elements is varied unlike for the
unprimed in which all three indexes are varied; for example, i′ = (aiγ), where
only γ is variable, whereas all three indexes are variable in i = (aiν). In the
table, the potential energy

V (N) =
1
2

∑
i

∑
k

(i�=k)

Vik (ri, rk) (8.21)

represents the sum of intramolecular and intermolecular potential energy. If
the intramolecular and intermolecular parts are explicitly distinguished, V (N)

may be written as

V (N) =
1
2

∑
i

∑
i′

(i�=i′)

wii′(ri, ri′) +
1
2

∑
i

∑
k

(i�=k)

Vik (ri, rk) . (8.22)

In the same manner as for V (N), whenever the intramolecular and inter-
molecular virial tensors appear together and there is no possibility of confu-
sion, they will be written with the single symbol Wik under the subscript
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convention introduced earlier for the simplicity of the equations involved.
The intramolecular and intermolecular virial tensors W(s)

ii′ and Wik are de-
fined by

W(s)
ii′ =

∫ 1

0

dλF(s)
ii′ rii′ exp (−rii′ · ∇r) , (8.23)

Wik =
∫ 1

0

dλFikrik exp (−rik · ∇r) (8.24)

with the definition of

F(s)
ii′ = −∂w(N)

∂rii′
, (8.25)

Fik = −∂V(N)

∂rik
, (8.26)

w(N) =
1
2

∑
i

∑
i′ �=i

wii′ , (8.27)

V(N) =
1
2

∑
i

∑
k�=i

Vik. (8.28)

They are in the same form as the virial tensor defined for simple fluids in
Chap. 7. These tensors play an important role in the description of transport
processes in liquids, as we have already seen in the kinetic theory of simple
fluids.

8.2.1 Macroscopic Variables

Macroscopic variables are defined as averages of the molecular expressions of
dynamic observables, the leading examples of which are given in Table 8.1.

Table 8.1. Molecular expressions for the leading members in the moment set

name h
(q)
i mathematical expression

mass density mi

momentum mivi

energy 1
2
miC2

i + 1
2

∑
k �=i

Vik

shear stress h
(1)
i mi [CiCi]

(2) + 1
2

∑
k �=i

[Wik](2)

bulk stress h
(2)
i

1
3
miC2

i + 1
6

∑
k �=i

TrWik − mipi/ρi

heat flux h
(3)
i

[
1
2
miC2

i + 1
2

∑
k �=i

Vik

]
Ci

+ 1
2

∑
k �=i

Wik · Ck − ĥimiCi

diffusion flux h
(4)
i miCi

angular momentum h
(5)
i miri ×

.
ri
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The grand ensemble average in the phase space is again denoted by angular
brackets

〈
A
(
x(N)

)
F (N)

〉
=
∑
N≥0

1
N!

∫
dx(N)A

(
x(N)

)
F (N)

(
x(N), t

)
, (8.29)

A
(
x(N)

)
=

r∑
a=1

∑
ia

Ai

(
x(N)

)
δ (ri − r) , (8.30)

where ia (or, alternatively, i(a)) stands for the set of indexes (iν) ranging from
1 ≤ i ≤ Na and 1 ≤ ν ≤ la, and

N! =
r∏

a=1

Na!.

The conserved variables thus are defined by the grand ensemble averages:

ρ (r, t) =
r∑

a=1

ρa (r, t) =
r∑

a=1

〈∑
ia

miδ (ri − r)F (N)

〉
, (8.31)

ρu (r, t) =
r∑

a=1

ρaua (r, t) =
r∑

a=1

〈∑
ia

miviδ (ri − r)F (N)

〉
, (8.32)

ρE (r, t) =

〈∑
i

⎛⎝1
2
miC2

i +
1
2

∑
k�=i

Vik

⎞⎠ δ (ri − r)F (N)

〉
. (8.33)

We have defined the mass density ρ (r, t) and the momentum density ρu (r, t)
in terms of species mass density ρa (r, t) and species momentum density
ρaua (r, t), respectively. The former will be necessary for defining mass frac-
tions, and the latter for diffusion fluxes appearing in the theory of mixtures. Of
course, the internal energy density ρE (r, t) may be decomposed into species
components, but such a decomposition is unnecessary in the theory presented.
These conserved variables obey the conservation laws or the balance equa-
tions of mass, momentum, and internal energy, which follow from the kinetic
equation (8.18) because of Conditions (7.C1)–(7.C3). They will be presented
shortly.

The nonconserved macroscopic variables are derived by averaging the
molecular expression presented in Table 8.1 or expressions generated system-
atically by applying the method of Irving and Kirkwood [1]. The stress tensor,
heat flux, and diffusion fluxes are defined with the expressions for h

(q)
i

(
x(N)

)
(q ≥ 1) given in Table 8.1

P (r, t) =
r∑

a=1

Pa (r, t) =
r∑

a=1

[Πa (r, t) + Δa (r, t) δ + paδ] , (8.34)
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Π (r, t) =
r∑

a=1

Πa (r, t) =
r∑

a=1

〈∑
ia

h
(1)
i δ (ri − r)F (N)

〉
, (8.35)

Δ (r, t) =
r∑

a=1

Δa (r, t) =
r∑

a=1

〈∑
ia

h
(2)
i δ (ri − r)F (N)

〉
, (8.36)

Q′ (r, t) =
r∑

a=1

Q′
a =

r∑
a=1

〈∑
ia

h
(3)
i δ (ri − r)F (N)

〉
, (8.37)

Ja (r, t) =

〈∑
ia

h
(4)
i δ (ri − r)F (N)

〉
, (8.38)

S (r, t) =
r∑

a=1

Sa (r, t) =

〈∑
i

h
(5)
i δ (ri − r)F (N)

〉
. (8.39)

To this list of macroscopic variables must be added the mean force Fa de-
fined by

ρaFa (r, t) =

〈∑
ia

∑
j<i

Fij (rij) δ (rj − r)F (N)

〉
. (8.40)

This is the mean force exerted by other particles on a molecule of species a
located at r. We will find it convenient to define the nonconserved variables
with a unified symbol

Φq (r, t) = ρΦ̂q (r, t) =
r∑

a=1

ρΦ̂qa (r, t)

=
r∑

a=1

〈∑
ia

h
(q)
i δ (ri − r)F (N)

〉
(8.41)

and also its flux

ψq (r, t) =
r∑

a=1

ψqa (r, t) =
r∑

a=1

〈∑
ia

Cih
(q)
i δ (ri − r)F (N)

〉
(8.42)

for all q ≥ 1. Because of the appearance of ψqa, the evolution equations form
an open set of hierarchical equations, which must be suitably closed before
hydrodynamic processes are examined within the framework of the laws of
thermodynamics. Because we are not concerned with a thermodynamic the-
ory of irreversible processes, closure will not be considered in this work. We
simply remark that on setting ψqa = 0 for all q except for q = 2 (excess normal
stress) and 4 (diffusion flux), we may close the open hierarchy of evolution
equations for nonconserved variables.
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8.2.2 Conservation Laws

The conservation laws of mass, momentum, and energy are easily obtained by
using the definitions (8.31)–(8.33) and the kinetic equation (8.18):

ρ
dv
dt

= ∇ · u, (8.43)

ρ
d
dt

ca = −∇ · Ja, (8.44)

ρ
d
dt

u = −∇ · P + ρF, (8.45)

ρ
d
dt

E = −∇ · Q − P :∇u +
r∑

a=1

Ja · Fa, (8.46)

where ca = ρa/ρ; F is the mean external force per unit mass

ρF =
r∑

a=1

ρaFa;

Fa is the mean external force on unit mass of species a at r, which is defined
by the average

ρaFa =

〈
1
2

∑
ia

∑
k�=i

Fa (ri) δ (ri − r)F (N)

〉
(8.47)

and Q is the heat flux defined by the energy flux

Q (r, t) =
r∑

a=1

Qa =
r∑

a=1

〈∑
ia

(
h

(3)
i + ĥimiCi

)
δ (ri − r)F (N)

〉
. (8.48)

Since its relation to Q′ is

Q = Q′ +
r∑

a=1

ĥaJa, (8.49)

it does not include the energy transported by matter itself. Note that V(2)
a and

V(3)
a consist of contributions from the intra- and intermolecular forces under

the convention of notation for indexes. We reiterate that the virial tensor
Wik in Table 8.1 also consists of the intra- and intermolecular virial tensors
W(s)

ii′ and Wik according to the subscript convention mentioned. Furthermore,
because of these virial tensors in the molecular expression for the definition
of h

(3)
i , the heat flux Q contains intramolecular and intermolecular fluxes

of stress work. These intricate effects from the virial tensors should not be
ignored. It is quite important to give careful treatment to the stress work if
the heat conductivity is to be correctly accounted for in the liquid density
regime, as will be seen in later chapters.
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8.2.3 Evolution Equations for Nonconserved Variables

The evolution equations for nonconserved variables are derived from the ki-
netic equation and their statistical mechanics definitions (8.41). On differen-
tiating (8.41) with respect to time and using the kinetic equation (8.18), we
obtain the evolution equation for Φqa:

ρ
d
dt

Φ̂qa = −∇ · ψqa + Zqa + Λqa (q ≥ 1; 1 ≤ a ≤ r) , (8.50)

where Zqa and Λqa are the kinematic and dissipation terms defined, respec-
tively, by the statistical mechanics expressions

Zqa =

〈∑
ia

(
D(N)

t h
(q)
i

)
δ (ri − r)F (N)

〉
, (8.51)

Λqa =

〈∑
ia

h
(q)
i δ (ri − r) R

[
F (N)

]〉
, (8.52)

where
D(N)

t = dt + L(N) + Ci · ∇,

as for simple fluids, but with the appropriate meanings given to L(N) and
Ci in accordance with the subscript convention. When these definitions are
explicitly worked out, we obtain the constitutive equations for nonconserved
variables, which explicitly contain the intramolecular and intermolecular con-
tributions. Since the method for evaluating them is similar to that for simple
fluid mixtures, which has been already explained in Chap. 7, we will not dwell
on it here. Only the results will be presented in Table 8.2. The potential en-
ergy contributions, such as V(2)

a , V(3)
a , and V(4)

a in the kinematic terms given

Table 8.2. Kinematic terms for the constitutive equations of polyatomic fluids

Φ̂qa Zqa

shear stress −2 [Ja (dtu − Fa)](2) − 2 [Pa · ∇u](2) + 2
[
V

(1)
a

](2)
−∇ · ψ(w)

1a

excess normal stress − 2
3
pa∇ · u − padt ln(pav) − 2

3
Ja · (dtu − Fa)

− 2
3
Πa · ∇u − 2

3
Δa∇ · u − Ja · ∇ (pava) + 2

3
TrV

(1)
a

−∇ · 1
3
Trψ

(w)
1a

heat flux −Ja · dtĥa − (dtu − Fa) · (Pa − paδ)

−Q′
a · ∇u − ϕ

(3)
a : ∇u − Pa · ∇ĥa + V

(3)
a

−∇ · ψ(w)
3a

diffusion flux −pda + ρaFa − (xa − ca)∇ · (P − pδ)
−Ja · ∇u − (P − pδ) · ∇xa + ∇ · Pk

angular momentum P − Pt
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in Table 8.2 contain, in addition to the usual intermolecular force contribu-
tions, intramolecular contributions absent in their simple fluid counterparts;
see Table 7.1 for the details of the kinematic terms Zqa for simple fluids.

When the nonequilibrium grand ensemble form is taken for F (N) as was
done for simple fluid mixtures in Chap. 7, the dissipation terms Λqa can
be calculated by applying the cumulant expansion method previously dis-
cussed [2, 3]. If the cumulant approximation so obtained and the kinematic
terms are substituted in the evolution equation (8.50), there follow the con-
stitutive equations for nonconserved variables. The transport coefficients of
polyatomic fluid mixtures then can be extracted from the constitutive equa-
tions when the latter are linearized with respect to thermodynamic gradients
and nonconserved variables such as stress tensors, heat fluxes, diffusion fluxes,
and so forth. This part of the theory is formally parallel to the simple fluid
counterpart.

By following the same procedure as for simple fluid mixtures, we obtain
the dissipation terms in the first-order cumulant approximation in the form

Λqa = (βg)−1
q (X)

r∑
b=1

∑
s≥1

R
(qs)
ab Xsb, (8.53)

where

g =
√

mr

2kBT
(nd)−2

with mr denoting the mean reduced mass of the molecules, n the mean number
density, d the mean size parameter of the molecules, and Xsb is the generalized
potential conjugate of the nonconserved variable Φsb. The coefficients R

(qs)
ab

are tensors made up of the collision bracket integrals

R
(qs)
ab = β2g

〈∑
ja

h
(q)
j δ (rj − r) R

[∑
kb

h
(s)
k F (N)

e

]〉
, (8.54)

where F
(N)
e denotes the equilibrium grand canonical ensemble distribution

function. The nonlinear factor q (X) is defined by

q (X) =
sinhκ (X)
κ (X)

(8.55)

with κ2 (X) denoting the dissipation function

κ (X) =

⎡⎣ r∑
a=1

r∑
b=1

∑
q,s≥1

XqaR
(qs)
ab Xsb

⎤⎦1/2

. (8.56)

The collision bracket integrals R
(qs)
ab are expressible in terms of irreducible

isotropic tensors and contract with the tensors Xqa and Xsb. It is helpful
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to note that, as for simple fluids, κ2 (X) is the kinetic theory version of the
Rayleigh dissipation function.

The generalized potentials are possible to calculate in terms of the non-
equilibrium grand partition function1 and are proportional to Φqa:

Xqa = −g(q)
a Φqa, (8.57)

where g
(q)
a are scalar functions of invariants of tensors {Xqa}. These scalar

functions are possible to calculate from the nonequilibrium grand canonical
partition function of the fluid in question [4]. Near equilibrium, g(q)

a for the
leading q may be approximated by the formulas

g(1)
a � 1

2pa
, g(2)

a � 3
2pa

, g(3)
a � 1

TpaĈpa

, g(4)
a � 1

ρa
. (8.58)

For linear transport coefficients these approximations (8.58) are sufficient for
the generalized potentials.

In the following, we present the leading examples of evolution equations—
constitutive equations—for the nonconserved variables in the first-order cu-
mulant approximation and in the linear approximation of g(q)

a

ρdtŜ = −∇ · ψ(5) + P − Pt, (8.59)

ρdtΠ̂a = −∇ · ψ(p)
a − 2 [Jadtu](2) − 2 [Pa · ∇u](2)

+
[
V(1)

a

](2)
+ Λ1a, (8.60)

ρdtΔ̂a = −∇ · ψ(b)
a − 2

3
Ja · dtu − 2

3
(Pa − paδ) · ∇u

−Ja · ∇ (pava) − padt ln(pav
5/3) +

2
3
TrV(1)

a + Λ2a, (8.61)

ρdtQ̂′
a = −∇ · ψ(h)

a − Ja · dtĥa − (dtu − Fa) · (Pa − paδ)

−Q′
a · ∇u − ϕ(3)

a : ∇u − Pa · ∇ĥa + V(3)
a + Λ3a, (8.62)

ρdtĴa = ρaFa + pda − Ja · ∇u − (xa − ca)∇ · (P − pδ)
− (P − pδ) · ∇xa + Λ4a, (8.63)
etc.

Although these constitutive equations look formally the same as those for
simple fluids, it should be remembered that the tensor V(1)

a and the vector
1 For a method of calculating the nonequilibrium partition function of dilute

monatomic gases, see [4].
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V(3)
a consist of intramolecular and intermolecular components. These compo-

nents can be explicitly worked out by using the subscript convention adopted
earlier in this chapter. In the constitutive equations (8.59)–(8.63), the dissi-
pation terms may be taken with the first-order cumulant approximation given
in (8.53)–(8.54).

Equations (8.59)–(8.63) together with the conservation laws—balance equa-
tions for mass, momentum, and internal energy (8.43)–(8.46)—constitute gen-
eralized hydrodynamics for polyatomic fluids. With the dissipation terms Λqa

given by the aforementioned first-order cumulant approximation, the general-
ized hydrodynamic equations are consistent with the laws of thermodynamics.
These dissipation terms also consist of intramolecular and intermolecular com-
ponents because h

(q)
i is decomposable into the aforementioned components.

They can also form the basis of the theory of transport processes in poly-
atomic fluids, from which the linear transport coefficients can be extracted in
terms of statistical mechanics formulas together with molecular theory expres-
sions for all thermophysical properties involved. The procedure is also parallel
to that used for simple fluid mixtures in Chapter 7. These topics therefore are
left to the reader as exercises to work out.

For the drift velocity of species the appropriate evolution equation can be
obtained if the mass fraction balance equation (8.44), the momentum balance
equation (8.45), and the constitutive equation (8.63) for Ja are combined.
Thus we obtain from them the constitutive equation for the drift velocity ua

of species a:

ρadtua = −∇ · [xaP − ρa (ua − u) (ua − u)]
−ρa (ua − u) · ∇ua + ρaFa + ρaFa + Λ4a. (8.64)

The effects on the mobility of the internal structure of a polyatomic molecule
are contained in the term ρaFa among others; see (8.40) for the definition of
Fa. The first term on the right gives the effect primarily from the stress on the
flow of molecules, the second the effect of diffusion, and the third the effect
of the external force. The last term, of course, describes the dissipation of
energy from diffusion of molecules. This constitutive equation may be applied
to study the mobility of polyatomic molecules in solution.

8.3 Kinetic Theory of Reacting Fluids

Restricting the kinetic theory of polyatomic mixtures to nonreacting fluids
has considerably simplified the theory, and we have been able to construct
the basis for the theory of transport processes in polyatomic fluids, unencum-
bered by chemical reactions intruding into the energy and momentum transfer
processes examined. Chemical reactions in liquid solutions are important in
chemistry and also in many aspects of biology. Therefore it is necessary to face
up to the subject of chemical reactions in liquids, which have been generally
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avoided in the kinetic theory of liquids. There is only a relatively scant body
of literature on the kinetic theory of chemical reactions in gases [5–9] and liq-
uids [10], and even in the existing literature, only some special aspects [11,12]
have been studied. In this work, we will try to be general, but its application
will not be considered because the theory presented is rather recent and has
not had a chance to see its application to chemical kinetics problems.

It is well recognized that chemical reactions cannot be discussed in terms
of classical mechanics alone. Their important aspects require quantum me-
chanics, although some other aspects can be adequately treated by classical
mechanics. Especially, collision dynamics problems associated with chemical
reactions must be treated quantum mechanically. For this reason, we should
begin with the density matrix formalism and formulate the theory, but the
theory in the end may be taken to the classical limit, wherever permissible.
When this line of approach is taken, in the end, quantum mechanics is seen
only in the description of reactive collision dynamics associated with chemical
reactions appearing in the collision integral operator of the kinetic equation.
The rest of the kinetic theory description of usual transport processes can
be made in the classical formalism if the temperature is sufficiently high to
warrant using classical statistical mechanics. For this reason, we may couch
the kinetic theory of interest in the language of classical mechanics except for
the description of reactive collision dynamics. This will be the approach taken
in this work.

Quantum mechanics of chemical reactions is generally understood with
the help of the Born–Oppenheimer approximation [13] for nuclear motions,
in which nuclei or molecules move on the potential energy surface—the elec-
tronic energy eigenvalue of the Hamiltonian of the system. This approximation
is reasonable because the much lighter electrons move faster than the heavy
and sluggish nuclei of the atoms involved in the molecules. In a chemical
reaction, the electronic energy eigenvalues are distinctive before and af-
ter chemical reactions in the diabatic representation because rearrangements
of chemical bonds of constituent molecules, reactants and products, occur in
chemical reactions. In other words, there are two distinctive potential energy
sheets (i.e., electronic energy eigenvalues) required for the initial and final
states of a chemical reaction. These distinctive potential energy surfaces cross
each other if they are spatially continued as the molecules in the chemical
reaction approach each other within a critical distance at which the chemical
bonds either rearrange to those of the products or remain unaltered as those
of the reactants. Therefore, a kinetic theory of chemical reactions must take
into account the motions of molecules in the two distinctive potential energy
surfaces on the timescale beyond the chemical reaction time, whereas in the
duration of the chemical reaction timescale, the effects of the potential energy
surface crossing must be considered somehow.

In this manner of describing reacting systems, it is necessary to distinguish
petit ensembles of a grand ensemble, in each of which particles are entirely
confined to a single potential sheet, so that there is no possibility of a chemical
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rearrangement. The absence of chemical rearrangements implies that the as-
sociated collision processes are either elastic or inelastic. On the other hand,
if there is a chemical rearrangement then a finite region of the configuration
space exists in which the chemical rearrangement in a reactive collision time
span occurs. This region of space is around the locus along which the potential
energy sheets characterizing the reactants and products cross each other. We
imagine that collision complexes or transition states of the reacting systems
are formed in the localized region around the locus along which the potential
energy sheets cross. In this manner, the often used notion of transition states
or collision complexes in chemistry will be incorporated into the kinetic theory
of reacting fluids formulated in this chapter.

8.4 Kinetic Equation for Reacting Fluids

We consider the same polyatomic fluid mixtures as those described in the
previous section, but they are now assumed capable of chemical transforma-
tions. The chemical reaction involved is also assumed to be bimolecular for
simplicity of discussion; it may be schematically expressed as

A + B + (S) � C + D + (S) , (8.65)

where A,B,C, and D represent species. In this reaction scheme, the solvent
species may be explicitly included as a spectator species S to indicate that it
can play a role in the chemical reaction, energetically and otherwise, except
that it does not transform itself in reaction with the solute species undergoing
the chemical reaction. The reactant mixture, including the solvent species,
which may not be chemically involved in the reaction, consists of N(r) ≡
(Na, Nb, · · · ), whereas the product mixture, also including the solvent species,
consists of N(p) ≡ (Nc, Nd, · · · ).

We will use the same convention for the subscripts for sites, molecules,
and species as that used for nonreacting polyatomic fluids in which intra- and
intermolecular degrees of freedom are not distinguished but designated by a
unified subscript subject to the subscript convention on the intramolecular
and intermolecular degrees of freedom. The total interaction potential for the
reactant mixture will be denoted by UN(r)

(
r(N(r))

)
, which is written as

UN(c)

(
r(N(c))

)
=

1
2

∑
i(c) �=j(c)

Vi(c)j(c)

(
ri(c)j(c)

)
+
∑
i(c)

V(ex)

i(c) (ri(c)) , (8.66)

where we have affixed the superscript c = r or p on i(c) and j(c) to distin-
guish reactants and products. It should be recalled that i(c) is an alternative
notation for ic introduced in the subscript convention we use in this chapter;
see Sect. 8.2.1. The first term on the right is a shorthand notation for terms
consisting of intramolecular and intermolecular interaction energies, that is,
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the potential energy Vi(c)j(c) is made up of intermolecular potential energies in
addition to intramolecular potential energies wi(c)′j(c)′ . These intramolecular
potential energies represent the electronic energy eigenvalues of the system
corresponding to c in the Born–Oppenheimer approximation for the motion
of nuclei of atoms that are chemically bonded to form molecules. Therefore,
the total potential energy written as in (8.66) closely reflects the notion that
the reactant and product molecules, which are well separated beyond the re-
action range after the reaction, move in different potential energy surfaces
(sheets). These surfaces must cross each other as the reactant and product
species come within a small volume in space, in which short-range electronic
coupling interactions come into action and chemical bonds are rearranged to
give a chemical reaction. For this reason, the forces responsible for chemical
bond rearrangements—chemical reactions—are much shorter ranged than van
der Waals dispersion forces. Therefore, as the species of reactants or products
become separated from each other beyond the chemical force ranges, the fluid
acts as if it is a nonreactive mixture, and the interaction potential for such
a configuration of the fluid is simply the sum of the interaction potential
energies of the reactants and products as given in (8.66):

UN(r+p)

(
r(N(r+p))

)
=

1
2

∑
c∈r,p

∑
i(c) �=j(c)

Vi(c)j(c)

(
ri(c)j(c)

)
+
∑
c∈r,p

∑
i(c)

V(ex)

i(c) (ri(c)) .

(8.67)
The first term on the right is again the short-hand notation for interaction
energy consisting of intramolecular interaction potential energies and longer
range intermolecular interaction energies that are not responsible for chemical
bonding. We assume that the nonreactive collision processes in the fluid are
described by the potential energy model given in Eq. (8.67). This potential
energy does not include the potentials of bond-switching chemical forces.

The representation of the potential energy of the system, as in Eq. (8.66),
implies that the Liouville operators must also be defined with different po-
tential energy surfaces. We generalize the definition given for the Liouville
operator in (8.14) and (8.15) with accompanying definitions of component
Liouville operators. Thus we write the Liouville operators in the form,

L(N(c)) =
N(c)∑

j(c)=1

L
(0)

j(c) +
1
2

N(c)∑
j(c) �=k(c)=1

L
(v)

j(c)k(c) +
N(c)∑

j(c)=1

L
(ex)

j(c) (8.68)

in which the superscript c has the same meaning as in (8.66), c = r or p.
The subscript convention used for the potential energies also applies to this
Liouville operator. Therefore the second term consists of intramolecular and
intermolecular interaction Liouville operators. The first term on the right is
made up of free Liouville operators of noninteracting particles.

The grand ensemble is constructed for each of the reactant and prod-
uct mixtures, and the reduced distribution function F (N(c))

(
x(N(c)), t

)
of the
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grand ensemble is assumed to obey the kinetic equation,(
∂

∂t
+ L(N(r))

)
F (N(r))

(
x(N(r)), t

)
= Rr+p

[
F (N(r+p))

]
+ Rrp

[
F (N(r))

]
,

(8.69)(
∂

∂t
+ L(N(p))

)
F (N(p))

(
x(N(p)), t

)
= Rr+p

[
F (N(r+p))

]
+ Rpr

[
F (N(p))

]
.

(8.70)

The nonreactive (Rr+p) and reactive (Rrp,Rpr) collision operators in these
equations are defined by the collision integrals,

Rr+p

[
F (N)

]
=

N !
(N −N)!

∫
dx(N−N) (−i)T (N )

r+pF
(N )(x(N ); t), (8.71)

Rrp

[
F (N(r))

]
=

N (r)!(
N (r) −N (r)

)
!

(8.72)

×
∫

dx(N (r)−N(r)) (−i)T (N (r))
rp F (N (r))(x(N (r)); t),

Rpr

[
F (N(p))

]
=

N (p)!(
N (p) −N (p)

)
!

(8.73)

×
∫

dx(N (p)−N(p)) (−i)T (N (p))
pr F (N (p))(x(N (p)); t),

where

F (N ) =
∏
{N}

F (N), F (N (c)) =
∏

{N(c)}
F (N(c)) (c = r, p) , (8.74)

and N = N (r) + N (p), N = N (r) + N (p) with N (c) =
∑

a∈c Na. The product
sign runs over all petit ensembles of the grand ensemble of interest.

The collision operator T
(N )
r+p is defined in the potential energy surface

UN(r+p)

(
r(N)

)
, which characterizes the reactants and the products through

nonreactive interaction forces, whereas the collision operators T
(N (r))
rp and

T
(N (p))
pr represent the reaction part of the many-particle collision operator,

which transfer the reactant species from the reactant potential energy sur-
face to the product potential energy surface, and vice versa. Because chem-
ical transformations are caused by short-range chemical forces from elec-
tronic interactions (overlaps) at short distances of the order of a few atomic
radii at most, T (N )

r+p describes elastic and inelastic collision processes, whereas

T
(N (r))
rp and T

(N (p))
pr describe reactive collision processes, which we will as-

sume are achieved through the formation of collision complexes—transition
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states. We impose the conditions on these collision operators: that they are
such that Conditions (7.C1)–(7.C3) are satisfied so as to ensure consistency
with the laws of thermodynamics. It is worth reiterating the following point
regarding the kinetic equations: The essential chemical and physical reason
underlying the kinetic equations (8.69) and (8.70) is that there is a separation
of spatial scales in the course of chemical reactions; that of the longer scale
is nonreactive and that of the shorter scale is reactive. Such a separation of
spatial scales gives two separate collisional contributions on the right-hand
sides of the kinetic equations.

Chemical reactions occur locally as reactant or product molecules come
within a characteristic distance of the order of chemical bond lengths and
on a timescale faster than hydrodynamic relaxation times. Therefore hydro-
dynamic processes in reacting mixtures may be studied as if they occur in
an inert nonreacting mixture. This suggests that we may employ the kinetic
equation (8.18) with (8.19) for the collision operator, provided that N and
the Liouville operator L(N) are for the mixture consisting of the reactants
and products. The role of the kinetic equations (8.69) and (8.70) is then in
describing the density evolution of species that arise from the chemical reac-
tion in an adiabatic condition in which hydrodynamic variables remain fixed
on the timescale of the chemical reaction of interest. For this reason, by using
the kinetic equations (8.69) and (8.70), we will examine only chemical reaction
kinetics.

8.5 Collision Operators

8.5.1 Nonreactive Collision Operator

The nonreactive collision operator Rr+p is similar to the collision operator for
nonreactive polyatomic mixtures considered earlier; see (8.20) with collision
processes described by the potential energy of interaction given by (8.67).
Since the collision operator Rr+p, therefore, has the same properties as that
given in terms of W

(
x(N )|x(N )∗) in (8.20), there is no need to repeat the list

here.

8.5.2 Reactive Collision Operators

The reactive collision operators Rrp and Rpr may be modeled in forms sim-
ilar to nonreactive collision operators, except that the pre- and postreaction
configurations should be distinguished. Thus, we take Rrp in the form

Rrp

[
F (N(r))

]
=

N (r)!(
N (r) −N (r)

)
!

∫
dx(N (r)−N(r)) (8.75)

×
[
Wrp

(
x(N (r))∗|x(N (p))

)
F (N (p))∗(x(N (p))∗; t)

−Wrp

(
x(N (r))|x(N (p))∗

)
F (N (r))(x(N (r)); t)

]
,
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where the transition probability Wrp

(
x(N (r))|x(N (p))∗

)
has the symmetry

property∫
dx(N (p))∗Wrp

(
x(N (r))|x(N (p))∗

)
=
∫

dx(N (p))∗Wpr

(
x(N (p))∗|x(N (r))

)
.

(8.76)

A more concrete model for the transition probability Wrp

(
x(N (r))|x(N (p))∗

)
will be given later. For the moment, this property is sufficient for developing
a formal theory by using (8.75). Similarly,

Rpr

[
F (N(p))

]
=

N (p)!(
N (p) −N (p)

)
!

∫
dx(N (p)−N(p))

×
[
Wpr

(
x(N (p))∗|x(N (r))

)
F (N (r))∗(x(N (r))∗; t)

−Wpr

(
x(N (p))|x(N (r))∗

)
F (N (p))(x(N (p)); t)

]
. (8.77)

The transition probability Wpr

(
x(N (p))|x(N (r))∗

)
has the same symmetry

property as Wrp

(
x(N (r))|x(N (p))∗

)
;∫

dx(N (r))∗Wpr

(
x(N (p))|x(N (r))∗

)
=
∫

dx(N (r))∗Wpr

(
x(N (r))∗|x(N (p))

)
.

Because

dx(N (p)) = dx(N (p))∗ = dx(N (r))∗ = dx(N (r)),

we find∫
dx(N (r))Wrp

(
x(N (r))|x(N (p))∗

)
=
∫

dx(N (p))Wpr

(
x(N (p))|x(N (r))∗

)
.

(8.78)

These properties are useful for establishing the symmetry properties of the
reaction rate equations in the following and also for proving the H theorem
with the kinetic equation.

8.6 Density Evolution Equations and Chemical Kinetics

The kinetic equations (8.69) and (8.70) may be used to derive evolution equa-
tions for macroscopic variables describing transport processes in reacting flu-
ids. Because we will pay attention only to chemical kinetics, but not transport
processes in general in the reacting fluid, we will consider only reaction rate
equations and associated mass flux evolution equations in the following. This
is possible if it is assumed that there is no flow of matter and the temperature
is uniform in space, so that stress tensors and heat flux are absent. Conse-
quently, the diffusion fluxes are the only nonconserved variables relevant to
the discussion.
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8.6.1 Reaction Rate Equations

On multiplying ∑
i(a)

mai(a)δ (rai(a) − r) (8.79)

from the left to the kinetic equation (8.69) and integrating over the phase
x(N(r)), there follows the evolution equation for the mass density ρa for a ∈ r,
where r denotes the totality of reactant species:

ρ
dca

dt
= −∇ · Ja + Λ(ch)

a . (8.80)

The symbol i(a) abbreviates the composite indexes (i, ν) (1 ≤ i ≤ Na, 1 ≤ ν ≤
la) for species a, and Λ

(ch)
a denotes the change in mass fraction ca from the

chemical reaction; it is defined by

Λ(ch)
a =

〈∑
i(a)

mai(a)δ (rai(a) − r) Rrp

[
F (N(r))

]〉
(8.81)

for reactant species a and similarly for reactant species b. For the product
species d ∈ p, where p denotes the totality of product species, equations for
cd similar to (8.80) can be derived from the kinetic equation (8.70):

ρ
dcd

dt
= −∇ · Jd + Λ

(ch)
d , (8.82)

where

Λ
(ch)
d =

〈∑
i(d)

mdi(d)δ (rdi(d) − r) Rpr

[
F (N(p))

]〉
. (8.83)

The meaning of the symbol i(d) is similar to that of i(a), and p denotes product
species C and D. The nonreactive collision operator Rr+p

[
F (N(r+p))

]
does not

give a dissipation term in the mass fraction balance equations because mass is
conserved in nonreactive collisions. However, reactive collision processes give
nonvanishing dissipation terms Λ

(ch)
a and Λ

(ch)
d , which are intimately related

to the rate coefficients, as will be shown. Equations (8.80) and (8.82) indicate
that the change in mass fraction consists of two distinctive parts; one from
mass transport and the other from the chemical reaction. Therefore, chemical
kinetics is described by rate equations, which may be written as

ρ
dcca

dt
= Λ(ch)

a , (8.84)

ρ
dccd

dt
= Λ

(ch)
d , (8.85)

where the time derivative dc/dt stands for the reactive part of the mass change
involved. Under the condition that diffusion is divergenceless, that is,

∇ · Ja = 0, ∇ · Jd = 0 (8.86)
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for a ∈ r and d ∈ p, the time derivatives in the rate equations become the
ordinary time derivative in the coordinate system moving at the fluid velocity
u. In this connection, it should be recalled that flow is absent in the fluid if the
mean velocity of the fluid is equal to zero. From the standpoint of the kinetic
theory, the conventional rate equations in chemical kinetics then should be
understood in the sense of condition (8.86), and the following discussion will
be given without further reference to condition (8.86), although the ordinary
time derivative d/dt is employed in the rate equations.

8.6.2 Evolution Equations for Diffusion Fluxes

Because diffusion fluxes occur in the mass fraction balance equations, it is
necessary to examine the evolution equations for the diffusion fluxes, the con-
stitutive equations for Ja and so on. It is straightforward to derive them from
the kinetic equations:

ρ
dĴa

dt
= −∇ · Pa + ca∇ · P − Ja · ∇u + ρaFa + Λ4a + Λ

(ch)
4a , (8.87)

ρ
dĴd

dt
= −∇ · Pd + cd∇ · P − Jd · ∇u + ρdFd + Λ4d + Λ

(ch)
4d , (8.88)

where Λ4a and Λ4d are dissipation terms arising from nonreactive collision
operator Rr+p

[
F (N(r+p))

]
and the additional dissipation terms Λ(ch)

4a and Λ
(ch)
4d

are the contributions from the reactive collision operators. They are defined
by

Λ
(ch)
4a =

〈∑
i(a)

mai(a)Cai(a)δ (rai(a) − r) Rrp

[
F (N(r))

]〉
, (8.89)

Λ
(ch)
4d =

〈∑
i(d)

mdi(d)Cdi(d)δ (rdi(d) − r) Rpr

[
F (N(p))

]〉
, (8.90)

for a ∈ r and d ∈ p. The nonreactive dissipation terms Λ4a and Λ4d are defined
by the same form as for the dissipation term for nonreactive fluids considered
earlier. To discuss the effects on chemical kinetics of mass transport, it is
sufficient to consider either one of (8.87) and (8.88). Especially, for near-
equilibrium effects it is sufficient to consider the forms linearized with regard
to transport processes, so that we may take the equations

ρ
dĴa

dt
= − p

ρa
da + Λ4a + Λ

(ch)
4a , (8.91)

ρ
dĴd

dt
= − p

ρd
dd + Λ4d + Λ

(ch)
4d , (8.92)
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where dj (j = a or d) is the thermodynamic force for diffusion

dj = ∇
(nj

n

)
+
(
nj

n
− ρj

ρ

)
∇ ln p +

ρj

p
(F − Fj) . (8.93)

In the absence of external forces and a pressure gradient this thermodynamic
force dj simply reduces to a concentration gradient or, more precisely, a mole
fraction gradient. A particular case of constitutive equations for diffusion
fluxes will be considered later.

8.6.3 Pair Density Evolution Equations

To discuss chemical kinetics in solution it is particularly necessary to consider
pair density evolution equations because pair densities would give measures
of lifetimes of transient binary species formed during reactions. Note that
these binary species are not necessarily stable chemical species, but chemically
nonbonded clusters. The pair density is defined by the statistical formula

ρab (r, t) =

〈∑
i(a)

∑
j(b)

mai(a)mbj(b)

M
δ (rai(a) − r) δ

(
rbj(b) − r

)
F (N(a+b))

〉
,

(8.94)
where M = ma + mb ≡ mai(a) + mbj(b) . According to this definition, the
ratio [ρab (r, t) /ρ] dr is the probability of finding a pair ab at r in the interval
r ∼ r + dr at t.

The evolution equation for ρab (r, t) then can be derived by multiplying
the kinetic equation (8.69) by the molecular expression for the pair density∑

i(a)

∑
j(b)

mai(a)mbj(b)

M
δ (rai(a) − r) δ

(
rbj(b) − r

)
and following the same procedure as for the evolution equation for diffusion
flux Ja. Thus, we obtain the equation

ρ
dcab

dt
= −∇ · Jab + · · · + Λ

(pair)
ab + Λ

(tran)
ab , (8.95)

where

Jab =

〈∑
i(a)

∑
j(b)

μabCabδ (rai(a) − r) δ
(
rbj(b) − r

)
F (N(a+b))

〉
, (8.96)

Λ
(pair)
ab =

〈 ∑
i(a),j(b)

μabδ (rai(a) − r) δ
(
rbj(b) − r

)
Rr+p

[
F (N(r+p))

]〉
, (8.97)

Λ
(tran)
ab =

〈 ∑
i(a),j(b)

μabδ (rai(a) − r) δ
(
rbj(b) − r

)
Rrp

[
F (N(r))

]〉
(8.98)
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with μi(a)j(b) denoting the reduced mass of pair ab

μab =
mai(a)mbj(b)

M

and Cab the peculiar velocity of the pair (a, b)

Cab = vai(a) + vbj(a) − u.

These evolution equations become useful at the order of description of chem-
ical reactions in which the effects of pair correlation should be taken into
account. The dots · · · in (8.95) represent the terms involving nonconserved
variables, gradients of velocity, and so on, which appear in the full equation
but may be neglected if the transport of momentum and energy is ignored
when the evolution equations are linearized with respect to fluxes and ther-
modynamic forces.

Now if we use the forms for the collision operators presented in (8.75) and
(8.77), the statistical mechanical formulas for the reaction rate coefficients can
be readily identified in comparison with the phenomenological rate equations,

−dcca

dt
= kforcacb − krevcccd. (8.99)

Upon comparison of the statistical mechanical rate equations with the phe-
nomenological rate equations, the statistical mechanical expressions for the
rate coefficients can be identified as follows:

kfor =
1

ρcacb

〈∑
i(a)

mai(a)δ (rai(a) − r)Wrp

(
x(N (r))|x(N (p))∗

)
F (N (r))

〉
,

(8.100)

krev =
1

ρcccd

〈∑
i(d)

mdi(d)δ (rdi(d) − r)Wpr

(
x(N (p))|x(N (r))∗

)
F (N (p))

〉
.

(8.101)

In these expressions the angular brackets stand for integration in the phase
of N (r) particles for kfor or N (p) particles for krev. To obtain the second
term in the rate equation (8.99) we have used the symmetry property of the
transition probability of the reaction. A similar rate equation can be derived
for the product species from the kinetic equation, but it contains the same
information as (8.99). Therefore there is no need for the equation here.

8.6.4 Rate Coefficients for Diffusion-Limited Reactions

Based on the idea of Smoluchowski [14], who developed the theory of
colloid coagulation kinetics as a diffusion-limited process, the effects of diffu-
sion on chemical reaction rates have been studied by a number of
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authors [15–21] in the field of chemical kinetics in solution. In this class of
theories, reactants are assumed to have reacted as they come within a criti-
cal distance from each other. Therefore, Fick’s law of diffusion plays an im-
portant role in the calculation of observed reaction rates for chemical re-
actions in solution. We would like to examine to what extent and under
what conditions the present kinetic theory of reacting mixtures can recover
the theory of diffusion-limited chemical reaction rates in the literature. For
the discussion, we will use the bimolecular chemical reaction (8.65) as an
example.

Consider a chemical reaction proceeding predominantly in the forward
direction. Then, by adopting the same assumption as that made on the relative
magnitude of the forward and reverse rate coefficients in the theory of chemical
kinetics in the literature [19, 21], we neglect the contribution of the reverse
reaction. The rate equation is then given by

−dcca

dt
= kforcacb. (8.102)

Now we examine the effect of diffusion on the forward reaction rate constant.
To this end, we return to the constitutive equation for diffusion fluxes and
investigate the conditions under which the conventionally used rate coefficient
can arise.

We assume that the fluid is not too displaced from equilibrium with regard
to diffusion and also assume that the pressure and temperature are uniform
in the fluid and external forces are absent. If the diffusion is steady in the
coordinate system moving at the fluid velocity or if the fluid is stagnant, then
the substantial time derivative term in (8.102) may be replaced with the total
time derivative. Furthermore, if the chemical reaction is faster than diffusion
and other transport processes, then on the timescale of diffusion and other
hydrodynamic processes the chemical reaction should have been completed.
This implies that, upon taking into account the fact that there is only one
independent diffusion flux and also only one independent thermodynamic force
for a binary mixture, the steady-state constitutive equation, Fick’s law of
diffusion, can be derived from (8.91). It is given by the equation

Jb = −ρbDbada = ρbDbadb. (8.103)

Note that da + db = 0.
Because the reaction is faster than diffusion, the particle arriving at the

critical sphere of radius rm may have already reacted with A or certainly will
have reacted while diffusing toward A within the critical sphere. If the reaction
cross section is denoted by σAB , then the critical distance rm is estimated by
rm =

√
σAB/π. The flux of species b crossing the surface of the critical sphere

may be equated to the reaction rate. Thus, we obtain

−4πr2mJb/ρb = kfor
nb

n
. (8.104)
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Eliminating Jb from (8.104) with the help of (8.103) and integrating the re-
sulting equation from r = 0 to r = rm, we obtain

nb

n
=
(nb

n

)
r=rm

− kfor

4πrmDba

(nb

n

)
. (8.105)

Because the relation nb/n = cbρ/mbn holds, upon rearranging (8.105) we
obtain

cb =
cb (rm)

1 + kfor/4πrmDba
. (8.106)

Substituting this result in (8.102), we find the phenomenologically observed
rate constant

kobs =
4
√

πσABDba

kfor + 4
√

πσABDba
kfor. (8.107)

Except for the meaning of rm given in terms of the reaction cross section,
this formula is identical to the result of the theory of diffusion-limited rate
coefficients in the literature, which is in the class of the Smoluchowski theory
of colloid coagulation. Apart from various assumptions made in connection
with the constitutive equations for diffusion, the assumption (8.104) is the
key to the rate coefficient formula.

Therefore, it is clear that the present kinetic theory includes of the con-
ventional theory of reaction rates of Noyes [19], if the assumption (8.104) is
added. Note that all quantities in the present theory are calculable by the ki-
netic equations presented earlier and statistical mechanics attendant thereon.
Therefore, we now have a kinetic theory of rate coefficient kobs for diffusion-
limited chemical reactions. It requires calculating the formula (8.100) for kfor

in addition to Dba, which can be computed by the modified free volume theory
of diffusion described in Chap. 11.

8.6.5 Transition State Theory

In the Smoluchowski model [14] for chemical reactions, namely the theory
of diffusion-limited rate coefficients, there is no notion of transition states
or collision complexes. However, in chemical kinetics the notion of transition
states [22] has a long history. Moreover, it has been widely taken advantage of
in solution chemical kinetics [23] although what is meant exactly by transition
states has not always been clear. It seems that the nebulous nature of the
notion itself allows one the liberty of an ill-defined proposition for a transition
state. We now examine how the notion of transition states (e.g., collision
complexes) may be exploited in the present kinetic theory of reacting fluids
and attempt to quantify the notion from the viewpoint of quantum mechanics.
More specifically, we will investigate a way to characterize the transition states
quantum mechanically in terms of collision complexes that form in a chemical
reaction.

If the chemical reaction proceeds through a collision complex, then the rate
equations should include those related to the formation and decomposition of
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the collision complex into products and reactants. The reactions involving
such collision complexes may then be written as

A + B
k1�

k−1

AB (8.108)

AB
k2�

k−2
AB∗ (8.109)

AB∗ k3�
k−3

C + D. (8.110)

Here AB and AB∗ are transition states or collision complexes in different
states that are interconverted over a time span owing to the internal dynamics
among the particles involved, perhaps, including the solvent molecules. In
these reaction schemes the solvent may be included to make its role more
explicit, because in solution kinetics and, in particular, in the formation and
decomposition of collision complexes in solution the role of solvent molecules
should be important and, at least, relevant to kinematic conditions such as
energy conservation. According to this model, the corresponding macroscopic
rate equations are

−dca

dt
= k1cacb − k−1cab, (8.111)

dcab

dt
= k1cacb − (k−1 + k2) cab + k−2cab∗ , (8.112)

dcab∗

dt
= k2cab − (k−2 + k3) cab∗ − k−3cccd. (8.113)

As is often done in chemical kinetics, we assume that k−3 = 0; in other words,
the collision complexes break up into the products in an overwhelmingly high
probability. Then at the steady state of the collision complex population there
hold the equations

k1cacb − (k−1 + k2) cab + k−2cab∗ = 0,

k2cab − (k−2 + k3) cab∗ = 0.

Eliminating cab∗ from these equations, we obtain

k1cacb =
[
(k−1 + k2) −

k2k−2

(k−2 + k3)

]
cab,

which may be rearranged to

cab =
k1 (k−2 + k3)

(k−1 + k2) (k−2 + k3) − k2k−2
cacb. (8.114)

Substituting in (8.111), we obtain

−dca

dt
=

k1

1 + (k−1/k2) (1 + k−2/k3)
cacb. (8.115)
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This may be equated to the overall reaction rate of formation of the product

dcp

dt
= kobscacb (p = c, d) . (8.116)

Thus we obtain the phenomenologically observed rate coefficient

kobs =
k1

1 + (k−1/k2) (1 + k−2/k3)
. (8.117)

The rate coefficients k−1, k2, k−2, and k3 are closely associated with the
correlated pair (ab) and its concentration cab, which obeys (8.95). The present
kinetic theory makes it possible to study the evolution of cab and calculate the
attendant rate constants. In chemical kinetics, such a study is often made un-
necessary by phenomenologically motivated assumptions or approximations.
We will use such approximations. Since if the overall reaction is predominantly
in the forward direction then it implies that

k−1/k2 << 1, k−2/k3 << 1,

kobs in (8.117) can be approximated by

kobs � k1. (8.118)

This means that the observed bimolecular reaction rate is approximately equal
to k1, which is given by the kinetic theory formula

k1 =
1

ρcacb

〈∑
i(a)

mai(a)δ (rai(a) − r)Wrp

(
x(N (r))|x(N (p))∗

)
F (N (r))

〉
.

(8.119)

It is interesting that, regardless of whether or not the existence of collision
complexes is assumed, the approximate statistical mechanical expression for
the observed rate coefficient remains formally the same as the forward reaction
rate kfor defined earlier without a model, if the aforementioned approximations
are made for the rate coefficients related to the collision complexes. However,
note that the quantum mechanical method of evaluating the reactive collision
cross-sections should be different from the case in which collision complexes
play no role at all, because in the model based on the formation of collision
complexes the dynamic mechanism for collision is quite different from the
model in which collision complexes are not formed. We will investigate a
method of evaluating the rate coefficient (8.119) in the following.

8.7 Scattering Theory and Rate Coefficients

Now the question remains of how the reaction rate coefficient k1 might be cal-
culated by incorporating the notion of collision complexes formed in a chem-
ical reaction in solution. The first step to answer the question is to make the
transition probability more explicit.
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Because the solvent is ubiquitously present during a reaction in solution
and affects the outcome, it is necessary to take the solvent into considera-
tion. The transition probability Wrp

(
x(N (r))|x(N (p))∗

)
converts the prereac-

tion phase x(N (r)) to the postreaction phase x(N (p))∗ for the whole system.
Therefore it is related to the collision cross-section for the many-particle sys-
tem in hand. The many-particle collision cross-section may be expressed in
terms of binary, ternary, · · · , encounters of reacting molecules dispersed in the
solvent. Therefore, in practice, it is useful to employ such a representation un-
der the assumption that the mixture is dilute with regard to the solute. Thus,
we assume a dilute solution and take the transition probability in terms of
collision operators for pairs of reactant molecules embedded in the solvent,
whose role is merely that of an energy reservoir, that is,2

Wrp

(
x(N (r))|x(N (p))∗

)
= 2πT †

ab,cdδ (Eab − Ecd) Tab,cd, (8.120)

where Tab,cd is the quantum mechanical transition operator for pair (ab) that
obeys the Lippmann–Schwinger integral equation [25], in the field of the inert
solvent (consisting of spectators) providing a medium and the energy reservoir.
Eab and Ecd are the energies of the reactants and the products, respectively.

A comment is required for the representation of the classical quantity Wrp

with a quantum mechanical transition operator in (8.120). First of all, note
that the kinetic theory of chemical reactions may be formulated by using
the quantum mechanical Liouville equation, as shown in [8], where quantum
Boltzmann equations have been derived for a reacting gaseous mixture under
some assumptions. The procedure may be easily extended to reacting liquid
mixtures, and the kinetic equations (8.69) and (8.70) then may be regarded
as the classical limits of the quantum kinetic equations for density matrices.
Therefore, the representation of Wrp given in (8.120) can be interpreted as
keeping the quantum mechanical transition probability [24] without taking its
classical limit, which should be the classical cross-section defined in terms of
impact parameter and scattering angles. Also note that energies Eab and Ecd

may include the energy of the solvent. Therefore, the conservation of energy
takes into account the energy of the solvent molecules, although they play the
role of spectators for interactions between molecules. This idea can be easily
implemented by using the resolvent operator for the pair (a, b) or (c, d) plus
inert spectator solvent molecules representative of the system in hand.

Upon using the representation (8.120) of Wrp in the rate coefficient (8.119),
it is possible to show that

2 For the relation of a transition operator in the superscace (classically, the phase
space) and the transition operator in the Hilbert space, see [24] in which a relation
is derived between the transition probability W and the (quantum mechanical)
operator T . See also Sect. A.2 of Appendix A.



8.8 The R Matrix Theory of Collision 209

k1 =
∑
s,s′

k1(s|s′;T ), (8.121)

k1(s|s′;T ) =
1

nanb

∫
dpa

∫
dpb

∫
dΩabgabσAB (s,pa|s′pb) f eq

a f eq
b ,

(8.122)

where gab is the relative speed, Ωab is the scattering angle, σAB (s,pa|s′,pb)
is the reaction cross section, and f eq

r (pr) is the equilibrium distribution func-
tion,3

f eq
r (pr) =

na

qr
(2πmrkBT )−3/2 exp [−β (Ers + εrs)] (r = a, b) (8.123)

with qr denoting the internal partition function treated quantum mechani-
cally:

qr =
∑
(s)

exp [−βεas] (r = a or b) , (8.124)

and εrs and Es, respectively, denoting the internal energy of species r in
state s and the translational energy of the state characterized by s. The
internal degrees of freedom are treated quantum mechanically, because the
collision processes are treated quantum mechanically to be consistent with
the collision complex model. For such a description of collision processes it is
appropriate to revert to a quantum mechanical description of the internal de-
grees of freedom. Because of the assumption on the diluteness of the reacting
species, the pair correlation function has been set equal to unity. This as-
sumption may be removed, for example, if the pair correlation function g (rm)
of the reacting pair (a, b) at distance rm =

√
σAB/π is inserted in (8.122) to

account for the probability of finding the pair in the collision volume. The
reaction cross section σAB must be evaluated by taking the formation and
decomposition of collision complexes into consideration.

8.8 The R Matrix Theory of Collision

To evaluate the reaction cross section on the basis of a collision complex for-
mation model we rely on the R matrix theory of collision, which was originally
formulated for nuclear reactions by Wigner and Eisenbud [26, 27] and later
applied to chemical reactions by Eu and Ross [28]. The application of the
theory to chemical reactions has remained dormant in the last 40 years, but
with suitable characterization of collision complexes, which was not done in
the original application, the R matrix theory can be given fresh life. First we
review the R matrix theory of scattering and then apply it to evaluate the
rate coefficient k1 presented.
3 This distribution function is normalized in the momentum space.
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To describe a bimolecular reaction undergoing formation and decomposi-
tion of collision complexes it is necessary to specify the initial and final states
of reactants and products. The internal quantum states of the reactants are
characterized by a set of quantum states to which we assign the symbol s and
the corresponding coordinates are denoted by boldface s. The total rotational
angular momentum of the reactants is given by the quantum number ls, and
the initial orbital angular momentum of the relative motion by the quantum
number l. The total angular momentum J of the system is the vector sum of
l and ls with values ranging from |l − ls| to |l + ls|. The z components of J,
l, and ls in the space-fixed coordinate system are, respectively, denoted by μ,
m, and ν for which the angular momentum conservation requires μ = m + ν.
The primes on the quantum numbers refer to the products of the reaction.
The wave function of the internal degrees of freedom will be denoted by ψsν

where the angular momentum ls is absorbed into the quantum number set s
for brevity. The transition states are formed in a well-defined region of the
configuration space. The region, in fact, can be characterized by a certain
type of potential for the system. This region is called the internal region—a
hypersphere—as opposed to the external region where the constituent mole-
cules of the reactants or products are well separated from each other.

8.8.1 Internal Wave Functions

The wave function in the internal region is a solution of the Schrödinger
equation with the Hamiltonian for the entire system

HΨ = EΨ, (8.125)

where

H = −
∑

i

�
2

2mi
∇2

i + V (r1, · · · , rN ) (8.126)

for N particles interacting through the potential energy V (r1, · · · , rN ). The
unimportant center-of-mass Hamiltonian has been set equal to zero.

Let us denote the eigenfunction of the transition state (collision complex)
in the quantum state (j, J, μ) by X

(J)
jμ and the corresponding eigenvalue by Ej .

The eigenvalue problem for the collision complex is

HX
(J)
jμ = EjX

(J)
jμ . (8.127)

The dependence on J of Ej is suppressed for brevity of notation. The boundary
condition on X

(J)
jμ is that(

∂X
(J)
jμ

∂n

)
rs=as

= − (l + 1)
as

X
(J)
jμ , (8.128)
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where n is the unit normal vector at the surface separating the internal and
external regions at rs = as. Therefore, X(J)

jμ is a solution of the eigenvalue
problem subject to this boundary condition. An arbitrary wave function in
the energy state characterized by k in the internal region can be expanded in
the complete set of wave functions for the collision complex

Ψ
(J)
slμk =

∑
j

AslkjX
(J)
jμ , (8.129)

where Aslkj are the expansion coefficients. We have omitted indexes J and
μ from the expansion coefficients for notational brevity. These expansion co-
efficients must be determined by matching the internal and external wave
functions at the surface S separating the internal and external regions.

The wave function for translational motion in the external region is the
free particle wave function with appropriate boundary conditions. In spherical
coordinates, we have for the independent solutions

r−1
s Csl (ksrs)Y l

m (Ωs) , r−1
s Ssl (ksrs)Y l

m (Ωs) ,

where Y l
m (Ωs) is a spherical harmonic. The boundary conditions on the radial

functions are

Csl (ksas) =
√

ms

�
,

(
dCsl

drs

)
rs=as

= − l

as

√
ms

�
,

(8.130)

Ssl (ksas) = 0,
(

dSsl

drs

)
rs=as

=
√

ms

�
.

The functions Csl (ksrs) and Ssl (ksrs) may be taken with linear combinations
of spherical Bessel and Neumann functions [29] of order

(
l + 1

2

)
:

Csl (ksrs) = Nsl1

√
πrs

2ks
Jl+ 1

2
(ksrs) − Jsl1

√
πrs

2ks
Nl+ 1

2
(ksrs) , (8.131)

Ssl (ksrs) = Jsl2

√
πrs

2ks
Nl+ 1

2
(ksrs) −Nsl2

√
πrs

2ks
Jl+ 1

2
(ksrs) . (8.132)

The expansion coefficients in these linear combinations can be determined
with the help of the boundary conditions:

Jsl1 =
√

ms

�
ksas [(l + 1) jl(ksas) + ksasj

′
l(ksas)] ,

Nsl1 =
√

ms

�
ksas [(l + 1)nl(ksas) + ksasn

′
l(ksas)] ,

Jsl2 =
√

ms

�
ksasjl(ksas),

Nsl2 =
√

ms

�
ksasnl(ksas), (8.133)
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where jl (z) and nl(z) are spherical Bessel and Neumann functions of argument
z and order l:

jl (z) =
√

π
2z

Jl+ 1
2

(z) , j′l (z) =
djl (z)

dz
,

nl(z) =
√

π
2z

Nl+ 1
2

(z) , n′
l(z) =

dnl (z)
dz

. (8.134)

Two independent solutions for the Schrödinger equation in the external
region for a given total angular momentum J and its z component μ are then
given by

D(J)
slμ (rs, s) =

∑
m

S(J)
μ−m,m (ls, l) r−1

s Ssl (ksrs)Y l
m (Ωs)ψs,μ−m (s) , (8.135)

V(J)
slμ (rs, s) =

∑
m

S(J)
μ−m,m (ls, l) r−1

s Csl (ksrs)Y l
m (Ωs)ψs,μ−m (s) , (8.136)

where S(J)
μ,μ′ (ls, l) denotes the Wigner vector coupling coefficient. The wave

function Ψ
(J)
slμe in the external region is then given by a linear combination of

D(J)
slμ (rs, s) and V(J)

slμ (rs, s):

Ψ
(J)
slμe = D(J)

slμ (rs, s) +
∑
s′,l′

R
(J)
sl;s′l′V

(J)
s′l′μ (rs, s) . (8.137)

The coefficient matrix, R matrix, is independent of μ because of the isotropy
of space in the absence of an external force. The R matrix is determined by
matching the internal and external wave functions and their normal deriva-
tives at the channel surface, the hypersurface of the internal region. For this
purpose, we use the orthogonality of V(J)

slμ (rs, s) at the channel surface:∫
S

dSV(J)∗
slμ (as, s)V(J)

s′l′μ (as, s) =
(ms

�

)
δss′δll′ , (8.138)

where the integration is performed over the hypersurface S. Therefore, it is
useful to define

V̂(J)
slμ (as, s) =

√
�

ms
V(J)

slμ (as, s) , (8.139)

which is normalized at the channel entrance at as.

8.8.2 The R and S Matrices

The R matrix is given by

R
(J)
sl;s′l′ =

∑
j

γsljγs′l′j

Ej − E
, (8.140)
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where γslj is the reduced width defined by

γslj =
�√
2ms

∫
S

dSX(J)∗
jμ V̂(J)

slμ (as, s) . (8.141)

In matrix form,
R(J) =

∑
j

γjγj

Ej − E
. (8.142)

This R matrix is related to the S matrix [25] as follows:

S(J) = ω
1 + iC + iBRB
1 − iC − iBRB

ω, (8.143)

where B, ω, and C are diagonal matrices defined by

Bsl = k3/2
s as

[
j2
l−1 (ksas) + n2

l−1 (ksas)
]1/2

;

Bs0 =
√

ks (l > 1) , (8.144)

Csl = − (ksas)
2 [jl (ksas) jl−1 (ksas) + nl (ksas)nl−1 (ksas)] ;

Cs0 = 0 (l > 1) , (8.145)

ωsl = i−l [jl−1 (ksas) − inl−1 (ksas)]
[
j2
l−1 (ksas) + n2

l−1 (ksas)
]1/2

;

ωs0 = e−iksas (l > 1) . (8.146)

It is useful to note that the reduced widths γslj are Franck–Condon fac-
tors seen in spectroscopy. Therefore, chemical reactions may be regarded4

as Franck–Condon transitions at the channel entrance from the reactant to a
state of collision complex which makes a Franck–Condon transition to the final
product state, and vice versa. Such Franck–Condon transitions are possible
energetically even if the relative kinetic energy is below “the activation en-
ergy” because of the energy uncertainty during the short collision time, during
which the energy fluctuates owing to the energy conversion processes between
the translational and internal degrees of freedom in the course of collision
and the involvement of the spectator solvent acting as the energy reservoir.
The fundamental question still remains as to the dynamic characterization of
transition states. It will be discussed later.

The S matrix may be put into more useful forms, albeit approximate,
which enable us to connect formally with the existing model theories in
chemical kinetics; the absolute reaction rate theory [22] and the Marcus the-
ory [31–34].

8.8.3 Multilevel Formula

The S matrix given in (8.143) may be written as a multilevel formula in
which each level contributes a Lorentzian form for the energy dependence of
4 For the Franck–Condon model for chemical reactions, see also [30], in which the

Franck–Condon model is argued for chemical reactions from another viewpoint.



214 8 Generalized Boltzmann Equationfor Polyatomic Liquids

the reaction cross section. If we assume that one can replace all the terms of
R, except for one, with an energy independent term denoted by R∞

R =
γjγj

Ej − E
+ R∞, (8.147)

the following multilevel formula for S(J) is obtained:

S(J) = ω
1 + iC
1 − iC

ω +
∑

j

2iω (αj × αj)ω

Ej + Δ
(J)
j − E − 1

2 iΓ (J)
j

. (8.148)

Here, various quantities are defined by the expressions

C′ = C + BR∞B, (8.149)

αj =
Bγj

1 − iC′ , (8.150)

Γ
(J)
j =

∑
s,l

Γ
(J)
slj = 2

∑
s,l

|αslj |2 , (8.151)

Δ
(J)
j =

∑
s,l

Δ
(J)
slj =

1
2

∑
s,l

C ′
slΓ

(J)
slj . (8.152)

The R matrix may be written as in (8.147) if the levels are well separated
compared with the level widths. Because B , C, and ω depend on energy E,
the level width Γ

(J)
j and the level shift Δ(J)

j also depend on E. This multilevel
formula will be used to evaluate the rate coefficient k1 presented earlier in the
limit of vanishing level widths.

8.9 Collision Complexes and Rate Coefficient

Because the collision cross-section for the collision process (s, l) → (s′, l′) is
given by 5

σAB (s, ks|s′, ks′) =
π
k2

s

∑
Jll′

(2J + 1)
∣∣∣S(J)

sl;s′l′

∣∣∣2 , (8.153)

upon using the multilevel formula for S
(J)
sl;s′l′ in the specific rate coefficient

formula we obtain

5 This is the reaction cross section for a state-to-state chemical transformation,
which is not averaged over angular momentum polarizations.
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k1

(
s|s′; T

)
=

h−4 (2πMkBT )3/2

(Qa/V ) (Qb/V )
e−β(εas+εsb)

∑
ll′J

(2J + 1)

×
∫ ∞

0

dEs exp (−βEs)

∣∣∣∣∣∑
j

2iωsl (αj × αj)sl;s′l′ ωs′l′

Ej + Δ
(J)
j − E − 1

2
iΓ

(J)
j

∣∣∣∣∣
2

, (8.154)

where M = ma + mb, the relative kinetic energy of the pair (a, b) is denoted
by Es, and

Qr/V =
(2πmrkBT )3/2

h3
qr (r = a, b) .

To reduce this reaction rate expression to a simpler and more transparent
form we will assume that the level widths are much smaller than the level
spacing between the energy levels of the collision complex. This assumption is
equivalent to the assumption that the collision complexes are long-lived com-
pared with the mean frequency of transition between different energy levels
of the collision complex. With this assumption, the following approximation
is possible for the Lorentian forms:

Γ
(J)
j(

Ej + Δ
(J)
j −E

)2

+ 1
4Γ

(J)2
j

� 2πδ
(
Ej + Δ

(J)
j − E

)
. (8.155)

Here it must be observed that E = Es + εas + εbs. In this approximation for
the Lorentian form, the specific rate coefficient is given by the formula

k1(s|s′;T ) =
1
�

h3

(2πmkBT )3/2
qaqb

∑
jJll′

(2J + 1)
ΓsljΓs′l′j

Γj
e−βEj (8.156)

with m = mamb/M . Finally, the observed rate coefficient k1 may be written
as

k1 = κ
q‡ab

qaqb
, (8.157)

where

κ =
〈Γ 〉Λ3

�
, (8.158)

〈Γ 〉 =
∑
j,J

(2J + 1)Γ (J)
j

e−β
(
Ej+Δ

(J)
j

)
q‡ab

, (8.159)

q‡ab =
∑
j,J

(2J + 1) e−β
(
Ej+Δ

(J)
j

)
, (8.160)

Λ =
h√

2πmkBT
. (8.161)

Since it is possible to write
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q‡ab

qaqb
= exp(−βΔg‡ab), (8.162)

the rate coefficient may be written as

k1 = κ exp(−βΔg‡ab), (8.163)

where Δg‡ab is the internal free energy change of formation for the collision
complex and κ is the transmission factor. This formula for k1 is formally
reminiscent of the rate constant formula in the Marcus theory or the absolute
reaction rate theory, both of which assume formation of a collision complex—a
transition state—in a chemical reaction.

It is significant that 〈Γ 〉 may be regarded as an ensemble average of the
Franck–Condon factors for formation or decomposition of the collision com-
plex at the channel entrances of the hypersurface of the internal region in
which the collision complex is confined; see (8.150) and (8.151). To appreciate
this point better, we examine an approximation for 〈Γ 〉 preserving the desired
feature. To the lowest order neglecting C′, we obtain from (8.150) and (8.151)

Γ
(J)
j ≈ 2

∑
s,l

|Bslγslj |2 . (8.164)

If asymptotic formulas for the spherical Bessel functions are used, the factor
Bsl may be approximated by

Bsl ≈ �
−1
[
2ms

(
Ej + Δ

(J)
j − εas − εbs

)]1/2

(m ≡ ms) . (8.165)

Therefore, by using (8.141) for the reduced width γslj we find

Γ
(J)
j ≈

∑
s,l

(
Ej + Δ

(J)
j − εas − εbs

) ∣∣∣∣∫
S

dSX(J)∗
jμ V̂(J)

slμ (as, s)
∣∣∣∣2 , (8.166)

which obviously is proportional to the Franck–Condon factor at the channel
entrance and the energy difference between the collision complex and the
internal energy in channel s. This energy is comparable to the translational
energy of the collision pair. This derivation shows that the transmission factor
is given by the absolute square of the mean Franck–Condon factor multiplied
by the flux at the channel entrance. The formula derived provides statistical
means of calculating the rate coefficient by studying the quantum mechanics
of complex formation in a reaction.

8.10 Characterization of Collision Complexes

To formulate the theory presented for the rate coefficient k1, it was sufficient to
assume the existence of long-lived collision complexes in a chemical reaction,
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properly equipping them with wave functions and eigenvalues. The rate coef-
ficient k1 presented enables us to give the following physical interpretation.

Such collision complexes are confined to a finite volume around the locus
of crossing of two potential energy surfaces corresponding to the reactants and
the products, respectively. In the diabatic representation, the two potential
energy surfaces are the electronic energy eigenvalues for nuclear configurations
of reactants or products, whose wave functions are coupled to each other by
electronic coupling interactions localized in the neighborhood of the locus of
crossing. In the adiabatic representation the potential energy surfaces, how-
ever, become two separated sheets owing to the non-crossing rule of potential
energy surfaces. Either way, it is evident that the collision complexes involve
the two sheets of potential energy in either the adiabatic representation or
the diabatic representation. To calculate the reaction rate constant as a func-
tion of temperature and molecular characteristics, it is necessary to solve the
eigenvalue problem for the collision complex and compute with the solution
the reduced widths γslj and the partition function for the collision complex.
The aforementioned eigenvalue problem, however, takes us beyond the scope
of this work, because it is a collision theory problem, which forms its own field
of discipline and discussing it in detail would take us too far afield. Therefore,
we will only briefly sketch the essential feature required for characterizing the
collision complexes or transition states in the present line of theory.

Because the lifetime of collision complexes is probably of the order of a
few vibrational periods, the energy uncertainty that is inversely proportional
to the lifetime is comparably large. This large energy uncertainty conspires
with the energy fluctuations caused by the solvent and internal dynamics
of the collision pair. To elaborate on this viewpoint, we observe that be-
cause of the solvent present throughout the collision process and also the
internal degrees of freedom of the reactant or product molecules, there are
considerable chances for energy fluctuations to occur, which facilitate the re-
actant or product pairs to make Franck–Condon type transitions between the
states in the lower and upper potential energy surfaces around the poten-
tial energy crossing. In this picture, the states in the lower potential energy
surface in the adiabatic representation represent either the states of the re-
actants or the products, whereas the states in the upper potential energy
surface represent the states of the collision complex formed in the course of
collision. If this situation is schematically depicted in one dimension along
the suitably chosen reaction coordinate without making the internal molec-
ular degrees of freedom, it is as shown in Fig. 8.1. The figure simply depicts
the relative radial coordinates of the reactant pair and also of the prod-
uct pairs without being encumbered by the internal degrees of freedom of
the molecules involved. The diabatic potentials cross at the origin of the co-
ordinate system chosen, but in the adiabatic representation the potentials
separate as two curves whose distance of separation is determined by the cou-
pling potential V12. The minimum or the maximum is located at the crossing
point. The collision complex is characterized by the upper potential curve.
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v2

v12

v1

v (+)

v (–)

x  = xc

Fig. 8.1. Diabatic and adiabatic potentials plotted along the “reaction coordinate”
in the neighborhood of the curve crossing point. V1 and V2 are diabatic potentials
and the dashed curve is the coupling potential, V12. V (+) and V (−) are the adiabatic
potentials (dotted curves). The diagram is schematic and one-dimensional. Other
degrees of freedom are suppressed.

If this picture is translated into full multi-dimensional surfaces that include
the internal degrees of freedom for the molecules, then the upper curve will
become an upper hypersurface, and the lower curve a lower hypersurface.
Collision complexes are determined in the upper surface by their eigenvalue
problem subject to the boundary condition (8.128).

In the schematic example representing Fig. 8.1, which contains the essential
feature of the collision complex, the Schrödinger equations are

[
− �

2

2ms

d2

dx2
+ V (+) (x)

]
u

(+)
j (x) = Eju

(+)
j (x) , (8.167)[

− �
2

2ms

d2

dx2
+ V (−) (x)

]
u

(−)
k (x) = Eku

(−)
k (x) , (8.168)

where ms is the reduced mass and the two potential curves are given by

V (±) (x) =
1
2

(V1 + V2) ±
1
2

√
(V1 − V2)

2 + V 2
12.

Note that the radial part of the wave function Xj is related to u
(+)
j as follows:

Xj =
u

(+)
j (x)
x

,

and similarly for the wave function for the lower curve. Therefore, the bound-
ary condition on the normal derivative of u(+)

j (x) reads:
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d
dn

u
(+)
j (x)

]
rs=as

= −u
(+)
j (as)

because we are considering the l = 0 wave in the one-dimensional model.
Unlike in the diabatic representation, the wave functions u(±)

j (x) in the adia-
batic representation are not coupled, but the coupling between the initial and
final state of the collision process is achieved through u

(+)
j and the R matrix.

The Schrödinger equations (8.167) and (8.168) can be solved by a variety of
methods. In particular, if Ej > max

(
V (+)

)
, there can be bound states, which

can break up either into the reactant or the product, and the probability of
breakup is proportional to the line width squared—the Franck–Condon factor
squared. This schematic description can be made more elaborate and dynam-
ically complete by including the internal degrees of freedom. The essential
point is that the upper curve of the adiabatic potential is associated with the
collision complex we have in mind.

In this manner, the collision complex can be dynamically characterized
by the quantum mechanical eigenvalue problem in the upper sheet of the
potential energy surfaces, subject to the boundary condition (8.128) on wave
functions X

(J)
jμ for the collision complex. The position of channel entrance

rs = as may be defined as the distance of closest approach for the colliding pair
(i.e., either the reactant pair or the product pair) at the relative translational
kinetic energy of channel s and determined by the potential energy surface
around the crossing point of the diabatic potential energy surfaces. Therefore,
the energy eigenvalue problem for the wave functions X

(J)
jμ of the collision

complex can be generally solved subject to the boundary condition mentioned,
once the potential energy surfaces and the coupling potentials are specified.
With the wave functions and energy eigenvalues of the collision complex so
determined, it is now possible to calculate the mean Franck–Condon factor
〈Γ 〉 and the free energy change Δg‡AB and thus the temperature dependence
of the rate coefficient k1. A number of models, such as the WKB methods
[13, 35], can be developed together with approximate methods for the wave
functions and energy eigenvalues. However, the subject is beyond the scope
of this monograph.

References

1. J. H. Irving and J. G. Kirkwood, J. Chem. Phys. 18, 817 (1950)
2. B. C. Eu, Kinetic Theory and Irreversible Thermodynamics (Wiley, New York,

1992)
3. B. C. Eu, Nonequilibrium Statistical Mechanics: Ensemble Method (Kluwer, Dor-

drecht, 1998)
4. M. Al-Ghoul and B. C. Eu, J. Chem. Phys. 115, 8481(2001)
5. J. Ross and P. Mazur, J. Chem. Phys. 35, 19 (1961)
6. C. W. Pyun and J. Ross, J. Chem. Phys. 40, 2572 (1964)



220 8 Generalized Boltzmann Equationfor Polyatomic Liquids

7. B. Shizgal, J. Chem. Phys. 55, 76 (1971)
8. B. C. Eu, J. Chem. Phys. 63, 303 (1975)
9. B. C. Eu and K. Li, Physica 88A, 135 (1977)

10. R. Kapral, Adv. Chem. Phys. 48, 71 (1981)
11. J. Sung, K. J. Shin, and S. Lee, J. Chem. Phys. 107, 9418 (1997)
12. M. Yang, S. Lee, and K. J. Shin, J. Chem. Phys. 108 , 8557 (1998)
13. E. Merzbacher, Quantum Mechanics (Wiley, New York, 1961)
14. M. V. Smoluchowski, Z. Phys. Chem. 92, 129 (1917)
15. F. C. Collins and G. E. Kimball, J. Colloid Sci. 4, 425 (1949)
16. R. M. Noyes, J. Amer. Chem. Soc. 77, 2042 (1955)
17. R. M. Noyes, J. Amer. Chem. Soc. 78, 5486 (1956)
18. R. M. Noyes, Z. Elektrochem. 64, 153 (1960)
19. R. M. Noyes, Chapter 5 in Progress in Reaction Kinetics, P. Porter, ed. (Perga-

mon, London, 1961)
20. T. R. Waite, Phys. Rev. 107, 463, 471 (1957); J. Chem. Phys. 28, 103 (1958);

ibid. 32, 21 (1960)
21. A. M. North, The Collision Theory of Chemical Reactions in Liquids (Methuen,

London, 1964)
22. S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Absolute Reaction Rate

(McGraw-Hill, New York, 1941)
23. S. Benson, The Foundations of Chemical Kinetics (McGraw-Hill, New York,

1960)
24. B. C. Eu, J. Chem. Phys. 63, 298 (1975)
25. M. L. Goldberger and K. M. Watson, Collision Theory (Wiley, New York, 1964)
26. E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1949)
27. A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958)
28. B. C. Eu and J. Ross, J. Chem. Phys. 44, 2467 (1966)
29. M. Abramowitz and I. Stegun, eds., Handbook of Mathematical Functions (Na-

tional Bureau of Standards, Washington, DC, 1964)
30. B. C. Eu, Mol. Phys. 31, 1261 (1976)
31. R. A. Marcus, J. Chem. Phys. 24, 966 (1957)
32. R. A. Marcus, J. Chem. Phys. 26, 867, 872 (1960)
33. R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960)
34. R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993)
35. B. C. Eu, Semiclassical Theories of Molecular Scattering (Springer, Heidelberg,

1984)



9

Dynamic Ornstein–Zernike Equation

The constitutive equations derived for various macroscopic fluxes from the
generalized Boltzmann equations in the previous two chapters allow us to de-
velop the Chapman–Enskog line of kinetic theory or the moment theory for
dense gases and liquids. The transport coefficients in such an approach are
given in terms of collision bracket integrals. However, such an approach is not
the only conceivable one. There can be an alternative to it, as will be shown
in the subsequent chapters. The development of such an alternative method
requires various lower order reduced nonequilibrium distribution functions
and, particularly, nonequilibrium pair distribution functions. To prepare our-
selves for such an alternative development, we discuss a dynamic extension
of the Ornstein–Zernike equation to nonequilibrium phenomena in this chap-
ter before we discuss the density fluctuation theory of transport coefficients
in subsequent chapters. More specifically, we present the dynamic Ornstein–
Zernike equation for dynamic pair distribution functions. This formal the-
ory will equip us with a mathematical technique for treating nonequilibrium
phenomena without directly solving the generalized Boltzmann equation for
dense fluids. Nevertheless, note that the generalized Boltzmann equation is
still at the foundation of the dynamic Ornstein–Zernike equation because the
nonequilibrium grand ensemble distribution function employed in the develop-
ment of the theory is provided by the generalized Boltzmann equation. More-
over, the aforementioned constitutive equations derived from the generalized
Boltzmann equation for nonconserved variables will be required if solutions
of nonlinear order are sought for the dynamic Ornstein–Zernike equation.

9.1 Nonequilibrium Ensemble Distribution Function

The grand ensemble kinetic equation (7.7) for an r-component mixture of
simple fluids has a unique equilibrium solution, which is a solution of the
equilibrium condition (7.C2) owing to the H theorem satisfied by the kinetic
equation

R
[
F (N)

eq

]
= 0. (9.1)
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This equation is satisfied by the equilibrium grand canonical ensemble distri-
bution function

F (N)
eq

(
x(N)

)
= (cΞeq)

−1 exp

⎡⎣−∫
V

drβ (r)
r∑

a=1

Na∑
ja=1

Heq
jaδ (rja − r)

⎤⎦ , (9.2)

where
Heq

ja = H ′
ja −maμ̂a (9.3)

with H ′
ja denoting the Hamiltonian of particle j ∈ a defined in Chap. 7 [see

(7.3)]; μ̂a is the chemical potential per unit mass of species a; Ξeq is the
equilibrium grand canonical ensemble partition function

Ξeq =

〈
exp

⎧⎨⎩−
∫

V

drβ (r)
r∑

a=1

Na∑
ja=1

Heq
jaδ (rja − r)

⎫⎬⎭
〉

; (9.4)

and c stands for the factor

c = h3N
r∏

a=1

Na! (9.5)

with h denoting the Planck constant and β = 1/kBT , where T is the local ab-
solute temperature. The angular brackets have the same meaning for averages
as those in Chap. 7— the grand ensemble averages. Note that the equilibrium
state is achieved in the dynamic grand ensemble when the petit ensembles of
N particles therein are equilibrated with regard to energy and the number of
particles because the energy and particle number of the grand ensemble are
invariants of collision operator R

[
F (N)

]
.

The nonequilibrium grand canonical ensemble distribution function is then
introduced in the same spirit as for the dilute gas counterpart, which was
constructed on the basis of the Boltzmann equation [1,2]. Although presented
in Chap. 7, we introduce it here again to help ease reading the topics discussed
in this chapter:

F (N)
c (x(N), t) = c−1 exp

⎧⎨⎩−
∫

V

drβ (r,t)

⎡⎣ N∑
j=1

Hjδ (rj − r) − ρΥ (r, t)

⎤⎦⎫⎬⎭ ,

(9.6)

where

Hja = T−1

⎛⎝H ′
ja +

∑
q≥1

Xqah
(q)
ja −maμ̂a

⎞⎠ , (9.7)

Ξ =

〈
exp

⎡⎣−k−1
B

∫
V

dr
r∑

a=1

Na∑
ja=1

Hjaδ (rja − r)

⎤⎦〉 , (9.8)
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and
−kB lnΞ =

∫
V

dr ρΥ (r, t) /T (r,t). (9.9)

The notation is the same as in Chap. 7.
As the generalized potentials Xqa (q ≥ 1; 1 ≤ a ≤ r) vanish, the nonequi-

librium distribution function F
(N)
c tends to the equilibrium distribution func-

tion F
(N)
eq

(
x(N)

)
. If F (N)

c

(
x(N), t

)
is substituted in the kinetic equation (7.7)

and the evolution equations for the intensive variables such as T , μ̂a, and Xqa

in the expression for F
(N)
c are derived and solved, then F

(N)
c fully becomes

a solution of the kinetic equation. This procedure, however, is not pursued
in the thermodynamic theory of irreversible processes in the framework of
generalized thermodynamics [3] because the aforementioned parameters are
treated as thermodynamic—phenomenological—intensive variables uniform
in an elementary volume located around position r and at time t in general-
ized thermodynamics. In this connection, it must be noted that although the
nonequilibrium grand canonical distribution function (9.6) assures a thermo-
dynamic structure parallel to equilibrium thermodynamics, as shown in [2],
it is merely the thermodynamic branch of the nonequilibrium distribution
function. It becomes the solution of the kinetic equation only in the limit of
vanishing fluctuations [2] of the variables Xqa from their thermodynamic val-
ues. These generalized potentials Xqa are conjugate to the molecular moments
h

(q)
ja in the exponential form of the distribution function. We do not discuss

this aspect of the theory because it is beyond the scope of this work. For the
details of this point, see Sections. 7.4, 7.5, and 10.5 of [2].

9.2 Dynamic Ornstein–Zernike Equation

Before we discuss the density fluctuation theory itself, it is necessary to de-
velop a theoretical tool to treat nonequilibrium reduced distribution functions
that we will encounter in the theory. The desired tool is provided by the dy-
namic version of the Ornstein–Zernike equation. Its derivation is discussed
below.

Beginning in 1946, the statistical mechanics of dense gases and liquids
was initiated by papers by Bogoliubov [4], Born and Green [5], and Kirk-
wood [6], who were preceded by Yvon [7]. In this approach, both equilibrium
and nonequilibrium theories were studied, couched in the same idea. In the
equilibrium theories, a hierarchy of reduced distribution functions was devel-
oped from the equilibrium distribution function, for example, the canonical
ensemble distribution function, whereas in nonequilibrium theories a hierar-
chy of evolution equations for reduced nonequilibrium distribution functions
was developed from the Liouville equation. Such hierarchies are, respectively,
known in the literature as the equilibrium and the nonequilibrium Bogoliubov–
Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, or simply the BBGKY hi-
erarchies. They are open sets of integral or integro-differential equations for
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reduced distribution functions, which must be closed by assuming a closure
relation by some arbitrary means and then solved either numerically or by
an approximation method. There are numerous articles on the subject in the
literature since its inception, too many to quote them here. The results of
various approximate methods of solution for the BBGKY hierarchy for both
equilibrium and nonequilibrium, however, have been disappointing because
of the necessity of a closure, which has been usually made in the form of
the Kirkwood superposition approximation for the triplet distribution func-
tion. The ensuing approximation methods required for their solutions have
been found inadequate. The situation is even worse in nonequilibrium. The
computer simulation methods developed in recent years have relegated the
BBGKY hierarchy approach to a state of disuse, and little has been done in
the approach to both equilibrium and nonequilibrium phenomena.

In equilibrium statistical mechanics of liquids, the Ornstein–Zernike (OZ)
equation has turned out to be a much more productive approach. The OZ
integral equation [8], relating the total and direct correlation function, also
requires a closure relation, as does the BBGKY hierarchy. If the Percus–Yevick
(PY) form [9] of closure is employed, the OZ integral equation even gives an
analytic solution of the equation of state for hard sphere fluids [10, 11], as
discussed in Chap. 6. This aspect of the OZ integral equation approach is very
attractive because the hard sphere PY closure solution can serve as the base
solution for a perturbation theory of liquids. Motivated by such hopes, nu-
merous authors have investigated the OZ integral equations (see references
cited in Chap. 6). The OZ integral equation results in a suitable resumma-
tion of cluster diagrams, as demonstrated in the literature [12]. However, it
was derived by Percus [13] by using functional derivative techniques applied
to the equilibrium grand canonical ensemble distribution function. Since the
BBGKY hierarchy is also derived from the same distribution function, it is
quite clear that the OZ integral equation is a resummed form of the BBGKY
hierarchy of integral equations for reduced distribution functions. The for-
mer turns out to be much simpler to treat and generally more accurate than
the latter. It also presents considerable potential for improving the currently
available theories, as discussed in Chap. 6.

Because nonequilibrium reduced distribution functions appear in the den-
sity fluctuation theory of transport processes and it is necessary to provide
methodological tools for determining them for completeness of the theory,
we will present a derivation of the dynamic Ornstein–Zernike (DOZ) integral
equation for dynamic total and direct correlation functions of nonequilibrium
dense fluids. The derivation uses functional derivative techniques [14].

We consider a single-component nonequilibrium simple liquid contained
in volume V for the sake of simplicity of derivation. To connect with the
canonical ensemble theory it is useful to express F (N)

c (x(N), t) in the following
manner:

F (N)
c (x(N), t) =

zNQN

cΞ
P(N)(x(N), t), (9.10)
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where P(N) is the nonequilibrium canonical distribution function of N parti-
cles

P(N)(x(N), t) = Q−1
N exp

[
−
∫

V

drβ (r,t)

N∑
j=1

(
Hj + H1

j

)
δ (rj − r)

]
(9.11)

with H1
j denoting the nonequilibrium contribution

H1
j =

∑
q≥1

Xq (r,t)h(q)
j

(
x(N)

)
. (9.12)

The nonequilibrium canonical partition function QN in the expression is de-
fined by the phase space integral,

QN =
∫

dx(N) exp

⎡⎣−∫
V

drβ (r,t)
N∑

j=1

(
Hj + H1

j

)
δ (rj − r)

⎤⎦ , (9.13)

and z is the nonequilibrium activity defined by the formula,

zN = exp

⎡⎣∫
V

dr
N∑

j=1

mμ̂ (r,t)β (r,t) δ (rj − r)

⎤⎦ . (9.14)

The integral in the exponent may be regarded as the volume average of the
integrand. In this sense, the activity z defined by (9.14) is a volume averaged
quantity.

Define reduced distribution functions,

f
(n)
N (x(n), t) =

N !
(N − n)!

∫
dx(N−n) P(N)(x(N), t), (9.15)

where x(N−n) is the phase of (N − n) particles, excluding those in the set of
n particles of interest

x(n) = (xi : i = 1, · · · , n) ≡ (pi, ri : i = 1, · · · , n).

This conforms to the notation used in Chap. 7. This reduced distribution
function is the probability of finding particles 1, · · · , n at phases x1, · · · , xn,
respectively, given the rest of the particles randomly distributed in the phase
x(N−n). With f

(n)
N (x(n), t) so defined for the nonequilibrium canonical ensem-

ble, the reduced distribution function in the grand ensemble theory is defined
by the average

f (n)(x(n), t) =
∑
N≥0

f
(n)
N (x(n), t)PN , (9.16)

where the probability PN is defined by
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PN =
zNQN

cΞ
. (9.17)

Because P(N)(x(N), t) is normalized to unity, there follows the normalization
for f

(n)
N ∫

dx(n)f
(n)
N (x(n), t) =

N !
(N − n)!

, (9.18)

and hence the normalization condition for f (n) is∫
dx(n) f (n)(x(n), t) =

∑
N≥0

N !
(N − n)!

PN ≡
〈

N !
(N − n)!

〉
. (9.19)

This formalism is parallel to that of the equilibrium grand canonical ensemble
theory [15] owing to the mathematical similarity of the distribution functions
in both equilibrium and nonequilibrium.

We use the functional derivative method [14] to derive the DOZ equation.
For the purpose of the present derivation, it is necessary to isolate the one-
particle Hamiltonian from Hj , which is written in the form

Hj = H
(1)
j (xj) +

∑
k>j

Vjk +
∑
k>j

H ′
jk. (9.20)

Here, H(1)
j is the one-particle Hamiltonian which may consist of the kinetic

energy and the external potential energy as well as a complete set of products
of one-particle currents and their conjugate molecular variables that arise from
nonequilibrium effects:

H
(1)
j (xj) = 1

2mC2
j + uj(rj) + H

(k)′
j ,

where uj(rj) is the external potential energy on particle j and H
(k)′
j is the

single particle part of nonequilibrium flux terms for particle j consisting of the
kinetic part of h(q)

j given in (9.7). We will denote the one-particle contributions
to the distribution function by the symbol

Ej (xj) =
∫

V

drβ (r,t)H(1)
j (xj) δ (rj − r) (9.21)

and similarly for the many-particle contributions

E(N)(x(N)) =
N∑

j=1

N∑
k>j

∫
V

drβ (r,t)
(
Vjk + H ′

jk

)
δ (rj − r) . (9.22)

In this expression, H ′
jk are the many-particle contributions to H1

j , which gen-
erally vanish if the particles do not interact. In this notation the distribution
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function can be expressed as

F (N)(x(N); t) = (cΞ)−1
zN exp

[
−E(N)

(
x(N)

)] N∏
j=1

eε (xj) , (9.23)

where
eε (xj) = exp [−Ej (xj)] . (9.24)

The nonequilibrium grand canonical ensemble partition function now may be
accordingly written as

Ξ =
∑
N≥0

zN

c

∫
dx(N) exp

[
−E(N)

(
x(N)

)] N∏
j=1

eε (xj) . (9.25)

With this preparation, we are ready to investigate the functional deriva-
tives of Ξ and their relations. We regard this nonequilibrium partition func-
tion as a function of Ej or eε (xj). In this functional derivative method, we
examine the effects of a perturbation of particles by an external field or of
a nonequilibrium perturbation, resulting in changes in one-particle energies.
Because particles are correlated through their mutual interactions, such vari-
ations in single particle energies result in a variation of the collective states
for the system as a whole and, consequently, of the nonequilibrium partition
function. This variation in Ξ is exploited to obtain an evolution equation for a
pair of two-particle distribution functions in the functional derivative method.

The first variation of Ξ from variations in single particle energies is

δΞ [ε] =
∑
N≥0

zN

c

N∑
j=1

∫
dx(N) δej (xj) e−E(N)(x(N))

N∏
k �=j

eε (xk) . (9.26)

This means that the first functional derivative is given by

eε (x1)
δΞ [ε]
δeε (x1)

=
∑
N≥0

NzN

c

∫
dx(N−1)e−E(N)(x(N))

N∏
k=1

eε(xk), (9.27)

where

dx(N−1) =
N∏

k �=1

dxk.

According to the definitions of reduced distribution function f (1) and the prob-
ability distribution function PN introduced earlier, this functional derivative
is related to the singlet distribution function:

δ lnΞ [ε]
δ ln eε (x1)

= f (1) (x1) . (9.28)

Note that f (1) (x1) itself is a functional of eε (x1), namely, f (1) (x1|eε), but
this fact is not made explicit for brevity of notation.
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Because

δeε (x1) =
∫

dx2
δeε (x1)
δeε (x2)

δeε (x2) , (9.29)

but eε (xi) are independent, we conclude that the functional derivative in-
volved in this integral must be a delta function:

δeε (x1)
δeε (x2)

= δ (x1 − x2) . (9.30)

Here the Dirac delta function δ (x1 − x2) is an abbreviation for the six-
dimensional delta function in the phase space:

δ (x1 − x2) = δ (p1 − p2) δ (r1 − r2) . (9.31)

By using the identity (9.30), we obtain the functional derivative of f (1) (x1)
in the form

δf (1) (x1)
δ ln eε (x2)

= δ (x1 − x2)
δ lnΞ [ε]
δ ln eε (x1)

− δ lnΞ [ε]
δ ln eε (x1)

δ lnΞ [ε]
δ ln eε (x2)

+
eε (x1) eε (x2)

Ξ [ε]
δ2Ξ [ε]

δeε (x1) δeε (x2)
. (9.32)

Taking the variation of δΞ [ε] once again, that is, taking the second variation
of Ξ [ε], and using the definition of reduced distribution functions, we obtain

eε (x1) eε (x2)
Ξ [ε]

δ2Ξ [ε]
δeε (x1) δeε (x2)

= f (2) (x1, x2) (9.33)

and finally the functional derivative on the left-hand side of (9.32) in the form,

δf (1) (x1)
δ ln eε (x2)

= δ (x1 − x2) f (1)(x1) − f (1)(x1)f (1)(x2) + f (2) (x1, x2) .

(9.34)

The structure of the right-hand side of this equation motivates the definitions
of dynamic Ursell functions

U (1)(x1) = f (1)(x1),

U (2)(x1, x2) = f (2) (x1, x2) − f (1)(x1)f (1)(x2),

U (3)(x1, x2, x3) = f (3) (x1, x2, x3) − f (2)(x1, x2)f (1)(x3)

−f (2)(x1, x3)f (1)(x2) − f (2)(x2, x3)f (1)(x1)

+2f (1)(x1)f (1)(x2)f (1)(x3), (9.35)
. . . ,
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which is the nonequilibrium version of the equilibrium Ursell functions [16]
used in equilibrium statistical mechanics. Then it is possible to show that
U (2)(x1, x2) is related to the second functional derivative in the following
manner:

eε (x1) eε (x2)
δ2 lnΞ [ε]

δeε (x1) δeε (x2)
= U (2)(x1, x2). (9.36)

In general,

eε (x1) · · · eε (xn)
δn lnΞ [ε]

δeε (x1) · · · δeε (xn)
= U (n)(x1, . . . xn). (9.37)

In analogy to the equilibrium theory [9], the nonequilibrium direct pair dis-
tribution function c(2) (x1, x3) may be defined by the formula,

δ ln eε (x1)
δf (1)(x3)

=
δ (x1 − x3)
f (1)(x3)

− c(2) (x1, x3) . (9.38)

The functional derivative on the left-hand side is the inverse of the func-
tional derivative giving the relation in (9.34) and thus of the nonequilibrium
Ursell function U (2)(x1, x2). For this reason, the nonequilibrium direct cor-
relation function c(2) (x1, x3) may be regarded as related to the inverse of
U (2)(x1, x2). Because

δ (x1 − x2) =
∫

dx3
δeε (x1)
δf (1) (x3)

δf (1) (x3)
δeε (x2)

=
eε (x1)
eε (x2)

∫
dx3

δ ln eε (x1)
δf (1) (x3)

δf (1) (x3)
δ ln eε (x2)

, (9.39)

insertion of the functional derivatives, calculated earlier, in the right-hand
side of this equation yields the following relation:

δ (x1 − x2) =
eε(x1)
eε(x2)

∫
dx3

[
δ (x1 − x3)
f (1)(x3)

− c(2)(x1, x3)
]

×
[
δ (x3 − x2) f (1)(x3) + U (2)(x3, x2)

]
. (9.40)

This is the inverse relation between two operators represented by the quanti-
ties in the square brackets, which will be more precisely formalized later. On
expanding the integrand on the right-hand side, there follows the equation

f (1)(x2)c(2) (x1, x2) −
U (2) (x1, x2)
f (1)(x1)

+
∫

dx3 c
(2) (x1, x3)U (2) (x3, x2) = 0.

(9.41)

If the total nonequilibrium correlation function h(2) (x1, x2) is defined by

U (2) (x3, x2) = f (1)(x1)f (1)(x2)h(2) (x1, x2) , (9.42)
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then (9.41), when divided by f (1)(x2), yields the equation

h(2) (x1, x2, t) = c(2) (x1, x2, t) (9.43)

+
∫

dx3 c
(2) (x1, x3, t) f (1)(x3, t)h(2) (x3, x2, t) .

This is the dynamic Ornstein–Zernike equation for nonequilibrium pair dis-
tribution functions which we set out to derive. Note that xi (i = 1, 2, 3) are
the phases of the particles involved. We have restored the time dependence to
make it explicit in this equation.

In connection with this equation and the definition of h(2) (x1, x2, t) in
(9.42), the following must be noted: Because

f (1)(x1, t)f (1)(x2, t)h(2) (x1, x2, t) = f (2) (x1, x2, t) − f (1)(x1, t)f (1)(x2, t),

if the pair correlation function g(2) (x1, x2, t) is defined by the relation

f (2) (x1, x2, t) = f (1)(x1, t)f (1)(x2, t)g(2) (x1, x2, t) , (9.44)

it then follows that there holds the relation

h(2) (x1, x2, t) = g(2) (x1, x2, t) − 1. (9.45)

The DOZ equation (9.43) is isomorphic to the equilibrium OZ equation for
pair correlation functions in the configuration space. However, it must be
emphasized that the former lives in the phase space (x1, x2, x3), not in the
configuration space (r1, r2, r3), as does the latter. The DOZ integral equation
presented is new to nonequilibrium statistical mechanics and replaces the
nonequilibrium BBGKY hierarchy. The pair distribution functions defined by
the DOZ integral equation can be used to express macroscopic properties in
nonequilibrium statistical mechanics if a suitable closure is made for it. This
will be discussed later in this chapter.

9.3 Connection with Existing Theory

The DOZ integral equation (9.43) is given in the phase space, which is larger
in dimension than the configuration space of two particles in which the equi-
librium OZ equation lives. It is useful to examine under what condition (9.43)
gives the equilibrium OZ equation and also the integral equation for the non-
equilibrium pair correlation function used for studying the effect of shearing
on the nonequilibrium liquid structure in the literature [17,18].

For this specific purpose, it is useful to define the reduced distribution
function by

n (r1, t) =
∫

dp1 f
(1)(x1, t), (9.46)
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which, on integration over volume and division by volume, gives the mean
bulk density

n =
N

V
= V −1

∫
drn (r, t) = V −1

∫
dx f (1)(x, t). (9.47)

Recall that according to (9.19)∫
dx f (1)(x, t) = 〈N〉 . (9.48)

Hence,
N = 〈N〉 . (9.49)

Therefore, n (r, t) is the probability of finding a particle in the volume ele-
ment dr around position r in the fluid. In a uniform fluid with translational
symmetry n (r, t) is independent of r, and it is identical with the bulk density
n, which may still depend on time. In the light of this meaning for n (r, t), it
will be convenient to factor f (1)(x1, t) as

f (1)(x1, t) = n (r1, t)φ (x1, t) , (9.50)

where φ (x1, t) is such that ∫
dp1 φ (x1, t) = 1. (9.51)

In the limit of equilibrium, the function φ (x1, t) becomes the local equilibrium
Boltzmann factor of a single particle energy. By following the manner in which
the density distribution is defined, the pair correlation function f (2) (x1, x2, t)
may be integrated over the momentum space, and the nonequilibrium pair
density distribution n(2) (r1, r2, t) may be defined by the integral

n (r1, t)n (r2, t)n(2) (r1, r2, t) =
∫

dp1

∫
dp2 f

(2) (x1, x2, t) . (9.52)

Therefore, n(2) (r1, r2, t) is a reduced distribution function of f (2) (x1, x2, t).
Substituting (9.44) into (9.52) and using the factorized singlet distribution
function in (9.50), a more precise meaning of n(2) (r1, r2, t) is gained:

n(2) (r1, r2, t) =
∫

dp1

∫
dp2 φ(x1, t)φ(x2, t)g(2) (x1, x2, t) . (9.53)

If the nonequilibrium pair correlation function g(2) (x1, x2, t) is independent
of momenta to an approximation, that is, if

g(2) (x1, x2, t) � g(2) (r1, r2, t) , (9.54)

then n(2) is simply equal to g(2):

n(2) (r1, r2, t) � g(2) (r1, r2, t) . (9.55)
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According to the various quantities defined earlier, we find

$(2) (r1, r2, t) ≡ n(2) (r1, r2, t) − 1

=
∫

dp1

∫
dp2 φ(x1, t)φ(x2, t)h(2) (x1, x2, t) , (9.56)

which, in the approximation for g(2) in (9.54), takes the form

$(2) (r1, r2, t) � h(2) (r1, r2, t) . (9.57)

A reduced form of the nonequilibrium direct correlation function can be sim-
ilarly defined. Let

γ (r1, r2, t) =
∫

dp1

∫
dp2 φ(x1, t)φ(x2, t)c(2) (x1, x2, t) . (9.58)

It then reduces to
γ (r1, r2, t) � c(2) (r1, r2, t) , (9.59)

if the nonequilibrium direct correlation function is independent of the mo-
menta,

c(2) (x1, x2, t) � c(2) (r1, r2, t) . (9.60)

If the approximations (9.54) and (9.60) are used in the DOZ integral equation,
it readily reduces to the form in the configuration space

h(2) (r1, r2, t) = c(2) (r1, r2, t) +
∫

dr3 c
(2) (r1, r3, t)n(r3, t)h(2) (r3, r2, t) .

(9.61)

This is the nonequilibrium OZ equation that was obtained from the non-
equilibrium Kirkwood hierarchy under a set of approximations and used for
studying shearing effects in [1, 17, 18]. In time-independent processes where
h(2) and c(2) become independent of time, (9.61) clearly becomes the equilib-
rium OZ equation. The present DOZ integral equation therefore contains the
equilibrium OZ equation as well as the nonequilibrium OZ equation in the
configuration space that has been used in the study of shear-induced effects
on simple liquids in [1, 17,18] mentioned earlier.

9.4 Local Equilibrium Equation of State

To calculate nonequilibrium observables by using the nonequilibrium ensemble
distribution function, it is necessary to define and calculate local equilibrium
variables because they will serve as the variables of the reference state with
respect to which nonequilibrium effects on the macroscopic observables may be
calculated. The local equilibrium variables are defined by the local equilibrium
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distribution function (9.2) in which the intensive variables such as temperature
T , chemical potential μ̂a, and pressure p depend on the position of the small
local volume of interest. Within the small local volume the intensive variables
are uniform, but, being field variables obeying hydrodynamic field equations,
they vary from elementary volume to elementary volume, as mentioned earlier.

9.4.1 Virial Equation of State

In a nonequilibrium situation the pressure in a fluid is not necessarily isotropic
because the pressure applied in, say, the z direction of the coordinate system
may be different from those in the transversal directions because of some con-
ditions in a nonequilibrium state. An example of such a situation may be
sound wave propagation or heat flow in a fluid. In such a nonequilibrium situ-
ation the aforementioned reference variables cannot be arbitrarily chosen, but
their choice must be consistent with the generalized thermodynamics [3] of the
fluid. Because the selection has an important bearing on the definition of non-
equilibrium observables themselves employed in generalized thermodynamics
of fluids, it is necessary to examine the statistical mechanical definitions of
reference variables. In this subsection, we pay special attention to pressure.

We define the local equilibrium ‘pressure’ p as the quantity equal to the
mean of normal stresses

p =
1
3
Tr

〈
N∑

j=1

⎡⎣mCjCjδ (rj − r) + 1
2

N∑
j �=k=1

Wjkδ (rk − r)

⎤⎦〉
eq

, (9.62)

where the subscript eq means that the averaging is performed with F
(N)
eq and

Wjk is a virial tensor operator defined previously; we present it once again
for the sake of uninterrupted reading:

Wjk =
∫ 1

0

dλ rjkFjk (rjk) exp (−λrjk · ∂/∂r) . (9.63)

In this expression, Fjk is the intermolecular force between particles j and k
and rjk = rj − rk.

As will be seen presently, the expression for p in (9.62) is not for hydrostatic
pressure because of the spatial nonuniformity of density. It is reducible to a
form given in terms of lower order reduced distribution functions. By using
the reduced distribution functions defined earlier, we obtain from (9.62) the
expression

p =
1
3

∫
dp1 mC2f (1)

eq (r,p1)

+ 1
6

∫
dx1

∫
dx2 TrW12 (r12) δ (r2 − r) f (2)

eq (x1, x2) , (9.64)
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where f
(1)
eq (r,p1) and f

(2)
eq (x1, x2) are the local equilibrium forms of nonequi-

librium reduced distribution functions f (1)(r,p1; t) and f (2) (x1, x2, t), respec-
tively. This form of pressure equation can be recast into a form more compa-
rable with the equilibrium counterpart.

In view of the reduced distribution function in (9.46) and (9.50), the first
term—the kinetic term—on the right of (9.64) may be written as

1
3

∫
dp1 mC2f (1)

eq (r,p1) =
1
3
n (r)

∫
dp1 mC2φeq(r,p1), (9.65)

where φeq(r,p1) is the local equilibrium form of φ (r,p1, t); n (r)φeq(r,p1)
is simply the local equilibrium Maxwell distribution function. It is consistent
with the generalized thermodynamic theory [2] of nonequilibrium fluids to put
the average of the peculiar velocity squared on the right of (9.65) in a more
familiar looking form of the local temperature of the fluid 1

1
3

∫
dp1 mC2φeq(r,p1) = β−1 (r) = kBT (r) . (9.66)

This can be easily verified with the local equilibrium Maxwell distribution
function for n (r)φeq(r,p1).

Because W12 (r12) is an operator in the configuration space, it is possible
to reduce the distribution function f

(2)
eq (x1, x2) to the local equilibrium version

of the form given in (9.52) and cast the equation of state in the form

p = n (r) kBT (r) + 1
6

∫ 1

0

dλ
∫

dr1

∫
dr2 r12 · F12δ (r2 + λr12 − r)

×n (r1)n (r2) g(2)
eq (r1, r2) , (9.67)

for which we have used the definition of Wjk. The density n (r) and the
temperature T (r) in this expression still can vary from elementary volume to
elementary volume. This is the local equilibrium virial form for pressure when
the virial tensor is used for the definition of pressure, but it differs from the
equilibrium virial equation of state [15]

p = nkBT + 1
6n

2

∫
dr12 r12F12geq(r12), (9.68)

which gives the hydrostatic pressure that is spatially uniform and isotropic.
1 The definition of temperature for a fluid in a nonequilibrium state is subtle and

requires careful thought. Here, the symbol T (r) may be regarded as a represen-
tation of the average on the left, which is the kinetic energy part of the pressure
exerted by the fluid in a nonequilibrium state. Within the framework of the
generalized thermodynamics implied by the nonequilibrium grand canonical en-
semble distribution function F

(N)
c , this representation for T (r) is consistent with

β = 1/kBT (r, t) in F
(N)
c . See [2].
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On changing variables to the center of mass coordinate R = (r1 + r2) /2
and the relative coordinate r12 = r1 − r2 and performing the integration over
R, there follows from (9.67) the equation:

p = n (r) kBT (r) (9.69)

+ 1
6

∫ 1

0

dλ
∫

dr12 r12 · F12n [r + (1 − λ) r12]n (r − λr12) g(2)
eq (r12) .

This expression indicates that the density can vary over the intermolecular
force range and such a variation can contribute to the equation of state if
the density is not uniform. To see this effect, we expand the bulk densities in
series of r12:

n [r + (1 − λ) r12] = n(r) + (1 − λ) r12 · ∇n(r) + · · ·
(9.70)

n (r − λr12) = n(r) − λr12 · ∇n(r) + · · ·

and insert the expansions in (9.69) to obtain the equation of state in the form,

p = n (r) kBT (r) + 1
6n

2(r)
∫

dr12 r12F12g
(2)
eq (r12)

− 1
18 [∇n(r)] · [∇n(r)]

∫
dr12 r

3
12F12g

(2)
eq (r12)

+O
(
[∇n(r,t)]4

)
+ · · · . (9.71)

Thus we see that density variations over the distance of the intermolecular
force range contribute to the local equilibrium equation of state, which to the
leading order is proportional to the square of the density gradient. When these
correction terms are neglected or as the density becomes uniform over space,
the equation of state for hydrostatic pressure (9.68) given earlier arises.

As will be seen presently and was done in the formulation of generalized
thermodynamics [3] and also generalized hydrodynamics [2], the excess normal
stress is defined with reference to the hydrostatic pressure, and the consider-
ation for p given in (9.71) suggests that p cannot be in general the reference
pressure for studying nonequilibrium effects on the stress in a fluid unless a
physical consideration warrants it otherwise. The “pressure” p is, a normal
stress, which is a kind of nonequilibrium pressure. We will return to this aspect
of nonequilibrium effects later when linear transport processes are discussed.
Nevertheless, before proceeding to discuss linear transport processes, we note
that the density fluctuations mentioned arise from the virial tensor given in
terms of the displacement operator, which has been commonly ignored in
the statistical mechanics of liquids in the literature. It is important that it
is not ignored if transport processes are to be understood properly from the
viewpoint of molecular theory.
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9.4.2 Compressibility of Nonequilibrium Fluids

In equilibrium statistical mechanics the equation of state can also be obtained
from the isothermal compressibility of a fluid [12]. This results in the pressure
expressed in terms of the direct correlation function obeying the OZ integral
equation. Here, we would like to examine the isothermal compressibility of
nonequilibrium fluids and its relation to the nonequilibrium correlation func-
tions introduced earlier.

For this purpose, let us now return to the normalization integral (9.19) for
f (n). By subtracting the square of the normalization integral of f (1) from the
normalization integral of f (2), there follows the relation:

1
〈N〉

∫
dx1

∫
dx2 f

(1) (x1; t) f (1) (x2; t)h(2) (x1, x2; t) =

〈
N2
〉
− 〈N〉2

〈N〉 − 1.

(9.72)

The density fluctuation term on the right-hand side of this equation can be
related to thermodynamic quantities as in equilibrium theory. This is possible
because the extended Gibbs relation exists [2, 3] for the calortropy density Ψ̂

TdΨ̂ = dE + pdv +
∑
q≥1

XqdΦ̂q. (9.73)

This differential form is for a single-component system. In this expression, E is
the internal energy density and Φ̂q (q ≥ 1) are nonconserved variables whose
constitutive equations have been derived in earlier chapters for systems re-
moved from equilibrium. The calortropy density Ψ̂ reduces to the equilibrium
(Clausius) entropy as the system reaches equilibrium, that is, as Xq → 0 for
all q. This extended Gibbs equation is accompanied by the nonequilibrium
Gibbs–Duhem equation [2, 3],

dμ = −Ψ̂dT + vdp +
∑
q≥1

Φ̂qdXq, (9.74)

which may be regarded as the integrability condition [19] for the extended
Gibbs relation, because addition of (9.73) and (9.74) gives an integral of the
extended Gibbs relation. From the nonequilibrium Gibbs–Duhem equation
follows the thermodynamic relation(

∂μ

∂v

)
T,X

= v

(
∂p

∂v

)
T,X

. (9.75)

Note that this relation is for nonequilibrium because of the presence of the
condition on X in the subscript. Because n = 1/v, it follows that dn = −v−2dv
and, if V is kept constant,

〈N〉
(

∂μ

∂ 〈N〉

)
V,T,X

=
(
∂p

∂n

)
T,X

. (9.76)
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Since in the grand ensemble theory(
∂n

∂μ

)
V,T,X

= βV −1
[〈
N2
〉
− 〈N〉2

]
, (9.77)

we find 〈
N2
〉
− 〈N〉2

〈N〉 = β−1

(
∂n

∂p

)
T,X

≡ nβ−1κ. (9.78)

Therefore, the density fluctuation is related to the isothermal compressibility
of the system subjected to the nonequilibrium disturbance characterized by
{Xq}—generalized potentials [2, 3]. On inserting this result in (9.72), there
follows the equation;

1
〈N〉

∫
dx1

∫
dx2 f

(1) (x1; t) f (1) (x2; t)h(2) (x1, x2; t) = nβ−1κ− 1. (9.79)

This form is isomorphic to the equilibrium counterpart [12,15], which relates
the total correlation function h(2) (r12) to the isothermal compressibility of
the fluid:

n

∫
dr12h

(2)
eq (r12) = nβ−1κeq − 1, (9.80)

where h
(2)
eq (r12) is the equilibrium counterpart of h(2) (x1, x2; t) and κeq is the

isothermal compressibility of the equilibrium fluid. It is understandable that
similar relations should hold because the density fluctuations can occur as the
pressure is varied in the fluid regardless of whether the system is in an equilib-
rium or nonequilibrium state. Furthermore, the mathematical structure [19]
of nonequilibrium thermodynamics is parallel to that of equilibrium thermo-
dynamics owing to the extended Gibbs relation (9.73) and the nonequilibrium
Gibbs–Duhem equation (9.74).

9.4.3 Abstract Form of the Dynamic Ornstein–Zernike Equation

To learn about the relation of this compressibility equation to the DOZ equa-
tion we return to its precursor to the DOZ integral equation (9.40) and ex-
amine it in more detail. Because

eε(x2)
eε(x1)

δ (x1 − x2) = δ (x1 − x2) ,

Equation (9.40) may be written as

δ (x1 − x2) =
∫

dx3

[
δ (x1 − x3)
f (1)(x3, t)

− c(2)(x1, x3, t)
]

(9.81)

×
[
δ (x3 − x2) f (1)(x3, t) + f (1)(x3, t)h(2)(x3, x2, t)f (1)(x2, t)

]
.
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Let us define abstract operators C, H, and f in the phase space spanned
by vectors of phase x. Considerable insight into this equation is gained if we
introduce in the phase space Dirac’s bra and ket vectors [20, 21], 〈x| and |x〉,
which are normalized to unity 〈x|x〉 = 1. The phase space representations of
the aforementioned abstract operators then are postulated to be given by

〈x1 |f |x2〉 = f (1)(x2; t)δ (x1 − x2) , (9.82)

〈
x1

∣∣f−1
∣∣x2

〉
=

δ (x1 − x2)
f (1)(x2; t)

, (9.83)

〈x3|H |x2〉 = f (1)(x3, t)δ (x3 − x2)

+f (1)(x3, t)h(2)(x3, x2, t)f (1)(x2, t), (9.84)

〈x1|C |x3〉 =
δ (x1 − x3)
f (1)(x3, t)

− c(2)(x1, x3, t). (9.85)

These definitions give ways to compute the abstract operators on the left
according to the right-hand side. Thus, with the representations of the total
and direct correlation functions

〈x3|h |x2〉 = h(2)(x3, x2, t), (9.86)

〈x1| c |x3〉 = c(2)(x1, x3, t), (9.87)

we may write H and C in the following operator forms:

H = f + fhf ,
(9.88)

C = f−1 − c.

With the representations of the abstract operators, as in (9.82)–(9.87), (9.81)
can be written as∫

dx3 〈x1|C |x3〉 〈x3|H |x2〉 = δ (x1 − x2) . (9.89)

This implies that the abstract operators H and C are inversely related to each
other. Written in a more explicit form, the inverse relation is(

f−1 − c
)
(f + fhf) = I. (9.90)

It is clear from this expression that the two factors on the left are inverse to
each other. By expaning the factors on the left of this equation, this relation
may be equivalently expressed as

h = c + cfh, (9.91)
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which is the abstract operator version of the DOZ integral equation (9.61).
From (9.90) we find

fhf =
(
f−1 − c

)−1 − f =
(
f−1 − c

)−1
cf = fc

(
f−1 − c

)−1
. (9.92)

Alternatively,
c = (f + fhf)−1 fh = hf (f + fhf)−1

. (9.93)

By using these formal abstract operator relations, it is possible to examine
the dynamic isothermal compressibility formula.

Because the phase space representation of (9.92) is

〈x1 |fhf |x2〉 =
〈
x1

∣∣∣(f−1 − c
)−1
∣∣∣x2

〉
− f (1)(x2; t)δ (x1 − x2) , (9.94)

it follows from (9.79) that the dynamic isothermal compressibility can be
obtained from the formula,

nβ−1κ =

∫
dx1

∫
dx2

〈
x1

∣∣∣f (I − cf)−1
∣∣∣x2

〉
∫

dx1

∫
dx2 〈x1|f |x2〉

. (9.95)

For this expression, note that with the bra-ket notation 〈N〉 may be written
as

〈N〉 =
∫

dx f (1)(x, t) =
∫

dx1

∫
dx2f

(1)(x2, t)δ(x1 − x2)

=
∫

dx1

∫
dx2 〈x1|f |x2〉 . (9.96)

Compare it with (9.47), which follows if (9.82) is used. We have thus seen
that the bra-ket notation puts nonequilibrium thermodynamic quantities in
insightful forms, which are parallel to their equilibrium counterparts, and also
provides computational algorithms for them. The isomorphism of equilibrium
and nonequilibrium OZ equations suggests that the dynamic OZ equation may
be solvable by Fourier transform in the phase space, if a suitable closure is
introduced for the dynamic direct correlation function. This subject, however,
will not be discussed here.
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10

Density Fluctuation Theory: Simple Fluids

We have presented in Chaps. 7 and 8 constitutive equations for various macro-
scopic fluxes, such as the stress tensor, heat flux, and diffusion fluxes, in dense
gases and liquids. They have been derived from the generalized Boltzmann
equations for dense fluids and are generally nonlinear with regard to the fluxes,
namely, nonconserved variables. On linearizing the steady-state constitutive
equations with respect to the fluxes and the thermodynamic gradients driving
the former and comparing them with the phenomenological thermodynamic
force–flux relations, such as Newtonian law of viscosity, Fourier’s law of heat
conduction, and Fick’s law of diffusion, the kinetic theory formulas have been
derived for the linear transport coefficients of such fluids. The linear trans-
port coefficients thus obtained are given in terms of collision bracket inte-
grals involving N particle dynamics, and they can be shown to reduce to the
Chapman–Enskog theory formulas for transport coefficients of dilute gases,
as the density diminishes. Although formally parallel to the well-established
Boltzmann kinetic theory approach to transport processes in dilute gases and
the theory has been applied [1,2] to dense hard sphere fluids to calculate the
viscosity and thermal conductivity that show correctly behaved density de-
pendences, the theory has not been applied to dense fluids obeying a more
realistic potential model, such as the Lennard-Jones potential, because of the
difficulty and labor involved in solving the associated many-particle collision
dynamics and calculating cross sections for collision processes. Therefore, the
Chapman–Enskog approach [3] to the generalized Boltzmann equation still
awaits achieving its goal, which is to obtain practical forms for computing the
density and temperature dependence of transport coefficients.

In this and subsequent chapters in this work, we take an alternative ap-
proach within the general framework of the generalized Boltzmann equation
and develop a more readily practicable method of calculating the desired
transport coefficients. The generalized Boltzmann equation is still at the foun-
dation of the present approach. Not only is the nonequilibrium canonical or
grand ensemble distribution function employed in the development of the the-
ory provided by the generalized Boltzmann equation, but also the underlying
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dynamic Ornstein–Zernike (DOZ) equation and the nonlinear constitutive
equations, both of which stem from the generalized Boltzmann equation, are
required to extend the theory into the nonlinear regime beyond the treatment
given in the present density fluctuation theory of transport processes in the
linear regime.

The principal strategy of the development is in deriving the constitutive
properties (e.g., viscosity, thermal conductivity, etc.) of the stress tensor,
heat flux, and diffusion fluxes, namely, the nonconserved variables Φqa, in
forms that are readily amenable to computer simulations, because analytic or
semianalytic methods are not available for them in realistic fluid models. The
desired reduction of the complicated N particle problems will be shown achiev-
able if density fluctuations over the range of intermolecular forces are taken
advantage of and expressed in terms of diffusion of particles.

In the basic viewpoint taken in this approach, density fluctuations within
the intermolecular force range are responsible for the mechanism of momen-
tum and energy transfers between molecules in dense fluids and, in particular,
in liquids. According to this viewpoint, transport coefficients of liquids can be
derived that are given in terms of intermolecular forces and the equilibrium
pair correlation function, which can be computed by either Monte Carlo or
molecular dynamics simulation methods or, alternatively, an integral equation
method. It should be emphasized that the only quantity needing simulations
is the equilibrium pair correlation function of the fluid in the approach taken
here. Therefore, the N particle collision operator appearing in the Chapman–
Enskog approach is not encountered at all; instead, the equilibrium structure
of the fluid of interest provides the transport properties through the pair cor-
rrelation function. This is a tremendous advantage from the computational
standpoint.

10.1 Excess Normal Stress

The expression for p in (9.71) of Chap. 9 can be put into a form that gives a
little more physical insight if the notion of excess normal stress is used. It will
presently become apparent that p has an intimate relation to excess normal
stress.

For simple fluids, the excess normal stress Δ is defined relative to hydro-
static pressure p by the formula [4]

Δ =
1
3
Tr

〈
N∑

j=1

⎡⎣mCjCjδ(rj − r) + 1
2

N∑
j �=k=1

Wjkδ(rk − r)

⎤⎦ 〉− p. (10.1)

In the literature, we occasionally come across the definition of pressure in the
context of kinetic theory of nonequilibrium processes, given as the average of
the trace of the molecular stress tensor divided by three. If such a definition
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is to be sensible with regard to its operational meaning within the framework
of nonequilibrium statistical thermodynamics, the pressure so defined must
be interpreted as a nonequilibrium pressure, distinguished from hydrostatic
pressure. Therefore if we so wish, the first term on the right of (10.1) may
be called the kinetic or nonequilibrium pressure. Then, the excess normal
stress Δ may be interpreted as a fluctuation of pressure from the hydrostatic
pressure in a nonequilibrium fluid.

Because, as shown in earlier chapters, Δ is related to the bulk viscosity of
the fluid through the relation

Δ = − ηb∇ · u, (10.2)

where ηb is the bulk viscosity coefficient and u is the mean fluid velocity, the
bulk viscosity should be computable from the statistical expression for Δ. A
method of computing the bulk and shear viscosities is developed for a simple
liquid in [5,6] and for molecular liquids in [7,8]. The methods will be described
in what follows.

For the purpose in hand, we consider a flow configuration in which the fluid
is periodically compressed or decompressed in a direction. This situation is
realizable if a sound wave propagates, say, in the z direction of the space-fixed
coordinate system in the fluid. Then the density will vary in the z direction,
whereas it will remain invariant in the transversal directions. The z component
of the force on the plane perpendicular to the z axis is the normal stress
component Pzz which will equilibrate with the hydrostatic pressure. In this
condition, the relaxation times for Pzz and the transversal components Pxx

and Pyy are not generally the same. Hence, the normal stress is no longer
isotropic, that is, Pxx − Pzz is not equal to zero. This difference is intimately
related to the bulk viscosity of the fluid. If it is assumed that Pzz relaxes to
the hydrostatic pressure before the other two components of the stress tensor
do, then the excess normal stress for the flow configuration can be written as

Δ =
1
3
(Pxx + Pyy) − 2

3
Pzz.

Because the normal stress is isotropic in the x and y directions, namely, Pxx =
Pyy, it follows that

Δ =
2
3
(Pxx − Pzz) , (10.3)

which shows that the excess normal stress for the flow configuration is simply
proportional to the primary normal stress difference N1 = Pxx − Pzz.

On application of the procedure to obtain (9.67) starting from (9.62), the
excess normal stress can be given in the form

Δ = − 1
6

∫ 1

0

dλ
∫

dr12

(
r12 −

3z2
12

r12

)
V ′

12 (r12) (10.4)

× n [r + (1 − λ) z12]n (r − λz12)n(2) (r12, t) ,
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where V ′
12 (r12) = dV12/dr12. Upon expanding the densities as in (9.70), there

follows from (10.4) the formula,

Δ = − 1
36

∫
dr12 V ′

12 (r12)
(
r12 −

3z2
12

r12

)
z2
12n

(2) (r12, t)
(
∂n

∂z

)2

+O

[(
∂n

∂z

)4
]
. (10.5)

Use of spherical coordinates and integration over the angular variables yields
it in the form,

Δ = − 4π
135

∫ ∞

0

drr5V ′ (r)n(2) (r, t)
(
∂n

∂z

)2

+ O

[(
∂n

∂z

)4
]
. (10.6)

The nonequilibrium pair correlation function n(2) (r, t) may be obtained as a
solution for the DOZ integral equation by imposing a suitable closure. Studies
[9,10] of the DOZ equation in the past subject to a Percus–Yevick type closure
indicate that the nonequilibrium effect on n(2) (r, t) is not large. Therefore, it
may be approximated by the equilibrium pair correlation function g

(2)
eq (r) in

the following manner:

n(2) (r, t) � g(2)
eq (r) θ (r − ξ) , (10.7)

where ξ is the parameter specifying the maximum range of density fluctuation.
In general, this cutoff parameter is equal to or less than the range rmax of the
intermolecular force. Using this approximation, there follows from (10.6) the
excess normal stress in the form,

Δ = −2ωb (ξ)
9D

(
∂n

∂z

)2

, (10.8)

where
ωb (ξ) =

2π
15

∫ ∞

0

drr5V ′
12 (r) g(2)

eq (r) θ (r − ξ) . (10.9)

10.1.1 Bulk Viscosity of Simple Fluids

To make progress from the expression for Δ in (10.8) we now use the consti-
tutive relation for fluid velocity. The velocity u of a fluid is the drift velocity
of a fluid particle and as such it may be related to the friction coefficient or
the self-diffusion coefficient D of the fluid through the equation

uz = −D

n

∂n

∂z
. (10.10)
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For a kinetic theory derivation of this constitutive equation, see Appendix B.
Here, the self-diffusion coefficient generally depends on density and tempera-
ture. Observing that D = D′ (n) /n with D′ (n) is a weak function of n and
differentiating (10.10) with respect to z, we obtain

∂uz

∂z
=

2D
n2

(
∂n

∂z

)2

− D

n

∂2n

∂z2
.

If the density changes slowly in space, then the second-order derivative should
be much smaller than the first, and the second term on the right may be
neglected. Thus, we obtain

∂uz

∂z
� 2D

n2

(
∂n

∂z

)2

. (10.11)

Eliminating the density derivative between (10.8) and (10.11), we finally ob-
tain the constitutive equation for Δ in the form

Δ = − n2

9D
ωb (ξ)

∂uz

∂z
. (10.12)

Comparing this constitutive equation with the phenomenological counterpart,

Δ = −ηb
∂uz

∂z
, (10.13)

the statistical mechanical formula for the bulk viscosity coefficient is obtained:

ηb =
n2ωb (ξ)

9D
. (10.14)

The density in the expression for ηb depends on position. Therefore, it
will vary over the distance of density fluctuation range ξ, which is of the or-
der of the intermolecular force range. The present density fluctuation theory,
however, cannot provide information on the density variation within that dis-
tance. Therefore, it is appropriate to take the mean bulk density for n(r).
The equilibrium pair correlation function within the correlation range will be
that evaluated at that mean bulk density. The value of the density fluctuation
range ξ is not given precisely within the present density fluctuation theory.
If we are to maintain rigor in treating the theory, the bulk viscosity formula
in (10.14) must also be averaged over the distribution of ξ, say, P (ξ). This
distribution function is extraneous to the present density fluctuation theory,
in which density variations are considered over the scale of ξ. An idea of its
form may be gained if the distribution of voids in a fluid is investigated with
regard to their sizes. In the absence of knowledge of P (ξ) , the bulk viscos-
ity formula in (10.14) implies the assumption that P (ξ) is a delta function
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δ (ξ′ − ξ), because, on averaging over ξ′, we therewith obtain (10.14):

ηb =
∫ ∞

0

dξ′ηb (ξ′)P (ξ′)

=
∫ ∞

0

dξ′
n2ωb (ξ′)

9D
δ (ξ′ − ξ)

=
n2ωb (ξ)

9D
. (10.15)

The bulk viscosity formula used in this chapter should be understood in this
sense unless stated otherwise.

It is interesting to note that (10.14) is reminiscent of the Stokes–Einstein
(SE) relation [11] between the viscosity ηse and diffusion coefficient D,

ηse =
kBT

6πσseD
, (10.16)

where σse is the SE radius of the particle. Note that this is the SE relation
under the stick boundary condition. If the slip boundary condition were ap-
plied instead, then the factor 6π in the denominator should be replaced by 4π.
In deference to the tradition in the literature, we have used the symbol D for
the diffusion coefficient.

The SE relation was originally derived by combining the hydrodynamically
calculated result for the force exerted by the solvent on a macroscopic particle
immersed in a continuum liquid of viscosity ηse and the Brownian motion
theory result for the mean motion of a macroscopic particle moving under
the frictional influence of the randomly moving molecules constituting the
solvent—the former result was by Stokes [12,13] and the latter was by Einstein
[11]. Therefore, it is clear that D in the SE relation is the diffusion coefficient of
the tracer particle diffusing in the solvent but not the self-diffusion coefficient
we have used in this work.

Except for the feature that the bulk viscosity ηb is inversely proportional to
D in the same manner as ηse is inversely proportional to D, the two equations
(10.14) and (10.16) are not the same because the coefficient factors are quite
different. Also note that despite numerous attempts [14–18] at derivation of
the SE relation by statistical mechanics, its derivation has not been fully
satisfactory. Later, we will have an occasion to assess the SE relation from
the standpoint of formula (10.14).

It is worthwhile to summarize the gist of the theory developed for ηb: by
taking density variation within the intermolecular force range into account,
the statistical mechanical formula for Δ is calculated to O

[
(∂n/∂z)2

]
and

the constitutive equation for uz, (10.10), is used to replace (∂n/∂z)2 in (10.8)
and, as a result, to obtain the formula for ηb.
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Equation (10.14) is also reminiscent of the potential energy part of the
expression for the bulk viscosity of simple fluids, which was obtained by Kirk-
wood et al. [19], in that the self-diffusion coefficient appears in the denomina-
tor. However, it is not the same as their formula, and the method for deriving
it is entirely different from theirs, which is based on the Fokker–Planck equa-
tion for the Brownian motion model originally developed by Kirkwood [20]
for liquids. In this connection, note that there is no dilute gas limit term in
(10.14), that is, the first term in their expression, which indicates that the bulk
viscosity does not vanish as the density vanishes in contrast to the experimen-
tal evidence on simple fluids. The present formula (10.14) shows that the bulk
viscosity vanishes with vanishing density in accordance with experiment, and
hence it predicts the correct limiting law.

10.1.2 Comparison of Theory with Experiment

There are two basic building blocks for (10.14): the equilibrium pair cor-
relation function that gives the structure of the fluid and the macroscopic
constitutive equation (10.10) for uz, through which the self-diffusion coeffi-
cient of the fluid enters the theory. The density fluctuation theory itself does
not provide us with the self-diffusion coefficient, which gives time- and spatial
scales of diffusive motions of molecules within a fluid that occur within the
range of ξ. These quantities therefore must be supplied from other sources.
It is possible to treat D as an empirical input if there are experimental data
available for it. Then, if the pair correlation function can be suitably calcu-
lated by some means, it is possible to calculate a bulk viscosity of a fluid as a
function of temperature and density.

At the early stage of the development of the density fluctuation theory,
such a procedure was taken, in which the pair correlation function was cal-
culated by employing the Percus–Yevick (PY) integral equation for the pair
correlation function, whereas either experimental or computer simulation data
were used for the self-diffusion coefficient.

In Fig. 10.1, the theoretical predictions by (10.14) are compared with the
experimental data on argon for the temperature and density dependence of
the bulk viscosity. The potential model employed was the Lennard-Jones
potential,

V(r) = 4ε
[(σ

r

)12

−
(σ
r

)6
]
, (10.17)

where the well depth was taken as ε/kB = 119.8K and σ = 0.3405 nm for
argon and the PY integral equation was employed to calculate the pair cor-
relation function. The critical temperature Tc of argon is 130K, and in the
region of T � 130K the range of density fluctuation ξ is empirically found
larger than or equal to the intermolecular force range rmax. In this case, ωb
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Fig. 10.1. (a) Bulk viscosity vs. temperature at ρ = 1062 kg m−3 for argon near
the critical temperature T = 130 K. The symbols are experimental data. See the
text for the description of the figure. (b) Bulk viscosity vs. density at T = 234K
for argon. The symbol � is for the experimental data reported in [22]. [Reproduced
with permission from Kyunil Rah and Byung Chan Eu, Phys. Rev. Lett. 83, 4566
(1999). Copyright 1999 American Physical Society.]

has no adjustable parameter, and hence the theory is free of parameters. On
the other hand, if T is well below Tc and, especially, in the neighborhood
of the triple point, the value of ξ is in the neighborhood of 2σ, presumably
because the molecules are closely packed and the density can fluctuate in a
cavity of size 2σ. In panel a, the solid curve is the theoretical ηb calculated
with the Naghizadeh–Rice data [21] and the Madigosky data [22] for D. The
bulk viscosity calculated with D provided by Heyes [23], who computed D by
a molecular dynamics simulation method based on the linear response theory
formula [24] and fitted the results to a mathematical form, is indicated by the
broken curve. The meanings of the symbol and the curves in panel b are the
same as those in panel a. The results for ηb obtained with the Heyes data are
only qualitatively correct compared with experiment, and it seems to indi-
cate the quality of the simulation results based on the linear response theory
formula. It is not clear whether the deviations from the experimental data
arise from the numerical accuracy of the simulation method or the Kubo for-
mula itself. On the other hand, the present density fluctuation theory predicts
bulk viscosity within the experimental error indicated by the error bars. The
comparison here is quite significant for the present density fluctuation theory
because it is free of the adjustable parameter ξ in the temperature range for
this figure owing to the fact that ξ > rmax.
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Fig. 10.2. (a) ηb vs. T at ρ = 1, 408 kg m−3 for argon near the triple point. The
symbols (•) are experimental [29]; the solid curve is the present theory computed
with DNR for D. (b) ηb vs. ρ at T = 90K for argon computed with DNR. The symbols
are experimental data: ∗ [28]; × [27]; © [30]; • [29]. ϑ = 0.21 for the theoretical
ηb. [Reproduced with permission from Kyunil Rah and Byung Chan Eu, J. Chem.
Phys. 83, 4566 (1999). Copyright 1999 American Physical Society.]

In the neighborhood of the triple point, the range of density fluctuations
found was much less than rmax. It was in the neighborhood of 2σ. For com-
putational convenience, a parameter ϑ was introduced in lieu of ξ such that1∫ ξ

0

drr5V ′ (r) g(2)
eq (r) = ϑ

∫ ∞

0

drr5V ′ (r) g(2)
eq (r) . (10.18)

With the choice of ϑ = 0.21, the bulk viscosity of argon was calculated
in the neighborhood of the triple point and compared with experimental
data reported by various authors [27–30] in Fig. 10.2. The theoretical values
for the bulk viscosity versus temperature, represented by the solid curve in
Fig. 10.2a, were calculated with D (denoted by DNR) provided by Naghizadeh
and Rice [21] and the filled circles are experimental data by Naugle et al. [27].
In Fig. 10.2b, the theoretical density dependence is compared with experi-
ment. The solid curve is the theory and the symbols are experimental data:
∗ [28] and © [30]. The bulk viscosity thus calculated behaves correctly with
regard to temperature and density and is within the limits of experimental
errors throughout the temperature and density ranges in which experiments
1 In the development subsequent to this initial version of the density fluctuation

theory, the parameter ϑ has been examined from the standpoint of the distribution
of the cutoff parameter ξ [25,26].
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were performed. The comparisons in the two figures indicate the utility of
the bulk viscosity formula, which is simple mathematically, and validate the
underlying density fluctuation theory for transport coefficients.

Finally, note that the bulk viscosity of simple fluids vanishes as the density
tends to zero, unlike other transport coefficients of gases, such as the viscosity
and thermal conductivity, and the formula for ηb clearly exhibits this limit-
ing behavior as n → 0: simple (monatomic) dilute gases do not have a bulk
viscosity in the density fluctuation theory.

10.2 Shear Stress

As we have done for the excess normal stress, we will begin with the theory of
shear viscosity of simple fluids in the present chapter and extend the theory to
complex fluids in the following chapter. The important point of the theory
is, as for the bulk viscosity, that density fluctuations within the range of the
order of intermolecular forces are responsible for momentum transfers between
elementary volumes in liquids and the shear viscosity formula can be derived
with the help of the macroscopic constitutive equation for velocity u.

To derive such a constitutive equation for the shear stress, consider a
simple fluid, which consists of molecules of mass m contained in volume V at
temperature T . The temperature is assumed to be uniform in V . The fluid is
confined between two parallel plates separated by distance L, which move in
opposite directions at speed u/2. Therefore, the flow configuration is that of
plane Couette flow [31]. The plates are assumed to be aligned parallel to the
x axis, perpendicular to the z axis, and positioned at z = ±L/2, respectively.
Therefore, there is a velocity gradient in the z direction while the fluid flows
in the x direction. It is assumed that the flow is laminar. The channel is also
assumed to be infinite in length. This makes the flow translationally invariant
in the x direction. The fluid velocity, therefore, has only the x component,
which is a function of z only but independent of x and y. The constitutive
equation can now be derived for the traceless symmetric part of the stress
tensor in the flow configuration described.

As shown in the previous chapters, the traceless symmetric part Π of the
stress tensor P is given by the statistical mechanical expression [4],

Π =

〈
N∑

j=1

⎡⎣[mCjCj ]
(2)

δ (rj − r) + 1
2

N∑
j �=k=1

[Wjk](2) δ (rk − r)

⎤⎦〉 .

(10.19)

Recall that the symbol [A](2) denotes the traceless symmetric part of the
second-rank tensor A. The statistical mechanical averaging is weighted by
the nonequilibrium grand canonical ensemble distribution function introduced
earlier; the angular brackets stand for such an averaging operation in the
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appropriate phase space. This expression, similarly to the excess normal stress,
can also be given in terms of the local density and the density correlation
function.

Because the virial tensor is made up of pairwise additive interaction forces,
the integral in the N particle phase space can be reduced to integrals in one-
or two-particle phase space, each involving either a one-particle or a two-
particle reduced distribution function. The procedure is the same as that for
the excess normal stress. The shear stress in the flow configuration mentioned
earlier can thus be expressed as

Πxz =
∫

dp [mCxCz]
(2)

f (1)(r,p, t)

+ 1
2

∫ 1

0

dλ
∫

dr1

∫
dr2 [r12F12]

(2)
xz

× δ (r2 + λr12 − r)n (r1, t)n (r2, t)n(2) (r1, r2, t) . (10.20)

The first term on the right of (10.20) is the kinetic part, and the second the
potential part.

If the system is near equilibrium and subject to a small velocity gradient
caused by the applied shearing perturbation then shear stress Π obeys the
following Newtonian law of viscosity [1]:

Πxz = −2η [∇u](2)xz , (10.21)

where η is the Newtonian shear viscosity and [∇u](2) is the traceless symmetric
part of the velocity gradient ∇u,

[∇u](2) = 1
2

[
∇u + (∇u)t

]
− 1

3δ∇ · u. (10.22)

The assumption here is that the norm (i.e., magnitude)
∥∥∥[∇u](2)

∥∥∥ is so small
that the linear relationship holds between the shear stress and the velocity
gradient, as in (10.21). The superscript ‘t’ denotes the transpose of the tensor.
Shear stress Π is also the traceless symmetric part of the stress (pressure)
tensor P:

Π = 1
2

(
P + Pt

)
− 1

3δTrP. (10.23)

It should be recalled that the Newtonian viscosity is defined within the validity
of the linear constitutive law. Therefore, the aforementioned assumption is
necessary for the analysis below.

10.2.1 Shear Viscosity

We aim to relate (10.20) to the phenomenological constitutive equation for
shear stress (10.21) to derive a statistical mechanical expression for the shear
viscosity η. The two terms on the right of (10.20) are qualitatively different in
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their physical origins and suggest that the shear viscosity η should consist of
two distinctive components: one is the kinetic energy part and the other is the
potential energy part. The former will be denoted by ηk, and the latter by ηv.
Before proceeding further, we note that the result of the Chapman–Enskog
theory for η derived from the generalized Boltzmann equation in the earlier
chapter supports this mode of splitting η into the two components mentioned.

The Kinetic Part of Shear Viscosity

It is clear that the kinetic part of the shear viscosity is related to the kinetic
part of the stress tensor, and their relationship can be examined from the
standpoint of the stress tensor of a dilute simple fluid.

Because we are interested in the linear process near equilibrium, it is suffi-
cient to expand the singlet distribution function in the leading moments. The
temperature is assumed uniform over the system and the fluid is of a single
component. Therefore there is only the stress tensor to consider. The singlet
distribution function then can be expanded in moments,

f = f0 (w)
(
1 + kBTw · wA + kBT [ww](2) :B

)
, (10.24)

where f0 is the local equilibrium Maxwell distribution function

f0 = n (m/2πkBT )3/2 exp
(
− 1

2w
2
)

(10.25)

and w is the reduced peculiar velocity defined by

w =
√

mβC (β = 1/kBT ) . (10.26)

The coefficients A and B are the scalar and tensor moments to be determined.
Since the normalization is preserved, there follows

n =
∫

dp f (p, r, t) =
∫

dp f0 (p) . (10.27)

Multiply mC · C by (10.24) and integrate over p to obtain

TrPk =
∫

dpmC · Cf (p, r, t)

= 3nkBT + 15n (kBT )2 A.

Therefore, A is given by

A =
1

5kBT

(
1

3nkBT
TrPk − 1

)
≡ Δk

5n (kBT )2
. (10.28)
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Multiplying [mCC](2) by (10.24) and integrating over p, we obtain

Πk =
∫

dp [mCC](2) f (p, r, t)

= 2n (kBT )2 [B](2) ,

that is,

[B](2) =
Πk

2n (kBT )2
. (10.29)

Collecting these results, we finally obtain for the moment expansion of f :

f = f0 (w)
[
1 + w · w Δk

5nkBT
+ [ww](2) :

Πk

2nkBT

]
. (10.30)

There remains the problem of determining Πk in terms of the shear rate or,
more generally, the velocity gradient. The kinetic theory of dilute gases dis-
cussed in Chaps. 2 and 3 provides well-developed procedures for the purpose.
Availing ourselves of them, we obtain the result for ηk as follows:

Πk = −2ηk [∇u](2) , (10.31)

for which ηk can be calculated with the Chapman–Enskog formula

ηk ≡ η0 =
3Ω(2)

1 (2)

5Ω(1)
12 (1)

nD0 ≡ cnD0. (10.32)

Here, Ω
(2)
1 (2) and Ω

(1)
12 (1) are collision bracket integrals in the Chapman–

Enskog first approximation [32] and D0 is the Chapman–Enskog self-diffusion
coefficient [32]. Tables for the collision bracket integrals for the Lennard-Jones
potential are available in the literature [33]. From the tabulated values of the
collision bracket integrals, we find that the ratio Ω

(2)
1 (2) /Ω(1)

12 (1) is approx-
imately 1.1 for the Lennard-Jones potential and thus c � 0.7 . It must be
noted that the formula in (10.32) is an approximation of ηk because the sin-
glet distribution function f , rigorously speaking, is not a dilute gas singlet
distribution function but the singlet reduced distribution function contracted
from F

(N)
c . The viscosity coefficient ηk therefore should be density-dependent

in general, but such a correction is not warranted because ηk is negligibly
small compared with the potential energy part ηv of the shear viscosity in
the liquid density regime. We will use the expression given in (10.32) for the
kinetic part of the shear viscosity in this work.

The Potential Part of Shear Viscosity

To calculate the potential energy part of the shear viscosity in a method al-
ternative to the Chapman–Enskog method that requires the collision bracket
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integrals, the dynamic pair correlation function must be examined with regard
to the r12 dependence on density factors n (r − λr12) and n [r + (1 − λ) r12].
This r12 dependence of bulk density indicates that the potential energy part
of the stress tensor varies over the length scale of the intermolecular force.
It can have a significant effect because shearing perturbation is accompanied
by density variations. In this respect, the basic procedure employed here is
the same as that for the bulk viscosity considered earlier. It also is impor-
tant to recognize that the density variation is possible because the fluid is
compressible.

Expansion of the bulk densities in the series of λr12 and approximation
of the dynamic pair correlation function n(2) (r1, r2, n, t) with the equilibrium
pair correlation function g

(2)
eq because the system is near equilibrium yields

the potential part of shear stress Πv in the form,

Πvxz =
2π
45

∫ ∞

0

dr r5V ′ (r) g(2)
eq (r, n) θ (ξ − r)

∂n

∂x

∂n

∂z
, (10.33)

where V ′ (r) = dV(r)/dr. For this expression, we have taken into account the
fact that the density varies in the xz plane, whereas it remains invariant in the
y direction. The mean bulk density is to be used for the density dependence of
g
(2)
eq (r, n). The cutoff in the integration range is introduced in this expression

by replacing the nonequilibrium pair distribution function n(2) (r, n, t) with
g
(2)
eq (r, n) θ (ξ − r) on the same physical ground as argued for the excess normal

stress; see (10.7) and the related discussion. The cutoff distance ξ can be
as small as about 2σ in the low-temperature regime (e.g., near the triple
temperature), but as large as, or larger than, the intermolecular force range
rmax at higher temperatures, in particular, in the supercritical regime.

For the single-component fluid under consideration, the mean velocity u∗

of the tracer particle (i.e., the particle of attention) is related to the density
gradient by the following constitutive equation:

nu∗ (r) = −D
∂n

∂r
, (10.34)

where D is the self-diffusion coefficient. The tracer particle velocity balances
the fluid particle2 velocity u, that is, u = −u∗. Therefore, the constitutive
equation in terms of fluid particle velocity reads

nu (r) = D
∂n

∂r
. (10.35)

For a statistical mechanical derivation of this constitutive relation, see Appen-
dix B. If the density variation with r is so small that the second derivative is
2 By fluid particle, we mean a packet of molecules contained in an elementary

volume of the fluid, not a molecule, in conformation with the usual notion adopted
in fluid mechanics [34]. Therefore, u is the mean velocity of a group of molecules
contained in the elementary volume which are sufficiently numerous to justify
statistical mechanical averaging.



10.2 Shear Stress 255

negligible, then the velocity gradient for the Couette flow configuration under
consideration is given by

∂ux

∂z
=

∂

∂z
D
∂n

∂x

� −2D
n2

∂n

∂x

∂n

∂z
(10.36)

for which we have used the property of D ≈ D′/n where D′ is a slowly
changing function of n—the same assumption as used for the bulk viscosity
in the previous subsection. Note that the removal of this assumption does not
basically alter the result presented below.

Because the phenomenological constitutive equation (Newtonian law of
viscosity) for the plane Couette flow configuration for Πvxz is

Πvxz = −ηv
∂ux

∂z
, (10.37)

on eliminating the product of density gradients by using (10.36), there follows
from (10.33) the equation for Πvxz in the form

Πvxz = −n2ω (n)
6D

∂ux

∂z
, (10.38)

where
ω (n, ξ) =

2π
15

∫ ∞

0

dr r5V ′ (r) g(2)
eq (r, n) θ (ξ − r) . (10.39)

Comparing (10.37) and (10.38), the potential part of the shear viscosity is
identified in the form

ηv =
n2ω (n, ξ)

6D
. (10.40)

Because the density fluctuation range, which is related to the correlation
range, generally has a distribution, this viscosity formula should be averaged
over the distribution. Thus, more precisely, the potential energy part of the
shear viscosity should be given by

〈ηv〉 =
∫ ∞

0

dξ′
n2ω (n, ξ′)

6D
P (ξ′) , (10.41)

where P (ξ) is the distribution function of ξ. We may take, for example,

P (ξ′) = δ (ξ′ − ξ) . (10.42)

The formula given for ω (n, ξ) in (10.39) is understood in this sense. This form
of P (ξ′) will be relaxed in Chap. 12.

Equation (10.40) is similar to the SE relation between the viscosity and
the diffusion coefficient. Despite the apparent similarity, it is not the same as
the SE relation because the factor n2ω (n) depends on density, temperature,
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and intermolecular potential parameters—the molecularity of the fluid—and
D is the self-diffusion coefficient of the liquid, not a tracer diffusion coefficient
used for a macroscopic particle (e.g., a colloidal particle) in the SE relation.
In this connection, recall that in Einstein’s derivation D in the SE relation
is the diffusion coefficient of macroscopic Brownian particles suspended in a
solvent of viscosity η; see (10.16).

10.2.2 Shear Viscosity and the Diffusion Coefficient

By combining the kinetic and potential parts, Equations (10.32) and (10.40),
we finally obtain the shear viscosity of the fluid in the form,

η = cnD0 +
n2ω (n)

6D
. (10.43)

In the limit of vanishing density this formula gives rises to the Chapman–
Enskog viscosity [32] of the gas, which is independent of density (it is in-
dependent of density because nD0 = constant, independent of n), whereas
in the limit of high densities in the liquid regime it takes the SE relation-
like form because the second term on the right is dominant over the first
term, the Chapman–Enskog theory contribution. Therefore, formula (10.43)
explains how the Chapman–Enskog theory prediction of the η − D relation
crosses over to the SE relation-like form of the η − D relation as the den-
sity increases from the dilute gas regime to the liquid regime. This crossover
behavior had been defying our understanding until the present density fluc-
tuation theory was formulated. We see that in the dilute gas regime the mo-
mentum relaxation dominates because the intermolecular part of the stress
relaxes faster than the momentum transfer rate (momentum flux), whereas
in the liquid density regime the stress from the intermolecular interactions
dominates because it relaxes more slowly than the momentum transfer rate in
the gas phase owing to the more constrained configuration of particles at liq-
uid density. As the density varies, one trend overtakes the other. The diffusion
process sets the time- and spatial scales for momentum transfers giving viscous
phenomena. This is the fundamental reason underlying the expression for vis-
cosity in (10.43), which gives η in terms of the self-diffusion coefficient. The
potential energy part offers the interpretation: that momentum transfers giv-
ing rise to viscous phenomena in the liquid density regime is a result of the
combination of density variation creating voids and subsequent diffusion of
particles into the voids created in the liquid.

The formula derived suggests that if there are experimental or simulation
data available for D, then the shear viscosity can be calculated from (10.43).
Since the self-diffusion coefficient is much easier to simulate on the computer
than the shear viscosity, formula (10.43) can be quite useful in practice, pro-
vided it is sufficiently reliable. The utility of the formula has been tested
against experimental data in the literature [7, 8], and the results of the test
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are summarized in the following. We will show in Chap. 12 that this empirical
approach can be removed, and the theory can thus be made fully molecular.

Equation (10.43) is also reminiscent of the formula derived by Kirkwood
et al. [19] who obtained it by using a different method, which requires solu-
tions for a hierarchy of kinetic equations for Brownian particles. These kinetic
equations are Fokker–Planck equations that Kirkwood derived in his earlier
paper [20] for reduced distribution functions for particles immersed in its own
kind of particles, which are treated as a continuous medium exerting a force on
the particles of interest. Their equation can be given the same form as (10.43)
if an approximate form is taken for the ψ2 factor appearing in their equation,
which gives rise to a different numerical coefficient in the viscosity formula. For
example, if the lowest order approximation is taken for ψ2, namely, ψ2 ≈ r2/2
[see (31) of [19]], then the following viscosity formula follows from (10) of [19]:

η = 1
2nD +

n2ωKBG (n)
6D

, (10.44)

where
ωKBG (n) =

π
5

∫ ∞

0

dr r5V ′ (r) g(2)
eq (r, n) . (10.45)

This result must be compared with (10.43). Thus we find that, apart from the
cutoff factor, a relation holds between the potential energy part of the present
theory result and that of the Kirkwood–Buff–Green theory:

ω (n) = 2
3ωKBM (n) . (10.46)

It is remarkable that this relation arises despite the fact that the method of
Kirkwood et al. is quite different from the present method. In this connec-
tion, note that the Rice–Allnatt theory [35] also gives formulas for viscosities
in terms of a hard sphere friction constant in forms reminiscent of the viscos-
ity formula presented here, but they are much more complicated than either
(10.43) or (10.44).

10.2.3 Comparison of the Theory with Experiment

The formula (10.43) for the shear viscosity of simple fluids has been validated
in comparison with experimental data available in the literature. Specifically,
the shear viscosity of argon was calculated for its density and temperature
dependence in comparison with experimental data. The density dependences
of viscosity for krypton and xenon were also examined. The values of the self-
diffusion coefficient D, which is necessary for calculating η, were computed
with either the formula obtained by fitting the Naghizadeh–Rice data [21]
to a mathematical form or the formula proposed by Heyes [23] for fitting
his molecular dynamics simulation results. The self-diffusion coefficients now
can be calculated with good accuracy by the free volume theory of diffusion,
which will be discussed in Chap. 12. In this chapter, the empirical approach
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mentioned is taken for D following the original course of development of the
theory. The pair correlation function in the expression for ω (n) was obtained
from the numerical solution of the PY integral equation [36] for the pair cor-
relation function. With the pair correlation function so obtained, the integral
was numerically evaluated at different temperatures and densities.

In Fig. 10.3a, the density and temperature dependence of the shear viscos-
ity of argon at T = 273.0K are compared with those predicted by the Haynes
formula [37], which he obtained by fitting his own experimental data. The po-
tential parameters for argon are σ = 0.340 nm and ε/kBT = 119.8K [33]. The
dotted curve is the prediction by the Haynes formula. The solid and broken
curves are the theoretical values of the density fluctuation theory, which have
been, respectively, computed with the values of D by using the Heyes formula
(DHeyes) and the Naghizadeh–Rice formula (DNR). The latter is an empirical
fitting formula. In all of the calculations for these figures, the experimen-
tal value of the dilute gas viscosity has been used for ηk = cnD0 because the
Chapman–Enskog theory ηk is about 10% lower than the experimental value at
T = 273.0K, and 4–5% in the range of T = 240–250 K, although it agrees well
with the experimental values around the triple point. Since the principal aim
here is to show the results of a test of the formula for the excess shear viscosity
ηv—the potential part of η and the part obeying the SE relation-like form—it
is appropriate to remove the uncertainty in the kinetic part ηk of η by simply
using the empirical value for ηk. The filled circles (•) are the experimental
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Fig. 10.3. (a) η vs. ρ for argon at T = 273.0 K. The solid and dashed curves are
theoretical. The filled circles (•) are experimental [38]. (b) Δη = η − ηk vs. T at
ρ = 900 kg m−3. The solid curve is theoretical. The dotted and broken curves are
the experimental T dependence. Because ξ ≥ rmax, there is no adjustable parameter
in this case. [Reproduced with permission from Kyunil Rah and Byung Chan Eu,
J. Chem. Phys. 60, 4105 (1999). Copyright 1999 American Institute of Physics.]
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values by Michels et al. [38]. In this case, the range ξ of density variation
is equal to or larger than the intermolecular force range rmax ≡ |r12|max.
Therefore the viscosity values computed are free from parameters other than
potential parameters. The agreement with experiment is good, validating
the formula for η.

In Fig. 10.3b, the temperature dependence of the shear viscosity at ρm =
mn = 900 kg m−3 is compared with the experimental values. The solid curve
is for the excess shear viscosity Δη = η−ηk calculated with DHeyes, the dotted
curve was computed by the empirical formula reported by Haynes [37], and
the dash-dot curve was obtained with the formula reported by Younglove and
Hanley [40]. The latter two curves are therefore experimental. In this case,
ξ ≥ rmax and hence the formula for ηv is free from the parameter ξ. The
temperature dependence by the density fluctuation theory shows a negative
temperature derivative of Δη, as do the Younglove–Hanley formula and mole-
cular dynamic simulation data [39], whereas the Haynes formula [37] shows a
positive temperature derivative. On physical grounds, the temperature gradi-
ent of Δη is expected to be negative, and the behavior of η is consistent with
experiment except for the Haynes data.

As the temperature approaches the triple point of argon, the value of ξ is
less than rmax. For the analysis of data in this regime of temperature, a pa-
rameter ϑ was introduced in the integral for ω (n) in the same manner as for
the normal stress for computational convenience; see (10.18). For Fig. 10.4a
and b, ϑ = 0.175 was chosen, which corresponds approximately to the cutoff
parameter value ξ ≈ 2σ, and the temperature dependence of the shear viscos-
ity of argon at ρ = 1, 408 kg m−3 was calculated as shown.

In Fig. 10.4a, the solid curve is the theoretical shear viscosity computed
with DNR, and the Chapman–Enskog theory shear viscosity (ηCE) is used for
the kinetic part of η, ηk = ηCE. As mentioned in connection with Fig. 10.3,
the Chapman–Enskog theory shear viscosities at the temperatures of inter-
est here agree well with experiment. Because DHeyes was judged inapplicable
in the temperature range considered here, no comparison was made for the
viscosity calculated with it and thus a comparison is not available. The dot-
ted (· · · ) and dash-dot (− · −) curves were, respectively, computed with the
Haynes [37] and Younglove–Hanley formulas [40], which are empirical. There-
fore, they are experimental. The filled circles (•) are the experimental data
quoted by Naugle et al. [27] who, to obtain them, interpolated or extrapolated
the data reported in the papers by Lowry et at. [41], Davis and Luks [42], and
Saji and Kobayashi [43]. The temperature derivative of η is negative, as ex-
pected. The qualitative behavior of the theoretical prediction shows a correct
tendency. Figure 10.4b shows the density dependence of the shear viscosity at
T = 90.0K. The meanings of the curves are the same as in Fig. 10.4a. The
symbols represent experimental data: © from [30]; ∗ from [28]; × from [29];
and • from [27]. The theoretical prediction, with one adjustable parameter,
agrees well with experiment in the density range where experimental values
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Fig. 10.4. (a) η vs. T for argon at ρ = 1, 408 kg m−3. The solid curve is theoretical.
The dotted and dash-dot curves are the experimental T dependence calculated with
the empirical formulas [37,40]. The filled circles (•) are experimental values reported
by Naugle et al. [27]. (b) η vs. ρ at T = 90.0 K. The meanings of the curves are the
same as in panel a. The symbols represent the experimental data indicated in the
text. [Reproduced with permission from Kyunil Rah and Byung Chan Eu, J. Chem.
Phys. 60, 4105 (1999). Copyright 999 American Institute of Physics.]

are available. In Table 10.1, the viscosity and bulk viscosity values calculated
with DNR and by Heyes are listed together with the experimental values at
various densities. The columns DNR and DHeyes in Table 10.1 represent the
theoretical values of viscosities computed with DNR and DHeyes for the self-
diffusion coefficient. The column Exp1 is for experimental viscosities reported
in [22], whereas the column Exp2 is for the viscosities computed with the
Younglove–Hanley and Haynes formulas (in parentheses). Column Exp3 is for
the experimental bulk viscosities reported in [22].

By using the bulk viscosity formula obtained earlier, we find the relation
between ηb and ηv

ηb =
2
3
ηv. (10.47)

Therefore, the ratio ηb/η in the liquid density regime is approximately inde-
pendent of density and temperature:

ηb =
2η

3 (1 + ηk/ηv)
� 2

3
η, (10.48)

because ηk � ηv. The experimental values for the ratio ηb/η are, on the
average, 0.85 from [27], 0.78 from [30], 0.56 from [28], and 0.69 [29]. There-
fore, the theoretical prediction is comparable to the mean value 0.72 of the
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Table 10.1. Shear and bulk viscosities at T = 273.0 K

ρ† η‡ η‡
b

DNR Heyes Exp1 Exp2 DNR DHeyes Exp3

508 0.032 0.028 0.0365 0.033 0.009 0.0066 0.009
(0.033)

694 0.052 0.043 0.051 0.044 0.022 0.016 0.029
(0.044)

812 0.071 0.056 0.060 0.054 0.035 0.025 0.033
(0.055)

896 0.087 0.068 0.067 0.063 0.046 0.033 0.044
(0.065)

958 0.10 0.078 0.073 0.071 0.055 0.040 0.048
(0.074)

1008 0.11 0.086 0.08 0.079 0.063 0.045 0.056
(0.083)

† in units of kg m−3.
‡ in units of mPa s.

Table 10.2. Ratio of ηb to η at T = 273.0 K

ρ
(
kg m−3

)
ηb/η

DNR DHeyes Exp.

508 0.28 0.24 0.25
694 0.42 0.31 0.57
812 0.49 0.45 0.55
896 0.53 0.49 0.66
958 0.55 0.51 0.66
1008 0.57 0.52 0.70

experimental values. On the other hand, at T = 273.0K its value varies from
0 to ∼ 0.6 as the density increases from 0 to 1, 000 kg m−3, as indicated by
some of the higher density values shown in Table 10.2, where the experimen-
tal data are calculated on the basis of the data reported in [22]. The ratio
clearly vanishes as the density vanishes because ηb, ηv ∼ n3 as n → 0. These
comparisons of the ratio ηb/η indicate that the formulas obtained for viscosi-
ties in the density fluctuation theory have qualitatively correct and mutually
consistent properties and therefore are judged reliable.

The shear viscosity formula has been applied to other simple fluids to
calculate the density dependence of krypton at T = 298.1K and of xenon at
T = 373.1K. The results are presented in Fig. 10.5a and b. The potential
parameters for krypton are σ = 0.360 nm and ε/kB = 171K, whereas σ =
0.410 nm and ε/kB = 221K for xenon. The values of the potential parameters
were taken from [28, 33]. These parameters give the reduced temperature at
T ∗ = 1.74 for krypton and T ∗ = 1.69 for xenon. Therefore, the two fluids
are at comparable reduced temperatures. For the calculation of the shear
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Fig. 10.5. (a) η vs. ρ for krypton at T = 298.1 K (T ∗ = 1.74). The solid curve is
theoretical and the filled circles are the experimental values. (b) η vs. ρ for xenon
at T = 373.1 K (T ∗ = 1.69). The solid curve is theoretical and the open circles are
the experimental values. [Reproduced with permission from Kyunil Rah and Byung
Chan Eu, J. Chem. Phys. 60, 4105 (1999). Copyright 1999 American Institute of
Physics.]

viscosities of these fluids, ξ ≥ rmax . Therefore, the viscosity formula involves
only the potential parameters and hence is free from the adjustable parameter.
In Fig. 10.5a for the density dependence of the shear viscosity of krypton, the
solid curve is theoretical whereas the filled circles are the experimental values
reported by Trappeniers et al. [44]. The Chapman–Enskog shear viscosity is
used for the kinetic part of η, which was found to agree well with experiment.
In Fig. 10.5b for the density dependence of the shear viscosity of xenon, the
solid curve shows theoretical values calculated with the Chapman–Enskog
shear viscosity for the kinetic part of η, whereas the open circles are the
experimental values reported by Reynes and Thodos [45]. In this case, the
Chapman–Enskog shear viscosity slightly underestimates the experimental
viscosities at low densities. Agreement with experiment and theory is not as
good as for krypton at intermediate densities, but the density dependence
found is qualitatively correct. Because the law of corresponding states was
reportedly [46,47] obeyed by simple fluids such as argon, krypton, and xenon
examined here, agreement between experiment and theory for krypton and
xenon could have been expected. Nevertheless, the comparison presented for
krypton and xenon ensures the reliability of the viscosity formula obtained
by the density fluctuation theory and also verifies the law of corresponding
states for the fluids considered.
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10.2.4 Assessment of the Stokes–Einstein Relation

The SE relation is widely applied in the fields of transport processes and
related topics in the literature. Its application is often uncritical and beyond
the limits of its applicability. There have been some serious efforts [48, 49]
to assess its range of applicability but with inconclusive outcomes. Since the
viscosity formula (10.43) is not the SE relation although it resembles it and,
moreover, it correctly predicts the density and temperature dependence of
viscosities, it may be used to assess the SE relation by investigating under what
conditions the SE relation and formula (10.43) yield the same or comparable
density and temperature dependence. Comparing the SE relation (10.16) with
the formula for ηv in (10.40) under the assumption that ηse = ηv, we obtain

σ

2R
=

πσ
2kBT

n2ω (n) (stick boundary condition)

=
πσ

3kBT
n2ω (n) (slip boundary condition),

(10.49)

where R = σse, the SE radius. If we assume ηse = η instead of η = ηv, we
obtain

σ

2R
=

3πσ
kBT

cnD0D +
πσ

2kBT
n2ω (n) (stick boundary condition)

=
2πσ
kBT

cnD0D +
πσ

3kBT
n2ω (n) (slip boundary condition).

(10.50)

If the ratio σ/2R remains independent of T and n, the SE relation and the
shear viscosity formula (10.43) will be equivalent within a constant factor de-
spite the appearance of (10.43) to the contrary. The SE relation was assessed
for argon. In Fig. 10.6, the values of 2R/σ are plotted against density and
temperature, respectively, in panels a and b. The broken (- - -) and dotted
(· · · ) curves are the results computed for slip and stick boundary conditions
with the formulas in (10.49), respectively. The solid (—) and dash-dot (- · -)
lines are the results computed for slip and stick boundary conditions with
the formulas in (10.50), respectively. The density dependence of the ratio is
computed for argon at T = 273.0 K, and the temperature dependence is com-
puted at ρ = 1, 000 kg m−3. The value of parameter ξ is taken larger than
rmax. Therefore, the viscosity formula is practically free from the parame-
ter ξ. The density dependence is almost absent if the full viscosity η is used,
although the values of 2R/σ for different boundary conditions used differ by
an almost constant factor. On the other hand, the 2R/σ values computed with
(10.49) show density dependence but no temperature dependence. Therefore,
we conclude that it is the full viscosity that gives a constant 2R/σ, but not ηv.
In Fig. 10.7, the density and temperature dependence of 2R/σ are examined
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Fig. 10.6. (a) Density dependence of 2R/σ for argon at T = 273.0 K. (b) Tem-
perature dependence for argon at ρ = 1, 000 kg m−3. The broken (- - -) and dotted
(· · · ) lines are computed with (10.49). The solid (—) and dash-dot (-·-) lines are
computed with (10.50). [Reproduced with permission from Kyunil Rah and Byung
Chan Eu, J. Chem. Phys. 60 , 4105 (1999). Copyright 1999 American Institute of
Physics.]

for argon near the triple point at T = 90K for the density dependence, and
at ρ = 1, 408 kg m−3 for the temperature dependence. For these figures, the
parameter ϑ in lieu of ξ was taken as ϑ = 0.175. The meanings of the lines
are the same as in Fig. 10.6. The values of 2R/σ remain virtually constant for
all cases, indicating that the SE relation is obeyed. These figures suggest that
in the density and temperature range examined here, the SE relation remains
valid for η for simple liquids, even if the particle is of molecular size, and that
the question of slip or stick boundary condition is irrelevant from the view-
point of statistical mechanics. If one is prepared to take R as an adjustable
parameter, it should be taken with a value in the neighborhood of σ/2. The
assessment here of the relation provides useful insight into the question of the
range of applicability of the SE relation. In any case, from the perspective of
(10.43) the question of the validity of the SE relation for molecular particles
is irrelevant because it is a relation holding for fluids consisting of molecular
particles, not for a continuum fluid for which the SE holds.

10.2.5 Density Fluctuation Theory Viewed
from the Chapman–Enskog Theory

The generalized Boltzmann equation lies in the foundation of the density fluc-
tuation theory because the latter approach requires the local grand canonical
ensemble distribution function F

(N)
c that the former provides. In this regard,

it should be recalled that the reduced pair distribution functions are generated
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Fig. 10.7. (a) Density dependence of 2R/σ for argon at T = 90 K. (b) Temper-
ature dependence of argon at ρ = 1, 408 kg m−3. For these figures, ϑ = 0.175. The
meanings of the curves are the same as Fig. 10.6. [Reproduced with permission from
Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 60, 4105 (1999). Copyright 1999
American Institute of Physics.]

from the local grand canonical ensemble distribution function, and they will
have to be eventually calculated by a suitable equation if a more complete
theory is to be developed beyond that presented up to this point. The DOZ
integral equation, for example, can be the theoretical vehicle for the full the-
oretical implementation of the density fluctuation theory. The same parent-
age of the density fluctuation theory and the Chapman–Enskog theory for
transport coefficients of liquids based on the generalized Boltzmann equation,
consequently, begs the question of how the two theories are related. At least,
it will be interesting to explore what might be done to see their connection
and gain insight into possible ways to develop the Chapman–Enskog theory
in more practical forms for liquids. This latter aspect has been already con-
sidered in Chap. 7, although briefly, because there is no concrete method for
implementing the theory that we can discuss in detail. We recall that in the
discussion the viscosity is expressed as the sum of kinetic and potential parts

η = ηk + ηv,

and whereas the kinetic part is identified with the Chapman–Enskog formula
for a dense fluid [see (7.100)], the potential part is expressible in the form

ηv =
kBTη

2
k

g

ΔR(
1 − kBTηk

g ΔR

) . (10.51)
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Here ΔR is defined by (7.102) consisting of collision bracket integrals. We have
argued that in the approximation neglecting the cross terms of the kinetic
and potential parts of the pressure tensor ΔR may be given by (7.105), which
presents a rather cogent formula suggesting a computational method. The
formal result of the density fluctuation theory indicates that this potential
part of η should be identified with

ηv =
n2ω (n, T )

6D
.

The question remains whether it is possible to show that

kBTη
2
k

g

ΔR(
1 − kBTηk

g ΔR

) =
n2ω (n, T )

6D
(10.52)

and under what conditions. In any case, it will be interesting to evaluate ΔR

by some numerical means and compute the shear viscosity in the liquid density
regime. This question is left for study in the future.

10.3 Heat Flux

In the previous sections of this chapter, we have shown that the density fluc-
tuation theory can give formulas for the bulk viscosity and shear viscosity
of simple liquids quite accurately and adequately over the entire density and
temperature ranges experimentally studied, if an empirical D is used. In this
section, we show that the same approach to the thermal conductivity of sim-
ple liquids can also produce a sufficiently accurate and reliable theory in the
experimentally studied ranges of temperature and density. Compared to bulk
and shear viscosities, the thermal conductivity is considerably more difficult
to analyze from the viewpoint of molecular theory because its statistical me-
chanical expression is much more involved than the former. As has been for
bulk and shear viscosities, thermal conductivity will be studied separately for
simple and complex fluids because simple fluids are easier to study from the
technical standpoint, and the point of the density fluctuation theory can be
made more effectively in a more concise manner.

We again consider a system of N monatomic molecules contained in
volume V . The statistical mechanical expression for heat flux in such a fluid
is given by

Q =

〈
N∑

j=1

⎛⎝ 1
2mC2

j +
N∑

k>j

Vjk

⎞⎠Cjδ (rj − r)F (N)
c

〉

+

〈
1
2

N∑
j �=k=1

Wjk · Ckδ (rk − r)F (N)
c

〉
, (10.53)
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where the notation is the same as before and the ensemble average is performed
with the nonequillibrium grand canonical distribution function F

(N)
c

(
x(N); t

)
.

The term containing the virial tensor operator Wjk in (10.53) arises from
the coupling of molecular flow with the stress created by intermolecular in-
teractions within the fluid. This stress is accounted for by the tensor r12F12,
which is the work done to displace a pair of molecules interacting with force
F12 by distance r12. This work is carried by the molecules in flow and con-
tributes to the heat flux within the fluid. From the viewpoint of the internal
energy conservation law that must be satisfied by the fluid, the heat flux for-
mula given in (10.53) is an inevitable conclusion that can be drawn from the
kinetic equation. Therefore the appearance of the virial tensor in the expres-
sion for the heat flux Q is not arbitrary, as it does inevitably appear in the
expression for the stress tensors considered earlier. It must be noted that in the
conventional treatment of thermal conductivity, such as the linear response
theory and the Chapman–Enskog theory, the virial tensor operator Wjk is
usually approximated by the tensor r12F12. But it is important to avoid such
an approximation, particularly, in the density fluctuation theory because, as
shown for stress tensors, the displacement operator exp(− ζr12 ·∇) in Wjk is
important in accounting for the effects of density variation on heat flux and
also is necessary if improved accuracy is desired for the thermal conductiv-
ity because of its major contribution, especially, in the high density regime.
We emphasize again that the displacement operator exp(− ζr12 · ∇) in the
virial tensor acts on the Dirac delta function δ (rk − r) in the the statistical
mechanical expression for heat flux.

Heat flux consists of three physically distinctive parts. Therefore, it is
convenient to split it into three parts as follows:

Q = Qk + Qv + Qw, (10.54)

where

Qk =

〈
1
2

N∑
j=1

mC2
j Cjδ (rj − r)

〉
, (10.55)

Qv =

〈
1
2

N∑
j �=k=1

VjkCjδ (rj − r)

〉
, (10.56)

Qw =

〈
1
2

N∑
j �=k=1

Wjk · Cjδ (rj − r)

〉
. (10.57)

Heat flux Qk represents the kinetic energy flux, Qv is the potential energy
transported by mass flow, and Qw arises from the coupling of the stress with
mass flow; it is a flow of stress-related work. If the density is high, Qv and
Qw are comparable in magnitude and constitute the major portion of heat
conductivity, whereas the kinetic part plays a minor role in the liquid density
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regime. Because the dynamic mechanism of energy transport at high density is
basically different from that at low density, the dilute gas kinetic theory does
not give good guidance for developing a theory of energy transport at high
density, as we have already seen for bulk and shear viscosities. The aforemen-
tioned three components of Q will be considered separately in the following.

10.3.1 Kinetic Part of Heat Flux

Because particles are identical and the kinetic part consists only of single par-
ticle variables, Qk can be reduced to a form involving the singlet distribution
function; it is given by

Qk =
∫

dp 1
2mC2Cf (1)(p, r; t), (10.58)

where f (1)(p, r; t) is the nonequilibrium singlet distribution function. To a
good approximation, f (1)(p, r; t) in the low-density regime obeys the Boltz-
mann equation, which will follow from the generalized Boltzmann equation
when the superposition approximation is made for the doublet distribution
function and the approximation is also made that the singlet distribution
functions are spatially uniform within the collision volume. The solution of
the Boltzmann equation has been discussed in Chaps. 2 and 3, and the ki-
netic part of the heat flux can be accordingly calculated to first order in
temperature gradient. We obtain the kinetic part of thermal conductivity by
comparing the result with the phenomenological constitutive equation for Qk,
namely, Fourier’s law of heat conduction:

Qk = −λk∇T (r), (10.59)

where T (r) is the local absolute temperature. In this manner, λk may be
identified with the Chapman–Enskog thermal conductivity [32]. In the follow-
ing treatment of thermal conductivity of simple fluids λk will be taken for
the Chapman–Enskog thermal conductivity, whose kinetic theory formula is
already known. Therefore we will not dwell on it here.

10.3.2 Potential Energy Transport

Because the potential energy is assumed to be pairwise additive, the potential
energy contribution Qv to the heat flux may be reduced to a form that involves
the nonequilibrium pair distribution function f (2)(x1, x2; t):

Qv = 1
2

∫
dx1

∫
dx2 V (r12)Ciδ (ri − r) f (2)(x1, x2; t) (i = 1 or2),

(10.60)
where r12 = |r1 − r2|. Because of the symmetry of potential energy V (r12) and
the pair distribution function f (2)(x1, x2; t) with respect to the interchange of
particle positions r1 and r2, either particle index i = 1 or 2 can be chosen. To
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recast this integral further into a little more useful form the following reduced
distribution functions are defined.

Various nonequilibrium reduced distribution functions were defined in
Sect. 9.2 of Chap. 9. In particular, density distribution functions n(r, t) and
n(2)(r1, r2, t) were defined by integrating the singlet distribution function
f (1)(p, r, t) and the doublet distribution function, respectively, over momen-
tum; see (9.50) and (9.53). When they are employed, the doublet reduced
distribution function can be factored as

f (2)(x1, x2; t) = f (1)(x1, t)f (1)(x2, t)g(2)(x1, x2; t), (10.61)

where g(2)(x1, x2; t) is the doublet correlation function, which may be ex-
pressed as

g(2)(x1, x2; t) = φ(2)(x1, x2; t)n(2)(r1, r2, t). (10.62)

Because the singlet distribution functions can be factored, it is useful to ex-
press f (2)(x1, x2; t) in the form,

f (2)(x1, x2; t) = ψ(2)(x1, x2; t)n(r1, t)n(r2, t)n(2)(r1, r2, t), (10.63)

where ψ(2)(x1, x2; t) is defined by the product

ψ(2)(x1, x2; t) ≡ φ(x1, t)φ(x2, t)φ(2)(x1, x2; t). (10.64)

With this reduced pair distribution function ψ(2)(x1, x2; t), it is possible to
define the mean conditional velocity

V (r, r + r12, t) =
∫

dp1

∫
dp2v2ψ

(2)(r + r12, r,p1,p2, t), (10.65)

which is the mean velocity of particle 2, given that the pair of particles (12)
is separated by distance r12 whereas their center of mass is located at r,
regardless of the distribution of other particles in the system. Then Qv may
be written in the form

Qv = 1
2

∫
dr12 V (r12)n(r, t)n(r + r12, t)n(2)(r12, t)

× [V(r, r + r12; t) − u(r, t)] . (10.66)

This expression for Qv implies that density and mean velocity variations over
the intermolecular force range are the physical mechanism for potential energy
transport in liquids.

By expanding the density and the mean velocity in the integrand in (10.66)
in a series of r12, we obtain

n(r + r12, t) = n(r, t) + r12 · ∇n(r, t) + 1
2r12r12 : [∇n(r, t)]2 + · · · ,

(10.67)

V(r, r + r12; t) = u(r, t) + r12 · ∇u(r,t) + 1
2r12r12: [∇u(r, t)]2 + · · · ,



270 10 Density Fluctuation Theory: Simple Fluids

where the double dot symbol (:) stands for double contraction of the tensors
and we have used the fact that

V(r, t) = u(r, t).

Substituting these expansions in (10.66), we obtain the potential part of heat
flux Qv to first order in the density derivative

Qv = 1
2n(r, t)

∫
dr12 V (r12)n(2)(r12, t)r12r12 : ∇n(r, t)∇u(r, t)

+O
[
(∇n)2

]
. (10.68)

The product of density and velocity gradients on the right of (10.68) is a
tensor of rank three. It must be related to the temperature gradient. Before
examining such a relation we proceed to consider the virial tensor part Qw of
the heat flux.

10.3.3 Virial Transport

We now consider the intermolecular force contribution making up heat flux
Qw defined by (10.57). This contribution, when explicitly worked out, is given
by the formula

Qw = 1
2

∫ 1

0

dζ
∫

dx(2) r12F12 · C1e− ζr12·∇δ(r1 − r)f (2)(x1, x2, t). (10.69)

Because the particles are identical, this expression can be given in terms of a
reduced distribution function in the same manner as for Qv:

Qw = 1
2

∫ 1

0

dζ
∫

dr12 r12F12n(r − ζr12, t)n [r + (1 − ζ)r12, t]n(2)(r12, t)

×{V [r − ζr12, r + (1 − ζ)r12; t] − u(r, t)} . (10.70)

By expanding the density and the mean velocity in a Taylor series, retaining
the terms of linear order in ∇n(r,t) and ∇u(r,t), and integrating with respect
to the charging parameter ζ, we obtain the formula for Qw to linear order
with respect to ∇n(r, t) and ∇u(r, t), respectively,

Qw = 1
6n(r, t)

∫
dr12 n

(2)(r12; t)r12F12r12r12 : ∇n(r, t)∇u(r, t)

+O
[
(∇n∇u)2

]
. (10.71)

This has the same mathematical structure as Qv in (10.68) except that the
virial term r12F12/3 replaces the potential energy V (r12) in Qv.
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Now, the derivation of the constitutive equation for the potential part of
heat flux Qp

Qp ≡ Qv + Qw (10.72)

is reduced to the question of relating the third-rank tensor ∇n(r, t)∇u(r, t)
to a term composed of the temperature gradient and, possibly, the molecular
parameters as well as other quantities or functions characterizing molecular
interactions and correlations, such as pair correlation functions. In this step,
the hydrodynamic description of heat flow enters the theory as will be shown
presently.

10.3.4 Thermal Conductivity

To implement the intended hydrodynamic description and to derive the con-
stitutive equation for heat flux in a simple fluid, it is necessary to consider
a flow configuration explicitly. We assume the following flow configuration.
The fluid is confined between two parallel plates separated by a distance, say,
L, and is subject to a static temperature difference, so that the global tem-
perature gradient is ΔT/L, where ΔT is the temperature difference between
the plates. This temperature difference generates a local temperature gradient
∇T (r) at point r within the fluid. The direction of the temperature gradient
is assumed to be along the z axis of the coordinate system. The temperature
gradient produces a local density variation over the range of intermolecular
forces. We have already seen that, as in the theory of viscosity in the previous
subsections, the local density variation gives the potential part of the heat
flux that is proportional to the tensor product ∇n(r, t)∇u(r, t), which must
be related to the temperature gradient in the flow configuration considered.

The Third-Rank Tensor of Density and Velocity Gradients

The fluid velocity and density variations, ∇u(r, t) and ∇n(r, t), are at-
tributed to the effects of an externally applied temperature gradient producing
∇T (r, t) in the system. Because the temperature gradient may be assumed
static, as it often is when measuring thermal conductivity in a steady-state, all
macroscopic variables are regarded as independent of time. Thus we assume
that spatial derivatives of density and velocity are independent of time and
examine their relations to the temperature gradient ∇T (r). To obtain such
relations it is convenient to examine a typical experimental situation that is
evidently macroscopic and thus requires hydrodynamic consideration.

For the flow configuration assumed earlier, the continuity equation in the
steady state can be integrated to the form

ρuz = C, (10.73)

where ρ is the mass density and C is a constant with respect to the posi-
tion in the fluid but generally dependent on density and temperature. The
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one-dimensional momentum balance equation for the flow configuration in
hand is

∂

∂z
ρuzuz +

∂p

∂z
− ∂

∂z
ηl
∂uz

∂z
= 0, (10.74)

where ηl is the longitudinal viscosity defined by

ηl =
4
3
η + ηb (10.75)

with η and ηb denoting the shear viscosity and the bulk viscosity, respectively;
and η is the sum of the kinetic part ηk and the potential part ηv, which have
been already treated in Sect. 10.2. The longitudinal viscosity ηl therefore can
be calculated with the formulas developed in Sects. 10.1 and 10.2.

In the present consideration, we assume that an isobaric condition is im-
posed on the system. Then, because

∂p

∂z
=
(
∂p

∂ρ

)
T

∂ρ

∂z
+
(
∂p

∂T

)
ρ

∂T

∂z
= 0,

it follows that
∂ρ

∂z
= −ρα

∂T

∂z
, (10.76)

where α is the isobaric thermal expansion coefficient

α = − 1
ρ

(
∂ρ

∂T

)
p

. (10.77)

This relates the density derivative to the temperature derivative.
On integrating the one-dimensional momentum balance equation, there

follows the integral surface in space (ρ, T )

C2

ρ
+ p− ηl

∂uz

∂z
= C0, (10.78)

where C0 is an integration constant generally dependent on density and tem-
perature. We have used (10.73) for (10.78). It is helpful to note that the
isobaric condition means that ∇p is absent in (10.74). Consequently, p does
not appear in (10.78 ), but it is restored in the equation because both C0 and
p are constants.

At this point, we assume the phenomenological thermodynamic force–flux
relation for momentum ρuz (mass flux, i.e., the momentum):

ρuz = −D
∂ρ

∂z
−DT

∂T

∂z
, (10.79)

where D is the self-diffusion coefficient and DT is the thermal diffusion coeffi-
cient. For a statistical mechanics derivation of this equation, see Appendix B.
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When viscosities were discussed in Sect. 10.2, the temperature gradient term
in the phenomenological relation (10.79) did not appear because the temper-
ature was kept uniform over the system. It also follows from (10.79) that

ρuz = −De
∂ρ

∂z
= C, (10.80)

where De is the effective self-diffusion coefficient defined by

De = D − DT

ρα
. (10.81)

Upon differentiating uz = C/ρ with z and using the second equality in (10.80),
the velocity gradient can be written as

∂uz

∂z
=

C2

ρ2De
. (10.82)

Substituting (10.82) in (10.78), we obtain C2:

C2 =
ρ2De (C0 − p)

(ρDe − ηl)
(10.83)

and consequently
∂uz

∂z
=

(C0 − p)
(ρDe − ηl)

. (10.84)

Combining this result with (10.76), we obtain the desired relation for the
product of density and velocity gradients:

∂n

∂z

∂uz

∂z
= − nα (C0 − p)

(ρDe − ηl)
∂T

∂z
. (10.85)

In the present approach, the momentum and energy are thought to be trans-
ported by the tagged (tracer) particles in a manner similar to the mean free
path theory for gases. Therefore, the hydrodynamic considerations made ear-
lier leading to (10.85) are for tracer particles whose mean velocity is u∗

z,
which is opposite in direction to the mean fluid velocity uz. This means that
in (10.85)

∂uz

∂z
⇒ − ∂uz

∂z
.

Thus, with this taken into account, (10.85) may be written as

∂n

∂z

∂uz

∂z
=

nkBκ
∗

mD

∂T

∂z
, (10.86)
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where3

κ∗ =
mDα (C0 − p)
kB (ρDe − ηl)

. (10.87)

The factor κ∗ is not determined until De and C0 are determined definitively.
C0 can be determined from the boundary conditions on the momentum bal-
ance equation. For the flow configuration under consideration, the boundary
conditions, however, are experimental inputs that are not determined from
molecular theory. In any case, it is clear that C0 must be of order of p; it may
be related, for example, to the speed of sound in the fluid. We will return to
the equation for κ∗ after the question of De is dealt with.

Thermal Diffusion Coefficient

By combining (10.79) and (10.76), there follows the equation:

ρuz = ραDe
∂T

∂z
. (10.88)

On multiplying (10.82) and (10.88) side by side, we obtain the relation

ρuz
∂uz

∂z
=

αC2

ρ

∂T

∂z
. (10.89)

After inserting (10.82), the momentum balance equation (10.74) is recast in
the form

ρuz
∂uz

∂z
=
(
∂ηl

∂T

)
p

C2

ρ2De

∂T

∂z
+

αηlC
2

ρ2De

[
2 +

ρ

De

∂De

∂ρ

]
∂T

∂z
(10.90)

for which we have used the relation

∂ηl

∂z
=
(
∂ηl

∂ρ

)
T

∂ρ

∂z
+
(
∂ηl

∂T

)
ρ

∂T

∂z
. (10.91)

Note that this relation, using (10.76), can be written as

∂ηl

∂z
=

[(
∂ηl

∂ρ

)
T

− αρ

(
∂ηl

∂T

)
ρ

]
∂T

∂z
=
(
∂ηl

∂T

)
p

∂T

∂z
, (10.92)

3 In the expression for κ∗ in (50) in the paper by Rah and Eu [50] on the thermal
conductivity of simple liquids, the mass factor m is unfortunately missing. The
formula should read

κ∗ = mDα(C0 − p)/kB(ρDe − ηl).
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Because (
∂ηl

∂T

)
p

=
(
∂ηl

∂ρ

)
T

(
∂ρ

∂T

)
p

+
(
∂ηl

∂T

)
ρ

. (10.93)

By combining (10.88) and (10.90) and canceling out the common factor, we
obtain the differential equation for De,

∂ ln ρDe

∂ ln ρ
=

ρDe

ηl
−
[
1 +

1
α

(
∂ ln ηl

∂T

)
p

]
. (10.94)

Change the variable

$ = ln
(

ρ

ρ0

)
,

where ρ0 is the reference mass density suitably chosen, and define the abbre-
viation

Θ (ρ, T ) = 1 +
1

α (ρ, T )

(
∂ ln ηl

∂T

)
p

. (10.95)

The solution for (10.94) then is given by

ρDe (ρ, T ) = (ρDe)0 exp
[
−
∫ �

0

dtΘ (t, T )
]

(10.96)

×
{

1 − (ρDe)0

∫ �

0

dt
1

ηl (t, T )
exp
[
−
∫ t

�

dt′ Θ (t′, T )
]}−1

,

where the reference density ρ0 for $ may be taken with the density of the
fluid at which the Chapman–Enskog transport coefficients hold for the gas,
for example, the normal density of the gas. Hence, (ρDe)0 is the ρDe at ρ = ρ0,
that is, the Chapman–Enskog De. We note that for hard spheres

(ρD)0 = 1.204ηk, (10.97)

where ηk is the Chapman–Enskog shear viscosity of the gas. Because the right-
hand side of (10.96) is known as a function of density and temperature, De is
known. Provided that D is known, (10.96) for De gives a method of calculating
the thermal diffusion coefficient DT from information on the viscosity and self-
diffusion coefficient of the liquid. The method of calculating DT for liquids is
not much studied in the literature. This formal result also appears to be new
for DT for the liquid of interest.

10.3.5 Potential Part of Thermal Conductivity

We now return to the question of C0. If the momentum ρuz and the velocity
gradient at the boundaries are known for various temperatures, this integra-
tion constant can be determined. However, such information is not available.
Some other means must be sought to figure out the constant.
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Because the thermal conductivity is given by the Chapman–Enskog for-
mula at the normal density limit, it is useful to examine the low-density limit
of κ∗. For this purpose, it is convenient to note the following limiting behavior
of various quantities involved:

lim
n→0

(p− nkBT ) = 0,

lim
n→0

ρD = 1.204ηk,

lim
n→0

ηl =
4
3
ηk,

lim
n→0

αT = 1.

Then these limits imply

lim
n→0

κ∗ = 1.2 × 3
4

lim
n→0

(C0/p− 1)
(ρDe/ηl − 1)

. (10.98)

Because the limiting value of κ∗ on empirical grounds should be a constant
as follows:

lim
n→0

κ∗ � 0.40,

we infer the limiting behavior of the limit on the right of (10.98) as

lim
n→0

(C0/p− 1)
(ρDe/ηl − 1)

� 1
2
. (10.99)

Furthermore, in the same low-density limit we find

ρDe =
4
3
ηk

(
1 +

1
2αT

)
. (10.100)

On the basis of the limits (10.98)–(10.100), we find empirically that κ∗ may
be put in the form

κ∗ =
a0αT

1 + 2αT
, (10.101)

where a0 � 1.2 may be taken for argon considered in the analysis of the
theory. With κ∗ in (10.101) its low-density limit is reproduced, and the thermal
conductivity calculated with κ∗ in (10.101), as will be shown, has excellent
behavior with regard to density and temperature. However, the theory in this
form has become semiempirical because the limiting behavior of κ∗ at low
density must be fixed by choosing a0 suitably with the help of the empirical
thermal conductivity at low density.

It is worthwhile to examine the chain of arguments leading to the formula
for κ∗ obtained in (10.101). The identification of κ∗ in (10.101) implies that
C0 may be written as

C0 − p = a0
kBT (ρDe − ηl)
mD (1 + 2αT )

. (10.102)
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Having written C0 in this form, we see that because C0 is related to the
boundary values of the flow variables, the parameter a0 may be regarded
as related to the boundary conditions. The present procedure giving rise to
C0 in (10.102) may be regarded as a kinetic theory method of determining
the boundary condition for the mass balance equation because all quantities
other than a0 on the right-hand side of (10.102) can be calculated by statistical
mechanics. To pursue this line of examination a little further we substitute
the expression for C0 given in (10.102) in (10.83 ) to obtain

C =
√
a0ρ

√
kBTDe

m (1 + 2αT )D
. (10.103)

This then may be interpreted as the boundary condition on the momentum
of the fluid at the boundaries, and

√
a0 is the proportionality constant relat-

ing the molecular quantity to the boundary value of the momentum. Except
for the proportionality constant

√
a0 all quantities on the right-hand side of

(10.103) can be calculated by statistical mechanics. Therefore, in retrospect, if
the boundary condition on the momentum ρuz were taken with the expression
in (10.103), then (10.87) would have resulted directly. Equation (10.103) may
be taken as a conjecture for the boundary condition on the momentum. The
kinetic theory foundation for this boundary condition is absent at present. It
may be worthy of further examination in the future. In this work, we have
not taken this conjecture approach to be faithful to the original development
of the theory.

By using the formula for κ∗ in (10.101), Qp, which is the intermolecular
force contribution to thermal conductivity, can be obtained in the form

Qp = −λp(n, T )
(
∂T

∂z

)
, (10.104)

where λp(n, T ) is given by the formula,

λp(n, T ) =
n2

6D
χ (n, T ) (10.105)

with the definition of the molecular factor χ (n, T )

χ (n, T ) =
4πkBκ

∗

m

∫ ∞

0

drr4

[
rV ′ (r)

5
− V (r)

]
g(2)
eq (r, n)θ (r − ξ) . (10.106)

In the same spirit as for the bulk and shear viscosity formulas, the dynamic
pair correlation function (PCF) n(2)(r12, t) in (10.68) and (10.71) has been
replaced with the equilibrium pair correlation function g

(2)
eq (r12, n) weighted

by θ (r12 − ξ) to the lowest order approximation. Here θ (r − ξ) is again a step
function defined by θ (r − ξ) = 1 for r < ξ and θ (r − ξ) = 0 for r > ξ. On the
same physical grounds as for the stress tensors considered in the density fluctu-
ation theory of bulk and shear viscosities, the cutoff parameter ξ is introduced
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to account for the finiteness of the spatial range ξ of density variation caused
by an applied temperature gradient. As was found in the theories of shear and
bulk viscosities, the magnitude of ξ is less than the range of the intermolecu-
lar force rmax and of the order of a few molecular diameters at temperatures
below the critical point, in particular, near the triple point, whereas θ (r − ξ)
becomes unity at temperatures above and in the neighborhood of the critical
point. Because at present no molecular theories are available for the range
of density variations caused by an external perturbation, it plays the role of
an adjustable parameter for temperature below the critical point, especially,
near the triple point. However, the value of ξ cannot be arbitrary for thermal
conductivity, because the thermal conductivity must be consistent with the
shear and bulk viscosities. To maintain this desired mutual consistency, it is
necessary to take the same value of ξ for all three transport coefficients, the
shear and bulk viscosities and the thermal conductivity. Therefore, if the value
of ξ is fixed for bulk and shear viscosities, then it is no longer an adjustable
parameter for thermal conductivity, and vice versa.

Collecting the kinetic and potential energy parts of thermal conductivity,
we obtain the final expression for the thermal conductivity of simple liquids
as follows:

λ (n, T ) = λk (T ) +
ρ2

6D
χ (n, T ) . (10.107)

This will be used to calculate the thermal conductivity of simple liquids and
will be validated in comparison with the experimental data available in the
literature.

10.3.6 Eucken Relation

For dilute monatomic gases the Eucken relation holds [32] between thermal
conductivity and the shear viscosity

λk = εCvηk, (10.108)

where ε is the Eucken factor (a numerical factor), Cv the heat capacity of the
gas at constant volume, and ηk is the shear viscosity of the gas. According
to the Eucken relation, λk and ηk can be calculated from each other. The
Chapman–Enskog theory based on the Boltzmann equation supports this re-
lation [32]. However, because the potential part becomes very important and
dominant over the kinetic part in accounting for the thermal conductivity of
liquids, there is no assurance that a similar relation holds between the shear
viscosity and the thermal conductivity. From theoretical and practical view-
points, it should be interesting to examine a relationship between the thermal
conductivity and the shear viscosity of liquids.

Because the potential energy part λv of the thermal conductivity consists
of contributions arising from the potential energy transport and the work
related to the virial tensor, it may be useful to consider each contribution
separately for the relation in mind. We write
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χ (n, T ) = χv (n, T ) + χw (n, T ) , (10.109)

where

χv (n, T ) = −4πkBκ
∗

m

∫ ∞

0

drr4V (r) g(2)
eq (r, n)θ (r − ξ) , (10.110)

χw (n, T ) =
4πkBκ

∗

5m

∫ ∞

0

drr5V ′ (r) g(2)
eq (r, n)θ (r − ξ) (10.111)

and then examine the possibility of an Eucken relation for the potential energy
part. Because the potential energy part ηv of the shear viscosity of a simple
liquid was shown to be expressible by the formula

ηv =
ρ2

6D
ω (n, T ) , (10.112)

where
ω (n, T ) =

2π
15

∫ ∞

0

drr5V ′ (r) g(2)
eq (r, n)θ (r − ξ) , (10.113)

we obtain the following relation for the heat conductivity of a simple liquid:

λ = λk (T ) + C1ηv, (10.114)

where

C1 =
χ (n, T )
ω (n, T )

(10.115)

� 6kBκ
∗

m

[
1 +

χv (n, T )
χw (n, T )

]
.

In the second line of this equation, as mentioned earlier, the value of ξ has
been assumed to be identical for both the shear viscosity and thermal conduc-
tivity, although the nature of the external perturbation to cause such density
variations is different. This factor C1 is made up of the intermolecular force
and the pair correlation function only, apart from the parameter κ∗. The re-
lation (10.114) may be regarded as a generalized Eucken relation for liquids.
It will be discussed further when the thermal conductivity is calculated in the
subsequent section.

Because the derivation of the thermal conductivity formula is somewhat
lengthier than those for viscosity and bulk viscosity, it is useful to summa-
rize the important steps and the major approximations necessary for the
derivation:

1. The statistical mechanical expression for heat flux is calculated in a se-
ries of density and velocity gradients. For linear transport processes it
is sufficient to limit the series to the first order in density and velocity
gradients.
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2. For the first-order contribution to the heat flux, the dynamic pair corre-
lation function may be approximated by the equilibrium pair correlation
function weighted by a step function θ (r − ξ), where ξ ≤ rmax.

3. The velocity gradient ∇u in the gradient expansion is calculated by using
the mass and momentum balance equation given in terms of either the
self-diffusion coefficient, the thermal diffusion coefficient, or an empirical
parameter determinable from the boundary conditions on fluid velocity.
Because of the empirical parameter, the factor κ∗ becomes semiempirical.
We have noticed that the parameter a0 appearing in κ∗ may be related
to the boundary condition on the momentum.

4. By eliminating the velocity gradient thus obtained from the density gradi-
ent expansion for Q, we obtain the potential energy part Qp of the thermal
conductivity in terms of a self-diffusion coefficient, integrals involving the
intermolecular potential energy, an equilibrium pair correlation function,
and the Chapman–Enskog thermal conductivity for a dilute gas. The re-
sult is in a form parallel to the expressions for the shear and bulk viscosity
of liquids discussed in the previous sections. This parallelism in features
gives rise to a generalized Eucken relation between the thermal conduc-
tivity and the shear viscosity of the liquid.

5. The equilibrium pair correlation function may be calculated by an approx-
imate theory such as the PY integral equation, a Monte Carlo simulation
method, or a molecular dynamics method. The self-diffusion coefficient
should be either treated empirically or computed by a separate theory of
diffusion. The density fluctuation theory does not provide it.

10.3.7 Comparison with Experiment

Formula (10.107) derived for the thermal conductivity has been validated
in comparison with experiment in the literature, and it is reviewed in this
subsection. As for shear and bulk viscosity, (10.107) requires a self-diffusion
coefficient, either experimental or theoretical, at the desired density and tem-
perature. Because a fairly reliable theory of diffusion is available at present,
which was developed after the development of the theory discussed here, the
theory can be validated with the theoretical self-diffusion coefficient provided
by the theory of diffusion. However, formula (10.107) was originally validated
with either experimental self-diffusion coefficients or viscosity data because of
the absence of the theoretical D or η. For this reason, the empirical method
of validation originally used in the literature will be discussed. Because the
experimental data for D of liquid argon available in the literature at the time
were limited to those along the coexisting curve, whereas a large body of
experimental data was available for the shear viscosity of argon (see, for in-
stance, [51] and references therein), experimental shear viscosity data were
predominantly employed for the validation by using the generalized Eucken
relation that can provide the thermal conductivity from viscosity data. For
the purpose, the generalized Eucken relation (10.114) can be rewritten as
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λ = λk (T ) +
χ (n, T )
ω (n, T )

ηv. (10.116)

The experimental data on the viscosity of argon were used. The Lennard-Jones
potential is exclusively used for intermolecular interactions with potential pa-
rameters ε/kB = 119.8 and σ = 0.3405 nm. The temperature and density are
reduced in the usual manner.

For the equilibrium pair correlation function g
(2)
eq (r) required, either the

Monte Carlo (MC) simulation method or the Percus–Yevick (PY) integral
equation was used, depending on the thermodynamic states of interest. In the
approach using the PY integral equation, the solution was achieved numeri-
cally by combining iteration and fast Fourier transform methods.

The critical point of argon is at ρc = 535.7 kg m−3 and Tc = 150.86K.
When the temperature was approximately above twice the critical temper-
ature and mass density ρ was higher than 450 kg m−3 (ρ∗ = 0.27), the pair
correlation functions obtained from the MC simulations were used, whereas
g
(2)
eq (r) computed with the PY integral equation theory was employed for

other thermodynamic states at ρ � 450 kg m−3 or T < 2Tc, unless stated
otherwise. For the description of the Monte Carlo simulations for the pair
correlation functions, see [50].

In Fig. 10.8, the density dependence of the thermal conductivity at T =
348.15 K is shown. The dashed and solid curves are calculated, respectively,
with κ∗ = 0.4 and with κ∗ given by (10.101). As the temperature is elevated,
the theory with κ∗ = 0.4 overestimates the thermal conductivity of argon,
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Fig. 10.8. λ vs. ρ for argon at T = 348.15K. The solid curve was calculated from the
formula (10.116) with κ∗ given in (10.101), and the dashed curve was calculated with
κ∗ = 0.4. The filled circles (•) are experimental data. [Reproduced with permission
from Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 115, 9370 (2001). Copyright
2001 American Institute of Physics.]
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compared with experiment, particularly when the density is higher than ap-
proximately 800 kg m−3, whereas the results with κ∗ given by (10.101) are
excellent in the range of density examined. The isobaric expansion coeffi-
cient α in (10.101) was computed with the empirical formula proposed by
Tegeler et. al. [52] in their work on the equation of state for argon. Because
the thermal conductivity in the liquid density regime is of primary interest
here, the experimental value was used for λk (T ) in (10.116) instead of the
Chapman–Enskog thermal conductivity for the gas. However, note that the
latter is in fairly good agreement with the former. The pair correlation func-
tions employed to calculate the thermal conductivity of argon presented in
Fig. 10.8 were obtained from MC simulations. The integrals for χ (n, T ) and
ω (n, T ) were, respectively, evaluated with g

(2)
eq (r) thus obtained in the simu-

lated thermodynamic states over the density range of 200–1220 kg m−3. An
interpolation scheme, if necessary, was used to estimate χ (n, T ) and ω (n, T )
at densities in the range other than the simulated density states. Monte Carlo
simulation methods were employed at T = 348.15 K because the PY integral
equation theory was found unreliable at that temperature.

The reliability of (10.116) and (10.101) was also tested at different tem-
peratures. In Fig. 10.9, the density dependence of λ calculated with (10.116)
for argon at T = 298.15 K is shown and compared with experimental val-
ues [38, 53]. The dashed and solid curves are the results calculated from
(10.116), respectively, with κ∗ = 0.4 and the formula (10.101). For T ∼ 2Tc,
the pair correlation function g

(2)
eq (r) was obtained from MC simulations. The

agreement between the theory and experiment (symbols) is excellent up to
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Fig. 10.9. λ vs. ρ for argon at T = 298.15 K. The solid curve was calculated with
formulas (10.116) and (10.101), and the dashed curve was obtained with κ∗ = 0.4.
The symbols are experimental data. There was no adjustable cutoff parameter used.
[Reproduced with permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys.
115, 9370 (2001). Copyright 2001 American Institute of Physics.]
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a density of about 1600 kg m−3 (ρ∗ = 0.95), after which the deviation from
the experimental data increases. However, note that the shear viscosity values
used for ηv in (10.116) are subject to larger errors for density higher than
approximately 1300 kg m−3, which is the upper limit for the empirical fitting
formula for the experimental viscosity for T � 200 K. For the sake of com-
parison, the thermal conductivity (×), which was evaluated by interpolation
or extrapolation from the Younglove–Hanley empirical fitting formula [51] for
argon, is shown. The open circles (©) in Fig. 10.9 are the only experimental
data readily available in the literature for the thermal conductivity of argon
at a density higher than approximately 1300 kg m−3. Some independent ex-
periments at such high density would be useful to make the comparison of the
theory with experiment more definitive.

There was no cutoff parameter used so far for calculating the thermal con-
ductivity coefficients of argon at T > Tc. It indicates that the range of density
fluctuations ξ caused by a temperature gradient at T � Tc is comparable with
or larger than the intermolecular force range. However, when temperature is
below Tc, especially near the triple point, the cutoff parameter ξ is no longer
equal to or larger than the range of the interaction potential.

It is well established in the kinetic theory of gases that the ratio of λ/Cvη
for a dilute gas is independent of density. However, as the density increases,
the ratio deviates from the constant Eucken ratio, and for argon the ratio
λ/Cvη was empirically demonstrated [38] to deviate from a constant value in-
dependent of density, as the density increases. The factor of interest regarding
this question is C1 in (10.115). It is convenient to rearrange (10.115) to the
following form

λ

Cvη
=

λk

Cvη

(
1 + C1

ηv

λk

)
. (10.117)

The reduced form of C∗
1 ≡ C1/Cv is shown as a function of density in

Fig. 10.10, for which the heat capacity Cv is evaluated from the empirical
equation of state for argon [52]. The curves are the density fluctuation the-
ory results: solid curve at 298K and broken curve at 348 K for κ∗ given by
(10.101), whereas the symbols are from the experiments by Michels et al. [38]:
filled circles (•) at 298K and open circles (©) at 348K. The pair correla-
tion functions used for the calculations were obtained from MC simulations.
As shown in Fig. 10.10, the ratio C∗

1 decreases noticeably as density increases.
The coefficient C1 is a decreasing function of density in the range of liquid den-
sity, and the heat capacity Cv monotonically increases as density increases.
Note that the ratio of χv/χw in (10.115) is of the order of unity at liquid
density but increases with density at constant temperature. It clearly implies
that the contribution of the virial part χw to the thermal conductivity is
comparable with that from the potential energy transport χv. This is another
indication that the displacement operator in the virial part is as important as
the potential energy part for heat flux in the liquid density range and hence
should not be ignored.
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Fig. 10.10. Density dependence of C∗
1 ≡ C1/Cv at two isotherms. The curves are

theoretical: solid curve at 298 K and broken curve at 348 K, whereas the symbols
are experimental: filled circles (•) at 298K and open circles (©) at 348 K. Equa-
tion (10.101) was used for κ∗. [Reproduced with permission from Kyunil Rah and
Byung Chan Eu, J. Chem. Phys. 115, 9370 (2001). Copyright American Institute
of Physics.].

10.4 Concluding Remarks

Historically, the density and temperature dependence of transport coefficients
of liquids and dense gases has been one of the important motivations for devel-
oping the kinetic theory of matter beyond the level of the Boltzmann equation,
which was found good only for dilute gases. The theory of Enskog [54] only
pointed the direction to take to solve the problem. The intensive attention
paid to the BBGKY hierarchy theory since 1946 attests to the importance
of the problem and the influence of the Enskog theory. Yet the problem has
remained intractable to a practical solution by the BBGKY approach and
other approaches, including the linear response theory. Although the general-
ized Boltzmann equations described in earlier chapters provide formal expres-
sions for transport coefficients of liquids and dense gases as does the linear
response theory, the difficulty of obtaining solutions for many-particle col-
lision dynamics in accurate and practical forms has rendered the approach
to remain only formal. The density fluctuation theory discussed for simple
fluids in this chapter provides a breakthrough of the barrier posed by the
problem simply because the transport coefficients, such as bulk and shear vis-
cosity and thermal conductivity, are expressed in terms of quantities readily
computable by computer simulation for equilibrium liquids. In this density
fluctuation theory approach, nonconserved variables evolve as functionals of
conserved variables such as density, momentum, and internal energy, which
are described by the conservation laws or suitable constitutive equations for
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the conserved variables. The many-particle collision effects are borne by the
pair correlation functions, which intimately reflect the structures of liquids
and dense gases, and the self-diffusion coefficient, which determines the time-
and spatial scale of transport processes in fluids. These latter components
of the theory are computable by computer simulation or other theoretical
means. When the aforementioned factors are combined for transport coeffi-
cients, there result formulas whose potential energy contributions are reminis-
cent of the celebrated Stokes–Einstein relation, although the molecular theory
contents of the formulas derived are quite different from the Stokes–Einstein
relation. It should be emphasized that the Stokes–Einstein-like formulas for
transport coefficients are statistical mechanical and for fluids consisting of
molecules, whereas the original Stokes–Einstein relation is hydrodynamic and
for macroscopic particles suspended in a continuous medium. As will be shown
in Chap. 12, diffusion coefficients can be calculated on the basis of intermolecu-
lar forces if the simulation data for the pair correlation functions are available,
and thus the density fluctuation theory can be made fully molecular.

The density fluctuation theory presented in this work is only a leading or-
der theory, which should be refined to include higher orders, so that nonlinear
transport processes can also be described. This subject remains to be studied
in the future.
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11

Density Fluctuation Theory: Complex Fluids

In this chapter, the density fluctuation theory developed for simple liquids in
Chap. 10 is generalized to study transport processes and associated transport
coefficients of complex fluids. The theory will be developed with particular
examples of diatomic fluids, but it can be easily adapted to deal with more
complicated polyatomic fluids. The basic ideas of the density fluctuation the-
ory remain the same as those for simple fluids. The presence of internal degrees
of freedom necessitates suitably generalizing symbols. For example, the pres-
sure and virial tensors get more complicated because there are contributions
from the internal degrees of freedom. In the dilute fluid regime, the singlet
distribution function also involves the internal distribution function. There-
fore, it must be described by a suitably generalized kinetic equation for the
singlet distribution functions involving also internal degrees of freedom. The
remarkable feature of the resulting theory is that despite all the changes made
necessary by the presence of internal degrees of freedom the transport coeffi-
cients can still be described in terms of a self-diffusion coefficient, which sets
time- and spatial scales for the transport processes, and equilibrium site–site
pair distribution functions. Thus, once these basic quantities are known with
regard to their density and temperature dependence it is possible to under-
stand the density and temperature dependence of transport coefficients such
as bulk and shear viscosity and thermal conductivity of complex fluids. We
will be using the system of notation already developed in Chap. 8 for the
polyatomic kinetic equation.

Because the shear viscosities and thermal conductivities of molecular liq-
uids have been little studied in statistical mechanics and there is no reliable
molecular theory method for them except for some computer simulation meth-
ods, the present density fluctuation theory, although the self-diffusion coeffi-
cient is treated semiempirically to validate the theory, provides a long sought,
practicable, and reliable method of computing them by a statistical mechan-
ical method based on an interaction potential model. It, furthermore, gives a
way to assess, from the standpoint of experiments on transport coefficients,
the qualities of simulation and experimental data on self-diffusion coefficients
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reported in the literature, if the formula, for example, for shear viscosity ob-
tained is used in reverse to estimate the self-diffusion diffusion coefficient and
compare the result with those by simulations or experiment.

11.1 Nonequilibrium Ensemble Distribution Function

We consider a single-component polyatomic fluid consisting of molecules of l
atoms or sites. The grand ensemble kinetic equation for polyatomic fluids has
an equilibrium solution, which is a solution of the equilibrium condition

R
[
F (N)

eq

]
= 0. (11.1)

This equation is a consequence of the H theorem satisfied by the polyatomic
kinetic equation. Its solution subject to momentum and energy conservation
is satisfied by the equilibrium grand canonical ensemble distribution function
for polyatomic fluids

F (N)
eq

(
x(N)

)
= (cΞeq)

−1 exp

⎡⎣−∫
V

drβ (r)
N∑

j=1

l∑
α=1

Heq
jαδ (rjα − r)

⎤⎦ , (11.2)

where the subscript a refers to the sites, the subscript j refers to particles in
a molecule of species a, and other symbols are

Heq
jα = H ′

jα −mαμ̂α (11.3)

with H ′
jα denoting the Hamiltonian of particle α ∈ j defined below [see (11.10)

and also (7.3) in Chap. 7.], Ξeq is the equilibrium grand canonical ensemble
partition function

Ξeq =

〈
exp

⎡⎣−∫
V

drβ (r)
N∑

j=1

l∑
α=1

Heq
jαδ (rjα − r)

⎤⎦〉 (11.4)

and c stands for the factor
c = h3lNN ! (11.5)

with h denoting the Planck constant and β (r) = 1/kBT (r). The angular
brackets for averages in this chapter also have the same meaning as those
in Chap. 8—the grand canonical ensemble averages. We reiterate that the
equilibrium state is achieved in the dynamic grand ensemble when the petit
ensembles therein are equilibrated with regard to energy and particle numbers.

The nonequilibrium grand canonical ensemble distribution function is then
introduced in the same spirit as for the dilute gas counterpart, which was
constructed on the basis of the Boltzmann equation [1,2]. Although presented
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in Chap. 8, we introduce it again here to help in reading this topic:

F (N)
c (x(N), t) = c−1 exp

{
−
∫

V

drβ (r,t)

[
N∑

j=1

l∑
α=1

Hjαδ (rjα − r) − ρΥ (r, t)

]}
,

(11.6)

where

Hjα = T−1

⎛⎝H ′
jα +

∑
q≥1

Xqh
(q)
jα −maμ̂a

⎞⎠ , (11.7)

Ξ =

〈
exp

⎡⎣−k−1
B

∫
V

dr
N∑

j=1

l∑
α=1

Hjaδ (rjα − r)

⎤⎦〉 , (11.8)

and
kB lnΞ = −

∫
V

drρΥ (r, t) /T (r,t). (11.9)

The notation is the same as that used in the previous chapters. As all Xq

vanish, F
(N)
c tends to the equilibrium distribution function F

(N)
eq

(
x(N)

)
. If

F
(N)
c

(
x(N), t

)
is substituted in the kinetic equation (8.18) and the evolution

equations for the intensive variables such as T , μ̂a, and Xq in the expres-
sion for F

(N)
c are derived and solved, then F

(N)
c fully becomes a solution of

the kinetic equation. This procedure, however, is not pursued in the ther-
modynamic theory of irreversible processes in the framework of generalized
thermodynamics [3] because the intensive variables in thermodynamics are
treated as phenomenological inputs, as for simple fluids. We have discussed
the status of F (N)

c in connection with generalized thermodynamics in Chap. 8,
and the same remarks apply to the nonequilibrium grand canonical ensem-
ble distribution function presented here. For details of this point, see also
Sects. 7.4, 7.5, and 10.5 of [2].

11.2 Excess Normal Stress

We consider N polyatomic molecules of a single component contained in vol-
ume V at temperature T . Our interest in this section lies in the excess normal
stress in a complex fluid. We have seen in the previous chapter that density
fluctuations can have significant effects on the nonequilibrium behavior of the
stress in simple fluids when the fluids are removed from equilibrium. They
will have similar effects on complex fluids but in a more complicated manner.
In the classification scheme used for fluids in this work diatomic liquids are
included in complex fluids. In this chapter, our attention on complex fluids
will be eventually focused on diatomic fluids because experimental data are
available for validating the theory developed for diatomic fluids and they are
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the simplest of complex fluids that illustrate the essential features of the the-
ory as concisely as possible. Nevertheless, in this section some definitions will
be made for generic polyatomic fluids consisting of l sites.

For such a polyatomic fluid, the Hamiltonian for atom (site) j is assumed
to be given by

H ′
jα =

1
2
mαC2

jα +
1
2

l∑
α�=γ=1

wjαjγ +
1
2

N∑
k=1

(k �=j)

l∑
γ=1

Vjαkγ + V(ex)
jα , (11.10)

where wjαjγ is the potential energy responsible for binding neighboring sites
α and γ in molecule j or the intramolecular site–site interaction energy if
α and γ are nonadjacent sites and thus not directly bonded, Vjαkγ is the
intermolecular site–site interaction potential (j �= k), and V(ex)

jα is the external
potential energy on site α ∈ j.

Once we have the distribution function F
(N)
c

(
x(N), t

)
in accordance with

the definition given in Chap. 8, we may compute the ensemble average of any
dynamic variable A, for which the microscopic density may be written as

A =
N∑

j=1

l∑
α=1

Ajα

(
x(N)

)
δ (rjα − r) . (11.11)

We thereby obtain, for example, the mass density

ρ (r, t) =

〈
N∑

j=1

l∑
α=1

mαδ (rjα − r)F (N)
c

〉
(11.12)

and the momentum density ρu

ρu (r, t) =

〈
N∑

j=1

l∑
α=1

pjαδ (rjα − r)F (N)
c

〉
, (11.13)

where u (r, t) is the fluid velocity.
The stress (pressure) tensor P for the complex fluid can be decomposed

into three parts
P = Pk + P(s)

v + P(m)
v , (11.14)

where Pk is the kinetic part, P(s)
v is the intramolecular site–site potential

energy part, and P(m)
v is the intermolecular site–site potential energy part.

Their statistical mechanical expressions are

Pk =
N∑

j=1

l∑
α=1

〈
mjαCjαCjαδ (rjα − r)F (N)

c

〉
, (11.15)
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P(s)
v =

1
2

N∑
j=1

l∑
α=1

〈
W(s)

jαjγδ (rkγ − r)F (N)
c

〉
, (11.16)

P(m)
v =

1
2

N∑
j �=k=1

l∑
α,γ=1

(jα�=kγ)

〈
Wjαkγδ (rkγ − r)F (N)

c

〉
, (11.17)

where W(s)
jαjγ and Wjαkγ are, respectively, intramolecular and intermolecular

virial tensors for the polyatomic fluid. They are defined by

W(s)
jαjγ =

∫ 1

0

dζrjαjγF
(s)
jαjγ (rjαjγ) exp (−ζrjαjγ · ∇) , (11.18)

Wjαkγ =
∫ 1

0

dζrjαkγFjαkγ (jαkγ) exp (−λrjαkγ · ∇) , (11.19)

where F(s)
jαjγ is the intramolecular interaction force between sites α ∈ j and

γ ∈ j, whereas Fjαkγ is the intersite interaction force between sites α ∈ j

and γ ∈ k (j �= k). The intramolecular virial tensor W(s)
jαjγ is the additional

contribution, which is not present in simple liquids. Note that there are also
indirect contributions to the intermolecular virial tensor from the internal
degrees of freedom. In both cases, the exponential displacement operator in
the generalized virial tensor operators is an important factor that gives rise
to spatial variation of one-particle densities within the site–site interaction
range and over the volume comparable to the molecular size in the density
fluctuation theory. We will consider these quantities in diatomic liquids for
the sake of simplicity in formalism.

11.2.1 Kinetic Part of the Stress Tensor

For the simplicity of formalism, the discussion will be limited to a two-
interaction site model—for example, a diatomic molecule. The fluid is also
assumed to be a single component. The general expression for the kinetic part
Pk of the stress tensor given by (11.15) for a site–site interaction model is
expressible in terms of the relative and center-of-mass coordinates and mo-
menta of the diatomic, or two-site, molecules. The two sites of a molecule are
denoted by 1 and 2. To achieve the desired aim we introduce the relative co-
ordinate r12j and the center-of-mass coordinate Rcj as well as their conjugate
momenta or velocities denoted by v12j and Vcj :

r12j = rj2 − rj1, MRcj = m1rj1 + m2rj2, (11.20)



292 11 Density Fluctuation Theory: Complex Fluids

where M = m1+m2, rj1 and rj2 are the position vectors of the two-interaction
sites in a fixed coordinate system. The conjugate momenta transform as
follows:

Pcj = MṘcj = MVcj = pj1 + pj2,

(11.21)

p12j = mṙ12j = mv12j =
m1

M
pj2 −

m2

M
pj1,

where
pj1 = m1ṙj1, pj2 = m2ṙj2 (11.22)

with m denoting the reduced mass of the diatomic molecule m = m1m2/M .
By using these transformations in the expression for Pk, we obtain for

homonuclear diatomic fluids

Pk (r, t) =

〈
N∑

j=1

MCjCjDCδ (Rcj − r)F (N)
c

〉

−
〈

N∑
j=1

m [Cj ,vj12] DCIδ (Rcj − r)F (N)
c

〉

+

〈
N∑

j=1

mv12jv12jDIδ (Rcj − r)F (N)
c

〉
, (11.23)

where Cj = Vjc − u is the peculiar velocity of the center of mass of the
molecule j, [Cj ,vj12] is a symmetric tensor defined by

[Cj ,vj12] = Cjvj12 + vj12Cj

and various displacement operators are abbreviated as follows:

DC =
m1

M
exp
(
− m

m1
rj12 · ∇r

)
+

m2

M
exp
(

m

m2
rj12 · ∇r

)
,

DCI = exp
(
− m

m1
rj12 · ∇r

)
− exp

(
m

m2
rj12 · ∇r

)
,

DI =
m

m1
exp
(
− m

m1
rj12 · ∇r

)
+

m

m2
exp
(

m

m2
rj12 · ∇r

)
.

To derive Pk in this form the delta functions have been written in the form

δ

(
Rcj ±

m

mα
r12j − r

)
= exp

(
∓ m

mα
r12j · ∇r

)
δ (Rcj − r) . (11.24)

If the delta functions are cast in the forms given in (11.24), the mean velocity
u defined earlier may be expressed in a form more amenable to physically
more insightful interpretation: with the definition of displacement operators
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W(∓)
j12 =

m

mα

∫ 1

0

dλ rj12 · ∇r exp
(
∓λm

mα
rj12 · ∇r

)
, (11.25)

ρu (r, t) can be cast in the alternative form

ρu (r, t) =
N∑

j=1

〈
Pcjδ (Rcj − r)F (N)

c

〉
(11.26)

+
N∑

j=1

〈(m2

M
Pcj − pj12

)
· ∇rW

(+)
j12 δ (Rcj − r)F (N)

c

〉

−
N∑

j=1

〈(m1

M
Pcj + pj12

)
· ∇rW

(−)
j12 δ (Rcj − r)F (N)

c

〉
.

This form for the mean velocity of diatomic fluids suggests that it consists
of the center-of-mass velocity of the molecule as well as the motions of the
sites relative to the center of mass. From the expression, we see that if the
molecule is not rigid the mean velocity of the molecule can be significantly
affected by the motions of the interaction sites relative to the center of mass.
If the variation with respect to ∇r is ignored, then the mean velocity is given
by the center-of-mass part only:

ρu (r, t) =
N∑

j=1

〈
Pcjδ (Rcj − r) f (N)

(
r(N),p(N); t

)〉
. (11.27)

If molecules are homonuclear diatomic molecules or of identical two sites
the formulas are simplified, and we obtain Pk in the form

Pk (r, t) =

〈
N∑

j=1

MCjCj cosh
(

1
2rj12 · ∇r

)
δ (Rcj − r)F (N)

c

〉

+

〈
N∑

j=1

mvj12vj12 cosh
(

1
2rj12 · ∇r

)
δ (Rcj − r)F (N)

c

〉

−
〈

N∑
j=1

2m [Cj ,vj12] sinh
(

1
2rj12 · ∇r

)
δ (Rcj − r)F (N)

c

〉
.

(11.28)

Because the Jacobian is unity for the coordinate transformation

dpj1dpj2drj1drj2 = dPcjdRcjdp12jdr12j ,

we may retain the meaning of the angular bracket symbol unchanged for the
integration in the phase space of the new variables.
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It is now useful to introduce the singlet distribution function f for molecule
j defined by

f(Xc, x12,t) = N

∫∫
dr(N−1)dp(N−1)F (N)

c (x(N), t), (11.29)

where Xc = (Pcj ,Rcj) and x12 = (p12j , rj12) are the phases of the pair of
particles (12). This distribution function is the reduced probability of finding
molecule j at (Xc, x12) in the phase space of the pair regardless of the distrib-
ution of the N −1 molecules in the phase space of N molecules. In contrast to
a monatomic fluid, this singlet distribution function contains the distribution
function for the internal degrees of freedom.

Because molecules are identical and the integrands involve only single-
molecule variables, the integral in (11.29) reduces to the one that involves the
singlet distribution function, and the kinetic part of the stress tensor (11.28)
for Pk then reduces to the formula

Pk =
∫

dPc

∫
dRc

∫
dp12

∫
dr12f (Xc, x12, t) (11.30)

×
[
(MCC + mv12v12) cosh

(
1
2
r12 · ∇r

)
− 2m (Cv12 + v12C) sinh

(
1
2
r12 · ∇r

)]
δ (Rc − r) .

Here the subscript j is omitted from the variables involved. The singlet distrib-
ution function f must be determined from the solution of the kinetic equation.
If the variation of the singlet distribution function f over r12 is neglected, the
second integral in (11.30) may be ignored in the lowest order approximation,
and the approximate Pk follows:

Pk (r, t) =
∫

dPc

∫
dp12

∫
dr12 (MCC + mv12v12) f(Xc, x12; t). (11.31)

Thus it is seen that the kinetic contribution to the stress tensor for a diatomic
fluid consists of both the translational motion of the center of mass and the
internal motion of the molecule, as intuitively expected. It is reiterated that
the expression (11.31) for Pk is an approximation obtained from (11.30) by
neglecting the variation of the singlet distribution function f over the in-
tramolecular distance r12 between the atoms (sites) in the molecule. If the
diatomic molecule is long then the density variation accompanying the varia-
tion of f can be sizable, and it is expected that there should be a significant
effect from it.

If the molecule is a rigid diatomic molecule with bond length b, then be-
cause vj12 can be expressed simply in terms of the bond length and angular
velocity ω12j , bω12j , which is related to the angular momentum j of the mole-
cule, the tensor mv12v12 may be written as
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mv12v12 =
jj
I
, (11.32)

where I is the moment of inertia I = mb2 of the molecule. Thus in this case
we finally obtain Pk in the form,

Pk (r, t) =
∫

dPc

∫
dp12

∫
dr12

(
MCC +

jj
I

)
f(Xc, x12; t), (11.33)

for a rigid diatomic molecular fluid. We will discuss an approximate method
of evaluating this expression for Pk later.

11.2.2 Potential Part of the Stress Tensor

We now reduce the potential energy parts of the stress tensor under the
assumption of a rigid homonuclear diatomic fluid or a rigid linear poly-
atomic molecular fluid of two identical sites. For rigid diatomic or rigid lin-
ear polyatomic molecules, intramolecular bonding forces are equal to zero,
∇rjα

w12(rj1, rj2) = 0. Therefore, the intramolecular virial tensor W(s)
jαkγ in

(11.18) vanishes. The potential energy contribution to the stress tensor then
consists only of the intermolecular contribution P(m)

v , which is made up of the
terms involving interactions and pair correlation involving sites on different
molecules. Furthermore, because the particles are identical, the dynamic pair
distribution function n(2) (r, r′; t) may be written in the form,

n(2) (r, r′, t) = n (r, t)n (r′, t) g(2) (r, r′, t) , (11.34)

where g(2) (r, r′, t) denotes the dynamic pair correlation function between sites
on two different molecules and n (r, t) is the density of molecules at position r
at time t. The potential energy part of the stress tensor then can be expressed
in the form,

P(m)
v (r, t) = −1

2

∫ 1

0

dλ
∫

dR
RR
R

V ′ (R)n(2) [r − λR, r + (1 − λ)R; t] ,

(11.35)

where R denotes the distance between the sites on two different molecules and
V ′ (R) = dV (R) /dR. We notice that because the intramolecular degrees of
freedom have been integrated out, there is no quantity in the integrand that
directly manifests the molecularity of the fluids, although the pair correlation
function n(2) (r, r′, t) implicitly contains that piece of information because it
must be a solution of the evolution equations for site–site pair correlation
functions of the fluids, for example, dynamic Ornstein–Zernike equations (see
Chap. 9) for site–site pair correlation functions. For the model of diatomic
fluids under consideration the potential energy part Pv of the stress tensor is
then simply
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P(v) = P(m)
v (r, t) . (11.36)

This expression for P(v) implies that all contributions to P(v) are superficially
from the intermolecular site–site interactions if rigid diatomic or two-site mole-
cules are considered. However, it should be emphasized that the molecular
structure does have influence indirectly through the intermolecular site–site
correlation functions.

11.2.3 Bulk Viscosity of Rigid Homonuclear Diatomic Fluids

To derive the bulk viscosity formula for a rigid homonuclear diatomic liquid
we consider a flow configuration identical with that previously considered for
simple liquids.

Therefore we suppose, for example, that a sound wave passes through a
fluid periodically compressing the fluid in the direction of the wave, and then
take into account the density variation from the average equilibrium density
value owing to the compressional/dilatational effects of the sound wave.

We assume that the sound wave propagates in the z direction in a suitably
fixed Cartesian coordinate system. We have shown in Chap. 10 that the excess
normal stress in such a flow configuration is given by

Δ =
2
3

(Pxx − Pzz) (11.37)

in terms of the primary normal stress difference.
Because the stress tensor P is decomposable into kinetic and potential

energy as shown earlier from statistical mechanics considerations, Δ is also
decomposable into kinetic and potential energy:

Δ = Δk + Δv, (11.38)

where Δk and Δv are, respectively, the kinetic and the potential energy of the
excess stress tensor. They are defined by

Δk =
1
3
TrPk − p, (11.39)

Δv =
2
3

(
P (v)

xx − P (v)
zz

)
, (11.40)

where p is the hydrostatic pressure. It is therefore possible to identify the
kinetic and the potential energy parts of the bulk viscosity if they can be
put into forms that can be compared with the phenomenological constitutive
equations for them:

Δk = −ηk
b

∂uz

∂z
, (11.41)

Δv = −ηv
b

∂uz

∂z
. (11.42)
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For monatomic liquids it has been shown in Chap. 10 that Δk = 0, but for
nonsimple or molecular liquids with internal degrees of freedom it does not
necessarily vanish. This means that there is a kinetic energy contribution to
the bulk viscosity, even at low densities, if the fluid consists of molecules
with an internal structure. This is well known in the dilute polyatomic gas
kinetic theory [4]. Thus the bulk viscosity of a molecular fluid consists of two
components, kinetic and potential,

ηb = ηk
b + ηv

b . (11.43)

The two components have different physical origins. The potential energy
contribution ηv

b , which has to do with the intermolecular site–site interactions,
makes a major contribution in the high-density regime, whereas the kinetic
energy contribution, which is dominant in the low-density regime and arises
from the coupling of translational and rotational motions of the molecule,
makes a minor contribution in the liquid density regime. The calculation of the
potential energy contribution ηv

b will be the principal objective of this section.
The theory of the kinetic energy contribution is available in the literature on
polyatomic gases [4].

Kinetic Energy Part of Bulk Viscosity

To calculate ηk
b we consider the singlet distribution function f(Xc, x12; t) for

a fluid consisting of rigid linear molecules, which are assumed to obey the
Boltzmann–Curtiss kinetic equation [5] introduced in Chap. 4. As shown in
the chapter, the singlet distribution function may be expanded in moments
in the form

f(Pc, r,x12; t) = feq (Pc,x12)
[
1 + A0

(
2
3
w2 − 1

)
+ A1 · w

(
w2 − 5

2

)
+A2 : [ww](2) + B0

(
φ2 − 1

)
+ B1 · w

(
w2 − 5

2

)
+B2 : [φφ](2) + · · ·

]
, (11.44)

where x12 = (p12, r12) and other symbols are defined by

w =

√
Mβ

2
C,

φ =

√
β

2I
(j−〈j〉) ≡

√
β

2I
J. (11.45)

Here feq (Pc,x12) is the local equilibrium distribution function given by

feq (Pc,x12) = n (r)
(
Mβ

2π

)3/2(
β

8π2I

)
exp

(
−βMC2

2
− βJ2

2I

)
. (11.46)
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According to the moment method [1,2] the coefficients A0, B0, and so on are
given in terms of the conjugate nonconserved variables as follows:

A0 = 3Δk/2p, A1 = Qk/pĈpT, A2 = Πk/p,

B0 = (Erot − kBT ) /p, B1 = Qrot/pĈrotT, B2 = 15Θ/4p,
(11.47)

where Erot = 〈Hrot〉 with Hrot denoting the rotational Hamiltonian; Ĉp =
5kB/2m, Ĉrot = kB, the rotational heat capacity per unit mass; Qk and Qrot

are the translational and rotational parts of heat flux, respectively; and

Θ =
∫

dPc

∫
dp12

∫
dr12 [φφ](2) f(Xc, x12; t). (11.48)

Because the jj/I term is not related to the velocity gradient ∇u in the
linear order with respect to nonconserved variables such as momentum and
heat fluxes, it does not have anything to do with the viscosity; it only con-
tributes to Pk a term from the polarization of the angular momentum, which
is a physical effect different from that for viscosity. Therefore, for the bulk vis-
cosity it is sufficient to consider, by using the distribution function in (11.44),
the kinetic energy part Δk of the excess normal stress Δ in the form

Δk =
1
β

∫
dPc

∫
dp12

∫
dr12

(
2
3
w2 − 1

)
f(Xc, x12; t). (11.49)

The right-hand side does not vanish if the gas molecule has internal degrees
of freedom. It gives rise to a bulk viscosity according to the kinetic theory
that can be developed on the basis of the Boltzmann–Curtiss kinetic equa-
tion of polyatomic gases. Thus, by implementing the moment method for the
Boltzmann–Curtiss kinetic equation for bulk viscosity, it is possible to obtain
the kinetic part of the bulk viscosity ηk

b which is easily shown to be given by
the Chapman–Enskog collision bracket integral [4] for a rigid linear molecule
in the lowest order of approximation. For a detailed formula for dilute gas bulk
viscosity the reader is referred to the literature on polyatomic gases [4], where
the kinetic theory is developed with the Waldmann–Snider equation, but the
Boltzmann–Curtiss kinetic theory results can be easily recovered therefrom.
Replacing the kinetic contribution to the bulk viscosity with that of a dilute
gas at the same temperature may be considered a reasonable approximation.
In the actual analysis of experimental data on diatomic liquids later in this
chapter, the kinetic contribution ηk

b to the bulk viscosity is taken as an em-
pirical reference value at normal gas density because the bulk viscosity in the
dense gas and liquid density regimes is examined relative to the kinetic en-
ergy contribution. Therefore ηk

b is not of interest and hence will not be further
considered in this work on transport coefficients in the liquid density regime.



11.2 Excess Normal Stress 299

The Potential Energy Part of Bulk Viscosity

Because the internal stress tensor P(s)
v is equal to zero for rigid linear molecular

fluids the potential energy part of the excess normal stress Δv is given entirely
by the following formula in terms of the reduced dynamic pair distribution
function:

Δv =
1
6

∫ 1

0

dζ
∫

dr12

(
r12 −

3z2
12

r12

)
dV(r12)

dr12
×n(2) [r12; z − ζz12, z + (1 − ζ)z12, t] . (11.50)

Owing to the site–site representation of correlations, the virial in the inte-
gral for Δv does not explicitly involve the internal degrees of freedom of the
molecule. As a consequence, it has been possible to reduce the distribution
function F

(N)
c to the site–site pair distribution function n(2) as in (11.50), and

Δv for rigid linear molecular fluids takes exactly the same form as that for the
excess normal stress for simple liquids given in (10.4). Therefore the integral
in (11.50) can be treated in the same manner as the integral in (10.4). Thus
we obtain the expression for Δv for rigid molecular liquids:

Δv = −2
9
ωb (ξ)

(
∂n

∂z

)2

, (11.51)

where

ωb (ξ) =
2π
15

∫ ∞

0

drr5 dV(r)
dr

g(2)
eq (r) θ (ξ − r) . (11.52)

Note that the pair correlation function in (11.50) can be determined by solv-
ing the DOZ equation under a suitable closure. The density derivatives of
g
(2)
eq (r12;n) can be estimated to be of relatively smaller magnitude than the

leading term and hence have been neglected. As it was for simple liquids, this
argument admittedly requires a more rigorous analysis, but the approximation
yields practical and sufficiently accurate results for bulk viscosity. A theory
of dynamic pair correlation function is not yet in a sufficiently mature state
and awaits further development.

The density variation within the correlation range ξ will be approximated
by the mean bulk density as it was for simple liquids. It is also expected,
similarly to simple liquids, that the value of ξ depends on temperature. Thus,
if the fluid is near the critical point the density fluctuations are extended over
a long distance (long range), and their range ξ may be equal to or larger
than rmax, the range of intermolecular force. But if T is sufficiently below the
critical temperature Tc and, particularly, near the triple point, the value of ξ
may be of the order of a few molecular diameters. This finiteness of the range
of density fluctuation is taken into account in the integral by approximating
n(2) (r, t) by n(2) (r, t) � g

(2)
eq (r) θ (ξ − r). In this manner of approximation,

there is no contribution to the integral for ωb (ξ) from the region of r > ξ.
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By proceeding similarly to simple liquids by using the constitutive relation
for the drift velocity of fluid particle,

nu = −D∇n, (11.53)

where D denotes the self-diffusion coefficient of the liquid, which depends on
density as well as temperature, and by eliminating the density derivative from
(11.51) with the help of (11.53), the molecular theory formula for the potential
energy part of the bulk viscosity of rigid linear molecular liquids is obtained:

ηv
b (n, T ) =

n2ωb(n, T )
9D(n, T )

. (11.54)

Here n stands for the mean bulk density. Finally, the bulk viscosity of the
liquid of interest is given by the formula

ηb (n, T ) = ηk
b +

n2ωb(n, T )
9D(n, T )

. (11.55)

Unlike the bulk viscosity of simple fluids, the kinetic part ηk
b does not vanish

because of the internal degrees of freedom, which present modes for energy
transfer between molecules in the fluid. Similarly to simple liquids, the po-
tential energy part ηv

b (n, T ) has a form resembling the SE relation, but it
differs from the SE relation because of the strong temperature and density
dependence of the coefficient factor.

11.2.4 Intermolecular Site–Site Pair Correlation Functions

It is necessary to find a way to calculate the site–site pair correlation function
for the liquid of interest for ωb(n, T ) and the bulk viscosity. As will be seen
later, shear viscosity and thermal conductivity also require them. Therefore,
we consider the question of computing the site–site pair correlation functions.
They may be calculated, of course, by computer simulations. However, inte-
gral equation methods have been found practicable. Therefore, we discuss an
integral equation theory method in the following. In particular, the Farhat–Eu
(FE) integral equation theory [6] of molecular liquids is employed for valida-
tion. Because this theory is not the same as the integral equation theory for
the radial distribution function of simple liquids, the basic idea of the theory
will be briefly discussed below to introduce the reader to it. For the sake of
simplicity, a single-component, rigid homonuclear diatomic fluid is assumed
uniform in space.

Let us first introduce some useful notations and functions necessary for the
discussion. The total correlation function h(α, α′; ζ, ζ ′) for the site pair (α, α′)
on two different molecules, which interact at the strengths of potentials ζ and
ζ ′ (charging parameters), is denoted by

h(α, α′; ζ, ζ ′) = g(α, α′; ζ, ζ ′) − 1. (11.56)
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The prime is used to designate the site on a different molecule. The total
correlation function h(α, α′; ζ, ζ ′) is defined through the OZ equation. The
Fourier transform of the OZ equation for a homogeneous fluid of spherical
potential energy has the form

ĥ (k) = ĉ (k) + ρĉ (k) ĥ (k) , (11.57)

where ĥ (k) and ĉ (k) are, respectively, the Fourier transforms of h (r) and
c (r),

ĥ (k; ζ, ζ ′) =
∫

dr exp (−ik · r)h(r; ζ, ζ ′), (11.58)

ĉ (k; ζ, ζ ′) =
∫

dr exp (−ik · r) c(r; ζ, ζ ′), (11.59)

where r ≡ rαα′ and α, α′ = 1, 2. The charging parameters ζ and ζ ′, ranged
in value from zero to unity, are used to indicate the degree of interaction
between the two intermolecular sites α and α′; however, note that to obtain
the correlation functions for fully interacting particles integrations over the
charging parameters will be performed in the end. Henceforth, ĉ (k;ζ, ζ ′) will
be abbreviated by

ĉ (k) = ĉ (k; ζ = 1, ζ ′ = 1) , ĉ0 (k) = ĉ (k; ζ = 0) . (11.60)

The Fourier transform of the intramolecular correlation function τ(r12) will
be specifically denoted by τ̂(k);

τ̂(k) =
∫

dr12 exp (−ik · r12) τ(r12). (11.61)

If a rigid diatomic molecule has bond length b, this Fourier transform takes
the form

τ̂(k) =
sin kb

kb
, (11.62)

because τ(r12) becomes a delta function:

τ(r12) = δ (r12 − b) /4πb2. (11.63)

It can be shown that the OZ equation for a rigid diatomic fluid has the form

ĥ(k) = ĉ′(k) [τ̂(k) + 1] + 2ρĉ′(k)ĥ(k), (11.64)

where
ĉ′(k) = ĉ0(k)τ̂(k) + ĉ(k). (11.65)

This is the FE integral equation, derived from the Kirkwood hierarchy by using
the Kirkwood superposition approximation [7] and an approximation for the
cavity function [6]. There is an integral equation in the literature, which is
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slightly different from the FE integral equation. It is called the RISM–PY
integral equation [8] and has the form,

ĥ(k) = [τ̂(k) + 1] ĉ(k) [τ̂(k) + 1] + 2ρĉ ′(k)ĥ(k). (11.66)

This RISM–PY equation follows from the FE integral equation if ĉ0(k) ≈ ĉ(k)
in (11.64).

In [9–11] on molecular fluids the site–site intermolecular correlation func-
tion is calculated by using (11.64) or (11.66), which are solved numerically by
a combination of iteration and fast Fourier transform methods for a Lennard-
Jones potential. Both theories yield comparable pair correlation functions. See
Fig. 1 of [10] for such a comparison. Equation (11.64) gives rise to a more sta-
ble numerical solution for the Lennard-Jones fluids, especially at low density,
than (11.66) of the RISM–PY theory, but at the cost of a little longer com-
putation time. In the RISM–PY theory it was found difficult or impossible
to get a physically meaningful solution when the density was lower than the
critical density. On the other hand, the FE theory was found free from such
a difficulty when a numerical solution was employed.

For a rigid diatomic molecule with site–site interactions, only the inter-
molecular site–site correlation function is needed, but not the intramolecular
site–site correlation function, because there are no intramolecular virial ten-
sors contributing to the potential energy part of the shear viscosity owing to
the fact that the bond distance is fixed. However, note that the molecular
structure does have influence on the fluid properties such as shear viscos-
ity through the intermolecular site–site correlation function as in (11.64) or
(11.66). This is one of the characteristic features absent in the theory for
monatomic fluids.

The selection of the liquids for validation is limited by the availability of
experimental data. The kinetic energy part of bulk viscosity has been treated
as known because the theory is well developed for it by the Chapman–Enskog
theory of polyatomic gases and therefore it is not the principal interest of this
monograph.

11.2.5 Comparison with Experiment

Formula (11.55) with the expression for ωb (n, T ) in (11.52) needs validation
because it is not an exact statistical mechanical result. In any case, even an
exact result needs a demonstration of its utility for understanding laboratory
phenomena. Such validations have been reported in the literature [9], and the
results are summarized in the following. To implement the validation proce-
dure self-diffusion coefficients measured experimentally may be used to com-
pute ηb (n, T ). This approach has been employed in the validation discussed
in the following because of the absence of a reliable theory for self-diffusion
coefficients at the time when the density fluctuation theory was developed.
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Bulk Viscosity of Nitrogen

The potential and molecular parameters for nitrogen have the same values as
those used in [12]: ε = 0.515 × 10−21 J, σ = 0.3310 nm, and b = 0.3292σ.
Because sufficient experimental data are absent for the self-diffusion coeffi-
cient of nitrogen, especially, for its temperature and density dependence, the
simulation results by Barojas et al. [13] have been fitted to the formula,

D∗n∗ = 0.1225
√
T ∗ − 0.1283, (11.67)

where the asterisk denotes the reduced quantity,

D∗ =
D

σ

(
M

ε

)1/2

, T ∗ = kBT/ε, n∗ = nσ3.

In Fig. 11.1, the bulk viscosities of liquid nitrogen are examined. They were
calculated along the liquid–vapor coexistence curve above the triple point
(Tt = 63.15 K, ρt = 867.9 kg m−3). The critical point of nitrogen is at
Tc = 126.2 K and ρc = 314 kg m−3. The symbols in the figure are for the ex-
perimental data reported in the literature, which were determined by sound
attenuation: � from [40]; ∗ from [14]; � from [15]; and • from [16]. The
solid curve is for the bulk viscosity of saturated liquid nitrogen calculated by
the density fluctuation theory, (11.55), with the aforementioned FE integral
equation theory used for the intermolecular site–site equilibrium correlation
functions. The kinetic energy component ηk

b of the total bulk viscosity was
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Fig. 11.1. Bulk viscosity of coexisting liquid nitrogen. The solid curve is the predic-
tion by (11.55) with ξ = 4.0σ. Various symbols are experimental data. [Reproduced
with permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 114, 10436
(2001). Copyright 2001 American Institute of Physics]
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calculated from the experimental data for N2 gas by Prangsma et al. [17] and
were fitted to the formula,

ηk
b (mPa s) = 1.0 × 10−3

(
0.0001T 2 + 0.0232T − 0.3719

)
. (11.68)

This fitting formula is almost linear with respect to temperature. Use of the
experimental data for the self-diffusion coefficient of nitrogen DN2 measured
by Krynicki et al. [18] yields the bulk viscosities calculated therewith with
about ±10% deviations from the solid curve in the range covered by their
DN2 data. The bulk viscosities of nitrogen predicted from the density fluctua-
tion theory theory lie well within the range of experimental results which have
rather wide margins of error. The vertical bars in the figure indicate the exper-
imental error ranges reported by the authors of the experiment. Contrary to
other transport coefficients such as shear viscosity and thermal conductivity,
large experimental errors are inherent to the sound attenuation methods used
for determining bulk viscosity, which count on precise information for other
transport coefficients such as shear viscosity, thermal conductivity, and other
thermal data. Moreover, sound attenuation from the bulk viscosity is a minor
part of the whole and thus one is measuring the bulk viscosity near the limits
of experimental error. Nevertheless, by observing the bulk viscosity behavior
shown in the figure, the conclusion can be reached that the bulk viscosity of
liquid nitrogen decreases as the temperature increases along the coexistence
curve, at least, far away from the critical point.

In Table 11.1, the bulk viscosities of nitrogen, which were calculated at the
same conditions of density and temperature, are compared with the experi-
ments. In the table, column Expt is for the experimental data [40], column
theo.1 is for the theoretical values predicted without adjustable parameters—
that is, ξ = rmax, and column theo.2 is for the theoretical values calculated
with ξ = 4.0σ, which give an idea of the size of the effects of the cutoff para-
meter ξ, the spatial range of density fluctuations from the average equilibrium

Table 11.1. Bulk viscosity of liquid nitrogen

ρ
(
kg m−3

)
T (K) ηb (mPa s)

expt. theo.1 theo.2

841 75.0 0.211 0.195 0.142
822 77.6 0.187 0.172 0.126
822 80.9 0.166 0.159 0.116
820 77.5 0.160 0.172 0.126
806 77.6 0.156 0.133 0.120
787 84.3 0.144 0.130 0.098
786 85.5 0.163 0.124 0.094
746 90.6 0.140 0.102 0.075
690 109.5 0.088 0.064 0.048
682 105.0 0.140 0.066 0.050
671 109.2 0.078 0.060 0.045
671 113.4 0.114 0.057 0.043



11.2 Excess Normal Stress 305

density. The densities quoted, however, are higher than those of saturated liq-
uid nitrogen at the given temperatures. Therefore, the set of (n, T ) described
in Table 10.1 is for high-pressure states at the given temperature. The self-
diffusion coefficient was computed by using the same formula as that used
for Fig. 10.2, and the FE integral equation theory was exclusively used for
calculating the correlation functions involved. The kinetic part ηk

b was also
calculated from formula (11.68). All values listed in Table 10.1 seem to agree
qualitatively in the sense that the bulk viscosity is decreasing with decreasing
density, although there appear to be some fluctuations in the experimental
data. The experimental results in Table 10.1 compare generally better with
those calculated with ξ = rmax than those calculated with ξ = 4.0σ.

Figure 11.2 shows the density dependence of the excess bulk viscosity of
nitrogen predicted from formula (11.55) for T > Tc, where no cutoff parameter
is required. The self-diffusion coefficient and the kinetic energy part ηk

b were,
respectively, computed from the same formulas as those used for Fig. 10.1.
As shown in Fig. 10.2, the calculated bulk viscosity clearly demonstrates that
the potential energy part ηv

b of the bulk viscosity becomes dominant as the
density increases and its temperature dependence appears to be relatively
weak. It is interesting to observe the crossover behavior between two isotherms
as the density varies from the gas density to the liquid density: the higher
the temperature, the less strong the density dependence of the potential en-
ergy part ηv

b , which dominates over the low-density limit of the bulk viscosity
(i.e., ηk

b ), as the density increases. No comparison with experiments is made
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Fig. 11.2. ηb vs. ρ for nitrogen at different temperatures. The dash-dotted (− · −)
curve is for T = 130 K, the solid curve for T = 140 K, and the dashed (—) curve
for T = 150 K, respectively; the self-diffusion coefficient was calculated from the
empirical fit of the simulation results. [Reproduced with permission from Kyunil Rah
and Byung Chan Eu, J. Chem. Phys. 114, 10436 (2001). Copyright 2001 American
Institute of Physics]
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owing to the absence of experimental data for ηb in the literature, especially,
for T > Tc.

Bulk Viscosity of Carbon Dioxide

Carbon dioxide is an important substance because it is of considerable in-
terest scientifically and from the industrial and environmental standpoints.
Furthermore, because measured or simulated self-diffusion coefficients (DCO2)
are available for carbon dioxide in the literature, it’s a good example of the
application of the theory to validate the theory developed here.

Although carbon dioxide is not a diatomic molecule, it is virtually rigid
and, with the carbon atom overshadowed by two larger oxygen atoms, acts
almost like a rigid diatomic molecule. This approximation is, of course, unre-
alistic for spectroscopy, but it is a reasonable approximation to model it as a
rigid diatomic molecule for calculating transport properties.

The parameters for the two-center Lennard-Jones potential and the bond
length between the two oxygen atoms of the CO2 molecule have the same
values as those employed in the molecular dynamics simulation by Fincham
et al. [19]:, ε/kB = 163.3 K, σ = 0.3035 nm, and b = 0.7809σ. The quadru-
pole interaction potential, which is significant for CO2, is not explicit in the
site–site intermolecular interaction potentials taken in the present model but
may be regarded as implicit in the potential model taken. Although the site–
site interaction model does not require the quadrupole potential, the site–site
interaction potential parameters are determined [19,20] that they give a good
agreement with the experiment.

For the self-diffusion coefficient DCO2 necessary for calculating the bulk
viscosity with (11.55), the experimental data obtained by Etesse et al. [21] and
Gross et al. [22], who used an NMR technique, and the computer simulation
data by Singer et al. [20] have been employed. There are tracer isotope ex-
perimental values [23, 24] for DCO2 available in the literature, but they were
excluded from the validation study discussed here because when they were
used for calculating shear viscosity they gave values which were irreconcilable
with the most reliable experimental results for shear viscosity available at the
present time.

Figure 11.3 shows the density dependence of the excess bulk viscosity,
namely, the potential part Δηb ≡ ηb − ηk

b of the bulk viscosity ηb, of car-
bon dioxide at temperatures above the critical point (Tc = 304.1 K, ρc =
467.7 kg m−3). In the figure, the curves are the predictions by the density
fluctuation theory. The solid curve is for the density dependence of Δηb at
T = 328.15 K, which was calculated with the self-diffusion coefficient com-
puted with the empirical (EZK) formula of Etesse et al. for DCO2 . The dash-
dot curve (− · −) is at T = 280.15 K below the critical point. No cutoff para-
meter was used for the calculations for this figure. The dotted portion of the
Δηb curve for T = 280.15 K is an interpolation of the theoretical Δηb curves of
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Fig. 11.3. The excess bulk viscosity Δηb vs. density for CO2. The solid curve
for T = 328.15 K and the dash-dotted (− · −) for T = 280.15 K are theoretical
predictions. No adjustable parameters were used for the calculations. The dotted
(· · ·) portion of the curve for T = 280.15 K represents an interpolation of the excess
bulk viscosities of the liquid and vapor branches. [Reproduced with permission from
Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 114, 10436 (2001). Copyright
2001 American Institute of Physics]

the vapor (ρv = 120 kg m−3) and liquid (ρl = 880 kg m−3) branches; in this
part of the density regime, which includes the range of density correspond-
ing to the thermodynamically metastable or unstable regime of the fluid at
the given temperature, the bulk viscosity may not be measurable. The val-
ues calculated by the present theory indicate that the density dependence of
the bulk viscosity increases dramatically as the density increases, especially,
in the range of density higher than approximately twice the critical density.
In Table 11.2, to make comparisons more definitive the density, temperature,
and self-diffusion coefficient used for the calculations for Fig. 11.3 are sum-
marized together with the predicted Δηb value of carbon dioxide at the given
conditions.

The temperature dependence of bulk viscosity is of interest also for carbon
dioxide. In Fig. 11.4, the bulk viscosities at various values of the (ρ, T ) set of
the coexisting liquid carbon dioxide are presented for the cutoff parameter ξ =
6.5σ, which is the same value as that used for the shear viscosity calculations
for saturated liquid carbon dioxide that will be discussed in the section on
shear viscosity in this chapter. For this purpose, the self-diffusion coefficients
were computed from the formula,

ρ∗D∗
CO2

= 0.1291
√
T ∗ − 0.1097.
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Table 11.2. Density dependence of the excess bulk viscosity of carbon dioxide

ρ
(
kg m−3

)
T = 280.15K T = 328.15 K

D × 109 Δηb D × 109 Δηb(
m2 s−1

)
(mPa s)

(
m2 s−1

)
(mPa s)

883 15.7 0.0389 17.9 0.0334
920 14.3 0.0459 16.4 0.0392

1,000 11.7 0.0651 13.5 0.0551
1,080 9.37 0.0918 11.0 0.0767
1,160 7.41 0.130 8.80 0.106
1,240 5.72 0.184 6.92 0.148
1,320 4.29 0.264 5.30 0.207
1,400 3.08 0.387 3.91 0.293

This formula fits the simulation data reported by Singer et al. [20]. The
density-independent part ηk

b was estimated from formula (11.68). The FE
integral equation theory was used to calculate the intermolecular site–site
correlation function. The solid curve represents the theoretical bulk viscosity
values calculated with the FE integral equation theory [6] for the intermolecu-
lar site–site correlation function. The coexisting temperature and density were
taken in the range from the triple point (Tt = 216.6K, ρt = 1178 kg m−3) up
to near the critical point from the paper by Span and Wagner [25]. Note that
if ηb were plotted against ρ−1

l , the saturated liquid density, then the figure
would give the density dependence of ηb, showing the bulk viscosity increasing
with increasing density.

It is useful for practical purposes to note that the kinetic energy contri-
bution to the bulk viscosity of carbon dioxide can be estimated by using the
approximate, although rough, procedure suggested by Assael et al. [26] for
the ratio of shear viscosity η0 to the bulk viscosity η0

b of a dilute gas,

η0

η0
b

≈
60τ

13τ + 6
, (11.69)

with the parameter τ given by τ = 4IR/
(
mσ2

R

)
, where σR is the diameter

of the rough sphere and IR its moment of inertia resulting from the internal
distribution of mass within the sphere. This relation was obtained in the first-
order Chapman–Enskog theory. For carbon dioxide gases a constant value of
τ estimated was 0.048. For Fig. 11.4, this formula was used without further
modification or improvement in the calculations of ηk

b . The shear viscosity η0

of CO2 can be obtained from the experiments [27] or theoretical calculations
[10] by means of the spherical approximation for the Chapman–Enskog shear
viscosity for a dilute diatomic gas with effective spherical scaling parameters
for σ and ε/kB . Note that if 2ξ ≈ rmax is taken instead of ξ = 6.5σ for
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Fig. 11.4. ηb vs. T for the coexisting liquid CO2 calculated for ξ = 6.5σ. The self-
diffusion coefficients were taken from the fitting formula to the simulation data by
Singer et al. [Reproduced with permission from Kyunil Rah and Byung Chan Eu,
J. Chem. Phys. 114, 10436 (2001). Copyright 2001 American Institute of Physics]

Fig. 11.4, the bulk viscosity gives an approximately 10% increase throughout
the (n, T ) set examined.

11.2.6 Summary for Bulk Viscosity

In summary of the theory of bulk viscosities of simple and complex liquids, the
density fluctuation theory of bulk viscosity applied to diatomic fluids gives a
simple formula for the bulk viscosity, whose potential energy part is reminis-
cent of the Stokes–Einstein relation. For the diatomic fluids considered, the
theory quite adequately compares with experiment, as has been for simple
liquids. Given the quality of the experimental data available in the litera-
ture, the theoretical predictions for the temperature dependence of the bulk
viscosity of nitrogen compares qualitatively well with experiment. Its density
dependence also appears to be reasonable qualitatively. The results presented
for the bulk viscosities of nitrogen and carbon dioxide therefore indicate the
utility of the density fluctuation theory for bulk viscosity, not only because of
the reasonable numerical results but also because the method employed for
the calculation results in formulas so simple from the standpoint of current
computational techniques and resources, that it readily provides a theoreti-
cal means to analyze bulk viscosities of simple and molecular liquids, which
are rather difficult to compute otherwise. All that is required for the purpose
outside the framework of the density fluctuation theory is the self-diffusion
coefficient for the system of interest, and self-diffusion coefficients are much
easier to simulate than any other transport coefficients liquids. To make the
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theory fully statistical mechanical for there now remains the theory of self-
diffusion that can make us predict the temperature and density dependence of
D in the formulas for the bulk viscosities presented. A theory to this end will
be discussed in Chap. 12, where free volume theory is presented for diffusion.

11.3 Shear Stress

As it is the theory of shear viscosity of simple fluids, the important point
of the theory of shear viscosity of complex fluids is that density fluctuations
within the range of distance of the order of intersite (intermolecular) forces
are responsible for momentum transfers between elementary volumes in liquids
subjected to shearing perturbation.

The density fluctuation theory applied to the excess normal stress and
related bulk viscosity of complex fluids in Sect. 11.2 can be employed for the
shear viscosity of complex fluids in a manner exactly parallel to the procedure
used for the former. The formalism developed for the excess normal stress can
be taken over for most steps related to the stress tensor. Specifically, the shear
viscosities of nitrogen and carbon dioxide will be calculated by using the self-
diffusion coefficient data obtained by experiments, computer simulations, or
NMR techniques and the site–site pair correlation functions provided by the
FE integral equation theory [6] for polyatomic liquids, in which an Ornstein–
Zernike equation is solved for polyatomics under the PY closure or a computer
simulation method.

We consider the same system as for the excess normal stress of poly-
atomic fluids discussed in Sect. 11.2. The discussion will be limited to single-
component diatomic fluids contained in volume V at temperature T after a
general formalism is established for complex fluids. We also consider the same
flow configuration as that taken for the shear stress of simple liquids in the
previous chapter.

11.3.1 Kinetic Part of Shear Stress

The kinetic energy part Πk of the shear stress tensor Π is readily obtained
from (11.28) for homonuclear diatomic fluids. It may be put in the form

Πk (r, t) =

〈
N∑

j=1

(
M [CjCj ]

(2) + m [vj12vj12]
(2)
)
δ (Rcj − r)F (N)

c

〉

−1
2
ΔΠ(1)

k (r, t) +
1
2
ΔΠ(2)

k (r, t) , (11.70)

where

ΔΠ(1)
k (r, t) =

∫ 1

0

dλ
N∑

j=1

〈(
M [CjCj ]

(2) + m [vj12vj12]
(2)
)

(11.71)

× rj12 · ∇r sinh
(
λ

2
rj12 · ∇r

)
δ (Rcj − r)F (N)

c

〉
,
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ΔΠ(2)
k (r, t) =

∫ 1

0

dλ
N∑

j=1

〈
2m [Cjvj12 + vj12Cj ]

(2) (11.72)

× rj12 · ∇r cosh
(
λ

2
rj12 · ∇r

)
δ (Rcj − r)F (N)

c

〉
.

The quantities ΔΠ(1)
k (r, t) and ΔΠ(2)

k (r, t) contribute terms of order higher
than the first term on the right of (11.70), and because we are interested in the
states of fluids near equilibrium ΔΠ(1)

k (r, t) and ΔΠ(2)
k (r, t) may be ignored

calculating the linear viscosity. Thus, we consider only Πk (r, t) in the form

Πk (r, t) =

〈
N∑

j=1

[MCjCj + mvj12vj12]
(2)

δ (Rcj − r)F (N)
c

〉
. (11.73)

In the same manner as for (11.31) this can be reduced to the form

Πk (r, t) =
∫

dPc

∫
dp12

∫
dr12 [MCjCj + jj/I](2) f (Xc, x12; t) . (11.74)

The term related to the angular momentum, the second term in the integrand,
can be ignored in determining the kinetic part of the shear viscosity for a rigid
diatomic molecular fluid because it is not related linearly to the shear viscosity.

The kinetic energy part ηk of the shear viscosity is then determined if the
same flow configuration and procedure are taken as that for the shear viscosity
of simple fluids and if Πk (r, t) in (11.74) is calculated to the first order in
the shear rate ∂ux/∂z, so that it can be compared with the phenomenological
form, Newton’s law of viscosity,

Πkxz = −ηk
∂ux

∂z
. (11.75)

In this manner, ηk is identified with the Chapman–Enskog shear viscosity of
a dilute diatomic gas. Because the dilute gas transport coefficients are not
the main objects of interest in this work and the theory is well developed
for them [4], we pay no further attention to the kinetic part ηk of the shear
viscosity of diatomic fluids here.

11.3.2 Potential Part of Shear Stress

Because the intramolecular force part P(s)
v of the stress tensor vanishes for

rigid diatomic molecules, there is only the intermolecular force part P(m)
v

remaining. Therefore, a the potential energy part of the shear stress is simply
equal to the traceless symmetric part of P(m)

v given in (11.35)

Πv (r, t) = −1
2

∫ 1

0

dζ
∫

dr12
[r12r12]

(2)

r12
V ′ (r12)

×n(2) [r − ζr12, r + (1 − ζ) r12; t] . (11.76)
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We follow the same procedure as that employed for the shear stress of simple
fluids in Sect. 10.2, Chap. 10 to obtain the equation for the potential energy
part Πvxz of the shear stress:

Πvxz =
1
3
ω (n)

∂n

∂x

∂n

∂z
. (11.77)

In this expression

ω (n) =
2π
15

∫ ∞

0

dr r5V ′ (r) g(2)
eq (r, n) θ (ξ − r) . (11.78)

Equation (11.77) is in the same form as (10.33) of Chap. 10 for simple liquids
owing to the fact that site–site pair distribution functions are used and their
symmetry is with respect to the interchange of sites because of the identical-
ness of the sites. Here g(2)

eq (r, n) is the site–site intermolecular pair distribution
function. Equation (11.77) should be compared with the phenomenological
constitutive equation, Newton’s law of viscosity,

Πvxz = −ηv
∂ux

∂z
. (11.79)

For this purpose, the density derivatives in (11.77) are replaced with ∂ux/∂z
by using the constitutive equation for fluid velocity as for simple liquids; see
(10.34)–(10.37), Chap. 10. Thus the intermolecular part of the shear viscosity
of a rigid diatomic liquid also has the same form as that for simple liquids
except for the different meaning of the pair distribution function in ω (n):

ηv =
n2ω (n, T )
6D (n, T )

. (11.80)

Therefore, we finally obtain the shear viscosity of a rigid homonuclear diatomic
fluid in the following form:

η = η0 +
n2ω (n, T )
6D (n, T )

, (11.81)

where ηk is replaced by η0, which is the Chapman–Enskog theory shear vis-
cosity of a rigid diatomic gas [4]. If the anisotropic part of the potential makes
a sufficiently small contribution to the viscosity, then it may be approximated
with good accuracy by the shear viscosity of a spherical molecule and thus by

η0 ≈ cnD0.

The formula derived also suggests that if the self-diffusion coefficient data,
experimental, by computer simulation, or by another theory, are available the
shear viscosity can be calculated from (11.81). The pair correlation function
in the factor ω (n, T ) in the potential energy part may be obtained from the
integral equation theory [6] for the pair correlation function for polyatomic
liquids or computer simulations [28–30]. In Chap. 12, the free volume theory
will be used to calculate D based on intersite forces.
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11.3.3 Comparison with Experiment

The site–site pair correlation function necessary to compute shear viscosity
with formula (11.81) can be obtained by solving the FE integral equation or
by computer simulations. For the validation of the formula discussed in this
subsection, the FE integral equation was employed. The data on self-diffusion
coefficients were taken from the literature.

Using the correlation functions calculated numerically with the FE in-
tegral equation theory [6] and the self-diffusion coefficients available in the
literature, the viscosities of nitrogen and carbon dioxide were calculated with
formula (11.81) under the assumption that they are rigid linear molecules with
two sites. The Lennard-Jones potential was assumed for intermolecular site–
site interactions. The theoretical results are compared with the experimental
values available for N2 and CO2 from the literature in the following figures.
However, no comparison is made with the molecular dynamic simulation re-
sults [31] for the shear viscosity of N2 because the available simulation data
tend to suffer from the presence of a longtime tail in the autocorrelation func-
tion, especially, at low temperature. This makes the simulated shear viscosity
data unreliable for quantitative comparison.

For the self-diffusion coefficients required for calculating the shear viscosity
of nitrogen the empirical fitting formula of Barojas et al. [13] given in (11.67)
was used. It was a reasonable fit to the available experimental data that
are somewhat scattered. The potential and molecular parameters used for
nitrogen were the same as those for the excess normal stress.

In Fig. 11.5, the density dependence of the shear viscosity of nitrogen at
T = 150.0 K, which is above the critical point (Tc = 126.2K, ρc = 314 kg/m3),
is shown. In this case, because the cutoff parameter ξ is larger than rmax, there
is no adjustable parameter in ω(n).

The values represented by the solid circles (•) were generated from the
tabulated values of experimental data by Younglove [32]. The solid curve is
the shear viscosity of nitrogen calculated by the density fluctuation theory
with the FE integral equation theory used for the intermolecular site–site cor-
relation function, and the dashed curve (−−−) with the RISM–PY theory [8].
The dash-dot curve (− · −) is also from the experimental data fitted to an
analytical formula proposed by Stephan et al. [33]. In the high-density region,
the deviation of the theoretical values from the experimental values is compa-
rable with the discrepancy between the predictions by the fitting formula of
Stephan et al. and the data by Younglove, whereas the calculated viscosities,
when compared with the experimental values, tend to be underestimated in
the low-density region from 100 to 400 kg m−3. But the agreement should be
judged acceptable, given the quality of the self-diffusion coefficients and the
site–site correlation functions used for the calculations. This variance may be
attributed to the precision of the intermolecular site–site correlation function
predicted by the FE integral equation theory or the RISM–PY theory [8], es-
pecially at the contact value when the density is low; it will be found that the
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Monte Carlo simulation method produces better results, as shown in Chap. 12.
The kinetic energy part of the shear viscosity may be calculated by the spheri-
cal approximation with effective spherical scaling parameters for σ and ε/kB, if
they are taken, respectively, 0.3652 nm and 98.4 K given in the literature [34].
The Chapman–Enskog shear viscosity thus calculated agrees well with the
experimental value within less than 1% at high temperature, but the discrep-
ancy grew to ∼8% as the triple point (Tt = 63.15 K, ρt = 867.9 kg m−3) was
approached. For this reason, for Fig. 11.5 the experimental limiting value was
taken for the kinetic contribution η0 instead of the Chapman–Enskog shear
viscosity calculated as described earlier. It is reported [10] that the use of the
Chapman–Enskog value for η0 did not alter the conclusion. In any case, the
agreement on the shear viscosity by the theory and experiment appears to be
good enough to demonstrate the utility of the density fluctuation theory for
the system studied.

The shear viscosity of liquid nitrogen below the critical temperature along
the coexistence line from the triple point was also calculated. At high density
and low temperature, especially near the triple point, the cutoff parameter ξ
was, as expected, smaller than the intermolecular interaction range. For the
calculation of the shear viscosity of liquid nitrogen along the liquid–vapor
coexistence line a single value of ξ = 4.0σ was used. The shear viscosities
so calculated are presented in Fig. 11.6, where the solid curve represents the
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Fig. 11.5. η vs. ρ for nitrogen at T = 150.0 K. The solid and dashed (− − −)
lines are the results of the density fluctuation theory obtained, respectively, with
the FE integral equation theory [6] and the RISM-PY theory [8] for the site–site
intermolecular correlations. The symbols (•) are the experimental data and the dash-
dot line (− ·−) is by the empirical formula of Stephan et al. [33]. [Reproduced with
permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 112, 7118 (2000).
Copyright 2000 Americal Institute of Physics]
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Fig. 11.6. η vs. ρ for coexisting liquid nitrogen. The solid curve is by the den-
sity fluctuation theory using the FE integral equation theory, and the dashed curve
(−−−) by the RISM–PY theory. The filled circles and the dash-dot curve are ex-
perimental. [Reproduced with permission from Kyunil Rah and Byung Chan Eu,
J. Chem. Phys. 112, 7118 (2000). Copyright 2000 Americal Institute of Physics]

theoretical viscosity computed with g
(2)
eq (r) calculated with the FE integral

equation theory, and the dashed curve (−−−) represents the theoretical vis-
cosity computed with g

(2)
eq (r) by the RISM–PY theory. The filled circles (•)

are experimental values reported by Younglove [32] and the dash-dot curve
(− · −) is the experimental viscosity reproduced by the empirical formula
given by Stephan et al. [33]. Even with the single parameter, they are in good
agreement quantitatively as well as qualitatively with the experimental values
reported by Younglove. For the self-diffusion coefficients, the formula fitted
with the experimental data of Barojas et al. [13] was employed.

Because the anisotropy of the nitrogen potential is relatively small, it was
found useful to test the theory with a more nonspherical molecule. To this
end, the same procedure as that for nitrogen was applied to carbon dioxide
to calculate the shear viscosity. Carbon dioxide was chosen for the test be-
cause there are abundant experimental data for the shear viscosity available
for comparison, and also some simulated or measured self-diffusion coefficients
DCO2 are available in the literature. Furthermore, carbon dioxide, to a good
approximation is a rigid linear molecule and is of considerable interest sci-
entifically and from the industrial and environmental standpoints. Because
there is no reliable method known for computing the shear viscosity of such
an important substance, the present validation study also seems to fill the
need for such a method at the same time.

For the Lennard-Jones potential parameters and the bond length between
the two oxygen atoms of the CO2 molecule, the same values were used as those
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employed for the excess normal stress in the previous section. As for the DCO2

values necessary for calculating the shear viscosity, the experimental data
obtained by the NMR data of Etesse et al. [21] were used and also the data by
Timmerhaus and Drickamer [23], who used an isotope tracer method, as well
as the computer simulation data by Singer et al. [20]. More recently, Gross et
al. [22] have also measured DCO2 with an NMR technique in the temperature
range from 223 to 450 K and pressures up to 200 MPa. The data of Etesse et
al. [21] and Gross et al. [22] were converted from DCO2 (p, T ) to DCO2 (n, T )
by using the equation of state provided by Angus et al. [35] and Span and
Wagner [25]. In the high-density regime, where there are no experimental
data, an extrapolation was made of the empirical formula proposed by Etesse
et al. with the hard sphere diameter equal to 0.358 nm.

Figure 11.7 shows the density dependence of the shear viscosity of car-
bon dioxide at T = 323.15 K, which is above the critical point (Tc =
304.107 K, ρc = 0.46769 kg m−3 according to [36]). In the figure, the solid
curve is the experimental data reproduced by the empirical (FWV) formula
proposed by Fenghour et al. [27] for η. The symbols are the density fluctua-
tion theory results: the asterisks (∗) were calculated with the Timmerhaus–
Drickamer DCO2 data, the solid circles (•) were calculated with the DCO2

values reported by Etesse et al. [21], and the open circles (©) were calculated
with the DCO2 values predicted by the extrapolated empirical (EZK) formula
obtained by Etesse et al. for DCO2 . The theoretical values for the shear vis-
cosities have an excellent qualitative density dependence in the NMR DCO2
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Fig. 11.7. η vs. ρ for carbon dioxide CO2 at T = 328.15 K. The solid curve is the
experimental data calculated by using empirical formula [27]. The symbols represent
the theoretical values computed with D from different sources. [Reproduced with
permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 112, 7118 (2000).
Copyright 2000 Americal Institute of Physics]
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data, whereas the tracer isotope data for DCO2 give viscosity values of con-
siderable variance from the experimental values. The hard sphere diameter
for the this empirical formula was taken as σHS = 0.358 nm. The FE integral
equation theory was used for the intermolecular site-site correlation functions.
Note that the maximum deviation from the experimental value is about 20%
for the shear viscosities calculated with the DCO2 data by the NMR method.
It is estimated [21] that the NMR DCO2 data and the DCO2 data obtained by
other authors are scattered around the fitting formula and agree within about
20% from each other. Therefore, the theoretical prediction by the density fluc-
tuation theory could fall on either side of the experimental curve, depending
on which values were taken for the self-diffusion coefficient. The uncertainty
from DCO2 can be removed when the free volume theory is used to compute
the self-diffusion coefficient, as will be seen in Chap. 12. From the perspective
of the density fluctuation theory, the tracer isotope experimental values for
DCO2 by Timmerhaus et al. [23] yield shear viscosity values irreconcilable with
the most reliable experimental results [27,36] for the shear viscosity available
at the present time.

In Fig. 11.8, the theoretical shear viscosities are compared with the ex-
perimental data reproduced by the FWV empirical formula at T = 298 K.
The meanings of the symbols are the same as those in Fig. 11.7, except for ×,
which represents the shear viscosity calculated with the DCO2 value obtained
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Fig. 11.8. Density dependence of the shear viscosity η of CO2 at T = 298 K.
The symbols have the same meanings as in Fig. 10.7 except that × represents the
theoretical shear viscosity calculated with DCO2 by Robb and Drickamer [24] and
the dash-dotted portion of the theoretical curve represents an interpolation of the
liquid and vapor viscosity branches. [Reproduced with permission from Kyunil Rah
and Byung Chan Eu, J. Chem. Phys. 112, 7118 (2000). Copyright 2000 Americal
Institute of Physics.]
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by Robb and Drickamer [24], who also used a tracer isotope method, and the
dash-dot curve (− · −) connecting the solid curves at ρl = 717.7 kg m−3 and
ρv = 240.9 kg m−3, as given by Span et al. [25]. This dash-dot portion of the
viscosity curve is an interpolation of the theoretical viscosity curves of the
vapor and liquid branches because in that part of the density regime the vis-
cosity is not measured. It should be observed that the DCO2 values measured
by Robb and Drickamer at low densities appear to give correct shear viscosi-
ties at low densities. This does not necessarily mean that the DCO2 values
yield a correct order of magnitude for the potential energy part of the shear
viscosity because the potential energy part ηv makes a negligible contribu-
tion to the total shear viscosity at low density. The same comment applies to
DCO2 obtained by the NMR method. In other words, the shear viscosity val-
ues in the very low density regime cannot tell the accuracy of the self-diffusion
coefficients measured at the liquid density values mentioned.

Figure 11.9 shows the density dependence of the shear viscosity of carbon
dioxide at T = 280 K, which is below the critical point. It was found that
there was no need for a cutoff parameter for this temperature. In the figure, the
solid curve is the theoretical shear viscosity, which is calculated from (11.81),
and the self-diffusion coefficient was computed with the EZK formula. The
symbols are experimental shear viscosity values: • by van der Gulik [37]; ©
by Diller and Ball [38]; and × by Ulybin and Makarushkin [39]. The meaning
of the dash-dot portion of the curve is the same as that in Fig. 11.8.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

h 
(m

P
a 

s)

r (gcm-3)

Fig. 11.9. η vs. ρ for CO2 at T = 280K. The solid curve is the theoretical prediction
by the density fluctuation theory with the empirical EZK formula [21] for DCO2 .
σ = 0.358 nm. The symbols (•,©,×) are experimental [37–39]. [Reproduced with
permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 112, 7118 (2000).
Copyright 2000 Americal Institute of Physics]
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Fig. 11.10. η vs. ρ for coexisting liquid carbon dioxide. The solid curve is theoret-
ical. The filled circles are experimental [38], and the dash-dot curve was obtained
with the FWV empirical formula [27] for η. [Reproduced with permission from Kyu-
nil Rah and Byung Chan Eu, J. Chem. Phys. 112, 7118 (2000). Copyright 2000
Americal Institute of Physics.]

In Fig. 11.10, the shear viscosities at various values of the (ρ, T ) set of
the coexisting liquid CO2 are presented for the cutoff parameter ξ = 6.5σ.
The self-diffusion coefficient values were taken from the simulation data re-
ported by Singer and Lunsford [40]. The solid curve is the theoretical viscosity
calculated with g

(2)
eq (r) obtained from the FE integral equation theory. The

DCO2 values for the theoretical calculation were computed with the fitting
formula for the simulation data [20]. The filled circles (•) are the experimen-
tal viscosity values reported by Diller and Ball [38] and the dash-dot curve
(− · −) is a reproduction of the experimental data by using the FWV empir-
ical formula [27] for η. The coexisting temperature and density were taken
in the range from the triple point up to near the critical point compiled by
Span and Wagner [25]. The comparison indicates that the density fluctuation
theory gives a qualitatively correct density dependence for the shear viscos-
ity of molecular liquids. Incidentally, note that if the abscissa in Fig. 11.10
is replaced by T−1, then the figure gives the temperature dependence of η,
showing the viscosity decreasing with increasing temperature.

The theoretical predictions for the shear viscosities of molecular liquids
presented and compared with experiment indicate that the density fluctuation
theory can be quite useful for understanding and analyzing shear viscosity
data of molecular liquids because of the simplicity of the formula and the
quantities required for the calculation of the shear viscosity. All that should
be required outside the framework of the density fluctuation theory is the
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self-diffusion coefficient for the system of interest. This latter quantity can
be readily calculated with the modified free volume theory as described in
Chap. 12.

At T well below Tc the density fluctuation theory requires a cutoff para-
meter ξ in the integral for ω (n, T ). The value of ξ increases with the length of
the molecule. This aspect is worth examining a little more closely because it
may provide some useful insights and, especially, with regard to its possible
connection with the structure of molecules. For this purpose, in Fig. 11.11
the values of ξ∗ = ξ/σA are plotted against the reduced length of the mole-
cule defined by L∗ = (b + σ) /σA , where σA is the diameter of argon and
σ the diameter of the end atom (e.g., N or O). Therefore, L∗ is the total
length of the molecule. For argon, ξ = 2σA was taken along the coexisting
line of the equation of state for liquid argon. Along the coexisting lines of the
equations of state for liquid N2 and CO2 the values of ξ are 4.0σN and 6.5σO,
respectively, for N2 and CO2.

In Fig. 11.11, the symbols denote the following: � is for argon, • is for
N2, and ⊗ is for CO2. The correlation between ξ∗ and L∗ is perfectly linear
with high accuracy and is independent of temperature and density between
the triple point and the critical point. This correlation line suggests that one
may choose the value for ξ by using this linear relation for a given rigid linear
molecule in the subcritical region in the equation of state and calculate the
shear viscosity of fluids in the same class. If this empirical linear relation is
accepted for the class of liquids, the cutoff parameter is no longer an adjustable
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Fig. 11.11. Reduced cutoff distance vs. the reduced length of a molecule in the
liquid. The symbols are: � for argon, • for nitrogen, and ⊗ for carbon dioxide along
the coexisting liquid line in the equation of state. [Reproduced with permission from
Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 112, 7118 (2000). Copyright 2000
American Institute of Physics]
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parameter but is predicted by the size of the molecule. This examination of
the cutoff parameter indicates that the range of density fluctuations is directly
related to the size of the molecule and, perhaps, to the average size of the cage
around a molecule in the liquid—that is, the void.

11.3.4 Assessment of the Stokes–Einstein Relation

Because the applicability of the SE relation to the shear viscosity of diatomic
liquids is also of interest, the question has been examined. If the SE relation
is written as

ηseD =
kBT

aπR
, (11.82)

where a = 6 for the stick boundary condition and a = 4 for the slip boundary
condition, then on setting ηse = η and eliminating of η from (11.81) and
(11.82), there follows the equation,

1
aπR

=
cnD0D

kBT
+

n2ω(n, T )
6kBT

. (11.83)

For the SE relation applicable to molecular liquids, R∗ = R/σ should remain
constant—in fact, unity—with respect to T and n. In Fig. 11.12, the tem-
perature and density dependence of 2R∗ are tested for liquid carbon dioxide
and liquid nitrogen for a = 4. The experimental values were used for the
kinetic energy part η0 of η for both fluids considered. Unlike that in simple
fluids, 2R∗ has significant temperature and density dependences as shown in
the figure. In fact, there is no range of temperature or density in which it
remains constant. The temperature and density dependence of the ratio 2R∗

are not unexpected because the SE relation was derived for a spherical parti-
cle. Therefore it should be concluded that from the standpoint of the density
fluctuation theory the SE relation does not hold for the molecular liquids con-
sidered. This is in contrast to simple fluids for which the SE relation hold with
a fair degree of accuracy even if the particles are of molecular size, but are
not macroscopic particles assumed in the original SE theory, provided that
the total viscosity is used instead of the potential energy part ηv. We note
that the SE relation also breaks down for glass-forming liquids [41–43], which
are generally made up of complex molecules.

11.4 Heat Flux

In this section, we show that the density fluctuation theory can also be ap-
plied to the thermal conductivity of complex liquids, and it also produces suf-
ficiently accurate and reliable theories in the experimentally studied ranges of
temperature and density. As it is for simple fluids, compared with the bulk and
shear viscosities, the thermal conductivity of complex fluids is considerably
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Fig. 11.12. Test of the Stokes–Einstein relation for N2 and CO2. (a) The temper-
ature dependence of R∗: solid line is for CO2 at ρ = 1000 kg/m3 and the dash-dot
line is for N2 at ρ = 600 kg/m3. (b) Density dependence of R∗: solid line is for
CO2 at T = 308.15 K and the dash-dot line is for N2 T = 150.0 K. [Reproduced
with permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 112, 7118
(2000). Copyright 2000 Americal Institute of Physics.]

more difficult to analyze from the viewpoint of molecular theory because its
statistical mechanical expression is much more involved.

Nevertheless, the theory of thermal conductivity of complex fluids can be
developed parallel to the theory for simple fluids. The theory of viscosities of
complex fluids, in fact, can serve as a guide because the basic idea employed
will be the same as that for it: in the density fluctuation theory we uphold
the viewpoint that the density variation over the intermolecular force range
plays a crucially important role as the physical mechanism for relating en-
ergy and momentum transfers to the transport coefficients. In this approach,
the complexity of the many-particle problem of transport phenomena in liq-
uids is again borne by the pair correlation function and the self-diffusion or
diffusion coefficient, in sharp contrast to the conventional Chapman–Enskog
kinetic theory [1,2,4,44,45], in which dynamic collisions events over the inter-
molecular force range are the focus of attention. The latter theory is designed
mainly for gas kinetic transport coefficients, and the density variation over
the intermolecular force range is not of primary concern in gas kinetic theory.

As it is for simple fluids, in the formal statistical mechanical expression
for thermal conductivity the potential energy contribution to the molecular
expression for heat flux consists of products of momentum and potential en-
ergies or intermolecular forces. And the appearance of such cross products
of momentum- and position-dependent quantities makes statistical mechani-
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cal calculation of the thermal conductivity rather vexing, mainly because the
nonequilibrium grand canonical distribution function is generally not separa-
ble into momentum and position-dependent parts if there is heat flow in the
system. In the simple fluid theory it has been shown possible to overcome the
difficulty in describing the thermal conductivity if the equation of continuity
and the momentum balance equation are used for obtaining relations between
the density and temperature gradients when the density variation is described
at the hydrodynamic level. We put the same idea to work for complex fluids.

11.4.1 Heat Flux of Complex Liquids

In the same system of notation as that for the stress tensor of complex fluids
and as has been done for the heat flux of simple fluids, the heat flux of complex
fluids can be decomposed into kinetic energy, potential energy, and virial parts:

Q = Qk + Qv + Q(s)
w + Q(m)

w , (11.84)

where the statistical mechanical expression for each part is given by

Qk =

〈
N∑

j=1

l∑
α=1

1
2
mjαC

2
jαCjαδ (rjα − r)F (N)

c

〉
, (11.85)

Qv =

〈
1
2

N∑
j=1

l∑
γ �=α

wjαjγ (rjα, rjγ)Cjαδ (rjα − r)F (N)
c

〉

+

〈
1
2

N∑
j �=k=1

l∑
γ �=α

VjαkγCjαδ (rjα − r)F (N)
c

〉
, (11.86)

Q(s)
w =

〈
1
2

N∑
j=1

l∑
α,γ=1

W(s)
jαjγ · Cjαδ (rjα − r)F (N)

c

〉
, (11.87)

Q(m)
w =

1
2

〈
N∑

j �=k=1

l∑
α,γ=1

Wjαkγδ (rkγ − r)F (N)
c

〉
. (11.88)

The virial tensors W(s)
jαjγ and Wjαkγ are defined in (11.18) and (11.19); the

former is intramolecular and the latter intermolecular. It will be found con-
venient to group together the contributions from the interaction potential
energy. Such a potential energy contribution will be collectively referred to
as Qp :

Qp = Qv + Q(s)
w + Q(m)

w . (11.89)

Qk represents the kinetic energy flux, Qv is the potential energy transported
by mass flow, and Q(s)

w and Q(m)
w arise from the coupling of the intramole-

cular and intermolecular stresses with mass flow. When the density is high,
the kinetic energy part contributes a relatively insignificant amount to heat
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conductivity, compared with that of the potential energy part. Repulsive forces
dominate the dynamics of particles at high density, and incessant hard colli-
sions of particles in close proximity contribute significantly to the dynamics
of energy transport. Consequently, as for the thermal conductivity of simple
fluids the dynamic mechanism of energy transport at high density is funda-
mentally different from that at low density, where the dynamics is dominated
by long-range attractive forces; in the latter regime the dilute gas kinetic
theory that takes long-range collisions of particles into account is applicable.

Therefore, the experimental thermal conductivity observed is an interpo-
lation of the two contributions from qualitatively and diametrically different
mechanisms of energy transport: soft long-range collisions from the attractive
potential and harsh short-range collisions from hard repulsive interactions.
The four components of Q will be considered separately in the following.

As we have for the stress tensor of complex fluids, we will confine the
discussion to rigid homonuclear diatomic (or two-site) fluids for simplicity
of the formalism. Because intramolecular forces are absent from such fluids,
there is no intramolecular virial term Q(s)

w contributing, and hence

Qp = Qv + Q(m)
w (11.90)

for the potential part of the heat flux. By using the coordinate transformation
to translational and internal coordinates as described in (11.20)–(11.22), the
heat fluxes Qk, Qv, and Q(m)

w can be put into more suitable forms.

11.4.2 Kinetic Energy Transport

We consider first the kinetic energy part Qk of heat flux. The general ex-
pression for Qk given by (11.85) is expressible in terms of the relative and
center-of-mass coordinates and momenta of diatomic (two-site) molecules.

By using the coordinate transformation (11.20)–(11.22), we obtain Qk in
the form

Qk =
1
2
mN

〈
C2

j1

(
Cjc + 1

2vj12

)
exp
(
− 1

2rj12 · ∇r

)
δ (Rjc − r)

〉
(11.91)

+
1
2
mN

〈
C2

j2

(
Cjc − 1

2vj2

)
exp
(

1
2rj12 · ∇r

)
δ (Rjc − r)

〉
,

where the index j is for an arbitrary molecule in the set of N molecules. We
will eventually choose one particular molecule, say, j = 1. For the derivation
of this formula the delta functions

δ

(
Rjc ±

m

mα
rj12 − r

)
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are expressed in terms of a displacement operator as in (11.24). If the average
over the singlet distribution is denoted by

〈Af〉1 =
∫

dRc

∫
dPc

∫
dr12

∫
dp12A(Rc,Pc, r12,p12)f(Xc, x12, t),

(11.92)

where the subscript 1 to the angular brackets refers to molecule 1, the kinetic
part of heat flux Qk can be recast in the form

Qk =
1
2
m

〈
C2

1

(
Cc +

1
2
v2
12

)
f

(
r − 1

2
r12

)〉
1

+
1
2
m

〈
C2

2

(
Cc −

1
2
v2
12

)
f

(
r +

1
2
r12

)〉
1

, (11.93)

where Cc = Pc/M − u is the specific velocity of the center of mass of the
molecule; and Pc, x12, and t in f(Xc, x12, t) are suppressed for brevity of
notation. Upon expanding the distribution functions in power series in r12,
we obtain to first order

Qk =
〈(

M

2
C2

c +
m

2
v2
12 + mv12v12·

)
Ccf (r)

〉
1

(11.94)

−1
4

〈(
M

2
C2

c +
m

2
v2
12 + 4mCcCc·

)
v12r12 · ∇rf (r)

〉
1

+ O
(
r2
12

)
.

The second line in this expression for Qk gives higher order derivatives of
thermodynamic forces (gradients) when the Chapman–Enskog expansion [44]
or the moment expansion [2] is used for the singlet distribution function f (r).
Such terms will be of negligible magnitude if the system is near equilibrium. As
we are considering near-equilibrium phenomena for which a linear thermody-
namic force–flux relation holds, the kinetic part of the heat flux is represented
approximately by the first term in (11.94). In this connection, note that the
singlet distribution function f (1)(Xc, x12, t) for a diatomic fluid contains the
distribution function for the internal degrees of freedom. Because the mole-
cules are regarded as rigid, the term mv2

12/2 is simply the internal rotational
kinetic energy of a rigid diatomic molecule.

Furthermore, because v12 = bω for a rigid rotator of bond length b and
angular velocity ω and the rotational angular momentum vector j for a rigid
diatomic molecule is given by j = Iω, where I is the moment of inertia defined
by I = mb2, the heat flux Qk may be written in the form

Qk =
〈(

M

2
C2

c +
1
2I

j2 +
1
I
jj·
)

Ccf (r)
〉

1

. (11.95)

As it is for simple fluids, it is possible to extract from this formula the kinetic
part of the thermal conductivity, if the Chapman–Enskog theory is applied by
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employing the Boltzmann equation for diatomic gases. We have described it
in Chap. 4. Because the procedure is also well documented in the literature [4]
and it is not the principal interest of this work, there is no need to delve into
the subject here.

11.4.3 Kinetic Part of Thermal Conductivity

By calculating Qk with the first-order Chapman–Enskog solution of the Boltz-
mann equation for diatomic gases and comparing the result with the phenom-
enological Fourier law of heat conduction,

Qk = −λk∇T, (11.96)

the kinetic energy part of the thermal conductivity λk can be identified with
the Chapman–Enskog thermal conductivity of a rigid diatomic gas. The reader
is referred to the literature [4] for details of the dilute gas thermal conductivity
λk.

In practice, the Chapman–Enskog thermal conductivity of a spherical
molecule with effective isotropic molecular parameters could be used as an
approximation in many cases, particularly if high accuracy is not sought. For
the thermal conductivity of liquids the kinetic part plays a minor role in com-
parison with that of the potential energy part. For this reason, an isotropic
approximation for λk is often adequate for the kinetic energy part of the
thermal conductivity of liquids. Especially, if the density and temperature de-
pendence of the interaction part of heat conductivity is of interest as it is in
this work, the empirical data may be employed for λk in the actual analysis of
experimental results for thermal conductivity to avoid use of gas kinetic theory
formulas, which require rather time-consuming labor to compute the elastic
and inelastic collision cross sections involved in the collision bracket integrals.
Although known to be quite accurate for the thermal conductivities of gases,
the cost to compute λk from its kinetic theory formula is disproportionately
high for the minor contribution it makes in the high density regime.

11.4.4 Potential Part of Heat Flux

The interaction potential energy part of heat flux will be considered for rigid
homonuclear diatomic (two site) fluids in the following. For rigid diatomic or
linear polyatomic molecules, the intramolecular bonding forces are equal to
zero; ∇rjα

wjαjγ = 0. The intramolecular virial tensor W(s)
jαjγ therefore van-

ishes. Furthermore, there is no intramolecular potential energy contribution
to the potential energy flux. Consequently, the potential energy part of heat
flux is made up of only the terms involving interactions of the sites on different
molecules. This was also the case for the shear stress of rigid diatomic fluids.
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Potential Energy Transport

The potential energy contribution Qv to heat flux consists of intermolecular
(site–site) potential energy contributions, and (11.86) can be written in terms
of the doublet distribution function f (2)(Xc, x12; t):

Qv =
1
2

∫
dXc

∫
dx12V (r12)

(
1
2Cc + v12

)
×δ
(
Rc + 1

2r12 − r
)
f (2)(Xc, x12; t), (11.97)

where r12 = |r1 − r2| denotes the intermolecular site–site distance, which
should not be confused with the intramolecular site–site distance used in the
kinetic energy part of the heat flux discussed earlier. By using the factored
distribution function introduced earlier, it is possible to express Qv in the
form

Qv =
1
2

∫
dr12V (r12) [V(r, r + r12; t) − u(r, t)]n(2)(r, r + r12; t), (11.98)

where the velocity vector V(r, r + r12; t) is defined as the momentum space
average of velocity v2

V(r, r + r12; t) ≡
∫

dPc

∫
dp12v2ψ

(2)(Pc,p12, r, r + r12, t) (11.99)

with velocity v2 expressed by

v2 = Vc +
1
2
v12. (11.100)

Therefore V(r, r+r12, t) is the velocity of a pair of particles in the field of the
rest of the particles in the system regardless of the distribution of the latter.
Therefore V(r, r+ r12; t) is the mean velocity of a site at r with the other site
(on a difference molecule) positioned at r+r12, irrespective of the distribution
of the remaining sites in the system. Note that because the site–site potential
energy is made up of isotropic pair potentials, the pair density correlation
function, as it does for simple fluids, depends only on the relative vector r12:

n(2)(r, r + r12; t) = n(r, t)n(r + r12, t)g(2)(r12, t). (11.101)

According to the formula for Qv in (11.98), the fluid density varies over
distances r12 of the two sites in the molecule that are comparable with the
intermolecular force range, so that the interactions of sites over distances of
O(r12) would be important in the liquid density regime. This density variation
over such distances must be carefully accounted for to calculate Qv for a liquid.
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By expanding the quantities in the integrand in (11.98) in power series of
r12, we obtain

n(r + r12, t) = n(r, t) + r12 · ∇n(r, t) +
1
2
r12r12 : [∇n(r, t)]2 + · · · ,

V(r, r + r12; t) = u(r, t) + r12 · ∇u(r,t) +
1
2
r12r12 : [∇u(r, t)]2 + · · · ,

(11.102)

where we have used of the fact that

V(r, t) = u(r, t). (11.103)

Thus we find that the heat flux arising from the potential energy transport
Qv is, to first order in the density derivative, expressible as

Qv =
1
2
n(r, t)

∫
dr12g

(2)(r12, t)V (r12) r12r12 : ∇n(r, t)∇u(r, t). (11.104)

This expression for Qv is in the same form as that we obtained for simple
fluids in Chap. 10. Hence the molecular structure does not appear explicitly
in the expression because of the site–site interaction model for the interaction
potential. However, note that the molecular structure does have influence,
though indirectly, on the intermolecular interactions through the intermole-
cular site–site pair correlation functions. This point was further elucidated
when the site–site pair correlation functions and their determination were
discussed in the previous section on the shear viscosity of molecular liquids.

Virial Transport

The remainder of the potential energy part of heat flux is the contribution
Q(m)

w from the intermolecular virial tensor. By using reduced distribution
functions introduced earlier, this contribution can be expressed as

Q(m)
w =

1
2

∫ 1

0

dζ
∫

dr12r12F12g
(2) (r12, t)n(r − ζr12, t) (11.105)

×n [r + (1 − ζr)12, t] {V [r − ζr12, r + (1 − ζr)12; t] − u(r, t)} ,
where we have used the property of the displacement operator and

g(2) [r − ζr12, r + (1 − ζr)12; t] = g(2) (r12; t) .

Note that r12 is the intersite distance between intermolecular sites, not the
relative distance between intramolecular sites. To linear order in ∇n(r)∫ 1

0

dζ {V [r − ζr12, r + (1 − ζr)12; t] − u(r,t)}n(r − ζr12, t)

×n [r + (1 − ζr)12, t]

� 1
3
n(r, t)r12r12 : ∇n(r, t)∇u(r, t). (11.106)
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Therefore the formula for Q(m)
w to linear order in ∇n(r, t) can be given in the

form

Q(m)
w =

1
6
n(r, t)

∫
dr12g

(2)(r12, t)F12r12r12r12 : ∇n(r, t)∇u(r, t). (11.107)

The mathematical structure of this formula is the same as that for Qv

in (11.104) except for the intermolecular virial tensor—more specifically,
r12F12/3—replacing the potential V (r12) in (11.104); it is also the same as
the one for simple fluids in Chap. 10.

11.4.5 Potential Part of Thermal Conductivity

Computation of the sum of (11.104) and (11.107) giving the potential energy
part Qp is now reduced, as it was for simple fluids, to the problem of relating
∇n(r, t)∇u(r, t) to the temperature gradient and, possibly, some thermo-
physical parameters such as material functions and the thermal expansion
coefficient of the liquid. The relation in question would require hydrodynamic
consideration. Inasmuch as the hydrodynamic equations are valid for both
simple and molecular liquids, the method used previously for simple liquids is
equally applicable to the molecular liquids considered here. Therefore we will
simply use the result already derived for simple fluids.

By assuming the same flow configuration as for simple fluids, we obtain

∂n

∂z

∂uz

∂z
= −αn (C0 − p)

(nDe − ηl)
∂T

∂z
. (11.108)

The symbols bear meanings similar to those for simple fluids. It also has
been empirically found that the coefficient of the temperature gradient in this
equation can be expressed in terms of the isobaric expansion coefficient α [46]:

α (C0 − p)mD

kB (nDe − ηl)
=

a0αT

1 + 2αT
≡ κ∗ (11.109)

as it was for simple fluids. Here, a0 is an empirical parameter, which is, with
excellent accuracy, a0 � 1.68 for T > Tc for nitrogen and carbon dioxide
treated as rigid diatomic molecules. Note that this empirical form is tanta-
mount to the boundary condition on C0:

C0 = p + a0
kBT (nDe − ηl)
mD (1 + 2αT )

. (11.110)

Also note that κ∗ (n, T ) becomes a constant value, which assumes κ∗ � 0.56
as αT → 1 in the gas density regime. When κ∗ is treated in this manner,
the theory becomes semiempirical. The appearance of the isobaric thermal
expansion coefficient α in the numerator of κ∗ in (11.109) is not arbitrary as
for simple fluids. It has significance for the behavior of thermal conductivity.

Because the momentum and energy are also transported by tagged (tracer)
particles in complex fluids as in simple fluids, the hydrodynamic consideration
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leading to (11.108) is for tracer particles, whose mean velocity is opposite to
the mean fluid velocity uz . This can be taken into account in (11.108) by

∂uz

∂z
=⇒ −∂uz

∂z
, (11.111)

and finally we have the following relation between gradients:

∂n

∂z

∂uz

∂z
=

nkBκ
∗

D

∂T

∂z
, (11.112)

in the same manner as for simple fluids.
By using this result in the expression for the potential energy part of heat

flux Qp, the potential energy contribution to thermal conductivity can be
obtained. We find Qp from (11.104), (11.107), and (11.112) in the following
form:

Qp = −λv(n, T )
(
∂T

∂z

)
, (11.113)

where λv(ρ, T ) is given by the formula

λv(n, T ) =
n2

6D
χ (n, T ) , (11.114)

with χ (n, T ) defined as

χ (n, T ) =
4πkBκ

∗

m

∫ ∞

0

drr4

[
rV ′ (r)

5
− V (r)

]
g(2)
eq (r, n)θ (ξ − r) . (11.115)

In (11.115), the dynamic pair correlation function g(2)(r12; t) has been re-
placed with the equilibrium intermolecular site–site pair correlation function
at n, weighted by a cutoff function θ (ξ − r):

g(2)(r, t) ≈ g(2)
eq (r, n)θ (ξ − r) .

The Heaviside step function θ (ξ − r) is introduced in the integral, as before,
to account for the finiteness of the spatial range ξ of the density variation
caused by the applied temperature gradient, in the same spirit as that for the
heat flux of simple fluids and for the stress tensors. The magnitude of ξ is of
the order of a few molecular diameters at temperatures well below the critical
point and, in particular, near the triple point, whereas ξ becomes comparable
with or larger than the intermolecular force range rmax if T > Tc.

11.4.6 Thermal Conductivity of Diatomic Fluids

Collecting the kinetic and potential parts of thermal conductivity, the final
expression for the thermal conductivity of rigid homonuclear diatomic liquids
in the site–site interaction model can be written as
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λ (n, T ) = λk (T ) +
n2

6D
χ (n, T ) . (11.116)

This expression will be validated by comparing with the experimental thermal
conductivities of molecular liquids available in the literature.

For dilute diatomic gases the Eucken relation holds approximately between
the thermal conductivity and the shear viscosity [44]

λk = εCvηk, (11.117)

where ε is the Eucken factor, Cv is the heat capacity of the gas at constant
volume, and ηk is the shear viscosity. This relation can be generalized to
diatomic liquids. Because the potential energy part ηv of the shear viscosity
of homonuclear rigid diatomic liquids is expressible in the site–site interaction
model by the formula [10]

ηv =
n2

6D
ω (n, T ) , (11.118)

where
ω (n, T ) =

2π
15

∫ ∞

0

drr5V ′ (r) g(2)
eq (r, n)θ (ξ − r) , (11.119)

we obtain the relation
λ = εCvηk + C1ηv (11.120)

between the thermal conductivity and the shear viscosity of a homonuclear
diatomic liquid. In this relation, the coefficient C1 is defined by the ratio

C1 =
χ (n, T )
ω (n, T )

. (11.121)

This generalized Eucken relation is also useful for computing thermal conduc-
tivity from the shear viscosity of a fluid if self-diffusion coefficient data are
not available. The coefficient C1 will be referred to as the generalized Eucken
factor for diatomic liquids.

11.4.7 Comparison of Theory and Experiment

The thermal conductivity formula, (11.116), derived in the previous subsection
has been validated with regard to the density and temperature dependence
in comparison with the thermal conductivity coefficients of liquid nitrogen
and liquid carbon dioxide under the assumption that both are linear rigid
molecules with two interaction sites. For the thermal conductivity of complex
fluids (11.116) also requires precise information on the self-diffusion coefficient
at the desired density and temperature. However, experimental or simulation
data for D for liquid nitrogen and carbon dioxide are available only over
limited ranges of density and temperature in the literature [12,13,18,21–24,40],



332 11 Density Fluctuation Theory: Complex Fluids

whereas a large body of experimental data has been compiled for the shear
viscosity of carbon dioxide (see, for instance, [27, 36] and references therein).
Therefore it was found convenient to use the shear viscosity data in place of the
self-diffusion coefficient data by employing the generalized Eucken relation to
calculate the thermal conductivity. For this purpose, the thermal conductivity
coefficient can be rewritten in the form

λ = λk (T ) +
χ (ρ, T )
ω (ρ, T )

ηv, (11.122)

where the Heaviside step function θ (ξ − r) is set equal to unity for T > Tc,
unless stated otherwise.

For the intersite potential the Lennard-Jones potential is used exclusively.
The parameter values for the site–site Lennard-Jones potential and the bond
length b between the two atoms (sites) are the same as those employed previ-
ously in the literature; ε = 0.515 × 10−21 J, σ = 0.3310 nm, and b = 0.3292σ
for nitrogen [12]; and ε/kB = 163.3K, σ = 0.3035 nm, and b = 0.7809σ for
carbon dioxide [19]. The reduced temperature and density are defined in the
usual manner.

The equilibrium intermolecular site–site pair correlation function g
(2)
eq (r)

was calculated either by the Monte Carlo (MC) simulations described in [11]
or via the FE integral equation theory [6] for site–site intermolecular correla-
tion functions. Unless stated otherwise, the pair correlation function g

(2)
eq (r, n)

used for the calculations was obtained from MC simulations when the mass
density ρ was higher than 400 kg m−3 (e.g., ρ∗ = 0.27 for CO2), whereas for
ρ � 400 kg m−3 they were computed with the FE integral equation solved
numerically by a combination of iteration and fast Fourier transform meth-
ods. Because the generalized Eucken relation was employed to calculate the
thermal conductivity, its reliability is assessed in Fig. 11.13 with regard to the
density dependence of the integral parts

χI (n, T ) ≡
∫ ∞

0

drr4

[
rV ′ (r)

5
− V (r)

]
g(2)
eq (r;n), (11.123)

ωI (n, T ) ≡
∫ ∞

0

drr5V ′ (r) g(2)
eq (r;n), (11.124)

of (11.115) and (11.119) for carbon dioxide. They were evaluated numerically
with the pair correlation function g

(2)
eq (r) obtained from MC simulations, where

g
(2)
eq (r > rc) � 1 was assumed after the potential cutoff point at rc = 4.5σ.

The symbols were computed with the MC results for g(2)
eq (r;n) and the curves

were drawn to guide the eyes; the open circles (©) are at T = 470K and
the filled circles (•) at T = 503K. Both χI (n, T ) and ωI (n, T ) decrease with
increasing density. The integrals χI (n, T ) and ωI (n, T ) for nitrogen reportedly
[11] behave similarly to those of carbon dioxide.
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Fig. 11.13. Density dependence for carbon dioxide of χI (n, T ) and ωI (n, T ) defined
by (11.123) and (11.124), respectively. The symbols were computed numerically by

using g
(2)
eq (r) obtained from the MC simulations described in [11], with g

(2)
eq (r >

rc) � 1 assumed after the potential cutoff rc = 4.5σ. The open circles (©) are for
T = 470K, and the filled circles (•) for T = 503 K. Curves have been drawn only to
guide the eyes. [Reproduced with permission from Kyunil Rah and Byung Chan Eu,
J. Chem. Phys. 117, 4386 (2002). Copyright 2002 American Institute of Physics.]

With the pair correlation function obtained, the thermal conductivity of
both nitrogen and carbon dioxide for T > Tc have been calculated by employ-
ing (11.122). The necessary information on ηv was obtained from the papers
by Younglove [32] for nitrogen and by Fenghour et al. [27] for carbon dioxide;
both are subject to uncertainties of about ±5% or larger at the highest pres-
sures. The isobaric thermal expansion coefficient α in (11.109) was computed
numerically from the empirical equations of state for nitrogen [47] and carbon
dioxide [25,35].

In Fig. 11.14, the density dependence is shown of the thermal conductivity
λ of nitrogen N2 at T = 308 K, which is approximately 2.4Tc (critical temper-
ature, Tc = 126.2 K). The critical density is ρc = 313.3 kg m−3. The dashed
curve was calculated from (11.122) using the low-density limit of κ∗ empiri-
cally determined as limρ→0 κ

∗ = 0.56; this value gives a0 = 1.68 in (11.109).
The experimental data [37] were used for λk (T ) in (11.122) to reduce the
labor of computing a quantity that makes only a minor contribution in the
liquid density regime. We note that a full kinetic theory computation of λk

for a diatomic molecule system can be done by using the Chapman–Enskog
formula, but it could require a major investment in time and labor to calculate
the necessary collision cross sections. The filled circles (•) are for the exper-
iment by Mostert et al. [37] and the empirical data (©,�) were estimated
from the interpolation formulas for λ of nitrogen proposed by Younglove [32]
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Fig. 11.14. λ vs. ρ for nitrogen at T = 308K. The dashed curve was calculated
with κ∗ = 0.56. The filled circles (•) are experimental [37], whereas the open symbols
(©,
) are empirical data estimated from interpolation formulas by Younglove [32]
and by Stephan et al. [33], respectively. [Reproduced with permission from Kyu-
nil Rah and Byung Chan Eu, J. Chem. Phys. 117, 4386 (2002). Copyright 2002
American Institute of Physics.]

and by Stephan et al. [33], respectively. For ρ � 300 kg m−3, the constant
empirical value of κ∗ = 0.56 no longer appears appropriate to account for the
experimental data for λ with good accuracy.

In Fig. 11.15, the density dependence of the thermal conductivity of ni-
trogen is shown for T = 298 K. In the figure, the solid curve was calculated
according to the density fluctuation theory from (11.122), and κ∗ (n, T ) from
(11.109) with a0 = 1.68 determined from Fig. 11.14 in the low-density regime.
The dashed curve was computed with κ∗ = 0.56. The filled squares (�) are
the experimental data by Le Neindre et al. [48], and the open circles are from
Younglove [32]. For density in the range of 300–1,000 kg m−3 the integrals for
χ (n, T ) and ω (n, T ) in (11.122) were evaluated by using the intermolecular
site–site pair correlation function g

(2)
eq (r) obtained from Monte Carlo simu-

lations described in [11]. An interpolation scheme for χ (n, T ) and ω (n, T )
was employed for densities other than those at which simulations were actu-
ally performed. For ρ < 300 kg m−3 the pair correlation functions computed
from the FE integral equation theory were employed. No cutoff parameter
was used for the calculations. The theory therefore is free of the adjustable
parameter. There is very good agreement between the theory (solid curve)
and experiment.

Figure 11.16 shows the density dependence of the thermal conductivity of
carbon dioxide at T = 675 K, which is approximately 2.2Tc (Tc = 304.1K).
The critical density is ρc = 467.7 kg m−3. The two curves show the density
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Fig. 11.15. λ vs. ρ for N2 at T = 298K. The solid curve is the theoretical prediction
made with κ∗ (n, T ) given by (11.109) and a0 = 1.68, and the dashed curve with κ∗ =
0.56. The symbols are experimental: filled squares (�) from [48] and open circles (©)

from [32]. g
(2)
eq (r) was obtained from MC simulations for ρ = 300−1, 000 kg m−3 and

from the FE integral equation for ρ < 300 kg m−3. No cutoff parameter was used
for these calculations. [Reproduced with permission from Kyunil Rah and Byung
Chan Eu, J. Chem. Phys. 117, 4386 (2002). Copyright 2002 American Institute of
Physics.]
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Fig. 11.16. λ vs. ρ for carbon dioxide at T = 675K. The curves are the theoretical
predictions by using (11.109) with a0 = 1.68 for the solid curve and κ∗ = 0.56
for the dashed curve. The symbols are experimental data: (•) from [49] and (
)
from [36]. [Reproduced with permission from Kyunil Rah and Byung Chan Eu, J.
Chem. Phys. 117, 4386 (2002). Copyright 2002 American Institute of Physics.]
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dependence of λ calculated from (11.122), where the solid curve was obtained
by using (11.109) for κ∗ (n, T ) with a0 = 1.68, whereas the dashed curve
was calculated with κ∗ = 0.56. As the density increases approximately above
800 kg m−3, the dashed curve starts to deviate from the experimental data
for λ, whereas the solid curve remains in excellent agreement with the ex-
perimental data (•) of Tufeu and Le Neindre [49]. The results (�) estimated
from the empirical fitting formula by Fenghour et al. [27] are also shown
for the thermal conductivity of carbon dioxide. The experimental value [49]
was used for λk (T ). For the density range of 400–1300 kg m−3, χ (n, T ) and
ω (n, T ) necessary for (11.122) were calculated with the intermolecular site–
site pair correlation function g

(2)
eq (r) obtained from MC simulations, whereas

for ρ � 400 kg m−3 the pair correlation functions were computed from the FE
integral equation [6].

In Fig. 11.17, the experimental density dependence of the thermal conduc-
tivity for carbon dioxide is compared with the theoretical prediction calculated
at two isotherms by using the density fluctuation theory. In Fig. 11.17, where
T = 503K, the solid curve was predicted from (11.122) in conjunction with
(11.109) for κ∗ and the dashed curve was computed with κ∗ = 0.56. The ex-
perimental data are from Tufeu and Le Neindre (•) [49] and Vesovic et al.
(�) [36].

From both theoretical and practical viewpoints the relationship between
the thermal conductivity and shear viscosity of molecular liquids is very useful
and important. For liquids the potential energy part dominates the kinetic en-
ergy part in accounting for the thermal conductivity. The generalized Eucken
factor (11.121) between the thermal conductivity and shear viscosity has been
also examined for liquid carbon dioxide. Based on the methodology developed
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Fig. 11.17. The same as Fig. 10.16 except that the results are for T = 503 K.
[Reproduced with permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys.
117, 4386 (2002). Copyright 2002 American Institute of Physics.]
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in the density fluctuation theory, the factor C1 in (11.121) was calculated as
a function of density at three isotherms all above Tc. The results are shown
in Fig. 11.18, where the reduced form of C∗

1 ≡ C1/R (R is the gas constant),
is plotted against density: the dashed, solid, and dotted curves correspond to
temperatures at T = 470, 503, and 675K, respectively. The coefficient C1 is a
rapidly decreasing function of density, indicating that the generalized Eucken
factor C1 becomes strongly density-dependent in the high density regime. This
decreasing behavior of C1 with respect to density reportedly [11] cancels out
to some extent the rather dramatic increasing trend of shear viscosity with in-
creasing density, especially in the high density regime. This seems to explain,
at least qualitatively, why density dependence of the thermal conductivity is
weaker than the density dependence of the shear viscosity that can be observed
when their theoretical and experimental density dependences are compared.
It would be useful to construct an appropriate empirical form for C1 that can
be employed for calculating the thermal conductivity on an empirical basis in
terms of shear viscosity. This task is of interest to experimenters and will be
left to them to work out.

No cutoff parameter has been used for the calculations of thermal con-
ductivity at the temperatures considered for molecular liquids. However, the
range of ξ in the step function θ (ξ − r) in (11.115) may no longer be compa-
rable with the intermolecular force range when the temperature is well below
Tc because the range of density variation is narrower than the intermolecular
force range at low temperature and, in particular, near the triple point unlike
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Fig. 11.18. The density dependence of C∗
1 ≡ C1/R for three isotherms of carbon

dioxide, where C1 is given by (11.121). The curves are theoretical: the dashed curve
for 407 K, the solid curve for 503 K, and the dotted curve (· · · ) for 675 K. (11.109)

was used for all three curves, and g
(2)
eq (r) was obtained from MC simulations. [Re-

produced with permission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys.
117, 4386 (2002). Copyright 2002 American Institute of Physics.]
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at T � Tc, where ξ becomes comparable with or larger than the intermolec-
ular force range. Nevertheless, it is useful to remember that the same value
of ξ should be taken as that used for shear viscosity, especially, in view of
the generalized Eucken relation. Because of this relation, ξ is no longer an
adjustable parameter for thermal conductivity; it is already fixed for the cal-
culation of the shear viscosity of the same substance, if the shear viscosity is
first calculated and compared with experiment.

11.5 Concluding Remarks on the Density
Fluctuation Theory

Historically, the reductionist philosophy of macroscopic phenomena in matter
has driven science to develop a kinetic theory of matter based on partic-
ulate concept of matter. This culminated in the mean free path theory of
Clausius [50] and the more successful kinetic theory of gases of Maxwell [51].
Maxwell’s kinetic theory of gases was continued and improved in a very im-
portant way by Boltzmann [52], who discovered the kinetic equation that now
bears his name and provides us with the foundations of molecular theory for
irreversible thermodynamics [1, 2, 53] through the H theorem of Boltzmann.
Maxwell’s elucidation of the molecular theory of transport coefficients such
as viscosity, thermal conductivity, and diffusion coefficients became a great
impetus for further experimental examination of the density and tempera-
ture dependence of transport coefficients. Maxwell’s theory predicted that the
transport coefficients of normal state gases are independent of density, but it
was discovered by Kundt and Warburg [54] in their study of rarefied gases
that Maxwell’s prediction was contradicted: the transport coefficients depend
on density as density diminishes. Thus the desire to understand the density
dependence of transport coefficients in the rarefied gas limit has motivated
the kinetic theory of gases to develop rarefied gas dynamics [55], in which
we study the density and temperature dependence of transport coefficients of
gases and their fluid dynamic consequences. We have discussed an example of
such a density dependence in Chap. 3.

The kinetic theory of Maxwell and Boltzmann was synthesized by J. W.
Gibbs [56], who included matter in the condensed phase in his statistical
mechanics, although the theory was limited to equilibrium phenomena. Gibbs’
ensemble theory of statistical mechanics inevitably points to the possibility of
the density dependence of transport coefficients of matter as density increases.

Experimental investigation of transport coefficients in the early part of
the twentieth century showed that the transport coefficients of dense gases
and liquids depend strongly on density and temperature, unlike the transport
coefficients of gases in normal states. Enskog’s theory of dense gases [57] was
an early pioneering work attempting to extend the Boltzmann kinetic theory.
The kinetic theory of dense gases and liquids after the advent of the BBGKY
hierarchy theory [58–61] in 1946 may be said to have been devoted to improv-
ing the Enskog approach and answering the questions arising in his theory.
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The linear response theory [62–64] is another theory in this category of theo-
ries. The generalized Boltzmann equation described in this work is still another
approach to try to answer the questions. The BBGKY line of theories, the gen-
eralized Boltzmann equation approach via the Chapman–Enskog method of
solution, and the linear response theory all require solutions of many-particle
collision dynamics, which are impossible to achieve in practical and reliable
forms. Consequently, they have not proven practical for understanding the
desired density and temperature dependence of transport coefficients of dense
gases and liquids. In recent years, computer simulation methods, such as mole-
cular dynamics simulation and Monte Carlo simulation, have been providing
tools to obtain desired information on thermophysical properties of matter in
the condensed phase, although they have their own limitations.

The density fluctuation theory presented in the previous and present chap-
ters is aimed at answering the aforementioned question regarding the density
and temperature dependence of transport coefficients of matter in the con-
densed phase by an approach rather different from the aforementioned theo-
ries. In the density fluctuation theory, the transport of matter, momentum,
and energy is achieved through local density fluctuations within intermolecular
force ranges and resulting alterations in the fluid structure. Matter, momen-
tum, and energy transport are intimately controlled by diffusion of particles,
and diffusion of particles in fluids provides temporal and spatial scales of the
transport of the aforementioned quantities. Thus, at the mathematical level
of such transport processes the transport coefficients are scaled by the self-
diffusion coefficient or the diffusion coefficients of the fluid of interest and are
also determined by the structure of the fluid. Consequently, the temperature
and density dependence of transport coefficients of a fluid are computable in
terms of the self-diffusion or diffusion coefficients and the equilibrium pair
correlation function, given appropriate intermolecular and intramolecular in-
teraction potentials. Self-diffusion or diffusion coefficients may be taken from
empirical or computer simulation data, and the equilibrium pair correlation
function can be computed either by an integral equation theory or a computer
simulation method (e.g., Monte Carlo simulation). If the self-diffusion coeffi-
cient is supplied empirically or from computer simulations, then the density
fluctuation theory becomes a semiempirical theory of transport coefficients.
Irrespective of whether it is semiempirical or molecular, using the density
fluctuation theory we are now able to calculate the density and temperature
dependence comparable with that from experimental data with good accuracy.

As will be discussed in the following chapter, self-diffusion coefficients may
be calculated by free volume theory and thereby the semiempiricism of the
density fluctuation theory can be effectively removed. In removal of semiem-
piricism, the crucial role is played by the generic van der Waals equation of
state—the canonical equation of state—owing to which the density fluctua-
tion theory of transport coefficients provides a practical method for computing
the density and temperature dependence of dynamic thermophysical observ-
ables by Monte Carlo simulations of fluid structures and related equilibrium
thermophysical properties.
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12

Free Volume Theory and Transport Coefficients

The density fluctuation theory described in the previous two chapters has
provided formulas for the potential energy parts of the transport coefficients
of liquids in forms reminiscent of the Stokes–Einstein relation between vis-
cosity and the diffusion coefficient. The formulas derived can successfully ac-
count for the density and temperature dependence of transport coefficients
of simple as well as complex liquids, provided that the self-diffusion coeffi-
cient and equilibrium pair correlations are available for the liquid of interest.
They can be obtained by computer simulation methods. Therefore, if we are
satisfied with such an approach, the theory may be regarded as sufficient for
computing and analyzing data on transport coefficients of liquids. However,
simulating self-diffusion coefficients for liquids is a still time-consuming effort
and also costly. Furthermore, we would like to push the subject matter to the
edge of molecular theory, so that our understanding of the subject can be as
refined as possible. In this respect, the free volume theory of diffusion seems to
meet the desired aim to a large extent at present, given the complexity of the
problem in hand. With the free volume theory described and validated in this
chapter, the density fluctuation theory can be made a practicable molecular
theory of transport coefficients that requires only equilibrium pair correlation
functions that can be obtained either from the solutions of integral equa-
tions or more accurately by computer simulation methods—typically Monte
Carlo simulation [1]. It is interesting and significant that dynamic quantities,
such as transport coefficients, can be calculated only with equilibrium pair
correlation functions, and it frees the theory of transport coefficients of liq-
uids from some delicate questions related to the meanings of temperature, the
modes of applying external perturbations, and associated algorithms (such
as the Hamiltonian of Nosé and Hoover) in molecular dynamics simulation
methods [2, 3].

It would not take long reflection to see that the essence of comprehend-
ing the physical mechanisms of transport processes in liquids must lie in the
behavior of the voids in liquids. Notwithstanding the clarity of the picture
that voids play the key role in transport processes in liquids, their mode
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for entering into the molecular theory of transport processes is not obvious.
There appear to be two levels on which they enter into the whole structure
of the theory: at the dynamics level and at the equilibrium structure level.
By dynamics here, we mean dynamics in the nonequilibrium processes of the
transport of matter, momentum, and energy. In this author’s opinion, the free
volume theory of Cohen and Turnbull [4] provides a significant measure of un-
derstanding at the dynamic and kinematic levels. It, however, would require
a method of computing the mean free volume in addition to knowledge of
other parameters in their theory. The practical utility of their theory hinges
upon what is meant by the mean free volume from the viewpoint of molecu-
lar theory. We show that the desired molecular theory meaning of the mean
free volume is provided by the generic van der Waals equation of state dis-
cussed in Chap. 6, because the latter gives a molecular theory representation
for the mean free volume in terms of the equilibrium pair correlation function.
The desired molecular structure of the liquid and the equilibrium structure of
voids in the liquid are adequately provided by the equilibrium pair correlation
function. How the roles of voids in liquids are played out in the free volume
theory—called the modified free volume (MFV) theory [5] in the following—is
described in this chapter, and then the theory will be validated in comparison
with experiment.

There are other free volume theories in the literature [6–12], but they are
either empirical or have been found inadequate for our purpose. Therefore we
will not discuss them here except for mentioning their existence.

12.1 Modified Free Volume Theory of Diffusion

12.1.1 Free Volume Theory

We briefly discuss the essential feature of the Cohen–Turnbull free volume
theory [4] and then a suitably modify it, so that it can be made molecular to
the maximum extent within the framework of the free volume concept. We
consider a simple liquid consisting of hard spheres for the sake of simplicity.
This restriction, however, is not mandatory and may be relaxed.

In closely packed liquids the attractive force felt by a particle is much
screened out by its nearest neighbors. Consequently, particles move in an
almost constant force field in a cage provided by the nearest-neighbor particles
surrounding them. Therefore, a hard sphere model mimics the behavior of
closely packed liquids rather well. Denote the volume per molecule in the
liquid by v and the excluded volume per molecule (i.e., the molecular volume)
by v0. The latter is the volume that cannot be occupied by other molecules.
The difference v−v0 is then the volume per molecule that is available to other
molecules excluding the molecule of attention. We will regard this as the free
volume. Diffusion is then simply treated as translation of molecules across the
void within its cage and beyond. If the idea of mean free path theory [13,14]
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is employed, then translational diffusion coefficient D(v) within the estimated
free volume is given by the formula

D(v) = gua(v), (12.1)

where g is a geometric factor, u is the thermal speed (e.g., the mean gas kinetic
speed), and a(v) is roughly the diameter of the cage representative of free
volume v. This diffusion coefficient will be equal to zero if the free volume is
less than a characteristic value large enough to allow the molecule to move into
the void created by the displacement of a molecule. The translational diffusion
coefficient D of the liquid is then a weighted superposition (i.e., average) of all
possible diffusional contributions from molecules that have different available
free volumes:

D =
∫ ∞

v∗
dvD(v)p(v)

= gu

∫ ∞

v∗
dva(v)p(v), (12.2)

where p(v) is the probability of finding free volume v between v and v + dv
and v∗ is the critical free volume activating diffusion. The difficulty of the
Cohen–Turnbull theory is in the poorly defined parameters g, u, a(v), and v∗

in addition to the mean free volume per molecule vf appearing below, all of
which are not precisely related to molecular interaction parameters and the
structure of the liquid in hand. This weakness should be removed as much as
possible to make the theory function better.

In any case, because free volume is randomly distributed, the Cohen–
Turnbull theory calculates p(v) by employing a statistical mechanics method.
Imagine that the total range of free volume is divided into small regions i
having average value vi. Let there be Ni molecules having free volume in the
ith region of size vi. If there are N molecules in the liquid, then there are

W =
N !∏

i

Ni!
(12.3)

ways of distributing N molecules into free volumes v1, v2, · · · , vi, · · · . This
distribution is subject to the conditions,

N =
∑

i

Ni, (12.4)

Nvf = α
∑

i

Nivi, (12.5)

where vf is the mean free volume per molecule and α is a geometric factor
correcting for the free volume overlap. Cohen and Turnbull [4] estimated that
it is between 1 and 1/2.
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Applying the Lagrange method of undetermined multipliers, the probabil-
ity distribution function p(v) is obtained from (12.3)–(12.5):

p(v) =
α

vf
exp
(
−αv

vf

)
, (12.6)

which is normalized to unity ∫ ∞

0

dvp(v) = 1. (12.7)

By using this distribution function in (12.2) and assuming that a(v) is a slowly
changing function, we obtain the self-diffusion coefficient

D � gua(v∗) exp
(
−αv∗

vf

)
. (12.8)

This is the main result of the Cohen–Turnbull free volume theory [4], which
is reminiscent of the empirical formula used by Doolittle [9]. Although the
present version of free volume theory is rather compelling conceptually, it
contains six parameters, which are not precisely defined. They will have to
be given more precise meanings if the theory is to be useful for understand-
ing transport processes and the behavior of related transport coefficients of
liquids. In the modified free volume (MFV) theory [5], the self-diffusion coef-
ficient in (12.8) is given a more useful and explicit molecular theory form.

In closely packed liquids molecules behave like hard spheres, and trans-
lational diffusion of such particles in a cage should closely resemble hard
sphere diffusion across mean free path a(v∗). Therefore it is appropriate to re-
place the factor gua(v∗) with the Chapman–Enskog hard sphere self-diffusion
coefficient [14]

gua(v∗) ⇒ D0 = 1.019
3

8nσ2

√
kBT

πm
, (12.9)

where n is the density, σ is the diameter of the hard sphere, and m is the
reduced mass of the molecule. The numerical factor 1.019 in the expression
for D0 may be safely replaced with unity. With the replacement suggested
in (12.9), the three poorly known parameters are now disposed of and there
remains the question of parameter α, v∗, and the mean free volume vf .

Unless the Cohen–Turnbull free volume theory is totally reformulated and
its basic premises are abandoned, it is not possible to fix the parameter α
within the framework of their theory. Therefore it will be left as an adjustable
parameter. Because it is about unity, we will find it reasonable to set it equal
to unity if we are willing to accept slight numerical inaccuracy, or it may
be simply absorbed into the minimum (or critical) free volume v∗. This will
leave the minimum free volume v∗ and the mean free volume per molecule to
consider. It is relatively straightforward to make a physically sensible inter-
pretation and estimate of the minimum free volume v∗—it may be taken as
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the molecular volume that can be squeezed through the minimum size void
created in the liquid to accomplish diffusion. This leaves vf undetermined. In
the original Cohen–Turnbull theory [4], vf is expanded in a series of T with
phenomenological parameters, and with a suitable expansion it was possible to
show that the well-known Williams–Landel–Ferry (WLF) formula [15] could
be recovered, which is known to fit experimental data on transport properties
of glass-forming liquids to a useful extent. Nevertheless, such an expansion is
not satisfactory nor is there a molecular theory basis in their treatment to do
otherwise. We believe, however, that the Cohen–Turnbull free volume theory
contains a more worthy aspect than the recovery of the WLF formula. The
crux of the matter lies in what is meant by the mean free volume per molecule
vf from the standpoint of statistical mechanics. It seems to require a different
approach.

12.1.2 Mean Free Volume

Mean free volume is a concept that is rather compelling from a physical stand-
point but also has been rather elusive to catch in a definitive mathemati-
cal form for quantitative and sufficiently accurate calculation by statistical
mechanics. The concept of free volume originates from the van der Waals
equation of state. Science historians [16, 17] relate that the quantification of
the concept1 had troubled van der Waals throughout his life because he had
not been satisfied with his definition. The other existing free volume theories
quoted earlier are also hampered by the lack of sufficiently precise quantifica-
tion of free volume.

The solution to this difficulty in quantifying mean free volume vf is pro-
vided by the generic van der Waals equation of state introduced in Chap. 6.
We have shown that the generic van der Waals equation of state—a canonical
equation of state—makes it possible to identify most naturally the mean free
volume with the form

vf = v [1 −B (n, T )n] , (12.10)

where, for a potential that has repulsive and attractive branches and therefore
has a zero at r = σ, the generic van der Waals parameter B (n, T ) is given by

B(n, T ) =
(2π/3)

∫ σ

0
drr3y(r)df(r)

dr

1 + (2π/3)n
∫ σ

0
drr3y(r)df(r)

dr

. (12.11)

1 According to Brush [18], Maxwell, who was the external examiner of the Ph.D
dissertation of van der Waals, expressed his opinion that van der Waals’ estimate
of the excluded volume was inadequate. That prophecy of Maxwell turned out to
be on the mark. The van der Waals parameters and, in particular, the excluded
volume parameter b should not be independent of temperature and density, if the
van der Waals equation of state is to account properly for the subcritical behavior
of fluids.
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In this expression y(r) is the cavity function. This is a statistical mechani-
cal representation of mean excluded volume per molecule of the fluid. For a
potential model in which the soft repulsive potential is replaced by a hard
core of diameter σ, this formula becomes

B(n, T ) =
(2π/3)σ3y (σ)

1 + (2π/3)σ3ny (σ)
. (12.12)

If the generic van der Waals equation of state,[
p + A (n, T )n2

]
[1 −B (n, T )n] = nkBT, (12.13)

where

A (n, T ) = − 2π
3β

∫ ∞

σ

drr3y (r)
df (r)

dr
, (12.14)

is employed, the mean free volume vf may be alternatively written in the form

vf =
kBT

p + A (n, T )n2
. (12.15)

Compare this with the mean free volume in the van der Waals theory

vf =
kBT

p + an2
,

where a is the van der Waals parameter representative of the attractive force
and a constant, as is b. Recall that a is the lowest order approximation of the
zero density limit of A (n, T ): see (6.24) of Chap. 6. Before proceeding further,
note that the choice of the position σ at which the virial integral is divided
into the generic van der Waals parameters A and B is not unique. There is
room for variation in this position. For example, it is possible to choose the
minimum rmin of the potential or a point between σ and rmin. However, σ at
which the potential energy V (σ) is equal to zero seems to be unambiguous
and physically clear-cut for the meaning of B (n, T ). Note that A (n, T ) and
B (n, T ) are generally nonanalytic functions of n and T ; see Chap. 6.

12.1.3 Self-Diffusion Coefficient in the Modified Free
Volume Theory

Now, using vf identified as in (12.10) in the expression for the self-diffusion
coefficient yields the formula

D = 1.019
3

8nσ2

√
kBT

πm
exp
{
− αv0

v [1 −B (n, T )n]

}
, (12.16)

where v∗ has been identified with the molecular volume v0 = πσ3/6, that
is, v∗ = v0. Because α is usually rather close to unity, it is acceptable to



12.2 Comparison with Experiments 349

set α = 1 if we are willing to have a little reduced accuracy. We note that
instead of the aforementioned identification of v∗ with v0, it is possible to
take αv∗ = πσ3/6 with the value of σ suitably adjusted as the diameter of
the minimum cavity allowing passage of a molecule. With the identifications
of mean free volume vf and αv∗ as indicated, the self-diffusion coefficient of
the CT free volume theory is now free from unknown parameters. Then the
formula for D thus obtained is completely free from adjustable parameters,
and now we have a molecular theory of self-diffusion coefficients of simple
fluids.

Alternatively, D may be expressed as

D = 1.019 · 3
8nσ2

√
kBT

πm
exp

{
−αv0

[
p + A (n, T )n2

]
kBT

}
, (12.17)

where the numerator in the exponent may be interpreted as the work Wc to
create a cavity of size αv0 against the effective pressure peff = p+A (n, T )n2,
so that diffusion is activated in the liquid:

Wc = αv0

[
p + A (n, T )n2

]
= αv0peff . (12.18)

In this interpretation, the self-diffusion coefficient so expressed

D = 1.019 · 3
8nσ2

√
kBT

πm
exp
(
− Wc

kBT

)
(12.19)

is formally in an Arrhenius form, but note that the activation energy Wc

and the preexponential factor depend on temperature and density. Equation
(12.16), (12.17), or (12.19) is a principal result of the modified free volume
theory of self-diffusion in simple fluids. The accuracy of the theory may be
somewhat improved if the hard sphere gas self-diffusion given in (12.9) is im-
proved with a higher order Chapman–Enskog self-diffusion coefficient. How-
ever, it will be empirically verified that (12.16), (12.17), or (12.19) is generally
sufficient for simple fluids in the liquid density regime.

Finally, note that because vf → ∞ as the fluid density approaches the gas
density, the self-diffusion coefficient formula (12.16) tends to the hard sphere
gas formula:

lim
n→0

nD = 1.019 · 3
8σ2

√
kBT

πm
. (12.20)

Therefore, D has an appropriate limiting form in the dilute gas regime of
density.

12.2 Comparison with Experiments

The self-diffusion coefficient of the MFV theory, (12.16), has been tested
against experimental data with the cavity function calculated either with the
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Percus–Yevick (PY) integral equation [19] or by Monte Carlo (MC) simula-
tions [1]. A comparison shows that once the parameter α is chosen at a state,
the self-diffusion coefficient formula predicts the density and temperature de-
pendence of D correctly and, quite accurately, over the entire ranges of density
and temperature within experimental error. At the initial stage in the devel-
opment of the MFV theory a square-well model was used to calculate D by
an MC simulation method. The temperature dependence of D for liquid ar-
gon along the liquid–vapor coexistence curve [20] was very good in comparison
with experimental data reported by [21]. The same self-diffusion coefficient has
been more extensively investigated for density and temperature dependence
in [22] by using the Lennard-Jones potential model. The Lennard-Jones po-
tential parameters for argon [23] were ε/kB = 120.0 K and σ = 3.405 Å. The
critical parameters are reported [24] to be pc = 4.863MPa, Tc = 150.68K,
and ρc = 535.6 kg m−3.

In Fig. 12.1, the density dependence of D is compared with the experi-
mental data and molecular dynamics simulation results [25] at various tem-
peratures. The filled circles (•) are the MFV theory, the open circles (�)
are the molecular dynamics data, and the crosses (×) are experimental data
by Naghizadeh and Rice [21]. The Arabic numerals indicate the absolute
temperatures at which the self-diffusion coefficients are measured or com-
puted: 1 = 140; 2 = 130; 3 = 120; 4 = 110; 5 = 100; 6 = 90; 7 = 145; 8 =
130; 9 = 110; 10 = 95; 11 = 95; and 12 = 95K, respectively. For the calcula-
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Fig. 12.1. Comparison of self-diffusion coefficient D at various temperatures as
a function of density. The filled circles (•) are the MFV theory; the open circles
(�) are the molecular dynamics data; and the crosses (×) are experimental data
by Naghizadeh and Rice [21]. The meanings of the numerals are given in the text.
[Reproduced with permission from R. Laghaei, A. Eskandari Nasrabad, and B. C.
Eu, J. Phys. Chem. B 109, 5873 (2005). Copyright 2005 American Chemical Society.]
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tion of D, the minimum free volume activating diffusion was chosen such that
αv∗ = 1.1vc(vc = πσ3/6). The comparison indicates that the MFV theory
data with 1.1vc for αv∗ agree excellently with the molecular dynamics sim-
ulation results throughout the entire density range for which simulation and
experimental data are available. Whereas the simulation data are in accord
with the theory throughout the density range, there are considerable differ-
ences from experimental data at the low-density end. We may attribute the
deviation to some experimental errors. It is not clear whether it is the theory
or the experimental error is large at the high temperature end. On the basis
of the comparison, the MFV theory formula for D in (12.16) is judged reliable
and thus validated.

In Fig. 12.2, the temperature dependence of the self-diffusion coefficients
of argon predicted by the MFV theory are compared with both experimental
and simulation results. Each of the pairs 1–6 in the experimental (×) and
theoretical (©) data sets belongs to an isochore. Pairs of the filled circle (•)
and open square (�) in pairs 7–12 belong to different isochores, which are also
different from the former sets containing 1–6. The pair correlation functions
used for D in this figure have also been obtained by the NVT MC simulation
method described in [22]. The same value of αv∗, as for it is Fig. 12.1, was
chosen for this figure. The thermodynamic states of data points marked by
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Fig. 12.2. D vs. T for argon. The filled circles (•) and the open circles (©) are
theoretical, the open squares (�) are the simulation data, and the crosses (×) are
experimental data. The meanings of the numerals are the same as those for Fig. 12.1.
The pairs 1–6 of experimental (×) and theoretical (©) values belong to an isochore.
The pairs 8–12 are simulation (�) and theoretical (•) values belonging to an isochore.
[Reproduced with permission from R. Laghaei, A. Eskandari Nasrabad, and B. C.
Eu, J. Phys. Chem. B 109, 5873 (2005). Copyright 2005 The American Chemical
Society.]
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the numerals correspond to those in Fig. 12.1. The experimental data were
obtained by Naghizadeh and Rice [21]. There is good agreement between the
theory and simulation results, but the experimental data deviate from both
simulation and theoretical results in the low and high temperature ends.

Liquid methane is not a simple liquid as are inert monatomic fluids,
but it is known in the literature [26–32] that it behaves almost as if it is
a simple liquid—a rigid spherical structureless molecule—when its thermo-
dynamic properties are examined. Therefore, on the basis of such empirical
evidence accumulated so far in the literature, Laghaei et al. [22] calculated
the self-diffusion coefficient of liquid methane, treating it as if it were a sim-
ple liquid. The Lennard-Jones potential parameters for methane were taken
from [33]: ε/kB = 147.9 K and σ = 3.7 Å, and its critical parameters [34] are
pc = 4.599MPa, Tc = 190.56K, and ρc = 162.66 kg m−3.

In Fig. 12.3, the self-diffusion coefficients of methane computed by the
MFV theory are compared with experimental data at various temperatures.
The meanings of the symbols are as follows: • (theory), � (experiment) at
T = 160K; ∗ (theory), ♦ (experiment) at T = 140K;© (theory), � (ex-
periment) at T = 110K. For methane, we have taken αv∗ = 1.13vc for
T = 110K, 0.9vc for T = 140K, and 0.8vc for T = 160K. For methane, it was
found that the critical free volume giving rise to diffusion is slightly density
dependent, probably because the critical free volume for diffusion is sensitive
to the internal structure of the molecule. Because methane is not spherical

0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48
2

4

6

8

10

12

14

16

18

20

r (g cm-3)

D
�

10
5  

(c
m

2 
s-1

)

Fig. 12.3. D vs. ρ for methane at various temperatures. The meanings of the
symbols are as follows: • (MFV theory), 
 (experiment) at T = 160 K; ∗ (theory),
� (experiment) at T = 140K; and © (theory), � (experiment) at T = 110 K.
[Reproduced with permission from R. Laghaei, A. Eskandari Nasrabad, and B. C.
Eu, J. Phys. Chem. B 109, 5873 (2005). Copyright 2005 The American Chemical
Society.]
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and has vertices, diffusion of the vertices should depend on the environment
of the molecule and thus the density. For example, to achieve diffusion the
molecule does not have to move into a void as a whole, but its vertices may
sequentially move into voids. Therefore such a sequential movement should
depend on the density of the medium. Here, vc is the mean volume of the
molecule, which was estimated on the basis of the literature value for the
van der Waals radius by using the empirical rule suggested by Edward [35].
Agreement with experimental data for all three cases is quite satisfactory.

Judging on the basis of the self-diffusion coefficients presented for simple
liquids in Figs. 12.1–12.3, there is little doubt that the MFV theory of diffusion
yields self-diffusion coefficients for simple liquids, which are sufficiently reliable
and accurate for other purposes, such as calculating transport coefficients
examined in the density fluctuation theory. We will show in the following that
it also gives equally accurate and robust self-diffusion coefficients for complex
liquids, more specifically, rigid two-interaction site liquids.

The MFV theory of diffusion can be applied to diatomic or two-interaction
site liquids such as nitrogen or carbon dioxide, which may be regarded as
rigid rotors, provided that the site–site pair correlation functions are suitably
calculated. By using a square-well model for the site–site interaction, the
temperature dependence of D for nitrogen liquid [36] was computed from
the MFV theory formula. The result is replotted and presented in Fig. 12.4.
The potential parameters were as follows: σ = 0.3290 nm, ε/kB = 53.7K,
and the well width was 1.87σ. The value of α was α = 1.1. The symbols in
Fig. 12.4 are as follows: The open circles (©) are the theoretical predictions
made with Monte Carlo simulations for the pair correlation functions and the
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Fig. 12.4. D vs. T−1 (ρ) for liquid nitrogen in the temperature range of 64 to 98K
and the density range of 865 to 701 kg m−3 along the liquid–vapor coexistence line.
α = 1.1. See [36].
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solid curve is for guiding the eyes. The filled circles (•) are experimental data
obtained by the NMR spin echo method by Krynicki et al. [37]. The vertical
bars represent experimental errors. The filled triangles (
) are the molecular
dynamics simulation results by Cheung and Powles [38], and the open squares
(�) are the computer simulation results by Barojas et al. [39]. The broken line
is the Arrhenius activation energy representation of D used by Krynicki et al.:
D = 238×10−9 exp(−350/T )m2 s−1. The temperature dependence predicted
by the MFV theory of diffusion is deemed fairly good.

Recently, the MFV theory of diffusion has also been validated for car-
bon dioxide. The density dependence of D for carbon dioxide is shown in
Fig. 12.5. In this figure, the symbols have the following meanings: ♦ (ex-
periment), • (theory) at T = 348.15K;� (experiment), ∗ (theory) at T =
323.15K;� (experiment), × (theory) at T = 298.15K; and © (experiment),
+ (theory) at T = 273.15K. The critical parameters of carbon dioxide are
pc = 7.38MPa, Tc = 304.2K, and ρc = 466 kg m−3. Therefore, the isotherms
(♦, •) and (�, ∗) are supercritical, whereas the isotherms (�,×) and (©,+)
are subcritical. The parameter α was set at α = 1 for all temperatures, and
then the critical free volume v0 was estimated with the diameter of the sphere
given by

r0 =
21/6σ(

1 +
√

1 + 3T∗
2

)1/6
,
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Fig. 12.5. Theoretical D vs. ρ for carbon dioxide at various temperatures. The
meanings of the symbols are ♦ (experiment), • (theory) at T = 348.15 K;
 (experi-
ment), ∗ (theory) at T = 323.15K; � (experiment), × (theory) at T = 298.15 K; and
© (experiment), + (theory) at T = 273.15 K. [Reproduced with permission from A.
Eskandari Nasrabad, R. Laghaei, and B. C. Eu, J. Phys. Chem. B 109, 8171 (2005).
Copyright 2005 American Chemical Society.]
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where σ is the diameter of the van der Waals sphere estimated for carbon
dioxide. The r0 is the value for the classical turning point of a head-on collision
for the Lennard-Jones potential at temperature T , which arises under the
assumption that σ of the van der Waals sphere is the Lennard-Jones potential
size parameter for carbon dioxide at T = 0. With r0 thus estimated, we obtain
v0 for carbon dioxide in the form,

v0 =
√

2(
1 +
√

1 + 3T∗
2

)1/2
vE,

where vE = πσ3/6 is the van der Waals volume of carbon dioxide estimated
according to the Edward rule [35]. The temperature dependence of D for car-
bon dioxide is shown in Fig. 12.6. The meanings of the symbols in Fig. 12.6
are ♦ (experiment), + (theory) at p = 20.89MPa;� (experiment), � (the-
ory) at p = 27.03MPa;© (experiment), × (theory) at p = 34.61MPa; and
� (experiment), + (theory) at p = 41.51MPa. It is again found that agree-
ment with experiment is excellent for all isobars considered. The temperature
dependence of D is not of the Arrhenius type because since lnD vs. T−1 is
not linear.

The assessment of the MFV theory formula for self-diffusion coefficients,
which we have made for both simple and complex liquids in this section,
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Fig. 12.6. Theoretical D vs. T for carbon dioxide compared with experimental data
along various isobars. The meanings of the symbols are ♦ (experiment), + (theory)
at p = 20.89 MPa; � (experiment), 
 (theory) at p = 27.03 MPa;© (experiment),
× (theory) at p = 34.61 MPa; and � (experiment), + (theory) at p = 41.51 MPa.
[Reproduced with permission from A. Eskandari Nasrabad, R. Laghaei, and B. C.
Eu, J. Phys. Chem. B 109, 8171 (2005). Copyright 2005 American Chemical Society.]
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clearly indicates that it is sufficiently reliable in accuracy and behavior with
regard to temperature and density. Therefore it is possible to apply it to study
other transport coefficients such as viscosity and thermal conductivity.

12.3 Modified Free Volume Theory of Mixtures

The MFV theory of diffusion for pure simple fluids can be generalized [40,41]
to mixtures of simple fluids. Here, we consider a binary mixture of simple
fluids of densities n1 and n2 contained in volume V at temperature T and
pressure p. The distribution of constituents is assumed nonuniform in the z
direction of a space-fixed Cartesian coordinate system. The z component of
the mean (barycentric) velocity of the fluid will be denoted by u. Therefore
the particles may be imagined moving in the coordinate frame at a uniform
mean velocity u.

12.3.1 Free Volume and Diffusion Fluxes

Given the flow configuration, it is necessary to count the number of mole-
cules passing through a unit area per unit time to calculate diffusion fluxes
of species. To achieve this aim we imagine a plane passing through the origin
of the coordinate system perpendicularly to the z-axis and count the number
of molecules crossing the plane at z = 0 per unit area per unit time from the
negative to the positive side. Let l1 denote the mean free path of molecules of
species 1. This mean free path generally depends on voids around the particle
of attention, which will be denoted by v for a molecule. Thus l1 = l1 (v).

Particles of mean (peculiar) velocity C1 at positions in the interval −l1 ≤
z < 0 will cross the plane toward the positive direction in unit time, whereas
particles of mean (peculiar) velocity −C1 at positions in the interval 0 <
z ≤ l1 will cross the plane toward the negative direction in unit time. The
nonequilibrium effects on the mean velocity of the particles are ignored. On
applying the kinetic theory method, we find that the mean number of particles
crossing the unit area of the plane at z = 0 in the positive direction in unit
time is

N+ =
1
4
C1n1 (−l1) ,

where n1 (−l1) is the density of Constituent 1 at position z = −l1, whereas
the mean number crossing the plane in the opposite direction in unit time is

N− =
1
4
C1n1 (l1) ,

where n1 (l1) is the density of Constituent 1 at position z = l1. Therefore, the
net mean number of particles crossing the plane per unit area per unit time is
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ΔN =
1
4
C1 {n1 [−l1 (v)] − n1 [l1 (v)]} . (12.21)

The size of a void is arbitrary and distributed within the fluid, and l1 depends
on the size of the void in the fluid as noted earlier.

Let P (v) denote the distribution function of voids. Because there should
be a minimum void vc for a particle to move into as it is left by a particle that
has just moved elsewhere, the quantity of interest must be expressed in terms
of the mean value of the formula in (12.21) over the distribution of voids. The
net flux J1 for Constituent 1 toward the positive direction in the coordinate
system moving at u is therefore given by a weighted sum of the formula in
(12.21) of the “particle flow”contribution,

J1 = n1u +
∫ ∞

vc
dv

1
4
C1 {n1 [−l1 (v)] − n1 [l1 (v)]}P (v) . (12.22)

On expanding the densities and neglecting the density derivatives of orders
higher than the first, the expression for J1 follows in the form

J1 = n1u−
∫ ∞

vc
dv

1
2
C1l1 (v)P (v)

∂n1

∂z
. (12.23)

Henceforth the higher order density derivatives will be neglected so as to be
consistent with this formula. A similar argument can be made for Constituent
2 to obtain the expression for the net flux J2 for Constituent 2:

J2 = n2u−
∫ ∞

vc
dv

1
2
C2l2 (v)P (v)

∂n2

∂z
, (12.24)

where l2 (v) is the mean free path of Constituent 2, which also depends on
voids, and C2 is the mean peculiar velocity of Constituent 2. It is assumed
that there is a common minimum void vc for the two constituents of the fluid
mixture.

Furthermore, because the pressure and temperature are kept constant in
the system, it follows that under a steady-state condition

∂n1

∂z
+

∂n2

∂z
= 0. (12.25)

This condition implies that there is only one independent density gradient.
To make further progress from the expressions for diffusion fluxes J1 and

J2 it is necessary to have an explicit form for the void distribution function
P (v). This distribution function can be obtained by following the free volume
theory [4] of Cohen and Turnbull for self-diffusion in the same manner as for
single-component fluids considered in the previous section. According to their
theory P (v) is easily obtained by discretizing the voids into sizes vi, counting
the number of ways of distributing N particles into voids (cells) of different
sizes (Ni is the number of particles occupying voids of size vi)
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W =
N !∏

i

Ni!
,

and extremizing W by the Lagrange method of undetermined multipliers sub-
ject to the fixed total free volume and the number of particles. It is given by
the formula,

P (v) =
α

vf
exp
(
−α

v

vf

)
, (12.26)

with the same meanings for the parameters as before. This distribution func-
tion is normalized in the interval 0 ≤ v < ∞.

Because l1 (v) and l2 (v) should be functions of v varying slowly compared
to P (v), which varies rapidly with regard to v, the integrals in (12.23) and
(12.24) can be calculated from the form∫ ∞

vc
dv

1
2
Cili (v)P (v)

∂ni

∂z
=

1
2
Cili (vc)Pc (vc)

∂ni

∂z
(i = 1, 2) , (12.27)

where

Pc (vc) =
∫ ∞

vc
dv
(
α

vf

)
exp
(
−α

v

vf

)
= exp

(
−α

vc

vf

)
. (12.28)

Thus we obtain the diffusion fluxes in the form

Ji = niu− 1
2
Cili (vc) exp

(
−α

vc

vf

)
∂ni

∂z
(i = 1, 2) . (12.29)

These diffusion fluxes can be used to identify the diffusion coefficients.

12.3.2 Diffusion Coefficient of a Mixture

Eliminating the first term on the right-hand side in the expressions for J1 and
J2 yields the equation,

n2J1 − n1J2 = −1
2
(
n2C1l1 + n1C2l2

)
exp
(
−α

vc

vf

)
∂n1

∂z
. (12.30)

Because the fluxes are steady, it follows that

J1 + J2 = 0 (12.31)

and thus from (12.30) and (12.31) follows the expression for diffusion flux

J1 = −J2 = −
[
n2C1l1 (vc)
2 (n1 + n2)

+
n1C2l2 (vc)
2 (n1 + n2)

]
exp
(
−α

vc

vf

)
∂n1

∂z
. (12.32)

Because the pressure and temperature are uniform in space and external forces
are absent, the diffusion coefficient of the binary mixture is phenomenologi-
cally defined by the linear force–flux relation (i.e., Fick’s law of diffusion),
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J1 = −D12
∂n1

∂z
(12.33)

with the symmetry D12 = D21 in accordance with Onsager reciprocal relations
[42]. Thus the diffusion coefficient is given by the formula,

D12 =
[
n2C1l1 (vc)
2 (n1 + n2)

+
n1C2l2 (vc)
2 (n1 + n2)

]
exp
(
−α

vc

vf

)
(12.34)

for binary liquid mixtures.
At this point, we assume that for binary mixtures the common character-

istic volume vc for the two species of the mixture is given by a mean value of
molecular volumes as follows:

αvc ≡ vc
12 = α1v

0
1X1 + α2v

0
2X2, (12.35)

where v0
i = πσ3

i /6 (i = 1, 2) with σi denoting the diameter of molecule i is
the molecular volume of species i in its pure liquid state; αi is the parameter
corresponding to α when the free volume theory is developed for a pure liquid
component i and thus accounts for the deviation of v0

i from the characteristic
free volume of the pure liquid i; and Xi is the mole fraction of species i defined
by

Xi =
ni

n1 + n2
.

If there is a significant disparity in the sizes of the constituent molecules, it is
advisable to take volume fractions for Xi instead of mole fractions

X
(v)
i =

niv
0
i

n1v0
1 + n2v0

2

(i = 1, 2) . (12.36)

The expression for αvc ≡ vc
12 in (12.35) is a proposition for the charac-

teristic free volume for a mixture of molecules of comparable sizes. It is quite
reasonable physically because αvc is the mean molar characteristic free vol-
ume weighted by α. The test of the resulting theory, which will be carried
out later, in a way validates this proposition for the characteristic free volume
vc. Under this assumption, the expression for D12 in (12.34) is written in the
form

D12 =
[
n2C1l1 (vc)
2 (n1 + n2)

+
n1C2l2 (vc)
2 (n1 + n2)

]
exp
(
−vc

12

vf

)
. (12.37)

The preexponential factor in the square brackets in (12.37) is the mean free
path expression for the diffusion coefficient of a binary mixture of fluids, which
is modulated by the exponential factor describing the probability of finding a
critical void of size vc

12 in the binary liquid.
This preexponential factor is in exactly the same form as the mean free

path formula for the diffusion coefficient of a binary gaseous mixture. Because
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the mean free path formula for a gas mixture well approximates the corre-
sponding Chapman–Enskog formula for the diffusion coefficient [14] if the
mean free path is suitably estimated, as has been done for single-component
fluids in Sect. 12.1, we propose to replace it with the Chapman–Enskog ex-
pression for the diffusion coefficient, denoted by D0

12, which can be calculated
in a well-defined manner once the interaction potential is specified. We will
find it sufficient to employ D0

12 for hard spheres, especially, in a high density
regime where hard cores of the molecules play a dominant role in determin-
ing the transport properties of liquids. Thus we finally obtain the diffusion
coefficient D12 for a binary liquid mixture in the form [40,41],

D12 = D0
12 exp

(
−vc

12

vf

)
. (12.38)

This is the diffusion coefficient for a binary liquid mixture in the MFV theory
of diffusion [40,41].

In summary, this formula for the diffusion coefficient is derived in the
spirit of the mean free path method combined with the Cohen–Turnbull free
volume approach, in which molecules are imagined to diffuse through space by
continuous jigglings of molecules into voids (free volumes) left by neighboring
molecules that have moved into other positions under density fluctuations. If
the density and temperature dependence are known for vf , then the density
and temperature dependence of D12 can be calculated.

Note that the preexponential factor in (12.37) is the binary mixture theory
counterpart of the factor gCT ≡ gua (v) in the Cohen–Turnbull free volume
theory of self-diffusion in a single-component liquid. This factor gCT is equiv-
alent to the mean free path expression for the self-diffusion coefficient of the
gas; see (12.9). Because the quantity in the square brackets in (12.37) clearly is
in the same form as the mean free path formula for the diffusion coefficient of
the gas mixture, we have replaced it with the kinetic theory expression— the
Chapman–Enskog theory formula—for the diffusion coefficient, which does not
involve an elusive quantity such as mean free path—a nice concept physically
but a quantity not easy to compute with sufficient generality and accuracy,
especially, in the liquid density regime.

Because the exponent in the exponential factor in (12.38) vanishes as n
vanishes, the formula obtained for D12 clearly tends to the Chapman–Enskog
formula for the diffusion coefficient D0

12 of a dilute gas mixture. D0
12 can be

calculated in terms of the intermolecular potential energy in a well-defined
manner by following the result of the kinetic theory of gases [14] and the free
volume or the equation of state can be also calculated, as will be shown in
the following, in terms of intermolecular potential as accurately as desired.
Therefore we now have a well-defined molecular theory expression for the
diffusion coefficients of simple liquid mixtures, which have been defying a
well-defined practical theoretical formula.

For the sake of simplicity of the formula we will assume that D0
12 is

the Chapman–Enskog diffusion coefficient [14] for a binary mixture of hard
spheres, which is given by the formula
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D0
12 =

3
8ρσ2

12 (1 −Δd)

(
kBT

2m

)1/2

, (12.39)

where kB is the Boltzmann constant, m = m1m2/(m1 + m2) is the reduced
mass with mi denoting the molecular mass for component i, and Δd stands for
the correction arising from a higher order Sonine polynomial expansion. The
correction Δd generally depends on the composition and mass ratio; details
for Δd, are referred to [14]. In the single-component limit, where molecular
parameters such as the size and mass of two species are set equal, the expres-
sion (12.38) properly reduces, as it should, to the self-diffusion coefficient [40]
of constituent 1, say,

D1 =
3

8ρσ2
1

(
kBT

m1

)1/2

exp
[
−α1v

0
1/vf

]
, (12.40)

where vf is the mean free volume per molecule of pure liquid 1, namely, at
X1 = 1; see the discussion on the generic van der Waals equation of state
for the details of vf in the subsequent subsection. It was found in previous
study of self-diffusion coefficients in [41] that α1 is of the order of unity and
weakly depends only on temperature. Therefore it may be set equal to unity
in this work, unless stated otherwise, when theoretical results are compared
with experiment.

As X2 → 0, we obtain from (12.35) and (12.38) the expression for the
tracer diffusion coefficient Dt as follows:

Dt = D0
12 exp

(−α1v
0
1

vf

)
. (12.41)

This formula suggests that the cross effect between solute and solvent mole-
cules plays its role only through D0

12 given in (12.39) and the free volume ef-
fect is determined solely by the properties of solvent molecules. It also implies
that the tracer diffusion coefficient is generally different from the self-diffusion
coefficient of the solvent. The former is a joint property of the tracer and the
solvent molecules through which the tracers are diffusing, whereas the latter
is determined by the properties of the pure species. The formula in (12.41)
is tested later in this chapter by calculating Dt therewith and comparing the
result with the experiment reported in the literature.

12.3.3 Mean Free Volume for Binary Mixtures

Now it will be shown how the free volume required for D12 can be calcu-
lated in terms of the equilibrium pair correlation function of a liquid, which
contains information on the liquid structure and its relation to the generic
van der Waals equation of state [43]. To this end, we use the results ob-
tained in Chap. 6, which are reproduced to making reading about the theory
easy.
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If the potential energy of a c-component mixture of simple liquids at tem-
perature T and density n is pairwise additive, the generic van der Waals
equation of state—the canonical equation of state(

p + An2
)
(1 −Bn) = nkBT, (12.42)

has generic van der Waals parameters in the forms

A =
c∑

i,j=1

Aij (n, T )XiXj , (12.43)

B =
c∑

i,j=1

Bij (n, T )XiXj

⎡⎣1 + n

c∑
i,j=1

Bij (n, T )XiXj

⎤⎦−1

, (12.44)

where

Aij = − 2π
3β

∫ ∞

σij

dr r3yij (r)
d
dr

fij(r), (12.45)

Bij =
2π
3

∫ σij

0

dr r3yij (r)
d
dr

fij(r). (12.46)

The symbols in the expressions are as follows: β = 1/kBT, ni is the number
density of constituent i, and {nk} denotes the set of nk (k = 1, · · · , c). Here,
fij is the Mayer function of pair potential uij(r), and yij(r) is the cavity
function of the pair ij defined as usual by the relation

yij (r; {nk} , T ) = exp[βuij(r)]gij (r; {nk} , T ) , (12.47)

where gij (r) is the equilibrium pair correlation function of pair (ij). The total
number density n is given by

n =
c∑

k=1

nk, (12.48)

and the mole fraction is defined by Xi = ni/n.
The expressions in (12.45) and (12.46), together with (12.43) and (12.44),

give rigorous statistical mechanical representations of the generic van der
Waals parameters A and B. Because B is closely related to the repulsive
parts of the intermolecular potential energies and thus Bn is a measure of
the excluded volume in the mixture, as it is for single-component fluids, it is
natural to define the mean free volume per molecule vf by the formula

vf = v (1 −Bn) , (12.49)

where v = 1/n is the specific volume. With the free volume identified with
vf for the mixture as in this formula and with the help of the generic van
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der Waals equation of state, the diffusion coefficient (12.38) now becomes
computable by statistical mechanics alone, apart from the parameter α. The
parameters αi also turn out to be approximately equal to unity. Therefore,
if they are set equal to unity then there are no parameters other than the
potential parameters in the theory.

If a square-well (SW) potential with εij and λij for the potential well depth
and the range of the well, respectively, is taken as a model to represent the
intermolecular interactions

uij(r) =

⎧⎨⎩ ∞ for r < σij ,
−εij for σij < r < λij ,

0 for r > λij ,
(12.50)

there then follows from (12.44), (12.46), and (12.49) the statistical mechanical
representation of mean free volume for the mixture in the form,

vf = v

⎡⎣1 +
2π
3
n

c∑
i=1

c∑
j=1

σ3
ijyij (σij)XiXj

⎤⎦ . (12.51)

Therefore, the mean free volume so defined can be evaluated exactly, provided
that yij (σij) are obtained, for example, from Monte Carlo (MC) or molecular
dynamics (MD) simulations.

The diffusion coefficient derived can also be related to that of the Arrhenius
activation theory of diffusion, if the generic van der Waals equation of state is
used. Because, as shown earlier, the virial equation of state can be transformed
into a form analogous to the van der Waals equation of state given in (12.42),
the exponent vc

12/vf in Pc may be written as

vc
12

vf
=

peffv
c
12

kBT
, (12.52)

where the effective pressure peff is given by the formula

peff = p + An2. (12.53)

Therefore, the numerator in (12.52) is the work to create a void of size vc
12

against the effective pressure peff in the liquid mixture

Wc = vc
12

(
p + An2

)
. (12.54)

Thus we find that Pc (vc
12) is expressible in the form

Pc (vc
12) = exp

[
− Wc (n, T )

kBT

]
. (12.55)

Therefore the work may be interpreted as the Arrhenius activation energy Ea

of diffusion, which, however, is not a constant but depends on temperature and
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density. In this interpretation of the exponent of Pc (vc
12) the present theory

of diffusion appears as in the Arrhenius activation theory:

D12 = D0
12 (T, n) exp

[
−Wc (n, T )

kBT

]
, (12.56)

which is quite similar in form to the simple fluid result.
This formula also suggests that diffusion coefficients can be computed with

empirical data on the equation of state of liquids. This aspect is extremely
interesting from the practical viewpoint, because to compute diffusion coeffi-
cients all we need for the transport coefficients is the equilibrium thermody-
namic data, provided we use the Chapman–Enskog theory formula for D0

12.
Once the diffusion coefficients have been computed, other transport coeffi-
cients such as viscosity, bulk viscosity, and thermal conductivity can also be
computed with the help of some equilibrium thermophysical data according
to the theories discussed in Chaps. 10 and 11 on density fluctuation. In this
manner, the density fluctuation theory fully achieves the status of a molecular
theory of transport processes in liquids, as will be shown later.

12.4 Validation of the Mixture Theory

12.4.1 Simple Liquid Mixtures

Having given the statistical mechanical representation of free volume in a mix-
ture, we now discuss validation of the diffusion coefficient of a binary mixture
for its accuracy in comparison with experiment or computer simulation data.
The validation has been made with a square-well potential model for its sim-
plicity. The cross potential parameters are prescribed by the combining rules
σ12 = 1

2 (σ1 + σ2) , ε12 =
√
ε1ε2, and λ12 = 1

2 (λ1 + λ2), where σi (i = 1, 2) , εi,
and λi are for component i, respectively. However, the combining rules are not
mandatory, although expedient.

Because it is helpful for insight to learn about the composition dependence
of free volume, the free volume is plotted against the composition variable
in Fig. 12.7. In the figure, the free volume reduced by the mean molecular
volume of the mixture, v∗f ≡ vf/

(
πσ3

12/6
)
, is calculated from the formula

(12.51) for liquid Ar–Kr mixtures at T = 121K and a fixed number density
of n∗ (≡ nσ3

12

)
= 0.62 and is plotted against the mole fraction for the argon–

krypton mixture. The open circles indicate the theoretical values computed
with formula (12.51) for which the cavity functions yij (σij) are computed
by the MC simulations with the potential parameters [44] listed in Table 12.1.
The solid curve guides the eyes. The free volume increases as the mole fraction
of the smaller (argon) molecules gets larger, and this is as expected intuitively.

By using (12.35), (12.38), (12.39), (12.44), and (12.51), Rah and Eu calcu-
lated the diffusion coefficient of binary mixtures. In Fig. 12.8, the composition
dependence of D12 is shown for liquid Ar–Kr mixtures at T = 121K and
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Fig. 12.7. The composition dependence of free volume. The open circles indicate
the free volume values computed with the cavity function yij (σij) obtained by MC
simulations, and the solid curve is drawn to guide the eyes. [Reproduced with per-
mission from Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 116, 7967 (2002).
Copyright 2002 American Institute of Physics.]

Table 12.1. Square-well potential parameters

molecule σ (nm) well width/σ ε/kB (K)

argon 0.3162 1.85 69.4
krypton 0.336 1.85 98.3
nitrogen 0.3290 1.87 53.7
methane 0.3400 1.85 88.8

at a fixed number density of n∗ = 0.62. The open circles are the theoreti-
cal values evaluated with the formula for D12, for which the cavity functions
yij (σij) were computed by MC simulations. The solid curve is a least-squares
fit to the theoretical values, drawn to guide the eyes. Because no experimental
data were available in the literature for comparison, the theoretical predic-
tions were compared only with some computer simulation results [45,46]. The
crosses (+) are the MD simulation results by Hayes [45] for which the simula-
tion time limit tmax is ∼ 2.5 ps, whereas the other symbols are for simulation
results by Zhou and Miller [46], who obtained the diffusion coefficients from
the mean-square displacements (�,�,�) and the velocity correlation func-
tions (∗, •,�) with tmax = 20ps (for �,�, •,�) or 80 ps (for �, ∗) and the
number of particles N = 512 (for �,�, ∗, •,�) or N = 1728 (for �,�) for the
simulations. The modified free volume theory yields diffusion coefficients in
good agreement with the simulation results of Zhou and Miller and, at least
qualitatively, with those of Heyes. These results suggest that the more abun-
dant, the smaller and lighter molecules (argon) at a fixed number density,
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Fig. 12.8. The composition dependence of DAr–Kr of liquid Ar–Kr mixtures at
T = 121K and ρ∗ = 0.62. The open circles indicate the theoretical values, and
the solid curve is drawn to guide the eyes. Various symbols (+,
, �, �, ∗, •, �) are
the MD simulation results from [45] and [46]. [Reproduced with permission from
Kyunil Rah and Byung Chan Eu, Phys. Rev. Lett. 88, 065901 (2002). Copyright
2002 American Physical Society.]

the faster the mutual diffusion. This is intuitively comprehensible because the
mutual diffusion is more of an outcome of diffusion accomplished by smaller
molecules diffusing through interstitial space formed by larger molecules that
move around more sluggishly than smaller molecules.

Note that the diffusion coefficients at Xi → 0 and 1, respectively, are
for trace limits, not self-diffusion coefficients. The former estimated from
(12.41) are Dt (Kr) = 4.49 × 10−9 m2 s−1, as XKr → 0 and Dt(Ar) =
1.67×10−9 m2 s−1 as XKr → 1, respectively. The latter evaluated from (12.40)
are DAr = 5.56 × 10−9 m2 s−1 and DKr = 1.27 × 10−9 m2 s−1, respectively.
Experimental studies on this aspect in the future should be useful for more
definite comparisons with the theory.

In Fig. 12.9, the temperature (density) dependence of the tracer diffusion
coefficient of argon in liquid nitrogen is presented in the temperature (density)
range 64K ≤ T ≤ 78K

(
865 kg m−3 ≥ nN2 ≥ 806 kg m−3

)
at about 0.92 atm

pressure where the actual experiments [47] were carried out by using a cap-
illary cell technique. The density value, for instance, 857 kg/m3, corresponds
to the state of T = 66K and p = 0.92 atm. The open circles indicate the the-
oretical predictions computed with yij (σij) obtained from MC simulations,
and the solid curve is just their least-squares fit drawn to guide the eyes. The
vertical bar on the experimental data points (•) represents the uncertainty of
the experimental value. Within the experimental error ranges, there appears
to be excellent agreement between the MFV theory and the experimental
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Fig. 12.9. Dt vs. T (ρ) for Ar in liquid N2 in the temperature (density) range
of 64 K ≤ T ≤ 78 K

(
865 kg m−3 ≥ ρN2 ≥ 806 kg m−3

)
and p = 0.9 atm. The open

circles (©) are theoretical values and the solid curve is drawn to guide the eyes. The
filled circles (•) are the experimental data [47]. The density dependence is indicated
in the upper scale of the figure. [Reproduced with permission from Kyunil Rah
and Byung Chan Eu, J. Chem. Phys. 116, 7967 (2002). Copyright 2002 American
Institute of Physics.]

data, quantitatively as well as qualitatively. Note that the parameter value
αN2 = 1.1 was determined from the experimental [37] self-diffusion coefficient
data DN2 and thus was used for the calculations to maintain consistency.

In Fig. 12.10, theoretical predictions are compared with experimental data
[48,49] for the tracer diffusion of Kr in liquid Ar in the temperature (density)
range 84K ≤ T ≤ 100K

(
1131 kg m−3 ≥ ρAr ≥ 1141 kg m−3

)
along the co-

existing line of liquid argon. The open circles are the results by the MFV
theory and the solid curve is drawn through the open circles to guide the
eyes. The filled circles (•) are for the experimental data by Cini-Castagnoli
and Ricci [48] at 2 atm pressure, whereas the cross (×) is by Dunlop and
Bignell [49] at 1.2 atm pressure. The pressure difference between the two
experiments appears to have little effect on the density value of liquid ar-
gon [50] employed for the calculations, at least, in the temperature range
considered. Agreement is good between the theory and experiment. Because
the Enskog theory [51] and the modified Enskog theory [52] also provide diffu-
sion coefficients in forms comparable in simplicity to the MFV theory formula,
the predictions of the diffusion coefficient by them are also made in Fig. 12.10.
The dotted curve is by the modified Enskog theory and the broken curve is by
the Enskog theory. Both of them compare poorly with experiment.
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Fig. 12.10. Dt of Kr in liquid Ar in the temperature (density) range 84K ≤ T ≤
100K

(
1.131 kg m−3 ≥ ρAr ≥ 1.141 kg m−3

)
along the coexisting line of liquid Ar.

The open circles (©) are theoretical and the solid line is their least-squares fit.
The filled circles (•) and the crosses (×) are experimental. The dotted curve is
the prediction by the modified Enskog theory and the broken curve by the En-
skog theory. [Reproduced with permission from Kyunil Rah and Byung Chan Eu,
J. Chem. Phys. 116, 7967 (2002). Copyright 2002 American Institute of Physics.]

The Enskog theory for a binary diffusion coefficient may be expressed by

D12 = χD0
12, (12.57)

where D0
12 is the Chapman–Enskog diffusion coefficient for a binary hard

sphere mixture of gases and χ is the correction factor, especially, for the
density dependence. The dashed curve in Fig. 12.10 was calculated with χ =
1/g12(σ12), where g12(σ12) was computed by using the formula from [53] with
the hard sphere diameter values, σAr = 0.347 nm and σKr = 0.401 nm, respec-
tively. They were calculated [54] such that they give self-diffusion coefficients
of the gases computed therewith in agreement with experimental values. The
dotted curve is calculated by the modified Enskog theory, in which χ is ex-
pressed in the form [44]

χ =
n
(
B2 + T dB2

dT

)[
1

nkB

(
∂p
∂T

)
ρ
− 1
] .

Here, B2 (T ) is the second virial coefficient, which is numerically estimated
by using the Lennard-Jones (LJ) potential model with parameters [44], σAr =
0.3405 nm and εAr/kB = 119.8 for argon and σKr = 0.360 nm and εKr/kB =
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171.0 for krypton, respectively. The LJ potential parameters were determined
from the experimental B2 data for each of the corresponding gases. As to the
estimation of (∂p/∂T )ρ, an empirical formula [55] of the equation of state for
argon was used and the pressure contribution of the tracer (krypton) molecules
was neglected.

The ratio of D12 to D1 can be easily calculated from (12.40) and (12.41):

Dt

D1
=
√

m1

2μ

(
σ1

σ12

)2

=

√
1 + m1/m2

2

(
2

1 + σ2/σ1

)2

, (12.58)

where the contribution from Δd has been neglected for simplicity. The ratio
Dt/D1 is independent of temperature and density. This is another relation
between transport coefficients, many of which we have seen in Chaps. 10 and
11. This particular relation implies that given the information about σ2/σ1

and m2/m1, the self-diffusion coefficient of solvent D1 can be readily calcu-
lated if Dt is known or measured, and vice versa. A numerical correction, if
necessary [56], may be made for Dt/D1 by using the value for Δd in (12.39),
particularly when m1/m2 < 1.

In Fig. 12.11, the relation (12.58) is tested for the dependence of Dt/D1

on the size and mass ratios of the tracer for the solvent molecule

ζ = 23/2 (1 + σ2/σ1)
−2
√

1 + m1/m2.
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Fig. 12.11. Dt/D1 vs. ζ (size ratio). The solid line is predicted from formula (12.58),
and the symbols with error bars are experimental data: • from [47] for Ar in liquid
N2,
 from [48] and © from [49] for Kr in liquid Ar, and × from [49] for Kr in
liquid N2, respectively. The asterisks (∗) are the results of computer simulation [58]
for a modified Lennard–Jones potential model. [Reproduced with permission from
Kyunil Rah and Byung Chan Eu, J. Chem. Phys. 116, 7967 (2002). Copyright 2002
American Institute of Physics.]
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The solid line is predicted by the present theory from the formula in (12.58).
The various symbols with the vertical bars to indicate the approximate uncer-
tainty of the data, which depend on the values of D1 [48,57] and the thermo-
dynamic states used for the estimations, are experimental: • is from [47] for Ar
in liquid N2; � from [48]; © from [49] for Kr in liquid Ar; and × from [49] for
Kr in liquid N2, respectively. Computer simulation results denoted by stars
(∗) are taken from the literature [58] and presented in the figure, although
they are for a modified Lennard-Jones potential model. There is reasonably
good correlation between the theory and experiment.

12.4.2 Empirical van der Waals Volume for Polyatomic Molecules

Because the MFV theory is formulated for simple liquids, it cannot be directly
applied to polyatomic and polymeric liquids unless rather drastic simplifying
assumptions are made. For small polyatomic liquids, it is possible to apply the
MFV theory by assuming that the molecules are roughly spherical and if the
van der Waals radii of such molecules are estimated properly [59]. Bondi [60]
and Edward [35] formulated an empirical rule to calculate the van der Waals
radii of relatively small polyatomic molecules for the purpose of evaluating
the diffusion coefficients on the basis of the SE relation. In their empirical
procedure the van der Waals radius rw of a polyatomic (organic) molecule is
defined by rw = (3vw/4π)1/3, where vw is the van der Waals volume. This rw is
then calculated according to the Edward rule by which increments contributed
by chemical groups in the molecule are added up for the van der Waals volume
vw. By adopting the Edward rule and setting σ = rw for the MFV theory
diffusion coefficients, Rah et al. [59] calculated the diffusion coefficients and
Dt/D1 for polyatomic liquids. According to the relation the ratio Dt/D1 = Rd

should be a constant, which should be given by the van der Waals radii of the
solute and solvent as follows:

Rd =
(

2
1 + rw2/rw1

)2 [1
2

(
1 +

m1

m2

)]1/2

≡ Rs.

In Figs. 12.12 and 12.13, Rd vs Rs is plotted on a logarithmic scale, and
the figures verify the theoretical prediction nearly perfectly, indicating the
robustness of the relation (12.58) and the values of the van der Waals radii
estimated according to the Edward rule. In Fig. 12.12, where Rd vs. Rs is
plotted where the solvation effects are assumed negligible, the solid line is the
prediction by the present theory and the symbols are experimental data for Rd.
The solvent for the tracer diffusion of 1–19 is water and the solute is benzene
for 1; toluene for 2; aniline for 3; phenol for 4; o-creosol for 5; m-creosol for 6; p-
creosol for 7; 2-chlorophenol for 8; chlorobenzene for 9; 1,2-dichlorobenzene for
10; 1,4-dichlorobenzene for 11; bromobenzene for 12; 1,2-dibromobenzene for
13; 1,4-dibromobenzene for 14; 3-nitrophenol for 15; pyridine for 16, acetone
for 17; DMSO for 18; and 2-butanone for 19, respectively. The solvent for
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Fig. 12.12. Rd = Dt/D1 vs. Rs when the solvation effects are assumed negligible.
See the text for the meanings of symbols and numerals. [Reproduced with permission
from K. Rah, S. Kwak, B. C. Eu, and M. Lafleur, J. Phys. Chem. A 106, 11841
(2002). Copyright 2002 American Chemical Society.]
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Fig. 12.13. Size and mass ratio dependence of Rd = Dt/D1 vs. Rs when the
solvation effects are present. See the text for the meanings of symbols and numerals.
[Reproduced with permission from K. Rah, S. Kwak, B. C. Eu, and M. Lafleur,
J. Phys. Chem. A 106, 11841 (2002). Copyright 2002 American Chemical Society.]
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20–24 is acetone, whereas the solute is propiophenone for 20; acetophenone
for 21; chlorobenzene for 22; toluene for 23; and benzene for 24; respectively.
For 25–31 the solvent is benzene, whereas the solute is MeOH for 25; EtOH
for 26; n-hexane for 27; 1-PrOH for 28; DMSO for 29; acetone for 30; and
cyclohexane for 31, respectively. For 32–37 the solute is water, whereas the
solvent is acetonitrile for 32; benzene for 33; toluene for 34; p-xylene for 35;
cyclohexane for 36; and n-hexane for 37, respectively.

In Fig. 12.13, where Rd vs. Rs is plotted when the hydration effects are
taken into account, the solid line is the prediction by the present theory and
the symbols are the experimental data. Water is the solvent for 1–10 whereas
the tracers are MeOH for 1; EtOH for 2; 1-PrOH for 3; 2-PrOH for 3s;
1-BuOH for 4; 2-BuOH and i -BuOH for 4s; t-BuOH for 4t; 1-pentanol for
5; 1-hexanol for 6; 1-heptanol for 7; ethylene glycol for 8; glycerol for 9; and
pentaerythritol for 10, respectively. Acetone is the solvent for 11–14, whereas
the solute is 2-chlorophenol for 11; p-creosol for 12; phenol for 13; and aniline
for 14, respectively. For 15–19 water is the tracer in the solvent of MeOH
for 15; EtOH for 16; acetone for 17; DMSO for 18; and ethyl acetate for 19,
respectively.

The good correlation obtained between Rd and Rs indicates the accuracy
of the relation (12.58) and the theory underlying it. The conclusion that can be
drawn from this exercise is that the MFV theory diffusion coefficients can be
applied even to organic polyatomic liquids, which may be treated as roughly
spherical molecules, provided that their van der Waals radii are appropriately
estimated by using the Edward rule [35]. Such a relation can be useful, es-
pecially when D1 is difficult to measure in practice, whereas Dt is available,
for example, for very high density liquids. Tracer diffusion coefficients can
be also useful for understanding transport data on glass-forming supercooled
liquids [61].

12.5 Transport Coefficients of Ordinary Liquids

Because an adequate theory for diffusion was lacking, transport coefficients
such as viscosities and thermal conductivity of simple and complex liquids in
the density fluctuation theory were calculated semiempirically by using the
experimental or molecular dynamics simulation data for self-diffusion coeffi-
cients. Now equipped with the self-diffusion and diffusion coefficients that can
be easily and accurately calculated by statistical mechanics, as shown in the
previous sections, it is possible to remove the semiempiricism of the density
fluctuation theory formulas for transport coefficients and make the theory
of transport coefficients of liquids statistical mechanical. In this section, we
show that the density fluctuation theory is capable of providing a long sought
molecular theoretical tool for computing the temperature and density depen-
dence of transport coefficients of liquids. The demonstration achieved so far is
for shear viscosities of simple liquids and diatomic liquids of two-interaction
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sites. However, for the remaining transport coefficients, it is quite clear that
the method described for shear viscosities is applicable equally successfully
because the semiempirical method has already shown the capability of the
density fluctuation theory formulas. Moreover, because the bulk and thermal
conductivity can be related to the shear viscosity, the validation of the viscos-
ity formula is sufficient for making the aforementioned statement regarding
the capability of the density fluctuation theory formulas for the bulk viscosity
and thermal conductivity of liquids.

Before we begin the desired validation of the combination of the density
fluctuation theory for shear viscosity and the modified free volume theory, we
elaborate on the averaging of the potential energy part of viscosity, which was
introduced in (10.41). Averaging is with regard to the distribution of ξ.

As mentioned in Chaps. 10 and 11, the density fluctuation theory presumes
that the fluid density fluctuates locally around position r in the fluid (liquid)
and the fluctuations give momentum and energy transfers within local volumes
of the liquid. To account for the local variation of ξ we assume that the range
ξ of density fluctuations has a stretched exponential distribution [62, 63] as
follows:

P (ξ, n, T ) = P0

(
ξ

r

)γ−1

exp
[
−ζ̂ (n, T )

(
ξ

r

)γ]
. (12.59)

This form presumes that the distribution of ξ is inhomogeneous in the sense
that it depends on position r. By taking this form for the distribution of ξ,
we are asserting that the effect of density fluctuations is localized around the
radial position r. In this formula γ and ζ̂ (n, T ) are parameters. Using the
normalization condition ∫ ∞

0

dξP (ξ, ρ, T ) = 1, (12.60)

we find

P0 =
γζ̂ (n, T )

r
(12.61)

and hence

P (ξ, n, T ) =
γζ̂ (n, T ) ξγ−1

rγ
exp
[
−ζ̂ (n, T )

(
ξ

r

)γ]
. (12.62)

With this form for the distribution function, the average 〈ω (n)〉 is calculated
as follows:

〈ω (n)〉 =
2π
15

∫ ∞

0

drr5u′ (r) g(2)
eq (r, n)Θ (n, T |r) , (12.63)

where
Θ (n, T |r) =

∫ ∞

0

dξθ (ξ − r)P (ξ, n, T ) . (12.64)
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On explicit evaluation of this integral, Θ (n, T |r) is found independent of r
and given by the formula depending only on n and T :

Θ (n, T |r) = exp
[
−ζ̂ (ρ, T )

]
. (12.65)

Therefore, the average 〈ω (n)〉 is given by

〈ω (n)〉 =
2π
15

exp
[
−ζ̂ (n, T )

] ∫ ∞

0

drr5u′ (r) g(2)
eq (r, n) (12.66)

and the potential energy part of the shear viscosity is given by

ηv =
n2ω (n, T )

6D
exp
[
−ζ̂ (n, T )

]
, (12.67)

where
ω (n, T ) =

2π
15

∫ ∞

0

drr5u′ (r) g(2)
eq (r, n). (12.68)

The formula (12.67) will be used for calculating the potential energy part
of the shear viscosity. Note that the same averaging procedure applied to
the thermal conductivity formula in the density fluctuation theory yields the
expression

λp (n, T ) =
n2χ (n, T )

6D
exp
[
−ζ̂ (n, T )

]
, (12.69)

where

χ (n, T ) =
4πkBκ

∗

m

∫ ∞

0

drr4

[
rV ′ (r)

5
− V (r)

]
g(2)
eq (r, n). (12.70)

See (10.105) and (10.106) for the meanings of the symbols.
The parameter ζ̂ (n, T ) should be determined empirically. Because the cor-

relation range parameter ξ should be larger than the interaction potential
range rmax, as the correlation range increases together with the density fluc-
tuation range the parameter ζ̂ (n, T ) should be such that

ζ̂ (n, T ) → 0,

as T → Tc or higher. Therefore we look for it in the form2

ζ̂ (n, T ) = θ (Tc − T ) ζ (n) , (12.71)

where θ (Tc − T ) = 0 for Tc < T, θ (Tc − T ) = 1 for Tc > T and ζ (n) depends
only on n. The form for ζ (n) can be determined at a value of T .

In recent papers by Laghaei et al. [22] and Eskandari Nasrabad et al.
[66], using the MFV theory self-diffusion coefficients validated in the previous
2 The step function θ (Tc − T ) may be replaced by a smoothed switching function
{1 + exp [β0(T − Tc)]}−1 (β0 > 0).
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section, the shear viscosities have been calculated for argon, methane, and
carbon dioxide in both the supercritical and subcritical regimes. They found
that the shear viscosity formula becomes free of the parameter ζ (n), that is,
ζ (n) = 0, in the supercritical regime. They also found that in the subcritical
regime, not only the parameter ζ (n) for T < Tc can be expressible in the
series form

ζ (n) = ζ0 + ζ1ρ + ζ2ρ
2, (12.72)

where ρ is the mass density (g cm−3), but also a single form for ζ (n) is
uniformly valid for all subcritical temperatures. With ζ (n) thus fixed at a
subcritical temperature, the shear viscosity at other subcritical temperatures
was predicted and compared with experimental data for a number of different
temperatures. The same method was applied to liquid krypton, and the shear
viscosity calculated was in good agreement with experiment.

In Fig. 12.14, the theoretical shear viscosity of argon [64] at T = 250K
(supercritical) is compared with experiment. The open circles (©) are theo-
retical values, whereas the asterisks (∗) are experimental [65]. Although there
is a uniform deviation from the experimental data, the agreement is quite
good. The comparison of the theory with experiment in the supercritical tem-
perature regime is significant because the theory is free from the empirical
parameter ζ (n) and thus predicts the shear viscosity, based on only an in-
termolecular potential energy. The potential parameters are the same as for
Fig. 12.1 for the self-diffusion coefficient, for which α = 1 and v0 = πσ′3/6
with σ′ = 1.11/3σ. The critical volume activating diffusion is slightly larger
than the molecular volume defined by the potential parameter σ.

Similarly, the shear viscosity of methane at T = 320 K in the supercritical
regime is compared in Fig. 12.15. The open circles (©) are theoretical values
whereas the asterisks (∗) are experimental [65]. In this case, the agreement
with experiment is better than that for argon.
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Fig. 12.14. Shear viscosity vs. density (ρ) at T = 250K in the supercritical regime
of argon. The open circles (©) are theoretical, whereas the asterisks (∗) are experi-
mental [65]. [Reproduced with permission from R. Laghaei, A. Eskandari Nasrabad,
and B. C. Eu, J. Phys. Chem. B 109, 5873 (2005). Copyright 2005 American Chem-
ical Society.]
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Fig. 12.15. Shear viscosity vs. density (ρ) at T = 320K in the supercritical regime
of methane. The open circles (©) are theoretical, whereas the asterisks (∗) are exper-
imental [65]. [Reproduced with permission from R. Laghaei, A. Eskandari Nasrabad,
and B. C. Eu, J. Phys. Chem. B 109, 5873 (2005). Copyright 2005 American Chem-
ical Society.]
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Fig. 12.16. Shear viscosity vs. density (ρ) for carbon dioxide at T = 323K. The
solid curve is the experimental data represented by the fitting formula proposed
by Fenghour et al. [67], and the open circles (©) are the theoretical predictions.
[Reproduced with permission from A. Eskandari Nasrabad, R. Laghaei, and B. C.
Eu, J. Phys. Chem. B 109, 8171 (2005). Copyright 2005 American Chemical Society.]

The density dependence of the shear viscosity of carbon dioxide in the
supercritical regime was also examined. In Fig. 12.16, the theoretical shear
viscosity of carbon dioxide versus density at T = 323K in the supercritical
regime is compared with experiment. The open circles (©) are the theoreti-
cal predictions [66], whereas the solid curve represents the experimental data
according to the fitting formula proposed by Fenghour et al. [67]. In this case,
the theoretical values are a little lower than the experimental values, but the
qualitative behavior looks the same as in the experiment. If the critical free
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volume v0 were increased just a little so that the self-diffusion coefficients
were lowered correspondingly throughout the density range, agreement be-
tween the theory and experiment could have been improved. The point is
that the density fluctuation theory yields a qualitatively correct, and almost
quantitatively correct, shear viscosity with knowledge of the intermolecular
potential energy alone.

The theoretical shear viscosities of simple and complex liquids in the sub-
critical regime were also examined in comparison with experimental data.
In the subcritical regime, the density fluctuation range depends on density.
Therefore for argon it was necessary to choose

ζ0 = 0.3890, ζ1 = 0.5180 cm3 g−1, ζ2 = 0.2578 cm6 g−2,

which were determined at T = 139K below the critical temperature. This
gives 0.234 for the value of exp(−ζ), for example, at ρ = 1.26 g cm−3. This
value roughly corresponds to ξ = 2σ for the density fluctuation range. Once
ζ (ρ) is determined at a value of T , the shear viscosities for the remaining
temperature values in the subcritical regime can be correctly computed for all
densities. Such results are shown in Fig. 12.17 for argon at various subcritical
temperatures. The meanings of the symbols in Fig. 12.18 are × (theory), ©
(exp.) at T = 107K; + (theory), � (exp.) at T = 125K; ∗ (theory), ♦ (exp.)
at T = 139K; and � (theory), � (exp.) at T = 173K. Laghaei et al. [22] also
showed that with the formula
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Fig. 12.17. Shear viscosity vs. density for argon at various subcritical temperatures.
The meanings of the symbols are as follows: × (theory), © (exp.) at T = 107 K;+
(theory), � (exp.) at T = 125 K; ∗ (theory), ♦ (exp.) at T = 139K; and � (theory),

 (exp.) at T = 143K. [Reproduced with permission from R. Laghaei, A. Eskandari
Nasrabad, and B. C. Eu, J. Phys. Chem. B 109, 5873 (2005). Copyright 2005 The
American Chemical Society.]
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Fig. 12.18. Shear viscosity vs. density for liquid methane at various subcritical
temperatures. The symbols mean ∗ (theory), © (exp.) at T = 120 K; • (theory), ♦
(exp.) at T = 140 K (theory); and + (theory), 
 (exp.) at T = 180 K. [Reproduced
with permission from R. Laghaei, A. Eskandari Nasrabad, and B. C. Eu, J. Phys.
Chem. B 109, 5873 (2005). Copyright 2005 American Chemical Society.]

ζ (ρ) = 1.105 + 0.0885ρ + 0.0465ρ2,

the shear viscosities of liquid krypton at various subcritical temperatures can
be correctly predicted; see Fig. 12.6 of [22].

For liquid methane they showed that with the parameter ζ given by

ζ (ρ) = 0.4992 + 2.665ρ + 0.3327ρ2

the shear viscosities can be correctly predicted for all subcritical temperatures
examined. The results are presented in Fig. 12.18. The meanings of the sym-
bols in Fig. 12.18 are ∗ (theory), © (exp.) at T = 120K; • (theory), ♦ (exp.)
at T = 140K (theory); and + (theory), � (exp.) at T = 180K. Therefore it is
reasonable to conclude that the viscosity formula presented can be employed
to predict the subcritical viscosities of simple liquids if ζ (ρ) is fixed at an
arbitrary subcritical temperature, and in the supercritical temperature it is
not even necessary to have ζ (ρ) to predict correct viscosities qualitatively.

The shear viscosity formula for rigid diatomic liquids in the density fluctu-
ation theory was also applied to compute the shear viscosity of carbon dioxide
in the subcritical regime, and the results were compared with experiment by
Eskandari Nasrabad et al. [66]. For carbon dioxide liquid they found

ζ (ρ) = 4.70 − 8.51ρ + 3.86ρ2,

which was obtained with the experimental data at T = 240K. With this form
of ζ (ρ), the shear viscosities of carbon dioxide were predicted with the same
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Fig. 12.19. Shear viscosity vs. density for carbon dioxide at T = 250 and 280 K.
The solid curves are experimental [67], and the open circles (©) are theoretical. The
upper curve is for T = 250K and the lower curve is for T = 280 K. [Reproduced
with permission from A. Eskandari Nasrabad, R. Laghaei, and B. C. Eu, J. Phys.
Chem. B 109, 8171 (2005). Copyright 2005 American Chemical Society.]

Lennard-Jones site–site potential as for the supercritical viscosity discussed
earlier. A example of the results is shown in Fig. 12.19. In the figure, the
solid curves are experimental [67] and the open circles (©) are theoretical.
The upper curve is for T = 250K and the lower curve is for T = 280K.
The experimental curves were produced from the empirical fitting formula
proposed by Fenghour et al. [67] Agreement between experiment and theory is
excellent. Similar computation was also performed for T = 260 and 290 K with
similarly excellent agreement between theory and experiment; see Fig. 12.6
in [66].

The temperature dependence of the shear viscosity of carbon dioxide
was also examined in [66] and found in good agreement with experiment.
Figure 12.20 shows such a comparison. In Fig. 12.20, the upper curve is at
ρ = 1.20 g cm−3, the middle curve is at ρ = 1.25 g cm−3, and the lower curve is
at ρ = 1.30 g cm−3. The solid curves are experimental data reproduced by the
fitting formula of Fenghour et al. [67] and the symbols are theoretical. The the-
oretical predictions agree well with experiment. The comparisons in the figures
for carbon dioxide indicate that the shear viscosity formula for rigid diatomic
liquids obtained by the density fluctuation theory is also accurate and robust
in predicting the density and temperature dependence of the shear viscosity.

The molecular theory approach discussed in this chapter is still in progress.
The theory is generally simple yet robust. Nevertheless, there are still many
more aspects to be studied in the future, which hopefully will shed light on
transport processes in liquids.
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Fig. 12.20. Temperature dependence of the shear viscosity of carbon dioxide at
various isobars. The upper curve is at ρ = 1.20 g cm−3, the middle curve is at
ρ = 1.25 g cm−3, and the lower curve is at ρ = 1.30 g cm−3. The solid curves are
experimental and the symbols are theoretical. [Reproduced with permission from A.
Eskandari Nasrabad, R. Laghaei, and B. C. Eu, J. Phys. Chem. B 109, 8171 (2005).
Copyright 2005 American Chemical Society.]

Thermal conductivities have not as yet been calculated by using the den-
sity fluctuation theory combined with the modified free volume theory, but the
outcome of such calculations can be easily expected to be successful because
the semiempirical treatment of the density fluctuation theory discussed in
Chaps. 10 and 11 has been successful for thermal conductivities when the self-
diffusion coefficients are treated as empirical inputs. The generalized Eucken
relation further supports this expectation because of the successful validation
of the theory for shear viscosities presented in this chapter.

12.6 Conclusion

—Form is void, void is form.

Heart Sutra

The preceding enunciation in the Heart Sutra is one of the principal tenets
of Buddhism. It is metaphysical and has, of course, no relevance to physics.
It is just amusing to notice that the human vocabulary is so limited that
we tend to use the same word to mean different things in totally different
contexts. The term void is as elusive a philosophical and religious notion
as the notion of physical voids in liquids and condensed matter in general
has been difficult to capture and put in a firm and practical mathematical
framework so as to make it work for science. One is believed to have attained
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the other shore when the aforementioned religious tenet is mastered and one
is thus enlightened. Likewise, however w̆ıll-o’-the-w̆ıspish the notion of void
in physics may be, it3 seems to lie at the heart of understanding the thermal
behavior of condensed matter in general from the viewpoints of the particulate
universe consisting of a denumerably infinite number of molecules with finite
particle sizes, and statistical mechanics that aims to describe their collective
behavior by mechanical and mathematical laws.

In this work, we have seen a confluence of the kinetic theory, the density
fluctuation theory, the generic van der Waals equation of state for matter
in equilibrium, and the free volume theory of flow in matter. They make it
possible to obtain a molecular theory in which, at worst, only a few parameters
appear that can be fixed at an isotherm. Thus experimental data for the rest
of the temperature range can be predicted only by intermolecular forces. It has
produced a practical theory. In the theory presented, the underlying notion
is that the time- and spatial scales of transport processes in liquids are set
by diffusion or self-diffusion of the molecules therein. The density fluctuation
theory, born of the generalized Boltzmann equations, thus relates the self-
diffusion or the diffusion coefficient to transport coefficients such as viscosity
and thermal conductivity by using hydrodynamic descriptions of flow. And
the notion has resulted in the forms for the transport coefficients which in part
resemble the well known Stokes–Einstein relation. The generic van der Waals
equation of state makes it possible to represent the mean free volume in terms
of the equilibrium pair correlation function, and the modified free volume
theory finally provides a molecular theory for calculating the self-diffusion
or diffusion coefficient on the basis of molecular interaction potentials. Thus
we now have a molecular theory that provides practical means to compute
the temperature and density dependence of transport coefficients, which has
been one of the principal goals in nonequilibrium statistical mechanics for so
long. The formulas presented for transport coefficients can be regarded as,
at least in the subcritical regime, semiempirical fitting formulas for transport
coefficients that can be calculated with models for intermolecular forces if a
few parameters are fixed at an isotherm.

Specifically, in Chap. 12, we have shown how the Cohen–Turnbull free vol-
ume theory can be used to predict the temperature and density dependence of
self-diffusion coefficients of simple liquids when it is combined with the generic
van der Waals equation of state and an integral equation theory for the equi-
librium pair correlation function or the Monte Carlo simulation method for
it. Except for an undetermined parameter (i.e., α) the theory is thereby com-
pletely molecular. We have called this theory the modified free volume theory.
Because the parameter α is rather close to unity in many cases, the theory be-
comes fully molecular and free from an adjustable parameter if we are willing
to sacrifice accuracy a little. We have also formulated a free volume theory
3 One way of quantifying voids in liquids is to use the concepts of Voronoi polyhedra

and Delauney spheres [68]. Then it becomes natural to examine their distributions
in liquids.
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of diffusion coefficients for binary mixtures of simple liquids. It combines the
ideas of the mean free path theory, the free volume theory, and the generic
van der Waals equation of state, which provides the statistical mechanical
representation of free volume that permits calculation of free volume in terms
of the pair correlation functions of the liquid mixture. The generic van der
Waals equation of state provides a rather simple free volume expression for a
mixture, which is easy to compute accurately. The formulas developed for dif-
fusion coefficients account for the composition and temperature dependence
of the binary diffusion coefficients of simple liquid mixtures as well as the
tracer diffusion coefficients in liquid solvents, both in good agreement with
the experimental or computer simulation results reported in the literature.
It is possible to generalize the diffusion coefficient formula to more complex
liquids because the basic ideas of the theory are simple and quite generic. As
an example of such a theory, polymer melts have been treated by the present
line of the free volume theory, and the self-diffusion coefficient derived has
been tested in comparison with experimental and found satisfactory [69].

As has been shown in Chaps. 10 and 11, because transport coefficients of
liquids can be expressed in terms of diffusion or self-diffusion coefficients and
the equilibrium pair correlation function, with the diffusion coefficients pre-
sented and satisfactorily tested in this chapter, the transport coefficients of
liquids can now be calculated [70–74] within the limits of current computa-
tion techniques and without relying on empirical data or molecular dynamics
simulation results for diffusion or self-diffusion coefficients. The significance of
the theoretical results presented in this chapter for self-diffusion or diffusion
coefficients therefore lies in the fact that the density fluctuation theories pre-
sented in Chaps. 10 and 11 can now be fully statistical mechanical with the
help of the modified free volume theory, which in turn relies on the generic
van der Waals equation of state. This form of equation of state therefore is
the keystone of the present theory of transport coefficients of liquids.

Another practical and important result of the density fluctuation theory is
the set of relations between transport coefficients, such as the SE-like relation,
the generalized Eucken relation, and the relation between the shear and bulk
viscosities, which make it possible to compute one transport coefficient from
knowledge of another. These relations are robust over wide ranges of density
and temperature.

Thus the important conclusion of this and the preceding two chapters
is that transport properties can be calculated on the basis of the informa-
tion on liquid structures provided by equilibrium statistical mechanics. The
equilibrium liquid structures can be acquired by a variety of techniques de-
veloped for equilibrium statistical mechanics. The diffusion and self-diffusion
coefficients presented in this work also have considerable significance for the
study of the structures of supercooled liquids and nonequilibrium phenomena
therein [75,76]. There is a study reported [61] on the subject, but we will have
to leave further study of the subject matter for the future work, being content
that the surface is now broken and the trail is shown for a practical molecular
theory of transport processes in simple and complex liquids.
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A

Grand Ensemble Kinetic Equation

In this Appendix, the generalized Boltzmann equation for dense fluids used in
Chap. 7 is derived by using a method of coarse-graining in time and space. This
method follows the spirit of Kirkwood [1], who employed a similar method to
derive the Boltzmann equation from the Liouville equation. We follow1 his
idea with a grand ensemble consisting of petit ensembles representative of the
fluid contained in volume V at constant temperature and chemical potentials.
A grand ensemble is more suitable for deriving the generalized Boltzmann
equation than a canonical ensemble. This method can be readily extended to
derive the generalized Boltzmann equation for fluids with internal degrees of
freedom, which forms the subject discussed in Chap. 8. The Boltzmann equa-
tion emerges as a special case of the generalized Boltzmann equation derived.
In Section A.2, we give the relation of the collision operator in superspace to
the transition operators in Hilbert space. This relation gives a practical model
for the collision term in the generalized Boltzmann equation.

A.1 Derivation of the Kinetic Equation

The grand ensemble consists of petit ensembles of N,N ′, N ′′, · · · particles,
and the total number of such petit ensembles is assumed to be ω, which can
be denumerably infinite. Then the total number of particles in the grand
ensemble is N = N + N ′ + N ′′ + · · · . In this manner of counting, the values
of some of N , N ′, · · · can be the same, say, n(N) times. Then ω can be
written as ω = n(N) + n(N ′) + n(N ′′) + · · · , and thus N now may be written
as N = n(N)N + n(N ′)N ′ + · · · where N �= N ′ �= · · · . The former manner
requires a simpler notation than the latter. Therefore, we will use the former.

Petit ensembles therefore may be regarded as subsystems of the grand
assembly, which is isolated. Petit ensembles weakly interact with each other
1 For the generalized Boltzmann equation obtained for a grand ensemble in a differ-

ent line of approach, see [2]. Also see [3,4] in which kinetic equations for reacting
fluids are derived for density matrices.
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exchanging energy and matter and eventually reach equilibrium. Note that, as
the petit ensembles exchange matter, the number of petit ensembles, that is,
their distribution

(
n(N), n(N ′), n(N ′′), · · ·

)
, changes, but the petit ensembles

are still characterized by N, N ′, and so on.
If the distribution functions for the subsystems (petit ensembles) are

denoted by F (m)(x(m), t) (m = N,N ′, N ′′, · · · ), then the distribution function
for the entire grand assembly is given by

F (N )(x(N ), t) =
∏

m∈GA

F (m)(x(m), t), (A.1)

where the product runs over all members of the grand assembly (GA). This
distribution function is normalized to unity:∫

dx(N )F (N )(x(N ), t) = 1. (A.2)

The reduced distribution function of F (N )(x(N ), t) is defined by

F (m)(x(m), t) =
N !

(N −m)!

∫
dx(N−m)F (N )(x(N ), t). (A.3)

Thus F (m)(x(m), t) is such that∫
dx(m)F (m)(x(m), t) =

N !
(N −m)!

. (A.4)

Because the grand ensemble is isolated, the distribution function obeys the
Liouville equation, (

∂

∂t
+ L(N )

)
F (N )(x(N ), t) = 0, (A.5)

where L(N ) is the Liouville operator for N particles contained in volume
Vg = ωV . A typical value of m is N .

We are interested in the probability F (N)(x(N), t) of finding a system con-
taining N particles among N particles in the phase space. Integrating the
Liouville equation (A.5) over the (N−N) phases and multiplying N !

(N−N)! , we
obtain the evolution equation for F (N)(x(N), t):(

∂

∂t
+ L(N)

)
F (N)(x(N), t) = − N !

(N −N)!

∫
dx(N−N)L

(N )
int F (N )(x(N ), t),

(A.6)
where

L
(N )
int = L(N ) − L(N)

is the interaction Liouville operator between the subsystem (petit ensemble)
of N particles and the rest of the petit ensembles in the grand assembly. The
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magnitude of this interaction energy corresponding to L
(N )
int is proportional to

the surface area of the petit ensembles, whereas the magnitudes of the total
“internal” interaction energies of the petit ensembles are proportional to their
volumes. Therefore, the former is relatively weak compared with the latter.
This justifies the product form for the distribution function F (N ).

To avail ourselves of scattering theory techniques [5, 6], it is convenient
to use a self-adjoint Liouville operator, which is obtained by multiplying the
Liouville operator by −i = −

√
−1:

L(N ) = −iL(N ). (A.7)

In this notation, (A.5) now reads(
i
∂

∂t
− L(N)

)
F (N)(x(N), t) =

N !
(N −N)!

∫
dx(N−N)L(N )

int F (N )(x(N ), t).

(A.8)
The distribution functions are coarse-grained in time by averaging them over
a time interval τ , which is sufficiently long compared with the collision time
between particles but much shorter than the hydrodynamic relaxation time.
The averaged distribution function is therefore given by

F
(N)

(x(N), t) =
1
τ

∫ τ

0

dsF (N)(x(N), t + s). (A.9)

This time coarse-graining presumes the existence of different timescales in the
kinetic evolution of the grand assembly. The coarse-grained kinetic equation
for F

(N)
(x(N), t) therefore is obtained by averaging (A.8) over the time interval

0 < s < τ . We find that(
i
∂

∂t
− L(N)

)
F

(N)
(x(N), t) =

N !
(N −N)!

(A.10)

×1
τ

∫ τ

0

ds
∫

dx(N−N)L(N )
int F (N )(x(N ), t + s).

According to the evolution equation (A.5)

F (N )(x(N ), t + s) = e−isL(N)
F (N )(x(N ), t). (A.11)

Therefore the integral on the right of (A.10) may be written as

Ω(N ) =
1
τ

∫ τ

0

ds
∫

dx(N−N)L(N )
int e−isL(N)sF (N )(x(N ), t). (A.12)

This integral describes the collisional evolution of the grand assembly and
since τ is much longer than the particle collision time, it is reasonable to take
τ as infinite in the timescale of the collision. Thus we may equate the limit to
Abel’s limit
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Ω(N ) (∞) = lim
τ→∞

1
τ

∫ τ

0

ds
∫

dx(N−N)L(N )
int e−s/τe−isL(N)

F (N )(x(N ), t),

(A.13)
where the convergence factor e−s/τ is inserted. This procedure is generally
used in the formal theory of scattering [6]. Evaluating the integral over s, we
find that

Ω(N ) (∞) = lim
ε→0

iε
∫

dx(N−N)L(N )
int R(N ) (ε)F (N )(x(N ), t), (A.14)

where ε = 1/τ and R(N ) (ε) is the resolvent operator defined by

R(N ) (ε) =
(
iε− L(N )

)−1

. (A.15)

In the language of formal scattering theory in phase space [5], there holds
the relation between the resolvent operator R(N ) and the collision operator
T (N ) (ε)

L(N )
int R(N ) (ε) = T (N ) (ε)R(N )

0 (ε) , (A.16)

where R(N )
0 (ε) is the free resolvent operator defined by

R(N )
0 (ε) =

(
iε− L(N )

0

)−1

(A.17)

with L(N )
0 denoting the Liouville operator describing the free evolution of the

petit ensembles making up the grand ensemble:

L(N ) = L(N )
0 +

∑
m,m′∈GA

L(N )
mm′ (A.18)

with L(N )
mm′ denoting the interaction Liouville operator describing interaction

between the members m and m′ of the grand assembly. Therefore we finally
obtain Ω(N ) (∞) in the form,

Ω(N ) (∞) = lim
ε→0

iε
∫

dx(N−N)T (N ) (ε)R(N )
0 (ε)F (N )(x(N ), t). (A.19)

In the following, we will suppress the limit sign for brevity, but it must be
understood and taken when the scattering problem is completely solved.

At this point, we observe that the Liouville operator for a petit ensemble
may be written in terms of the center-of-mass Liouville operator and the
“relative” Liouville operator describing the “relative” motion of the particles
within the petit ensemble:

L(N) = Vc ·
∂

∂Rc
+ L

(N)
rel . (A.20)

Here Rc and Vc are, respectively, the position and velocity of the center of
mass of the petit ensemble, and L

(N)
rel is the relative motion part of L(N).
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The Liouville operators for all petit ensembles in the grand ensemble can be
written as in (A.20). If the system is also coarse-grained in space, as in time,
such that each factor making up F (N )(x(N ), t)—recall that it is a product
of petit ensemble distribution functions—remains uniform with respect to its
center-of-mass motion, and furthermore, the eigenvalues λrel of L

(N)
rel for all

petit ensembles are random so that they sum up to zero:2∑
L

(N)
rel F (N )(x(N ), t) =

∑
λrelF

(N )(x(N ), t) = 0, (A.21)

then it follows that

R(N )
0 (ε)F (N )(x(N ), t) =

1
iε
F (N )(x(N ), t). (A.22)

On coarse-graining the Ω(N ) (∞) so obtained over time again and assuming
that

lim
τ→∞

1
τ

∫ τ

0

dsF (N )(x(N ), t + s) = F
(N )

(x(N ), t) =
∏
m

F
(m)

(x(N ), t), (A.23)

we obtain the kinetic equation coarse-grained in time and space:(
∂

∂t
+ L(N)

)
F

(N)
(x(N), t) =

N !
(N −N)!

(A.24)

×
∫

dx(N−N) (−i)T (N ) (ε)F
(N )

(x(N ), t),

where
F

(N )
(x(N ), t) =

∏
m∈GA

F
(m)

(x(m), t).

This product property of coarse-grained distribution functions is an assump-
tion or, at least, an approximation. This equation is the generalized Boltzmann
equation used in the text, where the coarse-grained distribution functions
are used without the overbar. The generalized Boltzmann equation must be
understood in the sense of the derivation given here with coarse grainings
in time and space. The derivation given here should be regarded as a ratio-
nalization rather than a derivation. We would like to take the generalized
Boltzmann equation as a postulate rather than an equation derived.

The Boltzmann equation is recovered from (A.24) if N = 1 for all petit
ensembles, and T (N ) (ε) is approximated by its binary collision terms in its
cluster expansion. If T (N ) (ε) is expanded in the cluster expansion

T (N ) (ε) =
∑
j<k

Tjk (ε) +
∑

j<k<l

Tjkl (ε) + · · · , (A.25)

2 This assumption that eigenvalues λrel are random is equivalent to the random
phase assumption for distribution functions.
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where Tjk (ε) are binary collision operators, Tjkl (ε) are three-particle collision
operators, and so on, and if only the binary collision terms are retained, the
Boltzmann equation follows. For this subject, see the literature [15] cited
earlier.

A.2 Relation Between Collision and Transition
Operators

To obtain the desired relation [3,4] between collision and transition operators—
the former obeying the Lippmann–Schwinger equation in superspace and
the latter obeying the Lippmann–Schwinger equation in Hilbert space—it
is necessary to use a quantum mechanical formalism starting from the quan-
tum mechanical Liouville–von Neumann equation for the density operator
instead of the classical formalism. Because it is possible to derive the coarse-
grained kinetic equation for the phase space distribution function of the grand
ensemble in exactly the same form and manner as that presented earlier, it
is sufficient to regard the collision operator T (N ) (ε) as a quantum mechan-
ical operator. The resolvent operators also should be regarded as quantum
mechanical operators. Their classical limits then may be taken after desired
formulas have been appropriately obtained, if the classical limits are desired.
To implement this method it is useful to briefly review the notation for
operators and to distinguish the operators in Hilbert space (i.e., dyadic space)
and superspace (i.e., tetradic space). The essential aspects of the relation can
be shown without encumbering the discussion with many-particle operators
because the system of notation developed for two-particle operators can be
easily generalized to many-particle versions.

The quantum mechanical Liouville operator L is, of course, the commuta-
tor defined by

Lρ = [H,ρ] , (A.26)

where H is the Hamiltonian operator and ρ is the density matrix. Associated
with this Liouville operator are the resolvent operators

R (z) = (z − L)−1
, (A.27)

R0 (z) = (z − L0)
−1

, (A.28)

where z is a complex number, which in the context of the kinetic theory
under discussion will turn out to be z = iε, and L0 is the free Liouville operator
corresponding to the kinetic energy Hamiltonian H0. It is therefore defined by

L0ρ = [H0,ρ] . (A.29)

The tetradic collision operator T (z) satisfies the Lippmann–Schwinger equa-
tion in superspace

T (z)= L′ + L′R0 (z)T (z) . (A.30)
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The Liouville operator L may be written as

L = L0+L′. (A.31)

In the tetradic notation, the Hamiltonian operator is written as [4]

H = H ⊗ I,

H∗ = I ⊗ H∗,
H0 = H0 ⊗ I,

H∗
0 = I ⊗ H∗

0,

V = V ⊗ I,

V = I ⊗ V, (A.32)

where I is the identity operator and V is the potential energy operator. In
this notation, the Liouville operators are given by

L=H−H∗,

L0 =H0 −H∗
0.

(A.33)

In the tetradic notation, the tetradic operators are calculated as follows: for
example,

Hij;kl = (H ⊗ I)ij;kl = Hikδjl,

Lik;jl =Hik;jl−H∗
ik;jl = Hikδjl − δikHjl.

(A.34)

The Green’s functions—resolvent operators in Hilbert space—are related to
the resolvent R (z) in the following manner. In the representation in which
the Hamiltonian is diagonal with respect to energy

Rij;kl (z) = (z − L)−1
ij;kl = (z + Ej − Ei)

−1
δikδjl = [G (z + Ej)]ik δjl,

(A.35)
where

G (z + Ej) = (z + Ej − Ei)
−1 =

[
(z + Ej − H)−1

]
i

(A.36)

and similarly for R0. With these computational rules established for tetradic
operators, the tetradic collision operator T (z) can be related to the transition
operator T (z) obeying the Lippmann–Schwinger equation in Hilbert space

T
(
E+
)

= V + VG0

(
E+
)
T
(
E+
)
, (A.37)

where
E+ = E + iε.
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It is useful to note the relation between the tetradic element of T (H∗
0 + z) in

superspace and the dyadic element of T (E+) in Hilbert space:

[T (H∗
0 + z)]ij;kl = Tik

(
E+

j

)
δjl,

[T ∗ (H0 + z∗)]ij;kl = T †
ijδik,

(A.38)

where T † is the Hermitean adjoint of T .
We now observe that the Lippmann–Schwinger equation for T (z) may be

written as
T (z)= V − V∗ + (V − V∗)R0 (z)T (z) . (A.39)

With the help of the Lippmann–Schwinger equations for T

T (H∗
0 + z) = V + VR0 (z) T (H∗

0 + z) , (A.40)

T ∗ (H0 + z∗) = V∗ − V∗R0 (z) T ∗ (H0 + z∗) , (A.41)

Equation (A.39) can be formally solved, and we obtain

T (z) = T − T ∗ − T R0T ∗ − T ∗R0T + ΔT, (A.42)

where

ΔT = T ∗R0T R0 (1 + T ∗R0T R0)
−1T ∗ (1 + R0T )

− T R0T ∗R0 (1 + T R0T ∗R0)
−1 T (1 −R0T ∗) . (A.43)

Because the correction term ΔT turns out to be small, we obtain the approx-
imate relation

T (z) � T − T ∗ − T R0T ∗ − T ∗R0T . (A.44)

This is the relation we use in the generalized Boltzmann equation with appro-
priate generalizations of the operators to a many-particle situation. Noting
that

R∗
0 (z) = −R0 (z) (A.45)

and using the optical theorem in scattering theory [6]

T ∗ (H0) − T (H∗
0) = 2πiT ∗ (H∗

0) δ (H0 −H∗
0) T (H0) , (A.46)

Equation (A.44) can be written as [8, 24]

T (z) = 2πiT ∗ (H0) δ (H0 −H∗
0) T (H∗

0) − 2πiT ∗ (H∗
0) δ (H0 −H∗

0) T (H0) .
(A.47)



A.2 Relation Between Collision and Transition Operators 393

This implies that the transition probability W (x∗|x) in the collision term of
the generalized Boltzmann equation (7.10) in Chap. 7 can be identified with

W (x∗|x) = 2πT ∗ (H0) δ (H0 −H∗
0) T (H∗

0) (A.48)

if the quantum mechanical analog of W (x∗|x) is used. A similar identification
can be made for the collision term of the generalized Boltzmann equation in
Chap. 8, (8.20), if the formalism is suitably generalized to polyatomic fluids.



B

The Constitutive Equation for Velocity

In this Appendix, the constitutive equation for the mean velocity is derived
from a statistical mechanical viewpoint. Note that we have so far assumed the
velocity constitutive equation on phenomenological grounds, but a statistical
mechanical derivation of the constitutive equation is possible. This derivation
clarifies the limits of validity of the phenomenological constitutive equation
for the mean velocity.

The mean velocity is given by the formula

ρu (r, t) =

〈
N∑

j=1

pjδ (rj − r)F (N)
c

〉
, (B.1)

where

ρ (r, t) =

〈
N∑

j=1

mδ (rj − r)F (N)
c

〉
. (B.2)

The angular brackets, as before, denote the grand ensemble average.
To calculate the desired constitutive equation, we imagine a cluster of two

molecules, say, particles 1 and 2. We then change variables for the pair:

r12 = r1 − r2,

(B.3)
R =

1
2
r1 +

1
2
r2

Inverting the transformation, we find

r1 = R +
1
2
r12,

(B.4)
r2 = R − 1

2
r12.
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Therefore momenta of particles are expressible as

p1 = m
M P + p12, p2 = m

M P − p12,

P = MR, p12 = μr12

(
μ = 1

2m
)
.

(B.5)

Then the statistical mechanical formula for the mean velocity may be written
as

ρu (r, t) =
∫

dx1

∫
dx2mv2δ (r2 − r) f (2) (x1, x2, t)

= m

∫
dR
∫

dr12

∫
dp1

∫
dp2v2δ

(
R − 1

2
r12 − r

)
× ψ(2)

(
p1,p2,R +

1
2
r12,R − 1

2
r12, t

)
× n

(
R − 1

2
r12,

)
n

(
R +

1
2
r12

)
n(2) (r12, t) , (B.6)

where
ψ(2)(x1, x2; t) = φ(x1, t)φ(x2, t)φ(2)(x1, x2; t).

See the main text for this mode of writing a pair distribution function.
We now define

V
(
R +

1
2
r12,R − 1

2
r12, t

)
=
∫

dp1

∫
dp2v2 (B.7)

×ψ(2)

(
p1,p2,R +

1
2
r12,R − 1

2
r12, t

)
.

Physically, this is interpreted as the mean velocity of particle 2 located at r12

from particle 1 at r1 or, alternatively, from their center-of-mass position R.
The integral (B.7) may be estimated as follows: First cast it in the form,

V
(
R +

1
2
r12,R − 1

2
r12, t

)
=

1
m

∫
dP
∫

dp12

(
1
2
P − p12

)
×ψ(2)

(
p1,p2,R +

1
2
r12,R − 1

2
r12, t

)
= V − 1

2

∫
dP
∫

dp12
·
r12

×ψ(2)

(
p1,p2,R +

1
2
r12,R − 1

2
r12, t

)
.

The second term on the right in the second equality is a mean relative velocity.
This may be estimated approximately by r12/τ , where τ is the mean time
during which the particle pair (1, 2) moves in the direction parallel to r12,
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that is, the mean flight time of particle 2. Thus, we obtain

V
(
R +

1
2
r12,R − 1

2
r12, t

)
= V − 1

2τ
r12 = − 1

2τ
r12, (B.8)

because V = 0. Because

ρu (r, t) = m

∫
dr12V (r + r12, r, t)n (r, t)n (r + r12)n(2) (r12, t) , (B.9)

it follows that

ρu (r, t) = −m

2τ
n (r, t)

∫
dr12r12n (r + r12)n(2) (r12, t)

= −m

6τ
n2 (r, t)

∫
dr12r12 · r12n

(2) (r12, t)∇rn + · · · ,

and finally

ρu = − ρ

6τ
n (r, t)

∫
dr12r12 · r12n

(2) (r12, t)∇rn + · · · . (B.10)

From this expression, the self-diffusion coefficient may be identified with the
statistical mechanics formula

D =
1
6τ

n2 (r, t)
∫

dr12r12 · r12n
(2) (r12, t) , (B.11)

and the mean velocity may be written as

ρu (r, t) = −D∇rρ + O
[
(∇rn)2

]
, (B.12)

which is the constitutive equation we set out to derive. Note that (B.11) is
reminiscent of the form originally defined for D by Einstein.

If there is a temperature gradient in the fluid, then the number density
depends on temperature, which varies from point to point in space. Therefore

ρu (r, t) = −m

2τ
n (r, t)

∫
dr12r12n [r + r12, T (r + r12)]n(2) (r12, t) . (B.13)

Here the temperature dependence of n(2) (r12, t) is suppressed because it is
not an important factor. The density n [r + r12, T (r + r12)] may be expanded
in a series of r. To the first order, we obtain

ρu = −D∇rρ−DT∇rT + O
[
(∇rn)2

]
, (B.14)

where
DT =

m

6τ
n (r, t)

∂n

∂T

∫
dr12r12 · r12n

(2) (r12, t) . (B.15)
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This is the thermal diffusion coefficient. If the flow occurs at constant pressure,
then the expansion of the fluid is isobaric, and we have the relation

DT = −mαD, (B.16)

where α is the local isobaric expansion coefficient

α = − 1
n

(
∂n

∂T

)
p

. (B.17)

It is interesting that the thermal diffusion coefficient is negative. It is known
in the Chapman–Enskog theory that the thermal diffusion coefficient of gas
is generally negative. (See [7], pp. 187–188.) The present formal result is con-
sistent with the Chapman–Enskog theory for gases.

These constitutive equations derived from nonequilibrium statistical me-
chanics are used throughout the density fluctuation theory in the text.
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self-diffusion coefficient temperature
dependence carbon dioxide, 307

shear rate, 45
reduced, 46

shear stress, 33
shear stress tensor

kinetic part
rigid diatomic fluid, 310

shear stress tensor potential part rigid
diatomic fluid, 311

shear viscosity, 21
averaged, 374
Chapman–Enskog

simple gas, 253
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shock wave

generalized hydrodynamic eqs.
monatomic gas, 52

rigid rotator gas, 82
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total correlation function

Fourier transform, 117, 145
total cross section, 57
tracer diffusion coefficient

modified free volume theory, 361
temperature dependence

argon, 366
krypton, 367

transition operator
relation to the transition probability,

393
transition probability

and time-reversal invariance, 58
model, 153
polyatomic gas, 57
quantum mechanical, 208
simple dense fluid, 152
symmetry property, 58, 153, 199

transition state
see also collision complex, 205

transmission factor
reaction, 215

ultrasonic wave
absorption, 72
absorption coefficient, 77
dispersion, 72, 77
dispersion relation, 75, 76
sound mode, 77
thermal mode, 77

Ursell function
dynamic, 228

van der Waals parameter, 99
velocity

mean
gas, 13

mean conditional, 269



Index 407

velocity gradient, 255
velocity profile

non-Poiseuille
channel flow, 48

virial equation of state local equilibrium
pressure, 234

virial tensor
intermolecular, 186, 291
intramolecular, 186, 291

simple fluid, 155, 233

Waldmann–Snider equation, 55
collision operator, 58

wave function
collision complex, 210

Wiener–Hopf factorization, 122
Wiener–Hopf method, 117
Wiener–Hopf theorem, 120


