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PREFACE

Drug development is shifting from the classical approaches to more dynamic
or adaptive approaches. The pharmaceutical industry and the U.S. Food and
Drug Administration (FDA) has been seeking efficient methods of drug devel-
opment as indicated in the FD A’s critical path document. Many people believe
that the innovative approach of adaptive design is a major pathway to success
in drug development in today’s challenging drug development environment.

In a book that I co-authored, Adaptive Design Methods in Clinical Trials
(Chow and Chang, 2006), various adaptive design methods were introduced.
Six months later I authored a second book, Adaptive Design Theory and
Implementation Using SAS and R (Chang, 2007a), which provided in-depth
and unified theory regarding adaptive designs and implementations, with many
trial examples. These two books require a strong statistical background and
clinical trial experience.

However, based on feedback from recent adaptive design workshops and
conferences, I realize that there are many practitioners who are very good at
strategic thinking and solution of practical problems but little interested in or
lacking time to study the theory. Although I have kept the SAS and R program
units as small as possible, with a clear logic flow from my previous books, there
are still minimal requirements for knowledge of SAS or R. Also, many statisti-
cians who are familiar with SAS would prefer to have software with a graphic
user interface that can provide user-friendly tools for both classical and adap-
tive designs and monitoring. Among other options, I believe that ExpDesign
Studio® fits the practical needs and provides a one-stop-shopping experience
(CTriSoft, www.CTriSoft.net). This book, which avoids dealing with theory,
is complementary to the two books mentioned earlier. Readers can jump-start
to adaptive design without difficulty if they have one or two years of clinical
trial design experience. However, for readers interested in the mathematical
details, the mathematical notes at the end of each chapter will provide the key
formulations for each method, or they can review Adaptive Design Theory and
Implementation Using SAS and R (Chang, 2007a) for an in-depth understand-
ing of the theory and algorithms for computer implementation.

ExpDesign is commercial software used by major pharmaceutical compa-
nies, universities, and research institutes worldwide. With ExpDesign you can
design a classical or adaptive design literately in two minutes if you have the
parameters ready. The ExpDesign enterprise version can also generate SAS
and R code for an adaptive design.

xiii



xiv PREFACE

The book has been written with practitioners in mind. It is not intended to
teach adaptive design theory nor to function as a simple software user manual.
The objective of the book is to demonstrate the use of ExpDesign in trial
design, to assist strategic decision making, and to help solve issues related to
classical and adaptive trials. It is written as a tutorial, a self-learning textbook
(see the Self-Study and Practice Guide following the preface). Readers are
expected to master the basic adaptive trial techniques in about one week. The
book, together with the software, makes learning easy and fun. The accompa-
nying software is a fully professional version of ExpDesign Studio 5.0, not a
typical trial version. The book and the software, covering both classical and
adaptive designs, can be used to leverage drug development in such a way that
statisticians and other parties have more freedom and time to focus on the
real issues, not the calculation or theory. The book is organized as follows:

In Chapter 1 we present an overview of the software ExpDesign Studio,
provide a feeling for what it can do in trial designs, demonstrate simple design
examples from classical, group sequential, adaptive, and other trials with
ExpDesign Studio, and explain the basic operation of the software.

Chapter 2 provides an overview of a variety of clinical trial designs, their
advantages and disadvantages, and when different classical and adaptive
designs can be used.

Chapter 3 focuses on classical designs. After a discussion as to how sample
size should be determined and on the variety of factors that affect the decision
as to what sample size to use in a trial, examples are given on how to utilize
ExpDesign to calculate sample size. Among nearly 150 sample-size calculation
methods available in ExpDesign, the examples are carefully chosen to include
a variety of designs, types of endpoints, and phases of clinical trials.

In Chapter 4 we discuss group sequential design (GSD), a commonly used
and probably the simplest adaptive design. Starting with an overview of group
sequential design, how to design and monitor a GSD trial using ExpDesign
Studio is discussed. Finally, the key mathematic formulations for GSD are
summarized for those interested in the mathematical details.

In Chapter 5 we discuss adaptive trial designs and introduce the stagewise
test statistic and stopping rules. Interim analysis and trial monitor tools such
as conditional power are described. We also discuss how to use ExpDesign
Studio to design sample-size reestimation, drop-loser, biomarker-adaptive,
response-adaptive randomization, and adaptive dose-finding trials. The math-
ematic formulations are summarized in the final section.

In Chapter 6 we discuss the specific design of early-phase oncology trials,
because of its uniqueness. It includes multiple-stage single-arm design and
dose-escalation design for maximum tolerated dose and show how to use
ExpDesign to design oncology trials and how to compare and evaluate differ-
ent designs based on their operating characteristics.

In Chapter 7 we focus on adaptive trial monitoring. The importance of trial
monitoring and mathematic tools for monitoring is discussed, and how to use
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the trial monitor in ExpDesign to monitor an adaptive trial is described in
detail using real-world examples.

In Chapter 8 we present a computer simulation approach in which the test
statistic is the same as the classical design. The simulation module in ExpDe-
sign allows for any combinations of the following adaptations: early futility
and/or efficacy stopping, sample-size reestimation, drop-loser, and response-
adaptive randomization based on the dose-response relationship. Step-by-
step instructions are presented with trial examples.

In Chapter 9 we discuss how to get further assistance from ExpDesign.
ExpDesign provides many toolkits for design, monitoring, and analysis of
trials: the graphical calculator, which allows you to plot complicated mathe-
matical expressions, the probability calculator for probability and percentile
calculations, and the confidence interval calculator for exact confidence inter-
val calculations. For advanced users, we also discuss how to use ExpDesign
to generate univariate and multivariate data that can be used for various pur-
poses of trial design, monitoring, and risk assessment.

In Chapter 10 we present notes on technique for nearly 100 methods for
sample-size calculation, grouped by the number of arms, the trial endpoint,
and the analysis basis. We describe the purpose of each method, information
about the methods, such as when and how to use each one, the formula and/or
references, and the assumptions or limitations of the methods.

Appendix A is about validation of ExpDesign. Several reviewers have
indicated the importance of software validation and suggested including
the validation information in the book. The validation document is also
meant to support pharmaceutical end users to meet FDA 21 CFR part 11
requirements.

Installation instructions for the software CD and the license agreement
appear at the end of the pages.

Mark CHANG
Lexington, Massachusetts

Winter 2007
www.Statisticians.org






SELF-STUDY AND
PRACTICE GUIDE

Day 1

e ExpDesign Studio 5.0 Installation (10 minutes)
¢ Chapter 1: ExpDesign Studio (30 minutes of reading and practice)

Chapter 2: Clinical Trial Design (3 hours of reading)
Chapter 3: Classical Trial Design (4 hours of reading and practice)
Chapter 10: Classical Design Method Reference (15 minutes of reading)

Appendix A: Validation of ExpDesign Studio (15 minutes of reading)
Day 2

e Chapter 4: Group Sequential Trial Design (8 hours of reading and prac-
tice) The classical group sequential design and simplest adaptive design
are discussed. Make sure you understand the basic concepts of group
sequential design, such as the notion of early stopping, error inflation due
to multiple looks, different types of stopping boundaries, and different
scales for stopping boundaries. Go through all the trial examples using
ExpDesign; it helps you get “hands-on” experience. Trial monitoring
requires your effort, which will give you the feeling of running an actual
group sequential trial.

Days 3

e Chapter 5: Adaptive Trial Design (8 hours of reading and practice)

e You will learn various adaptive designs. Make sure that you understand
the three commonly used statistical methods. Again, go through the trial
practice using ExpDesign for hands-on experiences. The practices are
straightforward and should take no more than 20 minutes each.

Day 4

e Chapter 6: Adaptive Trial Monitoring (8 hours of reading and practice)
Adaptive trial monitoring can be considered as the most challenging part

xvii
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of this book. It is about how you make actual adaptations for an ongoing
trial based on the design without undermining the validity and integrity
of the trial. Play around with the trial examples using ExpDesign, and
spend extra time if needed.

Day 5

e Chapter 7: Oncology Adaptive Trial Design (5 hours of reading and
practice)

e Chapter 8: Adaptive Trial Simulator (2 hours of optional reading and
practice)

e Chapter 9: Further Assistance with ExpDesign Studio (1 hour of reading
and practice)

The mathematical notes in Chapters 3, 4, and 7 are not meant to be studied
in your first reading; rather, they are for future reference. Similarly, Chapter
10 and Appendix A can be read as needed.



1 ExpDesign Studio

1.1 INTRODUCTION

ExpDesign Studio (ExpDesign) is an integrated environment for designing
experiments or clinical trials. It is a powerful and user-friendly statistical soft-
ware product that has seven integrated main components: classical design
(CD), sequential design (SD), multistage design (MSD), dose-escalation design
(DED), adaptive design (AD), adaptive trial monitoring (ATM), and dose-
escalation trial monitoring (DTM) modules. In addition, the ExpDesign ran-
domizor can generate random variates from a variety of distributions. The
ExpDesign toolkit provides features for distributional calculation, confidence
intervals, and function and data plotting (Figure 1.1).

Classical trials are the most commonly used in practice. ExpDesign provides
nearly 150 methods for sample-size calculations in CD for different trial
designs. It includes methods for single-, two-, and multiple-group designs, and
for superiority, noninferiority, and equivalence designs with various endpoints.
See the list of classical design methods in Appendix B.

Group sequential trials are advanced designs with multiple analyses. A
group sequential trial is usually a cost-effective design compared to a classical
design. SD covers a broad range of sequential trials with different endpoints
and different types of stopping boundaries.

A multistage design is an exact method for group sequential trials with a
binary response, whereas group sequential design uses an asymptotic approach.
MSD provides three optimal designs among others: MinMax, MinExp, and
MaxUltility, which minimize the maximum sample size, minimize the expected
sample size, and maximize the utility index, respectively.

A dose-escalation trial in aggressive disease areas such as oncology has
unique characteristics. Due to the toxicity of the testing drug, researchers
are allowed to use fewer patients to obtain as much information as possible
about the toxicity profile or maximum tolerable dose. By means of com-
puter simulations, DED provides researchers with an efficient way to search
for an optimal design for dose-escalation trials with a variety of criteria. It
includes traditional escalation rules, restricted escalation rules, two-stage

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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Figure 1.1 ExpDesign integrated environment.

escalation algorithms, and the Bayesian continual reassessment method
(CRM).

AD in ExpDesign Studio allows you to design and simulate various adap-
tive trial, such as sample-size reestimation, dropping a loser, response-adaptive
randomization, and biomarker-adaptive designs. You can use response-adap-
tive randomization to assign more patients to superior treatment groups or to
drop a “loser” or inferior group. You may stop a trial prematurely to claim
efficacy or futility based on the data observed. You may modify the sample
size based on the treatment difference observed. All design reports are gener-
ated through an automation procedure that has built-in knowledge of statisti-
cal experts in a clinical trial.

ATM and DTM assist in monitoring an ongoing trial. They inform the user
if the stopping boundary has been crossed and will also generate interim
results such as conditional power, new sample size required, and dynamic
randomization to instruct the user to make appropriate adaptations.

Indeed, ExpDesign Studio covers broad statistical tools needed to design a
trial. To try ExpDesign, the user simply needs to know the functions of the
icons on the toolbar. The black—white icons on the left-hand side of the toolbar
are standard for all word processors. The first five icons of the second group
of seven icons are used to launch five different types of designs: classical trial
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Figure 1.2 ExpDesign Studio startup window.

design, sequential trial design, multistage trial design, dose-escalation trial
design, and adaptive design (see Figure 1.2). Alternatively, the user can click
one of the nine buttons in the ExpDesign start window to start the correspond-
ing design. The next set of three icons is for launching a design example, com-
puting design parameters, and generating a design report. Following these are
five color icons for the toolkits, including a graphic calculator, a distribution
calculator, a confidence interval calculator, a word splitter, and TipDay. The
mouse can be moved over any icon on the toolbar to see the Tiptext, which
describes what the icon is for. We are now ready to design a trial.

1.2 HOW TO DESIGN A TRIAL USING EXPDESIGN STUDIO

1. Double-click on the ExpDesign Studio icon & or click M, the Start
button. A menu will appear. Click on Programs in the Start button. The

list of available programs will appear. Then click m, ExpDesign
Studio.
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2. On the ExpDesign Start window (Figure 1.2), select one of the following
tasks you want to do: classical, sequential, adaptive, multistage, dose-
escalation design, adaptive trial monitoring, random number generation,
adaptive trial simulation, or dose-escalation trial monitoring.

1.2.1 How to Design a Classical Trial

Claszical Desi -
1. Click M‘ or @ to start a classical design.

2. Select options for Number of Groups, Analysis Basis, Trial Endpoint,
and Sample Allocations in the design option panel.

3. Select a method from the list of methods available.

. . . Example
4. Enter appropriate values for your design (click for an
example).

. Compute . .
5. Click on to calculate the sample size required.
6. Click the report icon ﬁl on the toolbar to view the design report.

Frint
7. Click LI to print the design form or click @ to print the report.

. Copy Graph .
8. You can click to copy the graph for the stopping boundar-
ies and use Paste-Special to paste it to other applications.

=
9. Click to save the design specification or report (see Figure 1.3).

1.2.2 How to Design a Group Sequential Trial

Sequential Deszign

1. Click or E on the toolbar to start a group sequential

design.

2. Select options for Number of Groups, Analysis Basis, Trial Endpoint,
and Potential Interim Claim in the design option panel.

3. Select a method from the list of methods available.
. . . Example
4. Enter appropriate values for your design or click .

. Compute .
5. Click to generate the design.

6. Click the report icon ﬁl on the toolbar to view the design report.
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Figure 1.3 Classical design window.

Pririt
7. Click 4| to print the design form or click @ to print the report.

. Copy Graph .
8. You can click to copy the graph for the stopping boundar-
ies and use Paste-Special to paste it to other applications.

5
9. Click ﬂ to save the design specification or report (see Figure 1.4).

1.2.3 How to Design an Adaptive Trial

Adaptive Desi ;
1. Click M‘ or ﬁ on the toolbar; the Adaptive Design—Step

1 window will appear (see Figure 1.5).

2. Select the Sample-Size Reestimation option in the Type of Adaptive
Design panel.

3. Select the Proportion option in the Endpoint panel.
4. Enter appropriate values for the Response Under Ha in the Hypotheses
panel, the noninferiority margin for the noninferiority trial, One-Sided

Alpha, and Power.

Mext
5. Click i‘; the Adaptive Design—Step 2 window will appear.
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= Sequential Trial Design

Mumber of analyses, K7

One or bwo sided test?

Significance level, alpha?

Statistical power?

Group 1 mean?

Group 2 mean?

Commaon standard deviation?
Sample size ratio, n2/nl1?
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Figure 1.4 Group sequential design window.
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i~ Type of Adaptive Design: -~ Endpaint
" Group Sequential Design  Mean + Proportion i Survival
~ Hypotheze:

s Sample-Size Feestimation

(" Drop-Lozer Design

" Biomarker-Adaptive Design

" Besponse-fdaptive Fandomization

= Adaptive Dose-Escalation

A1, & 2

Fesponse Under Ha: IU_1 2,014 Hl-d= i]

—&lpha and Power
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Print Hest I

Figure 1.5 Sample size reestimation step 1 window.
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Figure 1.6 Sample size reestimation step 2 window.

In the Adaptive Design—Step 2 window, do the following (Figure 1.6):

1.

6.

Enter values for the initial number of stages and Information Time for
Analyses.

. Choose stopping boundaries using the arrow near O’Brien or
Pocock.

. Enter values for N Simulations and N/group.
. Select a statistical method in the panel.

. Enter values for Maximum N/group Allowed for SSR and Targeted
Conditional Power for SSR.

. Run . .
Click to start the simulation.

After the simulation is completed, the window in Figure 1.7 will pop up to

remind you to click the report icon El on the toolbar to view the report that
is generated automatically for the adaptive design. Figure 1.8 is an example of
the report for the adaptive design.

1.2.4 How to Run Adaptive Trial Simulations

1
2

.-“-‘-.da_ptive Trial
. Click ___3imulator |5 st up adaptive trial simulations.

. Follow the steps specified in the Simulation Setup panel.
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ExpDesign Studio

Ik

Figure 1.7 Pop-up message when calculation is completed.

«Report 1 (Adaptive Design)

B

“ou can click the Report icon on the toolbar to views the simulation report,

=10l

This is a Z-stage adaptive design. The input parameters are as follows: the
proportions are 0.12 and 0.14 for the two groups, respectively. The
significance lewel, alpha, is 0.0EZ5. The initial sample size is 4500 per
group. The statistic method used is M3P. The maximum sample allowed is 6000
per group. The targeted conditonal power for sample size calculation is 0.3,
The design allows for sample size reestimation.

The results are based on 10000 simulation runs. The naive means are 0.11892
and 0.14116 for the two groups, respectively. The expected (average) samnple
size is 4506 per group. The power is 0.808.

Stage: Al 2
Stagewise sample size: ZEZE0 3750
Efficacy stopping boundary o.o07 0.1967
Futility stopping boundary 1 0.1967
Efficacy stopping probability: 0.3203 0.4877
Futility stopping probability: o 0 192

REeference Book: Mark Chang (Z007). Adaptive Design Theory and Implementation
Tsing 2AS and B. Chapman & Hall/CRC, Taylor & Francis Group. Boca Baton, FL.

Figure 1.8 Report generated automatically by ExpDesign.

. . . Example
. Specify parameters in each of the steps or click .
) Run . .
. Click to generate the simulation results.

. Click the report icon ﬂ to view the design report.

highlighted (see Figure 1.9).

Frint
. Click ﬂ to print the design form or click @ to print the report.

. Save . . . . .
. Click to save the design specification or report, whichever is
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Mote that b = initial zample size, N = new sample size, Eo_max = initial maximum treatment
effect size compared to dose level 1, and E_max = observed maximum effect size.

Bun

Example

Figure 1.9 Trial simulation window.

1.2.5 How to Design a Multistage Trial

bultiztage Design

1. Click or E on the toolbar to start a multistage

design.

2. Select 2-Stage Design or 3-Stage Design in the Multistage design window

-]

or open an existing design by clicking = 6n the toolbar.

3. Enter appropriate values for your design in the textboxes. You may click

Example .
to see an input example.

. Compute . .
4. Click to generate the valid designs.
5. Click E on the toolbar to view the design report.

Frirt
6. Click J to print the design form or @ to print a report.

7. Click to save the design specification or report (see Figure 1.10).
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Figure 1.10 Multistage design window.

1.2.6 How to Design a Dose-Escalation Trial

Dqse-E scfala_tiun
1. Click Trial Monitoring

(=}
ﬂ'ﬂ
ala

or on the toolbar to start a dose-escalation

design.

2. Enter appropriate values for your design on the Basic Spec. panel. You

. Example .
may click to see an input example.

3. Select Dose-Response Model, Escalation Scheme, and Dose Interval Spec.

-]

or open an existing design by clicking =

. Compute . .
4. Click to generate the simulation results.

5. Click ﬂ to view the design report.
Frint
6. Click ﬂ to print the design form or @ to print a report.

7. Click E to save the design specification or report, whichever is high-
lighted (see Figure 1.11).
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Figure 1.11 Traditional dose-escalation design window.

1.3 EXPDESIGN MENUS

File Menu The ExpDesign file menu is a standard menu similar to that in
MS Word. The Save option can be used to save a report generated by ExpDe-
sign or design specifications. The Print option can be used to print a report
generated by ExpDesign.

Edit Menu The edit menu is a standard menu just like the one in MS Word.
The hotkey combinations for cut, copy, and paste are <Ctrl>-X, <Ctrl>-C, and
<Ctrl>-V, respectively.

View Menu The view menu is shown in Figure 1.12. The Toolbar option
toggles between displaying and hiding the toolbar. If the option has a check
mark beside it, the toolbar is on and displayed in the ExpDesign window.
When you select Toolbar, the toolbar will disappear from the ExpDesign
window. If the Toolbar option has no check mark beside it, the toolbar is off
and is not displayed in the ExpDesign window. The Status Bar option toggles
between displaying and hiding the status bar. It lies at the bottom of
your ExpDesign window. The bar displays useful information during the
design.
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v Toolbar
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Figure 1.12 View menu.

Design  Ackion Tools  Wind

ExpDesign Studio
lassic Trial Design
Sequential Trial Design
Multi-3kage Design
Diase Escalation Design
Adaptive Design
Adapkive Trial Monitor
Randomizor

Figure 1.13 Design menu.

The MyExpDesign Studio.htm option can be used to access the local Web
page, which you can change as you like. To edit the page, you can use MS Word
by right-clicking on MyExpDesignStudio.htm and selecting the Edit item
from the pop-up menu. The CTriSoft.com option can be used to access the
ExpDesign Web site, www.CTriSoft.net, where users can get technical support
and product information. The Statisticians.org option can be used to access
the relevant information to trial design and statistics.

Design Menu The design menu is shown in Figure 1.13. The option
ExpDesign Studio can be used to display the start window for classical, sequen-
tial, multistage, dose-escalation trial, and adaptive designs; and for adaptive
trial monitoring, dose-escalation monitoring, the randomizor, and the adaptive
trial simulator. The options Classic Trial Design, Sequential Trial Design,
Multi-Stage Design, Dose Escalation Design, Adaptive Design, Adaptive
Trial Monitor, and Randomizor can be used for the corresponding task.

Action Menu The action menu has three items: Example, Compute, and
Report (Figure 1.14). The Example option can be used to launch an example
of a design. The Compute option can be used to generate a design after the
appropriate inputs. The Report option can be used to view a design report.
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Figure 1.14 Action menu.
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Shiow Tip af Day

Figure 1.15 Tools menu.

Tools Menu 1In the tools menu (Figure 1.15) the Graphic Calculator option
can be used to access the calculator to perform simple arithmetic and complex
function calculations, and to plot curves. The Probability Calculator option
can be used to obtain probabilities and percentiles for various continuous and
discrete distributions. The Confidence Interval Calculator option can be used
to obtain various confidence intervals.

Window and Help Menus The window and help menus are standard, just
like those in MS Word.
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INTRODUCTION

As indicated by Chow and Liu (1998), the process of drug research and devel-
opment is a lengthy and costly process. An adequate and well-controlled
study is necessary to demonstrate the efficacy and safety of a drug product
under investigation. Section 314.126 of 21 CFR (Code of Federal Regulations)
provides a definition of an adequate and well-controlled study, which
requires:

2.2

Objectives: clear statement of an investigation’s purpose

Methods of analysis: summary of proposed or actual methods of
analysis

Design: valid comparison with a control to provide a quantitative assess-
ment of a drug effect

Selection of subjects: adequate assurance of the disease or conditions
under study

Assignment of subjects: minimization of bias and assurance of compara-
bility of groups

Participants of studies: minimization of bias on the part of subjects,
observers, and analysis

Assessment of responses: well defined and reliable responses

Assessment of the effect: requirement of appropriate statistical
methods

CLASSICAL CLINICAL TRIAL DESIGN

We review briefly some of the basic concepts of clinical trials. Definitions of
the various trials are based on the ICH guidelines (1998) for statistical princi-
ples for clinical trials, and the FDA guidelines (2001) for bioequivalence trials
(www.fda.gov/cder/guidance/index.htm).

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.

14
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2.2.1 Substantial Evidence

For a drug approval, the FDA requires substantial evidence of efficacy and
safety. As indicated in the Kefauver—Harris amendments to the Food, Drug
and Cosmetics Act of 1962, the term substantial evidence, means evidence
consisting of adequate and well-controlled investigations, including clinical
investigations, by experts qualified by scientific training and experience to
evaluate the effectiveness of the drug involved, on the basis of which it could
fairly and responsibly be concluded by such experts that the drug will have
the effect it purports to have, or is represented to have, under the conditions
of use prescribed, recommended, or suggested in the labeling or proposed
labeling thereof.

2.2.2 Clinical Trial Endpoint

Clinical trial endpoints can be classified as primary or secondary. Primary
endpoints measure outcomes that will answer the most important question
being asked by a trial, such as whether a new treatment will reduce the inci-
dence of heart attack or mortality, or prolong survival. Secondary endpoints
ask other important relevant questions in the same study, so they may poten-
tially be included in the drug labeling. It is important to consider a reasonable
number of secondary endpoints, because every endpoint added will usually
have to pay the multiplicity penalty statistically. An endpoint may be based
on a binary, continuous, or time-to-event clinical outcome, indicating whether
an event such as death from any cause has occurred.
In choosing endpoints, it is important to ensure that they:

e Are clinically meaningful and related to the “intend-to-treat” disease

e Answer the important question to be answered by the trial

e Are practical so that they can be assessed in all subjects in the same
way

e Are easily assessed with reasonable precision such that the study will
have adequate statistical power or the size of the trial is feasible

2.2.3 Confirmatory Trials

A confirmatory trial is an adequately controlled trial in which the hypotheses
are stated in advance and evaluated. As a rule, confirmatory trials are neces-
sary to provide firm evidence of efficacy or safety. In such trials the key
hypothesis of interest follows directly from the trial’s primary objective, is
always predefined, and is the hypothesis that is subsequently tested when the
trial is complete. In a confirmatory trial it is equally important to estimate with
due precision the size of the effects attributable to the treatment of interest
and to relate these effects to their clinical significance. ExpDesign provides
designs, including sample-size calculation methods, for both confirmatory and
exploratory trials (see below).
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2.2.4 Exploratory Trials

The rationale and design of confirmatory trials nearly always rests on earlier
clinical work carried out in a series of exploratory studies. Like all clinical trials,
exploratory studies should have clear and precise objectives. However, in
contrast to confirmatory trials, their objectives may not always lead to simple
tests of predefined hypotheses. In addition, exploratory trials may sometimes
require a more flexible approach to design so that changes can be made in
response to accumulating results. Their analysis may entail data exploration;
tests of hypothesis may be carried out, but the choice of hypothesis may be
data dependent. Such trials cannot be the basis of the formal proof of efficacy,
although they may contribute to the total body of relevant evidence. Any
individual trial may have both confirmatory and exploratory aspects.

2.2.5 Multicenter Trials

Multicenter trials are carried out for two main reasons. First, a multicenter trial
is an accepted way of evaluating a new medication more efficiently; under
some circumstances, it may present the only practical means of accruing suffi-
cient subjects to satisfy the trial objective within a reasonable time frame.
Second, a trial may be designed as a multicenter (and multi-investigator) trial
primarily to provide a better basis for the subsequent generalization of its
findings. ExpDesign features various sample-size calculation methods for trials
with or without a center effect.

2.2.6 Trials to Show Superiority

Scientifically, efficacy is established most convincingly by demonstrating supe-
riority to a placebo in a placebo-controlled trial, by showing superiority to an
active control treatment, or by demonstrating a dose-response relationship.
This type of trial is referred to as a superiority trial. For serious illnesses, when
a therapeutic treatment that has been shown to be efficacious by superiority
trial(s) exists, a placebo-controlled trial may be considered unethical. In that
case, the scientifically sound use of an active treatment as a control should be
considered. The appropriateness of placebo control versus active control
should be considered on a trial-by-trial basis. A large portion of the method-
ologies in ExpDesign are for trials showing superiority.

2.2.7 Trials to Show Equivalence or Noninferiority

In some cases, an investigational product is compared to a reference treatment
without the objective of showing superiority. This type of trial is divided into
two major categories according to its objective; one is an equivalence trial and
the other is a noninferiority trial. Bioequivalence trials fall into the former
category. In some situations, clinical equivalence trials are also undertaken for



CLASSICAL CLINICAL TRIAL DESIGN 17

other regulatory reasons, such as demonstrating the clinical equivalence of a
generic product to a marketed product when the compound is not absorbed
and therefore is not present in the bloodstream. Many active control trials are
designed to show that the efficacy of an investigational product is no worse
than that of the active comparator, and hence fall into the latter category.
Another possibility is a trial in which multiple doses of the investigational drug
are compared with the recommended dose or multiple doses of the standard
drug. The purpose of this design is to show simultaneously a dose-response
relationship for the investigational product and a comparison of the investi-
gational product with the active control. ExpDesign has implemented a list of
methods or designs for equivalence, noninferiority, and bioequivalence trials.

2.2.8 Trials to Show a Dose-Response Relationship

How response is related to the dose of a new investigational product is a ques-
tion to which answers may be obtained in all phases of development and by
a variety of approaches. Dose-response trials may serve a number of objec-
tives, among which the following are of particular importance: confirmation of
efficacy, investigation of the shape and location of the dose-response curve,
estimation of an appropriate starting dose, identification of optimal strategies
for individual dose adjustments, and determination of a maximal dose beyond
which additional benefits would be unlikely to occur. These objectives should
be addressed using the data collected at a number of doses under investigation,
including a placebo (zero dose) wherever appropriate. Various sample-size
calculation methods are available for a dose-response trial with different
endpoints.

2.2.9 Parallel Design

A parallel design is a design in which each patient receives one and only one
treatment, usually in a random fashion. A parallel design can be two or more
treatment groups with one or more control groups. Parallel designs are com-
monly used in clinical trials because they are simple, universally accepted, and
applicable to acute conditions. ExpDesign provides comprehensive tools for
the parallel designs, including classical sequential designs.

2.2.10 Crossover Design

A common and generally satisfactory use of the 2 x 2 crossover design is to
demonstrate the bioequivalence of two formulations of the same medication.
In this particular application in healthy volunteers, carryover effects on the
relevant pharmacokinetic variable are most unlikely to occur if the washout
time between the two periods is sufficiently long. However, it is still important
to check this assumption during analysis on the basis of the data obtained: for
example, by demonstrating that no drug is detectable at the start of each
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period. ExpDesign provides sample calculation methods for crossover
designs.

2.2.11 Factorial Design

In a factorial design, two or more treatments are evaluated simultaneously
through the use of varying combinations of treatments. The simplest example
is the 2 x 2 factorial design, in which subjects are randomly allocated to one
of the four possible combinations of two treatments: A and B, say. These are
A alone, B alone, both A and B, neither A nor B. In many cases the design is
used for the specific purpose of examining the interaction of A and B. The
statistical test of interaction may lack power to detect an interaction if the
sample size was calculated based on the test for main effects. This consider-
ation is important when the design is used for examining the joint effects of
A and B: in particular, if the treatments are likely to be used together. Another
important use of a factorial design is to establish the dose-response charac-
teristics of the simultaneous use of treatments C and D, especially when the
efficacy of each monotherapy has been established at some dose in prior trials.
A number m of doses of C is selected, usually including a zero dose (placebo),
and a similar number n of doses of D. The full design then consists of m X n
treatment groups, each receiving a different combination of doses of C and D.
The resulting estimate of the response surface may then be used to help
identify an appropriate combination of doses of C and D for clinical use.
ExpDesign provides users with a variety of sample-size calculation methods
for trials with interaction terms presented in the model.

2.3 SELECTION OF A TRIAL DESIGN

2.3.1 Balanced Versus Unbalanced Designs

Balanced designs are commonly used in clinical trials, but unbalanced designs
have several advantages and can be used in the following situations.

1. When recruiting one group is easier than recruiting other groups, allocat-
ing more patients in one group could be cost-effective.

2. When the treatment variability or incidence rate is different among
experimental groups, allocating more subjects in the group with the
greatest variability could reduce the total sample size.

3. In a placebo-controlled trial, when there is a requirement for the
minimum number of exposures to a test drug but a balanced design is
overpowered, allocating more subjects in the active group could reduce
the total sample size.

4. For ethical considerations regarding the control (e.g., the placebo), one
can allocate more patients to receive the active treatment.



SELECTION OF A TRIAL DESIGN 19

2.3.2 Crossover Versus Parallel Designs

Parallel Design As mentioned earlier, parallel designs are commonly used
in clinical trials because they are simple, universally accepted, and applicable
to acute conditions. However, a parallel design usually requires more patients
than do comparative designs. A parallel design can be stratified using prog-
nostic characteristics, which can be accomplished using a stratified randomiza-
tion scheme. The matched-pairs parallel design is a design in which each patient
is matched with another patient of similar prognostic characteristics for the
disease under investigation. One patient in each pair is assigned the treatment,
and the other receives the control. A matched-pairs parallel design can reduce
the sample size, but matched-pairs designs make patient recruitment difficult
and slow and therefore are uncommon in clinical trials. Although at the plan-
ning stage it is almost impossible to identify all of the covariates that may have
an impact on a disease, an unbiased estimate of the treatment effect can still
be obtained by adjusting these covariates, regardless of whether or not they
are used for stratification.

For a parallel design, each patient receiving one treatment, the variability
observed for any comparisons between groups contains both interpatient and
intrapatient variabilities, which cannot be separated and estimated, due to the
nature of the parallel design. As a result, a parallel design does not provide
independent estimates of interpatient and intrapatient variabilities. In practice,
a parallel-group design is an appropriate design for comparative clinical trials
if the interpatient variability is relatively small compared to the intrapatient
variability. This is because a valid and efficient comparison between treatments
is often assessed based on the intrapatient variability.

Crossover Design A crossover trial is a special type of repeated-
measurements experiment. The main feature that distinguishes a crossover
trial from the traditional repeated-measures trial is that a sequence of two or
more treatments is applied to each subject. A crossover design can be viewed
as a modified randomized block design in which each block receives more than
one treatment in different dosing periods. A block can be a patient or a group
of patients. Patients in each block receive different sequences of treatments.
A crossover design is called a complete crossover design if each sequence
contains all treatments under investigation. For a crossover design it is not
necessary that the number of treatments in each sequence be greater than or
equal to the number of treatments to be compared. We refer to a crossover
design as a p X g crossover design if there are p sequences of treatments
administered at g different time periods (Ratkowsky et al., 1993).

A crossover design has the following advantages: (1) it allows a within-
patient comparison between treatments, since each patient serves as his or her
own control; (2) it removes the interpatient variability from the comparison
between treatments; and (3) with proper randomization of patients to the
treatment sequences, it provides the best unbiased estimates for the differ-
ences between treatments.
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An important feature of crossover designs is the presence of, and the ability
to measure, carryover effects. Carryover effects are commonly viewed as a
manifestation of treatment at a future time and may result from a “late
response” to treatment in a clinical trial, as may happen with human subjects
in a psychological experiment. Sometimes, steps are taken by the experimenter
to prevent or mitigate the occurrence of carryover effects by use of a washout
period between applications of drugs or treatments. However, in other experi-
ments, such as psychological tests and certain clinical trials, the ability to esti-
mate carryover may be the main focus of interest in the experiment (Ratkowsky
et al., 1993).

The separability of treatment and carryover effects is an important charac-
teristic of a crossover design. There are two major reasons for concern about
one’s ability to separate direct treatment effects from carryover effects and
both concern the interpretability of the results of the analysis of variance of
a crossover design. The first reason relates to circumstances where the inves-
tigator will not know whether a treatment effect is truly a direct treatment
effect or rather, a residual effect of some other treatment. The second reason
for wishing to separate direct and carryover effects relates to a phenomenon
akin to multicollinearity in multiple regression applications with continuous
variables. There, the presence of two multicollinear explanatory (regressor)
variables in the model may lead to the erroneous interpretation that there are
neither significant direct treatment effects nor carryover effects (Ratkowsky
et al., 1993). This is illustrated further in the following example.

A 2 x 2 crossover design (two-treatment, two-period, two-sequence) yields
only four cell means (the responses for each of two sequences in each of two
periods), which cannot be used to estimate more than four parameters. If a
carryover parameter is present in the model, the 2 x 2 design is not analyzable
without making some strong assumptions. This is because one of these param-
eters is the overall grand mean, another represents differences between
periods, and a third, differences between treatments. One can get an estimate
of differential carryover effects as the fourth parameter only by making a
strong assumption, such as that there is no sequence effect, or there is no
period-by-treatment interaction.

When more than two treatments are to be compared, complete crossover
becomes much more complicated and may not be of practical interest because
(1) potential residual effects make the assessment of efficacy and/or safety
almost impossible; (2) it takes longer to complete the study; and (3) patients
are likely to drop out if they are required to return frequently for tests.

Note that crossover designs may be used in clinical trials in the following
situations, where (1) objective measures and interpretable data are obtained
for both efficacy and safety; (2) chronic (relatively stable) diseases are under
study; (3) prophylactic drugs with a relatively short half-life are being investi-
gated; (4) relatively short treatment periods are considered; (5) baseline and
washout periods are feasible and (6) an adequate number of patients for detec-
tion of the carryover effect with sufficient power that accounts for expected
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dropouts is feasible, or extra study information is available to rule on the car-
ryover effect (Ratkowsky et al., 1993; Chow and Liu, 1998).

2.3.3 Dose Escalation Versus Titration Designs

Dose-escalation design is used for early phases of clinical trials. The primary
goal of a dose-escalation trial is to identify the maximum tolerated dose (MTD).
The participants are usually healthy volunteers. The first group (usually about
8 to 12 subjects) is treated with the lowest dose level. If there is no or low
toxicity, the second group of patients will be enrolled and treated at a higher
dose level. The procedure continues until the highest tolerated dose is identi-
fied. Sometimes different doses are applied to the same group of subjects to
determine, for example, the maximum efficacy dose. In this case, the dose-
escalation trial is called fitration design. One of the advantages of using differ-
ent groups for different doses is that it can avoid drug accumulation in the
body. Otherwise, a washout period is required between dosages, thus prolong-
ing the trial duration.

For aggressive disease treatment, such as oncology, the use of healthy vol-
unteers is considered nonethical, due to the fact that oncology drugs for testing
are usually highly toxic. In addition, the patient population is usually rather
heterogeneous, with some medical complications. A limited number of patients
are available for trials and there is a high chance of withdrawals, which may
or may not be related to the toxicity of the study drug. For these reasons, there
are usually three to six patients at each dose level in oncology trials. To identify
the MTD, a special dose-escalation algorithm has to be used. The most popular
one is the 3 + 3 traditional escalation rule.

2.3.4 Bioavailability Versus Bioequivalence Designs

The bioavailability of a drug is defined as the rate and extent to which the
active drug ingredient or therapeutic moiety is absorbed and becomes avail-
able at the site of drug action. A comparative bioavailability study involves a
comparison of bioavailabilities of different formulations of the same drug or
different drug products. When two formulations of the same drug or two drug
products are claimed to be bioequivalent, it is assumed that they will provide
the same therapeutic effect or that they are therapeutically equivalent. Two
drug products are considered pharmaceutical equivalents if they contain identi-
cal amounts of the same active ingredient. Two drugs are identified as phar-
maceutical alternatives to each other if both contain an identical therapeutic
moiety but not necessarily in the same amount or dosage form or as the same
salt or ester. Two drug products are said to be bioequivalent if they are phar-
maceutical equivalents (i.e., similar dosage forms made, perhaps, by different
manufacturers) or pharmaceutical alternatives (i.e., different dosage forms)
and if their rates and extents of absorption do not show a significant difference
when administered at the same molar dose of the therapeutic moiety under
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similar experimental conditions. For more on the bioequivalence test, see the
book by Chow and Liu (2003).

2.3.5 Equivalence Versus Bioequivalence

The criteria for equivalence or, more often, noninferiority are usually depen-
dent on the particular disease targeted by the drugs. However, for a bioequiva-
lance study, there are some strict rules. In the July 1992 FDA guidelines on
statistical procedures for bioequivalence studies using a standard two-treat-
ment crossover design, the Center for Drug Evaluation and Research (CDER)
recommended that a standard in vivo bioequivalence study design be based
on the administration of either single or multiple doses of the treatment and
response (T and R) products to healthy subjects on separate occasions, with
random assignment to the two possible sequences of drug product administra-
tion. The 1992 guidance further recommended that statistical analysis for
pharmacokinetic measures, such as area under the curve (AUC) and peak
concentration (C,,), be based on the two one-sided test procedure to deter-
mine whether the average values for the pharmacokinetic measures deter-
mined after administration of the T and R products were comparable. This
approach, termed average bioequivalence, involves calculation of a 90% con-
fidence interval for the ratio of the averages (population geometric means) of
the measures for the T and R products. To establish bioequivalence, the con-
fidence interval calculated should fall within a bioequivalence (BE) limit,
usually 80 to 125% for the ratio of the product averages. In addition to this
general approach, the 1992 guidance provided specific recommendations for
(1) logarithmic transformation of pharmacokinetic data, (2) methods to evalu-
ate sequence effects, and (3) methods to evaluate outlier data. In practice,
people also use parallel designs and a 90% confidence interval for nontrans-
formed data. To establish bioequivalence, the confidence interval calculated
should fall within a BE limit, usually 80 to 120% for the difference of the
product averages (Ratkowsky et al., 1993; Chow and Liu, 2003).

Although average bioequivalence is recommended for a comparison of
BE measures in most studies, the FDA 2001 guidance describes two new
approaches, population and individual bioequivalence. These new approaches
may be useful, in some instances, for analyzing in vitro and in vivo BE studies.
The average BE approach focuses on a comparison of population averages of
a BE measure of interest and not on the variances of the measure for the T
and R products. The average BE method does not assess a subject-by-formula-
tion interaction variance, that is, variation in the average T and R difference
among individuals. In contrast, population and individual BE approaches
include comparisons of averages and variances of the measure. The population
BE approach assesses the total variability of the measure in the population.
The individual BE approach assesses within-subject variability for T and R
products as well as subject-by-formulation interaction. For population and
individual bioequivalences, 95% confidence intervals are recommended, with
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the same BE limits as those for average bioequivalence (Ratkowsky et al.,
1993; Chow and Liu, 2003).

2.3.6 Sample-Size Determination

The number of subjects in a clinical trial should always be large enough to
provide a reliable answer to the questions addressed. This number is usually
determined by the primary objective of the trial. If the sample size is deter-
mined on some other basis, this should be made clear and justified. For example,
a trial sized on the basis of safety questions or requirements, or important
secondary objectives, may require larger numbers of subjects than those
required for a trial sized on the basis of the primary efficacy question. Using
the most common method for determining the appropriate sample size, the
following items should be specified: a primary variable, the test statistic, the
null hypothesis, the alternative hypothesis at the dose(s) chosen, the probabil-
ity of erroneously rejecting the null hypothesis (type I error), and the probabil-
ity of erroneously failing to reject the null hypothesis (type II error), as well
as the approach to dealing with treatment withdrawal and protocol violations.
Sample-size calculations should refer to the number of subjects required
(sometimes the number of events for a survival endpoint) for the primary
analysis. Assumptions about variability may also need to be revised. The
sample size of an equivalence or noninferiority trial should normally be based
on the objective of obtaining a confidence interval for the treatment difference
which shows that the treatments differ at most by a clinically acceptable dif-
ference. When the power of an equivalence trial is assessed at a true difference
of zero, the sample size necessary to achieve this power is underestimated if
the true difference is not zero. When the power of a noninferiority trial is
assessed at a zero difference, the sample size needed to achieve that power
will be underestimated if the effect of the investigational product is less than
that of the active control. The choice of a clinically acceptable difference needs
justification with respect to its meaning for future patients and may be smaller
than the clinically relevant difference referred to above in the context of
superiority trials designed to establish that a difference exists.

24 ADAPTIVE CLINICAL TRIAL DESIGN

As indicated by a white paper by the PARMA Adaptive Design Group (Gallo
et al.,2006), an adaptive design is a clinical study design that uses accumulating
data to decide how to modify aspects of the study as it continues, without
undermining the validity and integrity of the trial (see Figure 2.1). As indicated
further by a white paper by the BIO Adaptive Design Working Group (M.
Chang et al., 2007), an adaptive design usually consists of two or more stages;
at each stage, data analyses are conducted and adaptations are made based on
updated information to maximize the chance of success. Various aspects of a
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Figure 2.1 Adaptive design.

trial design can be modified or adapted. The adaptations may include, but are
not limited to, (1) adjusting sample size, (2) stopping early due to efficacy or
futility, (3) changing the timing and the number of analyses, (4) dropping
inferior treatment groups, (5) adding new treatment groups, (6) response-
adaptive randomization, (7) modifying the target population, (8) changing
study endpoints, (9) treatment switch (crossover), and (10) any combination
of the foregoing adaptations.

An adaptive design has to preserve the validity and integrity of a trial. The
validity includes internal and external validities. Internal validity is the degree
to which we are successful in eliminating confounding variables and establish-
ing a cause—effect relationship (treatment effect) within the study itself. A
study that readily allows its findings to generalize to the population at large
has high external validity. Integrity involves minimizing operational bias (M.
Chang, 2007a).

2.4.1 Group Sequential Design

A group sequential design, the most commonly used adaptive design, consists
of multiple stages. An interim analysis (1A) is planned at each stage. Based on
results from an IA, a decision can be made either to stop to reject the null
hypothesis of no treatment effect, or to accept the null hypothesis, or to con-
tinue on to the next stage. For a trial with a positive result, early stopping
ensures that a new drug product can be exploited sooner. If a negative result
is indicated, early stopping avoids wasting resources. Sequential methods typi-
cally lead to savings in sample size, time, and cost compared with a classical
design with a fixed sample size.

There are three different types of group sequential designs: early efficacy
stopping design if permitting only early claiming efficacy, early futility stopping
design if permitting only claiming futility, and early efficacy or a futility
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stopping design if permitting either efficacy or a futility claim. If we believe
(based on prior knowledge) that the test treatment is very promising, an early
efficacy stopping design should be used. If we are very concerned that the test
treatment may not work, an early futility stopping design should be employed.
If we are not certain about the magnitude of the effect size, a group sequential
design permitting early stopping for both efficacy and futility should be con-
sidered. In practice, if we have good knowledge regarding the effect size, a
classical design with a fixed sample size may be more efficient.

2.4.2 Sample-Size Reestimation Design

A sample-size reestimation (SSR) design is an adaptive design that allows for
sample-size adjustment or reestimation based on unblinded interim analysis
results. The sample-size requirement for a trial is sensitive to the treatment
effect and its variability. An inaccurate estimation of the effect size and its
variability could lead to an underpowered or overpowered design, neither of
which is desirable. If a trial is underpowered, it will not be able to detect a
clinically meaningful difference, and consequently, could prevent a potentially
effective drug from being delivered to patients. On the other hand, if a trial is
overpowered, it could lead to the unnecessary exposure of many patients to a
potentially harmful compound when the drug is, in fact, not effective. In prac-
tice, it is often difficult to estimate effect size and variability because of many
uncertainties during protocol development. Thus, it is desirable to have the
flexibility to reestimate the sample size in the middle of a trial.

2.4.3 Drop-Loser Design

A drop-loser design (DLD) is an adaptive design consisting of multiple groups.
At each stage, interim analyses are performed and the losers (i.e., inferior
treatment groups) are dropped based on certain criteria. Ultimately, the best
group and the control group are retained. This type of design can be used in
a combination of phase I-II and phase II-III trials. A typical phase II clinical
trial is often a dose-response study, where the goal is to assess whether there
is a treatment effect. If there is, the goal becomes finding the appropriate dose
level (or treatment groups) for the phase III trials. This type of traditional
design is not efficient with respect to time and resources because the phase II
efficacy data are not pooled with data from phase III trials. Therefore, it is
desirable to combine phases II and III so that the data can be used efficiently.
This type of drop-loser design is often called seamless design.

2.4.4 Response-Adaptive Randomization Design

In a response-adaptive randomization design (RARD), the allocation proba-
bility is based on the responses of previous patients. If a positive response is
observed in a treatment group, the probability of allocating future patients to
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this group will be increased. The well-known response-adaptive models include
the randomized play-the-winner (RPW) model, an optimal model that mini-
mizes the number of failures.

2.4.5 Adaptive Dose-Escalation Design

In early phases of clinical development, dose escalation is often considered to
identify the maximum tolerated dose (MTD) and is commonly used for oncol-
ogy trials. In an adaptive dose-escalation design, the dose level used to treat
the next-entered patient is dependent on the toxicity of previous patients. The
continual reassessment method (CRM) (O’Quigley et al., 1990; M. Chang and
Chow, 2005) is a popular escalation algorithm. CRM can reduce the sample
size and overall toxicity in a trial and improve the accuracy and precision of
estimation of the MTD. The main difference between the common RARD and
the CRM is that the former usually has a fixed number of arms (e.g., two arms),
whereas the latter does not have a fixed number of arms or dose levels and
the escalation starts from the lowest dose level and then gradually proceeds
to higher dose levels if the data show that there is a limit safety concern.

2.4.6 Biomarker-Adaptive Design

Biomarker-adaptive design refers to a design in which adaptations are made
based on biomarker response at interim analyses and the final analysis is based
on the primary endpoint that differs from the biomarker. A biomarker is a
characteristic that is measured and evaluated objectively as an indicator of
normal biological or pathogenical processes or as a pharmacological response
to a therapeutic intervention (Chakravarty, 2005). A biomarker can be a clas-
sifier or a prognostic or predictive marker. It is often the case that a pharma-
ceutical company has to make a decision as to whether to target a very
selective population for whom the test drug probably works well or to target
a broader population for whom the test drug is less likely to work well.
However, the size of the selective population may be too small to justify the
overall benefit to the patient population. In this case, a biomarker-adaptive
design may be used, where the biomarker response at interim analysis points
can be used to determine on which target populations the trial should be
focused (M. Chang, 2007a).

2.4.7 Multistage Design of Single-Arm Trials

Single-arm trial multistage design is a special type of sequential design with a
single experiment group which permits early futility stopping. It is often used
in oncology trials. The response variable is a binary type and the statistical
methods used are exact without the normality assumption because of the small
size of the trial.



3 Classical Trial Design

3.1 INTRODUCTION

3.1.1 Hypothesis Test

In clinical trials a hypothesis is usually referred to as a postulation, assumption,
or statement that is made about a population regarding the effectiveness and
safety of a drug under investigation. For example, the statement that there is
a direct drug effect is a hypothesis regarding the treatment effect. For testing
hypotheses of interest, a random sample is usually drawn from the targeted
population to evaluate hypotheses about the drug product. A statistical test is
then performed to determine whether the null hypothesis would be rejected
at a prespecified significance level (Chow et al., 2003). Based on the test result,
conclusion(s) can be drawn regarding the hypotheses. Selection of a hypo-
thesis depends on the study objectives. In clinical research, hypotheses
commonly considered include tests for equality, equivalence, noninferiority,
and superiority.

When testing a null hypothesis H,: € < 0 against an alternative hypothesis
H,: e >0, where ¢ is the treatment effect (difference in response), the type [
error rate is defined as

o(e) = Pr(reject H, when H, is true). (3.1)

Note that the type I error rate is a function of the true treatment difference.
More often, the type I error rate can be defined (implicitly) as sup{o(e)}.
Similarly, the type II error rate function f is defined as

o(€) = Pr(fail to reject H, when H, is true). (32)

For hypothesis testing, knowledge of the distribution of the test statistic
under H, is required. For sample-size calculation, knowledge of the distribu-
tion of the test statistic under a particular H, value ais also required. To control
the overall type I error rate at level o under any point of the H, domain, the
condition o(€) < o* for all € < 0 must be satisfied, where a.* is a threshold that
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is usually larger than 0.025 unless it is a phase III trial. If o(¢) is a monotonic
function of €, the maximum type I error rate occurs when € = 0. The rejection
region should be constructed under this condition. Under normal conditions
the power can be derived as follows (M. Chang, 2007a, pp. 21-22):

power(e)=1-p = (D(@ —Z1q j,
20

(3.3)
where @ is the cumulative distribution function (c.d.f.) of the standard normal
distribution, € is the treatment difference, and z,_ and z,_, are the percentiles
of the standard normal distribution. Figure 3.1 illustrates the power function
of the type I error rate o and the sample size n. From (3.3), the total sample
size can be obtained:

e (21 + 21-p Y'o? .

o2 (34)

3.1.2 Importance of Sample-Size Calculation

The importance of power in the determination of sample size has been well
recognized. One should take steps to ensure that the power of an experiment
is sufficient to justify the effort involved. On the other hand, if the power in
detecting a specified practical difference is sufficiently high, failure to achieve
significant results may properly be interpreted as probably indicating negligi-
ble relevant difference between the comparison groups. Thus, the proper
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interpretation of a negative result is based largely on a consideration of the
power of the experiment.

3.1.3 Factors Affecting Sample Size

Many factors can affect the sample size for conducting a study: for example,
the estimated difference between (i.e., variability in) two populations, the
statistical power for detecting the difference, and the significance level. An
increase in power, decrease in significant level, or increase in variability will
result in an increase in sample size. The difference between two groups, or
the effective size, could increase or decrease the sample size required. In
hypothesis testing for a difference, the larger the difference, the smaller the
sample size. For an equivalent test, the smaller the difference, the smaller the
sample size. Other factors, such as the type of experimental design (e.g., paral-
lel or crossover), the type of parameter (e.g., continuous or discrete), and the
statistical methods used for the analysis will also affect the sample size.

3.1.4 Avoiding Under- or Overpowered Designs

To avoid an under- or overpowered design, we have to understand the meaning
of power. Power is the probability of showing statistical significance (i.e., p-
value < o). When the sample size is calculated based on a particular power
(e.g., 80%), the power is assured if the parameters for the populations are
estimated accurately. For example, in a placebo-controlled two-parallel-arm
clinical trial, the null hypothesis Hy: mean difference A = 0 between the two
groups and the alternative hypothesis H,: mean difference A # 0. Assuming
that the true difference A = 5 and the common standard deviation ¢ = 10, with
level of significance o = 0.05 (two-sided) and power = 0.8, the sample size
required will be 64 per group based on a two-sample t-test. The question is:
If we design the study with 64 per group, does the design have 80% probability
(conditional probability) to detect the true difference A =5 when true ¢ = 10?
The answer is “yes.” Does the design have the 80% probability (unconditional
probability) to show the statistical significance? The answer is “no,” because
practically, we don’t know the true A and . Instead, we estimate these two
parameters. When the true A is larger than the estimate or the true ¢ is smaller
than the estimate, the actual power is greater than 80%; in contrast, if the true
A is smaller than the estimate or the true o is larger than the estimate, the
power will be below 80%.

Suppose that the trial described above is designed with 90% power. When
the trial has been completed, the mean difference observed and pooled stan-
dard deviation based on the trial data are identical to the estimates: A=5 and
6 =10, respectively. Then the p-value from a two-sample r-test will be 0.0055,
which is much less than the prespecified o = 0.05. If the sample mean differ-
ence A=3.5, much less than the true (population) difference A =35, but the
sample standard deviation 6 = 10, the p-value will be 0.05.
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Practically, investigators would only be interested in the effective size
beyond a particular threshold, A;,, which could be a minimal clinically and
commercially meaningful difference. For example, in a clinical trial on patients
with asthma, the minimal clinically meaningful difference is identified to be
Amin = 5% difference in % FEV1 (percent forced expiration volume in the first
second) change from baseline, but that difference will not be commercially
meaningful because a better drug is available on the market. Therefore, the
clinical trial design team sets a minimal difference to be A,;, = 10%, which is
considered as both a clinically and commercially meaningful cut point. Now
the question is: Should we use 80% or 90% power to design the trial such that
we can show a statistically significant difference even when A is much less than
10%? The suggestion is to use a lower power when the standard deviation
estimation is accurate. If not, sample-size reestimation technology can be used
to reestimate the standard deviation during the study.

3.2 HOW TO CALCULATE SAMPLE SIZE USING EXPDESIGN

For confirmary clinical trials, it is common practice to use o = 0.05 and power
= 0.8 to 0.9, as indicated in most of the examples in this book.

3.2.1 Testing the Mean Difference Between Two Groups

Suppose that we are planning a clinical trial to test a new drug called ABC
for treatment of patients with mild to moderate asthma. A double-blind ran-
domized parallel design with two treatment groups (placebo vs. ABC) is
chosen for this phase II trial. The primary efficacy parameter is percentage
change from baseline in FEV1. The mean difference in % change in FEV1
between placebo and ABC is estimated to be 9% with a standard deviation
of 18%.

Based on this information, we can specify the options in ExpDesign as
follows: two groups, hypothesis test, mean/median, and equal size. In the list
of methods, choose the two-sample #-test. Enter “0.05” for the level of signifi-
cance, “2” for a two-sided test, “3” for the group 1 mean, “12” for the group
2 mean, “18” for the standard deviation, and “0.8” for the power (Figure 3.2).

Do Campute . . .
Clicking , we obtain a sample size of 64 per group for the trial. The
power curve shows that the sample size required increases when the power
increases. (Note: Double-click to see the finest grids.)

3.2.2 Testing the Proportion Difference Between Two Groups

Suppose that we want to design a phase III clinical trial to evaluate the efficacy
of a new compound, ABC, in patients with a dermatological disease. Qualified
patients will be randomized to receive either of the treatments: ABC or



HOW TO CALCULATE SAMPLE SIZE USING EXPDESIGN 31

= Sample Size Calculator . o ]
Two-sample t-test
Mumber of Groups: " One/paired Groups (+ Two Groups " Multiple Groups
Analysis Basis: " Superiority Test " EquivalencesMI " Precizion [Cl)
Trial Endpaint: & Mean/Median " Proportion " Survival/Others
Sample Allacations: = Equal Size " Unequal Size " Mininmum Size
Significance level, alpha? ................. ... 05 1 ar
ROt sid e st AR — 2 0s 4+
Group Tmean? ... ... 3
]— = 0B
ETOHEEE Mean T R e 12 =
&

Common standard devistion? .. ... 18 04
Statistical power? ... d

atistical power oo
Sample size pergroup, n ... 4
(=T TR L e s e (L5 o T T T T 1

o ES 130 195 260 325
Total sample Size
Example Compute Loy Print Clear
= | Graph

Figure 3.2 Two-sample t-test for an asthma trial.

placebo. After a year’s treatment, the clinical outcome will be evaluated as
cured or not cured. It was estimated that the response rates (cured) is 1% in
placebo and 12% in the active treatment group.

Based on this information, we specify the options in ExpDesign as
follows: two groups, hypothesis test, proportion, and equal size. In the list of
methods, choose Pearson’s chi-square test. Enter “0.05” for the level of sig-
nificance o, a two-sided test, “0.01” for the proportion in group 1, “0.12” for

L L Compute
the proportion in group 2, and “0.90” for the power. Clicking , We
obtain a sample size of 121 per group for the trial. The power curve shows the
relationship between the power and the required sample size (Figure 3.3).

3.2.3 Testing the Survival Difference Between Two Groups

Suppose that we are designing a phase 111 clinical trial for a potential oncology
drug, ABC. The study drug, ABC, will be combined with an approved drug,
XYZ, as second-line therapy in patients with multiple myeloma. The com-
bined treatment will be compared with XYZ alone for effectiveness in pro-
longing survival time. It is estimated that the proportion of deaths is 50%
in the XYZ group and 40% in the combined group a year after the
randomization.
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Figure 3.3 Pearson’s chi-square test for a dermatological disease trial.

Based on this information, we specify the options in ExpDesign as follows:
two groups, hypothesis test, survival/others, and equal size. In the list of
methods, choose the log-rank test for survival analysis. Enter “0.05” for
the level of significance, “2” for a two-sided test, “0.50” for the proportion
in group 1, “0.40” for the proportion in group 2, and “0.8” for the power

[ t

(Figure 3.4). Clicking M, we obtain a sample size of 371 per group and
or 408 for the total number of events. The hazard ratio, 1.322, was calculated
by using Inp,/Inp,.

3.2.4 Testing the Survival Difference with a Follow-up Period

Suppose that we want to design a phase III clinical trial for a potential oncol-
ogy drug, ABC. The study drug, ABC, will be combined with an approved
drug, XYZ, as second-line therapy in patients with multiple myeloma. The
combined treatment will be compared with XYZ alone for effectiveness in
prolonging patients’ survival time. It is estimated that the median survival time
is 8 months for XYZ alone and 10.5 months for the combined treatment group.
The duration of patient enrollment is anticipated to be 9 months with a
maximum follow-up period or total study duration of 23 months.

Based on this information, we specify the options in ExpDesign as follows:
two groups, hypothesis test, survival/others, and equal size. In the list of
methods, choose the exponential survival distribution method with uniform
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Figure 3.4 Log-rank test for an oncology trial.

enrollment and a follow-up. Enter “0.05” for the level of significance, “2”
for a two-sided test, “0.066” (= In2/8) for the hazard rate in group 1, “0.0866”
(=1n2/10.5) for the hazard rate in group 2, “9” for the duration of enrollment,
“23” for the total trial duration, and “0.8” for the power. Clicking

Compute . . .
, we obtain a sample size of 288 per group (Figure 3.5).

3.2.5 Exact Test for a One-Sample Proportion

In designing a phase II single-arm oncology trial, suppose that the investigator
is interested in the response rate of the test drug. If the response rate is greater
than 20%, the drug will be considered very promising and will be pursued
further in the next-phase study. If the response rate is less than 5%, it will not
be pursued further.

Based on this information, we specify the options in ExpDesign as follows:
one group, hypothesis test, proportion, and equal size. In the list of methods,
choose the one-sample exact test for proportion using binomial distribution.
Enter “0.05” for the level of significance, “1” for a one-sided test, “0.05”
for the H, proportion, “0.2” for the H, proportion, and “0.8” for the power.

o Compute . . .
Clicking , we obtain a sample size of 21 (Figure 3.6).

Note that the power does not increase monotonically with sample size
based on binomial distribution. ExpDesign adoptes a conservative approach;
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Figure 3.5 Oncology trial with uniform enrollment.
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Figure 3.6 Exact test for a single-group oncology trial.
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that is, with the required sample size n it will ensure that the power will be
larger than or equal to the power specified for all sample sizes > n.

3.2.6 McNemar’s Test for Paired Data

A researcher is investigating the effect of an experimental drug on bilirubin
abnormalities. Pre- and postdose clinical laboratory results will be collected
and compared using McNemar’s test for the paired data. The estimated dif-
ference between pre- and postdose in proportions of abnormalities is 20%,
and the estimated sum of proportions of shifts from the normal to the abnor-
mal and the abnormal to the normal is 30%.

Based on the information, we specitfy the options in ExpDesign as follows:
one/paired groups, hypothesis test, proportion, and equal size. In the list of
methods, choose McNemar’s test for a paired sample. Enter “0.05” for the
level of significance, “2” for a two-sided test, “0.2” for the difference in pro-
portion, “0.3” for the proportion of discordant pairs, and “0.8” for the power.

L Compute . . .
Clicking , we obtain a sample of 52 subjects per group for the trial
(Figure 3.7).

3.2.7 Noninferiority Test for Two Means

Suppose that in an asthma study, the objective is to prove that the test drug
is noninferior to the active control. It is estimated that both the control and

=
McMemar's test for paired sample
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Figure 3.7 McNemar’s test for a bilirubin abnormality study.
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Figure 3.8 Noninferiority asthma trial in mean FEV1 changes.

the test drug have 10% improvement in FEV1. The criterion for noninferiority
is =3% in FEV1 improvement. The common standard deviation is estimated
to be 18%.

Based on this information, we specify the options in ExpDesign as follows:
two groups, equivalence, mean/media, and equal size. In the list of methods,
choose the noninferiority test of two means based on a two-sample ¢-test.
Enter “0.05” for the level of significance, “—3” for the equivalence limit, “0”
for the estimated mean difference, “18” for the common standard deviation,

. L. Compute )
and “0.8” for the power (Figure 3.8). Clicking , we obtain a sample
size of 446 subjects per group for the trial.

3.2.8 Bioequivalence Test for Two Means

Suppose that during the manufacture of a drug, due to a shortage of material,
replacement must occur. The replacement could cause a potentially different
polymorphism. A clinical trial is required to prove bioequivalence for the two
formulations. The two formulations are expected to have the same response:
2 units with a standard deviation of 1.0. A design with two parallel groups is
chosen for the trial.

Based on this information, we specify the options in ExpDesign as follows:
two groups, equivalence, mean/media, and equal size. Then in the list of
methods, choose the two one-sided ¢-tests for equivalence based on difference
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Figure 3.9 Bioequivalence trial for two means.

of means for parallel design (using bivariate ¢). Enter “0.05” for the level of
significance, “2” for means in both groups, “-0.4” for the lower limit and “0.4”
for the higher limit, “1.0” for the standard deviation, and “0.8” for the power.

[ i
Clicking M, we obtain a sample size of 108 per group (Figure 3.9).
[Note: The equivalence limits 0.4 are based on the 20% rule: 2(20%) = 0.4.]

3.2.9 Bioequivalence Test for Two Means of Lognormal Data

Suppose that due to safety concerns, a drug formulation is modified for
asthma patients. A clinical trial is required to prove bioequivalence between
the new and earlier formulations. The two are expected to have the same
response of 2 on the original scale or 0.693 on the log scale. The standard
deviation is 0.55 on the log scale. A design with two parallel groups is chosen
for the trial.

Based on this information, we can specify the options in ExpDesign as
follows: two groups, equivalence, mean/media, and equal size. In the list of
methods, choose two one-sided #-tests for equivalence based on difference of
means for parallel design (bivariate t). Enter “0.05” for the level of signifi-
cance, “0.693” for the means of both groups, “—0.223” for the lower limit and

“0.223” for the higher limit, “0.55” for the standard deviation, and “0.8” for

o Compute . .
the power. Clicking , we obtain a sample size of 104 per group
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Figure 3.10 Bioequivalence trial with lognormal data.

(Figure 3.10). (Note: The equivalence limits, 0.223, are based on an FDA
guideline.)

3.2.10 Equivalence Test Based on the Ratio of Two Means

Suppose that a bioequivalence trial is designed based on the area under the
concentration curve (AUC). The pharmacokinetic parameter (AUC) is
believed to be lognormally distributed with a mean of 2.5mg/m*-h for both
formulations. The coefficient of variation between subjects is 0.2, and the
coefficient of variation within subjects is 0.5 on the original scale. A 2 x 2
crossover design is chosen for the trial.

Based on the information, we can specify the options in ExpDesign as
follows: two groups, equivalence, mean/media, and equal size. In the list of
methods, choose the two one-sided t-tests for equivalence based on the ratio
of two means for crossover design (bivariate ¢). Enter “0.05” for the level of
significance, “2.5” for the means in both groups, “0.2” for the coefficient of
variation between subjects, “0.5” for the coefficient of variation within sub-
jects, “0.8” for the lower limit and “1.25” for the higher limit, and “0.8” for

. o Compute . .
the power (Figure 3.11). Clicking , we obtain 44 subjects per
sequence for the trial. (Note: If more than one parameter is concerned, calcu-
late the sample size for each parameter and pick the largest one, to be
conservative.)
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Figure 3.11 Bioequivalence trial on the ratio of means.

3.2.11 Precision Method for the Mean Difference for a Paired Sample

Suppose that a biotech company is developing a new appetite-suppressing
compound, ABC, for weight reduction. The mean weight reduction after 10
weeks-treatment with ABC is estimated to be 33.5 pounds with a standard
deviation of 6.3 pounds. The researchers want to know if ABC is effective in
weight reduction by investigating the confidence interval for the difference. It
is believed that a confidence interval with a precision (distance between the
limit and the mean difference) of 1 pound would be adequate.

Based on the information, we specify the options in ExpDesign as follows:
one/paired groups, precision(CI), mean/median, and equal size. In the list of
methods, choose the paired sample confidence interval using a ¢-distribution.
Enter “0.05” for the level of significance, “2” for the two-sided confidence
interval, “1” for precision, and “6.3” for the standard deviation of the

. L Compute | . . .
difference. Clicking , we obtain a sample size of 152 pairs for the
trial (Figure 3.12).

3.2.12 Mantel-Haenszel Test for an Odds Ratio with Two Strata

Suppose that we are designing a trial to investigate the effectiveness of a new
drug, ABC, in treating patients with acute myelogenous leukemia (AML).
Patients will be randomized into one of two groups, 10-day infusion with ABC
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Figure 3.12 Precision method for paired means in a weight reduction study.

or control, and will be followed for 90 days. The time of remission from diag-
nosis or prior relapse at study is considered an important covariate in predict-
ing the response, which is defined as relapse, death, or major intervention (e.g.,
bone marrow transplant before day 90). The investigator wants to know if
there is any evidence that administration of ABC is associated with a decreased
relapse rate. To design this study, patients are stratified by their time to remis-
sion: 60% of patients are in stratum 1, with a remission time of less than 10
months, and 40% of patients are in stratum 2, with a remission time greater
than or equal to 10 months. The responses in the control group are estimated
to be 0.55 and 0.75 for the two strata. The common odds ratio (control vs.
ABC) is estimated to be 0.33.

Based on the information, we can specify the options in ExpDesign as
follows: two groups, hypothesis test, proportion, and equal size. In the list
of methods, choose the Mantel-Haenszel test for an odds ratio with k
strata. Enter “0.05” for the level of significance, “2” for a two-sided test, “2”
for the number of strata, “0.33” for the common odds ratio, “ 0.55” and “0.75”
for rates in the control group, “0.6” and “0.4” for fractions of observations,

L. Compute . .
and “0.8” for the power. Clicking , we obtain a sample size of
55 subjects per group, calculated with 33 in stratum 1 and 22 in stratum 2
(Figure 3.13).
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Figure 3.13 Mantel-Haenszel test for the odds ratio in an AML trial.

3.2.13 Pearson’s Chi-Square Test for Rate Difference

Let’s use the preceding example but without stratification. The response rate
for the control is about 0.63, and the common odds ratio (OR) is 0.33. Since
the proportion p, = p;-OR/[1 — p;(1 — OR)], we can use a method for propor-
tions to calculate the sample size for odds ratio problems. For the current case,
p1 = 0.3 and OR = 0.33. We calculate p, = (0.63 x 0.33)/[1 — 0.63 x (1 — 0.33)]
= 0.36.

Based on the information, we can specify the options in ExpDesign as
follows: two groups, hypothesis test, proportion, and equal size. In the list of
methods, choose Pearson’s chi-square test (Kramer—-Greenhouse) for a large
sample. Enter “0.05” for the level of significance, “2” for a two-sided test,
“0.63” for the proportion in group 1, “0.36” for the proportion in group

L Compute . .
2, and “0.8” for the power. Clicking , a sample size of 60 subjects
per group is calculated (Figure 3.14).

3.214 One-Way Analysis of Variance for Parallel Groups

Suppose that a phase II trial is to be designed to investigate the efficacy of a
new serotonin-uptake inhibiting agent, ABC, in subjects with a general anxiety
disorder (GAD). Subjects diagnosed with a GAD value of moderate or greater
severity will be randomized into one of three treatment groups: placebo, 25 mg
of ABC, and 100mg of ABC. After 12 weeks of once-daily dosing in a double-
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Figure 3.14 Chi-square test for the rate difference in an AML trial.

blind fashion, a test based on the Hamilton rating scale for anxiety (HAM-A)
will be administrated. This test consists of 14 anxiety-related items. The HAM-
A test scores are the sums of the code values over all 14 items. It is estimated
that the mean HAM-A scores are 28, 25, and 24 for the placebo, 25mg of
ABC, and 100mg of ABC groups, respectively, with a common standard
deviation of 6. We want to know if there is any difference in mean HAM-A
test scores among the three groups.

Based on the information, we specify the options in ExpDesign as follows:
multiple group, hypothesis test, mean/media, and equal size. In the list of
methods, choose the one-way ANOVA for parallel groups. Enter “0.05” for
the level of significance; “3” for the number of treatment groups; “28, 26, 24”
for the treatment means; “6” for the common standard deviation; and “0.9”

. L Compute ) )
for the power (Figure 3.15). Clicking , we obtain a sample size of
58 subjects per group for the trial.

3.2.15 Dose—Response Trial for a Myocardial Infarction

Suppose that a trial is to be designed for patients with acute ischemic stroke
of recent onset. The composite endpoint (death and myocardial infarction) is
the primary endpoint. Four dose levels are planned, with event rates of 14%,
12%, 11%, and 10%, respectively. The first group is the active control group
(the 14% event rate). Comparisons are made between the active control and
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Figure 3.15 ANOVA for a parallel general anxiety disorder trial.

the test groups; therefore, the contrast for the active control should have a
different sign than the contrasts for the test groups. Let ¢; = -6, ¢, =1, ¢3 = 2,
and ¢, = 3. It is assumed that the event rate is p, = 0.14 under the null
hypothesis.

Based on the information, we can specify the options in ExpDesign as
follows: multiple groups, hypothesis test, proportion, and equal size. In the list
of methods, choose the Cochran—-Armitage test for linear/monotonic trend
(dose-response). Enter “0.1” for the level of significance, “1” for a one-sided
test; “4” for the number of groups; “-6, 1, 2, 3” for the (virtual) dose levels;
“0.15,0.12,0.11, 0.10” for the proportions in k groups, and “0.8” for the power.

o Compute . . .
Clicking , we obtain a total sample size of 1473 for the trial
(Figure 3.16).

3.3 MATHEMATICAL NOTES ON CLASSICAL DESIGN

3.3.1 Large-Sample-Size Calculation for Classical Design

Testing a single mean:

N= Kqﬂ@— %]Jr @ (1- B))%T, (3.5)
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Figure 3.16 Dose-response design for a myocardial infarction trial.

where 6 is the parameter difference between the null and alternative condi-

tions; s = 1 for a one-sided test and 2 for a two-sided tes

Testing paired means:

gt

Testing two independent means:

o -2oan]

Testing one proportion:

vl (-2 wam)s]
where 6=\R(1-B) .

Testing two independent proportions:

N= 4[(@1)-1(1— %) +o(1- B))%T,

t.

(3.6)

(3.7)

(3.8)

(3.9)
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Log-rank test for two survival distributions:
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3.3.2 Commonly Used Terms and Their Mathematical Expressions

Relative risk:

_ P(response | drug A)

RR .
P(response | drug B)

Odds given drug A:

P(response | drug A)

odds, = .
P(nonresponse | drug A)

Odds ratio:

OR = odds, Pup» )
oddsg pi2pax

45

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Proportions versus odds ratio: Because of the relationships between the
odds ratio and proportions: OR = pg(l — pa)/pa(l — pp) and pg = poOR/
[1 — pa(1 — OR)], all sample-size formulas for proportion difference can be

used to calculation the sample size for an odds ratio.
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Standard deviation of Inx:

Onr =+/In(1+CV?), (3.17)

where CV is the coefficient of variation.

Confidence interval for In OR:

InOR + L+L+L+L, (3.18)

ny, Ry Ny Ny
where 7, is the number of patients in cell (i, j) of a 2 x 2 table.
Exponential survival distribution:

S(t)y=e™, (3.19)
where A is the hazard rate.

Hazard ratio: The hazard ratio is defined as HR = A,/A,. For two exponential
survival curves, HR can be expressed as

HR :ﬁ — [medianZ — Z‘mean2 — lnSl (t) ~ lnpl , (320)
7\'2 tmcdianl tmcanl ln SZ (t) ln D2

where S; is a survivorship function.
Median survival time versus hazard rate:

In2

S(tmedian) = 05 = e—Mmedian = 05 = tmedian = T (321)
Mean survival time versus hazard rate:
— oo _ +e -\t _ l
bnean = [ S(O)d = [~ e Mdr = - (3.22)

Confidence interval for mean survival time: Suppose that the trial is termi-
nated after d of n patients have died. Denote the survival times as

h<h<.. . Sty=ti=t=...=t/_4, (3.23)

where ¢ represents a censored observation. Under an assumption of expo-
nential survival distribution, the maximum likelihood estimates lead to the
following results (E. T. Lee, 1992):
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d n—d
fl:l(ztﬁzﬁj (3:24)
d i=1 i=1

and
fdu <u< ZZdM . (3.25)
X2d,0/2 X2d,1-ar2
Confidence interval for hazard rate for large sample size:
R A o2 N 2
A=l ang Mearen p  Mser (3.26)
0 2d 2d
or
1 iZcx/Z X iZa/Z
A— <A< A+ —=, (3.27)
Vd-1 Vd-1
where d is the number of deaths and » is the number of patients.
Two-sided confidence interval for log-hazard ratio, ©:
Cly= b+ 10 Zra (3.28)

where r is the sample-size ratio between the two treatment groups and d is
the total number of deaths.

Assume that there are a total of d deaths in the study. Under the condition
of no ties, we denote the survival times of these subjects by 1, < 1, < ... < 1,
where the T; represent elapsed times between entry in the study and failure.
Let the numbers known to have survived up to time 7; after treatment be r;
and r, for treatments A and B, respectively. The log-rank score statistic is
given as (Jennison and Turnbull, 2000)

é:ﬂi(an— o ) (3.29)

rd o I+

where 0, = 1 is the failure at 1; for treatment B, and 6, = 0, otherwise.

Two-sided confidence interval for hazard ratio:

Clyg = exp(é PEL T ) (3.30)



48 CLASSICAL TRIAL DESIGN

Two-sided confidence interval for difference in hazard rates:

Ly, = (A —hy) £ Jlﬁ 212Gy s (3.31)
where
Gyny = %+q}—22 (3.32)
and
¢f:x%[1—flﬁf;?liflﬁi)i i=1,2, (3.33)
ATy

where f; is the sample-size fraction n/N, T, the patient accrual time, and 7 the
follow-up time (Lachin, 1981).

3.3.3 Relationship Between Enrollment Rate and Number of Events

A common question to be answered by a statistician during a protocol design
for a clinical trial involving the time to an events as the primary efficacy end-
point is: What would be the number of events at a particular time, or when
would a particular number of events occur? The information is particularly
useful when the design involves interim analyses.

Notation:

S(t) survival function: the probability of a patient surviving
longer than age ¢

F(t) =1 - S(¢r) probability of a patient dying before age ¢

f(t) = dF(t)/dt  density function

R(¥) enrollment rate; usually a step function
D number of events
T, enrollment duration

Exponential Distribution Without Censoring Before T Assume no censor-
ing before time 7 (i.e., no early dropouts):

D=| ['R@@drf(t-ydr. (3.34)
Given S(f) = exp(-\1), f(t) = hexp(—At), and

R t<T,

3.35
0 t>T,, ( )

R(t)= {
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ijor jote-w-ﬂdrdz, T<T,
D= A (3.36)
ij j eMardt, T >T,,
0 Jo

R(T—l+le-”), T<T,
A

R[To—%(e”" _1)€_xT:|, T >T0.

D= (3.37)

(Note: The number of events is proportional to the constant enrollment rate
R.)

_lln(x_D_T}\‘.i_l), T<T,
A R

T= (3.38)

1 D
—Xln[k(n—ﬁj(em}—l)"l} T>T,.

Hllustrative Example Suppose that a trial requires N = 300 patients to be
enrolled in 9 months; the median survival time for the test drug, fyegian = 7.91
months; and the total study duration = 23 months. Therefore, T, = 9 months,
R =300/9 =33.333, and A = In2/t,cgian = 0.0876. The predictions for the number
of events at 9, 11, and 12 months are 92, 126, and 140, respectively.

Exponential Distribution with Censoring Let R(f) be the enrollment rate
at time ¢ (the clock starts when the first patient is enrolled in the trial), and
E(7, t) is the probability of early withdrawal (censoring) before time ¢ for a
patient enrolled at time T. Let f(¢) be the probability density function for dying
at time ¢. The number of patients enrolled during the time interval (7, T + dt)
is approximately equal to R(t) dt, where dt is small. The probability of censor-
ing before time ¢ for these patients is E(7, ). In other words, the probability
of staying in the trial at time ¢ for these patients is 1 — E(t, ). Furthermore,
the patient who stays in the trial at time ¢ has a probability of dying at the time
interval (¢, t + dt) of f(¢) dt, where dt is a small interval such that f() is constant
within the interval (¢, ¢ + df). Therefore, the number of deaths at time T
will be

D=| ['R@[1- E(t.0drf(t- ). (3.39)

For an exponential survival model we have S(¢) = exp(—Af) and f(f) = Aexp(—Af).
It E(, t) does not depend on how long a patient has stayed in the trial, E(t,
t) = E(¢). If E(t, f) does not depend on how long it has been since the trial
started (i.e., it does not depend on seasons), then E(t, f) = E(t). The simplest
case is E(t, t) = constant. In the following we consider only the exponential
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survival model with E(t, t) = E(¢) and use a discrete form to approximate the
integration above, which is very practical:

D=3 3 Rl E@)Phexpl-Ae )] (3.40)
or
D= ZT iR/—(l — Ej)hexp[-A(i— )] (3.41)

i=1 j=1

If we use a monthly rate for R and FE, then N; will be equal to the number of
months from time zero to the time of interest. To calculate the number of
deaths in each month, one needs to know (or make assumptions regarding)
the R and E values in each month to the time of interest, and the hazard
rate A.



4 Group Sequential Trial Design

41 INTRODUCTION

A group sequential design involves multiple stages. At each stage an interim
analysis is performed. An interim analysis is intended to compare treatment
arms with respect to efficacy or safety at any time prior to formal completion
of a trial. Because the number and methods of these comparisons will affect
the interpretation of the trial, all interim analyses should be planned carefully
in advance and described in the protocol, including the timing of the analyses
and stopping rules. (Later we will see that these requirements may be eased
in adaptive designs.) An interim analysis planned with the intention of decid-
ing whether or not to terminate a trial is usually accomplished through the use
of a group sequential design that employs statistical monitoring schemes or a
data monitoring committee charter as guidelines. The goal of such an interim
analysis is to stop the trial early if the superiority of the treatment under study
is clearly established, if the demonstration of a relevant treatment difference
has become unlikely, or if unacceptable adverse effects are apparent. When
the trial design and monitoring objective involve multiple endpoints, another
layer of multiplicity (in addition to the multiplicity due to multiple looks over
time) may also need to be taken into account. In some circumstances, an
unplanned interim analysis may be necessary. In these cases, a protocol
amendment describing the interim analysis should be completed prior to
“unblinding” the data.

4.2 BASICS OF GROUP SEQUENTIAL DESIGN

Group Sequential Test The key feature of a group sequential test, as con-
trasted with a fully sequential test, is that the accumulating data are analyzed
at intervals rather than after each new observation.

Error Inflation For a classical single-stage trial with oo = 0.05, H, will be
rejected if the statistic z > 1.96. For a sequential trial with K analyses, if at the
kth analysis (k = 1,2, ..., K) the absolute value of Z, is sufficiently large, the

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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3.86 T - 3.86
1.93 + + 1.93

N

o

3 0+ + 0

c

©

]
-1.93 + + -1.93
-3.86 | | | -3.86

1 2 3 4

Analysis Stage

Figure 4.1 Efficacy and futility stopping boundaries.

study stops with rejection of H,. It is not appropriate simply to apply a level
o two-sided test at each analysis since the multiple tests at the data would lead
to a type I error well in excess of o. In fact, for K = 5, the actual a level is
0.142, nearly three times the 0.05 significance level applied at each individual
analysis.

Stopping Boundary Stopping boundaries consist of a set of critical values
that are compared against the statistics calculated from actual data to deter-
mine whether to continue or terminate a trial. A typical set of stopping bound-
aries with early stopping for efficacy or futility is presented in Figure 4.1.The
stopping rules for a group sequential design with early stopping for H, can be
specified as follows: At the kth stage (k=1,..., K - 1), if p; < oy, stop and
reject Hy; otherwise, continue the trial. At the final stage, K, if px < o, stop
and reject Hy; otherwise, accept H,.

The stopping rules for a group sequential design with early stopping for
either H, or H, can be specified as follows: At the kth stage (k = 1,...,
K -1),if p; < oy, stop and reject Hy; if p, > By, stop and accept H,; otherwise,
continue the trial. At the final stage K, if px < o, stop and reject Hy; otherwise,
accept H,. The stopping rules for a group sequential design with early stopping
for H, can be specified as follows: At the kth stage (k =1,..., K — 1), if
Pi = B, stop and accept Hy; otherwise, continue the trial. At the final stage,
K, if px < ok, stop and reject Hy; otherwise, accept H,.

Boundary Scales Different scales can be used to construct the stopping
boundaries. The two commonly used scales are the standardized z-statistic and
the p-scale. The scale definitions can be given as follows:

Standardized z-statistic:
Z =01, , (4.1)

where the information level is defined as I, = n,/26% and 0, is the treatment
difference.
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p-Value scale or p-scale:
Pe=1-0(Z,;). (4.2)

If the z-scale is used, the usual z test statistic is calculated at each stage and
compared with the stopping boundary on the z-scale. When the p-scale is used,
the p-value is calculated at each stage and compared with the stopping bound-
ary on the p-scale.

ExpDesign Studio allows users to select different shapes for the stopping
boundaries. All these boundaries are determined to control the overall type
I error, a. The difference between the types of boundaries is that some (e.g.,
Pocock’s) may spend more o in the early stages, and others (e.g., O’Brien and
Fleming’s) may spend more o in later stages. ExpDesign has implemented a
more generalized boundary type (Wang and Tsiatis) to meet different bound-
ary requirements. The Wang-Tsiatis boundary was originally defined on the
standardized z-scale, but can equivalently be defined as o, = 1-®(ctf ") on
the p-scale, where f, = k/K; c is a constant determined by the significance level
o.. The inner futility boundary type can be symmetrical (on the sample mean
scale): Br =2¢t —ctp™® or trianglular: By = c(k — ko)/(K — ko), where ko =
(K/2) + 1 = Int(K/2) + 1. When the parameter A = 0, 0.5, and 0.688, the
Wang-Tsiatis boundary degenerates to the O’Brien-Fleming, linear, and
Pocock boundaries, respectively.

Futility Binding In futility binding the futility rules have to be followed
(i.e., if the futility boundary is crossed, the trial must stop). With no futility
binding, the futility boundary does not have to be followed. In current prac-
tice, not every company follows the futility rules specified in the protocols,
and regulatory agencies usually apply a nonbinding rule, which means that a
futility boundary in the earlier part of a trial cannot be used for the construc-
tion of efficacy boundaries in the later part of the trial.

4.3 HOW TO DESIGN SEQUENTIAL TRIALS USING EXPDESIGN

There are many factors that can be used to characterize a group sequential
design, such as the expected sample size under the hypotheses and the
maximum sample size in selecting a group sequential design. If you wish to
reduce the expected cost, you might want to choose a design with a minimum
expected sample size; if you wish to reduce the maximum possible cost, you
might want to consider a design with a minimum total sample size. In any case,
you should compare all the stopping probabilities between designs carefully
before determinating an appropriate design. O’Brien-Fleming boundaries,
with the corresponding A = 0, are very conservative in early rejection of the
null hypothesis. Pocock’s method, with the corresponding A = 0.5, uses a con-
stant stopping boundary (on the z-scale) over time. Generally speaking, a
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large value of A (e.g., 0.8) will lead to a design that spends type I error more
at earlier stages than at later stages. To increase the probability of accepting
the null hypothesis at earlier stages, you can use the triangular inner boundar-
ies. If you don’t want to accept the null hypothesis at all at interim analyses,
you should choose a design with rejection of the null hypothesis only. If you
don’t want to reject the null hypothesis at interim analyses, you should choose
a design with acceptance of the null hypothesis only. Adjusting the size frac-
tions is also an effective way to achieve a desired design. Although balanced
designs are commonly used, one can, if desired, use an unbalanced design with
a difference size for each experimental group.

The basic steps in designing a group sequential trial with ExpDesign are
presented in Section 1.2.2. You will be shown below, through examples, how
to design various sequential trials using ExpDesign Studio. However, before
we discuss these, it will be helpful to explain some of the input parameters.
The potential early claim can be “the null hypothesis is true” (i.e., the futility
design), “the alternative hypothesis is true” (i.e., the efficacy design), or “cither
of the hypotheses is true.” The sample-size fractions at K analyses should be
a sequence of numbers between 0 and 1, separated by commas. When you
enter the number of stages, the fractions are filled into the textbox automati-
cally based on an equal-sample-size design (an equal-information-interval
design). You can change them anytime afterward. The stopping boundary
shape parameter, delta, is the A in the Wang-Tsiatis boundary family, in which
a low value will lead to a low probability of rejecting the alternative hypothe-
sis. The allowable range for A is (<0.5, 1). You can move the mouse over each
input box and wait for a second to see the hint. You can always click the

Example .
example button to see the input example.

4.3.1 Design Featuring Early Efficacy Stopping for Two Means

Consider a trial to test the effectiveness of a new drug, ABC, in treating
patients with mild to moderate asthma. A parallel design with two treatment
groups (placebo vs. ABC) is chosen for the design. The primary efficacy
parameter is percentage change from baseline in FEV1. The mean difference
in percent change in FEV1 between placebo and ABC is estimated to be 6%
(5% vs. 11%), with a standard deviation of 18%.

A single-stage design with a fixed sample of 282 will allow us to have 80%
power to detect the difference at a one-sided significance level a = 0.025. The
sponsors believe that there is a good chance that the test drug will be superior
to the placebo and want to stop the trial early if the superiority becomes
evident.

Based on the information, we specify the options in ExpDesign as follows:
two groups, hypothesis test, mean/median, and alternative hypothesis. Enter
“2” for the number of analyses, “1” for a one-sided analysis, “0.025” for o,
“0.05” for the group 1 mean, “0.11” for the group 2 mean, “0.18” for the
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Figure 4.2 Two-stage group sequential design for two means.

common standard deviation, “1” for the sample-size ratio, “0.5, 1” for the
sample-size fractions, “0.5” for the stopping boundary shape parameter A, and

. . Compute . .
“0.8” for the power (Figure 4.2). Click to run the simulation. When

it is finished, click E on the toolbar; the outputs reported below will be
generated.

Design Outputs See Table 4.1. Sample size for the single-stage design = 282;
maximum sample size (combined total) = 314; sample size expected under
H, = 311; sample size expected under H, = 241.

Report This experimental design has one interim analysis and a final analy-
sis. The sample sizes for the two analyses are 157 and 314, respectively. The
sample-size ratio between the two groups is 1. The maximum sample size for
the design is 314, and the expected sample size is 311 under the null hypothesis
and 241 under the alternative hypothesis. The calculation is based on a level
of significance o = 0.025, power = 0.8, mean difference = 0.06, and standard
deviation = 0.18.
The decision rules are specified as follows:

At stage 1:

e Accept null hypothesis if p-value > 0.5.
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TABLE 4.1
Analysis Stage

1 2
Sample size at difference stages 156.90 313.80
Stopping boundary on z-statistic scale 2.1789 2.1789
Stopping trial for H, if p-value < or = 0.0147 0.0147
Stopping trial for H, if p-value > 0.5000 0.0147
Stopping probability when H, is true 0.0147 0.9853
Stopping probability when H, is true 0.4636 0.5364
Stopping probability for H, when H, is true 0.0000 0.9750
Stopping probability for H, when H, is true 0.0147 0.0103
Stopping probability for H, when H, is true 0.0000 0.2002
Stopping probability for H, when H, is true 0.4636 0.3362

e Reject null hypothesis if p-value < or = 0.0147.
e Otherwise, continue.

At stage 2:

¢ Accept null hypothesis if p-value > 0.0147.
e Reject null hypothesis if p-value < or = 0.0147.

Itis important to know that the sponsors are more interested in the expected
sample size (241) under the alternative hypothesis than the sample size (309)
under the null hypothesis. The maximum sample size is 314, whereas it is 284
for the classical single-stage design. The sponsors believe that there is a good
chance to stop the trial early, which means that only 157 patients are required.
This will lead not only to a reduction in the number of patients but also a
savings in time.

4.3.2 Design Featuring Early Futility Stopping for a Proportion

A phase III trial is to be designed for patients with acute ischemic stroke of
recent onset. The composite endpoint (death and MI) is the primary endpoint,
and the event rate is 14% for the control group and 12% for the test group.
For classical design, a sample size of 5937 per group will provide 90% power
to detect the difference at a one-sided o of 0.025.

To design the trial, we specify the options in ExpDesign as follows:
two groups, hypothesis test, proportion, and null hypothesis. Enter “3” for
the number of analyses, “1” for a one-sided test; “0.025” for the significance
level; “0.9” for the statistical power; “0.12” for the proportion for group 1;
“0.14” for the proportion for group 2; “1” for the sample size ratio; “0.333,
0.667, 1” for the sample-size fractions; and “0” for the stopping boundary



HOW TO DESIGN SEQUENTIAL TRIALS USING EXPDESIGN 57

= Sequential Trial Design:

Mumber of Groups:
Analysis Basis:
Trial Endpoint:

Fatential Interim Claim:

Mumber of analyzes, K?
One or bwo sided test?
Significance level, alpha?
Statizstical power?
Propottion for group 17
Proportion for group 27

Sample size ratio, n2/n17?

Test for Two Group Proporti

" One/paired Groups
‘¢ Hypothesis Test
O Mean/Median

" Mull Hypothesis

Sample size fractions at K analyses?

Stopping boundary shape parameter, delta?

Maximum/expected sampls size =

0.333.0.667.1

o

12158/8143

with Sy

' Two Groups
e
" Propartion

" Alternative Hypaothesis

 Survival/Others

" Either Hypothesis

Trial
tonitor

[~ FBinding

Stopping Boundaries (on Standard-z)
212 212
1.086 1.06
[
=
g o i
i
@
-1.06 1 .06
=212 =212
| s T 3z |
Analysiz Stage
Copy g
Example |: Gh Print Clear

Figure 4.3 One-sided futility group sequential design.

[ i -
shape parameter A (Figure 4.3). After clicking M and then ﬂ on the
toolbar, the outputs reported below will be generated.

Design Outputs See Table 4.2. Sample size for the single-stage design =

11,884; maximum sample size (combined total) = 12,158; sample size expected
under H, = 8149; sample size expected under H, = 12,029.

TABLE 4.2

Analysis Stage

1 2 3
Sample size at difference stages 4,048.6 8,109.3 12,158
Stopping boundary on z-statistic scale -1.1344 0.8015 1.9599
Stopping trial for H, if p-value < or = 0.0000 0.0000 0.0250
Stopping trial for H, if p-value > 0.8717 0.2114 0.0250
Stopping probability when H, is true 0.1283 0.6609 0.1867
Stopping probability when H, is true 0.0012 0.0294 0.9694
Stopping probability for H, when H, is true 0.1283 0.6609 0.1867
Stopping probability for H, when H is true 0.0000 0.0000 0.0000
Stopping probability for H, when H, is true 0.0012 0.0294 0.0694
Stopping probability for H, when H, is true 0.0000 0.0000 0.9000
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Report This experimental design has two interim analyses and a final analy-
sis. The sample sizes for the three analyses are 4049, 8109, and 12,158, respec-
tively. The sample size ratio between the two groups is 1. The maximum
sample size for the design is 12,158, and the sample size expected is 8149 under
the null hypothesis and 12,029 under the alternative hypothesis. The calcula-
tion is based on a level of significance o = 0.025, power = 0.9, proportion under
the first condition = 0.12, and proportion under the second condition = 0.14.
The decision rules are specified as follows:

At stage 1:

e Accept null hypothesis if p-value > 0.8717.
e Reject null hypothesis if p-value < or = 0.
e Otherwise, continue.

At stage 2:

e Accept null hypothesis if p-value > 0.2114.
e Reject null hypothesis if p-value < or = 0.
e Otherwise, continue.

At stage 3:

e Accept null hypothesis if p-value > 0.025.
e Reject null hypothesis if p-value < or = 0.025.

4.3.3 Design Featuring Early Stopping for a Survival Endpoint

An oncology trial is to be conducted to investigate the efficacy of the test
drug ABC. A two-arm unbalanced design is chosen for the trial with a sample
size ratio of 1.2 (ABC vs. control). The median survival time is 7.8 months for
the control and 10 months for the ABC group. The accrual time is estimated
to be 8 months, and the total trial duration, 23 months. The calculation indi-
cates that 667 patients are required for a classical single-stage design. There
is great interest in determining if a sequential trial will save time and
money.

To design this trial, we specify the following options in ExpDesign: two
groups, hypothesis, survival, and either hypothesis. Enter “4” for the number
of analyses; “1” for a one-sided test; “0.025” for o; “0.8” for the statistical
power; “7.8” for the median time for group 1; “10” for the median time for
group 2; “8” for the patient accrual time; “23” for the total follow-up time;
“1.2” for the sample-size ratio; “0.25, 0.5, 0.75, 1” for the sample-size fractions
at K analyses; and “0.25” for the stopping boundary shape parameter &
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Figure 4.4 Group sequential design with efficacy or futility stopping.

Comput A
(Figure 4.4). After Clicking M and then )| on the toolbar, the

outputs reported below will be generated.

Design Outputs See Table 4.3. Sample size for the single-stage design = 667;
maximum sample size (combined total) = 838; maximum number of events
required = 586; number of events expected under H, = 319; number of events

expected under H, = 403.

TABLE 4.3

Analysis Stage

1 2 3 4

Sample size at difference stages 146.60 29320  439.80  586.40
Stopping boundary on z-statistic scale 0.8753 —-0.4755 -1.3893 -2.1131

—2.9883 -2.5129 -2.2706 -2.1131
Stopping trial for H, if p-value < or = 0.0014  0.0060  0.0116  0.0173
Stopping trial for H, if p-value > 0.8093 03172  0.0824  0.0173
Stopping probability when H, is true 0.1921 0.5025  0.2425  0.0630
Stopping probability when H, is true 0.0769 03298  0.3626  0.2308
Stopping probability for H, when His true  0.1907  0.4970  0.2342  0.0551
Stopping probability for 4, when H, is true ~ 0.0014  0.0054  0.0083  0.0079
Stopping probability for H, when H, is true ~ 0.0088  0.0445  0.0740  0.0728
Stopping probability for H, when H, is true  0.0681 0.2853  0.2886  0.1581
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Report This experimental design has three interim analyses and a final
analysis. The number of events for the four analyses is 139, 279, 418, and 557,
respectively. The sample-size ratio between the two groups is 1.2. The
maximum number of events for the design is 557, and the number of events
expected is 295 under the null hypothesis and 531 under the alternative
hypothesis. The calculation is based on a level of significance o = 0.025, power
= 0.8, median time for group 1 = 7.8, median time for group 2 = 10, patient
accrual time = 8, and total follow-up time = 23.
The decision rules are specified as follows:

At stage 1:

e Accept null hypothesis if p-value > 0.8093.
e Reject null hypothesis if p-value < or = 0.0014.
e Otherwise, continue.

At stage 2:

e Accept null hypothesis if p-value > 0.3172.
e Reject null hypothesis if p-value < or = 0.006.
e Otherwise, continue.

At stage 3:

e Accept null hypothesis if p-value > 0.0824.
e Reject null hypothesis if p-value < or = 0.0116.
e Otherwise, continue.

At stage 4:

e Accept null hypothesis if p-value > 0.0173.
e Reject null hypothesis if p-value < or = 0.0173.

It is obvious that a four-stage sequential design could save a great deal.
However, it is important to examine the practical issues. Can we suspend
enrollment while waiting for the interim analysis results? If four analyses are
impractical, can we use a sequential design with two or three analyses?

4.3.4 Design Featuring Early Stopping for Paired Proportions

Proliferative diabetic retinopathy is a chronic complication of diabetes that
after a long asymptomatic period can progress to severe visual loss. It is a
leading cause of blindness in the United States. The diabetic retinopathy
study, a randomized, controlled clinical trial, was sponsored by the National
Eye Institute in the early 1970s to assess the ability of photocoagulation to
treat retinopathy. One eye was randomly selected for photocoagulation while
the other eye remained untreated. A five-year follow-up was planned for each
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Figure 4.5 GSD for a proliferative diabetic retinopathy trail (paired means).

patient, and the principal response for gauging the efficacy of the treatment
was the occurrence of severe visual loss (blindness). This was defined as visual
acuity of less than 5/200 at two or more consecutive follow-up visits scheduled
at 4-month intervals (DeMets et al., 2006, p. 56).

Suppose that we use group sequential design (GSD) with one interim
analysis (Pocock boundary) for the trial. The estimated event rates for the two
groups are 16% and 12.5% for the control and treated groups, respectively.
To design a group sequential trial, we specify options in ExpDesign as follows:
two groups, hypothesis, proportion, and alternative hypotheses. Enter “2” for
the number of analyses, “1” for a one-sided test; “0.025” for o, “0.8” for the
power, “0.16” for the proportion for H, “0.125” for the proportion for H,, “1”
for the sample-size ratio, “0.4, 1” for the sample-size fractions, and “0”

[ i -
for & (Figure 4.5). After clicking M and then E on the toolbar, the

outputs reported below will be generated.

Design Outputs See Table 4.4. Sample size for the single-stage design = 783;
maximum sample size (combined total) = 792; sample size expected under H,
= 791; sample size expected under H, = 719.

Report This experiment design has one interim analysis and a final analysis.
The sample sizes for the two analyses are 317 and 792, respectively. The
sample-size ratio between the two groups is 1. The maximum sample size for
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TABLE 4.4
Analysis Stage
1 2

Sample size at difference stages 316.70 791.70
Stopping boundary on z-statistic scale —2.8043 —-1.9829
Stopping trial for H, if p-value < or = 0.0025 0.0237
Stopping trial for H, if p-value > 0.5000 0.0237
Stopping probability when H, is true 0.0025 0.9975
Stopping probability when H,, is true 0.1533 0.8467
Stopping probability for H, when H, is true 0.0000 0.9750
Stopping probability for H, when H, is true 0.0025 0.0225
Stopping probability for H, when H, is true 0.0000 0.2000
Stopping probability for H, when H,, is true 0.1533 0.6467

the design is 792, and the sample size expected is 791 under the null hypothesis
and 719 under the alternative hypothesis. The calculation is based on a level
of significance o = 0.025, power = 0.8, proportion under H,, = 0.16, and propor-
tion under H, = 0.125.

The decision rules are specified as follows:

At stage 1:

e Accept null hypothesis if p-value > 0.5.
e Reject null hypothesis if p-value < or = 0.0025.
e Otherwise, continue.

At stage 2:

e Accept null hypothesis if p-value > 0.0237.
e Reject null hypothesis if p-value < = 0.0237.

44 HOW TO MONITOR A GROUP SEQUENTIAL TRIAL USING
EXPDESIGN

4.4.1 Need for Trial Monitoring

The stopping rule chosen in the design phase serves as a guideline to a data
monitoring committee (DMC) (Ellenberg et al., 2002) as it makes a decision
recommending continuing or stopping a clinical trial. If all aspects of the
conduct of a clinical trial adhere exactly to the conditions stipulated during
the design phase, the stopping rule obtained during the design phase could be
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used directly. However, there are usually complicating factors that must be
dealt with during the conduct of a trial.

Deviation in Analysis Schedule DMC meetings are typically based on the
availability of the members, which may differ from the schedules set at the
design phase. The enrollment may be different from the assumption made
during the design phase. The deviation in the analysis schedule will affect the
stopping boundaries; therefore, the boundaries should be recalculated based
on the actual schedules.

Deviation in Efficacy Variable Estimation The true variability of the
response variable is never known, but the actual data collected from an interim
analysis may show that the initial estimates in the design phase are inaccurate.
In this case we may want to know the likelihood of success of a trial based on
current data, known as conditional power or predictive power, and use sample
size reestimation technique (Chapter 5).

Safety Factors Efficacy is not the only factor that will affect a DMC’s deci-
sion. Safety factors are critical for the DMC to make an appropriate recom-
mendation to stop or continue a trial. The benefit-risk ratio is the composite
criterion used most commonly to assist in the decision making. In this respect
it is desirable to know the likelihood of success of the trial based on current
data (i.e., the conditional power or predictive power).

4.4.2 Techniques for Monitoring a Sequential Trial

The sequential stopping boundaries are the simplest tool available to use in
determining whether to continue or terminate a trial. The original methodol-
ogy for group sequential boundaries required that the number and timing of
interim analyses be specified in advance. Whitehead (1983) introduced another
type of stopping boundary method: Whitehead triangle boundaries. This
method permits unlimited analyses as a trial progresses and thus is called a
continuous monitoring procedure.

A practical but more complicated method utilizes the operating character-
istics desired for the design, which typically include type-I error [P(H,H,)],
the power curve [P(H,I0) vs. 6], the sample-size distribution or information
levels (;), estimates of the treatment effect that would correspond to early
stopping, the naive confidence interval, the repeated confidence interval, cur-
tailment (conditional power or predictive power), and the futility index. The
conditional power and predictive power both represent the likelihood of
rejecting the alternative hypothesis conditioning on the current data. The dif-
ference is that the conditional probability is based on a frequentist approach,
whereas the predictive power is a Bayesian approach. The futility index is a
measure of the likelihood of failing to reject H, at the k analysis given that H,
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is true. (Sometimes, the futility index is defined as 1—-conditional power.) The
defining property of a (1 — a)-level sequence of repeated confidence interval
(RCI) for 6 is

Pr(0cl, forallk=1,...,K)=1-a for all 6. (4.3)

Here each I, (k =1,..., K) is an interval computed from the information
available at analysis k. Calculation of the RCI at analysis k is similar to the
naive confidence interval, but z,, (z1_ap) is replaced by C;, the stopping
boundary on the standard z-statistic (Jennison and Turnbull, 2000). For
example, CI = d £ z; ,»0; RCI =d + C;o.

The conditional power method can be used to assess whether an early trend
is sufficiently unfavorable that reversal to a significant positive trend is very
unlikely or nearly impossible. The futility index can also be used to monitor
a trial. Premature termination of a trial with a very small futility index might
be inappropriate. The same is true for continuing a trial with a very high futil-
ity index (Jennison and Turnbull, 2000).

4.4.3 How to Monitor a Trial Using ExpDesign

A simple example of trial monitoring is to use observed data to check if the
stopping boundaries have been crossed. We discuss monitoring of the prolif-
erative diabetic retinopathy trial in Section 4.3.4. The patient enrollment
began in 1972 and ended in 1975. Suppose that the group sequential design
has one interim analysis with a Pocock stopping boundary at month 15. The
efficacy stopping boundaries occur at 0.0142 on the p-scale for both interim
and final analyses. Suppose that at a planned interim analysis, the two-year
cumulative incidence of blindness was 16.3% in untreated eyes but only 6.4%
in treated eyes. Based on a large-sample assumption, the p-value is less than
0.001. Therefore, the efficacy stopping boundary was crossed and the trial met
the early efficacy criterion. However, the actual trial was continued due to the
uncertainty of long-term safety (see DeMets et al., 20006, for details).

ExpDesign has built-in tools for trial monitoring. To carry out the monitor-
ing, we proceed as follows:

1. Open the file for the design if it has been saved previously, or reenter
values for the input parameters (if the analysis schedule or enrollment
changed, use the actual sample-size fractions for the input) and click

Compute .
to create the design.

. Trial Monitar | . . . .
2. Click in the Group Sequential Design window. The Trial
Monitor window will appear.

3. Enter the values for Observed Stage, Theta, and Observed Info. For the
current case with a survival endpoint 6 = In(hazard ratio), the informa-
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tion level observed, I = rd/(1 + r)?, where r is the sample size ratio and
d is the number of deaths.

. Compute . . .
4. Click on the Trial Monitor window to produce the results.

We now use the oncology trial in Section 4.3.3 to illustrate how to monitor
a trial using ExpDesign. First, rerun the oncology trial design as in Section
4.3.3 (Figure 4.4). After the calculation has been made, the Trial Monitor

Trial M onitar . . .
button will be enabled. Click the button and enter the informa-
tion required.

It is helpful to explain the input parameters before discussing the example
further. The stage observed is the current stage. The 0 value is the treatment
difference expected; in practice the difference observed [mean difference,
proportion difference, or log(hazard ratio)] is generally used. The information
observed at stage k is defined as I, =, /G and I, =(Ga/nax +Gs/ Ny )71 for
one- and two-group designs with a continuous endpoint. The same formula-
tions can be used for a proportion endpoint with the variance defined as
6?7 = p;(1-p;) , where p; is the proportion in the ith group.

For a survival endpoint, the information level is defined as I, = d; and I, =
rd, /(1 + r)* for one- and two-group designs, respectively, where d, is the
number of deaths at stage k and r is the sample-size ratio between the two
groups. Let’s use the oncology trial example in Section 4.3.3 to illustrate the
steps for trial monitoring.

Assume at stage 1 that the total deaths = 147, as scheduled; the proportions
of deaths are 0.15 and 0.22 for the two groups, respectively. The log hazard
ratio is given by

6= (022 = in(m0-22) _ 505,
In p, In0.15

The information level is calculated using the formula

I r 12
A (14127

147 =36.45.

Similarly, suppose that at stage 2, the deaths observed = 293; the propor-
tions of deaths are 0.43 and 0.52 for the two groups, respectively. We then
obtain 6 =-0.255 and I, = 72.64.

At stage 3, suppose that the deaths observed = 440; the proportions of
deaths are 0.61 and 0.68 for the two groups, respectively. We then obtain
0=-0.248 and I5 = 109.09.

In practice, we calculate 6 and 7, at each stage, then perform the following

steps using the ExpDesign trial monitor for decision making.
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Figure 4.6 Trial monitoring using ExpDesign at stage 1.

1. Regenerate the group sequential design (or open the design if you have

. R . . Trial M aritar
saved it) as shown in Figure 4.6. The Trial Monitor button
is enabled.

2. Enter the stagewise observed treatment difference 6 and information

. . . . . Campute
level I, into the Trial Monitor window; then click to calculate
the conditional and predictive power, futility index, and the naive and
repeated confidence intervals (Figures 4.6 to 4.8). A summary of the trial
monitoring is presented in Table 4.5.

At each stage, the p-value is calculated using p-value = ®! (é\/ﬁ ) For
stage 1 the p-value is 0.0872, which lies within the continuation range between
0.0014 and 0.8093; hence, the trial continues to the next stage. The conditional
power is reasonable (81%). At stage 2 the p-value is 0.015 and the conditional
power is 0.94, and the trial continues according to the predefined stopping
boundary. At stage 3 the p-value is 0.0048, which is smaller than the efficacy
stopping boundary 0.0116, so the trial is stopped and the null hypothesis is
rejected. For normal and binary endpoints, the calculations are simpler than
using the survival endpoint. You may want to try this yourself.

If the information fraction is different from that originally scheduled, the
stopping boundaries have to be recalculated based on the actual information
fraction. We discuss this in detail in Chapter 6.
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Figure 4.7 Trial monitoring using ExpDesign at stage 2.
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Figure 4.8 Trial monitoring using ExpDesign at stage 3.
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TABLE 4.5 Summary of Oncology Trial Monitoring®

Design Stage

1 2 3
Number of deaths 147 293 440
Proportion of deaths 0.15vs. 0. 22 0.43 vs. 0.52 0.61 vs. 0.68
0 = log(ha zard ratio) -0.225 —0.255 -0.248
Information level, I 36.45 72.64 109.09
Conditional power 0.81 0.94 1
95% Repeated CI (-0.672,0.022)  (-0.40,-0.108) (-0.471, —0.255)
p-Value (unadjusted) 0.0872 0.015 0.0048
Efficacy boundary (p-scale)  0.0014 0.0060 0.0116
Futility boundary (p-scale)  0.8093 0.3172 0.0824
Decision Continue Continue Stop and reject H,

“For the survival endpoint, 0=~ In(In p/In p,), p-value =@ (é\/ﬂ) .

4.5 MATHEMATICAL NOTES ON SEQUENTIAL TRIAL DESIGN

4.5.1 Unified Formulation for Sequential Trial Design

A unified formulation for sequential trial designs (Lan and DeMets 1983; Lan
and Zucker 1993; Jennison and Turnbull, 2000) has been implemented in
ExpDesign Studio. Suppose that a group sequential study with up to K analy-

ses yields the sequence of test statistics {Z;, ..., Zx}. Assume that these sta-

tistics have a canonical joint distribution with information levels {7, ..., I;}
for the parameter 0. That is,

G {Z,...,Z«}, (4.4)

(i) Zi~N@®JI, 1), 1,...K, (4.5)

(111) COV(Zk], Zkz) = \’Ikl /Ikz 5 1 S kl S k2 S K (46)

For alog-rank test in a time-to-event analysis, we have the following results.
The information can be expressed as

r

I=——dy,
e

(4.7)

where d, is the number of deaths expected, N, the number of patients expected,
and r the sample-size ratio (this should be consistent with 8 as to which treat-
ment is chosen.) Under the conditions of exponential survival distribution, the
relationship between an accrual time of 7, and death can be expressed as

N 1
=T _
T, 0 R

d @™ -1], T>Ty; i=12; k=12,....,K, (48)
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where d;; is the number of deaths in group i at stage k, T} the time of first-
patient-in to the kth death, and N, the number of patients in group i at stage
k. Therefore, the patient—death ratio is given by

:le+N2k _ 1+r (49)
dy + dyy Ei+r& '

where &;=1- (e —1)/(Tyhe™T).

From Eq. (4.7) we can obtain the number of deaths required for the sequential
design by mimicking a normal endpoint with a treatment difference equal to
log(hazard ratio) and a standard deviation of 1. After the number of deaths
d is obtained, the number of patients can be obtained by N = nd.

Testing a Single Mean

Test statistic:

Z= (% — o WI . (4.10)
Information level:
Lo=2% (4.11)
c
Difference expected:
0=u—U,. (4.12)
Testing Paired Means
Test statistic:
Z,=d1,, (4.13)

where d, is the mean treatment difference.

Information level:
1= (4.14)

where G is the standard deviation of the difference, and
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62=2(1-p)o?,
where p is the correlation coefficient.

Difference expected:

Testing Two Independent Means
Test statistic:
Zi=(Xax _)?Bk)\/z-

Information level:

I, = (i + i)_l .
Nar Nk
Difference expected:
0=Ug—Ua.
Testing One Proportion
Test statistic:
Zy=(px —Po)\/i-

Information level:

n — — —
I = G—’; o’=p(1-p),  p=05(po+p.)

Difference expected:

06=P-FH.

Testing Two Independent Proportions

Test statistic:

Z. = (Psr — Pax )\/ﬂ

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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Information level:

1 1Y -
1k=—z(_+_), 6’=p(1-p), P=05(pa+ps). (424)

Nak Nk
Difference expected:

0= P —Ps. (4.25)
Log-rank Test for Two Survival Distributions

Test statistic:

Z= \7;7’ (4.26)
where S is the log-rank score statistic.
Information level:
Li=—"—d, (4.27)
(1+7r)?
where d, is the number of deaths expected.
Log(hazard ratio) expected:
6 =1log (;:—i). (4.28)
2 X 2 Crossover Design
Test statistic:
Z = %(Jxk +dy Wi, (4.29)

where d, and d, are the mean treatment differences in sequences x and y.

ot o3\
1k=4(—A+—Bj ) (4.30)

Pk n vk
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4.5.2 Calculation of Conditional Probability

Suppose that a group sequential test with a maximum of K analyses is defined
in terms of standardized statistics:

ZNT = Z NIy ~ NOA, A, (4.31)

where A, = I, — I;_4, independent of Zy, ..., Z, ;. A fundamental quantity to
compute for a group sequential test is the probability of exiting by a specific
boundary at a particular analysis. For each k =1, ..., K, define

Vi(a, by ..., b,;0)=Pro(ay < Zy<by,...,a < Zy_y <biy, Zi > by), (4.32)

ak (al, bl, ey Ay, bk’ 9) = Pre (lll < Zl < bl» ooy Q1 < Zk—l < bk—la Zk < ak). (433)

These quantities are the two key formulas for a test’s error probabilities and
expected sample size. They are also used in constructing error-spending
boundaries and in computing p-values and confidence intervals on
termination.

The two quantities are carried out numerically as follows:

mg—1

Y (611, bi,...,ak, b 9) = 2 Py (ire-130)ex—1 (Zge—1 (- ), by; 0), (4.34)

ik-1=1

mp—1

hy (iy; ©) = 2 ey Cie-;0)wic (i) fie (2 (ko) 2i (i )5 0), (4.35)

ik—1=1

Fi(zi:0) = (2, _e\/z), (22 0) = \/ﬁ (b(Zk\/E_Zkl\/K_eAk ]’

VAL VAL

(4.36)
ZeN Ty +6A —b\/I_
ek—1(Zk-1,bk;9)=CI)( k-IN Tk ]\/Ek kN Tk J, (4.37)

where ¢(x) =exp(—x?*/2)/¥2n is the standard normal probability density
function (p.d.f.) and @ is the standard normal c.d.f. The weight w, is defined
by numerical integration as follows:

Lu q(z)dz = iwkq(zk)- (4.38)

The values of . (a;,by, . . . , a;,bi;0) and Ei(ay,(ay,by, ,abi0) fork=1,...,
K determine the distribution of the stopping time and associated decision for
a group sequential test. Hence, we can obtain from them the test’s error prob-
abilities and expected information on termination for any 6. For example, a
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two-sided test of Hy: 6 = 0 has K analyses at information levels [, . . . , I[x with
continuation regions (a;,b,), . . ., (ax, bx) for Z,, ..., Zx. Then the test’s type
I error probability is

K
Pr9:0 (reject Ho) = Z[Wk (lll, bl, ceey bk, 0)+E,>k (al, bb weey Ay, bk, 0)] (439)

k=1
If 8 > 0 is large enough that we can ignore the probability of crossing the lower
boundary, the test’s power when 6 = J is

K
zwk (lll, b1 ceey Ay bk, 8) (440)
k=1

For a test defined by error spending,

T
Wk(_cl, Clyeevy —Cpy Cps 0):7]{, (441)

where m; is a two-sided type I error probability assigned to analysis k. Equiva-
lently, the problem becomes that of finding the value ¢, for which
k-1

z hk—l(ik—l; O)ek—l (Zk—1(ik-1), Ck; 0) = %c (4-42)

ik-1=1

4.5.3 Conditional and Predictive Power and RCI for Trial Monitoring

One-sided conditional power at analysis k is given by

I =z 1 + (I —1,)0
NI =1,

where @(+) is the standard normal probability function. The two-sided condi-
tional power at analysis k is given by

Pk(9)=(I)(Zk j k=1,...,K,  (4.43)

pk<e>:d’(zka_mwﬂlrlk)ej
NP
+¢(—Zk\/i—za/z\/ﬁ—(11<‘lk)9), k=1,...,K. (4.44)
VIx =1

One-sided predictive power is given by

Zk\/z_ztx\/ij k
Jik-1. )

The futility index is defined as 1 minus the conditional probability under
H,

P =<1>[ =1,....K. (4.45)
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FI, =1- P81 H,). (4.46)

Calculation of the RCI at analysis k is similar to the naive confidence inter-
val but replacing z;, (zi-o2) With C;, the stopping boundary on the standard
z-statistic. For example, CI = d £ z, ,,0; RCI =d = C,0.

4.5.4 Bias-Adjusted Estimates

Bias-Adjusted Point Estimation The bias-adjusted estimators require eval-
uation under certain 6 values:

Eq (é) = i [f: 8 (25 9)%61@ +J:; 8k (24 0) %dzk } (4.47)

k=1

A typical lower integral in this sum can be written as

br-1 pa Z
L:ﬁll 7: 81213 0) fi (241, 245 0) T;k dz;dzy s, (4.48)
bi-1
- 8r1(zi1; 01 (261, s 0)dzy s, (4.49)

where

Vi1 (Z/H, Qs 6) =

—\/Eq)[ak\/E—ZkNIkl _eAk]
I VA,

" ZN iy +0A q)[ak\/E—ZkN L1 —BA, j (4.50)
I, NAL
We can evaluate the integral numerically as
ng—1
Z Py (13 0) o1 (2i-1 (1), @ ©). (4.51)

ik-1=1

Stagewise-Ordering Adjusted p-Values We can adjust the stagewise-order-
ing p-values on the termination of a group sequential test: for example, a test
with continuation regions (a;, b)) , ..., (ag bk) for Z,,..., Zy stops after
crossing the upper boundary at analysis k* with Z,. = z*. The one-sided upper
p-value for testing Hy: 6 = 0 based on stagewise ordering is then

k*-1

N owi(an b, .., a;, b 0) 4 e(ar, by, ..y Gy, By, @, 2%50), - (4.52)
j=1

which can be calculated numerically. One-sided lower p-values are found in
the same manner, and a two-sided p-value is twice the smaller of these two
quantities.
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51 INTRODUCTION

Drug development is a sequence of complicated decision-making processes.
Options are provided at each stage, and decisions depend on prior information
and the probabilistic consequence of each action (decision) taken. This requires
the trial design to be flexible such that it can be modified during the trial
process. Adaptive design has been developed for this reason and has become
very attractive to pharmaceutical firms. An adaptive design is a design that
allows modifications to some aspects of a trial after its initiation, without
undermining the validity and integrity of the trial. Following are examples of
adaptations to a trial:

e Early stopping due to efficacy or futility
e Sample-size reestimation

e Adaptive randomization

e Dropping inferior treatment groups

Adaptive designs must often be combined with clinical trial simulation to
achieve the ultimate goals because closed mathematical solutions are not
always available. The overall process of adaptive design is depicted in
Figure 5.1.

5.2 BASICS OF ADAPTIVE DESIGN METHODS

The three commonly used statistical methods for adaptive designs, based on
the test statistic, are methods using the sum of stagewise p-values (MSP), the
product of stagewise p-values (MPP), and the weighted inverse normal of
stagewise p-values (MINP). A stagewise p-value is the p-value calculated on
a subsample at each stage of an adaptive trial. A critical aspect for an adaptive
design is to determine the stopping boundaries that ensue from type I error

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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Figure 5.1 Overview of adaptive design.

control. Let’s review the formulation for determining the stopping boundaries
using MSP, MPP, and MINP.
The general stopping rules for a K-stage adaptive design are:

Stop for efficacy if T < oy,
Stop for futility if 7} > By, (5.1)
Continue and make adaptations if o, < 7, < B,

where the efficacy and futility boundaries satisfy
ak<Bk(k:1,...,K—1) and (057 :BK' (52)

For MSP, the test statistic is defined as
k
Tk:zpi’ k:1"",K7 (53)
i=1

where K is the total number of stages for the trial and p; is a stagewise p-value
calculated based on a subsample from the ith stage.
The stopping boundaries for the two-stage design can be solved

analytically:

V2(o—oy) +ay, without futility binding, (5.4)
oy, =19 o —
’ ;‘ % +%(B1 +ou),Bi<on,  with futility binding. (5.5)
1 — 04

The regulatory authorities apply the nonfutility binding rule (i.e., the futility
boundaries don’t have to be followed).
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For MPP, the test statistic is defined as
k
Tk:Hpiﬂ kzl,,K (56)
i=1

The stopping boundaries for the two-stage design can be solved
analytically:

oy — 0

, without futility binding, (5.7)
In (071
az = _
_ 9% ith futility binding. (5.8)
InfB; —Inoy

For MINP, the test statistic is defined as

k
Tk=1—<b(2wk,~z,~), k=1,...,K, (5.9)

i=1

where the constant weights Zf_lwg,- =1,z,=®"'(1 - p,), and ® is the c.d.f. of
the standard normal distribution. The stopping boundaries can be calculated
using numerical integrations or simulations.

ExpDesign Studio allows you to generate various adaptive trials nearly as
quickly as you can in a classical design. You can use response-adaptive ran-
domization to assign more patients to superior treatment groups or to drop a
“loser” when an inferior group is identified. You may stop a trial early to claim
efficacy or futility based on the data observed or the conditional power. You
may modify the sample size based on the treatment difference observed. You
may conduct simulations for a dose-escalation trial using Bayesian or frequen-
tist modeling approaches. We are going to show you how to design adaptive
trials using ExpDesign Studio through examples.

5.3 HOW TO DESIGN A SAMPLE-SIZE REESTIMATION TRIAL
USING EXPDESIGN

Regardless of ours efforts, we often face a high degree of uncertainty about
parameters when designing a trial or justifying the sample size at the design
stage. This could involve initial estimates of within- or between-patient varia-
tion, a control group event rate for a binary outcome, the treatment effect
sought, the recruiting pattern, or patient compliance, all of which affect the
ability of a trial to address its primary objective (Shih, 2001). This uncertainty
can include the correlation between measures (if a repeated-measure model is
used) or among different variables (e.g., multiple endpoints, covariates). If a
small uncertainty of prior information exists, a classical design can be used.
However, when the uncertainty is greater, a classical design with a fixed sample
size is inappropriate. Instead, it is desirable to have a trial design that allows
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for reestimation of the sample size in the middle of a trial based on “unblinded”
data. Several different algorithms have been proposed for sample-size reesti-
mation, including the conditional power approach and Cui-Hung Wang’s
approach based on the ratio of effect size observed to size expected.

5.3.1 Sample-Size Adjustment Based on the Effect-Size Ratio

The formation for sample-size adjustment based on the ratio of the initial
estimate of the effect size (E,) to the size observed (E) is given by

N= (%)2 No, (5.10)

where N is the newly estimated sample size per group (combined from the
two stages) and N, is the initial sample size per group, which can be estimated
using a classical design.

5.3.2 Sample-Size Adjustment Based on Conditional Power

The sample size per group based on conditional power for a two-stage design
can be obtained analytically (M. Chang, 2007a). For MSP, the sample size per
group required for a given conditional power P, can be expressed as

_ 20’

n2—8—2[¢‘1(1—max(0, az_pl))_(b_l(l_Pc)], Ot1<p1<[31. (5.11)

For MPP, the sample size per group can be expressed as

_20°
m=

[cpl (1—%)@1(1—3)}, o < pi <P (5.12)

For MINP, the sample size per group can be expressed as

L

w
ny, = 82 ®_1 (1_a1)_—1q)_1(1_p1)_®_1(1_f)c):|, (X1<p1<B1.

Wy Wr

(5.13)

Next, we illustrate how to use ExpDesign to produce adaptive designs for
trials with different endpoints. The examples we discuss are acute ischemic
stroke, asthma, and oncology trials.

5.3.3 Adaptive Design for an Acute Ischemic Stroke Trial

A phase III trial is to be designed for patients with acute ischemic stroke of
recent onset. The primary endpoint is the composite endpoint (death or MI),
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Figure 5.2 Sample-size reestimation step 1 window.

with an event rate of 14% for the control group and 12% for the test group.
Based on a large-sample assumption, a sample size of 4473 for a classical
design will provide 80% power to detect the difference at a one-sided o value
of 0.025.

We can design an adaptive trial with sample-size reestimation using Exp-
Design with the following simple steps:

. . . . Adaptive Dezign .
e After launching ExpDesign Studio, click ; the Adaptive
Design—-Step 1 window (Figure 5.2) will appear.

In the Adaptive Design—Step 1 window, do the following:

e Select the Sample-Size Reestimation option in the Type of Adaptive
Design panel.

e Select the Proportion option in the Endpoint window.
e Enter “0.12, 0.14” for Response Under Ha in the Hypotheses panel.

e Enter “0” for NI-d, the noninferiority margin, for the noninferiority
trial.

e Enter “0.025” for One-Sided Alpha and “0.8” for Power.
M et
e Click il; the Adaptive Design—Step 2 window will appear.

In the Adaptive Design—Step 2 window (Figure 5.3), do the following:
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Figure 5.3 Sample-size reestimation step 2 window.

Enter “2” for the initial number of stages.

Enter “0.5, 1”7 for Information Time for Analyses.

Choose stopping boundaries using the arrow near O’Brien or Pocock.
Note that O’Brien spends less o (type I error) at the early stage than
does Pocock.

If you want to have futility boundaries, you can check the Futility Bound-
ary (Beta-spending) checkbox. The futility boundaries are not necessarily
followed. Therefore, leave FB-Binding unchecked. If you check the FB-
Binding box, the stopping boundaries will change to anticonservative.
Therefore, make sure that the regulatory authorities agree with the stop-
ping boundaries in the protocol.

Enter “10000” for N Simulations. 10,000 runs are suggested for a power
simulation and at least 100,000 runs are suggested for an o simulation
(i.e., type I error simulation).

Enter “9900” for Total N, which is close to the classical design value. The
sample size entered here should be around 100 to 120% of the sample
size for the classical design under the same effect size.

Select the Sum of P-values option in the Basis of Statistical Method
panel. You can choose another method if you prefer.

Enter “12000” for Maximum Total N Allowed for SSR and check the
checkbox. If financial and other conditions permit, you can enter a larger
number.
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Figure 5.4 Report generated by ExpDesign.

e Enter “0.90” for Targeted Conditional Power for SSR. Ninety percent or
higher is recommended for SSR.

Run
e Click *l to start the simulation. It will take about 1 minute to com-
plete a simulation with 10,000 runs.

After the simulation is completed, click E on the toolbar to view the
report for the adaptive design (Figure 5.4).

To compare a group sequential design and this adaptive design, let’s assume
that the event rates are 0.12 and 0.138 for the groups, but that we mistakenly
estimate 0.12 and 0.14. We change the event rates to “0.12, 0.138” in the Adap-
tive Design—-Step 1 window. Keeping everything else the same, the simulation
results show that the adaptive design has 76 % power. To obtain the power for
a group sequential design using MSP without sample-size reestimation, we
uncheck the Maximum Total N Allowed for SSR box. All other parameters
are the same. The simulation results show that there is only 72% power. Other
operating characteristics, such as average sample size, stopping boundaries,
efficacy, and futility stopping probabilities are also included in the report.

5.3.4 Adaptive Design for an Asthma Study

In a phase III asthma study with two dose groups (control and active) with
the primary efficacy endpoint of the percent change from baseline in FEV1,
the estimated FEV1 improvement from baseline is 5% and 12% for the
control and active groups, respectively, with a common standard deviation of
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Figure 5.5 Adaptive design for asthma study.

6 =22%. Based on a large-sample assumption, a sample size of 208 per group
in a classical design will provide 90% power to detect the difference at a one-
sided o value of 0.025.

To design a two-stage adaptive trial, we use MPP this time with an interim
analysis planned based on the response assessments of 50% of the patients.
Following are the step-by-step design instructions using ExpDesign Studio:

. Adaptive Dezign . . . .
e Click to bring up the Adaptive Design-Step 1 window
(Figure 5.5).

In the Adaptive Design—Step 1 window, do the following:

e Select the Sample-Size Reestimation option in the Type of Adaptive
Design panel.

e Select the Mean option in the Endpoint window.

e Enter “0.05, 0.12” for the Response Under Ha in the Hypotheses
panel.

e Enter “0” for NI-d, the noninferiority margin, because it is a superiority
trial.

e Enter “0.025” for One-Sided Alpha and “0.9” for Power.

Mt
e Click il to bring up the Adaptive Design—Step 2 window.
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Figure 5.6 Parameters for the adaptive asthma trial.

In the Adaptive Design—Step 2 window (Figure 5.6), do the following:

e Enter “2” for the initial number of stages.

e Enter “0.5, 1” for the Information Time for Analyses.

e Choose stopping boundaries using the arrow near O’Brien or Pocock.

e If you want to have futility boundaries, you can check the Futility Bound-
ary (Beta-spending) checkbox.

e Enter “10000” for N Simulations.

e Enter “440” for Total N, which is close to the classical design value.
Again, the sample size entered here should be 100 to 120% of the sample
size for the classical design under the same effect size.

e Select the Product of P-values option in the Basis of Statistical Method
panel.

e Enter “600” for Maximum Total N Allowed for SSR and check the
box.

e Enter “0.90” for Targeted Conditional Power for SSR. Ninety percent or
higher is recommended for SSR.

. Run . .
e (Click to start the simulation.

After the simulation is completed, click E to view the report for the
adaptive design (Figure 5.7). The design has 95% power with a sample size of
401 expected for each group.
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Figure 5.7 Characteristics of the adaptive asthma trial design.

What if the treatment is actually smaller than estimated: for example, 5%
versus 11% in FEV1 change for the two groups? To answer this question, we
keep everything the same but change the treatment to 5% and 11%, respec-
tively, in the Adaptive Design-Step 1 window. The simulation results show
that the adaptive design has 88% power with an expected sample size of 444
per group, whereas a classical design with a sample size of 440 has 81% power
and a group sequential design with a maximum total sample size of 440
without sample-size reestimation has 78% power. The group sequential design
has an expected sample size of 370 based on MPP.

5.3.5 Adaptive Design for an Oncology Trial

In a two-arm comparative oncology trial with time to progression (TTP) as
the primary efficacy endpoint, the median TTP is estimated to be 8 months
(hazard rate = 0.08664) for the control group and 10.5 months (hazard rate =
0.06601) for the test group. Assume a uniform enrollment with an accrual
period of 9 months and a total study duration of 24 months. An exponential
survival distribution is assumed for the purpose of sample-size calculation. The
classical design requires a sample size of 321 subjects per group for 85%
power.

We design the trial with one interim analysis when 40% of patients have
been enrolled. The interim analysis for efficacy is planned based on TTP, but
it does not allow for futility stopping. Following are the steps for the trial
design using ExpDesign Studio.
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Adaptive design for the oncology trial.

. Adaptive Design . . . .
e Click to bring up the Adaptive Design-Step 1 window

(Figure 5.8).

In the Adaptive Design—Step 1 window, do the following:

e Select the Sample-Size Reestimation option in the Type of Adaptive

Design panel.

e Select the Survival option in the Endpoint window.
e Enter “0.06601, 0.08664” for Hazard Rates Under Ha in the Hypotheses

panel.

e Enter “0” for NI-d, the noninferiority margin, because it is a superiority

trial.

e Enter “9” for Accrual Time and “24” for Study Duration.
e Enter “0.025” for One-Sided Alpha and “0.8” for Power.

et
e Click il to bring up the Adaptive Design-Step 2 window

(Figure 5.9).

In the Adaptive Design—Step 2 window, do the following:

e Enter “2” for the initial number of stages.
e Enter “0.4, 1” for Information Time for Analyses.

e Choose stopping boundaries using the arrow near O’Brien or Pocock.
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Figure 5.9 Input parameters for the adaptive oncology trial.

If you want to have futility boundaries, you can check the Futility Bound-
ary (Beta-spending) checkbox.

Enter “100000” for N Simulations.

Enter “400” for Total N (events).

Select the Inverse-Normal of P-values option in the Basis of Statistical
Method panel.

Enter “660” for Maximum Total N Allowed for SSR (this is the number
of events for a survival endpoint) and check the box.

Enter “0.90” for the Targeted Conditional Power for SSR.

. Run . .
Click to start the simulation.

After the simulation is completed, you can click @ to view the design
report (Figure 5.10). We can see that the sample size expected is 616 under
the alternative hypothesis and the power is 87.4%. The classical design has
83.5% power with the same sample size. When the median TTP is 10 months
instead of 10.5, this adaptive design will still have 73% power, whereas the
classical design has only 70% power.

5.3.6 Noninferiority Design with a Binary Endpoint

A phase III trial is to be designed for patients with acute ischemic stroke of
recent onset. The primary endpoint is defined as the composite endpoint
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Figure 5.10 Characteristics of the adaptive oncology trial design.

(death or MI) with an estimated event rate 14% for the control group and
12% for the test group. Based on a large-sample assumption, the sample size
for a classical design is 4437 per group, which provides 80% power to detect
the difference at a one-sided o value of 0.025 (the superiority test).

If superiority is not achieved, a noninferiority test will be performed.
Because of the closed testing procedure, no o adjustment is required for the
two hypothesis tests. The noninferiority boundary is determined to be 0.5%.
We are going to use three-stage adaptive design for the noninferiority trial.
The futility stopping boundaries are also used for cost savings. We follow the
steps below to design an adaptive trial using ExpDesign Studio:

. Adaptive Dezign . . . .
e Click to bring up the Adaptive Design-Step 1 window
(Figure 5.11).

In the Adaptive Design—Step 1 window, do the following:

e Select the Sample-Size Reestimation option in the Type of Adaptive
Design panel.

Select the Proportion option in the Endpoint window.

Enter “0.12, 0.14” for Proportions Under Ha in the Hypotheses panel.

Enter “0.005” for NI-d, the noninferiority margin, for the noninferiority
trial.

Enter “0.025” for One-Sided Alpha and “0.8” for Power.

M et
Click il to bring up the Adaptive Design—Step 2 window.
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Figure 5.11 Adaptive design for the noninferiority trial.

In the Adaptive Design-Step 2 window (Figure 5.12), do the following:

Enter “3” for the initial number of stages.
Enter “0.33, 0.67, 1” for Information Time for Analyses.
Choose stopping boundaries by the arrow near O’Brien or Pocock.

If you want to have futility boundaries, you can check the Futility Bound-
ary (Beta-spending) checkbox.

Enter “10000” for N Simulations.
Enter “9000” for Total N, which is close to the classical design value.

Select the Inverse-Normal of P-values option in the Basis of Statistical
Method panel.

Enter “12000” for Maximum Total N Allowed for SSR and check the
box.

Enter “0.02” for DuHa, the estimated treatment difference.

. Run . .
Click to start the simulation.

After the simulation is completed, you can click IE\? to view the
report (Figure 5.13). We can see that the adaptive design has an expected
sample size of 6977 with 96% power. To see if the adaptive design protects
the power, let’s assume that the event rate is 0.14 versus 0.128. We change the
responding inputs to “0.14, 0.128” for the Proportions Under Ha in the
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Figure 5.12 Input parameters for the adaptive noninferiority trial design.

«:Report 7 (Adaptive Design)

This is= a 3-stage adaptive design. The input parameters are as follows: the proportions are 0_1Z
and 0.14 for the two groups, respectively. The non-inferiority margin is 0.005. The significance
level, alpha, is 0.02Z5. The initial total sample size is S000. The statistic method used iz MIND.
The maximum sample allowed is 12000. The desicgm allows for sample size reestimation.

The results are hased on 10000 simulation runs. The expected total sample size is £977. The power

is 0.9538.

Stage: G 3 z b
Stagewise sample size: 1435 1530 23385
Efficacy stopping boundary 0.00195 0.0022E5 0.02063
Futility stopping boundary 0.5 0.738  0.02063
Efficacy stopping probability: 0.1953 0.5116 0_2515
Futility stopping probsbility: 0.0z27 0.0001 0.0188

The error-spending function is: alphait ), where alpha = type-I error rate and t = infromation
time.

Figure 5.13 Characteristics of the adaptive noninferiority trial design.
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Adaptive Design-Step 1 window. Keep everything else the same (DuHa =
0.02, not DuHa = 0.012). The simulation results show that the adaptive design
has 72% power with an expected sample size of 8988, while the classical design
with a fixed sample size of 9000 has 65% power for the noninferiority test.

5.4 HOW TO DESIGN A DROP-LOSER TRIAL USING EXPDESIGN

5.4.1 Drop-Loser Mechanism

An adaptive seamless phase II or III design is one of the most attractive adap-
tive designs. A seamless adaptive design is a combination of traditional phase
IT and phase III trials. In seamless design, there is usually a learning phase
that serves the same purpose as a traditional phase II trial, followed by a
confirmatory phase that serves the same objectives as a traditional phase III
trial (Figure 11.1). Compared to traditional designs, a seamless design can
reduce the sample size and time to market for a positive drug candidate. The
main feature of a seamless design is the drop-loser mechanism. Sometimes it
also allows for adding new treatment arms. A seamless design usually starts
with several arms or treatment groups. At the end of the learning phase, infe-
rior arms (losers) are identified and dropped from the confirmatory phase
(M. Chang, 2007a).

Hung and co-workers at the FDA (2006) suggest that it may be advisable
to redistribute the remaining planned sample size of a terminated arm to the
remaining treatment arms for comparison so that coupled with use of a proper
valid adaptive test, one may enhance the statistical power of the design to
detect a dose that is effective.

5.4.2 Seamless Design of an Asthma Trial

The objective of this trial in an asthma patient is to confirm the sustained
treatment effect of a new compound, measured as the FEV1 change from
baseline to one year of treatment. Initially, patients are equally randomized
to four doses of the compound and a placebo. Based on early studies, the
estimated FEV1 changes at week 4 are 6%, 12%, 13%, 14%, and 15% (with
a pooled standard deviation of 18%) for the placebo (dose level 0) and dose
levels 1, 2, 3, and 4, respectively. One interim analysis is planned when 50%
of patients have the efficacy assessments. The interim analysis will lead to
either picking the winner (the arm with the best observed response) or stop-
ping the trial for efficacy or futility. The winner and placebo will be used at
stage 2. The final analysis will be based on the product of the stagewise
p-values from both stages. At the final analysis, if P> < o, claim efficacy;
otherwise, claim futility. For the weak control, p; = p,, where p, is the naive
stagewise p-value from a contrast test based on a subsample from stage 1. For
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Figure 5.14 Drop-loser design.

the strong control, p, is the adjusted p-value (i.e., p; = 4pmin), Where p, is the
smallest p-value among the four comparisons.
To do an adaptive design with ExpDesign, follow the steps below.

. Adaptive Design . . . .
e Click to bring up the Adaptive Design-Step 1 window

(Figure 5.14).

In the Adaptive Design—Step 1 window, do the following:

e Select the Drop-Loser Design option in the Type of Adaptive Design
panel.

e Select the Mean option in the Endpoint window.

e Enter “0.05,0.12,0.13, 0.14, 0.15” for Mean Under Ha and 0.18 for sigma
in the Hypotheses panel.

e Enter “0” for NI-d, the noninferiority margin, for the noninferiority
trial.

e Enter “0.025” for One-Sided Alpha and “0.90” for Power.

M et
e Click il to bring up the Adaptive Design—-Step 2 window
(Figure 5.15).

In the Adaptive Design—Step 2 window, do the following:
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Figure 5.15 Input parameters for the drop-loser design.

Enter “2” for the initial number of stages.
Enter “0.5, 1”7 for Information Time for Analyses.
Choose stopping boundaries by the arrow near O’Brien or Pocock.

If you want to have futility boundaries, you can check the Futility Bound-
ary (Beta-spending) checkbox.

Enter “10000” for N Simulations.

Enter “180” for Total N, which is close to the classical design.

Select the Product of P-values option in the Basis of Statistical Method
panel.

Enter “400” for Maximum Total N Allowed for SSR and check the
box.

Enter “0.90” for Targeted Conditional Power for SSR, the estimated
treatment difference.

. Run . .
Click to start the simulation.

After the simulation is completed, you can click E to view the report
(Figure 5.16). The design has 95% power for the given dose-response relation-
ship. Because the adaptive also allows for sample-size reestimation, when the
responses in arms 2 through 5 decrease to 0.12, the design still has 80% power
with the expected sample size of 287—a very robust design.
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This is a Z-stage drop-loser adaptive design with initial § groups. The input parsmeters are as ~|
follows: The sigmificance lewel, alpha, is 0.025. The initial total sample size is 180. The

statistic method used is MPP. The mawimum sample allowed is 400. The targeted conditonal power for

sample size calculation is 0.3. The design allows for sample size reestimation.

The results are based on 10000 simulation runs. The expected total sawple size is Z70. The power is

0.3E1.

Arms: i z 3 4 5

Mean 0.05 0.12 0.13 0.14 0.15

The standard deviation is 0.18.

Probebility of at second stage: 0.002 0.1zlz 0.1897 0.z88 0.3931

Stage: ¢ 2

Stagewise sample size: z6 26

Efficacy stopping boundary 0.00385 0.0038
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Futility stopping probshilicy: 0.001% 0.045
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Figure 5.16 Characteristics of the drop-loser design.

5.5 HOW TO DESIGN A TRIAL USING
A CLASSIFIER BIOMARKER

5.5.1 Biomarker Classifications

Compared to a true endpoint such as survival, biomarkers can often be mea-
sured earlier, more easily, and more frequently; are less subject to competing
risks; and are less confounded. Utilization of a biomarker will lead to a better
target population with a larger effect size, a smaller required sample size, and
faster decision making. With advancements in proteomic, genomic, and genetic
technologies, personalized medicine—the right drug for the right patient—
becomes possible.

As mentioned earlier, a classifier biomarker is a marker (e.g., a DNA
marker) that usually does not change over the course of a study. A classifier
biomarker can be used to select the most appropriate target population or
even for personalized treatment. For example, a study drug is expected to have
effects on a population with a biomarker, which is only 20% of the overall
patient population. Because the sponsor suspects that the drug may not work
for the overall patient population, it may be efficient and ethical to run a trial
only for subpopulations with the biomarker rather than for the general patient
population. On the other hand, some biomarkers, such as RNA markers, are
expected to change over the course of a study. This type of marker can be
either a prognostic or a predictive marker.

A prognostic biomarker informs the clinical outcomes, independent of
treatment. Biomarkers provide information about the natural course of a
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disease in persons who have or have not received the treatment under study.
Prognostic markers can be used to separate good- and poor-prognosis patients
at the time of diagnosis. If an expression of the marker clearly separates
patients with an excellent prognosis from those with a poor prognosis, the
marker can be used to aid the decision as to how aggressive the therapy needs
to be.

A predictive biomarker informs the treatment effect on the clinical end-
point. Compared to a gold-standard endpoint such as survival, a biomarker
can often be measured earlier, more easily, and more frequently. A biomarker
is less subject to competing risks and less affected by other treatment modali-
ties, which may reduce sample size due to a larger effect size. A biomarker
could lead to faster decision making (M. Chang, 2007a).

Let the hypothesis test for a biomarker-positive subpopulation at the first
stage (size = ny/group) be

Hy6,=0 (5.14)
and the hypothesis test for overall population (size = N,/group) be
Hy:6=0 (5.15)

with the corresponding stagewise p-values, p;, and p,, respectively. These
stagewise p-values should be adjusted. A conservative approach is to use the
Bonferroni method or a method similar to the Dunnett method, which takes
the correlation into consideration. For a Bonferroni-adjusted p-value and
MSP, the test statistic is 7; = 2min(p.., p;) for the first stage. The population
with a smaller p-value will be chosen for the second stage, and the test statistic
for the second stage is defined as 7, = T, + p,, where p, is the stagewise p-value
from the second stage.

5.5.2 Biomarker-Adaptive Design

Suppose that in an active-control trial, the estimated treatment difference is
0.2 for the biomarker-positive population (BPP) and 0.1 for the biomarker-
negative population (BNP), with a common standard deviation of ¢ = 1.4.
Following are the steps for a trial simulation using ExpDesign Studio.

. Adaptive Dezign . . . .
e Click to bring up the Adaptive Design—Step 1 window.

In the Adaptive Design—Step 1 window, do the following:

e Select the Biomarker-Adaptive Design option in the Type of Design
panel. The Biomarker-Adaptive Design window will appear.

e Enter “0.2” for Mean Difference with Biomarker.
e Enter “0.1” for Mean Difference without Biomarker.
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Figure 5.17 Biomarker-adaptive design.

e Enter “1.414” for Standard Deviation.
e Enter “0.025” or other desired value for the efficacy stopping boundary,

Alpha 1.

e Enter “0.15” or other desired value for the futility stopping boundary,

Beta 1.

e Enter “10000” or other desired value for the Number of Simulations.

¢ Enter the desired numbers for the sample sizes for different stages with
and without a biomarker, as shown in Figure 5.17.

) Run ) )
e Click to start the simulation.

After the simulation is completed, you can click E to view the report for
the adaptive design (Figure 5.18). We see that the power of the overall signifi-
cance is 91%. The power to claim efficacy is 32% for the biomarker group
and 59% for the combined group.

5.6 HOW TO DESIGN A PLAY-THE-WINNER TRIAL

USING EXPDESIGN

The randomized play-the-winner (RPW) model is a simple probabilistic
model used to randomize subjects sequentially in a clinical trial (Wei and
Durham, 1978; Coad and Rosenberger, 1999). The RPW model can be used
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Sy Report 1 (Biomarker-Adaptive Design)

This i= a biomarker-adaptive design using MSP as described by Mark Chang (2007). The mean
responses are 0.FZ and 0.1 for the groups with and without the biomarker, respectiwvely.
The standard deviation is 1.414. The sample size for the first stage is Z60 for the
patient group with biomarker and 520 for the patient group without biomarker. The sample
size for the second stage is 260 for the patient group with biomarker and 520 for the
patient group without biomarker.

2

The results are based on 10000 simulation runs. The early futility stopping probability
i=s 0.06 and the early efficacy stopping probability is 0.613. The power is 0.31Z. The
average sample size is 1937.416. The probability of claining efficacy for the biomarker
group is 0.305. The probability of claiming efficacy for the overall population is 0.807.
The stopping boundaries are: alphal = 0.01, Betal = 0.15, and AlphaZ = 0.183Z1. The
owverall alpha is 0.0Z5.

|

Figure 5.18 Characteristics of the biomarker-adaptive design.

v Randomized Play-the-
o Winner:

. One ball of each color in the urn initially.

o Randomly select a colored ball from the
urn to determine patient’s treatment
assignment.

. When a response is seen in a treatment

arm, a ball of the corresponding color is
added to the urn.
. Therefore more patients will be

randomized into efficacious arms.

Figure 5.19 Randomized play-the-winner: Wei’s (1978) urn model.

for randomized clinical trials with a binary endpoint. In the RPW model it is
assumed that the previous subject’s outcome will be available before the next
patient is randomized. At the start of the clinical trial, an urn contains a, balls
representing treatment A and b, balls representing treatment B, where a, and
by are positive integers. We denote these balls as either type A or type B balls.
When a subject is recruited, a ball is drawn and replaced. If it is a type A ball,
the subject receives treatment A; if it is a type B ball, the subject receives
treatment B. When a subject’s outcome is available, the urn is updated as
follows: Success on treatment A (B) or a failure on treatment B (A) will gen-
erate additional a, (b;) type A (B) balls in the urn. In this way the urn builds
up more balls, representing the more successful treatment (Figure 5.19).

5.6.1 Randomized Play-the-Winner Design

Suppose that we are designing an oncology clinical study with tumor response
as the primary endpoint. The response rate is estimated to be 0.3 in the control
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Figure 5.20 Response-adaptive randomization design.

group and 0.5 in the test group. The response rate is 0.4 in both groups under
the null condition. We want to design the trial with about 80% power at a
one-sided o value of 0.025.

We first check the type I error of a classical two-group design with n =200
(100 per group), which is the sample size required for 83% power using
a classical design. We now use the RPW design as specified in the following
steps.

. Adaptive Dezign . . . .
¢ Click to bring up the Adaptive Design—-Step 1 window
(Figure 5.20).

In the Adaptive Design—Step 1 window, do the following:

e Select the Response-Adaptive Randomization option in the Type of
Adaptive Design panel.

e Select the Proportion option in the Endpoint window.
e Enter “0.4, 0.4” for Proportions Under Ha in the Hypotheses panel.

e Enter “0” for NI-d, the noninferiority margin, because it is a superiority
trial.

e Enter “0.025” for One-Sided Alpha and any decimal value for Power (no
effect in this version).

Mext
e Click i‘ to bring up the Response-Adaptive Randomization
window (Figure 5.21).
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Figure 5.21 Input parameters for the binary RAR design.

e Enter “100000” for N Simulations in the General Info panel.

e Enter “200” for Total N, which is based on a classical design for 83%
power.

e Enter “1” for the four randomization parameters: a0, b0, al, and b1.

e Enter “2.06” for the critical value Z_alpha. You may have to try differ-
ence numbers until the simulated power is equal to 0.025, the o level.

. Run . .
e Click to start the simulation.

e When the simulation is finished, click Ql to view the results
(Figure 5.22).

To simulate the power and other characteristics under the alternative
hypothesis, enter “0.3, 0.5” for Proportions Under Ha in the Hypotheses
panel. Keep other inputs unchanged. The results show that there is 74% power
for the adaptive design with 200 patients. The classical design has 83% power
to detect the difference with 200 patients (Figure 5.23).

5.6.2 Adaptive Randomization with a Normal Endpoint

The objective of this trial in asthma patients is to confirm a sustained treat-
ment effect, measured as FEV1 change from baseline to one year of treatment.
Initially, patients are equally randomized to four doses of the new compound
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Figure 5.22 Determination of rejection region-based type I error.

St Report 5 (Response-Adaptive Randomization) E]@[’)Z]

This is a randomized-play-the-winner design. There are initially 1 type-& and 1
type—FE balls. For sach response in group-i, 1 ball will ke added to thsa
randomization urn; for each response in group-E, 1 ball will be added to the urn.
Total number of subjects is Z00. True response rates are 0.3 and 0.5 for group-2
and group-B, respectively.

The results are based on 100000 simulation runs. The mean response raktes are
0_2%53 and 0.42973 for group-4 and group-B, respectively. The crtical point for
rejecting the mull hypothesis is Z.06. The power is 0.7387. |

Figure 5.23 Simulation of power for the RAR design.

and a placebo. Based on early studies, the estimated FEV1 changes at week
4 are 6%, 12%, 13%, 14%, and 15% (with a pooled standard deviation of
18%) for the placebo and dose levels 1, 2, 3, and 4, respectively.

Following are the steps to design an adaptive trial using ExpDesign.

. Adaptive Design . . . .
e Click to bring up the Adaptive Design-Step 1 window
(Figure 5.24).

In the Adaptive Design—Step 1 window, do the following:

Select the Response-Adaptive Randomization option in the Type of
Adaptive Design panel.

e Select the Mean option in the Endpoint window.

e Enter “0.06, 0.06, 0.06, 0.06, 0.06” for Means Under Ha in the Hypotheses
panel.

e Enter “0.18” for Sigma, the standard deviation.

e Enter “0” for NI-d, the noninferiority margin, because it is a superiority
trial.

e Enter “0.025” for One-Sided Alpha and any decimal value for Power (no
effect in this version).
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Figure 5.24 RAR design with normal endpoint.
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Figure 5.25 Input parameters for the normal RAR design.
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Figure 5.27 Input Parameters of RAR design for the alternative condition.
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Figure 5.28 Characteristics of the RAR under the null condition.

Nest
Click il to bring up the Adaptive Design-Step 2 window
(Figure 5.25).

Enter “100000” for N Simulations.

Enter “200” for Total N. You may need to use a trial-and-error method
to find a number that gives you the power devised.

Enter “1” for the randomization parameter b and “1” for m.

Enter “2.01” for the critical value Z_alpha. You may have to try different
values until the simulated power is equal to 0.025, the o level (weakly
controlled).

. Run . .
Click to start the simulation.

When the simulation is finished, you can click E to view the results
(Figure 5.26).

Next, we simulate the power under the alternative condition by changing

the response to “0.06, 0.12, 0.13, 0.14, 0.15” for Means Under Ha in the
Adaptive Design—Step 1 window (Figure 5.27). Keep everything else the same
and run the simulation. The results show that the design has 84% power

(Figure 5.28).



6 Adaptive Trial Monitoring

6.1 INTRODUCTION

In this chapter we discuss the very important aspect of adaptive design: trial
monitoring. Our discussion focuses on how to use statistical tools such as stop-
ping boundaries, boundary-crossing probabilities, conditional power, and the
futility index. We illustrate how to use ExpDesign to predict the probability
of success, to calculate the conditional power, to reestimate the sample size,
and to change the number and timing of the analyses. Using ExpDesign to
perform these tasks is pretty straightforward. However, we first review the
techniques for monitoring so that we can use them appropriately.

6.2 ERROR-SPENDING APPROACH

There are often changes in the information time for the interim analyses (IAs).
The reason may, for example, be slow enrollment, but the DMC is not able
to change their meeting schedule due to other commitments. As a result, the
information time for the interim analyses moves back. There are also other
reasons for a sponsor to change the information timing (¢ = n/N, the sample-
size fraction at an interim analysis or the fraction of deaths) and number of
analyses. When using MPP or MSP, interim analyses can be made any time
without inflating the type I error rate because these two methods do not
require prespecification of the time for IAs. MSP and MPP require only
mutual independence of stagewise p-values, and they are either distributed
uniformly or are larger. To change the number of IAs, we can use recursive
two-stage adaptive designs (see M. Chang, 2007a, Chap. 8). For MINP, the
recursive approach can be used, but more often the error-spending method is
adopted.

Deviations in timing and number of analyses from the original design
will affect the stopping boundaries in classical group sequential design. There-
fore, the original stopping boundaries cannot be used, and new stopping

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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boundaries have to be recalculated based on a prespecified error-spending
function. An error-spending function n*(¢) is a cumulative error spent up to
information time ¢. The o or error spent at a typical stage k can be expressed
as w*(t,) — w*(t,_,), where ¢, is the information time at stage k. Because m*(¢)
is a monotonically increasing function (0 < ¢ < 1) with n*(¢;) = 0 and ©*(¢;) =
n*(1) = a, the total error rate is

K

Z[E*(tk) - n*(tk,l)] = TC*([K) =o. (61)

k=1

The p-value (unadjusted) at the kth stage is compared against the stopping
boundary on the p-scale, but not against the spending function, to determine
whether or not to reject the null hypothesis.

There are at least three types of commonly used error-spending functions:
O’Brien-Fleming-like, Pocock-like, and power-family error-spending
functions.

1. The O’Brien-Fleming-like error-spending function is given by

() = 2[1— @(ZIT‘”ZH (6.2)

t

where @ is the c.d.f. of the standard normal distribution.
2. The Pocock-like error-spending function is given by

n*(t) = alog[1+ (e —1)¢]. (6.3)
3. The power-family (PF) error-spending function is given by
(1) = ou?, (6.4)
where ¢ is the information time and b is a constant.

The various error-spending functions are compared in Figure 6.1. We can
see that the power-family function provides a nice range of stopping boundar-
ies. The Pocock-like function spends more o at early stages than does the
O’Brien-Fleming-like function, while the linear function (PF with b = 1) is
somewhere in between. The power family will spend more o at early stages
when the parameter b decreases.

From Figure 6.1 and Table 6.1 we can see that the O’Brien-Fleming bound-
ary with (an infinite number of) equal information intervals can be well
approximated by both OF-like function (6.2) and the power-family function
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Figure 6.1 Error-spending functions.

with b = 3.3, as can a Pocock boundary with equal information intervals
by a Pocock-like or power-family function with b = 0.688. Yet the Wang—
Tsiatis boundary with A = 0.25 can be approximated by the power-family
function with b = 2. The reason that using an error-spending function is
preferable to traditional group sequential design is that the former makes it
possible to change the number and timing of analyses without inflating the
type I error. With a prespecified error-spending function, the stopping bound-
aries can be recalculated when there is a change in the number or timing of
the analyses.

6.3 HOW TO RECALCULATE STOPPING BOUNDARIES
USING EXPDESIGN

As mentioned earlier, the determination of stopping boundaries is necessary
at the trial design and monitoring stages. In ExpDesign Studio, the power
function is used for error spending in the adaptive design module. The
O’Brien-Fleming spending function can be approximated by the power-family
function 1*(¢) = a** or the O’Brien-Fleming-like function (6.1). The Pocock
spending function can be approximated by m*(r) = ar*®® or (6.2). To use

function (6.2), click the Adaptive Trial Monitor icon ’ |; then check the
O’Brien-F checkbox in the Adaptive Trial Monitor window. To use the
Pocock-like function, check the Pocock checkbox.
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Example: Changing the Timing of Interim Analysis Suppose that we are
monitoring a two-stage adaptive design with the power-family (b = 1.93)
spending function featuring an interim analysis on 50% of the patients (i.e.,
information ¢ = 0.5), which was expected one year after the trial started.
However, due to slow enrollment, the newly projected time line will be 20
months from the beginning of the trial (i.e., 8 months later than the earlier
projection). This setback will have a negative impact on the study and the
company.

However, it will also not be helpful if the interim analysis is performed too
early on the original projected calendar schedule because only a little informa-
tion is available. A reasonable approach is to perform the interim analysis at
16 months after the trial started and when 40% patients would have the data.
After the IDMC agree on the meeting date, the actual stopping boundaries
have to be calculated based on the actual number of patients in the interim
analysis. Assume that the company was to collect data on 40% patients for
the interim analysis. The stopping boundary can be recalculated using
ExpDesign:

1. Click the adaptive trial monitor icon ¥ | to bring up the Adaptive Trail
Monitor window (Figure 6.2).

2. Select the recompute stopping boundary in the Objective panel. The
Adaptive Trial Monitor window will appear (Figure 6.3).

3. Enter the “2” for Number of Stages and “0.4, 1” for Information time
for Analyses.

=

Objective Statistic: Method

" Compute conditional power

" Compute new sample-size for stage 2

& Re-compute stopping boundaries §

Dezign Paramters and Obzerved Data

Alphal = |poo25 Betal = g2
). 707 1707
-

Figure 6.2

+ Method based on zum of p-values [MSF)]
" Method bazed on product of p-values (MPF)

" Method baged on inverse-normal p-values [MINF]

Alpha? = [g2982 Effect Size = |p1g
F-value at stage 1= [0

Sample-Size = [2n0

Compute

Adaptive trial monitor window.
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Stage 1. Stage 2, ...
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Frint Bun

Figure 6.3 Calculation of stopping boundary.

4. Set the same spending function for the stopping boundary by either
checking the checkbox or using the scrollbar. In the current case, check
the O’Brien-F checkbox.

R
5. Click ﬂ to perform the simulation.

6. Click E on the toolbar to see the resulting stopping boundary
(Figure 6.4).

Example: Changing the Number of Interim Analyses For the problem
described in the previous example, an alternative way to adapt to the slow
enrollment is to add another interim analysis, such that the total number of
analyses becomes three. Suppose that the first were actually performed at
information time 0.3. We decide to add another IA at information time 0.7.
We now recalculate the stopping boundary. Note that at the first interim
analysis, we may not know when the future analyses will be, but it doesn’t
mater because the error-spending method allows for modification of future
stopping boundaries without affecting the earlier stopping boundaries as long
as the prespecified error-spending function is followed.

The input values for the parameters are shown in Figure 6.5. The rest steps
are very straightforward, as shown in the first example. The resulting stopping
boundaries on the p-scale are 0.00245, 0.01099, and 0.01892 for the three
analyses, respectively.
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| Determination of Efficacy Stopping Boundary Using Error-
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Figure 6.4 Resulting stopping boundary.
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Frint

Figure 6.5 Redesigning the trial as a three-stage design.

6.4 CONDITIONAL POWER AND THE FUTILITY INDEX

The conditional power is the probability that the null hypothesis will eventu-
ally be rejected given the data observed at the moment. Therefore, the condi-
tional power is dependent on the data observed, but is also dependent on the
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adaptive methods used in the trial. The futility index is defined as the probabil-
ity that the null hypothesis will not be rejected when the alternative hypothesis
is true. Hence, the futility index can be defined as 1 — conditional power if both
use the same estimate for the parameter 9.

The conditional power for MSP is given by

a=1—c1{<1>1(1—max(0, az—p1)>—§ ”7] (65)

where o, < p; < B;; oy and B, are the efficacy and futility stopping boundaries,
respectively; n, is the sample size at the first stage, the effect size; and 8/c can
be estimated using the § and 6 observed for two groups or using p;:

e (66)
(&) ny

Therefore Eq. (6.5) can be written as

P=1- (I)[d)l(l—max(O, o, —pp))—0(1-py) tl_ 1), (6.7)
1
where t;, = n)/(n; + n,) is the information time (fraction) for the first interim
analysis.
Similarly, the conditional power for MPP is given by
-1 (0%) 6 n,
P=1-® 07| 1-— |-—,[— | (6.8)
p) o\V2
The conditional power for MINP is given by
1 1 Wi 4 ) ny
P=1-® —0'(1-0;))—— D' (1-p))——4|— | (6.9)
w> w; oV?2

Conditional power is compared in Figure 6.6. We can see that it differs for
different methods as expected. When the p-value for the first stage is around
0.1, MSP is the most powerful method, followed by MINP. The MPP and MINP
methods perform better at the two extremes when the p-value p; is either very
small or very large.

An interesting question is: When will the p-value be rounded to 0.1? Here
is a common scenario: At the design stage, the standard effect size was esti-
mated to be 0.25, and about 254 subjects per group are needed for 90% power.
At the interim analysis the effect size observed (standardized) based on 50%
of the subjects is 0.164 (only 65.6% of the original estimation). The reason that
we observed 0.164 could be because the drug is truly less effective, or because,
just by chance, we observed a lower effect or a combination the two. In such
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Figure 6.6 Comparisons of conditional power.

a case the p-value at the interim analysis is p; = 0.1. It is not uncommon at all
to estimate the treatment effect by 30% or more at the design stage. Also,
more than one-third of phase III trials failed. It is reasonable to believe that
33% p-values > 0.025 at the final analysis (most of the trials are fixed-sample-
size designs). Therefore, it is also not unreasonable to say that the p-value
based on interim analyses would be larger that 0.025 (z = 1.96) or somewhere
larger than 0.083 (z = 1.96/2°°). Note that the commonly used group sequential
design is a special case of MINP. For details, see the book Adaptive Design
Theory and Implementation Using SAS and R (M. Chang, 2007a).

An interesting way to monitor an adaptive trial informally is the ESP
(expected sample path) approach (Figure 6.7), in which several critical lines
are drawn on an information-Z plan. We first draw the stopping boundary
specified in the protocol and several lines for ESP with different powers. When
the data become available, we draw the actual sample path.

The expected or average sample path is the z-value when the alternative
condition H, for sample size calculation is true. Mathematically, we can write
the z-value at information time ¢ as

2(1)= Z(DV1. (6.10)

The power in Figure 6.7 is the power for the trial. From the figure we can see
that when the trial has 90% power, the ESP crosses the boundaries at about
t = 0.6; when it has 80% power, it crosses at about ¢ = 0.7. If the effect size is
overestimated such that the trial has only 50% power, ESP touch as the



112 ADAPTIVE TRIAL MONITORING

54

| " O'Brien-Fleming
o \ /
ESP (90% power)
1 Pocock \ \
\-

/v
o \u‘ _—Y
E ° o—o—o——;;&.<‘l—o—o
© v —
3 v/ .-
N 2 - _— =

1 4
/ ESP (80% power)

ESP (50% power)

. . . . . .
0.0 0.2 0.4 0.6 0.8 1.0
Information Time, t

Figure 6.7 Stopping boundaries and expected sample paths.

boundary at r = 1 (i.e., the end of the trial). If the sample path is observed
above the ESP for 90% power, the trial is very promising; on the other hand,
if the actual sample path is below ESP for the 50% power, we are probably
going to fail the trial.

6.5 HOW TO REESTIMATE SAMPLE SIZE USING EXPDESIGN

6.5.1 Calculating Conditional Power Using ExpDesign

Calculation of conditional power using ExpDesign is straightforward, as illus-
trated in the following example. Suppose that a two-stage adaptive trial was
designed using MSP with stopping boundaries o, = 0.0025, B; = 0.2, and o, =
0.2152. The sample size for the interim analysis #; = 100 per group. The sample
size (not cumulative) for the second stage n, = 200 per group. Assume that
p1=0.1,n, =100, and the effect size (treatment difference divided by standard
deviation) observed can be calculated using Eq. (6.5) in Section 6.3:

S 1(0.9),|—2 = 12816,/ = 0.18.
5 100 100

This is the default value in ExpDesign and is available by clicking the Default
checkbox next to it.
Here are the steps to obtaining the conditional power:
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Figure 6.8 Conditional power with MSP.

1. Click the adaptive trial monitor icon ’ | to bring up the Adaptive Trial
Monitor window (Figure 6.2).

2. Select the Compute conditional power option in the Objective panel.

3. Select the MSP option in the Statistical Method panel.

4. Enter the values “0.0025, 0.2152, 0.2, 0.1, 200” for o, oy, B;, and sample
size, respectively.

5. Click the Default checkbox next to Effect Size; “0.18123” will fill into
the corresponding textbox.

R
6. Click Ll; a conditional power of 0.73 is obtained from the textbox
labeled as cPower (Figure 6.8).

6.5.2 Reestimating Sample Size Using ExpDesign

This conditional power 73% is considered too low. We may decide to increase
the sample size to retain 80% (conditional) power. Use the following steps to
estimate the new sample size required for the second stage with 80% condi-
tional power (Figure 6.9):

1. Select the Compute new sample-sign for stage 2 option in the Objective
panel.

2. Select the MSP option in the Statistical Method panel.
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Figure 6.9 Sample size based on conditional power.

3. Enter “0.0025, 0.2152, 0.1, 200" for o, oy, p;, and the sample size.

4. Click the Default checkbox next to Effect size; “0.18123” will fill into the
corresponding textbox.

. Compute . .
5. Click ; the required sample size is n, = 254 per group for the
second stage, as shown in Figure 6.9.

The procedures to obtain the conditional power and new sample size with
MPP and MINP are similar; you can try this yourself.

6.6 TRIAL EXAMPLES

6.6.1 Changes in Number and Timing of the Analyses

“In the 1970s, it was thought that blockade of the beta-adrenergic receptors
might be beneficial for patients with myocardial infarction. This led to the
conduct of several clinical trials. Some of these trials treated patients with
intravenous beta-blockers at the time of the acute MI; others began treatment
intravenously at the time of the acute event and continued with oral beta-
blockers after hospital discharge; still others began long-term oral treatment
of patients after the acute recovery phase. Relevant to the development of the
Beta-Blocker Heart Attack Trial (BHAT) were concerns that the long-term
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trials that had been conducted were inconclusive. In particular, some were
underpowered, one used a beta-blocker that had unexpected serious toxicity,
and some may have used inadequate doses of medication. Therefore, a work-
shop conducted by the National Heart, Lung, and Blood Institute (NHLBI)
recommended that another long-term trial with a sufficiently large sample size
and using appropriate doses of a beta-blocker with which there was consider-
able experience and a known toxicity profile, such as propranolol, be con-
ducted” (DeMets, 2006).

Patients aged 30 to 69 years who had had a myocardial infarction 5 to 21
days prior to randomization were to be enrolled. The primary objective of the
study was to determine if long-term administration of propranolol would
result in a difference in all-cause mortality. The group sequential design with
six interim analyses (O’Brien-Fleming boundary with equal information
intervals) was used for BHAT. The actual trial path (z-values) is presented in
Figure 6.10.

A total of 4040 patients were to enroll. Participant enrollment began in
1978; a total of 3837 participants were actually enrolled. This trial of 1884
survivors of an acute myocardial infarction showed a statistically significant
reduction in all-cause mortality, from 16.2% to 10.4%, during a mean follow-
up of 17 months. At this point, BHAT was no longer enrolling patients, but
follow-up was continuing.

We are now ready to reproduce the group sequential design and than
change to a more flexible or adaptive design. For the latter we discuss how to
monitor and take adaptations according to the data observed. For a group
sequential design with seven analyses with equal intervals and O’Brien—
Fleming boundaries, 4040 patients will have 89.3% power (using either Exp-
Design 5.0 or East 4.1) to detect a 28% relative change in mortality, from a
three-year rate of 17.46% in the control (placebo) group to 13.75% in the
intervention group, which was estimated from previous studies.

Suppose that we originally use an error-spending approach with an O’Brien—
Fleming-like spending function featuring seven analyses at equal information
intervals. After the third analysis, we find that the efficacy results are somewhat
promising, and the trend (Figure 6.10) shows that the trial is likely be success-
ful at the fifth interim analysis. Therefore, we want to do one more analysis
(final analysis) for the study and eliminate the rest of the interim analyses.
The final analysis is scheduled at the time for the original fifth interim analysis.
Therefore, we calculate the stopping boundary using the same OF error-
spending function but with four analyses at information time: 1/7, 2/7, 3/7, and
1 (Figures 6.11 and 6.12).

The new final stopping boundary is naive p-value <0.0248 (z = 1.9634) using
the distribution calculator in ExpDesign (Figure 6.13). The observed p-values
at the first three IAs are 0.0465 (z = 1.68), 0.0125 (z = 2.24), and 0.0089 (z =
2.37), respectively. We want to check if the new design has sufficient power. If
not, a sample-size reestimation may be required. We can accomplish this with
ExpDesign as specified in the following steps:
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Figure 6.10 BHAT stopping boundary and actual path. (Data from DeMets et al.,
2006.)
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Figure 6.11 Stopping boundary for the BHAT trial.
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Figure 6.12 New stopping boundary for the BHAT trial.
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Figure 6.13 Assist from ExpDesign probability calculator.

1. Click the adaptive trial monitor icon ¥ | to bring up the Adaptive Trial
Monitor window (Figure 6.14).

2. Select the Compute conditional power option in the Objective panel and
K-stage in the Number of Stages panel.

3. Select the MSP option on the Statistical Method panel.

4. Enter “577, 1154, 1731, 4040” for the stagewise sample sizes; “0.0, 0.0,
0.00061, 0.0248” for the efficacy boundary on the p-scale; “1, 1, 1, 1” for
the futility boundary on the p-scale; and “0.0465, 0.0125, 0.0089” for the
stagewise p-values observed, respectively.

Compute

5. Click (Figure 6.15).
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Figure 6.14 ExpDesign adaptive trial monitor.

2% Conditional Probabilities for SSR

- Statistical Methods
" MSP " MPF * MINP

— Stagewise Values

Stage 1, 2, 3,

Stagewise sample szies = ﬂﬁ??, 11541731 4040

Effizacy boundary on p-scale = ﬂlllllJ.D, 0.00081,0.0248

Futility boundary ot p-szale = ﬂ-| .14

Observed stagewise p-values = ﬂ[l.leES, 0.0725, 0.0039

Conditional power = 0.899 with 0 left Example

Figure 6.15 Conditional power calculation with ExpDesign.
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The conditional power of rejecting the null hypothesis at the final step turns
out to be 0.899; with such high power the sample size does not need to be
adjusted. The timing of the analysis is one year earlier than the original sched-

ule planned for the final analysis.

We now do the final analysis. The observed test statistic z = 2.34 or p-value
= 0.0096 < 0.0248 (the stopping boundary); therefore, the null hypothesis is
rejected. From this example we can see that the adaptive design has advan-

tages over the classical group sequential design.
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Note that the timing of the analyses is assumed to be independent of interim
data. However, practically, we want to change the timing based on the data
observed. Fortunately, the potential type I error rate inflation due to the data-
dependent timing is small (<10%) (Proschan et al., 2006).

6.6.2 Recursive Two-Stage Adaptive Design

Let’s use the recursive two-stage adaptive design (M. Chang, 2007a, Chap. 8)
to redesign the example of Section 6.6.1. The conditional error principle allows
one to redesign a two-stage trial at every analysis as long as the conditional
error is retained at each stage. Following are the steps for performing the
recursive two-stage design on the fly:

1. Initiate the first two-stage trial.

2. After looking at the IA data, decide whether to keep the original design
or redesign a two-stage trial using the conditional error function.

3. If a decision not to change the design is made, it is straightforward adap-
tive design.

4. If a decision to redesign the two-stage trial is made, the conditional error
function is calculated as A = o, — p; and the new two-stage trial design
is based on the new type I error rate: o = A.

5. Repeat steps 2 to 4 until the trial eventually stops.

See M. Chang (2007a, Chap. 8) for a trial example.

6.6.3 Conditional Power and Sample-Size Reestimation

“The Randomized Aldactone Evaluation Study (RALES) was a randomized
double-blind placebo-controlled trial designed to test the hypothesis that addi-
tion of daily spironolactone to standard therapy would reduce the risk of all-
cause mortality in patients with severe heart failure as a result of systolic left
ventricular dysfunction. The Data Safety Monitoring Board (DSMB) for
RALES reviewed data on safety and efficacy throughout the trial using pre-
specified statistical stopping boundaries for efficacy. To ensure that the data
were complete, the DSMB requested successive ‘mortality sweeps.” At the time
of these sweeps, all RALES investigators determined the vital status of par-
ticipants at their clinics. Therefore, the data that the DSMB saw included a
much higher percentage of the deaths than would have been observed without
these sweeps. At the DSMB’s fifth meeting, the data showed 351 deaths in the
placebo group and 269 in the spironolactone group, for an estimated hazard
ratio of 0.78 (p 0.00018). The board recommended early termination of the
trial because the observed Z-value of 3.75 exceeded the pre-specified critical
value of 2.79 and the data on mortality showed consistency among subgroups
and across time. The sweeps had identified 31deaths that likely would not have
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TABLE 6.2 p-Values Observed in the Aldactone Study”

Stopping
Death Hazard Boundary Conditional

IA Time Placebo/Test Ratio p-Value on p-Scale Power

(8/96) 70/52 0.76 0.11 0.0000

(3/97) 136/109 0.83 0.092 0.0000

(8/97) 224/175 0.80 0.11 0.0002

(3/98) 304/241 0.81 0.0026 0.0009

(8/99) 351/269 0.78 0.00018 0.0026 0.00824
0.0054 0.05669
0.0092 0.25458
0.0137 0.38956
0.0188 0.22647

Source: Wittes et al. (2005).
“First patient in March 24, 1995.

been reported by the time of the meeting. Subsequent data collection identi-
fied an additional 46 deaths that had occurred by the time the study ended.
Even when the endpoint of a randomized clinical trial is mortality, routine
methods of data collection and reporting are unlikely to identify all events in
a timely manner. The experience from RALES provides an example of the
importance of active follow-up of patients to ensure that a DSMB is observing
a high proportion of the events that have actually occurred” (Wittes et al.,
2005).

The first patient was randomized on March 24, 1995 and the planned end
of the trial was December 31, 1999. Thus, the trial was now based on calendar
time instead of total events. Consequently, calculations for the interim analysis
had to be based on an unknown total number of deaths. The p-values observed
are presented in Table 6.2.

Suppose that the hazard ratio is 1.25 between the treatment groups;
In(1.25) = -0.22314. To calculate the number of events needed, we can use
normal endpoint design with mean = In(0.8) and standard deviation = 1.
Redesign an adaptive design with 90% power and nine interim analyses
of the OF boundary for the trial. The number of events required is 874
(Figure 6.16).

As an exercise, draw the ESP (90% power) and ESP (50% power); calcu-
late the conditional power at each stage up to the fourth stage and adjust the
sample size to 95% conditional power at the fourth stage if it is lower than
that. The conditional efficacy stopping probabilities for stages 5 to 9 are
0.00824, 0.05669, 0.25458, 0.38956, and 0.22647, respectively. The overall con-
ditional power at stage 4 is 0.936 (Figure 6.17).
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REMARKS

There are theoretical and practical aspects of adaptive design monitoring.
For the theoretical details I recommend Proschan, Lan and DeMets’ book
(2006); for practical aspects books on this topic by Ellenberg et al. (2002) and
DeMets et al. (2006) are excellent.

The study investigators and sponsor have the primary responsibility for
development of study protocol and procedures to ensure the quality of study
conduct in many instances, and the DMC will be asked to review these docu-
ments prior to initiation of a trial. By providing an advisory review of the draft
of the protocol and proposed study procedures, the DMC can ensure that none
of its members have concerns about the planned trial that would interfere with
the ability to monitor the study in the manner specified by the sponsor and
investigators. This initial review also allows the DMC to give independent
scientific guidance and reduce the risk that ethical or scientific flaws would be
identified during the course of the study.



7 Oncology Adaptive Trial Design

7.1 MULTISTAGE TRIAL DESIGN

7.1.1 Introduction

Multistage designs represent a specific category of sequential design where
the response is binary in nature and the statistical method used is exact in
terms of binomial distribution. Multistage design is often used in a phase I or
II clinical trial where a single-arm trial is utilized to determine whether an
experimental treatment holds sufficient promise to warrant further study. The
number of patients is usually not very large, and normal approximation may
not be applicable. The initial design for two-stage phase II cancer clinical trials
proposed by Gehan (1961) provided the minimum number of patients required
to enter in stage 1, such that if all patients were nonresponders, the therapy
could be discontinued from further study with a given chance of rejection
error. Given Py, a response rate that is not of interest for conducting further
studies, and P,, a response rate of definite interest (P, > P,), Fleming devel-
oped two- and three-stage designs for testing hypotheses about the true
response rate p. Fleming’s designs allow for early termination with acceptance
or rejection of the new therapy at each stage. The plans preserved (approxi-
mately) the size and power of a single-stage procedure for testing the hypoth-
eses. Simon (1989) modified Fleming’s plans by considering two-stage
procedures that permitted rejection of a therapy at either of the two stages
but acceptance only at the final stage. The rationale was that stopping a study
early was undesirable when a therapy appeared to be effective, but desirable
when the treatment seemed to be ineffective. Simon’s design is optimal in that
it minimizes the expected sample size when the true response rate p = P, at
given levels of significance and power. Also, he proposed a design that mini-
mizes the maximum number of patients required. Ensign et al. (1994) pro-
poseda three-stage design that permits early stopping when a moderately long
sequence of initial failures occurs.

ExpDesign has implemented Simon’s two-stage design and generalized
Ensign et al.’s three-stage design, which permit early stopping for futility. The
resulting designs have controlled the overall type I error rate. There are three

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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types of optimal designs in ExpDesign: MinMaxSize, MinExpSize, and
MaxUtility. MinMaxSize design minimizes the maximum sample size when
the trial goes through all the stages, Min ExpSize design minimizes the expected
sample size when the null hypothesis is true, and MaxUtility design maximizes
the utility that is defined as a composite index combining the expected sample
size and maximum sample size, and then normalized such that the correspond-
ing classical design has a utility of 1.

7.1.2 How to Design a Multistage Design Using ExpDesign

Let’s explain the steps in designing a multistage trial through an example.
Suppose that we are planning a phase II trial with a single group of cancer
patients to investigate the efficacy and safety of an experimental drug called
AntiGen. The primary endpoint is cancer response (complete response +
partial response). It is specified that if the response rate is less that 5%, the
trial will not be continued, and if the response rate is greater than 20%,
investigation will continue. The company recognizes the importance of stop-
ping the trial early if the testing drug is not promising, but is willing to spend
more if the drug is very promising. More specifically, the importance of mini-
mizing the sample size expected under the null hypothesis is rated 8 on a 10-
point scale, and the importance of minimizing the maximum sample size is
rated 2. For this reason we are going to generate two- and three-stage designs
and select the final design that meets our needs through comparisons. Note
that oo = 0.1 and power = 0.9 are common in a phase II oncology study.
However, a trial designer can use other settings as long as justifications are
provided.

We now use Expdesign to generate two-stage designs as follows. Click

bultiztage Design

. Based on the information provided in the example, we
select the option 2-stage design. Enter “0.05” for Proportion for Ho, “0.20”
for Proportion for Ha, “0.05” for Alpha, and “0.8” for Power. Suppose that
we believe that minimizing the sample size expected is more important than
minimizing the maximum sample size, and as an example, we enter “2, 8” for

. . . . Compute
the utility weights (see Figure 7.1). Click to generate a two-stage

design and click El on the toolbar to review the design report reviewed
below.

Two-Stage Design Testing (One-Sided) for a Single Proportion Featuring
Early Stopping for Futility Common settings for the three designs (Min-
MaxSize, MinExpSize, and MaxUltility) are: level of significance o = 0.05,
power = (.8, proportion for the null hypothesis P, = 0.05, and proportion for
the alternative hypothesis P, = 0.2.
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Figure 7.1 Example of two-stage design.

MinMaxSize Two-Stage Design The MinMaxSize design minimizes the
maximum size required. The design characteristics are summarized as follows:
The cumulative sample size at stage 1 = 13, the cumulative sample size at stage
2 = 27, the actual type I error rate oo = 0.042, the actual power = 0.801, and
the utility index is 1.414 for the design.

The stopping rules are as follows:

e Stage 1: Stop and accept the null hypothesis if the response rate is less
than or equal to 0/13. Otherwise, continue on to stage 2. The probability
of stopping for futility is 0.513 when H, is true and 0.055 when Ha is
true.

e Stage 2: Stop and accept the null hypothesis if the response rate is less
than or equal to 3/27. Otherwise, stop and reject the null hypothesis.

MinExpSize Two-Stage Design  The MinExpSize (optimal) design minimizes
the sample size expected. The design characteristics are summarized as follows:
The cumulative sample size at stage 1 = 10, the cumulative sample size at stage
2 =29, the actual type I error rate o = 0.047, the actual power = 0.801, and
the utility index is 1.51 for the design.

The stopping rules are as follows:

e Stage I: Stop and accept the null hypothesis if the response rate is less
than or equal to 0/13. Otherwise, continue on to stage 2. The probability
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of stopping for futility is 0.599 when H, is true and 0.107 when H, is
true.

e Stage 2: Stop and accept the null hypothesis if the response rate is less
than or equal to 3/29. Otherwise, stop and reject the null hypothesis.

MaxUtility Two-Stage Design  The MaxUltility design maximizes the utility.
The utility is defined as (0.8 x expected sample size + 0.2 X maximum sample
size) divided by the sample size from the classical single-stage design. Hence,
the utility for the classical single-stage design is 1, and a higher utility indicates
a better design. The design characteristics are summarized as follows: The
cumulative sample size at stage 1 = 10, the cumulative sample size at stage 2
= 29, the actual type I error rate o = 0.047, the actual power = 0.801, and the
utility index = 1.51 for the design.
The stopping rules are as follows:

e Stage I: Stop and accept the null hypothesis if the response rate is less
than or equal to 0/13. Otherwise, continue on to stage 2. The probability
of stopping for futility is 0.599 when H, is true and 0.107 when Ha is
true.

e Stage 2: Stop and accept the null hypothesis if the response rate is less
than or equal to 3/29. Otherwise, stop and reject the null hypothesis.

Note: There are more than three designs generated by ExpDesign (see
the spreadsheet in Figure 7.1). All meet the desired o and power values. You
can sort the designs by any of the headers; just click the header and click

Sort

Alternatively, we can generate three-stage designs. To do that we specify
the input as follows: three-stage design, proportion for H, = 0.05, proportion
for H, = 0.20, oo = 0.05, power = 0.8, and 2 and 8 for the utility weights (see

[ t
Figure 7.2). Click M to generate the two-stage designs and click ﬁl
on the toolbar to review the following report.

Three-Stage Design Testing (One-Sided) for a Single Proportion Featuring
Early Stopping for Futility Common settings for the three designs (Min-
MaxSize, MinExpSize, and MaxUltility) are: level of significance o = 0.05,
power = 0.8, proportion for the null hypothesis P, = 0.05, and proportion for
the alternative hypothesis P, = 0.2.

MinMaxSize Three-Stage Design The MinMaxSize design minimizes the
maximum size required. The design characteristics are summarized as follows:
The cumulative sample size at stage 1 = 14, the cumulative sample size at stage
2 =20, the cumulative sample size at stage 3 = 27, the actual type I error rate
o = 0.041, the actual power = 0.801, and the utility index = 1.5.



= Multiple-Stage Design B

Multiple Stage Design with Early Stopping for Futility Only [One-sided Test]

Input

" 2-5tage Design

0
e

Alpha =

Power =

f+ 3-Stage Design

Proportion for Ha = 0.0s
Propartion for Ha = 0.20

Sample size required for a standard desian [1-stage] = 30

MULTISTAGE TRIAL DESIGN 127

Utilty

zample size?

Rank the following with 1 to 10 scales
[4 high score means important]:

Haws impartant to have a small maximun

How important to have a small expected

=lolx|

[2
B

The stopping rules are as follows:
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Figure 7.2 Example of three-stage design.

e Stage 1: Stop and accept the null hypothesis if the response rate is less
than or equal to 0/14. Otherwise, continue on to stage 2. The probability
of stopping for futility is 0.488 when H, is true and 0.044 when H, is
true.

e Stage 2: Stop and accept the null hypothesis if the response rate is
less than or equal to 1/20. Otherwise, continue on to stage 3. The proba-
bility of stopping for futility is 0.264 when H, is true and 0.04 when H, is
true.

e Stage 3: Stop and accept the null hypothesis if the response is less than
or equal to 3/27. Otherwise, stop and reject the null hypothesis.

MinExpSize Three-Stage Design The MinExpSize (optimal) design mini-
mizes the sample size expected. The design characteristics are summarized
as follows: The cumulative sample size at stage 1 = 10, the cumulative sample
size at stage 2 = 19, the cumulative sample size at stage 3 = 30, the actual
type I error rate o = 0.048, the actual power = 0.8, and the utility index =

1.6.

The stopping rules are as follows:

e Stage 1: Stop and accept the null hypothesis if the response rate is less
than or equal to 0/14. Otherwise, continue on to stage 2. The probability
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of stopping for futility is 0.599 when H, is true and 0.107 when H, is
true.

e Stage 2: Stop and accept the null hypothesis if the response rate is less
than or equal to 1/19. Otherwise, continue on to stage 3. The probability
of stopping for futility is 0.199 when H, is true and 0.036 when H, is
true.

e Stage 3: Stop and accept the null hypothesis if the response is less than
or equal to 3/30. Otherwise, stop and reject the null hypothesis.

MaxUtility Three-Stage Design 'The MaxUltility design maximizes the utility,
defined as (0.8 x expected sample size + 0.2 x maximum sample size) divided
by the sample size from the classical single-stage design. Hence, the utility for
the classical single-stage design is 1 and a higher utility indicates a better
design. The design characteristics are summarized as follows: The cumulative
sample size at stage 1 = 10, the cumulative sample size at stage 2 = 19, the
cumulative sample size at stage 3 = 30, the actual type I error rate o = 0.048,
the actual power = 0.8, and the utility index = 1.6.
The stopping rules are as follows:

e Stage 1: Stop and accept the null hypothesis if the response rate is less
than or equal to 0/14. Otherwise, continue on to stage 2. The probability
of stopping for futility is 0.599 when H, is true and 0.107 when H, is
true.

e Stage 2: Stop and accept the null hypothesis if the response rate is less
than or equal to 1/19. Otherwise, continue on to stage 3. The probability
of stopping for futility is 0.199 when H, is true and 0.036 when H, is
true.

e Stage 3: Stop and accept the null hypothesis if the response is less than
or equal to 3/30. Otherwise, stop and reject the null hypothesis.

Final Design 'We now discuss how to select the final design. Since the utility
is specified, we should use the maximum utility design. Comparing three- and
two-stage design, three-stage design provides a larger utility value (1.6) than
that of two-stage design (1.5). However, three-stage design requires a maximum
of 30 patients (15.8 patients expected), and two-stage design requires a
maximum of 29 patients (17.6 expected). The main concern is that the three-
stage design is more complicated and requires more effort to implement, par-
tially because when the interim analysis is done, all patients would have been
enrolled in the trial. Therefore, the two-stage maximum utility design is chosen
for the trial. The stopping rules are specified as follows: At stage 1, stop the
trial and accept the null hypothesis if the response rate is less than or equal
to 0/13; otherwise, continue on to stage 2. At stage 2, accept the null hypothesis
if the response rate is less than or equal to 3/29; otherwise, reject the null
hypothesis.
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7.2 DOSE-ESCALATION TRIAL DESIGN

7.2.1 Introduction

Objectives of a Phase I Clinical Trial The goal of a phase I trial is to define
and characterize the new treatment in humans to set the basis for later inves-
tigations of efficacy and superiority. Therefore, the safety and feasibility of
the treatment are at the center of interest. A positive risk—benefit judgment
should be expected such that the possible harm of the treatment is outweighed
by the possible gain in cure, suppression of the disease and its symptoms, and
an improved quality of life and survival.

For example, in a cancer study, beginning treatment at a low dose is very
likely to be safe (starting dose). Small cohorts of patients are treated at pro-
gressively higher doses (dose escalation) until drug-related toxicity reaches a
predetermined level [dose-limiting toxicity (DLT)]. The objective is to deter-
mine the maximum tolerated dose (MTD) of a drug for a specified mode of
administration and to characterize the DLT. The goals in phase I trials can be
stated as follows (Crowley, 2001):

. Establishment of an MTD

. Determination of the toxicity profile

. Characterization of the DLT

. Identification of antitumor activity

. Investigation of basic clinical pharmacology

AN L AW

. Recommendation of a dose for phase II studies

Population for Treatment The phase I trial should define a standardized
treatment schedule to be applied safely to humans and worth being investi-
gated further for efficacy. For non-life-threatening diseases, phase I trials are
usually conducted on human volunteers, at least as long as the expected toxic-
ity is mild and can be controlled without harm. In life-threatening diseases
such as cancer and AIDS, phase I studies are conducted with patients because
of the aggressiveness and possible harmfulness of cyrostatic treatments,
because of possible systemic treatment effects, and the high interest in the new
drug’s efficacy in those patients directly.

Dose-Limited Toxicity and Maximum Tolerated Dose Drug toxicity is con-
sidered to be tolerable if the toxicity is acceptable, manageable, and reversible.
Drug safety has now been standardized for oncological studies by establish-
ment of the common toxicity criteria (CTC) by the U.S. National Cancer
Institute (NCI). This is a large list of adverse events (AEs) subdivided into
organ and symptom categories that can be related to anticancer treatment.
Each AE has been categorized into five classes:
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. CTC grade 0: no AE, or normal

. CTC grade 1: mild (elevated/reduced)

. CTC grade 2: moderate

. CTC grade 3: serious/severe

. CTC grade 4: very serious or life threatening

| N B S R

A toxicity of grade 3 or 4 is usually considered dose limiting. In other words,
any AE of grade 3 or higher related to treatment is considered a DLT. Often,
a judgment of “possible” or higher is considered as drug-related toxicity and
called an adverse drug reaction (ADR). The maximum tolerated dose (MTD)
is defined as a dose level at which DLTs occur at least with a certain frequency.
For example, at least one out of three patients has one grade 3 or higher CTC,
or two of three patients have grade 2 or higher CTC.

Dose-Toxicity Modeling Most designs for dose finding in phase I trials
assume a monotone dose—toxicity relationship and a monotone dose—-response
(tumor response) relationship (Figure 7.3). Ideally, the relationship can be
described as “biologically inactive dose < biologically active dose < highly toxic
dose.” The choice of an appropriate dose—toxicity model is important not only
for the planning, but also for the analysis of phase I data. Most applications
use an extended logit model and apply the logistic regression because of its
flexibility, the ease of accounting for patient covariates (e.g., pretreatment.
disease staging. performance), and the availability of computing software. A
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Figure 7.3 Logistic toxicity model.
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general class of toxicity models is a two-parameter family in which the toxicity
rate or probability of toxicity is given by

Y (x,a)=F(ay+ ah(x)), (7.1)

where x is the dose and a, and a, are considered as constants to be determined
in a frequentist approach. In Bayesian approaches, these parameters have
distributions that are updated constantly based on cumulative information.
Various functions F(-) and A(x) can be chosen to fit particular needs. In fre-
quentist approaches, the parameters a, and a, can be determined based on
data from the trial. Once the constants are determined and the toxicity rate 6
at the MTD is defined, the MTD can easily be solved:

MTD :al[F-l(e)—ao]. (7.2)

The commonly used functions for F are probit(x) or inverse Gaussian, logit(x):
1/[1 — exp(x)], and hyperbolic tangent(x): [(tanhx + 1)/2>)]™. The choice of 6
depends on the nature of the DLT and the type of target tumor. For an aggres-
sive tumor and a transient and non-life-threatening DLT, 6 could be as high
as 0.5. For persistent DLT and less aggressive tumors, it could be as low as
0.1 to 0.25. A commonly used value ranges from 0 to 1/3 (= 0.33).

ExpDesign allows users to select three different toxicity models (dose—
response models):

Linear model: p = a+ bx (7.3)

Logistic model: p = ﬁ() (7.4)
exp(—ax

1
1+bexp(-alnx)’

Log-logit model: p = (7.5)
where x is the actual dose or a function of dose [such as dose levels (integers)];
p is the toxicity rate, probability of toxicity, or DLT; and a and b are constants
determined by the starting dose level, the DLT rate at that level, the estimated
MTD, and the DLT rate at the MTD. The DLT rate at the MTD commonly
used for oncology trials varies from 20 to 50%, depending on the disease
states.

Dose-Level Selection An inadequate dose range could totally ruin a clinical
trial, because it does not cover the biologically active dose or requires too
many dose escalations to reach the target dose level. The initial dose given to
the first patients in a phase I study should be low enough to avoid severe toxic-
ity but high enough for a chance of activity and potential efficacy in humans.
Extrapolation from preclinical animal data focused on the lethal dose 10%
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(LDyg) of the mouse (dose with 10% drug-induced deaths) converted into
equivalents in units of mg/m?* of body surface area. The standard starting dose
became 1/10 of the minimal effective dose level for 10% deaths (MELD,) of
the mouse after verification that no lethal and no life-threatening effects were
seen in another species (e.g., rats, dogs). Earlier recommendations had used
higher portions of the MELD,, (mouse) or other characteristic doses, as, for
example, the lowest dose with toxicity (toxic dose low) in mammals (Crowley,
2001).

The highest dose level should be selected that covers the biologically active
dose but remains lower than a toxic dose. A pharmacokinetically guided dose
escalation (PGDE) was proposed based on the equivalence of drug blood
levels in mice and humans and on the pharmacodynamic hypothesis that equal
toxicity is caused by equal drug plasma levels. It postulates that the DLT is
determined by plasma drug concentrations and that AUC is a measure that
holds across species. The AUC calculated at the MTD for humans was found
to be fairly equal to the AUC for mice if calculated at the LD, (in mg/rn’
equivalents, MELDj).

Subsequent dose levels can be determined by using the additive set,

x,»=xi,1+Ax i=1,2,..., (76)
or the multiplicative set,
X = ﬁ,]xi,l l = O, 1, ceey (77)

where f; is the dose-escalation factor. Popular dose-escalation factors are the
Fibonacci number (2, 1.5, 1.67, 1.60, 1.63, 1.62, 1.62, . . .) and modified Fibo-
nacci schemes (2, 1.65, 1.52, 1.40, 1.33, 1.33, .. .).

ExpDesign has five different dose interval sequences for users to choose
from: Fibonacci and modified Fibonacci sequence, constant-dose-increment
sequence, constant-multiple-factor sequence, and a customized sequence that
allow users to specify any sequence they like.

Dose-Escalation Schemes After dosage levels are determined, the next step
in designing a phase I trial consists of the establishment of a rule by which the
doses are assigned to patients. Proceeding from a starting dose, the sequence
of dosing has to be fixed in advance in a dose-escalation rule. The most
common dose-escalation rules are the traditional escalation rules (TERs), also
known as 3 + 3 rules, because it became common practice to enter three
patients at a new dose level and when any toxicity was observed, to enter a
total of six patients at that dose level before deciding to stop at that level or
to increase the dose. Two versions of the 3 + 3 rule are TER and strict TER
(STER). TER does not allow you to deescalate the dose, but STER does when
two of three patients had the DLT rate (Figure 7.4). The stochastic approxi-
mation method (SA) has no fixed dose level. Instead, the level is determined
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No DLT 1DLT >1DLT

v v 4

Escalate to Add 3 more MTD = Previous
— next dose patients at same dose level.
level dose level Stop

No DLT DLT

Figure 7.4 3 + 3 Traditional dose-escalation algorithm.

not only by the toxicity from the last dose level but also the total cumulative
toxicity. The continual reassessment method (CRM), a Bayesian approach,
can be generalized for combination therapies where dose escalation takes
place in several dimensions.

The 3 + 3 TER and STER can be generalized to A + B TER and STER.
To introduce the A + B escalation rule, let A, B, C, D, and E be integers. The
notation A/B indicates that there are A toxicity incidences out of B subjects,
and >A/B means that there are more than A toxicity incidences out of B
subjects.

A + B Escalation Without Dose Deescalation General A + B designs without
dose deescalation can be described as follows. Suppose that there are A
patients at dose level i. If fewer than C/A patients have DLTs, the dose is
escalated to the next dose level, i + 1. If more than D/A (where D > C) patients
have DLTs, the previous dose (or current dose level) will be considered the
MTD. If no fewer than C/A but no more than D/A patients have DLTs, B
more patients are treated at this dose level, i. If no more than E (where E >
D) of the total of A + B patients experience DLTs, the dose is escalated.
If more than E of the total of A + B patients have DLT, the previous dose,
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i — 1, will be considered the MTD. It can be seen that the traditional 3 + 3
design without dose deescalation is a special case of the general A + B design
with A =B =3 and C =D = E = 1. Closed forms of operating characteristics
are given by Lin and Shih (2001).

The escalation probability from one dose level to the next is given by

Pr(escalation) = (1- p)* +3p(1- p)’, (7.8)

where p is the DLT rate at the current dosage level. The 3 + 3 TER, STER,
A + B TER, two-stage accelerated dose escalation, and CRM have been
implemented in ExpDesign Studio (see Figure 7.6).

Evaluation of Dose-Escalation Algorithms All dose-escalation schemes
have advantages and disadvantages. For example, the traditional 3 + 3 escala-
tion is easy to apply, but the MTD estimation is usually biased, especially when
there are many dose levels. The criteria for evaluation of an escalation scheme
used in ExpDesign are as follows:

e Number of DLTs

Number of patients

Number of patients dosed above MTD

e Accuracy and precision of the MTD prediction

ExpDesign allows users to do simulations under various scenarios and
provides evaluations based on the foregoing criteria. For details on oncology
dose-escalation trials, see the Handbook of Statistics in Clinical Oncology
(Crowley, 2001).

7.2.2 Bayesian Continual Reassessment Method

The continual reassessment method (CRM) is a model approach in which the
parameters in the model for the response are updated continually based on
the response data observed. The method used to update the parameters can
be either the frequentist or Bayesian approach. CRM was initially proposed
by O’Quigley (O’Quigley et al., 1990; O’Quigley and Shen, 1996; Babb and
Rogatko, 2004) for oncology dose-escalation trials, but it can be extended to
other types of trials (M. Chang and Chow, 2006). In CRM the dose-response
relationship is reassessed continually based on accumulative data collected
from the trial. The next patient who enters the trial is then assigned to the
currently estimated MTD or lower dose level, for safety consideration’s. The
CRM escalation rules are presented in Figure 7.5 and described below.
First, dose (assume that k = 1) the patient at the first dose level; the DLT
is assessed for the patient and the MTD is predicted using the Bayesian CRM.
If the value closest to the predicted MTD (PMTD) is higher than the current
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Add n more patients at current
dose level and stop

Figure 7.5 CRM escalation rules.

dose level, escalate the next scheduled level. If the closest dose level is lower
than the current level, deescalate to that level. This process continues until
there are m (a value of 4 to 8 seems a good choice for m). CRM is more effi-
cient than TER with respect to finding the MTD. CRM can also be used for
other dose-finding trials.

7.2.3 How to Design a Dose-Escalation Trial Using ExpDesign

Suppose that we design a phase I oncology trial whose primary objective it is
to determine the MTD for new test drug ABC. Based on the animal studies,
it is estimated that the toxicity (the DLT rate) is 1% for the starting dose
25mg/m* (1/10 of the lethal dose). The DLT rate at MTD is defined as 0.25
and the MTD is estimated to be 150 mg/m®.

Based on the information provided above, we can use ExpDesign to do
the simulations and select an optimal design. As an illustration, we first do a
one-stage trial simulation with TER and two-stage design simulation with
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single-patient escalation at the first stage and 3 + 3 TER at the second stage.
A logistic toxicity model is chosen for the simulations.

Single-Stage Design Simulation In the ExpDesign Studio window, click

Doze-Escalation I . . . L.
; select the option Single-Stage Traditional Escalation in the

window and specify the following parameters for the one-stage design with
ExpDesign: the number of stages = 1, the number of simulations = 5000, the
starting dose = 25, the DLT rate at the starting dose = 0.01, the MTD = 150,
the DLT rate at MTD = 0.25, the number of dose levels = 7, and the maximum
deescalations allowed = 0. Select the customized sequence (2, 1.67, 1.33, 1.33,
1.33, 1.33, 1.33, 1.33, 1.33), the logit model in the Toxicity (Response) Model
panel, and the standard 3 + 3 rule (STER) in the Escalation Scheme panel

. .y Compute . . . .
(Figure 7.6). Clicking to run the simulation. When it is finished,
click ﬂ on the toolbar to bring up the simulation results described below.

Single-Stage Dose-Escalation Design: Computer Simulation by Exp Design ~ See
Table 7.1. The simulation parameter settings are: the number of simulations
= 5000, the number of stages = 1, the number of dose levels = 7, the maximum
deescalations allowed = 0, the true maximum tolerated dose (MTD) = 150,
the DLT rate at MTD = 0.25, the starting dose = 25, and the DLT rate at the
starting dose = 0.01. The dose interval sequence is chosen to be the customized

4| ¥\ Dose Escalation Design

* Single-Stage Traditional Escalation

General Inputs

Murnber of simulation trials = 5000
Starting dose for simulations = 25
DILT rate for the starting dose = 0.01

aximum tolerated dose (MTD) = 150

DLT rate for MTD = 025
Mo, of dose levels planned = 7
Mas. de-escalations allowed = i]

Dase Intervals
" Fibonacci sequence

" Modified Fibonacei sequence

" Doze increment factor = 15
" Constant doge increment = |7
¢ Customized sequences= |2 1.67,1.

" Tow-Stage Accelerated Escalation

Towicity [Responze] Model
" Toxicity= a +bxDose

& Logitp=-5319+ 0028 % Dose

¢ Logitp=a+bxlogDoze]
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" Continual R eassessment Method [CRM)
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Figure 7.6 Simulations of single-stage dose-escalation design.
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TABLE 7.1
Dose Level

1 2 3 4 5 6 7
Dose 25 50 83.5 111.1 147.7 196.4 261.3
Toxicity rate 0.01 0.02 0.049 0.1 0.238 0.552 0.884
Mean no. patients 3.1 32 34 3.6 3.7 22 0.2
Mean no. DLTs 0.03 0.06 0.16 0.37 0.87 1.2 0.2
Percent MTDs 0.006  0.024  0.095 0.323 0.48 0.073 0

dose increment sequence (increment factors = 2, 1.67, 1.33, 1.33, 1.33, 1.33,
1.33, 1.33, 1.33); the 3 + 3 strict traditional rule is used; and the true toxicity
rates are defined by logit p = =5.319 + 0.028 x dose.

Simulation results are given as follows: the mean MTD = 130.4477, the
standard deviation of the MTDs predicted = 31.1, the mean number of patients
treated above the true MTD = 2.434, the mean number of patients treated
under the true MTD = 16.959, the mean number of overshoots in a trial = 0,
the mean number of undershoots in a trial = 0.001, the number of patients
expected = 19.393, and the number of DLT patients expected = 2.901.

Note: If overshooting, MTD is set conservatively to the highest planned
dose. If undershooting, the lowest scheduled dose is chosen as MTD. An
overshoot is defined as an attempt to escalate to a dose level higher than the
highest level planned. An undershoot is defined as an attempt to deescalate
to a dose level lower than the starting dose level. The dispersion of predicted
MTDs is measured by the average distance between the true and predicted
MTDs. The percent MTDs for a dose level k is the probability of dose level
k being the MTD based on simulations.

Two-Stage Design Simulation In the Dose-Escalation window, select the
two-stage design option. The rest of the parameter specifications are the same

. . . . Compute .
as those for single-stage dose escalation (Figure 7.7). Click and click

El after the simulation is finished. The results described below will be
displayed.

Two-Stage Dose-Escalation Design—Computer Simulation by ExpDesign  See
Table 7.2. The simulation parameter settings are: the number of simulations
= 5000, the number of stages = 2, the number of dose levels = 7, the maximum
deescalations allowed = 0, the true MTD = 150, the DLT rate at MTD = 0.25,
the starting dose = 25, and the DLT rate at the starting dose = 0.01. The dose
interval sequence is specified as the customized dose-increment sequence
(increment factors = 2, 1.67, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33). The 3 + 3
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Figure 7.7 Simulations of two-stage dose escalation design.
TABLE 7.2
Dose Level
1 2 3 4 5 6 7
Dose 25 50 83.5 111.1 147.7 196.4 261.3
Toxicity rate 0.01  0.02 0.049 0.1 0.238 0.552 0.884
Mean no. patients 1 1 1.1 1.3 2 2.8 2.3
Mean no. DLTs 0 0 0.01 0.04 0.29 1.23 1.8
Percent MTDs: 0 0.002  0.014 0.149 0.479 0.355 0

strict traditional rule is used. The true toxicity rates are defined by logit
p =-5.319 + 0.028 x dose.

Simulation results are given as follows: the mean MTD = 158.5057, the
standard deviation of the MTDs predicted = 31.4, the mean number of patients
treated above the true MTD = 6.071, the mean number of patients treated
under the true MTD = 6.457, the mean number of overshoots in a trial = 0,
the mean number of undershoots in a trial = 0, the number of patients expected
=11.652, the number of DLT patients expected = 5.197, the number of patients
expected to be treated at stage 1 is 5.641, and the number of patients expected
to be treated at stage 2 is 6.887.

CRM Design Simulation In the Dose-Escalation window, select Continual
Reassessment Method (CRM) and specify the parameters as follows: the
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Figure 7.8 Dose—escalation design with CRM.

number of simulations = 5000, the starting dose = 25, the DLT rate at the
starting dose = 0.01, the MTD = 150, the DLT rate at the MTD = 0.25, and
the number of dose levels = 7. Select the customized dose sequence and logist
model in the Toxicity (Response) Model panel. Select CRM for the simula-
tion, and enter 0 and 0.05 as the prior’s for parameter a, and set b = 150 in
the logistic model. Enter 0 for the number of dose levels allowed for a
skip, 2 for the minimum number of patients required at a dose level before
escalation, and 6 for the maximum number of patients at a dose level for the

¥ t
stopping rule (Figure 7.8). Click M and click ﬂ after the simulation
is finished. The results described below will be displayed.

Simulation Results Using the Continual Reassessment Method See Table 7.3.
The input parameters are specified as follows. The true MTD is 150 with a
rate of 0.25. The stopping rule specified comes into play if the maximum
number of patients at a dose level reaches 6. The dose-escalation rules are:
(1) require a minimum of two patients treated at the current level before
escalating to the next dose level; and (2) the number of dose levels allowed
to be skipped = 0.

Simulation results are shown as follows: the mean MTD = 140.8864, the
standard deviation of the MTD = 31.2, the mean MTD level = 4.7496, the
average total number of patients = 15.47, and the expected number of responses
= 2.48. The model used for the dose-response relationship is: response rate =
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TABLE 7.3
Dose Level

1 2 3 4 5 6 7
Dose 25 50 83.5 111 148 196 261
True rate 0.01 0.02 0.05 0.10 0.24 0.55 0.88
Predicted rate ~ 0.013  0.027  0.073 0.150 0.310 0.546 0.772
No. patients 2 2 2.279 3.7092 3.72 1.55 0.21
No. responses 0.02 0.04 0.11 0.37 0.89 0.86 0.19

TABLE 7.4 Summary of Simulation Results for the Designs

Assumed Mean Mean Number Mean Number
Method True MTD Predicted MTD of Patients of DLTs
3 +3 TER 86.7 14.9 2.8
Two-stage 100 106 10.9 5.4
CRM 99.2 134 2.8
3+3 TER 125 19.4 2.9
Two-stage 150 159 11.6 52
CRM 141 15.5 2.5
343 TER 169 22.4 2.8
Two-stage 200 192 115 44
CRM 186 16.8 2.2

1/[1 + 150 exp(—a dose)], where the prior for parameter a is a uniform prior
in (0, 0.05).

Comparison of Escalation Methods Evaluations of the escalation designs
are based on the following criteria: safety, accuracy, and efficiency. Simulation
results for all three methods for three different MTD scenarios are summa-
rized in Table 7.4.

In this example, we can see if the true MTD is 150 mg/m?. The TER under-
estimates the MTD (125mg/m?), and the two-stage accelerated escalation
overestimates the MTD (159mg/m?). CRM also slightly underpredicts the
MTD (141 mg/m?®). The average number of patients required is 19.4, 11.6, and
15.5 for TER, two-stage, and CRM, respectively. From a safety perspective,
the average number of DLTs is 2.9, 5.2, and 2.5 per trial for TER, two-stage,
and CRM, respectively. Further comparisons are summarized in Table 7.4.
From the simulation results, CRM seams preferable.

Customization of Escalation Rules As mentioned earlier, STER has been
implemented in ExpDesign, which allows you to set a limit for the maximum
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Figure 7.9 Customized dose-escalation design window.

dose levels allowed to deescalate. For example, if Max. de-escalations allowed
is set to 1, deescalation is allowed from level 4 to level 3 and again from level
5 to level 4, but is not allowed from level 5 to level 4 and continues for dees-
calation to level 3. ExpDesign also allows you to design a general m + n. To
customize the dose escalations, simply choose the option Customized “m-+n”
rule in the Escalation Scheme panel. The Dose-Escalation Scheme window
will appear (Figure 7.9). You can specify the escalation by typing in values in
the textboxes or by selecting the commonly used escalation rules in the panel

0K
and clicking 4| The rest is the same as for a 3 + 3 TER design.

Remark on CRM ExpDesign allows uniform and beta prior selection. The
prior, the CRM model (different values of by), and dose intervals for the
escalation all affect the outcome. These parameters should be adjusted care-
fully so as to produce reasonable outcomes for a wide range of scenarios
(e.g., different assumed MTDs).

7.3 DOSE-ESCALATION TRIAL MONITORING USING CRM

Unlike the traditional escalation design, CRM requires dynamic randomiza-
tion (i.e., the next patient assignment is based on the newly predicted MTD).
Figure 7.3 illustrates the trial monitoring process.
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Figure 7.10 Example of CRM monitoring.

We now discuss the steps for running and monitoring a CRM trial
(see the example in Section 7.2.3) using ExpDesign. The DLT observed is
hypothetical. The model used is given by

1

T 1+150e = (7.9)

p

where the prior for parameter a is uniform in (0, 0.05).

Dqse-Escha_tion
1. Click Q”B' Monitaring | Eigure 7.10).

2. Enter “150” for b, “0, 0.05” for the prior, and “0.25” for the DLT rate
for the MTD.

Get Prior MTD
3. Click w to get the prior MTD (128 mg/m?).

4. Enter “2” for the number of patients assessed (there is a minimum of
two patients for each level), “25, 25” for the dose level for the two
patients, and “0, 0” for their DLT (i.e., there is no DLT for either of
them).
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TABLE 7.5 Example of CRM Monitoring

Patient
1 2 3 4 5 6 7 8 9 10 11 12 13 14

PMTD 128 128 136 136 131 131 145 145 178 178 134 134 161 161
Dose 25 25 50 50 84 84 111 111 148 148 148 148 148 148
DLT 0 0 0 0 0 0 0 0 0 1 0 0 0 1

Get Predicted MTD
5. Click 0" to get the MTD predicted, 136 mg/m?.

6. The dose 111 mg/m” is closest to 137 mg/m?*, but one level of escalation is
allowed; hence, the next two patients should be dosed with 50 mg/m?.

7. Enter “4” for the number of patients assessed. Enter (Add) “50, 50” to
the textbox for the dosage. Suppose that they are nonresponders, so add
“0, 0” to the textbox for the response.

Get Predicted MTD
8. Click =~ to get the MTD predicted, 131 mg/m?. There-

fore, the next two patients should be dosed at 84 mg/m”.

This process continues until there are six patients at level. Table 7.5 sum-
marizes the entire process.

The final MTD predicted is 153 mg/m* (not in Table 7.5), which can be used
to design the next phase of the clinical trial. You may choose to add more
patients to get a more precise estimation of the confidence interval for the
DLT rate at the potential MTD.

74 MATHEMATICAL NOTES ON MULTISTAGE DESIGN

7.4.1 Decision Tree for a Multistage Trial
For a multistage trial regarding the hypotheses H,: 6 = 6, versus H,: 0 = 0,,
we can draw a diagram known as a decision tree (Figure 7.11). The probabili-
ties of accepting and rejecting the null hypothesis under 6 at stage k can be
expressed, respectively, as

k-1 k-1
Paccepl Hy (e) = HPL] Py and Preject Hy (e) = HPL] Py k= L 23 LK

j=1 j=1

(7.10)

The type I and II errors at stage k are written, respectively, as

Bk = Paccept Hy (ea) and (xk = Preject Hy (e()) k = 1a 2’ ceey K (711)



144 ONCOLOGY ADAPTIVE TRIAL DESIGN

P.« = Probability of rejecting Ho at stage k
P.x = Probability of accepting Ho at stage k
P = Probability of rejecting Ho at stage k

k=1,2,...,K)
Accept H, Reject H,
with P, Stage 1 with P,
P
Accept H, Reject H,
with Py, Stage 2 with Pp
1 Py,
1
Accept H, ) Reject H,
with P, Stage | with Py
1P
[
Accept H, Reject H,
with P,k Stage K with Pk

Figure 7.11 Decision tree for a multistage trial.

Sum up these to obtain the overall type I and II error rates, azZII;(xk

and B= zlilﬁk .

7.4.2 Two-Stage Design

The most commonly used two-stage design in phase II cancer trials is probably
Simon’s optimal two-stage design (Simon, 1989). The concept of Simon’s
optimal two-stage design is to permit early stopping when a moderately long
sequence of initial failures occurs. Thus, under a two-stage trial design, the
hypotheses of interest are

Hy. p< py versus H,: p> pi, (7.12)

where p, is the undesirable response rate and p, is the desirable response rate
(p1> po)- If the response rate of a test treatment is at an undesirable level, one
may reject it as an ineffective treatment with high probability, and if its
response rate is at a desirable level, one may not, with high probability, reject
it as a promising compound. Note that under the hypotheses above, the usual
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type I error is a false positive in accepting an ineffective drug, and the type II
error is a false negative in rejecting a promising compound.

Let n, and n, be the number of subjects in the first and second stages,
respectively. Under a two-stage design, n; patients are treated in the first stage.
If there are fewer than r; + 1 responses, the trial is stopped. Otherwise, addi-
tional n, patients are recruited and tested at the second stage. A decision
regarding whether the test treatment is promising is then made based on the
response rate of the n = n; + n, subjects. Note that the rejection of H, (or H,)
means that further study of the test treatment should (or should not) be
carried out. Simon (1989) proposed selecting the optimal two-stage design that
achieves the minimum expected sample size under the null hypothesis. Let
Nexp and p., be the expected sample size and the probability of early termina-
tion after the first stage. Thus, we have

Rexp = 111+ (1= pe)ta. (7.13)

At the end of the first stage, we would terminate the trial early and reject the
null hypothesis if r, or fewer responses were observed. As a result, p,, is given
by

Per = B.(ri; ny, p). (7.14)

where B(r; ny, p) denotes the cumulative binomial distribution that x < 7.
Thus, we reject the test treatment at the end of the second stage if r or fewer
responses are observed. The probability of rejecting the test treatment with
success probability p is then given by

min(ny,r)

B(ri; i, p)+ %, b(x;ny, p)B(r—x;ny, p), (7.15)

x=r+1

where b(x; ny, p) denotes the binomial probability mass function. For specific
values of pg, p1, o, and B, Simon’s optimal two-stage design can be obtained
as the two-stage design that satisfies the error constraints and minimizes the
sample size expected when the response rate is py.

7.4.3 Three-Stage Design
The decision rules for three-stage design are as follows:
e Stage 1: If x; < ry, accept Hy; otherwise, continue to stage 2.

e Stage 2: If x| + x, < 1y, accept Hy; otherwise, continue to stage 3.
e Stage 3: If x; + x, + x3 < 13, accept H,, otherwise, reject H,.

To determine ny, ry, n,, 1, n3, and r; for a given o and B, it is convenient to
define
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Bi(p)=Pr(xi<nlp),
B(p)=Pr(x;>nnx;+x,<rlp), (7.16)
Bo(p)=Pr(x;>nnxi+x,>mNx + X+ X351 | p).

Denoting binomial p.m.f. and c.d.f. by b(x; n, p) and B(x; n, p), respectively,
we have

b(x;n, p)= (Z)p"(l -p)",
Bi(p) = B(r;ny, p),

min(ny,r2)

Ba(p) = 2 b(xy; ny, p)B(r, — x1; ny, p), (7.17)

min(n1,3) min(n2,r3 —x1)

Bs(p)= Y, D, b(xiim, p)b(xs; ny, p)B(ry— X, — X5 3, p).

xX1=r1 xp=rp—x1+1

Since the B; represent the probabilities of accepting the null hypothesis at stage
i, we can obtain the overall acceptation probability as

Pr(accept Hy | p) =B(p) =B:(p)+B2(p) +Bs(p)- (7.18)

The type II error rate is given by B = B(p,); the type I error rate is given by o
=1 - B(po); and the expected sample size under p is given by

EN(p) = n +m[1-B1(p)]+ns[1-B1(p) = B2 (p)]. (7.19)

7.5 MATHEMATICAL NOTES ON THE CRM

The continual reassessment method (CRM) is a model approach in which the
parameters in the model for the response are updated continually based on
the response data observed using the Bayesian method.

7.5.1 Probability Model for Dose—Response

Let x be the dose or dose level and p(x) be the probability of response or
response rate. The commonly used model for dose-response is a logistic model
in which the probability of response (toxicity) is

1
p(x)=—— 7.20
(x) 1+ be ™’ ( )

where b is usually a predetermined constant and a is a parameter to be
updated based on data observed.
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7.5.2 Prior Distribution of a Parameter

The Bayesian approach requires the specification of prior probability distribu-
tion of the unknown parameter a:

a~ goa) (7.21)
where gy(a) is the prior probability distribution. When very limited knowledge

about the prior is available, a noninformative prior can be used.

7.5.3 Likelihood Function

The next step is to construct the likelihood function. Given n observations

with y,(i = 1,..., n) associated with dose x,,, the likelihood function can be
written as

fulrla) = TTlp(e) 1T = pCe )T (7.22)

i=1
where
{1, if response observed for x,,
= .
0, otherwise.

7.5.4 Reassessment of a Parameter

The key is to estimate the parameter a in the response model (7.20). For a
Bayesian approach, it leads to the posterior distribution of a. The posterior
probability of parameter a can be obtained as follows:

_ulrla)go(a) (7.23)

=T Tas(ada

After having obtained g,(alr), we can update the predictive probability
using

p(x)= Jﬁgn(a | )da. (7.24)

7.5.5 Assignment of the Next Patient

The updated dose—toxicity model is usually used to choose the dose level for
the next patient. In other words, the next patient enrolled in the trial is
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assigned to the currently estimated MTD based on the dose-response model
or predictive probability. Practically, this assignment is subject to safety con-
straints such as limited dose jump. Assignment of patients to the most updated
MTD is intuitive. In this way, the majority of patients will be assigned to dose
levels near the MTD, which allows for a more precise estimation of the MTD
with a minimal number of patients.



8 Adaptive Trial Simulator

8.1 ADJUSTING THE CRITICAL REGION METHOD

The ExpDesign adaptive design simulator (a beta version appears in ExpDe-
sign 5.0) allows you to simulate trials with very complex adaptive designs,
which can be combinations of adaptations such as response-adaptive random-
ization, dropping losers, early efficacy or futility stopping, and sample-size
reestimation. It can be a Bayesian or frequentist modeling or a nonparametric
approach. In the simulator, the adjusting critical region (ACR) method is
used, in which the critical region is determined by running simulations under
null condition(s) so that the simulated power is equal to the type I error rate,
o.. Next, run simulations under the alternative condition using the critical
region to obtain the power and other operating characteristics of the design.
The approach is very flexible, but it may be difficult to get approval from regu-
latory agencies because they are not yet ready for very complicated adaptive
designs. Therefore, it is not recommended for pivotal phase III trials. There
are eight simple steps to setting up your simulations. Depending on the user’s
experience level (see Figure 8.1), there may be fewer steps.

Step 1: Trial Objective The simulator allows for two possible trial objectives:
(1) to find the dose or treatment with the maximum response rate, such as the
cured rate or the survival rate (1 — death rate), and (2) to find a dose with a
target rate (e.g., the maximum tolerated dose, defined by the dose with a given
toxicity rate). The response rate or probability is defined as Pr(u > c), where
u is the utility index and c is a threshold. The utility index is the weighting
average of trial endpoints, such as safety and efficacy. The weights and the
threshold are often determined by experts in the relevant field. If only a single
binary efficacy or safety response is concerned, the utility index u is either
0 for nonresponders or 1 for responders, and the response rate is simply
Pr(u =1).

Step 2: Global Settings Enter the number of simulations you want to run,
the number of subjects for each trial, and the number of dose levels, with

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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corresponding doses and response rates. Click the Arrow button to navigate
among different dose levels. The (true) response rates can be estimated from
information available. You can also input any response rates for a sensitivity
analysis.

Step 3: Response Model The response rate can be modeled using the hyper-
logistic function, the E,,,, model, or any user-defined function of at most five
parameters (ay, a», as, a4, as). You must use xx as the independent variable or
dose in your model specification. It is critical to set appropriate parameter
ranges for your model, since it will directly affect the accuracy and precision

of the modeling. You can use the Graphic Calculator ﬂJ on the toolbar
to assist you in determining the ranges by plotting the functions. It is
recommended that as few parameters as possible be used, as that will greatly
improve the modeling precision. You can choose a parameter as the Bayesian
parameter by checking the corresponding box next to the parameter. The
response model will be updated whenever the response data become
available.

Step 4: Randomization Rules 1t is desirable to randomize more patients
to superior treatment groups. This can be accomplished by increasing
the probability of assigning a patient to a treatment group when there is evi-
dence of responsive rate increases in a group. You can choose (1) random-
ized-play-the-winner, or (2) the utility offset model. The cluster size is used
when there is a delayed response (i.e., randomizing the next patient before
knowing the responses of previous patients). A cluster size of 1 indicates no
response delay. If desired, you can perform response-adaptive randomization
at the time of interim analyses by setting the cluster size to the increment of
patients between two analyses. However, it is not a cluster randomization,
because the basic randomization unit is an individual patient, not a cluster of
patients.

Step 5: Stopping Rules 1t is desirable to stop a trial when the efficacy or
futility of the test drug becomes obvious during the trial. To stop a trial pre-
maturely, one has to provide a threshold for the number of subjects random-
ized and at least one of the following:

e Utility rules. The difference in response rate between the most respon-
sive group and the control (dose level 1) exceeds a threshold, and the
corresponding two-sided 95% naive confidence interval lower bound
exceeds a threshold.

e Futility rules. The difference in response rate between the most respon-
sive group and the control (dose level 1) is lower than a threshold, and
the corresponding two-sided 90% naive confidence interval upper bound
is lower than a threshold.
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Step 6: Dropping a Loser In addition to the response-adaptive randomiza-
tion, you can improve the efficiency of a trial design by dropping some inferior
groups (losers) during the trial. To drop a loser, you have to provide thresh-
olds for (1) the maximum difference in response rate between any two dose
levels, and (2) the corresponding two-sided 90% naive confidence lower
bound. You may choose to retain all the treatment groups without dropping
a loser, or/and to retain the control group with a certain randomization rate
for the purpose of statistical comparisons between the active groups and the
control (dose level 1).

Step 7: Sample-Size Adjustment Sample-size determination requires antici-
pation of the expected treatment effect size, defined as the expected treatment
difference divided by its standard deviation. It is not uncommon that the initial
estimation of the effect size turns out to be too large or small, which leads to
an underpowered or overpowered trial. Therefore, it is desirable to adjust
the sample size according to the effect size for an ongoing trial. The sample-
size adjustment is determined by a power function of the treatment effect
size. Users can choose different power values to meet their particular
requirements.

Step 8: Bayesian Prior If the response or utility is modeled using the Bayes-
ian approach, you can choose one of three prior probability distributions for
the Bayesian parameter in the response model: nonformative (uniform), trun-
cated-normal, and truncated-gamma distributions. The priors should be based
on information available during trial design.

Utility-Offset Model To have a high probability of achieving target
patient distribution among the treatment groups, the probability of assigning
a patient to a group should be proportional to the corresponding predicted or
observed response rate minus the proportion of patients that have been
assigned to the group. This is called the utility-offset model (Chang and Chow,
2005).

Maximum Utility Model The maximum utility model for adaptive random-
ization always assigns the next patient to the group that has the highest
response rate based on a current estimation of either the observed or model-
based predicted response rate.

8.2 CLASSICAL DESIGN WITH TWO PARALLEL
TREATMENT GROUPS

Suppose that we are performing a phase II oncology trial with treatment
groups and the primary endpoint of tumor response (PR and CR). The esti-
mated response rates for the two groups are 0.2 and 0.3, respectively. We use
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w [nformation

ExpDesign Studio [thiz component] allows pou to zsimulate trials with adaptive
dezignz. Y'ou can uze responze-adaptive-randomization to azsign more patients o
zupenor treatrent groups. ou may decide to dop the Tozer’ when an infenor group
[lozer] iz identified. 'ou may stop a trial early to claim efficacy or futility bazed on the
ohzerved data. You may conduct zimulations uzing Bayesian or frequentist modeling
approaches ar a nonparametne approach. There are 7 simple steps to setup your
zimulationz. Pleaze follow the steps in the Simulation Setup panel. The limitation of this
campanent i that the zame stopping boundary iz used for all the stages in the thal.

Expenence Level in Adaptive Dezign:

" Beginner i+ |ntermediate " Esperenced

Figure 8.1 Selection of experience level with adaptive design.

simulation to calculate the sample size required given that o = 0.05 and
power = 80%.
Following are the steps in the simulation (= indicates the next step):

.ﬁ.da_ptive Trial
. Launch ExpDesign Studio = Click Simulatar | the Intermediate

option on the panel for Experience Level in Adaptive Design (Figure
8.1). In what follows, we follow the steps in the Simulation Setup panel
(Figure 8.2) to set up and run the simulations.

. In the Trial Objective panel, choose the option for To maximize the

response rate (Figure 8.2). Next, click on the option for Step 2: Global
Settings in the Simulation Setup panel, and enter “10000” for Number
of simulations, “600” for Number of subjects, “2” for Number of dose
levels, “0.2” and “0.3” for Response rate corresponding to dose levels 1
and 2, respectively. You can click the arrow to navigate among dose
levels (Figure 8.3).

. Click the option for Step 3: Response Model, and select the Null-model

option (Figure 8.4).

. Click the option for Step 4: Randomization Rule and enter “600” for

Cluster size, “100” for Initial Balls, and “0” for balls for each response
(Figure 8.5). What we just specified is simple randomization, not an
adaptive randomization.

. Click the option for Step 5: Early Stopping and enter “1000” for Total

number of subjects randomized. This implies that early stopping is not
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Frior Probability
Randomization Rule

Dropping Loser I N - Adjustment ]
Global Settings | Response Model I

Early Stopping l
Trial Objective

 Trial Objective

* To maximize the response rate

" Tatarget the response rate of |03

I — Simulation Setup:

o

e @ @ @ @ @ @ @

Step 1: Trial Objective

There are 2 possible tial objectives: (1] To find the dose or treatment with the maximum
responge rate such as the cured rate and survival rate (1- death rate), and (2] To find the
dose with a target rate, e.g.. the maximum tolerated dose defined by the dose with a given
toxicity rate.

The responze rate or probability is defined as Pr{u »= c] where u is utility index and cis a
threshald. The utility index is the weighting average of tial endpaints such as safety and
efficacy. The weights and the threshold are often determined by experts in the relevant
field. If anly a single binary efficacy or safety response is concemed, the utlity index u is
either O for non-responders or 1 for responders, and the response rate is simply Pr{u =1].

Btep 1: Trial Objective

Step 22 Global Settings
Step 3
Step 4:
Step &

Step B:

Response Model
Randomization Rule
Early Stopping
Dropping Loser
Step 7. N - Adjustment
Step 8: Prior if Bayesian

Step 9: Run Simulation

i~ Option:

One-sided alpha =

Random seed =

0.025

|~ Do not model the first dose level
[~ Plot the average simulated result
I Dutput distribution of test statistic

2643

Figure 8.2 Step 1: trial objective.
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E arly Stopping |
Trial Objective

Dropping Laser I N - Adjustment I Priar Probability
Global Settings I Response Modsl I Randomization Rule

 Global Setting:

Murnber of simulations = [pogg Mumber of subjects = [gog

Mumber of dose levels = |2

Dosze level Doze Response rate
=11 20 0.z

Example | Bun Giraph | Erint Stop |
=1alx|

I [ Simulation Setwp: -~
l " Step1: Trial Objective

{+ Step 2 Global Settings

" Step 3: Response Model

" Step 4: Randomization Rule

" Step 5 Early Stopping

" Step B: Dropping Laser

" Step 7: N - Adjustment

" Step 8: Prior if Bapesian

" Step 3: Run Simulation

Step 2: Global settings

Enter the number of simulations you want ta run, number of subjects for each tial, the
number of doze levels with coresponding dozes and response rates. Please click the
Aow button to navigate among different dose levels. The [tue) rezponze rates can be
estimated from information available. “f'ou can also input any response rates for a
sensitivity analysis.

i~ Option:

One-sided alpha =

Random seed =

0.025

I~ Donot model the first dose level
[~ Plot the average simulated result
I Output distribution of test statistic

2643

Example

Bun

Graph I Print

Stop |

Figure 8.3 Step 2: global settings.
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Dropping Loser I N - Adjustment I
Responze Model

Early Stopping |
Trial Objective I Global Settings

Prior Prabability
Randomization Rule

i~ Response modsl
 Hyperlogistic Parameter Range  Bapesian?

" Emax

 User-defined

@ Mu

et

Step 3: Response model

The response rate can be modeled using Hyper-logistic function, Emax model or any user-
defined function of at most 5 parameters [a1, a2, a3, ad, a5, You must use = as the
independent variable or dose in you model specification. 1t iz critical to set appropriate
parameter ranges for your model, since it will directly affect the accuracy and precision of
the modeling. “You can uze the Graphic Calculator in the toolbar to assist you in
determining the ranges by plot the functions. It is recommended using as few parameters
as possible since it will greatly improve the precision of the modeling.  ou can choose a
parameter as Bayesian parameter by checking the cormesponding box nest ta the
parameter. The response model will be updated whenever the response data become
available.

— Simulation Setup:

" Step1: Trial Objective

Step 2. Global Settings

o

Step 3 Responze Model
Step 4: Randomization Rule
Step 5: Early Stopping

Step B: Dropping Loser
Step 71 M - Adjustment

Step 8: Prior if Bayesian

o e e @ e e

Step 9: Run Simulation

~=lolx|

~ Dptions.

One-sided alpha = [p025

[~ Do not model the first dose level
[~ Plot the average simulated result
[ Dutput distribution of test statistic

2643

Random seed =

Example |  Bun Graph | Frint

Stop I

Figure 8.4 Step 3: response model.

M - Adjustment I
Trial Objective ] Global Settings | Responze Model
~ Randomization Model

Dropping Loser I

Early Stopping I

Prior Probahbility

Flandomization Rule

€ Utility Offset Model
& Random-Play-theWinner

b arimurn Lkl B odel

Cluster size = [gpn
Doze Level Initial Ball:

El

Add I i) ballz far each response

Step 4: Randomization Rules

It is desirable to randomize more patients to superior treatment groups. This can be
accomplished by increasing the probability of assigning a patient ta the treatment group
when the evidence of rezponsive rate increazes in a group. You can choose [1]
Randomized-Play-thew/inner, or [2] Utlity offzet model [iecommended).

The cluster size is used when there iz a delayed response, i.e., randamizing the next
patient before knowing responzes of previous patients. & cluster size of 1 indicates no
response-delay. |f desired, you can perform response-adaptive randomization at time of
interim analyses by setting the cluster size to the increment of patients betwesn bwo
analyzes. However, it is not a cluster randomization, because the basic randomization unit
iz an individual patient not a cluster of patients.

=10l

— Simulation Setup:
" Step1:
" Step 2
" Step 3
{* Step &
 Step &
" Step &
" Step 7

Trial Dbjective
Global Settings
Fesponze Model
Randomization Rule
Early Stopping
Dropping Loser

N - Adjustment

" Step & Prior if Bapesian

" Step 3 Run Simulation

—Optian:

One-zsided alpha =

ooz
[~ Do not model the first dose level
[~ Plot the average simulated result
[~ Dutput distribution of test statistic

2643

Flandom seed =

Examplel Bun | Gusphl Print

Figure 8.5 Step 4: randomization rule.
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Early Stapping I Dropping Loser l N - Adjustment ] Prior Probability ]
Early Stopping
v Total number of ssubjects randomized >= 1000 and
[i] Effic:acy stapping
R te diff Pmax-P1] »=

I~ Response rate difference (Pmas-P1] 01 ot

|~ 95% Cl lower bound for [Pmax-P11] > 0.0

[ii) Futility stopping

| Response rate difference [Pmax-P1) < 0.05

[~ 90% Cl upper bound for [Pmax-P1] < 01
Trial Objective ] Global Settings J Response Model J Randomization Fiule

Step 5: Early Stopping

It is desirable to stop tial when the efficacy or Futility of the test drug becomes obvious
during the trial. To stop a tial prematurely, one has to provide a threshold for the number
of subjects randomized and at least one of the fallowings.

1] Utility rules: The difference in response rate between the most respongsive group and
the control [dose level 1) exceeds a threshold and the comesponding two-sided 95% naive
confidence interval lower bound exceeds a threshold.

(2] Futility rules: The difference in response rate between the most responsive group and
the control [dose level 1] is lower than a threshold and the conesponding two-sided 90%
naive confidence interval upper bound is lower a threshold,

Simulation Setup:

)

Step 1: Trial Objective
Step 2. Global Settings
Step 3. Response Model

Step 4: Randomization Rule

o & W@ @

Step B: Dropping Lozer
Step 7 M - Adjustment

Step &8: Prior if Bayesian

e @ @ @

Step 3: Run Simulation

Options

One-sided alpha = [ o285

™ Do not model the first dosa level
[~ Plot the average simulated result
I Output distribution of test statistic

Random seed = 2643

Bun

Example

ih | Print
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=l

Figure 8.6 Step 5: early stopping.

allowed because the value of 1000 exceeds the planned number of sub-
jects in the trial (i.e., 600) (Figure 8.6).

6. Click the option for Step 6: Dropping Loser = Check the box for Retain
all dose levels (Figure 8.7).

. Click the option for Step 7: N - Adjustment and enter “1000” for Adjusted
total sample size at information time, n. This implies that there is no
sample-size adjustment because the value of 1000 exceeds the total
sample size in the trial (Figure 8.8).

. Click the option for Step 8: Prior if Bayesian and leave as it is because
we are not using the Bayesian approach (Figure 8.9).

. Click the option for Step 9: Run Simulations and click @ on the toolbar

when it finished to view the simulation results, shown below.

Simulation Input The trial objective is to maximize the response rate. There
are 10,000 simulations performed for the trial of two dose levels and 600

planned subjects in each simulation.

Simulation Results See Table 8.1. The average total number of subjects for
each trial is 600. The total number of responses per trial is 150.1. The probabil-
ity of predicting the most responsive dose level correctly is 0.998 based on
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Dropping Loser ] N - Adjustment

Early Stopping Priar Probability l

i~ Rule for Dropping Loser
|~ Retain randomization rate at (01 for the first dose level.

v Retain all dose levels

I~ Maximum rate difference [Pmax - Pmin] > = IU_1
I~ 90% CI lower bound for [Pmas-Prinl) > = Iu_g

Trial Objective , Global Settings Fiesponse Maodel Fandomization Rule

Step 6: Dropping Loser

In addition to the response-adaptive randomization, you can also improve the efficiency of
a trial design by dropping some inferior groups [losers] during the trial. To drop a looser, you
have to provide two thresholds for (1] maximun difference in responze rate between any
two dose levels and (2] the corresponding two-sided 907% naive confidence lower bound.

[~ Simulation Setup:

" Step 1: Trial Objective

¢ Step 2. Global Settings

" Step 3 Response Model
" Step 4 Randomization Ruls
" Step 5 Early Stopping

i+ Step B: Dropping Loser
 Step 7. M - Adjustment

" Step 8 Prior if Bayesian

" Step 3 Run Simulation

— Option:

One-sided alpha = 10_025

I~ Do not model the first dose level

[~ Plaot the average simulated result

“You may choose to retain all the treatment groups without dropping loser, or/and to retain
the control group with a certain randomization rate for the purpose of statistical

™ Dutput distibution of test statistic
comparisons between the active groups and the control (dose kevel 1).

Random seed = ]2543

Mote: ‘when Dropping-Loser is applied, a cluster size of 50 or more should be used
becauze of the normal approximation in calculating the naive confidence interval.

Bun I Lvr‘:‘phl Print |

Example

Figure 8.7 Step 6: dropping a loser.

ayesian and Frequentist Response-Adaptive Design I _X_]

EarlyStopping | Dropping Loser I - Adjustment | Prior Prababity | — Simulation Setup:

M - Adjustment " Step 1: Trial Objective

Adjust total sample size at information time . n= {1000 gl fllcealbattinss

Step 3 Response Model

Eo_max Step 4: Randomization Rule
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Step B Dropping Loser

Adjusted total sample size should not exceed 1000

Step & Prior if Bayesian

~
~
fe
" Step 5 Early Stopping
-
&
~

Randomization Rule @

Trial Objective Global Settings Response Model

Step 7: N - Adjustment

Step 9: Fiun Simulation

~Option

Sample size determination requires anticipation of the expected treatment effect size
defined as the expected treatment difference divided by its standard deviation. It is not
uncomman that the initial estimation of the effect size tums of to be too large or small,
which consequently leads to an underpowered or overpowered trial. Therefore, it is
desirable to adjust the sample size according to the effect size for an ongoing trial.

One-sided alpha=  [p.025

|~ Do nat model the first dose level
I~ Plot the average simulated result
I~ Dutput distribution of test statistic

Fandom seed = 2643

Ta have the sample size adjusted, you have to pre-specify when and how the adjustment
will be made by entering values in the above textboxes.

Note that M = initial sample size, M = new sample size, Ea_max = initial maximum treatment
effect size compared to dose level 1, and E_max = observed maximum effect size.

Example Fun T

Stap |

aph | Print

Figure 8.8 Step 7: sample-size adjustment.
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Options

If the responsze or utility is modeled using the Bayesian approach, you can choose one of One-sided alpha= [g 25
three prior probability distribution For the Bayesian parameter in the response model, i.e.,
non-formative [uniform), truncated-nommal and truncated-gamma distributions. The priors
should be based information available at the time of designing the tral.

[ Do not model the first dose level
I Plat the average simulated result
I Dutput distibution of test statistic

Random seed = 2643

Exrample Bun
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Figure 8.9 Step 8: prior for Bayesian approach.

TABLE 8.1
Dose Level
1 2
Number of patients 299.648 300.351
Response rate 0.2 0.3
Mean rate observed 0.2 0.3
Std. dev. of rate observed 0.023 0.026

rates observed. The power for testing the treatment difference is 0.814 at a

one-sided significant level (o) of 0.025.

8.3 FLEXIBLE DESIGN WITH SAMPLE-SIZE REESTIMATION

The power of a trial is heavily dependent on the estimated effect size;
therefore, it is desirable to design a trial that allows modification of sample
size at some point during the trial. Let us redesign the trial in section 8.2 and
allow a sample-size reestimation and then study the robustness of the

design.

The simulation can be classified in two stages. In the first stage you find the
adjusted o. In the second stage you use the adjusted o and sample size to
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determine the power. The o adjustment is required when (1) there are multi-
ple comparisons with more than two groups involved, (2) there are interim
looks (i.e., early stopping for futility or efficacy), and (3) there is a response-
dependent sampling procedure such as response-adaptive randomization and
unblended sample-size reestimation. When samples or observations from the
trial are not independent, the response data are no longer normally distrib-
uted. Therefore, the p-value from the normal distribution assumption should
be adjusted, or equivalently, o should be adjusted if the p-value is not adjusted.
Similarly, the other statistic estimates from the normal assumption should also
be adjusted.

Stage 1 Keep everything the same as in the earlier example, but in step 2,
create the null hypothesis condition by entering “0.2” for both dose levels.
Then in step 7, enter “100” in the textbox for Adjusted total sample size
at information time, n, “0.163” for Eo_max, “2” for parameter, a, and “1000”
for the maximum sample size to be adjusted. Enter “100” for Cluster size
in step 5. Now try different values for One-sided alpha in the Options
panel until the power for the maximum effect (the family-wise error) becomes
0.025. The adjusted o is 0.023 in the present case. The average sample size is
960 under the null hypothesis. The value of 0.1633 for Eo_max is obtained
from (p, — p1)/[p(1 = p)], where p; = 0.2 and p, = 0.3, p = (p; + p,)/2 (Figure
8.10).

Stage 2 Change the response rate to the alternative hypothesis condition in
step 2 (i.e., enter “0.2” for dose level 1 and “0.3” for dose level 2) (Figure

R
8.11). Run the simulation again by clicking LI When the simulation is

finished, click El to view the simulation results. The design has 92.1% power
with an average sample size of 821.5.

Now assume that the true effect sizes are not 0.2 versus 0.3 for the two
treatment groups; instead, they are 0.2 and 0.28, respectively. We want to
know to what the power of the flexible design pertains. Keep everything the
same (also keep Eo_max = 0.1633), but change the response rates to 0.2 and
0.28 for the two dose levels and run the simulation again. The key results are
shown below. The design has 79.4% power with an average sample size of
855.

Given the two response rates 0.2 and 0.28, a design with a fixed sample size
of 880 has a power of 79.4%. We can see that there is a saving of 25 patients
using the flexible design. If the response rates are 0.2 and 0.3 for 92.1% power,
the sample size required is 828 with the fixed-sample-size design. The flexible
design saves six or seven subjects. Flexible design increases sample size when
the effect size observed is less than expected. Therefore, the power is
protected.
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8.4 DESIGN WITH RANDOM-PLAY-THE-WINNER
RANDOMIZATION

To investigate the effect of random-play-the-winner randomization, the earlier
example is used again, this time with a sample size of 600 subjects. The com-
monly used response-adaptive randomization is RPW(1,1); that is, one initial
ball for each group and one additional ball corresponding will be added to the
urn for each response. The data will be unblinded for every 100 new patients
or a cluster size of 100. Click the option Step 2: Global Settings, and enter
“0.2” for the response rate for both groups = Click the option Step 4: Ran-
domization Rule = Choose Random-Play-the-Winner = Enter “100” for
Cluster size and “1” for initial and additional balls for both dose levels = Click
the option Step 7: N - Adjustment and enter “1000” for Adjusted total sample
size at information time, n. After trying many runs with different o values
until o matches the family-wise error (FWE), the adjusted o is found to be
0.02 based on 30,000 simulations (Figure 8.12).

To find the power, change the response rates for the two dose levels to 0.2
and 0.3, respectively. The design has 77.3% power with an average sample size
of 600. On average, there are 223 subjects in dose level 1 and 377 in dose level
2 (Table 8.2).

* ‘Bayesian and Frequentist Response-Adaptive Design = =]]
Early Stopping ] Dropping Loser ] N - Adjustrent ] Prior Probability l Simulation Setup:
Trial Objective I Global Settings ] Response Model FRandomization Rule
B don e atoneael " Step1: Trial Dbjective
" Utility Offset Model € Maimumn Uit Madel " Step 2. Global Settings
' Random-Play-the-Winner (" Step 3: Response Model
5 * Step 4 Rand tion Ful
Cluster size = W + Step andomization Rule
Dose Level Initial Balls & S (e
{ 5

= 2 il Add [{ balls for each response & Sl Wl

=

= " Step 7: N - Adjustment

" Step 8 Prior if Bayesian
" Step 3 Bun Simulation

Step 4: Randomization Rules Options
It is desirable to randomize more patients to superior treatment groups. This can be One-sided alpha= [po2
accomplished by increasing the probability of assigning a patient ta the treatment group
when the evidence of respongive rate increases in a group. You can choose (1] [~ Do not model the first dose level
R andomized-Play-the-\#/inner, or (2] Utility offset model [recommended). v [E et elarermae sanila e test
The cluster size is used when there is a delaved response, i.e.. randomizing the next I Output distribution of test statistic
patient before knowing responses of previous patients. 4 cluster size of 1 indicates no
response-delay. |f desired, you can perform response-adaptive randomizatich at time of Fiandom seed = 2643
interim analyses by setting the cluster size to the increment of patients between two

analyses. However, it is not a cluster randomization, because the basic randomization unit
iz an individual patient not a cluster of patients.

Bun g?:é:h‘ Frint | Stop |

Example

Figure 8.12 Effect of random-play-the-winner.



GROUP SEQUENTIAL DESIGN WITH ONE

INTERIM ANALYSIS

TABLE 8.2
Dose level
1 2
Number of patients 222.972 377.028
Response rate 0.3
Mean rate observed 0.197 0.299
Std. dev. of rate observed 0.028 0.024
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Figure 8.13 Group sequential design with one interim analysis.

8.5 GROUP SEQUENTIAL DESIGN WITH ONE

INTERIM ANALYSIS

Similar to the example in Section 8.3 there two stages in the simulation. The
first stage is used to find the adjusted o value, and the second stage, to find
the power. Keep everything the same as in the earlier example, but click the
option Step 2: Global Settings, and enter “700” for Number of subjects and
“0.2” for both dose levels, then click the option Step 5: Early Stopping, and
enter “350, 0.1, 0.0, 0.05, 0.1” for the five textboxes, in that order. Try different
o values until the one-sided FWE = 0.025. The adjusted o is 0.024 for the
current design. Now click the option Step 2: Global Settings in the Simulation
Setup panel and enter “0.2” and “0.3” for the response rates of the two dose
levels, respectively (Figure 8.13). The simulation results are presented

below.
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TABLE 8.3
Dose Level
1 2
Number of patients 243.587 244152
Response rate 0.2 0.3
Mean rate observed 0.198 0.303
Std. dev. of rate observed 0.028 0.033

Simulation Inputr The maximum number of subjects is 700. The trial will
stop if 350 or more are randomized and one of the following criteria is
met:

e Efficacy (utility) stopping criterion. The maximum difference in response
rate between any dose and dose level 1 is larger than 0.1, with the lower
bound of the two-sided 95% naive confidence interval larger than or
equal to 0.0.

e Futility stopping criterion. The maximum difference in response rate
between any dose and dose level 1 is smaller than 0.05, with the upper
bound of the one-sided 95% naive confidence interval smaller than 0.1.

Simulation Results See Table 8.3. The average total number of subjects for
each trial is 487.7. The total number of responses per trial is 122. The probabil-
ity of predicting the most responsive dose level correctly is 0.988 based on
rates observed. Under the alternative hypothesis, the probability of early stop-
ping for efficacy is 0.5047 and the probability of early stopping for futility is
0.1035. The power for testing the treatment difference is 0.825.

8.6 DESIGN PERMITTING EARLY STOPPING AND
SAMPLE-SIZE REESTIMATION

It is often desirable to have a design that permits both early stopping and
sample-size modification. Keep everything the same as earlier, but enter “700”
for Number of subjects in Step 2: Global Settings and “350” for Cluster size
in Step 4: Randomization Rule. In step 7, enter “350” for Adjusted total
sample size at information time, n, “1” for Eo_max, “2” for parameter a, and
“1000” for Adjusted total sample size should not exceed (Figure 8.14). Simi-
larly, the one-sided adjusted o value is found to be 0.05. The simulation results
are presented below.

The maximum sample size is 700. The trial will stop if 350 or more are
randomized and one of the following criteria is met:
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Figure 8.14 Early stopping and sample-size reestimation.

o Efficacy (utility) stopping criterion. The maximum difference in response
rate between any dose and dose level 1 is larger than 0.1 with the lower
bound of the two-sided 95% naive confidence interval larger than or
equal to 0.0.

o Futility stopping criterion. The maximum difference in response rate
between any dose and dose level 1 is smaller than 0.05 with the upper
bound of the one-sided 95% naive confidence interval smaller than
0.1.

The sample size will be reestimated at the time when there 350 subjects are
randomized. The new sample size will be N(Eo_max/E_max)?, where Eo_max
= 0.1633 and the initial sample size N = 1000 (Figure 8.15).

Simulation Results See Table 8.4. The average total number of subjects for
each trial is 398.8. The probability of early stopping for efficacy is 0.0096. The
probability of early stopping for futility is 0.9638.

To find the power of this design, you can change the response rates to 0.2
and 0.3 for the two dose levels, respectively (Table 8.5). The average total
number of subjects for each trial is 543.5. The total number of responses per
trial is 136. The probability of predicting the most responsive dose level cor-
rectly is 0.985 based on rates observed. The probability of early stopping for
efficacy is 0.6225. The probability of early stopping for futility is 0.1546. The
power is 0.842.
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Figure 8.15

Power for group sequential trial with sample-size reestimation.

TABLE 8.4
Dose Level
1 2
Response rate 0.2 0.2
Mean rate observed 0.202 0.198
Std. dev. of rate observed 0.028 0.028
TABLE 8.5
Dose Level

1 2
Number of patients 271.463 272.029
Response rate 0.2 0.3
Mean rate observed 0.198 0.303

Std. dev. of rate observed

0.028

0.032




MULTIGROUP TRIAL WITH RESPONSE-ADAPTIVE RANDOMIZATION 165

TABLE 8.6 Simulation Results Under the Alternative Hypothesis

Dose Level
1 2 3 4 5 6
Number of patients 133 133 133 134 133 133
Response rate 0.5 0.4 0.5 0.6 0.7 0.55
Mean rate observed 0.499 0.4 0.5 0.6 0.7 0.55

Std. dev. of rate observed 0.043 0.043 0.044 0.043 0.04 0.043

The next set of examples is based on the same scenario in a six-arm study
with response rates 0.5, 0.4, 0.5, 0.6, 0.7, and 0.55 for the six dose levels from
1 to 6, respectively.

8.7 CLASSICAL DESIGN WITH MULTIPLE TREATMENT GROUPS

Enter “800” for the number of subjects, “0.5” (assuming a response rate of
0.5 under H,) for the response rate for all dose levels (the null hypothesis
condition); enter “1” for initial balls and “0” for additional balls corresponding
to each response in step 4. By altering o until the FEW becomes 0.025, we
found that the final o is 0.0055. Next, we enter “0.5, 0.4, 0.5, 0.6, 0.7, and 0.55”
for the six dose levels from 1 to 6, respectively. Enter “100” for the cluster in
step 4 and “1000” for the number of subjects randomized in step 7. The simu-
lation results are presented in Table 8.6.

The average total number of subjects for each trial is 800. The total number
of responses per trial is 433.3. The probability of predicting the most respon-
sive dose level correctly is 0.951 based on rates observed. The power for
testing the maximum effect comparing any dose level to the control (dose level
1) is 0.803 at a one-sided significant level (o) of 0.0055. The powers for com-
paring each of the five dose levels to the control (dose level 1) at a one-sided
significant level (a) of 0.0055 are 0, 0.008, 0.2, 0.796, and 0.048, respectively.

8.8 MULTIGROUP TRIAL WITH RESPONSE-ADAPTIVE
RANDOMIZATION

It is desirable to randomize more patients to the superior treatment group,
which can be accomplished by using response-adaptive randomization, such
as RPW(1,1). Specify 800 for the number of subjets in step 1 and the number
of balls based on RPW(1,1) with a cluster size of 100 in step 4, but retain the
response rate for dose level 1 at 0.25 in step 6. Simulations under the null
hypothesis result in a one-sided adjusted o value of 0.016 using this adjusted
o and response rates 0.5, 0.4, 0.5, 0.6, 0.7, and 0.55 for dose levels 1 to 7,
respectively. The simulation results shown below indicate that there are biases



166 ADAPTIVE TRIAL SIMULATOR

TABLE 8.7 Simulation Results Under the Null Hypothesis

Dose Level
1 2 3 4 5 6
Number of patients 200 120 120 119 120 121
Response rate 0.5 0.5 0.5 0.5 0.5 0.5

Mean rate observed 0.499 0.493 0.493 0.493 0.493 0.494

TABLE 8.8 Simulation Results Under the Alternative Hypothesis

Dose Level
1 2 3 4 5 6
Number of patients 200 74 100 133 176 116
Response rate 0.5 0.4 0.5 0.6 0.7 0.55

Mean rate observed 0.499 0.388 0.493 0.595 0.697 0.544

in the estimated mean response rates in all dose levels except dose level 1,
which has a fixed randomization rate. The design trial has 86% power and 447
responders per trial on average. Compared to 80% power and 433 responders
for the simple randomization RPW(1,0), the adaptive randomization is supe-
rior in both power and number of responders. The simulation results are given
in Tables 8.7 and 8.8.

The average total number of subjects for each trial is 800. The total number
of responses per trial is 446.8. The probability of predicting the most respon-
sive dose level correctly is 0.957 based on rates observed. The power for
testing the maximum effect comparing any dose level to the control (dose level
1) is 0.861 at a one-sided significant level (o) of 0.016. The powers for compar-
ing each of the five dose levels to the control (dose level 1) at a one-sided sig-
nificant level (o) of 0.016 are 0, 0.008, 0.201, 0.853, and 0.051, respectively.

8.9 ADAPTIVE DESIGN FEATURING DROPPING LOSERS

Implementing the mechanism of dropping a loser can also improve the effi-
ciency of a design. Enter “800” for the number of subjects in step 2, and enter
“100” for the cluster in step 4 (meaning that for every 100 patients random-
ized, the data will be unblended, and a review and a decision will be make as
to whether or not to drop a loser). Retain the randomization rate in dose level
1 at 0.25. An inferior group (loser) will be dropped if the maximum difference
in response between the most effective group and the least effective group
(loser) is larger than zero with the lower bound of the one-sided 95% naive
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Figure 8.16 Dropping a loser.
TABLE 8.9
Dose Level
1 2 3 4 5 6

Number of patients 200 114 121 122 122 122
Response rate 0.5 0.5 0.5 0.5 0.5 0.5
Mean rate observed 0.499 0.460 0.461 0.462 0.461 0.462

Std. dev. of rate observed 0.035 0.085 0.084 0.084 0.085 0.084

confidence interval larger than or equal to zero (Figure 8.16). Through the
simulation, the adjusted o is found to be 0.079. From the simulation results
below, some biases in mean rate can be observed with this design. The design
has 90% power with 467 responders. The probability of predicting the most
responsive dose level correctly is 0.965 based on rates observed. The design
is superior to both RPW(1,0) and RPW(1,1).

Simulation Results Under the Null Hypothesis See Table 8.9. The power
for testing the maximum effect comparing any dose level to the control (dose
level 1) is 0.025 at a one-sided significant level (o) of 0.079. The powers for
comparing each of the five dose levels to the control (dose level 1) at a one-
sided significant level (a) of 0.079 are 0.007, 0.007, 0.005, 0.006, and 0.006,
respectively.



168 ADAPTIVE TRIAL SIMULATOR

TABLE 8.10
Dose Level

1 2 3 4 5 6
Dose 20 30 40 50 60 70
Number of patients 200 26 68 172 240 95
Response rate 0.5 0.4 0.5 0.6 0.7 0.55
Mean rate observed 0.499 0.371 0.463 0.574 0.692 0.512
Std. dev. of rate observed 0.035 0.1 0.085 0.072 0.047 0.081

Simulation Results Under the Alternative Hypothesis See Table 8.10. The
average total number of subjects for each trial is 800. The total number of
responses per trial is 467.3. The probability of predicting the most responsive
dose level correctly is 0.965 based on observed rates. The power for testing
the maximum effect comparing any dose level to the control (dose level 1) is
0.896 at a one-sided significant level (o) of 0.079. The powers for comparing
each of the five dose levels to the control (dose level 1) at a one-sided signifi-
cant level (o) of 0.079 are 0.001, 0.007, 0.205, 0.889, and 0.045, respectively.

8.10 DOSE-RESPONSE TRIAL DESIGN

The trial objective is to find the optimal dose with the best response rate.
There are five dose levels and 30 planned subjects in each simulation. The
hyperlogistic model defined by the probability of response p = 1/[0.1 exp(0.05x)
+ a,exp(—ayx)], where a; = [20,100] and a, = [0,0.05]. The RPW(1,1) is used
for the randomization (Figure 8.17). The simulation results given in Table 8.11
show that the probability of predicting the most responsive dose level correctly
is 0.992 by the model and only 0.505 based on rates observed.

8.11 DOSE-ESCALATION DESIGN FOR AN ONCOLOGY TRIAL

The trial objective is to find the MTD with a response rate (toxicity rate) of
0.3. The Bayesian continual reassessment method is used. The two-parameter
logistic model is used to model the dose response. p = 1/[1 + a; exp(—a.x)],
where a; = [50,150], and Bayesian parameter a, with noninformative distribu-
tion over the range [0,0.3]. The maximum utility model is used for the ran-
domization (i.e., the next patient is assigned to the dose level that has the
highest predicted response rate). To consider the potential response delay, a
cluster size of 3 is used. Due to safety concerns, dose escalation must proceed
gradually (i.e., there must be no jump in dosage). See Figures 8.18 and 8.19
for the key parameter specifications to run the simulations.
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Figure 8.17 Hyperlogistic model for dose-response trial.

TABLE 8.11
Dose Level

1 2 3 4 5
Dose 15 30 50 85 110
Number of patients 5.528 5.699 6.278 6.438 6.057
Response rate 0.2 0.3 0.6 0.7 0.5
Mean rate observed 0.193 0.294 0.593 0.691 0.489
Mean rate predicted 0.098 0.181 0.406 0.802 0.379
Std. dev. of rate observed 0.185 0.209 0.221 0.204 0.226

Std. dev. of rate predicted 0.074 0.073 0.104 0.151 0.056
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Figure 8.18 Hyperlogistic model with Bayesian parameter a,.
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analyses. However, it is not a cluster randomization, because the basic randomization unit
iz an individual patient nat a cluster of patients.

~ Simulation Setup:

-

Step 1: Trial Objective
Step 2. Global Settings

Step 3: Response Model

o @ e

Step 4 Randomization Rule
Step 5 Early Stopping
Step 6 Dropping Loger
Step 7 M - Adjustment

Step 8: Prior if Bayesian

@ @ @ @ ®

Step 9 Run Simulation

=10l x|

i~ Options

One-sided alpha = Iu_nzs

|~ Do not model the first dose level
¥ Plat the average simulated result
™ Dutput distribution of test statistic

|2543

Random seed =

Example | Bun

Copy | .
(e FErint

| Stop

Figure 8.19 Maximum-utility model without a dose jump.
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TABLE 8.12
Dose Level

1 2 3 4 5 6
Dose 20 30 40 50 60 70
Number of patients 2.5 6.2 8.5 14.1 5.8 2.9
Response rate 0.05 0.1 0.15 0.28 0.4 0.6
Mean rate observed 0.012 0.048 0.108 0.281 0.324 0.353
Mean rate predicted 0.056 0.106 0.191 0.313 0.461 0.608

Std. dev. of rate observed 0.038 0.077 0.185 0.205 0.314 0.384
Std. dev. of rate predicted 0.02 0.041 0.073 0.104 0.124 0.127

The simulation results are given in Table 8.12. The average total number
of subjects for each trial is 40. The total number of responses per trial is 10.2.
The probability of predicting the most responsive dose level correctly is 1 by
the model and 0.366 based on rates observed.



9 Further Assistance from
ExpDesign Studio

9.1 EXPDESIGN PROBABILITY FUNCTIONS

Bernoulli Distribution This distribution best describes all situations where
a “trial” is made resulting in either “success” or “failure,” such as when tossing
a coin or when modeling the success or failure of a surgical procedure. The
Bernoulli distribution is defined as

f)=p(1-p',  xel01], 0.1)
where p is the probability that a particular event (e.g., success) will occur.

Beta Distribution The beta distribution arising from a transformation of the
F-distribution is typically used to model the distribution of order statistics.
Because the beta distribution is bounded on both sides, it is often used to
represent processes with natural lower and upper limits. The beta distribution
is defined as

_T(v+w)

= »(1-x)*"', 0<x<l, v>0, and w>0, (9.2)
(v)I'(w)

f(x)

where I' is the gamma function and v and w are shape parameters.

Binomial Distribution The binomial distribution is useful for describing
distributions of binomial events, such as the number of males and females in
a random sample of companies, or the number of defective components in
samples of 20 units taken from a production process. The binomial distribution
is defined as

f(x)= p*(1-py forx=0,1....n, (9.3)

n!
x!(n-x)

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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where p is the probability that the respective event will occur and n is the
maximum number of independent trials.

Cauchy Distribution The Cauchy distribution is interesting for theoretical
reasons. Although its mean can be taken as zero, since it is symmetrical about
zero, the expectation, variance, higher moments, and moment generating
function do not exist. The Cauchy distribution is defined as

1

f(x)= on(1+[(x—)/6]) for6>0 94)

where 1 is the location parameter (median), 0 is a scale parameter, and T is a
constant (3.1415 .. .).

Chi-Square Distribution The sum of v independent squared random vari-
ables, each distributed following the standard normal distribution, is

1

m(x”“e’m) forv=1,2,...and x>0, (9.5)
%

f(x)=
where v represents the degrees of freedom, e is the base of the natural loga-
rithm, sometimes called Euler’s e (2.71 .. .), and T is the gamma function.

Exponential Distribution 1f T'is the time between occurrences of rare events
that happen on the average with a rate of 1 per unit of time, then 7 is distrib-
uted exponentially with parameter A. Thus, the exponential distribution is
frequently used to model the time interval between successive random events.
Examples of variables distributed in this manner include the gap length
between cars crossing an intersection, the lifetimes of electronic devices, or
the arrivals of customers at a checkout counter in a grocery store. The expo-
nential distribution function is defined as

f(x)=Xe™  forA>0 and x>0, (9.6)
where A is an exponential function parameter.

F-Distribution Snedecor’s F-distribution is most commonly used in tests of
variance (e.g., ANOVA). The ratio of two chi-squares divided by their respec-
tive degrees of freedom is said to follow an F-distribution. The F-distribution
has the probability density function (forv=1,2,...;w=1,2,...):

e T o R o N

where 0 < x, v and w (degrees of freedom) are positive integers, and T is the
gamma function.
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Gamma Distribution The probability density function of the exponential
distribution has a mode of zero. In many instances it is known a priori
that the mode of distribution of a particular random variable of interest is not
equal to zero (e.g., when modeling the distribution of the lifetimes of a product
such as an electric light bulb or the serving time taken at a ticket booth
at a baseball game). In those cases, the gamma distribution is more appropri-
ate for describing the underlying distribution. The gamma distribution is
defined as

c-1
f(x)= —brl( )(%) ex!b forx=0 and c¢>0, (9-8)
¢

where c is a shape parameter and b is a scale parameter.

Geometric Distribution 1f independent Bernoulli trials are made until a
“success” occurs, the total number of trials required is a geometric random
variable. The geometric distribution is defined as

f(x)=p(1-p)* forx=1,2,..., (9.9)
where p is the probability that a particular event (e.g., success) will occur.

Gompertz Distribution The Gompertz distribution is a theoretical distribu-
tion of survival times. Gompertz (1825) proposed a probability model for
human mortality based on the assumption that the “average exhaustion of a
man’s power to avoid death to be such that at the end of equal infinitely small
intervals of time he lost equal portions of his remaining power to oppose
destruction which he had at the commencement of these intervals” (Johnson
et al., 1995, p. 25). The resulting hazard function

r(x) = Bexp(x) forx<0, B>0, and c<1. (9.10)

Laplace Distribution For interesting mathematical applications of the
Laplace distribution, see Johnson et al. (1995). The Laplace (or double expo-
nential) distribution is defined as

|x—al

5 ) for —eo < x < oo, (9.11)

700 = exn|

where a is the location parameter (mean) and b is the scale parameter.

Logistic Distribution The logistic distribution is used to model binary
responses (e.g., gender) and is commonly used in logistic regression. The
logistic distribution is defined as
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-2
flx)= %exp(—¥)[l+e)¢p(—¥ﬂ for —eo< x <ooand b >0,
(9.12)

where a is a location parameter (mean) and b is a scale parameter.

Lognormal Distribution The lognormal distribution is often used in simula-
tions of variables such as personal incomes, age at first marriage, or tolerance
to poison in animals. In general, if x is a sample from a normal distribution,
then y = ¢ is a sample from a lognormal distribution. Thus, the lognormal
distribution is defined as

Y
Fx)= Jilxc exp[— (IH;GZH) ] for0<0, u>0, and >0,  (9.13)

where | is a scale parameter and o is a shape parameter.

Normal Distribution The normal distribution (the “bell-shaped curve”
which is symmetrical about the mean) is a theoretical function commonly used
in inferential statistics as an approximation to sampling distributions. In
general, the normal distribution provides a good model for a random variable,
when:

1. There is a strong tendency for the variable to take a central value.

2. Positive and negative deviations from the central value are equally
likely.

3. The frequency of deviations falls off rapidly as the deviations become
larger.

As an underlying mechanism that produces the normal distribution, one
may think of an infinite number of independent random (binomial) events
that bring about the values of a particular variable. For example, there are
probably a nearly infinite number of factors that determine a person’s height
(i.e., thousands of genes, nutrition, diseases, etc.). Thus, height can be expected
to be normally distributed in a population. The normal distribution function
is determined by the formula

1 (“_x)
x)= ex for —oo < x < oo, 9.14
1= 7 P e o

where | is the mean and o is the standard deviation.

Pareto Distribution The Pareto distribution is commonly used in a monitor-
ing production processesor. The Pareto distribution can be used to model the
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length of wire between successive flaws. The standard Pareto distribution is
defined as

f(x)=—— forl<x and c>1, (9.15)
X

where c is the shape parameter.

Poisson Distribution The Poisson distribution is also sometimes referred to
as the distribution of rare events. Examples of Poisson-distributed variables
are number of accidents per person, number of sweepstakes won per person,
or the number of catastrophic defects found in a production process. The
Poisson distribution is defined as

Ae ™

x!

f(x)= x=0,1,..., and A>0, (9.16)

where A is the expected value of x (the mean).

Rayleigh Distribution If two independent variables y; and y, are indepen-
dent of each other and normally distributed with equal variance, the variable
x=+/(yf +y3) will follow the Rayleigh distribution. Thus, an example (and
appropriate metaphor) for such a variable would be the distance of darts from
the target in a dart-throwing game, where the errors in the two dimensions of
the target plane are independent and normally distributed. The Rayleigh dis-
tribution is defined as

2

flx)= ;—zexp(—;?) for0<x and b>0, (9.17)

where b is a scale parameter.

Rectangular Distribution The rectangular distribution is useful to describe
random variables with a constant probability density over the defined range
a<b:

1
b-a

for a < x < b; otherwise, 0. (9.18)

f(x)=

Student’s t Distribution Student’s ¢ distribution is symmetric about zero, and
its general shape is similar to that of the standard normal distribution. It is
most commonly used in testing hypothesis about the mean of a particular
population. Student’s t distribution is defined as (forn =1,2,...)
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_T((v+ 1)/2)% L2\ 2
f(x)= W{l+(7) } (9.19)

where v is a shape parameter (degrees of freedom) and I is the gamma
function.

Weibull Distribution As described earlier, the exponential distribution is
often used as a model of time-to-failure measurements, when the failure
(hazard) rate is constant over time. When the failure probability varies over
time, the Weibull distribution is appropriate. Thus, the Weibull distribution
is often used in reliability testing (e.g., of electronic relays, ball bearings, etc.;
see Hahn and Shapiro, 1967). The Weibull distribution is defined as

c-1 c
f(x)= %(%) exp(——) for0>2x, b>0 and c¢>0, (9.20)

where b is a scale parameter and c is a shape parameter.

9.2 VIRTUAL TRIAL DATA GENERATION USING EXPDESIGN
RANDOMIZOR

9.2.1 Random Number Generation Using ExpDesign

The randomizor in ExpDesign Studio can generate random numbers with
the following distributions: Bernoulli, beta, binomial, Cauchy, chi-square,
exponential, gamma, geometric, half-normal, hypergeometric, inverse Gauss-
ian, laplace, lognormal, multinormal, negative binomial, Pareto, Pascal,
Poisson, Rayleigh, Snedecor-F, standard normal, Student’s-z, Uniform(0,1),
Weibull.

To generate a uniformly distributed random number between 0 and 1, click

Fandomizor | . L . Spin |
in the ExpDesign Studio window; then click .

9.2.2 How to Generate a Random Univariate Using ExpDesign

To generate 40 random numbers with a standard normal distribution, enter
. . Fiun
“40” for Number of random variables to be generated and click

(Figure 9.1). The random numbers generated can be reviewed by clicking Ql
on the toolbar (Figure 9.2).

To generate five random numbers with the exponential distribution and
sort them, select Exp in the Distributions box.
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i
i~ Distribution:
|G aussian d

~ Input Parameters far Mormal [0,1] distribution.

037354 Seedl = 14 Seed? = 709
Number of random numbers to be generated = (4
Spin |
v Format output [ Sort output

Frint

Figure 9.1 N(0,1) random number generation.

«:Report 2 (Randomizor) | Aﬂlﬂ

Normal {0,1) Distributed Random Number QJuality Check

mean= 9_6Z551139310424E-02 Sdtdev = 1.110460335132Z6

-0_.Z213308  -0.073007Z 2.1132z2e7 -l.619E5g22 -1.8133c4F%
-1.132e2E534 0.E02972e 0.e7704le  -0.EEE9De7 1.2114el1l
-0.E497z214  -0.5629047 -0 64790L5 0. cZ20e72 1.03218544
-0_Z19E653 1.6Z19E37 -1.Z&608603 -0_Z120%24 -1_34017E59
1.1927002 -1.0ee3205 .E270107  -0.z209727%c 0.92e2242
-1.57116321 1.0642505 7646645 -0.32825916 -0.8777867
-1l.0E5E2z17 0.7&6322323 JEZEQZ0E 0.769c854  -0_ 116440
=0. SPEF2E42 1.129482¢ .381lee24 0.1055147 1.6868032

Figure 9.2 Random number generated using ExpDesign.

e Enter “5” for Number of random variables to be generated.
e Check the Sort output box.

R
e Click ﬂ and the random numbers generated can be reviewed by

clicking ﬂ on the toolbar (Figures 9.3 and 9.4).
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-loix]

i~ Distribution:

HyperGeometric
InvEaussian ;,I

i~ Input Parameters for Exp distribution.

037354 Seed= 763 Lamda=  [3

Mumber of random numbers to be generated = |5

v Format output v Sort output

Spin

Print

Figure 9.3 Exponential random number generation.

TR

Exp Distributed Random Mumber Quality Check

mean= 0_253568560930072 Sdtdew = 0_235848363345036

0.0123579 0.0914744 0.1554442 0.3726403 0.6559z26

Figure 9.4 Exponential random number output.

9.2.3 How to Generate a Random Multivariate Using ExpDesign

To generate five rows of random numbers xy, x,, . .. of multivariate normal
distribution with mean {0,0} and the following correlation matrix:

1 0.3
0.3

. R andarmizaor .
e Click , then select MultiNormal.

e Enter “2” for No. of Vars.
e Enter “1, 0.3, 0.3, 1” for Corr. Coef.
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e Enter “5” for Number of random numbers to be generated.

Run

* Click

e The random numbers generated can be reviewed by clicking ﬂ on the
toolbar (Figures 9.5 and 9.6).

To generate five rows of random numbers x;, x,,

distribution with the following correlation matrix:

o

0.145

-~ Distribution:

MegBinomial

Mormal (0,1] ;]

i~ Input Parameters for MultiMormal distribution.

Seedl = 706 Seed2 = ()

Mo, of Yars = |2 Cor. Coel. = |4, 03.03.1

Spin

Mumber of random numbers to be generated = |5

v Format output I~ Sort autput

Priit

Figure 9.5 Multivariate random number generation.

:¢:Report 2 {Randomizor)

=10l x|

x1
0.220407&
-1.0183303
1.19866E
-1_Z693494
0.4Z36088

Figure 9.6

Standard Multi-wvariate Normal Distribution

xE

-0.393Z
-1_91£147Z
0.8853687
-1.185351¢&
132412713

Multivariate normal random numbers.

... multivariate normal

=10l ]
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1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

Select MultiNormal in the Distributions box.

Enter “3” for No. of Vars.

Enter “1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1” for Corr. Coef.
Enter “5” for Number of random variables to be generated.

. Run
Click .

The random numbers generated can be reviewed by clicking E on the
toolbar (Figures 9.6 and 9.7).

9.2.4 How to Generate a Random Multibinomial Using ExpDesign

To generate five rows of random numbers xy, x,, . . ., of multibinomial distri-
bution with marginal proportion {0.4,0.5} and the following correlation
matrix:

0.3

0.3

. R andomizar . .
Click and the select MultiBinomial.

Enter “2” for No. of Vars.

Enter “0.4, 0.5” for the proportions.

Enter “1, 0.3, 0.3, 1” for Corr. Coef.

Enter “5” for Number of random variables to be generated.

. Run
Click .

=0l =]

z L Report 1 (Randomizor)

Standard Multi-variate Normal Distribution

xl xE x3
0.&31800% -0_Z1&6ELE4 O_2EE71593
-0.54715%9 00326238 -0_.24033E1
0.4738641 0.366l258% -0_z2Z032474
—-0.z83352E 0.93833EE -0_E72454
0.33682E55 O_EZ3E0E587 0. 3657245

Figure 9.7 Three-variate normal distributions.
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i Report 6 (Randomizor)

il

[ T Y o Y e T

z

[ O e e Y e

Multivariate Binomial Distribution L

Figure 9.8 Two-variate binomial random numbers.

¢ The random numbers generated can be reviewed by clicking ﬂ on the
toolbar (Figures 9.8 and 9.9).

To generate five rows of random numbers x;, x,, . .

., of multibinomial dis-

tribution with marginal proportion {0.4, 0.5, 0.35} and the following correlation

matrix:

1 0.3 0.3
0.3 1 0.3
0.3 0.3 1

. R andomizor . .
e Click and then select MultiBinomial.

e Enter “3” for No. of Vars.
e Enter “0.4, 0.5, 0.35” for the proportions.
e Enter “1, 0.3, 0.3, 0.3, 1, 0.3, 0.3, 0.3, 1” for Corr. Coef.

e Enter “5” for Number of random variables to be generated.

. Fun
e Click .

e The random numbers generated can be reviewed by clicking ﬂ on the

toolbar (Figure 9.9).

9.3 EXPDESIGN TOOLKITS

ExpDesign Studio toolkits include four tools: Graphic calculator, statistical
calculator, Confidence interval calculator, and show tip of day (Figure 9.10).
The toolkits can be accessed through the Tools menu or the icons on the
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« Report 7 (Randomizon)

Multivariate Binomial Distribution

JE i 3

| el e o Y
FOoOkFRRFOR
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Figure 9.9 Three-variate binomial random numbers.

Tools  Window  Help
Graphic Calculatar
Skatistical calculator
Confidence interval Calculator

Show Eip of day .
L0 [ ] 3 m |'T|’}I - | ﬁ“"}l

Figure 9.10 Menu and toolbar for expdesign toolKkits.
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toolbar. The tip text for each icon will indicate which icon is for which tool

when you move the mouse over an icon (Figure 9.10).

9.3.1 Graphic Calculator

You can use the graphic calculator as a scientific calculator, a function plotter,

or a data graphic tool.
To use as a scientific calculator:

e Click the icon for Graphic Calculator M
e Enter functions and values to form a expression.
¢ Click Compute to obtain the desired output.

To use as function plotter:

¢ Click the icon for Graphic Calculator @
¢ Choose Function Plot from the Option menu.

e Enter an expression in the textbox (the independent variable must be

X).
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@ Calculator

=100
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Figure 9.11 ExpDesign graphics calculator.

* Click Graph to plot the expression.

e Copy the graph by clicking the Graph button and paste into other appli-
cation software such as MS Word using the Paste or Paste-Special

method.

Pririt
e Click J to print the result (Figure 9.11).

To use as a data graphic tool:

e Choose the icon for Graphic Calculator M
e Enter data for x and y in the two columns in the spreadsheet. Click Graph

to plot.

* You can change the title, axis labels, and ranges for the axis by clicking
the corresponding area and entering the desired text in the textboxes that

appear, then press the Enter key.

e Copy the graph by clicking the Copy button and paste into an application
software such as MS Word using the Paste or Paste-Special method.

. Fririt .
e Click to print the result.
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4. pistribution Calculator i 10| =|

™ Prabability Diztribution " Cumulative Distribution
Binomial
Chi-=q W= |-| 95
E xponential =
F-distribution Prob = |n_9?5
Garnrma
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Standard normal
Student t
wheibull

Pint |  Exit |

Figure 9.12 ExpDesign distribution calculator.

9.3.2 Statistical Calculator

The statistical calculator allows users to calculate the probability density,
probabilities, and inverse probability functions for the following probability
distributions: binomial, chi-square, exponential, gamma, Poisson, Suedecor-F,
standard normal, Student’s-t, and Weibull.

e Select the option for Probability distribution or Cumulative
distribution.

Select a probability distribution from the list.
e Enter appropriate values for the model parameters.

. Compute . .
Click to obtain the desired output.

Frint
Print the output by clicking ﬂ (Figure 9.12).

9.3.3 Confidence Interval Calculator

The confidence interval (CI) calculator allows users to calculate the following
confidence intervals: one proportion exact CI, one proportion CI using normal
approximation, one mean CI using the ¢-distribution, one mean CI using the
normal approximation, two-proportion CI using the ¢-distribution, two-mean
CI using the t-distribution, two-mean CI using the normal distribution, and CI
for a one- or two-variance ratio using the F-distribution (Figure 9.13).
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| #34 Two-sided Confidence Interva
‘| CI Optians

One Proportion Exack CI

One Proportion CI {z-skatiskic)
One Mean CI (k-skatiskic)

One Mean CI (z-statistic)
Two-Proportion CI {z-statiskic)
Twio-mean CI (k-statiskic)
Twio-Mean CI {z-statiskic)

Ore Yatiance C1

Twio Yariance Rakio CT

Figure 9.13 Confidence interval calculator options.

% Two-sided Confidence Intery:

I Options

=10l x|

Two-5ized Confidence Interval for Difference Between
Two Means [t-distribution]

E=ample

Sample Size in Group 17
Sample Size in Group 27
Mean in Group 17
Mean in Group 27

2
Standard D eviation in Group 17 2
25

Standard D ewiation in Group 27

Confidence Interval =

LCompute

[-0.0578 - 1.6673)

E xit |

Figure 9.14 ExpDesign confidence interval calculator.

Click the CI icon |

Choose the method desired for CI Options.
Enter appropriate values for the model parameters.

Compute

Click to obtain the confidence interval.

Frint
Click ﬂ to print the result (Figure 9.14).



10 Classical Design Method
Reference

10.1 SINGLE-GROUP DESIGN

10.1.1 One/Paired-Sample Hypothesis Test for the Mean

Sign Test for Median Difference for a Paired Sample
Objective: To calculate sample size based on the sign test for the difference
between the medians of two distributions.

Technical Notes This formula for sample-size calculation is given by Noether
(1987) under the assumption of a large sample. The sign test requires that
observations in the two samples be taken in pairs, one from each distribution.
Each observation should be taken under the same conditions, but it is not
necessary for different pairs to be taken under similar conditions.

Wilcoxon Signed-Rank Test for One or a Paired Sample
Objective: To calculate sample size based on the Wilcoxon signed-rank test
for the mean or median of a population, without requiring normality.

Technical Notes This formula for sample-size calculation is given by Noether
(1987) under the assumption of a large sample. The Wilcoxon signed-rank test
is a distribution-free test and requires a symmetrical population. The observa-
tions must be obtained randomly and independently.

Test for Hy: (u,, ©,) Versus H,: (u,, 6,)—Large Sample

Objective: To calculate sample size based on a z-test for one sample mean
with Hy: u, versus H,: u,, where u, is a value that the research is interested in
and u, is a value that the research is not interested in.

Technical Notes The formula is accurate if the population is normally dis-
tributed; otherwise, the sample size must be large (e.g., n > 30) (Lachin,
1981).

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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One-Sample t-Test
Objective: To calculate sample size based on a one-sample t-test for the
difference between an assumed population mean 1, and a sample mean u,.

Technical Notes This method for calculating the sample size is an exact
method for a one-sample #-test. It is computed using a noncentral ¢-distribution
with n — 1 degrees of freedom, and the noncentrality parameter is the square
root of n times (u, — u,)/s, where s is the standard deviation and # is the sample
size (Devore, 1991).

One-Sample t-Test: Finite Population

Objective: To calculate sample size based on a one-sample t-test for the
difference between an assumed population mean u, and a sample mean u,.
The population size is limited.

Technical Notes This method of calculating the sample size is an exact
method for a one-sample t-test. It is first computed using a noncentral ¢-
distribution with n — 1 degrees of freedom, and the noncentrality parameter
is the square root of n times (u, — u,)/s/(1 — n/N), where s is the standard
deviation, n is the sample size, and N is the population size. The resulting
sample size is then adjusted for finite sample size (Devore, 1991).

Paired-Sample t-Test

Objective: To calculate sample size based on the paired-sample #-test for the
difference between an assumed population mean u, and a sample mean u,. A
paired-sample -test is often used to determine if a mean response changes
under different experimental conditions using paired observations, such as
pre- and post- study measurements.

Technical Notes This method for calculating the sample size is an exact
method for a paired-sample #-test. It is computed using a noncentral ¢-
distribution with n — 1 degrees of freedom and the noncentrality parameter
square root of n times (u, — u,)/s, where s is standard deviation and 7 is the
sample size (Devore, 1991).

One-Way Repeated Measures ANOVA
Objective: To calculate sample size for testing constant correlation based on
a one-way repeated measures ANOVA.

Technical Notes Sample size is computed using central and noncentral
F. The numerator and denominator degrees of freedom are (M — 1) and
(M —1)(n — 1), and the noncentrality parameter is nM times the effect size, d.
8 = V/[S*(1 - r)], where the variance of means V = X (u; — u)/k, k is the number
of levels, S is the common standard deviation at each level, and r is the
correlation between levels.
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One-Sample Multiple Test for Zero Means
Objective: To calculate sample size based on a one-sample multiple test for
Zero means.

Technical Notes The sample-size formula is given by Odeh and Fox
(1991) for the three main effects based on a noncentral F-distribution. The
numerator and denominator degrees of freedom are m — 1 and N — m,
respectively.

10.1.2 One/Paired-Sample Hypothesis Test for Proportion

One-Sample Exact Test for Proportion Using Binomial Distribution
Objective: To calculate sample size based on a one-sample exact test for
proportion using binomial distribution.

Technical Notes Sample size is calculated using cumulative binomial distri-
bution (Devore, 1991). The critical point for rejecting the null hypothesis is
calculated as the largest k for which the probability of observing k or fewer
responses is less than oo when p = p, for a one-sided test with Hy: p, < p,o. For
a one-sided test with H: p, > po, the smallest & is chosen for which the probabil-
ity of observing k or more successes is <o.. For a two-sided test, both probabili-
ties are required to be less than or equal to a/2. Because of the discrete nature
of the binomial distribution, power is not a monotonic function of sample size.
Therefore, a small sample-size increase may result in a decrease in power. The
sample size provided by this software ensures that a sample size beyond this
size will not reduce the power.

McNemar’s Test for a Paired Sample

Objective: To calculate sample size based on McNemar’s test for the equality
of binary response rates from two populations, where the data consist of
paired dependent responses, one from each population.

Technical Notes This sample-size formula is given by Miettinen (1968)
based on McNemar’s test, which is identical to the binomial test using a
normal approximation. It should be used only when normality is met. That is,
CioCip 2 Cy(4 — Cyp) and GGy 2 Cip(4 — Cyy), where G is the cell frequency
in a2 x 2 table.

Chi-Square Test for One Sample Proportion
Objective: To calculate sample size based on the chi-square test for one
sample proportion.

Technical Notes This method is only applicable to a large sample due
to the normality approximation. The sample size for the one-sided test is
calculated using the following formula: n = (z,ody + z13d1)/(po — p1)’, where
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d; = [pi (1 — p;)]"® and p; is the proportion. For a two-sided test, replace the o
in the equation by o/2 (Devore, 1991).

Chi-Square Test for One Sample Proportion: Finite Population
Objective: To calculate sample size based on the chi-square test for one-
sample proportion with finite population adjustment.

Technical Notes This method is only applicable to a large sample due to the
normality approximation. The unadjusted sample size for the one-sided test
is calculated using the following formula: n = (2, do + 213 d1)/(po— p1)*, where
d; = [p; (1 = p;))]*° and p; is the proportion. For a two-sided test, replace the o
in the equation by o/2. To adjust for finite population size N, use a factor of
n/(n + N). That is, the adjusted sample size will be nN/(n + N) (see Devore,
1991).

10.1.3 One/Paired-Sample Hypothesis Test for Others

Test for Bloch-Kraemer Intraclass x Coefficient
Objective: To calculate sample size based on the test for Bloch—-Kraemer
intraclass Kk coefficient for binary outcomes.

Technical Notes The sample size is calculated based on the formula
n=[(zia + 219)/(Zo — Z)|* V,, where Z is the z-transform of the x coefficient,
and V, is the variance of Z. The « coefficient = (variance of p)/[p(1 — p)], and
p is the proportion of response (Bloch and Kraemer, 1989).

Test for Bloch-Kraemer Intraclass x Using z-Transformation
Objective: To calculate sample size based on the test for the Bloch—-Kraemer
intraclass K coefficient (binary outcome) with Kraemer’s Z-transformation.

Technical Notes The sample size is calculated based on the formula n = (z,_,
/w)*V, where the variance of the x coefficient Vi = (1 — ¥){(1 — x)(1 — 2x) +
k(2 - x)/[2p(1 - p)]}, the kappa coefficient = (variance of p)/[p(1 — p)], and p
is the proportion of response. It is assumed that x is normally distributed. This
assumption may not hold in some situations; therefore, it is better to use the
z-transform (Bloch and Kraemer, 1989).

Test Hy: Correlation = Zero Using Fisher’s Arctan Transformation
Objective: To calculate sample size based on a test for single correlation.

Technical Notes The formula is developed using Fisher’s arctanh transfor-
mation: Z(r) = 0.5 In[(1 + r)/(1 — r)], where r is the sample correlation. Z(r)
is normally distributed with mean Z(r,) and variance 1/(N — 3), where r, is the
true correlation and N is the sample size (Lachin, 1981).
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Test Hy: Regression Coefficient = Zero Using Arctan Transformation
Objective: To calculate sample size based on a test for the regression
coefficient.

Technical Notes The formula is developed using Fisher’s arctanh trans-
formation: Z(r) = 0.5 In[(1 + r)/(1 — r)], where r is a sample regression coeffi-
cient. Z(r) is normally distributed with mean Z(r,) and variance 1/(N — 3),
where 7, is the true regression coefficient and N is the sample size (Lachin,
1981).

Logistic Regression on x for a Binary Outcome
Objective: To calculate sample size based on logistic regression on a single
variable x for binary outcomes.

Technical Notes Logistic regression is commonly used in the analysis of
epidemiologic data to examine the relationship between possible risk
factors and a disease. In follow-up studies the proportion of persons with the
disease (event) is usually low, but it is higher in case—control studies. The
method was developed by Whitehead (1993) using the normal approximation.
He has found the sample size required to be very sensitive to the
distribution of covariates. The sample size is given by N = [z,_, + exp(-Q%
4)z1]*(1 + 2P8)/(PQ?), where P is the proportion at the mean of the covariate
and 8 = [1 + (1 + Q%) exp(5Q%4)]/[1 + exp(-Q*/4)] (see Hsieh, 1989).

Logistic Regression on x for a Binary Outcome with Covariates
Objective: To calculate sample size based on logistic regression on covariates
for binary outcomes.

Technical Notes Similar to the preceding method, this method was also
developed by Whitehead (1993) using the normal approximation. He has
found the required sample size to be very sensitive to the distribution of
covariates. The sample size is given by N = [z, + exp(-0%4)z,_5]*(1 + 2P8)/
(PO*/(1 - r*), where P is proportional to the mean of the covariate, Q is the
log odds ratio, 8 = [1 + (1 + Q%) exp(5Q%4)]/[1 + exp(-Q*4)], and r is the
correlation of x with the covariates included (Hsieh, 1989).

Linear Regression; Test for Hy: Correlation Coefficient = 0
Objective: To calculate sample size based on linear regression (test for null
hypothesis Hy: correlation coefficient = 0).

Technical Notes The sample size is computed using the noncentral
F-distribution with numerator and denominator degrees of freedom 1 and
n — 2. The noncentrality parameter is nr’/(1 — r*), where r is a correlation
coefficient (Cohen, 1988).
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Multiple Linear Regression; Test for Hy: Multiple Correlation R = 0
Objective: To calculate sample size based on multiple linear regression (test
for H,: multiple correlation R = 0).

Technical Notes The sample size is computed using noncentral F-distribution
with numerator and denominator degrees of freedom k and n — k — 1. The
noncentrality parameter is nr*/(1 — r*), where r is a correlation coefficient
(Cohen, 1988).

Multiple Regression; Test, Zero Increase in R* Due to Extra b Covariates
Objective: To calculate sample size based on multiple regression to test for
the significance of the effect of additional covariates.

Technical Notes The sample size is computed using the noncentral
F-distribution with numerator and denominator degrees of freedom b and
n—a—b — 1, where a is the number of covariantes for the prior model. The
noncentrality parameter is n(R% —R,)/(1-R2), where R, and R,, are the
correlation coefficients for the prior and the larger models (Cohen, 1988).

Linear Regression y = a + bx; Test Hy: b = b,
Objective: To calculate sample size based on linear regression: y = a + bx
(test Hy: b = by, vs. H,: b # by).

Technical Notes The sample size is calculated based on noncentral ¢, with
n — 2 degrees of freedom. The noncentrality parameter is Jn b - byl S/S.,
where S is the standard deviation of x and S, is the standard deviation of
error.

Kendall’s Test of Independence
Objective: To calculate sample size based on Kendall’s test for independence
between two series of observations obtained in pairs.

Technical Notes This formula was introduced by Noether (1987) under the
assumption of a large sample. Kendall’s test requires the two population dis-
tributions to be continuous and the observations x; and y; to have been obtained
in pairs (Noether, 1987).

10.1.4 Paired-Sample Equivalence Test for the Mean

Paired t-Test for Equivalence of Means
Objective: To calculate sample size based on the paired ¢-test for equivalence
of means.

Technical Notes This is an exact method. The sample size is computed using
noncentral ¢-distribution with the degree of freedom and the noncentrality
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parameter the square root of n times (u — u,)/s, where s is the standard devia-
tion and 7 is the sample size (Chow and Liu, 1998).

10.1.5 Paired-Sample Equivalence Test for Proportion

Paired Response: Equivalence of p, and p, (Large Sample)
Objective: To calculate sample size based on the equivalence of the paired
proportion.

Technical Notes The sample size (number of pairs) is calculated using the
formula n = v (214 — 21-5)"/(8 — 8,)>, where v = max[po(1 — po), pi(1 — p1)]; &
and 9, are the allowable difference in proportion and the expected difference
in proportion, respectively. This formula can be derived from the Mukuch-
Simon method for a two-sample equivalence problem, noting that variance
for a one-sample problem is half of the variance for the two-sample problem.
This method is only applicable for a large sample, due to the normal approxi-
mation (Makuch and Simon, 1978).

10.1.6 One-Sample Confidence Interval for the Mean

One-Sample Mean Confidence Interval Method
Objective: To calculate sample size based on precision analysis of a one-
sample problem.

Technical Notes Precision analysis for the sample size is based on a confi-
dence interval. The maximum half-width of the (1 — )100% confidence
interval is usually referred to as the maximum error of an estimate of unknown
parameter. The precision method requires one to specify the maximum
error allowed. The formula to calculate sample size is n = (zq)*V/E?, where
V is the sample variance and E is the maximum error that we are willing
to accept. Note that the precision method is based on the confidence interval
corresponding to the hypothesis method with 50% power. Hence, the sample-
size formula does not include the term power (Chow and Liu, 1998).

One-Sample Mean Confidence Interval Method: Finite Population
Objective: To calculate sample size based on precision analysis for a one-
sample problem adjusted for finite population size.

Technical Notes The sample-size calculation is similar to preceding one, but
adjusted for the finite population. The precision method requires one to
specify the maximum error allowed. The formula to calculate sample size is
n=ztw,,V(1-n/N)/IE*, where N is the population size, V is the sample vari-
ance, and FE is the maximum error that we are willing to accept (Chow and
Liu, 1998).
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Paired-Sample Mean Confidence Interval Method: Large Sample
Objective: To calculate sample size based on precision analysis for a paired-
sample problem.

Technical Notes The formula to calculate sample size is n = z{_,,V/E?* , where
V is the sample variance and E is the maximum error that we are willing to
accept (Chow and Liu, 1998).

Paired-Sample Mean Confidence Interval Method: Finite Population
Objective: To calculate sample size based on precision analysis for a one-
sample problem adjusted for finite population size N.

Technical Notes The sample-size determination is based on the confidence
interval width. It requires that the maximum error rate available be specified.
The formula to calculate the sample size is n = zi,,V(1-n/N)/E*, where N
is the population size, V is the sample variance, and E is the maximum error
that we are willing to accept (Chow and Liu, 1998).

Confidence Interval for Repeated Measures Contrast
Objective: To calculate sample size based on the confidence interval for
repeated measures contrast.

Technical Notes Normality assumption is used in the sample-size calculation.
The sample size is given by N =zi,S*(1-r)D*/w*, where S is the standard
deviation, r is the correlation coefficient, w is the 0.5 interval width (Devore,
1991).

One-Sample Confidence Interval for a Mean Based on the t-Statistic
Objective: To calculate sample size based on precision analysis for a one-
sample problem adjusted for finite sample size N.

Technical Notes The method allows one to specify the coverage probability
for the confidence interval. When the coverage probability = 0.5, the resulting
sample size is consistent with that obtained from the common precision method
(Chow and Liu, 1998).

Paired Mean Confidence Interval Based on the t-Statistic
Objective: To calculate sample size based on precision analysis for a paired-
sample problem adjusted for finite sample size N.

Technical Notes The method allows one to specify the coverage probability
for the confidence interval. When specifying the coverage probability as 0.5,
the resulting sample size is consistent with that obtained from the common
precision method (Chow and Liu, 1998).
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10.1.7 Omne-Sample Confidence Interval for Proportion

Confidence Interval for a Proportion: Large n
Objective: To calculate sample size based on the confidence interval for a
one-sample proportion.

Technical Notes The sample-size formula is developed using the normal
approximation to the binomial distribution [i.e., the sample size n = p(1 —
P)(z1/w)* for the one-sided confidence interval]. For the two-sided test,
replace o in the formula by /2. Note that the confidence interval method has
only 50% coverage probability or power (Devore, 1991).

Confidence Interval for an Odds Ratio for Paired Proportions: Large n
Objective: To calculate sample size based on the confidence interval for the
odds ratio in a matched case—control study.

Technical Notes O’Neill (1984) proposed confidence estimation of the odds
ratio as a basis for sample-size determination in unmatched design. Using
findings of Breslow (1981) and Smith et al. (1985, Eq. 8) developed a sample-
size calculation based on the confidence interval odds ratio in a matched
case—control study as follows: The sample size in number of pairs for a one-
sided test is given by n = (z,./w)*(1 + 1/OR)/py;, where OR is the expected
odds ratio (the proportion expected in an experimental group divided by the
proportion expected in the control group), and p,, is the proportion in the
control group. Note that the sample size obtained from this formula is very
sensitive to the estimation of the proportion in the control group; therefore,
a trial designer should make a great effort to get the best estimate of the
proportion.

Confidence Interval for Proportion: Finite Population
Objective: To calculate sample size based on the confidence interval for one
sample, with adjustment for finite sample size.

Technical Notes The sample-size formula is applicable to a large sample only
because it is developed using the normal approximation to the binomial dis-
tribution. The unadjusted sample size is given by n= p(1- p)(zi../w)* for a
one-sided confidence interval. The adjusted sample size 7,q4jusca = BN/(n + N),
where N is the population size. For the two-sided test, replace o in the formula
by o/2 (Devore, 1991).

Confidence Interval for the Probability of Observing a Rare Event
Objective: To calculate sample size based on the probability of observing a
rare event.

Technical Notes The sample is calculated using the formula n = In(1 — p)/
In(1 — py), where p is the probability of observing one or more events and p,
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is the actual or expected probability of the event. The formula is the direct
result of the fact that the probability of observing one or more events, p,
isp=1-(1-py)" (see Kanji, 1999).

10.1.8 One-Sample Confidence Interval for Others

Confidence Interval for a Correlation Coefficient
Objective: To calculate sample size based on the confidence interval for a
correlation coefficient.

Technical Notes The sample size is computed based on the large-sample
normal approximation using Fisher’s z-transformation. The sample size is
given by n = (zi_n + 213)/[FZ(r, — FZ(r,)]* + 3, where FZ(-) denotes Fisher’s
z-transform (Fisher and Belle, 1993, p. 379), FZ(r) = 1/2 In[(1 + r)/(1 — r)] (see
Fisher and Belle, 1993).

Linear Regression y = a + bx, Confidence Interval for b
Objective: To calculate sample size based on the confidence interval for b
where b is the coefficient from the linear regression: y = a + bx.

Technical Notes The sample size is calculated based on the large-sample
normal approximation and given by n = (z,_4,»S./L/S)?, where S, is the standard
error, S is the standard deviation of x, and L is the tolerable limit for the con-
fidence interval width.

10.2 TWO-GROUP DESIGN

10.2.1 Two-Sample Hypothesis Test for the Mean

Two-Sample t-Test
Objective: To calculate sample size based on the two-sample t-test for the
difference between the means of two independent populations.

Technical Notes The sample size is calculated using noncentral ¢-distribution
with the degree of freedom = 21 — 2 and the noncentral parameter = Vn/2
(d/s), where n is the sample size, d is the absolute value of mean difference,
and s is the standard deviation (Graybill, 1976).

Mann-Whitney U/Wilcoxon Rank-Sum Test for Two Samples

Objective: To calculate sample size based on the Wilcoxon—-Mann—-Whitney
or Wilcoxon rank-sum test for median difference between two independent
samples.

Technical Notes This formula is given by Noether (1987) under the assump-
tion of a large sample. The Wilcoxon-Mann-Whitney test requires that two
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distributions have the same general shape, but with one shifted relative to the
other by a constant amount under the alternative hypothesis: shift alternatives.
If one is interested primarily in differences in location between the two dis-
tributions, the Wilcoxon test also has the disadvantage of reacting to other
differences between the distributions, such as differences in shape. When the
assumptions of the two-sample #-test hold, the Wilcoxon test will be slightly
less powerful than the two-sample ¢-test (Noether, 1987).

Two-Sample z-Test: Large Sample or Population Variance Known
Objective: To calculate sample size based on the z-test for mean difference
between two treatment groups.

Technical Notes The formula is accurate if the population is normally dis-
tributed; otherwise, the sample size must be large (e.g., n > 30) (Lachin,
1981).

2 X 2 Crossover Study
Objective: To calculate sample size for a two-treatment, two-sequence, and
two-period crossover design.

Technical Notes A crossover design is considered efficient in terms of sample
size because each patient receives multiple treatments in sequence (Fleiss,
1986). It also controls intrasubject variability. However, some disadvantages
exist. For example, it may require a longer study duration and there may be
confounding issues (e.g., you may not be able to differentiate carryover effect
and treatment by period effect). The sample size from the 2 x 2 crossover
design relates the sample size from the two-group parallel design by the intra-
class correlation coefficient R = intersubject variance/total variance. The
sample size will decrease by a factor of 1 — R.

One-Way Repeated Measures ANOVA for Two Groups
Objective: To calculate sample size based on one-way repeated-measures
ANOVA for two groups.

Technical Notes Chow and Liu (1998, p. 453) propose this method to
compute sample size and power for correlated observations. The sample size
is given by the formula n = (zo» + 2p)°” [1 + (m — Dr)/[p(1 — p)md?], where r
is the within-subject correlation, p is the proportion of subjects in the treat-
ment group, and d is the difference in practical importance (Chow and Liu,
1998).

Test for a Treatment Mean Difference with a 2 X 2 Crossover Design
Objective: To calculate sample size based on a test for treatment mean dif-
ference for the 2 x 2 crossover design.
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Technical Notes This method is applied to the 2 x 2 crossover study without
consideration of unequal carryover effects (Chow and Liu, 1998).

Two-Sample Multiple Test for Mean Differences
Objective: To calculate sample size based on the two-sample multiple test
for zero means.

Technical Notes This sample-size formula is developed by Odeh and Fox
(1991) for the three main effects based on a noncentral F-distribution. The
numerator and denominator degrees of freedom are m — 1 and N — m, respec-
tively, where m is the number of tests and N is the sample size (Odeh and Fox,
1991).

Comparing DNA Expression Profiles Among Predefined Classes
Objective: To calculate sample size for comparison of expression profiles
among predefined classes using DNA microarrays.

Technical Notes DNA microarrays are arrays that provide information
about expression levels of thousands of genes simultaneously and are
consequently finding wide use in biomedical research. Simon et al. (2002)
proposed this method for planning a sample size for testing whether a particu-
lar gene is expressed differentially between two predefined classes. This
method may be used for two-color arrays using reference designs or for
single-label oligonucleotide arrays. Suppose that some function of the expres-
sion levels (e.g., log ratios for cDNA arrays) is approximately normally dis-
tributed in the two classes. Let o denote the standard deviation of the
expression level among samples within the same classes and suppose that the
means of the two classes differ by 8. For example, with base 2 log ratio or log
intensities, a value of 8 = 1 corresponds to a twofold difference between
classes. The total sample size is given by N = (k + 1)7/k(zen + 73)°6°/8. To
control the number of false positives, it is suggested that o be 1/n, where n
is the number of genes expressed equally in the two classes. Similarly, the
expected number of false-negative conclusions for genes that are actually dif-
ferentially expressed between the two classes by d-fold is Bm, where m is the
number of such genes. If we want the number of false negatives to be F, then
B = F/m. In general, oo and 3 should not exceed 0.001 and 0.05, respectively
(Simon et al., 2002).

Donner’s Method for Mean Difference Using Cluster Randomization
Objective: To calculate sample size for a trial with cluster randomization.

Technical Notes This method is proposed by Donner et al. (1981) for a
cluster randomization trial with normally distributed response.
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10.2.2 Two-Sample Hypothesis Test for Proportion

Asymptotic z-Method Considering Variance Difference

Objective: To calculate sample size based on Pearson’s chi-square test
(without Yates’s continuity correction) for the proportion difference in two
independent groups.

Technical Notes This formula is developed by Halperin et al. (1968) based
on the asymptotic normality of the untransformed binomial proportion. Hal-
perin’s method takes into account the different variances associated with two
sample proportions. However, it can only be applied in a situation with large
sample size, due to the normality assumption. This is not a conservative
approach compared to Fisher’s exact formula (Sahai and Khurshid, 1996).

Fisher’s Exact Test
Objective: To calculate sample size based on Fisher’s exact test for the pro-
portion difference between two independent samples.

Technical Notes The p-value for a one-sided test for the null hypothesis Hy:
P, — P, <0 is given by (Thomas and Conlon, 1992)

m ny
i i my+m;— i
b
i=max{0,m+mpy—ny} m + n
nmy +m,

p:

where m, and m, are numbers of responders from the groups with sample sizes
n; and n,, respectively. Because m; and m, follow binomial distributions, the
power for the Fisher exact test is given by

n n

power = z z pdo(p)on(ny, my, p;)bon(ny, my, p,),

m1=0 mp=0

where bn(., .) is a binomial p.d.f.:

1, ifp<a
8a(p)={0 poa

Pearson’s Chi-Square Test: Kramer-Greenhouse
Objective: To calculate sample size based on Pearson’s chi-square test for
the proportional difference between two independent samples.
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Technical Notes This formula was developed by Casagrande et al. (1978). It
provides an excellent approximation to values obtained via Fisher’s exact
formula (Sahai and Khurshid, 1996).

Whitehead Logistic Model for Two Groups with k Categories
Objective: To calculate sample size based on the proportional odds ratio
model with k categories and two treatments.

Technical Notes Many clinical trials yield data on an ordered categorical
scale such as very good, good, moderate, or poor. Under the assumption of
proportional odds, such data can be analyzed using techniques of logistic
regression. In simple comparisons of two treatments, this approach becomes
equivalent to the Mann—Whitney test. Whitehead (1993) derived this method
of sample-size calculation for ordered categorical data consistent with an
eventual logistic regression analysis. The method is accurate only when it
generates moderate to large sample size. The proportional odds model
(McCullagh, 1980) is also assumed. That is, the odds ratio between the two
treatment groups is constant over all the categories and the common odds
ratio. McCullagh studied the effect of the number of categories on sample size
and power using computer simulations, and concluded that for k > 5, an
increased number of categories will not increase the efficiency or reduce the
sample size required. The limiting case is approached in a large sample in
which a full ranking of patient outcomes is achieved, as envisaged in the
Mann-Whitney test. A full ranking is equivalent to a categorization with
only one patient in each category. When data are normally distributed, the
full Mann—Whitney test is in turn 94% efficient relative to a t-test (Lehmann,
1975). The design based on five equally probable categories is 90% efficient
relative to the t-test when data are normally distributed.

The author also studied the influence of prognostic factors. It is well know
that adjustment for prognostic factors improves the power of analyses of nor-
mally distributed data. For survival data, adjustment has little effect on power
(Schoenfeld, 1983). Robinson and Jewell (1991) have pointed out that covari-
ate adjustment in the logistic regression analysis of binary data can lead to an
apparent loss of power. Whitehead (1993) further stated that the same is true
in the case of ordered categorical data. To preserve power, it will be necessary
to increase sample size (Whitehead, 1993).

Lachin’s Test for Two Treatments by Three Time-Point Interactions
Objective: To calculate sample size based on a test for treatment by time
interaction.

Technical Notes This method was developed by Lachin (1977) for the case
of two treatment groups and two time-point repeated measures. For a more
general method for an r X ¢ comparative trial, see Lachin’s paper.
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Mantel-Haenszel Test for an Odds Ratio with k Strata: Large Sample
Objective: To calculate sample size based on the Mantel-Haenszel test for
an odds ratio with k strata.

Technical Notes This formula assumes a constant odds ratio (rather than
relative risk) over strata and the random treatment assignment with each
stratum. One wishes to compare event rates within each of the resulting
2 x 2 tables and to obtain an overall comparison to test whether the (assumed)
common odds ratio equals unity. The large-sample assumption is used in the
formula (Lachin, 1977).

Mantel-Haenszel Test for an Odds Ratio with k Strata:

Continuity Correction

Objective: To calculate sample size based on Cochran’s test (1954) with the
continuity correction and the overall type I error controlled.

Technical Notes Information on a possible confounding effect is important
in choosing correctly between a strata-matched or strata-nonmatched design
in a case—control study. The Mantel-Haenszel test and Cochran’s test are
asymptotically equivalent, but the former uses a hypergeometric distribution
conditioned on all marginal total fixed, whereas the latter uses a pair of bino-
mials in each stratum. Woolson et al. (1986) present a simple approximation
of sample size for Cochran’s test for detecting association between exposure
and disease. Nam (1992) derives this sample-size formula for Cochran’s
statistic with continuity correction, which guarantees that the actual type I
error rate of the test does not exceed the nominal level. The corrected sample
size is necessarily larger than the uncorrected size given by Woolson et al.
(1986), and the relative difference between the two sample sizes is consider-
able. When any effect of stratification is absent, Cochran’s stratified test,
although valid, is less efficient than the unstratified test, except for the impor-
tant case of a balanced design (Nam, 1992).

Chi-Square Test for a Two-Sample Proportion with k Categories
Objective: To calculate sample size based on a chi-square test for two-sample
proportions with k categories.

Technical Notes This method is only applicable to a large sample. The sample
size is calculated using a noncentral chi-square distribution with k — 1 degrees
of freedom, and Patnaik’s parameter of noncentrality = n 2 (p1j = Po)*l(pyj +
Do), where py; and py; are the expected proportions in the jth category of the
two treatment groups, and the sum is performed over all k£ categories. Patnaik
(1949) developed a method for the asymptotic Pearson chi-square test for
goodness of fit with k classes. Before Patnaik, Eisenhart (1938) had presented
a more general result for the test with k — s degrees of freedom, where s is the
number of parameters of the assumed distribution (Kendall and Stuart, 1967;
Lachin, 1977).
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Repeated Measures for Two Proportions
Objective: To calculate sample size based on one-way repeated measures
ANOVA for two groups.

Technical Notes Chow and Liu (1998) proposed this method to compute
sample size and power with correlated observations. The sample size given by
n = (zap + 23)’°[1 + (m = Dr]/[p(1 — p)md?®], where r is the within-subject
correlation, p is the proportion of subjects in the treatment group, s is the
standard deviation, and d is the difference of practical importance in the
mean. This formula can be applied to the case where two treatments are
compared with binary responses, with the following modification (Chow and
Liu, 1998):

" (Zi-a2 +21p)*5°[1+ (m=Dr][ ppo(1= po) + (1= p) pi(p1 — p1)]
p(l=p)m(pi - p,)’

10.2.3 Two-Sample Hypothesis Test for Others

Exponential Survival Distribution with Uniform Patient Enrollment
Objective: To calculate sample size based on a test for the difference in
median survival time.

Technical Notes 1t is not realistic in clinical trials that all patients will be
followed to the terminal event no matter how long is required for the last
patient to reach that event. A more realistic approach is to follow the trial to
termination at time 7. This method assumes that patients enter the trial at a
uniform rate over the time interval 0 to 7 and that exponential survival
applies. The formula is derived based on exponential survival distribution. If
this assumption is seriously violated, the sample size obtained from this
formula will not be appropriate. The model may not be very realistic, because
as soon as the last patient enters the study, the trial will stop. Also, the assump-
tion of uniform patient enrollment should be checked before the formula is
used (Lachin, 1981).

Exponential Survival Distribution with Uniform Enrollment

and Follow-up

Objective: To calculate sample size based on a test for the difference in
median survival time.

Technical Notes It is desired in a clinical trial to recruit patients for study over
the time interval O to 7}, and then to follow all recruited patients to the time of
the terminal event or to the end of the trial, whichever is shorter. This method
assumes that patients enter the trial at a uniform rate over the interval 0 to 7
and that exponential survival applies. In the event that all patients enter the
trial at the same time, 7}, should be set to a very small value (Lachin, 1981).
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Test Interaction in a Model with an Exponential Survival Function:

Two Strata

Objective: To calculate sample size (number of events) based on a test for
the interaction in a model with an exponential survival function.

Technical Notes This formula is applicable to the case with two treatments,
two strata, and equal size in each cell of a 2 x 2 table. The method was devel-
oped by Peterson and George (1993). The authors show via simulations that
the formula gives valid powers for the test score of the interaction effect avail-
able from fitting the proportional hazards model, as long as the proportional
hazards model holds. The authors also point out that even moderate interac-
tion effects can have a profound impact on the power of the standard statistical
procedure. The assumption of an equal number of failures per cell can be used
as long as the sample-size ratio between any two cells does not exceed 2. The
authors also give a formula for calculating the sample size for a situation with
k strata (Peterson and George, 1993).

Test Interaction in a Model with an Exponential Survival Function:

k Strata

Objective: To calculate sample size (number of events) based on a test for
interaction in a model with an exponential survival function.

Technical Notes A formula developed by Peterson and George (1993) is
applicable to a case with two treatments, k strata, and equal size in each cell
of a 2 x k table. The authors show via simulations that the formula gives valid
powers for the score test of the interaction effect available from a fitting of
the proportional hazards model, as long as the proportional hazards model
holds. The authors also point out that even moderate interaction effects can
have a profound impact on the power of the standard statistical procedure.
Even with the assumption of an equal number of failures per cell, the formula-
tion can still be used as long as the sample-size ratio between any two cells
does not exceed 2 (Peterson and George, 1993).

Log-rank Test for Survival Analysis
Objective: To calculate sample size based on the log-rank test for survival
analysis.

Technical Notes In practice, methods are sometimes applied even though
assumptions are violated or theoretical justification is lacking. It is common to
see binomial sample-size calculation when the intended analysis will be a com-
parison of two survival curves when the exponential or proportional hazards
assumption is not realistic. The log-rank statistic can still be used for analysis
when, as in many trials, the proportional hazards assumption is violated (Lakatos
and Lan, 1992). Lakatos (1988) derives the sample size required for a log-rank
statistic in this general case by using a discrete nonstationary Markov process
that follows any pattern of survival, noncompliance, loss to follow-up, drop-in,
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and lag in the effectiveness of treatment during the course of a clinical trial. If
the survival distributions are exponential, the proportional hazards assumption
is satisfied. It can be shown that after an appropriate time transformation, the
converse is true when there is no censoring. Since the log-rank statistic is no
longer optimal when the hazards are nonproportional, hazard functions are
really known precisely. There are definite risks involved with assuming that one
knows a nonproportional hazards alternative and choosing the optimally
weighted statistic for the final analysis (Lakatos and Lan, 1992).

Exponential Survival Distribution with a Uniform Patient Enrollment
Rate over Time Ty, a Follow-up Period, and Dropouts

Objective: To calculate sample size based on a test for the difference in
mean/median survival time for two independent samples with exponential
survival distribution and exponential loss to follow-up distribution.

Technical Notes The assumption of exponential survival distribution and
exponential loss to follow-up distribution must both be met. Otherwise, the
resulting sample size will not be accurate (Lachin and Foulkes, 1986).

Exponential Survival Distribution with a Bernoulli Confounding Variable
Objective: To calculate sample size based on a test for the difference in
median survival time between two treatment groups with exponential survival
distribution and a dichotomous confounder.

Technical Notes This method was developed by Liu (1992) based on an
exponential covariate model. In clinical trials, random assignment of treat-
ments to individuals is generally used to eliminate the effects of confounding
variables. When there is censorship in the data, however, confounding effects
may not automatically be removed solely by the randomization procedure
under the exponential model (Gail et al., 1984). Therefore, in this situation,
sample-size calculation without consideration of the confounding effects is not
appropriate (Feigl and Zelen, 1965). Unlike other papers describing studies
of sample size with the presence of a confounder, in his paper Lui takes into
account the distribution of response times and their possible censorship. In
the presence of censorship and confounders under an exponential model, the
MLE of the treatment effect is asymptotically biased in randomized trials
when there is a difference between the two treatment effects under consider-
ation (Feigl and Zelen, 1965).

Testing Two Correlation Coefficients Using Fisher’s Arctan
Transformation

Objective: To calculate sample size based on a test for two independent
correlations.

Technical Notes This formula is developed by using Fisher’s arctanh trans-
formation: Z(r) = 0.5In[(1 + r)/(1 — r)], where r is a sample correlation. Z(r)
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is normally distributed with mean Z(r,) and variance 1/(N — 3), where r; is the
true correlation and N is the sample size (Lachin, 1981).

Linear Regression y, = a; + bix, y, = a, + b,x; Test H,: by = b,

Objective: To calculate sample size based on the hypothesis test H,: b; = b,
versus H,: b, # b,, where b; is the coefficient from the linear regression y, = a;
vbix, yy = ax + Dyx.

Technical Notes The sample size is calculated based on the noncentral ¢-
distribution with 2n — 4 degrees of freedom. The noncentrality parameter is
Jni2 |b—by|S|S., where S is the standard deviation of x and S. is the standard
deviation of error.

10.2.4 Two-Sample Equivalence/Noninferiority Test for the Mean

Noninferiority Test for Two Means Based on a One-Sided Two-Sample
t-Test

Objective: To calculate sample size for a noninferiority test for mean differ-
ence based on a one-sided two-sample z-test.

Technical Notes This method may be used for noninferiority studies but is
not appropriate for bioequivalence studies. Chow and Liu (1998) pointed out
that the power approach to sample-size determination based on the hypothesis
of equality is not statistically valid in assessing equivalence between treat-
ments (refer to Schuirmann, 1987).

Two One-Sided t-Tests for Equivalence: Parallel Design (Bivariate t)
Objective: To calculate sample size based on two one-sided #-tests for an
equivalence study with a parallel design.

Technical Notes The sample size is computed based on the bivariate noncen-
tral ¢-distribution with degrees of freedom 2(n — 1) and noncentrality param-
eters (ur —uy, —d; )M/S and (ur —u, —dy M/S, where d; and d,, are the
lower and upper limits for the mean difference between the two groups and
S is the common standard deviation (Schuirmann, 1987).

Two One-Sided Tests for Equivalence Based on a Ratio of Means:
Parallel Design (Bivariate t)

Objective: To calculate sample size for an equivalence test of two means
based on Schuirmann’s two one-sided #-tests (Schuirmann, 1987).

Technical Notes This is an exact method based on the bivariate noncentral
t-distribution (Owen, 1965). The power approach described in the literature
for sample-size determination based on a hypothesis of equality is not
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statistically valid in assessing equivalence between treatments (Chow and Liu,
1998; Schuirmann, 1987).

Two One-Sided t-Tests for Equivalence Based on a Ratio of Two Means:
Crossover Design (Bivariate t)

Objective: To calculate sample size for an equivalence test based on a ratio
of two means using Schuirmann’s (1987) two one-sided ¢-tests for a 2 x 2
crossover study.

Technical Notes This is an exact method based on the bivariate noncentral
t-distribution. For the assessment of equivalence between treatments under
the standard two-sequence, two-period crossover design, it is suggested that
the following interval hypotheses be tested (Owen, 1965; Schuirmann, 1987;
Chow and Liu, 1998):

Hy:ur—u,<Qp orur—u,=Qy vs. H,O; <ur—-u,<Qy,

where ur and u, are the two means of the log-transformed data for the two
treatment groups, and Q; and Qy are some clinically meaningful limits for
equivalence. The hypotheses can be decomposed into two sets of one-sided
hypotheses:

Hy:ur—u,<Qp vs. H,iur —u, > Q).

HO:uT_upZQU VS. Ha:l/lT_up<QU4

Two One-Sided t-Tests for Equivalence Based on a Mean Ratio for
Lognormal Data: Parallel Design (Bivariate t)

Objective: To calculate sample size for an equivalence test for the ratio of
two means based on Schuirmann’s (1987) two one-sided t-tests for a parallel
design.

Technical Notes This is an exact method based on the bivariate noncentral
t-distribution (Owen, 1965; Schuirmann, 1987; Chow and Liu, 1998).

Schuirmann—Chow’s Two One-Sided t-Tests for Equivalence

Objective: To calculate sample size for an equivalence test for two means
based on Chow’s approximation to Schuirmann’s (1987) two one-sided
I-tests.

Technical Notes This sample size is an approximation method developed by
Chow and Liu (1998). During the implementation of the method, normal dis-
tribution is used in place of a f-distribution in Chow’s equation. For exact
sample size for the same problem, sample-size calculation for equivalence test
for difference of two means should be used based on two one-sided #-tests
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using bivariate noncentral t-distribution (Owen, 1965; Schuirmann, 1987,
Chow and Liu, 1998).

10.2.5 Two-Sample Equivalence/Noninferiority Test for Proportion

Equivalence Test for Two Proportions: Large n
Objective: To calculate sample size based on an equivalent test for two inde-
pendent proportions.

Technical Notes This method was originally proposed by Farrington and
Manning (1990) using the asymptotic approximation. It is applicable only to
the large-sample case. Sample size is calculated using the formula n = (z,_, +
zip)’[p1 (1 = p1) + pa (1 = p))/(8 — &)%, where §, is the allowable difference
and d is the expected difference of proportions p; and p,. However, this
method underestimates the sample size when 9§, < 8, which is often the case
in practice. A better method but a little conservative approach is given by
(S. C. Lin, 1995; Chow, Shao and Wang, 2003)

1

_ (Zl—(x +Zl—[3/2 )2 P1(1—p1) _
- (5—el)? [ +pa(l pZ)il,

Ny, =r1m,.

Note that B, not «, is divided by 2 in the formulation (see Farrington and
Manning, 1990; S. C. Lin, 1995; Chow et al., 2003).

One-Sided Noninferiority Test for Two Proportions Objective: To calcu-
late sample size for a one-sided noninferiority test for two proportions based
on a large-sample assumption.

Technical Notes Normal approximation is used in this formula and is
applicable only to large sample-size. The sample-size formulation is given by
(M. Chang, 2007e; Chow et al., 2003)

= (Zia+21p)° [Pl(l—Pl)
U (8-e)

Ny, =rn,.

+pa(1 —Pz)}-

10.2.6 Two-Sample Equivalence/Noninferiority Test for Survival

Noninferiority Test for Survival with Uniform Accrual and Follow-up
Objective: To calculate sample size for a noninferiority test for survival dif-
ference based on normal approximation.
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Technical Notes Normal approximation is used in this formula (Chow et al.,
2003; M. Chang, 2007¢).

Equivalence Test for Survival with Uniform Accrual and Follow-up
Objective: To calculate sample size for an equivalence test for two hazard
rate differences based on two one-sided tests.

Technical Notes The sample size is calculated using two one-sided tests
based on a large-sample assumption. Normal approximation is used and
the equivalent standard deviation can be found (Chang, 2007a; Chow et al.,
2003).

10.2.7 Two-Sample Confidence Interval for the Mean

Confidence Interval for Difference of Two Means: Large Sample
Objective: To calculate sample size based on a precision analysis for the
mean difference between two independent samples.

Technical Notes A precision analysis for sample size is based on the maximum
half-width of the confidence interval that one is willing to accept for the
underlying parameter. Therefore, the sample size is independent of power.
The sample size given by this formula can be expressed as n = 2z3_,,V/E?,
where V is the sample variance and E is the confidence interval width (Chow
and Liu, 1998).

10.2.8 Two-Sample Confidence Interval for Proportion

Confidence Interval for the Difference in Two Proportions: Large n
Objective: To calculate sample size based on the confidence interval for dif-
ference in proportions between two samples.

Technical Notes This method is applicable only to large-sample cases,
due to a normality approximation. The sample size per group is given by
n = (z1/w)’[p1(1 = p1) + p2(1 = p,)], where p; is the expected proportion in the
ith treatment group and w is the allowable confidence interval width (Lachin,
1977).

Confidence Interval for Proportional Difference with Minimum Total Size
Objective: To calculate sample size based on the confidence interval for the
proportional difference between two groups.

Technical Notes This formula is derived based on Makuch and Simon’s
method. The minimum sample size is obtained by taking the derivate of the
quantity n, + n, with respect to r (Makuch and Simon, 1978).
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Confidence Interval for In(Odds Ratio): Unmatched Case-Control Study
Objective: To calculate sample size based on the confidence interval for a
log odds ratio.

Technical Notes Gart and Thomas (1982) compared the performance of
three approximate confidence limit methods for an odds ratio: the method
proposed by Cornfield (1956), the logit method proposed by Woolf (1955),
and the test-based method proposed by Miettinen (1976). Grat and Thomas
concluded that Cornfield’s method without a continuity correction is the pre-
ferred method in the unconditional sample space: that is, the sample space of
two independent binomial distributions. Brown (1981) and Gart and Thomas
(1972) have shown that Cornfield’s method with continuity correction is the
preferred method in the conditional space: that is, with all marginal totals
fixed. This method was developed by O’Neill (1984) to calculate sample size
based on a logit method using an allowable confidence width = 2d for the log
odds ratio, which, because of symmetry on the log odds ratio scale, allows for
an intuitively appealing way of approximating sample sizes needed to achieve
a certain fixed level of precision for the log odds ratio. Confidence for the odds
ratio is given by w = OR[exp(d) — exp(—d)], where OR is the odds ratio. The
sample size for the control is given by n, = {(1/r/[p:(1 — p1)] + U[po(1 —
Po) |} (z1_un!d)?, where r is the sample size ratio ny/n; (O’Neill, 1984).

10.3 MULTIGROUP TRIAL DESIGN

10.3.1 Multisample Hypothesis Test for the Mean

One-Way ANOVA for Parallel Groups

Objective: To calculate sample size based on one-way ANOVA with the null
hypothesis H, that all means are equal. The alternative hypothesis is that H,
is not true.

Technical Notes This is an exact method using a central F-distribution (Fleiss,
1986). The degree of freedoms are g — 1 for the numerator and n — g for the
denominator, where g is the number of treatment groups and 7 is the total
sample size. The noncentral parameter & = n times variance between treat-
ments divided by the common variance (variance within treatment).

One-Way Contrast Between Means
Objective: To calculate sample size based on the null hypothesis H, with
specific contrast.

Technical Notes A contrast test is often used for dose-response studies.
M. Chang (2007¢) developed a uniform sample-size formulation for superior-
ity and noninferiority tests with mean, proportion, and survival endpoints and
suggested the selection of contrasts with opposite signs between the control
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and test groups. He also proved that the Cochran—-Armitage test for dose—
reponse is a special case of the general formulation.

Two-Way ANOVA with an Interaction Term
Objective: To calculate sample size based on two-way ANOVA with an
interaction term.

Technical Notes The sample-size formula is given by Odeh and Fox (1991)
based on the noncentral F-distribution. The numerator degrees of freedom
area—1,b—1,and (a — 1)(b — 1) for the two main effects and the interaction
effects, respectively, and the denominator degrees of freedom are ab(n — 1),
where a and b are the number of levels for factors A and B, respectively, and
n is the sample size. The noncentrality parameters are abn times the respective
effect sizes for factors A and B and the interaction (Odeh and Fox, 1991,
pp. 12-13, Case 1, Eq. 2.8).

Two-Way ANOVA Without Interaction
Objective: To calculate sample size based on two-way ANOVA without an
interaction term.

Technical Notes The sample-size formula is given by Odeh and Fox (1991)
based on the noncentral F-distribution. The numerator degrees of freedom
are a — 1 and b — 1 for the two main effects, respectively, and the denominator
degrees of freedom are abn —a — b — 1, where a and b are the number of levels
for factors A and B, respectively, and # is the sample size. The noncentrality
parameters are abn times the respective effect sizes for factors A and B and
the interaction (Odeh and Fox, 1991, pp. 12-13).

One-Way Random Block Design
Objective: To calculate sample size based on one-way random block
design.

Technical Notes The sample-size formula is given by Odeh and Fox (1991)
based on the noncentral F-distribution. The numerator degrees of freedom
are a — 1 and n — 1 for the main and block effects, respectively, and the denomi-
nator degrees of freedom are (a — 1)(n — 1), where a and b are the number of
levels for factors A and B, respectively, and n is the sample size. The noncen-
trality parameter is equal to na times the respective effect sizes for factors A
and B and the interaction (Odeh and Fox, 1991, pp. 16-17).

ANOVA with Latin Square Design
Objective: To calculate sample size based on ANOVA with a Latin square
design.

Technical Notes The sample-size formula is given by Odeh and Fox
(1991) for the three main effects based on noncentral F-distribution. The
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numerator and denominator degrees of freedom are m — 1 and N — 3m — 2,
respectively. The noncentranality parameter = N MS_A/MS_Error (Odeh and
Fox, 1991).

William’s Test for Minimum Effective Dose
Objective: To calculate sample size based on William’s test for minimum
effective dose.

Technical Notes This sample-size method is given by Chow and Liu (1998)
based on William’s test for dose—response (William 1971, 1972).

10.3.2 Multisample Hypothesis Test for Proportion

Cochran—-Armitage Test for Linear/Monotonic Trend: Dose Response
Objective: To calculate sample size based on the Cochran—Armitage test for
dose-response.

Technical Notes This approximate sample-size formula is given by Nam
(1987) for detecting a linear trend in proportions. The author gives formulas
for both uncorrected and corrected Cochran—Armitage tests. For two bino-
mial proportions these reduce to those given by Casagrande et al. (1978). An
asymptotic test of significance of a linear trend in proportions is given by
Cochran (1954) and Armitage (1955). This test is known to be more powerful
than the chi-square homogeneity test in identifying a trend (Chapman and
Nam, 1968). A dose-response curve is not necessarily linear in proportion,
and a logistic model may be more reasonable for some cases. Nam shows
numerically that the sample size based on logistic dose-response alternative
differs little from that of a linear alternative. As the nature of the dose-
response curve is usually not known prior to the chronic bioassay study, it may
be reasonable to use a linear model in determining a sample size since the
model could grossly approximate many monotonically increasing curves (Nam,
1987; M. Chang, 2006).

Chi-Square Test for Equal Proportions in m Groups in k Categories
Objective: To calculate sample size based on a chi-square test for equal pro-
portions in m groups.

Technical Notes The sample-size calculation is based on a noncentral chi-
square distribution with the degrees of freedom m — 1 and the noncentral
parameter & = 1/[Puean (1 = Prean)] Z[R,«(P,« - Pmean)Z]/ZR,», where R; is the
sample size ratio N/N, (see Lachin, 1977).

Chi-Square Test for Equal Proportions in m Groups
Objective: To calculate sample size based on a chi-square test for equal pro-
portions in m groups.
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Technical Notes The sample-size calculation is based on a noncentral
chi-square distribution with degrees of freedom m — 1 and the noncentral
parameter 8 = 1/[Puean(l = Prcan)] 2 [R(P; = Puean)’l/ 2, R:, Where R; is the
sample-size ratio N/N; (see Lachin, 1977).

One-Way Contrast Between Proportions
Objective: To calculate sample size based on a large-sample assumption.

Technical Notes The sample-size calculation is based on a normality assump-
tion. M. Chang (2007a) provides suggestions on how to determine the con-
trasts for various purposes.

10.3.3 Multisample Hypothesis Test for Others

One-Way Contrast Test for Exponential Survial with Uniform Enrollment
and a Follow-up

Objective: To calculate sample size based on the contrast test for a dose—
response relationship.

Technical Notes The asymptotic test is most powerful when the contrast
shape is similar to the dose-response shape (M. Chang and Chow, 2006; M.
Chang, 2007a).

Test That All k Means Are Equal with Overall Type I Error Controlled
at the o Level

Objective: To calculate sample size (number of failures) based on a test for
the null hypothesis that the mean survival times for all (k > 2) treatments are
the same.

Technical Notes This method is developed by Makuch and Simon (1982)
based on an ANOVA framework. The overall type I error rate is controlled
at the o level (Fisher’s LSD method). The number of failures per group
increases as the number of treatment groups increases. As a result, for k > 2
the planned number of failures d will be somewhat greater than that obtained
from the method proposed by George and Desu (1974) for a two-treatment
group trial. The increase in sample size per group with k (>2) is required to
preserve the overall error rate of o in light of all possible multiple compari-
sons. When k = 2, the result will degenerate to that by George and Desu
(1974). The assumption of exponential survival distribution is used in the
model. However, the authors point out that this method is expected to hold
approximately for any proportional hazard alternatives when the maximum
hazard ratio is not too large, as has been shown by Schoenfeld (1981) for the
case of two treatment groups.

If the estimated ratio of the largest survival time to the smallest survival
time is 2, oo = 0.05, and power = 0.9, this Makuch and Simon method gives a
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sample size of 53 per group, whereas the George and Desu method (1974),
with a reduced nominal significant level 0.05/3 (Bonferroni adjustment) to
account for the fact that three pairwise comparisons are possible, gives a
sample size of 56 (see Lachin and Foulkes, 1986).

Prognostic Model with Right-Censored Data from DNA Microarrays
Objective: To calculate sample size based on a prognostic model with con-
tinuous and right-censored data from DNA microarrays.

Technical Notes DNA microarrays are arrays that provide simultaneous
information about expression levels of thousands of genes and are conse-
quently finding wide use in biomedical research. Hsieh and Lavori proposed
this method for planning sample size based on a number of events: D = (k +
1)%/k(zan + zp)*/(t In 8)%, where T denotes the statndard deviation of a log ratio
or log intensity level of a gene over the entire set of samples, because there
are no predefined classes. 6 denotes the hazard ratio associated with a 1-unit
change in the log ratio or log intensity x, and In denotes the natural logarithm.
Note that we are assuming that the log ratio or log intensities are based on
logarithms to the base 2, so a 1-unit change in x represents a twofold change.
To control the number of false positives and false negatives, oo and B should
not exceed 0.001 and 0.05, respectively (Hsieh and Lavori, 2000; Simon et al.,
2002).

10.3.4 Multisample Confidence Interval for Others

Confidence Interval for One-Way Contrast: Large Sample
Objective: To calculate sample size based on a precision analysis for maximum
mean difference among several independent samples.

Technical Notes The precision analysis for sample size is based on the
maximum half-width of the confidence interval that we are willing to accept
for the underlying parameter. The sample size per group is given by
n =0.5z%,w2vz (C?ln; )z n/E*, where V is the sample variance, C; is
contrast, r; = ny/n; is the sample size ratio, and E is the confidence interval
width (Chow and Liu, 1998).



Afterword

You have learned how to design and monitor a classical or adaptive clinical
trial. If you want do more research on adaptive designs, you should read the
literature on this topic. For in-depth coverage of the theory and methodology,
I recommend Adaptive Design Theory and Implementation Using SAS and R
(M. Chang, 2007a). Together with ExpDesign Studio, it should act as a
powerful tool in your research (e.g., simulations). You may want to visit
www.statisticians.org from time to time for updates and send your questions
and comments to mark.chang@statisticians.org.

One relevant aspect that has not been discussed is the IT infrastructure
regarding the data query and report system used in adaptive designs. The
Clinical Workbench by Biopier (www.Biopier.com) is a very impressive tool
in this regard.

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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APPENDIX A
Validation of ExpDesign Studio*

The validation document is intented to support pharmaceutical end users in
meeting the FDA’s 21 CFR part 11 requirements. However, it is important
to know that it is not possible for any vendor to offer a turnkey “Part 11—
compliant system.” Part 11 requires both procedural and administrative con-
trols to be put in place by the user in addition to the technical controls that a
vendor can offer. At best, a vendor can offer an application containing the
required technical requirements for a compliant system (www.21cfrpartl].
com).

Before addressing the validation, let’s quickly review the difference between
ExpDesign Studio 5.0 and earlier versions. The following modules are added
due to recent rapid development in adaptive trial design:

e New adaptive design module
e Adaptive trial monitoring module
e Dose-escalation trial monitoring module

Also, a random number generation module, the randomizor, has been
added. The early version of an adaptive design simulator now serves as a sec-
ondary module for adaptive design. An option has been added to allow for
futility-binding or nonbinding design. The default is nonbinding. In the earlier
version, only futility binding is allowed.

Calculations of the number of events required for group sequential design
have been added to the survival group sequential design. This has also led to
an improvement in the algorithm for survival analysis. Several new methods,
including Fisher’s exact test for the two proportions, have been added; mean-
while, several uncommonly used methods for classical sample size calculation
have been removed. A second full-scale validation for version 5.0 has been
completed.

*Thanks are due Susan Shen of CTriSoft (www.CTriSoft.net) for her support in preparing the
validation documents for ExpDesign Studio 5.0.

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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216  APPENDIX A: VALIDATION OF EXPDESIGN STUDIO
A.1 VALIDATION PROCESS FOR EXPDESIGN STUDIO

ExpDesign validationis very extensive. Usually, multiple validation approaches
are used for each method. ExpDesign uses the published results and other
software, such as nQuery and East, for its validations. Validation for a method
is considered passed only if it passes algorithm and outcome validations. The
validation documents in Section A.10 are also intented for end users to do
installation and performance validations of the software, which are typically
required for most companies involved in clinical trials.

A.1.1 Algorithm Validation

For algorithm validation, the following have been checked: (1) that each algo-
rithm matches the published statistical method or procedure; (2) that numeri-
cal overflows are handled properly; (3) that appropriate numerical methods
for (singularity) integrations, and the error accumulation due to recursively
numerical rounding or truncations, are controlled; (4) ensuring that the local
and global convergence of search algorithms (e.g., binary, fast, and shell search
algorithm) are reached (if not, log out the warning massages); and (5) having
tested all the logic branches.

A.1.2 Statistical Outcome Validation

Validation Using Published Results When closed-form solutions are avail-
able, we have checked ExpDesign results against the solutions under various
conditions. When only numerical examples are available, we have checked
results against these results, and we have checked the results under special
circumstances (degenerated cases, asymptotic conditions, and/or the mono-
tonic), under which conditions solutions can often be derived.

Validation Using the Power Curve Power or power curves (power versus
treatment difference) validation is important. From the power we can check
the correctness of the program. When the null hypothesis is true, the power is
less than or equal to the type I error a. We have checked in ExpDesign the
characteristics for all hypothesis test-based sample size calculation methods.
The power is usually a monotonic function of treatment effect and sample size
(power from an exact test is an exception). This property has also been used
for the validation.

Validation Using Simulation Simulation is a powerful tool for validations.
We have extensively used simulations in ExpDesign development and debug-
ger and validation processes. We have used other independently published or
free-domain programs in SAS, R, C, and other languages.

Validation Using Other Software We have used 95% methods in nQuery
5.0 and 6.0 to validate ExpDesign Classical Design Module (Section A.2). We



VALIDATION OF THE CLASSICAL DESIGN MODULE 217

have used East 4.1 and 5.0 and SAS and R source code from M. Chang 2007a)
for group sequential design and adaptive design model (see Sections A.3 and
A.4). We have also used the results from the book by Jennison and Turnbull
(2000), Proschan et al. (2006), Wang and Tsiatis (1987), Pampallona and
Tsiatis (1994), and M. Chang (2007a) to validate the group sequential design
and adaptive design module (see Section A.3 and Table A.4). We have docu-
mented the numerical comparisons extensively in the tables in this appendix.
Of course, this reflects only a small portion of the validation processes in
ExpDesign Studio (A.2 to A.8).

A.1.3 Criteria for Passing Validation

If the difference in results is fewer than one subject or less than 0.005 in power,
or within 1% for sample size, or the precision is within 0.0001 in stopping
probabilities/boundary, it is considered to have passed validation.

Beta Version However, ExpDesign covers a wide range of design methods
that many other software packages do not cover. Because we believe in the
importance of high standard validation, we have marketed as the beta version
any method that is not 100% done. There are few methods for classic design,
and the ExpDesign Simulator module is deemed to be a beta version and
marked “Beta” in the validation tables. Readers should take precautions in
using these methods, using them for mission-critical tasks only.

A.1.4 Input and GUI Validation

GUI (graphic user interface) input validation is another way to prevent ironic
results due to impropriate inputs from a user. ExpDesign implements exten-
sive input checks to eliminate many types of input errors from the GUI. The
tiptextes for the input boxes are provided to instruct user in how to enter
appropriate values.

A.2 VALIDATION OF THE CLASSICAL DESIGN MODULE

All validation cases in Table A.1 power = 80%, 85%, or 90% for a one- or
two-sided hypothesis testing with o = 0.05. The ExpDesign default example in
each method for the classical designs will show you the exact input parameters.
You can click the example button in ExpDesign Classical Design Module to
see the inputs. For simplicity, unbalanced design validations are not presented
in the table.



TABLE A.1 Classical Sample Size Method Validation

1D Short Method Title ExpDesign  nQuery”
1 Two-sample #-test 64 64
2 Mann—-Whitney U/Wilcoxon rank-sum test for two samples 38 38
3 Kendall’s test of Independence 100 111
4 Sign test for median difference: paired sample 58 58M
5 Wilcoxon’s signed-rank test for one or paired sample 66 66M
9 McNemar’s test for paired sample 52 52
13 Asymptotic z-method considering variance difference 62 62M
14 Pearson’s chi-square test (Kramer—Greenhouse) 71 72
22 Equivalence test for two proportions (large ) 132 1325V
33 Test for Hy: (uo, 0y) vs. Ha: (u,, 6,): large sample 42 N.A.
34 Two-sample z-test (large sample or population variance 63 635V
known)
36 Lachin’s test for two treatments by two-time-point 110 N.A.
interaction
37 Lachin’s test for treatment by time interaction 284 N.A.
40 Exponential survival distribution with uniform patient 251 250
enrollment
42 Exponential survival with uniform enrollment and 416 415
follow-up
44 Test H: single correlation = zero using Fisher’s arctan 86 85
transformation
45 Test Hy: regression coefficient = zero using arctan 86 85
transformation
46  Test two correlation coefficients using Fisher’s arctan 53 N.A.
transformation
48 Test interaction in a model with exponential survival 69 N.A.
function (two strata)
49  Test interaction in a model with exponential survival 444 N.A.
function (k strata)
50 One-way ANOVA for parallel groups 52 53
51 2 x2 crossover study with intraclass correlation 74 N.A.
consideration
52 Whitehead logistic ratio model for two groups with k 97 N.A.
categories
54 One-sample t-test 34 34
55 One-sample t-test (finite population) 33 33
56 Paired-sample r-test 34 34
57 Paired-sample r-test (finite population) 54 55
58 One-sample mean confidence interval method (large 61 62
sample)
59 One-sample mean confidence interval method (finite 58 58
population)
60 Paired-sample mean confidence interval method (large 61 62
sample)
61 Paired-sample mean confidence interval method (finite 58 58
population)
62  Paired ¢ test for equivalence of means 126 127
64  Schuirmann-Chow’s two one-sided t-tests for equivalence 791 791K
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TABLE A.1 Continued

1D Short Method Title ExpDesign  nQuery”
66 Confidence interval for difference of two means (large 48 48
sample)
68 Confidence interval for one-way contrast (large sample) 123 123
69 Noninferiority test for two means based on a one-sided 310 310K
two-sample t-test
70  One-way repeated measures ANOVA 60 61
72  Chi-square test for one sample proportion 239 239
73  Chi-square test for one proportion with k categories 76 76
74  Confidence interval for a proportion (large n) 81 81
75 Confidence interval for odds ratio for paired proportions 512 513
(large n)
76  Confidence interval for the probability of observing a rare 15 16
event
77  Chi-square test for the one proportion (finite population) 147 147
79  Paired response: equivalence of p, and p, (large sample) 312 312
80 Chi-square test for two proportions with k categories 102 102
81 Confidence interval for difference in two proportions (large 177 177
n)
82  Confidence interval for In(odds ratio): unmatched case— 210 211
control study
83  One-sided noninferiority for two proportions (large 40 40V
sample)
84  Chi-square test for m sample proportions with k categories 101 102
85 Mantel-Haenszel test for odds ratio with k strata 2025 2026
86 Mantel-Haenszel test for odds ratio with k strata 57 57
(continuity correction)
87 Cochran—Armitage test for linear/monotonic trend 807 808
(dose-response)
88 Log-rank test for survival analysis 98 98
91 Logistic regression on x for binary outcome 77 76
92 Logistic regression on x for binary outcome with covariates 103 102
93  Linear regression; test for H: correlation coefficient = 0 82 82
94  Multiple linear regression; test for H,: multiple correlation 24 24
R=0
95 Multiple regression, test 0, increased in R* due to extra B 208 N.A.
covariates
96 Linear regression y = a + bx; test Hy: b = b, 34 34
97 Linear regression y, = a; + bix, y, = a, + box; test Hy: by = b, 36 37
98 Linear regression y = a + bx, confidence interval for b 384 N.A.
100  Confidence interval for Bloch-Kraemer intraclass k 350 N.A.
coefficient
101  Test for Bloch-Kraemer intraclass  coefficient 780 780
102 Test for Bloch-Kraemer intraclass x using z-transformation 697 N.A.
104  Two one-sided t-tests for equivalence of two means: parallel 310 310
design
105 Confidence interval for repeated measures contrast 908 908
107 Two one-sided #-tests for equivalence based on ratio of 76 76

means: parallel design
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TABLE A.1 Continued

ID Short Method Title ExpDesign  nQuery®

108  Two one-sided ¢-tests for equivalence based on ratio of two 34 34
means: crossover design

109 Two one-sided ¢-tests for equivalence based on mean ratio 482 482
for lognormal data

110  Exponential survival with uniform accrual, follow-up, and 120 119
dropouts

112 Test all k equal survival means with overall type I error 118 118M8
control

113 Exponential survival distribution with a Bernoulli 118 N.A.
confounding variable

115  One-way repeated measures ANOVA for two groups 60 61

117 Repeated measures for two proportions 53 CL

120  Test for treatment mean difference with 2 x 2 crossover 74 CL
design

121  Two-sample z-test for treatment mean difference 141 141R

126 Two-way analysis of variance with interaction term 128 128

127 Two-way analysis of variance without interaction 162 Odeh

128  One-way random block design 128 Odeh

130  ANOVA with Latin square design 128 Odeh

131  William’s test for minimum effective dose 335 CL

132 One-sample multiple test for zero means 60 N.A.

133 Two-sample multiple test for mean differences 122 NQ

135  One-sample exact test for proportion using binomial 143 143
distribution

138  One-sample confidence interval for mean based on 98 98CR
t-statistic

139  Paired mean confidence interval based on t-statistic 98 98k

145  One-way ANOVA for parallel groups 214 215

146  Contrast test for m means (dose-response) 230 230

147  Chi-square test for m sample proportions with k categories 386 386

148  Chi-square test for equal proportions in m groups 101 102

150  Noninferior its test for survival with uniform accrual and 276 276
follow-up

152 Equivalence test for survival with uniform accrual and 498 498°¢
follow-up

153 Equivalence test for two proportions (large n) 132 132¢¢

154 Comparing DNA expression profiles among predefined 58 N.A.
classes

156  Prognostic models with right-censored data from DNA 36 N.A.
microarray

157 One-way contrast between proportions 60 60°¢

159  One-way contrast test for survival with uniform accrual and 76 76
follow-up

161 Donner’s method for mean difference using cluster 403 N.A.
randomization

164 Fisher’s exact test for two proportions 50 50

“Default source is nQuery; M, validated manually; CSW, Chow—Shao—Wang (2003); N.A., not applicable
(beta version); CR, internal cross-validation using method already validated; MS, Makuch and Simon
(1982); Odeh, Odeh and Fox (1991); C, Chang (2007¢); CC, Chang and Chow (2006); CL, Chow and
Liu (1998).
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A3 VALIDATION OF THE GROUP SEQUENTIAL
DESIGN MODULE

AJ3.1 Stopping Boundary and Type I Error Rate Validation

In Tables A.2 to A.4 we compare the stopping boundaries from four different
sources: Jennison and Turnbull (2000) (JT); Proschan et al. (2006) (PLW),
ExpDesign 5.0, and East 4.1. We can see that the stopping boundaries are vir-
tually identical in all methods.

A.3.2 Power and Sample-Size Validation

Tables A.5 to A.10 are sample-size comparisons among different sources. In
additional type I error and power, we have also validated the crossing proba-
bility at interim analyses (see Table A.11 for examples).

TABLE A.2 O’Brien-Fleming Boundary on the z-Scale at the Final Stage’

Number of ExpDesign

Looks Studio 5.0 PLW.(P72) JT East 4.1
1 1.9599 1.960 1.960 1.960
2 1.9768 1.977 1.977 1.977
3 2.0044 2.004 2.004 2.004
4 2.0243 2.024 2.024 2.024
5 2.0396 2.040 2.040 2.040
6 2.0533 2.053 2.053 2.053
7 2.0641 2.063 2.063 2.063
8 2.0717 2.072 2.072 2.072
9 2.0794 2.080 2.080 2.080

10 2.0870 2.087 2.087 2.087

“One-sided o = 0.025, equal information intervals.

TABLE A.3 Pocock Boundary on the z-Scale at the Final Stage*

Number of ExpDesignm

Looks Studio 5.0 PLW.(P72) JT East 4.1
1 1.9599 1.960 1.960 1.960
2 2.1789 2.178 2.178 2.178
3 2.2892 2.289 2.289 2.290
4 2.3611 2.361 2.361 2.361
5 2.4132 2413 2.413 2.413
6 2.4530 2.453 2.453 2.454
7 2.4852 2.485 2.485 2.486
8 2.5127 2.512 2.512 2.513
9 2.5357 2.535 2.535 2.536

10 2.5556 2.555 2.555 2.556

“One-sided a = 0.025, equal information intervals.
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TABLE A4 Wang-Tsiatis Boundary (b = 0.25) on the z-Scale at the Final Stage*

Number of Looks ExpDesign Studio 5.0 JT East 4.1
1 1.9599 1.960 1.960
2 2.0380 2.038 2.038
3 2.0824 2.083 2.083
4 2.1131 2.113 2.113
5 2.1360 2.136 2.136
6 2.2544 2.154 2.154
7 2.1682 2.168 2.168
8 2.1804 2.180 2.180
9 2.1986 2.190 2.190

10 2.1988 2.199 2.199

“One-sided o = 0.025, equal information intervals.

TABLE A.5 Maximum Sample Size for 80% and 90% Power: of Boundary”

ExpDesign East 4.1 WT
Number of Studio 5.0 M
Looks 80% 90% 80% 90% 80% 90%
1 348 466 348 466 349 467
2 351 470 351 469 352 470
3 355 475 354 474 355 475
4 357 477 356 476 357 477
5 359 479 358 478 359 479

“One-sided o = 0.025, equal information intervals, effect size = 0.3, four-stage sequential design
comparing two means.
Calculated using Tables 2.11 and 2.12 in Jennison and Turnbull (2000).

TABLE A.6 Maximum Sample Size for 80% and 90% Power: Pocock Boundary”

ExpDesign East 4.1 WT
Number of Studio 5.0 M
Looks 80% 90% 80% 90% 80% 90%
1 348 466 348 466 349 467
2 388 514 386 513 387 514
3 407 537 406 536 407 537
4 419 552 418 551 420 553
5 429 563 428 562 429 564

“One-sided o = 0.025, equal information intervals, effect size = 0.3, four-stage sequential design
comparing two means.
Calculated using Tables 2.11 and 2.12 in Jennison and Turnbull (2000).
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TABLE A.7 Maximum Sample Size for 80% and 90% Power:
Wang-Tsiatis Boundary’

ExpDesign East 4.1 WT
. b —

Number of Studio 5.0 JT (delta = 0.25)
Looks 80% 90% 80% 90% 80% 90%
1 348 466 348 466 349 467
2 362 483 361 482 362 483
3 368 490 367 489 368 490
4 371 495 371 494 371 495
5 374 498 373 497 374 498

“One-sided o = 0.025, equal information intervals, effect size = 0.3, four-stage sequential design
comparing two means.
“Calculated using Tables 2.11 and 2.12 in Jennison and Turnbull (2000).

TABLE A.8 Maximum Sample Size for Binary Endpoint: Four-Stage
Sequential Design’

East 4.1
ExpDesign (Pooled
Proportions Studio 5.0 Variance)
Boundary Type Group 1 Group 2 80% 90% 80% 90%
OF 0.2 0.4 169 226 167 222
WT (A =0.25) 0.2 0.4 175 234 174 230
Pocock 0.2 0.4 198 261 197 258

“The differences in sample size cause less than 0.5% difference in power. It is therefore considered
to be due to numerical rounding.

TABLE A.9 Maximum Sample Size (Number of Events) for Survival Endpoint:
Four-Stage Sequential Design®

ExpDesign Studio 5.0 East 4.1 (Pooled Variance)
Boundary Type 80% 90% 80% 90%
OF 654 (467) 874 (624) 656 (469) 877 (626)
WT (A =0.25) 680 (485) 907 (647) 683 (487) 910 (649)
Pocock 768 (548) 1012 (722) 771 (551) 1016 (725)

“All differences in sample size < 0.5%. Therefore, it is consider due to numerical rounding. Patient
accrual period T, = 24.4, study duration 7, = 34.3, median times = 10 and 13 for the two
groups.
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TABLE A.10 Maximum Sample Size (Number of Events) for Survival Endpoint:
Three-Stage Sequential Design‘

ExpDesign Studio 5.0 East 4.1 (Pooled Variance)
Boundary Type 80% 90% 80% 90%
OF 671 (517) 899 (692) 673 (519) 900 (694)
WT (A =0.25) 696 (536) 929 (715) 968 (538) 930 (717)
Pocock 770 (593) 1017 (783) 992 (595) 1020 (786)

“It has been noted that the number of events changes slightly when accrual rate changes, which
should not change based on the formulation. All differences in sample size < 0.5%. It is therefore
considered to be due to numerical rounding. Patient accrual period 7|, = 8, study duration 7, =
23, median times = 10 and 13 for the two groups.

TABLE A.11 Validation of Boundary Crossing Probabilities*

ExpDesign Studio 5.0 East 4.1
Stage Under H, Under H, Under H, Under H,
1 0.0014 0.0743 0.001 0.074
2 0.0054 0.3033 0.005 0.303
3 0.0083 0.2946 0.008 0.295
4 0.0098 0.1778 0.010 0.178

“Four-stage sequential design with OF boundary comparing two means.

TABLE A.12 Stopping Boundary on the p-Scale at the Final Stage Using
Error-Spending Function

Spending Information ExpDesign PLW Table

Function Time Studio 5.0 5.3 East 4.1°

OF-like 0.20 0.00000 4.877/0.00000 0.00000
0.50 0.00159 2.963/0.00153 0.00153
1.00 0.02454 1.969/0.02448 0.02448

Linear 0.20 0.00500 2.576/0.00500 N.A.
0.50 0.00873 2.377/0.00873
1.00 0.01611 2.141/0.01614

Pocock-like 0.20 0.00738 2.438/0.00738 0.00738
0.50 0.00983 2.333/0.00982 0.00982
1.00 0.01306 2.225/0.01304 0.01304

“Converted from the z-scale. One-sided o = 0.025, equal information intervals with three looks
(MINP). N.A., not applicable; PLW, Proschan, Lan, and Wittes, 2006.

A4 VALIDATION OF THE ADAPTIVE DESIGN MODULE

A.4.1 Stopping Boundary and Type I Error Rate Validation

For MINP with OF-like, Pocock-like, and Lan-DeMets’s power-spending func-
tions, the validation results are the same as for group sequential design (Tables
A.12 to A.15). Note that Cui-Hung-Wang’s method is a special case of MINP
(the method based on inverse-normal p-values).
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TABLE A.13 Stopping Boundary Validation (o) with Two-Stage MSP:
Futility Binding*

(4]
B 0.000 0.0025 0.005 0.010 0.015 0.020
0.05 0.5250 0.4999 0.4719 0.4050 0.3182 0.2017
0.10 0.3000 0.2820 0.2630 0.2217 0.1751 0.1225
0.15 0.2417 0.2288 0.2154 0.1871 0.1566 0.1200
0.20 0.2250 0.2152 0.2051 0.1832 0.1564 0.1200
0.25 0.2236 0.2146 0.2050 0.1832 0.1564 0.1200

“All values are validated using computer simulation with 1,000,000 runs and results from M. Chang
(2007a, Table 4.3).

TABLE A.14 Stopping Boundary Validation (o) with Two-Stage MPP:
Futility Binding®

(4]

By 0.001 0.0025 0.005 0.010 0.015 0.020

0.15 0.0048 0.0055 0.0059 0.0055 0.0043 0.0025
0.20 0.0045 0.0051 0.0054 0.0050 0.0039 0.0022
0.25 0.0043 0.0049 0.0051 0.0047 0.0036 0.0020
0.30 0.0042 0.0047 0.0049 0.0044 0.0033 0.0018
0.35 0.0041 0.0046 0.0047 0.0042 0.0032 0.0017
0.40 0.0040 0.0044 0.0046 0.0041 0.0030 0.0017
0.50 0.0039 0.0042 0.0043 0.0038 0.0029 0.0016
1.00 0.0035 0.0038 0.0038 0.0033 0.0024 0.0013

“All values are validated using computer simulation with 1,000,000 runs and results from M. Chang
(2007a). Nonfutility binding boundaries are special cases when we force B, = 1.

TABLE A.15 Stopping Boundary Validation (o) with Two-Stage MSP:
Futility Binding*

(4}
By 0.000 0.0025 0.005 0.010 0.015 0.020
0.05 0.5250 0.4999 0.4719 0.4050 0.3182 0.2017
0.10 0.3000 0.2820 0.2630 0.2217 0.1751 0.1225
0.15 0.2417 0.2288 0.2154 0.1871 0.1566 0.1200
0.20 0.2250 0.2152 0.2051 0.1832 0.1564 0.1200
>0.25 0.2236 0.2146 0.2050 0.1832 0.1564 0.1200

“All values are validated using computer simulation with 1,000,000 runs and results from M. Chang
(2007a,b). Nonfutility binding boundaries are special cases when we force B; = o,.
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The Lan-DeMets power family stopping boundary validation with MSP
(>two stages) is based on simulation; therefore, the precision is dependent on
the number of simulation runs. We suggest that 100,000 to 1,000,000 simulation
runs are necessary to determine the stopping boundary with 0.01% precision.
For K-stage designs, boundaries are verified through simulations, which is
done at the time you design the trial by running a simulation under the null
conditions.

A.4.2 Validation of Adaptive Design Monitoring

Two-stage results for sample-size reestimation and conditional power are veri-
fied by analytical results from M. Chang (2007) and using overall type I error
rate and simulation to check (Tables A.16 and A.17). For K-stage design, simu-
lations were used for validation and overall type I error rate and conditional
power from two-stage design to check. For K-stage design with MINP, recal-
culation of the stopping boundaries were checked against the group sequential
stopping boundaries that have already been verified.

A.5 VALIDATION OF THE MULTISTAGE DESIGN MODULE

The optimal design and MinMax design are often not unique; there could be
several designs with the same expected or maximum sample size. In such cases,

TABLE A.16 Validation of Conditional Power for Two-Stage Adaptive Design”

cPower from cPower from
Method Effect Size P, N, N, ExpDesign M. Chang (2007a)
MSP 0.18124 0.1 100 200 0.73 0.73
MPP 0.18124 0.1 100 200 0.515 0.515
MINP 0.18124 0.1 100 200 0.626 0.626

“MSP boundary: o, = 0.0025, 0, = 0.2152. MPP boundary: o; = 0.0025, o, = 0.0038. MINP bound-
ary: o, = 0.0025, o, = 0.02454.

TABLE A.17 Validation of Sample-Size Reestimation for Two-Stage
Adaptive Design”

cPower from cPower from
Method  Effect Size P, N, cPower ExpDesign M. Chang (2007)
MSP 0.18124 0.1 100 0.9 375 375
MPP 0.18124 0.1 100 0.9 569 569
MINP 0.18124 0.1 100 0.9 472 472

“MSP boundary: o, = 0.0025, 0, = 0.2152. MPP boundary: o = 0.0025, o, = 0.0038. MINP bound-
ary: o, = 0.0025, o, = 0.02454.
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ExpDesign will present all the designs in the grid and pick anyone to present
the report. Examples of validations are shown in Tables A.18 to A.20.

Note that we believe that a few probabilities of early termination, PET(p,),
are incorrect in Simon’s original paper. For example, for MinMax design with
Po = 0.2 and the cutpoint r/n, = 4/18, Simon’s PET(p,) = 0.50, which is incor-
rect (or simply a typographical error). The PET(0.2) can easily be verified
using the binomial distribution, which is 0.7164.

TABLE A.18 Two-Stage Optimal Design (MinExpSize): One-Sided o = 0.05

Simon/ExpDesign Simon ExpDesign
Power Do D1 Ry/ny rin EN(py) PET(p,) PET(p,)
0.8 0.05 0.25 0/9 2/24 14.5 0.63 0.630
0.8 0.20 0.40 3/13 12/43 20.6 0.75 0.747
0.8 0.30 0.50 5/15 18/46 23.6 0.72 0.722
0.8 0.10 0.15 2/18 7/43 24.7 0.73 0.734
0.8 0.30 0.45 9/27 30/81 41.7 0.73 0.728
0.9 0.30 0.50 8/24 24/63 34.7 0.73 0.725

Source: Simon (1989, Tables 1 and 2).

TABLE A.19 Two-Stage MinMax Design (MinMaxSize): One-Sided o = 0.05

Simon/ExpDesign Simon ExpDesign
Power Do D1 Ry/n, rin EN(py) PET(p,) PET(p,)
0.8 0.05 0.25 0/12 2/16 13.8 0.54 0.540
0.8 0.20 0.40 4/18 10/33 223 0.50* 0.716
0.8 0.30 0.50 6/19 16/39 25.7 0.48* 0.666
0.8 0.10 0.15 2/22 7140 28.8 0.62 0.620
0.8 0.30 0.45 16/46 25/65 49.6 0.81 0.809
0.9 0.30 0.50 7124 21/53 36.6 0.56 0.565

Source: Simon (1989, Tables 1 and 2). An asterisk indicates an incorrect value from Simon’s
original paper.

TABLE A.20 Three-Stage Optimal Design Validation’

Source P, P, riny r2ln, r3/ns Alpha Power
ExpDesign 0.05 0.25 0/8 1/13 2/19 0.049 0.805
Ensign* 0.05 0.25 0/7 1/15 3/26 0.027% 0.805
ExpDesign 0.10 0.30 0/6 2/17 5/29 0.047 0.801
Ensign 0.10 0.30 0/6 2/17 5/29 0.047 0.801

“Alpha and power from 1,000,000 simulation runs in SAS and numerical calculations in ExpDe-
sign. An asterisk indicates that Ensign’s (Ensign et al., 1994) Table I did not pick the optimal
design, due to a conservative o value. The SAS program for validation of the three-stage design
in presented in Section A.10.
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TABLE A.21 Traditional 3 + 3 Escalation Design Validation

Software Method Mean N Mean DLTs Mean MTD
ExpDesign 5.0 TER 17.2 2.82 3.764
SAS Macro TER 17.2 2.83 3.765

TABLE A.22 CRM Validation

Software Mean MTD Mean DLTs Number of Patients
ExpDesign 5.0 154 3.1 11.8
SAS Macro 154 3.1 11.9

A.6 VALIDATION OF THE TRADITIONAL DOSE-ESCALATION
DESIGN MODULE

A.6.1 Validation of the Traditional Escalation Rule

We have used the SAS program (Section A.10.2) to validate the traditional
escalation design (Table A.21). The parameter settings are as follows: the
number of simulations = 5000, the number of stages = 1, the number of dose
levels = 7, the true MTD = 4 with a DLT rate of 0.2. The DLT rates for the
seven dose levels are 0.01, 0.028, 0.079, 0.2, 0.423, 0.683, and 0.863. The dose-
escalation rule is the 3 + 3 traditional escalation rule.

A.6.2 Validation of the Bayesian Continual Reassessment Method

We have used SAS Macro (A.10.3) to validate the CRM (Table A.22). The
trial settings are specified as follows: the seven dose levels 25, 50, 82.5, 125.4,
175.6,233.5, and 310.5, and the DLT rates 0.0098, 0.0196, 0.0475, 0.143, 0.4062,
0.7774, and 0.9683, respectively. The true MTD is 150 with a rate of 0.25. The
stopping rule is defined as if the maximum number of patients at a dose level
reaches six. No dose level can be avoided during the escalation.

A.7 VALIDATION OF THE TRIAL SIMULATION MODULE

The trial simulator is a beta version in ExpDesign Studio 5.0; only algorithm
validations are done, and outcome results are checked for some special cases.
The full outcome validations are not done because no published data are
available for the validation.

A.8 VALIDATION OF THE RANDOMIZOR

The main references for implementation of the randomizor are Gentle (2003),
Ross (2002), and Kokoska and Zwillinger (2000). Algorithms used to generate
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TABLE A.23 Randomizor Validation’

Mean StdDev

Distribution Expected Observed Expected Observed
Bernoulli(0.2) 0.2 0.201 0.4 0.401
Beta(0.3,0.5) 0.375 0.378 0.361 0.362
Binomial(0.2,5) 1 0.990 0.894 0.892
Caucthy(0.5,1,2) N.A. 2.261 N.A. 0.155
Chisq(8) 8 8.011 4 3.975
Exp(3) 0.333 0.330 0.333 0.331
Gamma(3,0.5) 1.5 1.500 0.866 0.869
Geometric(0.2) 5 4.949 4.472 4.420
HalfNormal — 0.802 — 0.602
HyperGeometric (10,5,2) 1 1.004 0.667 0.662
invGauss(4, 6) 4 3.993 3.266 3.239
Laplace(3) 0 0.0001 0.4714 0.469
Rayleigh(2.5) 3.1333 3.147 1.638 1.638
Lognormal(0.2,2) 9.025 9.041 66.67 60.664
Multinormal

NegBinomial(1.2,0.4) 1.8 1.7743 2.121 2.096
Normal(0,1) 0 0.0089 1 0.997
Pareto(3,0.4) 0.6 0.6002 0.3464 0.334
Pascal(3,0.4) 4.5 4.5242 3.354 3.373
Poisson(20) 20 20.0163 4.472 4.454
F(6,8) 1.333 1.338 1.333 1.312
Student-#(5) 0 —0.005 1.291 1.283
Uniform(0,1) 0.5 0.500 0.2887 0.288
Weibull(0.5,5) 10 10.090 22.361 23.406

“Results based on 20,000 simulation runs. N.A., not applicable.

deviations from these distributions are well established. We have validated
the quartiles and standard deviations. Examples are presented in Table
A23.

A9 VALIDATION OF THE EXPDESIGN TOOLKITS

This distribution module has also been used for part of ExpDesign, such as
sample-size calculations, and thus verified indirectly through validations of
other ExpDesign modules. The cross-validations were done using ExpDesign
5.0, East 4.1, and Scientific Workplace 5.0 (SW) (see Table A.24).

We have also verified the tail part of the distribution. For example, Zj g9 =
3.0902 and Z 9999 = 3.719 from both ExpDesign Studio 5.0 and Scientific Work-
place 5.0. Validations of probability distributions and confidence intervals can
be found in Tables A.25 and A.26, respectively.
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TABLE A.24 Validation of Distribution Calculator: Continuous

Percentile
Inverse c.d.f.  Software 25% 50% 75% 95% 97.5% 99%
Chisq ExpDesign 15.45 19.34 23.82 31.40 34.15 37.56
(20,x) East 4.1 15.45 19.34 23.83 31.41 34.17 37.57

SW 5.0 15.452 19.337  23.828 31.41 34.170  37.566
Exponential ExpDesign  2.876 6.936 13.86 29.96 36.88 46.06

(0.1,x) East 4.1 2.877 6.931 13.86 2996  36.89  46.05
SW 5.0 2.8768 6.9315 13.863  29.957 36.889  46.052
F(20,50,x) ExpDesign  0.7555 0.9799  1.2592 1.7842  1.9932  2.2656
SW 5.0 0.75545 09799  1.2592 1.7841 1.9933  2.2652
Gamma ExpDesign  4.316 6.686 9.800 15.74 18.06 21.00
(3,25x)  East4.l 4.318 6.685 9.801 15.74 18.06  21.01
SW 5.0 4.3182 6.6852  9.801 15739  18.062  21.015
N(0,1,x) ExpDesign -0.6745 0 0.6745 1.6449 19599  2.3263
East 4.1 -0.6745 0 0.6745 1.6449  1.9600 2.3263
SW 5.0 -0.67449 0 0.67449  1.6449 1.9600 2.3263
Student ¢ ExpDesign -0.7064 0 0.7064  1.8595 2.3058 2.8963
(8x) East 4.1 -0.7064 0 0.7064  1.8600 2.3060  2.8960
SW 5.0 —0.70639 0 0.70639  1.8595 23060  2.8965
Weibull ExpDesign  0.8042 1.2485 1.7659 25977 2.8848  3.2300
(2,15x)  SWS5.0 0.80454 1.2488 1.7661 2.5962  2.8810 3.2189

TABLE A.25 Validation of the Distribution Calculator: Discrete
N
c.d.f. Software 36 40 43 46 48 51

Binomial ExpDesign 0.2386  0.5433  0.7635  0.907 0.9577  0.99
(100,0.4;n) SW 5.0 0.23861 0.54329 0.76347 0.90702 0.95770 0.98999

Poisson ExpDesign 02963  0.5419 0.7162  0.8479  0.9075 0.9613
(40;n) SW 5.0 0.29635 0.54192 0.71622 0.84788 0.90753 0.96126

TABLE A.26 Validation of the Confidence Interval Calculator’
Two-Sided 95% CI

CI Name ExpDesign CI www CI
One-sample proportion P =6/30 — (0.0771, 0.3857)  (0.0771, 0.3857)
One-sample proportion (z) P =0.2 — (0.0569, 0.3431)  (0.0596, 0.3431)
One-sample mean (7) U=1 — (0.2532,1.7468)  t-distribution
One-sample mean (z) Uu=1 — (0.2843,1.7157)  (0.28, 1.72)
Two proportions (z) P, =03, P,=05 (0.0671,0.3329) Checked
manually
Two means () U=1 U,=2 (-0.0333,2.0333) t-distribution
Two means (z) Uu=1 U,=2 (-0.0121,2.0121) (-0.01,2.01)
Two-variance ratio S =2, S, =3 (1.0706, 4.7262)  Checked
manually

“Total sample size n = 30/group, the default standard deviation S = 2. For further information
see http://www.dimensionresearch.com/resources/calculators/conf_means.html and http:/www.
measuringusability.com/wald.htm.
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A.10 COMPUTER PROGRAMS FOR VALIDATIONS

A.10.1 SAS Macro for Three-Stage Design Validation

The following is the SAS macro for validation of o and power for three-stage
designs.

%Macro ThreeStageDesign(p, nl, n2, n3, rl, r2, r3);

data bin; drop 1 nSims;
retain FSP1 0 FSP2 0 FSP3 O0;
nl=&nl; n2=&n2; n3=&n3; rl=&rl; r2=&r2; r3=&r3;
seed=292; p=&p; nSims=1000000;
do i=1 to nSims;
call ranbin(seed,nl,p,x1);
call ranbin(seed,n2-nl,p,x2);
call ranbin(seed,n3-n2,p,x3);
if xl<=rl then FSP1=FSPl+1l/nSims;
if xI>rl & x1+x2<=r2 then FSP2=FSP2+1l/nSims;
if xI>rl & x1+x2> r2 & x1+x2+x3<=r3 then
FSP3=FSP3+1/nSims;
end;
FSP=FSP1+FSP2;
Power=1-FSP-FSP3;
output;
run;
proc print; run;
%mend ;
%$ThreeStageDesign(0.05, 7, 15, 26, 0,
%$ThreeStageDesign(0.25, 7, 15, 26, 0,
$ThreeStageDesign(0.05, 8, 13, 19, 0,
$ThreeStageDesign (0. 25, 8, 13, 19, 0,
$ThreeStageDesign (0 6, 17, 29, 0, 2, 5);
%ThreeStageDesign(O 3, 6, 17, 29, 0, 2, 5

A.10.2 Traditional 3 + 3 Escalation Design Validation

SAS Macro for validation of 3+3 Dose-Escalation

%Macro TER3p3 (nSims=50000, nLevels=10);

Data TER; Set dInput; Keep AveMTD SdMTD AveNPts
AveNRsps;

Array nPts{&nLevels}; Array nRsps{&nLevels}; Array
RspRates{&nLevels};

AveMTD=0; AveNPts=0; AveNRsps=0; nLevels=&nLevels;
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Do iSim=1 to &nSims;
Do i=1 To nLevels; nPts{i}=0; nRsps{i}=0; End;
seedn=Round ( (Ranuni (281) *100000000) ) ;
iLevel=1; TotPts=0; TotRsps=0;
Looper:
If iLevel>&nlevels | nPts{iLevel}=6 Then Goto
Finisher;
nPts{ilLevel}=nPts{iLevel}+3;
rspRate=RspRates{iLevel};
Rsp=RANBIN (seedn, 3, rspRate) ;
nRsps{iLevel }=nRsps{iLevel }+Rsp;
TotPts=TotPts+3; TotRsps=TotRsps+Rsp;
If nPts(iLevel)=3 & nRsps{iLevel}=0 Then Do;
iLevel=iLevel+l; Goto Looper;
End;

If nPts(iLevel)=3 & nRsps{iLevel}=1 Then Goto Looper;
If nPts(iLevel)=6 & nRsps{iLevel}<=1 Then Do;
iLevel=iLevel+l; Goto Looper;

End;
Finisher:
MTD=Min (iLevel-1, nLevels);
AveMTD=AveMTD+MTD/&nSims;
AveNPts=AveNPts+totPts/&nSims;
AveNRsps=AveNRsps+TotRsps/&nSims;
End;
Output;
Run;
Proc Print Data=TER; Run;
%Mend TER3p3;

TITLE “3 + 3 TER Design”;

Data dInput;

Array RspRates{7}(0.01, 0.028, 0.079, 0.2, 0.423,
0.683, 0.863);

$TER3p3 (nSims=50000, nLevels=7) ;

Run;

A.10.3 SAS Program for CRM Validation

%Macro CRM(nSims=100, MaxNtoStop=6, MinPtsPerLevel=1,
nLevels=10, b=100, aMin=0, aMax=0.03, MTRate=0.25,
nDosesSkip=1) ;

Data CRM; Set DInput;

Keep MaxNtoStop MinPtsPerLevel npts DLTs AveMTD
AveMTDD;
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Array nPtsAt{&nLevels}; Array nRsps{&nLevels}; Array
g{100};
Array Doses{&nLevels}; Array RRo{&nLevels}; Array
RR{&nLevels};
Array g0{100};
seed=2736; nLevels=&nLevels; MaxNtoStop=&MaxNtoStop;
DLTs=0;
AveMTD=0; AveMTDD=0; nIntPts=100; dx=(&aMax-&aMin) /
nIntPts;
MinPtsPerLevel=&MinPtsPerLevel;
Do k=1 To nIntPts; g0{k}=g{k}; End;
npts=0;
Do iSim=1 to &nSims;
Stopping=0;
Do k=1 To nIntPts; g{k}=g0{k};End;
Do i=1 To nLevels; nPtsAt{i}=0; nRsps{i}=0; End;
iLevel=1; preLevel=1;
* Do iPatient=1 TO nPts;
Do While (stopping =0);
npts=npts+1/&nSims;
iLevel=min (min (iLevel, &nLevels),h &nDosesSkip+preLevel
+1) ;
If nPtsAt (PreLevel) < MinPtsPerLevel Then
iLevel = PreLevel; *
Delayed response;
preLevel=iLevel;
Rate=RRo{iLevel};
nPtsAt{iLevel }=nPtsAt{iLevel}+1;
r=Ranbin(seed, 1l,Rate); nRsps{iLevel}=nRsps
{iLevel}+r;
** Posterior distribution of a;
c=0;
Do k=1 To nIntPts;
ak=&aMin+k*dx;
Rate=1/ (1+&b*Exp (-ak*doses{iLevel})) ;
If r>0 Then L=Rate; Else L=(1-Rate);
g{k}=L*g{k}; c=c+g{k}*dx;
End;
Do k=1 to nIntPts; g{kl}=g{k}/c; End;
** Predict response rate and current MTD;
MTD=iLevel; MinDR=1;
Do i=1 To nLevels;
RR{1}=0;
Do k=1 To nIntPts;
ak=&aMin+k*dx;
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RR{i1i}= RR{i}+1/ (1+&b*Exp (-ak*doses{i}))
*g{k}*dx;
End;
DR=Abs (&MTRate-RR{i}) ;
If .<DR <MinDR Then
Do; MinDR = DR; iLevel=i; MTD=i;
MTDD=Doses{MTD}; End;

End;
MaxPtsAlevel = 0;
Do 1 = 1 To nLevels;
If MaxPtsAlevel < nPtsAt (i) Then MaxPtsAlevel
= nPtsAt (i) ;
End;
If MaxPtsAlevel>=MaxNtoStop Then Stopping=1;
End;

Do i=1 To nLevels;
DLTs=DLTs+nRsps{i}/&nSims;

End;
AveMTD=AveMTD+MTD/&nSims;
AveMTDD=AveMTDD+MTDD/&nSims;

End;

Output;

Run;

Proc Print Data=CRM; run;

%Mend CRM;

Data DInput;
Array g{100}; Array
RRo{7}(0.0098,0.0196,0.0475,0.143,0.4062,0.7774,0.9683) ;
Array Doses{7} (25, 50, 82.5,125.4,175.6,233.5,310.5) ;
Do k=1 to 100; g{k}=1; End; * Flat prior. Don’t have
to be normalized;

run;
$CRM(nSims=5000, MaxNtoStop=6, MinPtsPerLevel=1,
nLevels=7, b=150, aMin=0, aMax=0.03, MTRate=0.25,
nDosesSkip=0) ;
Run;
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Sample-Size Calculation Methods:
Classical Design

One/Paired-Sample Hypothesis Test for the Mean

e Sign test for median difference for a paired sample

e Wilcoxon signed-rank test for one or a paired sample
e Test for Hy: (1, 6o) versus H,: (u, c,)—large sample
¢ One-sample r-test

e One-sample t-test: finite population

e Paired-sample ¢-test

e Paired-sample f-test (finite population)

e One-way repeated measures ANOVA

e One-way repeated measures contrast

¢ One-sample multiple test for zero means

One/Paired-Sample Hypothesis Test for Proportion

McNemar’s test for a paired sample

Chi-square test for one sample proportion

Chi-square test for one sample proportion: finite population

One-sample exact test for proportion using binomial distribution

One/Paired-Sample Hypothesis Test for Others

e Kendall’s test of independence
e Test Hy: correlation = zero using Fisher’s arctan transformation
e Test H: regression coefficient = zero using arctan transformation

Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.
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e Logistic regression on x for a binary outcome

e [ogistic regression on x for a binary outcome with covariates

e Linear regression; test for H: correlation coefficient = 0

e Multiple linear regression; test for Hy: multiple correlation R = 0

e Multiple regression; test zero increase in R* due to extra B
covariates

e Linear regression y = a + bx; test Hy: b = by vs. H,: b # by
e Test for Bloch-Kraemer intraclass k coefficient
e Test for Bloch—-Kraemer intraclass x using Z-transformation

Paired-Sample Equivalence Test for the Mean

e Paired ¢ test for equivalence of means

Paired-Sample Equivalence Test for Proportion

e Paired response: equivalence of p, and p, (large sample)

One-Sample Confidence Interval for the Mean

® One-sample mean confidence method

¢ One-sample mean confidence interval method: finite population

¢ Paired-sample mean confidence interval method: large sample

e Paired-sample mean confidence interval method: finite population

Confidence interval for repeated measures contrast
* One-sample confidence interval for a mean based on the #-statistic
e Paired mean confidence interval based on the #-statistic

One-Sample Confidence Interval for Proportion

e Confidence interval for a proportion: large n

e Confidence interval for an odds ratio for paired proportions:
large n

e Confidence interval for the probability of observing a rare
event

One-Sample Confidence Interval for Others

e Confidence interval for a correlation coefficient
e Linear regression y = a + bx, confidence interval for b
e Confidence interval for Bloch-Kraemer intraclass x
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Two-Sample Hypothesis Test for the Mean

Two-sample -test

Mann-Whitney U/Wilcoxon rank-sum test for two samples
Two-sample z-test: large sample or population variance known

2 x 2 crossover study

One-way repeated measures ANOVA for two groups

Test for a treatment mean difference with a 2 x 2 crossover design
Two-sample z-test for treatment mean difference

Two-sample multiple test for mean differences

Comparing DNA expression profiles among predefined classes
Donner’s method for mean difference using cluster randomization

Two-Sample Hypothesis Test for Proportion

Asymptotic z-method considering variance difference

Pearson’s chi-square test: Kramer—Greenhouse

Lachin’s test for two treatments by two-time-point interactions
Mantel-Haenszel test for an odds ratio with k strata: large sample
Whitehead logistic model for two groups with k categories
Chi-square test for a two-sample proportion with k categories

Mantel-Haenszel test for an odds ratio with k strata: continuity
correction

Repeated measures for two proportions
Donner’s method for proportion difference using cluster randomization
Fisher’s exact test

Two-Sample Hypothesis Test for Others

Exponential survival distribution with uniform patient enrollment

Exponential survival distribution with uniform enrollment rate and
follow-up

Test interaction in a model with an exponential survival function: two
strata

Test interaction in a model with an exponential survival function: k
strata

Log-rank test for survival analysis

Exponential survival distribution with a uniform enrollment, follow-up,
and dropouts

Exponential survival distribution with a Bernoulli confounding
variable
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e Testing two correlation coefficients using Fisher’s arctan transformation
e Linear regression y; = a; + byx, y, = a, + box; test Hy: by = b,

Two-Sample Equivalence Test for the Mean

e Two one-sided t-tests for equivalence: parallel design (bivariate f)

e Two one-sided t-tests for equivalence based on a ratio of means: parallel
design (bivariate 7)

e Two one-sided ¢-tests for equivalence based on a ratio of two means:
crossover design (bivariate f)

e Two one-sided #-tests for equivalence based on a mean ratio for lognor-
mal data: parallel design (bivariate ¢)

e Schuirmann—-Chow’s two one-sided #-tests for equivalence
e Noninferiority test for means based on a one-sided two-sample ¢-test

Two-Sample Equivalence Test for Proportion

e Equivalence test for two proportions: large n
* One-sided noninferiority test for two proportions

e Equivalence test for two proportions using the bivariate z-distribution
(large n)

Two-Sample Equivalence Test for Survival

e Noninferiority test for survival with uniform accrual and follow-up
e Equivalence test for survival with uniform accrual and follow-up

Two-Sample Confidence Interval for the Mean
e Confidence interval for the difference of two means: large sample
Two-Sample Confidence Interval for Proportion

¢ Confidence interval for the difference in two proportions: large n
¢ Confidence interval for proportional difference with minimum total size
e Confidence interval for In(odds ratio): unmatched case—control study

Two-Sample Confidence Interval for Others
Multisample Hypothesis Test for the Mean

e ANOVA with Latin square design
e One-way ANOVA for parallel groups
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Contrast test for m means: dose-response

e Two-way ANOVA with an interaction term
e Two-way ANOVA without interaction

e One-way random block design

e William’s test for minimum effective dose

Multisample Hypothesis Test for Proportion

e Chi-square test for equal proportions in m groups
Chi-square test for m sample proportions with k categories
e One-way contrast between proportions

Cochran—Armitage test for linear/monotonic trend: dose-response
Multisample Hypothesis Test for Others

¢ Prognostic model with right-censored data from DNA microarrays
e Test for all k equal survival means with overall type I error control
e One-way contrast test for survival with uniform accrual and follow-up

Multisample Confidence Interval for Others

e Confidence interval for one-way contrast: large sample
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Assumption, 27

Balanced design, 18
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Bias, operational, 24
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design; Classical trial design
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dose-escalation trial design, 133-135,
141-143
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stopping probabilities (ESP), 111-112, 120
Ending dose, 133
Endpoint(s):
adaptive trial design, 78, 97
clinical trial, 15, 24
classical trial design, 42—43
group sequential trial design, 66
implications of, 91
panel, 5
primary, 15, 86-90
secondary, 15
survival, 58-60, 65, 68, 120-121, 223-224
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Noncentrality, 201, 210-212
Noninferiority design, 86-90. See also
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dose-escalation design simulation,
136-137
Software, CTriSoft:
corrections, 255
improvements to, 255
installation, 253
license agreement, 253-254
updates, 255
warranties, 254-255
Spreadsheet applications, 126
Stagewise p-values:
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