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 PREFACE 

 Drug development is shifting from the classical approaches to more dynamic 
or adaptive approaches. The pharmaceutical industry and the U.S. Food and 
Drug Administration (FDA) has been seeking effi cient methods of drug devel-
opment as indicated in the FDA ’ s critical path document. Many people believe 
that the innovative approach of adaptive design is a major pathway to success 
in drug development in today ’ s challenging drug development environment. 

 In a book that I co - authored,  Adaptive Design Methods in Clinical Trials
(Chow and Chang,  2006 ), various adaptive design methods were introduced. 
Six months later I authored a second book, Adaptive Design Theory and 
Implementation Using SAS and R  (Chang,  2007a ), which provided in - depth 
and unifi ed theory regarding adaptive designs and implementations, with many 
trial examples. These two books require a strong statistical background and 
clinical trial experience. 

 However, based on feedback from recent adaptive design workshops and 
conferences, I realize that there are many practitioners who are very good at 
strategic thinking and solution of practical problems but little interested in or 
lacking time to study the theory. Although I have kept the SAS and R program 
units as small as possible, with a clear logic fl ow from my previous books, there 
are still minimal requirements for knowledge of SAS or R. Also, many statisti-
cians who are familiar with SAS would prefer to have software with a graphic 
user interface that can provide user - friendly tools for both classical and adap-
tive designs and monitoring. Among other options, I believe that ExpDesign 
Studio®   fi ts the practical needs and provides a one - stop - shopping experience 
(CTriSoft,  www.CTriSoft.net ). This book, which avoids dealing with theory, 
is complementary to the two books mentioned earlier. Readers can jump - start 
to adaptive design without diffi culty if they have one or two years of clinical 
trial design experience. However, for readers interested in the mathematical 
details, the mathematical notes at the end of each chapter will provide the key 
formulations for each method, or they can review Adaptive Design Theory and 
Implementation Using SAS and R  (Chang,  2007a ) for an in - depth understand-
ing of the theory and algorithms for computer implementation. 

 ExpDesign is commercial software used by major pharmaceutical compa-
nies, universities, and research institutes worldwide. With ExpDesign you can 
design a classical or adaptive design literately in two minutes if you have the 
parameters ready. The ExpDesign enterprise version can also generate SAS 
and R code for an adaptive design. 



xiv PREFACE

 The book has been written with practitioners in mind. It is not intended to 
teach adaptive design theory nor to function as a simple software user manual. 
The objective of the book is to demonstrate the use of ExpDesign in trial 
design, to assist strategic decision making, and to help solve issues related to 
classical and adaptive trials. It is written as a tutorial, a self - learning textbook 
(see the Self - Study and Practice Guide following the preface). Readers are 
expected to master the basic adaptive trial techniques in about one week. The 
book, together with the software, makes learning easy and fun. The accompa-
nying software is a fully professional version of ExpDesign Studio 5.0, not a 
typical trial version. The book and the software, covering both classical and 
adaptive designs, can be used to leverage drug development in such a way that 
statisticians and other parties have more freedom and time to focus on the 
real issues, not the calculation or theory. The book is organized as follows: 

 In Chapter  1  we present an overview of the software ExpDesign Studio, 
provide a feeling for what it can do in trial designs, demonstrate simple design 
examples from classical, group sequential, adaptive, and other trials with 
ExpDesign Studio, and explain the basic operation of the software. 

 Chapter  2  provides an overview of a variety of clinical trial designs, their 
advantages and disadvantages, and when different classical and adaptive 
designs can be used. 

 Chapter  3  focuses on classical designs. After a discussion as to how sample 
size should be determined and on the variety of factors that affect the decision 
as to what sample size to use in a trial, examples are given on how to utilize 
ExpDesign to calculate sample size. Among nearly 150 sample - size calculation 
methods available in ExpDesign, the examples are carefully chosen to include 
a variety of designs, types of endpoints, and phases of clinical trials. 

 In Chapter  4  we discuss group sequential design (GSD), a commonly used 
and probably the simplest adaptive design. Starting with an overview of group 
sequential design, how to design and monitor a GSD trial using ExpDesign 
Studio is discussed. Finally, the key mathematic formulations for GSD are 
summarized for those interested in the mathematical details. 

 In Chapter  5  we discuss adaptive trial designs and introduce the stagewise 
test statistic and stopping rules. Interim analysis and trial monitor tools such 
as conditional power are described. We also discuss how to use ExpDesign 
Studio to design sample - size reestimation, drop - loser, biomarker - adaptive, 
response - adaptive randomization, and adaptive dose - fi nding trials. The math-
ematic formulations are summarized in the fi nal section. 

 In Chapter  6  we discuss the specifi c design of early - phase oncology trials, 
because of its uniqueness. It includes multiple - stage single - arm design and 
dose - escalation design for maximum tolerated dose and show how to use 
ExpDesign to design oncology trials and how to compare and evaluate differ-
ent designs based on their operating characteristics. 

 In Chapter  7  we focus on adaptive trial monitoring. The importance of trial 
monitoring and mathematic tools for monitoring is discussed, and how to use 
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the trial monitor in ExpDesign to monitor an adaptive trial is described in 
detail using real - world examples. 

 In Chapter  8  we present a computer simulation approach in which the test 
statistic is the same as the classical design. The simulation module in ExpDe-
sign allows for any combinations of the following adaptations: early futility 
and/or effi cacy stopping, sample - size reestimation, drop - loser, and response -
 adaptive randomization based on the dose – response relationship. Step - by -
 step instructions are presented with trial examples. 

 In Chapter  9  we discuss how to get further assistance from ExpDesign. 
ExpDesign provides many toolkits for design, monitoring, and analysis of 
trials: the graphical calculator, which allows you to plot complicated mathe-
matical expressions, the probability calculator for probability and percentile 
calculations, and the confi dence interval calculator for exact confi dence inter-
val calculations. For advanced users, we also discuss how to use ExpDesign 
to generate univariate and multivariate data that can be used for various pur-
poses of trial design, monitoring, and risk assessment. 

 In Chapter  10  we present notes on technique for nearly 100 methods for 
sample - size calculation, grouped by the number of arms, the trial endpoint, 
and the analysis basis. We describe the purpose of each method, information 
about the methods, such as when and how to use each one, the formula and/or 
references, and the assumptions or limitations of the methods. 

 Appendix  A  is about validation of ExpDesign. Several reviewers have 
indicated the importance of software validation and suggested including 
the validation information in the book. The validation document is also 
meant to support pharmaceutical end users to meet FDA 21 CFR part 11 
requirements.

 Installation instructions for the software CD and the license agreement 
appear at the end of the pages.  

   M ark  C hang

Lexington, Massachusetts
Winter 2007
www.Statisticians.org





xvii

 SELF - STUDY AND 
PRACTICE GUIDE 

Day 1 

     •     ExpDesign Studio 5.0 Installation (10 minutes)  
   •     Chapter  1 : ExpDesign Studio (30 minutes of reading and practice)  
   •     Chapter  2 : Clinical Trial Design (3 hours of reading)  
   •     Chapter  3 : Classical Trial Design (4 hours of reading and practice)  
   •     Chapter  10 : Classical Design Method Reference (15 minutes of reading)  
   •     Appendix  A : Validation of ExpDesign Studio (15 minutes of reading)     

Day 2 

     •     Chapter  4 : Group Sequential Trial Design (8 hours of reading and prac-
tice) The classical group sequential design and simplest adaptive design 
are discussed. Make sure you understand the basic concepts of group 
sequential design, such as the notion of early stopping, error infl ation due 
to multiple looks, different types of stopping boundaries, and different 
scales for stopping boundaries. Go through all the trial examples using 
ExpDesign; it helps you get  “ hands - on ”  experience. Trial monitoring 
requires your effort, which will give you the feeling of running an actual 
group sequential trial.     

Days 3 

     •     Chapter  5 : Adaptive Trial Design (8 hours of reading and practice)  
   •     You will learn various adaptive designs. Make sure that you understand 

the three commonly used statistical methods. Again, go through the trial 
practice using ExpDesign for hands - on experiences. The practices are 
straightforward and should take no more than 20 minutes each.     

Day 4 

     •     Chapter  6 : Adaptive Trial Monitoring (8 hours of reading and practice)  
   Adaptive trial monitoring can be considered as the most challenging part 
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of this book. It is about how you make actual adaptations for an ongoing 
trial based on the design without undermining the validity and integrity 
of the trial. Play around with the trial examples using ExpDesign, and 
spend extra time if needed.     

Day 5 

     •     Chapter  7 : Oncology Adaptive Trial Design (5 hours of reading and 
practice)

   •     Chapter  8 : Adaptive Trial Simulator (2 hours of optional reading and 
practice)

   •     Chapter  9 : Further Assistance with ExpDesign Studio (1 hour of reading 
and practice)    

 The mathematical notes in Chapters  3 ,  4 , and  7  are not meant to be studied 
in your fi rst reading; rather, they are for future reference. Similarly, Chapter 
 10  and Appendix  A  can be read as needed.         
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Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.

 ExpDesign Studio 

   1.1   INTRODUCTION 

 ExpDesign Studio (ExpDesign) is an integrated environment for designing 
experiments or clinical trials. It is a powerful and user - friendly statistical soft-
ware product that has seven integrated main components: classical design 
(CD), sequential design (SD), multistage design (MSD), dose - escalation design 
(DED), adaptive design (AD), adaptive trial monitoring (ATM), and dose -
 escalation trial monitoring (DTM) modules. In addition, the ExpDesign ran-
domizor can generate random variates from a variety of distributions. The 
ExpDesign toolkit provides features for distributional calculation, confi dence 
intervals, and function and data plotting (Figure  1.1 ).   

 Classical trials are the most commonly used in practice. ExpDesign provides 
nearly 150 methods for sample - size calculations in CD for different trial 
designs. It includes methods for single - , two - , and multiple - group designs, and 
for superiority, noninferiority, and equivalence designs with various endpoints. 
See the list of classical design methods in  Appendix B . 

 Group sequential trials are advanced designs with multiple analyses. A 
group sequential trial is usually a cost - effective design compared to a classical 
design. SD covers a broad range of sequential trials with different endpoints 
and different types of stopping boundaries. 

 A multistage design is an exact method for group sequential trials with a 
binary response, whereas group sequential design uses an asymptotic approach. 
MSD provides three optimal designs among others: MinMax, MinExp, and 
MaxUtility, which minimize the maximum sample size, minimize the expected 
sample size, and maximize the utility index, respectively. 

 A dose - escalation trial in aggressive disease areas such as oncology has 
unique characteristics. Due to the toxicity of the testing drug, researchers 
are allowed to use fewer patients to obtain as much information as possible 
about the toxicity profi le or maximum tolerable dose. By means of com-
puter simulations, DED provides researchers with an effi cient way to search 
for an optimal design for dose - escalation trials with a variety of criteria. It 
includes traditional escalation rules, restricted escalation rules, two - stage 
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escalation algorithms, and the Bayesian continual reassessment method 
(CRM).

 AD in ExpDesign Studio allows you to design and simulate various adap-
tive trial, such as sample - size reestimation, dropping a loser, response - adaptive 
randomization, and biomarker - adaptive designs. You can use response - adap-
tive randomization to assign more patients to superior treatment groups or to 
drop a  “ loser ”  or inferior group. You may stop a trial prematurely to claim 
effi cacy or futility based on the data observed. You may modify the sample 
size based on the treatment difference observed. All design reports are gener-
ated through an automation procedure that has built - in knowledge of statisti-
cal experts in a clinical trial. 

 ATM and DTM assist in monitoring an ongoing trial. They inform the user 
if the stopping boundary has been crossed and will also generate interim 
results such as conditional power, new sample size required, and dynamic 
randomization to instruct the user to make appropriate adaptations. 

 Indeed, ExpDesign Studio covers broad statistical tools needed to design a 
trial. To try ExpDesign, the user simply needs to know the functions of the 
icons on the toolbar. The black – white icons on the left - hand side of the toolbar 
are standard for all word processors. The fi rst fi ve icons of the second group 
of seven icons are used to launch fi ve different types of designs: classical trial 

Figure 1.1     ExpDesign integrated environment. 
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design, sequential trial design, multistage trial design, dose - escalation trial 
design, and adaptive design (see Figure  1.2 ). Alternatively, the user can click 
one of the nine buttons in the ExpDesign start window to start the correspond-
ing design. The next set of three icons is for launching a design example, com-
puting design parameters, and generating a design report. Following these are 
fi ve color icons for the toolkits, including a graphic calculator, a distribution 
calculator, a confi dence interval calculator, a word splitter, and TipDay. The 
mouse can be moved over any icon on the toolbar to see the Tiptext, which 
describes what the icon is for. We are now ready to design a trial.    

  1.2   HOW TO DESIGN A TRIAL USING EXPDESIGN STUDIO 

  1.    Double - click on the ExpDesign Studio icon    or click   , the  Start
button. A menu will appear. Click on Programs  in the  Start  button. The 

 list of available programs will appear. Then click   , ExpDesign 
Studio.

Figure 1.2     ExpDesign Studio startup window. 
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  2.    On the ExpDesign  Start  window (Figure  1.2 ), select one of the following 
tasks you want to do: classical, sequential, adaptive, multistage, dose -
 escalation design, adaptive trial monitoring, random number generation, 
adaptive trial simulation, or dose - escalation trial monitoring.    

  1.2.1   How to Design a Classical Trial 

  1.    Click    or    to start a classical design.  

  2.    Select options for  Number of Groups, Analysis Basis, Trial Endpoint , 
and Sample Allocations  in the design option panel.  

  3.    Select a method from the list of methods available.  

  4.    Enter appropriate values for your design (click    for an 
example).

  5.    Click on    to calculate the sample size required.  

  6.    Click the report icon    on the toolbar to view the design report.  

  7.    Click    to print the design form or click    to print the report.  

  8.    You can click    to copy the graph for the stopping boundar-
ies and use Paste - Special  to paste it to other applications.  

  9.    Click    to save the design specifi cation or report (see Figure  1.3 ).       

  1.2.2   How to Design a Group Sequential Trial 

  1.    Click    or    on the toolbar to start a group sequential 
design.

  2.    Select options for  Number of Groups, Analysis Basis, Trial Endpoint , 
and Potential Interim Claim  in the design option panel.  

  3.    Select a method from the list of methods available.  

  4.    Enter appropriate values for your design or click   .  

  5.    Click    to generate the design.  

  6.    Click the report icon    on the toolbar to view the design report.  
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  7.    Click    to print the design form or click    to print the report.  

  8.    You can click    to copy the graph for the stopping boundar-
ies and use Paste - Special  to paste it to other applications.  

  9.    Click    to save the design specifi cation or report (see Figure  1.4 ).       

  1.2.3   How to Design an Adaptive Trial 

  1.    Click    or    on the toolbar; the  Adaptive Design – Step 
1  window will appear (see Figure  1.5 ).  

  2.    Select the  Sample - Size Reestimation  option in the  Type of Adaptive 
Design  panel.  

  3.    Select the  Proportion  option in the  Endpoint  panel.  

  4.    Enter appropriate values for the  Response Under Ha  in the  Hypotheses
panel, the noninferiority margin for the noninferiority trial, One - Sided 
Alpha,  and  Power .  

  5.    Click   ; the  Adaptive Design – Step 2  window will appear.      

Figure 1.3     Classical design window. 
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Figure 1.4     Group sequential design window. 

Figure 1.5     Sample size reestimation step 1 window. 
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 In the  Adaptive Design – Step 2  window, do the following (Figure  1.6 ): 

  1.    Enter values for the initial number of stages and  Information Time for 
Analyses .  

  2.    Choose stopping boundaries using the arrow near  O ’ Brien  or 
Pocock .  

  3.    Enter values for  N Simulations  and  N/group .  
  4.    Select a statistical method in the panel.  
  5.    Enter values for  Maximum N/group Allowed for SSR  and  Targeted

Conditional Power for SSR .  

  6.    Click    to start the simulation.      

 After the simulation is completed, the window in Figure  1.7  will pop up to 

remind you to click the report icon    on the toolbar to view the report that 
is generated automatically for the adaptive design. Figure  1.8  is an example of 
the report for the adaptive design.      

  1.2.4   How to Run Adaptive Trial Simulations 

  1.    Click    to set up adaptive trial simulations.  
  2.    Follow the steps specifi ed in the  Simulation Setup  panel.  

Figure 1.6     Sample size reestimation step 2 window. 
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Figure 1.7     Pop - up message when calculation is completed. 

Figure 1.8     Report generated automatically by ExpDesign. 

  3.    Specify parameters in each of the steps or click   .  

  4.    Click    to generate the simulation results.  

  5.    Click the report icon    to view the design report.  

  6.    Click    to print the design form or click    to print the report.  

  7.    Click    to save the design specifi cation or report, whichever is 
highlighted (see Figure  1.9 ).       
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  1.2.5   How to Design a Multistage Trial 

  1.    Click    or    on the toolbar to start a multistage 
design.

  2.    Select  2 - Stage Design  or  3 - Stage Design  in the Multistage design window 

 or open an existing design by clicking    on the toolbar.  

  3.    Enter appropriate values for your design in the textboxes. You may click 

   to see an input example.  

  4.    Click    to generate the valid designs.  

  5.    Click    on the toolbar to view the design report.  

  6.    Click    to print the design form or    to print a report.  

  7.    Click    to save the design specifi cation or report (see Figure  1.10 ).       

Figure 1.9     Trial simulation window. 
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  1.2.6   How to Design a Dose - Escalation Trial 

  1.    Click    or    on the toolbar to start a dose - escalation 
design.

  2.    Enter appropriate values for your design on the  Basic Spec.  panel. You 

 may click    to see an input example.  

  3.    Select  Dose - Response Model, Escalation Scheme , and  Dose Interval Spec . 

 or open an existing design by clicking   .  

  4.    Click    to generate the simulation results.  

  5.    Click    to view the design report.  

  6.    Click    to print the design form or    to print a report.  

  7.    Click    to save the design specifi cation or report, whichever is high-
lighted (see Figure  1.11 ).        

Figure 1.10     Multistage design window. 



  1.3   EXPDESIGN MENUS 

File Menu   The ExpDesign fi le menu is a standard menu similar to that in 
MS Word. The Save  option can be used to save a report generated by ExpDe-
sign or design specifi cations. The  Print  option can be used to print a report 
generated by ExpDesign.  

Edit Menu   The edit menu is a standard menu just like the one in MS Word. 
The hotkey combinations for cut, copy , and  paste  are  < Ctrl >  - X,  < Ctrl >  - C, and 
< Ctrl >  - V, respectively.  

View Menu   The view menu is shown in Figure  1.12 . The  Toolbar  option 
toggles between displaying and hiding the toolbar. If the option has a check 
mark beside it, the toolbar is on and displayed in the ExpDesign window. 
When you select Toolbar , the toolbar will disappear from the ExpDesign 
window. If the Toolbar  option has no check mark beside it, the toolbar is off 
and is not displayed in the ExpDesign window. The Status Bar  option toggles 
between displaying and hiding the status bar. It lies at the bottom of 
your ExpDesign window. The bar displays useful information during the 
design.   

Figure 1.11     Traditional dose - escalation design window. 

EXPDESIGN MENUS 11
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 The  MyExpDesign Studio.htm  option can be used to access the local Web 
page, which you can change as you like. To edit the page, you can use MS Word 
by right - clicking on  MyExpDesignStudio.htm  and selecting the  Edit  item 
from the pop - up menu. The  CTriSoft.com  option can be used to access the 
ExpDesign Web site,  www.CTriSoft.net , where users can get technical support 
and product information. The Statisticians.org  option can be used to access 
the relevant information to trial design and statistics.  

Design Menu   The design menu is shown in Figure  1.13 . The option 
ExpDesign Studio  can be used to display the start window for classical, sequen-
tial, multistage, dose - escalation trial, and adaptive designs; and for adaptive 
trial monitoring, dose - escalation monitoring, the randomizor, and the adaptive 
trial simulator.   The options  Classic Trial Design, Sequential Trial Design, 
Multi - Stage Design, Dose Escalation Design, Adaptive Design, Adaptive 
Trial Monitor   , and  Randomizor  can be used for the corresponding task.  

Action Menu   The action menu has three items:  Example, Compute , and 
Report  (Figure  1.14 ). The  Example  option can be used to launch an example 
of a design. The Compute  option can be used to generate a design after the 
appropriate inputs. The Report  option can be used to view a design report.    

Figure 1.12     View menu. 

Figure 1.13     Design menu.  



Tools Menu   In the tools menu (Figure  1.15 ) the  Graphic Calculator  option 
can be used to access the calculator to perform simple arithmetic and complex 
function calculations, and to plot curves. The Probability Calculator  option 
can be used to obtain probabilities and percentiles for various continuous and 
discrete distributions. The Confi dence Interval Calculator  option can be used 
to obtain various confi dence intervals.    

Window and Help Menus   The window and help menus are standard, just 
like those in MS Word.      

Figure 1.14     Action menu.  

Figure 1.15     Tools menu.  
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 Clinical Trial Design 

  2.1   INTRODUCTION 

 As indicated by Chow and Liu  (1998) , the process of drug research and devel-
opment is a lengthy and costly process. An adequate and well - controlled 
study is necessary to demonstrate the effi cacy and safety of a drug product 
under investigation. Section 314.126 of 21 CFR ( Code of Federal Regulations ) 
provides a defi nition of an adequate and well - controlled study, which 
requires:

   •   Objectives :   clear statement of an investigation ’ s purpose  
   •   Methods of analysis :   summary of proposed or actual methods of 

analysis
   •   Design :   valid comparison with a control to provide a quantitative assess-

ment of a drug effect  
   •   Selection of subjects :   adequate assurance of the disease or conditions 

under study  
   •   Assignment of subjects :   minimization of bias and assurance of compara-

bility of groups  
   •   Participants of studies :   minimization of bias on the part of subjects, 

observers, and analysis  
   •   Assessment of responses :   well defi ned and reliable responses  
   •   Assessment of the effect :   requirement of appropriate statistical 

methods     

  2.2   CLASSICAL CLINICAL TRIAL DESIGN 

 We review briefl y some of the basic concepts of clinical trials. Defi nitions of 
the various trials are based on the ICH guidelines (1998) for statistical princi-
ples for clinical trials, and the FDA guidelines (2001) for bioequivalence trials 
( www.fda.gov/cder/guidance/index.htm ). 

2

14
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  2.2.1   Substantial Evidence 

 For a drug approval, the FDA requires substantial evidence of effi cacy and 
safety. As indicated in the Kefauver – Harris amendments to the Food, Drug 
and Cosmetics Act of 1962, the term substantial evidence , means evidence 
consisting of adequate and well - controlled investigations, including clinical 
investigations, by experts qualifi ed by scientifi c training and experience to 
evaluate the effectiveness of the drug involved, on the basis of which it could 
fairly and responsibly be concluded by such experts that the drug will have 
the effect it purports to have, or is represented to have, under the conditions 
of use prescribed, recommended, or suggested in the labeling or proposed 
labeling thereof.  

  2.2.2   Clinical Trial Endpoint 

 Clinical trial endpoints can be classifi ed as primary or secondary.  Primary
endpoints  measure outcomes that will answer the most important question 
being asked by a trial, such as whether a new treatment will reduce the inci-
dence of heart attack or mortality, or prolong survival. Secondary endpoints
ask other important relevant questions in the same study, so they may poten-
tially be included in the drug labeling. It is important to consider a reasonable 
number of secondary endpoints, because every endpoint added will usually 
have to pay the multiplicity penalty statistically. An endpoint may be based 
on a binary, continuous, or time - to - event clinical outcome, indicating whether 
an event such as death from any cause has occurred. 

 In choosing endpoints, it is important to ensure that they: 

   •     Are clinically meaningful and related to the  “ intend - to - treat ”  disease  
   •     Answer the important question to be answered by the trial  
   •     Are practical so that they can be assessed in all subjects in the same 

way
   •     Are easily assessed with reasonable precision such that the study will 

have adequate statistical power or the size of the trial is feasible     

  2.2.3   Confi rmatory Trials 

 A  confi rmatory trial  is an adequately controlled trial in which the hypotheses 
are stated in advance and evaluated. As a rule, confi rmatory trials are neces-
sary to provide fi rm evidence of effi cacy or safety. In such trials the key 
hypothesis of interest follows directly from the trial ’ s primary objective, is 
always predefi ned, and is the hypothesis that is subsequently tested when the 
trial is complete. In a confi rmatory trial it is equally important to estimate with 
due precision the size of the effects attributable to the treatment of interest 
and to relate these effects to their clinical signifi cance. ExpDesign provides 
designs, including sample - size calculation methods, for both confi rmatory and 
exploratory trials (see below).  
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  2.2.4   Exploratory Trials 

 The rationale and design of confi rmatory trials nearly always rests on earlier 
clinical work carried out in a series of exploratory studies . Like all clinical trials, 
exploratory studies should have clear and precise objectives. However, in 
contrast to confi rmatory trials, their objectives may not always lead to simple 
tests of predefi ned hypotheses. In addition, exploratory trials may sometimes 
require a more fl exible approach to design so that changes can be made in 
response to accumulating results. Their analysis may entail data exploration; 
tests of hypothesis may be carried out, but the choice of hypothesis may be 
data dependent. Such trials cannot be the basis of the formal proof of effi cacy, 
although they may contribute to the total body of relevant evidence. Any 
individual trial may have both confi rmatory and exploratory aspects.  

  2.2.5   Multicenter Trials 

Multicenter trials  are carried out for two main reasons. First, a multicenter trial 
is an accepted way of evaluating a new medication more effi ciently; under 
some circumstances, it may present the only practical means of accruing suffi -
cient subjects to satisfy the trial objective within a reasonable time frame. 
Second, a trial may be designed as a multicenter (and multi - investigator) trial 
primarily to provide a better basis for the subsequent generalization of its 
fi ndings. ExpDesign features various sample - size calculation methods for trials 
with or without a center effect.  

  2.2.6   Trials to Show Superiority 

 Scientifi cally, effi cacy is established most convincingly by demonstrating supe-
riority to a placebo in a placebo - controlled trial, by showing superiority to an 
active control treatment, or by demonstrating a dose – response relationship. 
This type of trial is referred to as a superiority trial . For serious illnesses, when 
a therapeutic treatment that has been shown to be effi cacious by superiority 
trial(s) exists, a placebo - controlled trial may be considered unethical. In that 
case, the scientifi cally sound use of an active treatment as a control should be 
considered. The appropriateness of placebo control versus active control 
should be considered on a trial - by - trial basis. A large portion of the method-
ologies in ExpDesign are for trials showing superiority.  

  2.2.7   Trials to Show Equivalence or Noninferiority 

 In some cases, an investigational product is compared to a reference treatment 
without the objective of showing superiority. This type of trial is divided into 
two major categories according to its objective; one is an equivalence trial  and 
the other is a noninferiority trial. Bioequivalence trials  fall into the former 
category. In some situations, clinical equivalence trials are also undertaken for 



CLASSICAL CLINICAL TRIAL DESIGN 17

other regulatory reasons, such as demonstrating the clinical equivalence of a 
generic product to a marketed product when the compound is not absorbed 
and therefore is not present in the bloodstream. Many active control trials are 
designed to show that the effi cacy of an investigational product is no worse 
than that of the active comparator, and hence fall into the latter category. 
Another possibility is a trial in which multiple doses of the investigational drug 
are compared with the recommended dose or multiple doses of the standard 
drug. The purpose of this design is to show simultaneously a dose – response 
relationship for the investigational product and a comparison of the investi-
gational product with the active control. ExpDesign has implemented a list of 
methods or designs for equivalence, noninferiority, and bioequivalence trials.  

  2.2.8   Trials to Show a Dose – Response Relationship 

 How response is related to the dose of a new investigational product is a ques-
tion to which answers may be obtained in all phases of development and by 
a variety of approaches. Dose – response trials may serve a number of objec-
tives, among which the following are of particular importance: confi rmation of 
effi cacy, investigation of the shape and location of the dose – response curve, 
estimation of an appropriate starting dose, identifi cation of optimal strategies 
for individual dose adjustments, and determination of a maximal dose beyond 
which additional benefi ts would be unlikely to occur. These objectives should 
be addressed using the data collected at a number of doses under investigation, 
including a placebo (zero dose) wherever appropriate. Various sample - size 
calculation methods are available for a dose – response trial with different 
endpoints.

  2.2.9   Parallel Design 

 A  parallel design  is a design in which each patient receives one and only one 
treatment, usually in a random fashion. A parallel design can be two or more 
treatment groups with one or more control groups. Parallel designs are com-
monly used in clinical trials because they are simple, universally accepted, and 
applicable to acute conditions. ExpDesign provides comprehensive tools for 
the parallel designs, including classical sequential designs.  

  2.2.10   Crossover Design 

 A common and generally satisfactory use of the 2    ×    2  crossover design  is to 
demonstrate the bioequivalence of two formulations of the same medication. 
In this particular application in healthy volunteers, carryover effects on the 
relevant pharmacokinetic variable are most unlikely to occur if the washout 
time between the two periods is suffi ciently long. However, it is still important 
to check this assumption during analysis on the basis of the data obtained: for 
example, by demonstrating that no drug is detectable at the start of each 
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period. ExpDesign provides sample calculation methods for crossover 
designs.

  2.2.11   Factorial Design 

 In a  factorial design , two or more treatments are evaluated simultaneously 
through the use of varying combinations of treatments. The simplest example 
is the 2    ×    2 factorial design, in which subjects are randomly allocated to one 
of the four possible combinations of two treatments: A and B, say. These are 
A alone, B alone, both A and B, neither A nor B. In many cases the design is 
used for the specifi c purpose of examining the interaction of A and B. The 
statistical test of interaction may lack power to detect an interaction if the 
sample size was calculated based on the test for main effects. This consider-
ation is important when the design is used for examining the joint effects of 
A and B: in particular, if the treatments are likely to be used together. Another 
important use of a factorial design is to establish the dose – response charac-
teristics of the simultaneous use of treatments C and D, especially when the 
effi cacy of each monotherapy has been established at some dose in prior trials. 
A number m  of doses of C is selected, usually including a zero dose (placebo), 
and a similar number n  of doses of D. The full design then consists of  m    ×    n
treatment groups, each receiving a different combination of doses of C and D. 
The resulting estimate of the response surface may then be used to help 
identify an appropriate combination of doses of C and D for clinical use. 
ExpDesign provides users with a variety of sample - size calculation methods 
for trials with interaction terms presented in the model.   

  2.3   SELECTION OF A TRIAL DESIGN 

  2.3.1   Balanced Versus Unbalanced Designs 

 Balanced designs are commonly used in clinical trials, but unbalanced designs 
have several advantages and can be used in the following situations. 

  1.    When recruiting one group is easier than recruiting other groups, allocat-
ing more patients in one group could be cost - effective.  

  2.    When the treatment variability or incidence rate is different among 
experimental groups, allocating more subjects in the group with the 
greatest variability could reduce the total sample size.  

  3.    In a placebo - controlled trial, when there is a requirement for the 
minimum number of exposures to a test drug but a balanced design is 
overpowered, allocating more subjects in the active group could reduce 
the total sample size.  

  4.    For ethical considerations regarding the control (e.g., the placebo), one 
can allocate more patients to receive the active treatment.     



  2.3.2   Crossover Versus Parallel Designs 

Parallel Design   As mentioned earlier, parallel designs are commonly used 
in clinical trials because they are simple, universally accepted, and applicable 
to acute conditions. However, a parallel design usually requires more patients 
than do comparative designs. A parallel design can be stratifi ed using prog-
nostic characteristics, which can be accomplished using a stratifi ed randomiza-
tion scheme. The matched - pairs parallel design  is a design in which each patient 
is matched  with another patient of similar prognostic characteristics for the 
disease under investigation. One patient in each pair is assigned the treatment, 
and the other receives the control. A matched - pairs parallel design can reduce 
the sample size, but matched - pairs designs make patient recruitment diffi cult 
and slow and therefore are uncommon in clinical trials. Although at the plan-
ning stage it is almost impossible to identify all of the covariates that may have 
an impact on a disease, an unbiased estimate of the treatment effect can still 
be obtained by adjusting these covariates, regardless of whether or not they 
are used for stratifi cation. 

 For a parallel design, each patient receiving one treatment, the variability 
observed for any comparisons between groups contains both interpatient and 
intrapatient variabilities, which cannot be separated and estimated, due to the 
nature of the parallel design. As a result, a parallel design does not provide 
independent estimates of interpatient and intrapatient variabilities. In practice, 
a parallel - group design is an appropriate design for comparative clinical trials 
if the interpatient variability is relatively small compared to the intrapatient 
variability. This is because a valid and effi cient comparison between treatments 
is often assessed based on the intrapatient variability.  

Crossover Design   A crossover trial is a special type of repeated - 
measurements experiment. The main feature that distinguishes a crossover 
trial from the traditional repeated - measures trial is that a sequence of two or 
more treatments is applied to each subject. A crossover design can be viewed 
as a modifi ed randomized block design in which each block receives more than 
one treatment in different dosing periods. A block can be a patient or a group 
of patients. Patients in each block receive different sequences of treatments. 
A crossover design is called a complete crossover design  if each sequence 
contains all treatments under investigation. For a crossover design it is not 
necessary that the number of treatments in each sequence be greater than or 
equal to the number of treatments to be compared. We refer to a crossover 
design as a p    ×    q crossover design  if there are  p  sequences of treatments 
administered at q  different time periods (Ratkowsky et al.,  1993 ). 

 A crossover design has the following advantages: (1) it allows a within -
 patient comparison between treatments, since each patient serves as his or her 
own control; (2) it removes the interpatient variability from the comparison 
between treatments; and (3) with proper randomization of patients to the 
treatment sequences, it provides the best unbiased estimates for the differ-
ences between treatments. 

SELECTION OF A TRIAL DESIGN 19
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 An important feature of crossover designs is the presence of, and the ability 
to measure, carryover effects . Carryover effects are commonly viewed as a 
manifestation of treatment at a future time and may result from a  “ late 
response ”  to treatment in a clinical trial, as may happen with human subjects 
in a psychological experiment. Sometimes, steps are taken by the experimenter 
to prevent or mitigate the occurrence of carryover effects by use of a washout
period  between applications of drugs or treatments. However, in other experi-
ments, such as psychological tests and certain clinical trials, the ability to esti-
mate carryover may be the main focus of interest in the experiment (Ratkowsky 
et al.,  1993 ). 

 The separability of treatment and carryover effects is an important charac-
teristic of a crossover design. There are two major reasons for concern about 
one ’ s ability to separate direct treatment effects from carryover effects and 
both concern the interpretability of the results of the analysis of variance of 
a crossover design. The fi rst reason relates to circumstances where the inves-
tigator will not know whether a treatment effect is truly a direct treatment 
effect or rather, a residual effect of some other treatment. The second reason 
for wishing to separate direct and carryover effects relates to a phenomenon 
akin to multicollinearity in multiple regression applications with continuous 
variables. There, the presence of two multicollinear explanatory (regressor) 
variables in the model may lead to the erroneous interpretation that there are 
neither signifi cant direct treatment effects nor carryover effects (Ratkowsky 
et al.,  1993 ). This is illustrated further in the following example. 

 A 2    ×    2 crossover design (two - treatment, two - period, two - sequence) yields 
only four cell means (the responses for each of two sequences in each of two 
periods), which cannot be used to estimate more than four parameters. If a 
carryover parameter is present in the model, the 2    ×    2 design is not analyzable 
without making some strong assumptions. This is because one of these param-
eters is the overall grand mean, another represents differences between 
periods, and a third, differences between treatments. One can get an estimate 
of differential carryover effects as the fourth parameter only by making a 
strong assumption, such as that there is no sequence effect, or there is no 
period - by - treatment interaction. 

 When more than two treatments are to be compared, complete crossover 
becomes much more complicated and may not be of practical interest because 
(1) potential residual effects make the assessment of effi cacy and/or safety 
almost impossible; (2) it takes longer to complete the study; and (3) patients 
are likely to drop out if they are required to return frequently for tests. 

 Note that crossover designs may be used in clinical trials in the following 
situations, where (1) objective measures and interpretable data are obtained 
for both effi cacy and safety; (2) chronic (relatively stable) diseases are under 
study; (3) prophylactic drugs with a relatively short half - life are being investi-
gated; (4) relatively short treatment periods are considered; (5) baseline and 
washout periods are feasible and (6) an adequate number of patients for detec-
tion of the carryover effect with suffi cient power that accounts for expected 



dropouts is feasible, or extra study information is available to rule on the car-
ryover effect (Ratkowsky et al.,  1993 ; Chow and Liu,  1998 ).   

  2.3.3   Dose Escalation Versus Titration Designs 

 Dose - escalation design is used for early phases of clinical trials. The primary 
goal of a dose - escalation trial is to identify the  maximum tolerated dose  (MTD). 
The participants are usually healthy volunteers. The fi rst group (usually about 
8 to 12 subjects) is treated with the lowest dose level. If there is no or low 
toxicity, the second group of patients will be enrolled and treated at a higher 
dose level. The procedure continues until the highest tolerated dose is identi-
fi ed. Sometimes different doses are applied to the same group of subjects to 
determine, for example, the maximum effi cacy dose. In this case, the dose -
 escalation trial is called  titration design . One of the advantages of using differ-
ent groups for different doses is that it can avoid drug accumulation in the 
body. Otherwise, a washout period is required between dosages, thus prolong-
ing the trial duration. 

 For aggressive disease treatment, such as oncology, the use of healthy vol-
unteers is considered nonethical, due to the fact that oncology drugs for testing 
are usually highly toxic. In addition, the patient population is usually rather 
heterogeneous, with some medical complications. A limited number of patients 
are available for trials and there is a high chance of withdrawals, which may 
or may not be related to the toxicity of the study drug. For these reasons, there 
are usually three to six patients at each dose level in oncology trials. To identify 
the MTD, a special dose - escalation algorithm has to be used. The most popular 
one is the 3    +    3 traditional escalation rule .  

  2.3.4   Bioavailability Versus Bioequivalence Designs 

 The  bioavailability  of a drug is defi ned as the rate and extent to which the 
active drug ingredient or therapeutic moiety is absorbed and becomes avail-
able at the site of drug action. A comparative bioavailability study  involves a 
comparison of bioavailabilities of different formulations of the same drug or 
different drug products. When two formulations of the same drug or two drug 
products are claimed to be bioequivalent , it is assumed that they will provide 
the same therapeutic effect or that they are therapeutically equivalent. Two 
drug products are considered pharmaceutical equivalents  if they contain identi-
cal amounts of the same active ingredient. Two drugs are identifi ed as  phar-
maceutical alternatives  to each other if both contain an identical therapeutic 
moiety but not necessarily in the same amount or dosage form or as the same 
salt or ester. Two drug products are said to be bioequivalent if they are phar-
maceutical equivalents (i.e., similar dosage forms made, perhaps, by different 
manufacturers) or pharmaceutical alternatives (i.e., different dosage forms) 
and if their rates and extents of absorption do not show a signifi cant difference 
when administered at the same molar dose of the therapeutic moiety under 
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similar experimental conditions. For more on the bioequivalence test, see the 
book by   Chow and Liu  (2003) .  

  2.3.5   Equivalence Versus Bioequivalence 

 The criteria for equivalence or, more often, noninferiority are usually depen-
dent on the particular disease targeted by the drugs. However, for a bioequiva-
lance study, there are some strict rules. In the July 1992 FDA guidelines on 
statistical procedures for bioequivalence studies using a standard two - treat-
ment crossover design, the Center for Drug Evaluation and Research (CDER)   
recommended that a standard in vivo bioequivalence study design be based 
on the administration of either single or multiple doses of the treatment and 
response (T and R) products to healthy subjects on separate occasions, with 
random assignment to the two possible sequences of drug product administra-
tion. The 1992 guidance further recommended that statistical analysis for 
pharmacokinetic measures, such as area under the curve (AUC) and peak 
concentration ( Cmax ), be based on the  two one - sided test procedure  to deter-
mine whether the average values for the pharmacokinetic measures deter-
mined after administration of the T and R products were comparable. This 
approach, termed average bioequivalence , involves calculation of a 90% con-
fi dence interval for the ratio of the averages (population geometric means) of 
the measures for the T and R products. To establish bioequivalence, the con-
fi dence interval calculated should fall within a bioequivalence (BE) limit, 
usually 80 to 125% for the ratio of the product averages. In addition to this 
general approach, the 1992 guidance provided specifi c recommendations for 
(1) logarithmic transformation of pharmacokinetic data, (2) methods to evalu-
ate sequence effects, and (3) methods to evaluate outlier data. In practice, 
people also use parallel designs and a 90% confi dence interval for nontrans-
formed data. To establish bioequivalence, the confi dence interval calculated 
should fall within a BE limit, usually 80 to 120% for the difference of the 
product averages (Ratkowsky et al.,  1993 ; Chow and Liu,  2003 ).   

 Although average bioequivalence is recommended for a comparison of 
BE measures in most studies, the FDA 2001 guidance describes two new 
approaches, population  and  individual bioequivalence . These new approaches 
may be useful, in some instances, for analyzing in vitro and in vivo BE studies. 
The average BE approach focuses on a comparison of population averages of 
a BE measure of interest and not on the variances of the measure for the T 
and R products. The average BE method does not assess a subject - by - formula-
tion interaction variance, that is, variation in the average T and R difference 
among individuals. In contrast, population and individual BE approaches 
include comparisons of averages and variances of the measure. The population 
BE approach assesses the total variability of the measure in the population. 
The individual BE approach assesses within - subject variability for T and R 
products as well as subject - by - formulation interaction. For population and 
individual bioequivalences, 95% confi dence intervals are recommended, with 



the same BE limits as those for average bioequivalence (Ratkowsky et al., 
 1993 ; Chow and Liu,  2003 ).    

  2.3.6   Sample - Size Determination 

 The number of subjects in a clinical trial should always be large enough to 
provide a reliable answer to the questions addressed. This number is usually 
determined by the primary objective of the trial. If the sample size is deter-
mined on some other basis, this should be made clear and justifi ed. For example, 
a trial sized on the basis of safety questions or requirements, or important 
secondary objectives, may require larger numbers of subjects than those 
required for a trial sized on the basis of the primary effi cacy question. Using 
the most common method for determining the appropriate sample size, the 
following items should be specifi ed: a primary variable, the test statistic, the 
null hypothesis, the alternative hypothesis at the dose(s) chosen, the probabil-
ity of erroneously rejecting the null hypothesis (type I error), and the probabil-
ity of erroneously failing to reject the null hypothesis (type II error), as well 
as the approach to dealing with treatment withdrawal and protocol violations. 
Sample - size calculations should refer to the number of subjects required 
(sometimes the number of events for a survival endpoint) for the primary 
analysis. Assumptions about variability may also need to be revised. The 
sample size of an equivalence or noninferiority trial should normally be based 
on the objective of obtaining a confi dence interval for the treatment difference 
which shows that the treatments differ at most by a clinically acceptable dif-
ference. When the power of an equivalence trial is assessed at a true difference 
of zero, the sample size necessary to achieve this power is underestimated if 
the true difference is not zero. When the power of a noninferiority trial is 
assessed at a zero difference, the sample size needed to achieve that power 
will be underestimated if the effect of the investigational product is less than 
that of the active control. The choice of a clinically acceptable difference needs 
justifi cation with respect to its meaning for future patients and may be smaller 
than the clinically relevant difference referred to above in the context of 
superiority trials designed to establish that a difference exists.   

  2.4   ADAPTIVE CLINICAL TRIAL DESIGN 

 As indicated by a white paper by the PhRMA Adaptive Design Group (Gallo 
et al.,  2006 ), an adaptive design is a clinical study design that uses accumulating 
data to decide how to modify aspects of the study as it continues, without 
undermining the validity and integrity of the trial (see Figure  2.1 ). As indicated 
further by a white paper by the BIO Adaptive Design Working Group (M. 
Chang et al.,  2007 ), an adaptive design usually consists of two or more stages; 
at each stage, data analyses are conducted and adaptations are made based on 
updated information to maximize the chance of success. Various aspects of a 
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trial design can be modifi ed or adapted. The adaptations may include, but are 
not limited to, (1) adjusting sample size, (2) stopping early due to effi cacy or 
futility, (3) changing the timing and the number of analyses, (4) dropping 
inferior treatment groups, (5) adding new treatment groups, (6) response -
 adaptive randomization, (7) modifying the target population, (8) changing 
study endpoints, (9) treatment switch (crossover), and (10) any combination 
of the foregoing adaptations.   

 An adaptive design has to preserve the validity and integrity of a trial. The 
validity includes internal and external validities.  Internal validity  is the degree 
to which we are successful in eliminating confounding variables and establish-
ing a cause – effect relationship (treatment effect) within the study itself. A 
study that readily allows its fi ndings to generalize to the population at large 
has high  external validity. Integrity  involves minimizing operational bias (M. 
Chang,  2007a ).   

  2.4.1   Group Sequential Design 

 A  group sequential design , the most commonly used adaptive design, consists 
of multiple stages. An  interim analysis  (IA) is planned at each stage. Based on 
results from an IA, a decision can be made either to stop to reject the null 
hypothesis of no treatment effect, or to accept the null hypothesis, or to con-
tinue on to the next stage. For a trial with a positive result, early stopping 
ensures that a new drug product can be exploited sooner. If a negative result 
is indicated, early stopping avoids wasting resources. Sequential methods typi-
cally lead to savings in sample size, time, and cost compared with a classical 
design with a fi xed sample size. 

 There are three different types of group sequential designs: early effi cacy 
stopping design if permitting only early claiming effi cacy, early futility stopping 
design if permitting only claiming futility, and early effi cacy or a futility 

    Figure 2.1     Adaptive design.  
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stopping design if permitting either effi cacy or a futility claim. If we believe 
(based on prior knowledge) that the test treatment is very promising, an early 
effi cacy stopping design should be used. If we are very concerned that the test 
treatment may not work, an early futility stopping design should be employed. 
If we are not certain about the magnitude of the effect size, a group sequential 
design permitting early stopping for both effi cacy and futility should be con-
sidered. In practice, if we have good knowledge regarding the effect size, a 
classical design with a fi xed sample size may be more effi cient.  

  2.4.2   Sample - Size Reestimation Design 

 A  sample - size reestimation  (SSR)  design  is an adaptive design that allows for 
sample - size adjustment or reestimation based on unblinded interim analysis 
results. The sample - size requirement for a trial is sensitive to the treatment 
effect and its variability. An inaccurate estimation of the effect size and its 
variability could lead to an underpowered or overpowered design, neither of 
which is desirable. If a trial is underpowered, it will not be able to detect a 
clinically meaningful difference, and consequently, could prevent a potentially 
effective drug from being delivered to patients. On the other hand, if a trial is 
overpowered, it could lead to the unnecessary exposure of many patients to a 
potentially harmful compound when the drug is, in fact, not effective. In prac-
tice, it is often diffi cult to estimate effect size and variability because of many 
uncertainties during protocol development. Thus, it is desirable to have the 
fl exibility to reestimate the sample size in the middle of a trial.  

  2.4.3   Drop - Loser Design 

 A  drop - loser design  (DLD) is an adaptive design consisting of multiple groups. 
At each stage, interim analyses are performed and the losers (i.e., inferior 
treatment groups) are dropped based on certain criteria. Ultimately, the best 
group and the control group are retained. This type of design can be used in 
a combination of phase I – II and phase II – III trials. A typical phase II clinical 
trial is often a dose – response study, where the goal is to assess whether there 
is a treatment effect. If there is, the goal becomes fi nding the appropriate dose 
level (or treatment groups) for the phase III trials. This type of traditional 
design is not effi cient with respect to time and resources because the phase II 
effi cacy data are not pooled with data from phase III trials. Therefore, it is 
desirable to combine phases II and III so that the data can be used effi ciently. 
This type of drop - loser design is often called  seamless design .  

  2.4.4   Response - Adaptive Randomization Design 

 In a  response - adaptive randomization design  (RARD), the allocation proba-
bility is based on the responses of previous patients. If a positive response is 
observed in a treatment group, the probability of allocating future patients to 
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this group will be increased. The well - known response - adaptive models include 
the randomized play - the - winner  (RPW)  model , an optimal model that mini-
mizes the number of failures.  

  2.4.5   Adaptive Dose - Escalation Design 

 In early phases of clinical development, dose escalation is often considered to 
identify the maximum tolerated dose (MTD) and is commonly used for oncol-
ogy trials. In an adaptive dose - escalation design , the dose level used to treat 
the next - entered patient is dependent on the toxicity of previous patients. The 
continual reassessment method  (CRM) (O ’ Quigley et al.,  1990 ; M. Chang and 
Chow,  2005 )   is a popular escalation algorithm. CRM can reduce the sample 
size and overall toxicity in a trial and improve the accuracy and precision of 
estimation of the MTD. The main difference between the common RARD and 
the CRM is that the former usually has a fi xed number of arms (e.g., two arms), 
whereas the latter does not have a fi xed number of arms or dose levels and 
the escalation starts from the lowest dose level and then gradually proceeds 
to higher dose levels if the data show that there is a limit safety concern.  

  2.4.6   Biomarker - Adaptive Design 

Biomarker - adaptive design  refers to a design in which adaptations are made 
based on biomarker response at interim analyses and the fi nal analysis is based 
on the primary endpoint that differs from the biomarker . A  biomarker  is a 
characteristic that is measured and evaluated objectively as an indicator of 
normal biological or pathogenical processes or as a pharmacological response 
to a therapeutic intervention (Chakravarty,  2005 ). A biomarker can be a clas-
sifi er or a prognostic or predictive marker. It is often the case that a pharma-
ceutical company has to make a decision as to whether to target a very 
selective population for whom the test drug probably works well or to target 
a broader population for whom the test drug is less likely to work well. 
However, the size of the selective population may be too small to justify the 
overall benefi t to the patient population. In this case, a biomarker - adaptive 
design may be used, where the biomarker response at interim analysis points 
can be used to determine on which target populations the trial should be 
focused (M. Chang,  2007a ).    

  2.4.7   Multistage Design of Single - Arm Trials 

Single - arm trial multistage design  is a special type of sequential design with a 
single experiment group which permits early futility stopping. It is often used 
in oncology trials. The response variable is a binary type and the statistical 
methods used are exact without the normality assumption because of the small 
size of the trial.     
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 Classical Trial Design       

   3.1   INTRODUCTION 

  3.1.1   Hypothesis Test 

 In clinical trials a  hypothesis  is usually referred to as a  postulation, assumption , 
or  statement  that is made about a population regarding the effectiveness and 
safety of a drug under investigation. For example, the statement that there is 
a direct drug effect is a hypothesis regarding the treatment effect. For testing 
hypotheses of interest, a random sample is usually drawn from the targeted 
population to evaluate hypotheses about the drug product. A statistical test is 
then performed to determine whether the null hypothesis would be rejected 
at a prespecifi ed signifi cance level (Chow et al.,  2003   ). Based on the test result, 
conclusion(s) can be drawn regarding the hypotheses. Selection of a hypo-
thesis depends on the study objectives. In clinical research, hypotheses 
commonly considered include tests for equality, equivalence, noninferiority, 
and superiority. 

 When testing a null hypothesis  H  0 :  ε     <    0 against an alternative hypothesis 
 H a  :  ε     >    0, where  ε  is the treatment effect (difference in response), the  type I 
error rate  is defi ned as

    α ε( ) Pr( ).= reject  when  is trueH H0 0     (3.1)   

 Note that the type I error rate is a function of the true treatment difference. 
More often, the type I error rate can be defi ned (implicitly) as sup{ α ( ε )}. 
Similarly, the type II error rate function  β  is defi ned as

    α ε( ) Pr( ).= fail to reject  when  is trueH Ha0     (3.2)   

 For hypothesis testing, knowledge of the distribution of the test statistic 
under  H  0  is required. For sample - size calculation, knowledge of the distribu-
tion of the test statistic under a particular  H a   value ais also required. To control 
the overall type I error rate at level  α  under any point of the  H  0  domain, the 
condition  α ( ε )    <     α   *   for all  ε     ≤    0 must be satisfi ed, where  α   *   is a threshold that 

3
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is usually larger than 0.025 unless it is a phase III trial. If  α ( ε ) is a monotonic 
function of  ε , the maximum type I error rate occurs when  ε    =   0. The rejection 
region should be constructed under this condition. Under normal conditions 
the power can be derived as follows (M. Chang,  2007a   , pp. 21 – 22):

    
power( ) ,ε β
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where  Φ  is the cumulative distribution function (c.d.f.) of the standard normal 
distribution,  ε  is the treatment difference, and  z  1 −  β   and  z  1 −  α   are the percentiles 
of the standard normal distribution. Figure  3.1  illustrates the power function 
of the type I error rate  α  and the sample size  n . From  (3.3) , the total sample 
size can be obtained:
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  3.1.2   Importance of Sample - Size Calculation 

 The importance of power in the determination of sample size has been well 
recognized. One should take steps to ensure that the power of an experiment 
is suffi cient to justify the effort involved. On the other hand, if the power in 
detecting a specifi ed practical difference is suffi ciently high, failure to achieve 
signifi cant results may properly be interpreted as probably indicating negligi-
ble relevant difference between the comparison groups. Thus, the proper 

    Figure 3.1     Power function.  
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interpretation of a negative result is based largely on a consideration of the 
power of the experiment.  

  3.1.3   Factors Affecting Sample Size 

 Many factors can affect the sample size for conducting a study: for example, 
the estimated difference between (i.e., variability in) two populations, the 
statistical power for detecting the difference, and the signifi cance level. An 
increase in power, decrease in signifi cant level, or increase in variability will 
result in an increase in sample size. The difference between two groups, or 
the effective size, could increase or decrease the sample size required. In 
hypothesis testing for a difference, the larger the difference, the smaller the 
sample size. For an equivalent test, the smaller the difference, the smaller the 
sample size. Other factors, such as the type of experimental design (e.g., paral-
lel or crossover), the type of parameter (e.g., continuous or discrete), and the 
statistical methods used for the analysis will also affect the sample size.  

  3.1.4   Avoiding Under -  or Overpowered Designs 

 To avoid an under -  or overpowered design, we have to understand the meaning 
of power.  Power  is the probability of showing statistical signifi cance (i.e.,  p  -
 value    ≤     α ). When the sample size is calculated based on a particular power 
(e.g., 80%), the power is assured if the parameters for the populations are 
estimated accurately. For example, in a placebo - controlled two - parallel - arm 
clinical trial, the null hypothesis  H  0 : mean difference  Δ    =   0 between the two 
groups and the alternative hypothesis  H a  : mean difference  Δ     ≠    0. Assuming 
that the true difference  Δ    =   5 and the common standard deviation  σ    =   10, with 
level of signifi cance  α    =   0.05 (two - sided) and power   =   0.8, the sample size 
required will be 64 per group based on a two - sample  t  - test. The question is: 
If we design the study with 64 per group, does the design have 80% probability 
(conditional probability) to detect the true difference  Δ    =   5 when true  σ    =   10? 
The answer is  “ yes. ”  Does the design have the 80% probability (unconditional 
probability) to show the statistical signifi cance? The answer is  “ no, ”  because 
practically, we don ’ t know the true  Δ  and  σ . Instead, we estimate these two 
parameters. When the true  Δ  is larger than the estimate or the true  σ  is smaller 
than the estimate, the actual power is greater than 80%; in contrast, if the true 
 Δ  is smaller than the estimate or the true  σ  is larger than the estimate, the 
power will be below 80%. 

 Suppose that the trial described above is designed with 90% power. When 
the trial has been completed, the mean difference observed and pooled stan-
dard deviation based on the trial data are identical to the estimates:   Δ̂ = 5  and 
  σ̂ = 10, respectively. Then the  p  - value from a two - sample  t  - test will be 0.0055, 
which is much less than the prespecifi ed  α    =   0.05. If the sample mean differ-
ence   ˆ .Δ = 3 5, much less than the true (population) difference   Δ̂ = 5, but the 
sample standard deviation   σ̂ = 10, the  p  - value will be 0.05. 
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 Practically, investigators would only be interested in the effective size 
beyond a particular threshold, Δmin , which could be a minimal clinically and 
commercially meaningful difference. For example, in a clinical trial on patients 
with asthma, the minimal clinically meaningful difference is identifi ed to be 
Δmin    =   5% difference in % FEV1 (percent forced expiration volume in the fi rst 
second) change from baseline, but that difference will not be commercially 
meaningful because a better drug is available on the market. Therefore, the 
clinical trial design team sets a minimal difference to be Δmin    =   10%, which is 
considered as both a clinically and commercially meaningful cut point. Now 
the question is: Should we use 80% or 90% power to design the trial such that 
we can show a statistically signifi cant difference even when  Δ  is much less than 
10%? The suggestion is to use a lower power when the standard deviation 
estimation is accurate. If not, sample - size reestimation technology can be used 
to reestimate the standard deviation during the study.   

  3.2   HOW TO CALCULATE SAMPLE SIZE USING  E  XP  D  ESIGN  

 For confi rmary clinical trials, it is common practice to use  α    =   0.05 and power  
 =   0.8 to 0.9, as indicated in most of the examples in this book. 

  3.2.1   Testing the Mean Difference Between Two Groups 

 Suppose that we are planning a clinical trial to test a new drug called ABC 
for treatment of patients with mild to moderate asthma. A double - blind ran-
domized parallel design with two treatment groups (placebo vs. ABC) is 
chosen for this phase II trial. The primary effi cacy parameter is percentage 
change from baseline in FEV1. The mean difference in % change in FEV1 
between placebo and ABC is estimated to be 9% with a standard deviation 
of 18%. 

 Based on this information, we can specify the options in ExpDesign as 
follows: two groups, hypothesis test, mean/median, and equal size. In the list 
of methods, choose the two - sample  t  - test. Enter  “ 0.05 ”  for the level of signifi -
cance,  “ 2 ”  for a two - sided test,  “ 3 ”  for the group 1 mean,  “ 12 ”  for the group 
2 mean,  “ 18 ”  for the standard deviation, and  “ 0.8 ”  for the power (Figure  3.2 ). 

Clicking   , we obtain a sample size of 64 per group for the trial. The 
power curve shows that the sample size required increases when the power 
increases. ( Note : Double - click to see the fi nest grids.)    

  3.2.2   Testing the Proportion Difference Between Two Groups 

 Suppose that we want to design a phase III clinical trial to evaluate the effi cacy 
of a new compound, ABC, in patients with a dermatological disease. Qualifi ed 
patients will be randomized to receive either of the treatments: ABC or 



placebo. After a year ’ s treatment, the clinical outcome will be evaluated as 
cured or not cured. It was estimated that the response rates (cured) is 1% in 
placebo and 12% in the active treatment group. 

 Based on this information, we specify the options in ExpDesign as 
follows: two groups, hypothesis test, proportion, and equal size. In the list of 
methods, choose Pearson ’ s chi - square test. Enter  “ 0.05 ”  for the level of sig-
nifi cance  α , a two - sided test  ,  “ 0.01 ”  for the proportion in group 1,  “ 0.12 ”  for 

the proportion in group 2, and  “ 0.90 ”  for the power. Clicking   , we 
obtain a sample size of 121 per group for the trial. The power curve shows the 
relationship between the power and the required sample size (Figure  3.3 ).    

  3.2.3   Testing the Survival Difference Between Two Groups 

 Suppose that we are designing a phase III clinical trial for a potential oncology 
drug, ABC. The study drug, ABC, will be combined with an approved drug, 
XYZ, as second - line therapy in patients with multiple myeloma. The com-
bined treatment will be compared with XYZ alone for effectiveness in pro-
longing survival time. It is estimated that the proportion of deaths is 50% 
in the XYZ group and 40% in the combined group a year after the 
randomization.

Figure 3.2     Two - sample  t  - test for an asthma trial. 
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 Based on this information, we specify the options in ExpDesign as follows: 
two groups, hypothesis test, survival/others, and equal size. In the list of 
methods, choose the log - rank test for survival analysis. Enter  “ 0.05 ”  for 
the level of signifi cance  ,  “ 2 ”  for a two - sided test,  “ 0.50 ”  for the proportion 
in group 1,  “ 0.40 ”  for the proportion in group 2, and  “ 0.8 ”  for the power 

(Figure  3.4 ). Clicking   , we obtain a sample size of 371 per group and 
or 408 for the total number of events. The hazard ratio, 1.322, was calculated 
by using ln p1 /ln p2 .    

  3.2.4   Testing the Survival Difference with a Follow - up Period 

 Suppose that we want to design a phase III clinical trial for a potential oncol-
ogy drug, ABC. The study drug, ABC, will be combined with an approved 
drug, XYZ, as second - line therapy in patients with multiple myeloma. The 
combined treatment will be compared with XYZ alone for effectiveness in 
prolonging patients ’  survival time. It is estimated that the median survival time 
is 8 months for XYZ alone and 10.5 months for the combined treatment group. 
The duration of patient enrollment is anticipated to be 9 months with a 
maximum follow - up period or total study duration of 23 months. 

 Based on this information, we specify the options in ExpDesign as follows: 
two groups, hypothesis test, survival/others, and equal size. In the list of 
methods, choose the exponential survival distribution method with uniform 

Figure 3.3     Pearson ’ s chi - square test for a dermatological disease trial.  



enrollment and a follow - up. Enter  “ 0.05 ”  for the level of signifi cance,  “ 2 ”  
for a two - sided test,  “ 0.066 ”  (=   ln   2/8) for the hazard rate in group 1,  “ 0.0866 ”  
(=   ln   2/10.5) for the hazard rate in group 2,  “ 9 ”  for the duration of enrollment, 
 “ 23 ”  for the total trial duration, and  “ 0.8 ”  for the power. Clicking 

  , we obtain a sample size of 288 per group (Figure  3.5 ).    

  3.2.5   Exact Test for a One - Sample Proportion 

 In designing a phase II single - arm oncology trial, suppose that the investigator 
is interested in the response rate of the test drug. If the response rate is greater 
than 20%, the drug will be considered very promising and will be pursued 
further in the next - phase study. If the response rate is less than 5%, it will not 
be pursued further. 

 Based on this information, we specify the options in ExpDesign as follows: 
one group, hypothesis test, proportion, and equal size. In the list of methods, 
choose the one - sample exact test for proportion using binomial distribution. 
Enter  “ 0.05 ”  for the level of signifi cance,  “ 1 ”  for a one - sided test,  “ 0.05 ”  
for the H0  proportion,  “ 0.2 ”  for the  Ha  proportion, and  “ 0.8 ”  for the power. 

Clicking   , we obtain a sample size of 21 (Figure  3.6 ).   
 Note that the power does not increase monotonically with sample size 

based on binomial distribution. ExpDesign adoptes a conservative approach; 

Figure 3.4     Log - rank test for an oncology trial. 
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Figure 3.5     Oncology trial with uniform enrollment. 

Figure 3.6     Exact test for a single - group oncology trial. 



that is, with the required sample size n  it will ensure that the power will be 
larger than or equal to the power specifi ed for all sample sizes    ≥     n .  

  3.2.6   McNemar ’ s Test for Paired Data 

 A researcher is investigating the effect of an experimental drug on bilirubin 
abnormalities. Pre -  and postdose clinical laboratory results will be collected 
and compared using McNemar ’ s test for the paired data. The estimated dif-
ference between pre -  and postdose in proportions of abnormalities is 20%, 
and the estimated sum of proportions of shifts from the normal to the abnor-
mal and the abnormal to the normal is 30%. 

 Based on the information, we specify the options in ExpDesign as follows: 
one/paired groups, hypothesis test, proportion, and equal size. In the list of 
methods, choose McNemar ’ s test for a paired sample. Enter  “ 0.05 ”  for the 
level of signifi cance,  “ 2 ”  for a two - sided test,  “ 0.2 ”  for the difference in pro-
portion,  “ 0.3 ”  for the proportion of discordant pairs, and  “ 0.8 ”  for the power. 

Clicking   , we obtain a sample of 52 subjects per group for the trial 
(Figure  3.7 ).    

  3.2.7   Noninferiority Test for Two Means 

 Suppose that in an asthma study, the objective is to prove that the test drug 
is noninferior to the active control. It is estimated that both the control and 

Figure 3.7     McNemar ’ s test for a bilirubin abnormality study. 
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the test drug have 10% improvement in FEV1. The criterion for noninferiority 
is − 3% in FEV1 improvement. The common standard deviation is estimated 
to be 18%. 

 Based on this information, we specify the options in ExpDesign as follows: 
two groups, equivalence, mean/media, and equal size. In the list of methods, 
choose the noninferiority test of two means based on a two - sample  t  - test. 
Enter  “ 0.05 ”  for the level of signifi cance,  “  − 3 ”  for the equivalence limit,  “ 0 ”  
for the estimated mean difference,  “ 18 ”  for the common standard deviation, 

and  “ 0.8 ”  for the power (Figure  3.8 ). Clicking   , we obtain a sample 
size of 446 subjects per group for the trial.    

  3.2.8   Bioequivalence Test for Two Means 

 Suppose that during the manufacture of a drug, due to a shortage of material, 
replacement must occur. The replacement could cause a potentially different 
polymorphism. A clinical trial is required to prove bioequivalence for the two 
formulations. The two formulations are expected to have the same response: 
2 units with a standard deviation of 1.0. A design with two parallel groups is 
chosen for the trial. 

 Based on this information, we specify the options in ExpDesign as follows: 
two groups, equivalence, mean/media, and equal size. Then in the list of 
methods, choose the two one - sided  t  - tests for equivalence based on difference 

Figure 3.8     Noninferiority asthma trial in mean FEV1 changes. 



of means for parallel design (using bivariate t ). Enter  “ 0.05 ”  for the level of 
signifi cance,  “ 2 ”  for means in both groups,  “  − 0.4 ”  for the lower limit and  “ 0.4 ”  
for the higher limit,  “ 1.0 ”  for the standard deviation, and  “ 0.8 ”  for the power. 

Clicking   , we obtain a sample size of 108 per group (Figure  3.9 ). 
[Note : The equivalence limits 0.4 are based on the 20% rule: 2(20%)   =   0.4.]    

  3.2.9   Bioequivalence Test for Two Means of Lognormal Data 

 Suppose that due to safety concerns, a drug formulation is modifi ed for 
asthma patients. A clinical trial is required to prove bioequivalence between 
the new and earlier formulations. The two are expected to have the same 
response of 2 on the original scale or 0.693 on the log scale. The standard 
deviation is 0.55 on the log scale. A design with two parallel groups is chosen 
for the trial. 

 Based on this information, we can specify the options in ExpDesign as 
follows: two groups, equivalence, mean/media, and equal size. In the list of 
methods, choose two one - sided  t  - tests for equivalence based on difference of 
means for parallel design (bivariate t ). Enter  “ 0.05 ”  for the level of signifi -
cance,  “ 0.693 ”  for the means of both groups,  “  − 0.223 ”  for the lower limit and 
 “ 0.223 ”  for the higher limit,  “ 0.55 ”  for the standard deviation, and  “ 0.8 ”  for 

the power. Clicking   , we obtain a sample size of 104 per group 

Figure 3.9     Bioequivalence trial for two means. 
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(Figure  3.10 ). ( Note : The equivalence limits, 0.223, are based on an FDA 
guideline.)    

  3.2.10   Equivalence Test Based on the Ratio of Two Means 

 Suppose that a bioequivalence trial is designed based on the area under the 
concentration curve (AUC). The pharmacokinetic parameter (AUC) is 
believed to be lognormally distributed with a mean of 2.5   mg/m 3     ·    h for both 
formulations. The coeffi cient of variation between subjects is 0.2, and the 
coeffi cient of variation within subjects is 0.5 on the original scale. A 2    ×    2 
crossover design is chosen for the trial. 

 Based on the information, we can specify the options in ExpDesign as 
follows: two groups, equivalence, mean/media, and equal size. In the list of 
methods, choose the two one - sided  t  - tests for equivalence based on the ratio 
of two means for crossover design (bivariate t ). Enter  “ 0.05 ”  for the level of 
signifi cance,  “ 2.5 ”  for the means in both groups,  “ 0.2 ”  for the coeffi cient of 
variation between subjects,  “ 0.5 ”  for the coeffi cient of variation within sub-
jects,  “ 0.8 ”  for the lower limit and  “ 1.25 ”  for the higher limit, and  “ 0.8 ”  for 

the power (Figure  3.11 ). Clicking   , we obtain 44 subjects per 
sequence for the trial. ( Note : If more than one parameter is concerned, calcu-
late the sample size for each parameter and pick the largest one, to be 
conservative.)    

Figure 3.10     Bioequivalence trial with lognormal data. 



  3.2.11   Precision Method for the Mean Difference for a Paired Sample 

 Suppose that a biotech company is developing a new appetite - suppressing 
compound, ABC, for weight reduction. The mean weight reduction after 10 
weeks - treatment with ABC is estimated to be 33.5 pounds with a standard 
deviation of 6.3 pounds. The researchers want to know if ABC is effective in 
weight reduction by investigating the confi dence interval for the difference. It 
is believed that a confi dence interval with a precision (distance between the 
limit and the mean difference) of 1 pound would be adequate. 

 Based on the information, we specify the options in ExpDesign as follows: 
one/paired groups, precision(CI), mean/median, and equal size. In the list of 
methods, choose the paired sample   confi dence interval using a  t -  distribution. 
Enter  “ 0.05 ”  for the level of signifi cance,  “ 2 ”  for the two - sided confi dence 
interval,  “ 1 ”  for precision, and  “ 6.3 ”  for the standard deviation of the 

difference. Clicking   , we obtain a sample size of 152 pairs for the 
trial (Figure  3.12 ).    

  3.2.12   Mantel – Haenszel Test for an Odds Ratio with Two Strata 

 Suppose that we are designing a trial to investigate the effectiveness of a new 
drug, ABC, in treating patients with acute myelogenous leukemia (AML). 
Patients will be randomized into one of two groups, 10 - day infusion with ABC 

Figure 3.11     Bioequivalence trial on the ratio of means. 
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or control, and will be followed for 90 days. The time of remission from diag-
nosis or prior relapse at study is considered an important covariate in predict-
ing the response, which is defi ned as relapse, death, or major intervention (e.g., 
bone marrow transplant before day 90). The investigator wants to know if 
there is any evidence that administration of ABC is associated with a decreased 
relapse rate. To design this study, patients are stratifi ed by their time to remis-
sion: 60% of patients are in stratum 1, with a remission time of less than 10 
months, and 40% of patients are in stratum 2, with a remission time greater 
than or equal to 10 months. The responses in the control group are estimated 
to be 0.55 and 0.75 for the two strata. The common odds ratio (control vs. 
ABC) is estimated to be 0.33. 

 Based on the information, we can specify the options in ExpDesign as 
follows: two groups, hypothesis test, proportion, and equal size. In the list 
of methods, choose the Mantel – Haenszel test for an odds ratio with  k
strata. Enter  “ 0.05 ”  for the level of signifi cance,  “ 2 ”  for a two - sided test,  “ 2 ”  
for the number of strata,  “ 0.33 ”  for the common odds ratio,  “  0.55 ”  and  “ 0.75 ”  
for rates in the control group,  “ 0.6 ”  and  “ 0.4 ”  for fractions of observations, 

and  “ 0.8 ”  for the power. Clicking   , we obtain a sample size of 
55 subjects per group, calculated with 33 in stratum 1 and 22 in stratum 2 
(Figure  3.13 ).    

Figure 3.12     Precision method for paired means in a weight reduction study.  



  3.2.13   Pearson ’ s Chi - Square Test for Rate Difference 

 Let ’ s use the preceding example but without stratifi cation. The response rate 
for the control is about 0.63, and the common odds ratio (OR) is 0.33. Since 
the proportion p2    =    p1     ·    OR/[1    −     p1 (1    −    OR)], we can use a method for propor-
tions to calculate the sample size for odds ratio problems. For the current case, 
p1    =   0.3 and OR   =   0.33. We calculate  p2    =   (0.63    ×    0.33)/[1    −    0.63    ×    (1    −    0.33)]  
 =   0.36. 

 Based on the information, we can specify the options in ExpDesign as 
follows: two groups, hypothesis test, proportion, and equal size. In the list of 
methods, choose Pearson ’ s chi - square test (Kramer – Greenhouse) for a large 
sample. Enter  “ 0.05 ”  for the level of signifi cance,  “ 2 ”  for a two - sided test, 
 “ 0.63 ”  for the proportion in group 1,  “ 0.36 ”  for the proportion in group 

2, and  “ 0.8 ”  for the power. Clicking   , a sample size of 60 subjects 
per group is calculated (Figure  3.14 ).    

  3.2.14   One - Way Analysis of Variance for Parallel Groups 

 Suppose that a phase II trial is to be designed to investigate the effi cacy of a 
new serotonin - uptake inhibiting agent, ABC, in subjects with a general anxiety 
disorder (GAD). Subjects diagnosed with a GAD value of moderate or greater 
severity will be randomized into one of three treatment groups: placebo, 25   mg 
of ABC, and 100   mg of ABC. After 12 weeks of once - daily dosing in a double -

Figure 3.13     Mantel – Haenszel test for the odds ratio in an AML trial.  
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 blind fashion, a test based on the Hamilton rating scale for anxiety (HAM - A) 
will be administrated. This test consists of 14 anxiety - related items. The HAM -
 A test scores are the sums of the code values over all 14 items. It is estimated 
that the mean HAM - A scores are 28, 25, and 24 for the placebo, 25   mg of 
ABC, and 100   mg of ABC groups, respectively, with a common standard 
deviation of 6. We want to know if there is any difference in mean HAM - A 
test scores among the three groups. 

 Based on the information, we specify the options in ExpDesign as follows: 
multiple group, hypothesis test, mean/media, and equal size. In the list of 
methods, choose the one - way ANOVA for parallel groups. Enter  “ 0.05 ”  for 
the level of signifi cance;  “ 3 ”  for the number of treatment groups;  “ 28, 26, 24 ”  
for the treatment means;  “ 6 ”  for the common standard deviation; and  “ 0.9 ”  

for the power (Figure  3.15 ). Clicking   , we obtain a sample size of 
58 subjects per group for the trial.    

  3.2.15   Dose – Response Trial for a Myocardial Infarction 

 Suppose that a trial is to be designed for patients with acute ischemic stroke 
of recent onset. The composite endpoint (death and myocardial infarction) is 
the primary endpoint. Four dose levels are planned, with event rates of 14%, 
12%, 11%, and 10%, respectively. The fi rst group is the active control group 
(the 14% event rate). Comparisons are made between the active control and 

Figure 3.14     Chi - square test for the rate difference in an AML trial.  



  

    Figure 3.15     ANOVA for a parallel general anxiety disorder trial.  

the test groups; therefore, the contrast for the active control should have a 
different sign than the contrasts for the test groups. Let  c  1    =    − 6,  c  2    =   1,  c  3    =   2, 
and  c  4    =   3. It is assumed that the event rate is  p  0    =   0.14 under the null 
hypothesis. 

 Based on the information, we can specify the options in ExpDesign as 
follows: multiple groups, hypothesis test, proportion, and equal size. In the list 
of methods, choose the Cochran – Armitage test for linear/monotonic trend 
(dose – response). Enter  “ 0.1 ”  for the level of signifi cance,  “ 1 ”  for a one - sided 
test;  “ 4 ”  for the number of groups;  “  − 6, 1, 2, 3 ”  for the (virtual) dose levels; 
 “ 0.15, 0.12, 0.11, 0.10 ”  for the proportions in  k  groups, and  “ 0.8 ”  for the power. 

Clicking   , we obtain a total sample size of 1473 for the trial 
(Figure  3.16 ).     

  3.3   MATHEMATICAL NOTES ON CLASSICAL DESIGN 

  3.3.1   Large - Sample - Size Calculation for Classical Design 

  Testing a single mean: 
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where  θ  is the parameter difference between the null and alternative condi-
tions;  s    =   1 for a one - sided test and 2 for a two - sided test. 

 Testing paired means:
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 Testing two independent means:
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 Testing one proportion:
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where   σ = −P P0 01( ) .

 Testing two independent proportions:
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    Figure 3.16     Dose – response design for a myocardial infarction trial.  
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  Log - rank test for two survival distributions: 

   
N

s Q Q Q
=

−
−⎛

⎝
⎞
⎠ +⎛

⎝⎜
⎞
⎠⎟ + −

⎛
⎝⎜

⎞
⎠⎟

+− −1
1

1 1
1

2 1
2

1

1 2

1 1

1

2

( )
( )

λ λ
α

φ β
φ φ

Φ Φ
QQ2

2
⎡

⎣
⎢

⎤

⎦
⎥ ,

    
(3.11)

    

where

    

Q
r

Q
r

r

Q Q r
n
n

1 2

1 1 2 2
2

1

1
1 1

=
+

=
+

= + =

, ,

, ,λ λ λ
 

    
φ λ

λ

λ λ

i i

T T T

i

e e
T

i
i i

= −
−⎛

⎝⎜
⎞
⎠⎟ =

− − − −
2

1

1 1 2
( )max max

, ,
0

0     
(3.12)  

    
φ λ

λ

λ λ

= −
−⎛

⎝⎜
⎞
⎠⎟

− − − −
2

1

1
e e

T

T T T( )max max

.
0

0     
(3.13)

    

  3.3.2   Commonly Used Terms and Their Mathematical Expressions 

 Relative risk:
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response drug B

=
P
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( | )
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(3.14)
  

 Odds given drug A:
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 Odds ratio:

     
OR

odds
odds

A

B

11 22

12 21

=
p p
p p

.
    

(3.16)
  

  Proportions versus odds ratio:    Because of the relationships between the 
odds ratio and proportions: OR   =    p  B (1    −     p  A )/ p  A (1    −     p  B ) and  p  B    =    p  A OR/
[1    −     p  A (1    −    OR)], all sample - size formulas for proportion difference can be 
used to calculation the sample size for an odds ratio. 
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 Standard deviation of ln x:

     σ ln ln( ),x = +1 2CV     (3.17)  

where CV is the coeffi cient of variation.

 Confi dence interval for ln OR:
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where  n ij   is the number of patients in cell ( i, j ) of a 2    ×    2 table.

 Exponential survival distribution:

     S t e t( ) ,= −λ
    (3.19)  

where  λ  is the hazard rate.

  Hazard ratio:    The hazard ratio is defi ned as HR   =    λ  1 / λ  2 . For two exponential 
survival curves, HR can be expressed as
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where  S i   is a survivorship function. 

 Median survival time versus hazard rate:
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  Mean survival time versus hazard rate: 
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  Confi dence interval for mean survival time:    Suppose that the trial is termi-
nated after  d  of  n  patients have died. Denote the survival times as

    t t t t t td n d1 2 1 2≤ ≤ ≤ = = = =+ +
−

+. . . . . . ,     (3.23)  

where   ti
+  represents a censored observation. Under an assumption of expo-

nential survival distribution, the maximum likelihood estimates lead to the 
following results (E. T. Lee,  1992 ):
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 Confi dence interval for hazard rate for large sample size:
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where  d  is the number of deaths and  n  is the number of patients.

  Two - sided confi dence interval for log - hazard ratio,   θ  : 
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where  r  is the sample - size ratio between the two treatment groups and  d  is 
the total number of deaths. 

 Assume that there are a total of  d  deaths in the study. Under the condition 
of no ties, we denote the survival times of these subjects by  τ  1     <     τ  2     <     ·        ·        ·     <     τ   d  , 
where the  τ   i   represent elapsed times between entry in the study and failure. 
Let the numbers known to have survived up to time  τ   i   after treatment be  r i   1  
and  r i   2  for treatments A and B, respectively. The log - rank score statistic is 
given as (Jennison and Turnbull,  2000 )
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where  δ   i 2    =   1 is the failure at  τ   i   for treatment B, and  δ   i 2    =   0, otherwise. 

 Two-sided confi dence interval for hazard ratio:
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 Two-sided confi dence interval for difference in hazard rates:
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where  f i   is the sample - size fraction  n i  / N ,  T  0  the patient accrual time, and  T  the 
follow - up time (Lachin,  1981 ). 

  3.3.3   Relationship Between Enrollment Rate and Number of Events 

 A common question to be answered by a statistician during a protocol design 
for a clinical trial involving the time to an events as the primary effi cacy end-
point is: What would be the number of events at a particular time, or when 
would a particular number of events occur? The information is particularly 
useful when the design involves interim analyses. 

 Notation:

   S ( t )    survival function: the probability of a patient surviving 
longer than age  t   

   F ( t )   =   1    −     S ( t )    probability of a patient dying before age  t   
   f ( t )   =    dF ( t )/ dt     density function  
   R ( t )    enrollment rate; usually a step function  
   D     number of events  
   T  0     enrollment duration  

  Exponential Distribution Without Censoring Before  T      Assume no censor-
ing before time  T  (i.e., no early dropouts):
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 Given  S ( t )   =   exp( −  λ  t ),  f ( t )   =    λ    exp( −  λ  t ), and
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( Note : The number of events is proportional to the constant enrollment rate 
 R .)
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  Illustrative Example     Suppose that a trial requires  N    =   300 patients to be 
enrolled in 9 months; the median survival time for the test drug,  t  median    =   7.91 
months; and the total study duration   =   23 months. Therefore,  T  0    =   9 months, 
 R    =   300/9   =   33.333, and  λ    =   ln   2/ t  median    =   0.0876. The predictions for the number 
of events at 9, 11, and 12 months are 92, 126, and 140, respectively.   

  Exponential Distribution with Censoring     Let  R ( t ) be the enrollment rate 
at time  t  (the clock starts when the fi rst patient is enrolled in the trial), and 
 E ( τ ,  t ) is the probability of early withdrawal (censoring) before time  t  for a 
patient enrolled at time  τ . Let  f ( t ) be the probability density function for dying 
at time  t . The number of patients enrolled during the time interval ( τ ,  τ    +    d  τ ) 
is approximately equal to  R ( τ )  d  τ , where  d  τ  is small. The probability of censor-
ing before time  t  for these patients is  E ( τ ,  t ). In other words, the probability 
of staying in the trial at time  t  for these patients is 1    −     E ( τ ,  t ). Furthermore, 
the patient who stays in the trial at time  t  has a probability of dying at the time 
interval ( t, t    +    dt ) of  f ( t )  dt , where  dt  is a small interval such that  f ( t ) is constant 
within the interval ( t, t    +    dt ). Therefore, the number of deaths at time  T  
will be

    D R E t d f t dt
tT

= − −∫∫ ( )[ ( , )] ( ) .τ τ τ τ1
00   

  (3.39)   

 For an exponential survival model we have  S ( t )   =   exp( −  λ  t ) and  f ( t )   =    λ    exp( −  λ  t ). 
If  E ( τ ,  t ) does not depend on how long a patient has stayed in the trial,  E ( τ , 
 t )   =    E ( t ). If  E ( τ ,  t ) does not depend on how long it has been since the trial 
started (i.e., it does not depend on seasons), then  E ( τ ,  t )   =    E ( τ ). The simplest 
case is  E ( τ ,  t )   =   constant. In the following we consider only the exponential 
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survival model with  E ( τ ,  t )   =    E ( t ) and use a discrete form to approximate the 
integration above, which is very practical:
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 If we use a monthly rate for  R  and  E , then  N T   will be equal to the number of 
months from time zero to the time of interest. To calculate the number of 
deaths in each month, one needs to know (or make assumptions regarding) 
the  R  and  E  values in each month to the time of interest, and the hazard 
rate  λ .                                           
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 Group Sequential Trial Design 

   4.1   INTRODUCTION 

 A group sequential design involves multiple stages. At each stage an interim 
analysis is performed. An interim analysis is intended to compare treatment 
arms with respect to effi cacy or safety at any time prior to formal completion 
of a trial. Because the number and methods of these comparisons will affect 
the interpretation of the trial, all interim analyses should be planned carefully 
in advance and described in the protocol, including the timing of the analyses 
and stopping rules. (Later we will see that these requirements may be eased 
in adaptive designs.) An interim analysis planned with the intention of decid-
ing whether or not to terminate a trial is usually accomplished through the use 
of a group sequential design that employs statistical monitoring schemes or a 
data monitoring committee charter as guidelines. The goal of such an interim 
analysis is to stop the trial early if the superiority of the treatment under study 
is clearly established, if the demonstration of a relevant treatment difference 
has become unlikely, or if unacceptable adverse effects are apparent. When 
the trial design and monitoring objective involve multiple endpoints, another 
layer of multiplicity (in addition to the multiplicity due to multiple looks over 
time) may also need to be taken into account. In some circumstances, an 
unplanned interim analysis may be necessary. In these cases, a protocol 
amendment describing the interim analysis should be completed prior to 
 “ unblinding ”  the data.  

  4.2   BASICS OF GROUP SEQUENTIAL DESIGN 

Group Sequential Test   The key feature of a group sequential test, as con-
trasted with a fully sequential test, is that the accumulating data are analyzed 
at intervals rather than after each new observation.  

Error Infl ation   For a classical single - stage trial with  α    =   0.05,  H0  will be 
rejected if the statistic z     >    1.96. For a sequential trial with  K  analyses, if at the 
k th analysis ( k    =   1, 2,       ·        ·        ·       , K ) the absolute value of  Zk  is suffi ciently large, the 

4
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study stops with rejection of  H  0 . It is not appropriate simply to apply a level 
 α  two - sided test at each analysis since the multiple tests at the data would lead 
to a type I error well in excess of  α . In fact, for  K    =   5, the actual  α  level is 
0.142, nearly three times the 0.05 signifi cance level applied at each individual 
analysis.  

  Stopping Boundary     Stopping boundaries consist of a set of critical values 
that are compared against the statistics calculated from actual data to deter-
mine whether to continue or terminate a trial. A typical set of stopping bound-
aries with early stopping for effi cacy or futility is presented in Figure  4.1 .  The 
stopping rules for a group sequential design with early stopping for  H a   can be 
specifi ed as follows: At the  k th stage ( k    =   1,       ·        ·        ·       ,  K     −    1), if  p k      ≤     α   k  , stop and 
reject  H  0 ; otherwise, continue the trial. At the fi nal stage,  K , if  p K      ≤     α   K  , stop 
and reject  H  0 ; otherwise, accept  H  0 . 

 The stopping rules for a group sequential design with early stopping for 
either  H  0  or  H a   can be specifi ed as follows: At the  k th stage ( k    =   1,       ·        ·        ·       , 
 K     −    1), if  p k      ≤     α   k  , stop and reject  H  0 ; if  p k      ≥     β   k  , stop and accept  H  0 ; otherwise, 
continue the trial. At the fi nal stage  K , if  p K      ≤     α   K  , stop and reject  H  0 ; otherwise, 
accept  H  0 . The stopping rules for a group sequential design with early stopping 
for  H  0  can be specifi ed as follows: At the  k th stage ( k    =   1,       ·        ·        ·       ,  K     −    1), if 
 p k      ≥     β   k  , stop and accept  H  0 ; otherwise, continue the trial. At the fi nal stage, 
 K , if  p K      ≤     α   K  , stop and reject  H  0 ; otherwise, accept  H  0 .  

  Boundary Scales     Different scales can be used to construct the stopping 
boundaries. The two commonly used scales are the standardized  z  - statistic and 
the  p  - scale. The scale defi nitions can be given as follows: 

  Standardized z - statistic :

    Z Ik k k= θ ,     (4.1)  

where the information level is defi ned as  I k    =   n k  /2 σ  2 , and  θ  k  is the treatment 
difference. 

    Figure 4.1     Effi cacy and futility stopping boundaries.  
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  p - Value scale or p - scale :

    p Zk k= −1 Φ( ).     (4.2)   

 If the  z  - scale is used, the usual  z  test statistic is calculated at each stage and 
compared with the stopping boundary on the  z  - scale. When the  p  - scale is used, 
the  p  - value is calculated at each stage and compared with the stopping bound-
ary on the  p  - scale. 

 ExpDesign Studio allows users to select different shapes for the stopping 
boundaries. All these boundaries are determined to control the overall type 
I error,  α . The difference between the types of boundaries is that some (e.g., 
Pocock ’ s) may spend more  α  in the early stages, and others (e.g., O ’ Brien and 
Fleming ’ s) may spend more  α  in later stages. ExpDesign has implemented a 
more generalized boundary type (Wang and Tsiatis) to meet different bound-
ary requirements. The Wang – Tsiatis boundary was originally defi ned on the 
standardized  z  - scale, but can equivalently be defi ned as   αk kct= − −1 0 5Φ Δ( ).  on 
the  p  - scale, where  t k    =   k / K; c  is a constant determined by the signifi cance level 
 α . The inner futility boundary type can be symmetrical (on the sample mean 
scale):   βk k kc t ct= − −2 0 5Δ .  or trianglular:  β   k     =    c ( k    −    k  0 )/( K    −    k  0 ), where  k  0    =  
 ( K /2)   +   1   =   Int( K /2)   +   1. When the parameter  Δ    =   0, 0.5, and 0.688, the 
Wang – Tsiatis boundary degenerates to the O ’ Brien – Fleming, linear, and 
Pocock boundaries, respectively.  

  Futility Binding     In futility binding the futility rules have to be followed 
(i.e., if the futility boundary is crossed, the trial must stop). With no futility 
binding, the futility boundary does not have to be followed. In current prac-
tice, not every company follows the futility rules specifi ed in the protocols, 
and regulatory agencies usually apply a nonbinding rule, which means that a 
futility boundary in the earlier part of a trial cannot be used for the construc-
tion of effi cacy boundaries in the later part of the trial.    

  4.3   HOW TO DESIGN SEQUENTIAL TRIALS USING EXPDESIGN 

 There are many factors that can be used to characterize a group sequential 
design, such as the expected sample size under the hypotheses and the 
maximum sample size in selecting a group sequential design. If you wish to 
reduce the expected cost, you might want to choose a design with a minimum 
expected sample size; if you wish to reduce the maximum possible cost, you 
might want to consider a design with a minimum total sample size. In any case, 
you should compare all the stopping probabilities between designs carefully 
before determinating an appropriate design. O ’ Brien – Fleming boundaries, 
with the corresponding  Δ    =   0, are very conservative in early rejection of the 
null hypothesis. Pocock ’ s method, with the corresponding  Δ    =   0.5, uses a con-
stant stopping boundary (on the  z  - scale) over time. Generally speaking, a 
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large value of Δ  (e.g., 0.8) will lead to a design that spends type I error more 
at earlier stages than at later stages. To increase the probability of accepting 
the null hypothesis at earlier stages, you can use the triangular inner boundar-
ies. If you don ’ t want to accept the null hypothesis at all at interim analyses, 
you should choose a design with rejection of the null hypothesis only. If you 
don ’ t want to reject the null hypothesis at interim analyses, you should choose 
a design with acceptance of the null hypothesis only. Adjusting the size frac-
tions is also an effective way to achieve a desired design. Although balanced 
designs are commonly used, one can, if desired, use an unbalanced design with 
a difference size for each experimental group. 

 The basic steps in designing a group sequential trial with ExpDesign are 
presented in Section  1.2.2 . You will be shown below, through examples, how 
to design various sequential trials using ExpDesign Studio. However, before 
we discuss these, it will be helpful to explain some of the input parameters. 
The potential early claim can be  “ the null hypothesis is true ”  (i.e., the futility 
design),  “ the alternative hypothesis is true ”  (i.e., the effi cacy design), or  “ either 
of the hypotheses is true. ”  The sample - size fractions at  K  analyses should be 
a sequence of numbers between 0 and 1, separated by commas. When you 
enter the number of stages, the fractions are fi lled into the textbox automati-
cally based on an equal - sample - size design (an equal - information - interval 
design). You can change them anytime afterward. The stopping boundary 
shape parameter, delta, is the Δ  in the Wang – Tsiatis boundary family, in which 
a low value will lead to a low probability of rejecting the alternative hypothe-
sis. The allowable range for Δ  is ( − 0.5, 1). You can move the mouse over each 
input box and wait for a second to see the hint. You can always click the 

example button    to see the input example. 

  4.3.1   Design Featuring Early Effi cacy Stopping for Two Means 

 Consider a trial to test the effectiveness of a new drug, ABC, in treating 
patients with mild to moderate asthma. A parallel design with two treatment 
groups (placebo vs. ABC) is chosen for the design. The primary effi cacy 
parameter is percentage change from baseline in FEV1. The mean difference 
in percent change in FEV1 between placebo and ABC is estimated to be 6% 
(5% vs. 11%), with a standard deviation of 18%. 

 A single - stage design with a fi xed sample of 282 will allow us to have 80% 
power to detect the difference at a one - sided signifi cance level  α    =   0.025. The 
sponsors believe that there is a good chance that the test drug will be superior 
to the placebo and want to stop the trial early if the superiority becomes 
evident.

 Based on the information, we specify the options in ExpDesign as follows: 
two groups, hypothesis test, mean/median, and alternative hypothesis. Enter 
 “ 2 ”  for the number of analyses,  “ 1 ”  for a one - sided analysis,  “ 0.025 ”  for  α , 
 “ 0.05 ”  for the group 1 mean,  “ 0.11 ”  for the group 2 mean,  “ 0.18 ”  for the 



common standard deviation,  “ 1 ”  for the sample - size ratio,  “ 0.5, 1 ”  for the 
sample - size fractions,  “ 0.5 ”  for the stopping boundary shape parameter  Δ , and

 “ 0.8 ”  for the power (Figure  4.2 ).   Click    to run the simulation. When 

it is fi nished, click    on the toolbar; the outputs reported below will be 
generated.   

Design Outputs   See Table  4.1 . Sample size for the single - stage design   =   282; 
maximum sample size (combined total)   =   314; sample size expected under 
H0    =   311; sample size expected under  Ha    =   241.    

Report   This experimental design has one interim analysis and a fi nal analy-
sis. The sample sizes for the two analyses are 157 and 314, respectively. The 
sample - size ratio between the two groups is 1. The maximum sample size for 
the design is 314, and the expected sample size is 311 under the null hypothesis 
and 241 under the alternative hypothesis. The calculation is based on a level 
of signifi cance  α    =   0.025, power   =   0.8, mean difference   =   0.06, and standard 
deviation   =   0.18. 

 The decision rules are specifi ed as follows:

  At stage 1: 

   •     Accept null hypothesis if  p  - value    >    0.5.  

Figure 4.2     Two - stage group sequential design for two means. 
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   •     Reject null hypothesis if  p  - value    <    or   =   0.0147.  
   •     Otherwise, continue.   

  At stage 2: 

   •     Accept null hypothesis if  p  - value    >    0.0147.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.0147.    

 It is important to know that the sponsors are more interested in the expected 
sample size (241) under the alternative hypothesis than the sample size (309) 
under the null hypothesis. The maximum sample size is 314, whereas it is 284 
for the classical single - stage design. The sponsors believe that there is a good 
chance to stop the trial early, which means that only 157 patients are required. 
This will lead not only to a reduction in the number of patients but also a 
savings in time. 

    4.3.2   Design Featuring Early Futility Stopping for a Proportion 

 A phase III trial is to be designed for patients with acute ischemic stroke of 
recent onset. The composite endpoint (death and MI) is the primary endpoint, 
and the event rate is 14% for the control group and 12% for the test group. 
For classical design, a sample size of 5937 per group will provide 90% power 
to detect the difference at a one - sided  α  of 0.025. 

 To design the trial, we specify the options in ExpDesign as follows: 
two groups, hypothesis test, proportion, and null hypothesis. Enter  “ 3 ”  for 
the number of analyses,  “ 1 ”  for a one - sided test;  “ 0.025 ”  for the signifi cance 
level;  “ 0.9 ”  for the statistical power;  “ 0.12 ”  for the proportion for group 1; 
 “ 0.14 ”  for the proportion for group 2;  “ 1 ”  for the sample size ratio;  “ 0.333, 
0.667, 1 ”  for the sample - size fractions; and  “ 0 ”  for the stopping boundary 

 TABLE 4.1  

  Analysis Stage 

  1    2  

  Sample size at difference stages    156.90    313.80  
  Stopping boundary on  z  - statistic scale    2.1789    2.1789  
  Stopping trial for  Ha  if  p  - value    <    or =    0.0147    0.0147  
  Stopping trial for  H0  if  p  - value  >   0.5000    0.0147  
  Stopping probability when  H0  is true    0.0147    0.9853  
  Stopping probability when  Ha  is true    0.4636    0.5364  
  Stopping probability for  H0  when  H0  is true    0.0000    0.9750  
  Stopping probability for  Ha  when  H0  is true    0.0147    0.0103  
  Stopping probability for  H0  when  Ha  is true    0.0000    0.2002  
  Stopping probability for  Ha  when  Ha  is true    0.4636    0.3362  



shape parameter Δ  (Figure  4.3 ). After clicking    and then    on the 
toolbar, the outputs reported below will be generated.   

Design Outputs   See Table  4.2 . Sample size for the single - stage design   =  
 11,884; maximum sample size (combined total)   =   12,158; sample size expected 
under H0    =   8149; sample size expected under  Ha    =   12,029.    

Figure 4.3     One - sided futility group sequential design. 

 TABLE 4.2  

  Analysis Stage 

  1    2    3  

  Sample size at difference stages    4,048.6    8,109.3    12,158  
  Stopping boundary on  z  - statistic scale − 1.1344    0.8015    1.9599  
  Stopping trial for  Ha  if  p  - value    <    or =    0.0000    0.0000    0.0250  
  Stopping trial for  H0  if  p  - value  >   0.8717    0.2114    0.0250  
  Stopping probability when  H0  is true    0.1283    0.6609    0.1867  
  Stopping probability when  Ha  is true    0.0012    0.0294    0.9694  
  Stopping probability for  H0  when  H0  is true    0.1283    0.6609    0.1867  
  Stopping probability for  Ha  when  H0  is true    0.0000    0.0000    0.0000  
  Stopping probability for  H0  when  Ha  is true    0.0012    0.0294    0.0694  
  Stopping probability for  Ha  when  Ha  is true    0.0000    0.0000    0.9000  
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Report   This experimental design has two interim analyses and a fi nal analy-
sis. The sample sizes for the three analyses are 4049, 8109, and 12,158, respec-
tively. The sample size ratio between the two groups is 1. The maximum 
sample size for the design is 12,158, and the sample size expected is 8149 under 
the null hypothesis and 12,029 under the alternative hypothesis. The calcula-
tion is based on a level of signifi cance  α    =   0.025, power   =   0.9, proportion under 
the fi rst condition   =   0.12, and proportion under the second condition   =   0.14. 

 The decision rules are specifi ed as follows:

  At stage 1: 

   •     Accept null hypothesis if  p  - value    >    0.8717.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.  
   •     Otherwise, continue.   

  At stage 2: 

   •      Accept null hypothesis if  p  - value    >    0.2114.  
   •      Reject null hypothesis if  p  - value    <    or   =   0.  
   •      Otherwise, continue.   

  At stage 3: 

   •     Accept null hypothesis if  p  - value    >    0.025.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.025.      

  4.3.3   Design Featuring Early Stopping for a Survival Endpoint 

 An oncology trial is to be conducted to investigate the effi cacy of the test 
drug ABC. A two - arm unbalanced design is chosen for the trial with a sample 
size ratio of 1.2 (ABC vs. control). The median survival time is 7.8 months for 
the control and 10 months for the ABC group. The accrual time is estimated 
to be 8 months, and the total trial duration, 23 months. The calculation indi-
cates that 667 patients are required for a classical single - stage design. There 
is great interest in determining if a sequential trial will save time and 
money.

 To design this trial, we specify the following options in ExpDesign: two 
groups, hypothesis, survival, and either hypothesis. Enter  “ 4 ”  for the number 
of analyses;  “ 1 ”  for a one - sided test;  “ 0.025 ”  for  α ;  “ 0.8 ”  for the statistical 
power;  “ 7.8 ”  for the median time for group 1;  “ 10 ”  for the median time for 
group 2;  “ 8 ”  for the patient accrual time;  “ 23 ”  for the total follow - up time; 
 “ 1.2 ”  for the sample - size ratio;  “ 0.25, 0.5, 0.75, 1 ”  for the sample - size fractions 
at K  analyses; and  “ 0.25 ”  for the stopping boundary shape parameter  δ
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(Figure  4.4 ). After Clicking    and then    on the toolbar, the 
outputs reported below will be generated.   

Design Outputs   See Table  4.3 . Sample size for the single - stage design   =   667; 
maximum sample size (combined total)   =   838; maximum number of events 
required   =   586; number of events expected under  H0    =   319; number of events 
expected under Ha    =   403.    

Figure 4.4     Group sequential design with effi cacy or futility stopping. 

 TABLE 4.3  

  Analysis Stage 

  1    2    3    4  

  Sample size at difference stages    146.60    293.20    439.80    586.40  
  Stopping boundary on  z  - statistic scale    0.8753  − 0.4755     − 1.3893     − 2.1131  

− 2.9883     − 2.5129     − 2.2706     − 2.1131  
  Stopping trial for  Ha  if  p  - value    <    or =    0.0014    0.0060    0.0116    0.0173  
  Stopping trial for  H0  if  p  - value  >   0.8093    0.3172    0.0824    0.0173  
  Stopping probability when  H0  is true    0.1921    0.5025    0.2425    0.0630  
  Stopping probability when  Ha  is true    0.0769    0.3298    0.3626    0.2308  
  Stopping probability for  H0  when  H0  is true    0.1907    0.4970    0.2342    0.0551  
  Stopping probability for  Ha  when  H0  is true    0.0014    0.0054    0.0083    0.0079  
  Stopping probability for  H0  when  Ha  is true    0.0088    0.0445    0.0740    0.0728  
  Stopping probability for  Ha  when  Ha  is true    0.0681    0.2853    0.2886    0.1581  
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Report   This experimental design has three interim analyses and a fi nal 
analysis. The number of events for the four analyses is 139, 279, 418, and 557, 
respectively. The sample - size ratio between the two groups is 1.2. The 
maximum number of events for the design is 557, and the number of events 
expected is 295 under the null hypothesis and 531 under the alternative 
hypothesis. The calculation is based on a level of signifi cance  α    =   0.025, power  
 =   0.8, median time for group 1   =   7.8, median time for group 2   =   10, patient 
accrual time   =   8, and total follow - up time   =   23. 

 The decision rules are specifi ed as follows:

  At stage 1: 

   •     Accept null hypothesis if  p  - value    >    0.8093.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.0014.  
   •     Otherwise, continue.   

  At stage 2: 

   •     Accept null hypothesis if  p  - value    >    0.3172.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.006.  
   •     Otherwise, continue.   

  At stage 3: 

   •     Accept null hypothesis if  p  - value    >    0.0824.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.0116.  
   •     Otherwise, continue.   

  At stage 4: 

   •     Accept null hypothesis if  p  - value    >    0.0173.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.0173.    

 It is obvious that a four - stage sequential design could save a great deal. 
However, it is important to examine the practical issues. Can we suspend 
enrollment while waiting for the interim analysis results? If four analyses are 
impractical, can we use a sequential design with two or three analyses?   

  4.3.4   Design Featuring Early Stopping for Paired Proportions 

 Proliferative diabetic retinopathy is a chronic complication of diabetes that 
after a long asymptomatic period can progress to severe visual loss. It is a 
leading cause of blindness in the United States. The diabetic retinopathy 
study, a randomized, controlled clinical trial, was sponsored by the National 
Eye Institute in the early 1970s to assess the ability of photocoagulation to 
treat retinopathy. One eye was randomly selected for photocoagulation while 
the other eye remained untreated. A fi ve - year follow - up was planned for each 
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patient, and the principal response for gauging the effi cacy of the treatment 
was the occurrence of severe visual loss (blindness). This was defi ned as visual 
acuity of less than 5/200 at two or more consecutive follow - up visits scheduled 
at 4 - month intervals (DeMets et al.,  2006 , p. 56). 

 Suppose that we use group sequential design (GSD) with one interim 
analysis (Pocock boundary) for the trial. The estimated event rates for the two 
groups are 16% and 12.5% for the control and treated groups, respectively. 
To design a group sequential trial, we specify options in ExpDesign as follows: 
two groups, hypothesis, proportion, and alternative hypotheses. Enter  “ 2 ”  for 
the number of analyses,  “ 1 ”  for a one - sided test;  “ 0.025 ”  for  α ,  “ 0.8 ”  for the 
power,  “ 0.16 ”  for the proportion for  H0 ,  “ 0.125 ”  for the proportion for  Ha ,  “ 1 ”  
for the sample - size ratio,  “ 0.4, 1 ”  for the sample - size fractions, and  “ 0 ”  

for δ  (Figure  4.5 ). After clicking    and then    on the toolbar, the 
outputs reported below will be generated.   

Design Outputs   See Table  4.4 . Sample size for the single - stage design   =   783; 
maximum sample size (combined total)   =   792; sample size expected under  H0

 =   791; sample size expected under  Ha    =   719.    

Report   This experiment design has one interim analysis and a fi nal analysis. 
The sample sizes for the two analyses are 317 and 792, respectively. The 
sample - size ratio between the two groups is 1. The maximum sample size for 

Figure 4.5     GSD for a proliferative diabetic retinopathy trail (paired means).  
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the design is 792, and the sample size expected is 791 under the null hypothesis 
and 719 under the alternative hypothesis. The calculation is based on a level 
of signifi cance  α    =   0.025, power   =   0.8, proportion under  H0    =   0.16, and propor-
tion under Ha    =   0.125. 

 The decision rules are specifi ed as follows:

  At stage 1: 

   •     Accept null hypothesis if  p  - value    >    0.5.  
   •     Reject null hypothesis if  p  - value    <    or   =   0.0025.  
   •     Otherwise, continue.   

  At stage 2: 

   •       Accept null hypothesis if  p  - value    >    0.0237.  
   •       Reject null hypothesis if  p  - value    <    =   0.0237.       

  4.4   HOW TO MONITOR A GROUP SEQUENTIAL TRIAL USING 
EXPDESIGN

  4.4.1   Need for Trial Monitoring 

 The stopping rule chosen in the design phase serves as a guideline to a data 
monitoring committee (DMC) (Ellenberg et al.,  2002 ) as it makes a decision 
recommending continuing or stopping a clinical trial. If all aspects of the 
conduct of a clinical trial adhere exactly to the conditions stipulated during 
the design phase, the stopping rule obtained during the design phase could be 

 TABLE 4.4  

  Analysis Stage 

  1    2  

  Sample size at difference stages    316.70    791.70  
  Stopping boundary on  z  - statistic scale − 2.8043     − 1.9829  
  Stopping trial for  Ha  if  p  - value    <    or =    0.0025    0.0237  
  Stopping trial for  H0  if  p  - value  >   0.5000    0.0237  
  Stopping probability when  H0  is true    0.0025    0.9975  
  Stopping probability when  Ha  is true    0.1533    0.8467  
  Stopping probability for  H0  when  H0  is true    0.0000    0.9750  
  Stopping probability for  Ha  when  H0  is true    0.0025    0.0225  
  Stopping probability for  H0  when  Ha  is true    0.0000    0.2000  
  Stopping probability for  Ha  when  Ha  is true    0.1533    0.6467  



used directly. However, there are usually complicating factors that must be 
dealt with during the conduct of a trial. 

Deviation in Analysis Schedule   DMC meetings are typically based on the 
availability of the members, which may differ from the schedules set at the 
design phase. The enrollment may be different from the assumption made 
during the design phase. The deviation in the analysis schedule will affect the 
stopping boundaries; therefore, the boundaries should be recalculated based 
on the actual schedules.  

Deviation in Effi cacy Variable Estimation   The true variability of the 
response variable is never known, but the actual data collected from an interim 
analysis may show that the initial estimates in the design phase are inaccurate. 
In this case we may want to know the likelihood of success of a trial based on 
current data, known as conditional power  or  predictive power , and use sample 
size reestimation technique (Chapter  5 ).  

Safety Factors   Effi cacy is not the only factor that will affect a DMC ’ s deci-
sion. Safety factors are critical for the DMC to make an appropriate recom-
mendation to stop or continue a trial. The benefi t – risk ratio is the composite 
criterion used most commonly to assist in the decision making. In this respect 
it is desirable to know the likelihood of success of the trial based on current 
data (i.e., the conditional power or predictive power).   

  4.4.2   Techniques for Monitoring a Sequential Trial 

 The sequential stopping boundaries are the simplest tool available to use in 
determining whether to continue or terminate a trial. The original methodol-
ogy for group sequential boundaries required that the number and timing of 
interim analyses be specifi ed in advance. Whitehead  (1983)    introduced another 
type of stopping boundary method: Whitehead triangle boundaries. This 
method permits unlimited analyses as a trial progresses and thus is called a 
continuous monitoring procedure. 

 A practical but more complicated method utilizes the operating character-
istics desired for the design, which typically include type-I error [ P ( Ha |H0 )], 
the power curve [ P ( Ha | θ ) vs.  θ ], the sample - size distribution or information 
levels ( Ik ), estimates of the treatment effect that would correspond to early 
stopping, the naive confi dence interval, the repeated confi dence interval, cur-
tailment (conditional power or predictive power), and the futility index. The 
conditional power and predictive power both represent the likelihood of 
rejecting the alternative hypothesis conditioning on the current data. The dif-
ference is that the conditional probability is based on a frequentist approach, 
whereas the predictive power is a Bayesian approach. The futility index  is a 
measure of the likelihood of failing to reject H0  at the  k  analysis given that  Ha
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is true. (Sometimes, the futility index is defi ned as 1 − conditional power.) The 
defi ning property of a (1    −     α ) - level sequence of repeated confi dence interval 
(RCI) for  θ  is

      Pr ( , . . . ),θ θ α θ∈ = = −I k Kk for all for all .1 1     (4.3)   

 Here each  I k   ( k    =   1,       ·        ·        ·       ,  K ) is an interval computed from the information 
available at analysis  k . Calculation of the RCI at analysis  k  is similar to the 
naive confi dence interval, but  z  1 −  α   ( z  1 −  α /2 ) is replaced by  C k  , the stopping 
boundary on the standard  z  - statistic (Jennison and Turnbull,  2000 ). For 
example, CI   =    d    ±    z  1 −  α /2  σ ; RCI   =    d    ±    C k   σ . 

 The conditional power method can be used to assess whether an early trend 
is suffi ciently unfavorable that reversal to a signifi cant positive trend is very 
unlikely or nearly impossible. The futility index can also be used to monitor 
a trial. Premature termination of a trial with a very small futility index might 
be inappropriate. The same is true for continuing a trial with a very high futil-
ity index (Jennison and Turnbull,  2000 ).  

  4.4.3   How to Monitor a Trial Using ExpDesign 

 A simple example of trial monitoring is to use observed data to check if the 
stopping boundaries have been crossed. We discuss monitoring of the prolif-
erative diabetic retinopathy trial in Section  4.3.4 . The patient enrollment 
began in 1972 and ended in 1975. Suppose that the group sequential design 
has one interim analysis with a Pocock stopping boundary at month 15. The 
effi cacy stopping boundaries occur at 0.0142 on the  p  - scale for both interim 
and fi nal analyses. Suppose that at a planned interim analysis, the two - year 
cumulative incidence of blindness was 16.3% in untreated eyes but only 6.4% 
in treated eyes. Based on a large - sample assumption, the  p  - value is less than 
0.001. Therefore, the effi cacy stopping boundary was crossed and the trial met 
the early effi cacy criterion. However, the actual trial was continued due to the 
uncertainty of long - term safety (see DeMets et al.,  2006   , for details). 

 ExpDesign has built - in tools for trial monitoring. To carry out the monitor-
ing, we proceed as follows: 

  1.     Open the fi le for the design if it has been saved previously, or reenter 
values for the input parameters (if the analysis schedule or enrollment 
changed, use the actual sample - size fractions for the input) and click

      to create the design.  

  2.     Click    in the  Group Sequential Design  window. The  Trial 
Monitor  window will appear.  

  3.     Enter the values for  Observed Stage, Theta , and  Observed Info . For the 
current case with a survival endpoint  θ    =   ln(hazard ratio), the informa-



  

tion level observed,  I   =   rd /(1   +    r ) 2 , where  r  is the sample size ratio and 
 d  is the number of deaths.  

  4.     Click    on the  Trial Monitor  window to produce the results.    

 We now use the oncology trial in Section  4.3.3  to illustrate how to monitor 
a trial using ExpDesign. First, rerun the oncology trial design as in Section 
 4.3.3  (Figure  4.4 ). After the calculation has been made, the  Trial Monitor  

button    will be enabled. Click the button and enter the informa-
tion required. 

 It is helpful to explain the input parameters before discussing the example 
further. The stage observed is the current stage. The  θ  value is the treatment 
difference expected; in practice the difference observed [mean difference, 
proportion difference, or log(hazard ratio)] is generally used. The information 
observed at stage  k  is defi ned as   I nk k= /σ̂ and   I n nk k k= +( )−ˆ / ˆ /σ σA

2
A B

2
B

1
 for 

one -  and two - group designs with a continuous endpoint. The same formula-
tions can be used for a proportion endpoint with the variance defi ned as   ˆ ( )σi i ip p2 = −1 , where  p i   is the proportion in the  i th group. 

 For a survival endpoint, the information level is defi ned as  I k    =   d k   and  I k    =  
 rd k  /(1   +    r ) 2  for one -  and two - group designs, respectively, where  d k   is the 
number of deaths at stage  k  and  r  is the sample - size ratio between the two 
groups. Let ’ s use the oncology trial example in Section  4.3.3  to illustrate the 
steps for trial monitoring. 

 Assume at stage 1 that the total deaths   =   147, as scheduled; the proportions 
of deaths are 0.15 and 0.22 for the two groups, respectively. The log hazard 
ratio is given by

   

ˆ ln(
ln
ln

) ln(
ln .
ln .

) . .θ = = = −
p
p

2

1

0 22
0 15

0 225
  

 The information level is calculated using the formula

      
I

r
r

d1 2 1 21
1 2

1 1 2
147 36 45=

+
=

+
=

( )
.

( . )
. .

  

 Similarly, suppose that at stage 2, the deaths observed   =   293; the propor-
tions of deaths are 0.43 and 0.52 for the two groups, respectively. We then 
obtain   ˆ .θ = −0 255  and  I  2    =   72.64. 

 At stage 3, suppose that the deaths observed   =   440; the proportions of 
deaths are 0.61 and 0.68 for the two groups, respectively. We then obtain   
ˆ .θ = −0 248  and  I  3    =   109.09. 

 In practice, we calculate   θ̂  and  I  k    at each stage, then perform the following 
steps using the ExpDesign trial monitor for decision making. 
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    Figure 4.6     Trial monitoring using ExpDesign at stage 1.  

  1.     Regenerate the group sequential design (or open the design if you have 

   saved it) as shown in Figure  4.6 . The  Trial Monitor  button    
is enabled.  

  2.     Enter the stagewise observed treatment difference   θ̂  and information 

   level  Ik  into the  Trial Monitor  window; then click    to calculate 
the conditional and predictive power, futility index, and the naive and 
repeated confi dence intervals (Figures  4.6  to  4.8 ). A summary of the trial 
monitoring is presented in Table  4.5 .            

 At each stage, the  p  - value is calculated using   p Ik-value = ( )−Φ 1 θ̂ . For 
stage 1 the  p  - value is 0.0872, which lies within the continuation range between 
0.0014 and 0.8093; hence, the trial continues to the next stage. The conditional 
power is reasonable (81%). At stage 2 the  p  - value is 0.015 and the conditional 
power is 0.94, and the trial continues according to the predefi ned stopping 
boundary. At stage 3 the  p  - value is 0.0048, which is smaller than the effi cacy 
stopping boundary 0.0116, so the trial is stopped and the null hypothesis is 
rejected. For normal and binary endpoints, the calculations are simpler than 
using the survival endpoint. You may want to try this yourself. 

 If the information fraction is different from that originally scheduled, the 
stopping boundaries have to be recalculated based on the actual information 
fraction. We discuss this in detail in Chapter  6 .   



Figure 4.7     Trial monitoring using ExpDesign at stage 2. 

Figure 4.8     Trial monitoring using ExpDesign at stage 3. 
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  4.5   MATHEMATICAL NOTES ON SEQUENTIAL TRIAL DESIGN 

  4.5.1   Unifi ed Formulation for Sequential Trial Design 

 A unifi ed formulation for sequential trial designs (Lan and DeMets  1983 ; Lan 
and Zucker  1993 ; Jennison and Turnbull,  2000 )   has been implemented in 
ExpDesign Studio. Suppose that a group sequential study with up to  K  analy-
ses yields the sequence of test statistics { Z  1 ,       ·        ·        ·       ,  Z K  }. Assume that these sta-
tistics have a canonical joint distribution with information levels { I  1 ,       ·        ·        ·       ,  I k  } 
for the parameter  θ . That is,

      ( ) { , . . . , },i Z ZK1     (4.4)  

      ( ~ ( , ), , . . . , ,ii) Z N I Kk kθ 1 1     (4.5)  

      (iii) Cov( , ) / , .Z Z I I k k Kk k k k1 2 1 2 1 1 2= ≤ ≤ ≤     (4.6)   

   For a log - rank test in a time - to - event analysis, we have the following results. 
The information can be expressed as

      
I

r
r

dk k=
+( )

,
1 2

   
 (4.7)

  

where  d k   is the number of deaths expected,  N k   the number of patients expected, 
and  r  the sample - size ratio (this should be consistent with  θ  as to which treat-
ment is chosen.) Under the conditions of exponential survival distribution, the 
relationship between an accrual time of  T  0  and death can be expressed as

   
d

N
T

T
e

e T T i k Kik
i

i
T

iT

i k
= − − > = =1

0
0 0

1
1 1 2 1 20[ ( )], ; , ; , , . . . , ,

λ λ
λ

    
(4.8)

  

 TABLE 4.5     Summary of Oncology Trial Monitoring    a     

    

  Design Stage  

  1    2    3  

  Number of deaths    147    293    440  
  Proportion of deaths    0.15 vs. 0. 22    0.43 vs. 0.52    0.61 vs. 0.68  

    
θ̂    =   log(ha zard ratio)     − 0.225     − 0.255     − 0.248  
  Information level,  I k      36.45    72.64    109.09  
  Conditional power    0.81    0.94    1  
  95% Repeated CI    ( − 0.672, 0.022)    ( − 0.40,  − 0.108)    ( − 0.471,  − 0.255)  
   p  - Value (unadjusted)    0.0872    0.015    0.0048  
  Effi cacy boundary ( p  - scale)    0.0014    0.0060    0.0116  
  Futility boundary ( p  - scale)    0.8093    0.3172    0.0824  
  Decision    Continue    Continue    Stop and reject  H a    

     a  For the survival endpoint,   
ˆ ln(ln / ln )θ ≈ p p1 2 ,  

 
p Ik-value = ( )−Φ 1 θ̂ .   



  

where  d ik   is the number of deaths in group  i  at stage  k, T k   the time of fi rst -
 patient - in to the  k th death, and  N ik   the number of patients in group  i  at stage 
 k . Therefore, the patient – death ratio is given by

      
η

ξ ξ
=

+
+

=
+

+
N N
d d

r
r

k k

k k

1 2

1 2 1 2

1
,
    

(4.9)
  

where   ξ λλ λ
i

iT
i

Te T e i= − −1 10
0( ) /( ). 

 From Eq.  (4.7)  we can obtain the number of deaths required for the sequential 
design by mimicking a normal endpoint with a treatment difference equal to 
log(hazard ratio) and a standard deviation of 1. After the number of deaths 
 d  is obtained, the number of patients can be obtained by  N   =    η d . 

  Testing a Single Mean 

  Test statistic :

      Z x Ik k k= −( ) .μ0     (4.10)   

  Information level :

      
I

n
k

k=
σ2

.
    

(4.11)   

  Difference expected :

      θ μ μ= − 0 .     (4.12)    

  Testing Paired Means 

  Test statistic :

      Z d Ik k k= ,     (4.13)  

where   dk  is the mean treatment difference. 

  Information level :

      
I

n
k

k=
�σ2

,
    

(4.14)
  

where   �σ  is the standard deviation of the difference, and
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�σ σ2 22 1= −( ) ,p     (4.15)  

where  ρ  is the correlation coeffi cient. 

  Difference expected :

      θ μ= d .     (4.16)    

  Testing Two Independent Means 

  Test statistic :

      Z x x Ik k k k= −( ) .A B     (4.17)   

  Information level :

      
I

n n
k

k k

= +⎛
⎝⎜

⎞
⎠⎟

−σ σA
2

A

B
2

B

1

.
    

(4.18)   

  Difference expected :

      θ μ μ= −B A .     (4.19)    

  Testing One Proportion 

  Test statistic :

      Z p p Ik k k= −( ) .0     (4.20)   

  Information level :

      
I

n
p p p p pk

k
a= = − = +

σ
σ

2
2

01 0 5, ( ), . ( ).
    

(4.21)
   

  Difference expected :

      θ = −P P0 .     (4.22)    

  Testing Two Independent Proportions 

  Test statistic: 

      Z p p Ik k k k= −( ) .B A     (4.23)   



  

  Information level: 

      
I

n n
p p p p pk

k k

= +⎛
⎝⎜

⎞
⎠⎟ = − = +

−1 1 1
1 0 5

2

1
2
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(4.24)   

  Difference expected: 

      θ = −P PB A .     (4.25)    

  Log - rank Test for Two Survival Distributions 

  Test statistic: 

      
Z

S

I
k

k

k

= ,
   

 (4.26)
  

where  S k   is the log - rank score statistic. 

  Information level: 

      
I

r
r

dk k=
+( )

,
1 2

    
(4.27)

  

where  d k   is the number of deaths expected. 

  Log ( hazard ratio )  expected: 

      
θ

λ
λ

= ⎛
⎝⎜

⎞
⎠⎟log .B

A     
(4.28)

    

  2    ×    2 Crossover Design 

  Test statistic: 

      
Z d d Ik xk yk k= +

1
2

( ) ,
    

(4.29)
  

where   dxk and   dyk are the mean treatment differences in sequences  x  and  y .
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k
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= +⎛
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−

4
1σ σA

2
B
2

.
    

(4.30)
     

MATHEMATICAL NOTES ON SEQUENTIAL TRIAL DESIGN  71



72  GROUP SEQUENTIAL TRIAL DESIGN

  4.5.2   Calculation of Conditional Probability 

 Suppose that a group sequential test with a maximum of  K  analyses is defi ned 
in terms of standardized statistics:

      Z I Z I Nk k k k k k− − −1 1 ~ ( , ),θΔ Δ     (4.31)  

where  Δ   k     =    I k     −    I k    − 1 , independent of  Z  1 ,       ·        ·        ·       ,  Z k    − 1 . A fundamental quantity to 
compute for a group sequential test is the probability of exiting by a specifi c 
boundary at a particular analysis. For each  k    =   1,       ·        ·        ·       ,  K , defi ne

   ψ θ θk k k k k ka b a b a Z b a Z b Z bk( , , . . . , , ; ) Pr ( , . . . , ,1 1 1 1 1 1 1 1= < < < < >− − − kk ),     (4.32)  

   ξ θ θk k k k k ka b a b a Z b a Z b Z ak( , , . . . , , ; ) Pr ( , . . . , ,1 1 1 1 1 1 1 1= < < < < <− − − kk ).     (4.33)   

 These quantities are the two key formulas for a test ’ s error probabilities and 
expected sample size. They are also used in constructing error - spending 
boundaries and in computing  p  - values and confi dence intervals on 
termination. 

 The two quantities are carried out numerically as follows:

      ψ θ θ θk k k k k k k k
i

a b a b h i e z i bk

k

( , , . . . , , ; ) ( ; ) ( ( ), ; )1 1 1 1 1 1 1≈ − − − − −
−11

1
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∑
mk

,
 
   (4.34)  

      h i h i w i f z i z ik k k k k k k k k k k
i

m

k

k
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   (4.35)  
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 (4.36)  
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(4.37)  

where   φ π( ) exp( / ) /x x= − 2 2 2  is the standard normal probability density 
function (p.d.f.) and  Φ  is the standard normal c.d.f. The weight  w k   is defi ned 
by numerical integration as follows:

  
    

q z dz w q zk k
i

m

l

u
( ) ( ).≈

=
∑∫

1

    (4.38)   

 The values of  ψ   k  ( a  1 , b  1 ,       ·        ·        ·       ,  a k ,b k  ; θ ) and  ξ   k  ( a k  ,( a  1 , b  1 ,    ,  a k ,b k  ; θ ) for  k    =   1,       ·        ·        ·     , 
 K  determine the distribution of the stopping time and associated decision for 
a group sequential test. Hence, we can obtain from them the test ’ s error prob-
abilities and expected information on termination for any  θ . For example, a 



  

two - sided test of  H  0 :  θ    =   0 has  K  analyses at information levels  I  1 ,       ·        ·        ·       ,  I K   with 
continuation regions ( a  1 , b  1 ),       ·        ·        ·     , ( a K , b K  ) for  Z  1 ,       ·        ·        ·       ,  Z K  . Then the test ’ s type 
I error probability is

   
Pr ( ) [ ( , , . . . , , ; ) ( , , . . . ,θ ψ ξ=

=

= +∑0 0 1 1
1

1 10reject H a b a b a b ak
k

K

k k k kk kb, ; )].0     (4.39)   

 If  δ     >    0 is large enough that we can ignore the probability of crossing the lower 
boundary, the test ’ s power when  θ    =    δ  is

  
    

ψ δk
k

K

k ka b a b( , . . . , , ; ).1 1
1=

∑
  
  (4.40)   

 For a test defi ned by error spending,

      
ψ

π
k k k

kc c c c( , , . . . , , ; ) ,− − =1 1 0
2     

(4.41)  

where  π   k   is a two - sided type I error probability assigned to analysis  k . Equiva-
lently, the problem becomes that of fi nding the value  c k   for which

      
h i e z i ck

i

m

k k k k k
k

k

k

−
=

− − − −
−

−

∑ =1
1

1 1 1 1

1

1

0 0
2

( ; ) ( ( ), ; ) .
π

    
(4.42)    

  4.5.3   Conditional and Predictive Power and  RCI  for Trial Monitoring 

 One - sided  conditional power  at analysis  k  is given by

      
P

Z I z I I I

I I
k Kk

k k k K k
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(4.43)
  

where  Φ ( · ) is the standard normal probability function. The two - sided  condi-
tional power  at analysis  k  is given by
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(4.44)
   

 One - sided  predictive power  is given by

      
P

Z I z I

I I
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⎛
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⎞
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(4.45)
   

 The  futility index  is defi ned as 1 minus the conditional probability under 
 H a  :
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      FIk k aP H= −1 ( | ).θ     (4.46)   

 Calculation of the RCI at analysis  k  is similar to the naive confi dence inter-
val but replacing  z  1 −  α   ( z  1 −  α /2 ) with  C k  , the stopping boundary on the standard 
 z  - statistic. For example, CI   =    d    ±    z  1 −  α /2  σ ; RCI   =    d    ±    C k   σ .  

  4.5.4   Bias - Adjusted Estimates 

  Bias - Adjusted Point Estimation     The bias - adjusted estimators require eval-
uation under certain  θ  values:
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 A typical lower integral in this sum can be written as
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 We can evaluate the integral numerically as

      h i r z i ak k k k k k
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  Stagewise - Ordering Adjusted p - Values     We can adjust the stagewise - order-
ing  p  - values on the termination of a group sequential test: for example, a test 
with continuation regions ( a  1 ,  b  1 ) ,       ·        ·        ·       , ( a K , b K  ) for  Z  1 ,       ·        ·        ·       ,  Z K   stops after 
crossing the upper boundary at analysis  k *   with  Z k *     =   z *  . The one - sided upper 
 p  - value for testing  H  0 :  θ    =   0 based on stagewise ordering is then

  
    

ψ ψj j j k k k ka b a b a b a b a z( , , . . . , , ; ) ( , , . . . , , , , *; ),* * * *1 1 1 1 1 10 0+ − −
jj
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which can be calculated numerically. One - sided lower  p  - values are found in 
the same manner, and a two - sided  p  - value is twice the smaller of these two 
quantities.      
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 Adaptive Trial Design 

  5.1   INTRODUCTION 

 Drug development is a sequence of complicated decision - making processes. 
Options are provided at each stage, and decisions depend on prior information 
and the probabilistic consequence of each action (decision) taken. This requires 
the trial design to be fl exible such that it can be modifi ed during the trial 
process. Adaptive design has been developed for this reason and has become 
very attractive to pharmaceutical fi rms. An adaptive design is a design that 
allows modifi cations to some aspects of a trial after its initiation, without 
undermining the validity and integrity of the trial. Following are examples of 
adaptations to a trial: 

   •     Early stopping due to effi cacy or futility  
   •     Sample - size reestimation  
   •     Adaptive randomization  
   •     Dropping inferior treatment groups    

 Adaptive designs must often be combined with clinical trial simulation to 
achieve the ultimate goals because closed mathematical solutions are not 
always available. The overall process of adaptive design is depicted in 
Figure  5.1 .    

  5.2   BASICS OF ADAPTIVE DESIGN METHODS 

 The three commonly used statistical methods for adaptive designs, based on 
the test statistic, are methods using the sum of stagewise p  - values (MSP), the 
product of stagewise p  - values (MPP), and the weighted inverse normal of 
stagewise p  - values (MINP). A stagewise  p  - value is the  p  - value calculated on 
a subsample at each stage of an adaptive trial. A critical aspect for an adaptive 
design is to determine the stopping boundaries that ensue from type I error 

5
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control. Let ’ s review the formulation for determining the stopping boundaries 
using MSP, MPP, and MINP. 

 The general stopping rules for a  K  - stage adaptive design are:

      

Stop for efficacy if 

Stop for futility if 

Cont

T

T
k k

k k

≤
>

α
β

,

,

iinue and make adaptations if α βk k kT< ≤ ,     

(5.1)

  

where the effi cacy and futility boundaries satisfy

      α β α βk k K Kk K< = − =( , . . . , ) .1 1 and     (5.2)   

 For MSP, the test statistic is defi ned as
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1, , . . . , ,
  
  (5.3)  

where  K  is the total number of stages for the trial and  p i   is a stagewise  p  - value 
calculated based on a subsample from the  i th stage. 

 The stopping boundaries for the two - stage design can be solved 
analytically:

      

α
α α α

α α
β α

β α2

1 1

1

1 1
1 1

2

1
2

=
− +

−
−

+ +

( ) , ,

( )

without futility binding

,, , .β α1 2<

⎧
⎨
⎪

⎩⎪
with futility binding

    

(5

(5.

.4

5)

)
   

 The regulatory authorities apply the nonfutility binding rule (i.e., the futility 
boundaries don ’ t have to be followed). 

    Figure 5.1     Overview of adaptive design.  
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 For MPP, the test statistic is defi ned as

  
    
T p k Kk i

i

k

= =
=

∏
1

1, , . . . , .
  
  (5.6)   

 The stopping boundaries for the two - stage design can be solved 
analytically:

      

α

α α
α
α α
β α

2

1

1

1

1 1

=

−

−
−

ln
, ,

ln ln
,

without futility binding

with futtility binding.

⎧

⎨
⎪⎪

⎩
⎪
⎪     

(5

(5.

.7

8)

)

 

  

 For MINP, the test statistic is defi ned as
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where the constant weights   wkii

k 2
1

1=
=∑ ,  z i     =    Φ   − 1 (1    −     p i  ), and  Φ  is the c.d.f. of 

the standard normal distribution. The stopping boundaries can be calculated 
using numerical integrations or simulations. 

 ExpDesign Studio allows you to generate various adaptive trials nearly as 
quickly as you can in a classical design. You can use response - adaptive ran-
domization to assign more patients to superior treatment groups or to drop a 
 “ loser ”  when an inferior group is identifi ed. You may stop a trial early to claim 
effi cacy or futility based on the data observed or the conditional power. You 
may modify the sample size based on the treatment difference observed. You 
may conduct simulations for a dose - escalation trial using Bayesian or frequen-
tist modeling approaches. We are going to show you how to design adaptive 
trials using ExpDesign Studio through examples.  

  5.3   HOW TO DESIGN A SAMPLE - SIZE REESTIMATION TRIAL 
USING EXPDESIGN 

 Regardless of ours efforts, we often face a high degree of uncertainty about 
parameters when designing a trial or justifying the sample size at the design 
stage. This could involve initial estimates of within -  or between - patient varia-
tion, a control group event rate for a binary outcome, the treatment effect 
sought, the recruiting pattern, or patient compliance, all of which affect the 
ability of a trial to address its primary objective (Shih, 2001). This uncertainty 
can include the correlation between measures (if a repeated - measure model is 
used) or among different variables (e.g., multiple endpoints, covariates). If a 
small uncertainty of prior information exists, a classical design can be used. 
However, when the uncertainty is greater, a classical design with a fi xed sample 
size is inappropriate. Instead, it is desirable to have a trial design that allows 



78  ADAPTIVE TRIAL DESIGN

for reestimation of the sample size in the middle of a trial based on  “ unblinded ”  
data. Several different algorithms have been proposed for sample - size reesti-
mation, including the conditional power approach and Cui - Hung Wang ’ s 
approach based on the ratio of effect size observed to size expected. 

  5.3.1   Sample - Size Adjustment Based on the Effect - Size Ratio 

 The formation for sample - size adjustment based on the ratio of the initial 
estimate of the effect size ( E  0 ) to the size observed ( E ) is given by

      
N

E
E

N= ⎛
⎝

⎞
⎠

0
2

0,
    

(5.10)
  

where  N  is the newly estimated sample size per group (combined from the 
two stages) and  N  0  is the initial sample size per group, which can be estimated 
using a classical design.  

  5.3.2   Sample - Size Adjustment Based on Conditional Power 

 The sample size per group based on conditional power for a two - stage design 
can be obtained analytically (M. Chang,  2007a )  . For MSP, the sample size per 
group required for a given conditional power  P c   can be expressed as
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 For MPP, the sample size per group can be expressed as
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 For MINP, the sample size per group can be expressed as
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 Next, we illustrate how to use ExpDesign to produce adaptive designs for 
trials with different endpoints. The examples we discuss are acute ischemic 
stroke, asthma, and oncology trials.  

  5.3.3   Adaptive Design for an Acute Ischemic Stroke Trial 

 A phase III trial is to be designed for patients with acute ischemic stroke of 
recent onset. The primary endpoint is the composite endpoint (death or MI), 
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with an event rate of 14% for the control group and 12% for the test group. 
Based on a large - sample assumption, a sample size of 4473 for a classical 
design will provide 80% power to detect the difference at a one - sided  α  value 
of 0.025. 

 We can design an adaptive trial with sample - size reestimation using Exp-
Design with the following simple steps: 

   •     After launching ExpDesign Studio, click   ; the  Adaptive
Design – Step 1  window (Figure  5.2 ) will appear.      

 In the  Adaptive Design – Step 1  window, do the following: 

   •     Select the  Sample - Size Reestimation  option in the  Type of Adaptive 
Design  panel.  

   •     Select the  Proportion  option in the  Endpoint  window.  
   •     Enter  “ 0.12, 0.14 ”  for  Response Under Ha  in the  Hypotheses  panel.  
   •     Enter  “ 0 ”  for  NI - d , the noninferiority margin, for the noninferiority 

trial.
   •     Enter  “ 0.025 ”  for  One - Sided Alpha  and  “ 0.8 ”  for  Power .  

   •     Click   ; the  Adaptive Design – Step 2  window will appear.    

 In the  Adaptive Design – Step 2  window (Figure  5.3 ), do the following: 

Figure 5.2     Sample - size reestimation step 1 window. 
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   •     Enter  “ 2 ”  for the initial number of stages.  
   •     Enter  “ 0.5, 1 ”  for  Information Time for Analyses .  
   •     Choose stopping boundaries using the arrow near  O ’ Brien  or  Pocock . 

Note that O ’ Brien  spends less  α  (type I error) at the early stage than 
does Pocock .  

   •     If you want to have futility boundaries, you can check the  Futility Bound-
ary (Beta - spending)  checkbox. The futility boundaries are not necessarily 
followed. Therefore, leave FB - Binding  unchecked. If you check the  FB -
 Binding  box, the stopping boundaries will change to anticonservative. 
Therefore, make sure that the regulatory authorities agree with the stop-
ping boundaries in the protocol.  

   •     Enter  “ 10000 ”  for  N Simulations . 10,000 runs are suggested for a power 
simulation and at least 100,000 runs are suggested for an α  simulation 
(i.e., type I error simulation).  

   •     Enter  “ 9900 ”  for  Total N , which is close to the classical design value. The 
sample size entered here should be around 100 to 120% of the sample 
size for the classical design under the same effect size.  

   •     Select the  Sum of P - values  option in the  Basis of Statistical Method
panel. You can choose another method if you prefer.  

   •     Enter  “ 12000 ”  for  Maximum Total N Allowed for SSR  and check the 
checkbox. If fi nancial and other conditions permit, you can enter a larger 
number.

Figure 5.3     Sample - size reestimation step 2 window. 
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   •     Enter  “ 0.90 ”  for  Targeted Conditional Power for SSR . Ninety percent or 
higher is recommended for SSR.  

   •     Click    to start the simulation. It will take about 1 minute to com-
plete a simulation with 10,000 runs.      

 After the simulation is completed, click    on the toolbar to view the 
report for the adaptive design (Figure  5.4 ).   

 To compare a group sequential design and this adaptive design, let ’ s assume 
that the event rates are 0.12 and 0.138 for the groups, but that we mistakenly 
estimate 0.12 and 0.14. We change the event rates to  “ 0.12, 0.138 ”  in the  Adap-
tive Design – Step 1  window. Keeping everything else the same, the simulation 
results show that the adaptive design has 76% power. To obtain the power for 
a group sequential design using MSP without sample - size reestimation, we 
uncheck the Maximum Total N Allowed for SSR  box. All other parameters 
are the same. The simulation results show that there is only 72% power. Other 
operating characteristics, such as average sample size, stopping boundaries, 
effi cacy, and futility stopping probabilities are also included in the report.  

  5.3.4   Adaptive Design for an Asthma Study 

 In a phase III asthma study with two dose groups (control and active) with 
the primary effi cacy endpoint of the percent change from baseline in FEV1, 
the estimated FEV1 improvement from baseline is 5% and 12% for the 
control and active groups, respectively, with a common standard deviation of 

Figure 5.4     Report generated by ExpDesign. 
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σ    =   22%. Based on a large - sample assumption, a sample size of 208 per group 
in a classical design will provide 90% power to detect the difference at a one -
 sided  α  value of 0.025. 

 To design a two - stage adaptive trial, we use MPP this time with an interim 
analysis planned based on the response assessments of 50% of the patients. 
Following are the step - by - step design instructions using ExpDesign Studio: 

   •     Click    to bring up the  Adaptive Design – Step 1  window 
(Figure  5.5 ).      

 In the  Adaptive Design – Step 1  window, do the following: 

   •     Select the  Sample - Size Reestimation  option in the  Type of Adaptive 
Design  panel.  

   •     Select the  Mean  option in the  Endpoint  window.  
   •     Enter  “ 0.05, 0.12 ”  for the  Response Under Ha  in the  Hypotheses

panel.
   •     Enter  “ 0 ”  for  NI - d , the noninferiority margin, because it is a superiority 

trial.
   •     Enter  “ 0.025 ”  for  One - Sided Alpha  and  “ 0.9 ”  for  Power .  

   •     Click    to bring up the  Adaptive Design – Step 2  window.    

Figure 5.5     Adaptive design for asthma study. 
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 In the  Adaptive Design – Step 2  window (Figure  5.6 ), do the following: 

   •     Enter  “ 2 ”  for the initial number of stages.  
   •     Enter  “ 0.5, 1 ”  for the  Information Time for Analyses .  
   •     Choose stopping boundaries using the arrow near  O ’ Brien  or  Pocock .  
   •     If you want to have futility boundaries, you can check the  Futility Bound-

ary (Beta - spending)  checkbox.  
   •     Enter  “ 10000 ”  for  N Simulations .  
   •     Enter  “ 440 ”  for  Total N , which is close to the classical design value. 

Again, the sample size entered here should be 100 to 120% of the sample 
size for the classical design under the same effect size.  

   •     Select the  Product of P - values  option in the  Basis of Statistical Method
panel.

   •     Enter  “ 600 ”  for  Maximum Total N Allowed for SSR  and check the 
box.

   •     Enter  “ 0.90 ”  for  Targeted Conditional Power for SSR . Ninety percent or 
higher is recommended for SSR.  

   •     Click    to start the simulation.      

 After the simulation is completed, click    to view the report for the 
adaptive design (Figure  5.7 ). The design has 95% power with a sample size of 
401 expected for each group.   

Figure 5.6     Parameters for the adaptive asthma trial. 
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 What if the treatment is actually smaller than estimated: for example, 5% 
versus 11% in FEV1 change for the two groups? To answer this question, we 
keep everything the same but change the treatment to 5% and 11%, respec-
tively, in the Adaptive Design – Step 1  window. The simulation results show 
that the adaptive design has 88% power with an expected sample size of 444 
per group, whereas a classical design with a sample size of 440 has 81% power 
and a group sequential design with a maximum total sample size of 440 
without sample - size reestimation has 78% power. The group sequential design 
has an expected sample size of 370 based on MPP.  

  5.3.5   Adaptive Design for an Oncology Trial 

 In a two - arm comparative oncology trial with time to progression (TTP) as 
the primary effi cacy endpoint, the median TTP is estimated to be 8 months 
(hazard rate   =   0.08664) for the control group and 10.5 months (hazard rate   =  
 0.06601) for the test group. Assume a uniform enrollment with an accrual 
period of 9 months and a total study duration of 24 months. An exponential 
survival distribution is assumed for the purpose of sample - size calculation. The 
classical design requires a sample size of 321 subjects per group for 85% 
power.

 We design the trial with one interim analysis when 40% of patients have 
been enrolled. The interim analysis for effi cacy is planned based on TTP, but 
it does not allow for futility stopping. Following are the steps for the trial 
design using ExpDesign Studio. 

Figure 5.7     Characteristics of the adaptive asthma trial design. 
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   •     Click    to bring up the  Adaptive Design – Step 1  window 
(Figure  5.8 ).      

 In the  Adaptive Design – Step 1  window, do the following: 

   •     Select the  Sample - Size Reestimation  option in the  Type of Adaptive 
Design  panel.  

   •     Select the  Survival  option in the  Endpoint  window.  
   •     Enter  “ 0.06601, 0.08664 ”  for  Hazard Rates Under Ha  in the  Hypotheses

panel.
   •     Enter  “ 0 ”  for  NI - d , the noninferiority margin, because it is a superiority 

trial.
   •     Enter  “ 9 ”  for  Accrual Time  and  “ 24 ”  for  Study Duration .  
   •     Enter  “ 0.025 ”  for  One - Sided Alpha  and  “ 0.8 ”  for  Power .  

   •     Click    to bring up the  Adaptive Design – Step 2  window 
(Figure  5.9 ).      

 In the  Adaptive Design – Step 2  window, do the following: 

   •     Enter  “ 2 ”  for the initial number of stages.  
   •     Enter  “ 0.4, 1 ”  for  Information Time for Analyses .  
   •     Choose stopping boundaries using the arrow near  O ’ Brien  or  Pocock .  

Figure 5.8     Adaptive design for the oncology trial. 
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   •     If you want to have futility boundaries, you can check the  Futility Bound-
ary (Beta - spending)  checkbox.  

   •     Enter  “ 100000 ”  for  N Simulations .  
   •     Enter  “ 400 ”  for  Total N  (events).  
   •     Select the  Inverse - Normal of P - values  option in the  Basis of Statistical 

Method  panel.  
   •     Enter  “ 660 ”  for  Maximum Total N Allowed for SSR  (this is the number 

of events for a survival endpoint) and check the box.  
   •     Enter  “ 0.90 ”  for the  Targeted Conditional Power for SSR .  

   •     Click    to start the simulation.    

 After the simulation is completed, you can click    to view the design 
report (Figure  5.10 ). We can see that the sample size expected is 616 under 
the alternative hypothesis and the power is 87.4%. The classical design has 
83.5% power with the same sample size. When the median TTP is 10 months 
instead of 10.5, this adaptive design will still have 73% power, whereas the 
classical design has only 70% power.    

  5.3.6   Noninferiority Design with a Binary Endpoint 

 A phase III trial is to be designed for patients with acute ischemic stroke of 
recent onset. The primary endpoint is defi ned as the composite endpoint 

Figure 5.9     Input parameters for the adaptive oncology trial. 
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(death or MI) with an estimated event rate 14% for the control group and 
12% for the test group. Based on a large - sample assumption, the sample size 
for a classical design is 4437 per group, which provides 80% power to detect 
the difference at a one - sided  α  value of 0.025 (the superiority test). 

 If superiority is not achieved, a noninferiority test will be performed. 
Because of the closed testing procedure, no α  adjustment is required for the 
two hypothesis tests. The noninferiority boundary is determined to be 0.5%. 
We are going to use three - stage adaptive design for the noninferiority trial. 
The futility stopping boundaries are also used for cost savings. We follow the 
steps below to design an adaptive trial using ExpDesign Studio: 

   •     Click    to bring up the  Adaptive Design – Step 1  window 
(Figure  5.11 ).      

 In the  Adaptive Design – Step 1  window, do the following: 

   •     Select the  Sample - Size Reestimation  option in the  Type of Adaptive 
Design  panel.  

   •     Select the  Proportion  option in the  Endpoint  window.  
   •     Enter  “ 0.12, 0.14 ”  for  Proportions Under Ha  in the  Hypotheses  panel.  
   •     Enter  “ 0.005 ”  for  NI - d , the noninferiority margin, for the noninferiority 

trial.
   •     Enter  “ 0.025 ”  for  One - Sided Alpha  and  “ 0.8 ”  for  Power .  

   •     Click    to bring up the  Adaptive Design – Step 2  window.    

Figure 5.10     Characteristics of the adaptive oncology trial design. 
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 In the  Adaptive Design – Step 2  window (Figure  5.12 ), do the following: 

   •     Enter  “ 3 ”  for the initial number of stages.  
   •     Enter  “ 0.33, 0.67, 1 ”  for  Information Time for Analyses .  
   •     Choose stopping boundaries by the arrow near  O ’ Brien  or  Pocock .  
   •     If you want to have futility boundaries, you can check the  Futility Bound-

ary (Beta - spending)  checkbox.  
   •     Enter  “ 10000 ”  for  N Simulations .  
   •     Enter  “ 9000 ”  for  Total N , which is close to the classical design value.  
   •     Select the  Inverse - Normal of P - values  option in the  Basis of Statistical 

Method  panel.  
   •     Enter  “ 12000 ”  for  Maximum Total N Allowed for SSR  and check the 

box.
   •     Enter  “ 0.02 ”  for  DuHa , the estimated treatment difference.  

   •     Click    to start the simulation.      

 After the simulation is completed, you can click    to view the 
report (Figure  5.13 ). We can see that the adaptive design has an expected 
sample size of 6977 with 96% power. To see if the adaptive design protects 
the power, let ’ s assume that the event rate is 0.14 versus 0.128. We change the 
responding inputs to  “ 0.14, 0.128 ”  for the  Proportions Under Ha  in the 

Figure 5.11     Adaptive design for the noninferiority trial. 
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Figure 5.12     Input parameters for the adaptive noninferiority trial design.  

Figure 5.13     Characteristics of the adaptive noninferiority trial design.  
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 Adaptive Design – Step 1  window. Keep everything else the same (DuHa   =  
 0.02, not DuHa   =   0.012). The simulation results show that the adaptive design 
has 72% power with an expected sample size of 8988, while the classical design 
with a fi xed sample size of 9000 has 65% power for the noninferiority test.     

  5.4   HOW TO DESIGN A DROP - LOSER TRIAL USING EXPDESIGN 

  5.4.1   Drop - Loser Mechanism 

 An adaptive seamless phase II or III design is one of the most attractive adap-
tive designs. A seamless adaptive design is a combination of traditional phase 
II and phase III trials. In seamless design, there is usually a learning phase 
that serves the same purpose as a traditional phase II trial, followed by a 
confi rmatory phase that serves the same objectives as a traditional phase III 
trial (Figure 11.1). Compared to traditional designs, a seamless design can 
reduce the sample size and time to market for a positive drug candidate. The 
main feature of a seamless design is the drop - loser mechanism. Sometimes it 
also allows for adding new treatment arms. A seamless design usually starts 
with several arms or treatment groups. At the end of the learning phase, infe-
rior arms (losers) are identifi ed and dropped from the confi rmatory phase 
(M. Chang,  2007a )  . 

 Hung and co - workers at the FDA  (2006)    suggest that it may be advisable 
to redistribute the remaining planned sample size of a terminated arm to the 
remaining treatment arms for comparison so that coupled with use of a proper 
valid adaptive test, one may enhance the statistical power of the design to 
detect a dose that is effective.  

  5.4.2   Seamless Design of an Asthma Trial 

 The objective of this trial in an asthma patient is to confi rm the sustained 
treatment effect of a new compound, measured as the FEV1 change from 
baseline to one year of treatment. Initially, patients are equally randomized 
to four doses of the compound and a placebo. Based on early studies, the 
estimated FEV1 changes at week 4 are 6%, 12%, 13%, 14%, and 15% (with 
a pooled standard deviation of 18%) for the placebo (dose level 0) and dose 
levels 1, 2, 3, and 4, respectively. One interim analysis is planned when 50% 
of patients have the effi cacy assessments. The interim analysis will lead to 
either picking the winner (the arm with the best observed response) or stop-
ping the trial for effi cacy or futility. The winner and placebo will be used at 
stage 2. The fi nal analysis will be based on the product of the stagewise 
 p  - values from both stages. At the fi nal analysis, if  p  1  p  2     ≤     α  2 , claim effi cacy; 
otherwise, claim futility. For the weak control,  p  1    =     p̂1, where   p̂1 is the naive 
stagewise  p  - value from a contrast test based on a subsample from stage 1. For 



the strong control, p1  is the adjusted  p  - value (i.e.,  p1    =   4 pmin ), where  pmin  is the 
smallest p  - value among the four comparisons. 

 To do an adaptive design with ExpDesign, follow the steps below. 

   •     Click    to bring up the  Adaptive Design – Step 1  window 
(Figure  5.14 ).      

 In the  Adaptive Design – Step 1  window, do the following: 

   •     Select the  Drop - Loser Design  option in the  Type of Adaptive Design
panel.

   •     Select the  Mean  option in the  Endpoint  window.  
   •     Enter  “ 0.05, 0.12, 0.13, 0.14, 0.15 ”  for  Mean Under Ha  and 0.18 for sigma 

in the Hypotheses  panel.  
   •     Enter  “ 0 ”  for  NI - d , the noninferiority margin, for the noninferiority 

trial.
   •     Enter  “ 0.025 ”  for  One - Sided Alpha  and  “ 0.90 ”  for  Power .  

   •     Click    to bring up the  Adaptive Design – Step 2  window 
(Figure  5.15 ).      

 In the  Adaptive Design – Step 2  window, do the following: 

Figure 5.14     Drop - loser design.  
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Figure 5.15     Input parameters for the drop - loser design.  

   •     Enter  “ 2 ”  for the initial number of stages.  
   •     Enter  “ 0.5, 1 ”  for  Information Time for Analyses .  
   •     Choose stopping boundaries by the arrow near  O ’ Brien  or  Pocock .  
   •     If you want to have futility boundaries, you can check the  Futility Bound-

ary (Beta - spending)  checkbox.  
   •     Enter  “ 10000 ”  for  N Simulations .  
   •     Enter  “ 180 ”  for  Total N , which is close to the classical design.  
   •     Select the  Product of P - values  option in the  Basis of Statistical Method

panel.
   •     Enter  “ 400 ”  for  Maximum Total N Allowed for SSR  and check the 

box.
   •     Enter  “ 0.90 ”  for  Targeted Conditional Power for SSR , the estimated 

treatment difference.  

   •     Click    to start the simulation.    

 After the simulation is completed, you can click    to view the report 
(Figure  5.16 ). The design has 95% power for the given dose – response relation-
ship. Because the adaptive also allows for sample - size reestimation, when the 
responses in arms 2 through 5 decrease to 0.12, the design still has 80% power 
with the expected sample size of 287 — a very robust design.     



  5.5   HOW TO DESIGN A TRIAL USING 
A CLASSIFIER BIOMARKER 

  5.5.1   Biomarker Classifi cations 

 Compared to a true endpoint such as survival, biomarkers can often be mea-
sured earlier, more easily, and more frequently; are less subject to competing 
risks; and are less confounded. Utilization of a biomarker will lead to a better 
target population with a larger effect size, a smaller required sample size, and 
faster decision making. With advancements in proteomic, genomic, and genetic 
technologies, personalized medicine — the right drug for the right patient —
 becomes possible. 

 As mentioned earlier, a classifi er biomarker is a marker (e.g., a DNA 
marker) that usually does not change over the course of a study. A classifi er 
biomarker can be used to select the most appropriate target population or 
even for personalized treatment. For example, a study drug is expected to have 
effects on a population with a biomarker, which is only 20% of the overall 
patient population. Because the sponsor suspects that the drug may not work 
for the overall patient population, it may be effi cient and ethical to run a trial 
only for subpopulations with the biomarker rather than for the general patient 
population. On the other hand, some biomarkers, such as RNA markers, are 
expected to change over the course of a study. This type of marker can be 
either a prognostic or a predictive marker. 

 A  prognostic biomarker  informs the clinical outcomes, independent of 
treatment. Biomarkers provide information about the natural course of a 

Figure 5.16     Characteristics of the drop - loser design.  
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disease in persons who have or have not received the treatment under study. 
Prognostic markers can be used to separate good -  and poor - prognosis patients 
at the time of diagnosis. If an expression of the marker clearly separates 
patients with an excellent prognosis from those with a poor prognosis, the 
marker can be used to aid the decision as to how aggressive the therapy needs 
to be. 

 A  predictive biomarker  informs the treatment effect on the clinical end-
point. Compared to a gold - standard endpoint such as survival, a biomarker 
can often be measured earlier, more easily, and more frequently. A biomarker 
is less subject to competing risks and less affected by other treatment modali-
ties, which may reduce sample size due to a larger effect size. A biomarker 
could lead to faster decision making (M. Chang,  2007a )  . 

 Let the hypothesis test for a biomarker - positive subpopulation at the fi rst 
stage (size   =    n  1 /group) be

      H0 0: δ+ =
  
  (5.14)  

and the hypothesis test for overall population (size   =    N  1 /group) be

      H0 0: δ =  
 
  (5.15)  

with the corresponding stagewise  p  - values,  p  1+  and  p  1 , respectively. These 
stagewise  p  - values should be adjusted. A conservative approach is to use the 
Bonferroni method or a method similar to the Dunnett method, which takes 
the correlation into consideration. For a Bonferroni - adjusted  p  - value and 
MSP, the test statistic is  T  1    =   2   min( p  1+ ,  p  1 ) for the fi rst stage. The population 
with a smaller  p  - value will be chosen for the second stage, and the test statistic 
for the second stage is defi ned as  T  2    =    T  1    +    p  2 , where  p  2  is the stagewise  p  - value 
from the second stage.  

  5.5.2   Biomarker - Adaptive Design 

 Suppose that in an active - control trial, the estimated treatment difference is 
0.2 for the biomarker - positive population (BPP) and 0.1 for the biomarker -
 negative population (BNP), with a common standard deviation of  σ    =   1.4. 
Following are the steps for a trial simulation using ExpDesign Studio. 

   •      Click    to bring up the  Adaptive Design – Step 1  window.    

 In the  Adaptive Design – Step 1  window, do the following: 

   •      Select the  Biomarker - Adaptive Design  option in the  Type of Design  
panel. The  Biomarker - Adaptive Design  window will appear.  

   •      Enter  “ 0.2 ”  for Mean  Difference with Biomarker .  
   •      Enter  “ 0.1 ”  for Mean  Difference without Biomarker .  



   •     Enter  “ 1.414 ”  for  Standard Deviation .  
   •     Enter  “ 0.025 ”  or other desired value for the effi cacy stopping boundary, 

Alpha 1 .  
   •     Enter  “ 0.15 ”  or other desired value for the futility stopping boundary, 

Beta 1 .  
   •     Enter  “ 10000 ”  or other desired value for the  Number of Simulations .  
   •     Enter the desired numbers for the sample sizes for different stages with 

and without a biomarker, as shown in Figure  5.17 .  

   •     Click    to start the simulation.      

 After the simulation is completed, you can click    to view the report for 
the adaptive design (Figure  5.18 ). We see that the power of the overall signifi -
cance is 91%. The power to claim effi cacy is 32% for the biomarker group 
and 59% for the combined group.     

  5.6   HOW TO DESIGN A PLAY - THE - WINNER TRIAL 
USING EXPDESIGN 

 The randomized play - the - winner (RPW) model is a simple probabilistic 
model used to randomize subjects sequentially in a clinical trial (Wei and 
Durham,  1978   ; Coad and Rosenberger,  1999   ). The RPW model can be used 

Figure 5.17     Biomarker - adaptive design.  
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for randomized clinical trials with a binary endpoint. In the RPW model it is 
assumed that the previous subject ’ s outcome will be available before the next 
patient is randomized. At the start of the clinical trial, an urn contains  a  0  balls 
representing treatment A and  b  0  balls representing treatment B, where  a  0  and 
 b  0  are positive integers. We denote these balls as either type A or type B balls. 
When a subject is recruited, a ball is drawn and replaced. If it is a type A ball, 
the subject receives treatment A; if it is a type B ball, the subject receives 
treatment B. When a subject ’ s outcome is available, the urn is updated as 
follows: Success on treatment A (B) or a failure on treatment B (A) will gen-
erate additional  a  1  ( b  1 ) type A (B) balls in the urn. In this way the urn builds 
up more balls, representing the more successful treatment (Figure  5.19 ).   

  5.6.1   Randomized Play - the - Winner Design 

 Suppose that we are designing an oncology clinical study with tumor response 
as the primary endpoint. The response rate is estimated to be 0.3 in the control 

    Figure 5.18     Characteristics of the biomarker - adaptive design.  

    Figure 5.19     Randomized play - the - winner: Wei ’ s  (1978)  urn model.  

Randomized Play-the-
Winner:

• One ball of each color in the urn initially.

• Randomly select a colored ball from the 

urn to determine patient’s treatment 

assignment.

• When a response is seen in a treatment 

arm, a ball of the  corresponding color is 

added to the urn.

• Therefore more patients will be 

randomized into efficacious arms.

Response Response



group and 0.5 in the test group. The response rate is 0.4 in both groups under 
the null condition. We want to design the trial with about 80% power at a 
one - sided  α  value of 0.025. 

 We fi rst check the type I error of a classical two - group design with  n    =   200 
(100 per group), which is the sample size required for 83% power using 
a classical design. We now use the RPW design as specifi ed in the following 
steps.

   •     Click    to bring up the  Adaptive Design – Step 1  window 
(Figure  5.20 ).      

 In the  Adaptive Design – Step 1  window, do the following: 

   •     Select the  Response - Adaptive Randomization  option in the  Type of 
Adaptive Design  panel.  

   •     Select the  Proportion  option in the  Endpoint  window.  
   •     Enter  “ 0.4, 0.4 ”  for  Proportions Under Ha  in the  Hypotheses  panel.  
   •     Enter  “ 0 ”  for  NI - d , the noninferiority margin, because it is a superiority 

trial.
   •     Enter  “ 0.025 ”  for  One - Sided Alpha  and any decimal value for  Power  (no 

effect in this version).  

   •     Click    to bring up the  Response - Adaptive Randomization
window (Figure  5.21 ).  

Figure 5.20     Response - adaptive randomization design. 
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   •     Enter  “ 100000 ”  for  N Simulations  in the  General Info  panel.  
   •     Enter  “ 200 ”  for  Total N , which is based on a classical design for 83% 

power.
   •     Enter  “ 1 ”  for the four randomization parameters:  a0, b0, a1 , and  b1 .  
   •     Enter  “ 2.06 ”  for the critical value  Z_alpha . You may have to try differ-

ence numbers until the simulated power is equal to 0.025, the α  level.  

   •     Click    to start the simulation.  

   •     When the simulation is fi nished, click    to view the results 
(Figure  5.22 ).        

 To simulate the power and other characteristics under the alternative 
hypothesis, enter  “ 0.3, 0.5 ”  for  Proportions Under Ha  in the  Hypotheses
panel. Keep other inputs unchanged. The results show that there is 74% power 
for the adaptive design with 200 patients. The classical design has 83% power 
to detect the difference with 200 patients (Figure  5.23 ).    

  5.6.2   Adaptive Randomization with a Normal Endpoint 

 The objective of this trial in asthma patients is to confi rm a sustained treat-
ment effect, measured as FEV1 change from baseline to one year of treatment. 
Initially, patients are equally randomized to four doses of the new compound 

Figure 5.21     Input parameters for the binary RAR design. 



Figure 5.22     Determination of rejection region – based type I error. 

Figure 5.23     Simulation of power for the RAR design. 

and a placebo. Based on early studies, the estimated FEV1 changes at week 
4 are 6%, 12%, 13%, 14%, and 15% (with a pooled standard deviation of 
18%) for the placebo and dose levels 1, 2, 3, and 4, respectively. 

 Following are the steps to design an adaptive trial using ExpDesign. 

   •     Click    to bring up the  Adaptive Design – Step 1  window 
(Figure  5.24 ).      

 In the  Adaptive Design – Step 1  window, do the following: 

   •     Select the  Response - Adaptive Randomization  option in the  Type of 
Adaptive Design  panel.  

   •     Select the  Mean  option in the  Endpoint  window.  
   •     Enter  “ 0.06, 0.06, 0.06, 0.06, 0.06 ”  for  Means Under Ha  in the  Hypotheses

panel.
   •     Enter  “ 0.18 ”  for  Sigma , the standard deviation.  
   •     Enter  “ 0 ”  for  NI - d , the noninferiority margin, because it is a superiority 

trial.
   •     Enter  “ 0.025 ”  for  One - Sided Alpha  and any decimal value for  Power  (no 

effect in this version).  
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Figure 5.24     RAR design with normal endpoint. 

Figure 5.25     Input parameters for the normal RAR design. 



Figure 5.26     Characteristics of the RAR under the null condition. 

Figure 5.27     Input Parameters of RAR design for the alternative condition.  
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Figure 5.28     Characteristics of the RAR under the null condition. 

   •     Click    to bring up the  Adaptive Design – Step 2  window 
(Figure  5.25 ).  

   •     Enter  “ 100000 ”  for  N Simulations .  
   •     Enter  “ 200 ”  for  Total N . You may need to use a trial - and - error method 

to fi nd a number that gives you the power devised.  
   •     Enter  “ 1 ”  for the randomization parameter  b  and  “ 1 ”  for  m .  
   •     Enter  “ 2.01 ”  for the critical value  Z_alpha . You may have to try different 

values until the simulated power is equal to 0.025, the α  level (weakly 
controlled).

   •     Click    to start the simulation.  

   •     When the simulation is fi nished, you can click    to view the results 
(Figure  5.26 ).        

 Next, we simulate the power under the alternative condition by changing 
the response to  “ 0.06, 0.12, 0.13, 0.14, 0.15 ”  for  Means Under Ha  in the 
Adaptive Design – Step 1  window (Figure  5.27 ). Keep everything else the same 
and run the simulation. The results show that the design has 84% power 
(Figure  5.28 ).         
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 Adaptive Trial Monitoring 

   6.1   INTRODUCTION 

 In this chapter we discuss the very important aspect of adaptive design: trial 
monitoring. Our discussion focuses on how to use statistical tools such as stop-
ping boundaries, boundary - crossing probabilities, conditional power, and the 
futility index. We illustrate how to use ExpDesign to predict the probability 
of success, to calculate the conditional power, to reestimate the sample size, 
and to change the number and timing of the analyses. Using ExpDesign to 
perform these tasks is pretty straightforward. However, we fi rst review the 
techniques for monitoring so that we can use them appropriately.  

  6.2   ERROR - SPENDING APPROACH 

 There are often changes in the information time for the interim analyses (IAs). 
The reason may, for example, be slow enrollment, but the DMC is not able 
to change their meeting schedule due to other commitments. As a result, the 
information time for the interim analyses moves back. There are also other 
reasons for a sponsor to change the information timing ( t   =   n / N , the sample -
 size fraction at an interim analysis or the fraction of deaths) and number of 
analyses. When using MPP or MSP, interim analyses can be made any time 
without infl ating the type I error rate because these two methods do not 
require prespecifi cation of the time for IAs. MSP and MPP require only 
mutual independence of stagewise p  - values, and they are either distributed 
uniformly or are larger. To change the number of IAs, we can use recursive 
two - stage adaptive designs (see M. Chang,  2007a , Chap.  8 ). For MINP, the 
recursive approach can be used, but more often the error - spending method is 
adopted.

 Deviations in timing and number of analyses from the original design 
will affect the stopping boundaries in classical group sequential design. There-
fore, the original stopping boundaries cannot be used, and new stopping 

6
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boundaries have to be recalculated based on a prespecifi ed error - spending 
function. An error - spending function  π  * ( t ) is a cumulative error spent up to 
information time  t . The  α  or error spent at a typical stage  k  can be expressed 
as  π  * ( t k  )    −     π  * ( t k    − 1 ), where  t k   is the information time at stage  k . Because  π  * ( t ) 
is a monotonically increasing function (0    ≤     t     ≤    1) with  π  * ( t  0 )   =   0 and  π  * ( t k  )   =  
  π  * (1)   =    α , the total error rate is

      
[ ( ) ( )] ( ) .π π π α* * *t t tk k

k

K

K− = =−
=

∑ 1
1     

(6.1)
   

 The  p  - value (unadjusted) at the  k th stage is compared against the stopping 
boundary on the  p  - scale, but not against the spending function, to determine 
whether or not to reject the null hypothesis. 

 There are at least three types of commonly used error - spending functions: 
O ’ Brien – Fleming - like, Pocock - like, and power - family error - spending 
functions. 

  1.     The O ’ Brien – Fleming - like error - spending function is given by

      
π α* ,( ) /t

z

t
= − ⎛

⎝
⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

−2 1 1 2Φ
    

(6.2)
  

where  Φ  is the c.d.f. of the standard normal distribution.  
  2.     The Pocock - like error - spending function is given by

      π α*( ) log[ ( ) ].t e t= + −1 1     (6.3)    

  3.     The power - family (PF) error - spending function is given by

      π α* ,( )t tb=     (6.4)  

where  t  is the information time and  b  is a constant.    

 The various error - spending functions are compared in Figure  6.1 . We can 
see that the power - family function provides a nice range of stopping boundar-
ies. The Pocock - like function spends more  α  at early stages than does the 
O ’ Brien – Fleming - like function, while the linear function (PF with  b    =   1) is 
somewhere in between. The power family will spend more  α  at early stages 
when the parameter  b  decreases.   

 From Figure  6.1  and Table  6.1  we can see that the O ’ Brien – Fleming bound-
ary with (an infi nite number of) equal information intervals can be well 
approximated by both OF - like function  (6.2)  and the power - family function 



  

with  b    =   3.3, as can a Pocock boundary with equal information intervals 
by a Pocock - like or power - family function with  b    =   0.688. Yet the Wang – 
Tsiatis boundary with  Δ    =   0.25 can be approximated by the power - family 
function with  b    =   2. The reason that using an error - spending function is 
preferable to traditional group sequential design is that the former makes it 
possible to change the number and timing of analyses without infl ating the 
type I error. With a prespecifi ed error - spending function, the stopping bound-
aries can be recalculated when there is a change in the number or timing of 
the analyses.    

  6.3   HOW TO RECALCULATE STOPPING BOUNDARIES 
USING EXPDESIGN 

 As mentioned earlier, the determination of stopping boundaries is necessary 
at the trial design and monitoring stages. In ExpDesign Studio, the power 
function is used for error spending in the adaptive design module. The 
O ’ Brien – Fleming spending function can be approximated by the power - family 
function  π  * ( t )   =    α  t  3.3  or the O ’ Brien – Fleming - like function (6.1). The Pocock 
spending function can be approximated by  π  * ( t )   =    α  t  0.688  or (6.2). To use 

function (6.2), click the Adaptive Trial Monitor icon   ; then check the 
 O ’ Brien - F  checkbox in the  Adaptive Trial Monitor  window. To use the 
Pocock - like function, check the  Pocock  checkbox. 

    Figure 6.1     Error - spending functions.  
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Example: Changing the Timing of Interim Analysis   Suppose that we are 
monitoring a two - stage adaptive design with the power - family ( b    =   1.93) 
spending function featuring an interim analysis on 50% of the patients (i.e., 
information t    =   0.5), which was expected one year after the trial started. 
However, due to slow enrollment, the newly projected time line will be 20 
months from the beginning of the trial (i.e., 8 months later than the earlier 
projection). This setback will have a negative impact on the study and the 
company.

 However, it will also not be helpful if the interim analysis is performed too 
early on the original projected calendar schedule because only a little informa-
tion is available. A reasonable approach is to perform the interim analysis at 
16 months after the trial started and when 40% patients would have the data. 
After the IDMC agree on the meeting date, the actual stopping boundaries 
have to be calculated based on the actual number of patients in the interim 
analysis. Assume that the company was to collect data on 40% patients for 
the interim analysis. The stopping boundary can be recalculated using 
ExpDesign:

  1.    Click the adaptive trial monitor icon    to bring up the  Adaptive Trail 
Monitor  window (Figure  6.2 ).  

  2.    Select the recompute stopping boundary in the  Objective  panel. The 
Adaptive Trial Monitor  window will appear (Figure  6.3 ).  

  3.    Enter the  “ 2 ”  for  Number of Stages  and  “ 0.4, 1 ”  for  Information time 
for Analyses .  

Figure 6.2     Adaptive trial monitor window. 
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  4.    Set the same spending function for the stopping boundary by either 
checking the checkbox or using the scrollbar. In the current case, check 
the O ’ Brien – F  checkbox.  

  5.    Click    to perform the simulation.  

  6.    Click    on the toolbar to see the resulting stopping boundary 
(Figure  6.4 ).        

Example: Changing the Number of Interim Analyses   For the problem 
described in the previous example, an alternative way to adapt to the slow 
enrollment is to add another interim analysis, such that the total number of 
analyses becomes three. Suppose that the fi rst were actually performed at 
information time 0.3. We decide to add another IA at information time 0.7. 
We now recalculate the stopping boundary. Note that at the fi rst interim 
analysis, we may not know when the future analyses will be, but it doesn ’ t 
mater because the error - spending method allows for modifi cation of future 
stopping boundaries without affecting the earlier stopping boundaries as long 
as the prespecifi ed error - spending function is followed. 

 The input values for the parameters are shown in Figure  6.5 . The rest steps 
are very straightforward, as shown in the fi rst example. The resulting stopping 
boundaries on the p  - scale are 0.00245, 0.01099, and 0.01892 for the three 
analyses, respectively.      

Figure 6.3     Calculation of stopping boundary. 



  6.4   CONDITIONAL POWER AND THE FUTILITY INDEX 

 The  conditional power  is the probability that the null hypothesis will eventu-
ally be rejected given the data observed at the moment. Therefore, the condi-
tional power is dependent on the data observed, but is also dependent on the 

Figure 6.4     Resulting stopping boundary. 

Figure 6.5     Redesigning the trial as a three - stage design.  
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adaptive methods used in the trial. The  futility index  is defi ned as the probabil-
ity that the null hypothesis will not be rejected when the alternative hypothesis 
is true. Hence, the futility index can be defi ned as 1    −    conditional power if both 
use the same estimate for the parameter  δ . 

 The conditional power for MSP is given by

      
P p

n
c = − − − −

⎛
⎝⎜

⎞
⎠⎟

−1 1 0
2

1
2 1

2Φ Φ ( max( )), ,α
δ
σ

    
(6.5)

  

where  α  1     <     p  1     ≤     β  1 ;  α  1  and  β  1  are the effi cacy and futility stopping boundaries, 
respectively;  n  1  is the sample size at the fi rst stage, the effect size; and  δ / σ  can 
be estimated using the   δ̂  and   σ̂  observed for two groups or using  p  1 :
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 Therefore Eq.  (6.5)  can be written as
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where  t  1    =    n  1 /( n  1    +    n  2 ) is the information time (fraction) for the fi rst interim 
analysis. 

 Similarly, the conditional power for MPP is given by

      
P

p
n

c = − −⎛
⎝⎜

⎞
⎠⎟ −

⎛
⎝⎜

⎞
⎠⎟

−1 1
2

1 2

1

2Φ Φ α δ
σ

.
    

(6.8)
   

 The conditional power for MINP is given by
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 Conditional power is compared in Figure  6.6 . We can see that it differs for 
different methods as expected. When the  p  - value for the fi rst stage is around 
0.1, MSP is the most powerful method, followed by MINP. The MPP and MINP 
methods perform better at the two extremes when the  p  - value  p  1  is either very 
small or very large.   

 An interesting question is: When will the  p  - value be rounded to 0.1? Here 
is a common scenario: At the design stage, the standard effect size was esti-
mated to be 0.25, and about 254 subjects per group are needed for 90% power. 
At the interim analysis the effect size observed (standardized) based on 50% 
of the subjects is 0.164 (only 65.6% of the original estimation). The reason that 
we observed 0.164 could be because the drug is truly less effective, or because, 
just by chance, we observed a lower effect or a combination the two. In such 



  

a case the  p  - value at the interim analysis is  p  1    =   0.1. It is not uncommon at all 
to estimate the treatment effect by 30% or more at the design stage. Also, 
more than one - third of phase III trials failed. It is reasonable to believe that 
33%  p  - values    >    0.025 at the fi nal analysis (most of the trials are fi xed - sample -
 size designs). Therefore, it is also not unreasonable to say that the  p  - value 
based on interim analyses would be larger that 0.025 ( z    =   1.96) or somewhere 
larger than 0.083 ( z    =   1.96/2 0.5 ). Note that the commonly used group sequential 
design is a special case of MINP. For details, see the book  Adaptive Design 
Theory and Implementation Using SAS and R  (M. Chang,  2007a ). 

 An interesting way to monitor an adaptive trial informally is the ESP 
(expected sample path) approach (Figure  6.7 ), in which several critical lines 
are drawn on an information -  Z  plan. We fi rst draw the stopping boundary 
specifi ed in the protocol and several lines for ESP with different powers. When 
the data become available, we draw the actual sample path.   

 The expected or average sample path is the  z  - value when the alternative 
condition  H a   for sample size calculation is true. Mathematically, we can write 
the  z  - value at information time  t  as

      z t Z t( ) ( ) .= 1     (6.10)   

 The power in Figure  6.7  is the power for the trial. From the fi gure we can see 
that when the trial has 90% power, the ESP crosses the boundaries at about 
 t    =   0.6; when it has 80% power, it crosses at about  t    =   0.7. If the effect size is 
overestimated such that the trial has only 50% power, ESP touch as the 

    Figure 6.6     Comparisons of conditional power.  
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boundary at  t    =   1 (i.e., the end of the trial). If the sample path is observed 
above the ESP for 90% power, the trial is very promising; on the other hand, 
if the actual sample path is below ESP for the 50% power, we are probably 
going to fail the trial.  

  6.5   HOW TO REESTIMATE SAMPLE SIZE USING EXPDESIGN 

  6.5.1   Calculating Conditional Power Using ExpDesign 

 Calculation of conditional power using ExpDesign is straightforward, as illus-
trated in the following example. Suppose that a two - stage adaptive trial was 
designed using MSP with stopping boundaries  α  1    =   0.0025,  β  1    =   0.2, and  α  2    =  
 0.2152. The sample size for the interim analysis  n  1    =   100 per group. The sample 
size (not cumulative) for the second stage  n  2    =   200 per group. Assume that 
 p  1    =   0.1,  n  1    =   100, and the effect size (treatment difference divided by standard 
deviation) observed can be calculated using Eq.  (6.5)  in Section  6.3 :

      ˆ

ˆ
( . ) . . .

δ
σ

= = =−Φ 1 0 9
2

100
1 2816

2
100

0 18   

 This is the default value in ExpDesign and is available by clicking the  Default  
checkbox next to it. 

 Here are the steps to obtaining the conditional power: 

    Figure 6.7     Stopping boundaries and expected sample paths.  
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  1.    Click the adaptive trial monitor icon    to bring up the  Adaptive Trial 
Monitor  window (Figure  6.2 ).  

  2.    Select the  Compute conditional power  option in the  Objective  panel.  
  3.    Select the  MSP  option in the  Statistical Method  panel.  
  4.    Enter the values  “ 0.0025, 0.2152, 0.2, 0.1, 200 ”  for  α1 ,  α2 ,  β1 , and sample 

size, respectively.  
  5.    Click the  Default  checkbox next to  Effect Size ;  “ 0.18123 ”  will fi ll into 

the corresponding textbox.  

  6.    Click   ; a conditional power of 0.73 is obtained from the textbox 
labeled as cPower  (Figure  6.8 ).    

     6.5.2   Reestimating Sample Size Using ExpDesign 

 This conditional power 73% is considered too low. We may decide to increase 
the sample size to retain 80% (conditional) power. Use the following steps to 
estimate the new sample size required for the second stage with 80% condi-
tional power (Figure  6.9 ): 

  1.    Select the  Compute new sample - sign for stage 2  option in the  Objective
panel.

  2.    Select the  MSP  option in the  Statistical Method  panel.  

Figure 6.8     Conditional power with MSP. 
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  3.    Enter  “ 0.0025, 0.2152, 0.1, 200 ”  for  α1 ,  α2 ,  p1 , and the sample size.    
  4.    Click the  Default  checkbox next to  Effect size ;  “ 0.18123 ”  will fi ll into the 

corresponding textbox.  

  5.    Click   ; the required sample size is  n2    =   254 per group for the 
second stage, as shown in Figure  6.9 .    

 The procedures to obtain the conditional power and new sample size with 
MPP and MINP are similar; you can try this yourself.     

  6.6   TRIAL EXAMPLES 

  6.6.1   Changes in Number and Timing of the Analyses 

  “ In the 1970s, it was thought that blockade of the beta - adrenergic receptors 
might be benefi cial for patients with myocardial infarction. This led to the 
conduct of several clinical trials. Some of these trials treated patients with 
intravenous beta - blockers at the time of the acute MI; others began treatment 
intravenously at the time of the acute event and continued with oral beta -
 blockers after hospital discharge; still others began long - term oral treatment 
of patients after the acute recovery phase. Relevant to the development of the 
Beta - Blocker Heart Attack Trial (BHAT) were concerns that the long - term 

Figure 6.9     Sample size based on conditional power. 



trials that had been conducted were inconclusive. In particular, some were 
underpowered, one used a beta - blocker that had unexpected serious toxicity, 
and some may have used inadequate doses of medication. Therefore, a work-
shop conducted by the National Heart, Lung, and Blood Institute (NHLBI) 
recommended that another long - term trial with a suffi ciently large sample size 
and using appropriate doses of a beta - blocker with which there was consider-
able experience and a known toxicity profi le, such as propranolol, be con-
ducted ”  (DeMets,  2006 )  . 

 Patients aged 30 to 69 years who had had a myocardial infarction 5 to 21 
days prior to randomization were to be enrolled. The primary objective of the 
study was to determine if long - term administration of propranolol would 
result in a difference in all - cause mortality. The group sequential design with 
six interim analyses (O ’ Brien – Fleming boundary with equal information 
intervals) was used for BHAT. The actual trial path ( z  - values) is presented in 
Figure  6.10 .   

 A total of 4040 patients were to enroll. Participant enrollment began in 
1978; a total of 3837 participants were actually enrolled. This trial of 1884 
survivors of an acute myocardial infarction showed a statistically signifi cant 
reduction in all - cause mortality, from 16.2% to 10.4%, during a mean follow -
 up of 17 months. At this point, BHAT was no longer enrolling patients, but 
follow - up was continuing. 

 We are now ready to reproduce the group sequential design and than 
change to a more fl exible or adaptive design. For the latter we discuss how to 
monitor and take adaptations according to the data observed. For a group 
sequential design with seven analyses with equal intervals and O ’ Brien –
 Fleming boundaries, 4040 patients will have 89.3% power (using either Exp-
Design 5.0 or East 4.1) to detect a 28% relative change in mortality, from a 
three - year rate of 17.46% in the control (placebo) group to 13.75% in the 
intervention group, which was estimated from previous studies. 

 Suppose that we originally use an error - spending approach with an O ’ Brien –
 Fleming - like spending function featuring seven analyses at equal information 
intervals. After the third analysis, we fi nd that the effi cacy results are somewhat 
promising, and the trend (Figure  6.10 ) shows that the trial is likely be success-
ful at the fi fth interim analysis. Therefore, we want to do one more analysis 
(fi nal analysis) for the study and eliminate the rest of the interim analyses. 
The fi nal analysis is scheduled at the time for the original fi fth interim analysis. 
Therefore, we calculate the stopping boundary using the same OF error -
 spending function but with four analyses at information time: 1/7, 2/7, 3/7, and 
1 (Figures  6.11  and  6.12 ).     

 The new fi nal stopping boundary is naive  p  - value  ≤ 0.0248 ( z    =   1.9634) using 
the distribution calculator in ExpDesign (Figure  6.13 ). The observed  p  - values 
at the fi rst three IAs are 0.0465 ( z    =   1.68), 0.0125 ( z    =   2.24), and 0.0089 ( z    =  
 2.37), respectively. We want to check if the new design has suffi cient power. If 
not, a sample - size reestimation may be required. We can accomplish this with 
ExpDesign as specifi ed in the following steps: 
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    Figure 6.11     Stopping boundary for the BHAT trial.  

    Figure 6.10     BHAT stopping boundary and actual path. (Data from DeMets et al., 
 2006   .)  
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  1.    Click the adaptive trial monitor icon    to bring up the  Adaptive Trial 
Monitor  window (Figure  6.14 ).  

  2.    Select the  Compute conditional power  option in the  Objective  panel and 
K - stage  in the  Number of Stages  panel.  

  3.    Select the  MSP option on the  Statistical Method  panel.  
  4.    Enter  “ 577, 1154, 1731, 4040 ”  for the stagewise sample sizes;  “ 0.0, 0.0, 

0.00061, 0.0248 ”  for the effi cacy boundary on the  p  - scale;  “ 1, 1, 1, 1 ”  for 
the futility boundary on the p  - scale; and  “ 0.0465, 0.0125, 0.0089 ”  for the 
stagewise p  - values observed, respectively.  

  5.    Click    (Figure  6.15 ).        

Figure 6.12     New stopping boundary for the BHAT trial.  

Figure 6.13     Assist from ExpDesign probability calculator. 
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   The conditional power of rejecting the null hypothesis at the fi nal step turns 
out to be 0.899; with such high power the sample size does not need to be 
adjusted. The timing of the analysis is one year earlier than the original sched-
ule planned for the fi nal analysis. 

 We now do the fi nal analysis. The observed test statistic  z    =   2.34 or  p  - value  
 =   0.0096    <    0.0248 (the stopping boundary); therefore, the null hypothesis is 
rejected. From this example we can see that the adaptive design has advan-
tages over the classical group sequential design. 

Figure 6.14     ExpDesign adaptive trial monitor. 

Figure 6.15     Conditional power calculation with ExpDesign. 



 Note that the timing of the analyses is assumed to be independent of interim 
data. However, practically, we want to change the timing based on the data 
observed. Fortunately, the potential type I error rate infl ation due to the data -
 dependent timing is small ( < 10%) (Proschan et al.,  2006 ).  

  6.6.2   Recursive Two - Stage Adaptive Design 

 Let ’ s use the recursive two - stage adaptive design (M. Chang,  2007a , Chap.  8 ) 
to redesign the example of Section  6.6.1 . The conditional error principle allows 
one to redesign a two - stage trial at every analysis as long as the conditional 
error is retained at each stage. Following are the steps for performing the 
recursive two - stage design on the fl y: 

  1.    Initiate the fi rst two - stage trial.  
  2.    After looking at the IA data, decide whether to keep the original design 

or redesign a two - stage trial using the conditional error function.  
  3.    If a decision not to change the design is made, it is straightforward adap-

tive design.  
  4.    If a decision to redesign the two - stage trial is made, the conditional error 

function is calculated as A    =    α2     −     p1  and the new two - stage trial design 
is based on the new type I error rate: α    =    A .  

  5.    Repeat steps 2 to 4 until the trial eventually stops.    

 See M. Chang ( 2007a , Chap.  8 ) for a trial example.  

  6.6.3   Conditional Power and Sample - Size Reestimation 

  “ The Randomized Aldactone Evaluation Study (RALES) was a randomized 
double - blind placebo - controlled trial designed to test the hypothesis that addi-
tion of daily spironolactone to standard therapy would reduce the risk of all -
 cause mortality in patients with severe heart failure as a result of systolic left 
ventricular dysfunction. The Data Safety Monitoring Board (DSMB) for 
RALES reviewed data on safety and effi cacy throughout the trial using pre -
 specifi ed statistical stopping boundaries for effi cacy. To ensure that the data 
were complete, the DSMB requested successive  ‘ mortality sweeps. ’  At the time 
of these sweeps, all RALES investigators determined the vital status of par-
ticipants at their clinics. Therefore, the data that the DSMB saw included a 
much higher percentage of the deaths than would have been observed without 
these sweeps. At the DSMB ’ s fi fth meeting, the data showed 351 deaths in the 
placebo group and 269 in the spironolactone group, for an estimated hazard 
ratio of 0.78 ( p  0.00018). The board recommended early termination of the 
trial because the observed Z  - value of 3.75 exceeded the pre - specifi ed critical 
value of 2.79 and the data on mortality showed consistency among subgroups 
and across time. The sweeps had identifi ed 31deaths that likely would not have 
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been reported by the time of the meeting. Subsequent data collection identi-
fi ed an additional 46 deaths that had occurred by the time the study ended. 
Even when the endpoint of a randomized clinical trial is mortality, routine 
methods of data collection and reporting are unlikely to identify all events in 
a timely manner. The experience from RALES provides an example of the 
importance of active follow - up of patients to ensure that a DSMB is observing 
a high proportion of the events that have actually occurred ”  (Wittes et al., 
 2005 ).   

 The fi rst patient was randomized on March 24, 1995 and the planned end 
of the trial was December 31, 1999. Thus, the trial was now based on calendar 
time instead of total events. Consequently, calculations for the interim analysis 
had to be based on an unknown total number of deaths. The p  - values observed 
are presented in Table  6.2 .   

 Suppose that the hazard ratio is 1.25 between the treatment groups; 
ln(1.25)   =    − 0.22314. To calculate the number of events needed, we can use 
normal endpoint design with mean   =   ln(0.8) and standard deviation   =   1. 
Redesign an adaptive design with 90% power and nine interim analyses 
of the OF boundary for the trial. The number of events required is 874 
(Figure  6.16 ).   

 As an exercise, draw the ESP (90% power) and ESP (50% power); calcu-
late the conditional power at each stage up to the fourth stage and adjust the 
sample size to 95% conditional power at the fourth stage if it is lower than 
that. The conditional effi cacy stopping probabilities for stages 5 to 9 are 
0.00824, 0.05669, 0.25458, 0.38956, and 0.22647, respectively. The overall con-
ditional power at stage 4 is 0.936 (Figure  6.17 ).     

 TABLE 6.2  p  - Values Observed in the Aldactone Study a

  IA Time  
  Death 

Placebo/Test 
  Hazard 
Ratio     p  - Value  

  Stopping 
Boundary
on p  - Scale  

  Conditional 
Power

  (8/96)    70/52    0.76    0.11    0.0000      
  (3/97)    136/109    0.83    0.092    0.0000      
  (8/97)    224/175    0.80    0.11    0.0002      
  (3/98)    304/241    0.81    0.0026    0.0009      
  (8/99)    351/269    0.78    0.00018    0.0026    0.00824  
                  0.0054    0.05669  
                  0.0092    0.25458  
                  0.0137    0.38956  
                  0.0188    0.22647  

Source:   Wittes et al.  (2005)   .  
a First patient in March 24, 1995.   



Figure 6.16     Using a normal endpoint to mimic a design with a survival endpoint.  

Figure 6.17     Conditional power calculation. 
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  REMARKS 

 There are theoretical and practical aspects of adaptive design monitoring. 
For the theoretical details I recommend Proschan, Lan and DeMets ’  book 
 (2006)   ; for practical aspects books on this topic by Ellenberg et al.  (2002)    and 
DeMets et al.  (2006)  are excellent. 

 The study investigators and sponsor have the primary responsibility for 
development of study protocol and procedures to ensure the quality of study 
conduct in many instances, and the DMC will be asked to review these docu-
ments prior to initiation of a trial. By providing an advisory review of the draft 
of the protocol and proposed study procedures, the DMC can ensure that none 
of its members have concerns about the planned trial that would interfere with 
the ability to monitor the study in the manner specifi ed by the sponsor and 
investigators. This initial review also allows the DMC to give independent 
scientifi c guidance and reduce the risk that ethical or scientifi c fl aws would be 
identifi ed during the course of the study.    
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Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.

 Oncology Adaptive Trial Design 

  7.1   MULTISTAGE TRIAL DESIGN 

  7.1.1   Introduction 

 Multistage designs represent a specifi c category of sequential design where 
the response is binary in nature and the statistical method used is exact in 
terms of binomial distribution. Multistage design is often used in a phase I or 
II clinical trial where a single - arm trial is utilized to determine whether an 
experimental treatment holds suffi cient promise to warrant further study. The 
number of patients is usually not very large, and normal approximation may 
not be applicable. The initial design for two - stage phase II cancer clinical trials 
proposed by  Gehan  (1961)     provided the minimum number of patients required 
to enter in stage 1, such that if all patients were nonresponders, the therapy 
could be discontinued from further study with a given chance of rejection 
error. Given P 0 , a response rate that is not of interest for conducting further 
studies, and P1 , a response rate of defi nite interest ( P1     >     P0 ), Fleming devel-
oped two -  and three - stage designs for testing hypotheses about the true 
response rate p . Fleming ’ s designs allow for early termination with acceptance 
or rejection of the new therapy at each stage. The plans preserved (approxi-
mately) the size and power of a single - stage procedure for testing the hypoth-
eses. Simon  (1989)    modifi ed Fleming ’ s plans by considering two - stage 
procedures that permitted rejection of a therapy at either of the two stages 
but acceptance only at the fi nal stage. The rationale was that stopping a study 
early was undesirable when a therapy appeared to be effective, but desirable 
when the treatment seemed to be ineffective. Simon ’ s design is optimal in that 
it minimizes the expected sample size when the true response rate p    =    P0  at 
given levels of signifi cance and power. Also, he proposed a design that mini-
mizes the maximum number of patients required. Ensign et al.  (1994)  pro-
poseda three - stage design that permits early stopping when a moderately long 
sequence of initial failures occurs. 

 ExpDesign has implemented Simon ’ s two - stage design and generalized 
Ensign et al. ’ s three - stage design, which permit early stopping for futility. The 
resulting designs have controlled the overall type I error rate. There are three 
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types of optimal designs in ExpDesign: MinMaxSize, MinExpSize, and 
MaxUtility. MinMaxSize design  minimizes the maximum sample size when 
the trial goes through all the stages, MinExpSize design  minimizes the expected 
sample size when the null hypothesis is true, and MaxUtility design  maximizes 
the utility that is defi ned as a composite index combining the expected sample 
size and maximum sample size, and then normalized such that the correspond-
ing classical design has a utility of 1. 

   7.1.2   How to Design a Multistage Design Using ExpDesign 

 Let ’ s explain the steps in designing a multistage trial through an example. 
Suppose that we are planning a phase II trial with a single group of cancer 
patients to investigate the effi cacy and safety of an experimental drug called 
AntiGen. The primary endpoint is cancer response (complete response   +  
 partial response). It is specifi ed that if the response rate is less that 5%, the 
trial will not be continued, and if the response rate is greater than 20%, 
investigation will continue. The company recognizes the importance of stop-
ping the trial early if the testing drug is not promising, but is willing to spend 
more if the drug is very promising. More specifi cally, the importance of mini-
mizing the sample size expected under the null hypothesis is rated 8 on a 10 -
 point scale, and the importance of minimizing the maximum sample size is 
rated 2. For this reason we are going to generate two -  and three - stage designs 
and select the fi nal design that meets our needs through comparisons. Note 
that α    =   0.1 and power   =   0.9 are common in a phase II oncology study. 
However, a trial designer can use other settings as long as justifi cations are 
provided.

 We now use Expdesign to generate two - stage designs as follows. Click 

  . Based on the information provided in the example, we 
select the option 2 - stage design . Enter  “ 0.05 ”  for  Proportion for Ho ,  “ 0.20 ”  
for Proportion for Ha ,  “ 0.05 ”  for  Alpha , and  “ 0.8 ”  for  Power . Suppose that 
we believe that minimizing the sample size expected is more important than 
minimizing the maximum sample size, and as an example, we enter  “ 2, 8 ”  for 

the utility weights (see Figure  7.1 ). Click    to generate a two - stage 

design and click    on the toolbar to review the design report reviewed 
below.   

Two-Stage Design Testing (One -Sided) for a Single Proportion Featuring 
Early Stopping for Futility   Common settings for the three designs (Min-
MaxSize, MinExpSize, and MaxUtility) are: level of signifi cance  α    =   0.05, 
power   =   0.8, proportion for the null hypothesis  P0    =   0.05, and proportion for 
the alternative hypothesis Pa    =   0.2. 



MinMaxSize Two - Stage Design     The MinMaxSize design minimizes the 
maximum size required. The design characteristics are summarized as follows: 
The cumulative sample size at stage 1   =   13, the cumulative sample size at stage 
2   =   27, the actual type I error rate  α    =   0.042, the actual power   =   0.801, and 
the utility index is 1.414 for the design. 

 The stopping rules are as follows: 

   •   Stage 1:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 0/13. Otherwise, continue on to stage 2. The probability 
of stopping for futility is 0.513 when H0  is true and 0.055 when  Ha  is 
true.

   •   Stage 2:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 3/27. Otherwise, stop and reject the null hypothesis.     

MinExpSize Two - Stage Design     The MinExpSize (optimal) design minimizes 
the sample size expected. The design characteristics are summarized as follows: 
The cumulative sample size at stage 1   =   10, the cumulative sample size at stage 
2   =   29, the actual type I error rate  α    =   0.047, the actual power   =   0.801, and 
the utility index is 1.51 for the design. 

 The stopping rules are as follows: 

   •   Stage 1:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 0/13. Otherwise, continue on to stage 2. The probability 

Figure 7.1     Example of two - stage design.  
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of stopping for futility is 0.599 when H0  is true and 0.107 when  Ha  is 
true.

   •   Stage 2:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 3/29. Otherwise, stop and reject the null hypothesis.     

MaxUtility Two - Stage Design     The MaxUtility design maximizes the utility. 
The utility is defi ned as (0.8    ×    expected sample size   +   0.2    ×    maximum sample 
size) divided by the sample size from the classical single - stage design. Hence, 
the utility for the classical single - stage design is 1, and a higher utility indicates 
a better design. The design characteristics are summarized as follows: The 
cumulative sample size at stage 1   =   10, the cumulative sample size at stage 2  
 =   29, the actual type I error rate  α    =   0.047, the actual power   =   0.801, and the 
utility index   =   1.51 for the design. 

 The stopping rules are as follows: 

   •   Stage 1:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 0/13. Otherwise, continue on to stage 2. The probability 
of stopping for futility is 0.599 when H0  is true and 0.107 when  Ha  is 
true.

   •   Stage 2:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 3/29. Otherwise, stop and reject the null hypothesis.    

Note:  There are more than three designs generated by ExpDesign (see 
the spreadsheet in Figure  7.1 ). All meet the desired  α  and power values. You 
can sort the designs by any of the headers; just click the header and click 

  . 
 Alternatively, we can generate three - stage designs. To do that we specify 

the input as follows: three - stage design, proportion for  H0    =   0.05, proportion 
for Ha    =   0.20,  α    =   0.05, power   =   0.8, and 2 and 8 for the utility weights (see 

Figure  7.2 ). Click    to generate the two - stage designs and click 
on the toolbar to review the following report.     

Three-Stage Design Testing (One -Sided) for a Single Proportion Featuring 
Early Stopping for Futility   Common settings for the three designs (Min-
MaxSize, MinExpSize, and MaxUtility) are: level of signifi cance  α    =   0.05, 
power   =   0.8, proportion for the null hypothesis  P0    =   0.05, and proportion for 
the alternative hypothesis Pa    =   0.2. 

MinMaxSize Three - Stage Design     The MinMaxSize design minimizes the 
maximum size required. The design characteristics are summarized as follows: 
The cumulative sample size at stage 1   =   14, the cumulative sample size at stage 
2   =   20, the cumulative sample size at stage 3   =   27, the actual type I error rate 
α    =   0.041, the actual power   =   0.801, and the utility index   =   1.5. 



 The stopping rules are as follows: 

   •   Stage 1:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 0/14. Otherwise, continue on to stage 2. The probability 
of stopping for futility is 0.488 when H0  is true and 0.044 when  Ha  is 
true.

   •   Stage 2:    Stop and accept the null hypothesis if the response rate is 
less than or equal to 1/20. Otherwise, continue on to stage 3. The proba-
bility of stopping for futility is 0.264 when H0  is true and 0.04 when  Ha  is 
true.

   •   Stage 3:    Stop and accept the null hypothesis if the response is less than 
or equal to 3/27. Otherwise, stop and reject the null hypothesis.     

MinExpSize Three - Stage Design     The MinExpSize (optimal) design mini-
mizes the sample size expected. The design characteristics are summarized 
as follows: The cumulative sample size at stage 1   =   10, the cumulative sample 
size at stage 2   =   19, the cumulative sample size at stage 3   =   30, the actual 
type I error rate α    =   0.048, the actual power   =   0.8, and the utility index   =  
 1.6. 

 The stopping rules are as follows: 

   •   Stage 1:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 0/14. Otherwise, continue on to stage 2. The probability 

Figure 7.2     Example of three - stage design.  
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of stopping for futility is 0.599 when H0  is true and 0.107 when  Ha  is 
true.

   •   Stage 2:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 1/19. Otherwise, continue on to stage 3. The probability 
of stopping for futility is 0.199 when H0  is true and 0.036 when  Ha  is 
true.

   •   Stage 3:    Stop and accept the null hypothesis if the response is less than 
or equal to 3/30. Otherwise, stop and reject the null hypothesis.     

MaxUtility Three - Stage Design     The MaxUtility design maximizes the utility, 
defi ned as (0.8    ×    expected sample size   +   0.2    ×    maximum sample size) divided 
by the sample size from the classical single - stage design. Hence, the utility for 
the classical single - stage design is 1 and a higher utility indicates a better 
design. The design characteristics are summarized as follows: The cumulative 
sample size at stage 1   =   10, the cumulative sample size at stage 2   =   19, the 
cumulative sample size at stage 3   =   30, the actual type I error rate  α    =   0.048, 
the actual power   =   0.8, and the utility index   =   1.6. 

 The stopping rules are as follows: 

   •   Stage 1:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 0/14. Otherwise, continue on to stage 2. The probability 
of stopping for futility is 0.599 when H0  is true and 0.107 when  Ha  is 
true.

   •   Stage 2:    Stop and accept the null hypothesis if the response rate is less 
than or equal to 1/19. Otherwise, continue on to stage 3. The probability 
of stopping for futility is 0.199 when H0  is true and 0.036 when  Ha  is 
true.

   •   Stage 3:    Stop and accept the null hypothesis if the response is less than 
or equal to 3/30. Otherwise, stop and reject the null hypothesis.      

Final Design   We now discuss how to select the fi nal design. Since the utility 
is specifi ed, we should use the maximum utility design. Comparing three -  and 
two - stage design, three - stage design provides a larger utility value (1.6) than 
that of two - stage design (1.5). However, three - stage design requires a maximum 
of 30 patients (15.8 patients expected), and two - stage design requires a 
maximum of 29 patients (17.6 expected). The main concern is that the three -
 stage design is more complicated and requires more effort to implement, par-
tially because when the interim analysis is done, all patients would have been 
enrolled in the trial. Therefore, the two - stage maximum utility design is chosen 
for the trial. The stopping rules are specifi ed as follows: At stage 1, stop the 
trial and accept the null hypothesis if the response rate is less than or equal 
to 0/13; otherwise, continue on to stage 2. At stage 2, accept the null hypothesis 
if the response rate is less than or equal to 3/29; otherwise, reject the null 
hypothesis.    



  7.2   DOSE - ESCALATION TRIAL DESIGN 

  7.2.1   Introduction 

Objectives of a Phase I Clinical Trial   The goal of a phase I trial is to defi ne 
and characterize the new treatment in humans to set the basis for later inves-
tigations of effi cacy and superiority. Therefore, the safety and feasibility of 
the treatment are at the center of interest. A positive risk – benefi t judgment 
should be expected such that the possible harm of the treatment is outweighed 
by the possible gain in cure, suppression of the disease and its symptoms, and 
an improved quality of life and survival. 

 For example, in a cancer study, beginning treatment at a low dose is very 
likely to be safe (starting dose). Small cohorts of patients are treated at pro-
gressively higher doses (dose escalation) until drug - related toxicity reaches a 
predetermined level [dose - limiting toxicity (DLT)]. The objective is to deter-
mine the maximum tolerated dose (MTD) of a drug for a specifi ed mode of 
administration and to characterize the DLT. The goals in phase I trials can be 
stated as follows (Crowley,  2001 ): 

  1.    Establishment of an MTD  
  2.    Determination of the toxicity profi le  
  3.    Characterization of the DLT  
  4.    Identifi cation of antitumor activity  
  5.    Investigation of basic clinical pharmacology  
  6.    Recommendation of a dose for phase II studies     

Population for Treatment   The phase I trial should defi ne a standardized 
treatment schedule to be applied safely to humans and worth being investi-
gated further for effi cacy. For non - life - threatening diseases, phase I trials are 
usually conducted on human volunteers, at least as long as the expected toxic-
ity is mild and can be controlled without harm. In life - threatening diseases 
such as cancer and AIDS, phase I studies are conducted with patients because 
of the aggressiveness and possible harmfulness of cyrostatic treatments, 
because of possible systemic treatment effects, and the high interest in the new 
drug ’ s effi cacy in those patients directly.  

Dose-Limited Toxicity and Maximum Tolerated Dose   Drug toxicity is con-
sidered to be tolerable if the toxicity is acceptable, manageable, and reversible. 
Drug safety has now been standardized for oncological studies by establish-
ment of the common toxicity criteria (CTC) by the U.S. National Cancer 
Institute (NCI). This is a large list of adverse events (AEs) subdivided into 
organ and symptom categories that can be related to anticancer treatment. 
Each AE has been categorized into fi ve classes: 
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  1.     CTC grade 0: no AE, or normal  
  2.     CTC grade 1: mild (elevated/reduced)  
  3.     CTC grade 2: moderate  
  4.     CTC grade 3: serious/severe  
  5.     CTC grade 4: very serious or life threatening    

 A toxicity of grade 3 or 4 is usually considered dose limiting. In other words, 
any AE of grade 3 or higher related to treatment is considered a DLT. Often, 
a judgment of  “ possible ”  or higher is considered as drug - related toxicity and 
called an  adverse drug reaction  (ADR). The  maximum tolerated dose  (MTD) 
is defi ned as a dose level at which DLTs occur at least with a certain frequency. 
For example, at least one out of three patients has one grade 3 or higher CTC, 
or two of three patients have grade 2 or higher CTC.  

  Dose – Toxicity Modeling     Most designs for dose fi nding in phase I trials 
assume a monotone dose – toxicity relationship and a monotone dose – response 
(tumor response) relationship (Figure  7.3 ). Ideally, the relationship can be 
described as  “ biologically inactive dose   <   biologically active dose   <   highly toxic 
dose. ”  The choice of an appropriate dose – toxicity model is important not only 
for the planning, but also for the analysis of phase I data. Most applications 
use an extended logit model and apply the logistic regression because of its 
fl exibility, the ease of accounting for patient covariates (e.g., pretreatment. 
disease staging. performance), and the availability of computing software. A 

    Figure 7.3     Logistic toxicity model.  
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general class of toxicity models is a two - parameter family in which the toxicity 
rate or probability of toxicity is given by

      ψ( ) ( ( ))x a F a a h x, ,= +0 1     (7.1)  

where  x  is the dose and  a  0  and  a  1  are considered as constants to be determined 
in a frequentist approach. In Bayesian approaches, these parameters have 
distributions that are updated constantly based on cumulative information. 
Various functions  F ( · ) and  h ( x ) can be chosen to fi t particular needs. In fre-
quentist approaches, the parameters  a  0  and  a  1  can be determined based on 
data from the trial. Once the constants are determined and the toxicity rate  θ  
at the MTD is defi ned, the MTD can easily be solved:

      
MTD = −−1

1

1
0

a
F a[ ( ) ].θ

    
(7.2)

     

 The commonly used functions for  F  are probit( x ) or inverse Gaussian, logit( x ): 
1/[1    −    exp( x )], and hyperbolic tangent( x ): [(tanh x    +   1)/2 > )]  −  a  . The choice of  θ  
depends on the nature of the DLT and the type of target tumor. For an aggres-
sive tumor and a transient and non - life - threatening DLT,  θ  could be as high 
as 0.5. For persistent DLT and less aggressive tumors, it could be as low as 
0.1 to 0.25. A commonly used value ranges from 0 to 1/3 (= 0.33). 

 ExpDesign allows users to select three different toxicity models (dose –
 response models):

      Linear model: p a bx= +     (7.3)  

  
    
Logistic model: p

b ax
=

+ −
1

1 exp( )     (7.4)  

  
    
Log-logit model: ,p

b a x
=

+ −
1

1 exp( ln )     (7.5)  

where  x  is the actual dose or a function of dose [such as dose levels (integers)]; 
 p  is the toxicity rate, probability of toxicity, or DLT; and  a  and  b  are constants 
determined by the starting dose level, the DLT rate at that level, the estimated 
MTD, and the DLT rate at the MTD. The DLT rate at the MTD commonly 
used for oncology trials varies from 20 to 50%, depending on the disease 
states.  

  Dose - Level Selection     An inadequate dose range could totally ruin a clinical 
trial, because it does not cover the biologically active dose or requires too 
many dose escalations to reach the target dose level. The initial dose given to 
the fi rst patients in a phase I study should be low enough to avoid severe toxic-
ity but high enough for a chance of activity and potential effi cacy in humans. 
Extrapolation from preclinical animal data focused on the lethal dose 10% 
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(LD 10 ) of the mouse (dose with 10% drug - induced deaths) converted into 
equivalents in units of mg/m 2  of body surface area. The standard starting dose 
became 1/10 of the minimal effective dose level for 10% deaths (MELD 10 ) of 
the mouse after verifi cation that no lethal and no life - threatening effects were 
seen in another species (e.g., rats, dogs). Earlier recommendations had used 
higher portions of the MELD 10  (mouse) or other characteristic doses, as, for 
example, the lowest dose with toxicity (toxic dose low) in mammals (Crowley, 
 2001 ). 

 The highest dose level should be selected that covers the biologically active 
dose but remains lower than a toxic dose. A pharmacokinetically guided dose 
escalation (PGDE) was proposed based on the equivalence of drug blood 
levels in mice and humans and on the pharmacodynamic hypothesis that equal 
toxicity is caused by equal drug plasma levels. It postulates that the DLT is 
determined by plasma drug concentrations and that AUC is a measure that 
holds across species. The AUC calculated at the MTD for humans was found 
to be fairly equal to the AUC for mice if calculated at the LD 10  (in mg/rn 2  
equivalents, MELD 10 ). 

 Subsequent dose levels can be determined by using the additive set,

      x x x ii i= + =−1 1 2Δ , , . . . ,     (7.6)  

or the multiplicative set,

      x f x ii i i= =− −1 1 0 1, , . . . ,     (7.7)  

where  f  i    is the dose - escalation factor. Popular dose - escalation factors are the 
Fibonacci number (2, 1.5, 1.67, 1.60, 1.63, 1.62, 1.62,       ·        ·        · ) and modifi ed Fibo-
nacci schemes (2, 1.65, 1.52, 1.40, 1.33, 1.33,       ·        ·        · ). 

 ExpDesign has fi ve different dose interval sequences for users to choose 
from: Fibonacci and modifi ed Fibonacci sequence, constant - dose - increment 
sequence, constant - multiple - factor sequence, and a customized sequence that 
allow users to specify any sequence they like.  

  Dose - Escalation Schemes     After dosage levels are determined, the next step 
in designing a phase I trial consists of the establishment of a rule by which the 
doses are assigned to patients. Proceeding from a starting dose, the sequence 
of dosing has to be fi xed in advance in a  dose - escalation rule . The most 
common dose - escalation rules are the  traditional escalation rules  (TERs), also 
known as  3    +    3 rules , because it became common practice to enter three 
patients at a new dose level and when any toxicity was observed, to enter a 
total of six patients at that dose level before deciding to stop at that level or 
to increase the dose. Two versions of the 3   +   3 rule are TER and strict TER 
(STER). TER does not allow you to deescalate the dose, but STER does when 
two of three patients had the DLT rate (Figure  7.4 ). The stochastic approxi-
mation method (SA) has no fi xed dose level. Instead, the level is determined 



  

not only by the toxicity from the last dose level but also the total cumulative 
toxicity. The continual reassessment method (CRM), a Bayesian approach, 
can be generalized for combination therapies where dose escalation takes 
place in several dimensions.   

 The 3   +   3 TER and STER can be generalized to  A    +    B  TER and STER. 
To introduce the  A    +    B  escalation rule, let  A, B, C, D , and  E  be integers. The 
notation  A / B  indicates that there are  A  toxicity incidences out of  B  subjects, 
and  >  A / B  means that there are more than  A  toxicity incidences out of  B  
subjects. 

   A    +    B  Escalation Without Dose Deescalation     General  A    +    B  designs without 
dose deescalation can be described as follows. Suppose that there are  A  
patients at dose level  i . If fewer than  C / A  patients have DLTs, the dose is 
escalated to the next dose level,  i    +   1. If more than  D / A  (where  D     ≥     C ) patients 
have DLTs, the previous dose (or current dose level) will be considered the 
MTD. If no fewer than  C / A  but no more than  D / A  patients have DLTs,  B  
more patients are treated at this dose level,  i . If no more than  E  (where  E     ≥   
 D) of the total of  A    +    B  patients experience DLTs, the dose is escalated. 
If more than  E  of the total of  A    +    B  patients have DLT, the previous dose, 

    Figure 7.4     3   +   3 Traditional dose - escalation algorithm.  
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 i   −  1, will be considered the MTD. It can be seen that the traditional 3   +   3 
design without dose deescalation is a special case of the general  A    +    B  design 
with  A    =    B    =   3 and  C    =    D    =    E    =   1. Closed forms of operating characteristics 
are given by Lin and Shih  (2001)   . 

 The escalation probability from one dose level to the next is given by

      Pr ( ) ( )(escalation) ,= − + −1 3 13 5p p p     (7.8)  

where  p  is the DLT rate at the current dosage level. The 3   +   3 TER, STER, 
 A    +    B  TER, two - stage accelerated dose escalation, and CRM have been 
implemented in ExpDesign Studio (see Figure  7.6 ).   

  Evaluation of Dose - Escalation Algorithms     All dose - escalation schemes 
have advantages and disadvantages. For example, the traditional 3   +   3 escala-
tion is easy to apply, but the MTD estimation is usually biased, especially when 
there are many dose levels. The criteria for evaluation of an escalation scheme 
used in ExpDesign are as follows: 

   •      Number of DLTs  
   •      Number of patients  
   •      Number of patients dosed above MTD  
   •      Accuracy and precision of the MTD prediction    

 ExpDesign allows users to do simulations under various scenarios and 
provides evaluations based on the foregoing criteria. For details on oncology 
dose - escalation trials, see the  Handbook of Statistics in Clinical Oncology  
(Crowley,  2001 ).   

  7.2.2   Bayesian Continual Reassessment Method 

 The continual reassessment method (CRM) is a model approach in which the 
parameters in the model for the response are updated continually based on 
the response data observed. The method used to update the parameters can 
be either the frequentist or Bayesian approach. CRM was initially proposed 
by O ’ Quigley (O ’ Quigley et al.,  1990   ; O ’ Quigley and Shen,  1996   ; Babb and 
Rogatko,  2004 ) for oncology dose - escalation trials, but it can be extended to 
other types of trials (M. Chang and Chow,  2006 ). In CRM the dose – response 
relationship is reassessed continually based on accumulative data collected 
from the trial. The next patient who enters the trial is then assigned to the 
currently estimated MTD or lower dose level, for safety consideration ’ s. The 
CRM escalation rules are presented in Figure  7.5  and described below. 

 First, dose (assume that  k    =   1) the patient at the fi rst dose level; the DLT 
is assessed for the patient and the MTD is predicted using the Bayesian CRM. 
If the value closest to the predicted MTD (PMTD) is higher than the current 



  

dose level, escalate the next scheduled level. If the closest dose level is lower 
than the current level, deescalate to that level. This process continues until 
there are  m  (a value of 4 to 8 seems a good choice for  m ). CRM is more effi -
cient than TER with respect to fi nding the MTD. CRM can also be used for 
other dose - fi nding trials.    

  7.2.3   How to Design a Dose - Escalation Trial Using ExpDesign 

 Suppose that we design a phase I oncology trial whose primary objective it is 
to determine the MTD for new test drug ABC. Based on the animal studies, 
it is estimated that the toxicity (the DLT rate) is 1% for the starting dose 
25   mg/m 2  (1/10 of the lethal dose). The DLT rate at MTD is defi ned as 0.25 
and the MTD is estimated to be 150   mg/m 2 . 

 Based on the information provided above, we can use ExpDesign to do 
the simulations and select an optimal design. As an illustration, we fi rst do a 
one - stage trial simulation with TER and two - stage design simulation with 

    Figure 7.5     CRM escalation rules.  
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single - patient escalation at the fi rst stage and 3   +   3 TER at the second stage. 
A logistic toxicity model is chosen for the simulations. 

Single-Stage Design Simulation   In the  ExpDesign Studio  window, click

  ; select the option  Single - Stage Traditional Escalation  in the 
window and specify the following parameters for the one - stage design with 
ExpDesign: the number of stages   =   1, the number of simulations   =   5000, the 
starting dose   =   25, the DLT rate at the starting dose   =   0.01, the MTD   =   150, 
the DLT rate at MTD   =   0.25, the number of dose levels   =   7, and the maximum 
deescalations allowed   =   0. Select the customized sequence (2, 1.67, 1.33, 1.33, 
1.33, 1.33, 1.33, 1.33, 1.33), the logit model in the Toxicity (Response) Model
panel, and the standard 3   +   3 rule (STER) in the  Escalation Scheme  panel 

(Figure  7.6 ). Clicking    to run the simulation. When it is fi nished, 

click    on the toolbar to bring up the simulation results described below.   

Single - Stage Dose - Escalation Design: Computer Simulation by ExpDesign     See 
Table  7.1 . The simulation parameter settings are: the number of simulations  
 =   5000, the number of stages   =   1, the number of dose levels   =   7, the maximum 
deescalations allowed   =   0, the true maximum tolerated dose (MTD)   =   150, 
the DLT rate at MTD   =   0.25, the starting dose   =   25, and the DLT rate at the 
starting dose   =   0.01. The dose interval sequence is chosen to be the customized 

Figure 7.6     Simulations of single - stage dose - escalation design.  



dose increment sequence (increment factors   =   2, 1.67, 1.33, 1.33, 1.33, 1.33, 
1.33, 1.33, 1.33); the 3   +   3 strict traditional rule is used; and the true toxicity 
rates are defi ned by logit  p    =    − 5.319   +   0.028    ×    dose.   

 Simulation results are given as follows: the mean MTD   =   130.4477, the 
standard deviation of the MTDs predicted   =   31.1, the mean number of patients 
treated above the true MTD   =   2.434, the mean number of patients treated 
under the true MTD   =   16.959, the mean number of overshoots in a trial   =   0, 
the mean number of undershoots in a trial   =   0.001, the number of patients 
expected   =   19.393, and the number of DLT patients expected   =   2.901. 

Note:  If overshooting, MTD is set conservatively to the highest planned 
dose. If undershooting, the lowest scheduled dose is chosen as MTD. An 
overshoot  is defi ned as an attempt to escalate to a dose level higher than the 
highest level planned. An undershoot  is defi ned as an attempt to deescalate 
to a dose level lower than the starting dose level. The dispersion of predicted 
MTDs is measured by the average distance between the true and predicted 
MTDs. The percent MTDs for a dose level k  is the probability of dose level 
k  being the MTD based on simulations.   

Two-Stage Design Simulation   In the  Dose - Escalation  window, select the 
two - stage design option. The rest of the parameter specifi cations are the same 

as those for single - stage dose escalation (Figure  7.7 ). Click    and click 

   after the simulation is fi nished. The results described below will be 
displayed.   

Two - Stage Dose - Escalation Design — Computer Simulation by ExpDesign     See 
Table  7.2 . The simulation parameter settings are: the number of simulations  
 =   5000, the number of stages   =   2, the number of dose levels   =   7, the maximum 
deescalations allowed   =   0, the true MTD   =   150, the DLT rate at MTD   =   0.25, 
the starting dose   =   25, and the DLT rate at the starting dose   =   0.01. The dose 
interval sequence is specifi ed as the customized dose - increment sequence 
(increment factors   =   2, 1.67, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33, 1.33). The 3   +   3 

 TABLE 7.1  

  Dose Level 

  1    2    3    4    5    6    7  

  Dose    25    50    83.5    111.1    147.7    196.4    261.3  
  Toxicity rate    0.01    0.02    0.049    0.1    0.238    0.552    0.884  
  Mean no. patients   3.1    3.2    3.4    3.6    3.7    2.2    0.2  
  Mean no. DLTs    0.03    0.06    0.16    0.37    0.87    1.2    0.2  
  Percent MTDs   0.006    0.024    0.095    0.323    0.48    0.073    0  
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Figure 7.7     Simulations of two - stage dose escalation design. 

 TABLE 7.2  

  Dose Level 

  1    2    3    4    5    6    7  

  Dose    25    50    83.5    111.1    147.7    196.4    261.3  
  Toxicity rate    0.01    0.02    0.049    0.1    0.238    0.552    0.884  
  Mean no. patients    1    1    1.1    1.3    2    2.8    2.3  
  Mean no. DLTs    0    0    0.01    0.04    0.29    1.23    1.8  
  Percent MTDs:    0    0.002    0.014    0.149    0.479    0.355    0  

strict traditional rule is used. The true toxicity rates are defi ned by logit 
p    =    − 5.319   +   0.028    ×    dose.   

 Simulation results are given as follows: the mean MTD   =   158.5057, the 
standard deviation of the MTDs predicted   =   31.4, the mean number of patients 
treated above the true MTD   =   6.071, the mean number of patients treated 
under the true MTD   =   6.457, the mean number of overshoots in a trial   =   0, 
the mean number of undershoots in a trial   =   0, the number of patients expected  
 =   11.652, the number of DLT patients expected   =   5.197, the number of patients 
expected to be treated at stage 1 is 5.641, and the number of patients expected 
to be treated at stage 2 is 6.887.   

CRM Design Simulation   In the  Dose - Escalation  window, select  Continual
Reassessment Method (CRM)  and specify the parameters as follows: the 



number of simulations   =   5000, the starting dose   =   25, the DLT rate at the 
starting dose   =   0.01, the MTD   =   150, the DLT rate at the MTD   =   0.25, and 
the number of dose levels   =   7. Select the customized dose sequence and logist 
model in the Toxicity (Response) Model  panel. Select CRM for the simula-
tion, and enter 0 and 0.05 as the prior ’ s for parameter  a , and set  b    =   150 in 
the logistic model. Enter 0 for the number of dose levels allowed for a 
skip, 2 for the minimum number of patients required at a dose level before 
escalation, and 6 for the maximum number of patients at a dose level for the 

stopping rule (Figure  7.8 ). Click    and click    after the simulation 
is fi nished. The results described below will be displayed.   

Simulation Results Using the Continual Reassessment Method     See Table  7.3 . 
The input parameters are specifi ed as follows. The true MTD is 150 with a 
rate of 0.25. The stopping rule specifi ed comes into play if the maximum 
number of patients at a dose level reaches 6. The dose - escalation rules are: 
(1) require a minimum of two patients treated at the current level before 
escalating to the next dose level; and (2) the number of dose levels allowed 
to be skipped   =   0.   

 Simulation results are shown as follows: the mean MTD   =   140.8864, the 
standard deviation of the MTD   =   31.2, the mean MTD level   =   4.7496, the 
average total number of patients   =   15.47, and the expected number of responses  
 =   2.48. The model used for the dose – response relationship is: response rate   =  

Figure 7.8     Dose – escalation design with CRM. 
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 1/[1   +   150 exp( −a  dose)], where the prior for parameter  a  is a uniform prior 
in (0, 0.05).   

Comparison of Escalation Methods   Evaluations of the escalation designs 
are based on the following criteria: safety, accuracy, and effi ciency. Simulation 
results for all three methods for three different MTD scenarios are summa-
rized in Table  7.4 .   

 In this example, we can see if the true MTD is 150   mg/m 2 . The TER under-
estimates the MTD (125   mg/m 2 ), and the two - stage accelerated escalation 
overestimates the MTD (159   mg/m 2 ). CRM also slightly underpredicts the 
MTD (141   mg/m 2 ). The average number of patients required is 19.4, 11.6, and 
15.5 for TER, two - stage, and CRM, respectively. From a safety perspective, 
the average number of DLTs is 2.9, 5.2, and 2.5 per trial for TER, two - stage, 
and CRM, respectively. Further comparisons are summarized in Table  7.4 . 
From the simulation results, CRM seams preferable.  

Customization of Escalation Rules   As mentioned earlier, STER has been 
implemented in ExpDesign, which allows you to set a limit for the maximum 

 TABLE 7.3  

  Dose Level  

  1    2    3    4    5    6    7  

  Dose    25    50    83.5    111    148    196    261  
  True rate    0.01    0.02    0.05    0.10    0.24    0.55    0.88  
  Predicted rate    0.013    0.027    0.073    0.150    0.310    0.546    0.772  
  No. patients    2    2    2.279    3.7092    3.72    1.55    0.21  
  No. responses    0.02    0.04    0.11    0.37    0.89    0.86    0.19  

 TABLE 7.4    Summary of Simulation Results for the Designs 

  Method  
  Assumed 

True MTD  
  Mean 

Predicted MTD 
  Mean Number 

of Patients 
  Mean Number 

of DLTs  

  3   +   3 TER  }  100  
  86.7    14.9    2.8  

  Two - stage    106    10.9    5.4  
  CRM    99.2    13.4    2.8  
  3+3 TER }  150  

  125    19.4    2.9  
  Two - stage    159    11.6    5.2  
  CRM    141    15.5    2.5  
  3+3 TER }  200  

  169    22.4    2.8  
  Two - stage    192    11.5    4.4  
  CRM    186    16.8    2.2  



dose levels allowed to deescalate. For example, if Max. de - escalations allowed
is set to 1, deescalation is allowed from level 4 to level 3 and again from level 
5 to level 4, but is not allowed from level 5 to level 4 and continues for dees-
calation to level 3. ExpDesign also allows you to design a general m    +    n . To 
customize the dose escalations, simply choose the option Customized  “ m+n ”  
rule  in the Escalation Scheme panel. The  Dose - Escalation Scheme  window 
will appear (Figure  7.9 ). You can specify the escalation by typing in values in 
the textboxes or by selecting the commonly used escalation rules in the panel 

and clicking   . The rest is the same as for a 3   +   3 TER design.    

Remark on CRM   ExpDesign allows uniform and beta prior selection. The 
prior, the CRM model (different values of b0 ), and dose intervals for the 
escalation all affect the outcome. These parameters should be adjusted care-
fully so as to produce reasonable outcomes for a wide range of scenarios 
(e.g., different assumed MTDs).    

  7.3   DOSE - ESCALATION TRIAL MONITORING USING CRM 

 Unlike the traditional escalation design, CRM requires dynamic randomiza-
tion (i.e., the next patient assignment is based on the newly predicted MTD). 
Figure  7.3  illustrates the trial monitoring process. 

Figure 7.9     Customized dose - escalation design window. 
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 We now discuss the steps for running and monitoring a CRM trial 
(see the example in Section  7.2.3 ) using ExpDesign. The DLT observed is 
hypothetical. The model used is given by

      
p

e ax
=

+ −

1
1 150     

(7.9)
  

where the prior for parameter  a  is uniform in (0, 0.05). 

  1.     Click    (Figure  7.10 ).    
  2.     Enter  “ 150 ”  for  b ,  “ 0, 0.05 ”  for the prior, and  “ 0.25 ”  for the DLT rate 

for the MTD.  

  3.     Click    to get the prior MTD (128   mg/m 2 ).  
  4.     Enter  “ 2 ”  for the number of patients assessed (there is a minimum of 

two patients for each level),  “ 25, 25 ”  for the dose level for the two 
patients, and  “ 0, 0 ”  for their DLT (i.e., there is no DLT for either of 
them).  

    Figure 7.10     Example of CRM monitoring.  



  

  5.     Click    to get the MTD predicted, 136   mg/m 2 .  
  6.     The dose 111   mg/m 2  is closest to 137   mg/m 2 , but one level of escalation is 

allowed; hence, the next two patients should be dosed with 50   mg/m 2 .  
  7.     Enter  “ 4 ”  for the number of patients assessed. Enter (Add)  “ 50, 50 ”  to 

the textbox for the dosage. Suppose that they are nonresponders, so add 
 “ 0, 0 ”  to the textbox for the response.  

  8.     Click    to get the MTD predicted, 131   mg/m 2 . There-
fore, the next two patients should be dosed at 84   mg/m 2 .    

 This process continues until there are six patients at level. Table  7.5  sum-
marizes the entire process.   

 The fi nal MTD predicted is 153   mg/m 2  (not in Table  7.5 ), which can be used 
to design the next phase of the clinical trial. You may choose to add more 
patients to get a more precise estimation of the confi dence interval for the 
DLT rate at the potential MTD.  

  7.4   MATHEMATICAL NOTES ON MULTISTAGE DESIGN 

  7.4.1   Decision Tree for a Multistage Trial 

 For a multistage trial regarding the hypotheses  H  0     :     θ    =    θ  0  versus  H a      :     θ    =    θ   a  , 
we can draw a diagram known as a  decision tree  (Figure  7.11 ). The probabili-
ties of accepting and rejecting the null hypothesis under  θ  at stage  k  can be 
expressed, respectively, as

   P P P P P P kH cj
j

k

ak H cj
j

k

rkaccept rejectand0 0
1

1

1

1

1( ) ( )θ θ= = =
=

−

=

−

∏ ∏ ,, , . . . ,2 K

   
 (7.10)     

 The type I and II errors at stage  k  are written, respectively, as

      β θ α θk H a k HP P k K= = =accept rejectand , , . . . ,0 0 0 1 2( ) ( )     (7.11)   

 TABLE 7.5     Example of CRM Monitoring 

    

  Patient  

  1    2    3    4    5    6    7    8    9    10    11    12    13    14  

  PMTD    128    128    136    136    131    131    145    145    178    178    134    134    161    161  
  Dose    25    25    50    50    84    84    111    111    148    148    148    148    148    148  
  DLT    0    0    0    0    0    0    0    0    0    1    0    0    0    1  
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 Sum up these to obtain the overall type I and II error rates, 
  
α α=

=∑ kk

K

1
 

and 
  
β β=

=∑ kk

K

1
.  

  7.4.2   Two - Stage Design 

 The most commonly used two - stage design in phase II cancer trials is probably 
Simon ’ s optimal two - stage design (Simon,  1989 )  . The concept of Simon ’ s 
optimal two - stage design is to permit early stopping when a moderately long 
sequence of initial failures occurs. Thus, under a two - stage trial design, the 
hypotheses of interest are

      H p p H p pa0 0 1: :≤ >versus ,     (7.12)  

where  p  0  is the undesirable response rate and  p  1  is the desirable response rate 
( p  1     >     p  0 ). If the response rate of a test treatment is at an undesirable level, one 
may reject it as an ineffective treatment with high probability, and if its 
response rate is at a desirable level, one may not, with high probability, reject 
it as a promising compound. Note that under the hypotheses above, the usual 

    Figure 7.11     Decision tree for a multistage trial.  
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type I error is a false positive in accepting an ineffective drug, and the type II 
error is a false negative in rejecting a promising compound. 

 Let  n  1  and  n  2  be the number of subjects in the fi rst and second stages, 
respectively. Under a two - stage design,  n  1  patients are treated in the fi rst stage. 
If there are fewer than  r  1    +   1 responses, the trial is stopped. Otherwise, addi-
tional  n  2    patients are recruited and tested at the second stage. A decision 
regarding whether the test treatment is promising is then made based on the 
response rate of the  n    =    n  1    +    n  2  subjects. Note that the rejection of  H  0  (or  H a  ) 
means that further study of the test treatment should (or should not) be 
carried out. Simon  (1989)    proposed selecting the optimal two - stage design that 
achieves the minimum expected sample size under the null hypothesis. Let 
 n  exp  and  p  et  be the expected sample size and the probability of early termina-
tion after the fi rst stage. Thus, we have

      n n p nexp et= + −1 21( ) .     (7.13)   

 At the end of the fi rst stage, we would terminate the trial early and reject the 
null hypothesis if  r  1  or fewer responses were observed. As a result,  p  et  is given 
by

      p B r n pcet , ,= ( ; )1 1     (7.14)  

where  B ( r  1 ;  n  1 ,  p ) denotes the cumulative binomial distribution that  x     ≤     r  1 . 
Thus, we reject the test treatment at the end of the second stage if  r  or fewer 
responses are observed. The probability of rejecting the test treatment with 
success probability  p  is then given by

      B r n p b x n p B r x n p
x r

n r

( ; ) ( ; ) ( ; )
min( )

1 1 1 2
11

1

, , , ,
,

+ −
= +
∑

  
  (7.15)  

where  b ( x; n  1 ,  p ) denotes the binomial probability mass function. For specifi c 
values of  p  0 ,  p  1 ,  α , and  β , Simon ’ s optimal two - stage design can be obtained 
as the two - stage design that satisfi es the error constraints and minimizes the 
sample size expected when the response rate is  p  0 .  

  7.4.3   Three - Stage Design 

 The decision rules for three - stage design are as follows: 

   •       Stage 1:    If  x  1     ≤     r  1 , accept  H  0 ; otherwise, continue to stage 2.  
   •       Stage 2:    If  x  1    +    x  2     ≤     r  2 , accept  H  0 ; otherwise, continue to stage 3.  
   •       Stage 3:    If  x  1    +    x  2    +    x  3     ≤     r  3 , accept  H  0 , otherwise, reject  H  0 .    

 To determine  n  1 ,  r  1 ,  n  2 ,  r  2 ,  n  3 , and  r  3  for a given  α  and  β , it is convenient to 
defi ne
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 Denoting binomial p.m.f. and c.d.f. by  b ( x; n, p ) and  B ( x; n, p ), respectively, 
we have
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 Since the  β   i   represent the probabilities of accepting the null hypothesis at stage 
 i , we can obtain the overall acceptation probability as

      Pr( | ) ( ) ( ) ( ) ( ).accept H p p p p p0 1 2 3= = + +β β β β     (7.18)   

 The type II error rate is given by  β    =    β ( p a  ); the type I error rate is given by  α   
 =   1    −     β ( p  0 ); and the expected sample size under  p  is given by

      EN( ) [ ( )] [ ( ) ( )].p n n p n p p= + − + − −1 2 1 3 1 21 1β β β     (7.19)     

  7.5   MATHEMATICAL NOTES ON THE CRM 

 The continual reassessment method (CRM) is a model approach in which the 
parameters in the model for the response are updated continually based on 
the response data observed using the Bayesian method. 

  7.5.1   Probability Model for Dose – Response 

 Let  x  be the dose or dose level and  p ( x ) be the probability of response or 
response rate. The commonly used model for dose – response is a logistic model 
in which the probability of response (toxicity) is

      
p x

be ax
( ) =

+ −

1
1

,
   

 (7.20)
  

where  b  is usually a predetermined constant and  a  is a parameter to be 
updated based on data observed.  



  

  7.5.2   Prior Distribution of a Parameter 

 The Bayesian approach requires the specifi cation of prior probability distribu-
tion of the unknown parameter  a :

      a g a~ ( )0     (7.21)  

where  g  0 ( a ) is the prior probability distribution. When very limited knowledge 
about the prior is available, a noninformative prior can be used.  

  7.5.3   Likelihood Function 

 The next step is to construct the likelihood function. Given  n  observations 
with  y i  ( i    =   1,       ·        ·        ·       ,  n ) associated with dose   xmi, the likelihood function can be 
written as

      f r a p x p xn m
r

m
r

i

n

i
i

i
i( | ) [ ( )] [ ( )]= − −

=
∏ 1 1

1

,
  
  (7.22)  

where 

  
r

x
i

mi= {1
0
, if response observed for
, otherwise.

  

  7.5.4   Reassessment of a Parameter 

 The key is to estimate the parameter  a  in the response model (7.20). For a 
Bayesian approach, it leads to the posterior distribution of  a . The posterior 
probability of parameter  a  can be obtained as follows:

      

g a r
f r a g a

f r a g a da
n

n

n

( )
( | ) ( )

( | ) ( )
=

∫
0

0

.

    

(7.23)

   

 After having obtained  g n  ( a|r ), we can update the predictive probability 
using

      
p x

be
g a r da

ax n( ) ( | ) .=
+ −∫

1
1    

 (7.24)
    

  7.5.5   Assignment of the Next Patient 

 The updated dose – toxicity model is usually used to choose the dose level for 
the next patient. In other words, the next patient enrolled in the trial is 
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assigned to the currently estimated MTD based on the dose – response model 
or predictive probability. Practically, this assignment is subject to safety con-
straints such as limited dose jump. Assignment of patients to the most updated 
MTD is intuitive. In this way, the majority of patients will be assigned to dose 
levels near the MTD, which allows for a more precise estimation of the MTD 
with a minimal number of patients.     
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 Adaptive Trial Simulator 

   8.1   ADJUSTING THE CRITICAL REGION METHOD 

 The  ExpDesign adaptive design simulator  (a beta version appears in ExpDe-
sign 5.0) allows you to simulate trials with very complex adaptive designs, 
which can be combinations of adaptations such as response - adaptive random-
ization, dropping losers, early effi cacy or futility stopping, and sample - size 
reestimation. It can be a Bayesian or frequentist modeling or a nonparametric 
approach. In the simulator, the adjusting critical region (ACR) method is 
used, in which the critical region is determined by running simulations under 
null condition(s) so that the simulated power is equal to the type I error rate, 
α . Next, run simulations under the alternative condition using the critical 
region to obtain the power and other operating characteristics of the design. 
The approach is very fl exible, but it may be diffi cult to get approval from regu-
latory agencies because they are not yet ready for very complicated adaptive 
designs. Therefore, it is not recommended for pivotal phase III trials. There 
are eight simple steps to setting up your simulations. Depending on the user ’ s 
experience level (see Figure  8.1 ), there may be fewer steps.   

Step 1: Trial Objective   The simulator allows for two possible trial objectives: 
(1) to fi nd the dose or treatment with the maximum response rate, such as the 
cured rate or the survival rate (1    −    death rate), and (2) to fi nd a dose with a 
target rate (e.g., the maximum tolerated dose, defi ned by the dose with a given 
toxicity rate). The response rate or probability is defi ned as Pr( u    ≥    c ), where 
u  is the utility index and  c  is a threshold. The utility index is the weighting 
average of trial endpoints, such as safety and effi cacy. The weights and the 
threshold are often determined by experts in the relevant fi eld. If only a single 
binary effi cacy or safety response is concerned, the utility index  u  is either 
0 for nonresponders or 1 for responders, and the response rate is simply 
Pr(u    =   1).  

Step 2: Global Settings   Enter the number of simulations you want to run, 
the number of subjects for each trial, and the number of dose levels, with 

8
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corresponding doses and response rates. Click the Arrow button to navigate 
among different dose levels. The (true) response rates can be estimated from 
information available. You can also input any response rates for a sensitivity 
analysis.

Step 3: Response Model   The response rate can be modeled using the hyper-
logistic function, the Emax  model, or any user - defi ned function of at most fi ve 
parameters ( a1 ,  a2 ,  a3 ,  a4 ,  a5 ). You must use  xx  as the independent variable or 
dose in your model specifi cation. It is critical to set appropriate parameter 
ranges for your model, since it will directly affect the accuracy and precision 

of the modeling. You can use the Graphic Calculator    on the toolbar 
to assist you in determining the ranges by plotting the functions. It is 
recommended that as few parameters as possible be used, as that will greatly 
improve the modeling precision. You can choose a parameter as the Bayesian 
parameter by checking the corresponding box next to the parameter. The 
response model will be updated whenever the response data become 
available.

Step 4: Randomization Rules   It is desirable to randomize more patients 
to superior treatment groups. This can be accomplished by increasing 
the probability of assigning a patient to a treatment group when there is evi-
dence of responsive rate increases in a group. You can choose (1) random-
ized - play - the - winner, or (2) the utility offset model. The cluster size is used 
when there is a delayed response (i.e., randomizing the next patient before 
knowing the responses of previous patients). A cluster size of 1 indicates no 
response delay. If desired, you can perform response - adaptive randomization 
at the time of interim analyses by setting the cluster size to the increment of 
patients between two analyses. However, it is not a cluster randomization, 
because the basic randomization unit is an individual patient, not a cluster of 
patients.

Step 5: Stopping Rules   It is desirable to stop a trial when the effi cacy or 
futility of the test drug becomes obvious during the trial. To stop a trial pre-
maturely, one has to provide a threshold for the number of subjects random-
ized and at least one of the following: 

   •   Utility rules.    The difference in response rate between the most respon-
sive group and the control (dose level 1) exceeds a threshold, and the 
corresponding two - sided 95% naive confi dence interval lower bound 
exceeds a threshold.  

   •   Futility rules.    The difference in response rate between the most respon-
sive group and the control (dose level 1) is lower than a threshold, and 
the corresponding two - sided 90% naive confi dence interval upper bound 
is lower than a threshold.     
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Step 6: Dropping a Loser   In addition to the response - adaptive randomiza-
tion, you can improve the effi ciency of a trial design by dropping some inferior 
groups (losers) during the trial. To drop a loser, you have to provide thresh-
olds for (1) the maximum difference in response rate between any two dose 
levels, and (2) the corresponding two - sided 90% naive confi dence lower 
bound. You may choose to retain all the treatment groups without dropping 
a loser, or/and to retain the control group with a certain randomization rate 
for the purpose of statistical comparisons between the active groups and the 
control (dose level 1).  

Step 7: Sample -Size Adjustment   Sample - size determination requires antici-
pation of the expected treatment effect size, defi ned as the expected treatment 
difference divided by its standard deviation. It is not uncommon that the initial 
estimation of the effect size turns out to be too large or small, which leads to 
an underpowered or overpowered trial. Therefore, it is desirable to adjust 
the sample size according to the effect size for an ongoing trial. The sample -
 size adjustment is determined by a power function of the treatment effect 
size. Users can choose different power values to meet their particular 
requirements.

Step 8: Bayesian Prior   If the response or utility is modeled using the Bayes-
ian approach, you can choose one of three prior probability distributions for 
the Bayesian parameter in the response model: nonformative (uniform), trun-
cated - normal, and truncated - gamma distributions. The priors should be based 
on information available during trial design. 

Utility - Offset Model     To have a high probability of achieving target 
patient distribution among the treatment groups, the probability of assigning 
a patient to a group should be proportional to the corresponding predicted or 
observed response rate minus the proportion of patients that have been 
assigned to the group. This is called the utility - offset model (Chang and Chow, 
 2005 ).  

Maximum Utility Model     The maximum utility model for adaptive random-
ization always assigns the next patient to the group that has the highest 
response rate based on a current estimation of either the observed or model -
 based predicted response rate.     

  8.2   CLASSICAL DESIGN WITH TWO PARALLEL 
TREATMENT GROUPS 

 Suppose that we are performing a phase II oncology trial with treatment 
groups and the primary endpoint of tumor response (PR and CR). The esti-
mated response rates for the two groups are 0.2 and 0.3, respectively. We use 
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simulation to calculate the sample size required given that α    =   0.05 and 
power   =   80%. 

 Following are the steps in the simulation ( ⇒    indicates the next step): 

  1.    Launch ExpDesign Studio    ⇒    Click       ⇒    the  Intermediate
option on the panel for Experience Level in Adaptive Design  (Figure 
 8.1 ). In what follows, we follow the steps in the  Simulation Setup  panel 
(Figure  8.2 ) to set up and run the simulations.  

  2.    In the  Trial Objective  panel, choose the option for  To maximize the 
response rate  (Figure  8.2 ). Next, click on the option for  Step 2: Global 
Settings  in the  Simulation Setup  panel, and enter  “ 10000 ”  for  Number
of simulations ,  “ 600 ”  for  Number of subjects ,  “ 2 ”  for  Number of dose 
levels ,  “ 0.2 ”  and  “ 0.3 ”  for  Response rate  corresponding to dose levels 1 
and 2, respectively. You can click the arrow to navigate among dose 
levels (Figure  8.3 ).  

  3.    Click the option for  Step 3: Response Model , and select the  Null - model
option (Figure  8.4 ).  

  4.    Click the option for  Step 4: Randomization Rule  and enter  “ 600 ”  for 
Cluster size ,  “ 100 ”  for  Initial Balls , and  “ 0 ”  for  balls for each response
(Figure  8.5 ). What we just specifi ed is simple randomization, not an 
adaptive randomization.  

  5.    Click the option for  Step 5: Early Stopping  and enter  “ 1000 ”  for  Total
number of subjects randomized . This implies that early stopping is not 

Figure 8.1     Selection of experience level with adaptive design. 
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Figure 8.2     Step 1: trial objective. 

Figure 8.3     Step 2: global settings. 
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Figure 8.4     Step 3: response model. 

Figure 8.5     Step 4: randomization rule. 
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allowed because the value of 1000 exceeds the planned number of sub-
jects in the trial (i.e., 600) (Figure  8.6 ).  

  6.    Click the option for  Step 6: Dropping Loser     ⇒    Check the box for  Retain
all dose levels  (Figure  8.7 ).  

  7.    Click the option for  Step 7: N  -  Adjustment  and enter  “ 1000 ”  for  Adjusted
total sample size at information time, n . This implies that there is no 
sample - size adjustment because the value of 1000 exceeds the total 
sample size in the trial (Figure  8.8 ).  

  8.    Click the option for  Step 8: Prior if Bayesian  and leave as it is because 
we are not using the Bayesian approach (Figure  8.9 ).  

  9.    Click the option for  Step 9: Run Simulations  and click    on the toolbar 
when it fi nished to view the simulation results, shown below.                    

Simulation Input   The trial objective is to maximize the response rate. There 
are 10,000 simulations performed for the trial of two dose levels and 600 
planned subjects in each simulation.  

Simulation Results   See Table  8.1 . The average total number of subjects for 
each trial is 600. The total number of responses per trial is 150.1. The probabil-
ity of predicting the most responsive dose level correctly is 0.998 based on 

Figure 8.6     Step 5: early stopping. 
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Figure 8.7     Step 6: dropping a loser. 

Figure 8.8     Step 7: sample - size adjustment.  



rates observed. The power for testing the treatment difference is 0.814 at a 
one - sided signifi cant level ( α ) of 0.025.        

  8.3   FLEXIBLE DESIGN WITH SAMPLE - SIZE REESTIMATION 

 The power of a trial is heavily dependent on the estimated effect size; 
therefore, it is desirable to design a trial that allows modifi cation of sample 
size at some point during the trial. Let us redesign the trial in section  8.2  and 
allow a sample - size reestimation and then study the robustness of the 
design.

 The simulation can be classifi ed in two stages. In the fi rst stage you fi nd the 
adjusted α . In the second stage you use the adjusted  α  and sample size to 

Figure 8.9     Step 8: prior for Bayesian approach. 

 TABLE 8.1  

  Dose Level  

  1    2  

  Number of patients    299.648    300.351  
  Response rate    0.2    0.3  
  Mean rate observed    0.2    0.3  
  Std. dev. of rate observed    0.023    0.026  
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determine the power. The α  adjustment is required when (1) there are multi-
ple comparisons with more than two groups involved, (2) there are interim 
looks (i.e., early stopping for futility or effi cacy), and (3) there is a response -
 dependent sampling procedure such as response - adaptive randomization and 
unblended sample - size reestimation. When samples or observations from the 
trial are not independent, the response data are no longer normally distrib-
uted. Therefore, the p  - value from the normal distribution assumption should 
be adjusted, or equivalently, α  should be adjusted if the  p  - value is not adjusted. 
Similarly, the other statistic estimates from the normal assumption should also 
be adjusted. 

Stage 1   Keep everything the same as in the earlier example, but in step 2, 
create the null hypothesis condition by entering  “ 0.2 ”  for both dose levels. 
Then in step 7, enter  “ 100 ”  in the textbox for  Adjusted total sample size 
at information time, n ,  “ 0.163 ”  for Eo_max,  “ 2 ”  for parameter,  a , and  “ 1000 ”  
for the maximum sample size to be adjusted. Enter  “ 100 ”  for  Cluster size
in step 5. Now try different values for One - sided alpha  in the  Options
panel until the power for the maximum effect (the family - wise error) becomes 
0.025. The adjusted α  is 0.023 in the present case. The average sample size is 
960 under the null hypothesis. The value of 0.1633 for Eo_max is obtained 
from ( p2     −     p1 )/[ p (1    −     p )], where  p1    =   0.2 and  p2    =   0.3,  p    =   ( p1    +    p2 )/2 (Figure 
 8.10 ).    

Stage 2   Change the response rate to the alternative hypothesis condition in 
step 2 (i.e., enter  “ 0.2 ”  for dose level 1 and  “ 0.3 ”  for dose level 2) (Figure 

 8.11 ). Run the simulation again by clicking   . When the simulation is 

fi nished, click    to view the simulation results. The design has 92.1% power 
with an average sample size of 821.5.   

 Now assume that the true effect sizes are not 0.2 versus 0.3 for the two 
treatment groups; instead, they are 0.2 and 0.28, respectively. We want to 
know to what the power of the fl exible design pertains. Keep everything the 
same (also keep Eo_max    =    0.1633), but change the response rates to 0.2 and 
0.28 for the two dose levels and run the simulation again. The key results are 
shown below. The design has 79.4% power with an average sample size of 
855.

 Given the two response rates 0.2 and 0.28, a design with a fi xed sample size 
of 880 has a power of 79.4%. We can see that there is a saving of 25 patients 
using the fl exible design. If the response rates are 0.2 and 0.3 for 92.1% power, 
the sample size required is 828 with the fi xed - sample - size design. The fl exible 
design saves six or seven subjects. Flexible design increases sample size when 
the effect size observed is less than expected. Therefore, the power is 
protected.    



  

    Figure 8.10     Finding the adjusted  α  in a sample - size reestimation.  

    Figure 8.11     Finding the power in a sample - size reestimation.  
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  8.4   DESIGN WITH RANDOM - PLAY - THE - WINNER 
RANDOMIZATION

 To investigate the effect of random - play - the - winner randomization, the earlier 
example is used again, this time with a sample size of 600 subjects. The com-
monly used response - adaptive randomization is RPW(1,1); that is, one initial 
ball for each group and one additional ball corresponding will be added to the 
urn for each response. The data will be unblinded for every 100 new patients 
or a cluster size of 100. Click the option Step 2: Global Settings , and enter 
 “ 0.2 ”  for the response rate for both groups    ⇒    Click the option  Step 4: Ran-
domization Rule     ⇒    Choose  Random - Play - the - Winner     ⇒    Enter  “ 100 ”  for 
Cluster size  and  “ 1 ”  for initial and additional balls for both dose levels    ⇒    Click 
the option Step 7: N  -  Adjustment  and enter  “ 1000 ”  for  Adjusted total sample 
size at information time, n . After trying many runs with different  α  values 
until α  matches the family - wise error (FWE), the adjusted  α  is found to be 
0.02 based on 30,000 simulations (Figure  8.12 ).   

 To fi nd the power, change the response rates for the two dose levels to 0.2 
and 0.3, respectively. The design has 77.3% power with an average sample size 
of 600. On average, there are 223 subjects in dose level 1 and 377 in dose level 
2 (Table  8.2 ).    

Figure 8.12     Effect of random - play - the - winner.



  

  8.5   GROUP SEQUENTIAL DESIGN WITH ONE 
INTERIM ANALYSIS 

 Similar to the example in Section  8.3  there two stages in the simulation. The 
fi rst stage is used to fi nd the adjusted  α  value, and the second stage, to fi nd 
the power. Keep everything the same as in the earlier example, but click the 
option  Step 2: Global Settings , and enter  “ 700 ”  for  Number of subjects  and 
 “ 0.2 ”  for both dose levels, then click the option  Step 5: Early Stopping , and 
enter  “ 350, 0.1, 0.0, 0.05, 0.1 ”  for the fi ve textboxes, in that order. Try different 
 α  values until the one - sided FWE   =   0.025. The adjusted  α  is 0.024 for the 
current design. Now click the option  Step 2: Global Settings  in the  Simulation 
Setup  panel and enter  “ 0.2 ”  and  “ 0.3 ”  for the response rates of the two dose 
levels, respectively (Figure  8.13 ). The simulation results are presented 
below.   

 TABLE 8.2       

    

  Dose level  

  1    2  

  Number of patients    222.972    377.028  
  Response rate    0.2    0.3  
  Mean rate observed    0.197    0.299  
  Std. dev. of rate observed    0.028    0.024  

    Figure 8.13     Group sequential design with one interim analysis.  
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Simulation Input   The maximum number of subjects is 700. The trial will 
stop if 350 or more are randomized and one of the following criteria is 
met:

   •   Effi cacy (utility) stopping criterion.    The maximum difference in response 
rate between any dose and dose level 1 is larger than 0.1, with the lower 
bound of the two - sided 95% naive confi dence interval larger than or 
equal to 0.0.  

   •   Futility stopping criterion.    The maximum difference in response rate 
between any dose and dose level 1 is smaller than 0.05, with the upper 
bound of the one - sided 95% naive confi dence interval smaller than 0.1.     

Simulation Results   See Table  8.3 .   The average total number of subjects for 
each trial is 487.7. The total number of responses per trial is 122. The probabil-
ity of predicting the most responsive dose level correctly is 0.988 based on 
rates observed. Under the alternative hypothesis, the probability of early stop-
ping for effi cacy is 0.5047 and the probability of early stopping for futility is 
0.1035. The power for testing the treatment difference is 0.825.      

  8.6   DESIGN PERMITTING EARLY STOPPING AND 
SAMPLE - SIZE REESTIMATION 

 It is often desirable to have a design that permits both early stopping and 
sample - size modifi cation. Keep everything the same as earlier, but enter  “ 700 ”  
for Number of subjects  in  Step 2: Global Settings  and  “ 350 ”  for  Cluster size
in Step 4: Randomization Rule . In step 7, enter  “ 350 ”  for  Adjusted total 
sample size at information time, n ,  “ 1 ”  for Eo_max,  “ 2 ”  for parameter  a , and 
 “ 1000 ”  for  Adjusted total sample size should not exceed  (Figure  8.14 ). Simi-
larly, the one - sided adjusted  α  value is found to be 0.05. The simulation results 
are presented below.   

 The maximum sample size is 700. The trial will stop if 350 or more are 
randomized and one of the following criteria is met: 

 TABLE 8.3  

  Dose Level 

  1    2  

  Number of patients    243.587    244.152  
  Response rate    0.2    0.3  
  Mean rate observed    0.198    0.303  
  Std. dev. of rate observed    0.028    0.033  



  

   •      Effi cacy (utility) stopping criterion.    The maximum difference in response 
rate between any dose and dose level 1 is larger than 0.1 with the lower 
bound of the two - sided 95% naive confi dence interval larger than or 
equal to 0.0. 

   •      Futility stopping criterion.    The maximum difference in response rate 
between any dose and dose level 1 is smaller than 0.05 with the upper 
bound of the one - sided 95% naive confi dence interval smaller than 
0.1. 

 The sample size will be reestimated at the time when there 350 subjects are 
randomized. The new sample size will be N(Eo_max/E_max) 2 , where Eo_max  
 =   0.1633 and the initial sample size N   =   1000 (Figure  8.15 ).   

     Simulation Results   See Table 8.4.   The average total number of subjects for 
each trial is 398.8. The probability of early stopping for effi cacy is 0.0096. The 
probability of early stopping for futility is 0.9638.   

 To fi nd the power of this design, you can change the response rates to 0.2 
and 0.3 for the two dose levels, respectively (Table  8.5 ). The average total 
number of subjects for each trial is 543.5. The total number of responses per 
trial is 136. The probability of predicting the most responsive dose level cor-
rectly is 0.985 based on rates observed. The probability of early stopping for 
effi cacy is 0.6225. The probability of early stopping for futility is 0.1546. The 
power is 0.842.   

    Figure 8.14     Early stopping and sample - size reestimation.  
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    Figure 8.15     Power for group sequential trial with sample - size reestimation.  

 TABLE 8.4       

    

  Dose Level  

  1    2  

  Response rate    0.2    0.2  
  Mean rate observed    0.202    0.198  
  Std. dev. of rate observed    0.028    0.028  

 TABLE 8.5       

    

  Dose Level  

  1    2  

  Number of patients    271.463    272.029  
  Response rate    0.2    0.3  
  Mean rate observed    0.198    0.303  
  Std. dev. of rate observed    0.028    0.032  



 The next set of examples is based on the same scenario in a six - arm study 
with response rates 0.5, 0.4, 0.5, 0.6, 0.7, and 0.55 for the six dose levels from 
1 to 6, respectively.    

  8.7   CLASSICAL DESIGN WITH MULTIPLE TREATMENT GROUPS 

 Enter  “ 800 ”  for the number of subjects,  “ 0.5 ”  (assuming a response rate of 
0.5 under Ho ) for the response rate for all dose levels (the null hypothesis 
condition); enter  “ 1 ”  for initial balls and  “ 0 ”  for additional balls corresponding 
to each response in step 4. By altering α  until the FEW becomes 0.025, we 
found that the fi nal  α  is 0.0055. Next, we enter  “ 0.5, 0.4, 0.5, 0.6, 0.7, and 0.55 ”  
for the six dose levels from 1 to 6, respectively. Enter  “ 100 ”  for the cluster in 
step 4 and  “ 1000 ”  for the number of subjects randomized in step 7. The simu-
lation results are presented in Table  8.6 .   

 The average total number of subjects for each trial is 800. The total number 
of responses per trial is 433.3. The probability of predicting the most respon-
sive dose level correctly is 0.951 based on rates observed. The power for 
testing the maximum effect comparing any dose level to the control (dose level 
1) is 0.803 at a one - sided signifi cant level ( α ) of 0.0055. The powers for com-
paring each of the fi ve dose levels to the control (dose level 1) at a one - sided 
signifi cant level ( α ) of 0.0055 are 0, 0.008, 0.2, 0.796, and 0.048, respectively.  

  8.8   MULTIGROUP TRIAL WITH RESPONSE - ADAPTIVE 
RANDOMIZATION

 It is desirable to randomize more patients to the superior treatment group, 
which can be accomplished by using response - adaptive randomization, such 
as RPW(1,1). Specify 800 for the number of subjets in step 1 and the number 
of balls based on RPW(1,1) with a cluster size of 100 in step 4, but retain the 
response rate for dose level 1 at 0.25 in step 6. Simulations under the null 
hypothesis result in a one - sided adjusted  α  value of 0.016 using this adjusted 
α  and response rates 0.5, 0.4, 0.5, 0.6, 0.7, and 0.55 for dose levels 1 to 7, 
respectively. The simulation results shown below indicate that there are biases 

 TABLE 8.6    Simulation Results Under the Alternative Hypothesis 

  Dose Level 
  1    2    3    4    5    6  

  Number of patients    133    133    133    134    133    133  
  Response rate    0.5    0.4    0.5    0.6    0.7    0.55  
  Mean rate observed    0.499    0.4    0.5    0.6    0.7    0.55  
  Std. dev. of rate observed    0.043    0.043    0.044    0.043    0.04    0.043  
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in the estimated mean response rates in all dose levels except dose level 1, 
which has a fi xed randomization rate. The design trial has 86% power and 447 
responders per trial on average. Compared to 80% power and 433 responders 
for the simple randomization RPW(1,0), the adaptive randomization is supe-
rior in both power and number of responders. The simulation results are given 
in Tables  8.7  and  8.8 .     

 The average total number of subjects for each trial is 800. The total number 
of responses per trial is 446.8. The probability of predicting the most respon-
sive dose level correctly is 0.957 based on rates observed. The power for 
testing the maximum effect comparing any dose level to the control (dose level 
1) is 0.861 at a one - sided signifi cant level ( α ) of 0.016. The powers for compar-
ing each of the fi ve dose levels to the control (dose level 1) at a one - sided sig-
nifi cant level ( α ) of 0.016 are 0, 0.008, 0.201, 0.853, and 0.051, respectively.  

  8.9   ADAPTIVE DESIGN FEATURING DROPPING LOSERS 

 Implementing the mechanism of dropping a loser can also improve the effi -
ciency of a design. Enter  “ 800 ”  for the number of subjects in step 2, and enter 
 “ 100 ”  for the cluster in step 4 (meaning that for every 100 patients random-
ized, the data will be unblended, and a review and a decision will be make as 
to whether or not to drop a loser). Retain the randomization rate in dose level 
1 at 0.25. An inferior group (loser) will be dropped if the maximum difference 
in response between the most effective group and the least effective group 
(loser) is larger than zero with the lower bound of the one - sided 95% naive 

 TABLE 8.7    Simulation Results Under the Null Hypothesis 

  Dose Level 

  1    2    3    4    5    6  

  Number of patients    200    120    120    119    120    121  

  Response rate    0.5    0.5    0.5    0.5    0.5    0.5  
  Mean rate observed    0.499    0.493    0.493    0.493    0.493    0.494  

 TABLE 8.8    Simulation Results Under the Alternative Hypothesis 

  Dose Level 

  1    2    3    4    5    6  

  Number of patients    200    74    100    133    176    116  
  Response rate    0.5    0.4    0.5    0.6    0.7    0.55  
  Mean rate observed    0.499    0.388    0.493    0.595    0.697    0.544  



  

confi dence interval larger than or equal to zero (Figure  8.16 ). Through the 
simulation, the adjusted  α  is found to be 0.079. From the simulation results 
below, some biases in mean rate can be observed with this design. The design 
has 90% power with 467 responders. The probability of predicting the most 
responsive dose level correctly is 0.965 based on rates observed. The design 
is superior to both RPW(1,0) and RPW(1,1).   

     Simulation Results Under the Null Hypothesis   See Table  8.9 .   The power 
for testing the maximum effect comparing any dose level to the control (dose 
level 1) is 0.025 at a one - sided signifi cant level ( α ) of 0.079. The powers for 
comparing each of the fi ve dose levels to the control (dose level 1) at a one -
 sided signifi cant level ( α ) of 0.079 are 0.007, 0.007, 0.005, 0.006, and 0.006, 
respectively.    

    Figure 8.16     Dropping a loser.  

 TABLE 8.9      

    

  Dose Level  

  1    2    3    4    5    6  

  Number of patients    200    114    121    122    122    122  
  Response rate    0.5    0.5    0.5    0.5    0.5    0.5  
  Mean rate observed    0.499    0.460    0.461    0.462    0.461    0.462  
  Std. dev. of rate observed    0.035    0.085    0.084    0.084    0.085    0.084  
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Simulation Results Under the Alternative Hypothesis   See Table  8.10 .   The 
average total number of subjects for each trial is 800. The total number of 
responses per trial is 467.3. The probability of predicting the most responsive 
dose level correctly is 0.965 based on observed rates. The power for testing 
the maximum effect comparing any dose level to the control (dose level 1) is 
0.896 at a one - sided signifi cant level ( α ) of 0.079. The powers for comparing 
each of the fi ve dose levels to the control (dose level 1) at a one - sided signifi -
cant level ( α ) of 0.079 are 0.001, 0.007, 0.205, 0.889, and 0.045, respectively.      

  8.10   DOSE – RESPONSE TRIAL DESIGN 

 The trial objective is to fi nd the optimal dose with the best response rate. 
There are fi ve dose levels and 30 planned subjects in each simulation. The 
hyperlogistic model defi ned by the probability of response  p    =   1/[0.1    exp(0.05 x )  
 +    a1 exp( −a2x )], where  a3    =   [20,100] and  a4    =   [0,0.05]. The RPW(1,1) is used 
for the randomization (Figure  8.17 ). The simulation results given in Table  8.11  
show that the probability of predicting the most responsive dose level correctly 
is 0.992 by the model and only 0.505 based on rates observed.      

  8.11   DOSE - ESCALATION DESIGN FOR AN ONCOLOGY TRIAL 

 The trial objective is to fi nd the MTD with a response rate (toxicity rate) of 
0.3. The Bayesian continual reassessment method is used. The two - parameter 
logistic model is used to model the dose response. p    =   1/[1   +    a3  exp( −a4x )], 
where a3    =   [50,150], and Bayesian parameter  a4  with noninformative distribu-
tion over the range [0,0.3]. The maximum utility model is used for the ran-
domization (i.e., the next patient is assigned to the dose level that has the 
highest predicted response rate). To consider the potential response delay, a 
cluster size of 3 is used. Due to safety concerns, dose escalation must proceed 
gradually (i.e., there must be no jump in dosage). See Figures  8.18  and  8.19  
for the key parameter specifi cations to run the simulations.     

TABLE 8.10      

  Dose Level  

  1    2    3    4    5    6  

  Dose    20    30    40    50    60    70  
  Number of patients    200    26    68    172    240    95  
  Response rate    0.5    0.4    0.5    0.6    0.7    0.55  
  Mean rate observed    0.499    0.371    0.463    0.574    0.692    0.512  
  Std. dev. of rate observed    0.035    0.1    0.085    0.072    0.047    0.081  



  

    Figure 8.17     Hyperlogistic model for dose – response trial.  
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 TABLE 8.11      

    

  Dose Level  

  1    2    3    4    5  

  Dose    15    30    50    85    110  
  Number of patients    5.528    5.699    6.278    6.438    6.057  
  Response rate    0.2    0.3    0.6    0.7    0.5  
  Mean rate observed    0.193    0.294    0.593    0.691    0.489  
  Mean rate predicted    0.098    0.181    0.406    0.802    0.379  
  Std. dev. of rate observed    0.185    0.209    0.221    0.204    0.226  
  Std. dev. of rate predicted    0.074    0.073    0.104    0.151    0.056  
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    Figure 8.19     Maximum - utility model without a dose jump.  

    Figure 8.18     Hyperlogistic model with Bayesian parameter  a  4 .  



TABLE 8.12       

  Dose Level  

  1    2    3    4    5    6  

  Dose    20    30    40    50    60    70  
  Number of patients    2.5    6.2    8.5    14.1    5.8    2.9  
  Response rate    0.05    0.1    0.15    0.28    0.4    0.6  
  Mean rate observed    0.012    0.048    0.108    0.281    0.324    0.353  
  Mean rate predicted    0.056    0.106    0.191    0.313    0.461    0.608  
  Std. dev. of rate observed    0.038    0.077    0.185    0.205    0.314    0.384  
  Std. dev. of rate predicted    0.02    0.041    0.073    0.104    0.124    0.127  

 The simulation results are given in Table  8.12 . The average total number 
of subjects for each trial is 40. The total number of responses per trial is 10.2. 
The probability of predicting the most responsive dose level correctly is 1 by 
the model and 0.366 based on rates observed.      
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 E  xp  D  esign  Studio       

   9.1    E  XP  D  ESIGN  PROBABILITY FUNCTIONS 

     Bernoulli Distribution     This distribution best describes all situations where 
a  “ trial ”  is made resulting in either  “ success ”  or  “ failure, ”  such as when tossing 
a coin or when modeling the success or failure of a surgical procedure. The 
Bernoulli distribution is defi ned as

      f x p p xx x( ) ( ) , [ , ],= − ∈−1 0 11

    (9.1)  

where  p  is the probability that a particular event (e.g., success) will occur.  

  Beta Distribution     The beta distribution arising from a transformation of the 
 F  - distribution is typically used to model the distribution of order statistics. 
Because the beta distribution is bounded on both sides, it is often used to 
represent processes with natural lower and upper limits. The  beta distribution  
is defi ned as
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where  Γ  is the gamma function and  v  and  w  are shape parameters.  

  Binomial Distribution     The binomial distribution is useful for describing 
distributions of binomial events, such as the number of males and females in 
a random sample of companies, or the number of defective components in 
samples of 20 units taken from a production process. The binomial distribution 
is defi ned as
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where  p  is the probability that the respective event will occur and  n  is the 
maximum number of independent trials.  

  Cauchy Distribution     The Cauchy distribution is interesting for theoretical 
reasons. Although its mean can be taken as zero, since it is symmetrical about 
zero, the expectation, variance, higher moments, and moment generating 
function do not exist. The  Cauchy distribution  is defi ned as
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where  η  is the location parameter (median),  θ  is a scale parameter, and  π  is a 
constant (3.1415       ·        ·        · ).  

  Chi - Square Distribution     The sum of  v  independent squared random vari-
ables, each distributed following the standard normal distribution, is
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where  v  represents the degrees of freedom,  e  is the base of the natural loga-
rithm, sometimes called Euler ’ s  e  (2.71       ·        ·        · ), and  Γ  is the gamma function.  

  Exponential Distribution     If  T  is the time between occurrences of rare events 
that happen on the average with a rate of l per unit of time, then  T  is distrib-
uted exponentially with parameter  λ . Thus, the exponential distribution is 
frequently used to model the time interval between successive random events. 
Examples of variables distributed in this manner include the gap length 
between cars crossing an intersection, the lifetimes of electronic devices, or 
the arrivals of customers at a checkout counter in a grocery store. The  expo-
nential distribution function  is defi ned as

      f x e xx( ) ,= > ≥−λ λλ for and0 0     (9.6)  

where  λ  is an exponential function parameter.  

  F - Distribution     Snedecor ’ s  F  - distribution is most commonly used in tests of 
variance (e.g., ANOVA). The ratio of two chi - squares divided by their respec-
tive degrees of freedom is said to follow an  F  - distribution. The  F  - distribution 
has the probability density function (for  v    =   1, 2,       ·        ·        ·       ;  w    =   1, 2,       ·        ·        · )  :

      
f x

v w v w v
w

x
vx
w

v
v

v w

( ) ,
/

/
( ) /

= +( ) ( ) ( )( ) +⎛
⎝

⎞
⎠

−
− =

Γ Γ Γ
2 2 2

1
2

2 1
2

    
(9.7)

  

where 0    ≤     x ,  v  and  w  (degrees of freedom) are positive integers, and  Γ  is the 
gamma function.  
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  Gamma Distribution     The probability density function of the exponential 
distribution has a mode of zero. In many instances it is known a priori 
that the mode of distribution of a particular random variable of interest is not 
equal to zero (e.g., when modeling the distribution of the lifetimes of a product 
such as an electric light bulb or the serving time taken at a ticket booth 
at a baseball game). In those cases, the gamma distribution is more appropri-
ate for describing the underlying distribution. The  gamma distribution  is 
defi ned as
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where  c  is a shape parameter and  b  is a scale parameter.  

  Geometric Distribution     If independent Bernoulli trials are made until a 
 “ success ”  occurs, the total number of trials required is a geometric random 
variable. The  geometric distribution  is defi ned as

      f x p p xx( ) ( ) , , . . . ,= − =1 1 2for     (9.9)  

where  p  is the probability that a particular event (e.g., success) will occur.  

  Gompertz Distribution     The Gompertz distribution is a theoretical distribu-
tion of survival times. Gompertz  (1825)    proposed a probability model for 
human mortality based on the assumption that the  “ average exhaustion of a 
man ’ s power to avoid death to be such that at the end of equal infi nitely small 
intervals of time he lost equal portions of his remaining power to oppose 
destruction which he had at the commencement of these intervals ”  (Johnson 
et al.,  1995   , p. 25). The resulting hazard function

      r x B x x B c( ) exp( ) , , .= ≤ > ≤for and0 0 1     (9.10)    

  Laplace Distribution     For interesting mathematical applications of the 
Laplace distribution, see Johnson et al.  (1995)   . The  Laplace  (or  double expo-
nential )  distribution  is defi ned as
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where  a  is the location parameter (mean) and  b  is the scale parameter.  

  Logistic Distribution     The logistic distribution is used to model binary 
responses (e.g., gender) and is commonly used in logistic regression. The 
 logistic distribution  is defi ned as
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where  a  is a location parameter (mean) and  b  is a scale parameter.  

  Lognormal Distribution     The lognormal distribution is often used in simula-
tions of variables such as personal incomes, age at fi rst marriage, or tolerance 
to poison in animals. In general, if  x  is a sample from a normal distribution, 
then  y    =    e  x    is a sample from a lognormal distribution. Thus, the  lognormal 
distribution  is defi ned as
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where  μ  is a scale parameter and  σ  is a shape parameter.  

  Normal Distribution     The normal distribution (the  “ bell - shaped curve ”  
which is symmetrical about the mean) is a theoretical function commonly used 
in inferential statistics as an approximation to sampling distributions. In 
general, the normal distribution provides a good model for a random variable, 
when: 

  1.     There is a strong tendency for the variable to take a central value.  
  2.     Positive and negative deviations from the central value are equally 

likely.  
  3.     The frequency of deviations falls off rapidly as the deviations become 

larger.    

 As an underlying mechanism that produces the normal distribution, one 
may think of an infi nite number of independent random (binomial) events 
that bring about the values of a particular variable. For example, there are 
probably a nearly infi nite number of factors that determine a person ’ s height 
(i.e., thousands of genes, nutrition, diseases, etc.). Thus, height can be expected 
to be normally distributed in a population. The  normal distribution function  
is determined by the formula
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where  μ  is the mean and  σ  is the standard deviation.  

  Pareto Distribution     The Pareto distribution is commonly used in a monitor-
ing production processesor. The Pareto distribution can be used to model the 
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length of wire between successive fl aws. The  standard Pareto distribution  is 
defi ned as
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where  c  is the shape parameter.  

  Poisson Distribution     The Poisson distribution is also sometimes referred to 
as the  distribution of rare events . Examples of Poisson - distributed variables 
are number of accidents per person, number of sweepstakes won per person, 
or the number of catastrophic defects found in a production process. The 
 Poisson distribution  is defi ned as
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where  λ  is the expected value of  x  (the mean).  

  Rayleigh Distribution     If two independent variables  y  1  and  y  2  are indepen-
dent of each other and normally distributed with equal variance, the variable 
  x y y= +( )1

2
2
2

   will follow the Rayleigh distribution. Thus, an example (and 
appropriate metaphor) for such a variable would be the distance of darts from 
the target in a dart - throwing game, where the errors in the two dimensions of 
the target plane are independent and normally distributed. The  Rayleigh dis-
tribution  is defi ned as

      
f x

x
b

x
b

x b( ) exp ,= −⎛
⎝⎜

⎞
⎠⎟ ≤ >

2

2

22
0 0for and

    
(9.17)

  

where  b  is a scale parameter.  

  Rectangular Distribution     The  rectangular distribution  is useful to describe 
random variables with a constant probability density over the defi ned range 
 a     <     b :
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  Student ’ s t Distribution     Student ’ s  t  distribution is symmetric about zero, and 
its general shape is similar to that of the standard normal distribution. It is 
most commonly used in testing hypothesis about the mean of a particular 
population.  Student ’ s t distribution  is defi ned as (for  n    =   1, 2,       ·        ·        · )
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where  v  is a shape parameter (degrees of freedom) and  Γ  is the gamma 
function.  

  Weibull Distribution     As described earlier, the exponential distribution is 
often used as a model of time - to - failure measurements, when the failure 
(hazard) rate is constant over time. When the failure probability varies over 
time, the Weibull distribution is appropriate. Thus, the Weibull distribution 
is often used in reliability testing (e.g., of electronic relays, ball bearings, etc.; 
see Hahn and Shapiro,  1967   ). The  Weibull distribution  is defi ned as
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where  b  is a scale parameter and  c  is a shape parameter.    

  9.2   VIRTUAL TRIAL DATA GENERATION USING  E  XP  D  ESIGN  
RANDOMIZOR 

  9.2.1   Random Number Generation Using  E  xp  D  esign  

 The randomizor in ExpDesign Studio can generate random numbers with 
the following distributions: Bernoulli, beta, binomial, Cauchy, chi - square, 
exponential, gamma, geometric, half - normal, hypergeometric, inverse Gauss-
ian, laplace, lognormal, multinormal, negative binomial, Pareto, Pascal, 
Poisson, Rayleigh, Snedecor -  F , standard normal, Student ’ s -  t , Uniform(0,1), 
Weibull.  

 To generate a uniformly distributed random number between 0 and 1, click 

   in the  ExpDesign Studio  window; then click   .  

  9.2.2   How to Generate a Random Univariate Using  E  xp  D  esign  

 To generate 40 random numbers with a standard normal distribution, enter 

 “ 40 ”  for  Number of random variables to be generated  and click    

(Figure  9.1 ). The random numbers generated can be reviewed by clicking    
on the toolbar (Figure  9.2 ).     

 To generate fi ve random numbers with the exponential distribution and 
sort them, select  Exp  in the  Distributions  box. 
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Figure 9.1      N (0,1) random number generation. 

Figure 9.2     Random number generated using ExpDesign. 

   •     Enter  “ 5 ”  for  Number of random variables to be generated .  
   •     Check the  Sort output  box.    

   •     Click    and the random numbers generated can be reviewed by 

   clicking    on the toolbar (Figures  9.3  and  9.4 ).         



Figure 9.3     Exponential random number generation. 

Figure 9.4     Exponential random number output. 

  9.2.3   How to Generate a Random Multivariate Using  E  xp  D  esign  

 To generate fi ve rows of random numbers  x1 ,  x2 ,       ·        ·        ·       of multivariate normal 
distribution with mean {0,0} and the following correlation matrix:

  1    0.3  

  0.3    1  

     •     Click   , then select  MultiNormal .  
   •     Enter  “ 2 ”  for  No. of Vars .  
   •     Enter  “ 1, 0.3, 0.3, 1 ”  for  Corr. Coef .  
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   •     Enter  “ 5 ”  for  Number of random numbers to be generated .  

   •     Click   .  

   •     The random numbers generated can be reviewed by clicking    on the 
toolbar (Figures  9.5  and  9.6 ).        

 To generate fi ve rows of random numbers  x1 ,  x2 ,       ·        ·        ·       multivariate normal 
distribution with the following correlation matrix:

Figure 9.5     Multivariate random number generation. 

Figure 9.6     Multivariate normal random numbers. 



  1    0.5    0.5  

  0.5    1    0.5  

  0.5    0.5    1  

   •     Select  MultiNormal  in the  Distributions  box.  
   •     Enter  “ 3 ”  for  No. of Vars .  
   •     Enter  “ 1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1 ”  for  Corr. Coef .  
   •     Enter  “ 5 ”  for  Number of random variables to be generated .  

   •     Click   .  

   •     The random numbers generated can be reviewed by clicking    on the 
toolbar (Figures  9.6  and  9.7 ).       

  9.2.4   How to Generate a Random Multibinomial Using  E  xp  D  esign  

 To generate fi ve rows of random numbers  x1 ,  x2 ,       ·        ·        ·       , of multibinomial distri-
bution with marginal proportion {0.4,0.5} and the following correlation 
matrix:

  1    0.3  

  0.3    1  

     •     Click    and the select  MultiBinomial .  
   •     Enter  “ 2 ”  for  No. of Vars .  
   •     Enter  “ 0.4, 0.5 ”  for the proportions.  
   •     Enter  “ 1, 0.3, 0.3, 1 ”  for  Corr. Coef .  
   •     Enter  “ 5 ”  for  Number of random variables to be generated .  

   •     Click   .  

Figure 9.7     Three - variate normal distributions. 
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   •     The random numbers generated can be reviewed by clicking    on the 
toolbar (Figures  9.8  and  9.9 ).        

 To generate fi ve rows of random numbers  x1 ,  x2 ,       ·        ·        ·       , of multibinomial dis-
tribution with marginal proportion {0.4, 0.5, 0.35} and the following correlation 
matrix:

  1    0.3    0.3  

  0.3    1    0.3  

  0.3    0.3    1  

   •     Click    and then select  MultiBinomial .  
   •     Enter  “ 3 ”  for  No. of Vars .  
   •     Enter  “ 0.4, 0.5, 0.35 ”  for the  proportions .  
   •     Enter  “ 1, 0.3, 0.3, 0.3, 1, 0.3, 0.3, 0.3, 1 ”  for  Corr. Coef .  
   •     Enter  “ 5 ”  for  Number of random variables to be generated .  

   •     Click   .  

   •     The random numbers generated can be reviewed by clicking    on the 
toolbar (Figure  9.9 ).      

  9.3    E  XP  D  ESIGN  TOOLKITS 

 ExpDesign Studio toolkits include four tools:  Graphic calculator, statistical 
calculator, Confi dence interval calculator,  and  show tip of day  (Figure  9.10 ). 
The toolkits can be accessed through the Tools  menu or the icons on the 

Figure 9.8     Two - variate binomial random numbers. 



Figure 9.9     Three - variate binomial random numbers. 

toolbar. The tip text for each icon will indicate which icon is for which tool 
when you move the mouse over an icon (Figure  9.10 ).   

  9.3.1   Graphic Calculator 

 You can use the graphic calculator as a scientifi c calculator, a function plotter, 
or a data graphic tool. 

 To use as a scientifi c calculator: 

   •     Click the icon for  Graphic Calculator   .  
   •     Enter functions and values to form a expression.  
   •     Click  Compute  to obtain the desired output.    

 To use as function plotter: 

   •     Click the icon for  Graphic Calculator   .  
   •     Choose  Function Plot  from the  Option  menu.  
   •     Enter an expression in the textbox (the independent variable must be 

x ).  

Figure 9.10     Menu and toolbar for expdesign toolkits. 
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   •     Click  Graph  to plot the expression.  
   •     Copy the graph by clicking the  Graph  button and paste into other appli-

cation software such as MS Word using the Paste  or  Paste - Special
method.

   •     Click    to print the result (Figure  9.11 ).      

 To use as a data graphic tool: 

   •     Choose the icon for  Graphic Calculator   .  
   •     Enter data for  x  and  y  in the two columns in the spreadsheet. Click  Graph

to plot.  
   •     You can change the title, axis labels, and ranges for the axis by clicking 

the corresponding area and entering the desired text in the textboxes that 
appear, then press the Enter  key.  

   •     Copy the graph by clicking the  Copy  button and paste into an application 
software such as MS Word using the Paste  or  Paste  -  Special  method.  

   •     Click    to print the result.     

Figure 9.11     ExpDesign graphics calculator. 



  9.3.2   Statistical Calculator 

 The statistical calculator allows users to calculate the probability density, 
probabilities, and inverse probability functions for the following probability 
distributions: binomial, chi - square, exponential, gamma, Poisson, Suedecor -  F , 
standard normal, Student ’ s - t, and Weibull. 

   •     Select the option for  Probability distribution  or  Cumulative
distribution .  

   •     Select a probability distribution from the list.  
   •     Enter appropriate values for the model parameters.  

   •     Click    to obtain the desired output.  

   •     Print the output by clicking    (Figure  9.12 ).       

  9.3.3   Confi dence Interval Calculator 

 The confi dence interval (CI) calculator allows users to calculate the following 
confi dence intervals: one proportion exact CI, one proportion CI using normal 
approximation, one mean CI using the t  - distribution, one mean CI using the 
normal approximation, two - proportion CI using the  t  - distribution, two - mean 
CI using the t  - distribution, two - mean CI using the normal distribution, and CI 
for a one -  or two - variance ratio using the  F  - distribution (Figure  9.13 ). 

Figure 9.12     ExpDesign distribution calculator. 
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Figure 9.13     Confi dence interval calculator options. 

Figure 9.14     ExpDesign confi dence interval calculator. 

   •     Click the CI icon   .  
   •     Choose the method desired for  CI Options.
   •     Enter appropriate values for the model parameters.  

   •     Click    to obtain the confi dence interval.  

   •     Click    to print the result (Figure  9.14 ).            
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Classical and Adaptive Clinical Trial Designs Using ExpDesign Studio™,
By Mark Chang
Copyright © 2008 John Wiley & Sons, Inc.

 Classical Design Method 
Reference

  10.1   SINGLE - GROUP DESIGN 

  10.1.1   One/Paired - Sample Hypothesis Test for the Mean 

Sign Test for Median Difference for a Paired Sample 
Objective:     To calculate sample size based on the sign test for the difference 
between the medians of two distributions.  

Technical Notes     This formula for sample - size calculation is given by Noether 
 (1987)  under the assumption of a large sample. The sign test requires that 
observations in the two samples be taken in pairs, one from each distribution. 
Each observation should be taken under the same conditions, but it is not 
necessary for different pairs to be taken under similar conditions.   

Wilcoxon Signed -Rank Test for One or a Paired Sample 
Objective:     To calculate sample size based on the Wilcoxon signed - rank test 
for the mean or median of a population, without requiring normality.  

Technical Notes     This formula for sample - size calculation is given by Noether 
 (1987)  under the assumption of a large sample. The Wilcoxon signed - rank test 
is a distribution - free test and requires a symmetrical population. The observa-
tions must be obtained randomly and independently.   

Test for H0: ( u0, σ0) Versus Ha: (ua, σa)—Large Sample 
Objective:     To calculate sample size based on a  z  - test for one sample mean 
with H0 :  u0  versus  Ha: u a , where  ua  is a value that the research is interested in 
and u0  is a value that the research is not interested in.  

Technical Notes     The formula is accurate if the population is normally dis-
tributed; otherwise, the sample size must be large (e.g., n     >    30) (Lachin, 
 1981 ).   

10
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One-Sample t-Test
Objective:     To calculate sample size based on a one - sample  t  - test for the 
difference between an assumed population mean u0  and a sample mean  ua .  

Technical Notes     This method for calculating the sample size is an exact 
method for a one - sample  t  - test. It is computed using a noncentral  t  - distribution 
with n     −    1 degrees of freedom, and the noncentrality parameter is the square 
root of n  times ( u0     −     ua )/ s , where  s  is the standard deviation and  n  is the sample 
size (Devore,  1991 ).   

One-Sample t-Test: Finite Population 
Objective:     To calculate sample size based on a one - sample  t  - test for the 
difference between an assumed population mean u0  and a sample mean  ua . 
The population size is limited.  

Technical Notes     This method of calculating the sample size is an exact 
method for a one - sample  t  - test. It is fi rst computed using a noncentral  t  - 
distribution with n     −    1 degrees of freedom, and the noncentrality parameter 
is the square root of n  times ( u0     −     ua )/ s /(1    −     n / N ), where  s  is the standard 
deviation, n  is the sample size, and  N  is the population size. The resulting 
sample size is then adjusted for fi nite sample size (Devore,  1991 ).   

Paired-Sample t-Test
Objective:     To calculate sample size based on the paired - sample  t  - test for the 
difference between an assumed population mean u0  and a sample mean  ua . A 
paired - sample  t  - test is often used to determine if a mean response changes 
under different experimental conditions using paired observations, such as 
pre -  and post -  study measurements.  

Technical Notes     This method for calculating the sample size is an exact 
method for a paired - sample  t  - test. It is computed using a noncentral  t  - 
distribution with n     −    1 degrees of freedom and the noncentrality parameter 
square root of n  times ( u0     −     ua )/ s , where  s  is standard deviation and  n  is the 
sample size (Devore,  1991 ).   

One-Way Repeated Measures ANOVA
Objective:     To calculate sample size for testing constant correlation based on 
a one - way repeated measures ANOVA.  

Technical Notes     Sample size is computed using central and noncentral 
F . The numerator and denominator degrees of freedom are ( M     −    1) and 
(M     −    1)( n     −    1), and the noncentrality parameter is  nM  times the effect size,  δ . 
δ    =    V /[ S2 (1    −     r )], where the variance of means  V    =    Σ  ( ui     −    u ) 2 / k, k  is the number 
of levels, S  is the common standard deviation at each level, and  r  is the 
correlation between levels.   
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One-Sample Multiple Test for Zero Means 
Objective:     To calculate sample size based on a one - sample multiple test for 
zero means.  

Technical Notes     The sample - size formula is given by Odeh and Fox 
 (1991)    for the three main effects based on a noncentral  F  - distribution. The 
numerator and denominator degrees of freedom are m     −    1 and  N     −     m , 
respectively.    

  10.1.2   One/Paired - Sample Hypothesis Test for Proportion 

One-Sample Exact Test for Proportion Using Binomial Distribution 
Objective:     To calculate sample size based on a one - sample exact test for 
proportion using binomial distribution.  

Technical Notes     Sample size is calculated using cumulative binomial distri-
bution (Devore,  1991 ). The critical point for rejecting the null hypothesis is 
calculated as the largest k  for which the probability of observing  k  or fewer 
responses is less than α  when  p    =    p0  for a one - sided test with  H0 :  pa     <    p0 . For 
a one - sided test with  H0 :  pa     >    p0 , the smallest  k  is chosen for which the probabil-
ity of observing k  or more successes is  ≤α . For a two - sided test, both probabili-
ties are required to be less than or equal to α /2. Because of the discrete nature 
of the binomial distribution, power is not a monotonic function of sample size. 
Therefore, a small sample - size increase may result in a decrease in power. The 
sample size provided by this software ensures that a sample size beyond this 
size will not reduce the power.   

McNemar’s Test for a Paired Sample 
Objective:     To calculate sample size based on McNemar ’ s test for the equality 
of binary response rates from two populations, where the data consist of 
paired dependent responses, one from each population.  

Technical Notes     This sample - size formula is given by Miettinen  (1968)  
based on McNemar ’ s test, which is identical to the binomial test using a 
normal approximation. It should be used only when normality is met. That is, 
C12C12     ≥     C21 (4    −     C12 ) and  C21C21     ≥     C12 (4    −     C21 ), where  Cij  is the cell frequency 
in a 2    ×    2 table.   

Chi-Square Test for One Sample Proportion 
Objective:     To calculate sample size based on the chi - square test for one 
sample proportion.  

Technical Notes     This method is only applicable to a large sample due 
to the normality approximation. The sample size for the one - sided test is 
calculated using the following formula: n    =   ( z1−αd0    +    z1−βd1 ) 2 /( p0     −     p1 ) 2 , where 
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di    =   [ pi  (1    −     pi )] 0.5  and  pi  is the proportion. For a two - sided test, replace the  α
in the equation by α /2 (Devore,  1991 ).   

Chi-Square Test for One Sample Proportion: Finite Population 
Objective:     To calculate sample size based on the chi - square test for one -
 sample proportion with fi nite population adjustment.  

Technical Notes     This method is only applicable to a large sample due to the 
normality approximation. The unadjusted sample size for the one - sided test 
is calculated using the following formula: n    =   ( z1−α   d0    +    z1−β   d1 ) 2 /( p0     −     p1 ) 2 , where 
d i    =   [ pi  (1    −     p i )] 0.5  and  pi  is the proportion. For a two - sided test, replace the  α
in the equation by α /2. To adjust for fi nite population size  N , use a factor of 
n /( n    +    N ). That is, the adjusted sample size will be  nN /( n    +    N ) (see Devore, 
 1991 ).    

  10.1.3   One/Paired - Sample Hypothesis Test for Others 

Test for Bloch –Kraemer Intraclass κ  Coeffi cient 
Objective:     To calculate sample size based on the test for Bloch – Kraemer 
intraclass κ  coeffi cient for binary outcomes.  

Technical Notes     The sample size is calculated based on the formula 
n    =   [( z1−α    +    z1−β )/( Z0     −     Z )] 2   Vz , where  Z  is the  z  - transform of the  κ  coeffi cient, 
and Vz  is the variance of  Z . The  κ  coeffi cient   =   (variance of  p )/[ p (1    −     p )], and 
p  is the proportion of response (Bloch and Kraemer,  1989 ).   

Test for Bloch –Kraemer Intraclass κ Using  z-Transformation
Objective:     To calculate sample size based on the test for the Bloch – Kraemer 
intraclass κ  coeffi cient (binary outcome) with Kraemer ’ s  Z  - transformation.  

Technical Notes     The sample size is calculated based on the formula  n    =   ( z1−α

/w ) 2Vk , where the variance of the  κ  coeffi cient  Vk    =   (1    −     κ ){(1    −     κ )(1    −    2 κ )   +  
κ (2    −     κ )/[2 p (1    −     p )]}, the kappa coeffi cient   =   (variance of  p )/[ p (1    −     p )], and  p
is the proportion of response. It is assumed that κ  is normally distributed. This 
assumption may not hold in some situations; therefore, it is better to use the 
z  - transform (Bloch and Kraemer,  1989 ).   

Test H0: Correlation = Zero Using Fisher ’s Arctan Transformation 
Objective:     To calculate sample size based on a test for single correlation.  

Technical Notes     The formula is developed using Fisher ’ s arctanh transfor-
mation: Z ( r )   =   0.5 ln[(1   +    r )/(1    −     r )], where  r  is the sample correlation.  Z ( r ) 
is normally distributed with mean Z ( r0 ) and variance 1/( N     −    3), where  r0  is the 
true correlation and N  is the sample size (Lachin,  1981 ).   
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Test H0: Regression Coeffi cient = Zero Using Arctan Transformation 
Objective:     To calculate sample size based on a test for the regression 
coeffi cient.  

Technical Notes     The formula is developed using Fisher ’ s arctanh trans-
formation: Z ( r )   =   0.5 ln[(1   +    r )/(1    −     r )], where  r  is a sample regression coeffi -
cient. Z ( r ) is normally distributed with mean  Z ( r0 ) and variance 1/( N     −    3), 
where r0  is the true regression coeffi cient and  N  is the sample size (Lachin, 
 1981 ).   

Logistic Regression on x for a Binary Outcome 
Objective:     To calculate sample size based on logistic regression on a single 
variable x  for binary outcomes.  

Technical Notes     Logistic regression is commonly used in the analysis of 
epidemiologic data to examine the relationship between possible risk 
factors and a disease. In follow - up studies the proportion of persons with the 
disease (event) is usually low, but it is higher in case – control studies. The 
method was developed by Whitehead  (1993)    using the normal approximation. 
He has found the sample size required to be very sensitive to the 
distribution of covariates. The sample size is given by N    =   [ z1−α    +   exp( −Q2 /
4)z1−β ] 2 (1   +   2 Pδ )/( PQ2 ), where  P  is the proportion at the mean of the covariate 
and δ    =   [1   +   (1   +    Q2 ) exp(5 Q2 /4)]/[1   +   exp( −Q2 /4)] (see Hsieh,  1989 ).   

Logistic Regression on x for a Binary Outcome with Covariates 
Objective:     To calculate sample size based on logistic regression on covariates 
for binary outcomes.  

Technical Notes     Similar to the preceding method, this method was also 
developed by Whitehead  (1993)    using the normal approximation. He has 
found the required sample size to be very sensitive to the distribution of 
covariates. The sample size is given by N    =   [ z1−α    +   exp( −Q2 /4) z1−β ] 2 (1   +   2 Pδ )/
(PQ2 )/(1    −     r2 ), where  P  is proportional to the mean of the covariate,  Q  is the 
log odds ratio, δ    =   [1   +   (1   +    Q2 ) exp(5 Q2 /4)]/[1   +   exp( −Q2 /4)], and  r  is the 
correlation of x  with the covariates included (Hsieh,  1989 ).   

Linear Regression; Test for H0: Correlation Coeffi cient = 0
Objective:     To calculate sample size based on linear regression (test for null 
hypothesis H0 : correlation coeffi cient   =   0).  

Technical Notes     The sample size is computed using the noncentral 
F  - distribution with numerator and denominator degrees of freedom 1 and 
n     −    2. The noncentrality parameter is  nr2 /(1    −     r2 ), where  r  is a correlation 
coeffi cient (Cohen,  1988   ).   
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  Multiple Linear Regression; Test for  H  0 : Multiple Correlation  R    =   0 
  Objective:     To calculate sample size based on multiple linear regression (test 
for  H  0 : multiple correlation  R    =   0).  

  Technical Notes     The sample size is computed using noncentral  F  - distribution 
with numerator and denominator degrees of freedom  k  and  n     −     k     −    1. The 
noncentrality parameter is  nr  2 /(1    −     r  2 ), where  r  is a correlation coeffi cient 
(Cohen,  1988 ).   

  Multiple Regression; Test, Zero Increase in  R  2  Due to Extra  b  Covariates 
  Objective:     To calculate sample size based on multiple regression to test for 
the signifi cance of the effect of additional covariates.  

  Technical Notes     The sample size is computed using the noncentral 
 F  - distribution with numerator and denominator degrees of freedom  b  and 
 n     −     a     −     b     −    1, where  a  is the number of covariantes for the prior model. The 
noncentrality parameter is   n R R Rab a ab( ) ( )2 21− −/ , where  R a   and  R ab   are the 
correlation coeffi cients for the prior and the larger models (Cohen,  1988 ).   

  Linear Regression  y    =    a    +    bx ; Test  H  0 :  b    =    b  0  
  Objective:     To calculate sample size based on linear regression:  y    =    a    +    bx  
(test  H  0 :  b    =    b  0 , vs.  H a : b    ≠    b  0 ).  

  Technical Notes     The sample size is calculated based on noncentral  t , with  
n     −    2 degrees of freedom. The noncentrality parameter is   n  | b     −     b  0 |  S / S e  , 
where  S  is the standard deviation of  x  and  S e   is the standard deviation of 
error.   

  Kendall ’ s Test of Independence 
  Objective:     To calculate sample size based on Kendall ’ s test for independence 
between two series of observations obtained in pairs.  

  Technical Notes     This formula was introduced by Noether  (1987)  under the 
assumption of a large sample. Kendall ’ s test requires the two population dis-
tributions to be continuous and the observations  x i   and  y i   to have been obtained 
in pairs (Noether,  1987 ).    

  10.1.4   Paired - Sample Equivalence Test for the Mean 

  Paired  t  - Test for Equivalence of Means 
  Objective:     To calculate sample size based on the paired  t  - test for equivalence 
of means.  

  Technical Notes     This is an exact method. The sample size is computed using 
noncentral  t  - distribution with the degree of freedom and the noncentrality 
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parameter the square root of  n  times ( u  0     −     u a  )/ s , where  s  is the standard devia-
tion and  n  is the sample size (Chow and Liu,  1998 ).    

  10.1.5   Paired - Sample Equivalence Test for Proportion 

  Paired Response: Equivalence of  p  1  and  p  2  (Large Sample) 
  Objective:     To calculate sample size based on the equivalence of the paired 
proportion.  

  Technical Notes     The sample size (number of pairs) is calculated using the 
formula  n    =    v  ( z  1 −  α      −     z  1 −  β  ) 2 /( δ  0     −     δ  1 ) 2 , where  v    =   max[ p  0 (1    −     p  0 ),  p  1 (1    −     p  1 )];  δ  0  
and  δ  1  are the allowable difference in proportion and the expected difference 
in proportion, respectively. This formula can be derived from the Mukuch –
 Simon method for a two - sample equivalence problem, noting that variance 
for a one - sample problem is half of the variance for the two - sample problem. 
This method is only applicable for a large sample, due to the normal approxi-
mation (Makuch and Simon,  1978 ).    

  10.1.6   One - Sample Confi dence Interval for the Mean 

  One - Sample Mean Confi dence Interval Method 
  Objective:     To calculate sample size based on precision analysis of a one -
 sample problem.  

  Technical Notes     Precision analysis for the sample size is based on a confi -
dence interval. The maximum half - width of the (1    −     α )100% confi dence 
interval is usually referred to as the maximum error of an estimate of unknown 
parameter. The precision method requires one to specify the maximum 
error allowed. The formula to calculate sample size is  n    =   ( z   α /2 ) 2  V / E  2 , where 
 V  is the sample variance and  E  is the maximum error that we are willing 
to accept. Note that the precision method is based on the confi dence interval 
corresponding to the hypothesis method with 50% power. Hence, the sample -
 size formula does not include the term power (Chow and Liu,  1998 ).   

  One - Sample Mean Confi dence Interval Method: Finite Population 
  Objective:     To calculate sample size based on precision analysis for a one -
 sample problem adjusted for fi nite population size.  

  Technical Notes     The sample - size calculation is similar to preceding one, but 
adjusted for the fi nite population. The precision method requires one to 
specify the maximum error allowed. The formula to calculate sample size is   
n z V n N E= −−1 2

2 21α/ / /( ) , where  N  is the population size,  V  is the sample vari-
ance, and  E  is the maximum error that we are willing to accept (Chow and 
Liu,  1998 ).   
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  Paired - Sample Mean Confi dence Interval Method: Large Sample 
  Objective:     To calculate sample size based on precision analysis for a paired -
 sample problem.  

  Technical Notes     The formula to calculate sample size is   n z V E= −1 2
2 2

α/ / , where 
 V  is the sample variance and  E  is the maximum error that we are willing to 
accept (Chow and Liu,  1998 ).   

  Paired - Sample Mean Confi dence Interval Method: Finite Population 
  Objective:     To calculate sample size based on precision analysis for a one -
 sample problem adjusted for fi nite population size  N .  

  Technical Notes     The sample - size determination is based on the confi dence 
interval width. It requires that the maximum error rate available be specifi ed. 
The formula to calculate the sample size is   n z V n N E= −−1 2

2 21α/ / /( ) , where  N  
is the population size,  V  is the sample variance, and  E  is the maximum error 
that we are willing to accept (Chow and Liu,  1998 ).   

  Confi dence Interval for Repeated Measures Contrast 
  Objective:     To calculate sample size based on the confi dence interval for 
repeated measures contrast.  

  Technical Notes     Normality assumption is used in the sample - size calculation. 
The sample size is given by   N z S r D w= −−1

2 2 2 21α ( ) / , where  S  is the standard 
deviation,  r  is the correlation coeffi cient,  w  is the 0.5 interval width (Devore, 
 1991 ).   

  One - Sample Confi dence Interval for a Mean Based on the  t  - Statistic 
  Objective:     To calculate sample size based on precision analysis for a one -
 sample problem adjusted for fi nite sample size  N .  

  Technical Notes     The method allows one to specify the coverage probability 
for the confi dence interval. When the coverage probability   =   0.5, the resulting 
sample size is consistent with that obtained from the common precision method 
(Chow and Liu,  1998 ).   

  Paired Mean Confi dence Interval Based on the  t  - Statistic 
  Objective:     To calculate sample size based on precision analysis for a paired -
 sample problem adjusted for fi nite sample size  N .  

  Technical Notes     The method allows one to specify the coverage probability 
for the confi dence interval. When specifying the coverage probability as 0.5, 
the resulting sample size is consistent with that obtained from the common 
precision method (Chow and Liu,  1998 ).    
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  10.1.7   One - Sample Confi dence Interval for Proportion 

  Confi dence Interval for a Proportion: Large  n  
  Objective:     To calculate sample size based on the confi dence interval for a 
one - sample proportion.  

  Technical Notes     The sample - size formula is developed using the normal 
approximation to the binomial distribution [i.e., the sample size  n    =    p (1    −   
  p )( z  1 −  α  / w ) 2  for the one - sided confi dence interval]. For the two - sided test, 
replace  α  in the formula by  α /2. Note that the confi dence interval method has 
only 50% coverage probability or power (Devore,  1991 ).   

  Confi dence Interval for an Odds Ratio for Paired Proportions: Large  n  
  Objective:     To calculate sample size based on the confi dence interval for the 
odds ratio in a matched case – control study.  

  Technical Notes     O ’ Neill  (1984)    proposed confi dence estimation of the odds 
ratio as a basis for sample - size determination in unmatched design. Using 
fi ndings of Breslow  (1981)    and Smith et al. ( 1985 , Eq. 8) developed a sample -
 size calculation based on the confi dence interval odds ratio in a matched 
case – control study as follows: The sample size in number of pairs for a one -
 sided test is given by  n    =   ( z  1 −  α  / w ) 2 (1   +   1/OR)/ p  01 , where OR is the expected 
odds ratio (the proportion expected in an experimental group divided by the 
proportion expected in the control group), and  p  01  is the proportion in the 
control group. Note that the sample size obtained from this formula is very 
sensitive to the estimation of the proportion in the control group; therefore, 
a trial designer should make a great effort to get the best estimate of the 
proportion.   

  Confi dence Interval for Proportion: Finite Population 
  Objective:     To calculate sample size based on the confi dence interval for one 
sample, with adjustment for fi nite sample size.  

  Technical Notes     The sample - size formula is applicable to a large sample only 
because it is developed using the normal approximation to the binomial dis-
tribution. The unadjusted sample size is given by   n p p z w= − −( )( )1 1 2

2 2
α/ /  for a 

one - sided confi dence interval. The adjusted sample size  n  adjusted    =    nN /( n    +    N ), 
where  N  is the population size. For the two - sided test, replace  α  in the formula 
by  α /2 (Devore,  1991 ).   

  Confi dence Interval for the Probability of Observing a Rare Event 
  Objective:     To calculate sample size based on the probability of observing a 
rare event.  

  Technical Notes     The sample is calculated using the formula  n    =   ln(1    −     p )/
ln(1    −     p  0 ), where  p  is the probability of observing one or more events and  p  0  
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is the actual or expected probability of the event. The formula is the direct 
result of the fact that the probability of observing one or more events,  p , 
is  p    =   1    −    (1    −     p  0 )  n   (see Kanji,  1999 ).    

  10.1.8   One - Sample Confi dence Interval for Others 

  Confi dence Interval for a Correlation Coeffi cient 
  Objective:     To calculate sample size based on the confi dence interval for a 
correlation coeffi cient.  

  Technical Notes     The sample size is computed based on the large - sample 
normal approximation using Fisher ’ s  z  - transformation. The sample size is 
given by  n    =   ( z  1 −  α /2    +    z  1 −  β  ) 2 /[FZ( r  1     −     FZ ( r  0 )] 2    +   3, where FZ( · ) denotes Fisher ’ s 
 z  - transform (Fisher and Belle,  1993 , p. 379), FZ( r )   =   1/2 ln[(1   +    r )/(1    −     r )] (see 
Fisher and Belle,  1993 ).   

  Linear Regression  y    =    a    +    bx , Confi dence Interval for  b  
  Objective:     To calculate sample size based on the confi dence interval for  b  
where  b  is the coeffi cient from the linear regression:  y    =    a    +    bx .  

  Technical Notes     The sample size is calculated based on the large - sample 
normal approximation and given by  n    =   ( z  1 −  α /2  S e  / L / S ) 2 , where  S e   is the standard 
error,  S  is the standard deviation of  x , and  L  is the tolerable limit for the con-
fi dence interval width.     

  10.2   TWO - GROUP DESIGN 

  10.2.1   Two - Sample Hypothesis Test for the Mean 

  Two - Sample  t  - Test 
  Objective:     To calculate sample size based on the two - sample  t  - test for the 
difference between the means of two independent populations.  

  Technical Notes     The sample size is calculated using noncentral  t  - distribution 
with the degree of freedom   =   2 n     −    2 and the noncentral parameter   =     n/2  
( d / s ), where  n  is the sample size,  d  is the absolute value of mean difference, 
and  s  is the standard deviation (Graybill,  1976 ).   

  Mann – Whitney  U /Wilcoxon Rank - Sum Test for Two Samples 
  Objective:     To calculate sample size based on the Wilcoxon – Mann – Whitney 
or Wilcoxon rank - sum test for median difference between two independent 
samples.  

  Technical Notes     This formula is given by Noether  (1987)  under the assump-
tion of a large sample. The Wilcoxon – Mann – Whitney test requires that two 



distributions have the same general shape, but with one shifted relative to the 
other by a constant amount under the alternative hypothesis: shift alternatives. 
If one is interested primarily in differences in location between the two dis-
tributions, the Wilcoxon test also has the disadvantage of reacting to other 
differences between the distributions, such as differences in shape. When the 
assumptions of the two - sample  t  - test hold, the Wilcoxon test will be slightly 
less powerful than the two - sample  t  - test (Noether,  1987 ).   

Two-Sample z-Test: Large Sample or Population Variance Known 
Objective:     To calculate sample size based on the  z  - test for mean difference 
between two treatment groups.  

Technical Notes     The formula is accurate if the population is normally dis-
tributed; otherwise, the sample size must be large (e.g., n     >    30) (Lachin, 
 1981 ).   

2 × 2 Crossover Study 
Objective:     To calculate sample size for a two - treatment, two - sequence, and 
two - period crossover design.  

Technical Notes     A crossover design is considered effi cient in terms of sample 
size because each patient receives multiple treatments in sequence (Fleiss, 
 1986 ). It also controls intrasubject variability. However, some disadvantages 
exist. For example, it may require a longer study duration and there may be 
confounding issues (e.g., you may not be able to differentiate carryover effect 
and treatment by period effect). The sample size from the 2    ×    2 crossover 
design relates the sample size from the two - group parallel design by the intra-
class correlation coeffi cient  R    =   intersubject variance/total variance. The 
sample size will decrease by a factor of 1    −     R .   

One-Way Repeated Measures ANOVA for Two Groups 
Objective:     To calculate sample size based on one - way repeated - measures 
ANOVA for two groups.  

Technical Notes     Chow and Liu ( 1998 , p. 453)   propose this method to 
compute sample size and power for correlated observations. The sample size 
is given by the formula n    =   ( zα /2    +    zβ ) 2s2  [1   +   ( m     −    1) r ]/[ p (1    −     p ) md2 ], where  r
is the within - subject correlation,  p  is the proportion of subjects in the treat-
ment group, and d  is the difference in practical importance (Chow and Liu, 
 1998   ).   

Test for a Treatment Mean Difference with a 2 × 2 Crossover Design 
Objective:     To calculate sample size based on a test for treatment mean dif-
ference for the 2    ×    2 crossover design.  
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Technical Notes     This method is applied to the 2    ×    2 crossover study without 
consideration of unequal carryover effects (Chow and Liu,  1998 ).   

Two-Sample Multiple Test for Mean Differences 
Objective:     To calculate sample size based on the two - sample multiple test 
for zero means.  

Technical Notes     This sample - size formula is developed by Odeh and Fox 
 (1991)  for the three main effects based on a noncentral  F  - distribution. The 
numerator and denominator degrees of freedom are m     −    1 and  N     −     m , respec-
tively, where m  is the number of tests and  N  is the sample size (Odeh and Fox, 
 1991   ).   

Comparing DNA Expression Profi les Among Predefi ned Classes 
Objective:     To calculate sample size for comparison of expression profi les 
among predefi ned classes using DNA microarrays.  

Technical Notes     DNA microarrays are arrays that provide information 
about expression levels of thousands of genes simultaneously and are 
consequently fi nding wide use in biomedical research. Simon et al.  (2002)  
proposed this method for planning a sample size for testing whether a particu-
lar gene is expressed differentially between two predefi ned classes. This 
method may be used for two - color arrays using reference designs or for 
single - label oligonucleotide arrays. Suppose that some function of the expres-
sion levels (e.g., log ratios for cDNA arrays) is approximately normally dis-
tributed in the two classes. Let σ  denote the standard deviation of the 
expression level among samples within the same classes and suppose that the 
means of the two classes differ by δ . For example, with base 2 log ratio or log 
intensities, a value of δ    =   1 corresponds to a twofold difference between 
classes. The total sample size is given by N    =   ( k    +   1) 2 / k ( zα /2    +   z β ) 2σ2 / δ . To 
control the number of false positives, it is suggested that α  be 1/ n , where  n
is the number of genes expressed equally in the two classes. Similarly, the 
expected number of false - negative conclusions for genes that are actually dif-
ferentially expressed between the two classes by δ  - fold is  βm , where  m  is the 
number of such genes. If we want the number of false negatives to be F , then 
β    =    F / m . In general,  α  and  β  should not exceed 0.001 and 0.05, respectively 
(Simon et al.,  2002 ).   

Donner’s Method for Mean Difference Using Cluster Randomization 
Objective:     To calculate sample size for a trial with cluster randomization.  

Technical Notes     This method is proposed by Donner et al.  (1981)  for a 
cluster randomization trial with normally distributed response.    



  

  10.2.2   Two - Sample Hypothesis Test for Proportion 

  Asymptotic z - Method Considering Variance Difference 
  Objective:     To calculate sample size based on Pearson ’ s chi - square test 
(without Yates ’ s continuity correction) for the proportion difference in two 
independent groups.  

  Technical Notes     This formula is developed by Halperin et al.  (1968)    based 
on the asymptotic normality of the untransformed binomial proportion. Hal-
perin ’ s method takes into account the different variances associated with two 
sample proportions. However, it can only be applied in a situation with large 
sample size, due to the normality assumption. This is not a conservative 
approach compared to Fisher ’ s exact formula (Sahai and Khurshid,  1996 ).   

  Fisher ’ s Exact Test 
  Objective:     To calculate sample size based on Fisher ’ s exact test for the pro-
portion difference between two independent samples.  

  Technical Notes     The  p  - value for a one - sided test for the null hypothesis  H  0 : 
 P  2     −     P  1     ≤    0 is given by (Thomas and Conlon,  1992 )
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where  m  1  and  m  2  are numbers of responders from the groups with sample sizes 
 n  1  and  n  2 , respectively. Because  m  1  and  m  2  follow binomial distributions, the 
power for the Fisher exact test is given by
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  Pearson ’ s Chi - Square Test: Kramer – Greenhouse 
  Objective:     To calculate sample size based on Pearson ’ s chi - square test for 
the proportional difference between two independent samples.  
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Technical Notes     This formula was developed by Casagrande et al.  (1978) . It 
provides an excellent approximation to values obtained via Fisher ’ s exact 
formula (Sahai and Khurshid,  1996 ).   

Whitehead Logistic Model for Two Groups with k Categories 
Objective:     To calculate sample size based on the proportional odds ratio 
model with k  categories and two treatments.  

Technical Notes     Many clinical trials yield data on an ordered categorical 
scale such as very good, good, moderate , or  poor . Under the assumption of 
proportional odds, such data can be analyzed using techniques of logistic 
regression. In simple comparisons of two treatments, this approach becomes 
equivalent to the Mann – Whitney test. Whitehead  (1993)  derived this method 
of sample - size calculation for ordered categorical data consistent with an 
eventual logistic regression analysis. The method is accurate only when it 
generates moderate to large sample size. The proportional odds model 
(McCullagh,  1980   ) is also assumed. That is, the odds ratio between the two 
treatment groups is constant over all the categories and the common odds 
ratio. McCullagh studied the effect of the number of categories on sample size 
and power using computer simulations, and concluded that for k     >    5, an 
increased number of categories will not increase the effi ciency or reduce the 
sample size required. The limiting case is approached in a large sample in 
which a full ranking of patient outcomes is achieved, as envisaged in the 
Mann – Whitney test. A full ranking is equivalent to a categorization with 
only one patient in each category. When data are normally distributed, the 
full Mann – Whitney test is in turn 94% effi cient relative to a  t  - test (Lehmann, 
 1975   ). The design based on fi ve equally probable categories is 90% effi cient 
relative to the t  - test when data are normally distributed. 

 The author also studied the infl uence of prognostic factors. It is well know 
that adjustment for prognostic factors improves the power of analyses of nor-
mally distributed data. For survival data, adjustment has little effect on power 
(Schoenfeld,  1983 ). Robinson and Jewell  (1991)    have pointed out that covari-
ate adjustment in the logistic regression analysis of binary data can lead to an 
apparent loss of power. Whitehead  (1993)  further stated that the same is true 
in the case of ordered categorical data. To preserve power, it will be necessary 
to increase sample size (Whitehead,  1993 ).   

Lachin’s Test for Two Treatments by Three Time -Point Interactions 
Objective:     To calculate sample size based on a test for treatment by time 
interaction.

Technical Notes     This method was developed by Lachin  (1977)  for the case 
of two treatment groups and two time - point repeated measures. For a more 
general method for an r     ×     c  comparative trial, see Lachin ’ s paper.   



  

  Mantel – Haenszel Test for an Odds Ratio with  k  Strata: Large Sample    
  Objective:     To calculate sample size based on the Mantel – Haenszel test for 
an odds ratio with  k  strata.  

  Technical Notes     This formula assumes a constant odds ratio (rather than 
relative risk) over strata and the random treatment assignment with each 
stratum. One wishes to compare event rates within each of the resulting 
2    ×    2 tables and to obtain an overall comparison to test whether the (assumed) 
common odds ratio equals unity. The large - sample assumption is used in the 
formula (Lachin,  1977 ).   

  Mantel – Haenszel Test for an Odds Ratio with  k  Strata: 
Continuity Correction    
  Objective:     To calculate sample size based on Cochran ’ s test  (1954)    with the 
continuity correction and the overall type I error controlled.  

  Technical Notes     Information on a possible confounding effect is important 
in choosing correctly between a strata - matched or strata - nonmatched design 
in a case – control study. The Mantel – Haenszel test and Cochran ’ s test are 
asymptotically equivalent, but the former uses a hypergeometric distribution 
conditioned on all marginal total fi xed, whereas the latter uses a pair of bino-
mials in each stratum. Woolson et al.  (1986)    present a simple approximation 
of sample size for Cochran ’ s test for detecting association between exposure 
and disease. Nam  (1992)  derives this sample - size formula for Cochran ’ s 
statistic with continuity correction, which guarantees that the actual type I 
error rate of the test does not exceed the nominal level. The corrected sample 
size is necessarily larger than the uncorrected size given by Woolson et al. 
 (1986)   , and the relative difference between the two sample sizes is consider-
able. When any effect of stratifi cation is absent, Cochran ’ s stratifi ed test, 
although valid, is less effi cient than the unstratifi ed test, except for the impor-
tant case of a balanced design (Nam,  1992 ).   

  Chi - Square Test for a Two - Sample Proportion with  k  Categories    
  Objective:     To calculate sample size based on a chi - square test for two - sample 
proportions with  k  categories.  

  Technical Notes     This method is only applicable to a large sample. The sample 
size is calculated using a noncentral chi - square distribution with  k     −    1 degrees 
of freedom, and Patnaik ’ s parameter of noncentrality   =    n    ∑  ( p  1 j      −     p  0 j  ) 2 /( p  1 j     +  
  p  0 j  ), where  p  1 j   and  p  0 j   are the expected proportions in the  j th category of the 
two treatment groups, and the sum is performed over all  k  categories. Patnaik 
 (1949  )    developed a method for the asymptotic Pearson chi - square test for 
goodness of fi t with  k  classes. Before Patnaik, Eisenhart  (1938)      had presented 
a more general result for the test with  k     −     s  degrees of freedom, where  s  is the 
number of parameters of the assumed distribution (Kendall and Stuart,  1967   ; 
Lachin,  1977   ).   
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  Repeated Measures for Two Proportions    
  Objective:     To calculate sample size based on one - way repeated measures 
ANOVA for two groups.  

  Technical Notes     Chow and Liu  (1998)    proposed this method to compute 
sample size and power with correlated observations. The sample size given by 
 n    =   ( z   α /2    +    z   β  ) 2  s  2 [1   +   ( m     −    1) r ]/[ p (1    −     p ) md  2 ], where  r  is the within - subject 
correlation,  p  is the proportion of subjects in the treatment group,  s  is the 
standard deviation, and  d  is the difference of practical importance in the 
mean. This formula can be applied to the case where two treatments are 
compared with binary responses, with the following modifi cation (Chow and 
Liu,  1998   ):
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  10.2.3   Two - Sample Hypothesis Test for Others 

  Exponential Survival Distribution with Uniform Patient Enrollment    
  Objective:     To calculate sample size based on a test for the difference in 
median survival time.  

  Technical Notes     It is not realistic in clinical trials that all patients will be 
followed to the terminal event no matter how long is required for the last 
patient to reach that event. A more realistic approach is to follow the trial to 
termination at time  T . This method assumes that patients enter the trial at a 
uniform rate over the time interval 0 to  T  and that exponential survival 
applies. The formula is derived based on exponential survival distribution. If 
this assumption is seriously violated, the sample size obtained from this 
formula will not be appropriate. The model may not be very realistic, because 
as soon as the last patient enters the study, the trial will stop. Also, the assump-
tion of uniform patient enrollment should be checked before the formula is 
used (Lachin,  1981 ).   

  Exponential Survival Distribution with Uniform Enrollment 
and Follow - up     
 Objective:     To calculate sample size based on a test for the difference in 
median survival time.  

  Technical Notes     It is desired in a clinical trial to recruit patients for study over 
the time interval 0 to  T  0  and then to follow all recruited patients to the time of 
the terminal event or to the end of the trial, whichever is shorter. This method 
assumes that patients enter the trial at a uniform rate over the interval 0 to  T  0  
and that exponential survival applies. In the event that all patients enter the 
trial at the same time,  T  0  should be set to a very small value (Lachin,  1981 ).   



Test Interaction in a Model with an Exponential Survival Function: 
Two Strata 
Objective:     To calculate sample size (number of events) based on a test for 
the interaction in a model with an exponential survival function.  

Technical Notes     This formula is applicable to the case with two treatments, 
two strata, and equal size in each cell of a 2    ×    2 table. The method was devel-
oped by Peterson and George  (1993) . The authors show via simulations that 
the formula gives valid powers for the test score of the interaction effect avail-
able from fi tting the proportional hazards model, as long as the proportional 
hazards model holds. The authors also point out that even moderate interac-
tion effects can have a profound impact on the power of the standard statistical 
procedure. The assumption of an equal number of failures per cell can be used 
as long as the sample - size ratio between any two cells does not exceed 2. The 
authors also give a formula for calculating the sample size for a situation with 
k  strata (Peterson and George,  1993 ).   

Test Interaction in a Model with an Exponential Survival Function: 
k Strata 
Objective:     To calculate sample size (number of events) based on a test for 
interaction in a model with an exponential survival function.  

Technical Notes     A formula developed by Peterson and George  (1993)  is 
applicable to a case with two treatments, k  strata, and equal size in each cell 
of a 2    ×     k  table. The authors show via simulations that the formula gives valid 
powers for the score test of the interaction effect available from a fi tting of 
the proportional hazards model, as long as the proportional hazards model 
holds. The authors also point out that even moderate interaction effects can 
have a profound impact on the power of the standard statistical procedure. 
Even with the assumption of an equal number of failures per cell, the formula-
tion can still be used as long as the sample - size ratio between any two cells 
does not exceed 2 (Peterson and George,  1993 ).   

Log-rank Test for Survival Analysis 
Objective:     To calculate sample size based on the log - rank test for survival 
analysis.

Technical Notes     In practice, methods are sometimes applied even though 
assumptions are violated or theoretical justifi cation is lacking. It is common to 
see binomial sample - size calculation when the intended analysis will be a com-
parison of two survival curves when the exponential or proportional hazards 
assumption is not realistic. The log - rank statistic can still be used for analysis 
when, as in many trials, the proportional hazards assumption is violated (Lakatos 
and Lan,  1992   ). Lakatos  (1988)  derives the sample size required for a log - rank 
statistic in this general case by using a discrete nonstationary Markov process 
that follows any pattern of survival, noncompliance, loss to follow - up, drop - in, 
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and lag in the effectiveness of treatment during the course of a clinical trial. If 
the survival distributions are exponential, the proportional hazards assumption 
is satisfi ed. It can be shown that after an appropriate time transformation, the 
converse is true when there is no censoring. Since the log - rank statistic is no 
longer optimal when the hazards are nonproportional, hazard functions are 
really known precisely. There are defi nite risks involved with assuming that one 
knows a nonproportional hazards alternative and choosing the optimally 
weighted statistic for the fi nal analysis (Lakatos and Lan,  1992   ). 

Exponential Survival Distribution with a Uniform Patient Enrollment 
Rate over Time T0, a Follow -up Period, and Dropouts 
Objective:     To calculate sample size based on a test for the difference in 
mean/median survival time for two independent samples with exponential 
survival distribution and exponential loss to follow - up distribution.  

Technical Notes     The assumption of exponential survival distribution and 
exponential loss to follow - up distribution must both be met. Otherwise, the 
resulting sample size will not be accurate (Lachin and Foulkes,  1986 ).   

Exponential Survival Distribution with a Bernoulli Confounding Variable 
Objective:     To calculate sample size based on a test for the difference in 
median survival time between two treatment groups with exponential survival 
distribution and a dichotomous confounder.  

Technical Notes     This method was developed by Liu  (1992)  based on an 
exponential covariate model. In clinical trials, random assignment of treat-
ments to individuals is generally used to eliminate the effects of confounding 
variables. When there is censorship in the data, however, confounding effects 
may not automatically be removed solely by the randomization procedure 
under the exponential model (Gail et al.,  1984   ). Therefore, in this situation, 
sample - size calculation without consideration of the confounding effects is not 
appropriate (Feigl and Zelen,  1965   ). Unlike other papers describing studies 
of sample size with the presence of a confounder, in his paper Lui takes into 
account the distribution of response times and their possible censorship. In 
the presence of censorship and confounders under an exponential model, the 
MLE of the treatment effect is asymptotically biased in randomized trials 
when there is a difference between the two treatment effects under consider-
ation (Feigl and Zelen,  1965   ).   

Testing Two Correlation Coeffi cients Using Fisher ’s Arctan 
Transformation
Objective:     To calculate sample size based on a test for two independent 
correlations.

Technical Notes     This formula is developed by using Fisher ’ s arctanh trans-
formation: Z ( r )   =   0.5   ln[(1   +    r )/(1    −     r )], where  r is a sample correlation.  Z ( r ) 



  

is normally distributed with mean  Z ( r  0 ) and variance 1/( N     −    3), where  r  0  is the 
true correlation and  N  is the sample size (Lachin,  1981 ).   

  Linear Regression   y   1    =     a   1    +     b   1   x ,  y   2    =     a   2    +     b   2   x  ; Test   H   o :   b   1    =     b   2     
  Objective:     To calculate sample size based on the hypothesis test  H  o :  b  1    =    b  2  
versus  H a : b  1     ≠     b  2 , where  b i   is the coeffi cient from the linear regression  y  1    =    a  1  

 +     b  1  x, y  2    =    a  2    +    b  2  x .  

  Technical Notes     The sample size is calculated based on the noncentral  t  - 
distribution with 2 n     −    4 degrees of freedom. The noncentrality parameter is   

n b b S Se/2 0− , where  S  is the standard deviation of  x  and  S e   is the standard 
deviation of error.    

  10.2.4   Two - Sample Equivalence/Noninferiority Test for the Mean 

  Noninferiority Test for Two Means Based on a One - Sided Two - Sample 
 t  - Test    
  Objective:     To calculate sample size for a noninferiority test for mean differ-
ence based on a one - sided two - sample  t  - test.  

  Technical Notes     This method may be used for noninferiority studies but is 
not appropriate for bioequivalence studies. Chow and Liu  (1998)    pointed out 
that the power approach to sample - size determination based on the hypothesis 
of equality is not statistically valid in assessing equivalence between treat-
ments (refer to Schuirmann,  1987   ).   

  Two One - Sided  t  - Tests for Equivalence: Parallel Design (Bivariate  t )     
 Objective:     To calculate sample size based on two one - sided  t  - tests for an 
equivalence study with a parallel design.  

  Technical Notes     The sample size is computed based on the bivariate noncen-
tral  t  - distribution with degrees of freedom 2( n     −    1) and noncentrality param-
eters   ( ) /u u d n ST s L− − /2  and   ( /u u d n ST s U− − /2 , where  d L   and  d U   are the 
lower and upper limits for the mean difference between the two groups and 
 S  is the common standard deviation (Schuirmann,  1987 ).   

  Two One - Sided Tests for Equivalence Based on a Ratio of Means: 
Parallel Design (Bivariate  t )    
  Objective:     To calculate sample size for an equivalence test of two means 
based on Schuirmann ’ s two one - sided  t  - tests (Schuirmann,  1987 ).  

  Technical Notes     This is an exact method based on the bivariate noncentral 
 t  - distribution (Owen,  1965 ). The power approach described in the literature 
for sample - size determination based on a hypothesis of equality is not 
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statistically valid in assessing equivalence between treatments (Chow and Liu, 
 1998   ; Schuirmann,  1987   ).   

  Two One - Sided  t  - Tests for Equivalence Based on a Ratio of Two Means: 
Crossover Design (Bivariate  t )     
 Objective:     To calculate sample size for an equivalence test based on a ratio 
of two means using Schuirmann ’ s  (1987)  two one - sided  t  - tests for a 2    ×    2 
crossover study.  

  Technical Notes     This is an exact method based on the bivariate noncentral 
 t  - distribution. For the assessment of equivalence between treatments under 
the standard two - sequence, two - period crossover design, it is suggested that 
the following interval hypotheses be tested (Owen,  1965 ; Schuirmann,  1987   ; 
Chow and Liu,  1998 ):

   H u u Q u u Q H Q u u QT p L T p U a L T p U0 : . ,− < − ≥ < − <or vs  

where  u T   and  u p   are the two means of the log - transformed data for the two 
treatment groups, and  Q L   and  Q U   are some clinically meaningful limits for 
equivalence. The hypotheses can be decomposed into two sets of one - sided 
hypotheses:

   

H u u Q H u u Q

H u u Q H u u Q
T p L a T p L

T p U a T p U

0

0

: . :

: . : .

− ≤ − >
− ≥ − <
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vs     

  Two One - Sided  t  - Tests for Equivalence Based on a Mean Ratio for 
Lognormal Data: Parallel Design (Bivariate  t )    
  Objective:     To calculate sample size for an equivalence test for the ratio of 
two means based on Schuirmann ’ s  (1987)  two one - sided  t  - tests for a parallel 
design.  

  Technical Notes     This is an exact method based on the bivariate noncentral 
 t  - distribution (Owen,  1965 ; Schuirmann,  1987   ; Chow and Liu,  1998 ).   

  Schuirmann – Chow ’ s Two One - Sided  t  - Tests for Equivalence    
  Objective:     To calculate sample size for an equivalence test for two means 
based on Chow ’ s approximation to Schuirmann ’ s  (1987)  two one - sided 
 t  - tests.  

  Technical Notes     This sample size is an approximation method developed by 
Chow and Liu  (1998) . During the implementation of the method, normal dis-
tribution is used in place of a  t  - distribution in Chow ’ s equation. For exact 
sample size for the same problem, sample - size calculation for equivalence test 
for difference of two means should be used based on two one - sided  t  - tests 



  

using bivariate noncentral  t  - distribution (Owen,  1965 ; Schuirmann,  1987   , 
Chow and Liu,  1998 ).    

  10.2.5   Two - Sample Equivalence/Noninferiority Test for Proportion 

  Equivalence Test for Two Proportions: Large  n     
  Objective:     To calculate sample size based on an equivalent test for two inde-
pendent proportions.  

  Technical Notes     This method was originally proposed by Farrington and 
Manning  (1990)  using the asymptotic approximation. It is applicable only to 
the large - sample case. Sample size is calculated using the formula  n    =   ( z  1 −  α     +  
  z  1 −  β  ) 2 [ p  1  (1    −     p  1 )   +    p  2  (1    −     p  2 )]/( δ     −     δ  0 ) 2 , where  δ  0  is the allowable difference 
and  δ  is the expected difference of proportions  p  1  and  p  2 . However, this 
method underestimates the sample size when  δ  0     <     δ , which is often the case 
in practice. A better method but a little conservative approach is given by 
(S. C. Lin,  1995 ; Chow, Shao and Wang,  2003   )
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 Note that  β , not  α , is divided by 2 in the formulation (see Farrington and 
Manning,  1990 ; S. C. Lin,  1995 ; Chow et al.,  2003   ).   

  One - Sided Noninferiority Test for Two Proportions      Objective:     To calcu-
late sample size for a one - sided noninferiority test for two proportions based 
on a large - sample assumption.  

  Technical Notes     Normal approximation is used in this formula and is 
applicable only to large sample - size. The sample - size formulation is given by 
(M. Chang,  2007e   ; Chow et al.,  2003   )
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  10.2.6   Two - Sample Equivalence/Noninferiority Test for Survival 

  Noninferiority Test for Survival with Uniform Accrual and Follow - up    
  Objective:     To calculate sample size for a noninferiority test for survival dif-
ference based on normal approximation.  
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Technical Notes     Normal approximation is used in this formula (Chow et al., 
 2003 ; M. Chang,  2007e   ).   

Equivalence Test for Survival with Uniform Accrual and Follow -up
Objective:     To calculate sample size for an equivalence test for two hazard 
rate differences based on two one - sided tests.  

Technical Notes     The sample size is calculated using two one - sided tests 
based on a large - sample assumption. Normal approximation is used and 
the equivalent standard deviation can be found (Chang,  2007a   ; Chow et al., 
 2003   ).    

  10.2.7   Two - Sample Confi dence Interval for the Mean 

Confi dence Interval for Difference of Two Means: Large Sample 
Objective:     To calculate sample size based on a precision analysis for the 
mean difference between two independent samples.  

Technical Notes     A precision analysis for sample size is based on the maximum 
half - width of the confi dence interval that one is willing to accept for the 
underlying parameter. Therefore, the sample size is independent of power. 
The sample size given by this formula can be expressed as n    =   2 z2.

1−α /2V / E2 , 
where V  is the sample variance and  E  is the confi dence interval width (Chow 
and Liu,  1998 ).    

  10.2.8   Two - Sample Confi dence Interval for Proportion 

Confi dence Interval for the Difference in Two Proportions: Large  n
Objective:     To calculate sample size based on the confi dence interval for dif-
ference in proportions between two samples.  

Technical Notes     This method is applicable only to large - sample cases, 
due to a normality approximation. The sample size per group is given by 
n    =   ( z1−α / w ) 2 [ p1 (1    −     p1 )   +    p2 (1    −     p2 )], where  pi  is the expected proportion in the 
i th treatment group and  w  is the allowable confi dence interval width (Lachin, 
 1977 ).   

Confi dence Interval for Proportional Difference with Minimum Total Size 
Objective:     To calculate sample size based on the confi dence interval for the 
proportional difference between two groups.  

Technical Notes     This formula is derived based on Makuch and Simon ’ s 
method. The minimum sample size is obtained by taking the derivate of the 
quantity n1    +    n2  with respect to  r  (Makuch and Simon,  1978 ).   



Confi dence Interval for  ln(Odds Ratio): Unmatched Case –Control Study 
Objective:     To calculate sample size based on the confi dence interval for a 
log odds ratio.  

Technical Notes     Gart and Thomas  (1982)    compared the performance of 
three approximate confi dence limit methods for an odds ratio: the method 
proposed by Cornfi eld  (1956)   , the logit method proposed by Woolf  (1955)   , 
and the test - based method proposed by Miettinen  (1976)   . Grat and Thomas 
concluded that Cornfi eld ’ s method without a continuity correction is the pre-
ferred method in the unconditional sample space: that is, the sample space of 
two independent binomial distributions. Brown  (1981)    and Gart and Thomas 
 (1972)    have shown that Cornfi eld ’ s method with continuity correction is the 
preferred method in the conditional space: that is, with all marginal totals 
fi xed. This method was developed by O ’ Neill  (1984)    to calculate sample size 
based on a logit method using an allowable confi dence width   =   2 d  for the log 
odds ratio, which, because of symmetry on the log odds ratio scale, allows for 
an intuitively appealing way of approximating sample sizes needed to achieve 
a certain fi xed level of precision for the log odds ratio. Confi dence for the odds 
ratio is given by w    =   OR[exp( d )    −    exp( −d )], where OR is the odds ratio. The 
sample size for the control is given by n0    =   {(1/ r /[ p1 (1    −     p1 )]   +   1/[ p0 (1    −
p0 )]}( z1−α /2 / d ) 2 , where  r  is the sample size ratio  n0 / n1  (O ’ Neill,  1984   ).     

  10.3   MULTIGROUP TRIAL DESIGN 

  10.3.1   Multisample Hypothesis Test for the Mean 

One-Way ANOVA for Parallel Groups 
Objective:     To calculate sample size based on one - way ANOVA with the null 
hypothesis H0  that all means are equal. The alternative hypothesis is that H 0
is not true.  

Technical Notes     This is an exact method using a central  F  - distribution (Fleiss, 
 1986 ). The degree of freedoms are  g     −    1 for the numerator and  n     −     g  for the 
denominator, where g  is the number of treatment groups and  n  is the total 
sample size. The noncentral parameter δ    =    n  times variance between treat-
ments divided by the common variance (variance within treatment).   

One-Way Contrast Between Means 
Objective:     To calculate sample size based on the null hypothesis  H0  with 
specifi c contrast.  

Technical Notes     A contrast test is often used for dose – response studies. 
M. Chang  (2007e)    developed a uniform sample - size formulation for superior-
ity and noninferiority tests with mean, proportion, and survival endpoints and 
suggested the selection of contrasts with opposite signs between the control 
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and test groups. He also proved that the Cochran – Armitage test for dose –
 reponse is a special case of the general formulation.   

Two-Way ANOVA with an Interaction Term 
Objective:     To calculate sample size based on two - way ANOVA with an 
interaction term.  

Technical Notes     The sample - size formula is given by Odeh and Fox  (1991)    
based on the noncentral F  - distribution. The numerator degrees of freedom 
are a     −    1,  b     −    1, and ( a     −    1)( b     −    1) for the two main effects and the interaction 
effects, respectively, and the denominator degrees of freedom are ab ( n     −    1), 
where a  and  b  are the number of levels for factors  A  and  B , respectively, and 
n  is the sample size. The noncentrality parameters are  abn  times the respective 
effect sizes for factors A  and  B  and the interaction (Odeh and Fox,  1991   , 
pp. 12 – 13, Case 1, Eq. 2.8).   

Two-Way ANOVA Without Interaction 
Objective:     To calculate sample size based on two - way ANOVA without an 
interaction term.  

Technical Notes     The sample - size formula is given by Odeh and Fox  (1991)    
based on the noncentral F  - distribution. The numerator degrees of freedom 
are a     −    1 and  b     −    1 for the two main effects, respectively, and the denominator 
degrees of freedom are abn    −    a    −    b     −    1, where  a  and  b  are the number of levels 
for factors A and B, respectively, and n  is the sample size. The noncentrality 
parameters are abn  times the respective effect sizes for factors A and B and 
the interaction (Odeh and Fox,  1991   , pp. 12 – 13).   

One-Way Random Block Design 
Objective:     To calculate sample size based on one - way random block 
design.

Technical Notes     The sample - size formula is given by Odeh and Fox  (1991)    
based on the noncentral F  - distribution. The numerator degrees of freedom 
are a     −    1 and  n     −    1 for the main and block effects, respectively, and the denomi-
nator degrees of freedom are ( a     −    1)( n     −    1), where  a  and  b  are the number of 
levels for factors A and B, respectively, and n  is the sample size. The noncen-
trality parameter is equal to na  times the respective effect sizes for factors A 
and B and the interaction (Odeh and Fox,  1991   , pp. 16 – 17).   

ANOVA with Latin Square Design 
Objective:     To calculate sample size based on ANOVA with a Latin square 
design.

Technical Notes     The sample - size formula is given by Odeh and Fox 
 (1991)    for the three main effects based on noncentral  F  - distribution. The 



  

numerator and denominator degrees of freedom are  m     −    1 and  N     −    3 m     −    2, 
respectively. The noncentranality parameter   =    N  MS_A/MS_Error (Odeh and 
Fox,  1991   ).   

  William ’ s Test for Minimum Effective Dose  
    Objective:     To calculate sample size based on William ’ s test for minimum 
effective dose.  

  Technical Notes     This sample - size method is given by Chow and Liu  (1998)  
based on William ’ s test for dose – response (William  1971   ,  1972   ).    

  10.3.2   Multisample Hypothesis Test for Proportion 

  Cochran – Armitage Test for Linear/Monotonic Trend: Dose Response    
  Objective:     To calculate sample size based on the Cochran – Armitage test for 
dose – response.  

  Technical Notes     This approximate sample - size formula is given by Nam 
 (1987)    for detecting a linear trend in proportions. The author gives formulas 
for both uncorrected and corrected Cochran – Armitage tests. For two bino-
mial proportions these reduce to those given by Casagrande et al.  (1978)   . An 
asymptotic test of signifi cance of a linear trend in proportions is given by 
Cochran  (1954)    and Armitage  (1955)   . This test is known to be more powerful 
than the chi - square homogeneity test in identifying a trend (Chapman and 
Nam,  1968   ). A dose – response curve is not necessarily linear in proportion, 
and a logistic model may be more reasonable for some cases. Nam shows 
numerically that the sample size based on logistic dose – response alternative 
differs little from that of a linear alternative. As the nature of the dose –
 response curve is usually not known prior to the chronic bioassay study, it may 
be reasonable to use a linear model in determining a sample size since the 
model could grossly approximate many monotonically increasing curves (Nam, 
 1987   ; M. Chang,  2006 ).   

  Chi - Square Test for Equal Proportions in  m  Groups in  k  Categories    
  Objective:     To calculate sample size based on a chi - square test for equal pro-
portions in  m  groups.  

  Technical Notes     The sample - size calculation is based on a noncentral chi -
 square distribution with the degrees of freedom  m     −    1 and the noncentral 
parameter  δ    =   1/[ P  mean  (1    −     P  mean )]  ∑[ R i  ( P i     −    P  mean ) 2 ]/  ∑  R i  , where  R i   is the 
sample size ratio  N i  / N  1  (see Lachin,  1977 ).   

  Chi - Square Test for Equal Proportions in  m  Groups    
  Objective:     To calculate sample size based on a chi - square test for equal pro-
portions in  m  groups.  
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  Technical Notes     The sample - size calculation is based on a noncentral 
chi - square distribution with degrees of freedom  m     −    1 and the noncentral 
parameter  δ    =   1/[ P  mean (1    −     P  mean )]  ∑[ R i  ( P i     −    P  mean ) 2 ]/  ∑  R i  , where  R i   is the 
sample - size ratio  N i  / N  1  (see Lachin,  1977 ).   

  One - Way Contrast Between Proportions    
  Objective:     To calculate sample size based on a large - sample assumption.  

  Technical Notes     The sample - size calculation is based on a normality assump-
tion. M. Chang  (2007a)    provides suggestions on how to determine the con-
trasts for various purposes.    

  10.3.3   Multisample Hypothesis Test for Others 

  One - Way Contrast Test for Exponential Survial with Uniform Enrollment 
and a Follow - up    
  Objective:     To calculate sample size based on the contrast test for a dose –
 response relationship.  

  Technical Notes     The asymptotic test is most powerful when the contrast 
shape is similar to the dose – response shape (M. Chang and Chow,  2006 ; M. 
Chang,  2007a   ).   

  Test That All  k  Means Are Equal with Overall Type I Error Controlled 
at the  α  Level    
  Objective:     To calculate sample size (number of failures) based on a test for 
the null hypothesis that the mean survival times for all ( k     ≥    2) treatments are 
the same.  

  Technical Notes     This method is developed by Makuch and Simon  (1982)  
based on an ANOVA framework. The overall type I error rate is controlled 
at the  α  level (Fisher ’ s LSD method). The number of failures per group 
increases as the number of treatment groups increases. As a result, for  k     >    2 
the planned number of failures  d  will be somewhat greater than that obtained 
from the method proposed by George and Desu  (1974)  for a two - treatment 
group trial. The increase in sample size per group with  k  ( > 2) is required to 
preserve the overall error rate of  α  in light of all possible multiple compari-
sons. When  k    =   2, the result will degenerate to that by George and Desu 
 (1974) . The assumption of exponential survival distribution is used in the 
model. However, the authors point out that this method is expected to hold 
approximately for any proportional hazard alternatives when the maximum 
hazard ratio is not too large, as has been shown by Schoenfeld  (1981)  for the 
case of two treatment groups. 

 If the estimated ratio of the largest survival time to the smallest survival 
time is 2,  α    =   0.05, and power   =   0.9, this Makuch and Simon method gives a 



  

sample size of 53 per group, whereas the George and Desu method  (1974) , 
with a reduced nominal signifi cant level 0.05/3 (Bonferroni adjustment) to 
account for the fact that three pairwise comparisons are possible, gives a 
sample size of 56 (see Lachin and Foulkes,  1986   ).   

  Prognostic Model with Right - Censored Data from  DNA  Microarrays    
  Objective:     To calculate sample size based on a prognostic model with con-
tinuous and right - censored data from DNA microarrays.  

  Technical Notes     DNA microarrays are arrays that provide simultaneous 
information about expression levels of thousands of genes and are conse-
quently fi nding wide use in biomedical research. Hsieh and Lavori proposed 
this method for planning sample size based on a number of events:  D    =   ( k    +  
 1) 2 / k ( z   α /2    +    z   β  ) 2 /( τ    ln    δ ) 2 , where  τ  denotes the statndard deviation of a log ratio 
or log intensity level of a gene over the entire set of samples, because there 
are no predefi ned classes.  δ  denotes the hazard ratio associated with a 1 - unit 
change in the log ratio or log intensity  x , and ln denotes the natural logarithm. 
Note that we are assuming that the log ratio or log intensities are based on 
logarithms to the base 2, so a 1 - unit change in  x  represents a twofold change. 
To control the number of false positives and false negatives,  α  and  β  should 
not exceed 0.001 and 0.05, respectively (Hsieh and Lavori,  2000 ; Simon et al., 
 2002 ).    

  10.3.4   Multisample Confi dence Interval for Others 

  Confi dence Interval for One - Way Contrast: Large Sample    
  Objective:     To calculate sample size based on a precision analysis for maximum 
mean difference among several independent samples.  

  Technical Notes     The precision analysis for sample size is based on the 
maximum half - width of the confi dence interval that we are willing to accept 
for the underlying parameter. The sample size per group is given by  
 n z V C r r Ei i i= − ∑∑0 5 1 2

2 2 2. ( )α/ / / , where  V  is the sample variance,  C i   is 
contrast,  r i    =   n i  / n  1  is the sample size ratio, and E is the confi dence interval 
width (Chow and Liu,  1998 ).            
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 Afterword 

 You have learned how to design and monitor a classical or adaptive clinical 
trial. If you want do more research on adaptive designs, you should read the 
literature on this topic. For in - depth coverage of the theory and methodology, 
I recommend Adaptive Design Theory and Implementation Using SAS and R
(M. Chang,  2007a ). Together with ExpDesign Studio, it should act as a 
powerful tool in your research (e.g., simulations). You may want to visit 
 www.statisticians.org  from time to time for updates and send your questions 
and comments to  mark.chang@statisticians.org . 

 One relevant aspect that has not been discussed is the IT infrastructure 
regarding the data query and report system used in adaptive designs. The 
Clinical Workbench by Biopier ( www.Biopier.com ) is a very impressive tool 
in this regard.         
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 APPENDIX A
Validation of ExpDesign Studio *

 The validation document is intented to support pharmaceutical end users in 
meeting the FDA ’ s 21 CFR part 11 requirements. However, it is important 
to know that it is not possible for any vendor to offer a turnkey  “ Part 11 – 
compliant system. ”  Part 11 requires both procedural and administrative con-
trols to be put in place by the user in addition to the technical controls that a 
vendor can offer. At best, a vendor can offer an application containing the 
required technical requirements for a compliant system ( www.21cfrpart11.
com ). 

 Before addressing the validation, let ’ s quickly review the difference between 
ExpDesign Studio 5.0 and earlier versions. The following modules are added 
due to recent rapid development in adaptive trial design: 

   •     New adaptive design module  
   •     Adaptive trial monitoring module  
   •     Dose - escalation trial monitoring module    

 Also, a random number generation module, the randomizor, has been 
added. The early version of an adaptive design simulator now serves as a sec-
ondary module for adaptive design. An option has been added to allow for 
futility - binding or nonbinding design. The default is nonbinding. In the earlier 
version, only futility binding is allowed. 

 Calculations of the number of events required for group sequential design 
have been added to the survival group sequential design. This has also led to 
an improvement in the algorithm for survival analysis. Several new methods, 
including Fisher ’ s exact test for the two proportions, have been added; mean-
while, several uncommonly used methods for classical sample size calculation 
have been removed. A second full - scale validation for version 5.0 has been 
completed.

*    Thanks are due Susan Shen of CTriSoft ( www.CTriSoft.net ) for her support in preparing the 
validation documents for ExpDesign Studio 5.0. 
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  A.1   VALIDATION PROCESS FOR EXPDESIGN STUDIO 

 ExpDesign validation is very extensive. Usually, multiple validation approaches 
are used for each method. ExpDesign uses the published results and other 
software, such as nQuery and East, for its validations. Validation for a method 
is considered passed only if it passes algorithm and outcome validations. The 
validation documents in Section  A.10  are also intented for end users to do 
installation   and performance validations of the software, which are typically 
required for most companies involved in clinical trials. 

  A.1.1   Algorithm Validation 

 For algorithm validation, the following have been checked: (1) that each algo-
rithm matches the published statistical method or procedure; (2) that numeri-
cal overfl ows are handled properly; (3) that appropriate numerical methods 
for (singularity) integrations, and the error accumulation due to recursively 
numerical rounding or truncations, are controlled; (4) ensuring that the local 
and global convergence of search algorithms (e.g., binary, fast, and shell search 
algorithm) are reached (if not, log out the warning massages); and (5) having 
tested all the logic branches.  

  A.1.2   Statistical Outcome Validation 

Validation Using Published Results   When closed - form solutions are avail-
able, we have checked ExpDesign results against the solutions under various 
conditions. When only numerical examples are available, we have checked 
results against these results, and we have checked the results under special 
circumstances (degenerated cases, asymptotic conditions, and/or the mono-
tonic), under which conditions solutions can often be derived.  

Validation Using the Power Curve   Power or power curves (power versus 
treatment difference) validation is important. From the power we can check 
the correctness of the program. When the null hypothesis is true, the power is 
less than or equal to the type I error α . We have checked in ExpDesign the 
characteristics for all hypothesis test – based sample size calculation methods. 
The power is usually a monotonic function of treatment effect and sample size 
(power from an exact test is an exception). This property has also been used 
for the validation.  

Validation Using Simulation   Simulation is a powerful tool for validations. 
We have extensively used simulations in ExpDesign development and debug-
ger and validation processes. We have used other independently published or 
free - domain programs in SAS, R, C, and other languages.  

Validation Using Other Software   We have used 95% methods in nQuery 
5.0 and 6.0 to validate ExpDesign Classical Design Module (Section  A.2 ). We 



have used East 4.1 and 5.0 and SAS and R source code from M. Chang  2007a)    
for group sequential design and adaptive design model (see Sections  A.3  and 
 A.4 ). We have also used the results from the book by Jennison and Turnbull 
 (2000) , Proschan et al.  (2006) , Wang and Tsiatis  (1987)   , Pampallona and 
Tsiatis  (1994) , and M. Chang  (2007a)  to validate the group sequential design 
and adaptive design module (see Section  A.3  and Table  A.4 ). We have docu-
mented the numerical comparisons extensively in the tables in this appendix. 
Of course, this refl ects only a small portion of the validation processes in 
ExpDesign Studio (A.2 to A.8).   

  A.1.3   Criteria for Passing Validation 

 If the difference in results is fewer than one subject or less than 0.005 in power, 
or within 1% for sample size, or the precision is within 0.0001 in stopping 
probabilities/boundary, it is considered to have passed validation. 

Beta Version   However, ExpDesign covers a wide range of design methods 
that many other software packages do not cover. Because we believe in the 
importance of high standard validation, we have marketed as the beta version 
any method that is not 100% done. There are few methods for classic design, 
and the ExpDesign Simulator module is deemed to be a beta version and 
marked  “ Beta ”  in the validation tables. Readers should take precautions in 
using these methods, using them for mission - critical tasks only.   

  A.1.4   Input and  GUI  Validation 

 GUI (graphic user interface) input validation is another way to prevent ironic 
results due to impropriate inputs from a user. ExpDesign implements exten-
sive input checks to eliminate many types of input errors from the GUI. The 
tiptextes for the input boxes are provided to instruct user in how to enter 
appropriate values.   

  A.2   VALIDATION OF THE CLASSICAL DESIGN MODULE 

 All validation cases in Table  A.1  power   =   80%, 85%, or 90% for a one -  or 
two - sided hypothesis testing with  α    =   0.05. The ExpDesign default example in 
each method for the classical designs will show you the exact input parameters. 
You can click the example button in ExpDesign Classical Design Module to 
see the inputs. For simplicity, unbalanced design validations are not presented 
in the table.    
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 TABLE A.1    Classical Sample Size Method Validation 

  ID    Short Method Title    ExpDesign    nQuery a

     1    Two - sample  t  - test    64    64  
     2    Mann – Whitney  U /Wilcoxon rank - sum test for two samples   38    38  
     3    Kendall ’ s test of Independence    100    111  
     4    Sign test for median difference: paired sample    58    58 M

     5    Wilcoxon ’ s signed - rank test for one or paired sample    66    66 M

     9    McNemar ’ s test for paired sample    52    52  
     13    Asymptotic  z  - method considering variance difference   62    62 M

     14    Pearson ’ s chi - square test (Kramer – Greenhouse)    71    72  
     22    Equivalence test for two proportions (large  n )    132    132 CSW

     33    Test for  H0 : ( u0 ,  σ0 ) vs.  Ha : ( ua ,  σa ): large sample    42    N.A.  
     34    Two - sample  z  - test (large sample or population variance 

known)
  63    63 CSW

     36    Lachin ’ s test for two treatments by two - time - point 
interaction

  110    N.A.  

     37    Lachin ’ s test for treatment by time interaction    284    N.A.  
     40    Exponential survival distribution with uniform patient 

enrollment
  251    250  

     42    Exponential survival with uniform enrollment and 
follow - up

  416    415  

     44    Test  H0 : single correlation   =   zero using Fisher ’ s arctan 
transformation

  86    85  

     45    Test  H0 : regression coeffi cient   =   zero using arctan 
transformation

  86    85  

     46    Test two correlation coeffi cients using Fisher ’ s arctan 
transformation

  53    N.A.  

     48    Test interaction in a model with exponential survival 
function (two strata) 

  69    N.A.  

     49    Test interaction in a model with exponential survival 
function ( k  strata)  

  444    N.A.  

     50    One - way ANOVA for parallel groups    52    53  
     51    2    ×    2 crossover study with intraclass correlation 

consideration
  74    N.A.  

     52    Whitehead logistic ratio model for two groups with  k
categories

  97    N.A.  

     54    One - sample  t  - test    34    34  
     55    One - sample  t  - test (fi nite population)   33    33  
     56    Paired - sample  t  - test    34    34  
     57    Paired - sample  t  - test (fi nite population)   54    55  
     58    One - sample mean confi dence interval method (large 

sample)
  61    62  

     59    One - sample mean confi dence interval method (fi nite 
population)

  58    58  

     60    Paired - sample mean confi dence interval method (large 
sample)

  61    62  

     61    Paired - sample mean confi dence interval method (fi nite 
population)

  58    58  

     62    Paired  t  test for equivalence of means   126    127  
     64    Schuirmann – Chow ’ s two one - sided  t  - tests for equivalence   791    791 CR
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  ID    Short Method Title    ExpDesign    nQuery a

     66    Confi dence interval for difference of two means (large 
sample)

  48    48  

     68    Confi dence interval for one - way contrast (large sample)    123    123  
     69    Noninferiority test for two means based on a one - sided 

two - sample  t  - test  
  310    310 CR

     70    One - way repeated measures ANOVA    60    61  
     72    Chi - square test for one sample proportion    239    239  
     73    Chi - square test for one proportion with  k  categories    76    76  
     74    Confi dence interval for a proportion (large  n )    81    81  
     75    Confi dence interval for odds ratio for paired proportions 

(large n )  
  512    513  

     76    Confi dence interval for the probability of observing a rare 
event

  15    16  

     77    Chi - square test for the one proportion (fi nite population)    147    147  
     79    Paired response: equivalence of  p1  and  p2  (large sample)   312    312  
     80    Chi - square test for two proportions with  k  categories    102    102  
     81    Confi dence interval for difference in two proportions (large 

n )  
  177    177  

     82    Confi dence interval for ln(odds ratio): unmatched case –
 control study  

  210    211  

     83    One - sided noninferiority for two proportions (large 
sample)

  40    40 CSW

     84    Chi - square test for  m  sample proportions with  k  categories    101    102  
     85    Mantel – Haenszel test for odds ratio with  k  strata    2025    2026  
     86    Mantel – Haenszel test for odds ratio with  k  strata 

(continuity correction) 
  57    57  

     87    Cochran – Armitage test for linear/monotonic trend 
(dose – response)

  807    808  

     88    Log - rank test for survival analysis    98    98  
     91    Logistic regression on  x  for binary outcome   77    76  
     92    Logistic regression on  x  for binary outcome with covariates   103    102  
     93    Linear regression; test for  H0 : correlation coeffi cient   =   0    82    82  
     94    Multiple linear regression; test for  H0 : multiple correlation 

R    =   0  
  24    24  

     95    Multiple regression, test 0, increased in  R2  due to extra  B
covariates

  208    N.A.  

     96    Linear regression  y    =    a    +    bx ; test  H0 :  b    =    b0   34    34  
     97    Linear regression  y1    =    a1    +    b1x, y2    =    a2    +    b2x ; test  H0 :  b1    =    b2   36    37  
     98    Linear regression  y    =    a    +    bx , confi dence interval for  b   384    N.A.  
  100    Confi dence interval for Bloch – Kraemer intraclass  κ

coeffi cient  
  350    N.A.  

  101    Test for Bloch – Kraemer intraclass  κ  coeffi cient    780    780  
  102    Test for Bloch – Kraemer intraclass  κ  using  z  - transformation    697    N.A.  
  104    Two one - sided  t  - tests for equivalence of two means: parallel 

design
  310    310  

  105    Confi dence interval for repeated measures contrast    908    908  
  107    Two one - sided  t  - tests for equivalence based on ratio of 

means: parallel design 
  76    76  

TABLE A.1 Continued
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  ID    Short Method Title    ExpDesign    nQuery a

  108    Two one - sided  t  - tests for equivalence based on ratio of two 
means: crossover design 

  34    34  

  109    Two one - sided  t  - tests for equivalence based on mean ratio 
for lognormal data 

  482    482  

  110    Exponential survival with uniform accrual, follow - up, and 
dropouts

  120    119  

  112    Test all  k  equal survival means with overall type I error 
control

  118    118 MS

  113    Exponential survival distribution with a Bernoulli 
confounding variable 

  118    N.A.  

  115    One - way repeated measures ANOVA for two groups    60    61  
  117    Repeated measures for two proportions    53    CL  
  120    Test for treatment mean difference with 2    ×    2 crossover 

design
  74    CL  

  121    Two - sample  z  - test for treatment mean difference   141    141 CR

  126    Two - way analysis of variance with interaction term    128    128  
  127    Two - way analysis of variance without interaction    162    Odeh  
  128    One - way random block design    128    Odeh  
  130    ANOVA with Latin square design    128    Odeh  
  131    William ’ s test for minimum effective dose    335    CL  
  132    One - sample multiple test for zero means    60    N.A.  
  133    Two - sample multiple test for mean differences    122    NQ  
  135    One - sample exact test for proportion using binomial 

distribution
  143    143  

  138    One - sample confi dence interval for mean based on 
t  - statistic  

  98    98 CR

  139    Paired mean confi dence interval based on  t  - statistic    98    98 CR

  145    One - way ANOVA for parallel groups    214    215  
  146    Contrast test for  m  means (dose – response)   230    230  
  147    Chi - square test for  m  sample proportions with  k  categories    386    386  
  148    Chi - square test for equal proportions in  m  groups    101    102  
  150    Noninferior its test for survival with uniform accrual and 

follow - up
  276    276 C

  152    Equivalence test for survival with uniform accrual and 
follow - up

  498    498 C

  153    Equivalence test for two proportions (large  n )    132    132 CC

  154    Comparing DNA expression profi les among predefi ned 
classes

  58    N.A.  

  156    Prognostic models with right - censored data from DNA 
microarray

  36    N.A.  

  157    One - way contrast between proportions    60    60 C

  159    One - way contrast test for survival with uniform accrual and 
follow - up

  76    76 C

  161    Donner ’ s method for mean difference using cluster 
randomization

  403    N.A.  

  164    Fisher ’ s exact test for two proportions    50    50  

a Default source is nQuery; M, validated manually; CSW, Chow – Shao – Wang  (2003) ; N.A., not applicable 
(beta version); CR, internal cross - validation using method already validated; MS, Makuch and Simon 
 (1982) ; Odeh, Odeh and Fox  (1991) ; C, Chang  (2007e) ; CC, Chang and Chow  (2006) ; CL, Chow and 
Liu  (1998) .       
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  A.3   VALIDATION OF THE GROUP SEQUENTIAL 
DESIGN MODULE 

  A.3.1   Stopping Boundary and Type I Error Rate Validation 

 In Tables  A.2  to  A.4  we compare the stopping boundaries from four different 
sources: Jennison and Turnbull  (2000)  (JT); Proschan et al.  (2006)  (PLW), 
ExpDesign 5.0, and East 4.1. We can see that the stopping boundaries are vir-
tually identical in all methods.        

  A.3.2   Power and Sample - Size Validation 

 Tables  A.5  to  A.10  are sample - size comparisons among different sources. In 
additional type I error and power, we have also validated the crossing proba-
bility at interim analyses (see Table  A.11  for examples).                 
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 TABLE A.2    O ’ Brien – Fleming Boundary on the  z  - Scale at the Final Stage a

  Number of 
Looks

  ExpDesign 
Studio 5.0    PLW. (P72)    JT    East 4.1  

     1    1.9599    1.960    1.960    1.960  
     2    1.9768    1.977    1.977    1.977  
     3    2.0044    2.004    2.004    2.004  
     4    2.0243    2.024    2.024    2.024  
     5    2.0396    2.040    2.040    2.040  
     6    2.0533    2.053    2.053    2.053  
     7    2.0641    2.063    2.063    2.063  
     8    2.0717    2.072    2.072    2.072  
     9    2.0794    2.080    2.080    2.080  
  10    2.0870    2.087    2.087    2.087  

a One - sided  α    =   0.025, equal information intervals.   

 TABLE A.3    Pocock Boundary on the  z  - Scale at the Final Stage a

  Number of 
Looks

  ExpDesignm 
Studio 5.0    PLW. (P72)    JT    East 4.1  

     1    1.9599    1.960    1.960    1.960  
     2    2.1789    2.178    2.178    2.178  
     3    2.2892    2.289    2.289    2.290  
     4    2.3611    2.361    2.361    2.361  
     5    2.4132    2.413    2.413    2.413  
     6    2.4530    2.453    2.453    2.454  
     7    2.4852    2.485    2.485    2.486  
     8    2.5127    2.512    2.512    2.513  
     9    2.5357    2.535    2.535    2.536  
  10    2.5556    2.555    2.555    2.556  

a One - sided  α    =   0.025, equal information intervals.   
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 TABLE A.5     Maximum Sample Size for 80% and 90% Power: of Boundary    a     

  Number of 
Looks  

  ExpDesign 
Studio 5.0    JT   b     

  East 4.1 WT 
(delta   =   0)  

  80%    90%    80%    90%    80%    90%  

  1    348    466    348    466    349    467  
  2    351    470    351    469    352    470  
  3    355    475    354    474    355    475  
  4    357    477    356    476    357    477  
  5    359    479    358    478    359    479  

     a  One - sided  α    =   0.025, equal information intervals, effect size   =   0.3, four - stage sequential design 
comparing two means.  
    b  Calculated using Tables 2.11 and 2.12 in Jennison and Turnbull  (2000) .   

 TABLE A.6     Maximum Sample Size for 80% and 90% Power: Pocock Boundary    a     

  Number of 
Looks  

  ExpDesign 
Studio 5.0    JT   b     

  East 4.1 WT 
(delta   =   0.5)  

  80%    90%    80%    90%    80%    90%  

  1    348    466    348    466    349    467  
  2    388    514    386    513    387    514  
  3    407    537    406    536    407    537  
  4    419    552    418    551    420    553  
  5    429    563    428    562    429    564  

     a  One - sided  α    =   0.025, equal information intervals, effect size   =   0.3, four - stage sequential design 
comparing two means.  
    b  Calculated using Tables 2.11 and 2.12 in Jennison and Turnbull  (2000) .   

 TABLE A.4     Wang – Tsiatis Boundary ( b    =   0.25) on the  z  - Scale at the Final Stage    a     

  Number of Looks    ExpDesign Studio 5.0    JT    East 4.1  

     1    1.9599    1.960    1.960  
     2    2.0380    2.038    2.038  
     3    2.0824    2.083    2.083  
     4    2.1131    2.113    2.113  
     5    2.1360    2.136    2.136  
     6    2.2544    2.154    2.154  
     7    2.1682    2.168    2.168  
     8    2.1804    2.180    2.180  
     9    2.1986    2.190    2.190  
  10    2.1988    2.199    2.199  

     a  One - sided  α    =   0.025, equal information intervals.   



  

 TABLE A.7     Maximum Sample Size for 80% and 90% Power: 
Wang – Tsiatis Boundary    a     

  Number of 
Looks  

  ExpDesign 
Studio 5.0    JT   b     

  East 4.1 WT 
(delta   =   0.25)  

  80%    90%    80%    90%    80%    90%  

  1    348    466    348    466    349    467  
  2    362    483    361    482    362    483  
  3    368    490    367    489    368    490  
  4    371    495    371    494    371    495  
  5    374    498    373    497    374    498  

     a  One - sided  α    =   0.025, equal information intervals, effect size   =   0.3, four - stage sequential design 
comparing two means.  
    b  Calculated using Tables 2.11 and 2.12 in Jennison and Turnbull  (2000) .   

 TABLE A.8     Maximum Sample Size for Binary Endpoint: Four - Stage 
Sequential Design    a     

  Boundary Type  

  Proportions  
  ExpDesign 
Studio 5.0  

  East 4.1 
(Pooled 

Variance)  

  Group 1    Group 2    80%    90%    80%    90%  

  OF    0.2    0.4    169    226    167    222  
  WT ( Δ    =   0.25)    0.2    0.4    175    234    174    230  
  Pocock    0.2    0.4    198    261    197    258  

     a  The differences in sample size cause less than 0.5% difference in power. It is therefore considered 
to be due to numerical rounding.   

 TABLE A.9     Maximum Sample Size (Number of Events) for Survival Endpoint: 
Four - Stage Sequential Design    a     

  Boundary Type  

  ExpDesign Studio 5.0    East 4.1 (Pooled Variance)  

  80%    90%    80%    90%  

  OF    654 (467)    874 (624)    656 (469)    877 (626)  
  WT ( Δ    =   0.25)    680 (485)    907 (647)    683 (487)    910 (649)  
  Pocock    768 (548)    1012 (722)    771 (551)    1016 (725)  

     a  All differences in sample size  <  0.5%. Therefore, it is consider due to numerical rounding. Patient 
accrual period  T  0    =   24.4, study duration  T  max    =   34.3, median times   =   10 and 13 for the two 
groups.   
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 TABLE A.12     Stopping Boundary on the  p  - Scale at the Final Stage Using 
Error - Spending Function 

  Spending 
Function  

  Information 
Time  

  ExpDesign 
Studio 5.0  

  PLW Table 
5.3     a       East 4.1   a     

  OF - like    0.20    0.00000    4.877/0.00000    0.00000  
  0.50    0.00159    2.963/0.00153    0.00153  
  1.00    0.02454    1.969/0.02448    0.02448  

  Linear    0.20    0.00500    2.576/0.00500    N.A.  
  0.50    0.00873    2.377/0.00873  
  1.00    0.01611    2.141/0.01614  

  Pocock - like    0.20    0.00738    2.438/0.00738    0.00738  
  0.50    0.00983    2.333/0.00982    0.00982  
  1.00    0.01306    2.225/0.01304    0.01304  

     a  Converted from the  z  - scale. One - sided  α    =   0.025, equal information intervals with three looks 
(MINP). N.A., not applicable; PLW, Proschan, Lan, and Wittes,  2006 .   

 TABLE A.10     Maximum Sample Size (Number of Events) for Survival Endpoint: 
Three - Stage Sequential Design    a     

  Boundary Type  

  ExpDesign Studio 5.0    East 4.1 (Pooled Variance)  

  80%    90%    80%    90%  

  OF    671 (517)    899 (692)    673 (519)    900 (694)  
  WT ( Δ    =   0.25)    696 (536)    929 (715)    968 (538)    930 (717)  
  Pocock    770 (593)    1017 (783)    992 (595)    1020 (786)  

     a  It has been noted that the number of events changes slightly when accrual rate changes, which 
should not change based on the formulation. All differences in sample size  <  0.5%. It is therefore 
considered to be due to numerical rounding. Patient accrual period  T  0    =   8, study duration  T  max    =  
 23, median times   =   10 and 13 for the two groups.   

 TABLE A.11     Validation of Boundary Crossing Probabilities    a     

  Stage  

  ExpDesign Studio 5.0    East 4.1  

  Under  H  0     Under  H a      Under  H  0     Under  H a    

  1    0.0014    0.0743    0.001    0.074  
  2    0.0054    0.3033    0.005    0.303  
  3    0.0083    0.2946    0.008    0.295  
  4    0.0098    0.1778    0.010    0.178  

     a  Four - stage sequential design with OF boundary comparing two means.   

  A.4   VALIDATION OF THE ADAPTIVE DESIGN MODULE 

  A.4.1   Stopping Boundary and Type I Error Rate Validation 

 For MINP with OF - like, Pocock - like, and Lan – DeMets ’ s power - spending func-
tions, the validation results are the same as for group sequential design (Tables 
 A.12  to  A.15 ). Note that Cui - Hung - Wang ’ s method is a special case of MINP 
(the method based on inverse - normal  p  - values).         



 TABLE A.13    Stopping Boundary Validation ( a2 ) with Two - Stage MSP: 
Futility Binding a

β1

α1

  0.000    0.0025    0.005    0.010    0.015    0.020  

  0.05    0.5250    0.4999    0.4719    0.4050    0.3182    0.2017  
  0.10    0.3000    0.2820    0.2630    0.2217    0.1751    0.1225  
  0.15    0.2417    0.2288    0.2154    0.1871    0.1566    0.1200  
  0.20    0.2250    0.2152    0.2051    0.1832    0.1564    0.1200  
  0.25    0.2236    0.2146    0.2050    0.1832    0.1564    0.1200  

a All values are validated using computer simulation with 1,000,000 runs and results from M. Chang 
 (2007a , Table  4.3 ).     

 TABLE A.14    Stopping Boundary Validation ( a2 ) with Two - Stage MPP: 
Futility Binding a

β1

α1

  0.001    0.0025    0.005    0.010    0.015    0.020  

  0.15    0.0048    0.0055    0.0059    0.0055    0.0043    0.0025  
  0.20    0.0045    0.0051    0.0054    0.0050    0.0039    0.0022  
  0.25    0.0043    0.0049    0.0051    0.0047    0.0036    0.0020  
  0.30    0.0042    0.0047    0.0049    0.0044    0.0033    0.0018  
  0.35    0.0041    0.0046    0.0047    0.0042    0.0032    0.0017  
  0.40    0.0040    0.0044    0.0046    0.0041    0.0030    0.0017  
  0.50    0.0039    0.0042    0.0043    0.0038    0.0029    0.0016  
  1.00    0.0035    0.0038    0.0038    0.0033    0.0024    0.0013  

a All values are validated using computer simulation with 1,000,000 runs and results from M. Chang 
 (2007a) .   Nonfutility binding boundaries are special cases when we force  β1    =   1.   

 TABLE A.15    Stopping Boundary Validation ( a2 ) with Two - Stage MSP: 
Futility Binding a

β1

α1

  0.000    0.0025    0.005    0.010    0.015    0.020  

  0.05    0.5250    0.4999    0.4719    0.4050    0.3182    0.2017  
  0.10    0.3000    0.2820    0.2630    0.2217    0.1751    0.1225  
  0.15    0.2417    0.2288    0.2154    0.1871    0.1566    0.1200  
  0.20    0.2250    0.2152    0.2051    0.1832    0.1564    0.1200  
> 0.25    0.2236    0.2146    0.2050    0.1832    0.1564    0.1200  

a All values are validated using computer simulation with 1,000,000 runs and results from M. Chang 
 (2007a,b) . Nonfutility binding boundaries are special cases when we force  β1    =    α2 .   
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 TABLE A.17    Validation of Sample - Size Reestimation for Two - Stage 
Adaptive Design a

  Method    Effect Size     P1      N1     cPower 
  cPower from 
ExpDesign

  cPower from 
M. Chang (2007)   

  MSP    0.18124    0.1    100    0.9    375    375  
  MPP    0.18124    0.1    100    0.9    569    569  
  MINP    0.18124    0.1    100    0.9    472    472  

a MSP boundary:  α1    =   0.0025,  α2    =   0.2152. MPP boundary:  α1    =   0.0025,  α2    =   0.0038. MINP bound-
ary: α1    =   0.0025,  α2    =   0.02454.   

 TABLE A.16    Validation of Conditional Power for Two - Stage Adaptive Design a

  Method    Effect Size     P1      N1      N2

  cPower from 
ExpDesign

  cPower from 
M. Chang  (2007a)     

  MSP    0.18124    0.1    100    200    0.73    0.73  
  MPP    0.18124    0.1    100    200    0.515    0.515  
  MINP    0.18124    0.1    100    200    0.626    0.626  

a MSP boundary:  α1    =   0.0025,  α2    =   0.2152. MPP boundary:  α1    =   0.0025,  α2    =   0.0038. MINP bound-
ary: α1    =   0.0025,  α2    =   0.02454.   

 The Lan – DeMets power family stopping boundary validation with MSP 
(> two stages) is based on simulation; therefore, the precision is dependent on 
the number of simulation runs. We suggest that 100,000 to 1,000,000 simulation 
runs are necessary to determine the stopping boundary with 0.01% precision. 
For K  - stage designs, boundaries are verifi ed through simulations, which is 
done at the time you design the trial by running a simulation under the null 
conditions.

  A.4.2   Validation of Adaptive Design Monitoring 

 Two - stage results for sample - size reestimation and conditional power are veri-
fi ed by analytical results from M. Chang  (2007)  and using overall type I error 
rate and simulation to check (Tables  A.16  and  A.17 ). For  K  - stage design, simu-
lations were used for validation and overall type I error rate and conditional 
power from two - stage design to check. For  K  - stage design with MINP, recal-
culation of the stopping boundaries were checked against the group sequential 
stopping boundaries that have already been verifi ed.       

  A.5   VALIDATION OF THE MULTISTAGE DESIGN MODULE 

 The optimal design and MinMax design are often not unique; there could be 
several designs with the same expected or maximum sample size. In such cases, 



  

ExpDesign will present all the designs in the grid and pick anyone to present 
the report. Examples of validations are shown in Tables  A.18  to  A.20 .       

 Note that we believe that a few probabilities of early termination, PET( p  0 ), 
are incorrect in Simon ’ s original paper. For example, for MinMax design with 
 p  0    =   0.2 and the cutpoint  r  1 / n  1    =   4/18, Simon ’ s PET( p  0 )   =   0.50, which is incor-
rect (or simply a typographical error). The PET(0.2) can easily be verifi ed 
using the binomial distribution, which is 0.7164.  

 TABLE A.18     Two - Stage Optimal Design (MinExpSize): One - Sided  a    =   0.05 

  Simon/ExpDesign    Simon    ExpDesign  

  Power     p  0      p  1      R  1 / n  1      r / n     EN( p  0 )    PET( p  0 )    PET( p  0 )  

  0.8    0.05    0.25    0/9    2/24    14.5    0.63    0.630  
  0.8    0.20    0.40    3/13    12/43    20.6    0.75    0.747  
  0.8    0.30    0.50    5/15    18/46    23.6    0.72    0.722  
  0.8    0.10    0.15    2/18    7/43    24.7    0.73    0.734  
  0.8    0.30    0.45    9/27    30/81    41.7    0.73    0.728  
  0.9    0.30    0.50    8/24    24/63    34.7    0.73    0.725  

    Source :   Simon  (1989 ,   Tables 1 and 2).   

 TABLE A.19     Two - Stage MinMax Design (MinMaxSize): One - Sided  a    =   0.05   

  Simon/ExpDesign    Simon    ExpDesign  

  Power     p  0      p  1      R  1 / n  1      r / n     EN( p  0 )    PET( p  0 )    PET( p  0 )  

  0.8    0.05    0.25    0/12    2/16    13.8    0.54    0.540  
  0.8    0.20    0.40    4/18    10/33    22.3    0.50 *     0.716  
  0.8    0.30    0.50    6/19    16/39    25.7    0.48 *     0.666  
  0.8    0.10    0.15    2/22    7/40    28.8    0.62    0.620  
  0.8    0.30    0.45    16/46    25/65    49.6    0.81    0.809  
  0.9    0.30    0.50    7/24    21/53    36.6    0.56    0.565  

    Source :   Simon ( 1989 ,   Tables 1 and 2). An asterisk indicates an incorrect value from Simon ’ s 
original paper.   

 TABLE A.20     Three - Stage Optimal Design Validation    a     

  Source     P  0      P  1      r  1 / n  1      r  2 / n  2      r  3 / n  3     Alpha    Power  

  ExpDesign    0.05    0.25    0/8    1/13    2/19    0.049    0.805  
  Ensign *     0.05    0.25    0/7    1/15    3/26    0.027 *     0.805  
  ExpDesign    0.10    0.30    0/6    2/17    5/29    0.047    0.801  
  Ensign    0.10    0.30    0/6    2/17    5/29    0.047    0.801  

     a  Alpha and power from 1,000,000 simulation runs in SAS and numerical calculations in ExpDe-
sign. An asterisk indicates that Ensign ’ s (Ensign et al.,  1994 )   Table I did not pick the optimal 
design, due to a conservative  α  value. The SAS program for validation of the three - stage design 
in presented in Section  A.10 .   
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 TABLE A.22    CRM Validation 

  Software    Mean MTD    Mean DLTs    Number of Patients 

  ExpDesign 5.0    154    3.1    11.8  
  SAS Macro    154    3.1    11.9  

  A.6   VALIDATION OF THE TRADITIONAL DOSE - ESCALATION 
DESIGN MODULE 

  A.6.1   Validation of the Traditional Escalation Rule 

 We have used the SAS program (Section  A.10.2 ) to validate the traditional 
escalation design (Table  A.21 ). The parameter settings are as follows: the 
number of simulations   =   5000, the number of stages   =   1, the number of dose 
levels   =   7, the true MTD   =   4 with a DLT rate of 0.2. The DLT rates for the 
seven dose levels are 0.01, 0.028, 0.079, 0.2, 0.423, 0.683, and 0.863. The dose -
 escalation rule is the 3   +   3 traditional escalation rule.    

  A.6.2   Validation of the Bayesian Continual Reassessment Method 

 We have used SAS Macro (A.10.3) to validate the CRM (Table  A.22 ). The 
trial settings are specifi ed as follows: the seven dose levels 25, 50, 82.5, 125.4, 
175.6, 233.5, and 310.5, and the DLT rates 0.0098, 0.0196, 0.0475, 0.143, 0.4062, 
0.7774, and 0.9683, respectively. The true MTD is 150 with a rate of 0.25. The 
stopping rule is defi ned as if the maximum number of patients at a dose level 
reaches six. No dose level can be avoided during the escalation.     

  A.7   VALIDATION OF THE TRIAL SIMULATION MODULE 

 The trial simulator is a beta version in ExpDesign Studio 5.0; only algorithm 
validations are done, and outcome results are checked for some special cases. 
The full outcome validations are not done because no published data are 
available for the validation.  

  A.8   VALIDATION OF THE RANDOMIZOR 

 The main references for implementation of the randomizor are Gentle  (2003) , 
Ross  (2002)   , and Kokoska and Zwillinger  (2000) . Algorithms used to generate 

 TABLE A.21    Traditional 3   +   3 Escalation Design Validation 

  Software    Method    Mean N    Mean DLTs    Mean MTD  

  ExpDesign 5.0    TER    17.2    2.82    3.764  
  SAS Macro    TER    17.2    2.83    3.765  



  

deviations from these distributions are well established. We have validated 
the quartiles and standard deviations. Examples are presented in Table 
 A.23 .    

  A.9   VALIDATION OF THE EXPDESIGN TOOLKITS 

 This distribution module has also been used for part of ExpDesign, such as 
sample - size calculations, and thus verifi ed indirectly through validations of 
other ExpDesign modules. The cross - validations were done using ExpDesign 
5.0, East 4.1, and Scientifi c Workplace 5.0 (SW) (see Table  A.24 ).           

 We have also verifi ed the tail part of the distribution. For example,  Z  0.999    =  
 3.0902 and  Z  0.9999    =   3.719 from both ExpDesign Studio 5.0 and Scientifi c Work-
place 5.0. Validations of probability distributions and confi dence intervals can 
be found in Tables  A.25  and  A.26 , respectively.  

 TABLE A.23     Randomizor Validation    a     

  Distribution  

  Mean    StdDev  

  Expected    Observed    Expected    Observed  

  Bernoulli(0.2)    0.2    0.201    0.4    0.401  
  Beta(0.3,0.5)    0.375    0.378    0.361    0.362  
  Binomial(0.2,5)    1    0.990    0.894    0.892  
  Caucthy(0.5,1,2)    N.A.    2.261    N.A.    0.155  
  Chisq(8)    8    8.011    4    3.975  
  Exp(3)    0.333    0.330    0.333    0.331  
  Gamma(3,0.5)    1.5    1.500    0.866    0.869  
  Geometric(0.2)    5    4.949    4.472    4.420  
  HalfNormal     —     0.802     —     0.602  
  HyperGeometric (10,5,2)    1    1.004    0.667    0.662  
  invGauss(4, 6)    4    3.993    3.266    3.239  
  Laplace(3)    0    0.0001    0.4714    0.469  
  Rayleigh(2.5)    3.1333    3.147    1.638    1.638  
  Lognormal(0.2,2)    9.025    9.041    66.67    60.664  
  Multinormal                  
  NegBinomial(1.2,0.4)    1.8    1.7743    2.121    2.096  
  Normal(0,1)    0    0.0089    1    0.997  
  Pareto(3,0.4)    0.6    0.6002    0.3464    0.334  
  Pascal(3,0.4)    4.5    4.5242    3.354    3.373  
  Poisson(20)    20    20.0163    4.472    4.454  
   F (6,8)    1.333    1.338    1.333    1.312  
  Student -  t (5)    0     − 0.005    1.291    1.283  
  Uniform(0,1)    0.5    0.500    0.2887    0.288  
  Weibull(0.5,5)    10    10.090    22.361    23.406  

     a  Results based on 20,000 simulation runs. N.A., not applicable.   
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 TABLE A.24    Validation of Distribution Calculator: Continuous 

  Inverse c.d.f.    Software  

  Percentile  

  25%    50%    75%    95%    97.5%    99%  

  Chisq
(20,x )  

  ExpDesign    15.45    19.34    23.82    31.40    34.15    37.56  
  East 4.1    15.45    19.34    23.83    31.41    34.17    37.57  
  SW 5.0    15.452    19.337    23.828    31.41    34.170    37.566  

  Exponential
(0.1,x )  

  ExpDesign    2.876    6.936    13.86    29.96    36.88    46.06  
  East 4.1    2.877    6.931    13.86    29.96    36.89    46.05  
  SW 5.0    2.8768    6.9315    13.863    29.957    36.889    46.052  

F (20,50, x )    ExpDesign    0.7555    0.9799    1.2592    1.7842    1.9932    2.2656  
  SW 5.0    0.75545    0.9799    1.2592    1.7841    1.9933    2.2652  

  Gamma
(3,2.5,x )  

  ExpDesign    4.316    6.686    9.800    15.74    18.06    21.00  
  East 4.1    4.318    6.685    9.801    15.74    18.06    21.01  
  SW 5.0    4.3182    6.6852    9.801    15.739    18.062    21.015  

N (0,1, x )    ExpDesign  − 0.6745    0    0.6745    1.6449    1.9599    2.3263  
  East 4.1  − 0.6745    0    0.6745    1.6449    1.9600    2.3263  
  SW 5.0  − 0.67449    0    0.67449    1.6449    1.9600    2.3263  

  Student  t
(8,x )  

  ExpDesign  − 0.7064    0    0.7064    1.8595    2.3058    2.8963  
  East 4.1  − 0.7064    0    0.7064    1.8600    2.3060    2.8960  
  SW 5.0  − 0.70639    0    0.70639    1.8595    2.3060    2.8965  

  Weibull
(2,1.5,x )  

  ExpDesign    0.8042    1.2485    1.7659    2.5977    2.8848    3.2300  
  SW 5.0    0.80454    1.2488    1.7661    2.5962    2.8810    3.2189  

 TABLE A.25    Validation of the Distribution Calculator: Discrete 

  c.d.f.    Software  

  N  

  36    40    43    46    48    51  

  Binomial 
(100,0.4;n )  

  ExpDesign    0.2386    0.5433    0.7635    0.907    0.9577    0.99  
  SW 5.0    0.23861    0.54329    0.76347    0.90702    0.95770    0.98999  

  Poisson 
(40;n )  

  ExpDesign    0.2963    0.5419    0.7162    0.8479    0.9075    0.9613  
  SW 5.0    0.29635    0.54192    0.71622    0.84788    0.90753    0.96126  

 TABLE A.26    Validation of the Confi dence Interval Calculator a

  CI Name  

  Two - Sided 95% CI  

          ExpDesign CI    www CI  

  One - sample proportion  P    =   6/30     —     (0.0771, 0.3857)    (0.0771, 0.3857) 
  One - sample proportion ( z )     P    =   0.2     —     (0.0569, 0.3431)    (0.0596, 0.3431) 
  One - sample mean ( t )     U    =   1     —     (0.2532, 1.7468) t  - distribution  
  One - sample mean ( z )     U    =   1     —     (0.2843, 1.7157)    (0.28, 1.72)  
  Two proportions ( z )     P1    =   0.3,     P2    =   0.5    (0.0671, 0.3329)    Checked 

manually
  Two means ( t )     U1    =   1,     U2    =   2    ( − 0.0333, 2.0333) t  - distribution  
  Two means ( z )     U1    =   1,     U2    =   2    ( − 0.0121, 2.0121)    ( − 0.01, 2.01)  
  Two - variance ratio  S1    =   2,     S2    =   3    (1.0706, 4.7262)    Checked 

manually

a Total sample size  n    =   30/group, the default standard deviation  S    =   2. For further information 
see  http://www.dimensionresearch.com/resources/calculators/conf_means.html  and  http://www.
measuringusability.com/wald.htm .   



  A.10   COMPUTER PROGRAMS FOR VALIDATIONS 

  A.10.1    SAS  Macro for Three - Stage Design Validation 

 The following is the SAS macro for validation of  α  and power for three - stage 
designs.

%Macro ThreeStageDesign(p, n1, n2, n3, r1, r2, r3);

data bin; drop i nSims;
retain FSP1 0 FSP2  0 FSP3  0;
 n1= &n1; n2= &n2; n3= &n3; r1= &r1; r2= &r2; r3= &r3;
 seed= 292; p= &p; nSims= 1000000;
 do i= 1 to nSims;
 call ranbin(seed,n1,p,x1);
 call ranbin(seed,n2 -n1,p,x2);
  call ranbin(seed,n3 -n2,p,x3);
  if x1 <=r1 then FSP1=FSP1+ 1/nSims;
  if x1 >r1 & x1+x2 <=r2 then FSP2=FSP2+ 1/nSims;
  if x1 >r1 & x1+x2 > r2  & x1+x2+x3 <=r3 then 
   FSP3=FSP3+ 1/nSims;
 end;
 FSP=FSP1+FSP2;
 Power= 1-FSP-FSP3;
 output;
run;
proc print; run;
%mend;
%ThreeStageDesign(0.05, 7, 15, 26, 0, 1, 3);
%ThreeStageDesign(0.25, 7, 15, 26, 0, 1, 3);
%ThreeStageDesign(0.05, 8, 13, 19, 0, 1, 2);
%ThreeStageDesign(0.25, 8, 13, 19, 0, 1, 2);
%ThreeStageDesign(0.1, 6, 17, 29, 0, 2, 5);
%ThreeStageDesign(0.3, 6, 17, 29, 0, 2, 5);

  A.10.2   Traditional 3   +   3 Escalation Design Validation 

SAS Macro for validation of 3+3 Dose -Escalation

%Macro TER3p3(nSims= 50000, nLevels= 10);
Data TER; Set dInput; Keep AveMTD SdMTD AveNPts 
AveNRsps;
Array nPts{ &nLevels}; Array nRsps{ &nLevels}; Array 
RspRates{&nLevels};
AveMTD=0; AveNPts= 0; AveNRsps= 0; nLevels= &nLevels;
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Do iSim= 1 to  &nSims;
 Do i= 1 To nLevels; nPts{i}= 0; nRsps{i}= 0; End;
 seedn=Round((Ranuni( 281)*100000000));
 iLevel= 1; TotPts= 0; TotRsps= 0;
Looper:
 If iLevel >&nLevels | nPts{iLevel}= 6 Then Goto 
Finisher;
 nPts{iLevel}=nPts{iLevel}+ 3;
 rspRate=RspRates{iLevel};
 Rsp=RANBIN(seedn, 3,rspRate);
 nRsps{iLevel}=nRsps{iLevel}+Rsp;
 TotPts=TotPts+ 3; TotRsps=TotRsps+Rsp;
 If nPts(iLevel)= 3 & nRsps{iLevel}= 0 Then Do;
 iLevel=iLevel+ 1; Goto Looper;
 End;
 If nPts(iLevel)= 3 & nRsps{iLevel}= 1 Then Goto Looper;
 If nPts(iLevel)= 6 & nRsps{iLevel} <=1 Then Do;
 iLevel=iLevel+ 1; Goto Looper;
 End;
Finisher:
 MTD=Min(iLevel -1, nLevels);
 AveMTD=AveMTD+MTD/ &nSims;
 AveNPts=AveNPts+totPts/ &nSims;
 AveNRsps=AveNRsps+TotRsps/ &nSims;
End;
Output;
Run;
Proc Print Data=TER; Run;
%Mend TER3p3;

TITLE “3 + 3 TER Design ”;
Data dInput;
Array RspRates{ 7}(0.01, 0.028, 0.079, 0.2, 0.423, 
0.683, 0.863);
%TER3p3(nSims=50000, nLevels= 7);
Run;

  A.10.3    SAS  Program for  CRM  Validation 

%Macro CRM(nSims= 100, MaxNtoStop= 6, MinPtsPerLevel= 1,
nLevels=10, b= 100, aMin= 0, aMax= 0.03, MTRate= 0.25,
nDosesSkip=1);
Data CRM; Set DInput;
Keep MaxNtoStop MinPtsPerLevel npts DLTs AveMTD 
AveMTDD;



Array nPtsAt{ &nLevels}; Array nRsps{ &nLevels}; Array 
g{100};
Array Doses{ &nLevels}; Array RRo{ &nLevels}; Array 
RR{&nLevels};
Array g0{ 100};
seed=2736; nLevels= &nLevels; MaxNtoStop= &MaxNtoStop;
DLTs=0;
AveMTD=0;AveMTDD=0; nIntPts= 100; dx=( &aMax-&aMin)/
nIntPts;
MinPtsPerLevel=&MinPtsPerLevel;
Do k= 1 To nIntPts; g0{k}=g{k}; End;
npts=0;
Do iSim= 1 to  &nSims;
 Stopping= 0;
 Do k= 1 To nIntPts; g{k}=g0{k};End;
 Do i= 1 To nLevels; nPtsAt{i}= 0; nRsps{i}= 0; End;
 iLevel= 1; preLevel= 1;
* Do iPatient=1 TO nPts;
 Do While (stopping = 0);
  npts=npts+ 1/&nSims;
  iLevel=min(min(iLevel,  &nLevels),&nDosesSkip+preLevel
  + 1);
 If nPtsAt(PreLevel)  < MinPtsPerLevel Then 
 iLevel = PreLevel;  *
Delayed response;
 preLevel=iLevel;
 Rate=RRo{iLevel};
 nPtsAt{iLevel}=nPtsAt{iLevel}+ 1;
 r=Ranbin(seed, 1,Rate); nRsps{iLevel}=nRsps
{iLevel}+r;
** Posterior distribution of a;
 c= 0;
 Do k= 1 To nIntPts;
 ak= &aMin+k*dx;
 Rate= 1/(1+&b*Exp(-ak*doses{iLevel}));
 If r >0 Then L=Rate; Else L=( 1-Rate);
 g{k}=L *g{k}; c=c+g{k} *dx;
 End;
 Do k= 1 to nIntPts; g{k}=g{k}/c; End;
** Predict response rate and current MTD;
  MTD=iLevel; MinDR= 1;
  Do i= 1 To nLevels;
   RR{i}= 0;
  Do k= 1 To nIntPts;
   ak= &aMin+k*dx;
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   RR{i}= RR{i}+ 1/(1+&b*Exp(-ak*doses{i}))
*g{k}*dx;
  End;
  DR=Abs( &MTRate-RR{i});
  If . <DR  <MinDR Then
 Do; MinDR = DR; iLevel=i; MTD=i;
MTDD=Doses{MTD}; End;
 End;
 MaxPtsAlevel =  0;
 Do i =  1 To nLevels;
 If MaxPtsAlevel  < nPtsAt(i) Then MaxPtsAlevel 
 = nPtsAt(i);
 End;
 If MaxPtsAlevel >=MaxNtoStop Then Stopping= 1;
 End;
 Do i= 1 To nLevels;
 DLTs=DLTs+nRsps{i}/ &nSims;
 End;
 AveMTD=AveMTD+MTD/ &nSims;
 AveMTDD=AveMTDD+MTDD/ &nSims;
End;
Output;
Run;
Proc Print Data=CRM; run;
%Mend CRM;

Data DInput;
Array g{ 100}; Array 
RRo{7}(0.0098,0.0196,0.0475,0.143,0.4062,0.7774,0.9683);
Array Doses{ 7} ( 25, 50, 82.5,125.4,175.6,233.5,310.5);
Do k= 1 to  100; g{k}= 1; End; * Flat prior. Don ’t have 
to be normalized;
run;

%CRM(nSims=5000, MaxNtoStop= 6, MinPtsPerLevel= 1,
nLevels=7, b= 150, aMin= 0, aMax= 0.03, MTRate= 0.25,
nDosesSkip=0);
Run;
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 APPENDIX B
Sample - Size Calculation Methods: 
Classical Design 

One/Paired-Sample Hypothesis Test for the Mean 

   •     Sign test for median difference for a paired sample  
   •     Wilcoxon signed - rank test for one or a paired sample  
   •     Test for  H0 : ( u0 ,  σ0 ) versus  Ha : ( ua ,  σa ) — large sample  
   •     One - sample  t  - test  
   •     One - sample  t  - test: fi nite population  
   •     Paired - sample  t  - test  
   •     Paired - sample  t  - test (fi nite population)  
   •     One - way repeated measures ANOVA  
   •     One - way repeated measures contrast  
   •     One - sample multiple test for zero means     

One/Paired-Sample Hypothesis Test for Proportion 

   •     McNemar ’ s test for a paired sample  
   •     Chi - square test for one sample proportion  
   •     Chi - square test for one sample proportion: fi nite population  
   •     One - sample exact test for proportion using binomial distribution     

One/Paired-Sample Hypothesis Test for Others 

   •     Kendall ’ s test of independence  
   •     Test  H0 : correlation   =   zero using Fisher ’ s arctan transformation  
   •     Test  H0 : regression coeffi cient   =   zero using arctan transformation  
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   •     Logistic regression on  x  for a binary outcome  
   •     Logistic regression on  x  for a binary outcome with covariates  
   •     Linear regression; test for  H0 : correlation coeffi cient   =   0  
   •     Multiple linear regression; test for  H0 : multiple correlation  R    =   0  
   •     Multiple regression; test zero increase in  R2  due to extra  B

covariates
   •     Linear regression  y    =    a    +    bx ; test  H0 :  b    =    b0  vs.  Ha : b     ≠     b0

   •     Test for Bloch – Kraemer intraclass  κ  coeffi cient  
   •     Test for Bloch – Kraemer intraclass  κ  using  Z  - transformation     

Paired-Sample Equivalence Test for the Mean 

   •     Paired  t  test for equivalence of means     

Paired-Sample Equivalence Test for Proportion 

   •     Paired response: equivalence of  p1  and  p2  (large sample)     

One-Sample Confi dence Interval for the Mean 

   •     One - sample mean confi dence method  
   •     One - sample mean confi dence interval method: fi nite population  
   •     Paired - sample mean confi dence interval method: large sample  
   •     Paired - sample mean confi dence interval method: fi nite population  
   •     Confi dence interval for repeated measures contrast  
   •     One - sample confi dence interval for a mean based on the  t  - statistic  
   •     Paired mean confi dence interval based on the  t  - statistic     

One-Sample Confi dence Interval for Proportion 

   •     Confi dence interval for a proportion: large  n
   •     Confi dence interval for an odds ratio for paired proportions: 

large n
   •     Confi dence interval for the probability of observing a rare 

event     

One-Sample Confi dence Interval for Others 

   •     Confi dence interval for a correlation coeffi cient  
   •     Linear regression  y    =    a    +    bx , confi dence interval for  b
   •     Confi dence interval for Bloch – Kraemer intraclass  κ
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Two-Sample Hypothesis Test for the Mean 

   •     Two - sample  t  - test  
   •     Mann – Whitney  U /Wilcoxon rank - sum test for two samples  
   •     Two - sample  z  - test: large sample or population variance known  
   •     2    ×    2 crossover study  
   •     One - way repeated measures ANOVA for two groups  
   •     Test for a treatment mean difference with a 2    ×    2 crossover design  
   •     Two - sample  z  - test for treatment mean difference  
   •     Two - sample multiple test for mean differences  
   •     Comparing DNA expression profi les among predefi ned classes  
   •     Donner ’ s method for mean difference using cluster randomization     

Two-Sample Hypothesis Test for Proportion 

   •     Asymptotic  z  - method considering variance difference  
   •     Pearson ’ s chi - square test: Kramer – Greenhouse  
   •     Lachin ’ s test for two treatments by two - time - point interactions  
   •     Mantel – Haenszel test for an odds ratio with  k  strata: large sample  
   •     Whitehead logistic model for two groups with  k  categories  
   •     Chi - square test for a two - sample proportion with  k  categories  
   •     Mantel – Haenszel test for an odds ratio with  k  strata: continuity 

correction
   •     Repeated measures for two proportions  
   •     Donner ’ s method for proportion difference using cluster randomization  
   •     Fisher ’ s exact test     

Two-Sample Hypothesis Test for Others 

   •     Exponential survival distribution with uniform patient enrollment  
   •     Exponential survival distribution with uniform enrollment rate and 

follow - up
   •     Test interaction in a model with an exponential survival function: two 

strata
   •     Test interaction in a model with an exponential survival function:  k

strata
   •     Log - rank test for survival analysis  
   •     Exponential survival distribution with a uniform enrollment, follow - up, 

and dropouts  
   •     Exponential survival distribution with a Bernoulli confounding 

variable
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   •     Testing two correlation coeffi cients using Fisher ’ s arctan transformation 
   •     Linear regression  y1    =    a1    +    b1x, y2    =    a2    +    b2x ; test  H0 :  b1    =    b2

Two-Sample Equivalence Test for the Mean 

   •     Two one - sided  t  - tests for equivalence: parallel design (bivariate  t )  
   •     Two one - sided  t  - tests for equivalence based on a ratio of means: parallel 

design (bivariate t )  
   •     Two one - sided  t  - tests for equivalence based on a ratio of two means: 

crossover design (bivariate t )  
   •     Two one - sided  t  - tests for equivalence based on a mean ratio for lognor-

mal data: parallel design (bivariate t )  
   •     Schuirmann – Chow ’ s two one - sided  t  - tests for equivalence  
   •     Noninferiority test for means based on a one - sided two - sample  t  - test     

Two-Sample Equivalence Test for Proportion 

   •     Equivalence test for two proportions: large  n
   •     One - sided noninferiority test for two proportions  
   •     Equivalence test for two proportions using the bivariate  t  - distribution 

(large n )     

Two-Sample Equivalence Test for Survival 

   •     Noninferiority test for survival with uniform accrual and follow - up  
   •     Equivalence test for survival with uniform accrual and follow - up     

Two-Sample Confi dence Interval for the Mean 

   •     Confi dence interval for the difference of two means: large sample     

Two-Sample Confi dence Interval for Proportion 

   •     Confi dence interval for the difference in two proportions: large  n
   •     Confi dence interval for proportional difference with minimum total size 
   •     Confi dence interval for ln(odds ratio): unmatched case – control study     

Two-Sample Confi dence Interval for Others 

Multisample Hypothesis Test for the Mean

   •     ANOVA with Latin square design  
   •     One - way ANOVA for parallel groups  
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   •     Contrast test for  m  means: dose – response  
   •     Two - way ANOVA with an interaction term  
   •     Two - way ANOVA without interaction  
   •     One - way random block design  
   •     William ’ s test for minimum effective dose     

Multisample Hypothesis Test for Proportion 

   •     Chi - square test for equal proportions in  m  groups  
   •     Chi - square test for  m  sample proportions with  k  categories  
   •     One - way contrast between proportions  
   •     Cochran – Armitage test for linear/monotonic trend: dose – response     

Multisample Hypothesis Test for Others 

   •     Prognostic model with right - censored data from DNA microarrays  
   •     Test for all  k  equal survival means with overall type I error control  
   •     One - way contrast test for survival with uniform accrual and follow - up     

Multisample Confi dence Interval for Others 

   •     Confi dence interval for one - way contrast: large sample              
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