
Carsten Lutz
Silvio Ranise (Eds.)

 123

LN
AI

 9
32

2

10th International Symposium, FroCoS 2015
Wroclaw, Poland, September 21–24, 2015
Proceedings

Frontiers of
Combining Systems

Lecture Notes in Artificial Intelligence 9322

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

Carsten Lutz · Silvio Ranise (Eds.)

Frontiers of
Combining Systems
10th International Symposium, FroCoS 2015
Wroclaw, Poland, September 21–24, 2015
Proceedings

ABC

Editors
Carsten Lutz
Universität Bremen
Bremen
Germany

Silvio Ranise
Fondazione Bruno Kessler
Trento
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-24245-3 ISBN 978-3-319-24246-0 (eBook)
DOI 10.1007/978-3-319-24246-0

Library of Congress Control Number: 2015948707

LNCS Sublibrary: SL7 – Artificial Intelligence

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

These proceedings contain the papers selected for presentation at the 10th
International Symposium on Frontiers of Combining Systems, FroCoS 2015, held
during September 21-24, 2015 in conjunction with the International Conference
on Automated Reasoning with Analytic Tableaux and Related Methods, Tableaux
2015, in Wroc�law, Poland. Previous FroCoS meetings were organized in Munich
(Germany, 1996), Amsterdam (The Netherlands, 1998), Nancy (France, 2000),
Santa Margherita Ligure (Italy, 2002), Cork (Ireland, 2004, as part of the Inter-
national Joint Conference on Automated Reasoning, IJCAR), Vienna (Austria,
2005), Seattle (USA, 2006, as part of IJCAR), Liverpool (UK, 2007, co-located
with the International Workshop on First-Order Theorem Proving, FTP), Sid-
ney (Australia, 2008, as part of IJCAR), Trento (Italy, 2009), Edinburgh (UK,
2010, as part of IJCAR), Saarbrücken (Germany, 2011), Manchester (UK, 2012,
as part of IJCAR), Nancy (France, 2013, in conjunction with Tableaux), and
Vienna (Austria, 2014, as part of IJCAR).

Like previous events in the FroCoS series, FroCoS 2015 offered a common
forum for research in the general area of combination, modularization, and inte-
gration of systems, with an emphasis on logic-based ones, and on their practical
use. The development of techniques and methods for the combination and in-
tegration of dedicated formal systems, as well as for their modularization and
analysis, is crucial to the development of systems in logic, computation, program
development and verification, artificial intelligence, knowledge representation,
and automated reasoning.

FroCoS 2015 received 34 submissions, which were evaluated on the basis of
their significance, novelty, technical quality, and appropriateness to the FroCoS
audience. After intensive reviewing and electronic discussions, 20 papers were
selected for presentation at the symposium. Their topics include description
logics, theorem proving and model building, decision procedures as well as their
combination and application to verification, rewriting and constraint solving,
reasoning in large theories, and transformations between symbolic systems. The
symposium program included three invited talks:

– Andreas Herzig (Université Paul Sabatier, Toulouse, France): “Knowledge
and Action: How Should We Combine Their Logics?”

– Philipp Rümmer (Uppsala University, Sweden): “Free Variables and Theo-
ries: Revisiting Rigid E-unification”, and

– Thomas Sturm (Max-Planck-Institut für Informatik, Saarbrücken, Germany):
“From Complete Elimination Procedures to Subtropical Decisions over the
Reals”.

It also shared Tableaux 2015’s invited speaker, Oliver Ray, featured two shared
sessions with Tableaux 2015, and the following tutorials:

VI Preface

– Till Mossakowski (University of Magdeburg, Germany): “The Distributed
Ontology, Modeling, and Specification Language (DOL): Networks of Theo-
ries, Languages, and Logics”

– Cesare Tinelli (University of Iowa, USA): “A Taste of CVC4”
– Christoph Weidenbach (Max-Planck-Institut für Informatik, Saarbrücken,

Germany): “Automated Reasoning Building Blocks.”

We would like to thank all the people who invested their time and energy to
make this year’s symposium happen. In particular, we thank the authors for
submitting their manuscripts and the attendees for contributing to the sym-
posium discussion. We are also very grateful to the members of the Program
Committee and to the external reviewers for carefully reviewing and discussing
the submissions, and for their commitment to meet the strict deadlines.

We thank the people at Springer for their assistance with publishing these
proceedings and for the generous financial support that allowed us to offer several
student travel grants. Last but certainly not least, our thanks go to everybody
who contributed to the organization of the event, most notably to Hans de
Nivelle, General Chair of Tableaux 2015 and FroCoS 2015, for taking care of all
the details of local organization.

September 2015 Carsten Lutz
Silvio Ranise

Organization

FroCoS Steering Committee

Franz Baader President, FroCoS 1996 PC Co-chair,
and Co-founder

Silvio Ghilardi FroCoS 2009 PC Co-chair
Pascal Fontaine FroCoS 2013 PC Co-chair
Silvio Ranise FroCoS 2015 PC Co-chair
Renate Schmidt FroCoS 2013 PC Co-chair
Viorica Sofronie-Stokkermans FroCoS 2011 Conference Chair
Cesare Tinelli FroCoS 2011 PC Chair

Program Committee

Program Chairs

Carsten Lutz Universität Bremen, Germany
Silvio Ranise Fondazione Bruno Kessler, Trento, Italy

Members

Alessandro Artale Free University of Bolzano-Bozen, Italy
Franz Baader TU Dresden, Germany
Clark Barrett New York University, USA
Peter Baumgartner National ICT of Australia, Australia
Christoph Benzmüller Free University of Berlin, Germany
Thomas Bolander Technical University of Denmark, Denmark
Torben Braüner Roskilde University, Denmark
Sylvain Conchon Université Paris-Sud, France
Clare Dixon University of Liverpool, UK
François Fages INRIA Paris-Rocquencourt, France
Pascal Fontaine Université de Lorraine, Nancy, France
Didier Galmiche Université de Lorraine, Nancy, France
Silvio Ghilardi Università degli Studi di Milano, Italy
Jürgen Giesl RWTH Aachen, Germany
Guido Governatori National ICT of Australia, Australia
Roman Kontchakov Birkbeck, University of London, UK
Till Mossakowski University of Magdeburg, Germany
Christophe Ringeissen INRIA Nancy-Grand Est, France
Renate Schmidt University of Manchester, UK
Roberto Sebastiani Università di Trento, Italy
Viorica Sofronie-Stokkermans Universität Koblenz-Landau, Germany
Andrzej Sza�llas University of Warsaw, Poland

VIII Organization

René Thiemann University of Innsbruck, Austria
Cesare Tinelli University of Iowa, USA
Luca Viganò King’s College, London, UK
Christoph Weidenbach Max-Planck Institut für Informatik,

Saarbrücken, Germany

Additional Reviewers

Codescu, Mihai
Corzilius, Florian
Déharbe, David
Ganesh, Vijay
Gao, Sicun
Gmeiner, Karl
Gutiérrez Basulto, Vı́ctor
Harrison, John
Hernich, André
Hustadt, Ullrich
Hutter, Dieter
Iosif, Radu
Irfan, Ahmed
Jovanović, Dejan
Khan, Muhammad S
Kovtunova, Alisa

Larchey-Wendling, Dominique
Morawska, Barbara
Méry, Daniel
Neuhaus, Fabian
Nishida, Naoki
Prabhakar, Pavithra
Ryzhikov, Vladislav
Scheibler, Karsten
Schubert, Tobias
Sticksel, Christoph
Stratulat, Sorin
Suda, Martin
Tonetta, Stefano
Trentin, Patrick
Yamada, Akihisa

Abstracts of Invited Talks

Knowledge and Action: How Should we
Combine Their Logics?

Andreas Herzig

University of Toulouse and CNRS,

IRIT, 118, Route de Narbonne, F-31062 Toulouse, France

The design of logical systems accounting for both knowledge and action is an
important issue in AI and MAS. While there are fairly well-established log-
ics of knowledge—essentially the modal logics S5 and S4.2—, there is much
less consensus about logical formalisms for actions: there exists a plethora of
rather expressive formal systems, including situation calculus, event calculus,
fluent calculus, and dynamic logic. When one combines these formal systems
with epistemic logic then one typically supposes that knowledge and actions are
related through the principles of perfect recall and no miracles. The resulting
many-dimensional logics often have high complexity or are undecidable.

In this talk, building on previous work with several colleagues [6, 2, 4, 5] I
will advocate a combination that is based on a simple, STRIPS-like account of
action: a dialect of Propositional Dynamic Logic PDL whose atomic programs
are assignments of propositional variables. Its epistemic extension generalises the
notion of visibility of a propositional variable by an agent, as proposed by van
der Hoek, Wooldridge and colleagues [9, 8]. The model checking, satisfiability
and validity problems of the resulting logic are all PSPACE complete. The logic
allows to capture in a natural way several concepts that were studied in the
literature, including logics of propositional control [3, 7] and epistemic boolean
games [1].

References

1. Ågotnes, T., Harrenstein, P., van der Hoek, W., Wooldridge, M.: Boolean games with
epistemic goals. In: Grossi, D., Roy, O., Huang, H. (eds.) Logic, Rationality, and
Interaction - 4th International Workshop, LORI 2013, Hangzhou, China, October
9-12, 2013, Proceedings. Lecture Notes in Computer Science, vol. 8196, pp. 1–14.
Springer (2013), http://dx.doi.org/10.1007/978-3-642-40948-6_1

2. Balbiani, P., Herzig, A., Troquard, N.: Dynamic logic of propositional assignments:
a well-behaved variant of PDL. In: Kupferman, O. (ed.) Proceedings of the 28th
Annual IEEE/ACM Symposium on Logic in Computer Science. pp. 143–152 (2013)

3. Gerbrandy, J.: Logics of propositional control. In: Proc. AAMAS’06. pp. 193–200
(2006)

4. Herzig, A.: Logics of knowledge and action: critical analysis and challenges. Journal
of Autonomous Agents and Multi-Agent Systems pp. 1–35 (2014), to appear. Online
July 2, 2014, doi : 10.1007/s10458-014-9267-z.

XII A. Herzig

5. Herzig, A., Lorini, E., Maffre, F.: A poor man’s epistemic logic based on proposi-
tional assignment and higher-order observation. In: Logic, Rationality, and Interac-
tion - 5th International Workshop, LORI 2015, Taipeh, October, 2015, Proceedings
(2015)

6. Herzig, A., Lorini, E., Troquard, N., Moisan, F.: A dynamic logic of normative
systems. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence. pp. 228–233 (2011)

7. Hoek, W.v.d., Wooldridge, M.: On the logic of cooperation and propositional control.
Artificial Intelligence 164(1-2), 81–119 (2005)

8. van der Hoek, W., Iliev, P., Wooldridge, M.: A logic of revelation and concealment.
In: van der Hoek, W., Padgham, L., Conitzer, V., Winikoff, M. (eds.) Proceedings of
the 11th International Conference on Autonomous Agents and Multiagent Systems.
pp. 1115–1122. IFAAMAS (2012)

9. van der Hoek, W., Troquard, N., Wooldridge, M.: Knowledge and control. In: So-
nenberg, L., Stone, P., Tumer, K., Yolum, P. (eds.) Proceedings of the 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems. pp. 719–726.
IFAAMAS (2011)

Free Variables and Theories:
Revisiting Rigid E -Unification�

Peter Backeman and Philipp Rümmer

Uppsala University, Sweden

Abstract. The efficient integration of theory reasoning in first-order
calculi with free variables (such as sequent calculi or tableaux) is a long-
standing challenge. For the case of the theory of equality, an approach
that has been extensively studied in the 90s is rigid E -unification, a vari-
ant of equational unification in which the assumption is made that every
variable denotes exactly one term (rigid semantics). The fact that simul-
taneous rigid E -unification is undecidable, however, has hampered prac-
tical adoption of the method, and today there are few theorem provers
that use rigid E -unification.

One solution is to consider incomplete algorithms for computing (si-
multaneous) rigid E -unifiers, which can still be sufficient to create sound
and complete theorem provers for first-order logic with equality; such
algorithms include rigid basic superposition proposed by Degtyarev and
Voronkov, but also the much older subterm instantiation approach in-
troduced by Kanger in 1963 (later also termed minus-normalisation).
We introduce bounded rigid E -unification (BREU) as a new variant of
E -unification corresponding to subterm instantiation. In contrast to gen-
eral rigid E -unification, BREU is NP-complete for individual and simul-
taneous unification problems, and can be solved efficiently with the help
of SAT; BREU can be combined with techniques like congruence closure
for ground reasoning, and be used to construct theorem provers that are
competitive with state-of-the-art tableau systems. We outline ongoing
research how BREU can be generalised to other theories than equality.

* This work was partly supported by the Microsoft PhD Scholarship Programme and
the Swedish Research Council.

From Complete Elimination Procedures to
Subtropical Decisions over the Reals

Thomas Sturm

Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

sturm@mpi-inf.mpg.de

Effective quantifier elimination procedures for first-order theories provide a pow-
erful tool for generically solving a wide range of problems based on logical spec-
ifications. In contrast to general first-order provers, quantifier elimination pro-
cedures are based on a fixed set of admissible logical symbols with an implicitly
fixed semantics. This admits the use of sub-algorithms from symbolic computa-
tion. We focus here on quantifier elimination for the reals and its applications
giving examples from geometry [1, 6], verification [9], and the sciences [10, 11].
Beyond quantifier elimination we are going to discuss recent results on an in-
complete decision procedure for the existential fragment of the reals [8], which
has been successfully applied to the analysis of reaction systems in chemistry
and in the life sciences [2]. We conclude with an overview on further quantifier-
eliminable theories [7, 12, 5, 4, 3] that have been realized in our open-source com-
puter logic software Redlog (www.redlog.eu).

References

1. Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theo-
rem proving in real geometry. J. Autom. Reason. 21(3) (1998) 357–380

2. Errami, H., Eiswirth, M., Grigoriev, D., Seiler, W.M., Sturm, T., Weber, A.: Detec-
tion of Hopf bifurcations in chemical reaction networks using convex coordinates.
J. Comput. Phys. 291 (2015) 279–302

3. Lasaruk, A., Sturm, T.: Weak integer quantifier elimination beyond the linear case.
In: Proc. CASC 2007. LNCS 4770. (2007)

4. Lasaruk, A., Sturm, T.: Weak quantifier elimination for the full linear theory of
the integers. AAECC 18(6) (2007) 545–574

5. Seidl, A.M., Sturm, T.: Boolean quantification in a first-order context. In:
Proc. CASC 2003. TU München, Germany (2003) 329–345

6. Sturm, T.: Real Quantifier Elimination in Geometry. (1999)
7. Sturm, T.: Linear problems in valued fields. JSC 30(2) (2000) 207–219
8. Sturm, T.: Subtropical real root finding. In: Proc. ISSAC 2015. (2015) 347–354
9. Sturm, T., Tiwari, A.: Verification and synthesis using real quantifier elimination.

In: Proc. ISSAC 2011. (2011) 329–336
10. Sturm, T., Weber, A.: Investigating generic methods to solve Hopf bifurcation

problems in algebraic biology. In: Proc. AB 2008. LNCS 5147. (2008) 200–215
11. Sturm, T., Weber, A., Abdel-Rahman, E.O., El Kahoui, M.: Investigating algebraic

and logical algorithms to solve Hopf bifurcation problems in algebraic biology. MCS
2(3) (2009) 493–515

12. Sturm, T., Weispfenning, V.: Quantifier elimination in term algebras. In: Proc.
CASC 2002. TU München, Germany (2002) 285–300

Contents

Invited Talk

Free Variables and Theories: Revisiting Rigid E -Unification 3
Peter Backeman and Philipp Rümmer

Description Logics

Decidable Description Logics of Context with Rigid Roles 17
Stephan Böhme and Marcel Lippmann

Adding Threshold Concepts to the Description Logic EL 33
Franz Baader, Gerhard Brewka, and Oliver Fernández Gil

Reasoning in Expressive Description Logics under Infinitely Valued
Gödel Semantics . 49

Stefan Borgwardt and Rafael Peñaloza

Theorem Proving and Model Building

NRCL - A Model Building Approach to the Bernays-Schönfinkel
Fragment . 69

Gábor Alagi and Christoph Weidenbach

First-Order Logic Theorem Proving and Model Building via
Approximation and Instantiation . 85

Andreas Teucke and Christoph Weidenbach

An Expressive Model for Instance Decomposition Based Parallel SAT
Solvers . 101

Tobias Philipp

Decision Procedures

Weakly Equivalent Arrays . 119
Jürgen Christ and Jochen Hoenicke

A Decision Procedure for Regular Membership and Length Constraints
over Unbounded Strings . 135

Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli,
and Clark Barrett

XVI Contents

Adapting Real Quantifier Elimination Methods for Conflict Set
Computation . 151

Maximilian Jaroschek, Pablo Federico Dobal, and Pascal Fontaine

Decision Procedures for Verification

A New Acceleration-Based Combination Framework for Array
Properties . 169

Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina

Decidability of Verification of Safety Properties of Spatial Families of
Linear Hybrid Automata . 186

Werner Damm, Matthias Horbach,
and Viorica Sofronie-Stokkermans

Rewriting and Constraint Solving

A Completion Method to Decide Reachability in Rewrite Systems 205
Guillaume Burel, Gilles Dowek, and Ying Jiang

Axiomatic Constraint Systems for Proof Search Modulo Theories 220
Damien Rouhling, Mahfuza Farooque, Stéphane Graham-Lengrand,
Assia Mahboubi, and Jean-Marc Notin

Transformations between Symbolic Systems

Formalizing Soundness and Completeness of Unravelings 239
Sarah Winkler and René Thiemann

Proofs and Reconstructions . 256
Nik Sultana, Christoph Benzmüller, and Lawrence C. Paulson

Combination Methods

A Rewriting Approach to the Combination of Data Structures with
Bridging Theories . 275

Paula Chocron, Pascal Fontaine, and Christophe Ringeissen

Unification and Matching in Hierarchical Combinations of Syntactic
Theories . 291

Serdar Erbatur, Deepak Kapur, Andrew M. Marshall,
Paliath Narendran, and Christophe Ringeissen

Combining Forward and Backward Propagation . 307
Amira Zaki, Slim Abdennadher, and Thom Frühwirth

Contents XVII

Reasoning in Large Theories

Random Forests for Premise Selection . 325
Michael Färber and Cezary Kaliszyk

Lemmatization for Stronger Reasoning in Large Theories 341
Cezary Kaliszyk, Josef Urban, and Jǐŕı Vyskočil

Author Index . 357

Invited Talk

Free Variables and Theories:

Revisiting Rigid E -Unification�

Peter Backeman and Philipp Rümmer

Uppsala University, Sweden

Abstract. The efficient integration of theory reasoning in first-order
calculi with free variables (such as sequent calculi or tableaux) is a long-
standing challenge. For the case of the theory of equality, an approach
that has been extensively studied in the 90s is rigid E -unification, a vari-
ant of equational unification in which the assumption is made that every
variable denotes exactly one term (rigid semantics). The fact that simul-
taneous rigid E -unification is undecidable, however, has hampered prac-
tical adoption of the method, and today there are few theorem provers
that use rigid E -unification.

One solution is to consider incomplete algorithms for computing (si-
multaneous) rigid E -unifiers, which can still be sufficient to create sound
and complete theorem provers for first-order logic with equality; such
algorithms include rigid basic superposition proposed by Degtyarev and
Voronkov, but also the much older subterm instantiation approach in-
troduced by Kanger in 1963 (later also termed minus-normalisation).
We introduce bounded rigid E -unification (BREU) as a new variant of
E -unification corresponding to subterm instantiation. In contrast to gen-
eral rigid E -unification, BREU is NP-complete for individual and simul-
taneous unification problems, and can be solved efficiently with the help
of SAT; BREU can be combined with techniques like congruence closure
for ground reasoning, and be used to construct theorem provers that are
competitive with state-of-the-art tableau systems. We outline ongoing
research how BREU can be generalised to other theories than equality.

1 Introduction

The integration of efficient equality reasoning, and theory reasoning in general,
in tableaux and sequent calculi is a long-standing challenge, and has led to
a wealth of theoretically intriguing, yet surprisingly few practically satisfying
solutions. Among others, a family of approaches related to the (undecidable)
problem of computing simultaneous rigid E-unifiers have been developed, by
utilising incomplete unification procedures in such a way that an overall complete
first-order calculus is obtained [11,4,9]. Following the line of research started by
Kanger [11], we recently introduced simultaneous bounded rigid E-unification
(BREU) [2], a new version of rigid E -unification that is bounded in the sense that

� This work was partly supported by the Microsoft PhD Scholarship Programme and
the Swedish Research Council.

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 3–13, 2015.
DOI: 10.1007/978-3-319-24246-0_1

4 P. Backeman and P. Rümmer

variables only represent terms from finite domains, thus preserving decidability
even for simultaneous E -unification problems. As demonstrated in [2], BREU can
be used to design sound and complete calculi for first-order logic with equality,
and to implement theorem provers that compare favourably to state-of-the-art
tableau provers in terms of performance on problems with equality.

In this paper, we study the problem of generalising from BREU to bounded
rigid unification modulo theories beyond equality. To this end, we first investigate
different ways of defining semantics of BREU problems: BREU problems can be
interpreted both syntactically and semantically, leading to two formalisms that
differ in terms of expressiveness and complexity. We discuss how the semantic
setting lends itself to generalisation rather naturally, in particular for theories
that admit quantifier elimination. We conclude by outlining resulting challenges.

2 Background

2.1 Rigid E-Unification

We start by illustrating the rigid E -unification approach using the following
problem from [4]:

φ = ∃x, y, u, v.
(
(a ≈ b → g(x, u, v) ≈ g(y, f(c), f(d))) ∧
(c ≈ d → g(u, x, y) ≈ g(v, f(a), f(b)))

)

To show validity of φ, a Gentzen-style proof (or, equivalently, a tableau) can be
constructed, using free variables for x, y, u, v:

A
a ≈ b � g(X,U,V) ≈ g(Y, f(c), f(d))

B
c ≈ d � g(U,X, Y) ≈ g(V, f(a), f(b))

� (a ≈ b → g(X,U, V) ≈ g(Y, f(c), f(d))) ∧ (c ≈ d → g(U,X, Y) ≈ g(V, f(a), f(b)))

� φ

To finish this proof, both A and B need to be closed by applying further
rules, and substituting concrete terms for the variables. The substitution σl =
{X �→ Y, U �→ f(c), V �→ f(d)} makes it possible to close A through equational
reasoning, and σr = {X �→ f(a), U �→ V, Y �→ f(b)} closes B, but neither closes
both. Finding a substitution that closes both branches is known as simultaneous
rigid E-unification (SREU), and has first been formulated in [8]:

Definition 1 (Rigid E-Unification). Let E be a set of equations, and s, t be
terms. A substitution σ is called a rigid E -unifier of s and t if sσ ≈ tσ follows
from Eσ via ground equational reasoning. A simultaneous rigid E -unifier σ is a
common rigid E-unifier for a set (Ei, si, ti)

n
i=1 of rigid E-unification problems.

In our example, two rigid E -unification problems have to be solved:

E1 = {a ≈ b}, s1 = g(X,U, V), t1 = g(Y, f(c), f(d)),

E2 = {c ≈ d}, s2 = g(U,X, Y), t2 = g(V, f(a), f(b)).

Free Variables and Theories: Revisiting Rigid E -Unification 5

We can observe that σs = {X �→ f(a), Y �→ f(b), U �→ f(c), V �→ f(d)} is a
simultaneous rigid E -unifier, and suffices to finish the proof of φ.

The SREU problem famously turned out undecidable [3], which makes the
style of reasoning shown here problematic in automated theorem provers. Differ-
ent solutions have been proposed to address this situation, including potentially
non-terminating, but complete E -unification procedures [7], and terminating but
incomplete algorithms that are nevertheless sufficient to create complete proof
procedures [11,4,9]. The practical impact of such approaches has been limited; to
the best of our knowledge, there is no (at least no actively maintained) theorem
prover based on such explicit forms of SREU.

2.2 Subterm Instantiation and Bounded Rigid E-Unification

An early solution in the class of “terminating, but incomplete” algorithms for
SREU was introduced as dummy instantiation in the seminal work of Kanger [11]
(in 1963, i.e., even before the introduction of unification), and later studied under
the names subterm instantiation and minus-normalisation [5,6]; the relationship
to SREU was observed in [4]. In contrast to full SREU, subterm instantiation
only considers E -unifiers where substituted terms are taken from some prede-
fined finite set, which directly implies decidability. The impact of subterm instan-
tiation on practical theorem proving was again limited, however, among others
because no efficient search procedures for dummy instantiation were available [6].

In recent work, we have introduced bounded rigid E-unification (BREU), a
new restricted version of SREU that captures the decision problem to be solved in
the subterm instantiation method, and developed symbolic algorithms for com-
puting bounded rigid E -unifiers [2,1]. We illustrate the application of BREU on
the example from the previous section; for sake of presentation, BREU operates
on formulae that are normalised by means of flattening (observe that φ and φ′

are equivalent):

φ′ = ∀z1, z2, z3, z4.
(
f(a) �≈ z1 ∨ f(b) �≈ z2 ∨ f(c) �≈ z3 ∨ f(d) �≈ z4 ∨

∃x, y, u, v. ∀z5, z6, z7, z8.
⎛
⎝g(x, u, v) �≈ z5 ∨ g(y, z3, z4) �≈ z6 ∨
g(u, x, y) �≈ z7 ∨ g(v, z1, z2) �≈ z8 ∨
((a �≈ b ∨ z5 ≈ z6) ∧ (c �≈ d ∨ z7 ≈ z8))

⎞
⎠
⎞
⎠

A proof constructed for φ′ has the same structure as the one for φ, with the
difference that all function terms are now isolated in the antecedent:

A′

. . . , g(X,U, V) ≈ o5, a ≈ b � o5 ≈ o6

B′

. . . , g(U,X, Y) ≈ o7, c ≈ d � o7 ≈ o8
...

f(a) ≈ o1 ∨ f(b) ≈ o2 ∨ f(c) ≈ o3 ∨ f(d) ≈ o4 � ∃x, y, u, v. ∀z5, z6, z7, z8. . . . (∗)
...

� ∀z1, z2, z3, z4. . . .
To obtain a bounded rigid E -unification problem, we now restrict the terms

considered for instantiation of X,Y, U, V to the symbols that were in scope

6 P. Backeman and P. Rümmer

when the variables were introduced (at (∗) in the proof): X ranges over con-
stants {o1, o2, o3, o4}, Y over {o1, o2, o3, o4, X}, and so on. Since the problem is
flat, those sets contain representatives of all existing ground terms at point (∗)
in the proof. It is therefore possible to find a simultaneous E -unifier, namely the
substitution σb = {X �→ o1, Y �→ o2, U �→ o3, V �→ o4}.

Despite the restriction to terms of only bounded size, the subterm instantia-
tion strategy gives rise to a sound and complete calculus for first-order logic with
equality [2]; intuitively, the calculus will eventually generate all required terms
by repeated instantiation of quantified formulae. The finiteness of considered
BREU problems, at any point during proof search, enables the use of efficient
techniques from the SAT and SMT domain to check for the existence of unifiers.

2.3 Bounded Rigid E-Unification Formally

Given countably infinite sets C of constants (denoted by c, d, . . .), Vb of bound
variables (written x, y, . . .), and V of free variables (denoted byX,Y, . . .), as well
as a finite set F of fixed-arity function symbols (written f, g, . . .), the syntactic
categories of formulae φ and terms t are defined by

φ ::= φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ || t ≈ t , t ::= c || x || X || f(t, . . . , t) .

We sometimes write φ → ψ as shorthand notation for ¬φ ∨ ψ, and generally
assume that bound variables x only occur underneath quantifiers ∀x or ∃x.
Semantics of terms and formulae without free variables is defined as is common
using first-order structures (U, I) consisting of a non-empty universe U , and an
interpretation function I.

We call constants and (free or bound) variables atomic terms, and all other
terms compound terms. A flat equation is an equation between atomic terms, or
an equation of the form f(t1, . . . , tn) ≈ t0, where t0, . . . , tn are atomic terms. A
substitution is a mapping of variables to terms, such that all but finitely many
variables are mapped to themselves. Symbols σ, θ, . . . denote substitutions, and
we use post-fix notation φσ or tσ to denote application of substitutions. An
atomic substitution is a substitution that maps variables only to atomic terms.
We write u[r] do denote that r is a subexpression of a term or formula u, and
u[s] for the term or formula obtained by replacing the subexpression r with s.

Definition 2 (Replacement Relation [13]). The replacement relation →E

induced by a set of equations E is defined by: u[l] → u[r] if l ≈ r ∈ E. The
relation ↔∗

E represents the reflexive, symmetric and transitive closure of →E.

Definition 3 (BREU). A bounded rigid E -unification (BREU) problem is a
triple (
, E, e), with
 being a partial order over atomic terms such that for all
variables X the set {s | s
 X} is finite; E is a finite set of flat formulae; and
e = s ≈ t is an equation between atomic terms (the target equation). An atomic
substitution σ is called a bounded rigid E -unifier of s and t if sσ ↔∗

Eσ tσ and
Xσ
 X for all variables X.

Free Variables and Theories: Revisiting Rigid E -Unification 7

Definition 4 (Simultaneous BREU). A simultaneous bounded rigid E -uni-
fication problem is a pair (
, (Ei, ei)

n
i=1) such that each triple (
, Ei, ei) is a

bounded rigid E-unification problem. A substitution σ is a simultaneous bounded
rigid E -unifier if it is a bounded rigid E-unifier for each problem (
, Ei, ei).

In the following, we say that a (possibly simultaneous) BREU problem is
syntactically solvable if a bounded rigid E -unifier exists. As has been shown in
[2], checking syntactic solvability is NP-hard, and can effectively be solved via
an encoding to SAT, or with SMT-style reasoning.

Example 5. We revisit the example introduced in Sect. 2.1, which can be cap-
tured as the following simultaneous BREU problem (
, {(E1, e1), (E2, e2)}):
E1 = E ∪ {a ≈ b}, e1 = o5 ≈ o6, E2 = E ∪ {c ≈ d}, e2 = o7 ≈ o8,

E =

{
f(a) ≈ o1, f(b) ≈ o2, f(c) ≈ o3, f(d) ≈ o4,
g(X,U, V) ≈ o5, g(Y, o3, o4) ≈ o6, g(U,X, Y) ≈ o7, g(V, o1, o2) ≈ o8

}

with a ≺ b ≺ c ≺ d ≺ o1 ≺ o2 ≺ o3 ≺ o4 ≺ X≺ Y ≺ U≺ V ≺ o5 ≺ o6 ≺ o7 ≺ o8.
A unifier for this problem is sufficient to close all goals of the tree up to

equational reasoning; one solution is σ = {X �→ o1, Y �→ o2, U �→ o3, V �→ o4}.
The remainder of the paper considers the question how the notion of BREU

can be carried over to other theories than just equality. As we will see, to this
end it is useful to provide a more relaxed characterisation of BREU solvability.

3 Semantically Solving BREU

Definition 6 (Forest-Shaped BREU). A BREU problem (
, (Ei, ei)
n
i=1) is

forest-shaped if (i) the order
 forms a forest, that is, whenever a
 b and
a′
 b it is the case that a
 a′ or a′
 a; and (ii) components (Ei, ei) (for
i ∈ {1, . . . , n}) do not mix atomic terms from several branches of
, that is,
whenever (Ei, ei) contains atomic terms s, t it is the case that s
 t or t
 s.

The BREU problem given in Example 5, and generally all BREU problems
extracted from proofs (as defined in [2]) are forest-shaped; the structure of

will reflect the proof tree from which the BREU problem was derived. Impor-
tantly, forest-shaped problems can be reinterpreted as formulae by translating
the order
 to a prefix of quantifiers, and replacing equations Ei with Acker-
mann constraints. Without loss of generality, we assume that every equation in
a set Ei of a BREU problem (
, (Ei, ei)

n
i=1) contains a function symbol; equa-

tions a ≈ b between constants or variables can be rewritten to f() ≈ a, f() ≈ b
by introducing a fresh zero-ary function f .

Definition 7 (BREU Formula Encoding). Suppose B = (
, (Ei, si ≈ ti)
n
i=1)

is a forest-shaped simultaneous BREU problem, and S the (finite) set of atomic
terms occurring in B, with k = |S|. Let further Sb = {x1, . . . , xk} ⊆ Vb be
fresh bound variables (not occurring in B), and σ : S → Sb a bijection such that

8 P. Backeman and P. Rümmer

σ(s) = xi, σ(t) = xj and s
 t imply i ≤ j. Then the formula Q1x1.Qkxk.
∧n

j=1 Gj

with

Qi =

{
∀ if σ−1(xi) ∈ C is a constant

∃ otherwise

Gj =
(∧

f(ā)≈b,f(ā′)≈b′∈Ej

σ(ā) ≈ σ(ā′) → σ(b) ≈ σ(b′)
)
→ σ(sj) ≈ σ(tj)

is called a formula encoding of B.

Example 8. Consider the BREU problem B = (
, E, e) defined by

E = {f(X) ≈ c, f(a) ≈ a, f(b) ≈ b}, e = a ≈ b, a ≺ b ≺ c ≺ X .

To encode B as a formula, we fix fresh variables x1, . . . , x4 and the mapping σ =
{a �→ x1, b �→ x2, c �→ x3, X �→ x4}, and obtain

∀x1.∀x2.∀x3.∃x4. (x4 ≈ x1 → x3 ≈ x1)∧ (x4 ≈ x2 → x3 ≈ x2) → x1 ≈ x2 . (1)

Here, the assumption x4 ≈ x1 → x3 ≈ x1 stems from the Ackermann con-
straint X ≈ a → c ≈ a, and x4 ≈ x2 → x3 ≈ x2 from X ≈ b → c ≈ b;
other Ackermann constraints are either tautologies, or equivalent to the two
constraints given, and have been left out for sake of brevity.

The formula encoding of a BREU problem is a first-order formula with equal-
ity, but without functions symbols; the validity of the encoding is therefore de-
cidable. It can also be observed that Def. 7 in principle admits multiple formula
encodings for a BREU problem, but those different encodings are guaranteed to
be equivalent, thanks to the fact that the BREU problem is forest-shaped.

We say that a BREU problem is semantically solvable if its formula encoding
is valid. Semantic solvability is a weaker property than syntactic solvability (as in
Def. 3). In particular, it can easily be checked that (1) is valid, but the problem B
from Example 8 does not have any syntactic E -unifiers: such a unifier would have
to map X to one of X, a, b, c, but in no case it is possible to conclude a ≈ b.

Lemma 9. If a (possibly simultaneous) forest-shaped BREU problem B has an
E-unifier, then the formula encoding of B is valid.

Proof. Any syntactic E -unifier defines how existential quantifiers in the formula
encoding have to be instantiated to satisfy the formula. ��

3.1 Semantic Solvability in a First-Order Calculus

The sequent calculus for first-order logic with equality introduced in [2] uses
BREU to implement a global closure rule for free-variable proofs:

∗
Γ1 � Δ1

. . . ∗
Γn � Δn

breu

. . .
...

Γ � Δ

where Γ1 � Δ1, . . . , Γn � Δn are all open goals
of the proof, Ei = {t ≈ s ∈ Γi} are flat
antecedent equations, ei =

∨{t ≈ s ∈ Δi} are
succedent equations, and the simultaneous
BREU problem (�, (Ei, ei)

n
i=1) is solvable.

Free Variables and Theories: Revisiting Rigid E -Unification 9

The rule uses a slightly generalised version of BREU in which a target con-
straint ei can be a disjunction of equations; such problems can easily be trans-
lated to normal BREU at the cost of introducing additional function symbols.
The order
 in the rule is derived from the structure of a proof, and the BREU
problem (
, (Ei, ei)

n
i=1) is in particular forest-shaped. Given the alternative no-

tion of semantic solvability, the question arises whether overall soundness and
completeness of the first-order calculus from [2] are preserved when reformulat-
ing the breu rule to be applicable whenever “the simultaneous BREU prob-
lem (
, (Ei, ei)

n
i=1) is semantically solvable.” We will call the new rule breusem.

The answer is positive in both cases. From Lem. 9, it follows directly that
replacing breu with breusem preserves completeness of the calculus, because
the weaker side condition only entails that breusem might be applicable in more
cases than breu. Soundness cannot be concluded from the soundness proof given
in [2] for the syntactic case, but we can instead find a simple inductive argument
that the formula encoding of the BREU problem (
, (Ei, ei)

n
i=1) constructed in

breusem is always an under-approximation of the root sequent of a proof. Thus,
if the formula encoding is valid, also the validity of the root sequent follows:

Lemma 10. Suppose Γ � Δ is a sequent without free variables, and P a proof
constructed from Γ � Δ. If B is the BREU problem constructed in an application
of breusem to P , then the formula encoding φB of B implies

∧
Γ → ∨

Δ.

3.2 The Complexity of Semantic Solvability

Example 8 illustrates that the notion of semantic solvability does not coincide
with (and is therefore strictly weaker than) syntactic solvability; this implies
that the use of the relaxed rule breusem can sometimes lead to shorter proofs
compared to the original rule breu. The resulting gain in efficiency is offset,
however, by the increased computational complexity of checking BREU solv-
ability: in the syntactic case, this problem is NP-complete [2], whereas it turns
out that semantic solvability is PSPACE-complete. For membership in PSPACE,
observe that the formula encoding of a BREU problem can directly be mapped
to a Quantified Boolean Formula (QBF), since it is only necessary to consider
universes with as many individuals as the formula contains quantifiers.

Lemma 11 (PSPACE-hardness). Checking whether a (possibly simultane-
ous) forest-shaped BREU problem has a valid formula encoding is PSPACE-hard.

Proof. We show that QBF formulae φ can be translated to BREU problems Bφ,
in such a way that the formula encoding of Bφ is equivalent to φ. Assume that
φ = Q1x1.Qkxk.ψ is in prenex normal form, with Qi ∈ {∃, ∀}, and ψ is a
Boolean formula over the variables x1, . . . , xk and connectives ¬,∨.

To represent truth values, two constants 0,1 ∈ C are introduced. Then,
to handle the quantifiers, for each variable xi with Qi = ∃ a fresh free vari-
able Xi ∈ V is picked, and for each xi with Qi = ∀ a fresh variable Xi ∈ V
and a fresh constant di ∈ C. In addition, in the latter case we define two BREU

10 P. Backeman and P. Rümmer

sub-problems (E0
i , e

0
i) and (E1

i , e
1
i) with

E0
i = {di ≈ 0}, e0i = Xi ≈ 0, E1

i = {di ≈ 1}, e1i = Xi ≈ 1 .

To represent the Boolean structure of ψ, like in [2] two function symbols for
and fnot are introduced, which are axiomatised by equations E� = {for (0,0) ≈
0, for (0,1) ≈ 1, for (1,0) ≈ 1, for(1,1) ≈ 1, fnot(0) ≈ 1, fnot (1) ≈ 0}. Each
sub-formula θ of ψ is then encoded using a fresh constant cθ and an equation eθ:

eθ = Xi ≈ cθ if θ = xi,

eθ = fnot(cθ1) ≈ cθ if θ = ¬θ1,
eθ = for(cθ1 , cθ2) ≈ cθ if θ = θ1 ∨ θ2 .

We write Eψ = {eθ | θ a sub-formula of ψ} for the set of all such equations.
Finally, the resulting (forest-shaped) BREU problem is

Bφ = (
, {(E0
i , e

0
i), (E

1
i , e

1
i) | i ∈ {1, . . . , k}, Qi = ∀} ∪ {(E� ∪Eψ , cψ ≈ 1)})

with a total order
 that satisfies {0,1} ≺ {d1, X1} ≺ · · · ≺ {dk, Xk} ≺
{cθ | θ a sub-formula of ψ} as well as di ≺ Xi for all Qi = ∀.

To see that φ and the formula encoding φE of Bφ are equivalent, we observe
that the two formulae have essentially the same quantifier structure, with the dif-
ference that (i) φE starts with quantifiers ∀x0∀x1 binding the truth values 0,1;
(ii) every quantifier ∃xi in φ is translated to a quantifier ∃xXi in φE ; (iii) universal
quantifiers ∀xi are translated to ∀xdi∃xXi , with the additional goals (E0

i , e
0
i) and

(E1
i , e

1
i) expressing xdi ≈ x0 → xXi ≈ x0 and xdi ≈ x1 → xXi ≈ x1; and (iv) ad-

ditional ∀-quantifiers are added to represent the propositional structure of the
matrix ψ. (The somewhat elaborate translation of ∀xi ensures that universal
quantifiers in φE effectively only range over truth values.) Equivalence of φ and
φE follows from the fact that satisfying assignments of the existentially quanti-
fied variables can be mapped back and forth between φ and φE . ��

4 Towards Bounded Rigid Theory Unification

The notion of semantic solvability offers a natural path to generalise from BREU
to Bounded Rigid T -Unification (BRTU), for theories T other than equality. The
construction in particular applies to theories that admit quantifier elimination,
including various forms of arithmetic. For sake of presentation, we assume that
equality≈ is still the only predicate in our logic, but we partition the set F = Fi∪
Fu into a set Fi of interpreted T -functions, and a disjoint set Fu of uninterpreted
functions. We further assume that the T -validity of first-order formulae φ without
uninterpreted functions is decidable.

While the general definition of a BREU problem can be kept as in Def. 3 and
4, we redefine formula encodings to take theory symbols into account:

Free Variables and Theories: Revisiting Rigid E -Unification 11

Definition 12 (BRTU Formula Encoding). Suppose B = (
, (Ei, si ≈
ti)

n
i=1) is a forest-shaped simultaneous BREU problem, and S the (finite) set

of atomic terms occurring in B, with k = |S|. Let further Sb = {x1, . . . , xk} ⊆
Vb be fresh bound variables (not occurring in B), and σ : S → Sb a bijec-
tion such that σ(s) = xi, σ(t) = xj and s
 t imply i ≤ j. Then the for-
mula Q1x1.Qkxk.

∧n
j=1 G

T
j with

Qi =

{
∀ if σ−1(xi) ∈ C is a constant

∃ otherwise

GT
j =

⎛
⎝

∧
f(ā)≈b∈Ej

f∈Fi

f(σ(ā)) ≈ σ(b) ∧∧
f(ā)≈b,f(ā′)≈b′∈Ej

f∈Fu

σ(ā) ≈ σ(ā′) → σ(b) ≈ σ(b′)

⎞
⎠ → σ(sj) ≈ σ(tj)

is called a T -formula encoding of B.

Compared to Def. 7, the main change occurs in the definition of GT
j , where

now interpreted functions are kept instead of being replaced with Ackermann
constraints. Similarly as before, we say that a BREU problem is semantically
T -solvable if its T -formula encoding is valid in T .

Example 13. To illustrate the definition, we consider the theoryA of linear (inte-
ger or rational) arithmetic, and the implication f(0) ≈ 0∧f(X+1) ≈ f(X)+1 →
f(1) ≈ 1, with X ranging over terms {0, 1, f(1)}. The literals 0, 1 represent in-
terpreted nullary function symbols, + is an interpreted binary function symbol,
and f is an uninterpreted function. Flattening the formula yields a well-formed
BREU problem B = (
, E, e) with

E =

{
0 ≈ c0, 1 ≈ c1, f(c0) ≈ c0, f(c1) = c2,
X + c1 ≈ c4, f(c4) ≈ c6, f(X) ≈ c5, c5 + c1 ≈ c6

}
, e = c2 ≈ c1,

c0 ≺ c1 ≺ c2 ≺ X ≺ c4 ≺ c5 ≺ c6 .

Without taking theory A into account (treating 0, 1,+ as uninterpreted func-
tions), B is solvable neither syntactically nor semantically. The A-formula en-
coding of B is obtained by eliminating f through Ackermann constraints (X
is mapped to x3, and constants ci to xi for i ∈ {0, 1, 2, 4, 5, 6}; redundant con-
straints are left out), and is a valid formula in theory A:

∀x0, x1, x2. ∃x3. ∀x4, x5, x6.⎛
⎝0 ≈ x0 ∧ 1 ≈ x1 ∧ x3 + x1 ≈ x4 ∧ x5 + x1 ≈ x6 ∧
(x0 ≈ x1 → x0 ≈ x2) ∧ (x0 ≈ x4 → x0 ≈ x6) ∧ (x0 ≈ x3 → x0 ≈ x5) ∧
(x1 ≈ x4 → x2 ≈ x6) ∧ (x1 ≈ x3 → x2 ≈ x5) ∧ (x4 ≈ x3 → x6 ≈ x5)

⎞
⎠

→ x2 ≈ x1

5 Challenges and Conclusion

Since Lem. 10 carries over to any of the theories T considered in Sect. 4, the
encoding from Def. 12 can in principle be used to implement sound calculi for

12 P. Backeman and P. Rümmer

first-order logic modulo T with bounded free-variable reasoning. For reasons of
practicality, of course, various refinements of the overall approach are possible
and advisable, along the lines of the procedures presented in [12,2]; among others,
also procedures for ground reasoning in T can be integrated. For the special case
of linear integer arithmetic, this style of reasoning was essentially implemented in
the theorem prover Princess [12]. There are several more conceptual challenges
remaining, however:

Syntactically Solving BRTU. We have outlined how solvability of BREU can
be characterised semantically, through an encoding as a formula, and then be
generalised to theories other than equality. However, both steps have a severe im-
pact on the computational complexity of checking solvability; checking semantic
solvability for BRTU modulo linear integer arithmetic, for instance, necessitates
a potentially doubly exponential validity check. A crucial question is whether
a notion of (theory-dependent) syntactic solvability for BRTU exists, and to
investigate the impact on the completeness of an overall proof procedure:

Syntactic BREU
(NP-complete)

Semantic BREU
(PSPACE-complete)

Semantic BRTU
(≥ PSPACE)

?

The Completeness of Proof Procedures. It is well-known that no complete calculi
exist for first-order logic modulo various theories, for instance modulo linear
arithmetic [10]. This leads to the question how the completeness of first-order
calculi constructed with the help of BRTU can be characterised, and for which
fragments completeness is indeed achieved. The question is partly addressed in
[12], but only for linear integer arithmetic and in a setting where uninterpreted
functions were replaced with uninterpreted predicates.

References

1. Backeman, P., Rümmer, P.: Efficient algorithms for bounded rigid E-Unification.
In: Tableaux. LNCS. Springer (to appear, 2015)

2. Backeman, P., Rümmer, P.: Theorem proving with bounded rigid E-Unification.
In: CADE. LNCS. Springer (to appear, 2015)

3. Degtyarev, A., Voronkov, A.: Simultaneous rigid E-Unification is undecidable.
In: Kleine Büning, H. (ed.) CSL 1995. LNCS, vol. 1092, pp. 178–190. Springer,
Heidelberg (1996)

4. Degtyarev, A., Voronkov, A.: What you always wanted to know about rigid
E-Unification. J. Autom. Reasoning 20(1), 47–80 (1998)

5. Degtyarev, A., Voronkov, A.: Equality reasoning in sequent-based calculi. In: Hand-
book of Automated Reasoning, vol. 2. Elsevier and MIT Press (2001)

Free Variables and Theories: Revisiting Rigid E -Unification 13

6. Degtyarev, A., Voronkov, A.: Kanger’s Choices in Automated Reasoning. Springer
(2001)

7. Fitting, M.C.: First-Order Logic and Automated Theorem Proving, 2nd edn. Grad-
uate Texts in Computer Science. Springer, Berlin (1996)

8. Gallier, J.H., Raatz, S., Snyder, W.: Theorem proving using rigid e-unification
equational matings. In: LICS, pp. 338–346. IEEE Computer Society (1987)

9. Giese, M.A.: A model generation style completeness proof for constraint tableaux
with superposition. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS
(LNAI), vol. 2381, pp. 130–144. Springer, Heidelberg (2002)

10. Halpern, J.Y.: Presburger arithmetic with unary predicates isΠ1
1 complete. Journal

of Symbolic Logic 56 (1991)
11. Kanger, S.: A simplified proof method for elementary logic. In: Siekmann, J.,

Wrightson, G. (eds.) Automation of Reasoning 1: Classical Papers on Compu-
tational Logic 1957-1966, pp. 364–371. Springer, Heidelberg (1983). originally ap-
peared in 1963

12. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

13. Tiwari, A., Bachmair, L., Rueß, H.: Rigid E-Unification revisited. In: CADE.
CADE-17, pp. 220–234. Springer, London (2000)

Description Logics

Decidable Description Logics of Context

with Rigid Roles

Stephan Böhme and Marcel Lippmann

Institute for Theoretical Computer Science, Technische Universität Dresden
{stephan.boehme,marcel.lippmann}@tu-dresden.de

Abstract. To represent and reason about contextualized knowledge
often two-dimensional Description Logics (DLs) are employed, where one
DL is used to describe contexts (or possible worlds) and the other DL is
used to describe the objects, i.e. the relational structure of the specific
contexts. Previous approaches for DLs of context that combined pairs
of DLs resulted in undecidability in those cases where so-called rigid
roles are admitted, i.e. if parts of the relational structure are the same
in all contexts. In this paper, we present a novel combination of pairs
of DLs and show that reasoning stays decidable even in the presence of
rigid roles. We give complexity results for various combinations of DLs
including ALC, SHOQ, and EL.

1 Introduction

Description logics (DLs) of context can be employed to represent and reason
about contextualized knowledge [6,5,11,13,12]. Such contextualized knowledge
naturally occurs in practice. Consider, for instance, the rôles1 played by a person
in different contexts. Person Bob, who works for the company Siemens, plays the
rôle of an employee of Siemens while at work, i.e. in the work context, whereas
he might play the rôle of a customer of Siemens in the context of private life.
In this example, access restrictions to the data of Siemens might critically depend
on the rôle played by Bob. Moreover, DLs capable of representing contexts are
vital to integrate distributed knowledge as argued in [6,5].

In DLs, we use concept names (unary predicates) and complex concepts (us-
ing certain constructors) to describe subsets of an interpretation domain and
roles (binary predicates) that are interpreted as binary relations over the inter-
pretation domain. Thus, DLs are well-suited to describing contexts as formal
objects with formal properties that are organized in relational structures, which
are fundamental requirements for modeling contexts [15,16].

However, classical DLs lack expressive power to formalize furthermore that
some individuals satisfy certain concepts and relate to other individuals de-
pending on a specific context. Therefore, often two-dimensional DLs are em-
ployed [11,13,12]. The approach is to have one DL LM as the meta or outer
logic to represent the contexts and their relationships to each other. This logic

1 We use the term “rôle” instead of “role” to avoid confusion with roles used in DLs.

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 17–32, 2015.
DOI: 10.1007/978-3-319-24246-0_2

18 S. Böhme, M. Lippmann

is combined with the object or inner logic LO that captures the relational struc-
ture within each of the contexts. Moreover, while some pieces of information
depend on the context, other pieces of information are shared throughout all
contexts. For instance, the name of a person typically stays the same indepen-
dent of the actual context. To be able to express that, some concepts and roles
are designated to be rigid, i.e. they are required to be interpreted the same in
all contexts. Unfortunately, if rigid roles are admitted, reasoning in the above
mentioned two-dimensional DLs of context turns out to be undecidable; see [11].

We propose and investigate a family of two-dimensional context DLs LM �LO�
that meet the above requirements, but are a restricted form of the ones defined
in [11] in the sense that we limit the interaction of LM and LO. More precisely,
in LM �LO� the outer logic can refer to the internal structure of each context,
but not vice versa. That means that information is viewed in a top-down man-
ner, i.e. information of different contexts is strictly capsuled and can only be
accessed from the meta level. This means that we cannot express, for instance,
that everybody who is employed by Siemens has a certain property in the con-
text of private life. Interestingly, reasoning in LM �LO� stays decidable with such
a restriction, even in the presence of rigid roles. In some sense this restriction is
similar to what was done in [3,4,14] to obtain a decidable temporalized DL with
rigid roles. Even though our techniques to show complexity results are similar
to the ones employed for those temporalized DLs, we cannot simply reuse these
results to reason in our context DLs, and more effort is needed to obtain tight
complexity bounds.

For providing better intuition on how our formalism works, we examine the
above mentioned example a bit further. Consider the following axioms:

� � �∃worksFor .{Siemens}
� ∃ hasAccessRights .{Siemens}� (1)

Work � �worksFor (Bob, Siemens)� (2)

�(∃worksFor .�)(Bob)� � ∃related.(Private � �HasMoney(Bob)�) (3)

� � �∃ isCustomerOf .� � HasMoney� (4)

Private � �isCustomerOf (Bob, Siemens)� (5)

Private �Work � ⊥ (6)

¬Work � �∃worksFor .� � ⊥� (7)

The first axiom states that it holds true in all contexts that somebody who works
for Siemens also has access rights to certain data. The second axiom states that
Bob is an employee of Siemens in any work context. Furthermore, Axiom 3 says
intuitively that in all contexts, in which Bob has a job, he will earn money, which
is available in a private context. Then, Axioms 4 ensures that only people with
money can be customers. Axiom 5 formalises that Bob is a customer of Siemens
in any private context. Moreover, Axiom 6 ensures that the private contexts
are disjoint from the work contexts. Finally, Axiom 7 states that the worksFor
relation only exists in work contexts.

Decidable Description Logics of Context with Rigid Roles 19

Bob,
Person SSN

hasSSN

Siemens,
Company

worksFor
hasAccessRights

Person

hasCEO

. . .

Work

Bob,
Person ,

HasMoney SSN

hasSSN

Siemens ,
Company

isCustomerOf

Person

Private

related

Fig. 1. Model of Axioms 1–7

A fundamental reasoning task is to decide whether the above mentioned ax-
ioms are consistent together, i.e. whether there is a common model. In our
example, this is the case; Figure 1 depicts a model. In this model, we also have
Bob’s social security number linked to him using a rigid role hasSSN . We re-
quire this role to be rigid since Bob’s social security number does not change
over the contexts. Furthermore the axioms entail more knowledge such as for
example that in any private context nobody will have access rights to work data
of Siemens, i.e. Private � �∃ hasAccessRights .{Siemens} � ⊥�.

The remainder of the paper is structured as follows. Next, we introduce syn-
tax and semantics of our family of context DLs LM �LO�. For this, we repeat
some basic notions of DLs. In Section 3, we show decidability of the consistency
problem in LM �LO� for LM and LO being DLs between ALC and SHOQ. Even
though our motivation are context DLs that are decidable in the presence of
rigid roles, we still analyze the complexity of deciding consistency in all three
cases (i.e. without rigid names, with rigid concepts and roles, and with rigid con-
cepts only) to obtain a clearer picture of our logical formalism. Note that since
it is well-known that rigid concepts can be simulated by rigid roles, there is no
fourth case to consider. Thereafter, in Section 4 we investigate the complexity
of deciding consistency in LM�LO� where LM or LO are EL. Section 5 concludes
the paper and lists some possible future work. Due to space constraints, the full
proofs of our results can be found in the accompanying technical report [9].

2 Basic Notions

As argued in the introduction, our two-dimensional context DLs LM �LO� consist
of combinations of two DLs: LM and LO. First, we recall the basic definitions of
DLs; for a thorough introduction to DLs, we refer the reader to [2].

Definition 1. Let NC, NR, and NI be non-empty, pairwise disjoint sets of con-
cept names, role names, and individual names, respectively. Furthermore, let
N := (NC,NR,NI). The set of concepts over N is inductively defined starting

20 S. Böhme, M. Lippmann

Table 1. Syntax and Semantics of DLs

syntax semantics

negation ¬C ΔI \ CI

conjunction C �D CI ∩DI

existential restriction ∃ r.C {d ∈ ΔI | there is an e ∈ CI with (d, e) ∈ rI}
nominal {a} {aI}
at-most restriction �n r.C {d ∈ ΔI | �{e ∈ CI | (d, e) ∈ rI} ≤ n}
general concept inclusion C � D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

role inclusion r � s rI ⊆ sI

transitivity axiom trans(r) rI = (rI)+

from concept names A ∈ NC using the constructors in the upper part of Table 1,
where r, s ∈ NR, a, b ∈ NI, n ∈ �, and C,D are concepts over N. The lower part
of Table 1 shows how axioms over N are defined.

Moreover, an RBox R over N is a finite set of role inclusions over N and
transitivity axioms over N. A Boolean axiom formula over N is a Boolean com-
bination of general concept inclusions (GCIs), concept and role assertion over N.
Finally, a Boolean knowledge base (BKB) over N is a pair B = (B,R), where B
is a Boolean axiom formula over N and R is an RBox over N.

Note that in this definition we refer to the triple N explicitly although it is
usually left implicit in standard definitions. This turns out to be useful as we
need to distinguish between the symbols used in LM and LO. Sometimes we
omit N, however, if it is clear from the context. As usual, we use the following
abbreviations: C �D (disjunction) for ¬(¬C �¬D), � (top concept) for A�¬A,
where A ∈ NC is arbitrary but fixed, ⊥ (bottom concept) for ¬�, ∀r.C (value
restriction) for ¬∃ r.¬C, and �n s.C (at-least restriction) for ¬(�n−1 s.C).

Which concept constructors and types of axioms are available depends on the
specific DL used. In the DL ALC, the only allowed concept constructors are
negation, conjunction, and existential restriction. Thus disjunction, the top and
bottom concept, and value restriction can be used as abbreviations. Moreover, no
role inclusions and transitivity axioms are allowed in ALC. If additional concept
constructors or types of axioms are allowed, this is denoted by concatenating a
corresponding letter: O means nominals, Q means at-most restrictions (qualified
number restrictions), andHmeans role inclusions (role hierarchies). For instance,
the DL ALCHO is the extension of ALC that also allows for nominals and
role inclusions. The extension of ALC with transitivity axioms is denoted by
S. Hence, the DL allowing for all the concept constructors and types of axioms
introduced here is called SHOQ. The sub-Boolean DL EL is the fragment of
ALC where only conjunction, existential restriction, and the top concept (which

Decidable Description Logics of Context with Rigid Roles 21

cannot be expressed as an abbreviation anymore due to the lack of negation) are
admitted. We sometimes write L-concept over N (L-BKB over N, . . .) for some
DL L to make clear which DL is used.

The semantics of DLs are defined in a model-theoretic way.

Definition 2. Let N = (NC,NR,NI). An N-interpretation is a pair I = (ΔI , ·I),
where ΔI is a non-empty set (called domain), and ·I is a mapping assigning a
set AI ⊆ ΔI to every A ∈ NC, a binary relation rI ⊆ ΔI ×ΔI to every r ∈ NR,
and a domain element aI ∈ ΔI to every a ∈ NI. The function ·I is extended
to concepts over N inductively as shown in the upper part of Table 1, where �S
denotes the cardinality of the set S.

Moreover, I is a model of an axiom α over N if the condition in the lower
part of Table 1 is satisfied, where ·+ denotes the transitive closure of a binary
relation. This is extended to Boolean axiom formulas over N in a straightforward
way. We write I |= B if I is a model of the Boolean axiom formula B over N.
Furthermore, I is a model of an RBox R over N (written I |= R) if it is a model
of each axiom in R.

Finally, I is a model of the BKB B = (B,R) over N (written I |= B) if it is
a model of both B and R. We call B consistent if it has a model.

We call r ∈ NR transitive (w.r.t. R) if every model of R is a model of trans(r).
Moreover, r is a subrole of s ∈ NR (w.r.t. R) if every model of R is a model of
r � s. Finally, r is simple w.r.t. R if it has no transitive subrole. It is not hard
to see that r ∈ NR is simple w.r.t. R iff trans(r) /∈ R and there do not exist roles
s1, . . . , sk ∈ NR such that {trans(s1), s1 � s2, . . . , sk−1 � sk, sk � r} ⊆ R.2

Thus deciding whether r ∈ NR is simple can be decided in time polynomial in
the size of R. The problem of checking whether a given SHQ-BKB B = (B,R)
over N is consistent is undecidable in general [10]. One regains decidability with
a syntactic restriction as follows: if �n r.C occurs in B, then r must be simple
w.r.t. R. In the following, we make this restriction to the syntax of SHQ and
all its extensions. This restriction is also the reason why there are no Boolean
combinations of role inclusions and transitivity axioms allowed in the RBox R
over N in the above definition. Otherwise the notion of a simple role would not
make sense. For instance, it is not clear whether the role r should be considered
simple in the Boolean combination of axioms trans(r) ∨ r � s.

We are now ready to define the syntax of LM �LO�. Throughout the paper, let
OC, OR, and OI be respectively sets of concept names, role names, and individual
names for the object logic LO. Analogously, we define the sets MC, MR, and MI

for the meta logic LM . Without loss of generality, we assume that all those sets
are pairwise disjoint. Moreover, let O := (OC,OR,OI) and M := (MC,MR,MI).

Definition 3. A concept of the object logic LO (o-concept) is an LO-concept
over O. An o-axiom is an LO-GCI over O, an LO-concept assertion over O, or an
LO-role assertion over O. The set of concepts of the meta logic LM (m-concepts)

2 Note that this criterion of simple roles is enough since the considered DLs do not
contain inverse roles.

22 S. Böhme, M. Lippmann

is the smallest set such that (i) every LM -concept over M is an m-concept and
(ii) �α� is an m-concept if α is an o-axiom. The notion of an m-axiom is defined
analogously. A Boolean m-axiom formula is a Boolean combination of m-axioms.
Finally, a Boolean LM �LO�-knowledge base (LM �LO�-BKB) is a triple B =
(B,RO,RM) where RO is an RBox over O, RM an RBox over M, and B is a
Boolean m-axiom formula.

For the reasons above, role inclusions over O and transitivity axioms over O
are not allowed to constitute m-concepts. However, we fix an RBox RO over O
that contains such o-axioms and holds in all contexts. The same applies to role
inclusions over M and transitivity axioms over M, which are only allowed to
occur in an RBox RM over M.

The semantics of LM �LO� is defined by the notion of nested interpretations.
These consist of O-interpretations for the specific contexts and an
M-interpretation for the relational structure between them. We assume that all
contexts speak about the same non-empty domain (constant domain assump-
tion). As argued in the introduction, sometimes it is desired that concepts or
roles in the object logic are interpreted the same in all contexts. Let OCrig ⊆ OC

denote the set of rigid concepts, and let ORrig ⊆ OR denote the set of rigid roles.
We call concept names and role names in OC \OCrig and OR \ORrig flexible. More-
over, we assume that individuals of the object logic are always interpreted the
same in all contexts (rigid individual assumption).

Definition 4. A nested interpretation is a tuple J = (�, ·J , Δ, (·Ic)c∈�), where
� is a non-empty set (called contexts) and (�, ·J) is an M-interpretation.

Moreover, for every c ∈ �, Ic := (Δ, ·Ic) is an O-interpretation such that we
have for all c, c′ ∈ � that xIc = xIc′ for every x ∈ OI ∪ OCrig ∪ORrig.

We are now ready to define the semantics of LM �LO�.

Definition 5. Let J = (�, ·J , Δ, (·Ic)c∈�) be a nested interpretation. The map-
ping ·J is further extended to o-axioms as follows: �α�J := {c ∈ � | Ic |= α}.

Moreover, J is a model of the m-axiom β if (�, ·J) is a model of β. This
is extended to Boolean m-axiom formulas in a straightforward way. We write
J |= B if J is a model of the Boolean m-axiom formula B. Furthermore, J is a
model of RM (written J |= RM) if (�, ·J) is a model of RM, and J is a model
of RO (written J |= RO) if Ic is a model of RO for all c ∈ �.

Also, J is a model of the LM �LO�-BKB B = (B,RO,RM) (written J |= B)
if J is a model of B, RO, and RM. We call B consistent if it has a model.

The consistency problem in LM�LO� is the problem of deciding whether a
given LM �LO�-BKB is consistent.

Note that besides the consistency problem there are several other reasoning
tasks for LM �LO�. The entailment problem, for instance, is the problem of de-
ciding, given a BKB B and an m-axiom β, whether B entails β, i.e. whether
all models of B are also models of β. The consistency problem, however, is fun-
damental in the sense that most other standard decision problems (reasoning

Decidable Description Logics of Context with Rigid Roles 23

Table 2. Complexity results for consistency in LM�LO�

LM

LO
no rigid names only rigid concepts rigid roles

EL ALC –
SHOQ EL ALC –

SHOQ EL ALC –
SHOQ

EL const. Exp const. NExp const. 2Exp

ALC – SHOQ Exp Exp NExp NExp NExp 2Exp

tasks) can be polynomially reduced to it (in the presence of negation). For the
entailment problem, note that it can be reduced to the inconsistency problem:
B = (B,RO,RM) entails β iff (B ∧¬β,RO,RM) is inconsistent. Hence, we focus
in the present paper only on the consistency problem.

3 Complexity of the Consistency Problem

Our results for the computational complexity of the consistency problem in
LM �LO� are listed in Table 2. In this section, we focus on the cases where
LM and LO are DLs between ALC and SHOQ. In Section 4, we treat the cases
where LM or LO are EL.

Since the lower bounds of context DLs treated in this section already hold for
the fragment EL�ALC�, they are shown in Section 4. For the upper bounds, let in
the following B = (B,RO,RM) be a SHOQ�SHOQ�-BKB. We proceed similar
to what was done for the temporalized DL ALC-LTL in [3,4] (and SHOQ-LTL
in [14]) and reduce the consistency problem to two separate decision problems.
For the first problem, we consider the outer abstraction, which is the SHOQ-
BKB over M obtained by replacing each m-concept of the form �α� occurring
in B by a fresh concept name such that there is a 1–1 relationship between them.

Definition 6. Let B = (B,RO,RM) be a LM �LO�-BKB. Let b be the bijection
mapping every m-concept of the form �α� occurring in B to the concept name
A�α� ∈ MC, where we assume w.l.o.g. that A�α� does not occur in B.
1. The Boolean LM -axiom formula Bb over M is obtained from B by replacing

every occurrence of an m-concept of the form �α� by b(�α�). We call the
LM -BKB Bb = (Bb,RM) the outer abstraction of B .

2. Given J = (�, ·J , Δ, (·Ic)c∈�), its outer abstraction is the M-interpretation

J b = (�, ·J b

) where

– for every x ∈ MR ∪MI ∪ (MC \ Im(b)), we have xJ b

= xJ , where Im(b)
denotes the image of b, and

– for every A ∈ Im(b), we have AJ b

= (b−1(A))J .

For simplicity, for B′ = (B′,RO,RM) where B′ is a subformula of B, we denote
by (B′)b the outer abstraction of B′ that is obtained by restricting b to the
m-concepts occurring in B′.

24 S. Böhme, M. Lippmann

Example 7. Let Bex = (Bex,∅,∅) with Bex := C � (�A � ⊥�) ∧ (C��A(a)�)(c)
be a SHOQ�SHOQ�-BKB. Then, b maps �A � ⊥� to A�A�⊥� and �A(a)� to
A�A(a)�. Thus, the outer abstraction of Bex is

Bb
ex :=

(
C � (A�A�⊥�) ∧ (C �A�A(a)�)(c), ∅

)
.

The following lemma makes the relationship between B and its outer abstraction
Bb explicit. It is proved by induction on the structure of B.
Lemma 8. Let J be a nested interpretation such that J is a model of RO.
Then, J is a model of B iff J b is a model of Bb.

Note that this lemma yields that consistency of B implies consistency of Bb.
However, the converse does not hold as the following example shows.

Example 9. Consider again Bex of Example 7. Take any M-interpretation H =
(Γ, ·H) with Γ = {e}, dH = e, and CH = AH

�A�⊥� = AH
�A(a)� = {e}.

Clearly, H is a model of Bb
ex, but there is no J = (�, ·J , Δ, (·Ic)c∈�) with

J |= Bex since this would imply � = Γ , and that Ie is a model of both A � ⊥
and A(a), which is not possible.

Therefore, we need to ensure that the concept names in Im(b) are not treated
independently. For expressing such a restriction on the model I of Bb, we adapt
a notion of [3,4]. It is worth noting that this problem occurs also in much less
expressive DLs as ALC or EL⊥ (i.e. EL extended with the bottom concept).

Definition 10. Let U ⊆ NC and Y ⊆ P(U). The N-interpretation I = (ΔI , ·I)
weakly respects (U ,Y) if Y ⊇ Z where

Z := {Y ⊆ U | there is some d ∈ ΔI with d ∈ (CU ,Y)
I}

and CU ,Y :=
�

A∈Y A � �
A∈U\Y ¬A. It respects (U ,Y) if Y = Z.

The second decision problem that we use for deciding consistency is needed to
make sure that such a set of concept names is admissible in the following sense.

Definition 11. Let X = {X1, . . . , Xk} ⊆ P(Im(b)). We call X admissible if
there exist O-interpretations I1 = (Δ, ·I1), . . . , Ik = (Δ, ·Ik) such that

– xIi = xIj for all x ∈ OI ∪ OCrig ∪ ORrig and all i, j ∈ {1, . . . , k}, and
– every Ii, 1 ≤ i ≤ k, is a model of the LO-BKB BXi = (BXi ,RO) over O

where

BXi :=
∧

b(�α�)∈Xi

α ∧
∧

b(�α�)∈Im(b)\Xi

¬α.

Note that any subset X ′ ⊆ X is admissible if X is admissible. Intuitively, the
sets Xi in an admissible set X consist of concept names such that the corre-
sponding o-axioms “fit together”. Consider again Example 9. Clearly, the set
{A�A�⊥�, A�A(a)�} ∈ P(Im(b)) cannot be contained in any admissible set X .

Decidable Description Logics of Context with Rigid Roles 25

Definition 12. Let X ⊆ P(Im(b)). We call the LM -BKB Bb over M outer
consistent with X if there exists a model of Bb that weakly respects (Im(b),X).

The next two lemmas show that the consistency problem in LM �LO� can be de-
cided by checking whether there is an admissible set X and the outer abstraction
of the given LM �LO�-BKB is outer consistent with X .

Lemma 13. For every M-interpretation H = (Γ, ·H), the following two state-
ments are equivalent:

1. There exists a model J of B with J b = H.
2. H is a model of Bb and the set {Xd | d ∈ Γ} is admissible, where Xd :=

{A ∈ Im(b) | d ∈ AH}.
The following lemma is a simple consequence, where we exploit that outer con-
sistency means that there exists a model that weakly respects (Im(b),X).

Lemma 14. The LM�LO�-BKB B is consistent iff there is a set X ⊆ P(Im(b))
such that

1. X is admissible, and
2. Bb is outer consistent with X .

To obtain a decision procedure for SHOQ�SHOQ� consistency, we have to non-
deterministically guess or construct the set X , and then check the two conditions
of Lemma 14. Beforehand, we focus on how to decide the second condition. For
that, assume that a set X ⊆ P(Im(b)) is given.

Lemma 15. Deciding whether Bb is outer consistent with X can be done in
time exponential in the size of Bb and linear in size of X .

Proof. It is enough to show that deciding whether Bb has a model that weakly
respects (Im(b),X) can be done in time exponential in the size of Bb and linear
in the size of X . It is not hard to see that we can adapt the notion of a quasimodel
respecting a pair (U ,Y) of [14] to a quasimodel weakly respecting (U ,Y). Indeed,
one just has to drop Condition (i) in Definition 3.25 of [14]. Then, the proof of
Lemma 3.26 there can be adapted such that our claim follows. This is done by
dropping one check in Step 4 of the algorithm of [14].

Using this lemma, we provide decision procedures for SHOQ�SHOQ� consis-
tency. However, these depend also on the first condition of Lemma 14. We take
care of this differently depending on which names are allowed to be rigid.

Consistency in SHOQ�SHOQ� Without Rigid Names

In this section, we consider the case where no rigid concept names or role names
are allowed. So we fix OCrig = ORrig = ∅. The following theorem is a straightfor-
ward consequence of Lemmas 14 and 15. Its proof can be found in [9].

26 S. Böhme, M. Lippmann

Theorem 16. If OCrig = ORrig = ∅, the consistency problem in SHOQ�SHOQ�
is in Exp.

Together with the lower bounds shown in Section 4, we obtain Exp-completeness
for the consistency problem in LM �LO� for LM and LO being DLs between ALC
and SHOQ if OCrig = ORrig = ∅.

Consistency in SHOQ�SHOQ� with Rigid Concept and Role Names

In this section, we consider the case where rigid concept and role names are
present. So we fix OCrig �= ∅ and ORrig �= ∅.

Theorem 17. If we have OCrig �= ∅ and ORrig �= ∅, the consistency problem in
SHOQ�SHOQ� is in 2Exp.

Proof. Let B = (B,RO,RM) be a SHOQ�SHOQ�-BKB and Bb = (Bb,RM)
its outer abstraction. We can decide consistency of B using Lemma 14. For
that, we enumerate all sets X ⊆ P(Im(b)), which can be done in time doubly
exponential in B. For each of these sets X = {X1, . . . , Xk}, we check whether
Bb is outer consistent with X , which can be done in time exponential in the
size of Bb and linear in the size of X . Then, we check X for admissibility using
the renaming technique of [3,4]. For every i, 1 ≤ i ≤ k, every flexible concept
name A occurring in Bb, and every flexible role name r occurring in Bb orRO, we

introduce copies A(i) and r(i). The SHOQ-BKB B
(i)
Xi

= (B(i)
Xi

,RO
(i)) over O is

obtained from BXi (see Definition 11) by replacing every occurrence of a flexible
name x by x(i). We define

BX :=
(∧

1≤i≤k
B(i)
Xi

,
⋃

1≤i≤k
RO

(i)
)
.

It is not hard to verify (using arguments of [14]) that X is admissible iff BX
is consistent. Note that BX is of size at most exponential in B and can be
constructed in exponential time. Moreover, consistency of BX can be decided in
time exponential in the size of BX [14], and thus in time doubly exponential in
the size of B.

Together with the lower bounds shown in Section 4, 2Exp-completeness is ob-
tained for the consistency problem in LM �LO� for LM and LO being DLs between
ALC and SHOQ if OCrig �= ∅ and ORrig �= ∅.

Consistency in SHOQ�SHOQ� with Only Rigid Concept Names

In this section, we consider the case where rigid concept are present, but rigid
role names are not allowed. So we fix OCrig �= ∅ but ORrig = ∅.

Theorem 18. If we have OCrig �= ∅ and ORrig = ∅, the consistency problem in
SHOQ�SHOQ� is in NExp.

Decidable Description Logics of Context with Rigid Roles 27

Proof. Let B = (B,RO,RM) be a SHOQ�SHOQ�-BKB and Bb = (Bb,RM) its
outer abstraction. We can decide consistency of B using Lemma 14. We first
non-deterministically guess the set X = {X1, . . . , Xk} ⊆ P(Im(b)), which is of
size at most exponential in B. Due to Lemma 15 we can check whether Bb is
outer consistent with X in time exponential in the size of Bb and linear in the
size of X . It remains to check X for admissibility. For that let OCrig(B) ⊆ OCrig

and OI(B) ⊆ OI be the sets of all rigid concept names and individual names
occurring in B, respectively. As done in [3,4] we non-deterministically guess a
set Y ⊆ P(OCrig(B)) and a mapping κ : OI(B) → Y which also can be done in
time exponential in the size of B. Using the same arguments as in [3,4] we can
show that X is admissible iff

B̂Xi
:=

⎛
⎝BXi ∧

∧
a∈OI(B)

⎛
⎝ �

A∈κ(a)

A �
�

A∈OCrig(B)\κ(a)
¬A

⎞
⎠ (a), RO

⎞
⎠

has a model that respects (OCrig(B),Y), for all 1 ≤ i ≤ k. The SHOQ-BKB

B̂Xi is of size polynomial in the size of B and can be constructed in exponential

time. We can check whether B̂Xi has a model that respects (OCrig(B),Y) in time

exponential in the size of B̂Xi [3,4], and thus exponential in the size of B.

Together with the lower bounds shown in Section 4, NExp-completeness is ob-
tained for the consistency problem in LM �LO� for LM and LO being DLs between
ALC and SHOQ if OCrig �= ∅ and ORrig = ∅.

Summing up the results, we obtain the following corollary.

Corollary 19. For all LM , LO between ALC and SHOQ, the consistency prob-
lem in LM �LO� is

– Exp-complete if OCrig = ∅ and ORrig = ∅,
– NExp-complete if OCrig �= ∅ and ORrig = ∅, and
– 2Exp-complete if OCrig �= ∅ and ORrig �= ∅.

4 The Case of EL: LM [[EL]] and EL[[LO]]

In this section, we give some complexity results for context DLs LM �LO� where
LM or LO are EL. We start with the case of LM �EL�.

Theorem 20. For all LM between ALC and SHOQ, the consistency problem
in LM �EL� is Exp-complete if OCrig = ∅ and ORrig = ∅, and NExp-complete
otherwise.

Proof sketch. The lower bound of Exp follows immediately from satisfiability in
ALC [17]. For the case of rigid concept names, NExp-hardness is obtained by a
careful reduction of the satisfiability problem in the temporalized DL EL-LTL [8]
(in the presence of rigid concept names). We exploit the fact that the lower
bound for satisfiability in EL-LTL holds already for a syntactically restricted

28 S. Böhme, M. Lippmann

fragment, i.e. EL-LTL-formulas of the form �φ where φ is an EL-LTL-formula
that contains only X as temporal operator [7]. We obtain now an m-concept Cφ

from φ by replacing EL-axioms α by �α�, ∧ by �, and subformulas of the form
Xψ by ∀r.ψ � ∃ r.ψ (with r ∈ MR being arbitrary but fixed). It is not hard to
verify that �φ is satisfiable iff � � Cφ � ∃ r.� is consistent.

The upper bounds of Exp in the case OCrig = ORrig = ∅ follow immediately
from Theorem 16. Next, we prove the upper bounds of NExp in the case of rigid
names. We again use Lemma 14. First, we non-deterministically guess a set X ⊆
P(Im(b)) and construct the EL-BKB BX over O as in the proof of Theorem 17,
which is actually a conjunction of EL-literals over O, i.e. of (negated) EL-axioms
over O. Consistency of BX can be reduced to consistency of a conjunction of
ELO⊥-axioms over O, where ELO⊥ extends of EL with nominals and the bottom
concept (see [9] for details). Since consistency of conjunctions of ELO⊥-axioms
can be decided in polynomial time [1], we obtain our claimed upper bounds.

Next, we examine EL�LO� where LO is either EL or between ALC and SHOQ.
Instead of considering EL�LO�-BKBs, we allow only conjunctions of m-axioms.
From a theoretical point of view, this restriction is interesting, as EL does not al-
low the constructors disjunction and negation to build concepts. Then, however,
the consistency problem becomes trivial in the case of EL�EL� since all EL�EL�-
BKBs are consistent, as EL lacks any means of expressing contradictions. This
restriction, however, does not yield a better complexity in the cases of EL�LO�,
where LO is between ALC and SHOQ. For those context DLs, the complexity
of the consistency problem turns out to be as hard as for ALC�LO�.

We show the lower bounds for the consistency problem in EL�ALC�. We again
distinguish the three cases of which names are allowed to be rigid. The next
theorem is again a consequence of the complexity of the satisfiability problem in
ALC [17].

Theorem 21. If OCrig = ORrig = ∅, the consistency problem in EL�ALC� is
Exp-hard.

For the case of rigid roles, we have lower bounds of 2Exp. The intuitive reason
is that there is a limited interaction between the different contexts by means of
rigid roles that allow to propagate information. In particular, even if EL is the
outer logic, we can enforce that there are exponentially many different contexts
by using object concept names serving as binary counter in the inner logic ALC.
Theorem 22. If OCrig �= ∅ and ORrig �= ∅, the consistency problem in EL�ALC�
is 2Exp-hard.

Proof. To show the lower bound formally, we adapt the proof ideas of [3,4], and
reduce the word problem for exponentially space-bounded alternating Turing
machines (i.e. is a given word w accepted by the machine M) to the consistency
problem in EL�ALC� with rigid roles, i.e. ORrig �= ∅. In [3,4], a reduction was
provided to show 2Exp-hardness for the temporalized DL ALC-LTL in the pres-
ence of rigid roles. Here, we mimic the properties of the time dimension that are
important for the reduction using a role name t ∈ MR.

Decidable Description Logics of Context with Rigid Roles 29

Our EL�ALC�-BKB is the conjunction of the EL�ALC�-BKBs introduced be-
low. First, we ensure that we never have a “last” time point:

� � ∃ t.�
The ALC-LTL-formula obtained in the reduction of [3,4] is a conjunction

of ALC-LTL-formulas of the form �φ, where φ is an ALC-LTL-formula. This
makes sure that φ holds in all (temporal) worlds. For the cases where φ is an
ALC-axiom, we can simply express this by:

� � �φ�

This captures all except for two conjuncts of the ALC-LTL-formula of the re-
duction of [3,4]. There, a k-bit binary counter using concept names A′

0, . . . , A
′
k−1

was attached to the individual name a, which is incremented along the tempo-
ral dimension. We can express something similar in EL�ALC�, but instead of
incrementing the counter values along a sequence of t-successors, we have to go
backwards since EL does allow for branching but does not allow for value re-
strictions, i.e. we cannot make sure that all t-successors behave the same. More
precisely, if the counter value n is attached to a in context c, the value n + 1
(modulo 2k) must be attached to a in all of c’s t-predecessors.

First, we ensure which bits must be flipped:

∧
i<k

(
∃ t.(�A′

0(a)� � . . . � �A′
i−1(a)� � �A′

i(a)�
) � �(¬A′

i)(a)�
)

∧
i<k

(
∃ t.(�A′

0(a)� � . . . � �A′
i−1(a)� � �(¬A′

i)(a)�
) � �A′

i(a)�
)

Next, we ensure that all other bits stay the same:

∧
0<i<k

∧
j<i

(
∃ t.(�(¬A′

j)(a)� � �A′
i(a)�

) � �A′
i(a)�

)

∧
0<i<k

∧
j<i

(
∃ t.(�(¬A′

j)(a)� � �(¬A′
i)(a)�

) � �(¬A′
i)(a)�

)

Note that due to the first m-axiom above, we enforce every context to have
a t-successor. By the other m-axioms, we make sure that we enforce a t-chain
of length 2k. As in [3,4], it is not necessary to initialize the counter. Since we
decrement the counter along the t-chain (modulo 2k), every value between 0 and
2k − 1 is reached.

The conjunction of all the EL�ALC�-BKBs above yields an EL�ALC�-BKB B
that is consistent iff w is accepted by M .

Using similar ideas as in the proof of Theorem 22, we obtain NExp-hardness in
the case where only rigid concept names are admitted.

Theorem 23. If OCrig �= ∅ and ORrig = ∅, the consistency problem in EL�ALC�
is NExp-hard.

30 S. Böhme, M. Lippmann

Proof. To show the lower bound, we again adapt the proof ideas of [3,4], and re-
duce an exponentially bounded version of the domino problem to the consistency
problem in EL�ALC� with rigid concepts, i.e. OCrig �= ∅ and ORrig = ∅. In [3,4],
a reduction was provided to show NExp-hardness of ALC-LTL in the presence
of rigid concepts. As in the proof of Theorem 22, we mimic the properties of the
time dimension that are important for the reduction using a role name t ∈ MR.

Our EL�ALC�-BKB is the conjunction of the EL�ALC�-BKBs introduced be-
low. We proceed in a similar way as in the proof of Theorem 22. First, we ensure
that we never have a “last” time point:

� � ∃ t.�
Next, note that since � distributes over conjunction, most of the conjuncts of

the ALC-LTL-formula of the reduction of [3,4] can be rewritten as conjunctions
of ALC-LTL-formulas of the form �α, where α is an ALC-axiom. As argued in
the proof of Theorem 22, this can equivalently be expressed by � � �α�.

In [3,4], a (2n + 2)-bit binary counter is employed using concept names
Z0, . . . , Z2n+1. This counter is attached to an individual name a, which is in-
cremented along the temporal dimension. This can be expressed in EL�ALC� as
shown in the proof of Theorem 22:

∧
i<2n+2

(
∃ t.(�Z0(a)� � . . . � �Zi−1(a)� � �Zi(a)�

) � �(¬Zi)(a)�
)

∧
i<2n+2

(
∃ t.(�Z0(a)� � . . . � �Zi−1(a)� � �(¬Zi)(a)�

) � �Zi(a)�
)

∧
0<i<2n+2

∧
j<i

(
∃ t.(�(¬Zj)(a)� � �Zi(a)�

) � �Zi(a)�
)

∧
0<i<2n+2

∧
j<i

(
∃ t.(�(¬Zj)(a)� � �(¬Zi)(a)�

) � �(¬Zi)(a)�
)

Note that due to the first m-axiom above, we enforce that every context has
a t-successor. By the other m-axioms, we make sure that we enforce a t-chain of
length 22n+2. As in [3,4], it is not necessary to initialize the counter. Since we
decrement the counter along the t-chain (modulo 22n+2), every value between 0
and 22n+2 − 1 is reached.

In [3,4], an ALC-LTL-formula is used to express that the value of the counter
in shared by all domain elements belonging to the current (temporal) world.
This is expressed using a disjunction, which we can simulate as follows:

∧
0≤i≤2n+1

(
�Zi(a)� � �� � Zi� ∧ �(¬Zi)(a)� � �Zi � ⊥�

)

Next, there is a concept name N , which is required to be non-empty in every
(temporal) world. We express this using a role name r ∈ OR:

� � �(∃ r.N)(a)�

Decidable Description Logics of Context with Rigid Roles 31

It is only left to express the following ALC-LTL-formula of [3,4]:

�
(∨
d∈D

(� � d′)
)

For readability, let D = {d1, . . . , dk}. We use non-convexity of ALC as follows
to express this:

� � �(d′1 � · · · � d′k)(a)� ∧
∧

1≤i≤k

(
�d′i(a)� � �� � d′i�

)

The conjunction of all the EL�ALC�-BKBs above yields an EL�ALC�-BKB B
that is consistent iff the exponentially bounded version of the domino problem
has a solution.

Summing up the results of this section together with the upper bounds of Sec-
tion 3, we obtain the following corollary.

Corollary 24. For all LO between ALC and SHOQ, the consistency problem
in EL�LO� is

– Exp-complete if OCrig = ∅ and ORrig = ∅;
– NExp-complete if OCrig �= ∅ and ORrig = ∅; and
– 2Exp-complete if OCrig �= ∅ and ORrig �= ∅.

5 Conclusions

We have introduced and investigated a family of two-dimensional context DLs
LM �LO� capable of representing information on contexts (using a DL LO) and
the relation between them (using a DL LM). In these context DLs, the con-
sistency problem is decidable even in the presence of rigid names. We have
investigated the complexity of the context DLs built from the classical DLs
EL, ALC, and SHOQ, where we considered three different cases: (i) no rigid
names, (ii) only rigid concepts, and (iii) both rigid concepts and roles are
admitted. Our results are depicted in Table 2. Interestingly, the consistency
problem in EL�LO�, where LO is between ALC and SHOQ, is as hard as in
SHOQ�SHOQ�: it ranges from Exp-complete (Case (i)) over NExp-complete
(Case (ii)) to 2Exp-complete (Case (iii)). However, for the logics LM �EL�, where
LM is between ALC and SHOQ, the consistency problem is Exp-complete in
Case (i) and NExp-complete in the Cases (ii) and (iii), i.e. there is no jump in
the complexity if rigid roles are admitted.

For future work, we would like to consider DLs admitting inverse roles, which
are also useful for representing information about and within contexts. As argued
in [16], also temporal information is often required to represent information
about contexts faithfully. We think that our decision procedures can be adapted
to deal with temporalized context DLs such as LTL�LM �LO��. Moreover, besides
consistency and other standard reasoning tasks, there are also reasoning tasks
specific to contexts and rôles that we want to investigate in future, such as to
check whether an object is allowed to play two rôles (at the same time).

32 S. Böhme, M. Lippmann

Acknowledgements. The authors wish to thank Stefan Borgwardt for helpful
discussions on the proofs of the lower bounds of the context DLs EL�LO�. The
first author was supported by the DFG in the RTG 1907 (RoSI). The second
author was partially supported by the DFG in the CRC 912 (HAEC).

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005,
pp. 364–369 (2005)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press (2007)

3. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. In: Proc. KR
2008, pp. 684–694 (2008)

4. Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans.
Comput. Log. 13(3) (2012)

5. Bao, J., Voutsadakis, G., Slutzki, G., Honavar, V.: Package-based description log-
ics. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies.
LNCS, vol. 5445, pp. 349–371. Springer, Heidelberg (2009)

6. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics 2800, 153–184 (2003)

7. Borgwardt, S., Thost, V.: LTL over EL axioms. LTCS-Report 15-07, Chair
of Automata Theory, TU Dresden (2015), see http://lat.inf.tu-dresden.de/

research/reports.html.
8. Borgwardt, S., Thost, V.: Temporal query answering in the description logic EL.

In: Proc. IJCAI 2015, pp. 2819–2825 (2015)
9. Böhme, S., Lippmann, M.: Description logics of context with rigid roles revis-

ited. LTCS-Report 15-04, Chair of Automata Theory, TU Dresden (2015). see
http://lat.inf.tu-dresden.de/research/reports.html

10. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Journal of the IGPL 8(3), 239–263 (2000)

11. Klarman, S., Gutiérrez-Basulto, V.: ALCALC: A context description logic. In: Jan-
hunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS, vol. 6341, pp. 208–220. Springer,
Heidelberg (2010)

12. Klarman, S., Gutiérrez-Basulto, V.: Two-dimensional description logics for context-
based semantic interoperability. In: Proc. AAAI 2011 (2011)

13. Klarman, S., Gutiérrez-Basulto, V.: Two-dimensional description logics of context.
In: Proc. DL 2011 (2011)

14. Lippmann, M.: Temporalised Description Logics for Monitoring Partially Observ-
able Events. Ph.D. thesis, TU Dresden, Germany (2014)

15. McCarthy, J.: Generality in artificial intelligence. Communications of the
ACM 30(12), 1030–1035 (1987)

16. McCarthy, J.: Notes on formalizing context. In: Proc. IJCAI 1993, pp. 555–562
(1993)

17. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. IJCAI 1991, pp. 466–471 (1991)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

Adding Threshold Concepts to the Description
Logic EL

Franz Baader1, Gerhard Brewka2, and Oliver Fernández Gil2,�

1 Theoretical Computer Science, TU Dresden, Germany
baader@tcs.inf.tu-dresden.de

2 Department of Computer Science, University of Leipzig, Germany
{brewka,fernandez}@informatik.uni-leipzig.de

Abstract. We introduce an extension of the lightweight Description
Logic EL that allows us to define concepts in an approximate way. For
this purpose, we use a graded membership function, which for each in-
dividual and concept yields a number in the interval [0, 1] expressing
the degree to which the individual belongs to the concept. Threshold
concepts C∼t for ∼ ∈ {<,≤, >,≥} then collect all the individuals that
belong to C with degree ∼ t. We generalize a well-known characterization
of membership in EL concepts to construct a specific graded membership
function deg , and investigate the complexity of reasoning in the Descrip-
tion Logic τEL(deg), which extends EL by threshold concepts defined
using deg . We also compare the instance problem for threshold concepts
of the form C>t in τEL(deg) with the relaxed instance queries of Ecke
et al.

1 Introduction

Description logics (DLs) [3] are a family of logic-based knowledge representation
formalisms, which can be used to represent the conceptual knowledge of an ap-
plication domain in a structured and formally well-understood way. They allow
their users to define the important notions of the domain as concepts by stating
necessary and sufficient conditions for an individual to belong to the concept.
These conditions can be atomic properties required for the individual (expressed
by concept names) or properties that refer to relationships with other individ-
uals and their properties (expressed as role restrictions). The expressivity of a
particular DL is determined by what sort of properties can be required and how
they can be combined.

The DL EL, in which concepts can be built using concept names as well as the
concept constructors conjunction (�), existential restriction (∃r.C), and the top
concept (�), has drawn considerable attention in the last decade since, on the
one hand, important inference problems such as the subsumption problem are
polynomial in EL, even with respect to expressive terminological axioms [7]. On
the other hand, though quite inexpressive, EL can be used to define biomedical
ontologies, such as the large medical ontology SNOMEDCT.1 In EL we can, for
� Supported by DFG Graduiertenkolleg 1763 (QuantLA).
1 see http://www.ihtsdo.org/snomed-ct/

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 33–48, 2015.
DOI: 10.1007/978-3-319-24246-0_3

34 F. Baader, G. Brewka and O. Fernández Gil

example, define the concept of a happy man as a male human that is healthy and
handsome, has a rich and intelligent wife, a son and a daughter, and a friend:

Human �Male � Healthy � Handsome �
∃spouse.(Rich � Intelligent � Female) � (1)

∃child.Male � ∃child.Female � ∃friend.�

For an individual to belong to this concept, all the stated properties need to
be satisfied. However, maybe we would still want to call a man happy if most,
though not all, of the properties hold. It might be sufficient to have just a
daughter without a son, or a wife that is only intelligent but not rich, or maybe
an intelligent and rich spouse of a different gender. But still, not too many of
the properties should be violated.

In this paper, we introduce a DL extending EL that allows us to define con-
cepts in such an approximate way. The main idea is to use a graded membership
function, which instead of a Boolean membership value 0 or 1 yields a member-
ship degree from the interval [0, 1]. We can then require a happy man to belong
to the EL concept (1) with degree at least .8. More generally, if C is an EL
concept, then the threshold concept C≥t for t ∈ [0, 1] collects all the individuals
that belong to C with degree at least t. In addition to such upper threshold
concepts, we will also consider lower threshold concepts C≤t and allow the use
of strict inequalities in both. For example, an unhappy man could be required
to belong to the EL concept (1) with a degree less than .2.

The use of membership degree functions with values in the interval [0, 1] may
remind the reader of fuzzy logics. However, there is no strong relationship be-
tween this work and the work on fuzzy DLs [6] for two reasons. First, in fuzzy
DLs the semantics is extended to fuzzy interpretations where concept and role
names are interpreted as fuzzy sets and relations, respectively. The membership
degree of an individual to belong to a complex concept is then computed using
fuzzy interpretations of the concept constructors (e.g., conjunction is interpreted
using an appropriate triangular norm). In our setting, we consider crisp inter-
pretations of concept and role names, and directly define membership degrees
for complex concepts based on them. Second, we use membership degrees to ob-
tain new concept constructors, but the threshold concepts obtained by applying
these constructors are again crisp rather than fuzzy.

In the next section, we will formally introduce the DL EL, and then recall
the well-known characterization of element-hood in EL concepts via existence
of homomorphisms between EL description graphs (which can express both EL
concepts and interpretations in a graphical way). In Section 3, we then extend
EL by new threshold concept constructors, which are based on an arbitrary, but
fixed graded membership function. We will impose some minimal requirements
on such membership functions, and show the consequences that these conditions
have for our threshold logic. In Section 4, we then introduce a specific graded
membership function deg , which satisfies the requirements from the previous sec-
tions. Its definition is a natural extension of the homomorphism characterization

Adding Threshold Concepts to the Description Logic EL 35

of crisp membership in EL. Basically, an individual is punished (in the sense that
its membership degree is lowered) for each missing property in a uniform way.
More sophisticated versions of this function, which weigh the absence of different
properties in a different way, may be useful in practice. However, they are easy
to define and considering them would only add clutter, but no new insights, to
our investigation (in Section 5) of the computational properties of the threshold
logic obtained by using this function.

In Section 6 we compare our graded membership function with similarity
measures on EL concepts. In fact, from a technical point of view, the graded
membership function introduced in Section 4 is akin to the similarity measures
for EL concepts introduced in [14,15], though only [15] directly draws its in-
spirations from the homomorphism characterization of subsumption in EL. We
show that a variant of the relaxed instance query approach of [10] can be used
to turn a similarity measure into a graded membership function. It turns out
that, applied to a simple instance ��1 of the framework for constructing simi-
larity measures in [14], this approach actually yields our membership function
deg . In addition, we can show that the relaxed instance queries of [14] can be
expressed as instance queries w.r.t. threshold concepts of the form C>t. How-
ever, the new DL introduced in this paper is considerably more expressive than
just such threshold concepts since we also allow the use of comparison operators
other than > in threshold concepts, and the threshold concepts can be embedded
in complex EL concepts.

This paper is an extended version of [16]. Due to the space constraints, we
cannot provide all technical details and proofs in this paper. They can be found
in the technical report [1].

2 The Description Logic EL
We start by defining syntax and semantics of EL. Starting with finite sets of
concept names NC and role names NR, the set CEL of EL concept descriptions
is obtained by using the concept constructors conjunction (C � D), existential
restriction (∃r.C) and top (�), in the following way:

C ::= � | A | C � C | ∃r.C
where A ∈ NC, r ∈ NR and C ∈ CEL.

An interpretation I = (ΔI , .I) consists of a non-empty domain ΔI and an
interpretation function .I that assigns subsets of ΔI to each concept name and
binary relations over ΔI to each role name. The interpretation function .I is
inductively extended to concept descriptions in the usual way:

�I := ΔI ,
(C �D)I := CI ∩DI ,
(∃r.C)I := {x ∈ ΔI | ∃y. (x, y) ∈ rI ∧ y ∈ CI}.

Given C,D ∈ CEL, we say that C is subsumed by D (denoted as C � D)
iff CI ⊆ DI for every interpretation I. These two concept descriptions are

36 F. Baader, G. Brewka and O. Fernández Gil

equivalent (denoted as C ≡ D) iff C � D and D � C. Finally, C is satisfiable iff
CI �= ∅ for some interpretation I.

Our definition of graded membership will be based on graphical represen-
tations of concepts and interpretations, and on homomorphisms between such
representations. For this reason, we recall these notions together with the perti-
nent results. They are all taken from [4,12,2].

Definition 1 (EL Description Graphs). An EL description graph is of the
form G = (VG, EG, �G) where:

– VG is a set of nodes.
– EG ⊆ VG × NR × VG is a set of edges labelled by role names,
– �G : VG → 2NC is a function that labels nodes with sets of concept names.

An EL description tree T is a description graph that is a tree with a dis-
tinguished element v0 representing its root. In [4], it was shown that every EL
concept description C can be translated into a corresponding description tree TC

and vice versa. Furthermore, every interpretation I = (ΔI , .I) can be translated
into an EL description graph GI = (VI , EI , �I) in the following way [2]:

– VI = ΔI ,
– EI = {(vrw) | (v, w) ∈ rI},
– �I(v) = {A | v ∈ AI} for all v ∈ VI .

Example 1. The EL concept description

C := A � ∃r.(A �B � ∃r.�) � ∃r.A
yields the EL description tree TC depicted on the left-hand side in Figure 1. The
description graph on the right-hand side corresponds to the following interpre-
tation:

– ΔI := {a1, a2, a3},
– AI := {a1, a2} and BI := {a2, a3},
– rI := {(a1, a2), (a2, a3), (a3, a1)}.

TC : v0 : {A}

v1 : {A,B}

v2 : {}
r

r

v3 : {A}
r

GI : a1 : {A}

a2 : {A,B}

a3 : {B}
r

r

r

Fig. 1. EL description graphs.

Next, we generalize homomorphisms between EL description trees [4] to ar-
bitrary graphs.

Adding Threshold Concepts to the Description Logic EL 37

Definition 2 (Homomorphisms on EL Description Graphs). Let G =
(VG, EG, �G) and H = (VH , EH , �H) be two EL description graphs. A mapping
ϕ : VG → VH is a homomorphism from G to H iff the following conditions are
satisfied:

1. �G(v) ⊆ �H(ϕ(v)) for all v ∈ VG, and
2. vrw ∈ EG implies ϕ(v)rϕ(w) ∈ EH .

This homomorphism is an isomorphism iff it is bijective, equality instead of just
inclusion holds in 1., and biimplication instead of just implication holds in 2.

In Example 1, the mapping ϕ with ϕ(vi) = ai+1 for i = 0, 1, 2 and ϕ(v3) = a2
is a homomorphism. Homomorphisms between EL description trees can be used
to characterize subsumption in EL.

Theorem 1 ([4]). Let C,D be EL concept descriptions and TC , TD the corre-
sponding EL description trees. Then C � D iff there exists a homomorphism
from TD to TC that maps the root of TD to the root of TC.

The proof of this result can be easily adapted to obtain a similar characteri-
zation of element-hood in EL, i.e., whether d ∈ CI for some d ∈ ΔI .

Theorem 2. Let I be an interpretation, d ∈ ΔI , and C an EL concept descrip-
tion. Then, d ∈ CI iff there exists a homomorphism ϕ from TC to GI such that
ϕ(v0) = d.

In Example 1, the existence of the homomorphism ϕ defined above thus shows
that a1 ∈ CI . Equivalence of EL concept descriptions can be characterized via
the existence of isomorphisms, but for this the concept descriptions first need to
be normalized by removing redundant existential restrictions. To be more precise,
the reduced form of an EL concept description is obtained by applying the rewrite
rule ∃r.C � ∃r.D −→ ∃r.C if C � D as long as possible. This rule is applied
modulo associativity and commutativity of �, and not only on the top-level
conjunction of the description, but also under the scope of existential restrictions.
Since every application of the rule decreases the size of the description, it is easy
to see that the reduced form can be computed in polynomial time. We say that
an EL concept description is reduced iff this rule does not apply to it. In our
Example 1, the reduced form of C is the reduced description A�∃r.(A�B�∃r.�).

Theorem 3 ([12]). Let C,D be EL concept descriptions, Cr, Dr their reduced
forms, and TCr , TDr the corresponding EL description trees. Then C ≡ D iff
there exists an isomorphism between TCr and TDr .

3 The Logic τEL(m)

Our new logic will allow us to take an arbitrary EL concept C and turn it into
a threshold concept. To this end we introduce a family of constructors that are
based on the membership degree of individuals in C. For instance, the threshold

38 F. Baader, G. Brewka and O. Fernández Gil

concept C>.8 represents the individuals that belong to C with degree > .8. The
semantics of the new threshold concepts depends on a (graded) membership
function m. Given an interpretation I, this function takes a domain element
d ∈ ΔI and an EL concept C as input, and returns a value between 0 and 1,
representing the extent to which d belongs to C in I.

The choice of the membership function obviously has a great influence on the
semantics of the threshold concepts. In Section 4 we will propose one specific
such function deg , but we do not claim this is the only reasonable way to define
such a function. Rather, the membership function is a parameter in defining the
logic. To highlight this dependency, we call the logic τEL(m).

Nevertheless, membership functions are not arbitrary. There are two proper-
ties we require such functions to satisfy:

Definition 3. A graded membership function m is a family of functions that
contains for every interpretation I a function mI : ΔI × CEL → [0, 1] satisfying
the following conditions (for C,D ∈ CEL):

M1 : d ∈ CI ⇔ mI(d, C) = 1 for all d ∈ ΔI ,

M2 : C ≡ D ⇔ for all d ∈ ΔI : mI(d, C) = mI(d,D).

Property M1 requires that the value 1 is a distinguished value reserved for
proper containment in a concept. Property M2 requires equivalence invariance.
It expresses the intuition that the membership value should not depend on the
syntactic form of a concept, but only on its semantics. Note that the right to
left implication in M2 already follows from M1.

We now turn to the syntax of τEL(m). Given finite sets of concept names NC

and role names NR, τEL(m) concept descriptions are defined as follows:

Ĉ ::= � | A | Ĉ � Ĉ | ∃r.Ĉ | E∼q

where A ∈ NC, r ∈ NR, ∼ ∈ {<,≤, >,≥}, q ∈ [0, 1] ∩ Q, E is an EL concept
description and Ĉ is a τEL(m) concept description. Concepts of the form E∼q

are called threshold concepts.
The semantics of the new threshold concepts is defined in the following way:

[E∼q]
I := {d ∈ ΔI | mI(d,E) ∼ q}.

The extension of .I to more complex concepts is defined as in EL by additionally
considering the semantics of the newly introduced threshold concepts.

Requiring property M1 has the following consequences for the semantics of
threshold concepts:

Proposition 1. For every EL concept description E we have

E≥1 ≡ E and E<1 ≡ ¬E,

where the semantics of negation is defined as usual, i.e., [¬E]I := ΔI \ EI .

Adding Threshold Concepts to the Description Logic EL 39

The second equivalence basically says that τEL(m) can express negation of EL
concept descriptions. This does not imply that τEL(m) is closed under negation
since the threshold constructors can only be applied to EL concept descriptions.
Thus, negation cannot be nested using these constructors. A formal proof that
τEL(deg) for the membership function deg introduced in the next section cannot
express full negation can be found in [1]. However, atomic negation (i.e., negation
applied to concept names) can obviously be expressed. Consequently, unlike
EL concept descriptions, not all τEL(m) concept descriptions are satisfiable.
A simple example is the concept description A≥1 � A<1, which is equivalent to
A � ¬A.

4 The Membership Function deg

To make things more concrete, we now introduce a specific membership function,
denoted deg . Given an interpretation I, an element d ∈ ΔI , and an EL concept
description C, this function is supposed to measure to which degree d satisfies
the conditions for membership expressed by C. To come up with such a measure,
we use the homomorphism characterization of membership (see Theorem 2) as
starting point. Basically, we consider all partial mappings from TC to GI that
map the root of TC to d and respect the edge structure of TC . For each of
these mappings we then calculate to which degree it satisfies the homomorphism
conditions, and take the degree of the best such mapping as the membership
degree degI(d, C). We consider partial mappings rather than total ones since
one of the violations of properties demanded by C could be that a required role
successor does not exist at all.

To formalize this idea, we first define the notion of partial tree-to-graph homo-
morphisms from description trees to description graphs. In this definition, the
node labels are ignored (they will be considered in the next step).

Definition 4. Let T = (Vt, Et, �t, v0) and G = (Vg, Eg, �g) be a description tree
(with root v0) and a description graph, respectively. A partial mapping h : Vt →
Vg is a partial tree-to-graph homomorphism (ptgh) from T to G iff the following
conditions are satisfied:

1. dom(h) is a sub-tree of T with root v0, i.e., v0 ∈ dom(h) and if (v, r, w) ∈ Et

and w ∈ dom(h), then v ∈ dom(h);
2. for all edges (v, r, w) ∈ Et, w ∈ dom(h) implies (h(v), r, h(w)) ∈ Eg.

In order to measure how far away from a homomorphism according to Defini-
tion 2 such a ptgh is, we define the notion of a weighted homomorphism between
a finite EL description tree and an EL description graph.

Definition 5. Let T be a finite EL description tree, G an EL description graph
and h : VT �→ VG a ptgh from T to G. We define the weighted homomorphism
induced by h from T to G as a function hw : dom(h) → [0, 1] as follows. For a

40 F. Baader, G. Brewka and O. Fernández Gil

given v ∈ dom(h), let k∗(v) be the number of successors of v in T , and v1, . . . , vk
the k (0 ≤ k ≤ k∗(v)) children of v in T such that vi ∈ dom(h). Then

hw(v) :=

⎧⎨
⎩
1 if |�T (v)|+ k∗(v) = 0

|�T (v)∩�G(h(v))|+∑
1≤i≤k hw(vi)

|�T (v)|+k∗(v) otherwise.

It is easy to see that hw is well-defined. In fact, T is a finite tree, which
ensures that the recursive definition of hw is well-founded. In addition, the first
case in the definition ensures that division by zero is avoided. Using value 1
in this case is justified since then no property is required. In the second case,
missing concept names and missing successors decrease the weight of a node
since then the required name or successor contributes to the denominator, but
not to the numerator. Required successors that are there are only counted if
they are successors for the correct role, and then they do not contribute with
value 1 to the numerator, but only with their weight (i.e., the degree to which
they match the requirements for this successor).

When defining the value of the membership function degI(d, C), we do not
use the concept C directly, but rather its reduced form Cr. This will ensure that
deg satisfies property M2 (see Proposition 2 below).

Definition 6. Let I = (ΔI , .I) be an interpretation, d an element of ΔI , and C
an EL concept description with reduced form Cr. In addition, let H(TCr , GI , d)
be the set of all ptghs from TCr to GI with h(v0) = d. The set VI(d, Cr) of all
relevant values is defined as

VI(d, Cr) := {q | hw(v0) = q and h ∈ H(TCr , GI , d)}.
Then we define degI(d, C) := maxVI(d, Cr).

If the interpretation I is infinite, there may exist infinitely many ptghs from
TCr to GI with h(v0) = d. Therefore, it is not immediately clear whether the
maximum in the above definition actually exists, and thus whether degI(d, C) is
well-defined. To prove that the maximum exists also for infinite interpretations,
we show that the set VI(d, Cr) is actually a finite set. For this purpose, we
introduce canonical interpretations induced by ptghs.

Definition 7 (Canonical Interpretation). Let I = (ΔI , .I) be an interpre-
tation, C an EL concept description and h be a ptgh from TCr to GI . The
canonical interpretation Ih induced by h is the one having the description tree
TIh

= (VIh
, EIh

, v0, �Ih
) with

VIh
:= dom(h),

EIh
:= {vrw ∈ ETCr | v, w ∈ dom(h)}

�Ih
(v) := �TCr (v) ∩ �I(h(v)) for all v ∈ dom(h).

Lemma 1. Let I be an interpretation, d ∈ ΔI and C an EL concept description.
Then the following two properties hold:

Adding Threshold Concepts to the Description Logic EL 41

1. there are only finitely many different canonical interpretations induced by
ptghs h ∈ H(TCr , GI , d);

2. for every h ∈ H(TCr , GI , d), the identity mapping iIh : dom(h) → VIh

with iIh(v) = v for all v ∈ dom(h) is a ptgh from TC to TIh
that satisfies

hw(v0) = iIh
w (v0).

The first statement is an easy consequence of the fact that the description tree
for a canonical interpretation has nodes from the finite set of nodes of TCr and
labels from the finite set of concept and role names. The second fact is not hard
to show, and it obviously implies that the set VI(d, Cr) is finite. Consequently,
degI(d, C) is well-defined. Moreover, as an easy consequence of the proof of
Lemma 1 we can show that the same value can be obtained by considering the
corresponding canonical interpretation. To be more precise:

Lemma 2. Let I = (ΔI , .I) be an interpretation, d ∈ ΔI and C an EL concept
description. Let h be a ptgh from TCr to GI such that h(v0) = d and degI(d, C) =
hw(v0). In addition, let Ih be the corresponding canonical interpretation. Then,
degIh(v0, C) = degI(d, C).

If the interpretation I is finite, degI(d, C) for d ∈ ΔI and an EL concept
description C can actually be computed in polynomial time. The polynomial
time algorithm described in [1] is inspired by the polynomial time algorithm for
checking the existence of a homomorphism between EL description trees [5,4],
and similar to the algorithm for computing the similarity degree between EL
concept descriptions introduced in [15]. Finally, it remains to show that deg
satisfies the properties required for a membership function.

Proposition 2. The function deg satisfies M1 and M2.

In fact, M1 is easy to show and M2 follows from the fact that we use
the reduced form of a concept description rather than the description itself.
Otherwise, M2 would not hold. For example, consider the concept description
C := ∃r.A�∃r.(A�B), which is equivalent to its reduced form Cr = ∃r.(A�B).
Let d be an individual that has a single r-successor belonging to A, but not to
B. Then using C instead of Cr would yield membership degree 3/4, whereas the
use of Cr yields the degree 1/2.

5 Reasoning in τEL(deg)

We start with investigating the complexity of terminological reasoning (sub-
sumption, satisfiability) in τEL(deg), and then turn to assertional reasoning
(consistency, instance). In the following, we assume that all concept descriptions
E occurring in threshold concepts E∼q are reduced (i.e., Er = E), and thus we
can directly use E when computing membership degrees. This is without loss of
generality since the reduced form of an EL concept description can be computed
in polynomial time.

42 F. Baader, G. Brewka and O. Fernández Gil

Terminological Reasoning. In contrast to EL, where every concept descrip-
tion is satisfiable, we have seen in Section 3 that there are unsatisfiable τEL(deg)
concept descriptions, such as A≥1 � A<1. Thus, the satisfiability problem is
non-trivial in τEL(deg). In fact, by a simple reduction from the well-known
NP-complete problem ALL-POS ONE-IN-THREE 3SAT [11], we can show that
testing τEL(deg) concept descriptions for satisfiability is actually NP-hard. The
main idea underlying this reduction is that, for any three distinct concept names
Ai, Aj , Ak, an individual belongs to (Ai�Aj �Ak)≤1/3� (Ai�Aj �Ak)≥1/3 iff it
belongs to exactly one of these three concepts. This also yields coNP-hardness of
subsumption in τEL(deg) since unsatisfiability can be reduced to subsumption:
Ĉ is not satisfiable iff Ĉ � A≥1 � A<1.

Lemma 3. In τEL(deg), satisfiability is NP-hard and subsumption is coNP-
hard.

Before proving an NP upper bound for satisfiability, we show that the homo-
morphism characterization of membership in an EL concept can be extended to
τEL(deg). For this, we first extend EL description graphs to τEL(deg) descrip-
tion graphs. This is done by allowing the node labelling function to assign, in
addition, threshold concepts as labels.

Definition 8. Let Ĥ = (VH , EH , �̂H) be a τEL(deg) description graph and I
an interpretation with associated EL description graph GI = (VI , EI , �I). The
mapping φ : VH → VI is a τ-homomorphism from Ĥ to GI iff

1. φ is a homomorphism from Ĥ to GI according to Definition 2, where thresh-
old concepts in labels are ignored,

2. for all v ∈ VH : if E∼q ∈ �̂H(v), then φ(v) ∈ [E∼q]
I .

If the interpretation I is finite, then the existence of a τ -homomorphism can
be checked in polynomial time. Intuitively, for the first condition one just needs
to check for the existence of a classical homomorphism, and for the second one
needs to compute membership degrees. Both can be done in polynomial time.
Similar to EL, the existence of a τ -homomorphism characterizes membership in
τEL(deg) concept descriptions.

Theorem 4. Let I be an interpretation, d ∈ ΔI, and Ĉ a τEL(deg) concept
description. Then, d ∈ ĈI iff there exists a τ-homomorphism φ from TĈ to GI
such that φ(v0) = d.

This theorem can be used to prove a bounded model property for τEL(deg)
concept descriptions.

Lemma 4. Let Ĉ be a τEL(deg) concept description of size s(Ĉ). If Ĉ is satis-
fiable, then there exists an interpretation J such that ĈJ �= ∅ and |ΔJ | ≤ s(Ĉ).

Proof sketch. Since Ĉ is satisfiable, there is an interpretation I and some d ∈ ΔI

such that d ∈ ĈI . Therefore, there exists a τ -homomorphism φ from TĈ to GI

Adding Threshold Concepts to the Description Logic EL 43

with φ(v0) = d. The idea is to use φ and small fragments of I to build J and a
τ -homomorphism from TĈ to GJ , and then apply Theorem 4 to Ĉ and J .

The interpretation J is built in two steps. We first use as base interpretation
I0 the interpretation associated to the description tree TĈ , where we ignore la-
bels of the form E∼q. Then the identity mapping φid is a homomorphism from
TĈ to GI0 . However, this interpretation and homomorphism need not satisfy
Condition 2 of Definition 8. To repair this, we extend I0 to J by adding ap-
propriate canonical interpretations. To be more precise, for a given node v in I0
that has E∼q in its label, we know that φ(v) ∈ [E∼q]

I , i.e. degI(φ(v), E) ∼ q.
By Lemma 2, we do not need all of I to obtain the degree degI(φ(v), E). It is
sufficient to use the fragment corresponding to the canonical interpretation. The
interpretation J satisfying Ĉ is obtained from I0 by plugging in such canonical
interpretations where ever it is required by threshold concepts in labels of nodes
(see [1] for details).

Since the size of I0 is bounded by the size of Ĉ (without counting the threshold
concepts) and since the size of a canonical interpretation added to satisfy a
threshold concept E∼q in Ĉ is bounded by the size of E, this yields the required
bound for the size of J . ��
This lemma yields a standard guess-and-check NP-algorithm to decide satisfia-
bility of Ĉ: first guess an interpretation J of size at most s(Ĉ), and then check
(in polynomial time) whether there exists a τ -homomorphism from TĈ to GJ .

A coNP-upper bound for subsumption cannot directly be obtained from the
fact that satisfiability is in NP. In fact, though we have Ĉ � D̂ iff Ĉ � ¬D̂
is unsatisfiable, this equivalence cannot be used directly since ¬D̂ need not be
a τEL(deg) concept description. Nevertheless, we can extend the ideas used in
the proof of Lemma 4 to obtain a bounded model property for satisfiability of
concepts of the form Ĉ � ¬D̂.

Lemma 5. Let Ĉ and D̂ be τEL(deg) concept descriptions of respective sizes
s(Ĉ) and s(D̂). If Ĉ � ¬D̂ is satisfiable, then there exists an interpretation J
such that ĈJ \ D̂J �= ∅ and |ΔJ | ≤ s(Ĉ)× s(D̂).

Proof sketch. We first apply the construction used in the proof of Lemma 4
to construct, for a given interpretation I with ĈI \ D̂I �= ∅, an interpretation
J0 such that ĈJ0 �= ∅ and |ΔJ0 | ≤ s(Ĉ). This construction is such that GJ0 is
tree-shaped and there is a homomorphism ϕ from GJ0 to GI with ϕ(v0) = d.
We then use ϕ to extend J0 to J such that v0 �∈ D̂J holds. Starting with the
root v0, we consider all the nodes in ΔJ0 in a top-down manner.

First, assume that D̂ contains a top-level conjunct of the form E≤q such
that d = ϕ(v0) �∈ [E≤q]

I , but v0 ∈ [E≤q]
J0 . Then we attach to v0 a canonical

interpretation that yields for d the same membership degree as I to ensure that,
in the extended interpretation, v0 no longer belongs to E≤q.

Now, consider the case where D̂ contains a top-level conjunct F̂ = ∃r.F̂ ′ such
that d = ϕ(v0) �∈ F̂ I , but v0 ∈ F̂J0 . Then there is an r-successor v of v0 that
satisfies v ∈ [F̂ ′]J0 , but since ϕ(v) is an r-successor of ϕ(v0) in I, we also have

44 F. Baader, G. Brewka and O. Fernández Gil

ϕ(v) �∈ [F̂ ′]I . We can now recursively apply the construction to v. Overall, the
construction terminates and considers every node in ΔJ0 only once since GJ0 is
tree-shaped. Since the number of nodes in ΔJ0 is bounded by s(Ĉ) and the size
of each of the added canonical interpretations is bounded by s(D̂), we obtain the
desired bound on the size of J . ��
The lemma yields an obvious guess-and-checkNP-algorithm for non-subsumption,
which shows that subsumption is in co-NP. Overall, we thus have shown:

Theorem 5. In τEL(deg), satisfiability is NP-complete and subsumption coNP-
complete.

Assertional Reasoning. Information about specific individuals can be ex-
pressed in an ABox. An ABox A is a finite set of assertions of the form Ĉ(a)

or r(a, b), where Ĉ is a τEL(deg) concept description, r ∈ NR, and a, b are indi-
vidual names. In addition to concept and role names, an interpretation I now
assigns domain elements aI to individual names a. The assertion Ĉ(a) is satisfied
by I iff aI ∈ ĈI , and r(a, b) is satisfied by I iff (aI , bI) ∈ rI . The interpretation
I is a model of A iff I satisfies all assertions in A. The ABox A is consistent
iff it has a model, and the individual a is an instance of the concept Ĉ in A
(written as A |= Ĉ(a)) iff aI ∈ ĈI holds in all models of A.

Since satisfiability can obviously be reduced to consistency, and subsumption
to the instance problem, the lower bounds shown above also hold for assertional
reasoning. Regarding upper bounds, the consistency problem can be tackled in
a similar way as the satisfiability problem. As shown in [13], EL ABoxes can be
translated into EL description graphs and consistency can be characterized using
homomorphisms between description graphs. Again, this characterization can be
extended to τEL(deg), and can be used to prove an appropriate bounded model
property with a polynomial bound. Similar to our treatment of subsumption,
this can then be used to obtain a bounded model property for non-instance
(A �|= Ĉ(a))). However, there the bound on the model has the size of Ĉ in
the exponent. For this reason, we obtain a coNP upper bound for the instance
problem only if we consider data complexity [8], where the size of the query
concept Ĉ is assumed to be constant.

Theorem 6. In τEL(deg), consistency is NP-complete, and instance checking
is coNP-complete w.r.t. data complexity.

The instance problem becomes simpler if we consider only EL ABoxes and
positive τEL(deg) concept descriptions, i.e., concept descriptions Ĉ that only
contain threshold concepts of the form E≥t or E>t. Basically, given an EL ABox,
a positive τEL(deg) concept description Ĉ, and an individual a, one considers the
interpretation I corresponding to the description graph of A, and then checks
whether there is a τ -homomorphism φ from TĈ to GI with φ(v0) = a (see [1]
for details).

Proposition 3. For positive τEL(deg) concept descriptions and EL ABoxes,
the instance problem can be decided in polynomial time.

Adding Threshold Concepts to the Description Logic EL 45

6 Concept Similarity and Relaxed Instance Queries

In its most general form, a concept similarity measure (CSM) �� is a function
that maps each pair of concepts C,D (of a given DL) to a value C �� D ∈ [0, 1]
such that C �� C = 1. Intuitively, the higher the value of C �� D is, the more
similar the two concepts are supposed to be. Such measures can in principle be
defined for arbitrary DLs, but here we restrict the attention to CSMs between
EL concepts, i.e., a CSM is a mapping �� : CEL × CEL → [0, 1].

Ecke et al. [10,9] use CSMs to relax instance queries, i.e., instead of requiring
that an individual is an instance of the query concept, they only require that it
is an instance of a concept that is “similar enough” to the query concept.

Definition 9 ([10,9]). Let �� be a CSM, A an EL ABox, and t ∈ [0, 1). The
individual a ∈ NI is a relaxed instance of the EL query concept Q w.r.t. A,
��, and the threshold t iff there exists an EL concept description X such that
Q �� X > t and A |= X(a). The set of all individuals occurring in A that are
relaxed instances of Q w.r.t. A, ��, and t is denoted by Relax��t (Q,A).

We apply the same idea on the semantic level of an interpretation rather than
the ABox level to obtain graded membership functions from similarity measures.

Definition 10. Let �� be a CSM. Then, for each interpretation I, we define the
function mI

�� : ΔI × CEL → [0, 1] as

mI
��(d, C) := max{C �� D | D ∈ CEL and d ∈ DI}.

For an arbitrary CSM ��, the maximum in this definition need not exist since
D ranges over infinitely many concept descriptions. However, two properties
that are satisfied by many similarity measures considered in the literature are
sufficient to obtain well-definedness for m��. The first is equivalence invariance:

– The CSM �� is equivalence invariant iff C ≡ C′ and D ≡ D′ implies
C �� D = C′ �� D′ for all C,C′, D,D′ ∈ CEL.

To formulate the second property, we need to recall that the role depth of an
EL concept description C is the maximal nesting of existential restrictions in C;
equivalently, it is the height of the description tree TC . The restriction Ck of
C to role depth k is the concept description whose description tree is obtained
from TC by removing all the nodes (and edges leading to them) whose distance
from the root is larger than k.

– The CSM �� is role-depth bounded iff C �� D = Ck �� Dk for all C,D ∈ CEL
and any k that is larger than the minimal role depth of C,D.

Role-depth boundedness implies that, in Definition 10, we can restrict the maxi-
mum computation to concepts D whose role depth is at most d+1, where d is the
role depth of C. Since it is well-known that, up to equivalence, CEL contains only
finitely many concept descriptions of any fixed role depth, these two properties
yield well-definedness for m��. For m�� to be a graded membership function, it
also needs to satisfy the properties M1 and M2. To obtain these two properties
for m��, we must require that �� satisfies the following additional property:

46 F. Baader, G. Brewka and O. Fernández Gil

– The CSM �� is equivalence closed iff the following equivalence holds:
C ≡ D iff C �� D = 1.

Proposition 4. Let �� be an equivalence invariant, role-depth bounded, and
equivalence closed CSM. Then m�� is a well-defined graded membership func-
tion.

Consequently, an equivalence invariant, role-depth bounded, and equivalence
closed CSM �� induces a DL τEL(m��). Computing instances of threshold con-
cepts of the form Q>t in this logic corresponds to answering relaxed instance
queries w.r.t. ��.

Proposition 5. Let �� be an equivalence invariant, role-depth bounded, and
equivalence closed CSM, A an EL ABox, and t ∈ [0, 1). Then

Relax��t (Q,A) = {a | A |= Q>t(a) and a occurs in A},

where the semantics of the threshold concept Q>t is defined as in τEL(m��).

Lehman and Turhan [14] introduce a framework (called simi framework) that
can be used to define a variety of similarity measures between EL concepts satis-
fying the properties required by our Propositions 4 and 5. Here, we consider only
one instance of this framework and show that the similarity measure obtained
this way induces our graded membership function deg .

Lehman and Turhan first define a directional measure and then combine the
values obtained by comparing the concepts in both directions with this direc-
tional measure.

Definition 11 ([14]). Let C,D be two EL concept descriptions. If one of these
two concepts is equivalent to �, then we define simid(�, D) := 1 for all D and
simid(D,�) := 0 for D �≡ �. Otherwise, let top(C), top(D) respectively be the
set of concept names and existential restrictions in the top-level conjunction of
C,D. We define

simid(C,D) :=

∑
C′∈top(C)

max{simia(C
′, D′) | D′ ∈ top(D)}

|top(C)| , where

simia(A,A) := 1, simia(A,B) := 0 for A,B ∈ NC, A �= B,

simia(∃r.E,A) := simia(A, ∃r.E) := 0 for A ∈ NC,

simia(∃r.E, ∃r.F) := simid(E,F), simia(∃r.E, ∃s.F) := 0 for r, s ∈ NR, r �= s.

The bidirectional similarity measure ��1 is then defined as

C ��1 D := min{simid(C
r, Dr), simid(D

r, Cr)}.

Adding Threshold Concepts to the Description Logic EL 47

It is easy to show that ��1 is equivalence invariant, role-depth bounded, and
equivalence closed. Note that equivalence invariance depends on the fact that
we apply simid to the reduced forms of C,D. Since ��1 satisfies the properties
required by Propositions 4, it induces a graded membership function m��1 . We
can show that this function coincides with the graded membership function
introduced in Section 4 (see [1] for the proof).

Theorem 7. For all interpretations I, d ∈ ΔI , and EL concept descriptions Q
we have mI

��1(d,Q) = degI(d,Q).

Proposition 5 thus implies that answering of relaxed instance queries w.r.t.
��1 is the same as computing instances for threshold concepts of the form Q>t
in τEL(deg). Since such concepts are positive, Proposition 3 yields the following
corollary.

Corollary 1. Let A be an EL ABox, Q an EL query concept, a an individual
name, and t ∈ [0, 1). Then it can be decided in polynomial time whether a ∈
Relax��

1

t (Q,A) or not.

Note that Ecke et al. [10,9] show only an NP upper bound w.r.t. data complexity
for this problem, albeit for a larger class of instances of the simi framework.

7 Conclusion

We have introduced a family of DLs τEL(m) parameterized with a graded mem-
bership function m, which extends the popular lightweight DL EL by threshold
concepts that can be used to approximate classical concepts. Inspired by the
homomorphism characterization of membership in EL concepts, we have defined
a particular membership function deg and have investigated the complexity of
reasoning in τEL(deg). It turns out that the higher expressiveness takes its toll:
whereas reasoning in EL can be done in polynomial time, it is NP- or coNP-
complete in τEL(deg), depending on which inference problem is considered. We
have also shown that concept similarity measures satisfying certain properties
can be used to define graded membership functions. In particular, the function
deg can be constructed in this way from a particular instance of the simi frame-
work of Lehmann and Turhan [14]. Nevertheless, our direct definition of deg
based on homomorphisms is important since the partial tree-to-graph homo-
morphisms used there are the main technical tool for showing our decidability
and complexity results.

While introduced as formalism for defining concepts by approximation, a pos-
sible use-case for τEL(deg) is relaxation of instance queries, as motivated and in-
vestigated in [10,9]. Compared to the setting considered in [10,9], τEL(deg) yields
a considerably more expressive query language since we can combine threshold
concepts using the constructors of EL and can also forbid that thresholds are
reached. Restricted to the setting of relaxed instance queries, our approach ac-
tually allows relaxed instance checking in polynomial time. On the other hand,
[10,9] can also deal with other instances of the simi framework.

48 F. Baader, G. Brewka and O. Fernández Gil

An important topic for future research is to consider graded membership
functions m�� that are induced by other instances of simi. We conjecture that
these instances can also be defined directly by an appropriate adaptation of our
homomorphism-based definition. The hope is then that our decidability and com-
plexity results can be generalized to these functions. Another important topic for
future research is to add TBoxes. While acyclic TBoxes can already be handled
by our approach through unfolding, we would like to treat them directly by an
adaptation of the homomorphism-based approach to avoid a possible exponen-
tial blowup due to unfolding. For cyclic and general TBoxes, homomorphisms
probably need to be replaced by simulations [2,9].

References

1. Baader, F., Brewka, G., Fernández Gil, O.: Adding threshold concepts to the de-
scription logic EL. LTCS-Report LTCS-15-09, TU Dresden, Germany (2015). See
http://lat.inf.tu-dresden.de/research/reports.html

2. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. IJCAI 2003 (2003)

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook. Cambridge University Press (2003)

4. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in de-
scription logics with existential restrictions. In: Proc. IJCAI 1999 (1999)

5. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in de-
scription logics with existential restrictions. LTCS-Report LTCS-98-09. RWTH
Aachen, Germany (1998).
See http://lat.inf.tu-dresden.de/research/reports.html

6. Borgwardt, S., Distel, F., Peñaloza, R.: The limits of decidability in fuzzy descrip-
tion logics with general concept inclusions. Artificial Intelligence 218 (2015)

7. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and - what else? In: Proc. ECAI 2004 (2004)

8. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept lan-
guages: From subsumption to instance checking. J. Log. Comput. 4(4) (1994)

9. Ecke, A., Peñaloza, R., Turhan, A.Y.: Similarity-based relaxed instance queries.
Journal of Applied Logic (in press, 2015)

10. Ecke, A., Peñaloza, R., Turhan, A.: Answering instance queries relaxed by concept
similarity. In: Proc. KR 2014 (2014)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

12. Küsters, R.: Non-Standard Inferences in Description Logics. LNCS (LNAI),
vol. 2100. Springer, Heidelberg (2001)

13. Küsters, R., Molitor, R.: Approximating most specific concepts in description logics
with existential restrictions. AI Commun. 15(1) (2002)

14. Lehmann, K., Turhan, A.-Y.: A framework for semantic-based similarity measures
for ELH-concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS, vol. 7519, pp. 307–319. Springer, Heidelberg (2012)

15. Suntisrivaraporn, B.: A similarity measure for the description logic EL with un-
foldable terminologies. In: Proc. INCoS 2013 (2013)

16. Baader, F., Brewka, G., Fernández Gil, O.: Adding threshold concepts to the de-
scription logic EL. In: Proc. DL 2015 (2015)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

Reasoning in Expressive Description Logics
under Infinitely Valued Gödel Semantics�

Stefan Borgwardt1 and Rafael Peñaloza2

1 Theoretical Computer Science, TU Dresden, Germany
Stefan.Borgwardt@tu-dresden.de

2 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
rafael.penaloza@unibz.it

Abstract. Fuzzy Description Logics (FDLs) combine classical Descrip-
tion Logics with the semantics of Fuzzy Logics in order to represent and
reason with vague knowledge. Most FDLs using truth values from the
interval [0, 1] have been shown to be undecidable in the presence of a
negation constructor and general concept inclusions. One exception are
those FDLs whose semantics is based on the infinitely valued Gödel t-
norm (G). We extend previous decidability results for the FDL G-ALC
to deal with complex role inclusions, nominals, inverse roles, and quali-
fied number restrictions. Our novel approach is based on a combination
of the known crispification technique for finitely valued FDLs and an
automata-based procedure for reasoning in G-ALC.

1 Introduction

Description Logics (DLs) are a well-studied family of knowledge representation
formalisms [1]. They constitute the logical backbone of the standard Semantic
Web ontology language OWL 2,1 and its profiles, and have been successfully
applied to represent the knowledge of many and diverse application domains,
particularly in the bio-medical sciences. DLs describe the domain knowledge
using concepts (such as Patient) that represent sets of individuals, and roles
(hasChild) that represent connections between individuals. Ontologies are col-
lections of axioms formulated over these concepts and roles, which restrict the
possible interpretations. The typical axioms considered in DLs are assertions,
like alice:Patient, providing knowledge about specific individuals; general concept
inclusions (GCIs), such as Patient � Human, which express subset relations be-
tween concepts; and role inclusions hasChild ◦ hasChild � hasGrandchild between
(chains of) roles. Different DLs are characterized by the constructors allowed to
formulate complex concepts, roles, and axioms.

ALC [30] is a prototypical DL of intermediate expressivity that uses as con-
cept constructors: conjunction (Patient�Female), negation (¬Smoker), existential
� This work was partially supported by DFG grant BA 1122/17-1 ‘FuzzyDL’, CRC 912

‘HAEC’, and the Cluster of Excellence ‘cfAED’, and developed while R. Peñaloza
was affiliated with TU Dresden and the Center for Advancing Electronics Dresden.

1 http://www.w3.org/TR/owl2-overview/

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 49–65, 2015.
DOI: 10.1007/978-3-319-24246-0_4

50 S. Borgwardt and R. Peñaloza

restriction (∃hasChild.HeavySmoker), and value restriction (∀hasChild.Male), and
allows assertions and GCIs. The DL underlying the OWL 2 DL standard is called
SROIQ and additionally provides, among others, role inclusions, number restric-
tions (�3 hasChild.Adult), nominals ({alice}), and inverse roles (hasChild−). The
complexity of common reasoning problems, such as consistency of ontologies or
subsumption between concepts, has been extensively studied for these DLs, and
ranges from ExpTime to (co-)2-NExpTime [26, 29, 33].

Fuzzy Description Logics (FDLs) have been introduced as extensions of clas-
sical DLs to represent and reason with vague knowledge. The main idea is to
use truth values from the interval [0, 1] instead of only true and false. In this
way, one can give a more fine-grained semantics to inherently vague concepts
like LowFrequency or HighConcentration, which can be found in biomedical on-
tologies like SNOMEDCT2 and Galen.3 Different FDLs are characterized not
only by the constructors they allow, but also by the way these constructors are
interpreted. To interpret conjunction in complex concepts like

∃hasHeartRate.LowFrequency �
∃hasBloodAlcohol.HighConcentration,

a popular approach is to use so-called t-norms [27]. The semantics of the other
logical constructors can then be derived from these t-norms in a principled way,
as suggested in [20]. Following the principles of mathematical fuzzy logic, ex-
istential and value restrictions are interpreted as suprema and infima of truth
values, respectively. However, to avoid problems with infinitely many truth val-
ues, reasoning in fuzzy DLs is often restricted to so-called witnessed models [21],
in which these suprema (infima) are required to be maxima (minima); i.e. the
truth value of the restriction is witnessed by at least one domain element.

Unfortunately, most FDLs become undecidable when the logic uses GCIs and
negation under witnessed model semantics [2, 13, 18]. One of the few exceptions
are FDLs using the Gödel t-norm, which is defined as min{x, y}, to interpret con-
junctions [12]. In the absence of an involutive negation constructor and negated
assertions, such FDLs are even trivially equivalent to classical DLs [13]. However,
in the presence of the involutive negation, reasoning becomes more complicated.
Despite not being as well-behaved as finitely valued FDLs, which use a finite to-
tal order of truth values instead of the infinite interval [0, 1], it was shown using
an automata-based approach that reasoning in Gödel extensions of ALC exhibits
the same complexity as in the classical case, i.e. it is ExpTime-complete [12]. A
major drawback of this approach is that it always has an exponential runtime,
even when the input ontology has a simple form.

In the present paper, we present a combination of the automata-based con-
struction for ALC from [12] and automata-based algorithms and reduction tech-
niques developed for more expressive finitely valued FDLs [5,6,10,11,14,15,31].
We exploit the forest model property of classical DLs [17, 25] to encode order
relationships between concepts in a fuzzy interpretation in a manner similar to
2 http://www.ihtsdo.org/snomed-ct/
3 http://www.opengalen.org/

Reasoning in Expressive Description Logics 51

the Hintikka trees from [12]. However, instead of using automata to determine
the existence of such trees, we reduce the fuzzy ontology directly into a classical
ALCOQ ontology, which enables us to use optimized reasoners for classical DLs.
In addition to the cut-concepts of the form C � p for a fuzzy concept C and a
value p, which are used in the reductions for finitely valued DLs [6, 10, 31], we
employ order concepts C � D expressing relationships between fuzzy concepts.
The details of these concepts are explained in Section 4. In contrast to the re-
ductions for finitely valued Gödel FDLs [6, 7], our reduction does not produce
an exponential blowup in the nesting depth of concepts in the input ontology.

Although our reduction deals with the Gödel extension of SROIQ, it is not
correct if all three constructors nominals (O), inverse roles (I), and number
restrictions (Q) are present in the ontology, since then one cannot restrict rea-
soning to forest-shaped models [32]. However, it is correct for SRIQ, SROQ, and
SROI, and we obtain several complexity results that match the currently best
known upper bounds for reasoning in (sublogics of) these DLs. In particular,
we show that reasoning in Gödel extensions of SRIQ is 2-ExpTime-complete,
and for SHOI and SHIQ it is ExpTime-complete. Full proofs of all presented
results can be found in [16].

2 Preliminaries

We consider vague statements taking truth degrees from the subset [0, 1] of the
reals, where the Gödel t-norm min{x, y} is used to interpret logical conjunction.
The semantics of implications is given by the residuum of this t-norm; i.e.,

x ⇒ y :=

{
1 if x � y,
y otherwise.

We use both the residual negation x �→ (x ⇒ 0) and the involutive negation
x �→ (1 − x) in the rest of this paper.

We recall some basic definitions from [12]. An order structure S is a finite set
containing at least the numbers 0, 0.5, and 1, endowed with an involutive unary
operation inv : S → S such that inv(x) = 1 − x for all x ∈ S ∩ [0, 1]. A total
preorder over S is a transitive and total binary relation � ⊆ S×S. For x, y ∈ S,
we write x ≡ y if x � y and y � x. Notice that ≡ is an equivalence relation
on S. The total preorders considered in [12] have to satisfy additional properties,
e.g. that 0 and 1 are always the least and greatest elements, respectively. These
properties can be found in our reduction in the axioms of red(U) (see Section 4).

We now define the fuzzy description logic G-SROIQ. Let NI, NC, and NR be
three mutually disjoint sets of individual names, concept names, and role names,
respectively, where NR contains the universal role ru. The set of (complex) roles
is N−

R := NR ∪ {r− | r ∈ NR}; the elements of the form r− are called inverse
roles. Since there are several syntactic restrictions based on which roles appear
in which role axioms, we start by defining role hierarchies. A role hierarchy Rh

is a finite set of (complex) role inclusions of the form 〈w � r � p〉, where r �= ru

52 S. Borgwardt and R. Peñaloza

is a role name, w ∈ (N−
R)

+ is a non-empty role chain not including the universal
role,4 and p ∈ (0, 1]. Such a role inclusion is called simple if w ∈ N−

R . We extend
the notation ·− to inverse roles r− and role chains w = r1 . . . rn by setting
(r−)− := r and w− := r−n . . . r−1 .

We recall the regularity condition from [5,23]. Let ≺ be a strict partial order
on N−

R such that r ≺ s iff r− ≺ s. A role inclusion 〈w � r � p〉 is ≺-regular if

– w is of the form rr or r−, or
– w is of the form r1 . . . rn, rr1 . . . rn, or r1 . . . rnr, and for all 1 � i � n it

holds that ri ≺ r.

A role hierarchy Rh is regular if there is a strict partial order ≺ as above such
that each role inclusion in Rh is ≺-regular. A role name r is simple (w.r.t. Rh)
if for each 〈w � r � p〉 ∈ Rh we have that w is of the form s or s− for a
simple role s. This notion is well-defined since the regularity condition prevents
any cyclic dependencies between role names in Rh. An inverse role r− is simple
if r is simple. In the following, we always assume that we have a regular role
hierarchy Rh.

Concepts in G-SROIQ are built from concept names using the constructors
listed in the upper part of Table 1, where C,D denote concepts, p is a ra-
tional number from [0, 1], n ∈ N, a ∈ NI, r ∈ N−

R , and s ∈ N−
R is a simple

role. The restriction to simple roles in at-least restrictions is necessary to en-
sure decidability [24]. We also use the common DL constructors � := 1 (top
concept), ⊥ := 0 (bottom concept), C � D := ¬(¬C � ¬D) (disjunction), and
�n s.C := ¬(�(n+ 1) s.C) (at-most restriction).

Note that we use the involutive negation to define at-most restrictions. In [7],
they are defined using the residual negation: �n s.C := (�(n + 1) s.C) → ⊥.
This has the effect that the value of �n r.C is always either 0 or 1 (see the se-
mantics below). However, this discrepancy in definitions is not an issue since
our reduction can handle both cases. The use of rational truth constants p
is not standard in FDLs, but it allows us to simulate fuzzy nominals [4] of
the form {p1/a1, . . . , pn/an} with pi ∈ [0, 1] and ai ∈ NI, 1 � i � n, via
({a1} � p1) � · · · � ({an} � pn).

The semantics of G-SROIQ is based on G-interpretations I = (ΔI , ·I) over a
non-empty domain ΔI , which assign to each individual name a ∈ NI an element
aI ∈ ΔI , to each concept name A ∈ NC a fuzzy set AI : ΔI → [0, 1], and
to each role name r ∈ NR a fuzzy binary relation rI : ΔI × ΔI → [0, 1]. This
interpretation is extended to complex concepts and roles as defined in the last
column of Table 1, for all d, e ∈ ΔI .

We restrict all reasoning problems to witnessed G-interpretations [21], which
intuitively require the suprema and infima in the semantics to be maxima and
minima, respectively. Formally, a G-interpretation I is witnessed if, for ev-
ery d ∈ ΔI , n � 0, r ∈ N−

R , simple s ∈ N−
R , and concept C, there are

4 For ease of presentation, we omit the composition symbol ◦ from role chains.

Reasoning in Expressive Description Logics 53

Table 1. Syntax and semantics of G-SROIQ

Name Syntax Semantics (CI(d) / rI(d, e))

concept name A AI(d) ∈ [0, 1]

truth constant p p

conjunction C �D min{CI(d), DI(d)}
implication C → D CI(d) ⇒ DI(d)

negation ¬C 1− CI(d)

existential restriction ∃r.C sup
e∈ΔI

min{rI(d, e), CI(e)}

value restriction ∀r.C inf
e∈ΔI

rI(d, e) ⇒ CI(e)

nominal {a}
{
1 if d = aI

0 otherwise

at-least restriction �n s.C sup
e1,...,en∈ΔI

pairwise different

n

min
i=1

min{sI(d, ei), CI(ei)}

local reflexivity ∃s.Self rI(d, d)

role name r rI(d, e) ∈ [0, 1]

inverse role r− rI(e, d)

universal role ru 1

e, e′, e1, . . . , en ∈ ΔI such that e1, . . . , en are pairwise different,

(∃r.C)I(d) = min{rI(d, e), CI(e)},
(∀r.C)I(d) = rI(d, e′) ⇒ CI(e′), and

(�n s.C)I(d) =
n

min
i=1

min{sI(d, ei), CI(ei)}.

As we have seen already in the role inclusions, the axioms of G-SROIQ extend
classical axioms by stating a degree in (0, 1] to which the axioms hold. Moreover,
we can compare the degrees of arbitrary classical assertions of the form a :C or
(a, b):r for a, b ∈ NI, r ∈ NR, and a concept C. An order assertion [12] is of
the form 〈α �� p〉 or 〈α �� β〉 for classical assertions α, β, �� ∈ {<,�,=,�, >},
and p ∈ [0, 1]. An ordered ABox is a finite set of order assertions and individual
(in)equality assertions of the form a ≈ b (a �≈ b) for a, b ∈ NI. A general concept
inclusion (GCI) is of the form 〈C � D � p〉 for concepts C,D and p ∈ (0, 1]. A
TBox is a finite set of GCIs. A disjoint role axiom is of the form 〈dis(r, s) � p〉
for two simple roles r, s ∈ N−

R and p ∈ (0, 1]. A reflexivity axiom is of the form
〈ref(r) � p〉 for a role r ∈ N−

R and p ∈ (0, 1]. An RBox R = Rh ∪ Ra consists
of a role hierarchy Rh and a finite set Ra of disjoint role and reflexivity axioms.
An ontology O = (A, T ,R) consists of an ABox A, a TBox T , and an RBox R.

54 S. Borgwardt and R. Peñaloza

A G-interpretation I satisfies (or is a model of)

– an order assertion 〈α �� β〉 if αI �� βI (where pI := p, (a :C)I := CI(aI),
and ((a, b):r)I := rI(aI , bI));

– an (in)equality assertion a ≈ b (a �≈ b) if aI = bI (aI �= bI);
– a GCI 〈C � D � p〉 if CI(d) ⇒ DI(d) � p holds for all d ∈ ΔI ;
– a role inclusion 〈r1 . . . rn � r � p〉 if (r1 . . . rn)

I(d0, dn) ⇒ rI(d0, dn) � p
holds for all d0, dn ∈ ΔI , where

(r1 . . . rn)
I(d0, dn) := sup

d1,...,dn−1∈ΔI

n
min
i=1

rIi (di−1, di);

– a disjoint role axiom 〈dis(r, s) � p〉 if min{rI(d, e), sI(d, e)} � 1 − p holds
for all d, e ∈ ΔI ;

– a reflexivity axiom 〈ref(r) � p〉 if rI(d, d) � p holds for all d ∈ ΔI ;
– an ontology if it satisfies all its axioms.

An ontology is consistent if it has a (witnessed) model.
We can simulate other common role axioms in G-SROIQ [7, 22] by those we

introduced above:

– transitivity axioms 〈tra(r) � p〉 by 〈rr � r � p〉;
– symmetry axioms 〈sym(r) � p〉 by 〈r− � r � p〉;
– asymmetry axioms 〈asy(s) � p〉 by 〈dis(s, s−) � p〉;
– irreflexivity axioms 〈irr(s) � p〉 by 〈∃s.Self � ¬p � 1〉; and
– negated role assertions 〈(a, b):¬r � p〉 by 〈(a, b):r � 1− p〉.
For an ontology O, we denote by rol(O) the set of all roles occurring in O,

together with their inverses; by ind(O) the set of all individual names occurring
in O, and by sub(O) the closure under negation of the set of all subconcepts
occurring in O. We consider ¬¬C to be equal to C, and thus sub(O) is of
quadratic size in the size of O. We denote by VO the closure under the involutive
negation x �→ 1−x of the set of all truth degrees appearing in O (either in axioms
or in truth constants), together with 0, 0.5, and 1. This set is of linear size.

Other common reasoning problems for FDLs, such as concept satisfiability
and subsumption can be reduced to consistency [12]: the subsumption between
C and D to degree q w.r.t. a TBox T and an RBox R is equivalent to the
inconsistency of ({〈a :C → D < q〉}, T ,R), and the satisfiability of C to degree q
w.r.t. T and R is equivalent to the consistency of ({〈a :C � q〉}, T ,R).

The letter I in G-SROIQ denotes the presence of inverse roles and the univer-
sal role. If such roles are not allowed, the resulting logic is written as G-SROQ.
Likewise, the name G-SRIQ indicates the absence of nominals, and G-SROI
that of at-least and at-most restrictions. Replacing the letter R with H indi-
cates that RBoxes are restricted to simple role inclusions, ABoxes are restricted
to order assertions, and local reflexivity is not allowed; however, the letter S
indicates that transitivity axioms are still allowed. Hence, in G-SHOIQ we can
use role inclusions of the forms 〈r � s � p〉 and 〈rr � r � p〉. Disallowing axioms

Reasoning in Expressive Description Logics 55

of the first type removes the letter H, while the absence of transitivity axioms
is denoted by replacing S with ALC.

Classical DLs are obtained from the above definitions by restricting the set of
truth values to 0 and 1. The semantics of a classical concept C is then viewed
as a set CI ⊆ ΔI instead of the characteristic function CI : ΔI → {0, 1}, and
likewise for roles. In this setting, all axioms (also order assertions) are restricted
to be of the form 〈α � 1〉, and usually this is simply written as α, e.g. C � D
instead of 〈C � D � 1〉. We also use C ≡ D to abbreviate C � D and D � C.
Furthermore, the implication constructor C → D, although usually not included
in classical DLs, can be expressed via ¬C �D.

In this paper, we provide a reduction from a G-SROIQ ontology to a clas-
sical ALCOQ ontology. For all sublogics of G-SROIQ that do not contain the
constructors O, I, and Q at the same time, the reduction preserves consistency.
Before we describe the main reduction, however, we provide a characterization
of role hierarchies using (weighted) finite automata.

3 Automata for Complex Role Inclusions

Let O = (A, T ,R) be a G-SROIQ ontology. We extend the idea from [23] of
using finite automata to characterize all role chains that imply a given role
w.r.t. Rh. Here, we use a kind of weighted automata [19], which use as input
symbols the roles in rol(O), and compute a weight for any given input word.

Definition 1 (WFA). A weighted finite automaton (WFA) is a quadruple
A = (Q, qini,wt, qfin), consisting of a non-empty set Q of states, an initial state
qini ∈ Q, a transition weight function wt : Q × (rol(O) ∪ {ε}) × Q → [0, 1], and
a final state qfin ∈ Q. Given an input word w ∈ rol(O)∗, a run of A on w is
a non-empty sequence of pairs r = (wi, qi)0�i�m such that (w0, q0) = (w, qini),
(wm, qm) = (ε, qfin), and for each i, 1 � i � m, it holds that wi−1 = xiwi for some
xi ∈ rol(O) ∪ {ε}. The weight of such a run is wt(r) := minmi=1 wt(qi−1, xi, qi).
The behavior of A on w is (‖A‖, w) := supr run of A on w wt(r).

We often denote by q
x,p−−→ q′ ∈ A the fact that wt(q, x, q′) = p. Further, for a

state q of A, we denote by Aq the automaton resulting from A by making q the
initial state.

Following [23], we now construct, for each role r, a WFA Ar that recognizes all
role chains that “imply” r w.r.t. Rh (with associated degrees). This construction
proceeds in several steps. The first automaton A0

r contains the initial state ir,
the final state fr, and the transition ir

r,1−−→ fr, as well as the following transitions
for each 〈w � r � p〉 ∈ R:

– if w = rr, then fr
ε,p−−→ ir;

– if w = r1 . . . rn with r1 �= r �= rn, then ir
r1,1−−→ q1w

r2,1−−→ . . .
rn,1−−−→ qnw

ε,p−−→ fr;
– if w = rr1 . . . rn, then fr

r1,1−−→ q1w
r2,1−−→ . . .

rn,1−−−→ qnw
ε,p−−→ fr; and

– if w = r1 . . . rnr, then ir
r1,1−−→ q1w

r2,1−−→ . . .
rn,1−−−→ qnw

ε,p−−→ ir,

56 S. Borgwardt and R. Peñaloza

where all states qiw are distinct. Here and in the following, all transitions that
are not explicitly mentioned have weight 0.

The WFA A1
r is now defined as A0

r if there is no role inclusion of the form
〈r− � r � p〉 ∈ R; otherwise, A1

r is the disjoint union of A0
r and a mirrored

copy of A0
r, where ir is the only initial state, fr is the only final state, and

the following transitions are added for the copy f ′
r of fr and the copy i′r of ir:

ir
ε,p−−→ f ′

r, f ′
r

ε,p−−→ ir, fr
ε,p−−→ i′r, and i′r

ε,p−−→ fr.
Finally, we define the WFA Ar by induction on ≺ as follows:

– if r is minimal w.r.t. ≺, then Ar := A1
r ;

– otherwise, Ar is the disjoint union of A1
r with a copy A1

s
′ of A1

s for each
transition q

s,1−−→ q′ in A1
r with s �= r.5 For each such transition, we add

ε-transitions with weight 1 from q to the initial state of A1
s
′ and from the

final state of A1
s
′ to q′.

– The automaton Ar− is a mirrored copy of Ar.

The difference to the construction in [23] is only the inclusion of the appropriate
weights for each considered role inclusion. As shown in [23], the size of each Ar

is bounded exponentially in the length of the longest chain r1 ≺ · · · ≺ rn for
which there are role inclusions 〈uiri−1vi � ri � pi〉 ∈ R for all i, 2 � i � n.

The following generalization of [23, Proposition 9] describes the promised
characterization of the role inclusions in R in terms of the behavior of the au-
tomata Ar. A detailed proof can be found in [16].

Lemma 2. A G-interpretation I satisfies all role inclusions in R iff for every
r ∈ rol(O), every w ∈ rol(O)+, and all d, e ∈ ΔI, we have

wI(d, e) ⇒ rI(d, e) � (‖Ar‖, w).

Intuitively, the degree to which the interpretation of w must be “included” in the
interpretation of r is determined by the behavior of ‖Ar‖ on w.

For the universal role ru, we define Aru as above based on the role inclusions
〈r−u � ru � 1〉, 〈ruru � ru � 1〉, and 〈r � ru � 1〉 for all r ∈ rol(O). Hence, Aru

accepts any (non-empty) word w ∈ rol(O)+ with degree 1, and it is easy to see
that Lemma 2 also holds for ru.

4 The Reduction

We now describe the reduction from O to a classical ALCOQ ontology red(O).
This reduction always uses nominals, even in the logic G-SRIQ. However, if
number restrictions are not allowed (e.g. in G-SROI), then red(O) is an ALCO
ontology. For ease of presentation, we consider here only the FDL G-SROQ
without (local) reflexivity statements of the form ∃r.Self or 〈ref(r) � p〉. In the
presence of these constructors and inverse roles, the reduction contains some
5 Note that all transitions labeled with roles have weight 0 or 1.

Reasoning in Expressive Description Logics 57

additional concepts and axioms, but the main ideas remain the same. The full
construction can be found in [16].

We first extend the set sub(O) by all nominals {a}, a ∈ ind(O), (and their
negations) to be able to distinguish all named domain elements. We further add
all “concepts” of the form ∀Aq

r.C (∃Aq
r.C) for all ∀r.C (∃r.C) occurring in O and

all states q of Ar. These concepts help to transfer the constraints imposed by
the existential and value restrictions along all role chains that imply the possibly
non-simple role r. The semantics of ∀A.C is defined as follows:

(∀A.C)I(d) := inf
w∈rol(O)∗

inf
e∈ΔI

min{(‖A‖, w), wI(d, e)} ⇒ CI(e),

where εI(d, e) := 1 if d = e, and εI(d, e) := 0 otherwise. Intuitively, it behaves
like a value restriction, but instead of considering only the role r, we consider
any role chain w, weighted by the behavior of A on w. Recall that for Ar, this
behavior represents the degree to which w implies r w.r.t. Rh (see Lemma 2).

The idea is that in our reduction we do not need to explicitly represent all role
connections, but only a “skeleton” of connections which are necessary to satisfy
the witnessing conditions for role restrictions. The restrictions for all implied role
connections are then handled by the concepts ∀Ar.C and ∃Ar.C by simulating
the transitions of Ar; each transition corresponds to a role connection to a new
domain element. Note that we do not need to introduce concepts of the form
�nAr.C since all roles in at-least restrictions must be simple, i.e. there can be
no role chains of length > 1 that imply them (at least not with a degree > 0).

The main idea of the reduction is that instead of precisely defining the inter-
pretation of all concepts at each domain element, it suffices to consider a total
preorder on them. For example, if an axiom restricts the value of C → D at
each domain element to be � 0.5, then we do not have to find the exact values
of C and D, but only to ensure that either CI(d) � DI(d) or else DI(d) � 0.5.
This information is encoded by total preorders over the order structure U that is
defined below. The other main insight for our reduction is that we consider only
(quasi-)forest-shaped models of O [17]. In such a model, the domain elements
identified by individual names serve as the roots of several tree-shaped struc-
tures. The roots themselves may be arbitrarily interconnected by roles. Due to
nominals, there may also be role connections from any domain element back to
the roots. Note that complex role inclusions may actually imply role connections
between arbitrary domain elements, but the underlying tree-shaped “skeleton”
is what is important for reasoning purposes (for details, see [17] and our correct-
ness proof in [16]). This dependence on forest-shaped models is the reason why
our reduction works only for G-SROI, G-SROQ, and G-SRIQ—even classical
ALCOIQ does not have the forest model property [32].

We now define the order structure U as follows:

UA := VO ∪ {a :C | a ∈ ind(O), C ∈ sub(O)} ∪
{(a, b):s | a, b ∈ ind(O), r ∈ rol(O), s ∈ {r,¬r}}

U := UA ∪ sub(O) ∪ sub↑(O) ∪
{s, (∗, a):s | a ∈ ind(O), r ∈ rol(O), s ∈ {r,¬r}},

58 S. Borgwardt and R. Peñaloza

where sub↑(O) := {〈C〉↑ | C ∈ sub(O)} and the function inv is defined by
inv(C) := ¬C, inv(a :C) := a :¬C, inv(∗, a):r := (∗, a):¬r, etc.

Total preorders on assertions in UA are used to describe the behavior of the
named root elements in the forest-shaped model. For example, if the order is
such that a :C > (a, b):r, the idea is that in the corresponding G-model I of O
the value of C at a is strictly greater that the value of the r-connection from a
to b, i.e. CI(aI) > rI(aI , bI). For each domain element of I, total preorders on
the elements of sub(O) describe the degrees of all relevant concepts in a similar
way. The elements of sub↑(O) are used to refer to degrees of concepts at the
unique predecessor element in the tree-shaped parts of the interpretation. For
convenience, we also define 〈p〉↑ := p for all p ∈ VO. The elements r ∈ rol(O)
represent the values of the role connections from the predecessor. The special
elements (∗, a):r describe role connections between arbitrary domain elements
(represented by ∗) and the named elements in the roots.

In order to describe total preorders over U with a classical ALCOQ ontology,
we use special concept names of the form α � β for α, β ∈ U . This differs from
previous reductions for finitely valued FDLs [7,9,31] in that we not only consider
cut-concepts of the form p � C with p ∈ VO, but also relationships between dif-
ferent concepts.6 We use the abbreviations α � β := β � α , α < β := ¬α � β ,
and similarly for = and >. Furthermore, we define the complex expressions

– α � min{β, γ} := α � β � α � γ ,
– α � min{β, γ} := α � β � α � γ ,
– α � β ⇒ γ := (β � γ → α � 1) � (β > γ → α � γ),
– α � β ⇒ γ := β � γ � α � γ ,

and extend these notions to α �� β ⇒ γ etc., for �� ∈ {<,=, >}, analogously.
In our reduction, we additionally use the special concept name AN to identify

the anonymous domain elements, i.e. those which are not of the form bI for any
b ∈ ind(O). The reduction uses only one classical role name r, which simulates
the tree structure of the fuzzy interpretation; the actual values of the fuzzy roles
in this tree are expressed using the elements in U . The reduced ontology red(O)
consists of the parts red(U), red(A), red(AN), red(↑), red(R), red(T), and red(C)
for all C ∈ sub(O), which we define in the following. We emphasize again that
red(O) is formulated in ALCOQ, whenever O is in G-SRIQ or G-SROQ, and in
ALCO if O is a G-SROI ontology. This is due to the fact that we always use
nominals to distinguish the named from the anonymous part of the forest-shaped
model, and the inverse of r is not needed in the reduction (see [16] for details).

The first part of red(O) is

red(U) := { α � β � β � γ � α � γ | α, β, γ ∈ U} ∪
{� � α � β � β � α | α, β ∈ U} ∪
{� � 0 � α � α � 1 | α ∈ U} ∪
{� � α �� β | α, β ∈ VO, α �� β} ∪
{ α � β � inv(β) � inv(α) | α, β ∈ U}.

6 For the rest of this paper, the expressions α � β denote classical concept names.

Reasoning in Expressive Description Logics 59

These axioms ensure that at each domain element the relation “�” forms a total
preorder compatible with the values in VO, and that inv is an antitone operator.

To describe the behavior of the named elements, we use the following axioms:

red(A) := {c : α �� β | 〈α �� β〉 ∈ A} ∪ {a ≈ b ∈ A} ∪ {a �≈ b ∈ A} ∪
{(a, b):r | a, b ∈ ind(O)} ∪ {α �� β � ∀r. α �� β | α, β ∈ UA} ∪
{a : a :C = C | a ∈ ind(O), C ∈ sub(O)} ∪
{a : (a, b):r = (∗, b):r | a, b ∈ ind(O), r ∈ rol(O)},

where c is an arbitrary individual name. The first two lines are responsible for
enforcing that the ABox is satisfied and that information about the behavior of
the named individuals is available throughout the whole model. The remaining
axioms describe various equivalences for named individuals, e.g. that (a, b):r and
(∗, b):r should have the same value when evaluated at a.

The next axiom defines the concept AN of all anonymous elements, i.e. those
that are not designated by an individual name:

red(AN) :=
{
¬AN ≡ �

a∈ind(O)
{a}

}
.

The following axioms ensure that the order of an element in a tree-shaped part
of the model is known at each of its successors via the elements of sub↑(O):

red(↑) := {α �� β � ∀r.(AN → 〈α〉↑ �� 〈β〉↑
) | α, β ∈ VO ∪ sub(O)}.

We now come to the reduction of the RBox:

red(R) := {� � (a, b):r ⇒ (a, b):s � p � r ⇒ s � p |
〈r � s � p〉 ∈ R, a, b ∈ ind(O) ∪ {∗}} ∪

{� � min{(a, b):r, (a, b):s} � 1− p � min{r, s} � 1− p |
〈dis(r, s) � p〉 ∈ R, a, b ∈ ind(O) ∪ {∗}}

These axioms ensure that the various elements of U that represent the values
of role connections, such as (a, b):r and r, respect the axioms in R. Although
simple role inclusions 〈r � s � p〉 are handled by the automata Ar, we include
them also here. The reason is that the reduction of at-least restrictions below
does not need to use these automata since only simple roles can occur in them.

The GCIs in T can be translated in a straightforward manner:

red(T) := {� � p � C ⇒ D | 〈C � D � p〉 ∈ T }

We now come to the reductions of the concepts. Intuitively, each red(C) with
C ∈ sub(O) describes the semantics of C in terms of its order relationships
to other elements of U . Note that the semantics of the involutive negation

60 S. Borgwardt and R. Peñaloza

¬C = inv(C) is already handled by the operator inv (see red(U) above):

red(�) := {� � � � 1 }
red({a}) := {{a} � 1 � {a} , ¬{a} � {a} � 0 }

red(p) := {� � p = p }
red(¬C) := ∅

red(C �D) := {� � C �D = min{C,D} }
red(C → D) := {� � C → D = C ⇒ D }

The reductions of role restrictions are more involved. In particular, in the case
of value and existential restrictions we have to deal with non-simple roles, for
which we employ the automata Ar from the previous section:

red(∀r.C) := {� � (∀r.C) � (∀Ar.C) ,

� � ∃r.(AN � 〈∀r.C〉↑ � r ⇒ C
) �

�
a∈ind(O)

(∃r.{a} � (∀r.C) � (∗, a):r ⇒ a :C
)}

The second axiom of red(∀r.C) ensures the existence of a witness for ∀r.C at
each domain element. For example, assume that the preorder represented by the
concepts α � β at some domain element d satisfies 0.5 < ∀r.C < 1. The first pos-
sibility is that the above axiom creates an anonymous element e that is connected
to d via r, and hence by red(AN) we know that e satisfies 0.5 < 〈∀r.C〉↑ < 1. The
axiom further requires that 〈∀r.C〉↑ � r ⇒ C, which implies that 〈∀r.C〉↑ � C
and r > C. We will see below that the reduction of ∀Ar.C further ensures that
〈∀r.C〉↑ � r ⇒ C, and thus we get 〈∀r.C〉↑ = C. Hence, e can be seen as an
abstract representation of the witness of ∀r.C at d; the precise value of the r-
connection between d and e (represented by the element r) is irrelevant, as long
as it is strictly greater than the value of C at e. The other disjuncts of this axiom
deal with the possibility that a named domain element acts as the witness for
the value restriction in a similar way.

Together with the first axiom of red(∀r.C), the following axioms ensure that
no other r-successor of d violates the lower bound on r ⇒ C given by ∀r.C at d:

red(∀Aq.C) := {� � (∀Aq.C) � C | q is final} ∪
⋃

q
x,p−−→q′∈A

redx,p,q′(∀Aq .C)

redε,p,q′(∀Aq.C) := {� � (∀Aq.C) � p ⇒ (∀Aq′ .C) }
reds,p,q′(∀Aq.C) :=

{� � ∀r.(AN → 〈∀Aq.C〉↑ � min{p, s} ⇒ (∀Aq′ .C)
)} ∪

{∃r.{a} � (∀Aq.C) � min{p, (∗, a):s} ⇒ a :(∀Aq′ .C) | a ∈ ind(O)}

Recall that Ar in particular contains the transition ir
r,1−−→ fr from the initial

state ir to the final state fr. By the first axiom in red(∀r.C) and the first axiom

Reasoning in Expressive Description Logics 61

in redr,1,fr (∀Ar.C), the witness e satisfies 〈∀r.C〉↑ � 〈∀Ar.C〉↑ � r ⇒ (∀Afr
r .C)

Since fr is final, we further have (∀Afr
r .C) � C by red(∀Afr

r .C), and hence
〈∀r.C〉↑ � r ⇒ C, as claimed above.

Using arbitrary runs through the automaton Ar, we can ensure that no other
r-successor of d violates the value restriction. For example, if rI(d, e1) = 0.3
and rI(e1, e2) = 0.5 for two other (anonymous) domain elements e1, e2, and
we further have the role inclusion 〈rr � r � 0.7〉, then we know that rI(d, e2)
must be at least 0.5. Although this r-connection is not explicitly represented
in our forest-based encoding, concepts of the form ∀Aq

r.C are appropriately
transferred from d via e1 to e2 in order to ensure that the value of C at e2
satisfies 0.5 < (∀r.C)I(d) � rI(d, e2) ⇒ CI(e2). In this example, since we know
only that rI(d, e2) � 0.5, it must be ensured that CI(e2) � rI(d, e2).

The reduction for existential restrictions can be defined similarly to that for
value restrictions, but replacing � with � (and vice versa) and ⇒ with min.

We now come to the final component of red(O):

red(�n r.C) := {� �
n�

m=0
�

S⊆ind(O)
|S|=n−m

� redm,S,�(�n r.C),

AN � ¬
n�

m=0
�

S⊆ind(O)
|S|=n−m

� redm,S,<(�n r.C)} ∪

{a :¬�n r.
((
AN � 〈�n r.C〉↑ < min{r, C}

) �(¬AN � (a :�n r.C) < min{(a, ∗):r, C}
)) | a ∈ ind(O)}

redm,S,�(�n r.C) := {�m r.
(
AN � 〈�n r.C〉↑ � min{r, C}

)} ∪
{∃r.({a} � ¬{b}) | a, b ∈ S, a �= b} ∪
{ (�n r.C) � min{(∗, a):r, a :C} | a ∈ S}

The reduction of at-least restrictions works similarly to the one of value restric-
tions: the first axiom ensures the existence of the n required witnesses, while
the second one ensures that no n different elements can exceed the value of the
at-least restriction. Unfortunately, the number of named successors cannot be
counted using a classical at-least restriction in our encoding, since these named
successors do not know about the degree of the role connection from an anony-
mous element; otherwise they would have to store a possibly infinite amount of
information since they may have infinitely many anonymous role predecessors.
For this reason, the above axioms first guess how many (n−m) and which (S)
named elements are connected to the current domain element to the appropriate
degrees (given by (∗, a):r). The assertions in red(�n r.C) express a restriction
similar to that of the second GCI for named domain elements.

The proof of the following correctness result can be found in [16]. As mentioned
before, this holds only for logics with the forest model property [17]. However,
it is not affected by the presence or absence of (local) reflexivity.

62 S. Borgwardt and R. Peñaloza

Lemma 3. In G-SRIQ, G-SROQ, or G-SROI, O has a G-model iff red(O) has
a classical model.

We now analyze the complexity of the reduction. As in [23], the construction of
the automata Ar causes an exponential blowup in the size of R, which cannot
be avoided [26]. Independent of this, our reduction also involves an exponential
blowup in the (binary encoding of) the largest number n involved in a number
restriction in O, and in the number of individual names occurring in O, since
the number of disjuncts in each GCI from red(�n r.C) is linear in n · 2|ind(O)|.
However, we can avoid this blowup if we remove either nominals or number
restrictions [16]. Hence, we obtain the following complexity results.

Theorem 4. Deciding consistency is

– 2-ExpTime-complete in G-SRIQ,
– in 2-ExpTime in G-SROI and G-SROQ, and
– ExpTime-complete in all FDLs between G-ALC and G-SHOI or G-SHIQ.

Proof. The consistency of the ALCOQ ontology red(O) is decidable in exponen-
tial time in the size of red(O) [17]. The first upper bounds thus follow from the
fact that the size of red(O) is exponential in the size of O. 2-ExpTime-hardness
holds already for G-SRIQ without involutive negation and only assertions of the
form 〈α � p〉 since in this case reasoning in G-SRIQ is equivalent to reasoning
in classical SRIQ [13, 26].

Without complex role inclusions, i.e. restricting to simple role inclusions and
transitivity axioms, the size of the automataAr is polynomial in the size ofR [23].
The other exponential blowup can be avoided by disallowing nominals or number
restrictions. Hence, for G-SHOI and G-SHIQ, the size of red(O) is polynomial in
the size of O, and the lower bound follows again from the reduction in [13] and
ExpTime-hardness of consistency in classical ALC [29]. ��
To the best of our knowledge, it is still open whether consistency in SROI and
SROQ is 2-ExpTime-hard, even in the classical case [17, 28]; the best known
lower bound is the ExpTime-hardness of ALC [29]. We also leave open the
complexity of G-SHOQ, which is ExpTime-complete in the classical case [17,29].

5 Conclusions

Using a combination of techniques developed for infinitely valued Gödel exten-
sions of ALC [12] and for finitely valued Gödel extensions of SROIQ [6,7,14,15],
we derived several tight complexity bounds for consistency in sublogics of G-
SROIQ. Our reduction circumvents the best-case exponential behavior of the
automata-based approach in [12] and avoids the exponential blowup in the nest-
ing depth of concepts of the reductions in [6,7]. However, it introduces an expo-
nential blowup in the size of the binary encoding of numbers in number restric-
tions and the number of individual names occurring in the ontology. Beyond the

Reasoning in Expressive Description Logics 63

complexity results, an important benefit of our approach is that it does not need
the development of a specialized fuzzy DL reasoner, but can use any state-of-
the-art reasoner for classical ALCOQ. For that reason, this new reduction aids
in closing the gap between efficient classical and fuzzy DL reasoners.

A promising direction for future research is to integrate our reduction directly
into a classical tableaux procedure. Observe that the axioms in red(C) are already
closely related to the rules employed in (classical and fuzzy) tableaux algorithms
(see, e.g. [3,8,23]). For example, the concept ∀r.C in a node leads to the creation
of an r-successor node that witnesses the value of ∀r.C, i.e., that satisfies the
inequations in red(∀r.C). Such a tableaux procedure would need to deal with
total preorders in each node, possibly using an external solver.

On the theoretical side, we want to prove 2-NExpTime-completeness of rea-
soning in G-SROIQ. As a prerequisite, we would have to eliminate the depen-
dency on the forest-shaped structure of interpretations. It may be possible to
adapt the tableaux rules from [22] for this purpose. It also remains open whether
consistency in G-SHOQ is ExpTime-complete, as for its classical counterpart.

As done in [7], we can also combine our reduction with the one for infinitely
valued Zadeh semantics. While not based on a t-norm, it is one of the most
widely used semantics for fuzzy applications. It also shares many properties of
the classical semantics, and hence is a natural choice for simple applications.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions, 2nd edn. Cambridge University Press (2007)

2. Baader, F., Peñaloza, R.: On the undecidability of fuzzy description logics with
GCIs and product t-norm. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS
2011. LNCS, vol. 6989, pp. 55–70. Springer, Heidelberg (2011)

3. Baader, F., Sattler, U.: An overview of tableau algorithms for description logics.
Studia Logica 69(1), 5–40 (2001)

4. Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy
SHOIN with fuzzy nominals and general concept inclusions. In: da Costa, P.C.G.,
d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M.,
Pool, M. (eds.) URSW 2005 - 2007. LNCS (LNAI), vol. 5327, pp. 174–188. Springer,
Heidelberg (2008)

5. Bobillo, F., Delgado, M., Gómez-Romero, J.: Optimizing the crisp representation
of the fuzzy description logic SROIQ. In: da Costa, P.C.G., d’Amato, C., Fanizzi,
N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW
2005 - 2007. LNCS (LNAI), vol. 5327, pp. 189–206. Springer, Heidelberg (2008)

6. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics
under Gödel semantics. Int. J. Approx. Reason. 50(3), 494–514 (2009)

7. Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Joining Gödel and Zadeh
fuzzy logics in fuzzy description logics. Int. J. Uncertain. Fuzz. 20(4), 475–508
(2012)

64 S. Borgwardt and R. Peñaloza

8. Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and
datatypes. Fuzzy Set. Syst. 160(23), 3382–3402 (2009)

9. Bobillo, F., Straccia, U.: Reasoning with the finitely many-valued Łukasiewicz fuzzy
description logic SROIQ. Inform. Sciences 181, 758–778 (2011)

10. Bobillo, F., Straccia, U.: Finite fuzzy description logics and crisp representations.
In: Bobillo, F., et al. (eds.) URSW 2008-2010/UniDL 2010. LNCS, vol. 7123,
pp. 99–118. Springer, Heidelberg (2013)

11. Borgwardt, S.: Fuzzy DLs over finite lattices with nominals. In: Proc. DL 2014.
CEUR-WS, vol. 1193, pp. 58–70 (2014)

12. Borgwardt, S., Distel, F., Peñaloza, R.: Decidable Gödel description logics without
the finitely-valued model property. In: Proc. KR 2014, pp. 228–237. AAAI Press
(2014)

13. Borgwardt, S., Distel, F., Peñaloza, R.: The limits of decidability in fuzzy descrip-
tion logics with general concept inclusions. Artif. Intell. 218, 23–55 (2015)

14. Borgwardt, S., Peñaloza, R.: The complexity of lattice-based fuzzy description
logics 2(1), 1–19 (2013)

15. Borgwardt, S., Pen̂aloza, R.: Finite lattices do not make reasoning in ALCOI
harder. In: Bobillo, F., Carvalho, R.N., Costa, P.C.G., d’Amato, C., Fanizzi, N.,
Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW
2011-2013. LNCS, vol. 8816, pp. 122–141. Springer, Heidelberg (2014)

16. Borgwardt, S., Peñaloza, R.: Infinitely valued Gödel semantics for expressive de-
scription logics. LTCS-Report 15-11, Chair for Automata Theory, TU Dresden,
Germany (2015). see http://lat.inf.tu-dresden.de/research/reports.html.

17. Calvanese, D., Eiter, T., Ortiz, M.: Regular path queries in expressive description
logics with nominals. In: Proc. IJCAI 2009, pp. 714–720. AAAI Press (2009)

18. Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under
Łukasiewicz t-norm. Inform. Sciences 227, 1–21 (2013)

19. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. 1st edn.
Springer (2009)

20. Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (2001)
21. Hájek, P.: Making fuzzy description logic more general. Fuzzy Set. Syst. 154(1),

1–15 (2005)
22. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.

KR 2006, pp. 57–67. AAAI Press (2006)
23. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms

160(1–2), 79–104 (2004)
24. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-

tion logics 8(3), 239–263 (2000)
25. Kazakov, Y.: A polynomial translation from the two-variable guarded fragment

with number restrictions to the guarded fragment. In: Alferes, J.J., Leite, J. (eds.)
JELIA 2004. LNCS (LNAI), vol. 3229, pp. 372–384. Springer, Heidelberg (2004)

26. Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: Proc. KR 2008, pp.
274–284. AAAI Press (2008)

27. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, Studia
Logica Library. Springer (2000)

28. Ortiz, M., Šimkus, M.: Reasoning and query answering in description logics. In:
Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 1–53.
Springer, Heidelberg (2012)

Reasoning in Expressive Description Logics 65

29. Schild, K.: A correspondence theory for terminological logics: Preliminary report.
In: Proc. IJCAI 1991, pp. 466–471. Morgan Kaufmann (1991)

30. Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artif. Intell. 48(1), 1–26 (1991)

31. Straccia, U.: Transforming fuzzy description logics into classical description logics.
In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–399.
Springer, Heidelberg (2004)

32. Tobies, S.: The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. Artif. Intell. Res. 12, 199–217 (2000)

33. Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. Ph.D. thesis, RWTH Aachen, Germany (2001)

Theorem Proving and Model Building

NRCL - A Model Building Approach

to the Bernays-Schönfinkel Fragment

Gábor Alagi1,2,3 and Christoph Weidenbach3

1 Saarbrücken Graduate School of Computer Science, Germany
2 Saarland University, Saarbrücken, Germany

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{galagi,weidenbach}@mpi-inf.mpg.de

Abstract. We combine constrained literals for model representation
with key concepts from first-order superposition and propositional conf-
lict-driven clause learning (CDCL) to create the new calculus Non-Re-
dundant Clause Learning (NRCL) deciding the Bernays-Schönfinkel frag-
ment. We use first-order literals constrained by disequalities between
tuples of terms for compact model representation. From superposition,
NRCL inherits the abstract redundancy criterion and the monotone
model operator. CDCL adds the dynamic, conflict-driven search for a
model. As a result, NRCL finds a false clause modulo the current model
candidate effectively. It guides the derivation of a first-order ordered re-
solvent that is never redundant. Similar to 1UIP-learning in CDCL, the
learned resolvent induces backtracking and, by blocking the previous con-
flict state via propagation, it enforces progress towards finding a model or
a refutation. The non-redundancy result also implies that only finitely
many clauses can be generated by NRCL on the Bernays-Schönfinkel
fragment, which proves termination.

1 Introduction

The Bernays-Schönfinkel fragment (BS) is an important decidable fragment of
first-order logic, which has many applications, including knowledge representa-
tion and ontological reasoning, hardware verification, logic programming, and
planning.

Over the years a number of calculi have attempted to provide an efficient
solution for BS problems. These approaches range from the early SEM and
Mace systems [26] to the recent state-of-the-art solvers like iProver [11] and
Darwin [5], but even general purpose first-order theorem provers provide spe-
cialized techniques for this fragment, like specialized splitting techniques for
SPASS introduced in [13] and [10], or the generalisation technique in Vam-
pire [21]. Dedicated calculi that try to lift the ideas of CDCL (Conflict-Driven
Clause Learning) [24, 6] are Model Evolution [5], DPLL(SX) [22], and SGGS [7].

In this paper, we introduce a new calculus for solving BS problems with
problem-driven partial model building. Due to space limitations, we omit most
proofs and technical details. We refer the interested reader to the extended ver-
sion of this paper [1]. Our approach builds first-order candidate models instead

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 69–84, 2015.
DOI: 10.1007/978-3-319-24246-0�5

70 G. Alagi and C. Weidenbach

of approximations, uses constrained literals for model representation, and learns
new non-redundant clauses to guide the search. Our calculus, called NRCL or
Non-Redundant Clause Learning, inherits the concepts of non-redundant infer-
ences from superposition [3, 20, 27] and problem-driven partial model building
from CDCL.

Compared to the existing approaches, we use a more expressive and implicit
constraint language, our search is guided by backjumping and learning non-
redundant clauses, and our model representation is more compact, in general. In
addition, compared to all existing approaches, we can prove that all our learned
clauses are non-redundant and this way, for the first time, establish a calculus
that combines the search with respect to a dynamically changing (partial) model
with an overall notion of redundancy.

In the rest of the paper, we first introduce some basic definitions and notions
in Section 2, followed by a description of our calculus in Section 3, and we
establish its soundness in Section 4. After introducing some regularity conditions,
we provide our key result, non-redundant clause learning, and prove termination
of NRCL in Section 5. In Section 6, we compare our calculus to the existing
literature. Finally, Section 7 provides a summary and outlines future work.

2 Preliminaries

Basic Definitions. We assume the reader is familiar with first-order logic,
its syntax, and its semantics. In particular, we handle the Bernays-Schönfinkel
fragment, which allows no function symbols except for finitely many constants
in the clausal normal forms.

We denote the finite signature by Σ, the set of predicate symbols by Pr, and
call the finite set of constants the domain, denoted by D. We denote the set of all
first-order atoms over a signature Σ and a possibly infinite set of variables X by
AΣ(X). In particular, the set of ground atoms is denoted by AΣ , a short-hand
for AΣ(∅). For a literal L, |L| denotes the atom contained in L. In general, we
denote the ground instances of an expression - a term, literal, or clause - e over
the domain D by the notation gnd(e).

W.l.o.g., we assume that each independent expression is variable disjoint, and
we call a variable fresh if it does not occur in any expression - e.g. clause or
clause set - of the current context.

We consider substitutions in the usual way, and for a substitution σ, dom(σ)
denotes the domain of σ, i.e. the finite set of variables with x �= xσ, and rng(σ)
denotes the range of σ, i.e. the image of dom(σ) w.r.t. σ. We assume the reader
is familiar with most general unifiers, and mgu denotes the result of unifying two
or more expressions or substitutions. We use the short-hand ∃σ = mgu(e1, e2)
to both state the existence of a most general unifier and bind σ to it.

For expressions or substitutions e1, e2, we say e2 can be matched against e1, or
e2 is more general than e1, and write e1 ≥ e2, if and only if there is a substitution
σ such that e1 = e2σ.

We represent a first-order interpretation I with the set {A ∈ AΣ | I |= A}.
We define satisfiability and semantic consequence as usual. In particular, we con-

NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment 71

sider the problem of deciding whether a finite clause set N over a BS language
Σ without equality is satisfiable. This problem is known to be NEXPTIME-
complete [18].

Dismatching Constraints. We use conjunctions of disequations between tu-
ples of terms as constraints. We call these constraints dismatching constraints,
and they provide a means to describe subsets of ground instances of expressions,
e.g. sequences of constrained literals are used later on for model representation.

Dismatching constraints are equivalent with implicit generalizations, which
maintain lists of literals with fresh variables representing exceptions for the liter-
als constrained. This constraint language has applications in inductive learning,
logic programming and term rewriting. For more details see e.g. [9][17]. Com-
pared to implicit generalizations, dismatching constraints extract the arguments
of the literals and represent the restrictions more compactly, which also allows
more simplification. The name dismatching constraints was chosen following the
example of iProver [15].

We chose these constraints for a balance between expressiveness and simplic-
ity, for the existing literature, and for compactness. However, NRCL is compat-
ible with any constraint language allowing the operations discussed below.

Definition 2.1 (Dismatching Constraint). A dismatching constraint π is of
the form ∧i∈I �si �= �ti, where I is a finite set of indices, and for each i ∈ I, �si
and �ti are tuples of terms of the same dimension.

We define lvar(π) and rvar(π) as the set of the left-hand side and right-hand
side variables of π, respectively. Furthermore, we assume that lvar(π)∩rvar(π) =
∅, and for each i, j ∈ I, �ti and �tj are variable disjoint whenever i differs from j.

We further extend the set of constraints with the constants 	, ⊥ representing
the tautological and the unsatisfiable constraint, respectively.

Furthermore, we maintain a strict normal form, defined below, which already
assumes most inexpensive simplifications. We note that any dismatching con-
straint can be normalized in polynomial time, see [1] for details. Thus, w.l.o.g.
we assume that the constraints are always in normal form, and the result of any
operation is transformed into normal form implicitly.

Definition 2.2 (Normal Form). We say a constraint π = ∧i∈I �si �= �ti is in
normal form iff (i) each �si contains only variables, and (ii) no variable occurs
more than once in any left-hand side �si.

Finally, the semantics of dismatching constraints is given below. We note
that, although the definition assumes an arbitrary variable set V , the notion of
satisfiability depends only on lvar(π).

Definition 2.3. A solution of a constraint π = ∧i∈I �si �= �ti over some variable
set V , which contains lvar(π) but contains no variable from rvar(π), is a ground
substitution δ : V → D such that no �ti can be matched against the respective �siδ,
i.e. no �siδ is an instance of the respective �ti.

In particular, if π = 	, any such grounding substitution is a solution, and
π = ⊥ has no solution at all.

72 G. Alagi and C. Weidenbach

As usual, π is called satisfiable and unsatisfiable if it has a solution or no
solution, respectively.

As an example, consider the constraint π = ((x, y) �= (v, v) ∧ y �= a) over
the domain D = {a, b}. Then π is satisfiable and the only solution of π (over
V = {x, y}) is the ground substitution σ = {x ← a, y ← b}, since y can only be
b and the first subconstraint represents x �= y.

Constrained Literals. Next, we define literals constrained with dismatching
constraints in normal form, and give their semantics as sets of ground literals.

Definition 2.4 (Constrained Literal). We call a pair (L;π) of a literal L
and a dismatching constraint π such that both lvar(π) ⊆ var(L) and rvar(π) ∩
var(L) = ∅ hold a constrained literal.

The semantics is given by defining the set of covered literals, denoted by
gnd(L;π), as the set of all ground instances Lδ such that δ is a solution of
π w.r.t. var(L).

Then,agroundliteralL′ is coveredbyaconstrained literal (L;π) iffL′∈gnd(L;π).
Finally, we say that a constrained literal (L;π) is empty iff gnd(L;π) is empty.

It is easy to see that (L;π) is empty if and only if π is unsatisfiable, and
that given a solution δ of π over lvar(π), for any extension δ′ of δ to var(L),
Lδ′ ∈ gnd(L;π) holds.

As an example for cover-sets, consider (P (x, y); (x, y) �= (v, v)∧x �= a∧y �= b).
Then the set of covered literals over the domain D2 = {a, b} is {P (b, a)}, while
over D3 = {a, b, c}, it is {P (b, a), P (c, a), P (b, c)}.
Constrained Clauses. We represent a collection of ground clauses by a cons-
trained clause (C;π). Extending the notations and semantics for constrained lit-
erals to constrained clauses is straightforward. Furthermore, we use the notation
(C;σ;π) for the constrained clause (Cσ;π), whenever we wish to syntactically dis-
tinguish C and σ. We note that during resolving away literals from C, we might
get a state where lvar(π) contains variables not occurring in C. For semantic pur-
poses, these free variables are considered existential variables, and we eliminate
them through instantiation. See Section 8 of the extended paper [1] for further
details.

Operations. In the context of our calculus, three operations on constrained
literals are of significance: conjunction, difference, and testing the emptiness of a
constrained literal. They correspond to the intersection, set-theoretic difference,
and emptiness of the corresponding cover-sets, respectively.

Conjunction and relative difference can be computed in linear time, while
deciding emptiness is known to be co-NP-complete [17]. For a detailed handling
of the operations, see the extended paper [1].

We note that the operations are indeed complex, but so is checking subsump-
tion and subsumption resolution in first-order theorem provers, and even iProver
calls CDCL iteratively. Yet, these techniques are efficient in practice, which we
consider an indication that an efficient implementation of NRCL is possible.

NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment 73

Model Candidate. In the course of this paper, we represent a (partial) model
candidate, also called a (partial) model assumption, as a sequence Γ of anno-
tated constrained literals. Following the terminology of CDCL, we also call such
a sequence a trail in the context of NRCL. We call the elements of a trail as-
signments, as they define truth-values for ground atoms.

Literals in Γ are either decision or deduced literals. Decisions are annotated
with unique positive integers, with (L;π)i representing the ith decision in Γ .
Deduced literals are annotated with their reasons, a clause from the current
clause set. In the following, α denotes an arbitrary annotation, C a reason clause,
and k, l, i integers.

Furthermore, we only consider strongly consistent sequences, i.e. we assume
for any trail Γ that for all different (L;π), (L′;π′) ∈ Γ , gnd(|L|;π)∩gnd(|L′|;π′)
is empty. This ensures that each ground atom is defined by at most one literal
from Γ , and there are no conflicting assignments in Γ .

We note that this approach to define truth-values for groups of ground atoms
represented by constrained literals can be also seen as providing a propositional
abstraction and an abstract partial interpretation. In this context, our calculus
can be considered as a fine-grained abstraction-refinement algorithm, which in-
terleaves refinement and abstract model search, and lets the clauses and decision
heuristics guide these implicit steps.

A trail Γ induces a partial interpretation, which lifts the standard CDCL
notions of true, false, or undefined under Γ . In particular, a ground literal L′

is defined by a constrained literal (L;π) ∈ Γ , iff |L′| ∈ gnd(|L|;π). If such an
(L;π) exists, we also say that Γ defines L′. Then, the value of the defined ground
literal L′ is true iff L′ and L has the same polarity.

Non-ground literals are treated as unit clauses, and a set of ground clauses
represented by the constrained clause (C;π) is true or false in Γ , if all of the
covered ground instances are true, or false, respectively. The notion of defined
by Γ extends to constrained clauses similarly, i.e. (C;σ) is defined w.r.t. Γ iff
for each C′ ∈ gnd(C;σ), at least one L′ ∈ C′ is defined under Γ .

The partial interpretation can be extended to a total interpretation called the
induced interpretation and given as IΓ = ∪{gnd(L;π) | (L;π) ∈ Γ+}, where Γ+

denotes the set of positive constrained literals in Γ . This interpretation serves
as a minimal model defined by the positive literals, and it is used in the rule
Success and the relevant proofs.

We call the annotation of a decision in Γ the level of this decision literal.
Then, the level lvl(L) of a defined ground literal L w.r.t. Γ is the level of the
last decision in Γ before the constrained literal defining L, and zero if no such
decision exists. We call the largest level the top-level, and also the level of the
trail. The empty trail is considered to have the level zero.

Following the terminology of CDCL, we call a ground clause assertive iff it is
false w.r.t. the current trail and contains exactly one top-level literal. We say a
first-order clause C or a constrained clause (Cσ;π) is assertive iff gnd(C), and
gnd(Cσ;π) contains at least one assertive ground clause, respectively.

Induced Ordering. Below, we define the ordering induced by the current trail,

74 G. Alagi and C. Weidenbach

which is used to define abstract redundancy in Section 5. This dynamic ordering
captures the local correlation between the atoms and literals in the search, and
shifts the focus on the recent behavior of the calculus. In the following, let <
denote a given well-founded total ordering over ground expressions - atoms,
literals and clauses -, and let Γ denote a strongly consistent trail.

Definition 2.5. The abstraction function defined by Γ is the function def :
AΣ → Γ ∪{⊥} which assigns to each ground atom the constrained literal defining
it, and ⊥ if no such literal exists.

We call elements of Γ ∪ {⊥} the abstract atoms defined by Γ . Then, def is
extended to ground literals and clauses by assigning the corresponding negated
abstract atom to a negative literal, and the disjunction of the corresponding ab-
stract literals to a clause, respectively.

Definition 2.6. The precedence ordering <Γ
p (<p) defined by Γ is the ordering

over the constrained literals in Γ defined by their position in Γ , i.e. (L1;π1) <p

(L2;π2) iff Γ = Γ1, (L1;π1)
α1 , Γ2, (L2;π2)

α2 , Γ3 for some Γ1, Γ2, Γ3, and α1, α2.
We extend this ordering to Γ ∪{⊥} with ⊥ as maximal element. Finally, this

ordering can be extended to abstract literals and clauses in the usual manner.

Definition 2.7. The ordering <atom
Γ induced by Γ is defined over AΣ and given

as follows: P <atom
Γ Q iff either (i) def(P) <p def(Q), or (ii) def(P) = def(Q)

and P < Q holds.
This ordering is extended to ground literals in the usual way, resulting in the

literal ordering <lit
Γ .

Finally, we extend it to ground clauses: C <Γ C′ iff either (i) def(C) <p

def(C′), or (ii) def(C) = def(C′) and C (<lit
Γ)mul C′ hold, where (<lit

Γ)mul

denotes the multiset extension of the literal ordering.
This ordering extends the atom and literal orderings, and we call it the or-

dering induced by Γ .

Proposition 2.8. <Γ is well-defined, total on ground clauses, and a well-foun-
ded ordering.

3 Calculus

States. We present our calculus as a set of rules over so-called states, tuples of
the form (Γ ; N;U; k; s) where Γ denotes the trail, N the given clause set, U the
set of learned clauses, k a non-negative integer - unless terminating with Success
-, and s a state indicator. The latter can be 	, ⊥, or (C;σ;π).

	 indicates the conflict search phase, if k ≥ 0, or that Γ defines a model for
N, if k = −1. ⊥ means the empty clause has been learned, i.e. the unsatisfiability
of N has been established. Finally, an indicator of the form (C;σ;π) represents a
set of clause instances falsified by the current trail Γ , and indicates the conflict
resolution phase of our calculus.

As a starting state, we propose the initial state (ε; N; ∅; 0;), where ε stands
for the empty trail, and N is the set of input clauses. However, we note that

NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment 75

our definitions and results are independent from this state, and any sound state
(see Definition 4.1) can be chosen as a starting state.

An Outline of NRCL. The calculus NRCL attempts to find a model through a
series of both arbitrary and deduced assignments. Analogously to propositional
SAT solvers, we apply Propagate to find literals implied by existing assignments,
and once it is exhausted, we add arbitrary literals, so-called decisions to the trail
with Decide. We restrict decisions to constrained instances of clause literals from
N to avoid defining irrelevant atoms, and achieve earlier termination.

When adding new assignments onto the trail, the conditions of the rules ensure
that each step is sound and effective, i.e. each ground literal defined by the added
literal is indeed a consequence in the case of Propagate, was undefined before,
and at least one such ground literal exists.

We call this phase conflict search and it ends with either a model of the
original clause set, or with finding a clause C with some instances given in the
form (C;σ;π) falsified by the current trail. In the latter case, we initiate conflict
resolution with Conflict, which identifies a set of clause instances contradicting
the current model assumption. We also refer to this set as the conflict-set.

Then, we traverse the trail, ignoring irrelevant assignments via Skip, and re-
solving the current false clause with relevant reason clauses with Resolve. Ide-
ally, this phase ends with learning a new assertive clause with Backjump, and
backtracking to a state where this clause is not yet falsified. We note that un-
satisfiability is established through learning the empty clause ⊥.

On Factorization. As opposed to propositional SAT solving, where every clause
can be considered already exhaustively factorized, in our case some ground in-
stances might be still subject to factorization, which constitutes an additional
challenge when trying to maintain important invariants, like the soundness of
states defined in the next section.

On the one hand, during conflict search we have to avoid situations when a
clause would be falsified by the decision immediately without allowing the use
of factorization. This case is captured in the following definition. We note that
instead of a blocked decision, we can always pick a stricter unblocked decision,
e.g. an undefined ground literal in the worst case.

Definition 3.1. We say that a decision (L;π) is blocked in Γ by a clause C, if
C has a ground instance Cσ with L1, L2 ∈ Cσ such that for Γ ′ = Γ, (L;π) (i)
Cσ is false under Γ ′, (ii) (L;π) is undefined in Γ , (iii) ¬L1,¬L2 ∈ gnd(L;π),
and (iv) L1 �= L2 all hold.

As an example, consider D = {a, b, c}, Γ = {(¬Q(x, y);)1}, and a clause set
containing ¬P (x)∨¬P (y)∨Q(x, y). Then (P (x);), and (P (x);x �= c) are both
blocked decisions in Γ , as witnessed by ¬P (a) ∨ ¬P (b) ∨Q(a, b).

On the other hand, during resolution, we need the option to factorize the
current false clause with Factorize, and also to learn a clause blocking the last
decision instead of learning an assertive clause.

Involved Operations. A short remark on the usage of the operations over

76 G. Alagi and C. Weidenbach

constrained expressions: Conjunction is used whenever we try to unify two con-
strained literals, e.g. during learning a new clause via resolution, or finding can-
didates for propagation. Difference is needed when we remove already defined
literals ensuring that a new assignment only defines new values. Finally, empti-
ness is tested overall in the calculus to ensure that a new assignment indeed
defines the value of at least one ground atom.

Closures. We extend our language with constrained closures of literals of the
form (L · σ;π), where L · σ is the closure representing Lσ. This is an extension
of the existing notation, and a form of book-keeping to make it easier to define
the rules for clause learning.

For all other purposes, L · σ is identified with Lσ, and all definitions over
constrained literals can be extended to constrained closures accordingly. Deci-
sions are always considered having empty closures, and the literal L is also a
short-hand for L · ∅. For further details, see [1].

Rules. Below, we present the rules of our calculus in a generic style as a state
transition system, similarly to [19]. We note that in the rules π1, π2 is often
used as a short-hand for π1 ∧ π2, if it is unambiguous. Furthermore, blocking is
considered only w.r.t. the current clause set N ∪ U in the rest of the paper.

The strategy for completeness is discussed in Section 5, while technical de-
tails are addressed in the extended paper [1]. In particular, candidate clauses
and substitutions for the rules can be found by combining standard indexing
structures for testing simultaneous unifiability.

Propagate. (Γ ; N;U; k;) ⇒ (Γ, (L · σ;π)C∨L; N;U; k;)
if k ≥ 0, and for (C ∨L) ∈ (N ∪U), σ, and π all the followings hold: (i) (Cσ;π)
is false under Γ , (ii) (Lσ;π) is undefined in Γ , and (iii) (Lσ;π) is not empty.

Decide. (Γ ; N;U; k;) ⇒ (Γ, (L;π)k+1; N;U; k + 1;)
if k ≥ 0, and for L, π all the followings hold: (i) (L;π) is undefined in Γ , (ii)
(L;π) is not blocked in Γ , (iii) (L;π) is not empty (iv) ∃(C ∨L′) ∈ N such that
|L| ≥ |L′|.
Conflict. (Γ ; N;U; k;) ⇒ (Γ ; N;U; k; (C;σ;π))
if k ≥ 0, and for ⊥ �= C ∈ (N ∪ U), σ, and π, (i) (Cσ;π) is false under Γ , and
(ii) (Cσ;π) is not empty.

Success. (Γ ; N;U; k;) ⇒ (Γ ; N;U;−1;) if k ≥ 0, and IΓ |= N.

Failure. (Γ ; N;U; k;) ⇒ (Γ ; N;U; 0;⊥) if ⊥ ∈ (N ∪ U).

We note that the last condition in Success can be replaced by demanding
that the rules Propagate, Decide and Conflict are exhausted and ⊥ /∈ (N ∪ U).
Then, after terminating, every undefined ground atom can be considered having
arbitrary truth-values, or simply false, the way it is defined in IΓ .

Skip. (Γ, (L′ · σ′;π′)C
′
; N;U; k; (C;σ;π)) ⇒ (Γ ; N;U; k; (C;σ;π))

if there is no L ∈ C such that (i) ∃η = mgu(L′σ′,¬Lσ), and (ii) (Cση;πη, π′η)
is not empty.

NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment 77

Resolve. (Γ, (L′ · σ′;π′)C
′∨L′

; N;U; k; (C ∨ L;σ;π)) ⇒
(Γ, (L′ · σ′;π′)C

′∨L′
; N;U; k; ((C ∨ C′)η0;σ∗;πη, π′η))

if for L′, σ, π′ and C′ ∨ L′, all the followings hold: (i) ((C ∨ L)σ;π) is not as-
sertive, or k = 0, (ii) ∃η = mgu(L′σ′,¬Lσ), and let η0 = mgu(L′,¬L), and σ∗

such that σσ′η = η0σ
∗, and (iii) ((C ∨ L)ση;πη, π′η) is not empty.

Factorize. (Γ, �; N;U; k; (C∨L1∨L2;σ;π)) ⇒ (Γ, �; N;U; k; ((C∨L1)η0;σ
∗;πη))

if � = (L′ ·σ′;π′)α for some L′, σ′, π′, and annotation α, and the followings hold:
(i) ∃η = mgu{L1σ, L2σ, L

′σ′}, and let η0 = mgu(L1, L2), and σ∗ such that
ση = η0σ

∗, and (ii) ((C ∨ L1)ση;πη, π
′η) is not empty.

We note that in both the case of Resolve and Factorize dropping the used
trail-literal is not desired as the new conflict might still be resolvable or factor-
izable with it.

Backjump. (Γ1, Γ2; N;U; k; (C;σ;π)) ⇒ (Γ1; N;U ∪ {C}; k′;)
if 0 ≤ k′ ≤ k, k′ = lvl(Γ1), and one of the following condition-sets hold: (1)
k = 0, and C = ⊥; or (2) k > 0, (Cσ;π) is assertive, and C has no false instance
under Γ1; or (3) k > 0, the right-most element of Γ2 is the top-level decision,
(Cσ;π) is not assertive, Factorize cannot be applied, and C has no false instance
under Γ1.

In case (1), we say that the empty clause ⊥ is learned. In case (2), we say a
new assertive clause is learned, and in case (3) a new blocking clause is learned.

It is clear that k′ = 0 or k′ < k in case (1) and (2), (3), respectively. The
optimal choice for k′ is the smallest level for which the learned clause can be
used in Propagate. Such a k′ might not always exist for the learned clause C,
largely due to the instances of C not covered by (Cσ;π). In these cases the
optimal choice for k′ is the largest level for which C has no false instance.

Example. As an example, we present a derivation over D = {a, b, c} and from
the clause set

N = { C1 : ¬P (c, x, x), C2 : ¬P (x, y, z) ∨ ¬P (u,w, t) ∨Q(x, u),
C3 : ¬P (x, y, z) ∨ ¬Q(a, x), C4 : ¬Q(x, b) ∨ ¬P (x, y, z) }

The run below is by no means optimal - any sensible heuristic would choose
the negative assignment for P outright -, but it is a valid derivation, and serves
well as a demonstration for the syntactic behavior.

(ε; N; ∅; 0;)
Propagate⇒ ((¬P (c, x, x);)C1 ; N; ∅; 0;)

Decide⇒
((¬P (c, x, x);)C1 , (P (x, y, z);x �= c)1; N; ∅; 1;)

Propagate⇒
((¬P (c, x, x);)C1 , (P (x, y, z);x �= c)1, (¬Q(a, x);x �= c)C3 ; N; ∅; 1;)

ConflictC2⇒
(. . . ; N; ∅; 1; (¬P (x, y, z) ∨ ¬P (u,w, t) ∨Q(x, u); {x ← a};u �= c))

Resolve⇒
(. . . ; N; ∅; 1; (¬P (a, y, z) ∨ ¬P (u,w, t) ∨ ¬P (u, y′, z′); ∅;u �= c))

Skip⇒
(. . . , (P (x, y, z);x �= c)1; N; ∅; 1; (¬P (a, y, z) ∨ ¬P (u,w, t) ∨ ¬P (u, y′, z′); ∅;u �= c))

Factorize⇒ (. . . , (P (x, y, z);x �= c)1; N; ∅; 1; (¬P (a, y, z) ∨ ¬P (u,w, t); ∅;u �= c))

78 G. Alagi and C. Weidenbach

Factorize⇒ ((¬P (c, x, x);)C1 , (P (x, y, z);x �= c)1; N; ∅; 1; (¬P (a, y, z); ∅;))

Backjump(2)⇒ ((¬P (c, x, x);)C1 ; N; {¬P (a, y, z)}; 0;) ⇒ . . .

NRCL eventually finds a model, see [1] for the complete derivation.

4 Soundness

Next, we address soundness. The following state invariant defines a consistency
notion for states.

Definition 4.1. A state (Γ ;N;U; k; s) is called well-formed iff (i) if k ≥ 0 then
Γ contains exactly k decisions, (ii) for each i from 1, 2, . . . , k, there is a unique
(L;π)i ∈ Γ , (iii) the decisions occur in Γ in the order of their levels, (iv) if
Γ = Γ1, (L;π)

i, Γ2, (L, π)
i satisfies the conditions of Decide w.r.t. Γ1, N, and

U, and (v) if Γ = Γ1, (L · σ;π)C∨L, Γ2, (Cσ;π) is false under Γ1, and (Lσ;π)
satisfies the conditions for Propagate w.r.t. Γ1 and C ∨ L.

A state (Γ ;N;U; k; s) is sound iff (i) Γ is a consistent sequence of constrained
literals, (ii) Γ is well-formed, (iii) N |= U , (iv) if s = ⊥ then ⊥ ∈ N ∪ U, (v)
k = −1 implies IΓ |= N, and (vi) if s = (C;σ;π) then (Cσ;π) is false under Γ ,
N |= C, and (Cσ;π) is not empty.

Then, a rule is called sound iff it preserves the soundness of its left-hand side
state.

It is easy to see that the initial state (ε; N; ∅; 0;) is always sound. Further-
more, soundness is an invariant.

Theorem 4.2. The rules of NRCL are sound.

A direct consequence of Theorem 4.2 is that any state reached from a sound
initial state is also sound. In the rest of the paper, we call derivations from a
sound initial state runs of our calculus.

Theorem 4.3 (Soundness). The calculus NRCL is sound, i.e. if a run termi-
nates with the Failure, or Success rules, then the starting set N is unsatisfiable,
and satisfiable, respectively. Furthermore, in the latter case the trail upon termi-
nation defines a model of N.

5 Termination and Completeness

In this section, we define a sufficient strategy for proving termination, formulate
our main result regarding non-redundant clause learning, and finally we show
termination and completeness as a consequence.

Regular Runs. First, we define a strategy for NRCL in the form of regular runs,
which is sufficient to prove both non-redundant clause learning and termination.

NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment 79

Definition 5.1. A sound state (Γ ;N;U; k; s) is regular iff the followings hold:
(i) If Γ = Γ ′, (L ·σ;π)α, then no clause from N∪U is false w.r.t. Γ ′. (ii) For all
decomposition Γ = Γ1, (L;π)

i, Γ2 with decision (L;π)i, Propagate is exhausted
w.r.t. Γ1 and N ∪ U.

We note that the last assignment on the trail might still make some clauses false,
and the initial state (ε; N; ∅; 0;) is always regular.

Definition 5.2. We call a run regular iff the followings hold: (i) The start-
ing state is regular. (ii) During conflict search, rules are always applied in this
order exhaustively: Failure, Success, Conflict, Propagate, Decide. (Or Failure,
Conflict, Propagate, Decide, Success, if we test success through exhausted con-
flict search.) (iii) In conflict resolution Backjump is always applied as soon as
possible, and the new subsequent state is a regular state.

Lemma 5.3. Regular runs preserve regularity, i.e. every state in a regular run
is regular.

Regular runs entail properties similar to standard invariants of CDCL solvers,
which are exploited in the non-redundancy and termination proofs.

Redundancy and Clause Learning. We define redundancy w.r.t. the induced
ordering <Γ in the standard way. While this definition depends on the dynam-
ically changing ordering <Γ , it is still meaningful as it allows the removal of
clauses which are redundant w.r.t. any possible induced ordering.

Definition 5.4. A ground clause C is redundant w.r.t. a ground clause set N
(and <Γ) iff C ∈ N, or there is an S ⊆ N <ΓC : S |= C.

A first-order clause C is redundant w.r.t. the first-order clause set N (and
<Γ) iff for each C′ ∈ gnd(C) : C′ is redundant w.r.t. gnd(N). If redundancy
does not hold, we call the corresponding clause non-redundant, or irredundant.

As a consequence of the definitions, many important first-order redundancy cri-
terions hold w.r.t. any possible <Γ . In particular, the classic subsumption, sub-
sumption resolution, and tautology deletion are such admissible criterions, as
shown in the extended paper [1].

Next, we show that each learned clause is non-redundant w.r.t. the current
clause set and induced ordering. It means, on the one hand, that forward redun-
dancy elimination is unnecessary for these clauses, and, on the other hand, each
clause we learn can be considered as making progress.

Theorem 5.5 (Non-redundant Clause Learning). Let Γ denote the trail
at a conflict in a regular run, <Γ the induced ordering, and assume the clause
C is learned via the Backjump rule, and let N and U be the starting clause set
and the set of learned clauses before the conflict, respectively.

Then, C is not redundant w.r.t. N ∪ U and <Γ .

80 G. Alagi and C. Weidenbach

Proof: (Sketch) The proof uses case distinction, and relies on the definitions
of induced ordering and regular runs, and the conditions of the rules. See the
extended paper [1] for details. Qed.

Decision Procedure. Just as most related calculi, NRCL is a decision pro-
cedure for BS as well, under the regularity conditions of Definition 5.2. In the
following, we assume the finiteness of N, Σ and D, and we present below the
lemmas and propositions leading to termination. This result together with sound-
ness, shown in Theorem 4.3, already implies completeness.

Proposition 5.6. A regular run is never stuck, i.e. it terminates with the ter-
minal rules, or one of the other rules is applicable.

Lemma 5.7. A conflict search phase of a regular run always terminates, i.e. it
leads either to a conflict or to termination.

Lemma 5.8. A conflict resolution phase of a regular run always terminates,
i.e. it leads to the application of Backjump after finitely many steps.

Lemma 5.9. A regular run can only learn finitely many new clauses.

Proof: (Sketch) Our proof uses Higman’s Lemma [12]. It states that given an
infinite sequence of words over a finite alphabet, there is always an index and a
subsequent index such that the first word is embedded into the latter, i.e. after
deleting some letters from the second word we can get the first one.

In our setting, the finite set of ground literals over Σ serves as the finite
alphabet, and the sequence of learned non-redundant ground instances as the
word sequence. Then embedding translates to subsumption.

Thus, given an infinite sequence of learned clauses, the corresponding infi-
nite sequence of non-redundant ground instances, which exists by Theorem 5.5,
contains two clauses such that the one learned earlier subsumes the other.
A contradiction to non-redundancy. See [1] for the full proof. Qed.

Theorem 5.10 (Termination). A regular run always terminates.

Corollary 5.11 (Decision Procedure). Regular runs provide a decision pro-
cedure for the Bernays-Schönfinkel fragment.

I.e. every regular run terminates after finitely many steps with Failure, or
Success, for an unsatisfiable, or satisfiable clause set N, respectively.

6 Related Work

In this section, we compare NRCL to existing systems and calculi. Many of these
techniques are capable of handling full first-order logic. Here, we only focus on
their behavior on the Bernays-Schönfinkel fragment. Due to space constraints,
we focus on the aspects most relevant to our calculus. For a more thorough
comparison, see [1].

NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment 81

The finite model finder Paradox [8] grounds the problem and passes it to a
CDCL-based SAT solver. In comparison, NRCL works directly with the original
clauses and not with the exponentially larger set of ground instances, and we
learn more general first-order clauses, instead of single ground instances.

Model Evolution [5] lifts DPLL - the ancestor of CDCL, a calculus using back-
tracking instead of backjumping and clause learning -, and was later extended
with clause learning [4]. It represents a model with a set of first-order literals,
called context, and detects conflicts using syntactic concepts weaker then the full-
fledged semantics based on the induced interpretation. This potentially leads to
longer derivations before detecting a false clause. Compared to Model Evolution,
NRCL relies on the full-fledged semantics, uses more compact model represen-
tation (see the experiment below), and we learn only non-redundant clauses. It
is not clear if the latter holds for Model Evolution, especially the admissibility
of the classic criterions needs in-depth considerations.

DPLL(SX) [22] attempts to lift CDCL to BS in a similar manner, has a similar
rule set, and uses substitution sets represented by BDDs instead of constraints,
which provides an explicit model representation. First, our constraint language is
dual to the one of DPLL(SX) and provides for some model classes more compact
representations, see below. Second, DPLL(SX) lacks the concept for blocking,
and applies an explicit refine rule instead. As a side effect, it learns nothing from
conflicts which lead to blocking clauses, and in these cases it abandons conflict
resolution and refines the last decision. Finally, we also address redundancy, and
exploit the non-redundancy result to show termination, which we consider a
valuable addition.

The most recent calculus SGGS [7] uses conjunctions of atoms of the form
x �= y, and top(x) �= f as constraints, represents models with sequences of
constrained clauses with selected literals, and uses a given initial interpretation
I as semantic guidance for the calculus. SGGS keeps extending the sequence
to satisfy more and more clauses, and handles contradictions via resolution and
constraint splitting. NRCL utilizes a more expressive constraint language, which
results in less fragmentation and potentially a smaller representation size. This
also allows to learn more general clauses. We consider our model representation
to be more explicit, as determining which literal is responsible for an assignment
is more straightforward. Finally, our calculus learns new non-redundant clauses
and uses backjumping.

iProver [11][14] generates a propositional approximation of the clause set by
instantiating all the variables with constants, and passes it on to a CDCL-based
SAT solver. Unsatisfiability of the approximation entails the unsatisfiability of
the original problem. On the other hand, if an abstract model is generated, it is
used to guide the calculus to add proper instances of the original clauses, which
refines the propositional abstraction. Compared to iProver, our approach is fine-
grained, as the evaluation and refinement of our implicit abstraction happen
interleaved with the other reasoning steps. Furthermore, we work directly with
the original clause set, and our trail always corresponds to a consistent first-order
model candidate.

82 G. Alagi and C. Weidenbach

NRCL contributes to the state-of-the-art solvers in terms of model represen-
tation. Considering the sole constrained literal

(P (x1, . . . , xk);x1 �= x2, . . . , xk−1 �= xk)
already demonstrates that NRCL can be exponentially more compact w.r.t. in-
creasing k than the respective substitution set representation in DPLL(SX),
and at least quadratically more compact than the respective context in Model
Evolution.

In addition to the theoretical argument, we also ran a small experiment for
models represented by literals of similar form. We have not yet implemented
NRCL. However, the below problem is solved by any regular run in NRCL with-
out backjumping. The clause set

Q(x, x),¬Q(a1, a2),¬Q(a2, a3), . . . ,¬Q(an−1, an),
¬P (x1, x1, x3, . . . , xk), . . . ,¬P (x1, x2, . . . , xk−1, xk−1),
¬Q(x, z) ∨Q(x, y) ∨Q(y, z), P (x1, . . . , xk) ∨Q(x1, x2) ∨ . . . ∨Q(xk−1, xk)

has a model where the positive atoms are represented by the constrained literals
(P (x1, . . . , xk);x1 �= x2, . . . , xk−1 �= xk) and (Q(x, x);). NRCL directly finds
this model, by exhaustively applying propagation, making a single decision on
P (x1, . . . , xk) and finally setting all undefined Q(x, y) literals to false. A decision
on some Q(xi, xi+1) leads to a similar behavior and model.

We ran the the available state-of-the-art provers Darwin1 (1.4.5) and iProver
(0.8.1) on this set. The experiments were carried out on a Debian Linux (4.7.2-5)
Intel (Xeon E5-2680, 2.7GHZ) computer with 256GB physical memory. For n = 7
and k = 5, 7, 9, Darwin needs 0.2, 8.1, 518 seconds to find a model, respectively.
For k = 7 and n = 7, 10, 13, it is 8.1, 62, 347 seconds, respectively. For k = 9 and
n = 7, 10, 13, 16, 19, 22, iProver needs 0, 0.2, 21, 39, 116, 718 seconds, respectively.

For Darwin, these results show an exponentially growing solution time w.r.t.
k (the arity of P) or n (the domain size). iProver is robust against increasing k
but not against increasing n, where it also shows an exponential growth. This
shows that our model representation is not subsumed by either calculus.

Finally, the technique introduced in [13] for SPASS employs a combination
of restricted superposition on Horn clauses, and labelled splitting [10] on non-
Horn clauses. Compared to this approach, NRCL maintains a model candidate,
it is restricted to learn clauses only at conflicts and only non-redundant ones,
does not rely on Horn clauses, and the implicit branchings through decisions and
backjumps are more elaborate and guided by the model search, compared to the
splitting techniques employed by first-order theorem provers. However, we note
that for some problem classes finite superposition saturation is still superior to
explicit model generation, see e.g. superposition for knowledge bases in [25].

7 Conclusion

In this paper, we proposed the decision procedure NRCL for the Bernays-Schön-
finkel fragment. Our approach represents a model candidate as a set of

1 The implementation of Model Evolution

NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment 83

constrained literals, and derives a model or a proof of unsatisfiability through a
series of decisions, propagations, and learning new clauses.

Compared to earlier work in this direction, we investigated the standard re-
dundancy notion w.r.t. the ordering induced by the current trail. One of our
main contributions over existing work is that, by design, we can prove our learned
clauses to be non-redundant, i.e., any learned clause makes progress towards find-
ing a model or a refutation, because it eliminates at least one potential model.
In general, we consider this a key property for automated reasoning.

Projecting NRCL to propositional logic proves this property for CDCL with
respect to our notion of redundancy. Our notion also admits techniques like
subsumption and subsumption resolution, which are important in both SAT
solving and first-order theorem proving. We see this as a strong indication that
a future implementation will contribute to the state of the art.

As future research, the immediate goal is to implement NRCL. This includes
developing suitable and efficient term indexing structures, detecting and exploit-
ing redundancy, and defining concrete and efficient heuristics.

Our long-term goal is to extend this calculus beyond Bernays-Schönfinkel.
The next step into this direction is to enrich our calculus with function symbols
and sorts to handle the non-cyclic fragment introduced in [16]. This class still
has the finite Herbrand model property, thus, our results will directly extend to
this fragment. Further goals are to consider other decidable fragments, to treat
equality, and finally to extend our work to finite model finding.

Acknowledgments. We thank our reviewers for their constructive and helpful
comments.

References

[1] Alagi, G., Weidenbach, C.: NRCL - A Model Building Approach to the
Bernays-Schönfinkel Fragment (Full Paper). CoRR, abs/1502.05501 (2015).
http://arxiv.org/abs/1502.05501

[2] Armando, A., Baumgartner, P., Dowek, G. (eds.): IJCAR 2008. LNCS (LNAI),
vol. 5195. Springer, Heidelberg (2008)

[3] Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson and
Voronkov (eds.) [23], pp. 19–99

[4] Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma Learning in the model evolu-
tion calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 572–586. Springer, Heidelberg (2006)

[5] Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003)

[6] Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

[7] Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Notes
of the Fourth Workshop on Practical Aspects in Automated Reasoning (PAAR)
(2014)

[8] Claessen, K., Srensson, N.: New Techniques that Improve MACE-style finite model
finding. In: Model Computation - Principles, Algorithms, Applications (2003)

http://arxiv.org/abs/1502.05501

84 G. Alagi and C. Weidenbach

[9] Comon, H.: Disunification: A survey. In: Computational Logic - Essays in Honor
of Alan Robinson, pp. 322–359 (1991)

[10] Fietzke, A., Weidenbach, C.: Labelled splitting. Ann. Math. Artif. Intell. 55(1–2),
3–34 (2009)

[11] Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem prov-
ing. In: LICS, pp. 55–64. IEEE Computer Society (2003)

[12] Higman, G.: Ordering by Divisibility in Abstract Algebras. Proceedings of the
London Mathematical Society 2(1), 326–336 (1952)

[13] Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In:
Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS, vol. 7788, pp. 68–100. Springer, Heidelberg (2013)

[14] Korovin, K.: iProver - An instantiation-based theorem prover for first-order logic
(system description). In: Armando et al. [2], pp. 292–298

[15] Korovin, K.: Inst-Gen – A modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013)

[16] Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: Fontaine, P.,
Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 214–228.
Springer, Heidelberg (2013)

[17] Lassez, J.-L., Marriott, K.: Explicit Representation of Terms Defined by Counter
Examples. J. Autom. Reasoning 3(3), 301–317 (1987)

[18] Lewis, H.R.: Complexity Results for Classes of Quantificational Formulas. J. Com-
put. Syst. Sci. 21(3), 317–353 (1980)

[19] Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
nodulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

[20] Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson
and Voronkov [23], pp. 371–443

[21] Pérez, J.A.N., Voronkov, A.: Proof Systems for Effectively Propositional Logic.
In: Armando et al. [21], pp. 426–440

[22] Piskac, R., de Moura, L.M., Bjørner, N.: Deciding Effectively Propositional Logic
Using DPLL and Substitution Sets. J. Autom. Reasoning 44(4), 401–424 (2010)

[23] Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning, vol. 2.
Elsevier and MIT Press (2001)

[24] Silva, J.P.M., Sakallah, K.A.: Conflict analysis in search algorithms for satisfiabil-
ity. In: ICTAI, pp. 467–469 (1996)

[25] Suda, M., Weidenbach, C., Wischnewski, P.: On the saturation of YAGO. In:
Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 441–456. Springer,
Heidelberg (2010)

[26] Tammet, T.: Finite model building: improvements and comparisons. In: Model
Computation: Principles, Algorithms, Applications (2003)

[27] Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson and
Voronkov [23], pp. 1965–2013

First-Order Logic Theorem Proving and Model

Building via Approximation and Instantiation

Andreas Teucke1,2 and Christoph Weidenbach1

1 Max-Planck Institut for Informatics, Campus E1 4 66123 Saarbrücken Germany
2 Graduate School of Computer Science, Saarbrücken, Germany

Abstract. In this paper we consider first-order logic theorem proving
and model building via approximation and instantiation. Given a clause
set we propose its approximation into a simplified clause set where sat-
isfiability is decidable. The approximation extends the signature and
preserves unsatisfiability: if the simplified clause set is satisfiable in some
model, so is the original clause set in the same model interpreted in the
original signature. A refutation generated by a decision procedure on the
simplified clause set can then either be lifted to a refutation in the orig-
inal clause set, or it guides a refinement excluding the previously found
unliftable refutation. This way the approach is refutationally complete.
We do not step-wise lift refutations but lift conflicting cores, finite un-
satisfiable clause sets representing at least one refutation. The approach
is dual to many existing approaches in the literature.

1 Introduction

The Inst-Gen calculus by Ganzinger and Korovin [6] and its implementation in
iProver has shown to be very successful. The calculus is based on an under-
approximation - instantiation - refinement loop. A given first-order clause set is
under-approximated by finite grounding and afterwards a SAT-solver is used to
test unsatisfiability. If the ground clause set is unsatisfiable then a refutation for
the original clause set is found. If it is satisfiable, the model generated by the
SAT-solver is typically not a model for the original clause set. If it is not, it is
used to instantiate the original clauses such that the found model is ruled out
for the future.

In this paper we define a calculus that is dual to the Inst-Gen calculus.
A given first-order clause set is over-approximated into a decidable fragment
of first-order logic: a monadic, shallow, linear Horn (MSLH) theory [14]. If the
over-approximated clause set is satisfiable, so is the original clause set. If it is
unsatisfiable, the found refutation is typically not a refutation for the original
clause set. If it is not, the refutation is analyzed to instantiate the original clause
set such that the found refutation is ruled out for the future. The MSLH frag-
ment properly includes first-order ground logic, but is also expressive enough to
represent minimal infinite models.

In addition to developing a new proof method for first-order logic the repre-
sentation of first order models constitutes our second motivation for studying the

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 85–100, 2015.
DOI: 10.1007/978-3-319-24246-0_6

86 A. Teucke and C. Weidenbach

new calculus and the particular MSLH approximation. It is meanwhile accepted
that a model-based guidance can significantly improve an automated reasoning
calculus. The propositional CDCL calculus [9] is one prominent example for this
insight. In first-order logic, (partial) model operators typically generate induc-
tive models for which almost all interesting properties become undecidable, in
general. One way out of this problem is to generate a model for an approximated
clause set, such that important properties with respect to the original clause set
are preserved. In the case of our calculus and approximation, a found model can
be effectively translated into a model for the original clause set. So our result
is also a first step towards model-based guidance in first-order logic automated
reasoning.

As an example for our calculus, consider the first-order Horn clauses
S(x) → P (x, g(x)); S(a); S(b); S(g(x)); ¬P (a, g(b)); ¬P (g(x), g(g(x)))

that are approximated (Section 2) into the MSLH theory S(x), R(y) →
T (fP (x, y)); S(x) → R(g(x)); S(a); S(b); S(g(x)); ¬T (fP (a, g(b))); ¬T (fP (g(x),
g(g(x)))) where the relation P is encoded by the function fP and the non-linear
occurrence of x in the first clause is approximated by the introduction of the
additional variable y. The approximated clause set has two refutations: one us-
ing ¬T (fP (a, g(b))) and the second using ¬T (fP (g(x), g(g(x)))) plus the rest of
the clauses, respectively. While the first refutation cannot be lifted, the second
one is liftable to a refutation of the original clause set (Section 3). Actually,
we do not consider refutations, but conflicting cores (Definition 9). Conflict-
ing cores are finite, unsatisfiable clause sets where variables are considered to
be shared among clauses and rigid such that any instantiation preserves un-
satisfiability. Conflicting cores can be effectively generated out of refutations
via instantiation of (copies of) the input clauses involved in the refutation. For
the above second refutation the conflicting core of the approximated clause set
is S(g(x)), R(g(g(x))) → T (fP (g(x), g(g(x)))); S(g(x)) → R(g(g(x))); S(g(x));
¬T (fP (g(x), g(g(x)))).
In case the first refutation is selected for lifting, it fails, so the original clause set
is refined (Section 4). The refinement replaces the first clause with
S(a) → P (a, g(a)); S(b) → P (b, g(b)) and S(g(x)) → P (g(x), g(g(x))).
The approximation of the resulting new clause set does no longer enable a refuta-
tion using ¬T (fP (a, g(b))). Therefore, the refutation using ¬T (fP (g(x), g(g(x))))
is found after refinement. In case the original clause set contains a non-Horn
clause, one positive literal is selected by the approximation.

The paper is now organized as follows. Section 2 introduces some basic notions
and the approximation relation ⇒APR that transforms any first-order clause set
into an MSLH theory. The lifting of conflicting cores is described in Section 3
and the respective abstraction refinement in Section 4 including soundness and
completeness results. The paper ends with a summary including a discussion on
future and related work, Section 5.

First-Order Logic Theorem Proving and Model Building via Approximation 87

2 Linear Shallow Monadic Horn Approximation

We consider a standard first-order language without equality where Σ denotes
the signature. The symbols x, y denote variables, a, b constants, f, g, h are func-
tions and s, t terms. Predicates are denoted by S, P,Q,R, literals by E, clauses
by C,D, and sets of clauses by N,M . The term t[s]p denotes that the term t
has the subterm s at position p. The notion is extended to atoms, clauses, and
multiple positions. A predicate with exactly one argument is called monadic. For
the sake of presentation, propositional atoms are considered as ground monadic
atoms. A literal is either an atom or an atom preceded by ¬ and it is then called
positive or negative, respectively. A term is complex if it is not a variable and
shallow if it has at most depth one. It is called linear if there are no duplicate
variable occurrences. A literal, where every term is shallow, is also called shallow.
A clause is a multiset of literals which we write as an implication Γ → Δ where
the atoms in Δ denote the positive literals and the atoms in Γ the negative
literals. If Γ is empty we omit →, e.g., we write P (x) instead of → P (x) whereas
if Δ is empty → is always shown. If a clause has at most one positive literal,
it is a Horn clause. If there are no variables, then terms, atoms and clauses are
called ground, respectively. A substitution σ is a mapping from variables into
terms denoted by pairs {x �→ t}. If for some term t (literal E, clause C, clause
set N), tσ (Eσ, Cσ, Nσ) is ground, then σ is a grounding substitution.

A Herbrand interpretation I is a - possibly infinite - set of positive ground
literals and I is said to satisfy a clause C = Γ → Δ, denoted by I � C, if
Δσ ∩ I �= ∅ or Γσ �⊆ I for every grounding substitution σ. An interpretation
I is called a model of N if I satisfies N , I � N , i.e., I � C for every C ∈ N .
Models are considered minimal with respect to set inclusion. A set of clauses
N is satisfiable, if there exists a model that satisfies N . Otherwise the set is
unsatisfiable.

Definition 1 (Approximation). Given a relation ⇒ on clause sets: (1) ⇒ is
called an over-approximation if for all N and N ′ with N ⇒ N ′ satisfiability of
N ′ implies satisfiability of N , (2) ⇒ is called an under-approximation if for all
N and N ′ with N ⇒ N ′, unsatisfiability of N ′ implies unsatisfiability of N .

Next we introduce our concrete over-approximation⇒APR that maps a clause
set N to an MSLH clause set N ′. Starting from a clause set N the transformation
is parameterized by a single monadic projection predicate T , fresh to N and for
each non-monadic predicate P a projection function fP fresh to N . We establish
on the fly a parent relation between the approximated clause(s) and the parent
clause. We call the transitive closure of the parent relation the ancestor relation.
The ancestor relation is needed for defining lifting and refinement.

Definition 2. Given a predicate P , projection predicate T , and projection func-
tion fP , define the injective function μT

P (P (t1, . . . , tn)) := T (fp(t1, . . . , tn)) and
μT
P (Q(s1, . . . , sm)) := Q(s1, . . . , sm) for any atom with a predicate symbol dif-

ferent from P . The function is extended to clauses, clause sets and interpre-
tations. Given a signature Σ with non-monadic predicates P1, . . . , Pn, define
μT
Σ(N) = μT

P1
(. . . (μT

Pn
(N)) . . .) and μT

Σ(I) = μT
P1
(. . . (μT

Pn
(I)) . . .).

88 A. Teucke and C. Weidenbach

Monadic. N ⇒MO μT
P (N)

provided P is a non-monadic predicate in the signature of N ; for all C ∈ N with
C �= μT

P (C), the clause C is the parent of μT
P (C)

Horn. N ∪ {Γ → E1, . . . , En} ⇒HO N ∪ {Γ → Ei}
provided n > 1 and 1 ≤ i ≤ n ; Γ → E1, . . . , En is the parent of Γ → Ei

Shallow. N ∪ {Γ → E[s]p} ⇒SH N ∪ {S(x), Γ1 → E[x]p} ∪ {Γ2 → S(s)}
provided s is a complex term, p not a top position, x and S fresh, and Γ1∪Γ2 = Γ ,
{Q(y) ∈ Γ | y ∈ vars(E[x]p)} ⊆ Γ1, {Q(y) ∈ Γ | y ∈ vars(s)} ⊆ Γ2; the clause
Γ → E[s]p is the parent of S(x), Γ1 → E[x]p and Γ2 → S(s)

Linear. N ∪ {Γ → E[x]p,q} ⇒LI N ∪ {Γ{x �→ x′}, Γ → E[x′]q}
provided x′ is fresh, the positions p, q denote different occurrences of x in E;
Γ → E[x]p,q is the parent of Γ{x �→ x′}, Γ → E[x′]q

In the Shallow transformation, Γ1 and Γ2 can be almost arbitrarily chosen
as long as they “add up” to Γ . The goal, however, is to minimize the set of
common variables vars(Γ2, s) ∩ vars(Γ1, E[x]p). If the intersection is empty, the
Shallow transformation is satisfiability equivalent. The conditions on Γ1 and Γ2

ensure that freshly introduced S(x) atoms are not separated from the respective
positive atom E[x]p in subsequent shallow transformation applications. This is
will be required for Lemma 8. In the Linear transformation, the duplication of
literals in Γ is not needed if x does not occur in them.

Definition 3 (⇒APR). We define ⇒APR as the priority rewrite system [1] con-
sisting of ⇒MO, ⇒HO, ⇒SH and ⇒LI with priority ⇒MO >⇒HO >⇒SH>⇒LI.

Lemma 4 (⇒APR is a Terminating Over-Approximation). The approxi-
mation rules are terminating over-approximations: (i) ⇒APR terminates (ii) the
Monadic transformation is an over-approximation (iii) the Horn transforma-
tion is an over-approximation (iv) the Shallow transformation is an over-
approximation (v) the Linear transformation is an over-approximation

Proof. (i) The transformations can be considered sequentially, because of the
imposed rule preference. The Monadic transformation strictly reduces the num-
ber of non-monadic atoms. The Horn transformation strictly reduces the number
of non-Horn clauses. The Shallow transformation strictly reduces the multiset
of term depths of the newly introduced clauses compared to the removed par-
ent clause. The Linear transformation strictly reduces the number of duplicate
variable occurrences in positive literals. Hence ⇒APR terminates.

(ii) Let N0 ⇒MO N1 = μP (N0). Then, N0 = μ−1
P (N1). Let I be a model

of N1 and C ∈ N0. Since μP (C) ∈ N1 , I � μP (C) and thus, μ−1
P (I) � C.

Hence, μ−1
P (I) is a model of N0. Therefore, the Monadic transformation is an

over-approximation. Actually, it is also a satisfiability preserving transformation.

First-Order Logic Theorem Proving and Model Building via Approximation 89

(iii) Let N0 = N ∪ {Γ → E1, . . . , En} ⇒HO N ∪ {Γ → Ei}, where N ∪ {Γ →
Ei} is satisfiable. The clause Γ → Ei subsumes the clause Γ → E1, . . . , En.
Hence, for any model I, I |= N ∪ {Γ → E1, . . . , En} if I |= N ∪ {Γ → Ei}.
Therefore, the Horn transformation is an over-approximation.

(iv) Let N0 = N ∪ {Γ → E[s]p} ⇒SH N ∪ {S(x), Γ1 → E[x]p;Γ2 → S(s)}
= N1. Let I be a model of N1 and C be a ground instance of a clause in N0. If
C is an instance of a clause in N , then I |= C. Otherwise C = (Γ → E[s]p)σ
for some ground substitution σ. Then S(s)σ, Γ1σ → E[s]pσ = (S(x), Γ1 →
E[x]p){x �→ s}σ and Γ2σ → S(s)σ = (Γ2 → S(s))σ. Since I |= N1, I also
satisfies the resolvent Γ1σ, Γ2σ → E[s]pσ, which equals C modulo condensation.
Hence I |= N0. Therefore, the Shallow transformation is an over-approximation.

(v) Let N0 = N ∪ {Γ → E[x]p,q} ⇒LI N ∪ {Γ{x �→ x′}, Γ → E[x′]q} = N1.
Let I be a model of N1 and C be a ground instance of a clause in N0. If C
is an instance of a clause in N , then I |= C. Otherwise C = (Γ → E[x]p,q)σ
for some ground substitution σ. Then, (Γ{x �→ x′}, Γ → E[x′]q){x′ �→ x}σ =
(Γ, Γ → E[x]q)σ, which equals C modulo condensation. Thus, I |= C because
I |= (Γ{x �→ x′}, Γ → E[x′]q){x′ �→ x}σ. Hence I |= N0. Therefore, Linear
transformation is an over-approximation. �

Corollary 5. If N ⇒∗

APR N ′ and N ′ is satisfied by a model I, then μ−1
Σ (I) is

a model of N .

In addition to being an over-approximation, the minimal model (with respect
to set inclusion) of the eventual approximation generated by ⇒APR preserves
the skeleton term structure of the original clause set, if it exists. The refinement
introduced in Section 4 instantiates clauses. Thus it always makes progress to-
wards finding a model or a refutation.

Definition 6 (Term Skeleton). The term skeleton of term t, skt(t), is de-
fined as (1) skt(x) = x′, where x′ is a fresh variable (2) skt(f(s1, . . . , sn)) =
f(skt(s1), . . . , skt(sn)).

Lemma 7. Let N0 be a monadic clause set and Nk be its approximation via
⇒APR. Let Nk be satisfiable and I be a minimal model for Nk. If P (s) ∈ I and
P is a predicate in N0, then there exists a clause C = Γ → Δ,P (t) ∈ N0 and
a substitution σ such that s = skt(t)σ and for each variable x and predicate S
with C = S(x), Γ ′ → Δ,P (t[x]p) and s|p = s′′, S(s′′) ∈ I.
Proof. By induction on the length of the approximation N0 ⇒∗

APR Nk.
For the base Nk = N0, assume there is no C ∈ Nk with Cσ = Γ → Δ,P (s),

where for each variable x and predicate S with C = S(x), Γ ′ → Δ,P (t[x]p) and
s|p = s′′, S(s′′) ∈ I. Then I \ {P (s)} is still a model of Nk and therefore I was
not minimal. A contradiction.

Let N0 ⇒APR N1 ⇒∗
APR Nk, P (s) ∈ I and P is a predicate in N0 and

hence also in N1. By the induction hypothesis on N1 ⇒∗
APR Nk, there exist a

clause C = Γ → Δ,P (t) ∈ N1 and a substitution σ such that s = skt(t)σ and
S(s′′) ∈ I for each variable x and predicate S with C = S(x), Γ ′ → Δ,P (t[x]p)

90 A. Teucke and C. Weidenbach

and s|p = s′′. The first approximation rule application is either a Linear, a
Shallow or a Horn transformation, considered below by case analysis.

Horn Case. Let ⇒APR be a Horn transformation that replaces Γ ′′ → Δ′, Q(t′)
with Γ ′′ → Q(t′). If C �= Γ ′′ → Q(t′), then C ∈ N0 fulfills the claim. Otherwise,
Γ → Δ,P (t) = Γ ′′ → Q(t′) and hence P (t) = Q(t′) and Γ = Γ ′′. For Γ ′′ →
Δ′, Q(t′) ∈ N0, s = skt(t)σ = skt(t′)σ and S(s′′) ∈ I for each variable x and
predicate S with S(x) ∈ Γ ′′, Q(t′) = Q(t′[x]p) and s|p = s′′.

Linear Case. Let ⇒APR be a linear transformation that replaces C0 = Γ ′′ →
E[x]p,q with C1 = Γ ′′, Γ ′′{x �→ x′} → E[x′]q. If C �= C1, then C ∈ N0 fulfills
the claim. Otherwise, C0 = Γ ′′ → P (t){x′ �→ x} ∈ N0 fulfills the claim because
s = skt(t)σ = skt(t{x′ �→ x})σ and Γ ′′ ⊆ Γ ′′, Γ ′′{x �→ x′}.

Shallow Case. Let ⇒APR be a shallow transformation that replaces C0 =
Γ ′′ → E[s′]p with C1 = S(x), Γ1 → E[x]p and C2 = Γ2 → S(s′). Since S is
fresh, C �= C2. If C �= C1, then C ∈ N0 fulfills the claim. Otherwise, C = C1 =
S(x), Γ1 → P (t[x]p) and hence, s = skt(t[x]p)σ and S(s′′) ∈ I for s|p = s′′. Then
by the induction hypothesis, there exist a clause CS = ΓS → ΔS , S(tS) ∈ N1

and a substitution σS such that s′′ = skt(tS)σS and for each variable x and
predicate S′ with CS = S′(x), Γ ′

S → ΔS , P (tS [x]q) and s′′|q = s′′′, S′(s′′′) ∈ I.
By construction, CS = C2. Thus, s

′′ = skt(s′)σS and s = skt(t[x]p)σ imply there
exists a σ′′ such that s = skt(t[s′]p)σ′′. Furthermore, because Γ1 ∪ Γ2 = Γ ′′, if
C0 = S′(x), Γ ′′′ → P (t[s′]p)[x]q, then either S′(x) ∈ Γ1 and thus S′(s′′′′) ∈ I,
where s|q = s′′′′, or S′(x) ∈ Γ2 and thus S′(s′′′′) ∈ I, where (s[s′′]p)|q = s′′′′.
Hence, C0 ∈ N0 fulfills the claim. �

Note that for Lemma 7 the clause set Nk may contain predicates that have
been introduced by the Shallow transformation and are therefore not contained
in N0.

Lemma 8. Let N ⇒∗
APR N ′, where N ′ is a normal form, and I be a minimal

model for N ′. If μΣ(P (s1, . . . , sn)) ∈ I and P is a predicate in N , then there is
a clause Γ → Δ,P (t1, . . . , tn) ∈ N and a substitution σ such that si = skt(ti)σ
for all i.

Proof. Because of the rule priority of ⇒APR, N ⇒∗
MO μΣ(N) ⇒∗

APR N ′.
Let P (s) ∈ I and P be a monadic predicate in N . Since P is monadic, P is a

predicate in μΣ(N). Hence by Lemma 7, there exists a clause Γ → Δ,P (t) ∈
μΣ(N) and a substitution σ such that s = skt(t)σ. Then, μ−1

Σ (Γ → Δ,P (t)) ∈ N
fulfills the claim.

Let T (fp(s1, . . . , sn)) ∈ I. T is monadic and a predicate in μΣ(N). Hence by
Lemma 7, there exists a clause Γ → Δ,T (t) ∈ μΣ(N) and a substitution σ such
that fp(s1, . . . , sn) = skt(t)σ. Therefore, t = fp(t1, . . . , tn) with si = skt(ti)σ for
all i. Then, μ−1

Σ (Γ → Δ,T (fp(t1, . . . , tn))) ∈ N fulfills the claim. �

The above lemma also holds if satisfiability of N ′ is dropped and I is replaced
by the superposition partial minimal model operator [15].

First-Order Logic Theorem Proving and Model Building via Approximation 91

3 Lifting a Conflicting Core

When lifting a refutation of an MSLH approximation, we do not lift single in-
ference steps, but an unsatisfiable clause set called the conflicting core.

Definition 9 (Conflicting Core). A finite clause set N⊥ is a conflicting core
if for all grounding substitutions τ the clause set N⊥τ is unsatisfiable. N⊥ is
a conflicting core of N if in addition every clause C ∈ N⊥ is an instance of a
clause in N .

Given an MSLH approximation Nk of N and a conflicting core N⊥
k of Nk,

using the lifting lemmas provided in this section we attempt to lift N⊥
k step-wise

to a conflicting core N⊥ of N . In case of success this shows the unsatisfiability
of N . In case an approximation step cannot be lifted, the original clause set is
refined by instantiation, explained in Section 4.

Let Nk be an unsatisfiable MSLH approximation. Since Nk belongs to a de-
cidable first-order fragment, we expect an appropriate decision procedure to
generate a proof of unsatisfiability for Nk, e.g., by ordered resolution with selec-
tion [14]. A conflicting core can be generated out of a resolution refutation by
applying the substitutions of the proof to the used input clauses as follows.

We require a variable renaming such that all input clauses from Nk used in
the refutation are variable disjoint. Begin with the singleton set containing the
pair of the empty clause and the empty substitution. Then recursively choose
a pair (C, σ) from the set where C /∈ Nk. There exists a step in the refutation
that generated this clause. Because Nk is Horn, the clause is generated by a
resolution inference. It is the resolvent of some C1 and C2 with mgu τ . Replace
(C, σ) by (C1, τσ) and (C2, τσ). The procedure terminates in linear time in the
size of the refutation. For each pair (C, σ), collect the clause Cσ, resulting in a
conflicting core N⊥

k of Nk.
For example, let N = {P (x, x′); P (y, a), P (z, b) →}. N is unsatisfiable and

a possible ground refutation is resolving P (b, a), P (a, b) → with P (b, a) and
P (a, b). From this refutation, we construct the conflicting core N⊥

ba = {P (b, a);
P (a, b); P (b, a), P (a, b) →}. An alternative refutation is to resolve P (x, x′) and
P (y, a), P (z, b) → with substitution {x �→ y;x′ �→ a} and then the resolvent and
P (x, x′) with substitution {x �→ z;x′ �→ b}. Here, we construct the conflicting
core N⊥

yz = {P (y, a); P (z, b); P (y, a), P (z, b) →}. Note that N⊥
yz is more general

than N⊥
ba since N⊥

yz{y �→ b; z �→ a} = N⊥
ba. A conflicting core is minimal in that

it represents the most general clauses corresponding to the refutation from that
it is generated.

In order to lift a Linear transformation the remaining and the newly intro-
duced variable need to be instantiated with the same term. For example, let
N = {P (x, x); P (y, a), P (z, b) →}. Then N ′ = {P (x, x′); P (y, a), P (z, b) →} is a
Linear transformation of N and and N⊥ = {P (a, a); P (b, b); P (a, a), P (b, b) →}
is a ground conflicting core of N ′. Since P (a, a) and P (b, b) are instances of
P (x, x) lifting succeeds and N⊥ is also a core of N .

Lemma 10 (Lifting the Linear Transformation). Let Nk = N ∪ {C} ⇒LI

Nk+1 = N ∪ {C′} where C = Γ → E[x]p,q and C′ = Γ{x �→ x′}, Γ → E[x′]q.

92 A. Teucke and C. Weidenbach

Let N⊥
k+1 be a conflicting core of Nk+1 and C′σ1, . . . , C

′σm be all clauses in

N⊥
k+1 that are instances of C′. If xσj = x′σj for 1 ≤ j ≤ m, then N⊥

k+1 \
{C′σ1, . . . , C

′σm} ∪ {Cσ1, . . . , Cσm} = N⊥
k is a conflicting core of Nk.

Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I �� N⊥

k+1σ and there exists a clause C⊥ ∈ N⊥
k+1σ such that I �� C⊥. If C⊥ is

not an instance of C′, then C⊥ is a clause in N⊥
k σ. Thus, I �� N⊥

k σ. If C⊥ is an
instance of C′, then C⊥ = C′σjσ for some 1 ≤ j ≤ m. Because xσj = x′σj , C′σjσ
and Cσjσ are equal modulo condensation. Thus, I �� N⊥

k σ. Therefore, N⊥
k is a

conflicting core of Nk. �

A Shallow transformation introduces a new predicate S, which is removed

in the lifting step. We take all clauses with S-atoms in the conflicting core
and generate any possible resolutions on these S-atoms. The resolvents, which
don’t contain the S-atom anymore, then replace their parent clauses in the core.
Lifting succeeds if all resolvents are instances of the original clause in the Shallow
transformation.

For example, let N = {P (x), Q(y) → R(g(x, f(y))); R(g(a, f(b))) →;
P (a); Q(b)}. Then N ′ = {Q(y) → S(f(y)); S(x′), P (x) → R(g(x, x′));
R(g(a, f(b))) →; P (a); Q(b)} is a Shallow transformation of N and N ′⊥ =
{Q(b) → S(f(b)); S(f(b)), P (a) → R(g(a, f(b))); R(g(a, f(b))) →; P (a); Q(b)}
is a conflicting core of N ′. By replacing S(f(b)), P (a) → R(g(a, f(b))) and
Q(b) → S(f(b)) with their resolvent, N ′⊥ lifts to {P (a), Q(b) → R(g(a, f(b)));
R(g(a, f(b))) →; P (a); Q(b)}, a conflicting core of N .

Lemma 11 (Lifting the Shallow Transformation). Let Nk = N∪{C} ⇒SH

Nk+1 = N ∪ {C1, C2} where C = Γ → E[s]p, C1 = S(x), Γ1 → E[x]p
and C2 = Γ2 → S(s). Let N⊥

k+1 be a conflicting core of Nk+1 and NS be

the set of all resolvents of clauses in N⊥
k+1 on the S-atom. If all clauses

in NS are instances of C modulo condensation, then N⊥
k = {D ∈ N⊥

k+1 |
D not an instance of C1 or C2} ∪NS is a conflicting core of Nk.

Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I �� N⊥

k+1σ and there exists C⊥ ∈ N⊥
k+1σ such that I �� C⊥. If C⊥ is not

an instance of C1 or C2, then C⊥ ∈ N⊥
k σ. Thus, I �� N⊥

k σ. Otherwise, assume
C1τ1 . . . , C1τm and C2ρ1, . . . , C2ρn are the only clauses inN⊥

k σ false under I. Let
I ′ := I \ {S(x)τ1, . . . , S(x)τm} ∪ {S(s)ρ1, . . . , S(s)ρn}, i.e., we change the truth
value for S-atoms such that the clauses unsatisfied under I are satisfied under
I ′. Because I and I ′ only differ on S-atoms, there exists a clause D ∈ N⊥

k σ
that is false under I ′ and contains an S-atom. Let D = C1σ

′. Since I � D,
S(x)σ′ was added to I ′ by some clause C2ρj , where S(s)ρj = S(x)σ′. Let R
be the resolvent of C2ρj and C1σ

′ on S(s)ρj and S(x)σ′. Then, I �� R because
I �� C2ρj and I ∪ {S(s)ρj} �� C1σ

′. Thus, I �� N⊥
k σ. For D = C2σ

′, the proof is
analogous. Therefore, N⊥

k is a conflicting core of Nk. �

Because the Horn transformation only keeps a single literal per non-Horn

clause, a single conflicting core corresponds to an incomplete proof of the original

First-Order Logic Theorem Proving and Model Building via Approximation 93

problem. For example, if the clause → E1, E2 is approximated as E1 and a proof
uses E1σ and E1τ , then repeating the refutation with → E1, E2 leads to the
clause → E2σ,E2τ instead of ⊥.

Without loss of generality and to ease the below arguments, we assume that
any non-Horn clause has exactly two positive literals: Γ → E1, E2. Any clause
with more positive literals is preprocessed by renaming pairs of positive literals
using fresh predicates.

For the lifting, we require that Γ → E1, E2 was approximated both ways
resulting in an approximation with Γ → E1 and another with Γ → E2. If
neither approximation is satisfiable, there exist conflicting cores for both. From
each core, all instances (Γ → E1)τi and (Γ → E2)ρj are replaced by a sort of
Cartesian product: Γτi, Γρj → E1τi, E2ρj . Lifting succeeds if all products are
instances of the original clause Γ → E1, E2 modulo condensation.

For example, let N = {P (x), Q(y); Q(a), Q(b) →; P (a) →}. Its two Horn
transformations are {P (x); Q(a), Q(b) →; P (a) →} and {Q(y); Q(a), Q(b) →;
P (a) →}. N⊥

1 = {P (a); P (a) →} and N⊥
2 = {Q(a), Q(b) →; Q(a); Q(b)} are

respective conflicting cores. By combining them, we getN⊥ = {P (a), Q(a);P (a),
Q(b); P (a) →;Q(a), Q(b) →}, a conflicting core of N .

Lemma 12 (Lifting the Horn Transformation). Let Nk = N ∪ {C} ⇒HO

N ∪ {C1} and Nk ⇒HO N ∪ {C2} where C = Γ → E1, E2, C1 = Γ → E1

and C2 = Γ → E2. Respectively, let N⊥
1 and N⊥

2 be their conflicting cores,
and C1τ1, . . . , C1τm and C2ρ1, . . . , C2ρn be all clauses in N⊥

1 and N⊥
2 that are

instances of C1 and C2. Define NH = {Γτi, Γρj → E1τi, E2ρj | 1 ≤ i ≤ m, 1 ≤
j ≤ n}. If every clause in NH is an instance of C modulo condensation, then
N⊥

k = N⊥
1 \ {C1τ1, . . . , C1τm} ∪ N⊥

2 \ {C2ρ1, . . . , C2ρn} ∪ NH is a conflicting
core of Nk.

Proof. Let σ be any grounding substitution and I be any interpretation. Then,
I �� N⊥

1 σ and I �� N⊥
2 σ. There exist C⊥

1 ∈ N⊥
1 and C⊥

2 ∈ N⊥
2 such that I �� C⊥

1

and I �� C⊥
2 . If C⊥

l is not an instance of Cl for some l, then C⊥
l ∈ N⊥

k σ. Thus,
I �� N⊥

k σ. Otherwise, C⊥
1 = C1τiσ and C⊥

2 = C2ρjσ for some i and j. Then,
I �� (Γτi, Γρj → E1τi, E2ρj)σ, which is in NHσ. Thus, I �� N⊥

k σ. Therefore, N⊥
k

is a conflicting core of Nk. �

Lastly, there exists a special case, where a single core is sufficient. If the core

is a conflicting core for each transformation case, then each instance only needs
to be combined with itself, which guarantees a successful lifting. For example,
let N = {P (a, b) →; P (x, b), P (a, y)}. Then N1 = {P (a, b) →; P (x, b)} and
N2 = {P (a, b) →; P (a, y)} are Horn transformations of N . N⊥ = {P (a, b) →;
P (a, b)} is a conflicting core of both N1 and N2. The lifting to N⊥ = {P (a, b) →;
P (a, b), P (a, b)} is a conflicting core of N .

Since the Monadic transformation is satisfiability preserving, lifting always
succeeds by replacing any T (fP (t1, . . . , tn)) atoms in the core by P (t1, . . . , tn).
For example, let N = {P (x, x′); P (y, a), P (z, b) →}. Then N ′ = {T (fP (x, x′));
T (fP (y, a)), T (fP (z, b)) →} is a Monadic transformation of N and a conflicting
core is N ′⊥ = {T (fP (y, a)); T (fP (z, b)); T (fP (y, a)), T (fP (z, b)) →}. Reverting

94 A. Teucke and C. Weidenbach

the atoms gives N⊥ = {P (y, a); P (z, b); P (y, a), P (z, b) →}, a conflicting core
of N .

Lemma 13 (Lifting the Monadic Transformation). Let N ⇒MO μP (N)
where P is a non monadic predicate in N . If N⊥ is a conflicting core of μP (N)
then μ−1

P (N⊥) is a conflicting core of N .

By definition, if N⊥ is a conflicting core of N , then N⊥τ is also a conflicting
core ofN for any τ . Sometimes a conflicting core, where no lifting lemma applies,
can be instantiated into a core, where one does. This then still implies a successful
lifting.

For example, let N = {P (x, x); P (y, a), P (z, b) →}. Then N ′ = {P (x, x′);
P (y, a), P (z, b) →} is a Linear transformation of N and and N ′⊥ = {P (y, a);
P (b, b); P (y, a), P (b, b) →} is a conflicting core of N ′. Because for P (y, a) =
P (x, x′)σ, xσ = y, x′σ = a, Lemma 10 is not applicable. However, Lemma 10
can be applied on N⊥{y �→ a} = {P (a, a); P (b, b); P (a, a), P (b, b) →}.

4 Approximation Refinement

In the previous section, we have presented the lifting process. If, however, in
one of the lifting steps the conditions of the corresponding lemma cannot be
met, lifting fails. A failed lifting lemma always means that some approximated
clause is not an instance of the parent clause in a transformation step. Because
the clauses also have overlapping skeleton term structures, there exists at least
one variable in the original clause that the approximation instantiates twice in
a non-unifiable way. This results in two conflicting substitutions.

For example, let N = {P (x, x); P (y, a), P (z, b) →} and N ′ = {P (x, x′);
P (y, a), P (z, b) →}, its Linear transformation. {P (a, a), P (a, b) →; P (a, a);
P (a, b)} is a ground conflicting core of N ′. Because P (x, x) and P (a, b) cannot
be unified, lifting fails. {x �→ a} and {x �→ b} are the conflicting substitutions.

The refinement then always replaces the original clause in N with a set of
specific instances, which are determined by the conflicting substitutions.

Definition 14 (Specific Instances). Let C be a clause and σ1 and σ2 be
two substitutions such that the respective literals in Cσ1 and Cσ2 cannot be
simultaneously unified. Then, the specific instances of C with respect to σ1 and
σ2 are clauses Cτ1, . . . , Cτn such that (i) any ground instance of C is an instance
of some Cτi and (ii) no Cτi shares ground instances with both Cσ1 and Cσ2.

The existence of a finite set of specific instances is guaranteed for conflicting
substitutions [7]. The first property ensures that if we replace C in N with
specific instances, the models of N stay the same. The second property ensures
that the approximation of the refined set no longer produces the same conflict
because by Lemma 8 the changes to the skeleton term structure carry over to
the approximation.

Continuing from the previous example. The specific instances of P (x, x) are
P (a, a) and P (b, b). In the approximation of the refinement N ′′ = {P (a, a);

First-Order Logic Theorem Proving and Model Building via Approximation 95

P (b, b); P (y, a), P (z, b) →}, the conflicting clause P (a, b) is not an instance any-
more. Hence, the previous conflicting core N⊥ cannot be found again. The re-
finement loop then restarts with the refined clause set.

Since lifting fails at some step except for Monadic transformation, we describe
the refinement for Linear, Shallow and Horn transformation separately.

A Linear transformation enables more instantiations of the approximated
clause than the original, that is, two variables that were the same can now
be instantiated differently.

Definition 15 (Linear Approximation Refinement). Let N ⇒∗
APR

Nk ⇒LI Nk+1 where C = Γ → E[x]p,q is approximated by C1 = Γ{x �→ x′}, Γ →
E[x′]q. Let N⊥

k+1 be a conflicting core of Nk+1 with some C1σ ∈ N⊥
k+1 such

that xσ and x′σ cannot be unified. Let C ∈ N be the ancestor of C′ ∈ Nk+1.
N \ {C} ∪ {Cτ1, . . . , Cτn} is the linear approximation refinement of N , where
the Cτi are the specific instances of C with respect to the substitutions {x �→ xσ}
and {x �→ x′σ}.

The Shallow transformation is similar to the Linear transformation, because
it also creates cases where the same variable is instantiated differently. As men-
tioned before, the Shallow transformation can always be lifted if the set of com-
mon variables vars(Γ2, s) ∩ vars(Γ1, E[x]p) is empty. Otherwise, each variable in
the intersection potentially introduces instantiations that are not liftable.

For example, let N = {P (f(x, g(x)));P (f(a, g(b)) →} and N ′ = {S(g(y));
S(z) → P (f(x, z)); P (f(a, g(b)) →}, the Shallow transformation of N . {S(g(b));
S(g(b)) → P (f(a, g(b))); P (f(a, g(b)) →} is a conflicting core of N ′. Because
P (f(a, g(b))) and P (f(x, g(x))) cannot be unified, lifting fails. {x �→ a} and {x �→
b} are the conflicting substitutions. The specific instances of P (f(x, g(x))) are
P (f(f(x, y), g(f(x, y)))); P (f(g(x), g(g(x)))); P (f(a, g(a))) and P (f(b, g(b))). In
the approximation of the refinement, the conflicting clause P (f(a, g(b))) is not
a possible resolvent anymore.

Definition 16 (Shallow Approximation Refinement). Let N ⇒∗
APR Nk

⇒SH Nk+1 where C = Γ → E[s]p is approximated by C1 = S(x), Γ1 → E[x]p
and C2 = Γ2 → S(s). Let N⊥

k+1 be a conflicting core of Nk+1 with C1σ1 ∈ N⊥
k+1

and C2σ2 ∈ N⊥
k+1 such that their resolvent CR is not unifiable with C . Let C ∈ N

be the ancestor of C1. N \ {C} ∪ {Cτ1, . . . , Cτn} is the shallow approximation
refinement of N , where the Cτi are the specific instances of C with respect to
the substitutions σ1 and σ2.

The Horn approximation refinement works in an analogous way to the Shallow
approximation refinement with the difference that the two clauses come from two
conflicting cores instead of the same. Similarly, if the set of common variables
vars(E1) ∩ vars(E2) is not empty, each variable in the intersection potentially
introduces instantiations that are not liftable.

For example, let N = {P (x), Q(x); P (a) →;P (b) →;Q(a), Q(b) →}. {P (x);
P (a) →;P (b) →;Q(a), Q(b) →} and {Q(y); P (a) →; P (b) →; Q(a), Q(b) →} are
the Horn transformations of N . N⊥

1 = {P (a); P (a) →} and N⊥
2 = {Q(a);Q(b);

96 A. Teucke and C. Weidenbach

Q(a), Q(b) →} are respective conflicting cores. Because the product P (a), Q(b)
cannot be unified with P (x), Q(x), lifting fails. {x �→ a} and {x �→ b} are
the conflicting substitutions. The specific instances of P (x), Q(x) are P (a), Q(a)
and P (b), Q(b). In the approximation of the refinement, the conflicting clause
P (a), Q(b) is not a possible product anymore.

Definition 17 (Horn Approximation Refinement). Let N ⇒∗
APR Nk =

N ′ ∪ {C}, Nk ⇒HO N ′ ∪ {C1} and Nk ⇒HO N ′ ∪ {C2} where C = Γ → E1, E2,
C1 = Γ → E1 and C2 = Γ → E2. Let N⊥

1 and N⊥
2 be conflicting cores of

each case respectively with C1σ1 ∈ N⊥
1 and C2σ2 ∈ N⊥

2 such that their product
is not unifiable with C. Let C ∈ N be the ancestor of C1 and C2. The Horn
approximation refinement of N is the clause set N \{C}∪{Cτ1, . . . , Cτn} where
the Cτi are the specific instances of C with respect to the substitutions σ1 and
σ2.

While the lifting lemmas require instances, the refinements check for unifia-
bility. If all clauses are unifiable, but the respective lifting lemma does not apply
because some clause C is not an instance, apply the most general unifier for C
to the core. Repeat until either the lifting lemma applies or some instance is not
unifiable.

Theorem 18 (Completeness). Let N0 be an unsatisfiable clause set and Nk

its MSLH approximation. Then, there exists a conflicting core of Nk that can be
lifted to N0.

Proof. by induction on the number k of approximation steps. The case k = 0 is
obvious. For k > 0, let N0 ⇒∗

APR Nk−1 ⇒APR Nk. By the inductive hypothesis,
there is a conflicting core N⊥

k−1 of Nk−1 which can be lifted to N0. The final
approximation rule application is either a Linear, a Shallow, a Horn or a Monadic
transformation, considered below by case analysis.

Linear Case. LetNk−1 = N ′∪{C} ⇒LI Nk = N ′∪{C′} with C = Γ → E[x]p,q
and C′ = Γ{x �→ x′}, Γ → E[x′]q. Let Cσ1, . . . , Cσn be the instances of C in
N⊥

k−1. N
⊥
k−1 \ {Cσ1, . . . , Cσn}∪ {C′{x′ �→ x}σj | 1 ≤ j ≤ n} is a conflicting core

of Nk. By Lemma 10, it can be lifted to N⊥
k−1 and by the inductive hypothesis,

can be lifted to a conflicting core of N0.
Shallow Case. Let N ⇒∗

APR Nk−1 = N ′ ∪ {C} ⇒SH Nk = N ′ ∪ {C1, C2} with
C = Γ → E[s]p, C1 = S(x), Γ1 → E[x]p and C2 = Γ2 → S(s). Assume Cσ is
the only instances of C in N⊥

k−1. N
⊥
k = N⊥

k−1 \ {Cσ} ∪ {(C1{x �→ s}σ,C2σ}
is a conflicting core of Nk. By Lemma 11, N⊥

k can be lifted to N⊥
k−1. Now, let

Cσ1, . . . , Cσn be the instances of C in N⊥
k−1 with n > 1. Let C0 ∈ N0 be the

ancestor of C and N ′
0 = N0 \{C0}∪{C0σ1, . . . , C0σn}. N⊥

k−1 is also a conflicting
core for the corresponding approximation N ′

k = N ′ ∪ {Cσ1, . . . , Cσn}. For each
Cσi, N

⊥
k−1 contains only one instance such that the above case applies. Thus,

there is a core for approximation of each Cσi that can be lifted to N⊥
k−1.

Horn Case. Let Nk−1 = N ′ ∪ {C} with C = Γ → E1, E2. Assume Cσ is
the only instances of C in N⊥

k−1. N⊥
k1

= N⊥
k−1 \ {Cσ} ∪ {(Γ → E1)σ} is a

conflicting core of Nk1 = N ′ ∪ {(Γ → E1)}. N⊥
k2
, constructed analogously for

First-Order Logic Theorem Proving and Model Building via Approximation 97

Γ → E2, is a conflicting core of Nk2 . By Lemma 12, N⊥
k1

and N⊥
k2

can be lifted

to N⊥
k−1.Giunchiglia Now, let Cσ1, . . . , Cσn be the instances of C in N⊥

k−1 with
n > 1. Let C0 ∈ N0 be the ancestor of C and N ′

0 = N0\{C0}∪{C0σ1, . . . , C0σn}.
N⊥

k−1 is also a conflicting core for the corresponding approximation N ′
k = N ′ ∪

{Cσ1, . . . , Cσn}. For each Cσi, N
⊥
k−1 contains only one instance such that the

above case applies. Thus, there are cores for each possible approximation of the
Cσi such that they can be lifted to N⊥

k−1.
Monadic Case. Let Nk−1 ⇒MO Nk = μP (Nk−1) where P is a non-monadic

predicate in Nk−1 N⊥
k = μP (N

⊥
k−1) is a conflicting core of Nk. By Lemma 13,

N⊥
k can be lifted to N⊥

k−1. �

The above lemma considers static completeness, i.e., it does not tell how the

conflicting core that can eventually be lifted is found. One way is to enumerate
all refutations of Nk in a fair way. A straightforward fairness criterion is to
enumerate the refutations by increasing term depth of the clauses used in the
refutation. Since the decision procedure on the MSLH fragment [14] generates
only finitely many different non-redundant clauses not exceeding a concrete term
depth with respect to the renaming of variables, eventually the liftable refutation
will be generated.

5 Summary

We have presented a sound and complete calculus for first-order logic without
equality based on an over-approximation/refinement loop. The refinement by
instantiation introduced in Section 4 may generate up to exponentially many
clauses in the depth of the terms that caused a lifting step to fail. The Horn
approximation together with its lifting cannot make use of dependencies between
the split positive literals. Although worst case both problems cannot be avoided
by any first-order calculus, we would like to have more flexibility in the over-
approximation/refinement loop to deal with them.

Consider the example N = {P (x, z), Q(y, z) → R(x, f(y)); P (a, a); P (a, b);
Q(b, a), Q(b, b); R(a, f(b)) →} and N ′ = {Q(y, z) → S(f(y)); S(y), P (x, z) →
R(x, y); P (a, a); P (a, b); Q(b, a), Q(b, b); R(a, f(b)) →}, a Shallow transforma-
tion of N . {S(f(b)), P (a, a) → R(a, f(b)); Q(b, a) → S(f(b)); S(f(b)), P (a, b) →
R(a, f(b)); Q(b, b) → S(f(b)); P (a, a); P (a, b); Q(b, a), Q(b, b); R(a, f(b)) →} is
a conflicting core of N ′. Lifting it fails because the resolvents P (a, a), Q(b, b) →
R(a, f(b)) and P (a, b), Q(b, a) → R(a, f(b)) are not instances of P (x, z), Q(y, z)
→ R(x, f(y)). However, if we ignore these two resolvents the remaining resolvents
P (a, a), Q(b, a) → R(a, f(b)) and P (a, b), Q(b, b) → R(a, f(b)) still constitute
the conflicting core {P (a, a), Q(b, a) → R(a, f(b)); P (a, b), Q(b, b) → R(a, f(b));
P (a, a); P (a, b); Q(b, a), Q(b, b); R(a, f(b)) →} of N . So the lifting condition for
the Shallow transformation can be refined that way. Even though Lemma 11
fails, not all conflicting clauses are actually required for lifting. A similar situ-
ation can occur during Horn lifting, Lemma 12, where not all combinations of
the clauses from the two branches are instances of the split clause, but a subset
of the combinations that are instances still build a conflicting core.

98 A. Teucke and C. Weidenbach

While the calculus describes lifting in a step by step approach, in practice
the conditions for Linear and Shallow lifting can be checked on the fly. While
constructing the conflicting core the instantiations of linearized variables can
be immediately checked. Analogously, the above suggested refinement for the
Shallow transformation can be checked while constructing the conflicting core.
In particular, by considering the resolution inferences on the freshly introduced
S-atoms.

While the MSLH fragment requires Horn clauses, there exist other fragments
that do not. Without the Horn restriction, the over-approximation/refinement
loop can likely handle non-Horn clauses in a more flexible way than the fixed
exponential cost in the number of Horn transformations of our current Horn
lifting. However, alternative decidable non-Horn fragments have to support via
approximation the presented lifting and refinement principle. We are currently
looking for such alternative fragments.

In “A theory of abstractions” [3] Giunchiglia andWalsh do not define an actual
approximation but a general framework to classify and compare approximations,
which are here called abstractions. They informally define abstractions as “the
process of mapping a representations of a problem” that “helps deal with the
problem in the original search space by preserving certain desirable properties”
and “is simpler to handle”. In their framework an abstraction is a mapping
between formal systems, i.e., a triple of a language, axioms and deduction rules,
which satisfy one of the following conditions: An increasing abstraction (TI) f
maps theorems only to theorems, i.e., if α is a theorem, then f(α) is also a
theorem, while a decreasing abstraction (TD) maps only theorems to theorems,
i.e., if f(α) is a theorem, then α was also a theorem. Furthermore, they define
dual definitions for refutations, where not theorems but formulas that make
a formal system inconsistent are considered. An increasing abstraction (NTI)
then maps inconsistent formulas only to inconsistent formulas and vice versa for
decreasing abstractions (NTD).

They list several examples of abstractions such as ABSTRIPS by Sacer-
dott [11], a GPS planning method by Newell and Simon [8], Plaisted’s theory of
abstractions [10], propositional abstractions exemplified by Giunchiglia [2], pred-
icate abstractions by Plaisted [10] and Tenenberg [13], domain abstractions by
Hobbs [4] and Imielinski [5] and ground abstractions introduced by Plaisted [10].
With respect to their notions the approximation described in this paper is an
abstraction where the desirable property is the over-approximation and the de-
cidability of the fragment makes it simpler to handle. More specifically in the
context of [3] the approximation is an NTI abstraction for refutation systems,
i.e., it is an abstraction that preserves inconsistency of the original.

In Plaisted [10] three classes of abstractions are defined. The first two are
ordinary and weak abstractions, which share the condition that if C subsumes
D then every abstraction of D is subsumed by some abstraction of C. However,
our approximation falls in neither class as it violates this condition via the Horn
approximation. For example Q subsumes P,Q, but the Horn approximation P
of P,Q is not subsumed by any approximation of Q. The third class are general-

First-Order Logic Theorem Proving and Model Building via Approximation 99

ization functions, which do not change the problem but abstract the resolution
rule of inference.

The theorem prover iProver uses the Inst-Gen [6] method, where a first-order
problem is abstracted with a SAT problem by replacing every variable by the
fresh constant ⊥. The approximation is solved by a SAT solver and its answer is
lifted to the original by equating abstracted terms with the set they represent,
e.g., if P (⊥) is true in a model returned by the SAT solver, then all instantia-
tions of the original P (x) are considered true as well. Inst-Gen abstracts using
an under-approximation of the original clause set. In case the lifting of the sat-
isfying model is inconsistent, the clash is resolved by appropriately instantiating
the involved clauses, which mimics an inference step. This is the dual of our
method with the roles of satisfiability and unsatisfiability switched. A further
difference, however, is that Inst-Gen only finds finite models after approxima-
tion, while our approximation also discovers infinite models. For example the
simple problem {P (a), ¬P (f(a)), P (x) → P (f(f(x))), P (f(f(x))) → P (x)} has
the satisfying model where P is the set of even numbers. However, iProver’s
approximation can never return such a model as any P (fn(⊥)) will necessarily
abstract both true and false atoms and therefore instantiate new clauses in-
finitely. Our method on the other hand will produce the approximation {P (a),
¬P (f(a)), S(y) → P (f(y)), P (x) → S(f(x)), P (f(f(x))) → P (x)}, which is
saturated after inferring ¬S(a).

In summary, we have presented the first sound and complete calculus for
first-order logic based on an over-approximation-refinement loop. There is no
implementation so far, but the calculus is at least practically useful if a clause
set is close to the MSLH fragment in the sense that only a few refinement loops
are needed for finding the model or a liftable refutation. The approximation
relation is already implemented and applying it to all satisfiable non-equality
problems in the TPTP version 6.1 [12] results in a success rate of 38%, i.e., for
all these problems the approximation is not too crude and directly delivers the
result without any needed refinement.

Our result is also a first step towards a model-based guidance of first-order
reasoning. We proved that a model of the approximated clause set is also a
model for the original clause set. For model guidance, we need this property
also for partial models. For example, in the sense that if a clause is false with
respect to a partial model operator on the original clause set, it is also false with
respect to a partial model operator on the approximated clause set. This property
does not hold for the standard superposition partial model operator applied
to the MSLH approximation suggested in this paper. It is subject to future
research whether there exist partial model operators that both fit a suitable
approximation resulting in a decidable fragment and preserve false clauses over
the approximation.

Acknowledgments. We thank our reviewers for their helpful and constructive
comments.

100 A. Teucke and C. Weidenbach

References

1. Baeten, J.C.M., Bergstra, J.A., Klop, J.W., Weijland, W.P.: Term-rewriting sys-
tems with rule priorities. Theor. Comput. Sci. 67(2&3), 283–301 (1989)

2. Giunchiglia, F., Giunchiglia, E.: Building complex derived inference rules: A decider
for the class of prenex universal-existential formulas. In: ECAI, pp. 607–609 (1988)

3. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artif. Intell. 57(2–3), 323–389
(1992)

4. Hobbs, J.R.: Granularity. In: Proceedings of the Ninth International Joint Confer-
ence on Artificial Intelligence, pp. 432–435. Morgan Kaufmann (1985)

5. Imielinski, T.: Domain abstraction and limited reasoning. In: Proceedings of the
10th International Joint Conference on Artificial Intelligence, vol. 2, pp. 997–1003.
Morgan Kaufmann Publishers Inc., San Francisco (1987)

6. Korovin, K.: Inst-Gen - A modular approach to instantiation-based automated
reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS,
vol. 7797, pp. 239–270. Springer, Heidelberg (2013)

7. Lassez, J.-L., Marriott, K.: Explicit representation of terms defined by counter
examples. J. Autom. Reason. 3(3), 301–317 (1987)

8. Newell, A.: Human Problem Solving. Prentice-Hall, Inc., Upper Saddle River (1972)
9. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving sat and sat modulo theories:

From an abstract davis–putnam–logemann–loveland procedure to dpll(t). Journal
of the ACM 53, 937–977 (2006)

10. Plaisted, D.A.: Theorem proving with abstraction. Artif. Intell. 16(1), 47–108
(1981)

11. Sacerdott, E.D.: Planning in a hierarchy of abstraction spaces. In: Proceedings of
the 3rd International Joint Conference on Artificial Intelligence, IJCAI 1973, pp.
412–422. Morgan Kaufmann Publishers Inc., San Francisco (1973)

12. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

13. Tenenberg, J.: Preserving consistency across abstraction mappings. In: Proceedings
of the 10th IJCAI, International Joint Conference on Artificial Intelligence, pp.
1011–1014 (1987)

14. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328.
Springer, Heidelberg (1999)

15. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, chapter 27, pp.
1965–2012. Elsevier (2001)

An Expressive Model for Instance

Decomposition Based Parallel SAT Solvers

Tobias Philipp

Knowledge Representation and Reasoning Group
Technische Universität Dresden, 01062 Dresden, Germany

Abstract. SAT solvers are highly efficient programs that decide the
satisfiability problem for propositional formulas in conjunctive normal
form. Contemporary SAT solvers combine many advanced techniques
such as clause sharing and inprocessing. Clause sharing is a form of
cooperation in parallel SAT solvers based on clause learning, whereas
inprocessing simplifies formulas in a satisfiability-preserving way. In this
paper, we present the instance decomposition formalism ID that models
parallel SAT solvers with label-based clause sharing and inprocessing.
We formally prove soundness of ID and show that the concept of labels
can be used to ensure satisfiability-preserving operations. Moreover, we
develop a new proof format for SAT solvers based on this approach,
which is derived from ID.

1 Introduction

The satisfiability problem (SAT) is one of the most prominent problems in the-
oretical computer science and has many applications in software verification [6],
planning [29, 41], bioinformatics [31] and scheduling [15]. Modern SAT solvers
based on the DPLL algorithm [8] use many advanced techniques like clause learn-
ing [36], non-chronological backtracking [45], restarts [14], clause removal [2,10],
preprocessing [9,32], inprocessing [4,28,44], efficient data structures [24,38] and
advanced decision heuristics [1,2,20,38]. These improvements in the last decades
led to a spectacular performance of conflict-driven satisfiability solvers.

Parallelization is a promising approach to solve hard instances (see [37, 43]
for an overview of parallel SAT solving). In this paper, we consider the instance
decomposition approach [21], that decomposes the solution space, i.e. the set of
models, by creating a sequence of formulas F1, . . . , Fn for a given input formula F
such that a model of the formula Fi is a model of the input formula F . Moreover,
if the formulas F1, . . . , Fn are unsatisfiable, then F is unsatisfiable as well. The
formulas F1, . . . , Fn are then solved in parallel. This means that the solvers are
competing in finding a model of the input formula, and cooperating in proving its
unsatisfiability. Figure 1 illustrates this form of cooperation: The input formula
F is divided into the formula F0 and F1 by assigning the propositional variables
x to true and false, respectively. The assignment of variables to truth values is
realized by adding the facts x and ¬x, respectively, to the formulas. The formula
F1 is again divided into F10 and F11 by assigning the variables y to true and false

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 101–116, 2015.
DOI: 10.1007/978-3-319-24246-0_7

102 T. Philipp

F

F0

x

F1

F10

y

F11

y

x
Solver1

Solver2

Solver3

Solver4

Solver5

F ′

F ′
0

F ′
1

F ′
10

F ′
11

UNSAT

UNSAT

UNSAT

Fig. 1. Illustration of a state in an instance decomposition based SAT solver, where
the input formula F is distributed among five solver incarnations together with the
partitioning constraints. Solver2 and Solver3 have both proven the unsatisfiability of
their assigned formulas, and propagate these results to the root solver, which then
reports UNSAT.

respectively. In the considered case, Solver 2 solves F0 and Solver 3 solves F1

and both terminate in the answer that their assigned formulas are unsatisfiable.
From these results, we can infer that our input formula F is unsatisfiable and we
can terminate. Instance decomposition is applied in the solvers PCASSO [26] and
Treengeling [4], which have achieved impressive performance, showing that
the approach can compete with state-of-the-art parallel SAT solvers. According
to [33], instance decomposition is the approach that scales best.

An additional improvement in PCASSO [26] is clause sharing among all solver
incarnations by using position-based tagging [30]. In general, learned clauses may
depend on the partitioning constraints, and in this case clause sharing can make
a satisfiable formula unsatisfiable. However, in position-based tagging, clause
sharing is restricted to clauses that are labeled as safe, i.e. those that do not
depend on partition constraints. In particular, when a solver working on the
formula Fi imports a safe clause C, it is guaranteed that the formula Fi entails
the clause C. However, formula simplification techniques such as blocked clause
elimination [27], variable elimination [9,46], and equivalence elimination [19] do
not preserve logical equivalence. Therefore, sharing safe clauses among solver
incarnations does not preserve equivalence any more, which was the idea of
safe clauses [30]. Consequently, solvers like PCASSO do not apply any formula
simplification techniques.

We propose to formalize the computations performed in complex SAT solvers
in a similar way than in [34] to understand and to reason about these systems.
Moreover, we can implement certifying algorithms, that compute witnesses of
the results, based on our formalism [13,17]. Such witnesses received attention as
SAT solvers can be buggy [7], and recent SAT competitions included certified
UNSAT tracks.

An Expressive Model for Instance Decomposition Based Parallel SAT Solvers 103

Our contributions are:

– We have developed the instance decomposition model ID that models parallel
SAT solvers based on the instance decomposition approach with label-based
clause sharing and inprocessing. In particular, we have generalized the notion
of safe clauses such that we can include clause elimination procedures that
change the semantics of formulas. To the best of our knowledge, combining
clause sharing and inprocessing is new in this approach.

– We have shown soundness of our model.
– Our formalism can be used as an execution trace of parallel SAT solvers,

which is useful for certifying unsatisfiability results. In this paper we pro-
pose a new format based on TraceCheck [5] for unsatisfiability proofs from
parallel SAT solvers based on instance decomposition. The format is based
on the notion of labeled, extended resolution refutations that merge the proofs
constructed by the parallel solvers into a single derivation.

Structure. We present propositional logic, partition and label functions in Sect. 2.
In Sect. 3, we develop the formalism ID and afterwards our new proof format in
Sect. 4. Finally, we conclude in Sect. 5.

2 Background

2.1 The Satisfiability Problem

We assume a fixed infinite set V of Boolean variables. A literal L is a variable
A (positive literal) or a negated variable ¬A (negative literal). The complement
L of a positive (negative, resp.) literal L is the negative (positive, resp.) literal
with the same variable as L. In SAT, we deal with finite clause multisets called
formulas representing a generalized conjunction. Each clause C is a finite set
of literals that represents a generalized disjunction. The set of all formulas is
denoted with L.

The semantics of formulas is built on interpretations. An interpretation I is a
set of literals that for all variables A contains exactly one of A or ¬A, and can
be understood as a mapping from the set V of all Boolean variables to the set
{�,⊥} of truth values.

The interpretation I satisfies the literal L, in symbols, I |= L, if and only if
L ∈ I. It satisfies the clause C, in symbols I |= C, if and only if there is a literal
L ∈ C such that I |= L. For a formula F , the interpretation I satisfies the for-
mula F , in symbols I |= F , if and only if for every clause C ∈ F we find that the
interpretation I satisfies the clause C. A model I of a formula F is an interpreta-
tion I that satisfies the formula F , i.e. I |= F . If there is such an interpretation
I, the formula F is satisfiable. Otherwise, the formula F is unsatisfiable. Given a
formula F , the satisfiability problem (SAT) is the problem whether the formula
F is satisfiable. Two formulas F and F ′ are equisatisfiable, in symbols F ≡sat F

′,
if and only if either both are satisfiable or both are unsatisfiable. In this paper,
we will often relate formulas by the entailment relation: The formula F entails

104 T. Philipp

the formula F ′ if and only if every model of the formula F is a model of the
formula F ′. Two formulas F and F ′ are equivalent, in symbols F ≡ F ′, if and
only if the formula F entails the formula F ′ and vice versa. The solution space
of a formula F , denoted by SolutionSpace(F), is the set of models of F .

2.2 Partition Functions in SAT Solvers

Partition functions are the core of instance decomposition based parallel SAT
solvers. XOR and scattering functions have been proposed for instance decom-
positions, and are recursively applied [22]. The XOR function of the formula F
and a sequence of literals L1, . . . , Ln are the formulas (F ∪̇Feven) and (F ∪̇Fodd),
where Feven (Fodd) is a formula that is satisfied by an interpretation I iff the
number of literals in L1, . . . , Ln mapped to true under I is even (odd, resp.).
For a sequence of conjunctions of literals Ti, i ∈ {1, . . . , n − 1}, the scattering
function [21] produces the following formulas:

Fi =

⎧⎨
⎩

F ∪̇T1 if i = 1

F ∪̇ {̇T1, . . . , Ti−1, Ti}̇ if 1 < i < n

F ∪̇ {̇T1, . . . , Tn−1}̇ if i = n

If the set of variables occurring in the conjunction of literals Ti are pairwise dis-
joint, then the scattering function is a tabu scattering function. Tabu scattering
is used in the parallel SAT solver PCASSO [26]. XOR and scattering functions
are subsumed by the following definition:

Definition 1. A partition function is a function pn(F) = (F1, . . . , Fn) where
n > 0 and F ≡ F1 ∨ . . .∨Fn. The set of all plain partitions of formulas PlainPa
is defined as

PlainPa = {pn(F) | F is a formula and pn is a partition}

The set of all recursive partitions of formulas RecPa is inductively defined as
follows: if F is a formula and pn is a partition, then pn(F) ∈ RecPa. If we know
(F1, . . . , Fn) ∈ RecPa and pm(Fi) = (G1, . . . , Gm) is a partition function, then
(F1, . . . , Fi−1, Fi, G1, . . . , Gm, Fi+1, . . . , Fn) ∈ RecPa. �	
Partitions provide a way to cooperate in deciding the satisfiability of a formula:
A cooperation tree for F0, . . . , Fn is a binary relation E ⊆ {0, . . . , n}×{0, . . . , n}
such that 1. the formula F0 is satisfiable if and only if the formula Fi is satisfiable
for some i ∈ {1, . . . , n}, and 2. the formula Fi is satisfiable if and only if the
formula Fj is satisfiable for some j ∈ {1, . . . , n} with (i, j) ∈ E and Fi is not
a leaf node, i.e. there is at least one j such that (i, j) ∈ E. The first condition
corresponds to the intuition that the input formula is the root of the tree.

Example 1 (Partition Functions). Consider the two tabu scattering functions

p2(F) = ((F ∪̇ {̇{x}}̇), (F ∪̇ {̇{x}}̇)) and p′2(F) = ((F ∪̇ {̇{y}}̇), (F ∪̇ {̇{y}}̇)),
and the formulas F, F0, F1, F10, F11 where p2(F) = (F0, F1) and additionally

An Expressive Model for Instance Decomposition Based Parallel SAT Solvers 105

p′2(F1) = (F10, F11). The partition functions compute the formulas below, form-
ing a tree-shaped structure of these formulas:

Fε = {̇{x, y}}̇
F0 = {̇{x, y}, {x}}̇
F1 = {̇{x, y}, {x}}̇
F10 = {̇{x, y}, {x}, {y}}̇
F11 = {̇{x, y}, {x}, {y}}̇

F

F0

x

F1

F10

y

F11

y

x

Proposition 1 below presents properties of partition functions: Consider a for-
mula F and a partitioning function pn(F) = (F1, . . . , Fn). If the formula Fi is
satisfiable, then we know that the formula F is satisfiable (Prop. 1.1). Likewise,
the formulas F1, . . . , Fn are unsatisfiable if and only if the formula F is unsatisfi-
able (Prop. 1.2). The formula Fi entails the input formula F (Prop. 1.3) for every
i ∈ {1, . . . , n} and the union of the solution space of the formulas Fi is the solu-
tion space of the input formula F (Prop. 1.4). Proposition 1.5 states that every
partition function induces a cooperation tree. The Prop. 1.6, 1.7, and 1.8 state
that scattering functions, tabu scattering functions and XOR functions are par-
tition functions. Moreover, recursively defined partition are partition functions
(Prop. 1.9). In particular this means that we can model the iterative partitioning
approach, if we restrict ourselves to plain partition functions.

Proposition 1 (Partition Functions). Let pn be a partition function and
F, F1, . . . , Fn formulas such that pn(F) = (F1, . . . , Fn).

Basic Properties
1. If Fi is satisfiable, then F is satisfiable.
2. F is satisfiable iff Fi is satisfiable for some i ∈ {1, . . . , n}.
3. Fi |= F for every i ∈ {1, . . . , n}.
4. SolutionSpace(F1) ∪ . . . ∪ SolutionSpace(Fn) = SolutionSpace(F).
5. {(0, i) | i ∈ {1, . . . , n}} is a cooperation tree for F0, . . . , Fn with F0 = F .

Partition Functions
6. The XOR function is a partitioning function.
7. Scattering functions are partitioning functions.
8. Tabu scattering functions are partitioning functions.
9. Recursive partitions are plain partitions and vice versa: PlainPa = RecPa.

Proof. For details, see [40]. �	

2.3 Label Functions

Label functions provide an efficient way to decide equisatisfiability, and we use
them to control clause sharing. This is important because parallel SAT solvers
share clauses among the solver incarnations if importing shared clauses preserve
satisfiability. We consider a finite set of labels, denoted by Labels.

106 T. Philipp

Definition 2. A label function � is a pair (�C, �F)

�C : N× Clauses �→ 2Labels

�F : N �→ 2Labels

where Clauses is the set of all clauses, and 2Labels is the powerset of the set of
all labels. We typically drop the indices C and F. Let � be a label function, then
�[i, C → L] denotes the label function that behaves like �, but maps (i, C) to
L. �	
Intuitively, a label function � assigns each solver incarnation Solver i a finite set
of labels �(i), and each clause C of the solver incarnation Solver i a finite set
of labels �(i, C). In the sharing model in the next section, we allow Solver i to
import the clause C from the Solver j , if �(Fj , C) ⊆ �(Fi), i.e. if the label of the
clause C is a subset of the label of the solver incarnation Solver i. The Boolean
label function [23] is a simple label function with the two labels safe and unsafe,
and is defined by the formulas of the solver incarnations F1, . . . , Fn as follows:

�(j, C) =

{
{safe} if C ∈ Fi for all i ∈ {1, . . . , n}
{unsafe} otherwise

for all j ∈ {1, . . . , n}

�(i) = {safe} for all i ∈ {1, . . . , n}
Example 2 (Boolean label function). Consider the following two satisfiable for-

mulas F1 = {̇{x, y}, {x}}̇ and F2 = {̇{x, y}, {y}}̇, which are solved by the solver
incarnations Solver 1 and Solver2. Then �C(1, {x, y}) = �C(2, {x, y}) = {safe},
�C(1, x) = �C(2, y) = {unsafe} and �F(1) = �F(2) = {safe}. Since we have
�C(1, {x}) = �C(2, {y}) = {unsafe} the solver incarnation Solver 1 cannot im-
port the clause y from the solver incarnation Solver2 since �C(2, y) = {unsafe}
and {unsafe}
⊆ {safe} = �F(1). Indeed, the formula F1 ∪̇ {̇y}̇ is unsatisfiable. �	
The position-based label function [30] is determined by the tree-like structure
that is obtained by applying the scattering functions iteratively. We represent
the tree-structure of the formulas by the indices: An index is a word w in the
index language L, where L ⊆ Σ∗, and the language L is closed under prefixes,
i.e. whenever ua ∈ L where u ∈ Σ∗ and a ∈ Σ, then u ∈ L. The empty word ε is
contained in every index language L. Initially, we require that Fu ⊆ Fuv holds
for all uv ∈ L for the tree representation, but we do not require that this subset
relation is preserved by computations of the SAT solver. The position-based
label assigns each formula its position in the tree as a label, and each clause the
position of the nearest label of the root:

�(u,C) = v where v is the shortest prefix of u such that C ∈ Fv

�(u) = {v | v is a prefix of u}
Example 3 (Position-based label function). We consider the index language over
the alphabet Σ = {0, 1}. Consider the formulas Fε, F0, F1, F10, F11 and the tree-
shaped structure of these formulas from Example 1:

An Expressive Model for Instance Decomposition Based Parallel SAT Solvers 107

The position-based label function is then:

�F(ε) = {ε} �C(w, {x, y}) = {ε} for w ∈ {0, 1, 10, 11}
�F(0) = {ε, 0} �C(0, {x}) = {0}
�F(1) = {ε, 1} �C(w, {x}) = {1} for w ∈ {1, 10, 11}
�F(10) = {ε, 1, 10} �C(10, {y}) = {10}
�F(11) = {ε, 1, 11} �C(11, {y}) = {11}

The position-based label functions denote clauses as safe for a subtree. �	

We call label functions that support clause sharing as consistent. The idea is
that, given a label function �, and a sequence of formula F1, . . . , Fn, clause
sharing preserves the satisfiability of each formula. A clause C can be shared
from formula Fj to the formula Fi, if �C(j, C) ⊆ �F(i).

Definition 3 (Label Consistency). A label function � is consistent for the
formulas F1, . . . , Fn if and only if for all i ∈ {1, . . . , n} it holds that

Fi ≡sat Fi ∪̇ {̇C ∈ Fj | �C(j, C) ⊆ �F(i), and 1 ≤ j ≤ n}̇.

�	

The following example demonstrates that some label functions are not consistent
for a sequence of formulas:

Example 4. Consider the two satisfiable formulas F1 = {̇{x}}̇ and F2 = {̇{x}}̇,
and the label function � with �(1, {x}) = �(2, {x}) = �(1) = �(2) = ∅. However,
F1
≡sat F1 ∪̇ {̇{x}}̇. Consequently, the label function � is inconsistent for the
formulas F1, F2. �	

Proposition 2 below presents properties of label functions. The addition of
labels for a clause preserves label consistency (Prop. 2.1), and the deletion of a
label of a solver incarnation preserves label consistency Prop. 2.2. Proposition 2.3
states that clause sharing preserves label consistency. Moreover, clause sharing
preserves the satisfiability for consistent label functions (Prop. 2.4). The Boolean
label function and the position-based label function are consistent (Prop. 2.5,
Prop. 2.6). Proposition 2.7 states that resolvents can be added without loosing
label consistency, when the label of the resolvent is equal to the union of the
labels the resolvent depends on. Likewise, we can add the empty clause to a
formula if it is unsatisfiable without loosing label consistency, if the label of the
empty clause is the set of all labels (Prop. 2.8). Clause elimination techniques
preserve label consistency (Prop. 2.9).

Proposition 2. Let F1, . . . , Fn be formulas, � a consistent label function for
F1, . . . , Fn, and L a finite set of labels.

108 T. Philipp

Basic properties
1. If �(i, C) ⊆ L, then �[i, C → L] is consistent for F1, . . . , Fn.
2. If L ⊆ �(i), then �[i → L] is consistent for F1, . . . , Fn.
3. If �(j, C) ⊆ �(i) and C ∈ Fj , then �[i, C → �(j, C)] is consistent for

F1, . . . , Fi−1, Fi ∪̇ {̇C}̇, Fi+1, . . . , Fn.

4. If �(j, C) ⊆ �(i) and C ∈ Fj, then Fi ≡sat Fi ∪̇ {̇C}̇.

Consistent label functions
5. The Boolean label function is consistent.
6. The position-based label function is consistent.

Interplay resolution and consistent label functions
7. If D is a resolvent of C,C′ ∈ Fi, then �[i,D → �(i, C) ∪ �(i, C′)] is con-

sistent for F1, . . . , Fi−1, Fi ∪̇ {̇D}̇, Fi+1, . . . , Fn.
8. If Fi is unsatisfiable, then the label function �[i, ∅ → �(i)] is consistent for

F1, . . . , Fi−1, Fi ∪̇ {̇∅}̇, Fi+1, . . . , Fn.

Interplay inprocessing and consistent label functions
9. If F ′

i ⊆ Fi and F ′
i ≡sat Fi, then label function � is consistent for

F1, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn.

Proof. For details, see [40]. �	

3 The Instance Decomposition Model ID

We use the notion of system transition systems to describe the behavior of the
instance decomposition based solvers. Formally, a state transition system is a
tuple (Δ,�) where Δ is the set of states and �⊆ Δ×Δ is the state transition

relation. Given a state transition system (Δ,�), we define
0� = {(x, x) | x ∈ Δ},

n� = {(x, z) | (x, y) ∈ n−1� and (y, z) ∈�} for all n ∈ N>0 and
∗� = ∪i∈N

i�.
Instead of (x, y) ∈ �, we write x � y.

We model parallel SAT solvers based on the instance decomposition approach
with label-based clause sharing as follows: A state of a sequential SAT solver
Solver i is a formula Fi and the solver Solver i maintains the part of the label
function �(i, C) for all clauses C ∈ Fi. Then, the state of computation in in-
stance decomposition based solvers is the tuple (F0, . . . , Fn, �, E), where E is a
cooperation tree that is obtained by partitioning the input formula.

An instance decomposition system with multiplicity n+1 is a state transition
system whose set of states consists of the final states {SAT,UNSAT} and

{(F0, . . . , Fn, �, E) | Fi are formulas, E ⊆ {1, . . . , n} and � is a label function}.
The initial state is the tuple initpn,E,�(F0) = (F0, F1, . . . , Fn, �, E), where pn is a
partition function such that pn(F0) = (F1, . . . , Fn), E is a cooperation tree for

An Expressive Model for Instance Decomposition Based Parallel SAT Solvers 109

SAT-rule: (F0, . . . , Fn, �, E) �SAT SAT
iff Fi is satisfiable for some i ∈ {0, . . . , n}.

UNSAT-rule: (F0, . . . , Fn, �, E) �UNSAT1 UNSAT
iff ∅ ∈ F0, i.e. F0 is unsatisfiable.

LOCUNSAT-rule: (F0, . . . , Fi−1, Fi, Fi+1, . . . , Fn, �, E) �UNSAT3

(F0, . . . , Fi−1, Fi ∪̇ {̇∅}̇, Fi+1, �[i, ∅ → �(i)], E)
iff ∅ ∈ Fj for all j ∈ {0, . . . , n} with (i, j) ∈ E, and
there exists a j ∈ {0, . . . , n} with (i, j) ∈ E.

LR-rule: (F0, . . . , Fi−1, Fi, Fi+1, . . . , Fn, �, E) �LR

(F0, . . . Fi−1, F
′
i , Fi+1, . . . , Fn, �[i, C → �(i,D) ∪ �(i,D′)], E)

iff C is a resolvent of D,D′ ∈ Fi, F
′
i = Fi ∪̇ {̇C}̇.

DEL-rule: (F0, . . . , Fi−1, Fi, Fi+1, . . . , Fn, �, E) �DEL

(F0, . . . , Fi−1, F
′
i , Fi+1, . . . , Fn, �, E)

iff Fi ≡sat F
′
i , F

′
i ⊆ Fi.

SHARE-rule: (F0, . . . , Fn, �, E) �SHARE

(F0, . . . , Fi−1, F
′
i , Fi+1, . . . Fn, �[i, C → �(j, C)], E)

iff F ′
i = Fi ∪̇ {̇C}̇, C ∈ Fj and �(j, C) ⊆ �(Fi).

Fig. 2. The rules of the instance decomposition formalism ID. These definitions apply
to all formulas F1, . . . , Fn, F

′
1, . . . , F

′
n, clauses C and i ∈ {1, . . . , n}.

F0, . . . , Fn and � is a consistent label function for the formulas F0, . . . , Fn. Note
that the first component of the initial state is the input formula. The transi-
tion relation of the instance decomposition system is composed of the relations
presented in Figure 2:

�ID := {SAT,UNSAT, LOCUNSAT, LR,DEL, SHARE}.
We have two termination rules: The SAT-rule terminates the computation

in the final state SAT if the i’th solver founds that its working formula Fi is
satisfiable. Likewise, the UNSAT-rule terminates the computation in the final
state UNSAT if the formula F0 contains the empty clause, i.e. F0 is unsatisfiable.
We have two cooperation rules: The LOCUNSAT-rule allows to add the empty
clause to the formula Fi when all its children in the cooperating tree are known to
be unsatisfiable, which is the case if ∅ ∈ Fj with (i, j) ∈ E for all j ∈ {1, . . . , n},
and the solver incarnation Solver i is a non-leaf node in the cooperation tree
E. The SHARE-rule models label-based clause sharing: The solver incarnation
Solver i can import the clause C from the solver incarnation Solver j , if we have
that �(j, C) ⊆ �(i). We model clause learning with labels with the LR-rule (labeled
resolution) that adds a resolvent C from the clauses D,D′ and sets the label

110 T. Philipp

of the clause C to the union over the labels of the two clauses D,D′. Clause
forgetting and clause elimination techniques are modeled with the DEL-rule that
replaces a formula Fi with a subset of the formula Fi, if this operation preserves
satisfiability.

A SAT calculus (Δ,�, init) is sound if and only if for all formulas F we have

that init(F)
∗� SAT implies that the formula F is satisfiable, and whenever

init(F)
∗� UNSAT the formula F is unsatisfiable. Intuitively, soundness means

that every answer in the system is correct. A state x ∈ Δ is reachable in the
calculus if there is a formula F such that init(F)

∗� x.
For showing soundness of this sharing model, we will first establish the invari-

ants:

Lemma 1 (Invariants). Let F0 be the input formula, pn a partitioning, E
a cooperation tree for pn and � be a consistent label function for the formu-
las F0, . . . , Fn. Assume initpn,E,� = (F0, F1, . . . , Fn, �, E) �m (F ′

0, . . . , F
′
n, �

′, E).
Then the following properties hold:

1. Fi ≡sat F
′
i for every i ∈ {0, . . . , n},

2. �′ is a consistent label for F ′
0, . . . , F

′
n, and

3. E is a cooperation tree for F ′
0, . . . , F

′
n.

Proof. We prove the claims by induction on the number m of transition steps.
For the base casem = 0, the claims trivially holds. For the induction step, assume
that the claim holds for the state (F1, . . . , Fn, �, E) and that (F1, . . . , Fn, �, E) �R

(F ′
1, . . . , F

′
n, �

′, E) for some rule R in the instance decomposition model ID. Note
that R
∈ {SAT,UNSAT}. We distinguish between the applied rule R:

– LOCUNSAT-rule: Since E is a cooperation tree, we know that the formula Fi

must be unsatisfiable. Then we know that Fi ≡ Fi ∪̇ {̇∅}̇. Then 1. is satisfied
since equivalent formulas are equisatisfiable. 2. follows straightforward from
Prop. 2.8. Invariant 3. follows straightforward from 1.

– LR-rule: 1. follows from the fact that resolvents are entailed by its formula,
and equivalent formulas as equisatisfiable. 2. follows straightforward from
Prop. 2.7. Invariant 3. is an immediate consequence of 1.

– SHARE-rule: 1. follows straightforward from Prop. 2.4. Invariant 2. follows
straightforward from Prop. 2.3. and invariant 3. follows from 1.

– DEL-rule: 1. is clear by the definition of the DEL-rule. 2. holds immediately
by Prop. 2.9. Invariant 3. is an immediate consequence of 1. �	

We can now show the following theorem, that states that the formalism ID
computes correct answers:

Theorem 1. The instance decomposition formalism ID is sound.

Proof. Let F0 be the input formula, pn(F0) = (F1, . . . , Fn) be a partitioning,
E be some corresponding cooperation tree, and � be a consistent label for the
formulas F0, . . . , Fn. Assume

(F0, . . . , Fn, �, E)
∗�ID (F ′

0, . . . , F
′
n, �

′, E) �ID SAT (UNSAT, resp.)

An Expressive Model for Instance Decomposition Based Parallel SAT Solvers 111

We divide the proof into two parts: First, we prove that the output SAT is
correct, secondly we prove that the output UNSAT is correct.

– SAT: Then, F ′
i is satisfiable for some i ∈ {0, . . . , n}. Since E is a coopera-

tion tree for the formulas F ′
0, . . . , F

′
n, we know that the formula F ′

0 must be
satisfiable. Since the formulas F0 and F ′

0 are equisatisfiable by Prop. 2.1, we
know that the input formula F0 is satisfiable.

– UNSAT: In this case, the formula F ′
0 is unsatisfiable and since the formulas

F0 and F ′
0 are equisatisfiable by Prop. 2.1, we know that the input formula

F0 is unsatisfiable.

Hence, the instance decomposition formalism ID is sound. �	

The theorem above states that we can use clause elimination techniques like
blocked clause elimination or variable elimination as inprocessing in solvers like
PCASSO.

4 Proof Format

Satisfiability solvers became highly complex procedures, and even intensively-
tested systems were not absent of bugs [7]. These reliability problems required
that SAT solvers emit unsatisfiability proofs, which are independently verifiable
certificates for the unsatisfiability of formulas. The idea was mentioned in early
work on St̊almarck’s algorithm [16]. In this section, we present a proof format
for instance decomposition based SAT solvers.

CDCL-style SAT solvers are based on systematic backtrack-search augmented
with clause learning [42]. Each time a conflicting assignment is detected, a new
clause is added to the formula to redirect the search. For unsatisfiable formulas,
the SAT solver repeats this process until the empty clause is learned. Resolu-
tion refutations [5, 11] were a straightforward idea for unsatisfiability proofs,
but are huge and hard to construct in contemporary SAT solvers. Beame et al.
characterized learned clauses as trivial resolution derivations [3], which can be
efficiently checked by reverse unit propagation (RUP) [3,12]. Goldberg et al. pro-
posed clausal proofs [13], which are sequences of learned clauses, based on this
criterion. Clausal proofs based on resolution asymmetric tautologies (RAT) [28]
can be used for SAT solvers that apply pre- and inprocessing [9,28]. Heule et al.
developed the drat-trim [47] tool based on backward checking [18], which effi-
ciently checks unsatisfiability proofs, as well as the mechanically verified checker
written in the ACL2 theorem prover [48]. An alternative approach to unsatisfi-
ability proofs are mechanically-verified SAT solvers [35, 39].

For simplicity, we consider resolution proofs because then we can easily infer
the labels for clauses, whereas in clausal proofs the label is not necessarily unique.
In the following, we will consider only position-based tagging as label functions.
Our proof format is derived from the instance decomposition model (UNSAT-,
LOCUNSAT-, and LR-rule) and is built upon the following observation:

112 T. Philipp

Proposition 3. Let F0 be the input formula, pn be a partitioning, E be a coop-
eration tree for pn and � be the position-based tagging function for the formulas
F0, . . . , Fn. If

initpn,E,� = (F0, F1, . . . , Fn, �, E) �m (F ′
0, . . . , F

′
n, �

′, E) �UNSAT UNSAT,

then �(∅, F0) = ∅.
Proof. We show the claim by proving the following by induction over the length
of derivation m: If C ∈ Fu, then �(u,C) ⊆ �(u). For the base case m = 0,
the claim follows from the definition of position-based tagging. For the induc-
tion step, assume that the claim holds for the state (F1, . . . , Fn, �, E) and that
(F1, . . . , Fn, �, E) �R (F ′

1, . . . , F
′
n, �

′, E) for some rule R in the instance decom-
position model ID. Note that R
∈ {SAT,UNSAT}. We distinguish between the
applied rule R:

– LOCUNSAT-rule: In this case, we add the empty clause to Fi and assign the
label of the new clause to �(i). Consequently, the claim holds.

– LR-rule: Follows straightforward from the definition of labeled resolvent and
inductive reasons.

– SHARE-rule: Follows straightforward from the third condition of the rule.
– DEL-rule: Follows straightforward from monotonicity of our claim.

Consequently, we find �(C, 0) ⊆ �(0) for every clause C ∈ F0. In particular, this
holds for the empty clause. �	

The above statement relates unsatisfiability proofs to labeled resolvents as
follows: An unsatisfiability proof is a sequence of labeled clauses to the empty
clause with no associated labels. The empty clause with no labels attached corre-
sponds to a clause that does not depend on any partitioning constraint. Addition-
ally, we drop labels if a subtree in the partitioning is proven to be unsatisfiable
(LOCUNSAT-rule):

Definition 4. A labeled and extended resolution derivation of Cn in F is a
finite sequence of labeled clauses (Ci | 1 ≤ i ≤ n) such that one of the following
holds for every 1 ≤ i ≤ n:

– Ci ∈ F ,
– Ci is a labeled resolvent from two previous clauses Cj and Ck where j < i

and k < n, or
– Ci is the empty clause with label u and for every a ∈ Σ there is the empty

clause labeled with ua. �	
Proposition 4. If p is a cooperation tree and there is a labeled and extended
resolution derivation of the empty clause in F0 . . . Fn, then F0 is unsatisfiable.

Proof. The claim follows from the corresponding soundness results from the
instance decomposition model. �	

An Expressive Model for Instance Decomposition Based Parallel SAT Solvers 113

Therefore, a proof checking system has to verify that 1. input clauses have been
consistently labeled, 2. input clauses have been correctly partitioned, and 3.
resolvents and their labels have been correctly computed. Condition 1. and 2. can
easily be checked, if we consider specific partitioning and labeling functions. Proof
validators like TraceCheck [5] have implemented 3. but labels were not consid-
ered. Therefore, implementing a proof validator based on labeled and extended res-
olution refutations is feasible. In particular, we do not need to separate resolution
steps performed in the different SAT solvers in the proposed proof format, i.e. we
basically merge the proof constructed from the parallel solvers into a single proof.

5 Conclusion

Parallel SAT solvers employ many advanced techniques, but not every combi-
nation of advanced techniques is sound. In particular, the combination of clause
sharing and inprocessing can make a formula unsatisfiable.

Consequently, a SAT solver can incorrectly report the unsatisfiability of a
formula. Fuzzing [7] is a technique that allows SAT solver engineers to test and
empirically verify sound combinations of techniques. One of the reasons for this
methodology is the lack of tools to study such advanced combinations. Moreover,
useful combinations that involve complicated constraints might be missed with
the purely experimental approach. We therefore propose to formalize modern
parallel SAT solvers to understand the interplay of advanced techniques, and to
reason about them. In this paper, we developed a formal model in terms of state
transition systems. The instance decomposition formalism ID models parallel
solvers with label-based clause sharing and inprocessing. The solver PCASSO
can be modeled as an instance of the model ID. Clause sharing is restricted to
ensure that clauses that depend on partition constraints are only imported if
this preserves the satisfiability of the formula. We have shown that ID is sound.

We have also studied label functions in more detail to control clause shar-
ing in a satisfiability-preserving way. Originally, label functions were introduced
as a tractable, sound, but incomplete method to decide entailment [23], which
is known to be coNP-complete. However, we have shown how to add clause
elimination techniques, which was stated as a research question in [25].

Another important aspect is that the formalism can also be used as an execu-
tion trace, that can be used for unsatisfiability proofs from parallel SAT solvers.
For this purpose, we developed the notion of labeled, extended resolution deriva-
tion.

As future work, we identify two interesting challenges: How can we combine
clause addition and elimination techniques in instance decomposition based SAT
solvers? How can we construct clausal proofs?

Acknowledgment. I want to thank Norbert Manthey for explaining me some
details of SAT solving.

114 T. Philipp

References

1. Audemard, G., Lagniez, J.-M., Mazure, B., Säıs, L.: On freezing and reactivating
learnt clauses. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp.
188–200. Springer, Heidelberg (2011)

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Boutilier, C. (ed.) IJCAI 2009, pp. 399–404. Morgan Kaufmann Publishers Inc.,
Pasadena (2009)

3. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligene Research 22(1), 319–
351 (2004)

4. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report 10/1, Johannes Kepler University, Linz, Austria
(2010)

5. Biere, A.: BooleForce and TraceCheck (2014).
http://fmv.jku.at/booleforce

6. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Irwin, M.J. (ed.) DAC 1999, pp. 317–
320. ACM (1999)

7. Brummayer, R., Biere, A.: Fuzzing and delta-debugging SMT solvers. In: Workshop
SMT 2010, pp. 1–5. ACM (2009)

8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

9. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Gelder, A.V.: Extracting (easily) checkable proofs from a satisfiability solver that
employs both preorder and postorder resolution. In: ISAIM 2002 (2002)

12. Gelder, A.V.: Verifying RUP proofs of propositional unsatisfiability. In: ISAIM
2008 (2008)

13. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: DATE 2003, pp. 10886–10891. IEEE Computer Society, Washington, DC
(2003)

14. Gomes, C.P., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems. Journal of Automated Reasoning 24(1–
2), 67–100 (2000)

15. Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., Steinke, P.:
Solving periodic event scheduling problems with SAT. In: Jiang, H., Ding, W.,
Ali, M., Wu, X. (eds.) IEA/AIE 2012. LNCS, vol. 7345, pp. 166–175. Springer,
Heidelberg (2012)

16. Harrison, J.: St̊almarck’s algorithm as a HOL derived rule. In: von Wright, J., Har-
rison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 221–234. Springer,
Heidelberg (1996)

17. Heule, M., Manthey, N., Philipp, T.: Validating unsatisfiability results of clause
sharing parallel SAT solvers. In: Berre, D.L. (ed.) POS 2014. EPiC Series, vol. 27,
pp. 12–25. EasyChair (2014)

18. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal
proofs. In: Jobstmann, B., Ray, S. (eds.) FMCAD 2013, pp. 181–188. IEEE (2013)

http://fmv.jku.at/booleforce

An Expressive Model for Instance Decomposition Based Parallel SAT Solvers 115

19. Heule, M.J.H., Järvisalo, M., Biere, A.: Efficient CNF simplification based on bi-
nary implication graphs. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS,
vol. 6695, pp. 201–215. Springer, Heidelberg (2011)

20. Huang, J.: The effect of restarts on the efficiency of clause learning. In: Veloso, M.
(ed.) IJCAI 2007, pp. 2318–2323. Morgan Kaufmann Publishers Inc., San Francisco
(2007)

21. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: A distribution method for solving
SAT in grids. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
430–435. Springer, Heidelberg (2006)

22. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning SAT instances for dis-
tributed solving. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS,
vol. 6397, pp. 372–386. Springer, Heidelberg (2010)

23. Hyvärinen, A.E.J., Junttila, T.A., Niemelä, I.: Incorporating learning in grid-based
randomized SAT solving. In: Dochev, D., Pistore, M., Traverso, P. (eds.) AIMSA
2008. LNCS (LNAI), vol. 5253, pp. 247–261. Springer, Heidelberg (2008)

24. Hölldobler, S., Manthey, N., Saptawijaya, A.: Improving resource-unaware SAT
solvers. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp.
519–534. Springer, Heidelberg (2010)

25. Irfan, A., Lanti, D., Manthey, N.: Modern cooperative parallel SAT solving. In:
POS 2013 (2013)

26. Irfan, A., Lanti, D., Manthey, N.: PCASSO a parallel cooperative sat SOlver.
In: Balint, A., Belov, A., Heule, M.J.H., Järvisalo, M. (eds.) Proceedings of SAT
Challenge 2013. Department of Computer Science Series of Publications B, vol. B-
2013-1, pp. 64–65. University of Helsinki, Helsinki (2013)

27. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer,
Heidelberg (2010)

28. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Hei-
delberg (2012)

29. Kautz, H.A., Selman, B.: Planning as satisfiability. In: Neumann, B. (ed.) ECAI
1992. pp. 359– 363 (1992)

30. Lanti, D., Manthey, N.: Sharing information in parallel search with search space
partitioning. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp.
52–58. Springer, Heidelberg (2013)

31. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: Making the case with haplotype
inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 136–
141. Springer, Heidelberg (2006)

32. Manthey, N.: Coprocessor 2.0 – A flexible CNF simplifier. In: Cimatti, A., Se-
bastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 436–441. Springer, Heidelberg
(2012)

33. Manthey, N.: Towards Next Generation Sequential and Parallel SAT Solvers. Ph.D.
thesis, Technische Universität Dresden, Informatik Fakultät (2015)

34. Manthey, N., Philipp, T., Wernhard, C.: Soundness of inprocessing in clause sharing
SAT solvers. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962,
pp. 22–39. Springer, Heidelberg (2013)

35. Marić, F.: Formalization and implementation of modern SAT solvers. Journal of
Automated Reasoning 43(1), 81–119 (2009)

36. Marques Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

116 T. Philipp

37. Martins, R., Manquinho, V., Lynce, I.: An overview of parallel SAT solving. Con-
straints 17(3), 304–347 (2012)

38. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: DAC 2001, pp. 530–535. Association for Computing
Machinery, Las Vegas (2001)

39. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT
solver. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 363–378. Springer, Heidelberg (2012)

40. Philipp, T.: Expressive Models for Parallel Satisfiability Solvers. Master thesis,
Technische Universität Dresden, Informatik Fakultät (2013)

41. : Engineering efficient planners with SAT. In: Raedt, L.D., Bessière, C., Dubois,
D., Doherty, P., Frasconi, P., Heintz, F., Lucas, P.J.F. (eds.) ECAI 2012. Frontiers
in Artificial Intelligence and Applications, pp. 684–689. IOS Press (2012)

42. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: ICCAD 1996, pp. 220–227. IEEE Computer Society, Washington (1996)

43. Singer, D.: Parallel resolution of the satisfiability problem: A survey. In: Talbi, E.G.
(ed.) Parallel Combinatorial Optimization, chap. 5, pp. 123–148. Wiley Interscience
(2006)

44. Soos, M.: CryptoMiniSat 2.5.0. In: SAT Race Competitive Event Booklet (2010)
45. Stallman, R.M., Sussman, G.J.: Forward reasoning and dependency-directed back-

tracking in a system for computer-aided circuit analysis. Artificial Intelligence 9(2),
135–196 (1977)

46. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination reso-
lution for preprocessing SAT instances. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

47. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014.
LNCS, vol. 8561, pp. 422–429. Springer, Heidelberg (2014)

48. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT refu-
tations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013)

Decision Procedures

Weakly Equivalent Arrays

Jürgen Christ and Jochen Hoenicke�

Department of Computer Science,
University of Freiburg

{christj,hoenicke}@informatik.uni-freiburg.de

Abstract. The (extensional) theory of arrays is widely used to model
systems. Hence, efficient decision procedures are needed to model check
such systems. In this paper, we present an efficient decision procedure
for the theory of arrays. We build upon the notion of weak equivalence.
Intuitively, two arrays are weakly equivalent if they only differ at finitely
many indices. We formalise this notion and show how to exploit weak
equivalences to decide formulas in the quantifier-free fragment of the the-
ory of arrays. We present a novel data structure to represent all weak
equivalence classes induced by a formula in linear space (in the num-
ber of array terms). Experimental evidence shows that this technique is
competitive with other approaches.

1 Introduction

Arrays are widely used to model systems. In software model checking, for ex-
ample, the heap of a program can be modelled by an array that represents the
main memory. A software model checker using such a model can check for illegal
accesses to memory or even memory leaks by constructing verification condi-
tions that require reasoning about the theory of arrays. McCarthy [10] laid the
foundations for this theory. He defined a store and a select operation and the
corresponding select-over-store axioms stating that the store operation changes
an array at only one position. Current decision procedures use a series of instan-
tiations of McCarthy’s axioms to prove a formula.

This is similar to solving a formula in the equality theory by repeatedly in-
stantiating transitivity axioms. However, modern solvers based on DPLL(T) [9]
combine propositional reasoning with a dedicated decision procedure for reason-
ing about theories. For example, a solver for the theory of equalities reasons
about equality chains and creates lemmas on the fly that summarise transitiv-
ity for a long chain of equalities. These lemmas are only created if they are in
conflict with the equality literals currently set in the DPLL solver. This removes
some burden from the DPLL engine, as fewer lemmas are needed. The dedicated
decision procedure is usually faster than adding a lot of small lemmas and deriv-
ing new ones by unit resolution in the DPLL engine. Also it reduces the literals
that have to be created overall.
� This work is supported by the German Research Council (DFG) as part of the
Transregional Collaborative Research Center “Automatic Verification and Analysis
of Complex Systems” (SFB/TR14 AVACS).

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 119–131, 2015.
DOI: 10.1007/978-3-319-24246-0_8

120 J. Christ and J. Hoenicke

We propose a new dedicated decision procedure for the extensional theory of
arrays. Instead of using McCarthy’s select-over-store axiom, the procedure cre-
ates instances of an extended select-over-store lemma that reasons over a chain of
store operations. New lemmas are only created if the currently decided equalities
are in conflict with the theory of arrays or to propagate an undecided equality
literal on existing terms. The main advantage of using a chain of store opera-
tions is that no new array select terms need to be created for the intermediate
arrays in the chain. This reduces the number of new terms and the number of
new literals that need to be created.

McCarthy’s store operation produces an array that differs from the original
one at only one index. This is generalised by the notion of weak equivalence
where two arrays differ only at finitely many indices. We use the notion of weak
equivalence to define an extended select-over-store axiom that reasons about a
chain of stores. We present a new data structure based on congruence closure to
quickly detect which arrays are weakly equivalent and which lemmas need to be
created.

Our contributions are:

– we show how to exploit weak equivalences to derive extended lemmas in the
theory of arrays (Section 4),

– we present a dedicated decision procedure for quantifier-free formulas in the
theory of arrays that produces (almost) no new terms, and we show its
completeness by explicitly constructing a model (Section 5),

– we present an extension of this procedure to the theory of arrays with dif-
ference function [4] (Section 6),

– we present a new data structure for representing weak equivalence in linear
space and polynomial time (Section 7).

The algorithms are implemented in our solver SMTInterpol [6]. While our solver
is primarily designed to be used in interpolant generation, we will not cover this
topic in this paper.

Related Work Since the proposal of the theory of arrays by McCarthy [10] several
decision procedures have been proposed. We can identify two basic branches:
rewrite-based and instantiation-based techniques.

Armando et al. [1] used rewriting techniques to solve the theory of arrays.
They showed how to construct simplification orderings to achieve completeness.
The benchmarks used in this paper test specific properties of the array operators
like commutativity of stores if the indices differ. While these benchmarks require
a lot of instantiations of McCarthy’s axioms, they are easy for the decision pro-
cedure presented in this paper since the properties tested by these benchmarks
are properties satisfied by the weak equivalence relation presented in this paper.

Bruttomesso et al. [4] present a rewrite based decision procedure to reason
about arrays. This approach exploits some key properties of the store opera-
tion that are also captured by the weak equivalence relation described in this
paper. Contrary to our method, the rewrite based approach is not designed for

Weakly Equivalent Arrays 121

Nelson–Oppen style theory combination and thus not easily integratable into an
existing SMT solver.

A decision procedure for the theory of arrays based on instantiating Mc-
Carthy’s axioms is given by de Moura and Bjørner [11]. The decision procedure
saturates several rules that instantiate array axioms under certain conditions.
Several filters are proposed to minimise the number of instantiations.

Closest to our work is the decision procedure published by Brummayer and
Biere [3], which combines array theory with bitvector theory. Similar to our
approach, their decision procedure for arrays derives new extended select-over-
store lemmas. They do not use weak equivalence graphs and their handling of
extensionality is geared towards bitvector theory.

Stump et al. [14] use a similar notion of weak equivalence, which they call
partial equality. For each partial equality they track the set of indices where
arrays differ. Contrary to the technique presented in this paper, they do not
have a compact (linear space) representation of all partial equalities.

2 Notation

We assume the notation of sorted first-order logic. A theory is defined by a
signature Σ and a set of axioms. The signature lists the sorts and function
symbols. A function symbol has an arity σ1 × · · · × σn → σ0 where σi are sorts.
We assume that the signature contains the sort bool and for every sort σ the
equality symbol = with arity σ × σ → bool with its usual interpretation. A
model maps every sort σ interpreted by this model to a non-empty domain Dσ

and every constant or function symbol into the corresponding domain. A theory
T is stably infinite for a sort if and only if every satisfiable quantifier-free formula
is satisfied in a model of T with an infinite universe for that sort.

The theory of arrays TA defines a parametric sort σ ⇒ τ for an index sort σ
and an element sort τ . The signature of TA contains the select function ·[·] and
the store function ·〈· � ·〉, where a[i] returns the element stored in array a at
index i and a〈i� v〉 returns a new array that stores the same values as a except
that it stores v at index i. Every model of the theory of arrays satisfies the
select-over-store axioms proposed by McCarthy [10]:

∀a i v. a〈i� v〉[i] = v (idx)

∀a i j v. i �= j =⇒ a〈i� v〉[j] = a[j] (select-over-store)

Additionally we consider the extensional variant of the theory of arrays. Then,
every model also has to satisfy the extensionality axiom:

∀a b. a = b ∨ ∃i. a[i] �= b[i] (ext)

We use a, b, c to denote array-valued variables, i, j, k to denote index variables,
and v, w to denote element variables. We use P to denote a path in a graph. A
path in a graph is a sequence of edges.

122 J. Christ and J. Hoenicke

In the remainder of this paper, we consider quantifier-free TA-formulae. Fur-
thermore we fix the theories to be stably infinite for the index sort and require
that the element sort contains at least two different values1.

3 A Motivating Example

It is well known that stores with different indices commute. This observation led
to a whole set of parametric benchmarks [1]. We will use the version consisting
of two stores as an example.

b = a〈i� v〉 ∧ c = a〈j � w〉 ∧ i �= j ∧ b〈j � w〉 �= c〈i� v〉 (0)

This formula is unsatisfiable in the extensional theory of arrays. To prove unsat-
isfiability of this formula we instantiate (ext). Skolemizing the existential quan-
tifier with the fresh index k, we get b〈j�w〉 = c〈i�v〉∨ b〈j�w〉[k] �= c〈i�v〉[k].
Furthermore, we instantiate (idx) for every store term in the formula. Next, we
instantiate (select-over-store) for the read terms introduced by the instantiation
of the extensionality axiom. We get

k = j ∨ b〈j � w〉[k] = b[k] and k = i ∨ c〈i � v〉[k] = c[k] (1)

Since b = a〈i � v〉, the read term b[k] gives rise to another instantiation and
similarly for c = a〈j � w〉:

k = i ∨ a〈i� v〉[k] = a[k] and k = j ∨ a〈j � w〉[k] = a[k] (2)

The final step in the proof of unsatisfiability involves a case split on the value of
k. We have to consider three cases: If k = i, then k �= j and we use the left part
of (1) and the (idx) instantiations a〈i � v〉[i] = v and c〈i � v〉[i] = v to derive
the conflict. A symmetric argument holds for k �= i and k = j. The final case is
k �= i ∧ k �= j. In this case we need all four (select-over-store) instantiations to
derive the conflict.

A lot of effort was needed above to prove a trivial property about the store
operation. A number of terms were created that are not present in the original
formula, e. g., a〈i� v〉[k]. Even worse, if k differs from the store indices i and j,
we needed four axiom instantiations to prove that the value at index k did not
change. These axiom instantiations were also the source for the case splits.

A more direct approach to the array theory is to consider chains of store
operations. In fact, both b〈j � w〉 and c〈i� v〉 are modifications of the array a.
Thus, they can only differ at the indices i, j that appear in the store terms. To
check for equality of these two arrays, it is thus sufficient to check the values
stored at indices i and j. As we will see in the remainder of the paper, our
procedure derives an instance of a generalised extensionality axiom⎛

⎝ b = a〈i� v〉 ∧ a〈j � w〉 = c ∧ i �= j
∧ a〈i� v〉[i] = v ∧ v = c〈i� v〉[i]
∧ b〈j � w〉[j] = w ∧ w = a〈j � w〉[j]

⎞
⎠ =⇒ b〈j � w〉 = c〈i� v〉.

1 Note that TA is stably infinite for the array sort under these conditions. Thus, TA

can be used in a Nelson–Oppen style theory combination.

Weakly Equivalent Arrays 123

Even though this lemma looks more complicated than the instantiations shown
above it can be used to refute the formula above without any case splits using
just the instantiations of axiom (idx).

4 Weak Equivalences over Arrays

For quantifier-free input, arrays that are connected via a sequence of ·〈·� ·〉 can
only differ at finitely many indices. We call such arrays weakly equivalent. In this
section we formally define weak equivalence as an equivalence relation on the
set A of array terms occurring in the input formula. From this we derive new
equalities on index, element or array terms.

Let V denote the set of index, element and array terms that occur in the
formula and need to be considered by the array theory, defined as

V = A∪ {a[i], a〈i� v〉[i], i, v | a〈i � v〉 ∈ A} ∪ {a[i], i | a[i] occurs in input}

Our algorithm starts with an equivalence relation ∼ ⊆ V × V representing
equality on the terms in V . From this the algorithm derives weak equivalences,
i. e., which array terms are equal on all but finitely many indices. Finally, it
derives new equalities on value and array terms that have to hold in the array
theory.

The array a〈i � v〉 is weakly equivalent to a because it differs at most at
index i. Also two equal arrays are weakly equivalent. The transitive closure is
the weak equivalence relation. To make the store indices explicit we build a weak
equivalence graph, where the vertices are the array terms A and the edges are
labelled with the indices used in store terms.

Definition 1 (weak equivalence). Given an equivalence relation ∼, the weak
equivalence graph GW contains the vertices A and the labelled undirected edges:

1. a ↔ b if a ∼ b, and

2. a
i↔ b if a has the form b〈i� ·〉 or b has the form a〈i� ·〉.

We write a
(P)⇔ b if there exists a path P between nodes a and b in GW . In

this case, we call a and b weakly equivalent. The weak equivalence class of a is

defined as WeakEQ(a) := {b | ∃P. a (P)⇔ b}.

For a path P we define Stores (P) as the set of all indices corresponding to edges

of the form
·↔, i. e., Stores (P) := {i | ∃a b. a i↔ b ∈ P}.

Example 1. Consider Formula (0) on page 119. The formula induces the equiv-
alence relation {b ∼ a〈i� v〉, c ∼ a〈j�w〉}. The weak equivalence graph for this
example is shown in Figure 1. Let P denote the path from b〈j � w〉 to c〈i � v〉
in the weak equivalence graph. Then, Stores (P) = {i, j}. Thus, arrays b〈j � w〉
and c〈i � v〉 can only differ in at most the values stored at the indices i and j.

124 J. Christ and J. Hoenicke

a a〈j �w〉 c c〈i� v〉a〈i� v〉bb〈j � w〉 j i j i

Fig. 1. Weak equivalence graph for b ∼ a〈i� v〉, c ∼ a〈j � w〉 in Example 1.

If a
(P)⇔ b for a path P holds, then for all indices i that are different from any

index occurring in Stores (P), the values a[i] and b[i] must be equal. We capture
this by the following definition.

Definition 2 (weak equivalence on i). Two arrays a and b are called weakly
equivalent on i if and only if they are connected by a path that does not contain

an edge
j↔ where j ∼ i. We denote weak equivalence on i by a ≈i b and define

it as a ≈i b := ∃P. a (P)⇔ b ∧ ∀j ∈ Stores (P) . j �∼ i.

Example 2. Consider again Formula (0) and the corresponding weak equivalence
graph from Figure 1. Then, b〈j � w〉 ≈i a〈i � v〉 since the path between these
two arrays only contains a store edge labelled with j and i �∼ j. Furthermore,
a〈j � w〉 ≈j c〈i � v〉 since the only store edge connecting these two arrays is
labelled with i.

Note that the definition of weakly equivalent on i depends on the index vari-
ables not related by the equivalence relation. Using this definition, we can prop-
agate equalities between shared selects if the arrays are weakly equivalent on the
index of the select.

Lemma 1 (read-over-weakeq). Let ∼ be an equivalence relation. Let a[i] and
b[j] be two selects such that i ∼ j and a ≈i b. Then, ∼ satisfies the array axioms
only if a[i] ∼ b[j] holds.

Proof (Sketch). Induction over the length of the path P witnessing a ≈i b. ��
This lemma tells us that if two arrays are weakly equivalent on i they store

the same value at index i. The reverse is not necessarily true. In the example
above neither b〈j � w〉 ≈i c〈i � v〉 nor b〈j � w〉 ≈j c〈i � v〉 hold. Therefore, we
define a weaker relation, which we call weak congruence on i.

Definition 3 (weak congruence on i). Let ∼ be an equivalence relation
over V . Arrays a and b are weakly congruent on i if and only if ∼ guaran-
tees that they store the same value at index i. We denote weak congruence on i
by ∼=i and define

a ∼=i b := a ≈i b ∨ (∃a′ b′ j k. a ≈i a
′ ∧ i ∼ j ∧ a′[j] ∼ b′[k] ∧ k ∼ i ∧ b′ ≈i b).

We use weak congruences to decide extensionality. If a and b are weak congru-
ent on all indices, then a = b should be propagated. This näıve approach would
require checking every index in the formula. To minimise the number of indices
we need to consider, we start with a path in the weak equivalence graph.

Weakly Equivalent Arrays 125

Lemma 2 (weakeq-ext). Let ∼ be an equivalence relation. Let a and b be two

arrays with a
(P)⇔ b. If for all indices i ∈ Stores (P) we have a ∼=i b, then ∼

satisfies the array axioms only if a ∼ b holds.

Proof. Follows from Lemma 1, Definition 3 and (ext). ��

Example 3. Consider again Formula (0). Axiom (idx) implies a〈i � v〉[i] = v =
c〈i�v〉[i] and likewise for j. Therefore, we now consider the equivalence relation
{b ∼ a〈i � v〉, c ∼ a〈j � w〉, a〈i � v〉[i] ∼ c〈i � v〉[i], a〈j � w〉[j] ∼ b〈j � w〉[j]}.
Example 2 showed b〈j � w〉 ≈i a〈i � v〉 and a〈j � w〉 ≈j c〈i � v〉. Then by
definition, b〈j � w〉 ∼=i c〈i � v〉 and b〈j � w〉 ∼=j c〈i � v〉 hold. Since only i and
j occur as store indices on the path from b〈j �w〉 to c〈i� v〉, Lemma 2 implies
b〈j � w〉 ∼ c〈i� v〉.

5 A Decision Procedure Based on Weak Equivalences

Our overall procedure consists of two steps. The first step is a preprocessing
step instantiating the axioms (idx) for all a〈i� v〉 occurring in the formula. The
preprocessing step adds at most one select term a〈i � v〉[i] for every store. The
created instance of (idx) is interpolation friendly as it contains only the symbols
a, i, v that already appeared in the input term a〈i� v〉.

The second step of our decision procedure is running DPLL(T) [9]. The in-
put formula including the instantiations of the idx axioms is converted into a
propositional formula, called the propositional core, by introducing a proposi-
tional variable for every atom occurring in the formula. The DPLL(T) algo-
rithm enumerates candidate solutions of the propositional core, which are given
as valuations of the atoms occurring in the formula. To support Nelson–Oppen
theory combination, the valuation contains also a truth value of the equality
atom v = w for every pair v, w ∈ V . Then a separate theory solver for every
supported theory checks if the valuation of the atoms is consistent with the ax-
ioms of the theories. If the theory solver finds a conflict it returns a set of atoms
whose current valuation violates the theory axioms. The negation of these atoms
form a valid clause in the theory and this clause is added to the propositional
core. The DPLL(T) algorithm repeats until all possible valuations of the atoms
have been tried or a valuation is found that is consistent with all theories.

The solver for the theory of arrays only considers the equality atoms v = w
for v, w ∈ V . These form an equivalence relation ∼ ⊆ V × V (the congruence
theory solver will ensure this). If ∼ is inconsistent with the array axioms the
lemma returned by the algorithm is a disjunction of equalities and disequalities.

We propagate new equalities from weak equivalence relations and weak con-
gruence relations based on Lemmas 1 and 2. These relations depend on the
equivalence relation ∼, which represents logical equality (=). We now define a
function Cond(·) that takes a path in the weak equivalence graph and computes
a condition (a conjunction of equalities and disequalities) under which a weak
equivalence or weak congruence holds. Likewise we define a function Condi(·)

126 J. Christ and J. Hoenicke

for a path that ensures weak equivalence on i. First we give the definition for a
single edge. If the edge in the weak equivalence graph represents an equality, the
condition reflects this equality. For an edge between a and a〈j� ·〉, no condition
is needed for weak equivalence. However, Condi(·) should ensure that i does not
occur on the path, so i �= j needs to hold.

Cond(a ↔ b) := a = b Condi(a ↔ b) := a = b

Cond(a
j↔ b) := true Condi(a

j↔ b) := i �= j

We can extend these definitions to paths by conjoining the conditions for all edges
on that path. By abuse of notation, we overload Cond(·) such that it computes
the condition under which two arrays are weakly equivalent on i resp. weakly
congruent on i. We compute Cond(a ≈i b) using some path that witnesses a ≈i b
(the definition is not unique if there are several paths).

Cond(a ≈i b) := Condi(P) where a
(P)⇔ b ∧ ∀j ∈ Stores (P) . i �∼ j

Finally, to define Cond(a ∼=i b), we use the definition of ∼=i.

Cond(a ∼=i b) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cond(a ≈i b) if a ≈i b

Cond(a ≈i a
′) ∧ i = j

∧ a′[j] = b′[k]
∧ k = i ∧ Cond(b′ ≈i b)

if
a ≈i a

′ ∧ i ∼ j ∧ a′[j] ∼ b′[k]
∧ k ∼ i ∧ b′ ≈i b

Example 4. Consider again Formula 0 with the equivalence relation ∼ from Ex-
ample 3. Then we have b〈j�w〉 ≈i a〈i�v〉 and Cond(b〈j�w〉 ≈i a〈i�v〉) ≡ i �=
j∧b = a〈i�v〉. Similarly, we get Cond(a〈j�w〉 ≈j c〈i�v〉) ≡ a〈j�w〉 = c∧i �= j.

As seen in Example 3, b〈j � w〉 ∼=i c〈i � v〉 holds since b〈j � w〉 ≈i a〈i � v〉,
a〈i� v〉[i] = v = c〈i� v〉[i]. Thus, (if we remove the trivial conjunct i = i)

Cond(b〈j � w〉 ∼=i c〈i� v〉) ≡ i �= j ∧ b = a〈i� v〉 ∧ a〈i� v〉[i] = c〈i� v〉[i].

Our algorithm is given in Figure 2. It takes an equivalence relation ∼ and
returns either “sat” if ∼ satisfies the array axioms, or a lemma that explains why
the array axioms are not satisfied. If ∼ satisfies the conditions for Lemma 1, the
algorithm creates the corresponding lemma and returns it in Line 2. If ∼ satisfies
the conditions for Lemma 2, it creates the corresponding lemma and returns it
in Line 4. If neither of these conditions is satisfied, ∼ satisfies the array axioms
and the algorithm returns in Line 5.

The resulting decision procedure is sound and complete for the extensional
theory of arrays assuming sound and complete decision procedures for the index
and element theories.

Theorem 1. If the algorithm in Figure 2 returns (unsat, F), then F is valid.

Proof. Follows from Lemma 1 and 2. ��

Weakly Equivalent Arrays 127

array-theory(∼)

// Input: Equivalence relation ∼ ⊆ V × V
// Output: Either (unsat, F), where F is a formula valid for the array theory

that is not satisfied by ∼, or sat.
1 if ∃a, b, i, j ∈ V.a[i], b[j] ∈ V ∧ a ≈i b ∧ i ∼ j ∧ a[i]
∼ b[j] then
2 return (unsat, i
= j ∨ ¬Cond(a ≈i b) ∨ a[i] = b[j])

3 if ∃a, b ∈ V. ∃P.a (P)⇔ b, a
∼ b,∀i ∈ Stores (P) . a ∼=i b then
4 return (unsat, ¬Cond(P) ∨∨

i∈Stores(P) ¬Cond(a ∼=i b) ∨ a = b)

5 return sat

Fig. 2. Consistency checking algorithm for the array theory.

Theorem 2. If the algorithm in Figure 2 returns sat, then there exists a model
M of the array theory assigning values to V such that M(v) = M(w) iff v ∼ w.

Proof (Sketch). For the non-array sorts we choose arbitrary domains containing
at least one element for every equivalence class of ∼. We map each non-array
term v ∈ V to its equivalence class. We assume that for an element sort τ the
domain contains at least two elements Fstτ and Sndτ . For every sort σ that is
used as index sort, we assume Dσ contains an infinite supply of fresh domain
elements. We write �X� to denote a fresh element for X , i. e., an element of
Dσ that is different from all equivalence classes of v ∈ V and of all other fresh
elements.

For an array sort, we define Dσ⇒τ as the set of functions from Dσ to Dτ . For
an array term a ∈ A of sort σ ⇒ τ , we define M(a) : Dσ → Dτ where

M(a)(j) :=

⎧⎪⎨
⎪⎩
M(b[i]) if b[i] ∈ V,M(i) = j, and a ≈i b

Sndτ if j = �WeakEQ(a)�
Fstτ otherwise

The values Fstτ and Sndτ are used to ensure that two arrays that are not
connected in the weak equivalence graph are distinct, i. e., they store different
values for at least one index. In the definition above, this index is a fresh index
representing the whole weak equivalence class. Also note that the first case of
the definition is unique, since the condition in Figure 2, Line 1 does not hold.

The functions ·[·] resp. ·〈· � ·〉 are interpreted by function application and
function update. The full proof requires to show that the value assigned to a
shared variable is consistent with its interpretation in the array theory, e. g., for
a[j] ∈ V M(a)(M(j)) = M(a[j]) holds and that M(v) = M(w) holds iff v ∼ w.
See [5] for details. ��

Our proof shows that the cardinality of the element domain can be chosen
arbitrarily as long as it contains at least two elements. Thus our procedure
even works with theories that are not stably infinite on some domains [13]. If
the element theory is stably infinite we do not have to add for every a〈i � v〉
the select a[i] to V . Instead, we assume a[i] to be different from any other b[i]

128 J. Christ and J. Hoenicke

unless a ≈i b. This reduces the number of shared terms and, thus, the number
of possible instantiations. With this modification, we have to modify the model
construction from the proof of Theorem 2.

Theorem 3. Assume a stably infinite element theory. Let

V = A ∪ {a〈i� v〉[i], i, v | a〈i� v〉 ∈ A} ∪ {a[i], i | a[i] occurs in input}.
If the algorithm in Figure 2 returns sat, then there exists a model M of the array
theory assigning values to V such that M(v) = M(w) iff v ∼ w.

Proof (Sketch). We redefine the generation of the model M in the proof of
Theorem 2. Let WeakEQi(a) := {b | b ≈i a} denote the set of array terms that
are weakly equivalent on i to a. Let Stores (WeakEQ(a)) := {i | ∃bv.b〈i � v〉 ∈
WeakEQ(a)} be the set of all store indices occurring in the weak equivalence
class of a. We construct MA in the following way.

MA(a)(j) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M(b[i]) if b[i] ∈ V,M(i) = j, and a ≈i b

�WeakEQj(a)� if M(j) = j, j ∈ Stores (WeakEQ(a)) and

there is no b[i] ∈ V with M(i) = j, a ≈i b

Sndτ if j = �WeakEQ(a)�
Fstτ otherwise

The difference between this model and the one constructed in the proof of The-
orem 2 is the case where a〈i � w〉, but not a[i] occurs in the formula (more
precisely, there is no b[j] ∈ V such that a ≈i b and i ∼ j). In this case, we set
a[i] to a fresh value �WeakEQj(a)�. See [5] for more details. ��

This optimisation reduces the amount of work without any extra cost. Fur-
thermore, it is widely applicable. In fact, the non-bitvector logics defined in
SMTLIB [2] only allow array sorts where the element theory is stably infinite.
Thus, only the terms corresponding to instantiations of Axiom (idx) are required.

6 Extension to TAxDiff

Bruttomesso et al. [4] closed TA under Craig interpolation [8]. Their extension,
TAxDiff , adds to the signature the function diff(a, b) that takes arrays a and b
and returns an index. The extensionality axiom is replaced by

∀a b. a = b ∨ a[diff(a, b)] �= b[diff(a, b)] (ext-diff)

This axiom specifies the semantics of diff(a, b). If a and b differ, then diff(a, b)
and diff(b, a) specify indices at which a and b store different values. If a = b
holds, then diff(a, b) and diff(b, a) can be arbitrary. Note that diff(a, b) might be
different from diff(b, a) in both cases.

To accommodate for diff(·, ·) terms in the input, we add another step to
our preprocessor. This step instantiates axiom (ext-diff) for every diff(a, b) term

Weakly Equivalent Arrays 129

occurring in the input. Note that this creates select terms of the form a[diff(a, b)]
which will be automatically added to the set of shared terms V . Besides these
new select terms no new terms are created.

We use the algorithm presented in Figure 2 to solve the preprocessed formula.
In the cases where the algorithms returns (unsat, F), F is still a valid lemma. If
the algorithm returns sat, we have to create an interpretation for diff. For array
terms, we can use the model construction from the proof of Theorem 2, or the
one from the modified version in Theorem 3.

Theorem 4 (completeness for TAxDiff). Assume the axiom (ext-diff) has
been instantiated by the preprocessor for every diff(a, b) in the input formula.
If the algorithm in Figure 2 returns sat, then there exists a model M of TAxDiff

assigning values to V such that M(v) = M(w) iff v ∼ w.

Proof (Sketch). The model construction for arrays is the same as the construc-
tion used in the proof of Theorem 2 or, in case the element theory is stably
infinite, the one used in the proof of Theorem 3. We now give a model for diff.

M(diff)(a, b) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(diff(a′, b′)) if diff(a′, b′) occurs in the input

and a ∼ a′ and b ∼ b′

�WeakEQ(a)� if a �≈W b

MA(i) if a ≈W b and a �∼=i b

for some i ∈ Stores (Path (a, b))

Fstσ otherwise

Note that the last case is only reached when the arrays equal. See [5] for more
details. ��

7 Implementation and Evaluation

This section presents an efficient implementation of the algorithm from Figure 2.
We represent the weak equivalence classes and the weak equivalence on i classes
by a data structure whose size is linear in the number of array terms in the input
formula.

We represent the weak equivalence relation and the weak equivalence on i
relations in a forest structure, similarly to the representation of an equivalence
graph in congruence solvers [12]. Every vertex corresponds to an array term. A
vertex is the root of its weak equivalence class if it does not have an outgoing
edge. Otherwise, the outgoing edge points towards (but not necessarily onto) the
representative. These edges build a spanning tree for every equivalence class. The
edges point from a child node to the parent node.

We have to distinguish between strong equivalence, weak equivalence, and
weak equivalence on i. The strong equivalence classes are already handled by
the equality solver. In our implementation of the array solver we treat them as
indivisible and create a single node for every strong equivalence class. To repre-
sent the weak equivalence relations the nodes have up to two outgoing edges, a

130 J. Christ and J. Hoenicke

struct node
p : node
pi : index
s : node

get-rep(n : node)

if n.p = nil then n
else get-rep(n.p)

make-rep(n : node)

if n.p
= nil then
make-rep(n.p)
n.p.p := n
n.p.pi := n.pi
n.p := nil

⎫
⎬

⎭

invert
primary edge

make-repi(n)

get-repi(n : node, i : index)

if n.p = nil then n
elseif n.pi
= i then get-repi(n.p, i)
elseif n.s = nil then n
else get-repi(n.s, i)

make-repi(n : node)

if n.s
= nil then
if n.s.pi
= n.pi then

n.s := n.s.p
move towards
representative

make-repi(n)
else

make-repi(n.s)
n.s.s := n
n.s := nil

}
invert secondary
edge

Fig. 3. Data structure and functions to represent weak equivalence relations. A node
structure is created for every strong equivalence class on arrays. It contains two outgo-
ing edges p, s pointing towards the representative of the weak equivalence classes. The
functions get-rep and get-repi are used to find the representative of the weak equiv-
alence (resp. weak equivalence on i) class. The functions make-rep and make-repi

invert the edges to make a node the representative of its weak equivalence classes.

primary p and a secondary s, see Figure 3. The edges come from a store opera-

tion and correspond to the edges
i↔ in the weak equivalence graph. The index

of the primary edge is stored in the pi field. The primary edge points towards
the representative of the weak equivalence class. Every primary edge p connects
the node representing (the strong equivalence class of) a store a〈j � v〉 with
the node representing a and the corresponding index in the pi field is j. Note,
however, that the direction of the edge can be arbitrary, as we invert the edges
during the execution of the algorithm. If the primary edge is missing the node
is the representative of its weak equivalence class. The procedure get-rep(a)
implements the algorithm that finds the representative.

While the primary edge is enough to represent the weak equivalence relation,
we need another edge to represent weak equivalence on i. The representative of
weak equivalence on i is usually found by following the primary edges. However,
if the store of the primary edge is on the index i, the secondary edge is followed
instead. If the secondary edge is missing the node is the representative of its
weak equivalence on i class. The root node that has no outgoing primary edge
must also not have any outgoing secondary edge and is the representative of all
its weak equivalence on i classes. The procedure get-repi(a, i) implements the
algorithm that finds the representative on i.

The helper function make-rep changes the representative of a weak equiv-
alence class by inverting the primary edges. Similarly, the function make-repi

Weakly Equivalent Arrays 131

add-secondary(S : index set, a, b : node)

if a = b then
return

if a.pi /∈ S ∧ get-repi(a, a.pi)
= b then
make-repi(a)
a.s := b

add-secondary(S ∪ {a.pi}, a.p, b)

add-store(a, b : node, i : index)

make-rep(b)
if get-rep(a) = b then

add-secondary({i}, a, b)
else

b.p := a
b.pi := i

Fig. 4. The algorithm add-store adds a new store edge to the data structure updating
the weak equivalence classes. In the else case a new primary edge is added to merge two
disjoint weak equivalence classes. Otherwise, add-secondary inserts new secondary
edges to merge the necessary weak equivalence on i classes.

inverts the secondary edges to change the representative of the weak equivalence
on n.pi class. It does not take the index as argument as it will always use n.pi.
Note that the first method may temporarily violate the invariant that the rep-
resentative does not have an outgoing secondary edge. To restore the invariant
it calls the second method at the end.

Thus, the equivalence classes are represented as follows. Two arrays a and b are
weakly equivalent iff get-rep(a) = get-rep(b) and they are weakly equivalent
on i (a ≈i b) iff get-repi(a, i) = get-repi(b, i).

The algorithm proceeds by inserting the store edges one by one, similarly to
the algorithm presented in [12]. The algorithm that inserts a store edge is given
in Figure 4. The algorithm first inverts the outgoing edges of one node to make
it the representative of its weak equivalence class. If the other side of the store
edge lies in a different weak equivalence class, the store can be inserted as a new
primary edge.

If the nodes are already weakly equivalent, the procedure add-secondary
is called. This procedure follows the path from the other array a to the array
b that was made the representative. For every node on this path it checks if a
secondary edge needs to be added. If the primary edge of the node is labelled
with a store on i, the algorithm first checks if the node is weakly equivalent on i
with b due to the new store edge. This is the case if no store on i occurred on the
path so far and the new store is also on an index different from i. We use the set
S to collect these forbidden indices. Then if b is not already the representative
of the weak equivalence on i class, the outgoing secondary edges are reversed
and a new secondary edge is added.

The complexity of the procedure add-store is worst case quadratic in the size
of the weak equivalence class. This stems from make-repi being linear in the size
and being called a linear number of times by make-rep. The overall complexity
is cubic in the number of stores in the input formula. The space requirement,
however, is only linear. In our current implementation in SMTInterpol this pro-
cedure was not a bottleneck so far.

The secondary edges are not directly between the arrays that are connected
by a store. Instead the outgoing secondary edge for the weak equivalence on i

132 J. Christ and J. Hoenicke

0

1

2

3

4

k

i

j

5

k

i

6

7

k

j

4 = 0〈k � v〉

0

1

2

3

4

k

i

j

5

k

i

6

7

k

j

Fig. 5. Weak equivalence classes represented by a graph using primary and secondary
edges. The short direct edges are primary edges, the long bent edges are secondary
edges. Each primary edge represents a store edge between the connected nodes and is
labelled by the index of the store. The secondary edges in the right graph were created
by a store edge on index k between node 0 and 4 as described in Example 5.

class has to be placed at the root of the subtree of the weak equivalence tree
where the primary edge has the index i. In fact, since a single store can connect
the weak equivalence on i classes for multiple indices, there can be multiple
secondary edges corresponding to the same store.

To reconstruct a weak equivalence paths, the data structure needs to associate
each edge with the store that created it. Due to the fact that the secondary edges
are not directly between the involved arrays the algorithm is slightly complicated.
To find a weak equivalence on i path between two node, the first step is to
determine the secondary edges between these nodes. It is guaranteed that the
arrays involved in the secondary edge are connected by primary edges on indices
different from i. Then a path of primary edges can be created that connect these
endpoints. Finally, equality paths that connects the arrays involved in the end
points of primary and secondary edges are produced by the equality solver.

Example 5. Figure 5 shows an example of the data structure where the primary
edges are labelled by the index of the corresponding store. This data structure
represents only one weak equivalence class with the representative node 0. The
resulting data structure after adding a store with index k between nodes 0 and
4 is shown on the right. Since nodes 0 and 4 were already in the same weak
equivalence class, secondary edges were added.

These secondary edges are needed to connect the weak equivalence on i and
on j classes. Figure 6(a) shows how the first secondary edge connects the two
weak equivalence on i classes rooted at nodes 0 resp. 3. This is necessary since
there is now a new path using the edge from 4 to 0. Note that no secondary
edge is added to node 1, since nodes 1, 2, and 5 are still not weakly equivalent
on i to the other nodes. Figure 6(b) shows the connection between the two weak
equivalence on j classes rooted at nodes 0 resp. 2. The weak equivalence on j
class rooted at node 6 is not affected by a new edge between nodes 0 and 4 since
these nodes are on a different path.

Weakly Equivalent Arrays 133

0

1

2

3

4

k

i

j

5

k

i

6

7

k

j
k

(a) Merging weak equivalence on i.

0

1

2

3

4

k

i

j

5

k

i

6

7

k

j
k

(b) Merging weak equivalence on j.

Fig. 6. Secondary edges merge weak equivalence on i classes.

Solver Total (1042) QF AX QF ALIA (97) QF AUFLIA

Yices 2 92.67 (1042) 4.05 63.45 (97) 25.17
SMTInterpol

(reset) 769.21 (1042) 70.96 468.24 (97) 230.01
(restart) 2663.03 (1042) 607.63 894.62 (97) 1160.78

Z3 5276.94 (1042) 27.77 5152.12 (97) 97.05
MathSAT 8626.92 (1023) 23.34 8507.60 (78) 95.98
CVC4 11121.47 (1022) 49.35 9402.96 (77) 1669.16

Table 1. Summary of the results of the divisions qf ax, qf alia, and qf auflia from
the SMT-COMP 2014. The columns show the time in seconds and in parenthesis the
number of benchmarks solved. In qf ax and qf auflia all solvers solved all 335 resp.
610 benchmarks. To measure the start-up overhead of Java we also ran the benchmark
in a single virtual machine using the (reset) command of SMT-LIB 2.5.

We implemented this decision procedure in our SMT solver SMTInterpol [6].
During SMTCOMP 2014, SMTInterpol could solve all array benchmarks in the
division QF AX, QF ALIA, and QF AUFLIA. Table 1 shows the summary of
the results. In this competition, SMTInterpol (1042 out of 1042 in 2663 seconds)
is runner up to Yices 22. Since SMTInterpol is written in Java the start-up
overhead for trivial benchmarks is significant. Without the start-up overhead we
could run all benchmarks in a single script using the (reset) command (with
the same benchmark scrambling) in 769 seconds3. Our solver performed best
in the QF ALIA benchmark set that is dominated by industrial benchmarks
(82%). The other benchmark sets contain mainly crafted benchmarks. For some
of the crafted benchmarks it is possible to solve them by preprocessor techniques,
which are not used in our solver.

2 We are not aware of a publication describing the array decision procedure of Yices 2,
but according to its developer it uses a similar technique.

3 See https://www.starexec.org/starexec/secure/details/job.jsp?id=8631 for
details (Login is public, password is public).

https://www.starexec.org/starexec/secure/details/job.jsp?id=8631

134 J. Christ and J. Hoenicke

8 Conclusion and Future Work

We presented a new decision procedure for the extensional theory of arrays. This
procedure exploits weak equivalences to derive extended lemmas in the theory
of arrays. The extended lemmas use only terms that already appear in the in-
put formula. We showed the soundness and completeness of this procedure and
presented an extension to the theory of arrays with difference function. Fur-
thermore we discussed a new data structure to represent all weak equivalence
classes in linear space. The decision procedure is implemented in our SMT solver
SMTInterpol [6]. We plan to implement a variant of the quantifier-free interpo-
lation for arrays [4] based on the lemmas generated by this decision procedure
as an extension of proof tree preserving interpolation [7].

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: 2.0. In: SMT (2010)
3. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.

JSAT 6(1-3), 165–201 (2009)
4. Bruttomesso, R., Ghilardi, S., Ranise, S.: Quantifier-free interpolation of a theory

of arrays. Logical Methods in Computer Science 8(2) (2012)
5. Christ, J., Hoenicke, J.: Weakly equivalent arrays. CoRR mabs/1405.6939 (2014).

http://arxiv.org/abs/1405.6939

6. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An interpolating SMT solver.
In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 248–254.
Springer, Heidelberg (2012)

7. Christ, J., Hoenicke, J., Nutz, A.: Proof tree preserving interpolation. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 124–138. Springer,
Heidelberg (2013)

8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. Symb. Log. 22(3), 269–285 (1957)

9. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast
decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114,
pp. 175–188. Springer, Heidelberg (2004)

10. McCarthy, J.: Towards a mathematical science of computation. In: IFIP Congress,
pp. 21–28 (1962)

11. de Moura, L., Bjørner, N.: Generalized, efficient array decision procedures. In:
FMCAD, pp. 45–52 (2009)

12. Nieuwenhuis, R., Oliveras, A.: Proof-producing congruence closure. In: Giesl, J.
(ed.) RTA 2005. LNCS, vol. 3467, pp. 453–468. Springer, Heidelberg (2005)

13. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably
infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCos 2005. LNCS
(LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)

14. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an
extensional theory of arrays. In: LICS, pp. 29–37. IEEE Computer Society (2001)

http://arxiv.org/abs/1405.6939

A Decision Procedure for Regular Membership

and Length Constraints over Unbounded
Strings�

Tianyi Liang1, Nestan Tsiskaridze1, Andrew Reynolds2,
Cesare Tinelli1, and Clark Barrett3

1 Department of Computer Science, The University of Iowa
2 École Polytechnique Fédérale de Lausanne

3 Department of Computer Science, New York University

Abstract. We prove that the quantifier-free fragment of the theory of
character strings with regular language membership constraints and lin-
ear integer constraints over string lengths is decidable. We do that by
describing a sound, complete and terminating tableaux calculus for that
fragment which uses as oracles a decision procedure for linear integer
arithmetic and a number of computable functions over regular expres-
sions. A distinguishing feature of this calculus is that it provides a com-
pletely algebraic method for solving membership constraints which can
be easily integrated into multi-theory SMT solvers. Another is that it
can be used to generate symbolic solutions for such constraints, that is,
solved forms that provide simple and compact representations of entire
sets of complete solutions. The calculus is part of a larger one providing
the theoretical foundations of a high performance theory solver for string
constraints implemented in the SMT solver CVC4.

1 Introduction

The study of word algebra and regular expressions has a long history in math-
ematics and computer science. There has been much renewed interest lately for
these topics within the software verification and computer security communities
because of the increasing importance of reasoning about character strings and
regular expressions when proving safety properties or trying to detect security
violations in programs that process string values.

To support these applications, several systems have been developed recently
that check the satisfiability of constraints over a rich set of string operations in-
cluding string equalities and inequalities, string length, regular language
membership, and additional functions over strings besides string concatena-
tion [34, 1, 19, 30]. A lot of this work focuses on generally (refutation) incomplete
methods to detect the unsatisfiability of these constraints, a practical approach
for making progress in program analysis applications. A major difficulty in pro-
viding complete methods is that any reasonably comprehensive theory of char-
acter strings is undecidable [7, 23, 27]. However, several more restricted, but

� This work was partially funded by NSF grants #1228765 and #1228768.

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 135–150, 2015.
DOI: 10.1007/978-3-319-24246-0_9

136 T. Liang et al.

still quite useful, theories of strings do have a decidable satisfiability problem.
These include any theories of fixed-length strings, which are trivially decidable
because their domains are finite, but also some fragments over unbounded strings
(e.g., word equations [22, 25]). Recent research has focused on identifying decid-
able fragments suitable for program analysis and, more crucially, on developing
efficient solvers for them.

In previous work, we described a comprehensive approach, based on algebraic
techniques and described abstractly as a calculus, to reason efficiently about
quantifier-free formulas in a rich theory of unbounded strings with length and
regular language membership [19]. And based on that approach, we constructed
an efficient string solver, fully integrated into the multi-theory SMT solver CVC4.
The calculus developed in that work is both refutation and solution sound but
refutation incomplete.

Contribution and Significance. We have developed an improved version of
the calculus presented in [19] that is also complete and terminating over a re-
striction of the general language to membership and length constraints. In this
paper, we present a simplified version of that calculus which can be used to prove
that the fragment in question is decidable. Strictly speaking, this decidability
result is not new, as it is implicitly implied by some recent results from Abdulla
et al. [1], although that work does not mention the result. We provide a full proof
based on the calculus presented here. This contribution is significant not only
because of the importance of the fragment but also for the following reasons.
First, contrary to previous approaches for solving membership constraints which
rely on reductions to finite state automata problems, our approach is completely
algebraic and works directly with regular expressions. This facilitates the cre-
ation of efficient incremental solvers which can be more easily incorporated into
modern SMT solvers since they do not rely on eager conversion to automata
problems. Second, our completeness argument shows how to produce symbolic
solutions for satisfiable problems with regular membership constraints, that is,
intensional representations of (possibly infinite) sets of concrete solutions. This
is useful for security analysis applications like filter generation and automatic
exploit generation (AEG), where any assignment satisfying the constraints gen-
erated from a program is a security exploit. A symbolic solution enables AEG
applications, for example, to generate fewer, more general exploits, thus also
reducing the number of exploits that would need to be examined by a user.

Although our eventual goal is overall efficiency in practice, the calculus pre-
sented here focuses (for simplicity) on proving the decidability result. As a con-
sequence, it uses a few auxiliary functions that apply generally inefficient eager
(but algebraic) conversions from and to regular expressions. We plan to present
in future work a version of the calculus that lifts these conversions to a set of ad-
ditional derivation rules, making them amenable to lazy and selective application
based on search heuristics.

A Decision Procedure for Regular Membership and Length Constraintsk 137

1.1 Related Work

There have been a number of different approaches for solving string constraints
with regular expressions. The earliest and perhaps most established approach is
based on reductions to automata decision problems.One of these was implemented
in the system DPrle, used to check programs against SQL injection vulnerabili-
ties [13]. The approach followed in that system has the strong limitation of impos-
ing an upper bound on the length of string variables, a hard to overcome drawback
shared by various later works. This approach was later improved by the same au-
thor with a method for generating automata lazily from the input problem which
does not requiring any priori length bounds [14]. At the same time, a comprehen-
sive set of algorithms and data structures for performing fast automata operations
was developed to support constraint solving over strings, for instance in [12].

Current automata-based approaches to reason about regular expressions can
be divided in two classes depending on whether their transitions processing a
single character a time (e.g., [9, 33]) or a set of them (e.g., [31, 32, 14]). Most
of the tools based on these approaches offer very limited support to reason
about constraints mixing strings and other data types. Also, automata refine-
ment may constitute a performance bottleneck, even though it is very useful
in solving membership constraints. Further discussion can be found in [10, 18].
Other approaches for solving regular expression constraints are based on re-
ductions to other theories, such as bit-vectors [15] or linear integer arithmetic
constraints [29], [7], and using constraint solvers for those theories.

Three notable systems that solve regular membership constraints are Rex
[32, 31], Mona [11] and the Java String Analyzer (JSA) [8]. Rex too is based on
automata. In contrast to the work described in [14] where each transitions covers
an integer interval, Rex encodes strings as symbolic finite automata (SFA) first.
Each SFA transition uses a logical predicate over linear arithmetic to represent a
set of character-level candidates. This allows Rex to encode transitions as SMT
constraints which it then sends to an SMT solver for a model. This approach
provides an efficient encoding for solving membership constraints, however, it
currently does not support mixed constraints over additional theories.

Mona is a solver for monadic second-order logic with built-in support for
string constraints. AlthoughMona is an automata-based, it uses Multi Terminal
BDDs to represent automata. This kind of implementation requires sophisticated
engineering techniques (see [16]) which make it difficult to build in additional
theories to support solving of combined constraints. Pisa [28] is another string
solver based monadic second-order logic. However, the language of Pisa is rather
restrictive, e.g., no binary operations between two variables are allowed.

JSA is geared specifically to Java string constraints. It first translates them
to a flow graph, and then analyzes the graph by converting it to a context-free
language. This language is approximated with the Mohri-Nederhof algorithm to
a regular one and encoded as a multi-level automaton. Compared to our work,
JSA focuses exclusively on Java string analysis, approximation, and automaton
conversion, while our approach does not depend on any particular language, and
solves string constraints natively with no approximations.

138 T. Liang et al.

It is well-known that regular languages are closed under common operations
(e.g., concatenation, union, intersection, complementation); however, the com-
plexity of performing most of these operations is high as a consequence of the
high complexity of the corresponding membership problem. For example, mem-
bership in the intersection of two regular languages is PSPACE-complete [17].
Thus, in practice many procedure implementing regular language operations are
approximate (e.g., [6, 26]). In contrast, the calculus we present here does not
approximate.

Our calculus decides a fragment that combines regular membership constraints
with string length constraints. To the best of our knowledge, there are no explicit
claims about the decidability of this fragment. The work in [1] implies that the
fragment is indeed decidable, although the paper contains no proof, or mention,
of this. The method described in that paper replaces all characters in regular
expressions with a single arbitrary character, and reduces the expression to their
Parikh images [24], generating a set of semi-linear integer constraints which can
then be checked for satisfiability using any linear arithmetic solver. Since our ap-
proach does not use rely on approximations it can build a model directly when
the constraints are satisfiable. This part of work our has some similarities with
the Parikh image described in [4], although we developed it independently.

1.2 Formal Preliminaries

We work in the context of many-sorted first-order logic with equality (≈). We
assume the reader is familiar with the notions of many-sorted signature, term,
literal, formula, free variable, interpretation, and satisfiability of a formula in
an interpretation (see, e.g., [5] for more details). A theory is a pair T = (Σ, I)
where Σ is a signature and I is a class of Σ-interpretations, the models of T ,
that is closed under variable reassignment. If I is an interpretation and t is a
term, we denote by tI the value of t in I. A Σ-formula ϕ is T -satisfiable (resp.,
T -unsatisfiable) if it is satisfied by some (resp., no) interpretation in I. A set Γ
of formulas entails in T a Σ-formula ϕ, written Γ |=T ϕ, if every interpretation
in I that satisfies all formulas in Γ satisfies ϕ as well. The set Γ is satisfiable in
T if Γ �|=T ⊥ where ⊥ is the universally false atom. If e is a term or a formula,
we denote by V(e) the set of e’s free variables, extending the notation to sets of
terms or formulas as expected. Two Σ-formulas ϕ and ψ are T -equisatisfiable if
for every model I of T that satisfies one, there is a model of T that satisfies the
other and differs from I at most over the free variables not shared by ϕ and ψ.

2 A Theory of Strings and Regular Language
Membership

We consider a theory TLR of strings with length and regular language membership
constraints over a signatureΣLR with three sorts, Str, Int, and Lan, and an infinite
set of variables for each of these sorts. This theory is essentially the theory of a
single many-sorted structure and its models differ only on how the variables are

A Decision Procedure for Regular Membership and Length Constraintsk 139

ε : Str · : Str× Str → Str c : Str for all c ∈ A | | : Str → Int

Ch : Lan · : Lan× Lan → Lan � : Lan× Lan → Lan ∗ : Lan → Lan

∅ : Lan in : Str× Lan � : Lan× Lan → Lan � � : Str → Lan

Fig. 1. Basic set of string and regular expression function and predicate symbols.

()() : Lan× Int → Lan sh : Lan× Lan× Lan → Lan

Fig. 2. Additional regular expression function symbols.

interpreted. All models of TLR interpret Int as the set of integer numbers, Str as
the language W of all words over some fixed finite alphabet A of characters, and
Lan as the power set of W . The signature includes: the usual symbols of linear
integer arithmetic, interpreted as expected; all the elements of W as constant
symbols, or string constants, interpreted as themselves; and all the function
symbols given in Figure 1 with their rank. In that figure, the two · symbols
denote word concatenation and language concatenation, respectively; | | denotes
word length; and � � denotes the singleton set constructor, mapping each word
w ∈ W to the language {w}; the symbols ε, Ch, ∅, and in respectively denote the
empty word, the language of one-character words, the empty language, and the
language membership predicate; the symbols �, �, and ()∗ respectively denote
language union, intersection and Kleene closure.

We call a string term any term of sort Str or of the form |s|; an arithmetic
term any term of sort Int all of whose occurrences of | | are applied to a variable;
and a regular expression any variable-free term of sort Lan. A string term is
atomic if it is a variable or a string constant. An arithmetic constraint is a
(dis)equality (¬)u ≈ v or an inequality u ≥ v where u and v are arithmetic
terms. A membership constraint is a literal of the form (¬)(s ∈ r) where s is a
string term and r is a regular expression. A TLR-constraint is an arithmetic or
a membership constraint. Note that we do not consider here equalities between
terms of sort Str. Also note that if x is a string variable, |x| is both a string and
an arithmetic term. By the definition of TLR, a regular expression r is interpreted
as the same language in every model of TLR. We call that the language generated
by r and denote it by L(r).
Expanding the Language. The calculus we present later is able to compute
a solved form for a satisfiable input set of TLR-constraints with string variables
x1, . . . , xn. This solved form consists of a set {xi in qi}i=1,...,n of membership
constraints where, for all i, qi is a solved-form term, a term of sort Lan over
integer variables and a signature that includes string constants, the symbols Ch,
· and � � from Figure 1, and the two function symbols from Figure 2. Note that
the latter two symbols are not in the (input) language of TLR-constraints; they
are used only in solved forms. We expand the models of TLR to these two symbols
so that the following holds.

– For all integers n and regular expressions r, L(rn) = {ε} if n ≤ 0 and
L(rn) = L(r · rn−1) otherwise.

140 T. Liang et al.

(s1 · s2) · s3 → s1 · (s2 · s3) s · ε → s ε · s → s

|s1 · s2| → |s1|+ |s2| |c| → 1 |ε| → 0

r1 · (r2 � r3) → (r1 · r2) � (r1 · r3) �ε� · r → r ∅ · r → ∅

(r1 � r2) · r3 → (r1 · r3) � (r2 · r3) r · �ε� → r r ·∅ → ∅

�s1� · �s2� → �s1 · s2� r∗∗ → r∗ �ε�∗ → �ε�
r � r → r (r � �ε�)∗ → r∗ ∅

∗ → �ε�
r1 � r2 → π(r1, r2) ∅ � r → r ∅ � r → ∅

Fig. 3. Term normalization rules, defined modulo commutativity of � and �; π(r1, r2)
is the regular expression computed by the function π defined in Figure 8.

– For all regular expressions r, r′, q, L(sh(r, r′, q)) = {w1w
′
1 · · ·wnw

′
n ∈ L(q) |

n > 0, w1 · · ·wn ∈ L(r), w′
1 · · ·w′

n ∈ L(r′)}.1

Intuitively, the strings generated by sh(r, r′, q) can be obtained by shuffling to-
gether a word w generated by r and a word w′ generated by r′, as long as the
resulting word is in the language generated by q. Shuffling is achieved by break-
ing w and w′ arbitrarily into n segments and merging the two lists of segments
together.

Notational Conventions. We use c, d to denote character constants, that
is, string constants of length one; l for arbitrary string constants; x for string
variables; s, t for string terms; z for integer variables; u, v for arithmetic terms;
and q, r for regular expressions. We will omit applications of the � � operator,
treating (variable-free) terms of sort Str as the corresponding regular expression.
When convenient, we will treat a multi-character constant l as the term c·l′ where
c is the first character of l and l′ is the rest of l. We will write |=LR instead of
|=TLR

.

3 A Calculus for Constraint Satisfiability in TLR

We are interested in checking the satisfiability in TLR of finite sets of TLR-
constraints as defined in Section 2. In this section, we describe a tableaux-style
calculus that can be used to construct a decision procedure for this problem.

Configurations. The calculus applies to a finite set of TLR-constraints with
the goal of determining their TLR-satisfiability. It consists of derivation rules
that operate over configurations. A configuration is either the distinguished con-
figuration unsat or a tuple of the form 〈A,R, V 〉, where: A is a set of arithmetic
constraints and implications of the form z1 ≈ 0 ⇒ z2 ≈ 0; R is a set of posi-
tive membership constraints; and V is a set of membership constraints in solved
form.

Informally, the sets A and R initially store a TLR-equisatisfiable variant of the
input set and progressively receive additional constraints derived by the calculus;

1 Any of the words w1, . . . , wn, w
′
1, . . . , w

′
n in the definition of sh could be empty. We

use juxtaposition to denote word concatenation at the semantic level.

A Decision Procedure for Regular Membership and Length Constraintsk 141

A-Conflict
A |=LIA ⊥
unsat

EmptyS
ε in r ∈ R not ε(r)

unsat
EmptyR

s in∅ ∈ R

unsat

Assign-1
R = R, x in l

A := A, |x| ≈ |l|↓ R := (R{x 	→ l})↓ V := V, x in l

Assign-2
R = R, x in r x /∈ V(R) top(r) /∈ {�,∅} γ(r) = (q, u,A)

A := A, |x| ≈ u↓ , A↓ R := R V := V, x in q

Consume-1
R = R, c in r

R := R, ε in (∂c r)↓ Consume-2
R = R, c · s in r

R := R, s in (∂c r)↓

Split
R := R, x · s in r

‖(r1,r2)∈β(r) R := R, x in r1↓ , s in r2↓

Inter
R := R, s in r1, s in r2

R := R, s in (r1 � r2)↓ Union
R := R, s in r1 � r2

R := R, s in r1 ‖ R := R, s in r2

Fig. 4. Derivation Rules. R{x 	→ l} is the result of applying the substitution {x 	→ l}
to every term in R; top(r) is the top symbol of term r.

V , which is initially empty, represents the solution computed so far (each string
variable in V is associated with a set of possible values using solved-form terms).

By standard transformations, one can convert any finite set of TLR-constraints
into a TLR-equisatisfiable set A ∪ R where R is a set of positive membership
constraints 2 and A is a set of arithmetic constraints that includes a constraint
of the form |x| ≥ 0 for every string variable x ∈ V(A) and contains no string
variables that do not occur in R. We assume that all terms in such configurations
are irreducible by the rewrite system in Figure 3 which can be shown to be
equivalence-preserving and terminating over ΣLR-terms.3 The rewrite system
uses the auxiliary function π, closely based on one by Lu [21], which maps two
regular expressions r1 and r2 to a regular expression that generates the same
language as r1 � r2 (i.e., L(π(r1, r2)) = L(r1 � r2)) but contains no occurrences
of �. If t is a ΣLR-term, we denote by t↓ any normal form of t with respect to
the rewrite system in Figure 3, and extend this notation to sets of ΣLR-terms as
expected. We call a term t normalized if t = t↓ .

Without loss of generality, we will consider for our calculus only starting
configurations 〈A,R, ∅〉 where A, R are as above.

The calculus assumes the availability of a procedure for checking entailment
in the (decidable) theory of linear integer arithmetic (|=LIA). The only significant
deviation we require is that the procedure be able to accept terms of the form |x|,
where x is a string variable, by treating the whole term as an arithmetic variable.

2 Each negative membership constraint s /∈ r can be replaced by s ∈ rc where rc is a
regular expression generating the complement of L(r). This replacement is effective
although current procedures for computing rc are generally inefficient in practice.

3 The system is not confluent but we do not need it to be.

142 T. Liang et al.

In essence, the calculus models a solver for TLR-constraints that is based on the
cooperation of a standard subsolver for linear arithmetic constraints and a novel
subsolver that processes membership constraints natively, without reduction to
automata problems. This is done by processing regular expressions by means
of algebraic manipulations and non-deterministic choices. The two subsolvers
communicate by exchanging linear arithmetic constraints over string lengths.

Derivation Rules. The rules of the calculus are provided in Figure 4 in guarded
assignment form where fields A, R, and V store, in order, the components of a
current configuration 〈A,R, V 〉. A derivation rule applies to a current configu-
ration C if all of the rule’s premises hold for C and the resulting configuration
is different from C. A rule’s conclusion describes how each component of C is
changed, if at all. In the rules, we write S, t as an abbreviation for S ∪{t}. Rules
with two or more conclusions separated by the symbol ‖ are non-deterministic
branching rules.

The derivation rules rely on several computable functions and predicates,
described below and defined formally in Figures 5, 6, 7, 8, and 9, which apply
to �-free regular expressions.

– The family of functions (∂c)c∈A computes the partial derivative of the input
with respect to character c. Concretely, ∂c(r) is a regular expression whose
language is the set of all words w (including the empty one) such that cw ∈
L(r).

– The predicate ε holds exactly for those regular expressions whose language
contains the empty string ε.

– The function γ produces three outputs from a normalized regular expression
r with top symbol other than ∅ or �: a solved-form term q, an arithmetic
term u, and a set A of arithmetic constraints over the (integer) variables in
q and u. Intuitively, u and A together express constraints on the possible
lengths of the words in L(r).

– The function β returns a finite set of regular expression pairs. Each pair
(r1, r2) ∈ β(r) is such that L(r) = L(r1 · r2). Moreover, β(r) is exhaustive in
the sense that for every pair of words w1, w2 such that w1w2 ∈ L(r), there
is a pair (r1, r2) ∈ β(r) such that w1 ∈ L(r1) and w2 ∈ L(r2).

The definition of the partial derivative functions is due to Antimirov [2]; the
functions γ and β are novel. Given these auxiliary predicates and functions, the
calculus rules should be self-explanatory, with the possible exception of Assign-2.
This rule considers a membership constraint (x in r) where r is not a union and
(by construction) contains no occurrences of ∅ and �. If x occurs in no other
membership constraints in the R component of the configuration, the rule uses
γ to compute a solution form of (x in r) and stores it in the V component.

Derivation Trees and Derivations. The rules in this calculus are used to
construct derivation trees. A derivation tree is a tree where each node is a con-
figuration and each non-root node is obtained from its parent node by applying

A Decision Procedure for Regular Membership and Length Constraintsk 143

ε(r) iff (r = r1 · r2 and ε(r1) and ε(r2)) or r = ε or r = r∗1 or
(r = r1 � r2 and ε(r1)) or (r = r1 � r2 and ε(r2))

Fig. 5. Definition of predicate ε.

∂c ∅ = ∅ ∂c(r1 � r2) = ∂c r1 � ∂c r2 ∂c(c · s) = s

∂c ε = ∅ ∂c(r1 · r2) = (∂c r1 · r2) � ∂c r2 if ε(r1)

∂c Ch = ε ∂c(r1 · r2) = ∂c r1 · r2 if not ε(r1)

∂c(r
∗) = (∂c r) · r∗ ∂c(d · s) = ∅ if c �= d

Fig. 6. Definition of partial derivative function ∂c.

one of the derivation rules. We call the root of a derivation tree an initial con-
figuration. A branch of a derivation tree is saturated if no rules apply to its leaf,
it is closed if it ends with unsat. A derivation tree is closed if all of its branches
are closed.

A derivation tree derives from a derivation tree T if it is obtained from T
by the application of exactly one of the derivation rules to one of T ’s leaves.
A derivation is a sequence (Ti)i≥0 of derivation trees such that T0 is a one-node
tree whose root is an initial configuration and Ti+1 derives from Ti for all i ≥ 0.

Let S be a set of ΣLR-constraints. A refutation of set S is a derivation that
starts with a one-node tree with a configuration 〈A,R, ∅〉 where A ∪ R is TLR-
equisatisfiable with S, and ends with a closed tree.

Example 1. Consider the satisfiable initial configuration with A = ∅, V = ∅, and
R = {bc · x in ((aa � b)∗ · c)∗ � a · c∗} where x is a variable of sort String and
a, b, c are characters. A derivation in the calculus can start with an application
of the Union rule. In the branch bc · x in a · c∗, Consume-2 will apply and replace
the constraint with c · x in∅ which then will be closed by EmptyR. In the branch
bc · x in ((aa � b)∗ · c)∗, Consume-2 will be applied twice: once for b, resulting in
R = {c · x in (aa � b)∗ · c · ((aa � b)∗ · c)∗}; and once for c, resulting in R =
{x in ((aa � b)∗ · c)∗}. Now, by applying Assign-2 to the resulting configuration,
we will have the following saturated configuration:

A = {z1 ≥ 0, z2 ≥ 0, z3 ≥ 0, z4 ≥ 0, z1 ≈ 0 ⇒ z2 ≈ 0} R = ∅ V = {x in q2}
∪ {z2 ≈ z3 + z4, |x| ≈ 2 ∗ z3 + z4 + z1}

where q2 = sh(q1, c
z1 , r1), q1 = sh((aa)z3 , bz4 , r2), r1 = ((aa�b)∗ ·c)z1 , r2 = (aa�

b)z2 , and z1, . . . , z4 are fresh variables of sort Int. The set in A is satisfiable, for
instance with the variable assignment {z1 �→ 1, z2 �→ 2, z3 �→ 1, z4 �→ 1, |x| �→ 4}.
Given this assignment one can evaluate—deterministically—the term q2 inside
out and obtain q2 = {aabc, baac} after evaluating q1 to {aab, baa}. At this point,
any element of q2 is a solution for x in the original problem. As we show later,
any other satisfying assignment for A will lead to a ground expression for q2 that
is guaranteed to generate a non-empty language of solutions for x. ��
Example 2. Suppose we start with the unsatisfiable configuration with A =
{|x| ≈ 2 ∗ k + 1}, R = {x · x in r}, and V = ∅ where r = (aaaa)∗ and a

144 T. Liang et al.

β(∅) = ∅ β(c) = {(c, ε), (ε, c)} β(r1 � r2) = β(r1) ∪ β(r2)

β(ε) = {(ε, ε)} β(Ch) = {(Ch, ε), (ε,Ch)}
β(r∗) = β(ε) ∪ {(r∗ · r1, r2 · r∗) | (r1, r2) ∈ β(r)}

β(r1 · r2) = {(r11, r12 · r2) | (r11, r12) ∈ β(r1)} ∪ {(r1 · r21, r22) | (r21, r22) ∈ β(r2)}

Fig. 7. Definition of splitting function β.

π(r, r′) = π′(r, r′, ∅) π′(r, r′, C) = yr,r′ if yr,r′ ∈ C π′(r,∅, C) = ∅

π′(ε, r,C) = ε if ε(r) π′(ε, r, C) = ∅ if not ε(r) π′(∅, r,C) = ∅

π′(r, ε, C) = ε if ε(r) π′(r, ε, C) = ∅ if not ε(r) π′(r, r,C) = r

π′(r, r′, C) = r∗1 · r′1 if vr,r′ /∈ C and ε(r) and ε(r′) where

(r1, r
′
1) = ρvr,r′ (ε �

⊔
c∈A c · π′(∂c r, ∂c r

′, C′)), C′ = C ∪ {vr,r′}
π(r, r′, C) = r∗1 · r′1 if vr,r′ /∈ C and not (ε(r) and ε(r′)) where

(r1, r
′
1) = ρvr,r′ (

⊔
c∈A c · π′(∂c r, ∂c r

′, C′)), C′ = C ∪ {vr,r′}

ρy(∅) = (∅,∅) ρy(y) = (ε,∅) ρy(r) = (ε, r) if y /∈ V(r)
ρy(r) = (r1 · r21, r22) if y ∈ V(r), r = r1 · r2, and (r21, r22) = ρy(r2)

ρy(r) = (r11 � r21, r12 � r22) if y ∈ V(r), r = r1 � r2, and (ri1, ri2) = ρy(ri)

Fig. 8. Definition of intersection function π.

is a character. One possibility is to apply the Split rule. Since β(r) = {(ε, ε),
(r · a, aaa · r), (r · a, aaa · r), (r · aa, aa · r), (r · aaa, a · r)}, four branches will
be created. In the first branch, R = {x in ε}. The rule Assign-1 can be applied,
adding x in ε to V and |x| ≈ 0 to A. After that, the branch can be closed by
A-Conflict. In the second branch, R = {x in r · a, x in aaa · r} to which Inter can
be applied, replacing the constraints in R with x in∅. Then the branch can be
closed by EmptyS. Something, similar can be done on the fourth branch. In the
third branch, R can become {x in aa · r} by Inter. Then |x| ≈ 2 + 4 ∗ z and z ≥ 0
can be added to A by Assign-2, with z a fresh integer variable. That branch can
be closed by A-Conflict, yielding a refutation of the input problem. ��

4 Calculus Correctness

We prove the correctness of the calculus in by showing that (i) it has no infi-
nite derivations; (ii) its rules preserve satisfiability in TLR; (iii) every saturated
branch in a derivation tree determines a model of TLR that satisfies the initial
configuration. Together with the termination of the auxiliary functions and pro-
cedures used by the calculus, this implies the decidability of the quantifier-free
satisfiability problem for TLR.

4

4 For space constraints, the most of the proofs of these results are omitted. The in-
terested reader is referred to the longer version of this paper [20] for the missing
proofs.

A Decision Procedure for Regular Membership and Length Constraintsk 145

γ(r) = γ′(r, ∅)
γ′(l, A) = (l, |l|↓ , A) γ′(Ch, A) = (Ch, 1, A)

γ′(r1 · r2, A) = (q1 · q2, u1 + u2, A1 ∪A2) where (qi, ui, Ai) = γ′(ri, A) for i = 1, 2

γ′(r∗, A) = (q, u,B ∪ {z1 ≥ 0}) where (q, u,B) = γ′(rz1 , A)

γ′(lz, A) = (lz, z × |l|↓ , A) γ′(Chz, A) = (Chz, z, A)

γ′((r1 � r2)
z, A) = (sh(q1, q2, (r1 � r2)

z), u1 + u2, B)

where B = A1 ∪A2 ∪ {z ≈ z1 + z2, z1 ≥ 0, z2 ≥ 0}
(qi, ui, Ai) = γ′(rzii , A) for i = 1, 2

γ′((r1 · r2)z, A) = (sh(q1, q2, (r1 · r2)z), u1 + u2, A1 ∪A2)

where (qi, ui, Ai) = γ′(rzi , A) for i = 1, 2

γ′((r∗)z, A) = γ′(q, u, B ∪ {z ≈ 0 ⇒ z1 ≈ 0, z1 ≥ 0}) where (q, u,B) = γ′(rz1 , A)

Fig. 9. Definition of function γ. The letters z1 and z2 denote fresh integer variables
variables variables variables variables.

4.1 Termination

Proving the termination of the auxiliary functions and predicates is a simple
exercise.

Proposition 1. The function π is well defined and computable over the set of
all regular expressions. The predicate ε and the functions ∂c, β and γ are well
defined and computable over the set of all �-free regular expressions.

By Proposition 1, every rule is effective. To prove the termination of the
calculus it suffices to define a well-founded ordering of configurations and show
that every rule application produces a smaller configuration along that ordering.

Proposition 2. Every derivation in the calculus is finite.

Proof (Sketch). One can show that every application of a derivation rule to a
leaf of a derivation tree produces smaller configurations with respect to a well-
founded relation � over configurations which implies that no derivation tree can
be grown indefinitely.

The relation � is defined as follows. To each configuration 〈A,R, V 〉 we asso-
ciate a tuple (V(R),ms(R), occ(R)) where ms(R) is the multiset {s | s in r ∈ R}
and occ(R) is the number of occurrences of � in R. Let �Str be the ordering over
string terms such that s �Str t iff s has a greater term size than t, with the conven-
tion that ε has size 0. Let �lex be the lexicographic extension of the following or-
derings to tuples like (V(R),ms(R), occ(R)) above: the set inclusion ordering; the
multiset ordering extending �Str; the > ordering over natural numbers. Finally,
define � where (i) 〈A1, R1, V1〉 � 〈A2, R2, V2〉 iff (V(R1),ms(R1), occ(R1)) �lex

(V(R2),ms(R2), occ(R2)) and (ii) 〈A,R, V 〉 � unsat. The well foundedness of �
follows by standard results (see e.g., [3]). ��

146 T. Liang et al.

4.2 Correctness

To prove the correctness of the calculus we use the following properties of the
various auxiliary functions.

Lemma 1 (Correctness of Normalization). Every rule in Figure 3 preserves
term equivalence in TLR.

Lemma 2 (Correctness of π). For any regular expressions r1 and r2, π(r1, r2)
contains no occurrences of �. Moreover, L(π(r1, r2)) = L(r1 � r2).

Lemma 3. For all normalized regular expressions r and for all characters c ∈
A, the following hold:

1. ε(r) iff ε ∈ L(r);
2. L(∂c r) = {w | cw ∈ L(r)};
3. for all (r1, r2) ∈ β(r), L(r1 · r2) = L(r);
4. for all w1w2 ∈ L(r), there is a (r1, r2) ∈ β(r) s.t. w1 ∈ L(r1) and w2 ∈ L(r2).

Lemma 4. Let x be a string variable, let r be a normalized regular expres-
sion with top(r) /∈ {∅,�}, let A be a set of arithmetic constraints, and let
(rγ , uγ , Aγ) = γ(r).

1. The constraint set S := {x in r} ∪ A is satisfied by a model I of TLR iff the
set Sγ := {x in rγ , |x| ≈ uγ}∪A∪Aγ is satisfied by a model Iγ of TLR where
I and Iγ agree on the variables of S.

2. All models I of TLR satisfying Aγ are such that for all w ∈ rIγ , the length of

w equals uI
γ .

We say that a configuration 〈A,R, V 〉 is satisfied by an interpretation I if
the set A ∪ R ∪ V is satisfied by I. We consider unsat to be satisfied by no
interpretation.

Lemma 5. For every rule of the calculus, the premise configuration is satisfied
by a model Ip of TLR iff one of its conclusion configurations is satisfied by a model
Ic of TLR where Ip and Ic agree on the variables shared by the two configurations.

Using the previous lemma in the left-to-right direction together with a struc-
tural induction argument on derivation trees, one can readily show that the
root of every closed derivation tree is unsatisfiable. From this, the refutation
soundness of the calculus easily follows.

Proposition 3 (Refutation Soundness). Every set of TLR-constraints that
has a refutation is TLR-unsatisfiable.

Thanks to earlier lemmas and the one below one can also prove that the
calculus is solution sound.

A Decision Procedure for Regular Membership and Length Constraintsk 147

Lemma 6. If 〈A,R, V 〉 is a saturated leaf of a derivation tree with root
〈A0, R0, ∅〉 then for every (string) variable x in R0 there is a constraint of the
form (x in q) in V .

Proposition 4 (Solution Soundness). For every saturated leaf 〈A,R, V 〉 of a
derivation tree with root 〈A0, R0, ∅〉 there is a model I of TLR that satisfies A0 ∪R0

and is such that xI ∈ qI for all (x in q) ∈ V .

Proof. Let K := 〈A,R, V 〉 be as above. It is not difficult to show based the
derivation rules that V(A0 ∪R0) ⊆ V(A ∪R ∪ V) and A0 ⊆ A. Moreover, every
integer variable of V is in A, by definition of γ, and each string variable of R
occurs in V exactly once.

The set R contains at most constraints of the form (ε in r) with ε ∈ L(r);
otherwise, one of the derivation rules would apply to K, against the assumption
that it is saturated. This makes R trivially satisfiable. The set A is satisfiable
as well, otherwise A-Conflict would apply. Let J be a model of TLR satisfying A
and let (x in q) be any element of V . We claim that the set qJ is nonempty and
contains only words of length |x|J . In fact, if (x in q) was added to V by Assign-1,
then q is a literal l and |x| ≈ |l|↓∈ A. If (x in q) was added to V by Assign-2, then
γ(r) = (q, uγ , Aγ) for some r, where Aγ ⊆ A and |x| ≈ uγ ∈ A. Since J satisfies
Aγ , by Lemma 4(2), all words in qJ , if any, are of length uJ

γ which is the same

as |x|J . To argue that qJ is non-empty, by Lemma 4(2), it is enough to argue
that L(r) is nonempty. This can be seen by observing that, by definition of the
the rewrite rules in Figure 3, and by Lemma 1 and Lemma 2, r is guaranteed
to contain no occurrences of ∅ or �, and containing such symbols is a necessary
condition for a regular expression to have an empty language. The statement of
the lemma follows by the generality of (x in q). ��

Proposition 5 (Refutation Completeness). Every set of TLR-constraints
unsatisfiable in TLR has a refutation.

Proof. Contrapositively, suppose that the set of TLR-constraints does not have a
refutation. Then, by Proposition 2, it must have a derivation that generates a
tree with a saturated branch. By Proposition 4 the set is satisfiable in TLR. ��

4.3 Decidability

Proposition 6 (Decidability). The TLR-satisfiability of quantifier-free ΣLR-
formulas with no regular expression variables is decidable.

Proof. By standard methods, the TLR-satisfiability of quantifier-free ΣLR-
formulas with no variables of sort Lan can be effectively reduced to the TLR-
satisfiability of TLR-constraints. The existence of a terminating procedure to
check such constraints is a consequence of Proposition 1 and Proposition 2. The
correctness of the procedure is a consequence of Propositions 3 and 5. ��

148 T. Liang et al.

5 Conclusion and Further Work

We have presented an algebraic approach for solving regular membership con-
straints and linear length constraints in the theory of strings. This approach
works directly on regular expressions without the need to translate them to
automata. Moreover, it does not require imposing a priori bounds on string
variables. We have proved that our approach is sound, complete and terminat-
ing, thus it is a decision procedure for this fragment. In addition, when the
constraints are satisfiable, our approach provides a model—in fact a generator
of a set of models. Therefore, it has all the properties required for integration
into an SMT solver.

In ongoing work, we are investigating a possible extension of our procedure
to word equations over unbounded strings. Although the satisfiability of sets of
word equations is also decidable, the decidability of the combined language is still
an open problem. We hope to find a fragment that is sufficiently expressive for
real-world problems, while also being decidable, or at least effective for solving
problems in practice.

Additionally, we have identified two bottlenecks in the calculus presented
here: the computation of the intersection and the complement operations over
regular expressions. Therefore, we plan to focus on developing approaches for
computing these operations that are efficient in practice. We are also working
on an extension to symbolic regular expressions, specifically, regular expressions
that contain string variables.

References

[1] Abdulla, P.A., Atig, M.F., Chen, Y.-F., Hoĺık, L., Rezine, A., Rümmer, P., Sten-
man, J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 150–166. Springer, Heidelberg (2014)

[2] Antimirov, V.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996)

[3] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

[4] Badban, B., Dashti, M.: Semi-linear parikh images of regular expressions via re-
duction. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
653–664. Springer, Heidelberg (2010)

[5] Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Sat-
isfiability, vol. 185, chapter 26, pp. 825–885. IOS Press, February 2008

[6] Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theor.
Comput. Sci. 48(1), 117–126 (1986)

[7] Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-
manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009)

[8] Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

A Decision Procedure for Regular Membership and Length Constraintsk 149

[9] Fu, X., Chih Li, C.: A string constraint solver for detecting web application vul-
nerability. In: Proceedings of the 22nd International Conference on Software En-
gineering and Knowledge Engineering, SEKE 2010. Knowledge Systems Institute
Graduate (2010)

[10] Ghosh, I., Shafiei, N., Li, G., Chiang, W.-F.: JST: An automatic test generation
tool for industrial Java applications with strings. In: Proceedings of the 2013 In-
ternational Conference on Software Engineering, ICSE 2013, pp. 992–1001. IEEE
Press, Piscataway (2013)

[11] Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe,
T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma,
E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995)

[12] Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string anal-
ysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262.
Springer, Heidelberg (2011)

[13] Hooimeijer, P., Weimer, W.: A decision procedure for subset constraints over
regular languages. In: Proceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 188–198. ACM (2009)

[14] Hooimeijer, P., Weimer, W.: Solving string constraints lazily. In: Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering,
pp. 377–386. ACM (2010)

[15] Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver
for string constraints. In: Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, pp. 105–116. ACM (2009)

[16] Klarlund, N., Møller, A.: MONA implementation secrets. In: Yu, S., Păun, A.
(eds.) CIAA 2000. LNCS, vol. 2088, pp. 182–194. Springer, Heidelberg (2001)

[17] Kozen, D.: Lower bounds for natural proof systems. In: FOCS, pp. 254–266. IEEE
Computer Society (1977)

[18] Li, G., Ghosh, I.: PASS: String solving with parameterized array and interval
automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp.
15–31. Springer, Heidelberg (2013)

[19] Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A dPLL(T) theory
solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Heidelberg (2014)

[20] Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.: A decision pro-
cedure for regular membership and length constraints over unbounded strings.
Technical report, Department of Computer Science, The University of Iowa (2015).
http://www.cs.uiowa.edu/~tinelli/papers.html

[21] Lu, K.Z.M.: XHaskell - Adding Regular Expression Type to Haskell. PhD thesis,
National University of Singapore (2009)

[22] Makanin, G.S.: The problem of solvability of equations in a free semigroup. English
Rransl. in Math USSR Sbornik 32, 147–236 (1977)

[23] Matiyasevich, Y.V.: Hilbert’s tenth problem and paradigms of computation.
In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526,
pp. 310–321. Springer, Heidelberg (2005)

[24] Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
[25] Plandowski, W.: Satisfiability of word equations with constants is in pspace. J.

ACM 51(3), 483–496 (2004)
[26] Rosu, G., Viswanathan, M.: Testing extended regular language membership in-

crementally by rewriting. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706,
pp. 499–514. Springer, Heidelberg (2003)

http://www.cs.uiowa.edu/~tinelli/papers.html

150 T. Liang et al.

[27] Schulz, K. (ed.): Word Equations and Related Topics. Springer-Verlag New York,
Inc., New York (1990)

[28] Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis
based on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 33,
1–33 (2013)

[29] Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In:
Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer,
Heidelberg (2008)

[30] Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: A symbolic string solver for vulnerability
detection in web applications. In: Yung, M., Li, N. (eds.) Proceedings of the 21st
ACM Conference on Computer and Communications Security (2014)

[31] Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S. (ed.)
CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013)

[32] Veanes, M., Bjørner, N., de Moura, L.: Symbolic automata constraint solving. In:
Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 640–654.
Springer, Heidelberg (2010)

[33] Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis
tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

[34] Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A z3-based string solver for web appli-
cation analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pp. 114–124. ACM, New York (2013)

Adapting Real Quantifier Elimination Methods

for Conflict Set Computation

Maximilian Jaroschek1, Pablo Federico Dobal1,2,3, and Pascal Fontaine3,�.

1 Max Planck Institute for Informatics, Saarbrücken, Germany
2 Universität des Saarlandes, Saarbrücken, Germany

3 INRIA, Université de Lorraine and LORIA, Nancy, France

Abstract. The satisfiability problem in real closed fields is decidable.
In the context of satisfiability modulo theories, the problem restricted to
conjunctive sets of literals, that is, sets of polynomial constraints, is of
particular importance. One of the central problems is the computation
of good explanations of the unsatisfiability of such sets, i.e. obtaining
a small subset of the input constraints whose conjunction is already
unsatisfiable. We adapt two commonly used real quantifier elimination
methods, cylindrical algebraic decomposition and virtual substitution,
to provide such conflict sets and demonstrate the performance of our
method in practice.

Keywords: SMT, real quantifier elimination, cylindrical algebraic
decomposition, virtual substitution, conflict set.

1 Introduction

Among the reasons for the current success of Satisfiability Modulo Theory (SMT,
we refer to [1] for more information) solvers is the ability to handle large formulas
in an expressive language. Since arithmetic is pervasive in applications of SMT,
this language should include some kind of arithmetic theory. Linear arithmetic
(on reals and integers) was one of the first theories considered for SMT [22], and
integrated in practice into SMT solvers [2,14]. Non-linear arithmetic is also men-
tioned in the fundamental combination of theories paper [22]. Although many
applications do require non-linear arithmetic reasoning — our motivating ap-
plication was the verification of a clock synchronization algorithm [3] — it is
considered in practice only since quite recently (e.g. [19]), and few solvers in-
tegrate non-linear arithmetic reasoning capabilities. Up to now, no technique is
accepted as the right way to integrate non-linear reasoning capabilities into SMT
solvers.

The theory of real closed fields (reals with order, addition, and multiplication)
has however been extensively studied in the area of symbolic computation, and

� This work has been supported by the ANR/DFG project STU 483/2-1 SMArT,
project ANR-13-IS02-0001 of the Agence Nationale de la Recherche, by the European
Union Seventh Framework Programme under grant agreement no. 295261 (MEALS),
by the Région Lorraine, and by the STIC AmSud MISMT

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 151–166, 2015.
DOI: 10.1007/978-3-319-24246-0_10

152 M. Jaroschek, P.F. Dobal and P. Fontaine

mature tools exist to handle sets of constraints in this language, e.g. [16,4]. The
results presented here aim at adapting those tools so that they can be integrated
into an SMT framework. Indeed, whereas developing dedicated techniques for
non-linear arithmetic within SMT is crucial, a lesson from linear arithmetic is
that mature (external) tools should also be adapted for cooperation with SMT
solvers. For instance, a reasonably efficient linear programming tool suitably
incorporated into the SMT solver CVC4 provided an impressive improvement of
efficiency compared to the dedicated SMT techniques alone [20].

To integrate a theory reasoner in an SMT framework, some features are valu-
able (see Section 1.4.1 in [1]). Since we envision fast and incomplete techniques
tightly integrated within SMT, backed up by a complete and robust but also
heavy engine, it is not of foremost importance for this engine to be incremen-
tal and backtrackable: it will only be called as a last resort on a full assign-
ment when the heuristic solver failed to show unsatisfiability. However, a critical
feature is that the complete engine provides models, both for feedback to the
user but also for model-based combination with other theories [12,13]. Adapting
established real closed field decision procedures to produce models has been the
subject of a previous work [21]. The other critical feature is to be able, from
an unsatisfiable set of constraints, to extract a small conflict set. Without this
ability, the cooperation of the SMT solver and the engine would most probably
fail because the SMT solver would enumerate an exponential number of slightly
different assignments, successively submitted to the engine. The engine would
reject them one by one, but they would essentially be unsatisfiable for the same
reason. With small conflict set production, all these assignments are blocked by
the strong conflict clause added within the SMT solver in just one call to the
external engine.

We here focus on the computation of small conflict sets from unsatisfiable
sets of non-linear constraints. Two commonly used real quantifier elimination
methods, namely cylindrical algebraic decomposition and virtual substitution,
are considered. They basically share a feature that provides the key to efficiently
compute conflict sets: a finite set of test points is generated in the process.
These test points falsify some of the input constraints. If the tentative conflict
set contains enough constraints so that at least one of them is false for each test
point, it is indeed a conflict set.

Section 2 briefly describes the two decision procedures for sets of polyno-
mial constraints on the reals, Section 3 presents the small conflict set extraction
method, and experimental results are discussed in Section 4.

2 Real Quantifier Elimination

Given a quantified formula φ, quantifier elimination is the process of finding
an equivalent, quantifier-free formula φ′. Whether or not quantifier elimination
is possible in theory and practice in general depends on the considered formal
system and the underlying theory.

For first-order logic formulas over the reals it is well known that quantifier
elimination is possible. This was first proven by Tarski in 1951 [23], but the

Adapting Real Quantifier Elimination Methods for Conflict Set Computation 153

first successful algorithmic approach to the problem was developed by Collins
in 1974 [8]. To formally define the problem, consider a quantifier-free first-
order formula ϕ(x1, . . . , xn, u1, . . . , um) over the reals in the variables x1, . . . , xn,
u1, . . . , um. Given the formula

φ ≡ Q1x1, . . . Qnxn : ϕ(x1, . . . , xn, u1, . . . , um),

with Qi ∈ {∀, ∃} for 1 ≤ i ≤ n, the quantifier-elimination problem consists in
finding a quantifier-free first-order formula φ′(u1, . . . , um) such that φ′ is logically
equivalent to φ. It was proven independently by Weispfenning [24] and Davenport
and Heintz [11] that solving the quantifier elimination problem over real closed
fields can require double exponential space.

Subsequently we describe two widely used real quantifier elimination meth-
ods. Both approaches are based on the same general idea which we discuss first
before going into details about the specifics for each method. Our goal is to give
a comprehensible and intuitive introduction to these procedures and not to de-
scribe them in thorough technical detail. References to more in depth treatments
of the subjects are given for the interested reader.

While these methods work in a general context, our focus lies on input for-
mulas found in the SMT setting with only existential quantifiers and no free
variables:

φ ≡ ∃x1, . . .∃xn : ϕ(x1, . . . , xn), (1)

It is clear that then either true or false is a quantifier-free equivalent of φ.
Over the reals, quantifier-free formulas are Boolean combinations of polyno-
mial expressions of the form p(x1, . . . , xn) �� 0 where p is a polynomial in
�[x1, . . . , xn] and �� is a relation symbol in {<,≤,=, �=, >,≥}. Given a point
(a1, . . . , an) ∈ �n, we can see if ϕ holds for this point by substituting ai for xi

for all 1 ≤ i ≤ n. If we were able to perform the substitution for all points in
�

n in finite time, we could easily see if φ holds or not.
The approach of the two quantifier elimination methods cylindrical algebraic

decomposition (CAD) and virtual substitution (VS) is to reduce the set of in-
finitely many points in �n to a finite set of test points, i.e. to find a finite
subset T of �n such that φ holds over �n if and only if it holds over T .

2.1 Cylindrical Algebraic Decomposition

Cylindrical algebraic decomposition [8] is the most widely used real quantifier
elimination method to date. It is based on a simple observation: given a finite,
non-empty set P of polynomials in n variables, one can define an equivalence
relation on�n that decomposes the space into finitely many connected cells such
that all the given polynomials are sign invariant in each cell.

Definition 1. Let P be a non-empty set of polynomials in �[x1, . . . , xn]. For
a, b ∈ �n we say that a is equivalent to b if there exists a path γ : [0, 1] → �

n

from a to b such that for all s, t ∈ [0, 1] and all p ∈ P we have that

sgn(p(γ(s))) = sgn(p(γ(t))).

154 M. Jaroschek, P.F. Dobal and P. Fontaine

The term cell refers to the preimage of an equivalence class under the canonical
homomorphism which maps a point to its equivalence class. We call the set of
all cells an (algebraic) decomposition of �n.

Example 1. To illustrate the basic idea, we consider the bivariate case, and the
following set of polynomials.

P = {x2 + y2 − 1︸ ︷︷ ︸
p1

, x2 − y + 1/2︸ ︷︷ ︸
p2

}

The first polynomial defines three connected, sign invariant cells in �2 given by

{(a, b) ∈ �2 | p1 < 0}, {(a, b) ∈ �2 | p1 = 0}, {(a, b) ∈ �2 | p1 > 0},
and similarly, p2 also decomposes �2 into three cells when not taking p1 into
account. The combination of the cells induced by p1 and the cells induced by p2
gives rise to a new decomposition where the original cells either persist, collapse
into common cells or form new cells via intersection. The decomposition of �2

induced by P consists of 5 different cells in total, as illustrated in Figure 1.

1

2

3

4

5

Fig. 1. The sign invariant cells of Example 1. Note that cell no. 5 is given by the union
of the varieties of p1 and p2.

To study a quantified formula φ, we want to collect in a set P all the poly-
nomial expressions in φ and then compute a sample point for each cell in the
decomposition induced by P . While it seems easy to identify the different sign
invariant cells simply by inspection of the plot of the varieties in Figure 1, it is
a non-trivial task for a computer and for more involved polynomial systems (in
more than two variables).

Adapting Real Quantifier Elimination Methods for Conflict Set Computation 155

To facilitate the algorithmic identification of different cells, new polynomials
are added to P so that the decomposition becomes cylindrical in the following
sense:

Definition 2. A decomposition of �n is called cylindrical if n = 1 or if there
exists a projection π : �n → �

n−1 that acts on the elements of �n by removing
one of their coordinates such that the following two conditions hold:

1. For two cells C1, C2 ⊂ �n, either π(C1) = π(C2) or π(C1) ∩ π(C2) = ∅.
2. The decomposition of �n−1 induced by the images under π of the cells in the

decomposition of �n is cylindrical.

We call a set of polynomials P ⊂ R[x1, . . . , xn] cylindrical if the decomposition
of �n induced by P is cylindrical.

Again, this can easily be illustrated by an example.

Example 2. (Example 1 continued.) The decomposition induced by P as in Ex-
ample 1 is not cylindrical. We can, however, refine it by adding four linear

polynomials to the set. Let c =
√
0.5(

√
7− 2) (c is such that p1(±c) = p2(±c))

and set
P ′ = P ∪ {x+ 1, x+ c, x− c, x− 1}.

P ′ is cylindrical and the decomposition is illustrated in Figure 2. It consists of
47 different cells.

Starting from a set of sample points from each cell in the induced decompo-
sition of � (represented by the dots on the horizontal axis in the figure), we can
easily find all cells in �2 “above” a fixed cell in � by keeping the x1 value fixed
and looking for roots of any polynomial in P with that x1 value. In the picture,
this corresponds to moving along the dotted line and looking for sign changes.

The full CAD algorithm works in three major steps. We start with a formula φ
of the form (1) and collect the contained polynomials in a set Pn ⊂ �[x1, . . . , xn].
The first step, the projection phase, recursively adds new elements to Pn such
that its induced decomposition becomes cylindrical. We denote this superset of
Pn by cadp(Pn). If n = 1, then P1 is always cylindrical, so cadp(P1) := P1. For
n > 1, we compute a set Pn−1 which contains all polynomials in Qn := Pn ∩
�[x1, . . . , xn−1] as well as the image Pn\Qn under a so called projection operator
and return cadp(Pn) := Pn∪cadp(Pn−1). The projection operator is a map such
that cadp(Pn) is cylindrical if cadp(Pn−1) is. Intuitively it adds polynomials
in �[x1, . . . , xn−1] to Pn−1 that correspond to asymptotes orthogonal to the
projection direction, intersections and self intersections of the algebraic curves
defined by the polynomials in Pn \Qn. In Example 2, x ± 1 corresponds to the
vertical asymptotes of the algebraic curve given by p1 and x± c corresponds to
the intersection of the two curves given by p1 and p2.

In the second step, the extension phase, sample points of the cells in the de-
composition of � induced by P1 are obtained by computing the roots of the
polynomials in P1 and points from the intervals between these roots. The cells

156 M. Jaroschek, P.F. Dobal and P. Fontaine

Fig. 2. A cylindrical algebraic decomposition of �2 induced by the polynomials in
Example 2.

of � are extended to cells of �2 by keeping the x1 values of the sample points
fixed and computing the roots of the polynomials in P2 regarded as univari-
ate polynomials in x2. This step is iterated to obtain the cells in �3, �4 etc.
In the last step, the sample points of the cells in �n are plugged into the the
polynomials in P and φ is evaluated.

It was shown by Brown and Davenport [5] that the complexity of CAD is
double exponential in the number of variables. Many improvements of the base
algorithm like the ones found in [9,6,7], however, allow for solving moderately
sized systems via CAD.

2.2 Virtual Substitution

The virtual substitution technique takes a more symbolic view on the roots of a
polynomial. It was introduced by Weispfenning in 1988, see [25], and several im-
provements and generalizations have been developed since. It is not as prevalent
as CAD due to its current degree limitations in practice, but usually performs
much better in terms of computing time.

To get a good understanding of VS, consider first univariate polynomials and
a special form of the quantifier-free formula φ that contains no strict inequalities
but only Boolean combinations of expressions of the form p(x) �� 0 with ��
∈ {≤,=,≥}. Similarly to CAD, VS decomposes the space into connected cells.
However, while CAD does not really exploit the literals but only the polynomials
appearing in them, the cells in VS are constructed such that the truth value of φ
(rather than the signs of the images of the polynomials) remains invariant in
each cell.

Adapting Real Quantifier Elimination Methods for Conflict Set Computation 157

Let p1, p2 ∈ �[x] and φ = p1 ≥ 0 ∧ p2 ≥ 0. The real roots r1, . . . , rk of p1
given in ascending order decompose � into finitely many intervals

(−∞, r1], (r1, r2], . . . , (rk−1, rk], (rk,+∞).

The real roots of p2 then refine this decomposition such that in each interval,
the truth values of the inequalities and equations in φ do not change within an
interval.

Example 3. Let p1 = 10−1(x + 5)(x + 2)(x − 6) and p2 = x2 − 9 and Φ = ∃x :
p1 ≥ 0 ∧ p2 ≤ 0. Then the truth invariant decomposition induced by the real
roots of p1 and p2 consists of the intervals

(−∞,−5], (−5,−3], (−3,−2], (−2, 3], (3, 6], (6,+∞).

Byplugging in the upper interval bounds (and evaluating the polynomials at+∞),
we see that φ ≡ true via the test point x = −3.

Fig. 3. Plot of the polynomials in Example 3.

When dealing with multivariate polynomials in �[x1, . . . , xn], the idea is to
choose one variable xi and view the polynomials as univariate in xi. Then we
are in the univariate setting where we can (symbolically) compute the interval
decomposition. Here, the interval bounds are not real numbers but expressions
in the variables x1, . . . , xi−1, xi+1, . . . , xn.

Example 4. Let p1 = x1x2−1 and p2 = x1−3 and φ = ∃x1∃x2 : p1 ≥ 0∧p2 ≤ 0.
As univariate polynomials in �(x1)[x2], p2 either vanishes identically or has no
roots. The polynomial p1 has either no roots or a root at x−1

1 . We substitute
this root expression for x2 and get

p1(x
−1
1 /x2) = x1x

−1
1 − 1 = 0, p2(x

−1
1 /x2) = x1 − 3.

This substitution is only possible if we require that x1 �= 0. Therefore, after the
substitution, φ becomes

∃x1 : 0 ≥ 0 ∧ x1 − 3 ≤ 0 ∧ x1 �= 0,

158 M. Jaroschek, P.F. Dobal and P. Fontaine

and one quantifier has been removed. Continuing the process will give Φ ≡ true

via the test point (3, 13).

In the example, the root expression has to be substituted into all polynomial
constraints, but it is also necessary to ensure that the substitution term is valid.
Here, this is achieved by adding a constraint to the formula to prevent division by
zero. Such additional constraints are called guards of the substitution term. Also,
substitution in the above example generates a (quantified) Boolean combination
of polynomial constraints; this is not always the case. Indeed substitution can
lead for instance to rational functions. In virtual substitution, this problem is
circumvented by a more sophisticated substitution process.

Assume that after the substitution the resulting formula contains a relation
of the form p/q �� 0 with p and q coprime polynomials in �[x1, . . . , xk]. In order
to remove the denominator, we can multiply the relation by q. We do not know,
however, if in the subsequent substitution steps we derive values for x1, . . . , xk

such that q would evaluate to a strictly positive or negative number and thus
whether the relation sign �� changes or not. Note that guards prevent q to be
zero. A way out is to multiply by q2 (which is certainly positive) rather than q.

Example 5. In the formula

∃x1∃x2 : x1x2 − 1 ≥ 0 ∧ x2 + x1 − 3 ≤ 0.

we substitute x2 by x−1
1 via virtual substitution and obtain the equivalent

formula
∃x1 : x1 + x2

1(x1 − 3) ≤ 0 ∧ x1 �= 0.

In the full VS algorithm, several other substitution rules are necessary to avoid
non-polynomial expressions. These are detailed in [25] for virtual substitution
for polynomials of degree at most two. Also included are rules that allow strict
inequalities by substitution of ε-terms. In theory, the method can be extended
to an arbitrary but fixed degree bound, see [27], but there are still obstacles to
overcome for higher degree implementations.

Virtual substitution performs significantly better in theory and practice com-
pared to CAD. As shown in [26], VS is double exponential in the number of
quantifier alternations but only single exponential in the number of quantified
variables for a fixed quantifier type. Since the input in the SMT setting does
not contain quantifier alternations, virtual substitution is significantly better
compared to cylindrical algebraic decomposition for these formulas in terms of
theoretical complexity.

3 Finding Conflict Sets

In order to benefit from the interplay between SAT-solvers and special theory
solvers, it is required from the theory solver to provide small conflict sets. The
input to the theory solver is a conjunction of literals and if this conjunction is not

Adapting Real Quantifier Elimination Methods for Conflict Set Computation 159

satisfiable, an answer in the form of a (hopefully small) subset of the input literals
that is unsatisfiable itself should be returned. We call this answer a conflict set.
Such a conflict set should ideally be as small as possible. A minimum conflict
set is a conflict set with minimum size, whereas a minimal conflict set does not
contain unnecessary literals, that is, all its subsets are satisfiable. A minimum
conflict set is minimal, but a minimal conflict set might not have the smallest
size. The procedure here is not guaranteed to produce minimum or even minimal
conflict sets, but we will show in Section 4 that it is efficient at finding small
conflict sets. We now describe how virtual substitution and cylindrical algebraic
decomposition can be adapted to provide such answers.

3.1 Conflict Sets and Linear Programming

The problem can be stated as follows: given an unsatisfiable quantified formula φ
of the form

φ = ∃x1 . . . ∃xn :
∧

1≤i≤m

pi ��i 0, (2)

with pi ∈ �[x1, . . . , xn] and ��i ∈ {<,≤,=, �=, >,≥}, find a subset I ⊂ {1, . . . ,m}
as small as possible such that the formula

φ′ = ∃x1 . . . ∃xn :
∧
i∈I

pi ��i 0,

is unsatisfiable.
As was stated in the beginning of Section 2, virtual substitution and cylindri-

cal algebraic decomposition share the same basic idea of finding a finite set T
of test points that suffice to determine the unsatisfiability of φ. The key to the
problem of finding a conflict set is a reformulation of the problem in terms of
these test points. For that, denote by ri the ith polynomial constraint in φ for
i ∈ {0, . . . ,m} and for each i let ei : T → {0, 1} be such that ei(a) = 0 if ri holds
at a and 1 otherwise. Applying CAD or VS to φ will result in T = {t1, . . . , tk}
such that for each t ∈ T there exists an i with ei(t) = 1. Now let vi be the
vector (ei(t1), ei(t2), . . . , ei(tk)). Then the problem of finding the smallest con-
flict set can be restated as a linear optimization problem.1 Considering a vector
w ∈ {0, 1}m, it is indeed equivalent to minimizing w1+ · · ·+wm under the linear
constraints

Mw ≥ 1,

where M is the matrix that contains the vi as columns and 1 = (1, . . . , 1). We
will refer to matrices M constructed in this way as evaluation matrices. If the
vector w is as desired, then an entry 1 at the ith position means that ri is part
of the computed conflict set.

1 Alternatively, since ei(tk) is either 0 or 1 for each i and k, the problem can be recast
into propositional logic, and reduces then to finding the smallest implicant of a set
of clauses, that is, the smallest set of literals implying all clauses.

160 M. Jaroschek, P.F. Dobal and P. Fontaine

Note that our reformulation yields a 0-1-linear integer programming problem
of the form

min
bw

{w ∈ {0, 1}m | Mw ≥ 1}, with b = 1 = (1, . . . , 1),M ∈ {0, 1}k×m, (3)

and we can use highly optimized linear programming techniques to find an op-
timal or approximate solution.

This is only one of the benefits that the reformulation provides us. Another one
is that the information necessary to construct the matrix M , i.e. the test points
and images under the evaluation functions ei, is already computed during the
quantifier elimination. We will further investigate this fact in the next section.

We can easily deduce that solving the linear optimization problem is not
harder than solving the original minimum conflict set problem:

Theorem 1. Let A be an algorithm that solves the problem of finding a mini-
mum conflict set. Then there exists a polynomial time algorithm B that trans-
forms a matrix with entries in {0, 1} into a system of polynomials such that A◦B
is an algorithm for solving linear optimization problems of the form (3)

Proof. For a given matrix M ∈ {0, 1}k×m, we show how to construct an equiv-
alent conflict set problem in polynomial time, i.e. a formula φ whose minimum
conflict set immediately yields a solution to the linear programming problem (3).
Let φ be the quantified formula given by

φ = ∃x :
∧

i∈{1,...,m}
pi = 0,

with

pi =

k∏
j=1

(x− j)1−M(j,i).

One can easily check that the indices of the constraints in any minimum conflict
set give rise to a solution of the linear programming problem. Multiplication of
polynomials can be done in polynomial time, which proves the claim. ��

3.2 Conflict Sets and Quantifier Elimination Optimization

One of the main reasons why CAD and VS perform reasonably fast in practice
is that since their initial development, many improvements have been made to
speed up the computation. For CAD, many of these improvements take the form
of specialized projection operators that reduce the number of cells that are con-
structed in the projection phase for certain kinds of input. Another major con-
tribution was the development of partial cylindrical algebraic decomposition by
Collins and Hong in [9]. In the case of virtual substitution, many improvements
focus on the simplification of the quantifier free formula after every substitution
step. Most notably, this includes the work of Sturm and Dolzmann in [15,17].

Adapting Real Quantifier Elimination Methods for Conflict Set Computation 161

While some of the improvements do not have an effect on the computation of
conflict sets as presented in Section 3.1, others will reduce the amount of avail-
able information for the evaluation matrix. There are basically two scenarios for
information loss, which we describe with the help of two showcase improvements
for CAD and VS.

In the partial CAD method, the following rule is used to avoid unnecessary
cell construction. Note that we do not state it in full generality but adapt the
rule to our framework.

Let φ be of the form (2) with polynomials in �[x1, . . . , xn]. If p ∈
�[x1, . . . , xk] appears in φ with k < n and there is a cell C in the CAD
of �k induced by the polynomials in φ in which one of the constraints
depending only on p evaluates to false, then the cells above C do not
have to be constructed.

Assume (a1, . . . , ak) ∈ �k lies in such a cell with a constraint containing pi
evaluating to false and further assume we compute the CAD without the afore-
mentioned rule. This means that in the evaluation matrix we get
 rows corre-
sponding to test points (a1, . . . , ak, ∗, . . . , ∗) with
 ≥ 1 and all entries of the ith
column are equal to 1 at the positions of these rows. On the other hand, if we
compute the partial CAD, these rows will be missing in the evaluation matrix.
However, we can add one row that corresponds to the test point (a1,ak) and
we know that it will contain at least one non-zero entry at position i. At positions
that correspond to polynomial constraints in more than the first k variables we
insert the value 0. With this strategy, we can compensate for missing rows in
the evaluation matrix. It is important to note that in this setting, we do not
necessarily get a minimal conflict set even if we look for an optimal solution
in (3).

A second reason for missing information can be found in the simplification
strategies used in virtual substitution. If these strategies can determine at some
point in the computation that the current quantifier-free formula (obtained for
instance after some substitution steps) is a tautology or a contradiction, the
remaining variables will not be substituted in the current substitution branch.
An example for such a situation is a formula of the form

xk ≥ 0 ∧ · · · ∧ xk < 0 ∧ . . .

which is obviously a contradiction and instead of continuing the substitution
process, one can return false for this substitution branch. This scenario is
similar to the one before in that an unknown number of rows in the evaluation
matrix is missing. In contrast to the partial CAD improvement however, the
truth value of the substitution branch is derived not from a single constraint but
from a subset of the constraints in the formula.

In order to preserve compatibility with the conflict set computation, we there-
fore require that the simplification mechanism itself is able to determine a local
conflict set, i.e. a conflict set of the quantifier-free formula on which the sim-
plification mechanism acts. We then can extend this to a global conflict set.

162 M. Jaroschek, P.F. Dobal and P. Fontaine

The global conflict set should contain the union of all the local conflict sets and
the corresponding columns can be removed from the evaluation matrix, together
with all rows where these columns have non-zero entries.

4 Finding Conflict Sets via Redlog

We implemented our method in the package Redlog, part of the open source
computer algebra system Reduce [18]. We have adapted the available CAD and
VS implementations as well as parts of the simplification facilities for quantifier-
free formulas to explicitly provide the test point evaluations and local conflict
sets. Our method is such that it requires only little changes to the highly opti-
mized Redlog code. In other methods, see e.g. [10], the implementations of CAD
and VS are built from the ground up for use in SMT solving.

To provide a reasonably large and meaningful test set, we used the quantifier-
free real arithmetic (QF NRA) benchmarks from the SMT-LIB library. Our
method expects a set of literals as input, so we use the veriT SMT-solver to
generate, for each SMT-LIB benchmark, one complete assignment of atoms in
the formula. This assignment is satisfiable in the theory of real linear arith-
metic considering multiplication as an uninterpreted predicate. This set is fur-
ther simplified using a preprocessor (which would eventually also have to be
considered in the conflict clause production). This preprocessor only does triv-
ial rewriting. Since Redlog is a generic tool and is not tuned for SMT-LIB like
formulas, it greatly benefits from this simple cleaning phase. Finally, among the
obtained formulas, some are satisfiable, and are not considered here. The test set
thus obtained contains 6076 formulas that are proved unsatisfiable by Redlog.
Figure 4 provides an idea of the size of formulas: a point (x, y) on the curve
means that there are x formulas with a size smaller than y. The benchmarks
as well as a distribution of Redlog featuring conflict set computation can be
obtained on http://www.loria.fr/~pdobal/.

2 All our experiments use a 600
seconds timeout on a computer with an Intel i7-4600U CPU at 2.10GHz and 16
GB of RAM running Linux.

The scatter plot on Figure 6 gives a comparative view of the problem and
conflict set sizes, whereas Figure 5 provides the distribution of the conflict set
sizes: the method is suitable to provide small conflict sets. Even if most inputs
contain tens or hundreds of constraints, just a few conflict sets have more than
ten constraints. Semiautomatic inspection of the conflict sets exhibits that some
of these are not minimal, i.e. they contain literals that are not necessary for
unsatisfiability. For integration within SMT, it will be necessary to evaluate
whether it is more efficient to reduce the conflict set size using other techniques
or to keep these perfectible conflict sets as they are.

Figure 7 provides a comparative graph of the running times of Redlog with
and without conflict set generation. Conflict set generation is not exactly the
non-conflict set producing algorithm with an additional phase: some features
of the original (non-conflict set producing) algorithm have to be turned off.

2 7947 formulas are provided, including the ones with a satisfiable or unknown status.

http://www.loria.fr/~pdobal/

Adapting Real Quantifier Elimination Methods for Conflict Set Computation 163

 1

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000

Pr
ob

le
m

 s
iz

e

Number of formulas

Fig. 4. Problem size (in number of constraints) repartition.

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Nu
m

be
r o

f f
or

m
ul

as

Infeasible core size

Fig. 5. Number of formulas for a given conflict set size (in number of constraints).

 1

 10

 100

 1000

 1 10 100 1000

In
f c

or
e

si
ze

Problem size

 1

 10

 100

 1000

 1 10 100 1000

In
f c

or
e

si
ze

Problem size

Fig. 6. Size of formulas vs. size of conflict sets (in number of constraints).

164 M. Jaroschek, P.F. Dobal and P. Fontaine

 1

 10

 100

 1 10 100

W
ith

ou
t c

or
e

co
m

pu
ta

tio
n

With core computation

 1

 10

 100

 1 10 100

W
ith

ou
t c

or
e

co
m

pu
ta

tio
n

With core computation

Fig. 7. Computing time (in seconds) with and without conflict set generation.

This explains most of the cost, as well as the fact that sometimes the conflict set
generating algorithm is faster (just because the search tree is different). However
the results clearly show that conflict set computation has an acceptable cost; it
fails only for 22 out of 6076 cases.

As a side note, Redlog was also evaluated against Z3 on all these benchmarks.
Redlog is definitely slower on most of them, also because there is a 0.2 seconds
cost for starting the whole Reduce infrastructure, whereas Z3 most of the time
answers in a few hundreds of a second. It also appears that Z3 is extremely
effective for satisfiable files, being able to decide the satisfiability of 24 files more
than Redlog, whereas no file was stated satisfiable by Redlog and not by Z3.
On the unsatisfiable problems, Redlog succeeded on 2 among the 9 for which Z3
failed, whereas Redlog failed on 18 problems proved unsatisfiable by Z3. This is
an indication that further work to present the SMT assignments to Redlog in a
better way could lead to good results when using Redlog as a back-end.

5 Conclusion

We introduced here a technique to adapt two commonly used real quantifier
elimination methods, that is, cylindrical algebraic decomposition and virtual
substitution, to also provide, besides the satisfiability status of a set of polyno-
mial constraints on the reals, a conflict set when the input set is unsatisfiable.
This technique is based on the simple, yet effective, observation that both meth-
ods amount to checking the values of the constraints on a finite number of test
points. Collecting the test points and the values is sufficient to compute the
conflict sets in a post-processing phase, which is basically a linear optimization
problem, or the computation of a (prime) implicant for a set of clauses. Exper-
imental results show that this technique performs very well to produce small
conflict sets.

Quantifier elimination methods also come with their lot of heuristics, and
these are not all seamlessly compatible with our technique. Here, some of those

Adapting Real Quantifier Elimination Methods for Conflict Set Computation 165

heuristics were turned off, and some were adapted to tag the constraints used
by the heuristics as mandatory for the conflict set. This is responsible for non-
minimality of the produced conflict sets. Although we can observe experimentally
that the produced conflict sets are small, it will certainly be beneficial to better
analyze the heuristics for finer conflict set production.

In their applications, SMT solvers are used to check large and mostly easy
computer generated formulas, whereas Redlog was mostly conceived for hard
problems of moderate size. In order to succeed the integration of Redlog as
a complete back-end for non-linear constraints within SMT, it is necessary to
improve the heuristic simplification preprocessing phase, which is currently ex-
tremely basic. Another non-trivial issue is to take into account this preprocessing
phase for the conflict computation.

Acknowledgements. We would like to thank the reviewers for their valuable
suggestions and comments on this paper. Furthermore, the expertise of Thomas
Sturm and Marek Košta on Redlog was of much benefit to the authors.

References

1. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185, chapter 26,
pp. 825–885. IOS Press, February 2009

2. Barrett, C.W.: Checking validity of quantifier-free formulas in combinations of
first-order theories. PhD thesis, Stanford University (2003)

3. Barsotti, D., Nieto, L.P., Tiu, A.: Verification of clock synchronization algorithms:
experiments on a combination of deductive tools. Form. Asp. Comput. 19(3),
321–341 (2007)

4. Brown, C.W.: Qepcad b: A program for computing with semi-algebraic sets using
cads. SIGSAM Bulletin 37, 97–108 (2003)

5. Brown, C.W., Davenport, J.H.: The complexity of quantifier elimination and cylin-
drical algebraic decomposition. In: Proceedings of the 2007 International Sympo-
sium on Symbolic and Algebraic Computation, ISSAC 2007, pp. 54–60. ACM, New
York (2007)

6. Brown, C.W., Kosta, M.: Constructing a single cell in cylindrical algebraic decom-
position. J. Symb. Comput. 70, 14–48 (2015)

7. Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindri-
cal algebraic decompositions. In: Feng, R., Lee, W.-S., Sato, Y. (eds.) Computer
Mathematics, pp. 199–221. Springer, Heidelberg (2014)

8. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decomposition–preliminary report. SIGSAM Bull. 8(3), 80–90 (1974)

9. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation 12(3), 299–328 (1991)

10. Corzilius, F., Loup, U., Junges, S., Ábrahám, E.: SMT-RAT: An SMT-compliant
nonlinear real arithmetic toolbox. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 442–448. Springer, Heidelberg (2012)

166 M. Jaroschek, P.F. Dobal and P. Fontaine

11. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. Jour-
nal of Symbolic Computation 5(1), 29–35 (1988)

12. de Moura, L.M., Bjørner, N.: Model-based theory combination. Electronic Notes
in Theoretical Computer Science 198(2), 37–49 (2008)

13. de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: Combining decision procedures by
(model-)equality propagation. Science of Computer Programming 77(4), 518–532
(2012)

14. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: A theorem prover for program check-
ing. Technical Report HPL-2003-148, Hewlett Packard Laboratories, July 23, 2003

15. Dolzmann, A.: Algorithmic strategies for applicable real quantifier elimination.
PhD thesis, Universität Passau, Innstrasse 29, 94032 Passau (2000)

16. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic.
SIGSAM Bull. 31(2), 2–9 (1997)

17. Dolzmann, A., Sturm, T.: Simplification of quantifier-free formulae over ordered
fields. Journal of Symbolic Computation 24(2), 209–231 (1997)

18. Hearn, A.C., Schöpf, R.: Reduce User’s Manual, Free Version, October 2014
19. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B.,

Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer,
Heidelberg (2012)

20. King, T., Barrett, C., Tinelli, C.: Leveraging linear and mixed integer programming
for SMT. In: Claessen, K., Kuncak, V. (eds.) Formal Methods In Computer-Aided
Design (FMCAD), Austin, TX, October, pp. 24:139–24:146. FMCAD Inc. (2014)

21. Kosta, M., Sturm, T., Dolzmann, A.: Better answers to real questions. CoRR,
abs/1501.05098 (2015)

22. Nelson, G., Oppen, D.C.: Simplifications by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

23. Tarski, A.: A decision method for elementary algebra and geometry. Rand report.
Rand Corporation, 1948. Republished as A Decision Method for Elementary Alge-
bra and Geometry, 2nd edn. University of California Press, Berkeley (1951)

24. Weispfenning, V.: The complexity of linear problems in fields. Journal of Symbolic
Computation 5(1–2), 3–27 (1988)

25. Weispfenning, V.: A new approach to quantifier elimination for real algebra. Tech-
nical Report MIP-9305, FMI, Universität Passau, Germany, July 1993

26. Weispfenning, V.: Quantifier elimination for real algebra – the quadratic case and
beyond. AAECC 8, 85–101 (1993)

27. Weispfenning, V.: Quantifier elimination for real algebra – the cubic case. In: Pro-
ceedings of the International Symposium on Symbolic and Algebraic Computation,
pp. 258–263. ACM, New York (1994)

Decision Procedures for Verification

A New Acceleration-Based Combination

Framework for Array Properties

Francesco Alberti1, Silvio Ghilardi2, and Natasha Sharygina3

1 Fondazione Centro San Raffaele, Milan, Italy
2 Università degli Studi di Milano, Milan, Italy

3 Università della Svizzera Italiana, Lugano, Switzerland

Abstract. This paper presents an acceleration-based combination
framework for checking the satisfiability of classes of quantified formulæ
of the theory of arrays. We identify sufficient conditions for which an ‘ac-
celeratability’ result can be used as a black-box module inside such sat-
isfiability procedures. Besides establishing new decidability results and
relating them to results from recent literature, we discuss the application
of our combination framework to the problem of checking the safety of
imperative programs with arrays.

1 Introduction

The theory of arrays is one of the most relevant theories for software verifica-
tion, this is the reason why current research in automated reasoning dedicated so
much effort in establishing decision and complexity results for it. From a logical
perspective, arrays can be modeled just by adding free function symbols to some
fragment of arithmetic. If quantified formulæ are concerned, however, satisfia-
bility becomes intractable when free unary function symbols are added to mild
fragments of arithmetic [16]. Since applications require the use of quantifiers,
e.g. in order to express invariants of program loops, it becomes crucial to iden-
tify sufficiently expressive tractable quantified fragments of the theory of arrays.

Various decidability (and sometimes also complexity) results for such frag-
ments are known from the literature. These results are often orthogonal to each
other, rely on rather different techniques, and finding common generalizations is
a hard task. Let us mention for instance two contributions from recent literature,
namely the decidability results for SIL-fragments in [15] and those for flat mono-
sorted fragments in [4]. The flat mono-sorted fragment of [4] is decidable via an
SMT-based combination method involving an extra quantifier-elimination step;
on the contrary the SIL-fragment of [15] is decided by a procedure that requires
back and forth conversions between logic and automata. The SIL-decidable frag-
ment of [15] has a heavy syntactic limitation on consequents of guards: such
consequents must be difference bound constraints. On the other hand, the main
limitation of the flat mono-sorted fragment in [4], inherited by an analogous
limitation from [10], is the impossibility of applying dereference to terms which
are not variables in the consequents of guards. This limitation typically prevents

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 169–185, 2015.
DOI: 10.1007/978-3-319-24246-0_11

170 F. Alberti, S. Ghilardi and N. Sharygina

applications to programs where terms like a[i] and a[i+ 1] are both used as, for
instance, in array updates.

The technique used in [15] exploits previous acceleration results for difference
bound constraints; acceleration (i.e. the definability of the transitive closure
of special classes of relations [6–9, 11, 12]) plays an important role in several
model-checking approaches which are, in a sense, orthogonal to the SMT-inspired
model-checking methods. The curious fact is that acceleration results, previously
established using counter automata, were transferred in [15] to array theories via
another further conversion from array logic to counter automata formalism.

The contribution of this paper is the definition of a new framework for check-
ing the satisfiability of quantified array formulæ. The principal feature of our
framework is that it can exploit and combine acceleration results as black box
modules. Indeed, the main questions we answer in this paper, in a combination
spirit, are the following: can we use acceleration results as they are, i.e., as black
box modules inside decision procedures for array fragments? What are the formal
conditions that such ‘acceleration modules’ have to satisfy in order to be com-
bined as black box modules? Formally, we will answer these two questions with
the Definitions 1-2 and with Theorem 3. In particular, the algorithm of The-
orem 3 supplies a simple ‘guess-and-group’ preprocessing step putting current
SMT-solvers in the condition of importing acceleration modules. Decidability
results like those in [4] and [15] follow as immediate consequences, and further
decidable array property fragments can be designed by mere combination.

A remark about acceleration is in order. In our earlier work [2,4], we adopted
acceleration techniques into SMT-based software model-checking; to this aim, we
investigated what in this paper will be called ‘vertical’ acceleration, i.e., accel-
eratability of array relations expressed via specific (syntactically characterized)
formulæ in the theory of arrays. In this paper the aim is different, because ac-
celeratability in the underlying arithmetic is used as an ingredient for designing
satisfiability procedures at the more complex level of array formulæ. We will
refer to this acceleration as ‘horizontal’ acceleration.

A Running Example. Consider the program of Fig. 1. We want to prove that
the assertion in location 4 cannot be violated. The formal proof we produce is
precise, it does not rely on any form of abstraction or of over-approximation. To
do this we need two forms of acceleration: (i) we need vertical acceleration (i.e.
acceleration at the level of the theory of arrays) to summarize the two loops; (ii)
we need horizontal acceleration (i.e. acceleration at the level of the underlying
arithmetic) in order to discharge the proof obligation coming from (i).

The program in Fig. 1 has two array variables, a1, a2, and an integer variable,
I. An error path violating the assertion should comprise the following steps: (1)

an initialization step leading to initial values a
(1)
1 , a

(1)
2 , I(1); (2) n executions of

the loop in location 2 leading from a
(1)
1 , a

(1)
2 , I(1) to updated values a

(2)
1 , a

(2)
2 , I(2);

(3) the exit step from the loop in location 2 and the execution of the instruction

in location 3, leading from a
(2)
1 , a

(2)
2 , I(2) to updated values a

(3)
1 , a

(3)
2 , I(3); (4) m

executions of the loop in location 4 leading from a
(3)
1 , a

(3)
2 , I(3) to updated values

A New Acceleration-Based Combination Framework for Array Properties 171

int a1[N+1]; int a2[N+1]; int I;

1 I = 0; a1[I] = 0; a2[I] = 0;

2 while (I < N)

⎧
⎪⎨

⎪⎩

a1[I+ 1] = a1[I] + 1;

a2[I+ 1] = I+ 1;

I++;

⎫
⎪⎬

⎪⎭

3 I = 0;

4 while (I < N)

{
assert(a1[I+1] = a2[I+1]);

I++;

}

Fig. 1. Running example.

(α1) I
(1) = 0 ∧ a

(1)
1 [I(1)] = 0 ∧ a

(1)
2 [I(1)] = 0

(α2)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∀i
(
I
(1) ≤ i < I

(1) + n → i < N ∧ a
(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧

∧ a
(2)
2 [i+1] = i+1

)

∧

∧ ∀i
(
I
(1)+n+1 ≤ i ≤ N → a

(2)
1 [i] = a

(1)
1 [i] ∧ a

(2)
2 [i] = a

(1)
2 [i]

)
∧

∧ ∀i
(
0 ≤ i ≤ I

(1) → a
(2)
1 [i] = a

(1)
1 [i] ∧ a

(2)
2 [i] = a

(1)
2 [i]

)
∧

∧ I
(2) = I

(1)+n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(α3) I
(2) ≥ N ∧ I

(3) = 0 ∧ a
(3)
1 = a

(2)
1 ∧ a

(3)
2 = a

(2)
2

(α4)

⎛

⎜
⎜
⎜
⎝

∀i
(
I
(3) ≤ i < I

(3)+m → i < N ∧ a
(3)
1 [i+1] = a

(3)
2 [i+1]

)
∧

∧ a
(4)
1 = a

(3)
1 ∧ a

(4)
2 = a

(3)
2 ∧

∧ I
(4) = I

(3)+m

⎞

⎟
⎟
⎟
⎠

(α5) a
(4)
1 [I(4)+1] �= a

(4)
2 [I(4)+1]

Fig. 2. Proof obligation.

a
(4)
1 , a

(4)
2 , I(4); (5) the satisfiability of the error exit condition from the loop in

location 4 by the final values a
(4)
1 , a

(4)
2 , I(4). Thus, the error path is feasible iff

the conjunction of the formulæ (α1)− (α5) from Fig. 2 is satisfiable.
The formulæ (α2) and (α4) are computed following mechanical patterns for

‘vertical’ array acceleration (see Section 5 for more). The satisfiability test of
the conjunction (α1) ∧ · · · ∧ (α5) is not handled by current SMT-solvers and
it is not trivial indeed, because quantifiers and some form of induction are in-

volved (to make first order logic conversion, read array equalities like a
(3)
1 = a

(4)
1

as ∀i (a
(3)
1 [i] = a

(4)
1 [i])). In order to discharge the proof obligation consist-

ing of the satisfiability test of the conjunction of the formulæ (α1) − (α5),
the method we propose in Theorems 3-4 below relies on acceleration results
for fragments of plain arithmetic. Roughly speaking, the idea is the following.

172 F. Alberti, S. Ghilardi and N. Sharygina

Take for instance the consequent of the first guard of (α2): such a consequent
comes from the loop body of location 2 in Fig. 1. The instructions describing
such loop can be converted into a logical formula relating the values of the
program variables I, a1, a2 before a single execution of the loop with the corre-
sponding values I, a1, a2 after the single execution of the loop. If, in such a logical
formula, we abstract out the terms I, a1[I], a2[I], a1[I], a2[I] with the fresh vari-
ables i, e1, e2, ē1, ē2 and the terms I+1, a1[I+1], a2[I+1], a1[I+1], a2[I+1] with
the corresponding primed variables i′, e′1, e′2, ē′1, ē′2 we get a purely arithmetical
relation φ(i, e1, e2, ē1, ē2, i

′, e′1, e
′
2, ē

′
1, ē

′
2) between 5-tuples of variables. If this re-

lation is acceleratable, we can replace (up to satisfiability) the first guard of
(α2) with the arithmetical formula expressing the fact that the relation denoted
by φ is composed with itself (I(1) + n) − I(1) = n times. In this way, we get
a reduction of the proof obligation of Fig. 2 to plain Presburger arithmetic.
Of course, the above description of the reduction is very loose and quite in-
complete, we shall turn to this Example in Section 5 and run it in full details.
Here we just observe that accelerations in fragments of arithmetic are used as
black boxes during the horizontal phase of the reduction (this phase is comput-
ing accelerations inside array intervals, whereas vertical acceleration computes
acceleration between array variables as wholes).

Plan of the Paper. Section 2 fixes notations; in Section 3 we introduce acceler-
atable fragments and in Section 4 we use them in decision procedures for quan-
tified array formulæ. In Section 5 we show applications to reachability problems
for array programs. Section 6 concludes. For space reasons, additional material
(including some proofs) has been moved to the online available full version [5].

2 Notation

We work in a decidable fragment of arithmetic (typically Presburger arithmetic,
but given the modularity of our approach, we can consider even more expressive
fragments like [17]); we expand the related language with free constants and
free unary function symbols. When we speak about truth or about validity, we
refer to the structures having as reduct the standard model of the integers with
the natural interpretation of the arithmetic symbols. In order to make our lan-
guage more manageable, we may enrich it with definable function and predicate
symbols (see any textbook in mathematical logic, like [18] for the notion of a
definable predicate or function symbol). A purely arithmetical formula is a for-
mula that does not contain free function symbols (notice however that such a
formula may contain parameters, i.e. free constants).

It is convenient to partition the set of variables we use into two disjoint sets
V = {x, y, z, w, . . . , i, j, . . . } and V ′ = {x′, y′, z′, w′, . . . , i′, j′, . . . }, where V ′ con-
tains precisely a ‘primed’ copy of each variable in V . Renaming substitutions are
bijections σ on variables respecting primed copies (i.e. we have σ(x)′ = σ(x′)
for all x). Free constants are indicated with letters c, d, . . . , terms with letters
t, u, . . . and formulæ with letters φ, ψ, Underlined or bold letters usually
denote tuples (of variables, constants, terms) of unspecified length. With t = u

A New Acceleration-Based Combination Framework for Array Properties 173

we mean component-wise equality, i.e.
∧

i ti = ui, where it is implicitly assumed
that t, u have the same length and that t = t1, . . . , tn and u = u1, . . . , un. The
notation φ(x), t(x) indicates that at most the variables x occur free in φ, t.

When we talk about arrays we assume that they are modeled as unary free
function symbols to be denoted with letters a, b, Read operation (i.e. function
application) is denoted with [−]; a,b stands for tuples of array variables. If
a = a1, . . . , an and t = t1, . . . , tn, then a[t] stands for a1[t1], a2[t2], . . . , an[tn];

1

however, if t is a single term, we may use a[t] for a1[t], . . . , an[t]. Notations like
φ(x, a[t]) mean that φ(x, y) is purely arithmetical and that the tuple of distinct
variables y has been component-wise replaced by the length-matching tuple of
terms a[t].

Arrays are equipped with length; for simplicity, we assume that length is
the same for all arrays we consider; we represent it by a free constant N . In our
intended models, for every array a, we assume that a[x] is equal to a conventional
value (say, 0) for any x outside the interval [0, N]. When we discuss satisfiability
of array fragments, we are only interested in sub-intervals of [0, N], hence we use
notations like t ∈ [u1, u2] to mean the conjunction 0 ≤ u1 ≤ t ≤ u2 ≤ N ;
similarly, t ∈ [u1, u2) means t ∈ [u1, u2 − 1]. We may also use standard notation
for relativized quantifiers, e.g. ∀i ∈ [u1, u2)ψ abbreviates ∀i (i ∈ [u1, u2) → ψ).

3 Acceleratable Fragments

A formula φ(x, x′) denotes a relation among tuples; φn(x, x′) is the formula
representing the composition of the relation denoted by φ with itself n-times.
More precisely, we have

φ1(x, x′) : ≡ φ(x, x′); φn+1(x, x′) : ≡ ∃x� (φn(x, x�) ∧ φ(x�, x′)).

Definition 1. A purely arithmetical formula φ(x, x′), is said to be acceleratable
iff there exists (and one can actually compute) a formula φ∗(x, x′, j) such that
for all n ∈ N

|= φn(x, x′) ↔ φ∗(x, x′, n̄) (1)

where n̄ is the n-th numeral, i.e. it is S(· · ·S(0) · · ·), where S - the successor
symbol - is applied n-times.2

Definition 2. A set of purely arithmetical formulæ Γ is said to be an accelerat-
able fragment iff every φ ∈ Γ is acceleratable and Γ is closed under conjunctions
and renaming substitutions. An acceleratable fragment Γ is said to be normal iff
it contains the formulæ x′ = x+ 1 and y′ = x′ for every variables x, y.

Closure under conjunctions of acceleratable fragments is a crucial condition:
we need it in the ‘grouping’ step of the modular algorithm of Theorem 3; nor-
mality is required in the applications from Section 5. We supply below, using
relevant results from the literature, some important examples of acceleratable
fragments.

1 This is different from previous papers of ours.
2 Sometimes we shall write n instead of n̄ if confusion does not arise.

174 F. Alberti, S. Ghilardi and N. Sharygina

Theorem 1. [9,11] Difference Bounds Constraints, i.e. conjunctions of formu-
lae of the kind

x− x′ �� n̄, x− y �� n̄, x′ − y′ �� n̄

(where n ∈ Z and �� ∈ {≤,≥}) are a normal acceleratable fragment.

Theorem 2. [7] Octagons, i.e. conjunctions of formulae of the kind

x± x′ �� n̄, x± y �� n̄, x′ ± y′ �� n̄, 2x �� n̄, 2x′ �� n̄

(where n ∈ Z and �� ∈ {≤,≥}) are a normal acceleratable fragment.

Another class is introduced in Proposition 1 below. This class (called
the class of iteratable formulæ) is ubiquitous; in essence, the idea of an iteratable
formula is based on the simple idea of combining (a generalized form of) variable
increments with non-deterministic updates; the formal definition of an iteratable
formula requires nevertheless some technicalities to match Definition 2.

We recall the notion of an iterator from [2]. Given a m-tuple of terms

u(x) := u1(x1, . . . , xm), . . . , um(x1, . . . , xm) (2)

containing the m variables x = x1, . . . , xm, we indicate with un the term express-
ing the n-times composition of (the function denoted by) u with itself. Formally,
we have u0(x) := x and

un+1(x) := u1(u
n(x)), . . . , um(un(x)) .

Definition 3. A tuple of terms u like (2) is said to be an iterator iff there is an
m-tuple of m+1-ary terms u∗(x, y) := u∗

1(x1, . . . , xm, y), . . . , u∗
m(x1, . . . , xm, y)

such that for any natural number n ≥ 0 it happens that the formula

un(x) = u∗(x, n̄) (3)

is valid.3 The ordered tuple of (distinct) variables (x1, . . . , xm) is said to be the
domain of the iterator u and u is said to be an m-ary iterator.

Example 1. The canonical example is when we have m = 1 and u := u1(x1) :=
x1 + 1; this is an iterator with u∗

1(x1, y) := x1 + y. ��

Example 2. The previous example can be modified, by choosing u to be x1 + k̄,
for some integer k
= 0: then we have u∗

1(x1, y) := x1 + k ∗ y (where k ∗ y is the
sum y + · · ·+ y of k copies of y). ��

Example 3. Sometimes we need to use definable functions to build u∗. Take u to
be n̄−x1; then we have u∗

1(x1, y) := (if y ≡ 0 (mod 2) then x1 else n̄−x1). ��
3 Recall that in this paper ‘validity’ means validity in the class of our intended struc-
tures - those having the standard model of arithmetic as reduct.

A New Acceleration-Based Combination Framework for Array Properties 175

Example 4. Finite monoid affine transformations [12] supply another interesting
example. Let v be a vector from Zm and let M be a m × m integer matrix
generating a finite monoid (i.e. we have that Mk+l = Mk for some k, l > 0).
Putting u(x) := Mx + v, we get an iterator (the definition of u∗(x, y) requires
the identification of a rather complex - but straightforward - definable function,
see [12]). ��
Definition 4. A formula φ(x, x′) is said to be iteratable iff there is a finite set
Iφ of iterators such that:

(0) the variables x, x′ are partitioned as z, z′, w′ (notice that the unprimed vari-
ables w do not occur in φ);

(i) the domain of every u ∈ Iφ is included in z;
(ii) every z ∈ z belongs to the domain of at least one u ∈ Iφ;
(ii) if (zi1 , . . . , zis) ⊆ z is the domain of u = (u1, . . . , us) ∈ Iφ, then

φ(x, x′) → z′ij = uj(zi1 , . . . , zis) (4)

is valid for all j = 1, . . . , s.

Thus, in iteratable formulae, the ‘updates’ z′i are deterministic and expressed
via an iterator; the reason why we allow Iφ to be a set (not just a singleton)
is because we want to ensure closure under conjunctions of iteratable formulæ.
The typical example of an iteratable formula is a formula of the kind

z′ = u(z) ∧ ψ(z, z′, w′) (5)

where ψ is arbitrary and u is an iterator with domain z. Notice that, when
taking iterated composition of the relation denoted by the above formula with
itself, the variables w′ are non-deterministically chosen at each step.

Proposition 1. The set of iteratable formulæ form a normal acceleratable frag-
ment.

Proof. For the full proof, see [5]. Here we just give the explicit definition of the
accelerated formula φ∗ for an iteratable φ. Suppose that free variables occurring
in φ are partitioned as z1, . . . , zn, z

′
1, . . . , z

′
n, w

′; to make our notation more com-
pact, we let z := z1, . . . , zn and x := z, w. The formula φ∗(x, x′, j) is given by

z′ = v(z, j) ∧ ∀k ∈ [0, j) ∃w̃
(
(k = j−1 → w̃ = w′) ∧
∧ φ(v(z, k),v(z, k + 1), w̃)

)
(6)

where the tuple of terms v(z, k) := v1(z, k), . . . , vn(z, k) is obtained as follows.
For every zl ∈ z, choose some iterator ul ∈ Iφ such that zl is in the domain
of ul: if zl occurs at the h-th place in such a domain, we let vl be (ul)∗h(z, k).
In other words: we compute the iteration (ul)∗ of ul according to (3), take its
h-component, and apply it to z and k (actually, (ul)∗ will be applied to k and
to the subset of z which is the domain of ul, however it is compatible with our
notational conventions to display more variables than those actually occurring
in a syntactic expression). ��

176 F. Alberti, S. Ghilardi and N. Sharygina

Example 5. Consider the following formula φ (this example will be used for the
proof obligation of Fig. 2 - variables are numbered so to make this application
easier to recognize):

i′ = i+1 ∧ i < N ∧ (x
(2)
1)′ = x

(2)
1 +1 ∧ (x

(2)
2)′ = i+1 ∧ (x

(3)
1)′ = (x

(2)
1)′ ∧

∧ (x
(3)
2)′ = (x

(2)
2)′ ∧ (x

(3)
1)′ = (x

(3)
2)′ ∧ (x

(4)
1)′ = (x

(3)
1)′ ∧ (x

(4)
2)′ = (x

(3)
2)′

To show that φ is iteratable, let us put

z := i, x
(2)
1 , w′ := (x

(2)
2)′, (x(3)

1)′, (x(3)
2)′, (x(4)

1)′, (x(4)
2)′ ;

an iterator u(z) such that φ |= z′ = u(z) is given by

i′ = i+1, (x
(2)
1)′ = x

(2)
1 +1 .

As a consequence, the formula φ∗(z, z′, w′, j), according to (6), can be written
as

i′ = i+j ∧ (x
(2)
1)′ = x

(2)
1 +j ∧ ∀k ∈ [0, j) ∃w̃ ((k = j− 1 → w̃ = w′)∧ φ̃k) (7)

where φ̃k (omitting the trivial literals i + k + 1 = i + k + 1 and x
(2)
1 + k + 1 =

x
(2)
1 + k + 1) is the following formula

φ̃k ≡ i+k < N ∧ x̃
(2)
2 = i+k+1 ∧ x̃

(3)
1 = x

(2)
1 +k+1 ∧

∧ x̃
(3)
2 = x̃

(2)
2 ∧ x̃

(3)
1 = x̃

(3)
2 ∧ x̃

(4)
1 = x̃

(3)
1 ∧ x̃

(4)
2 = x̃

(3)
2

Notice that formula (6) introduces quantifiers; this does not matter because the
underlying fragment of arithmetic we work with is assumed to be fully decidable.
In practice, fragments used in verification - like difference logic and Presburger
arithmetic - admit quantifier elimination and, if we eliminate quantifiers from (7),
we can simplify it to

i′ = i+j ∧ (x
(2)
1)′ = x

(2)
1 +j ∧ i+ j < N ∧ (x

(2)
2)′ = i+j ∧ (x

(3)
1)′ = x

(2)
1 +j ∧

∧ (x
(3)
2)′ = i+j ∧ x

(2)
1 = i ∧ (x

(4)
1)′ = x

(2)
1 +j ∧ (x

(4)
2)′ = i+j

(8)
Thus (8) represents the formula φ∗(z, z′, w′, j), up to equivalence. ��

4 Acceleration Modules in Satisfiability Procedures

Let Γ be an acceleratable fragment; a Γ -guard is a formula of the kind

∀i (i ∈ [t, u) → φ(i, a[i], a[i + 1])) (9)

such that the formula i′ = i+1∧φ(i, y, y′) belongs to Γ and t, u are ground terms
(recall that we expanded the language with free constants, hence ground terms
may contain them). Notice that, since Γ is closed under renaming substitutions,
the choice of the tuple i, y, i′, y′ is immaterial.

A New Acceleration-Based Combination Framework for Array Properties 177

Theorem 3. Let Γ be an acceleratable fragment; then, any Boolean combination
of ground formulae and Γ -guards is decidable for satisfiability.

Proof. Since the negation of a Γ -guard can be converted into a ground formula
by Skolemization, it is sufficient to check the satisfiability of a conjunction

L1 ∧ · · · ∧ Ln ∧G1 ∧ · · · ∧Gm (10)

of ground literals and Γ -guards. We design a satisfiability algorithm below.
Step I [Guess an ordering]. Let S be the set of ground terms occurring

in (10);4 guess a partition on S and an ordering C1 < · · · < Cl of the equivalence
classes. For each equivalence class Ci, introduce a fresh constant ci; then add to
the current formula the literals of the form ci = t (varying t ∈ Ci) and of the
form ci < ci+1.

Step II [Cleaning] We call a constant ch an out-of-bound constant in case
h is bigger (resp. smaller) than the index of the constant corresponding to the
equivalence class of N (resp. of 0); a term t is out-of-bound iff the free constant
ck representing the equivalence class of t is out-of-bound. Dereference terms aj [t],
where t is out-of-bound, are replaced by the conventional value 0. Guards whose
antecedent is of the kind i ∈ [t, u), where t is out-of-bound or u is out-of-bound
or u is in the same equivalence class as N , are removed (by our conventions from
Section 2, these guards are tautological, having an inconsistent antecedent).
Similarly, guards whose antecedent is of the kind i ∈ [ch, ck) for h ≥ k are
removed too.

Step III [Grouping the guards]. In this step, we rewrite guards. The new
guards will be of the kind

∀i (i ∈ [ck, ck+1) → ψk(i, a[i], a[i+ 1]))

where k + 1 is less or equal to the index of the constant corresponding to the
equivalence class of N and k is bigger or equal to the index of the constant
corresponding to the equivalence class of 0. The formula ψk is obtained by taking
the conjunction of the relevant consequents of the guards from (10). In other
words, if (10) contains the guard ∀i (i ∈ [t, u) → φ(i, a[i], a[i + 1])) and the
equivalence class of ck follows the equivalence class of t and the equivalence
class of u follows the equivalence class of ck+1, then φ is included among the
conjuncts of ψk. Since acceleratable fragments are closed under conjunctions,
the new guards we obtain are still Γ -guards.

Step IV [Reduction to Pure Arithmetic]. Let

G ∧
l∧

k=1

∀i (i ∈ [ck, ck+1) → ψk(i, a[i], a[i+ 1])) (11)

4 We must include 0, N among such terms; however, to economize the guessing step,
besides 0, N , we can limit ourselves to terms t occurring in sub-expression of the
form a[t], i ∈ [t, u), i ∈ [u, t).

178 F. Alberti, S. Ghilardi and N. Sharygina

be the formula we obtain after Step III. Here G is a conjunction of ground
literals (including the literals added in Step I) and the quantified formulae are
Γ -guards. By the definition of a Γ -guard, the formulæ

φk(i, i
′, y, y′) :≡ i′ = i+ 1 ∧ ψk(i, y, y

′) (12)

are in Γ . We now replace (11) by the formula

G(d1/a[c1], . . . , dl/a[cl]) ∧
l∧

k=1

φ∗
k(ck, ck+1, dk, dk+1, ck+1 − ck) (13)

where d1, . . . , dl are tuples of fresh constants and G(d1/a[c1], . . . , dl/a[cl]) is
obtained from G by replacing component-wise, for each k = 1, . . . , l and for each
t lying in the same equivalence class as ck, the tuple a[t] by the tuple dk.

We claim that the formulæ (13) are equi-satisfiable with the original for-
mula (10). Clearly, it is sufficient to show that (13) is equi-satisfiable to (11).
Suppose that (13) is satisfiable: this means that we can assign integer numbers
to the free constants occurring in (13), so to make the statement (13) true.
We use the same letters to denote a free constant, the number assigned to it
and the corresponding numeral. From the fact that φ∗

k(ck, ck+1, dk, dk+1, ck+1 −
ck) is true (for the given choice of the ck, ck+1, dk, dk+1), we can infer that

φ
ck+1−ck
k (ck, ck+1, dk, dk+1) holds by Definition 1. By (12) and the definition of

relation composition, we get tuples dk := dck , dck+1, dck+2 . . . , dck+(ck+1−ck)
:=

dk+1 such that

ψk(ck, dck , dck+1), ψk(ck + 1, dck+1, dck+2), . . . , ψk(ck+1 − 1, dck+1−1, dck+1
)

all hold. Thus, we define the interpretations of the unary integer functions a, by
letting a(n) := 0 for n > N and n < 0 and for ck ≤ n ≤ ck+1 by taking a(n)
to be dn. Formula (11) holds by construction. Similar considerations, read in
the opposite sense, show that the satisfiability of (11) implies the satisfiability
of (13). ��
Remark 1 (Complexity). Since this is a modular procedure, its complexity can
only be evaluated relatively to the complexities of the acceleration module and
of the underlying arithmetic solver. To this aim, notice that Steps I-II introduce
a linear guessing followed by linear manipulations and that Step III produces a
quadratically long formula (11). After these steps, the complexity relies entirely
on the complexity of the acceleration module and on the complexity of the
arithmetic solver: if we suppose that the former requires space fS(n) and time
fT (n) to produce the accelerated formula (13) out of (11) and that the latter
requires space gS(m) and time gT (m) for its satisfiability checks, the cost of the
whole procedure requires space bounded by gS(fS(O(n2))) and time bounded

by 2O(n2) · gT (fT (O(n2))) (we need exponential time to go through all possible
linear orderings).

We underline that in examples coming from practical verification problems,
the expensive guess of Step I is not needed, because the few consistent guessings
are suggested by the problem itself, as witnessed by the example below.

A New Acceleration-Based Combination Framework for Array Properties 179

Example 6. We consider the proof obligation of Fig. 2. We first need to rewrite
all universally quantified guards in it in such a way that they match the pattern
given by (9). Thus, sub-formulae like ∀i (t ≤ i ≤ u → γ(i, a[i])) must be
rewritten as (t ≤ u → γ(t, a[t])) ∧ ∀i (i ∈ [t, u) → γ(i + 1, a[i + 1])); similarly,
array equations of the form a = b are rewritten to a[0] = b[0]∧∀i (i ∈ [0, N) →
a[i+1] = b[i+1]). After these rewritings, we can observe that all guards occurring
in Fig. 2 are Γ -guards, where Γ is the acceleratable fragment of Proposition 1
(one may equivalently use the fragment of Theorem 1 instead). To see this, let

us abstract out a
(k)
1 [i], a

(k)
1 [i + 1] with x

(k)
1 , (x

(k)
1)′ and a

(k)
2 [i], a

(k)
2 [i + 1] with

x
(k)
2 , (x

(k)
2)′ (k = 1, . . . , 4). Then, let us consider for instance the first guard of

(α2): the formula to be checked to belong to the acceleratable fragment is

i′ = i+ 1 ∧ i < N ∧ (x
(2)
1)′ = x

(2)
1 + 1 ∧ (x

(2)
2)′ = i+ 1

and it is clear that this formula fits Proposition 1 (and Theorem 1 too). Thus,
we can run the algorithm of Theorem 3 to check the unsatisfiability of the con-
junction of the formulæ (α1)− (α5). As for Step I, consider the partition

{0, I(1), I(3)} < {I(3)+m, I(4)} < {I(4)+1} < {N, I(2), I(1)+n} < {I(1)+n+1}
(other partitions are either analogous to this one or do not admit a consistent
ordering). We call c1, c2, c3, c4, c5, respectively, the fresh constants denoting a
generic element of the above classes of the partition (notice that c5 is out-of-
bound). Step II eliminates the second guard from (α2). Step III produces a
formula which is the conjunction of the ground literals from Fig. 3 with three Γ -
guards γ12, γ23, γ34 (relative to the intervals [c1, c2), [c2, c3), [c3, c4), respectively),
also displayed in Fig. 3.

Going to Step IV, we now consider the formula (13); the acceleration for-
mulæ replacing the Γ -guards γ12, γ23, γ34 can be drawn from Example 5 (strictly
speaking, Example 5 analyzes only γ12, but the other two Γ -guards are analyzed
in the same way). Thus formula (13) becomes equivalent to the conjunction of
the literals from Fig. 3 together with the additional literals from Fig. 4. To im-
prove readability, in Fig. 4 we do not replace terms a[t] with fresh constants
depending on the equivalence class of t like in (13) (as a consequence, we shall
need below congruence closure besides arithmetic to check inconsistency). To
conclude the unsatisfiability test of the proof obligation from Fig. 2 it is then
sufficient to observe that the following unsatisfiable subset can be extracted from
the literals in Fig. 3-4:

a
(4)
1 [I(4)+1]
= a

(4)
2 [I(4)+1], c3 = I(4)+1, c1 = 0,

a
(4)
1 [c3] = a

(2)
1 [c2]+(c3−c2), c1 = I(1), a

(2)
1 [0] = a

(1)
1 [0],

a
(2)
1 [c2] = a

(2)
1 [c1]+(c2−c1), a

(1)
1 [I(1)] = 0, a

(4)
2 [c3] = c2+(c3−c2). ��

The decidable class covered by Theorem 3 includes some remarkable classes
known to be decidable from the literature: in particular, it covers the SIL-
fragments of [15] and the flat mono-sorted fragments of [4]. We point out, how-
ever, that some other known decidable classes are still orthogonal to the classes

180 F. Alberti, S. Ghilardi and N. Sharygina

Literals:

I
(1) = 0, a

(1)
1 [I(1)] = 0, a

(1)
2 [I(1)] = 0, a

(2)
1 [0] = a

(1)
1 [0], a

(2)
2 [0] = a

(1)
2 [0],

I
(2) = I

(1) + n, I
(2) ≥ N, I

(3) = 0, a
(3)
1 [0] = a

(2)
1 [0], a

(3)
2 [0] = a

(2)
2 [0],

I
(4) = I

(3) +m, a
(4)
1 [0] = a

(3)
1 [0], a

(4)
2 [0] = a

(3)
2 [0], a

(4)
1 [I(4)+1] �= a

(4)
2 [I(4)+1],

c1 = 0, c1 = I
(1), c1 = I

(3), c1 < c2, c2 = I
(3) +m, c2 = I

(4), c2 < c3, c3 = I
(4)+1,

c3 < c4, c4 = N, c4 = I
(2), c4 = I

(1) + n, c4 < c5, c5 = I
(1) + n+ 1 .

Guards:

γ12 ≡ ∀i ∈ [c1, c2)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

i < N ∧ a
(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧ a

(2)
2 [i+1] = i+1 ∧

∧ a
(3)
1 [i+1] = a

(2)
1 [i+1] ∧ a

(3)
2 [i+1] = a

(2)
2 [i+1]∧

∧ a
(3)
1 [i+ 1] = a

(3)
2 [i+ 1]∧

∧ a
(4)
1 [i+1] = a

(3)
1 [i+1] ∧ a

(4)
2 [i+1] = a

(3)
2 [i+1]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

γ23 ≡ ∀i ∈ [c2, c3)

⎛

⎜
⎜
⎝

i < N ∧ a
(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧ a

(2)
2 [i+1] = i+1 ∧

∧ a
(3)
1 [i+1] = a

(2)
1 [i+1] ∧ a

(3)
2 [i+1] = a

(2)
2 [i+1] ∧

∧ a
(4)
1 [i+1] = a

(3)
1 [i+1] ∧ a

(4)
2 [i+1] = a

(3)
2 [i+1]

⎞

⎟
⎟
⎠

γ34 ≡ ∀i ∈ [c3, c4)

⎛

⎜
⎜
⎝

i < N ∧ a
(2)
1 [i+1] = a

(2)
1 [i] + 1 ∧ a

(2)
2 [i+1] = i+1 ∧

∧ a
(3)
2 [i+1] = a

(2)
2 [i+1] ∧ a

(3)
1 [i+1] = a

(2)
1 [i+1] ∧

∧ a
(4)
1 [i+1] = a

(3)
1 [i+1] ∧ a

(4)
2 [i+1] = a

(3)
2 [i+1]

⎞

⎟
⎟
⎠

Fig. 3. Literals and Guards after Step III (see Example 6).

presented in this paper. Since a comprehensive comparison is rather technical
and require more space, we defer it to [5].

5 Applications to Imperative Programs

In this section we show how to use our results in order to establish decid-
ability of safety problems for a class of imperative programs handling arrays.
We will consider programs with flat control-flow graph with loops represented
by acceleratable formulæ. This section provides just initial assesments: future
more extensive work may comprise the exploitation of generalized notions like
iterators/selectors [2] and the adoption of compiler-oriented optimization fea-
tures [1, 14] which lie outside the scope of this work.

Henceforth v will denote the variables of the programs we analyze. Formally,
v = a, I where, according to our conventions, a is a tuple of array variables
(modeled as free unary function symbols in our framework) and I is an integer
variable to be used as a counter to scan arrays (we omit further integer variables
for simplicity, but see Remark 2 below). As stated in Section 2, we work in a

A New Acceleration-Based Combination Framework for Array Properties 181

Literals from γ12:

c2 = c1 + (c2 − c1), a
(2)
1 [c2] = a

(2)
1 [c1] + (c2 − c1), a

(2)
2 [c2] = c1 + (c2 − c1),

a
(3)
1 [c2] = a

(2)
1 [c1] + (c2 − c1), a

(4)
1 [c2] = a

(2)
1 [c1] + (c2 − c1), c1 + (c2 − c1) < N,

a
(3)
2 [c2] = c1 + (c2 − c1), a

(4)
2 [c2] = c1 + (c2 − c1), a

(2)
1 [c1] = c1 .

Literals from γ23:

c3 = c2 + (c3 − c2), a
(2)
1 [c3] = a

(2)
1 [c2] + (c3 − c2), a

(2)
2 [c3] = c2 + (c3 − c2),

a
(3)
1 [c3] = a

(2)
1 [c2] + (c3 − c2), a

(4)
1 [c3] = a

(2)
1 [c2] + (c3 − c2), c2 + (c3 − c2) < N,

a
(3)
2 [c3] = c2 + (c3 − c2), a

(4)
2 [c3] = c2 + (c3 − c2) .

Literals from γ34:

c4 = c3 + (c4 − c3), a
(2)
1 [c4] = a

(2)
1 [c3] + (c4 − c3), a

(2)
2 [c4] = c3 + (c4 − c3),

a
(3)
1 [c4] = a

(2)
1 [c3] + (c4 − c3), a

(4)
1 [c4] = a

(2)
1 [c3] + (c4 − c3), c3 + (c4 − c3) < N,

a
(3)
2 [c4] = c3 + (c4 − c3), a

(4)
2 [c4] = c3 + (c4 − c3) .

Fig. 4. (Step IV) Literals whose conjunction is the formula
∧3

k=1 φ
∗
k from (13)

(see Example 6).

decidable fragment of arithmetic, extended with free constants and free unary
function symbols. A state-formula is a formula α(v) representing a (possibly
infinite) set of configurations of the program under analysis. A transition formula
is a formula of the kind τ(v,v) where v is a renaming of the tuple v (we prefer not
to use here the standard model-checking notation v′ for v, because we already
used the primed notation in the previous sections in a different context).

Definition 5 (Programs). Given a set of variables v, a program is a triple
P = (L,Λ,E), where (i) L = {l1, . . . , ln} is a set of program locations among
which we distinguish an initial location linit and an error location lerror; (ii) Λ is
a finite set of transition formulæ {τ1(v,v), . . . , τr(v,v)} and (iii) E ⊆ L×Λ×L
is a set of actions.

We indicate by src,L, tgt the three projection functions on E; that is, for
e = (li, τj , lk) ∈ E, we have src(e) = li (this is called the ‘source’ location of
e), L(e) = τj (this is called the ‘label’ of e) and tgt(e) = lk (this is called the
‘target’ location of e).

Definition 6 (Program paths). A program path (in short, path) of P =
(L,Λ,E) is a sequence ρ ∈ En, i.e., ρ = e1, e2, . . . , en, such that for every
ei, ei+1, we have tgt(ei) = src(ei+1). We denote with |ρ| the length of the path.
An error path is a path ρ with src(e1) = linit and tgt(e|ρ|) = lerror. A path

ρ is a feasible path if
∧|ρ|

j=1 L(ej)(j) is satisfiable, where L(ej)(j) represents

182 F. Alberti, S. Ghilardi and N. Sharygina

τij (v
(j−1),v(j)), with L(ej) = τij . The (unbounded) reachability problem for

a program P is to detect if P admits a feasible error path.

One word about the notation τij (v
(j−1),v(j)) used above: when we use tu-

ples of variables like v(j), we mean that we simultaneously employ many dis-
jointed renamed copies (written v(1),v(2),v(3), . . .) of the tuple v. Obviously,
τij (v

(j−1),v(j)) indicates the formula obtained from τij (v,v) by replacing v by

v(j−1) and v by v(j).
We first give the definition of a flat0-program, i.e. of a program with only

self-loops for which each location belongs to at most one loop.

Definition 7 (flat0-program). A program P is a flat0-program if for every
path ρ = e1, . . . , en of P it holds that for every j < k (j, k ∈ {1, . . . , n}), if
src(ej) = tgt(ek) then ej = ej+1 = · · · = ek.

We shall consider below only programs whose transitions are of two kinds:

(i) quantifier-free formulae τ(v,v): these formulæ can be used only as labels for
actions which are not self-loops (i.e. whose source and target locations do
not coincide);

(ii) transitions used as labels in self-loops : these transitions must be of the fol-
lowing kind

(∀i
= I+1 a[i] = a[i]) ∧ γ(I, a[I], a[I + 1], a[I + 1]) ∧ I = I+1 (14)

where γ is quantifier-free and arithmetical over a[I], a[I + 1], a[I + 1].

Formula (14) says that the loop modifies just the entry I+1 of each array a.
It is general enough to include instructions of the following kind

while(δ(I, a[I], a[I + 1])){ a[I + 1] := t(I, a[I], a[I + 1]); I++; }

where δ is a guard expressed via a quantifier-free formula arithmetical over
a[I], a[I + 1] and where the terms t are also arithmetical over a[I], a[I + 1].

Remark 2. Additional integer variables can be modeled as arrays as follows.
Suppose we have an integer variable C and that inside the loop we want to
update it as C := u(I, C, a[I], a[I + 1]). Then we can introduce a fresh array
variable c; this variable is (partially) initialized as c[I] := C before the loop,
it is returned as C := c[I] after the loop and it is updated inside the loop as
c[I + 1] := u(I, c[I], a[I], a[I + 1]).

Assumption. We assume from now on that our programs are flat0-programs
and that their transitions are subject to the above restrictions (i) and (ii).

This assumption is not yet sufficient for decidability, though. To gain decid-
ability, we put further conditions on guards and updates. Let us consider the
list of variables I, e, e, I ′, e′, e′ where the variables e, e are meant to abstract

A New Acceleration-Based Combination Framework for Array Properties 183

out a[I], a[I] and the variables e′, e′ to abstract out a[I + 1], a[I + 1].We call
arithmetic projections of P the formulæ

I ′ = I + 1 ∧ γ(I, e, e′, e′) (15)

extracted from the self-loops instructions (14) occurring in P . We give some
sufficient practical (relatively simple) conditions so that the simultaneous accel-
eration of the formulæ (14) occurring in a path of P meets the hypothesis of
Theorem 3. One needs to pay attention to the fact that the update of a[I+1]
is recursive; this is why the variables e abstracting out a[I] have been preferred
to5 the e (abstracting out a[I]) when defining arithmetic projections.

Theorem 4. The unbounded reachability problem for P is decidable if there is
a normal acceleratable fragment containing all arithmetic projections of P.

Proof. (Sketch, see [5] for details). For a transition relation τ(v,v) given by (14),
the transition τ∗(v,v, n̄) expressing the n-times composition of τ with itself is
given by:

⎛
⎜⎜⎜⎝

∀i ∈ [I, I + n) γ(i, a[i], a[i+ 1], a[i+ 1]) ∧
∀i ∈ [0, I + 1) a[i] = a[i] ∧
∀i ∈ [I + n+ 1, N + 1) a[i] = a[i] ∧
I = I + n

⎞
⎟⎟⎟⎠ (16)

Let now Γ be a normal acceleratable fragment containing all arithmetic pro-
jections of P : the key observation is that (16) (after little rewriting) is a con-
junction of ground literals and Γ -guards. This allows to check the satisfiability
of all formulæ expressing the feasibility of an error path. ��
Example 7. We apply the procedures of Theorem 4 to the example of Fig. 1.
The relevant error path comprises the execution of the instruction in location 1,
n executions of the loop in location 2, the exit condition from this loop together
with execution of the instruction in location 3, m executions of the loop in
location 4 and the error exit condition from that loop. If we apply formulæ (16)
for acceleration, we get the proof obligation of Fig. 2 (with little simplifications
improving readability). Example 6 shows that the conjunction of the formulæ
from Fig. 2 is inconsistent, hence the program of Fig. 1 is safe. ��

6 Conclusions and Future Work

In this paper we presented a new framework for deciding the satisfiability of
quantified formulæ with arrays. Such framework allows for the integration of
acceleration results satisfying the conditions identified in Definitions 1-2, and
exploits them as black-box modules, as described by the algorithm of Theorem 3.

5 Notice that a[I] = a[I] is nevertheless a logical consequence of (14).

184 F. Alberti, S. Ghilardi and N. Sharygina

The framework can also be applied in a software model-checking scenario, where
it can be proven that the safety of a new class of programs with arrays can be
decided by integrating our new results with acceleration procedures.

On the practical side, in our experience [2–4], the tools get remarkable ben-
efits from acceleration/decidability results, both whenever the results are used
directly in decisions procedures like that of Theorem 4 and when they are used
indirectly, via abstraction and instantiation, like in [2]. Implementing the results
of this work is an interesting and substantial future project which we intent to
pursue building upon our tools Booster [3] and mcmt [13].

References

1. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.: Compilers: Principles, Techniques,
and Tools. Addison-Wesley Educational Publishers, Incorporated (2007)

2. Alberti, F., Ghilardi, S., Sharygina, N.: Definability of accelerated relations in a
theory of arrays and its applications. In: Fontaine, P., Ringeissen, C., Schmidt,
R.A. (eds.) FroCoS 2013. LNCS, vol. 8152, pp. 23–39. Springer, Heidelberg (2013)

3. Alberti, F., Ghilardi, S., Sharygina, N.: Booster: an acceleration-based verification
framework for array programs. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014.
LNCS, vol. 8837, pp. 18–23. Springer, Heidelberg (2014)

4. Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array proper-
ties. In: TACAS, pp. 15–30 (2014)

5. Alberti, F., Ghilardi, S., Sharygina, N.: A new acceleration-based combination
framework for array properties, Avalilable from authors’ webpages (2015)

6. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
Theor. Comput. Sci. 309(1), 413–468 (2003)

7. Bozga, M., Ĝırlea, C., Iosif, R.: Iterating octagons. In: Kowalewski, S., Philippou,
A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 337–351. Springer, Heidelberg (2009)

8. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010)

9. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundamenta
Informaticae (91), 275–303 (2009)

10. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2006)

11. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and pres-
burger arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279.
Springer, Heidelberg (1998)

12. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

13. Ghilardi, S., Ranise, S.: MCMT: A model checker modulo theories. In: Giesl, J.,
Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 22–29. Springer, Heidelberg
(2010)

14. Gurfinkel, A., Chaki, S., Sapra, S.: Efficient predicate abstraction of program sum-
maries. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011.
LNCS, vol. 6617, pp. 131–145. Springer, Heidelberg (2011)

A New Acceleration-Based Combination Framework for Array Properties 185

15. Habermehl, P., Iosif, R., Vojnar, T.: A logic of singly indexed arrays. In: Cervesato,
I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 558–
573. Springer, Heidelberg (2008)

16. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 complete. J.

Symbolic Logic 56(2), 637–642 (1991)
17. Semënov, A.L.: Logical theories of one-place functions on the set of natural num-

bers. Izvestiya: Mathematics 22, 587–618 (1984)
18. Shoenfield, J.R.: Mathematical logic. Association for Symbolic Logic, Urbana, IL,

2001. Reprint of the 1973 second printing

Decidability of Verification of Safety Properties

of Spatial Families of Linear Hybrid Automata

Werner Damm1, Matthias Horbach2, and Viorica Sofronie-Stokkermans2

1 Carl von Ossietzky University, Oldenburg, Germany
2 University Koblenz and Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We consider systems composed of an unbounded number of
uniformly designed linear hybrid automata, whose dynamic behavior is
determined by their relation to neighboring systems. We present a class
of such systems and a class of safety properties whose verification can be
reduced to the verification of (small) families of “neighboring” systems of
bounded size, and identify situations in which such verification problems
are decidable, resp. fixed parameter tractable. We illustrate the approach
with an example from coordinated vehicle guidance.

1 Introduction

Verification of families of interacting systems is very important nowadays: Con-
sider for instance families of autonomous cars performing cooperative maneuvers
for collision avoidance, lane changing, overtaking, and passing intersections rely-
ing on an internal digital representation of the environment – capturing relative
distance and speed of surrounding vehicles through on board sensors, sensor fu-
sion, and vehicle2vehicle communication. While prototype realizations of such
highly automated driving functions have been demonstrated (cf. e.g. HaveIT
project), the challenge in deploying such solutions rests in proving their safety.

In this paper, we propose a general mathematical model capturing the essence
of such interacting systems as spatial families of hybrid automata and provide
efficient verification methods for proving safety when abstracting the dynamics
to linear hybrid automata. The main contributions can be summarized as follows:

– We identify a class of systems composed of dynamically communicating uni-
formly defined linear hybrid automata and a class of safety properties for
which the verification of the whole system can be reduced to the verification
of subsystems of bounded size of “neighboring” components.

– We identify situations when verification is decidable/fixed parameter
tractable.

– We analyze the complexity of parametric verification resp. synthesis.

Related work: Our work generalizes previous results on verification of classes of
systems such as [1,21,7,5,17] in supporting the much richer system model of linear
hybrid automata. The compositional approach [12] addresses the same applica-
tion class, but does not provide complexity results. [10] searches for strategies
controlling all vehicles, and employs heuristic methods to determine strategies
for coordinated vehicle movements. An excellent survey of alternative methods

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 186–202, 2015.
DOI: 10.1007/978-3-319-24246-0_12

Decidability of Verification of Safety Properties 187

for controlling all vehicles to perform collision-free driving tasks is given in [9].
Both methods share the restriction of the analysis to a small number of vehicles,
whereas we consider an unbounded number of systems. In [6], a temporal logic
to reason about systems of automata is provided; the logic we use is similar.
In [19,20] a small model theorem for finite families of automata with constant
derivatives (with a parametric bound on the number of components) is estab-
lished. Our approach allows us to consider families with an unbounded or infinite
number of components which are parametric linear hybrid automata. In [19,20],
the discrete transitions refer to changes in exactly one system (thus no global
updates of sensors can be modeled). We allow for parallel mode switches and
global topology updates. In [25], robust finite abstractions with bounded estima-
tion errors are provided for reducing the synthesis of winning strategies for LTL
objectives to finite state synthesis; the approach is used for an aerospace control
application. [29] proposes a quantified differential dynamic logic for specifying
and verifying distributed hybrid systems but the focus is not on providing de-
cidability results or small model property results. There are various approaches
to the parametric verification of individual hybrid automata, cf. [2], the develop-
ment of a dynamic hybrid logic [28], and of tools like [8,11]. A survey of existing
decidability and undecidability results can be found in [31,4]. Our current work
stands in the tradition of [31,4,32], where we studied linear hybrid systems in
which both mode changes and the dynamics can be parametrized.

Paper Structure. In Sect. 2 we present our model of spatial families of hybrid
automata with its semantics. In Sect. 3 we introduce the verification properties
we consider. The notions are illustrated on a running example of cars on a
highway. In Sect. 4 we present classes of decidable and tractable logical theories,
which we use in Sect. 5 for solving the verification tasks and proving modularity
and complexity results. In Sect. 6 we discuss our tests with our system H-PILoT.
Details, including further examples and proofs, can be found in [3].

2 Spatial Families of Hybrid Automata

We study families {S(i) | i ∈ I} consisting of an unbounded number of similar
systems. To describe them, we have to specify the properties of the component
systems and their interaction. We model the systems S(i) using hybrid automata
and describe their interaction using structures (I, {p : I → I}p∈P) where I is a
countably infinite set and P = PS ∪PN is a finite set of unary function symbols

Fig. 1. Traffic situation

which model the way the systems per-
ceive other systems using sensors in PS ,
or by neighborhood connections (e.g. es-
tablished by communication channels) in
PN . We use highway control as a running
example.

Example 1. Let I be a set of car identities, including the special constant nil.

(1) A car can observe other cars through sensors; these are modeled by a finite
application-dependent set PS of functions p : I → I, where p(i) = j represents

188 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

the fact that i’s p-sensor observes car j. We choose PS to include back, front,
sidefront, sideback with obvious interpretations: In Fig. 1, we have sidefront(7) =
5, back(7) = 18, front(7) = 8. If sensor p ∈ P of car i sees no car then p(i) = nil.

(2) Car platoons of length at most n can be modeled e.g. by choosing a set of
neighborhood connections PN including leader, follower1, . . . followern, next, prev.
Car i is leader if leader(i) = i; if leader(j)=i �=j, j=followerk(i) for some k ≤ n.

Definition 1 ((Linear) hybrid automata [2]). A hybrid automaton (HA) S
= (X,Q, Init, flow, Inv, E, guard, jump) consists of: (1) finite sets X = {x1, . . . , xn}
(real-valued variables) and Q (control modes); a finite multiset E with elements
in Q×Q (control switches); (2) families Init = {Initq | q ∈ Q} and Inv = {Invq |
q ∈ Q} of predicates over X, defining the initial states and invariant conditions
for each control mode, and flow = {flowq | q ∈ Q} of predicates over X ∪ Ẋ

specifying the dynamics in each control mode, where Ẋ = {ẋ1, . . . , ẋn}, (ẋi is
the derivative of xi); (3) families {guarde | e ∈ E} of guards (predicates over X)
and {jumpe | e ∈ E} of jump conditions (predicates over X ∪X ′) for the control
switches, where X ′ = {x′

1, . . . , x
′
n} is a copy of X.

A linear hybrid automaton (LHA) is a HA in which for every q ∈ Q, e ∈ E:
(i) Invq, Initq, jumpe and guarde are convex linear predicates1 and (ii) flowq is a

convex linear predicate (with only non-strict inequalities) over Ẋ.

A state of S is a pair (q, a), where q ∈ Q and a=(a1, . . . , an), where ai∈R is
a value for xi∈X . A state s = (q, a) is admissible (resp. initial) if Invq (resp.
Initq) is true when each xi is replaced by ai. A state can change by a jump
(instantaneous transition that changes the control mode and the values of the
variables according to the jump conditions), or by a flow (evolution in a mode q
where the values of the variables change according to the flowq).

The Language. To describe the families {S(i) | i ∈ I}, the topology (I, {p :
I → I}p∈P) and its updates, and the safety properties we are interested in,
we use a two-sorted first-order language Lp,n of a theory of pointers (sort p)
for representing the indices, with a constant nil and unary function symbols
in P (sort p → p) and in a set X (sort p → n) and a theory Tn (sort n) for
describing properties of the values of the continuous variables of the systems
e.g. the theory R of real numbers, or linear real arithmetic LI(R)). We consider
first-order formulae in the language Lp,n. Variables of sort p are denoted with
indexed versions of i, j, k; variables of sort n are denoted x1, . . . , xn.

Component Systems. The component systems are similar2 hybrid automata
{S(i) | i ∈ I}, with the same set of control modes Q and the same mode
switches E ⊆ Q×Q, and whose real valued variables XS(i) are partitioned into
a set X(i) = {x(i) | x ∈ X} of variables describing the states of the system S(i)
and a set XP (i) = {xp(i) | x ∈ X, p ∈ P} describing the state of the neighbors

1 A convex linear predicate is a finite conjunction of linear inequalities over R.
2 The results can be adapted to the situation when a finite number of types of systems
are given and the description of each S(i) is of one of these types.

Decidability of Verification of Safety Properties 189

{p(i) | p ∈ P} of i, where X = {x1, . . . , xn}. We assume that all sets X(i), i ∈ I
are disjoint. Every component system S(i) has the form:

S(i) = (X(i) ∪XP (i), Q, flow(i), Inv(i), Init(i), E, guard(i), jump(i))

where – with the notations in Def. 1 – for every q ∈ Q and e ∈ E flowq(i), Invq(i),
Initq(i), guarde(i), jumpe(i) are conjunctions of formulae of the form E ∨C, where

C is a predicate over XS(i) (for Inv(i), Init(i), guard(i)), or over XS(i) ∪ ẊS(i) (for
flow(i)) resp. over XS(i) ∪X ′

i (for jump(i)) and E is a disjunction of equalities of
the form i = nil and p(i) = nil if xp(i) occurs in C. All these formulae can also
be regarded as Lp,n-formulae; for all i ∈ I they differ only in the variable index.
We consider two possibilities for xp(i):

(a) xp(i) is at any moment the value of x(p(i)), the value of variable x for the
system S(p(i)) and is controlled by suitable flow/jump conditions of S(p(i));

(b) xp(i) is the value of x(p(i)) which was sensed by the sensor in the last
measurement, and does not change between measurements.

S(i) is linear if (i) flow(i) contains only variables in ẊS(i) and (ii) flow(i), Inv(i),
Init(i), guard(i), jump(i) are conjunctions of formulae E ∨C, as above, where C is
a linear inequality (non-strict for flows). We also consider systems of parametric
LHA, in which some coefficients in the linear inequalities (and also bounds for
invariants, guards or jumps) are parameters in a set Par.

Example 2. Consider the following model of a system of cars: The controlled
variables are the position and the lane of the car, so X = {pos, lane}. The
car can drive on lane 1 or 2. Its sensors provide information about the car in
front and back on the same lane (front, back) and about the closest cars on
the other lane (sidefront, sideback). Thus, P = {back, front, sideback, sidefront}.
Each car is modeled by a hybrid automaton with set of continuous variables
{pos(i), lane(i)} ∪ {posp(i), lanep(i) | p ∈ P} and modes Q = {Appr,Rec}. We
assume that xp(i) = x(p(i)) (variant (a) above). Par = {d, d′, D,D′}.
As initial states, we allow all states where posfront(i)−pos(i) ≥ d′ if front(i) �= nil,
and where the respective mode invariant is satisfied.

In mode Appr, car i keeps the velocity high enough to approach the car ahead.
InvAppr is (1 ≤ lane(i) ≤ 2) ∧ (front(i)=nil ∨ posfront(i)− pos(i) ≥ d);

flowAppr is ˙lane(i) = 0∧ (front(i) = nil∨ ˙posfront(i) ≤ ˙pos(i))∧ (0 ≤ ˙pos(i) ≤ 100).

In mode Rec, car i maintains a lower velocity to fall back.
InvRec is (1 ≤ lane(i) ≤ 2) ∧ (front(i)=nil ∨ posfront(i)− pos(i) ≤ D);
flowRec is ˙lane(i) = 0 ∧ 0 ≤ ˙pos(i) ∧ (front(i) = nil ∨ ˙pos(i) ≤ ˙posfront(i)).

A mode switch (without resets) can happen if there is a car ahead (front(i) �= nil)
and the distance to that car leaves a predefined range, i.e. posfront(i)−pos(i) ≤ D′

(switch from Appr to Rec) or posfront(i)− pos(i) ≥ d′ (switch back).

Another mode switch to mode Appr, which changes between lanes 1 and 2 with
reset lane′(i)=3−lane(i), can happen when the car in front is too close (front(i) �=
nil∧posfront(i)−pos(i) ≤ D′) and there is space to start the maneuver: back(i) =
nil ∨ pos(i)−posback(i) ≥ d′ and similarly for sideback(i) and sidefront(i).

190 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

Topology.We model the topology of the family of systems and its updates using
an automaton Top with one mode, having as read-only-variables all variables in
{x(i) | x ∈ X, i ∈ I} and as write variables {p(i) | p ∈ P, i ∈ I}, where
P = PS ∪ PN . The initial states Init are described using Lp,n-formulae. The
jumps can represent updates of the sensor values p(i), p ∈ PS for a single system
S(i), but also synchronized global updates of the sensors p ∈ PS or neighborhood
connections p ∈ PN for subsets of systems with a certain property (described by a
formula): This can be useful when modeling systems of systems with an external
controller (e.g. systems of car platoons) and entails a simultaneous update of
an unbounded set of variables.3 Therefore, the description of the mode switches
(topology updates) in Top is of a global nature and is done using Lp,n-formulae.
The update rules for p ∈ P , Update(p, p′), are conjunctions of implications:

∀i(i �= nil ∧ φp
k(i) → F p

k (p
′(i), i)), k ∈ {1, . . . ,m} (1)

which describe how the values of the pointer p change depending on a set of
mutually exclusive conditions {φp

1(i), . . . , φ
p
m(i)}. The φp

k(i) and F p
k (j, i) are for-

mulae over the 2-sorted language Lp,n without any occurrence of unary functions
in P ′; if p ∈ PS (p represents a sensor), they also do not contain functions in P .
Under the condition φp

k(i), the existence of a value for p′(i) such that F p
k (p

′(i), i)
holds must be guaranteed. The variables {x(i) | x∈X, i∈I} can be used in the
guards of Update(p, p′), but cannot be updated by Top. If xp(i) stores the value
of x(p(i)) at the update of p (case (b) on page 189), then the update rules also
change xp(i), so F p

k (p
′(i), i) must contain x′

p(i) = x(p′(i)) as a conjunct.

Example 3. For the example in Ex. 2, consider the following formulae:

– ASL(j, i): j �= nil ∧ lane(j) = lane(i) ∧ pos(j) > pos(i) which expresses the
fact that j is ahead of i on the same lane, and

– Closestf(j, i): ASL(j, i)∧∀k(ASL(k, i)→pos(k) ≥ pos(j)), which expresses the
fact that j is ahead of i and there is no car between them.

The rule for updating the front sensor of all cars with a given property Prop and
of no other car is described by rule Update(front, front′):

∀i(i �= nil ∧ Prop(i) ∧ ¬∃j(ASL(j, i)) → front′(i) = nil
)

∀i(i �= nil ∧ Prop(i) ∧ ∃j(ASL(j, i)) → Closestf(front
′(i), i)

)

∀i(i �= nil ∧ ¬Prop(i) → front′(i) = front(i)
)

If Prop(i) = (i = i0), only the front sensor of car i0 is updated. For car platoons,
Prop(i) can be leader(i) = i0; we obtain a coordinated update for all platoon
members. If Prop(i) = true, Update(front, front′) describes a global update.
The initial states can e.g. be the states in which all sensor pointers have the
correct value, as if they had just been updated. For front this is expressed by:

∀i(i �= nil ∧ Prop(i) ∧ ¬∃j(ASL(j, i)) → front(i) = nil
)

∀i(i �= nil ∧ Prop(i) ∧ ∃j(ASL(j, i)) → Closestf(front(i), i)
)

3 Our choice allows us to uniformly represent various types of topology updates, from
purely local ones to global updates, without loss of generality.

Decidability of Verification of Safety Properties 191

Example 4. Consider a car platoon as in Ex. 1(2). The situation when car i0
(not a leader) leaves the platoon can e.g. be described by next′(i0) = nil and:

prev(i0) �= nil → next′(prev(i0)) = next(i0)
∀i(i �= i0 ∧ i �= prev(i0) → next′(i) = next(i))

Timed Topology Automata. If we want to ensure that the component sys-
tems update the information about their neighbors sufficiently often, we can
use additional clock variables {cp(i) | i ∈ I, p ∈ P}, satisfying flow conditions
of the form ċp(i) = 1. Every topology update involving a set of systems and
pointer field p has the effect that the clocks cp(i) for all systems i in that set
are set to 0 (added to the conclusion to the topology updates). (Thus, in Ex. 3
the consequence of the update rules would contain as a conjunct the formula
c′front(i) = 0.) In addition, we can require that for every system i the interval be-
tween two updates of p ∈ P is at most Δt(i). Then InitTop contains ∀i cp(i) = 0
as a conjunct; the invariant of the mode of Top contains ∀i 0 ≤ cp(i) ≤ Δt(i);
and if cp(i) = Δt(i) a topology update for system i must take place.

Definition 2 (Spatial Family of Hybrid Automata). A spatial family of
hybrid automata (SFHA) is a family of the form S = (Top, {S(i) | i ∈ I}),
where {S(i) | i ∈ I} is a system of similar hybrid automata and Top is a topol-
ogy automaton. If for every i ∈ I, S(i) is a linear hybrid automaton, we talk
about a spatial family of linear hybrid automata (SFLHA). If the topology au-
tomaton is timed, we speak of a spatial family of timed (linear) hybrid automata
(SFT(L)HA). An SFLHA S is decoupled if the real-valued variables in the guard
of a mode switch of S(i) can only be reset in a jump by S(i) or by Top.

Example 5. If, for every i ∈ I, xp(i) = x(p(i)) (variant (a) on page 189) and
xp(i) is used in the guard of a mode switch of S(i), then in order to ensure that
S is decoupled, no jump of S(p(i)) should reset x(p(i)). If xp(i) is the value
sensed by the sensor p in the last measurement (variant (b)), then S is always
decoupled.

A state s=(q, a) of S consists of q=(qi)i∈I∈QI and a tuple a of values of the
variables of all components; initial states of S are the initial state of Top whose
restriction to the variables of S(i) are initial states of S(i). A state change (s, s′)
is a flow (jump) if its restriction to the variables of S(i) is a flow (resp. jump or
flow of length 0) for all i ∈ I. A run of S is a sequence s0, s1, . . . where (i) s0
is an initial state of S, (ii) each pair (sj , sj+1) is a jump, a flow or a topology
update, and (iii) each flow is followed by a jump or topology update.

Notation. Sequences i1, . . . , ik of variables of sort p are denoted with i, sequences
x1, . . . , xn (resp. ẋ1, . . . , ẋn) with x (resp. ẋ). The sequence x1(i), . . . , xn(i) of
all variables of S(i) is denoted with x(i), and ẋ1(i), . . . , ẋn(i) with ẋ(i). To refer
to the value of x(i) at time t, we write x(i, t). The sequence x1(i, t), . . . , xn(i, t)
of values of variables of system Si at a time t is denoted x(i, t).

192 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

3 Verification Tasks

The properties of SFLHA we consider are specified in a logic which combines
first-order logic over the language Lp,n and temporal logic: Formulae are con-
structed inductively from atoms using temporal operators and quantification
over variables of pointer sort. Since runs of the system define valuations of vari-
ables for each point in time, the semantics of such formulae is defined canonically,
see e.g. [13]. We consider safety properties of the form:

Φentry → �Φsafe,

which state that for every run of the composed system, if Φentry holds at the
beginning of the run then Φsafe is always true.

Example 6. Collision freedom can be expressed using the formula

Φg
safe : ∀i, j(i �=nil∧ j �=nil∧ lane(i)=lane(j)∧pos(i)>pos(j) → pos(i)− pos(j)≥ds)

for suitably chosen constant ds > 0 (global safety) or by referring only to the
“neighbors”, using Φl

safe =
∧

p∈P Φp
safe, where e.g. Φfront

safe is:

∀i(i �= nil ∧ front(i) �= nil→pos(front(i))− pos(i) ≥ ds).

We identify a class of general safety properties (with what we call exhaustive
entry conditions, see Def. 3) which can be reduced to invariant checking for cer-
tain mode reachable states (Def. 4). We then show that for decoupled SFLHA we
can reduce checking invariance for mode reachable states of Φsafe to satisfiability
checking in suitable logical theories, which are combinations of LI(R) possibly
extended with functions xi satisfying additional properties (boundedness, conti-
nuity, boundedness conditions for the slope), and theories of pointers for model-
ing the information provided by the sensors. Using results in Sect. 4, in Sect. 5
we identify situations in which the analysis of safety properties Φentry → �Φsafe

can be precisely reduced to a neighborhood of bounded size of the systems for
which Φsafe could fail. This allows us to prove a small model property and to
identify safety properties which are decidable resp. fixed parameter tractable.

3.1 Safety Properties

Safety of LHA is in general undecidable; classes of LHA and safety proper-
ties which are decidable have been identified in several papers. In [4] we dis-
cuss such approaches and propose weaker conditions guaranteeing decidability.
The approach described here continues this line of research. The choice of the
class of safety properties we consider is based on the observation that industrial
styleguides for designing hybrid automata make sure that modes are entered in
an “inner envelope”, chosen such that modes cannot be left before a fixed min-
imal dwelling time; this avoids immediate context switching. In [4] we showed
that using inner envelopes for LHA allows us to reduce safety checking to invari-
ant checking and the proof of bounded liveness properties to checking bounded
unfoldings.

Decidability of Verification of Safety Properties 193

Definition 3. Safety properties with exhaustive entry conditions have the form
Φentry → �Φsafe where Φentry = ∀i1, . . . , imφentry(x(i1), . . . , x(im)) is a formula in
the language Lp,n such that: (i) If Φentry holds in a state s, s is an initial state
of S; (ii) For every jump or topology update (s, s′), Φentry holds in s′.

Remark. Condition (i) guarantees that we make minimal restrictions on initial
states: runs can start in any state satisfying Φentry. The formula Φentry can be
seen as a description of certain “inner envelopes” of the modes. Condition (ii)
expresses the fact that a jump leads into a state satisfying Φentry (in the inner
envelope of the target mode).
For instance, if Inittop describes the fact that the information about all variables
detected by sensors in PS is precise, then condition (ii) imposes the restriction
that sensors have to be globally updated after any jump or local topology update,
which is clearly too restrictive. We can instead require that the initial states
contain all states in which the positions indicated by sensors are within a given
margin ε of error (the entry condition Φentry could describe such states).

Example 7. In the running example, where lane can be updated by a jump (from
value 1 to 2 or vice versa) if the margin of error is ε, in order to guarantee (ii)
we need to ensure that (a) Top is a timed topology automaton where the interval
Δt between sensor updates is small enough and (b) after lane changes the sensors
of the systems affected by the change are simultaneously updated.

We prove that checking safety properties with exhaustive entry conditions for
decoupled SFHA can be reduced to checking whether the safety property Φsafe

is invariant under certain jumps, flows, and topology updates.

Definition 4. Let S = (Top, {S(i) | i ∈ I}) be an SFHA. A state s (resp. state
change (s, s′)) where s = (q, a) of S, s.t. q = (qi)i∈I , is globally mode reachable
(GMR, for short) if there exists a state (q, a′) of S such that a′ satisfies Φentry

and there is a flow in S from (q, a′) to (q, a).

Theorem 1. A decoupled SFLHA S = (Top, {S(i) | i ∈ I}) satisfies a safety
property with exhaustive entry conditions Φentry → �Φsafe, iff the following hold:

(1) All states satisfying Φentry satisfy Φsafe.
(2) Φsafe is preserved under all flows starting from a state satisfying Φentry.
(3) Φsafe is preserved under all GMR jumps.
(4) Φsafe is preserved under all GMR topology updates.

3.2 Reduction to Satisfiability Checking

We show that for decoupled SFLHA S we can reduce checking conditions (i) and
(ii) in Def. 3 to satisfiability tests. We consider safety properties Φentry→�Φsafe

with exhaustive entry conditions, where Φentry=∀i1 . . . imφentry(x(i1), . . . , x(im))
and Φsafe=∀i1 . . . inφsafe(x(i1), . . . , x(in)), where φentry and φsafe are quantifier-
free. We show that checking them can be reduced to checking whether for all
combinations of modes q = (qi)i∈I certain formulae F init

q , F flow
q , F jump

q , F top
q are

unsatisfiable. We first show that for decoupled SFLHA we do not need to consider
parallel jumps.

194 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

Lemma 2 Let S = (Top, {S(i) | i ∈ I}) be a decoupled SFHA.

(1) Φsafe is invariant under all (GMR) jumps in S iff it is invariant under all
(GMR) jumps which reset the variables of a finite family of systems in S.

(2) Φsafe is invariant under all (GMR) jumps involving a finite family of systems
in S iff it is invariant under all (GMR) jumps in any component of S.

Theorem 3. For a decoupled SFHA S, conditions (i) and (ii) in Def. 3 hold
iff:

(i) Φentry(x) ∧
(¬(∨q∈Q Initq(xi0)) ∨ ¬Inittop(x)

) |=⊥.

(ii) for all (qi)i∈I ∈ QI , e ∈ E, i0 ∈ I (∀iInvqi(xi))∧Update(p, p′)∧¬Φ′
entry(x) |=⊥,

where Φ′
entry arises from Φentry by replacing p with p′, and (∀iInvqi(xi)) ∧

guarde(xi0) ∧ jumpe(xi0 , x
′
i0) ∧ ∀j(j �= i0 → x′(j) = x(j)) ∧ ¬Φentry(x

′) |=⊥.

Theorem 4. Let S be a decoupled SFLHA. The following hold (where c1, . . . , cn
are Skolem constants obtained from the negation of Φsafe):

(1) The entry states of S satisfy Φsafe iff for all q = (qi)i∈I∈QI the formula

F entry
q : Φentry ∧ ¬φsafe(x(c1), . . . , x(cn)) is unsatisfiable.

(2) Φsafe is invariant under flows starting in a state satisfying Φentry iff for all
q=(qi)i∈I∈QI the formula F flow

q :

t0<t1 ∧ Φentry ∧ ∀i1, . . . , inφsafe(x(i1, t0), . . . , x(in, t0)) ∧ ∀iFlowqi(x(i, t0), x(i, t1))
∧¬φsafe(x(c1, t1), . . . , x(cn, t1)),

is unsatisfiable, where if flowq(i) =
∧(Ef ∨∑n

k=1 a
q
k(i)ẋk(i) ≤ aq(i)

)
then:

Flowqi(x(i, t0), x(i, t1)) :=
∧(Ef∨

∑n
k=1 a

qi
k (i)(xk(i, t1)−xk(i, t0))≤aqi(i)(t1−t0)

)∧
∀i(Invqi(x(i, t0)) ∧ Invqi(x(i, t1))

)
.

(3) Φsafe is invariant under GMR jumps in S iff for all q=(qi)i∈I∈QI the follow-
ing formula F jumpq

e(i0) is unsatisfiable for every i0 ∈ I and e = (qi0 , q
′
i0
) ∈ E,

s.t. if p(i0) occurs in guarde it is not nil:

t0 < t1 ∧ ∀j1 . . . jnφentry(x(j1, t0), . . . , x(j1, t0)) ∧ ∀iFlowqi(x(i, t0), x(i, t1))
∧ ∀i1, . . . , inφsafe(x(j1, t1), . . . , x(in, t1))
∧ guarde(x(i0, t1)) ∧ jumpe(x(i0, t1), x

′(i0)) ∧ Invq′
i0
(x′(i0, t1))

∧ ∀j(j �= i0 → x′(j) = x(j)) ∧ ¬φsafe(x
′(c1), . . . , x′(cn)).

(4) Φsafe is invariant under GMR topology updates for pointers in a set P1 iff
for all q = (qi)i∈I ∈ QI the following formula F top

q is unsatisfiable:

t0 < t1 ∧∀j1 . . . jnφentry(x(j1, t0), . . . , x(j1, t0)) ∧ ∀iFlowqi(x(i, t0), x(i, t1))
∧∀i1, . . . , inφsafe(x(j1, t1), . . . , x(in, t1))∧
∧∧

p∈P1
Update(p, p′) ∧ ¬φ′

safe(x(c1), . . . , x(cn))

where φ′
safe is obtained from φsafe by replacing every p ∈ P1 with p′.

4 Automated Reasoning

We present classes of theories for which decidable fragments relevant for the ver-
ification tasks above exist. We use the following complexity results for fragments
of linear arithmetic: The satisfiability over R of conjunctions of linear inequal-
ities can be checked in PTIME [22]. The problem of checking the satisfiability

Decidability of Verification of Safety Properties 195

of sets of clauses in LI(R) is in NP [33]. The satisfiability of any conjunction of
Horn disjunctive linear (HDL) constraints4 over R [23] and the satisfiability of
any conjunction of Ord-Horn constraints5 over R [27] can be decided in PTIME.

Local Theory Extensions. Let T0 be a base theory with signature Σ0. We
consider extensions T1 := T0 ∪K of T0 with new function symbols in a set Σ1 of
extension functions whose properties are axiomatized with a set K of augmented
clauses, i.e. of axioms of the form ∀x1 . . . xn(Φ(x1, . . . , xn)∨C(x1, . . . , xn)), where
Φ(x1, . . . , xn) is a first-order formula in signature Σ0 and C(x1, . . . , xn) is a
clause containing extension functions. T0 ⊆ T0∪K is a local extension [30,16] if
for every set G of ground Σ0 ∪Σ1 ∪Σc-clauses (where Σc is a set of additional
constants), if G is unsatisfiable w.r.t. T0∪K then unsatisfiability can be detected
using the set K[G] consisting of those instances of K in which the terms starting
with extension functions are ground terms occurring in K or G. Stably local
extensions are defined similarly, with the difference that K[G] is replaced with
K[G], the set of instances of K in which the variables are instantiated with ground
terms starting with extension functions which occur in K or G.

Theorem 5 ([30]). If T0 ⊆ T0∪K is a (stably) local extension and G is a set of
(augmented) ground clauses then we can reduce the problem of checking whether
G is satisfiable w.r.t. T0 ∪K to a satisfiability test w.r.t. T0: We purify K[G]∪G
(resp. K[G]∪G) by introducing (bottom-up) new constants ct for subterms t =
f(g1, . . . , gn) with f ∈ Σ, gi ground Σ0 ∪ Σc-terms; replacing the terms t with
the constants ct; and adding the definitions ct = t to a set D. Similarly for stably
local extensions. We denote by K0 ∪ G0 ∪ D the set of formulae obtained this
way. Then G is satisfiable w.r.t. T0 ∪K iff K0∪G0∪Con0 is satisfiable w.r.t. T0,
where Con0 = {(∧n

i=1 ci=di) → c=d | f(c1, . . . , cn)=c, f(d1, . . . , dn)=d ∈ D}.
If K[G] is finite and if the set K0∪G0∪Con0 belongs to a decidable fragment F of
T0, then the satisfiability of G w.r.t. T1 is decidable. As the size of K0∪G0∪N0

is polynomial in the size of G (for a given K), locality allows us to express
the complexity of the ground satisfiability problem w.r.t. T1 as a function of the
complexity of the satisfiability of F-formulae w.r.t. T0.
Many update rules define local theory extensions.

Theorem 6 ([18,14]). Let T0 be a base theory with signature Σ0 and Σ ⊆ Σ0.
Consider a family Update(Σ,Σ′) of update axioms of the form:

∀x(φf
i (x) → F f

i (f
′(x), x)) i = 1, . . . ,m, f ∈ Σ (2)

which describe how the values of the Σ-functions change, depending on a finite
set {φf

i | i ∈ I} of Σ0-formulae and using Σ0-formulae F f
i such that (i) φi(x)∧

φj(x) |=T0⊥ for i �=j and (ii) T0 |= ∀x(φi(x) → ∃y(Fi(y, x))) for all i ∈ I. Then
the extension of T0 with axioms Update(Σ,Σ′) is local.

4 A Horn-disjunctive linear constraint is a disjunction d1 ∨ · · · ∨ dn where each di is a
linear inequality or disequation, and the number of inequalities does not exceed one.

5 Ord-Horn constraints are implications
∧n

i=1 xi≤yi→x0≤y0, (xi, yi are variables).

196 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

Theories of Pointers [24]. Consider the language Lp,n with sorts p (pointer)
and n (scalar) introduced before, with set of unary pointer (numeric) fields P
(Pn), and with a constant nil of sort p. The only predicate of sort p is equality;
the signature Σn of sort n depends on the theory Tn modeling the scalar domain.
A guarded p-positive extended clause is a clause of the form:

C := ∀i1 . . . in E(i1, . . . , in) ∨ C(si(i1), . . . , si(in)) (3)

where C is a Tn-formula over terms of sort n and E is the disjunction of all
equality atoms of the form i = nil, fn(i) = nil, . . . , f2(. . . fn(i)) = nil for all terms
f1(f2(. . . fn(i))) occurring in C.

Theorem 7 ([14]). Every set K of guarded p-positive extended clauses defines
a stably local extension of Tn ∪Eqp, where Eqp is the theory of equality of sort p.

5 Verification: Decidability and Complexity

We consider safety properties with extensive entry conditions of the form Φentry →
�Φsafe. We make the following assumptions:

Assumption 1: S = (Top, {S(i) | i ∈ I}) is a decoupled SFLHA.
Assumption 2: Φsafe and Φentry are sets of guarded p-positive extended clauses

of the form ∀i1, . . . , inE∨C, such that C is a conjunction of linear inequalities.
Assumption 3: Update(p, p′) are (A) of form (2) in Thm. 6 or (B) contain only

formulae ∀i(i �= nil∧φ → F (p′(i), i)
)
where (i) φ = ∀j1, . . . , jmψ(i, j1, . . . , jm)

with m ≥ 0 and all free variables in F (p′(i), i) occur below p′, or (ii)
φ = ∃jψ(i, j) and i �= nil ∧ ψ(i, j) → F (i′, i) is a guarded p-positive ex-
tended clause E ∨ C, where C is a conjunction of linear inequalities.

Assumption 4: The numeric constraints in the description of S (including the
conditions φp

k→F p
k (j, i) obtained from φp

k→F p
k (p

′(i), i) in Update(p, p′) by
replacing all occurrences of p′(i) with j) and the numerical constraints in
Φsafe and Φentry are all HDL constraints or all Ord-Horn constraints.

We prove that under Assumptions 1–3 the problems are decidable, and analyze
their complexity.

Verification of Safety Properties. We analyze the complexity of verifying
safety properties with exhaustive entry conditions, by analyzing the complexity
of checking the satisfiability of the formulae F entry

q , F jump
q , F flow

q and F top
q . Since

the number of systems to be considered is unbounded, a naive approach to
analyzing the satisfiability of these formulae for all tuples q = (qi)i∈I∈QI can
be problematic. We identify situations which allow us to limit the analysis to a
“neighborhood” of the systems for which φsafe fails. For this we use the specific
form of the axioms we consider.

Theorem 8. The following theory extensions are stably local for all (qi)i∈I∈QI:

(1) R ∪ Eqp ⊆ R ∪ Φentry (under Assumption 2).
(2) R∪Eqp ⊆ R∪{Φsafe(x(t0))∧∀i (Flowqi(x(i, t0), x(i, t1)))} (Assumptions 1,2).

Decidability of Verification of Safety Properties 197

(3) R ∪ Eqp ⊆ R ∪ {Φentry(x(t0)) ∧ ∀i (Flowqi(x(i, t0), x(i, t1))) ∧ Φsafe(x(t1)) ∧
guarde(x(i0, t1))∧ jumpe(x(i0, t1), x

′(i0))∧ Invq′i0 (x
′(i0, t1))} for every i0 ∈ I

and e ∈ E s.t. if p(i0) occurs in guarde it is not nil (under Assumptions 1,2).
(4) R ∪ Eqp ⊆ R ∪ {Φentry(x(t0)) ∧ ∀i (Flowqi(x(i, t0), x(i, t1))) ∧ Φsafe(x(t1))} ⊆

R∪{Φentry(x(t0))∧Φsafe(x(t0))∧∀i (Flowqi(x(i, t0), x(i, t1)))}∪Update(p, p′)
(under Assumptions 1,2,3). (The last extension is local.)

Let G = ¬φsafe(x(c1), . . . , x(cn)). By Assumption 2, G consists of a conjunction
of linear inequalities and a set of pointer disequalities, containing clauses of the
form g �= nil for every ground term g of sort p occurring in G below a pointer or
scalar field. From Thm. 8 we obtain the following decidability results:

Theorem 9 (Entry States). Fentry
q is satisfiable for some q ∈ QI iff there

exists a finite set Ientry of indices (with size polynomial in the number of terms
of sort p in Φsafe) and q0 = (qi)i∈Ientry such that:

F entry
q0 :

∧
j1...jm∈Ientry

φentry(xj1 , . . . xjm) ∧G is satisfiable.

For every q0 ∈ QIentry , the satisfiability of the formula F entry
q0 is decidable (in NP).

Proof. By Thm. 8(1), Kentry = Φentry defines a stably local theory extension of
R ∪ Eqp, so in order to check whether Fentry

q is satisfiable it is sufficient to check

whether K[G]
entry ∧ G is satisfiable. The latter happens iff there exists a finite set

Ientry of indices (corresponding to the set of all ground terms of sort p in K[G]
entry

after instantiation) and a tuple q0 = (qi)i∈Ientry such that F entry
q0 is satisfiable;

decidability and complexity is proved by carefully analyzing the properties of
this set of instances.

Example 8. Consider the running example, with entry states being the initial
states for the tuple q = (qi)i∈I consisting of the Appr modes for all systems:

Initq := ∀i(i �= nil ∧ front(i) �= nil → pos(front(i))− pos(i) ≥ d′)
for a given constant d′ > 0

Inittop :=
∧

p∈PS
Update(p, p), where Update(front, front) consists of the formulae:

i �= nil ∧ ¬∃j(ASL(j, i)) → front(i) = nil
i �= nil ∧ ∃j(ASL(j, i)) → Closestf(front(i), i)

where ASL(j, i): j �=nil ∧ lane(j)=lane(i) ∧ pos(j)>pos(i) and
Closestf(j, i): ASL(j, i) ∧ ∀k(ASL(k, i)→pos(k)≥pos(j)), so it clearly satis-
fies Assumption 3 (A).

Let Φg
safe = ∀i, j(i �=nil ∧ j �=nil ∧ pos(i)>pos(j) ∧ lane(i)=lane(j) →

pos(i)−pos(j)≥ds). We check the satisfiability of Initq ∧ Inittop ∧ G, where
G = ¬Φg

safe is:

i0 �= nil∧j0 �= nil∧ lane(i0) = lane(j0)∧pos(i0) > pos(j0)∧pos(i0)−pos(j0) < ds.
We instantiate Initq ∧ Inittop. E.g., by instantiating i in Initq with j0 we obtain:

j0 �=nil∧ front(j0)�=nil∧ lane(front(j0))=lane(j0) → pos(front(j0))−pos(j0)≥d′;

198 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

the instantiation of the prenex form of the second axiom in the update rule, in
which i is replaced with j0, and j and k (in Closestf) with i0 is:

j0 �= nil ∧ i0 �= nil ∧ lane(i0) = lane(j0) ∧ pos(i0) > pos(j0)
→ front(j0) �= nil ∧ lane(front(j0)) = lane(j0) ∧ pos(front(j0)) > front(j0)
∧ (i0 �= nil ∧ lane(i0) = lane(j0) ∧ pos(i0) > pos(j0) → pos(i0) > pos(front(j0)))

After the hierarchical reduction we obtain a set of clauses which is clearly un-
satisfiable if d′ ≥ ds.

Theorem 10 (Flows). Under Assumptions 1,2, F flow
q is satisfiable for some

q∈QI iff there exists a finite set Iflow⊆I (corresponding to all ground terms of sort
p in G), and q0 = (qi)i∈Iflow s.t. F flow

q0 – obtained from F flow
q by instantiating the

variables of sort p with elements in Iflow – is satisfiable. For every q0 = (qi)i∈Iflow

the satisfiability of F flow
q0 is decidable (in NP).

Theorem 11 (Jumps). Under Assumptions 1, 2, F jumpq
e(i0) is satisfiable for

some i0 ∈ I, e ∈ E and q = (qi)i∈I ∈ QI iff there exist i0 ∈ I and e ∈ E and a
finite set Ijump consisting of i0 together with all ground terms of sort p occurring
in G, and q0 = (qi)i∈Ijump , such that F jumpq0

e0 – obtained from F jumpq
e(i0) by in-

stantiating the variables of sort p with conjunction terms in Ijump – is satisfiable.
The problem is decidable (and in NP).

Theorem 12 (Topology Updates). Under Assumptions 2,3, for checking the
satisfiability of the formula F top we need to consider only those instances of these
formulae where the terms of pointer sort are in a finite set Iupdate containing
all ground terms of pointer sort of ¬φ′

safe(x(j1), . . . , x(jn)), and additionally all
Skolem constants cp, p ∈ P which occur from Skolemization in the instances of
Update(p, p′). The problem is decidable (and in NP).

Example 9. Consider the topology updates in Ex. 3. Invariance of Φg
safe under

these updates can be proved as in Ex. 8. It can be easily shown that Φl
safe is not

invariant. We now consider a variant Φ
l
safe of Φ

l
safe where:

Φ
front
safe : ∀i

(
i �= nil ∧ front(i) �= nil ∧ lane(i) = lane(front(i)) → pos(front(i))− pos(i) > ds

)

In order to prove that Φ
front

safe is preserved by topology updates, we prove that

Φ
front
safe ∧Update(p, p′)∧G is unsatisfiable, where G = ¬Φfront′

safe is the ground clause
i0 �=nil ∧ front′(i0) �=nil ∧ lane(i0)=lane(front′(i0)) ∧ pos(front′(i0))− pos(i0)≤ds.

The extension: R∪Φ
front
safe ⊆ R∪Φ

front
safe ∪Update(front, front′) is local. We deter-

mine Update(front, front′)[G], where st(K,G) = {front′(i0)}. After instantiation
and purification (replacing front′(i0) with f ′) we obtain:

i0 �=nil ∧ ¬∃j(ASL(j, i0)) → f ′=nil
i0 �=nil ∧ ∃j(ASL(j, i0)) → Closestf (f

′, i0)

with the notations in Ex. 3. Transforming these formulas into prenex form and
skolemizing the existential quantifier, we obtain (with Skolem constant c0):

C1 : i0 �=nil ∧ ¬ASL(c0, i0) → f ′=nil C2 : i0 �=nil ∧ ASL(j, i0) → Closest(f ′, i0).
The formula C1 is ground. To check the satisfiability of Φsafe∪C2∪G1 where G1 =
C1 ∧G0 (where G0 is i0 �=nil ∧ f ′ �=nil ∧ lane(i0)=lane(f ′) ∧ pos(f ′)−pos(i0)≤ds),
it is sufficient to check the satisfiability of Φsafe[G1] ∪ C2[G1] ∪G1.

Decidability of Verification of Safety Properties 199

From Theorems 9, 10, 11 and 12 we obtain a small model property.

Theorem 13 (Small Model Property). Under Assumptions 1–3, a decoupled
SFLHA S satisfies a safety property with exhaustive entry conditions iff the
property holds in all subsystems of S of the form S0 = (Top, {S(i) | i ∈ I0}),
where I0 is the set of all indices corresponding to ground terms in G = ¬Φsafe

occurring in the instances of the formulae F init
q

[G]
, F flow

q
[G]

, F jump
q

[G]
, F top

q
[G]

(|I0|
is polynomial in the number of terms of sort p occurring in Φsafe; the degree of
the polynomial depends on the number of free variables in the update axioms).

Theorem 14. Under Assumptions 1–4, the following hold for every conjunction
Def :

∧
p(t)∈T1

p(t)=nil ∧ ∧
p(t)∈T2

p(t)�=nil, where T1 ∪ T2 = {p(t) | t subterm
of sort p of G, p∈P, p(t) not in G} and every q ∈ QIentry (resp. QIflow or QIupdate):

(1) The satisfiability of Fentry
q ∧Def can be checked in PTIME.

(2) The satisfiability of Fflow
q ∧ Def can be checked in PTIME.

(2) The satisfiability of Fjumpq ∧Def can be checked in PTIME.
(4) Assuming that either (a) PS is empty, or else (b) Update(p, p′) has the form

(2) in Thm. 6 the satisfiability of Fupdate
q ∧ Def can be checked in PTIME.

If we consider |Q| and |P | to be constant and the number of terms of sort p in
Φsafe, and the maximal number of variables in the update axioms as a parameter,
the problems can be considered to be fixed parameter tractable.

Theorem 15 (Parametric Systems). The complexity results in Thms. 9–12
and 14, as well as the small model property also hold for parametric SFLHA in
which only the bounds in Φentry and Φsafe, guarde, jumpe, and Update are param-
eters. For systems in which parameters are allowed as coefficients or appear in
the flow conditions the complexity is exponential.

Theorem 16. Under Assumptions 1–3, the complexity of synthesizing constraints
on parameters which guarantee that a parametric SFLHA satisfies a safety con-
dition with exhaustive entries (using quantifier elimination) is exponential.

Remark. Similar methods can be used for showing that under Assumptions 1–
3 the problem of checking conditions (i) and (ii) in the definition of exhaustive
entry conditions is in NP. We can also express Φentry and S parametrically and
infer constraints on parameters under which conditions (i) and (ii) hold.

6 Tool Support

In order to perform automatically the verification tasks we used H-PILoT [15],
which performs stepwise hierarchical reductions of proof tasks in chains of local
theory extensions to satisfiability problems in a combination of linear arith-
metic over R and pure equality, which are then solved using Z3 [26]. Results
of experiments with our running example are summarized in Fig. 2. We con-
sidered the safety conditions Φg

safe and variants of Φl
safe (cf. Ex. 6), as well as

Φ = ∀i.i �= nil → front(i) �= i and we provided constraints for all parameters.

200 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

flow init jump upd flowMR initMR jumpMR updMR

Φ unsat unsat unsat unsat unsat unsat unsat unsat
time 0.332 0.296 1.252 0.520 0.352 0.312 22.221 1.292

Φl
safe unsat unsat unsat sat unsat unsat unsat unsat

time 0.568 0.884 1.988 1.604 0.644 0.924 28.637 3.480
Φg

safe sat unsat sat unsat unsat unsat sat unsat
time 0.360 0.276 5.568 0.516 0.392 0.296 22.641 1.288

Fig. 2. Proof times in seconds

As can be seen, pure invari-
ance checking is not always
sufficient (for example Φl

safe

is not invariant under all up-
dates); we checked also in-
variance under mode reach-
able jumps/updates (tests
indexed with mr; thus we

could prove that Φl
safe holds in all runs). For satisfiable formulae H-PILoT re-

turns models which can be used to visualize the counterexamples to the invari-
ance properties. Further details can be found in [3]. Formalizations of the hybrid
automata and the proof tasks presented here as well as the verification tools
used can be found at userp.uni-koblenz.de/~horbach/haha.html along with
formalizations of several of the examples from the Passel benchmark suite [20].

7 Conclusions

We proved that safety properties with exhaustive entry conditions for spatial
families of similar linear hybrid automata can be verified efficiently: We re-
duced the proof task to invariant checking for certain mode reachable states
and analyzed the complexity of such problems. As a by-product, we obtained
a modularity result for checking safety properties. The results can also be used
for invariant checking (for this the information about mode reachability in the
formulae is ignored). Another important class of properties, related to timely
completion of maneuvers, are bounded reachability properties. They state that
for every run starting in a suitable initial configuration Φentry, a maneuver com-
pletion condition Φcomplete becomes true in a given bounded time frame. Similar
methods can be used for efficiently checking also this type of properties if we
guarantee that the number of jumps and topology updates in any fixed interval
is bounded. We did not include such considerations here due to lack of space.

Acknowledgments. This work was partly supported by the German Research
Council (DFG) as part of the Transregional Collaborative Research Center “Au-
tomatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS)

www.avacs.org

References

1. Abdulla, P.A., Haziza, F., Hoĺık, L.: All for the price of few. In: Giacobazzi, R.,
Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 476–495.
Springer, Heidelberg (2013)

2. Alur, R., Henzinger, T.A., Ho, P.: Automatic symbolic verification of embedded
systems. IEEE Trans. Software Eng. 22(3), 181–201 (1996)

3. Damm, W., Horbach, M., Sofronie-Stokkermans, V.: Decidability of verification
of safety properties of spatial families of linear hybrid automata. Tech. Rep. 111,
SFB/TR 14 AVACS (2015). http://www.avacs.org

http://www.avacs.org

Decidability of Verification of Safety Properties 201

4. Damm, W., Ihlemann, C., Sofronie-Stokkermans, V.: PTIME parametric verifica-
tion of safety properties for reasonable linear hybrid automata. Mathematics in
Computer Science 5(4), 469–497 (2011)

5. Damm, W., Peter, H., Rakow, J., Westphal, B.: Can we build it: formal synthe-
sis of control strategies for cooperative driver assistance systems. Mathematical
Structures in Computer Science 23(4), 676–725 (2013)

6. Emerson, E.A., Srinivasan, J.: A decidable temporal logic to reason about many
processes. In: Dwork, C. (eds.) Proc. PODC 1990, pp. 233–246. ACM (1990)

7. Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic verifica-
tion of parametric specifications with complex topologies. In: Méry, D., Merz, S.
(eds.) IFM 2010. LNCS, vol. 6396, pp. 152–167. Springer, Heidelberg (2010)

8. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parame-
ter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)

9. Frese, C.: A comparison of algorithms for planning cooperative motions of cognitive
automobiles. In: Proc. 2010 Joint Workshop of Fraunhofer IOSB and Institute for
Anthropomatics, Vision and Fusion Laboratory. No. IES-2010-06 in Karlsruher
Schriften zur Anthropomatik, vol. 7, pp. 75–90. KIT Scientific Publishing (2010)

10. Frese, C., Beyerer, J.: Planning cooperative motions of cognitive automobiles using
tree search algorithms. In: Dillmann, R., Beyerer, J., Hanebeck, U.D., Schultz, T.
(eds.) KI 2010. LNCS, vol. 6359, pp. 91–98. Springer, Heidelberg (2010)

11. Fribourg, L., Kühne, U.: Parametric verification and test coverage for hybrid au-
tomata using the inverse method. Int. J. Found. Comput. Sci. 24(2), 233–250 (2013)

12. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving
safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011.
LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011)

13. Hungar, H., Grumberg, O., Damm, W.: What if model checking must be truly
symbolic. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987,
pp. 1–20. Springer, Heidelberg (1995)

14. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifi-
cation. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 265–281. Springer, Heidelberg (2008)

15. Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In:
Schmidt, R.A. (ed.) CADE-22. LNCS(LNAI), vol. 5663, pp. 131–139. Springer,
Heidelberg (2009)

16. Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations
of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS(LNAI), vol. 6173,
pp. 30–45. Springer, Heidelberg (2010)

17. Jacobs, S., Bloem, R.: Parameterized synthesis. Logical Methods in CS 10(1) (2014)
18. Jacobs, S., Kuncak, V.: Towards complete reasoning about axiomatic specifications.

In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 278–293.
Springer, Heidelberg (2011)

19. Johnson, T.T., Mitra, S.: Parametrized verification of distributed cyber-physical
systems: An aircraft landing protocol case study. In: Proc. ICCPS 2012, pp. 161–
170. IEEE (2012)

20. Johnson, T.T., Mitra, S.: A small model theorem for rectangular hybrid automata
networks. In: Giese, H., Rosu, G. (eds.) FORTE/FMOODS 2012. LNCS, vol. 7273,
pp. 18–34. Springer, Heidelberg (2012)

21. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in parameterized
concurrent programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS,
vol. 6174, pp. 645–659. Springer, Heidelberg (2010)

202 W. Damm, M. Horbach, and V. Sofronie-Stokkermans

22. Khachian, L.: A polynomial time algorithm for linear programming. Soviet Math.
Dokl. 20, 191–194 (1979)

23. Koubarakis, M.: Tractable disjunctions of linear constraints: basic results and ap-
plications to temporal reasoning. Theo. Comp. Sci. 266(1–2), 311–339 (2001)

24. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms.
In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490.
Springer, Heidelberg (2005)

25. Mickelin, O., Ozay, N., Murray, R.M.: Synthesis of correct-by-construction control
protocols for hybrid systems using partial state information. In: Proc. ACC 2014,
pp. 2305–2311. IEEE (2014)

26. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

27. Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: A maximal tractable
subclass of Allen’s interval algebra. J. of the ACM 42(1), 43–66 (1995)

28. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason-
ing 41(2), 143–189 (2008)

29. Platzer, A.: Quantified differential dynamic logic for distributed hybrid systems.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 469–483. Springer,
Heidelberg (2010)

30. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,
Heidelberg (2005)

31. Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric
systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173,
pp. 171–187. Springer, Heidelberg (2010)

32. Sofronie-Stokkermans, V.: Hierarchical reasoning and model generation for the
verification of parametric hybrid systems. In: Bonacina, M.P. (ed.) CADE 2013.
LNCS(LNAI), vol. 7898, pp. 360–376. Springer, Heidelberg (2013)

33. Sontag, E.: Real addition and the polynomial hierarchy. Inf. Proc. Letters 20(3),
115–120 (1985)

Rewriting and Constraint Solving

A Completion Method to Decide Reachability

in Rewrite Systems

Guillaume Burel1, Gilles Dowek2, and Ying Jiang3

1 Ensiie, 1 square de la Résistance, 91000 Évry, France
guillaume.burel@ensiie.fr

2 Inria, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France
gilles.dowek@inria.fr

3 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, 100190 Beijing, China

jy@ios.ac.cn

Abstract. The Knuth-Bendix method takes in argument a finite set of
equations and rewrite rules and, when it succeeds, returns an algorithm
to decide if a term is equivalent to another modulo these equations and
rules. In this paper, we design a similar method that takes in argument
a finite set of rewrite rules and, when it succeeds, returns an algorithm
to decide not equivalence but reachability modulo these rules, that is
if a term reduces to another. As an application, we give new proofs of
the decidability of reachability in finite ground rewrite systems and in
pushdown systems.

1 Introduction

The Knuth-Bendix method [13,10] takes in argument a finite set of equations
and rewrite rules and, when it succeeds, returns an algorithm to decide if a term
is equivalent to another modulo these equations and rules. In this paper, we
design a similar method that takes in argument a finite set of rewrite rules and,
when it succeeds, returns an algorithm to decide not equivalence but reachability
modulo these rules, that is if a term reduces to another.

As an application, we give new proofs of the decidability of reachability in
finite ground rewrite systems [3] and in pushdown systems [1].

Like the Knuth-Bendix method, this method proceeds by completing a finite
rewrite system into an equivalent one, by adding derivable rules. In the completed
system, when a proposition t −→∗ u has a proof, it also has a proof of the form

t = t0 −→ t1 −→ ... −→ tp = w = uq −→ ... −→ u1 −→ u0 = u

where t0 � t1 � ... � tp and uq ≺ ... ≺ u1 ≺ u0 for some reduction order ≺, that
is a proof formed with a decreasing sequence followed by an increasing one. We
can write such a proof

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 205–219, 2015.
DOI: 10.1007/978-3-319-24246-0_13

206 G. Burel, G. Dowek, and Y. Jiang

t = t0 u0 = u

t1

�

u1

�

tp = w = uq

�
�

using the unusual convention to write the larger terms for the order ≺ on the
top of the diagram and the smaller ones on the bottom, hence drawing an arrow
oriented from the bottom to the top, when a smaller term reduces to a larger
one.

In order to transform proofs into proofs of this form, we should consider
critical steps of the form

u

t

�

v

�

with t ≺ u � v and add a rule reducing directly t to v, avoiding the detour via
u. If the reduction from t to u uses a rule l1 −→ r1 and that from u to v a rule
l2 −→ r2, the terms r1 and l2 would have to be compared, to determine if one
term unifies with a subterm of the other. We would therefore need to design a
forward completion method that compares the left-hand side of a rule with the
right-hand side of another.

An alternative method is to reverse the rules whose left-hand side is smaller
than the right-hand side, and keep track that such reversed rules must be used
backwards. Thus, we distinguish two kinds of rules: negative rules that are as
usual, and positive rules that must be used backwards: u1 −→+ u2 means that
u2 −→ u1 in the original system and u2 ≺ u1. This way, in the completed system,
when a proposition t −→∗ u has a proof, it also has a proof of the form

t = t0 u0 = u

t1

− �

u1

� +

tp = w = uq

� +− �

and the critical steps have the form

u

t

� +

v

− �

so that only left-hand side of rules need to be compared.
In the completed system, the proposition t −→∗ u has a proof if and only if

there exists a term w such that t −→∗
− w and u −→∗

+ w. Thus reachability boils

A Completion Method to Decide Reachabilityin Rewrite Systems 207

down to the existence of a common reduct. In a terminating system, reachability
is obviously decidable and easy to check because reduction trees are always finite.
In the same way, in a terminating system, the existence of a common reduct of
two terms is decidable and easy to check because reduction trees are finite.

The reader familiar with polarized sequent calculus modulo theory [6,8] will
remark that many ideas in this paper, in particular the idea to distinguish two
kinds of rules, come from this calculus. But the paper is presented independently
of polarized sequent calculus modulo theory.

2 Polarized Rewrite Systems

Terms, substitutions, rewrite rules, and rewrite systems are defined as usual.
A rewrite rule l −→ r is said to be left-linear if the term l is linear in each of its
variables, that is if each variable of l occurs exactly once in l.

A context C[X1, ..., Xn] is an ordered pair formed with a term C, and a
sequence of variables X1, ..., Xn each occurring exactly once in C. The term
(t1/X1, ..., tn/Xn)C is written C[t1, ..., tn].

Definition 1 (Polarized Rewrite System). A polarized rewrite system P is
a pair 〈P−,P+〉 of rewrite systems. The rules of P− are called negative and are
written l −→− r, the rules of P+ are called positive and are written l −→+ r. The
one step reduction relations −→− and −→+ are defined as usual: t −→− u (resp.
t −→+ u) if there exists a negative rule l −→− r (resp. a positive rule l −→+ r),
a context C[X] and a substitution σ, such that t = C[σl] and u = C[σr].

Definition 2 (The Relation −→). The relation −→ is −→− ∪ +←−, that is
t −→ u if t −→− u or u −→+ t.

Definition 3 (Proof). Let P be a polarized rewrite system. A proof (or a re-
duction sequence) in P is a sequence of terms t0, t1, ..., tn, such that for all i,
ti −→ ti+1, that is ti −→− ti+1 or ti+1 −→+ ti.

A proof is a proof of the proposition t −→∗ u if t = t0 and u = tn.

Definition 4 (Polarization). The polarized rewrite system P is said to be a
polarization of a non-polarized rewrite system R if

– for each rule l −→ r of R, the system P contains either the rule l −→− r or
the rule r −→+ l,

– for each rule l −→− r of P, the system R contains the rule l −→ r,
– and, for each rule l −→+ r of P, the system R contains the rule r −→ l.

Lemma 1. Let R be a rewrite system, and P be a polarization of R, then a
proposition t −→∗ u has a proof in R if and only if it has a proof in P.

Example 1. Let R be the rewrite system

f(g(a)) −→ b
f(f(a)) −→ c

b −→ g(g(f(f(a))))
c −→ h(a)

208 G. Burel, G. Dowek, and Y. Jiang

The polarized rewrite system P
f(g(a)) −→− b
f(f(a)) −→− c

g(g(f(f(a)))) −→+ b
h(a) −→+ c

is a polarization of R. The proposition f(g(a)) −→∗ g(g(h(a))) has the following
proof in R

f(g(a)) g(g(f(f(a)))) g(g(h(a)))

b

�
�

g(g(c))

�
�

and the following proof in P
f(g(a)) g(g(f(f(a)))) g(g(h(a)))

b
� +

− �

g(g(c))
� +− �

Definition 5 (Termination). A polarized rewrite system is terminating if the
relation −→− ∪ −→+ is well-founded.

Note that this does not imply that the relation −→, that is −→− ∪ +←−, is
well-founded.

Definition 6 (Reduction Order). A reduction order ≺ is an order such that

– if t ≺ u, then for all function symbols f and terms t1, ..., ti−1, ti+1, ..., tn

f(t1, ..., ti−1, t, ti+1, ..., tn) ≺ f(t1, ..., ti−1, u, ti+1, ..., tn)

– if t ≺ u, then for all substitutions σ

σt ≺ σu

– ≺ is well-founded.

Lemma 2. Let ≺ be a reduction order and P be a polarized rewrite system
such that l � r for each rule l −→− r or l −→+ r of P. Then, the system P
terminates.

3 Cut-Elimination

Definition 7 (Cut). A cut (or a peak) in a proof π = t0, t1, ..., tn is a sub-
sequence ti−1, ti, ti+1 such that

ti

ti−1

� +

ti+1

− �

A Completion Method to Decide Reachabilityin Rewrite Systems 209

A proof is cut-free (or a valley proof) if it contains no cuts, that is if it is formed
with a sequence of negative steps followed by a sequence of positive steps.

A polarized rewrite system has the cut-elimination property (or is confluent)
if every proposition t −→∗ u that has a proof has a cut-free proof.

Example 2. In the polarized rewrite system P of Example 1, the proposition
f(g(a)) −→∗ g(g(h(a))) has the proof

f(g(a)) g(g(f(f(a)))) g(g(h(a)))

b
� +

− �

g(g(c))
� +− �

but no cut-free proof.

The reader familiar with polarized sequent calculus modulo theory will remark
that the proposition t −→∗ u has a proof (resp. a cut-free proof) in P if and only
if the sequent P (t) 	 P (u), where P is a predicate symbol, has a proof (resp. a
cut-free proof) in polarized sequent calculus modulo P .

Lemma 3. Let P be a terminating finite polarized rewrite system. Then, the
existence of a cut-free proof in P of a proposition t −→∗ u is decidable.

Proof. The proposition t −→∗ u has a cut-free proof if and only if the reducts
of t in P− and those of u in P+ have a term in common. As P terminates, both
reduction trees are finite.

Definition 8 (Proof Reduction). A proof π reduces to a proof π′, if π′ is
obtained by replacing a cut in π by a cut-free proof, that is if

π = t0, ..., ti−1, ti, ti+1, ..., tn

with

ti

ti−1

� +

ti+1

− �

and
π′ = t0, ..., ti−1 = u0, u1, ..., up = w = vq, ..., v1, v0 = ti+1, ..., tn

with

ti−1 = u0 ti+1 = v0

u1

− �
v1
� +

up = w = vq
� +− �

210 G. Burel, G. Dowek, and Y. Jiang

Definition 9 (Local Confluence). A polarized rewrite system is locally con-
fluent if every cut is reducible, that is if for each proof

t

u

�

+

v

− �

there exists a proof

u = u0 v = v0

u1

− �
v1

� +

up = w = vq
� +− �

Newman’s lemma can be seen as a termination lemma for proof-reduction [7],
following an idea that is already in [11].

Lemma 4 (Newman). If P is terminating and locally confluent, then it has
the cut-elimination property.

Proof. As P is terminating, the transitive closure of the relation −→− ∪ −→+

is a well-founded order. Thus, its multiset extension < [5] is also well-founded.
A proof-reduction step replaces the multiset {t1, ..., ti−1, ti, ti+1, ..., tn} with the
multiset {t1, ..., ti−1, u1, ..., up−1, w, vq−1, ..., v1, ti+1, ..., tn} and

{t1, ..., ti−1, u1, ..., up−1, w, vq−1, ..., v1, ti+1, ..., tn} < {t1, ..., ti−1, ti, ti+1, ..., tn}

because each term u1, ..., up−1, w, vq−1, ..., v1 is smaller than ti. Thus, proof-
reduction terminates.

Finally, as P is locally confluent, an irreducible proof contains no cuts.

Definition 10 (Critical Pair). A critical pair is a pair of terms of the form

– 〈σr1, (σC)[σr2]〉, where l1 −→− r1 is a negative rule, l2 −→+ r2 is a positive
rule, C[X] is a context, l′1 is a term, and σ is a substitution, such that X
does not occur in σ, l1 = C[l′1], l

′
1 is not a variable, and σ is the most general

unifier of l′1 and l2,

– or 〈(σC)[σr1], σr2〉, where l1 −→− r1 is a negative rule, l2 −→+ r2 is a
positive rule, C[X] is a context, l′2 is a term, and σ is a substitution, such
that X does not occur in σ, l2 = C[l′2], l

′
2 is not a variable, and σ is the most

general unifier of l1 and l′2.

A critical pair 〈u, v〉 is joinable if there exists a term w, such that the propo-
sitions u −→∗

+ w and v −→∗
− w are provable.

A Completion Method to Decide Reachabilityin Rewrite Systems 211

We now would like to prove that if all the critical pairs of a polarized rewrite
system P are joinable, then P is locally confluent. Unfortunately, this property
does not hold in general, as shown by the following counter-example

f(x, x) −→− g(x)

a −→+ b

that contains no critical pairs, but that is not locally confluent, as the cut

f(a, a)

f(a, b)
� +

g(a)

− �

cannot be reduced: the term g(a) reduces positively to g(b) only, and the term
f(a, b) cannot be reduced negatively. It indeed reduces to f(b, b), but not nega-
tively. N. Hirokawa [9] has found a similar counter-example independently, in a
different context. Fortunately, this property holds for left-linear rewrite systems.

We start by recalling two well-known classification lemmas [13,10].

Lemma 5. Let C1[X] and C2[Y] be contexts, and u1 and u2 be terms such that
C1[u1] = C2[u2] then

– either the occurrences of X and Y are disjoint, that is there exists a context
D[X,Y] such that C1[X] = D[X, u2] and C2[Y] = D[u1, Y]

C1 C2 D

– or the occurrence of X is higher than that of Y , that is there exists a context
D[Y] such that C2[Y] = C1[D[Y]]

C1 C2

D

C1

– or the occurrence of Y is higher than that of X, that is there exists a context
D[X] such that C1[X] = C2[D[X]]

D

CC C1 2 2

Lemma 6. Let t and u be terms, τ be a substitution and D[Y] be a context such
that the variable Y does not occur in τ and τt = D[u]. Then

212 G. Burel, G. Dowek, and Y. Jiang

– either the occurrence of Y in D is not an occurrence of t, that is there exist
a variable x and contexts E1[X] and E2[Y], such that t = E1[x], τx = E2[u],
and D[Y] = (τE1)[E2[Y]]

τ

1

2

t D E

E

– or the occurrence of Y in D is an occurrence of t, that is there exist a context
E and a term t′ such that t = E[t′] and D[Y] = (τE)[Y]

τ

t

t’D E

Lemma 7. If all the critical pairs of a left-linear polarized rewrite system P are
joinable, then P is locally confluent.

Proof. Consider three terms t, u, and v such that

t

u

�

+

v

− �

where t reduces to u by a rule l1 −→+ r1, and to v by a rule l2 −→− r2. Assume,
without loss of generality, that l1 and l2 have no variables in common.

Thus, there exist two contexts C1[X] and C2[Y] and a substitution τ , such
that X and Y do not occur in τ , t = C1[τl1] = C2[τl2], u = C1[τr1], and
v = C2[τr2]. Thus, by Lemma 5, either there exists a context D[X,Y] such
that C1[X] = D[X, τl2] and C2[Y] = D[τl1, Y], or there exists a context D[Y]
such that C2[Y] = C1[D[Y]], or there exists a context D[X] such that C1[X] =
C2[D[X]]. We consider these three cases.

– If there exists a context D[X,Y] such that C1[X] = D[X, τl2] and C2[Y] =
D[τl1, Y]

C1 C2 D

we have u = D[τr1, τ l2], and v = D[τl1, τr2], let w = D[τr1, τr2]. We have

u v

w

�
∗

+

∗
− �

A Completion Method to Decide Reachabilityin Rewrite Systems 213

– If there exists a context D[Y] such that C2[Y] = C1[D[Y]]

C1 C2

D

C1

we have t = C1[τl1] = C1[D[τl2]], u = C1[τr1], and v = C1[D[τr2]]. As
C1[τl1] = C1[D[τl2]], we have τl1 = D[τl2]. Therefore, by Lemma 6, either
there exist a variable x and contexts E1[X] and E2[Y], such that l1 = E1[x],
τx = E2[τl2], and D[Y] = (τE1)[E2[Y]], or there exist a context E[Y] and
a term l′1 such that l1 = E[l′1] and D[Y] = (τE)[Y]. We consider these two
cases.

• If l1 = E1[x], τx = E2[τl2], and D[Y] = (τE1)[E2[Y]], then we let
τ ′ = τ|V\{x}, and we have τ = (τ ′, E2[τl2]/x). The term l1 is linear and
x does not occur in E1, thus τE1 = τ ′E1. Let w = C1[(τ

′, E2[τr2]/x)r1].
We have

u = C1[τr1] = C1[(τ
′, E2[τl2]/x)r1] −→∗

− C1[(τ
′, E2[τr2]/x)r1] = w

v = C1[D[τr2]] = C1[(τE1)[E2[τr2]]] = C1[(τ
′E1)[E2[τr2]]]

= C1[(τ
′, E2[τr2]/x)(E1[x])] = C1[(τ

′, E2[τr2]/x)l1]

−→∗
+ C1[(τ

′, E2[τr2]/x)r1] = w

u v

w

�
∗

+

∗
− �

• If l1 = E[l′1] and D[Y] = (τE)[Y], then τl1 = (τE)[τl′1] = D[τl′1]. As
we have τl1 = D[τl2], we get D[τl′1] = D[τl2], thus τl′1 = τl2. Let σ be
the most general unifier of l′1 and l2 and η such that τ = η ◦ σ. We have
u = C1[τr1] = C1[ησr1] and v = C1[(ησE)[ησr2]] = C1[η((σE)[σr2])].
We know that the critical pair 〈σr1, (σE)[σr2]〉 closes on a term, say w0.
Let w = C1[ηw0]. We have

u v

w

�
∗

+

∗
− �

– The third case is similar to the second.

214 G. Burel, G. Dowek, and Y. Jiang

Definition 11 (Polarized Knuth-Bendix Method). Let P be a left-linear
finite polarized rewrite system and ≺ a reduction order, such that l � r for each
rule l −→− r or l −→+ r of P.

While there is a non-joinable critical pair

t

u

�

+

v

− �

if u � v and u −→− v is a left-linear rewrite rule, add this rule to close the
critical pair, if v � u and v −→+ u is a left-linear rewrite rule, add this rule to
close the critical pair, otherwise fail.

Lemma 8. Let P be a left-linear finite polarized rewrite system and ≺ a re-
duction order, such that l � r for each rule l −→− r or l −→+ r of P. If the
polarized Knuth-Bendix method applied to P succeeds, then reachability in P is
decidable.

Proof. Let P ′ be the left-linear finite polarized rewrite system built by the po-
larized Knuth-Bendix method. The rules of P ′ are all derivable in P , thus a
proposition t −→∗ u has a proof in P if and only if it has a proof in P ′.

As all the critical pairs of P ′ are joinable, by Lemma 7, P ′ is locally confluent.
By construction, l � r for each rule l −→− r or l −→+ r of P ′. Thus, by Lemma
2, P ′ terminates. By Lemma 4, as P ′ is locally confluent and terminating, it has
the cut-elimination property.

Thus, a proposition t −→∗ u has a proof in P if and only if it has a proof in
P ′ if and only if it has a cut-free proof in P ′. And, by Lemma 3, the existence
of a cut-free proof for a proposition t −→∗ u in P ′ is decidable.

Example 3. Let P be the system defined in Example 1 and ≺ be the Knuth-
Bendix order [13] with an equal weight 1 for all symbols and any precedence.
For all rules l −→− r or l −→+ r of P , we have l � r. The only non-joinable
critical pair is

g(g(f(f(a))))

b
� +

g(g(c))

− �

and it closes with the rule

g(g(c)) −→+ b

A Completion Method to Decide Reachabilityin Rewrite Systems 215

Let P ′ be the system obtained by adding this rule to P . The proposition
f(g(a)) −→∗ g(g(h(a))) has the proof in P ′

f(g(a)) g(g(h(a)))

g(g(c))
� +

b

−

�

� +

Theorem 1. Let R be a (non-polarized) finite rewrite system, P be a polar-
ization of R and ≺ be a reduction order. If P is a left-linear polarized rewrite
system, for all rules l −→− r or l −→+ r of P, l � r, and the polarized Knuth-
Bendix method applied to P succeeds, then reachability in R is decidable.

Proof. From Lemmas 1 and 8.

4 Ground Finite Rewrite Systems

A ground rewrite system is a rewrite system such that for all rules l −→ r, both
terms l and r are ground.

D. Lankford [14,4] has observed that if ≺ is the Knuth-Bendix order [13] with
an equal weight 1 for all symbols and any precedence,R is a finite ground rewrite
system, R′ is the equivalent system obtained by removing the rules of the form
l −→ l and reversing the rules l −→ r such that l ≺ r into r −→ l, then the
Knuth-Bendix method always succeeds on R′, and therefore equivalence in R is
decidable.

We now want to prove that, in a similar way, reachability in a finite ground
rewrite system is decidable [3].

Theorem 2 (Dauchet-Tison). Let R be a finite ground rewrite system. Then,
the existence of a proof in R of a proposition t −→∗ u is decidable.

Proof. Let ≺ be the Knuth-Bendix order [13] with an equal weight 1 for all
symbols and any precedence. This order is a reduction order and it is total on
ground terms.

Without loss of generality, we can assume that R does not contain trivial rules
of the form l −→ l. Let P be the polarization ofR obtained by transforming each
rule l −→ r of R such that l � r, into a negative rule l −→− r, and reversing
each rule l −→ r such that l ≺ r into a positive rule r −→+ l. By construction,
l � r for each rule l −→− r or l −→+ r of P .

Let T be the finite set containing the left-hand sides of the rules of P and
T ′ be the set of ground terms t such that there exists a term u in T such that
t ≺ u or t = u. As, for the Knuth-Bendix order, if u is a ground term, the set of
ground terms t such that t ≺ u is always finite, the set T ′ is finite.

216 G. Burel, G. Dowek, and Y. Jiang

Then, the polarized Knuth-Bendix method applied to P generates rules whose
left-hand sides and right-hand sides are in T ′. As there is only a finite number
of such rules, the polarized Knuth-Bendix method applied to P terminates suc-
cessfully.

Note that the original proof based on the construction of automata recognizing
left-hand sides and right-hand sides of rules [3] also uses implicitly the idea of
reversing rewrite rules. For instance, with the rule f(a) −→ g(b), it builds an
automaton recognizing f(a) in s

a −→ s1

f(s1) −→ s

another recognizing g(b) in s′

b −→ s′1

g(s′1) −→ s′

and takes the rewrite rule

s −→ s′

This construction can be decomposed in two steps, one transforming the rule
f(a) −→ g(b) into the rewrite system

a −→ s1

f(s1) −→ s

s −→ s′

s′1 −→ b

s′ −→ g(s′1)

where f(a) −→ f(s1) −→ s −→ s′ −→ g(s′1) −→ g(b) and then reversing the
two rules

s′1 −→ b

s′ −→ g(s′1)

The first step is in fact not needed.

5 Pushdown Systems

As another corollary of our result, we also get the decidability of reachability for
pushdown systems [1].

A Completion Method to Decide Reachabilityin Rewrite Systems 217

Definition 12 (Pushdown System). Consider a language containing a set
S of unary function symbols called stack symbols, a set Q of unary function
symbols called states and a constant ε. A pushdown system is a finite rewrite
system with rules of the form: pop rules

p(γ(x)) −→ q(x)

where γ is a stack symbol and p and q are states, push rules

p(x) −→ q(γ(x))

where γ is a stack symbol and p and q are states, and neutral rules

p(x) −→ q(x)

where p and q are states.

Theorem 3 (Bouajjani-Esparza-Maler). LetR be a pushdown system. Then,
the existence of a proof in R of a proposition t −→∗ u is decidable.

Proof. Consider a total precedence on function symbols such that stack symbols
are larger than states and let ≺ be the lexicographic path order [12] relative to
this precedence. The order ≺ is a reduction order and p(γ(x)) � q(x) for all γ,
p and q.

Pop rules are polarized as

p(γ(x)) −→− q(x)

push rules as
q(γ(x)) −→+ p(x)

and neutral rules according to the precedence.
Critical pairs have the form

p(γ(x))

q(x)

� +

r(x)

− �

p(γ(x))

q(γ(x))

� +

r(x)

− �

p(γ(x))

q(x)

� +

r(γ(x))

− �

218 G. Burel, G. Dowek, and Y. Jiang

p(x)

q(x)

� +

r(x)

− �

all these critical pairs are closed by adding a pop rule, a push rule, or a neutral
rule. As there are a finite number of such rules, the polarized Knuth-Bendix
method always terminates successfully.

Thus reachability in pushdown systems is decidable.

Note that we get, in this way, the decidability of reachability in pushdown
systems, but not of alternating pushdown systems [1], that requires moving from
polarized rewrite systems to polarized sequent calculus modulo [2].

Acknowledgements. The authors want to thank Nao Hirokawa, Gérard Huet,
Jean-Pierre Jouannaud, Claude Kirchner, and Vincent van Oostrom, for useful
discussions on this paper and bibliographical indications. This work is supported
by the ANR-NSFC project LOCALI (NSFC 61161130530 and ANR 11 IS02
002 01) and the Chinese National Basic Research Program (973) Grant No.
2014CB340302.

References

1. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

2. Burel, G., Dowek, G., Jiang, Y.: Automata, resolution and cut-elimination
(manuscript) (2015)

3. Dauchet, M., Tison, S.: Decidability of confluence for ground term rewriting
systems. In: Budach, L. (ed.) FCT 1985. LNCS, vol. 199, pp. 80–89. Springer,
Heidelberg (1985)

4. Dershowitz, N.: Completion and its applications. In: Aı̈t-Kaci, H., Nivat, M. (eds.)
Resolution of Equations in Algebraic Structures, vol. 2, chapter 2, pp. 31–86.
Academic Press (1989)

5. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nications of the ACM 22(8), 465–476 (1979)

6. Dowek, G.: What is a theory? In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS,
vol. 2285, pp. 50–64. Springer, Heidelberg (2002)

7. Dowek, G.: Confluence as a cut elimination property. In: Nieuwenhuis, R. (ed.)
RTA 2003. LNCS, vol. 2706, pp. 2–13. Springer, Heidelberg (2003)

8. Dowek, G.: Polarized resolution modulo. In: Calude, C.S., Sassone, V. (eds.) TCS
2010. IFIP AICT, vol. 323, pp. 182–196. Springer, Heidelberg (2010)

9. Hirokawa, N.: Commutation and signature extension. In: Tiwari, A., Aoto, T. (eds.)
International Workshop on Confluence (2015)

A Completion Method to Decide Reachabilityin Rewrite Systems 219

10. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. Journal of the Association of Computing Machinery 27(4), 797–821
(1980)

11. Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM Journal of Computing 15(4), 1155–1194 (1986)

12. Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path ordering (un-
published manuscript)

13. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Computa-
tional Problems in Abstract Algebra, pp. 263–297, Pergamon (1970)

14. Lankford, D.S.: Canonical inference. Technical report, Louisiana Tech. University
(1975)

Axiomatic Constraint Systems
for Proof Search Modulo Theories

Damien Rouhling1, Mahfuza Farooque2,
Stéphane Graham-Lengrand2,4, Assia Mahboubi3, and Jean-Marc Notin2

1 École Normale Supérieure de Lyon, France
2 CNRS - École Polytechnique, France

3 INRIA, Centre de Recherche en Informatique Saclay-̂Ile de France
4 SRI International, USA

Abstract. Goal-directed proof search in first-order logic uses meta-
variables to delay the choice of witnesses; substitutions for such variables
are produced when closing proof-tree branches, using first-order unifica-
tion or a theory-specific background reasoner. This paper investigates
a generalisation of such mechanisms whereby theory-specific constraints
are produced instead of substitutions. In order to design modular proof-
search procedures over such mechanisms, we provide a sequent calcu-
lus with meta-variables, which manipulates such constraints abstractly.
Proving soundness and completeness of the calculus leads to an axioma-
tisation that identifies the conditions under which abstract constraints
can be generated and propagated in the same way unifiers usually are.
We then extract from our abstract framework a component interface and
a specification for concrete implementations of background reasoners.

1 Introduction

A broad literature studies the integration of theory reasoning with generic auto-
mated reasoning techniques. Following Stickel’s seminal work [16], different lev-
els of interaction have been identified [2] between a theory-generic foreground rea-
soner and a theory-specific background reasoner, with a specific scheme for the
literal level of interaction. In absence of quantifiers, the DPLL(T) architecture [11]
is an instance of the scheme and a successful basis for SMT-solving, combining
SAT-solving techniques for boolean logic with a procedure that decides whether a
conjunction of ground literals is consistent with a background theory T .

Our contribution falls into such a scheme, but in presence of quantifiers, and
hence of non-ground literals. When given a conjunction of these, the background
reasoner provides a means to make this conjunction inconsistent with T , possibly
by instantiating some (meta-)variables [2]. Technically, it produces a T -refuter
that contains a substitution.

Beckert [5] describes how this approach can be applied to analytic tableaux, in
particular free variable tableaux : T -refuters are produced to extend and eventu-
ally close a tableau branch, while the substitutions that they contain are globally
applied to the tableau, thus affecting the remaining open branches. In fact, the

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 220–236, 2015.
DOI: 10.1007/978-3-319-24246-0_14

Axiomatic Constraint Systems for Proof Search Modulo Theories 221

only way in which closing a branch affects the other branches is the propagation
of these substitutions, as it is the case for tableaux without theory reasoning.
This is well-suited for some theories like equality, for which rigid E-unification
provides a background reasoner (see e.g. [4]), but maybe not for other theories.
For instance, the case of Linear Integer Arithmetic (LIA) was addressed by us-
ing arithmetic constraints, and quantifier elimination, in the Model Evolution
calculus [1] and the Sequent Calculus [14] (which is closer to the above tableaux).

This paper develops sequent calculi with a more general abstract notion of con-
straints so that more theories can be treated in a similar way, starting with all
theories admitting quantifier elimination. But it also covers those total theories
(total in the sense that T -refuters are just substitutions) considered by Beckert [5]
for free variable tableaux, for which constraints are simply substitutions.

Sect. 2 presents a sequent calculus LK1 with ground theory reasoning (as in
DPLL(T)) and various target theories that we intend to capture. Sect. 3 intro-
duces our abstract systems of constraints. Sect. 4 presents a sequent calculus
LK?

1 similar to Rümmer’s PresPredC
S calculus [14], but generalised with abstract

constraints. It collects constraints from the parallel/independent exploration of
branches, with the hope that their combination remains satisfiable. Sect. 5 and 6
present a variant LK?〉

1 where the treatment of branching is asymmetric, reflect-
ing a sequential implementation of proof search: the constraint that is produced
to close one branch affects the exploration of the next branch, as in free variable
tableaux [5]. Each time, we prove soundness and completeness relative to the
reference sequent calculus LK1. From these proofs we extract an axiomatisation
for our background theory reasoner and its associated constraints. In Sect. 7 this
axiomatisation is used to define a component interface with a formal specifica-
tion, for our quantifier-handling version 2.0 of the Psyche platform for theorem
proving [12]. We conclude by discussing related works and future work.

2 Ground Calculus and Examples

The simple sequent calculus that we use in this paper uses the standard first-
order notions of term, literal, eigenvariable, and formula. Following standard
practice in tableaux methods or the linear logic tradition, we opt for a compact
one-sided presentation of the sequent calculus, here called LK1. Its rules are pre-
sented in Fig. 1, where Γ is a set (intuitively seen as a disjunction) of first-order
formulae (in negation-normal form) and Γlit is the subset of its literals; A[x := t]
denotes the substitution of term t for all free occurrences of variable x in formula
A; finally, |= denotes a specific predicate, called the ground validity predicate, on
sets of ground literals (i.e. literals whose variables are all eigenvariables). This
predicate is used to model a given theory T , with the intuition that |=Γlit holds
when the disjunction of the literals in Γ is T -valid. Equivalently, it holds when
the conjunction of their negations is T -inconsistent, as checked by the decision
procedures used in SMT-solving. Likewise, checking whether |=Γlit holds is per-
formed by a background reasoner, while the bottom-up application of the rule
of LK1 can serve as the basis for a tableaux-like foreground reasoner.

222 D. Rouhling et al.

|=Γlit� Γ

� Γ, A � Γ, B

� Γ, A ∧ B

� Γ, A, B

� Γ, A ∨ B

� Γ, A [x := t] , ∃xA

� Γ, ∃xA

� Γ, A [x := x]

� Γ, ∀xA
where x is a fresh eigenvariable

Fig. 1. The LK1 sequent calculus modulo theories

But a realistic proof-search procedure is in general unable to provide an ap-
propriate witness t “out of the blue” at the time of applying an existential rule.
We shall use meta-variables (called free variables in tableaux terminology) to de-
lay the production of such instances until the constraints of completing/closing
branches impact our choice possibilities. The way this happens heavily depends
on the background theory, and below we give a few examples (more background
on the technical notions can be found for instance in Beckert’s survey [5]):

Example 1 (Pure first-order logic). In the empty theory, closing a branch � Γ is
done by finding a literal l and its negation l in Γ or, if meta-variables were used,
by finding a pair l and l′ and a substitution σ for meta-variables that unifies l
and l′. Such a first-order unifier σ may be produced by the sole analysis of � Γ ,
or by the simultaneous analysis of the branches that need to be closed. Since the
latter problem is still decidable, a global management of unification constraints is
sometimes preferred, avoiding the propagation of unifiers from branch to branch.

Example 2 (First-order logic with equality). When adding equality, closing a
branch � Γ is done by finding in Γ either an equality t=u such that ΓE |=E t=u,
or a pair of literals p(t1, . . . , tn) and p(u1, . . . , un) such that ΓE |=E t1 =u1 ∧
· · · ∧ tn = un, where ΓE is the set of all equalities a = b such that a �= b is in
Γ , and |=E is entailment in the theory of equality. Congruence closure can be
used to check this entailment. If meta-variables were used, then a substitution
σ for meta-variables has to be found such that e.g. σ(ΓE) |=E σ(t) = σ(u), a
problem known as rigid E-unification. While this problem is decidable, finding
a substitution that simultaneously closes several open branches (simultaneous
rigid E-unification) is undecidable. A natural way to use rigid E-unification is to
produce a stream of substitutions from the analysis of one branch and propagate
them into the other branches; if at some point we have difficulties closing one of
these, we can try the next substitution in the stream.

The idea of producing streams of substitutions at the leaves of branches (ad-
vocated by Giese [8]) can be taken further:

Example 3 (Theories with ground decidability). Any theory whose ground valid-
ity predicate is decidable has a semi-decision procedure that “handles”
meta-variables: to close a branch � Γ with meta-variables, enumerate as a stream

Axiomatic Constraint Systems for Proof Search Modulo Theories 223

all substitutions to ground terms (i.e. terms whose variables are all eigenvari-
ables), and filter out of it all substitutions σ such that �|= σ(Γ)lit. Stream produc-
tivity -and therefore decidability- may thus be lost, but completeness of proof
search in first-order logic already requires fairness of strategies with e.g. iterative
deepening methods, which may as well include the computation of streams.

While this mostly seems an impractical theoretical remark, heuristics can be
used (e.g. first trying those ground terms that are already present in the problem)
that are not far from what is implemented in SMT-solvers (like triggers [6]).

The enumeration strategy can also be theory-driven, and also make use of
substitutions to non-ground terms: An interesting instance of this is higher-order
logic expressed as a first-order theory, λ-terms being encoded as first-order terms
using De Bruijn’s indices, and βη-equivalence being expressed with first-order
axioms. Similarly to Example 1, closing a branch with meta-variables requires
solving (higher-order) unification problems, whose (semi-decision) algorithms
can be seen as complete but optimised enumeration techniques.

All of the above examples use substitutions of meta-variables as the output of
a successful branch closure, forming total background reasoners for the tableaux
of [5]. But by letting successful branch closures produce a more general notion
of theory-specific constraints, we also cover examples such as:

Example 4 (Theories with quantifier elimination). When a theory satisfies quan-
tifier elimination (such as linear arithmetic), the provability of arbitrary formulae
can be reduced to the provability of quantifier-free formulae. This reduction can
be done with the same proof-search methodology as for the previous examples,
provided successful branch closures produce other kinds of data-structures. For
instance with p an uninterpreted predicate symbol, l(x, y) := 3x ≤ 2y ≤ 3x+1
and l′(x, y) := 99 ≤ 3y+2x ≤ 101, the foreground reasoner will turn the sequent

� (∃xy(p(x, y) ∧ l(x, y))) ∨ (∃x′y′(p(x′, y′) ∧ l′(x′, y′))
into a tree with 4 branches, with meta-variables ?X , ?X ′, ?Y , and ?Y ′:

� p(?X, ?Y), p(?X ′, ?Y ′) � l(?X, ?Y), p(?X ′, ?Y ′)
� p(?X, ?Y), l′(?X ′, ?Y ′) � l(?X, ?Y), l′(?X ′, ?Y ′)

While it is clear that the background reasoner will close the top-left leaf by pro-
ducing the substitution identifying ?X with ?X ′, ?Y with ?Y ′, it is hard to see
how the analysis of any of the other branches could produce, on its own and not
after a lengthy enumeration, a substitution that is, or may be refined into, the
unique integer solution ?X �→ 15, ?Y �→ 23. Hence the need for branches to com-
municate to other branches more appropriate data-structures than substitutions,
like constraints (in this case, arithmetic ones).

In the rest of this paper, all of the above examples are instances of an abstract
notion of theory module that comes with its own system of constraints.

3 Constraint Structures

Meta-variables (denoted ?X , ?Y , etc) can be thought of as place-holders for yet-
to-come instantiations. Delayed though these may be, they must respect the

224 D. Rouhling et al.

freshness conditions from System LK1, so dependencies between meta-variables
and eigenvariables must be recorded during proof search.

While Skolem symbols are a convenient implementation of such dependencies
when the theory reasoner is unification-based (occurs check ruling out incorrect
instantiations for free), we record them in a data-structure, called domain, at-
tached to each sequent. Two operations are used on domains: adding to a domain
d a fresh eigenvariable x (resp. meta-variable ?X) results in a new domain d;x
(resp. d; ?X). The use of the notation always implicitly assumes x (resp. ?X) to
be fresh for d. An initial domain d0 is also used before proof search introduces
fresh eigenvariables and meta-variables.1

Definition 1 (Terms, Formulae with Meta-Variables). A term (resp. for-
mula) of domain d is a term (resp. formula) whose variables (resp. free variables)
are all eigenvariables or meta-variables declared in d. A term (resp. formula) is
ground if it contains no meta-variables. Given a domain d, we define Td to be
the set of ground terms of domain d. A context of domain d is a multiset of
formulae of domain d. In the rest of this paper, a free variable (of domain d)
means either an eigenvariable or a meta-variable (declared in d).

In this setting, the axiom rule of system LK1 is adapted to the presence of
meta-variables in literals, so as to produce theory-specific constraints on (yet-
to-come) instantiations. We characterise the abstract structure that they form:

Definition 2 (Constraint Structures). A constraint structure is:

– a family of sets (Ψd)d, indexed by domains and satisfying Ψd;x = Ψd for all
domains d and eigenvariables x; elements of Ψd are called constraints of
domain d, and are denoted σ, σ′, etc.

– a family of mappings from Ψd;?X to Ψd for all domains d and meta-variables
?X, called projections, mapping constraints σ ∈ Ψd;?X to constraints σ↓ ∈ Ψd.

A meet constraint structure is a constraint structure (Ψd)d with a binary op-
erator (σ, σ′) �→ σ∧σ′ on each set Ψd.

A lift constraint structure is a constraint structure (Ψd)d with a map σ �→ σ↑

from Ψd to Ψd;?X for all domains d and meta-variables ?X.

Intuitively, each mapping from Ψd;?X to Ψd projects a constraint concerning
the meta-variables declared in (d; ?X) to a constraint on the meta-variables in
d. Different constraints can be used for different theories:

Example 5. 1. In Examples 1 and 2, it is natural to take Ψd to be the set
whose elements are either ⊥ (to represent the unsatisfiable constraint) or a

1 For instance, a domain may be implemented as a pair (Φ;Δ), where Φ is the set
of declared eigenvariables and Δ maps every declared meta-variable to the set
of eigenvariables on which it is authorised to depend. With this implementation,
(Φ;Δ);x := (Φ,x;Δ) and (Φ;Δ); ?X := (Φ;Δ, ?X �→ Φ). We also set d0 = (Φ0, ∅),
with Φ0 already containing enough eigenvariables so as to prove e.g. ∃x(p(x)∨p(x)).

Axiomatic Constraint Systems for Proof Search Modulo Theories 225

substitution σ for the meta-variables in d.2 Projecting a substitution from
Ψd;?X is just erasing its entry for ?X . The meet of two substitutions is their
most general unifier, and the lift of σ ∈ Ψd into Ψd;?X is σ,?X �→?X .

2. In Example 3, the default constraint structure would restrict the above to
substitutions that map meta-variables to either themselves or to ground
terms, unless a particular theory-specific enumeration mechanism could make
use of non-ground terms (such as higher-order unification).

3. In Example 4, Ψd;x = Ψd for any d, and we take Ψd0 (resp. Ψd;?X) to be the set
of quantifier-free formulae of domain d0 (resp. d; ?X). Quantifier elimination
provides projections, the meet operator is conjunction and the lift is identity.

4 A System for Proof Search with Constraints

In the rest of this section (Ψd)d denotes a fixed meet constraint structure.

4.1 The Constraint-Producing Sequent Calculus LK?
1

This sequent calculus is parameterised by a background theory reasoner that
can handle meta-variables. The reasoner is modelled by a constraint-producing
predicate that generalises the ground validity predicate used in System LK1.

Definition 3 (LK?
1 Sequent Calculus). A constraint-producing predicate is

a family of relations (|=d)d, indexed by domains d, relating sets A of literals of
domain d with constraints σ in Ψd; when it holds, we write |=d A � σ.

Given such a predicate (|=d)d, the constraint-producing sequent calculus LK?
1

manipulates sequents of the form �d Γ � σ, where Γ is a context and σ is a
constraint, both of domain d. Its rules are presented in Fig. 2.

|=d Γlit � σ
�d Γ � σ

�d Γ, A � σ �d Γ, B � σ′

�d Γ, A ∧ B � σ∧σ′
�d Γ, A, B � σ

�d Γ, A ∨ B � σ

�d;?X Γ, A [x :=?X] , ∃xA � σ

�d Γ, ∃xA � σ↓
where ?X is a fresh meta-variable

�d;x Γ, A [x := x] � σ

�d Γ, ∀xA � σ
where x is a fresh eigenvariable

Fig. 2. The constraint-producing sequent calculus LK?
1

In terms of process, a sequent �d Γ � σ displays the inputs Γ, d and the
output σ of proof search, which starts building a proof tree, in system LK?

1, from
the root. The sequent at the root would typically be of the form �d0 Γ � σ, with
σ ∈ Ψd0 to be produced as output. The constraints are produced at the leaves,
and propagated back down towards the root.
2 Technically, the term σ(?X), if defined, features only eigenvariables among those
authorised for ?X by d, and meta-variables outside d or mapped to themselves by σ.

226 D. Rouhling et al.

Example 6. In Examples 1, 2, 3, the constraint-producing predicate |=d A � σ
holds if, respectively, σ is the most general unifier of two dual literals in A, σ is
an output of rigid E-unification on A, σ is a ground substitution for which σ(A)
is T -inconsistent. In Example 4, |=d A � σ holds if the quantifier-free formula σ
(of appropriate domain) implies A (as a disjunction). For our specific example,
which also involves uninterpreted predicate symbols, proof search in system LK?

1
builds a tree

�d p(?X, ?Y), p(?X ′, ?Y ′) � σ1 �d l(?X, ?Y), p(?X ′, ?Y ′) � σ2
�d p(?X, ?Y), l′(?X ′, ?Y ′) � σ3 �d l(?X, ?Y), l′(?X ′, ?Y ′) � σ4

. . .

�d (p(x, y) ∧ l(x, y)), (p(x′, y′) ∧ l′(x′, y′)) � σ

. . .

�d0 (∃xy(p(x, y) ∧ l(x, y))) ∨ (∃x′y′(p(x′, y′) ∧ l′(x′, y′))) � σ↓↓↓↓

where d := ?X ; ?Y ; ?X ′; ?Y ′, the background reasoner produces σ1 := {?X =
?X ′; ?Y =?Y ′}, σ2 := {3?X ≤ 2?Y ≤ 3?X +1}, σ3 := {99 ≤ 3?Y ′ +2?X ′ ≤ 101},
and σ4 := σ2 (σ4 := σ3 also works); then σ := (σ1∧σ2)∧(σ3∧σ4) and finally
σ↓↓↓↓, obtained by quantifier elimination from σ, is the trivially true formula.

System LK?
1 is very close to Rümmer’s PresPredC

S System [14], but using ab-
stract constraints instead of linear arithmetic constraints. Using LK?

1 with the
constraint structure of Example 5.3 implements Rümmer’s suggestion [14] to
eliminate quantifiers along the propagation of constraints down to the root.

4.2 Instantiations and Compatibility with Constraints

Notice that, in system LK?
1, no instantiation for meta-variables is actually ever

produced. Instantiations would only come up when reconstructing, from an LK?
1

proof, a proof in the original calculus LK1. So as to relate constraints to actual
instantiations, we formalise what it means for an instantiation to satisfy, or
be compatible with, a constraint of domain d. Such an instantiation should
provide, for each meta-variable, a term that at least respects the eigenvariable
dependencies specified in d, as formalised in Definition 4. Beyond this, what it
means for an instantiation to be compatible with a constraint is specific to the
theory and we simply identify in Definition 5 some minimal axioms. We list these
axioms, along with the rest of this paper’s axiomatisation, in Fig. 4 on page 232.

Definition 4 (Instantiation). The set of instantiations of domain d, denoted
Σd, is the set of mappings from meta-variables to ground terms defined by in-
duction on d as follows:

Σd0 = ∅ Σd;x = Σd Σd;?X = {ρ,?X �→t | t ∈ Td, ρ ∈ Σd}
For a term t (resp. a formula A, a context Γ) of domain d and an instantiation
ρ ∈ Σd, we denote by ρ(t) (resp. ρ(A), ρ(Γ)) the result of substituting in t
(resp. A, Γ) each meta-variable ?X in d by its image through ρ.

Axiomatic Constraint Systems for Proof Search Modulo Theories 227

Definition 5 (Compatibility relation). A compatibility relation is a (family
of) relation(s) between instantiations ρ ∈ Σd and constraints σ ∈ Ψd for each
domain d, denoted ρεσ, that satisfies Axiom Proj of Fig. 4.

If the constraint structure is a meet constraint structure, we say that the com-
patibility relation distributes over ∧ if it satisfies Axiom Meet of Fig. 4.

Another ingredient we need to relate the two sequent calculi is a mechanism
for producing instantiations. We formalise a witness builder which maps every
constraint of Ψd;?X to a function, which outputs an “appropriate” instantiation
for ?X when given as input an instantiation of domain d:

Definition 6 (Witness). A witness builder for a compatibility relation ε is a
(family of) function(s) that maps every σ ∈ Ψd;?X to fσ ∈ Σd → Td, for every
domain d and every meta-variable ?X, and that satisfies Axiom Wit of Fig. 4.
Example 7. For the constraint structure of Example 5.1, we can define: ρεσ if
ρ is a (ground) instance of substitution σ. Given σ ∈ Ψd;?X and ρεσ↓, we have
ρ = ρ′ ◦ σ↓, and we can take fσ(ρ) to be any instance of ρ′(σ(?X)) in Σd.

In the particular case of Example 5.2, ρεσ if ρ coincides with σ (on every
meta-variable not mapped to itself by σ). To define fσ(ρ), note that ρ′(σ(?X))
is either ground or it is ?X itself (in which case any term in Σd works as fσ(ρ)).

For the constraint structure of Example 5.3, we can take: ρεF if the ground
formula ρ(F) is valid in the theory. From a formula F ∈ Ψd;?X and an instan-
tiation ρ, the term fF (ρ) should represent an existential witness for the for-
mula ρ(F), which features ?X as the only meta-variable. In the general case, we
might need to resort to a Hilbert-style choice operator to construct the witness:
ε(∃x((ρ,?X �→ x)(F)). For instance in the case of linear arithmetic, ρ(F) corre-
sponds to a disjunction of systems of linear constraints, involving ?X and the
eigenvariables −→y of d. Expressing how ?X functionally depends on −→y to build a
solution of one of the systems, may require extending the syntax of terms. But
note that proof search in LK?

1 does not require implementing a witness builder.
A meet constraint structure can also be defined by taking constraints to be

(theory-specific kinds of) sets of instantiations: the compatibility relation ε is just
set membership, set intersection provides a meet operator and the projection of
a constraint is obtained by removing the appropriate entry in every instantiation
belonging to the constraint. Witness building would still be theory-specific.

To relate Systems LK?
1 and LK1, we relate constraint-producing predicates to

ground validity ones: intuitively, the instantiations that turn a set A of literals
of domain d into a valid set of (ground) literals should coincide with the in-
stantiations that are compatible with some constraint produced for A (a similar
condition appears in Theorem 55 of [5] with T -refuters instead of constraints):

Definition 7 (Relating Predicates) For a compatibility relation ε, we say
that a constraint-producing predicate (|=d)d relates to a ground validity predicate
|= if they satify Axiom PG of Fig. 4.

A constraint-producing predicate may allow several constraints to close a given
leaf (finitely many for Example 1, possibly infinitely many for Examples 2 and 3,

228 D. Rouhling et al.

just one for Example 4). So in general our foreground reasoner expects a stream
of constraints to be produced at a leaf, corresponding to the (possibly infinite)
union in axiom PG: each one of them is sufficient to close the branch. The first
one is tried, and if it later proves unsuitable, the next one in the stream can be
tried, following Giese’s suggestion [8] of using streams of instantiations.

4.3 Soundness and Completeness

System LK?
1 can be proved equivalent to System LK1, from the axioms in the

top half of Fig. 4 [13]. To state this equivalence, assume that we have a compat-
ibility relation that distributes over ∧, equipped with a witness builder, plus a
constraint-producing predicate (|=d)d related to a ground validity predicate |=.

Theorem 1 (Soundness and Completeness of LK?
1)

For all contexts Γ of domain d:
If �d Γ � σ is derivable in LK?

1, then for all ρεσ, � ρ(Γ) is derivable in LK1.
For all ρ ∈ Σd, if � ρ(Γ) is derivable in LK1, then there exists σ ∈ Ψd such

that �d Γ � σ is derivable in LK?
1 and ρεσ.

We will usually start proof search with the domain d0, so as to build a proof
tree whose root is of the form �d0 Γ � σ for some constraint σ ∈ Ψd0 . Since the
only instantiation in Σd0 is ∅, and since ∅(Γ) = Γ , soundness and completeness
for domain d0 can be rewritten as follows:

Corollary 1 (Soundness and Completeness for the Initial Domain)
There exists σ ∈ Ψd0 such that �d0 Γ � σ is derivable in LK?

1 and ∅εσ,
if and only if � Γ is derivable in LK1.

5 Sequentialising

The soundness and completeness properties of System LK?
1 rely on constraints

that are satisfiable. A proof-search process based on it should therefore not pro-
ceed any further with a constraint that has become unsatisfiable. Since the meet
of two satisfiable constraints may be unsatisfiable, branching on conjunctions
may take advantage of a sequential treatment: a constraint produced to close one
branch may direct the exploration of the other branch, which may be more effi-
cient than waiting until both branches have independently produced constraints
and only then checking that their meet is satisfiable. This section develops a
variant of System LK?

1 to support this sequentialisation of branches, much closer
than System LK?

1 to the free variable tableaux with theory reasoning [5].
In the rest of this section (Ψd)d is a fixed lift constraint structure.

5.1 Definition of the Proof System

Thus, the proof rules enrich a sequent with two constraints: the input one and
the output one, the latter being “stronger” than the former, in a sense that we
will make precise when we relate the different systems. At the leaves, a new
predicate (|=〉d)d is used that now takes an extra argument: the input constraint.

Axiomatic Constraint Systems for Proof Search Modulo Theories 229

Definition 8 (LK?〉
1 Sequent Calculus). A constraint-refining predicate is a

family of relations (|=〉d)d, indexed by domains d, relating sets A of literals of
domain d with pairs of constraints σ and σ′ in Ψd; when it holds, we write
σ �|=〉dA � σ′.

Given such a predicate (|=〉d)d, the constraint-refining sequent calculus, de-
noted LK?〉

1 , manipulates sequents of the form σ ��d Γ � σ′, where Γ is a
context and σ and σ′ are constraints, all of domain d. Its rules are presented in
Fig. 3.

σ �|=〉dΓlit � σ′
σ ��d Γ � σ′

σ ��d Γ, A, B � σ′

σ ��d Γ, A ∨ B � σ′

σ ��d Γ, Ai � σ′′ σ′′ ��d Γ, A1−i � σ′
i ∈ {0, 1}

σ ��d Γ, A0 ∧ A1 � σ′

σ↑ ��d;?X Γ, A [x :=?X] , ∃xA � σ′

σ ��d Γ, ∃xA � σ′
↓

where ?X is a fresh meta-variable

σ ��d;x Γ, A [x := x] � σ′

σ ��d Γ, ∀xA � σ′

where x is a fresh eigenvariable

Fig. 3. The sequent calculus with sequential delayed instantiation LK?〉
1

The branching rule introducing conjunctions allows an arbitrary sequentiali-
sation of the branches when building a proof tree, proving A0 first if i = 0, or
proving A1 first if i = 1.

Example 8. In Examples 1, 2, 3, constraints are simply substitutions, and the
constraint-refining predicate σ �|=〉dA � σ′ is taken to hold if the constraint-
producing predicate |=d σ(A) � σ′ (as given in Example 6) holds. Here we
recover the standard behaviour of free variable tableaux (with or without the-
ory [5]) where the substitutions used to close branches are applied to the literals
on the remaining branches. Of course in both cases, an implementation may
apply the substitution lazily. In Example 4, the constraint-refining predicate
σ �|=〉dA � σ′ is taken to hold if |=d (σ ∧ A) � σ′ holds. Proof search in LK?〉

1
builds, for our specific example and a trivially true constraint σ0, the proof-tree

σ0 ��d p(?X, ?Y), p(?X ′, ?Y ′) � σ′
1 σ′

1 ��d l(?X, ?Y), p(?X ′, ?Y ′) � σ′
2

σ′
2 ��d p(?X, ?Y), l′(?X ′, ?Y ′) � σ′

3 σ′
3 ��d l(?X, ?Y), l′(?X ′, ?Y ′) � σ′

. . .

σ0 ��d (p(x, y) ∧ l(x, y)), (p(x′, y′) ∧ l′(x′, y′)) � σ′

. . .

σ0 ��d0 (∃xy(p(x, y) ∧ l(x, y))) ∨ (∃x′y′(p(x′, y′) ∧ l′(x′, y′))) � σ′
↓↓↓↓

230 D. Rouhling et al.

similar to that of Example 6, where σ′
1 := σ1, σ′

2 := σ′
1 ∧ σ2, σ′

3 := σ′
2 ∧ σ3 and

σ′ := σ′
3, projected by quantifier elimination to the trivially true formula σ′

↓↓↓↓.

5.2 Soundness and Completeness

We now relate system LK?〉
1 to system LK?

1. For this we need some axioms about
the notions used in each of the two systems. These are distinct from the axioms
that we used to relate system LK?

1 to LK1, since we are not (yet) trying to relate
system LK?〉

1 to LK1. In the next section however, we will combine the two steps.

Definition 9 (Decency). When � (resp. ∧, P) is a family of pre-orders
(resp. binary operators, predicates) over each Ψd, we say that (�,∧, P) is de-
cent if the following axioms hold:
D1 ∀σ, σ′ ∈ Ψd, σ ∧ σ′ is a greatest lower bound of σ and σ′ for �
D2 ∀σ ∈ Ψd ∀σ′, σ′′ ∈ Ψd;?X , σ′′ � σ↑ ∧σ′ ⇒ σ′′

↓ � σ∧σ′
↓

P1 ∀σ ∈ Ψd;?X , P (σ) ⇔ P (σ↓) P2 ∀σ, σ′ ∈ Ψd,

{
P (σ)
σ � σ′ ⇒ P (σ′)

where � denotes the equivalence relation generated by �.

Notice that this makes (Ψd/�,∧) a meet-semilattice that could equally be
defined by the associativity, commutativity, and idempotency of ∧.

Definition 10 (Relating Constraint-Producing/Refining Predicates)
Given a family of binary operators ∧ and a family of predicates P , we say that
a constraint-refining predicate (|=〉d)d relates to a constraint-producing predicate
(|=d)d if, for all domains d, all sets A of literals of domain d and all σ ∈ Ψd,

A1 ∀σ′ ∈ Ψd, σ �|=〉dA � σ′ ⇒ ∃σ′′ ∈ Ψd,

⎧⎨
⎩

σ′ � σ∧σ′′

P (σ∧σ′′)
|=d A � σ′′

A2 ∀σ′ ∈ Ψd,

{
P (σ∧σ′)
|=d A � σ′ ⇒ ∃σ′′ ∈ Ψd,

{
σ′′ � σ∧σ′

σ �|=〉dA � σ′′

In the rest of this sub-section, we assume that we have a decent triple (�,∧, P),
and a constraint-refining predicate (|=〉d)d that relates to a contraint-producing
predicate (|=d)d. In this paper we only use two predicates P , allowing us to
develop two variants of each theorem, with a compact presentation: P (σ) is
always “true”, and P (σ) is “σ is satisfiable”, both of which satisfy P1 and P2.

System LK?〉
1 can then be proved sound with respect to System LK?

1 [13]:

Theorem 2 (Soundness of LK?〉
1)

If σ ��d Γ � σ′ is derivable in LK?〉
1 , then there exists σ′′ ∈ Ψd such that

σ′ � σ∧σ′′, P (σ ∧ σ′′) and �d Γ � σ′′ is derivable in LK?
1.

Notice that the statement for soundness of Theorem 2 is merely a generali-
sation of axiom R2P where the reference to |=d and |=〉d have respectively been
replaced by derivability in LK?

1 and LK?〉
1 .

Axiomatic Constraint Systems for Proof Search Modulo Theories 231

A natural statement for completeness of LK?〉
1 w.r.t. LK?

1 comes as the sym-
metric generalisation of axiom P2R:

Theorem 3 (Weak completeness of LK?〉
1). If �d Γ � σ′ is derivable in LK?

1,
then for all σ ∈ Ψd such that P (σ∧σ′), there exists σ′′ ∈ Ψd such that σ′′ � σ∧σ′

and σ ��d Γ � σ′′ is derivable in LK?〉
1 .

This statement can be proved, but it fails to capture an important aspect of
system LK?〉

1 : the order in which proof search treats branches should not mat-
ter for completeness. But the above statement concludes that there exists a
sequentialisation of branches that leads to a complete proof tree in LK?〉

1 , so the
proof-search procedure should either guess it or investigate all possibilities. We
therefore proved [13] the stronger statement of completeness (below) whereby,
for all possible sequentialisations of branches, there exists a complete proof tree.
Therefore, when the proof-search procedure decides to apply the branching rule,
choosing which branch to complete first can be treated as “don’t care non-
determinism” rather than “don’t know non-determinism”: if a particular choice
proves unsuccessful, there should be no need to explore the alternative choice.

Theorem 4 (Strong Completeness of LK?〉
1)

If �d Γ � σ′ is derivable in LK?
1, then for all σ ∈ Ψd such that P (σ ∧σ′), and for

all sequentialisations r of branches, there exists σ′′ ∈ Ψd such that σ′′ � σ∧σ′

and σ ��d Γ � σ′′ is derivable in LK?〉
1 with a proof tree that follows r.

6 Relating LK?〉
1 to LK1

Now we combine the two steps: from LK1 to LK?
1 and from LK?

1 to LK?〉
1 , so as to

relate LK?〉
1 to LK1. For this we aggregate (and consequently simplify) the axioms

that we used for the first step with those that we used for the second step.

Definition 11 (Compatibility-Based Pre-order). Assume we have a fam-
ily of compatibility relations ε for a constraint structure (Ψd)d. We define the
following pre-order on each Ψd:

∀σ, σ′ ∈ Ψd, σ �ε σ′ ⇔ {ρ ∈ Σd | ρεσ} ⊆ {ρ ∈ Σd | ρεσ′}
and let �ε denote the symmetric closure of �ε.

We now assume that we have a lift constraint structure and a constraint-
refining predicate (|=〉d)d used to define LK?〉

1 , and the existence of

– a binary operator ∧
– a compatibility relation ε that distributes over ∧ (Proj and Meet in Fig. 4)
– a binding operator for ε (Wit in Fig. 4)
– a constraint-producing predicate (|=d)d that relates to |= (PG in Fig. 4)
– a predicate P

satisfying the axioms of Fig. 4. These entail decency [13]:

232 D. Rouhling et al.

Lemma 1. Given the axioms of Fig. 4, (�ε,∧, P) is decent.

Hence, we have soundness and completeness of LK?〉
1 w.r.t. LK1 on the empty

domain, as a straightforward consequence of Corollary 1 and Theorems 2 and 4:

Theorem 5 (Soundness and Completeness on the Empty Domain)
If σ ��d0 Γ � σ′ is derivable in LK?〉

1 and ∅εσ′, then � Γ is derivable in LK1.
In particular when P is the predicate “being satisfiable”, if σ ��d0 Γ � σ′ is
derivable in LK?〉

1 , then � Γ is derivable in LK1.
Assume P is always true or is “being satisfiable”. If � Γ is derivable in LK1,

then for all σ ∈ Ψd0 such that ∅εσ and for all sequentialisations r, there exists
σ′ ∈ Ψd0 such that ∅εσ′ and σ ��d0 Γ � σ′ is derivable in LK?〉

1 with a proof tree
that follows r.

Remark 1 (Soundness of LK?〉
1). Soundness of LK?〉

1 on an arbitrary domain is a
direct consequence of Theorem 1 and Theorem 2: If σ ��d Γ � σ′ is derivable
in LK?〉

1 , then P (σ′) holds and for all ρεσ′, � ρ(Γ) is derivable in LK1. For the
sake of brevity, we omit the general statement of completeness on an arbitrary
domain, which is quite long to write.

As we shall see in Sect. 7, it is useful to have a “top element” � in Ψd0 with
∅ε�, which we feed to a proof-search procedure based on LK?〉

1 , as the initial
input constraint σ mentioned in the soundness and completeness theorems.

Proj ∀σ ∈ Ψd;?X , ∀t∀ρ, (ρ,?X �→t) εσ ⇒ ρεσ↓
Wit ∀σ ∈ Ψd;?X , ∀ρ, ρεσ↓ ⇒ (ρ,?X �→fσ (ρ)) εσ

Meet ∀σσ′ ∈ Ψd, ∀ρ,

{
ρεσ
ρεσ′ ⇔ ρε (σ∧σ′)

PG ∀l, ∀A, {ρ | |=ρ (A)} =
⋃

{σ| |=lA�σ}
{ρ | ρεσ}

Lift ∀σ ∈ Ψd, ∀σ′ ∈ Ψd;?X , ∀ρ, (ρ,?X �→fσ′(ρ))εσ↑ ⇔ ρεσ
P1 ∀σ ∈ Ψd;?X , P (σ) ⇔ P (σ↓)

P2 ∀σσ′ ∈ Ψd,

{
P (σ)
σ �ε σ′ ⇒ P (σ′)

R2P ∀d, ∀A, ∀σ, σ′ ∈ Ψd, σ �|=〉dA � σ′ ⇒ ∃σ′′ ∈ Ψd,

{
σ′ �ε σ∧σ′′

P (σ∧σ′′)
|=d A � σ′′

P2R ∀d, ∀A, ∀σ, σ′ ∈ Ψd,

{
P (σ∧σ′)
|=d A � σ′ ⇒ ∃σ′′ ∈ Ψd,

{
σ′′ �ε σ∧σ′

σ �|=〉dA � σ′′

Fig. 4. Full Axiomatisation

Axiomatic Constraint Systems for Proof Search Modulo Theories 233

7 Implementation

Psyche is a platform for proof search, where a kernel offers an API for pro-
gramming various search strategies as plugins, while guaranteeing the correctness
of the search output [10]. Its architecture extensively uses OCaml’s system of

module type Theory = sig
module Constraint: sig
type t
val topconstraint:t
val proj : t -> t
val lift : t -> t
val meet : t -> t -> t option
...

end
val consistency :
ASet.t -> (ASet.t,Constraint.t) stream

end

Theory component signature in Psyche 2.0

modules and functors. In order to
modularly support theory-specific
reasoning (in presence of quan-
tifiers), the axiomatisation pro-
posed in the previous sections was
used to identify the signature and
the specifications of theory com-
ponents. In version 2.0 of Psy-
che [12], the kernel implements
(the focused version of) System
LK?〉

1 , and a theory component is
required to provide the implemen-
tation of the concepts developed
in the previous sections, as shown
in the module type above. It pro-
vides a lift constraint structure in
the form of a module Constraint,
with a type for constraints, the projection and lift maps, as well as a top con-
straint (always satisfied) with which proof search will start. We also require a
meet operation: While the theory of complete proofs in LK?〉

1 does not need it, the
meet operation is useful when implementing a backtracking proof-search proce-
dure: imagine a proof tree has been completed for some sequent S, with input
constraint σ0 and output constraint σ1; at some point the procedure may have
to search again for a proof of S but with a different input constraint σ′

0. We can
check whether the first proof can be re-used by simply checking whether σ′

0 ∧ σ1
is satisfiable. The meet function should output None if the meet of the two input
constraints is not satisfiable, and Some sigma if the satisfiable meet is sigma.

Finally, the function that is called at the leaves of proof trees is consistency,
which implements the constraint-refining predicate; ASet.t is the type for sets
of literals with meta-variables and the function returns a stream: providing an
input constraint triggers computation and pops the next element of the stream
if it exists. It is a pair made of an output constraint and a subset of the input
set of literals. The latter indicates which literals of the input have been used to
close the branch, which is useful information for lemma learning (see e.g. [10]).

While our axiomatisation immediately yields the specification for theory com-
ponents, it does not provide instances and so far, the only (non-ground) instance
implemented in Psyche is that of pure first-order logic (based on unification).

234 D. Rouhling et al.

8 Related Works and Further Work

The sequent calculi developed in this paper for theory reasoning in presence of
quantifiers, are akin to the free variable tableaux of [5] for total theory reasoning.
But they use abstract constraints, instead of substitutions, and our foreground
reasoner is able to propagate them across branches while being ignorant of their
nature. This allows new theories to be treated by the framework, such as those
satisfying quantifier elimination, like linear arithmetic. In this particular case,
the asymmetric treatment of LK?〉

1 formalises an improvement, in the view of an
effective implementation, over System PresPredC

S [14] for LIA. A novel point of
our paper is to show that the propagation of substitutions in tableaux and the
propagation of linear arithmetic constraints follow the same pattern, by describ-
ing them as two instances of an abstract constraint propagation mechanism.

Constraints have been integrated to various tableaux calculi: In the nomen-
clature proposed in Giese and Hähnle’s survey [9], our approach is closest to
constrained formula tableaux or constrained branch tableaux which propagate
constraints between branches (rather than constrained tableaux which have a
global management of constraints). But the tableaux calculi cited by [9] in these
categories are for specific theories and logics (pure classical logic, equality, linear
temporal logic or bunched implications), in contrast to our generic approach.

When classes of theories are generically integrated to automated reasoning
with the use of constraints, as for the Model Evolution Calculus [3], these are
usually described as first-order formulae over a particular theory’s signature (as
it is the case in [1,14] for LIA). Our abstract data-structures for constraints
could be viewed as the semantic counter-part of such a syntactic representation,
whose atomic construction steps are costless but which may incur expensive sat-
isfiability checks by the background reasoner. Our semantic view of constraints,
as shown in Section 7, more directly supports theory-tuned implementations
where e.g. the meet and projection operations involve computation. Our specifi-
cations for theory-specific computation also seems less demanding than deciding
the satisfiability of any constraint made of atoms (over the theory’s signature),
conjunction, negation, and existential quantification [3].

The semantic approach to constraints was explored by a rich literature in
(Concurrent) Constraint Programming [15], but the applicability of constraint
systems to programming usually leads to more demanding axioms as well (re-
quiring e.g. complete lattices) and to a global management of constraints (with a
global store that is reminiscent of constrained tableaux). Our local management
of constraints allows for more subtle backtracking strategies in proof search, un-
doing some steps in one branch while sticking to some more recent decisions that
have been made in a different branch.

In the case of ground theory reasoning, the field of SMT-solving has evolved
powerful techniques for combining theories (see e.g. the unifying approach of [7]).
A natural question is whether similar techniques can be developed in presence
of quantifiers, combining constraint-producing or constraint-refining procedures.
We did not provide such techniques here, but we believe our modular and ab-
stract approach could be a first step towards that end, with our axiomatisation

Axiomatic Constraint Systems for Proof Search Modulo Theories 235

identifying what properties should be sought when engineering such techniques,
i.e. serving as a correctness criterion.

Finally, SMT-solvers usually adopt a heuristic approach for handling quanti-
fiers, often involving incomplete mechanisms, with slimmer theoretical founda-
tions than for their ground reasoning core. A notable exception is a formalisation
of triggers mechanisms by Dross et al. [6], which we hope to view as particular
instances of our constraint systems. Moreover, the way in which triggers con-
trol the breaking of quantifiers appears as the kind of structured proof-search
mechanisms that Psyche can specify (based on focusing).

Acknowledgements. This research was supported by ANR projects PSI and
ALCOCLAN, as well as by DARPA under agreement number FA8750-12-C-
0284. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of DARPA, or the U.S. Government.

References

1. Baumgartner, P., Fuchs, A., Tinelli, C.: ME(LIA) – Model evolution with linear
integer arithmetic constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008)

2. Baumgartner, P., Furbach, U., Petermann, U.: A unified approach to theory rea-
soning. Technical report, Inst. für Informatik, Univ. (1992)

3. Baumgartner, P., Tinelli, C.: Model evolution with equality modulo built-in theo-
ries. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 85–100. Springer, Heidelberg (2011)

4. Beckert, B.: Chapter 8: Rigid E-unification. In: Bibel, W., Schmitt, P.H. (eds.) Au-
tomated Deduction – A Basis for Applications. Foundations. Calculi and Methods,
vol. I, pp. 265–289. Kluwer Academic Publishers (1998)

5. Beckert, B.: Equality and other theories. In: Handbook of Tableau Methods, pp.
197–254. Kluwer Academic Publishers (1999)

6. Dross, C., Conchon, S., Kanig, J., Paskevich, A.: Reasoning with triggers. In:
Fontaine, P., Goel, A. (eds.) 10th Int. Work. on Satisfiability Modulo Theories,
SMT 2012. EPiC Series, vol. 20, pp. 22–31. EasyChair, June 2012

7. Ganzinger, H., RueB, H., Shankar, N.: Modularity and refinement in inference
systems. Technical Report SRI-CSL-04-02, SRI (2004)

8. Giese, M.: Proof search without backtracking using instance streams, position pa-
per. In: Baumgartner, P., Zhang, H. (eds.) 3rd Int. Work. on First-Order Theorem
Proving (FTP), pp. 227–228. Univ. of Koblenz, St. Andrews (2000)

9. Giese, M., Hähnle, R.: Tableaux + constraints. In: Cialdea Mayer, M., Pirri, F.
(eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 37–42. Springer, Heidelberg (2003)

10. Graham-Lengrand, S.: Psyche: A proof-search engine based on sequent calculus
with an LCF-Style architecture. In: Galmiche, D., Larchey-Wendling, D. (eds.)
TABLEAUX 2013. LNCS, vol. 8123, pp. 149–156. Springer, Heidelberg (2013)

11. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
of the ACM Press 53(6), 937–977 (2006)

236 D. Rouhling et al.

12. Psyche: the Proof-Search factorY for Collaborative HEuristics
13. Rouhling, D., Farooque, M., Graham-Lengrand, S., Notin, J.-M., Mahboubi, A.:

Axiomatisation of constraint systems to specify a tableaux calculus modulo the-
ories. Technical report, Laboratoire d’informatique de l’École Polytechnique -
CNRS, Microsoft Research - INRIA Joint Centre, Parsifal & TypiCal - INRIA
Saclay, France, December 2014

14. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008)

15. Saraswat, V.A., Rinard, M., Panangaden, P.: The semantic foundations of con-
current constraint programming. In: Wise, D.S. (ed.) 18th Annual ACM Symp.
on Principles of Programming Languages (POPL 1991), pp. 333–352. ACM Press,
January 1991

16. Stickel, M.E.: Automated deduction by theory resolution. J. of Automated Rea-
soning 1(4), 333–355 (1985)

Transformations between Symbolic
Systems

Formalizing Soundness and Completeness

of Unravelings�

Sarah Winkler and René Thiemann

Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria
{sarah.winkler,rene.thiemann}@uibk.ac.at

Abstract. Unravelings constitute a class of program transformations to
model conditional rewrite systems as standard term rewrite systems. Key
properties of unravelings are soundness and completeness with respect to
reductions, in the sense that rewrite sequences in the unraveled system
correspond to rewrite sequences in the conditional system and vice versa.
While the latter is easily satisfied, the former holds only under certain
conditions and is notoriously difficult to prove. This paper describes an
Isabelle formalization of both properties. The soundness proof is based on
the approach by Nishida, Sakai, and Sakabe (2012) but we also contribute
to the theory by showing it applicable to a larger class of unravelings.

Based on our formalization we developed the first certifier to check
output of conditional rewrite tools. In particular, quasi-decreasingness
proofs by AProVE and conditional confluence proofs by ConCon can be
certified.

1 Introduction

Conditional term rewriting is a natural extension of standard rewriting in that it
allows to specify conditions for rules to be applied. This is useful in many applica-
tions, for instance to reason about logic programs [14,16]. However, the addition
of conditions severely complicates the analysis of various properties. This led
to the development of transformations that convert conditional rewrite systems
(CTRSs) into standard rewrite systems (TRSs). Provided certain requirements
are fulfilled, one can then employ criteria for standard rewrite systems to infer
e.g. termination and confluence of the conditional system. Unravelings are the
most widely considered class of such transformations [2,7,11,14].

Tools to analyze CTRSs often exploit unravelings. For example, the condi-
tional confluence tool ConCon [17] may unravel a given CTRS R into a TRS R′.
It then invokes a confluence tool for TRSs to get a confluence proof P for R′,
in order to eventually conclude confluence of R. Similarly, AProVE [3] generates
operational termination proofs for CTRSs by first applying an unraveling and
then trying to prove termination of the resulting TRSs.

Like all tools for program analysis, rewrite tools are inherently complex and
error-prone. In the following we describe our IsaFoR/CeTA [18]-based certification

� This research was supported by the Austrian Science Fund (FWF) projects I963 and
Y757.

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 239–255, 2015.
DOI: 10.1007/978-3-319-24246-0_15

240 S. Winkler and R. Thiemann

approach to validate confluence and termination proofs for CTRSs, which com-
bines three different systems: an analyzer, a certifier, and a proof assistant.

1. A proof certificate is generated by an automatic analysis tool like AProVE
or ConCon. The certificate consists of a CTRS R, an unraveled TRS R′, and
the termination (or confluence) proof P .

2. Our certifier CeTA can then be invoked on (R,R′, P) to validate the certificate.
To this end, CeTA first checks that R′ = U(R) for some unraveling U . Next,
it verifies that P is a valid termination (or confluence) proof for R′, for
which it has a variety of techniques at its disposal [9,18]. Finally, it checks
whether U satisfies certain syntactic criteria which ensure that termination
(or confluence) of R′ also implies termination (or confluence) of R.

3. Soundness of CeTA is guaranteed as it is based on the Isabelle [10] framework
IsaFoR (Isabelle Formalization of Rewriting). To that end we formalized1

two properties in IsaFoR: (a) if U satisfies the syntactic requirements then
termination (or confluence) of R′ implies termination (or confluence) of R;
and (b) CeTA, a functional program written within Isabelle, is sound.

To the best of our knowledge, our contribution constitutes the first work on
certified program verification for conditional rewriting. This paper describes the
formalization done for task (3), giving rise to a certifier for task (2). Here the
vast amount of effort goes into part (3a), after which (3b) can be achieved by
applying Isabelle’s code generator.

In the remainder of this paper we thus focus on (3a), primarily on formalizing
two properties of an unravelingU which are of crucial importance: (i) every rewrite
sequence admitted by the transformed TRS U(R) (among terms over the original
signature) should be possible with the CTRSR, and (ii) every rewrite sequence al-
lowed byR should be preserved in U(R). These properties are known as soundness
and completeness with respect to reductions. While completeness imposes only
mild restrictions on such a transformation, soundness is much harder to satisfy,
and the respective proofs in the literature are involved and technical.

The remainder of this paper is structured as follows. We first recall some
background on TRSs and CTRSs in § 2. In § 3 we describe our formalization
of basic results on conditional rewriting, before we introduce unravelings in § 4.
The formalization of completeness results of unravelings in combination with
the certifier for termination proofs for CTRSs is the topic of § 5. In § 6 we
describe the formalized soundness proof, covering a large class of unravelings.
Building upon these results, in § 7 we outline a result connecting confluence of
the unraveled system with confluence of the original system. Finally, in § 8 we
conclude and shortly mention the experimental results.

The full formalization and the certifier (IsaFoR and CeTA) as well as details on
the experiments are available on the following website:

http://cl-informatik.uibk.ac.at/software/ceta/experiments/unravelings/

For each lemma, theorem, and definition in this paper, the website also contains
a link to our Isabelle formulation (and proof) of that lemma, etc.

1 Here, the notion formalized always refers to a machine checked proof in Isabelle.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/unravelings/

Formalizing Soundness and Completeness of Unravelings 241

2 Preliminaries

We refer to [1] for the basics on term rewriting. In the sequel, letters �, r, s, t, . . .
are used for terms, f, g, . . . for symbols, σ, θ for substitutions, and C for contexts.
The set of terms over signature F and variables V is T (F ,V), and Sub(F ,V)
denotes the set of substitutions of type V → T (F ,V). The set of variables in
a term t is denoted by Var(t). We write � for the strict subterm relation. The
rewrite relation for some TRS R is denoted by →R, and the parallel rewrite
relation is ⇒R, where sometimes R is omitted if it is clear from the context.
Rewrite relations may be restricted by positions, such as root steps (→ε) or
parallel rewriting where all steps are below the root (⇒>ε). Given a binary
relation →, the reflexive transitive closure, the transitive closure, and the n-
fold composition of the relation are denoted by →∗, →+, and →n, respectively.
A relation → is confluent on A if for all y ∈ A and all x and z, whenever
x ∗← y →∗ z, there is some u such that x →∗ u ∗← z; and → is confluent if it is
confluent on the set of all elements. A TRS R is confluent if its rewrite relation
→R is confluent. A rewrite rule � → r is left-linear if no variable occurs more
than once in �, and a TRS is left-linear if so are all its rules.

An (oriented) conditional rewrite rule ρ over signature F is of the form � →
r ⇐ s1 → t1, . . . , sk → tk where �, r, s1, t1, . . . , sk, tk ∈ T (F ,V). The condition
s1 → t1, . . . , sk → tk is sometimes abbreviated by c. Every standard rewrite rule
� → r can be considered a conditional rewrite rule where k = 0. A CTRS over
F is a set R of conditional rules over F .

Definition 1 (Conditional Rewriting [15, Def. 7.1.4]). Let R be a CTRS.
The unconditional TRSs Rn and the rewrite relation →R are defined as follows.

R0 = ∅

Rn+1 = {(�σ, rσ) | � → r ⇐ s1 → t1, . . . , sk → tk ∈ R, ∀i. siσ →∗
Rn

tiσ}
→R =

⋃
n∈N

→Rn

A CTRS R is of type 3 if every rule � → r ⇐ c in R satisfies Var(r) ⊆
Var(�) ∪ Var(c). A CTRS of type 3 is deterministic if for every rule � → r ⇐
s1 → t1, . . . , sk → tk ∈ R and every 1 � i � k it holds that Var(si) ⊆ Var(�) ∪⋃i−1

j=1 Var(tj). In the sequel, we will only deal with deterministic CTRSs of type
3 (abbreviated 3DCTRSs).

Example 2. Let F be the signature consisting of constants 0,T,F, [], unary sym-
bols s, qs, and binary symbols �, :,@, 〈·, ·〉, split. The following 3DCTRS R1 over
F encodes quicksort [15]:

0 � x → T s(x) � 0 → F s(x) � s(y) → x � y
[] @ x → x (x : xs) @ ys → x : (xs @ ys) split(x, []) → 〈[], []〉
qs([]) → []

split(x, y : ys) → 〈xs, y : zs〉 ⇐ split(x, ys) → 〈xs, zs〉, x � y → T
split(x, y : ys) → 〈y : xs, zs〉 ⇐ split(x, ys) → 〈xs, zs〉, x � y → F

qs(x : xs) → qs(ys) @ (x : qs(zs)) ⇐ split(x, xs) → 〈ys, zs〉

242 S. Winkler and R. Thiemann

3 Formalizing Conditional Rewriting

Instead of Def. 1, IsaFoR defines conditional rewriting as introduced in [12], where
intermediate rewrite relations are used rather than auxiliary unconditional TRSs.

Definition 3 (Conditional Rewriting [12]). Let R be a CTRS. The rewrite
relation →R is defined as follows.

0→R = ∅

n+1→ R = {(C[�σ], C[rσ]) | � → r ⇐ s1 → t1, . . . , sk → tk ∈ R, ∀i. siσ n−→∗
R tiσ}

→R =
⋃
n∈N

n→R

It is easy to see that
n→R = →Rn , and therefore →R is the same relation in

both Def. 1 and Def. 3.
In IsaFoR we used Def. 3 since it constitutes a stand-alone inductive definition,

whereas Def. 1 additionally requires the notion of unconditional rewriting. The
use of Def. 3 thus simplified proofs in that it avoided auxiliary results involv-
ing standard rewriting. In particular, every rewrite step according to Def. 1 is
associated with a rule, a context, and two substitutions, where the first substi-
tution originates from the definition of the unconditional TRS Rn+1, and the
second one stems from the rewrite relation →Rn+1 of this unconditional TRS. In
contrast, a rewrite step according to Def. 3 involves only one substitution.

Besides the definition of →R, based on
n→R defined as a recursive function

on n, we also added several basic results on →R to IsaFoR, which were mainly
established by first proving them component-wise for

n→R by induction on n. For
instance,

n→R is closed under contexts and substitutions,
n→R ⊆ m→R for n � m,

etc., and these properties are then easily transferred to →R. Moreover, we added
some extraction results, e.g., for finite derivations s →∗

R t one can always find

a suitable n such that s
n−→∗

R t. This made it easy to switch between the full

relation →R and some approximation
n→R in proofs.

Recall that the notion of termination is not as important for CTRSs as it
is for TRSs. For a CTRS R one is rather interested in operational termination
[6], where in addition to strong normalization of →R one ensures that there will
be no infinite recursion required when evaluating conditions. For example, the
CTRS R = {f(x) → f(x) ⇐ f(f(x)) → f(x)} terminates as it satisfies →R = ∅,
but it is not operationally terminating.

We formalized the following two sufficient criteria for operational termination.

Definition 4 (Quasi-Reductive). A CTRS R is quasi-reductive for � if �
is a strongly normalizing partial order which is closed under contexts, and for
every � → r ⇐ s1 → t1, . . . , sk → tk in R, every σ, and 0 � i < k it holds that

– if sjσ � tjσ for every 1 � j � i, then lσ (� ∪�)
+
si+1σ, and

– if sjσ � tjσ for every 1 � j � k, then lσ � rσ.

A CTRS R is quasi-reductive if it is quasi-reductive for some �.

Formalizing Soundness and Completeness of Unravelings 243

Definition 5 (Quasi-Decreasing). A CTRS R is quasi-decreasing for � if �
is a strongly normalizing partial order, →R ∪ � ⊆ �, and for every � → r ⇐
s1 → t1, . . . , sk → tk in R, every substitution σ, and 0 � i < k it holds that if
sjσ →∗

R tjσ for every 1 � j � i then lσ � si+1σ. A CTRS R is quasi-decreasing
if there exists some � such that R is quasi-decreasing for �.

Definitions 4 and 5 are exactly the same as Definitions 7.2.36 and 7.2.39 in
[15], respectively, except that our definitions do not mention signatures. This
deviation is motivated by the fact that neither the conditional rewrite relation
nor the unconditional rewrite relation in IsaFoR take signatures into account.

IsaFoR further includes the crucial proof of [15, Lemma 7.2.40], namely that
whenever R is quasi-reductive for �, then R is also quasi-decreasing for (�∪�)+.
And since a 3DCTRS is quasi-decreasing if and only if it is operational termi-
nating [6, Thms. 2 and 3], we provide a criterion for operational termination.

4 Unravelings

An unraveling is a computable transformation U which maps a CTRS R over
some signature F to a TRS U(R) over some signature F ′ ⊇ F .2 An unraveling
U is sound with respect to reductions for R if s →∗

U(R) t implies s →∗
R t for all

terms s, t ∈ T (F ,V). It is complete with respect to reductions for R if s →∗
R t

implies s →∗
U(R) t for all s, t ∈ T (F ,V). In order to be independent of concrete

unravelings used by tools, our certifier is based on the following more flexible
notion of standard unravelings.

To that end, two conditional rules � → r ⇐ s1 → t1, . . . , sk → tk and �′ →
r′ ⇐ s′1 → t′1, . . . , s′k′ → t′k′ are called prefix equivalent up to m ifm � k, m � k′,
and there is a variable renaming τ such that �τ = �′, siτ = s′i for all 1 � i � m,
and tiτ = t′i for all 1 � i < m. For instance, the first two conditional rules in
Ex. 2 are prefix equivalent up to 2, with τ being the identity. For a finite set
of variables V = {x1, . . . , xn}, let #»

V denote the sequence x1, . . . , xn such that
x1 < · · · < xn for some arbitrary but fixed ordering < on V .
Definition 6 (Standard Unraveling). A standard unraveling U maps a rule
ρ of the form � → r ⇐ s1 → t1, . . . , sk → tk to the set of rules U(ρ) given by

U(ρ) =
{
� → Uρ

1 (s1,
»
Z1), U

ρ
1 (t1,

»
Z1) → Uρ

2 (s2,
»
Z2), . . . , U

ρ
k (tk,

»
Zk) → r

}

where Xi = Var(�, t1, . . . , ti−1), Yi = Var(r, ti, si+1, ti+1 . . . , sk, tk), and Zi is
an arbitrary set of variables satisfying Xi ∩ Yi ⊆ Zi, for all 1 � i � k, and

Uρ
1 , . . . U

ρ
k �∈ F . Furthermore, we require that Uρ

i = Uρ′
j only if i = j and ρ and

ρ′ are prefix equivalent up to i, for all ρ, ρ′ ∈ R.
The definition of U is extended to a CTRS R by setting U(R) =

⋃
ρ∈R U(ρ).

2 Definitions of unravelings in the literature typically demand that →R ⊆ →∗
U(R) and

U(R � R′) = U(R) ∪ R′ hold for any TRS R′. We do not require this by definition
but all considered transformations enjoy these properties.

244 S. Winkler and R. Thiemann

Note that setting Zi = Xi yields Ohlebusch’s unraveling Useq [13,15], while
by taking Zi = Xi ∩ Yi one obtains the optimized unraveling Uopt [2,11], both of
which are thus standard unravelings in our setting.3 In addition, we allow—but
do not enforce—the reuse of U symbols as proposed for the variant of Ohlebusch’s
unraveling Uconf [4] (and already mentioned in [15, page 213]). The set of symbols
F ′ denotes the signature which extends F by all U i

ρ symbols introduced by U .

Example 7. Let R2 be Uconf(R1), where the standard unraveling Uconf is applied
to the CTRS R1 from Ex. 2. Then R2 contains all unconditional rules of R1,
and the following rules which replace the conditional rules of R1:

split(x, y : ys) → U1(split(x, ys), x, y, ys)

U1(〈xs, zs〉, x, y, ys) → U2(x � y, x, y, ys, xs, zs)

U2(T, x, y, ys, xs, zs) → 〈xs, y : zs〉
U2(F, x, y, ys, xs, zs) → 〈y : xs, zs〉

qs(x : xs) → U3(split(x, xs), x, xs)

U3(〈ys, zs〉, x, xs) → qs(ys) @ (x : qs(zs))

Note that the first four rules can simulate both of the first two conditional rules.
Alternatively, a standard unraveling may produce the TRS R3 where the

conditional rules are transformed into:

split(x, y : ys) → U1(split(x, ys), x, y) U1(〈xs, zs〉, x, y) → U2(x � y, y, xs, zs)

U2(T, y, xs, zs) → 〈xs, y : zs〉 U2(F, y, xs, zs) → 〈y : xs, zs〉
qs(x : xs) → U3(split(x, xs), x) U3(〈ys, zs〉, x) → qs(ys) @ (x : qs(zs))

Here, R3 corresponds to Uopt(R1), except that U symbols are reused for the two
prefix equivalent rules. For both R2 and R3, the extended signature is F ′ =
F ∪ {U1, U2, U3}.

Reusing U symbols is often essential to obtain confluent unraveled systems,
e.g., both Uopt(R1) and Useq(R1) are non-confluent TRSs, whereas the TRSs
R2 = Uconf(R1) and R3 in Ex. 7 are orthogonal and hence confluent. Also termi-
nation provers can benefit from the repeated use of U symbols since for locally
confluent overlay TRSs it suffices to prove innermost termination [5].

5 Completeness of Unravelings

Completeness of an unraveling U demands that derivations of R can be simulated
by U(R), i.e., →∗

R ⊆ →∗
U(R) holds. This result is not hard to prove but has

limited applicability. For example, it does not entail that termination of U(R)
implies strong normalization of →R or quasi-reductiveness of R. Therefore, we
first formalized a more general, technical result (Lem. 9) which is helpful to
derive many of the other properties that we are interested in.

3 The unraveling UD proposed by Marchiori [8] differs from Useq in that it admits
multiple occurrences of the same variable in

»
Zi. In general, it is hence not a standard

unraveling, but UD and Useq coincide in the setting of left-linear unraveled systems.

Formalizing Soundness and Completeness of Unravelings 245

The notion of a standard unraveling does not cover Marchiori’s unraveling
UD. In order to cover UD and also to keep our results as widely applicable as
possible, we introduce an even more general notion of unravelings: Instead of
demanding that the left- and right-hand-sides of unraveled rules are exactly of
the form Uρ

i (ti,
»
Zi) and Uρ

i (si,
»
Zi), we only assume that they are of the shape

C[ti] and C[si] for some context C.

Definition 8 (Generalized Unraveling). A generalized unraveling U maps a
rule ρ of the form � → r ⇐ s1 → t1, . . . , sk → tk to the set of rules U(ρ) given by

U(ρ) = {� → Cρ
1 [s1], C

ρ
1 [t1] → Cρ

2 [s2]), . . . , C
ρ
k [tk] → r}

where each Cρ
i is an arbitrary context. As in Def. 6, U(R) =

⋃
ρ∈R U(ρ).

In the remainder of this section, we assume that U is a generalized unraveling.

Lemma 9. Let � → r ⇐ s1 → t1, . . . , sk → tk be a rule in R, and 1 � i � k+1.
For i = k+1, define sk+1 := r and Cρ

k+1 = �. If sjσ →∗
U(R) tjσ for all 1 � j < i,

then �σ →+
U(R) C

ρ
i [si]σ.

Proof. �σ →U(R) Cρ
1 [s1]σ →∗

U(R) Cρ
1 [t1]σ →U(R) Cρ

2 [s2]σ →∗
U(R) · · · →∗

U(R)

Cρ
i−1[ti−1]σ →U(R) C

ρ
i [si]σ. ��

Theorem 10 (Completeness). →R ⊆ →+
U(R)

Proof. We prove
n→R ⊆ →+

U(R) by induction on n. The base case is trivial. So let

s
n+1→ R t, i.e., there is some � → r ⇐ s1 → t1, . . . , sk → tk in R where s = C[�σ],

t = C[rσ] and siσ
n−→∗

R tiσ for all 1 � i � k. By the induction hypothesis, we
conclude siσ →∗

U(R) tiσ for all i. Hence, �σ →+
U(R) rσ by applying Lem. 9 for

i := k + 1. But then s = C[�σ] →+
U(R) C[rσ] = t immediately follows. ��

Theorem 11 (Termination Implies Quasi-Reductiveness). If U(R) is ter-
minating then R is quasi-reductive for � := →+

U(R).

Proof. From termination of U(R) we conclude that � is a strongly normalizing
partial order, which is obviously also closed under contexts. Let � → r ⇐ s1 →
t1, . . . , sk → tk be a rule in R, let i satisfy 0 � i � k, and let sjσ � tjσ for
every 1 � j � i. By definition of �, the preconditions can be reformulated as
1 � i+ 1 � k + 1 and sjσ →∗

U(R) tjσ for all 1 � j < i+ 1. Hence, by Lem. 9 we

get �σ →+
U(R) Cρ

i+1[si+1σ], i.e., �σ � Cρ
i+1[si+1σ] where in case i = k we have

Cρ
i+1 = � and si+1 = r. Thus, for i < k we obtain �σ � Cρ

i+1[si+1σ] � si+1σ,
and for i = k we get �σ � Cρ

i+1[si+1σ] = rσ, so all conditions of Def. 4 hold. ��
To model generalized unravelings within IsaFoR, we assume U to be given

as a function which takes a conditional rule ρ and an index i, and returns the
context Cρ

i . All proofs have been formalized as described above, with only a small
overhead: for example, in becoming explicit in the “· · · ” within the statement
and the proof of Lem. 9 (via quantifiers and inductive), or in manually providing
the required substitutions and contexts when performing conditional rewriting.

246 S. Winkler and R. Thiemann

Example 12. The TRS R3 from Ex. 7 is terminating. According to Thm. 11,
R1 is thus quasi-reductive. A corresponding proof is automatically generated by
AProVE and certified by CeTA.

6 Soundness of Unravelings

After having formalized simple proofs on unravelings like completeness, in this
section we describe the following more challenging soundness result.

Theorem 13 (Soundness of Standard Unravelings). Consider a 3DCTRS
R and a standard unraveling U such that U(R) is left-linear. Then U is sound
with respect to reductions for R.

Our formalization of this result follows the line of argument pursued in [12,
Theorem 4.3]. However, Thm. 13 constitutes an extension in several respects.
First, it is not fixed to the unraveling Uopt. Instead, it only assumes U to be
a standard unraveling, thereby in particular covering Useq, Uconf , and Uopt. Sec-
ond, it does not rely on the assumption that R is non-left variable or non-right
variable, i.e., that either no left- or no right-hand side of R is a variable. In [12]
this restriction is used to simplify the decomposition of U(R)-rewrite sequences.
Instead, we introduced the notion of partial and complete ρ-step simulations be-
low. Finally, in contrast to the proof of [12, Lemma 4.2], we devised an inductive
argument to prove the Key Lemma 18 in its full generality, instead of restricting
to rules with only two conditions.

A number of preliminary results were required in order to prove Thm. 13.

Definition 14 (Complete and Partial Simulation). Let ρ = � → r ⇐
s1 → t1, . . . , sk → tk. A rewrite sequence s ⇒n

U(R) t contains a complete ρ-step

simulation if it can be decomposed into a U(R)-rewrite sequence

s ⇒n0 �σ1 −→ε U
ρ
1 (s1,

»
Z1)σ1

⇒n1
>ε U

ρ
1 (t1,

»
Z1)σ2 −→ε U

ρ
2 (s2,

»
Z2)σ2

...

⇒nk
>ε U

ρ
k (tk,

»
Zk)σk+1 −→ε rσk+1 ⇒nk+1 t

(1)

for some n0, . . . , nk+1 and substitutions σ1, . . . , σk+1 such that n = nk+1 +∑k
i=0(ni + 1). Moreover, s ⇒n

U(R) t contains a partial ρ-step simulation up
to m if it can be decomposed as

s ⇒n0 �σ1 −→ε U
ρ
1 (s1,

»
Z1)σ1

⇒n1
>ε U

ρ
1 (t1,

»
Z1)σ2 −→ε U

ρ
2 (s2,

»
Z2)σ2

...

⇒nm−1
>ε Uρ

m−1(tm−1,
»
Zm−1)σm −→ε U

ρ
m(sm,

»
Zm)σm ⇒nm

>ε t

(2)

for some m � k as well as n0, . . . , nm and substitutions σ1, . . . , σm such that
n = nm +

∑m−1
i=0 (ni + 1).

Formalizing Soundness and Completeness of Unravelings 247

The proof of the following result is technical but straightforward, applying
induction on the length of the rewrite sequence A.

Lemma 15. Suppose s ∈ T (F ,V) admits a rewrite sequence A : s ⇒n
U(R) t

which contains a root step. Then A contains a complete or a partial ρ-step sim-
ulation for some ρ ∈ R. ��

Lemma 16 ([12, Lemma A.1]). Consider a 3DCTRS R, a rule ρ ∈ R
of the form � → r ⇐ s1 → t1, . . . , sk → tk such that U(ρ) is left-linear, and sub-

stitutions θ1, . . . , θk+1. If siθi →∗
R tiθi+1 and

»

Ziθi →∗
R

»

Ziθi+1 for all 1 � i � k
then �θ1 →∗

R rθk+1. ��

Here
»

Ziθi →∗
R

»

Ziθi+1 denotes zjθi →∗
R zjθi+1 for all 1 � j � n, given Zi =

{z1, . . . , zn}. The following lemma follows from the properties of 3DCTRSs.

Lemma 17. A rule � → r ⇐ s1 → t1, . . . , sk → tk in a 3DCTRS satisfies

1. Var(sm+1) ⊆ Var(tm) ∪ (Xm ∩ Ym) for all m < k, and
2. Var(r) ⊆ Var(tk) ∪ (Xk ∩ Yk). ��

Lemma 18 (Key Lemma). Consider a 3DCTRS R and a standard unravel-
ing U such that U(R) is left-linear. Let s, t ∈ T (F ,V) and t be linear such that
s ⇒n

U(R) tσ for some substitution σ ∈ Sub(F ′,V). Then there is some substi-

tution θ such that (i) s →∗
R tθ, (ii) xθ ⇒n

U(R) xσ and xθ ∈ T (F ,V) for all

x ∈ Var(t), and (iii) if tσ ∈ T (F ,V) then tθ = tσ.

Before proving the key lemma, we show that it admits a very short proof of the
main soundness result. The lemma will also be used in § 7 to prove confluence.

Proof (Proof of Thm. 13). Consider s, t ∈ T (F ,V) such that s →∗
U(R) t. Let

x ∈ V and σ := {x �→ t}. Hence s ⇒∗
U(R) xσ holds, and from Lem. 18 it follows

that s →∗
R xσ = t. ��

The following four pages describe a complete paper proof of the key lemma.
We present it for the following reasons: In contrast to the proof of [12, Theo-
rem 3.8], it devises an argument for the general case instead of restricting to
two conditions. It is also structured differently, as it makes use of the notion of
complete and partial ρ-step simulations and prefix equivalence. The latter dif-
ferences in particular allowed us to show a more general result. And finally, the
paper proof served as a detailed and human-readable proof plan for the proof
within IsaFoR: the formalized proof contains even more details and is over 800
lines long.

At this point we want to emphasize the advantage of having a formalized proof
within a proof assistant like Isabelle: in order to verify the proof’s correctness,
one can simply check whether the statement of the key lemma from the paper
corresponds to the one in the formalization, because the (even more detailed)
formalized proof is validated automatically.

248 S. Winkler and R. Thiemann

Proof (of key lemma). The proof is by induction on (n, s), compared lexico-
graphically by > and �. If n = 0 then s = tσ ∈ T (F ,V), and one can set θ = σ.
The remainder of the proof performs a case analysis on a rewrite sequence

s ⇒n+1
U(R) tσ (3)

To enhance readability, the subscript in ⇒U(R) will be omitted; all steps denoted
⇒ and −→ε are in U(R).

Case (i): The sequence (3) does not contain a root step. Then s cannot be a
variable so, s = f(s1, . . . , sm) for some f ∈ F . In this case, the result will easily
follow from the induction hypothesis. Still, we have to consider two cases.

1. Suppose t �∈ V . As (3) does not contain a root step we may write t =
f(t1, . . . , tm), and have si ⇒n+1 tiσ for all 1 � i � m. (Here we employ
the fact that ⇒k ⊆ ⇒n+1 for all k � n + 1, which will be freely used in
the sequel of this proof.) For all i such that 1 � i � m, si, ti ∈ T (F ,V)
and ti is linear. Hence the induction hypothesis yields a substitution θi such
that si →∗

R tiθi, xθi ⇒n+1 xσ and xθi ∈ T (F ,V) for all x ∈ Var(ti), and
tiθi = tiσ if tiσ ∈ T (F ,V). By linearity of t, θ :=

⋃m
i=1 θi|Var(ti) ∈ T (F ,V)

is a substitution which satisfies tiθi = tiθ for all i. Hence we obtain

s = f(s1, . . . , sm) →∗
R f(t1, . . . , tm)θ = tθ ⇒n+1 f(t1, . . . , tm)σ = tσ

and if tσ ∈ T (F ,V) then tiσ ∈ T (F ,V) implies tiθ = tiθi = tiσ, such that
tθ = tσ.

2. We have t = x ∈ V , hence xσ = f(t1, . . . , tm). Let x1, . . . , xm be distinct
variables and σ′ be a substitution such that xiσ

′ = ti for all 1 � i � m. As
s = f(s1, . . . , sm) and (3) does not contain a root step, we have si ⇒n+1

ti = xiσ
′. For all i such that 1 � i � m, the induction hypothesis yields a

substitution θi such that si →∗
R xiθi, xiθi ⇒n+1 xiσ

′ and xiθi ∈ T (F ,V),
where xiθi = xiσ

′ if xiσ
′ ∈ T (F ,V). Let θ := {x �→ f(x1θ1, . . . , xmθm)}.

One thus obtains

s = f(s1, . . . , sm) →∗
R f(x1θ1, . . . , xmθm) = xθ ⇒n+1 f(x1, . . . , xm)σ′ = xσ

and if tσ ∈ T (F ,V) then ti = xiσ
′ ∈ T (F ,V) implies xiθi = xiσ

′, so tθ = tσ.

Case (ii): The sequence (3) contains a root step. Then according to Lem. 15, (3)
contains a partial or a complete ρ-step simulation for some ρ ∈ R where ρ is of
the shape � → r ⇐ s1 → t1, . . . , sk → tk, and s ⇒n0 �σ1 for some n0 < n+1. As
� ∈ T (F ,V) is linear by the assumption of left-linearity, the induction hypothesis
yields a substitution θ1 such that s →∗

R �θ1, xθ1 ⇒n0 xσ1 and xθ1 ∈ T (F ,V)
for all x ∈ Var(�), and if �σ1 ∈ T (F ,V) then �θ1 = �σ1 (�).

1. Suppose (3) contains a partial ρ-step simulation up to m of the form

s ⇒n0 �σ1 −→ε U
ρ
1 (s1,

»
Z1)σ1 ⇒n1

>ε · · · −→ε U
ρ
m(sm,

»
Zm)σm ⇒nm

>ε tσ

Formalizing Soundness and Completeness of Unravelings 249

for m � k, such that root(tσ) = Um. Since t ∈ T (F ,V) by assumption it
must be the case that t = x ∈ V . Let θ = {x �→ �θ1}. In combination with
(�) it follows that s →∗

R �θ1 = xθ, xθ = �θ1 ⇒n0 �σ1 ⇒n+1−n0 tσ = xσ and
consequently xθ ⇒n+1 xσ, xθ = �θ1 ∈ T (F ,V) and xσ �∈ T (F ,V) which
shows the claim.

2. Suppose (3) contains a complete ρ-step simulation

s ⇒n0 �σ1 −→ε U
ρ
1 (s1,

»
Z1)σ1 ⇒n1

>ε U
ρ
1 (t1,

»
Z1)σ2 −→ε U

ρ
2 (s2,

»
Z2)σ2 ⇒n2

>ε · · ·
−→ε U

ρ
k (sk,

»

Zk)σk ⇒nk
>ε U

ρ
k (tk,

»

Zk)σk+1 (4)

−→ε rσk+1 ⇒nk+1 tσ

The key step is now to establish existence of a substitution θ′ such that

s →+
R rθ′, rθ′ ∈ T (F ,V), and rθ′ ⇒n tσ (5)

First, suppose ρ is an unconditional rule � → r. Then one can take θ′ := θ1:
By (�) one has s →∗

R �θ1, and for all x ∈ Var(�) it holds that xθ1 ∈ T (F ,V),
xθ1 ⇒n0 xσ1 and xθ1 ∈ T (F ,V). Obviously there is also the rewrite sequence
s →∗

R rθ1. As Var(r) ⊆ Var(�) because R is a DCTRS, the properties of
θ1 imply rθ1 ∈ T (F ,V). Together with (�), Var(r) ⊆ Var(�) also implies
rθ1 ⇒n0 rσ1. Combined with the complete simulation, rθ1 ⇒n tσ holds.
Second, in the case of a conditional rule the following claim is used: there
are substitutions θ1, . . . , θk+1 such that θ1 is as derived in (�), and it holds
that

(a) siθi →∗
R tiθi+1 (c) θj |Vj ∈ Sub(F ,V)

(b)
»

Ziθi →∗
R

»

Ziθi+1 (d) xθi+1 ⇒Ni xσi+1 ∀x ∈ Var(ti) ∪ Zi

for all 1 � i � k and 1 � j � k +1. Here Ni =
∑i

j=0 nj , and Vj denotes the
variable set defined by V1 = Var(�) and Vj+1 = Var(tj)∪ (Xj ∩Yj) for j > 0.
We conclude the main proof before showing the claim. In particular, the
claim yields substitutions θ1, . . . , θk+1 with properties (a)–(d). Due to (a),
(b), and Lem. 16, there is a rewrite sequence �θ1 →∗

R rθk+1. In combination
with (�) it follows that s →∗

R �θ1 →∗
R rθk+1. According to Lem. 17 (2),

Var(r) ⊆ Var(tk) ∪ (Xk ∩ Yk) = Vk+1, so with (c) it holds that rθk+1 ∈
T (F ,V). Moreover, in combination with (d) and the fact that Xk ∩ Yk ⊆
Zk one has xθk+1 ⇒Nk xσk+1 for all x ∈ Var(r), and hence rθk+1 ⇒Nk

rσk+1 ⇒nk+1 tσ. Now since Nk + nk+1 � n one has rθk+1 ⇒n tσ, so the
substitution θk+1 satisfies all properties of θ′ as demanded in (5).

So suppose there is a substitution θ′ which satisfies the properties (5). Ap-
plying the induction hypothesis to the rewrite sequence rθ′ ⇒n tσ yields a
substitution θ such that rθ′ →∗

R tθ (and hence s →∗
R tθ), xθ ⇒n xσ and

xθ ∈ T (F ,V) for all x ∈ Var(t), and if tσ ∈ T (F ,V) then tθ = tσ. This
concludes the case of a complete ρ-step simulation, it only remains to prove
the above claim.

250 S. Winkler and R. Thiemann

Proof of the claim. We perform an inner induction on k. In the base where
k = 0, the singleton substitution list containing θ1 vacuously satisfies prop-
erties (a), (b), and (d), and (c) holds as θ1|V1 ∈ Sub(F ,V) according to (�).

So consider the case for k = m+1. From the induction hypothesis one obtains
substitutions θ1, . . . , θk which satisfy properties (a)–(d) for all 1 � i � m
and 1 � j � k. In the sequel, they will be referred to by (a’)–(d’). Let θ′k be
defined as follows:

θ′k(x) =

{
xθk if k = 1 and x ∈ Var(�), or x ∈ Var(tm) ∪ Zm

xσk otherwise

In the first place

skθ
′
k ⇒Nm skσk and skθ

′
k ∈ T (F ,V) (6)

is established by means of a case analysis. First, suppose k = 1. As R is
deterministic, Var(s1) ⊆ Var(�). According to (�), xθ1 ⇒n0 xσ1 and xθ1 ∈
T (F ,V) hold for all x ∈ Var(�). By definition of θ′1 and Var(s1) ⊆ Var(�)
we get s1θ

′
1 = s1θ1. Hence s1θ

′
1 ⇒n0 s1σ1 and thus s1θ

′
1 ⇒N0 s1σ1, and

s1θ
′
1 ∈ T (F ,V). Second, suppose k > 1. By Lem. 17 (1) one has Var(sk) ⊆

Var(tm) ∪ (Xm ∩ Ym) = Vk. Due to Xm ∩ Ym ⊆ Zm it also holds that
Var(sk) ⊆ Var(tm) ∪ Zm. By (d’), xθk ⇒Nm xσk and xθk ∈ T (F ,V) for all
x ∈ Var(tm) ∪ Zm, such that also skθk ⇒Nm skσk holds. From Var(sk) ⊆
Var(tm) ∪ Zm it also follows that skθk = skθ

′
k such that skθ

′
k ⇒Nm skσk

holds. Moreover, Var(sk) ⊆ Vk and (c’) imply skθ
′
k ∈ T (F ,V), so (6) is

satisfied.
According to derivation (4) skσk ⇒nk tkσk+1 holds, so with (6) it follows
that skθ

′
k ⇒Nk tkσk+1. Now the outer induction hypothesis can be applied to

this rewrite sequence: as U(R) is left-linear also tk must be linear, skθ
′
k, tk ∈

T (F ,V), and Nk < n+ 1 so one obtains a substitution θs such that

skθ
′
k →∗

R tkθs, xθs ⇒Nk xσk+1, and xθs ∈ T (F ,V) (7)

for all x ∈ Var(tk).
Next, we show that for every z ∈ Zk there is a substitution θz such that

zθ′k →∗
R zθz, zθz ⇒Nk zσk+1, and z(θz|Vk

) ∈ T (F ,V). (8)

holds, by a case analysis. First, in the case where either k = 1 and z �∈ Var(�),
or k > 1 and z �∈ Var(tm) ∪ Zm, it suffices to take θz = {z �→ zθ′k} =
{z �→ zσk} as according to derivation (4) one has zσk ⇒nk zσk+1 and hence
zσk ⇒Nk σk+1. Both z(θz|Vk

) ∈ T (F ,V) and zθ′k →∗
R zθz trivially hold, so

(8) is satisfied.
Second, if k = 1 and z ∈ Var(�), or k > 1 and z ∈ Var(tm) ∪ Zm. Then

zθ′k ⇒Nm zσk and z(θ′k|Vk
) ∈ T (F ,V) (9)

Formalizing Soundness and Completeness of Unravelings 251

holds, as can be seen by a case analysis on k. If k = 1 and z ∈ Var(�), then
by (�) it holds that zθ1 ⇒n0 zσ1 and zθ1 ∈ T (F ,V), so also zθ1 ⇒N0 zσ1 is
satisfied, and zθ′1 = zθ1 holds by definition. If k > 1 then zθ′k ⇒Nm zσk and
z(θ′k|Vk

) ∈ T (F ,V) hold according to (c’), (d’) and as zθ′k = zθk.
So in both cases (9) is satisfied. Now the derivation (4) implies zσk ⇒nk

zσk+1, and together with (9) it holds that zθ′k ⇒Nk zσk+1. Applying the
outer induction hypothesis to this rewrite sequence yields a substitution θz
that satisfies (8).

Since U(R) is left-linear, Var(tk) and Zk are disjoint. Therefore, θk+1 :=
θs|Var(tk) ∪

⋃
z∈Zk

{z �→ zθz} is a well-defined substitution. It can be verified
that the sequence of substitutions θ1, . . . , θm, θ′k, θk+1 satisfies all desired
properties (a)–(d):
First, note that θ1, . . . , θm, θ′k also satisfy the properties corresponding to

(a’)–(d’): from (a’) one has smθm →∗
R tmθ′k because tmθk = tmθ′k;

#»
Zmθm →∗

R
#»
Zmθ′k and θ′k|Vk

∈ Sub(F ,V) hold by (b’), (c’), and the definition of θ′k. By
the definition of θ′k, xθ

′
k = xθk for all x ∈ Var(tm) ∪ Zm, so (d’) also holds

for θ1, . . . , θm, θ′k.
In summary, one can conclude

(a) siθi →∗
R tiθi+1 (c) θj |Vj ∈ Sub(F ,V)

(b)
»

Ziθi →∗
R

»

Ziθi+1 (d) xθi+1 ⇒Ni xσi+1 ∀x ∈ Var(ti) ∪ Zi

for all 1 � i � k and 1 � j � k + 1, where (a) follows from (a’) and as
skθ

′
k →∗

R tkθk+1 follows from (7). Next, (b) holds because of (b’) and (8),

which entails
»
Zkθ

′
k →∗

R

»
Zkθk+1 as zθz = zθk+1 for all z ∈ Zk. Finally,

(7) and (8) imply θk+1|Vk+1
∈ Sub(F ,V) and xθk+1 ⇒Nk xσk+1 for all

x ∈ Var(tk) ∪ Zk, which together with (c’) and (d’) induce (c) and (d). ��
Thm. 13 and its preliminary lemmas are formalized in IsaFoR as presented

in the proofs above. As already mentioned, the notions of partial and complete
ρ-step simulations are used to circumvent the restriction to non-left or non-
right variable CTRSs (and a respective duplication of the main proof steps). At
some places the formalization induces some technical overhead, for instance to
construct a substitution by taking the union of a set of domain-disjoint substi-
tutions.

7 Applying Unravelings to Confluence

It is known that confluence of an unraveled system U(R) implies confluence of
the conditional system R under certain conditions [4]. In order to verify proof
certificates by ConCon, a respective result was added to IsaFoR, and the following
paragraphs describe our formalized proof.

We call a standard unraveling source preserving if for all rules ρ ∈ R of the
form � → r ⇐ s1 → t1, . . . , sk → tk it holds that Var(�) ⊆ Zi for all i � k.

The intuition behind this notion is that then each term Uρ
i (t,

»

Zi)σ completely

252 S. Winkler and R. Thiemann

determines σ on Var(�). For instance, R2 in Ex. 7 is source preserving, but R3

is not since the information on x gets lost in U2.

Lemma 19. Let R be a deterministic, non-left variable 3DCTRS, and let U be a
source preserving unraveling such that U(R) is left-linear. Suppose s, t ∈ T (F ,V)
such that s →∗

U(R) u ∗
U(R)← t for some u ∈ T (F ′,V). Then there is some

v ∈ T (F ,V) such that s →∗
R v ∗

R← t holds.

Proof. By induction on u. If u ∈ V then u ∈ T (F ,V), so using Thm. 13 one can
directly conclude s →∗

R u ∗
R← t.

Otherwise, suppose for a first case that root(u) ∈ F , so let u = f(u1, . . . , um).
Let u′ be the linear term f(x1, . . . , xm), and σ := {xi �→ ui | 1 � i � m}, i.e.,
u = u′σ. We have s ⇒ns

U(R) u′σ and t ⇒nt

U(R) u′σ for some ns and nt. From

Lem. 18 we thus obtain substitutions θs and θt such that s →∗
R u′θs, t →∗

R u′θt,
and u′θs, u′θt ∈ T (F ,V). Moreover, for all variables xi ∈ {x1, . . . , xm} we have
xiθs →∗

U(R) xiσ and xiθt →∗
U(R) xiσ; and since u � xiσ, we can apply the

induction hypothesis to obtain xiθs →∗
R vi

∗
R← xiθt for some vi ∈ T (F ,V).

Joinability of s and t follows because of

s →∗
R u′θs ⇒∗

R f(v1, . . . , vm) ∗
R⇔ u′θt ∗

R← t

Second, assume root(u) �∈ F , so by the assumption u ∈ T (F ′,V) we have u =

Uρ
i (u1,

#»
Z iν) for some ρ ∈ R of the form � → r ⇐ s1 → t1, . . . , sk → tk and

1 � i � k, some term ui and some substitution ν. Let x ∈ V be some variable,
so we have s ⇒ns

U(R) x{x �→ u} for some ns. By Lem. 18, there is a substitution

θs such that s →∗
R xθs, and xθs ∈ T (F ,V).

As u is rooted by Uρ
i an analysis of the proof of Lem. 18 for this case shows the

following:4 The rewrite sequence s ⇒ns

U(R) x{x �→ u} contains a partial ρ′-step
simulation up to i, for some rule ρ′ ∈ R prefix equivalent to ρ, and there are a
substitution σ0 such that xθs = �σ0 as well as substitutions σ1, . . . , σi such that

1. zσ0 ⇒∗
U(R) zσ1 for all z ∈ Var(�),

2. zσj ⇒∗
U(R) zσj+1 for all z ∈ Zj and 1 � j < i, and

3. zσi ⇒∗
U(R) zν for all z ∈ Zi.

Consider some variable z ∈ Var(�). Since U is source preserving, z ∈ Zj for all
j � i. Therefore, the properties of the substitutions σj yield a rewrite sequence
zσ0 ⇒∗

U(R) zν.

In the same way the rewrite sequence t ⇒nt

U(R) x{x �→ u} gives rise to substi-

tutions θt, τ0 such that t →∗
R zθt, zθt ∈ T (F ,V), zθt = �τ0, and zτ0 ⇒∗

U(R) zν

holds for all z ∈ Var(�).
Consider again some z ∈ Var(�). We have zσ0 ⇒∗

U(R) zν and zτ0 ⇒∗
U(R) zν,

where zσ0, zτ0 ∈ T (F ,V). But as we have u � zν, the induction hypothesis
shows zσ0 ↓R zτ0. Hence �σ0 and �τ0 are joinable to some common reduct
�ν′ ∈ T (F ,V).

In summary, joinability of s and t follows from the rewrite sequence

4 Within IsaFoR this fact is made explicit by adapting the statement of Lem. 18.

Formalizing Soundness and Completeness of Unravelings 253

s →∗
R xθs = �σ0 ⇒∗

R �ν′ ∗
R⇔ �τ0 = xθt

∗
R← t ��

Theorem 20 (Confluence). Let R be a non-left variable 3DCTRS over sig-
nature F , and U be a source preserving unraveling such that U(R) is left-linear.
Then confluence of U(R) implies confluence of R.

Proof. Consider a peak s ∗
R← u →∗

R t with u ∈ T (F ,V). Then also s, t ∈
T (F ,V) since R has signature F . By completeness of U , we also have s ∗

U(R)←
u →∗

U(R) t. Confluence of U(R) yields a join s →∗
U(R) v′ ∗

U(R)← t for some

term v′ ∈ T (F ′,V). By Lem. 19 there is also a term v ∈ T (F ,V) such that
s →∗

R v ∗
R← t. Hence R is confluent on terms in T (F ,V). A further technical

renaming suffices to prove confluence on all terms u, where we refer to the
formalization for details. ��
Example 21. The TRS R2 = Uconf(R1) from Ex. 7 is confluent since it is orthogo-
nal. According to Thm. 20, R1 is thus confluent as well. Due to our formalization,
the confluence proof generated by ConCon can be certified by CeTA.

The following example shows that Uconf is not necessarily an optimal choice when
it comes to confluence analysis.

Example 22. Consider the CTRS R4 consisting of rules

a → b ⇐ c → x, di(x) → e di(c) → e

for i ∈ {1, 2}. We obtain the following unraveled TRSs:

Uconf : a → U1(c) U1(x) → U i
2(di(x), x) U i

2(e, x) → b di(c) → e

Uopt : a → U i
1(c) U i

1(x) → U i
2(di(x)) U i

2(e) → b di(c) → e

Useq : a → U i
1(c) U i

1(x) → U i
2(di(x), x) U i

2(e, x) → b di(c) → e

Uconf admits the non-joinable peak U1
2 (d1(x), x) ← U1(x) → U2

2 (d2(x), x), but
Useq (as well as Uopt) is confluent, so R4 is confluent by Thm. 20.

8 Conclusion

We presented a formalization of soundness and completeness results of unravel-
ings. We used these results to certify quasi-reductiveness proofs by AProVE [3]
and conditional confluence proofs by ConCon [17]. As a test bench we used all
3DCTRSs from Cops (problems 1–438) and TPDB 9.0,5 duplicates removed. In
this way we obtained 85 problems from Cops and 31 problems from TPDB.

AProVE produces termination proofs for 84 input problems, and CeTA could
certify these termination proofs for 83 problems. ConCon could prove confluence
for 58 problems, and nonconfluence for 28 problems. CeTA could certify 38 con-
fluence proofs. Around 17% of the confluence proofs of ConCon required sharing

5 See http://cops.uibk.ac.at/ and http://termination-portal.org/wiki/TPDB

http://cops.uibk.ac.at/
http://termination-portal.org/wiki/TPDB

254 S. Winkler and R. Thiemann

of U symbols. All proofs that CeTA could not certify contain some techniques
which are not yet formalized. Detailed experimental results are provided on the
website.

In summary, we consider our contribution threefold. On the formalization
side, we provided to the best of our knowledge the first formalization framework
for conditional rewriting and unravelings. Besides basic definitions it comprises
the crucial soundness and completeness results for the wide class of standard
unravelings. Theoretically, we contribute a comprehensive proof for soundness of
standard unravelings. It is based on [12, Theorem 3.8], but we could generalize
it in several respects. Practically, we provide a certifier for CTRSs. It is able to
certify quasi-decreasingness for all but one of the proofs generated by AProVE,
and it confirms 65% of the examples where ConCon claims confluence.

Potential future work includes the integration of further (non)confluence tech-
niques or termination techniques for CTRSs into IsaFoR.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1998)

2. Durán, F., Lucas, S., Meseguer, J., Marché, C., Urbain, X.: Proving termination
of membership equational programs. In: Proc. PEPM 2004, pp. 147–158 (2004)

3. Giesl, J., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C., Otto, C., Plücker, M.,
Schneider-Kamp, P., Ströder, T., Swiderski, S., Thiemann, R.: Proving termination
of programs automatically with AProVE. In: Demri, S., Kapur, D., Weidenbach,
C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 184–191. Springer, Heidelberg (2014)

4. Gmeiner, K., Nishida, N., Gramlich, B.: Proving confluence of conditional term
rewriting systems via unravelings. In: Proc. IWC 2013, pp. 35–39 (2013)

5. Gramlich, B.: Abstract relations between restricted termination and confluence
properties of rewrite systems. Fundamenta Informaticae 24, 3–23 (1995)

6. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. IPL 95(4), 446–453 (2005)

7. Marchiori, M.: Unravelings and ultra-properties. In: Hanus, M., Rodŕıguez-
Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 107–121. Springer, Heidelberg
(1996)

8. Marchiori, M.: On deterministic conditional rewriting. Technical Report Compu-
tation Structures Group Memo 405. MIT (1997)

9. Nagele, J., Thiemann, R.: Certification of confluence proofs using. In: Proc. 3rd
IWC, pp. 19–23 (2014)

10. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

11. Nishida, N.: Transformational Approach to Inverse Computation in Term Rewrit-
ing. PhD thesis, Nagoya University (2004)

12. Nishida, N., Sakai, M., Sakabe, T.: Soundness of unravelings for conditional term
rewriting systems via ultra-properties related to linearity. LMCS 8(3), 1–49 (2012)

13. Ohlebusch, E.: Transforming conditional rewrite systems with extra variables into
unconditional systems. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.)
LPAR 1999. LNCS, vol. 1705, pp. 111–130. Springer, Heidelberg (1999)

Formalizing Soundness and Completeness of Unravelings 255

14. Ohlebusch, E.: Termination of logic programs: Transformational methods revisited.
AAECC 12(1–2), 73–116 (2001)

15. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002)
16. Ohlebusch, E., Claves, C., Marché, C.: TALP: A tool for the termination analysis

of logic programs. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 270–273.
Springer, Heidelberg (2000)

17. Sternagel, T., Middeldorp, A.: Conditional confluence (System description). In:
Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 456–465. Springer,
Heidelberg (2014)

18. Thiemann, R., Sternagel, C.: Certification of termination proofs using. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009)

Proofs and Reconstructions

Nik Sultana1, Christoph Benzmüller2, and Lawrence C. Paulson1

1 Computer Lab, Cambridge University
2 Department of Mathematics and Computer Science, Freie Universität Berlin

Abstract. Implementing proof reconstruction is difficult because it in-
volves symbolic manipulations of formal objects whose representation
varies between different systems. It requires significant knowledge of the
source and target systems. One cannot simply re-target to another logic.
We present a modular proof reconstruction system with separate compo-
nents, specifying their behaviour and describing how they interact. This
system is demonstrated and evaluated through an implementation to re-
construct proofs generated by Leo-II and Satallax in Isabelle/HOL, and
is shown to work better than the current method of rediscovering proofs
using a select set of provers.

Keywords: Proof reconstruction, Higher-order logic, Abstract machines.

1 Introduction

The case for interfacing logic tools together has been made countless times in the
literature, but it is still an important research question. There are various logics
and tools for carrying out formal developments, but practitioners still lament
the difficulty of reliably exchanging mathematical data between tools.

Writing proof-translation tools is hard. The problem has both a theoretical
side (to ensure that the translation is adequate) and a practical side (to ensure
that the translation is feasible and usable). Moreover, the source and target
proof formats might be less documented than desired (or even necessary), and
this adds a dash of reverse-engineering to what should be a system integration
task.

We suggest that writing such tools can be made easier by relying on a suitable
modular framework. Modularity can be used to isolate the translation of different
kinds of formulas, inferences, and logics from one another. This has significant
practical benefits. First, the translations can be developed separately. Second,
if the reconstruction of an inference fails, it does not affect the reconstruction
of other inferences in the proof. This makes it easier to localise debugging ef-
forts. Third, it improves usability. The diversity between proof systems means
that inference-specific code can hardly ever be reused to reconstruct proofs from
other theorem provers. Thus, proof reconstruction is difficult to scale to recon-
struct proofs from different systems. The framework carves out the functionality
that can be reused between systems. This code is often fairly general, and used
to store and query formulas, inferences, and their metadata. We believe that

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 256–271, 2015.
DOI: 10.1007/978-3-319-24246-0_16

Proofs and Reconstructions 257

this divide-and-conquer approach is crucial to ease the implementation of proof
reconstruction for different systems.

In this paper we propose a framework structured as a compiler. The com-
piler’s target is specified as an abstract proof-building machine, which captures
essential features of the target logic. This framework is designed to be efficient
and extensible. Both compiler and abstract machine are implemented as an ex-
tension of the Isabelle/HOL proof assistant [14], to import proofs produced by
the Leo-II [4] and Satallax [7] theorem provers.

Paper structure. The series of functions applied to a proof in our framework is
outlined in §2. Our abstract model of a proof translator is described in §3, before
returning to describe our framework in more detail in §4. Our implementation
is described and evaluated in §5, before contrasting with related work in §6. We
conclude in §7 with a description of what we learned from this project.

2 Reconstruction Workflow

Proof reconstruction consists of a series of steps, or workflow, applied to some
representation of a proof. As a result of this workflow, a proof in a source logic
is transformed into a proof (of the same theorem) in the target logic.

Before giving a detailed description of the workflow in later sections, we sum-
marise our framework by outlining what needs to be implemented at each step of
the translation. If an implementation of the framework already exists, then this
description summarises what needs to be added or changed to translate proofs
between different theorem provers.

1. Parse the proof.
2. Interpret the logical signature. We use a mapping from types and con-

stants of the source logic, into types and constants of the target logic. This
mapping might not be total if the source language cannot be fully interpreted
in the target language. This mapping is lifted to map terms and formulas
from the source to target. If one of the logics is not typed, then suitable
encodings could be used [5].

3. Analyse and transform the proof.We often want to change the represen-
tation of the proof before translating it, to remove redundant information,
or restore information that was not included when the proof’s representation
was produced.

4. Generate a trace. We linearise the proof into a series of inferences. These
inferences are changed into instructions to an abstract proof-building ma-
chine, which we describe in the next section.

5. Emulate inferences. There are two kinds of interpretations at play when
translating proofs. The first kind was encountered in step 2, when we inter-
preted expressions, mapping them from the source to the target language.
The second kind of interpretation, which we call emulation, involves inter-
preting inferences of formulas, from the source to the target logic. As a result
of emulation, we generate a finite set of admissible rules in the target logic.

258 N. Sultana, C. Benzmüller and L.C. Paulson

This set forms a calculus that will be complete for the purpose of translating
the source proof into the target logic.

6. Play the trace. This is done on the abstract machine, and supported by
the emulated rules, to yield a proof in the target logic.

To use our framework, one must implement each of these steps. To handle a
new source language we must change steps 1-5. Step 6 provides an interface to
the target logic, in the form of an abstract proof-building machine. This machine
is an intermediate target in our framework, between the source and target logics.
We describe this machine next before describing the rest of the workflow in detail.

3 Cut Machines

The key observation of our approach is that while proof search abhors the cut
rule [2], proof translation benefits from it. We describe a simple abstract machine
for mapping proofs from one logic into another. It serves as an abstract model
of proof translation. A similar method was used by de Nivelle [10] to describe
the generation of proof terms that validate clausifications. It is also inspired by
how generic proof checking is done in Isabelle [15].

The purpose of using such a machine in our framework is to isolate the source
and target logics. We believe that this will make it easier to modify or repurpose
the front-end and back-end of implementations of the framework, to reconstruct
proofs from, or to, different logics. Such modifications would not affect other
parts of the framework; this is inspired by how compilers are structured.

A cut machine is defined in terms of two features:

1. The machine’s state consists of a tuple (ρ, σ, F), where ρ is a finite set of
ground assumption sequents (that can include axioms of a particular theory).
Symbol σ represents a stack of proof subgoal sequents, and F is the goal
formula. Proving all the subgoals is sufficient for proving the goal. The proofs
presented to the cut machine are translated to the target system. Translating
the proofs of all the subgoals is sufficient for translating the proof of the goal.

2. Instructions given to the machine may consist of the following:
– ‘Prove F ’ states that F is the goal formula. A goal formula may only

be set once per proof.
– ‘Cut r’ applies the sequent r ∈ ρ to the stack of subgoals in the machine’s

state. This will be described in more detail below.
– ‘End’ asserts that a machine is in a terminal state. A terminal state is

one where the subgoal stack σ is empty. The goal formula F in that state
has been shown to follow from ρ using the instructions presented to the
machine, which result in a proof in the target logic.

We call them ‘cut machines’ because they mainly rely on applying instances of
the Cut rule to splice together inferences. These are inferences in the target logic
that emulate the inferences made in the source logic proof. Splicing together the

Proofs and Reconstructions 259

emulated inferences produces a proof in the target logic. Specifically, consider
the instruction ‘Cut r’, where r ∈ ρ is a sequent, such that r = A1,...,An

B . (We
overload the rule notation to express sequents, since the resulting notation is
more pleasant to read. We use the symbol �ρ to denote the finite proof system
contained in ρ.) Then ‘Cut r’ can be interpreted as the following rule:

�ρ
A1,...,An

B �ρ A1 . . . �ρ An

�ρ B

Let the symbol � represent the single-step transition relation between states.
We will use ‘−’ to describe an empty stack, and right-associative ‘:’ to describe
the push operation. The formal semantics of the machine’s instructions are as
follows:

Prove F : (ρ, −, True) � (ρ, F, F)

Cut r : (ρ, B : σ, F) � (ρ, A1 : . . . :An :σ, F)

where r ∈ ρ and r = A1,...,An

B

End : (ρ, −, F) � (ρ, −, F).

A cut program consists of a finite sequence of instructions. A well-formed
cut program consists of a single Prove instruction, zero or more Cut instruc-
tions, and finally a single End. An initial state consists of any state of the form
(ρ, −, True). A terminal state consists of any state of the form (ρ, −, F).

A cut program describes the proof of some statement �ρ F in the source
logic, and the cut machine uses this description to build a proof in the target
logic. Note that a cut program without a Prove instruction only describes the
tautology �ρ True. A cut machine running a well-formed cut program can get
stuck in two ways: (i) when executing ‘Cut r’ if r �∈ ρ or if the conclusion of r
does not match the top element in σ, or (ii) when executing End if the machine
is not in a terminal state.

3.1 Validating the Model

Use of the model relies on the assumption that ρ contains all the rules needed
by the cut program. The finite set ρ contains a restricted inference system,
consisting of inference rules in the target logic. This set is a parameter to the
model, and the generation of these rules takes place externally—this will involve
emulating the inference rules of the source logic in terms of the target logic, as
described in §4.4.

A cut program that does not get stuck is called well-going. Provided that a
suitable ρ exists, the model has the following properties. Provided it is given
a well-going cut program, the cut machine has the following invariant: if the
subgoals are valid, then the goal is valid too. We can also show that if a cut
program reaches a terminal state then its proof goal is valid. Thus a well-going
cut program always produces a theorem in the target logic. Moreover, this can
be verified by inspecting a proof in the target logic.

260 N. Sultana, C. Benzmüller and L.C. Paulson

3.2 Using the Model

This section will describe how this model interacts with the workflow described
in §2. Let L1 represent a source logic, and L2 represent a target logic. ‘Logic’
here is used to describe essentially the syntactical features of a logic: the syntax
of its formulas, and the formation rules of its proofs. To use the model we require
three functions:

1. A mapping from formulas of L1 into formulas of L2, such that semantics is
preserved. We rely on the interpretation of formulas for this, mentioned in
point 2 in §2, and described further in §4.3.

2. A mapping from inferences in the source proof to inferences in the target
logic. We call this mapping an emulation. This was mentioned in point 5 in
§2, and will be described further in §4.4.
The resulting inferences are not necessarily primitive inferences—they could
be admissible rules. These rules make up the contents of ρ, one of the pa-
rameters of the machine described in this section.

3. A compiler that takes proofs encoded in L1 and produces a cut program.
This was mentioned in point 4 in §2, and will be described further in §4.5,
which includes example output of such a compiler.

If the functions above are total and preserve semantic properties, then any
proof in the source logic can be translated into a proof in the target logic. The
translation can be carried out by running the cut program on an implementation
of the cut machine.

3.3 Extending the Model

Reliance on the cut rule gives this framework its generality. A cut machine can
be specialised by lifting features of the source logic to the level of the machine.
This involves extending the definition of the machine and its instruction set.
The lifted feature would then be simulated at the machine level, like the Cut
instruction, rather than relying on opaque derivations in ρ.

This can be useful for features such as splitting [21]. Recall that splitting is
a rule scheme used in clausal calculi to make clauses smaller. We will base the
description of splitting on the implementation of this concept in Leo-II. Without
loss of generality, we will look at an example starting with a binary clause {A,B}
such that A and B do not share free variables. We can split this clause into
singleton clauses {A} and {B}, but separate refutations must be obtained for
each element of the split—that is, {A} cannot be used in a refutation derived
from {B}, and vice-versa.

Using the current definition of the machine, such a rule could be used outside
the machine to populate ρ (remember that ρ is a parameter to the model) with
the rule A∨B

False . We would then use this rule via Cut as before.
Instead, we could modify the machine’s definition to lift the rule to the ma-

chine level, to specialise the machine to support splitting.

Proofs and Reconstructions 261

Logically, this is the following rule:

�ρ
A

False �ρ
B

False �ρ A ∨B

�ρ False

The semantics of the new instruction Split(A ∨B) is:

(
ρ,

C

False
: σ, F

)
�

(
ρ,

C ∧ A

False
:
C ∧B

False
:

C

A ∨B
: σ, F

)

Such a machine has been implemented for interpreting Leo-II proofs in Is-
abelle/HOL. Interpreting Satallax proofs only relies on the basic machine, with-
out splitting.

4 Framework

Our approach to proof reconstruction is made up of two phases: the shunting
and emulation of inferences. The first phase (steps 1-4 in §2) transforms a proof
and generates a cut program, while the second phase (step 5 in §2) assists in the
execution of this program. The second phase populates the set ρ that will be
used when executing the cut program (step 6 in §2). Executing the cut program
will yield a proof in the target logic.

The two phases are related, but have different purposes:

– The shunting of inferences involves (globally) meaning-preserving transfor-
mations being applied to a proof, to facilitate its reconstruction.

– Emulation maps inferences of one calculus to chains of inferences in another
calculus. In our implementation, the inferences made by Leo-II and Satallax
are emulated as Isabelle/HOL-admissible rules.

It is advantageous to separate the two phases since some details of one can
be encapsulated from the other. Furthermore, the emulation of each inference
rule takes place independently of the others. Failure to reconstruct an inference
will mean that we cannot reconstruct the entire proof, but would not affect the
reconstruction of other inferences in the proof. This isolation in emulation is
advantageous since it localises debugging, and could allow humans to assist in
reconstructing inference rules that currently cannot be emulated by the imple-
mentation.

We will concretise our description of the framework to a specific proof be-
ing translated between two specific logics: from the classical higher-order logic
clausal calculus of Leo-II to the classical higher-order logic of Isabelle/HOL. De-
spite their conceptual similarity, non-trivial manipulation is required to have the
proofs of Leo-II checked by Isabelle/HOL: some information needs to be pruned
away, and other information reconstructed, as will be explained below. Despite
the specificity of this explanation, this method is applicable to other varieties of
formal logic, such as the higher-order tableau calculus used by Satallax.

262 N. Sultana, C. Benzmüller and L.C. Paulson

For a running example, let us take the TPTP problem SEU553ˆ2. In this
problem, we use individuals, whom we represent by the type symbol ι, to model
sets of elements. The powerset function therefore has the type ι → ι. The problem
conjectures that if two arbitrary sets, A and B, containing individuals, are equal,
then their powersets are equal too. This is formalised as follows:

∀A : ι, B : ι. A = B −→ powersetA = powersetB

Leo-II proves this to be a theorem. Its proof output is shown in Figure 1, and
rendered as a graph in Figure 2.

4.1 Proof Generation

Böhme and Weber [6] recommend that proofs intended for reconstruction should
be sufficiently detailed to facilitate this task. We came to appreciate the validity
of their advice based on our experience with different versions of Leo-II’s proof
output. By default, Leo-II proofs may contain instances of compound rules, such
as those for clausification and unification. Using compound rules often results in
shorter proofs since the details of member inferences are elided. Unfortunately,
this loses information that can be very expensive to recompute. This is described
in more detail and quantified in the first author’s dissertation [19]. Fortunately
Leo-II can be instructed to expand compound rules into primitive inferences in
its proof output. We found this to be essential. Satallax does not use compound
rules in its proofs.

4.2 Formula Interpretation

After the proof is parsed, its logical signature—consisting of a set of types, and a
set of constants—is extracted. The signature is interpreted in the target logic—in
this case, it consists of the types ι and ι → ι, and the constants powerset, sK1A,
and sK2SY2, following the signature described on lines 1-3 in the proof shown
in Figure 1. The constants sK1A and sK2SY2 do not appear in the problem’s
formulation, because they are Skolem constants [11], and they are scoped in the
proof, not in the original problem.

After interpreting the signature, the formulas contained in inferences (lines
4-29) are interpreted in the target logic relative to this signature. This leaves us
with a skeleton of the proof consisting of the inferred formulas, but so far does
not include the inferences themselves, other than metadata—such as the names
of inference rules, and their parameters (e.g., which inferences they derive from).

This step is identical for both Satallax and Leo-II proofs encoded in TPTP.
The approach will differ significantly for the two provers in the next steps, be-
fore converging again when the cut programs (resulting from their proofs) are
executed.

4.3 Proof Analysis and Transformation

Some preprocessing and transformation of inferences is carried out on the proof
skeleton. The inferences form a directed acyclic graph where the vertices are

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU553^2.p

Proofs and Reconstructions 263

1
t
h
f
(
t
p
_
p
o
w
e
r
s
e
t
,

t
y
p
e
,

(
p
o
w
e
r
s
e
t
:

(
$
i
>
$
i
)
)
)
.

2
t
h
f
(
t
p
_
s
K
1
_
A
,

t
y
p
e
,

(
s
K
1
_
A
:

$
i
)
)
.

3
t
h
f
(
t
p
_
s
K
2
_
S
Y
2
,

t
y
p
e
,

(
s
K
2
_
S
Y
2
:

$
i
)
)
.

4
t
h
f
(
1
,

c
o
n
j
e
c
t
u
r
e
,

(
!
[
A
:
$
i
,
B
:
$
i
]
:

(
(
A

=
B
)

=
>

(
(
p
o
w
e
r
s
e
t
@
A
)

=
(
p
o
w
e
r
s
e
t
@
B
)
)
)
)
,

5
�

f
i
l
e
(
’
S
E
U
5
5
3
^
2
.
p
’
,
p
o
w
e
r
s
e
t
_
_
C
o
g
)
)
.

6
t
h
f
(
2
,

n
e
g
a
t
e
d
_
c
o
n
j
e
c
t
u
r
e
,

(
(
(
!
[
A
:
$
i
,
B
:
$
i
]
:

(
(
A

=
B
)

=
>

(
(
p
o
w
e
r
s
e
t
@
A
)

=
(
p
o
w
e
r
s
e
t
@
B
)
)
)
)
=
$
f
a
l
s
e
)
)
,

7
�

i
n
f
e
r
e
n
c
e
(
n
e
g
a
t
e
_
c
o
n
j
e
c
t
u
r
e
,
[
s
t
a
t
u
s
(
c
t
h
)
]
,
[
1
]
)
)
.

8
t
h
f
(
3
,

p
l
a
i
n
,

(
(
(
!
[
A
:
$
i
,
B
:
$
i
]
:

(
(
A

=
B
)

=
>

(
(
p
o
w
e
r
s
e
t
@
A
)

=
(
p
o
w
e
r
s
e
t
@
B
)
)
)
)
=
$
f
a
l
s
e
)
)
,

9
�

i
n
f
e
r
e
n
c
e
(
u
n
f
o
l
d
_
d
e
f
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
2
]
)
)
.

1
0

t
h
f
(
4
,

p
l
a
i
n
,

(
(
(
!
[
S
Y
2
:
$
i
]
:

(
(
s
K
1
_
A

=
S
Y
2
)

=
>

(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)

=
(
p
o
w
e
r
s
e
t
@
S
Y
2
)
)
)
)
=
$
f
a
l
s
e
)
)
,

1
1

�
i
n
f
e
r
e
n
c
e
(
e
x
t
c
n
f
_
f
o
r
a
l
l
_
n
e
g
,
[
s
t
a
t
u
s
(
e
s
a
)
]
,
[
3
]
)
)
.

1
2

t
h
f
(
5
,

p
l
a
i
n
,

(
(
(
(
s
K
1
_
A

=
s
K
2
_
S
Y
2
)

=
>

(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)

=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
)
=
$
f
a
l
s
e
)
)
,

1
3

�
i
n
f
e
r
e
n
c
e
(
e
x
t
c
n
f
_
f
o
r
a
l
l
_
n
e
g
,
[
s
t
a
t
u
s
(
e
s
a
)
]
,
[
4
]
)
)
.

1
4

t
h
f
(
6
,

p
l
a
i
n
,

(
(
(
s
K
1
_
A

=
s
K
2
_
S
Y
2
)
=
$
t
r
u
e
)
)
,

1
5

�
i
n
f
e
r
e
n
c
e
(
s
t
a
n
d
a
r
d
_
c
n
f
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
5
]
)
)
.

1
6

t
h
f
(
7
,

p
l
a
i
n
,

(
(
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)

=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
=
$
f
a
l
s
e
)
)
,

1
7

�
i
n
f
e
r
e
n
c
e
(
s
t
a
n
d
a
r
d
_
c
n
f
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
5
]
)
)
.

1
8

t
h
f
(
8
,

p
l
a
i
n
,

(
(
(
~

(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)

=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
)
=
$
t
r
u
e
)
)
,

1
9

�
i
n
f
e
r
e
n
c
e
(
p
o
l
a
r
i
t
y
_
s
w
i
t
c
h
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
7
]
)
)
.

2
0

t
h
f
(
9
,

p
l
a
i
n
,

(
(
(
s
K
1
_
A

=
s
K
2
_
S
Y
2
)
=
$
t
r
u
e
)
)
,

2
1

�
i
n
f
e
r
e
n
c
e
(
c
l
a
u
s
e
_
c
o
p
y
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
6
]
)
)
.

2
2

t
h
f
(
1
0
,

p
l
a
i
n
,

(
(
(
~

(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)

=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
)
=
$
t
r
u
e
)
)
,

2
3

�
i
n
f
e
r
e
n
c
e
(
c
l
a
u
s
e
_
c
o
p
y
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
8
]
)
)
.

2
4

t
h
f
(
1
1
,

p
l
a
i
n
,

(
(
(
(
p
o
w
e
r
s
e
t
@
s
K
1
_
A
)

=
(
p
o
w
e
r
s
e
t
@
s
K
2
_
S
Y
2
)
)
=
$
f
a
l
s
e
)
)
,

2
5

�
i
n
f
e
r
e
n
c
e
(
e
x
t
c
n
f
_
n
o
t
_
p
o
s
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
1
0
]
)
)
.

2
6

t
h
f
(
1
2
,

p
l
a
i
n
,

(
(
(
$
f
a
l
s
e
)
=
$
t
r
u
e
)
)
,

2
7

�
i
n
f
e
r
e
n
c
e
(
f
o
_
a
t
p
_
e
,
[
s
t
a
t
u
s
(
t
h
m
)
]
,
[
9
,
1
1
]
)
)
.

2
8

t
h
f
(
1
3
,

p
l
a
i
n
,

(
$
f
a
l
s
e
)
,

2
9

�
i
n
f
e
r
e
n
c
e
(
s
o
l
v
e
d
_
a
l
l
_
s
p
l
i
t
s
,
[
s
o
l
v
e
d
_
a
l
l
_
s
p
l
i
t
s
(
j
o
i
n
,
[
]
)
]
,
[
1
2
]
)
)
.

F
ig
.
1
.
L
eo
-I
I’
s
p
ro
o
f
o
f
S
E
U
5
5
3
ˆ
2
.
L
eo
-I
I
en

co
d
es

it
s
p
ro
o
fs

in
T
P
T
P

fo
rm

a
t
[2
0
],
w
h
er
e
ea
ch

li
n
e
is
st
ru
ct
u
re
d
a
s
fo
ll
ow

s:
l
a
n
g
u
a
g
e
(
i
d
,

r
o
l
e
,

f
m
l
a
,

a
n
n
o
t
a
t
i
o
n
)
,
w
h
er
e
th
e
a
n
n
o
ta
ti
o
n
is

o
p
ti
o
n
a
l.
H
er
e
th
e
la
n
g
u
a
g
e
is

‘T
H
F
’
[3
],
u
se
d
to

en
co
d
e
fo
rm

u
la
s
in

h
ig
h
er
-o
rd
er

lo
g
ic
.
S
o
m
e
in
fo
rm

a
ti
o
n
in

th
e
p
ro
o
f
h
a
s
b
ee
n
m
a
rk
ed

u
p
:
th
e
g
re
y
-b
ox

ed
te
x
t,

su
ch

a
s

t
p
p
o
w
e
r
s
e
t

a
n
d

1
,
a
re

u
n
iq
u
e
id
en

ti
fi
er
s
fo
r

in
fe
re
n
ce

st
ep

s;
a
n
d
th
e
b
ox

ed
te
x
t,

co
n
si
st
in
g
o
f

s
K
1
A

a
n
d

s
K
2
S
Y
2

a
re

S
k
o
le
m

co
n
st
a
n
ts
.
L
in
es

p
re
fi
x
ed

b
y
a
st
a
r
�

a
re

a
n
n
o
ta
ti
o
n

li
n
es
,
a
n
d
th
e
u
n
d
er
li
n
ed

w
o
rd
s
in

th
o
se

li
n
es

a
re

n
a
m
es

o
f
in
fe
re
n
ce

ru
le
s
u
se
d
b
y
L
eo
-I
I.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU553^2.p

264 N. Sultana, C. Benzmüller and L.C. Paulson

1 ∀A : ι, B : ι. (A = B) −→ (powerset A = powerset B)

2 (∀A : ι, B : ι. (A = B) −→ (powerset A = powerset B)) = False

3 (∀A : ι, B : ι. (A = B) −→ (powerset A = powerset B)) = False

4 (∀SY2 : ι. (sKA = SY2) −→ (powerset sKA = powerset SY2)) = False

5 ((sKA = sKSY2) −→ (powerset sKA = powerset sKSY2)) = False

6 (sKA = sKSY2) = True 7 (powerset sKA = powerset sKSY2) = False

8 (¬(powerset sKA = powerset sKSY2)) = True

9 (sKA = sKSY2) = True

10 (¬(powerset sKA = powerset sKSY2)) = True

11 (powerset sKA = powerset sKSY2) = False

12 False = True

13 False

negate conjecture

unfold def

extcnf forall neg

extcnf forall neg

standard cnf

standard cnf

clause copy

polarity switch

clause copy

extcnf not pos

fo atp e

solved all splits

Fig. 2. Graph for Leo-II’s proof of SEU553ˆ2. Vertices consist of formulas derived
during the proof, except for the topmost formula, labelled 1 , which is obtain from the

problem’s formulation. The numeric labels adjacent to formulas, such as 1 , are used
by Leo-II to uniquely identify clauses it generates. We use these labels to index clauses
during proof reconstruction. These labels correspond to the labels in Figure 1. Note
that this proof contains inferences that do not materially advance the proof. We can
see this between formulas 6 and 9, and between formulas 7-11. A simple static analysis
could erase formulas 9 and 8-11, and adjust the edges from 6 and 7 to point to 12.

http://www.cs.miami.edu/~tptp/cgi-bin/SeeTPTP?Category=Problems&Domain=SEU&File=SEU553^2.p

Proofs and Reconstructions 265

formulas, and the edges are labelled with inference names. The proof from Fig-
ure 1 is shown as such a graph in Figure 2.

The analysis and transformation of the inferences might be done to simplify
the proof, or to facilitate further analyses or transformations. There are three
proof transformations that we found to be useful for processing Leo-II proofs:

1. Eliminating redundant parts of the proof. Occasionally Leo-II includes re-
dundant chains of inferences that do not materially contribute to the proof.
We can see two examples of this in Figure 2, as explained in its caption.

2. Extracting subproofs related to splitting. Recall from §3.3 that each subproof
of a split yields a refutation, and the set of inferences made during a subproof
of a split is kept apart from the inferences made in other splits. Each subproof
is used to construct a lemma that produces a premise to the disjunction-
elimination rule.

3. Separating instantiation from other inferences. Leo-II sometimes overloads
inferences with instantiation of variables. This makes it harder to emulate
an inference. Rather than emulating this complex behaviour, we transform
the proof to extract instantiations into separate inferences. This allows us to
handle instantiations and other inferences separately.

A useful transformation in Satallax consisted of inlining assumption formulas
to produce the actual inferences made at each step. Satallax does not explicitly
encode an inference formula. Instead, each proof line produced by Satallax refers
to formulas involved in that inference, and the formulas are stored separately.
Combining these to give the actual inference is straightforward.

A useful analysis to carry out on both Leo-II and Satallax proofs involves
discovering the definitions of Skolem constants. These definitions are necessary
to emulate their ∃-elimination inferences. Both provers’ proofs generally contain
the declarations of Skolem constants (as can be seen for Leo-II on lines 2 and 3
of Figure 1), but not their definitions. These definitions are implicit in the proof,
and can be extracted by analysing the syntax. Skolemisation occurs on lines 4
and 5 in Figure 1, and the equations extracted by our analysis are:

sK1A = (εA : ι. (∀B : ι. (A = B) −→ (powerset A = powerset B)) = False)

sK2B = (εB : ι. (sK1A = B) −→ (powerset sK1A = powerset B) = False)

These are then added as axioms to the theory. One might feel justifiably squeamish
about adding axioms to a theory, but the axioms concerned here are definitional
axioms for Skolem constants.

Note that here we assume that the target theory validates the Axiom of Choice
(and can interpret Hilbert’s ε operator). This arises from the specific features of
our implementation targetting Isabelle/HOL (which is a classical logic) and it is
not a feature or requirement of the cut-machine model.

4.4 Emulation of Inference Rules

We now turn to the inferences themselves. Inferences are emulated to yield ad-
missible rules in the target calculus. Emulation might be implemented using rule

266 N. Sultana, C. Benzmüller and L.C. Paulson

schemes or proof-building functions, which could consist of calls to provers whose
output we can already reconstruct. This was done previously between Leo-II, Sa-
tallax and Isabelle/HOL [18]. For instance, the Leo-II inference described in line
26 of Figure 1 can be emulated by the Isabelle/HOL-admissible rule

(sK1A = sK2SY2) = True ∧ (powerset sK1A = powerset sK2SY2) = False

False = True

where, as specified in Figure 1, the first premise is contributed from the conclu-
sion of the inference labelled 9 (occurring in line 20), and the second premise
from the inference labelled 11 (line 24). The proof text also indicates that this
inference was made using the E theorem prover [17], with which Leo-II coop-
erates. The resulting rule in Isabelle/HOL is labelled “12”, consistent with the
name used in the TPTP encoding of the proof. Once all inference rules have
been emulated, then the proof skeleton has been extended to include all the
information necessary to produce a proof in the target logic.

4.5 Generating a Cut Program

So far we have imported all of the proof information—consisting of signature,
formulas, and inferences—from the source logic into the target logic. We now
need to combine the inferences to reconstruct the theorem in the target logic.
The proof graph is traversed depth-first, to produce a trace, or cut program, of
the proof. Running this on an implementation of a cut machine (described in §3)
should produce the reconstructed proof.

For the example proof above, the program consists of 18 instructions, essen-
tially a traversal of Figure 2:

1 [Cut "13", Cut "12", Unconjoin,

2 Cut "11", Cut "10", Cut "8", Cut "7",

3 Cut "5", Cut "4", Cut "3", Assumed,

4 Cut "9", Cut "6",

5 Cut "5", Cut "4", Cut "3", Assumed,

6 End]

4.6 Executing a Cut Program

The cut program is interpreted according to the semantics given in §3. We use
some additional instructions in our implementation. We describe them next; they
can both be seen in the example code snippet given above.

The Unconjoin instruction eliminates a conjunction, and behaves like the
right-conjunction rule in the sequent calculus. This is needed since the proof
graph is not a tree in general—it recombines. For example, this command is
applied to step 12, formalised in Isabelle/HOL in §4.4, to break up the conjoined
premises into two premises. This step consumes one subgoal, and produces two
subgoals. Each subgoal relates to a path to the root of the graph. The root of

Proofs and Reconstructions 267

the graph consists of the conjecture formula. Finally, the Assumed instruction
discharges a subgoal using an identical element of ρ.

Note that in the program shown earlier, lines 3 and 5 are duplicates. We could
extract a lemma that fuses together the contents of line 3 into another admissible
rule, then replace line 5 with an application of this lemma. There are different
ways of implementing this. One way is a proof analysis that produces commands
to create and use a lemma (in which case the machine needs to be extended
to interpret these commands). Another is a proof transformation that adds the
lemmas to ρ and simply produces a ‘Cut’ command to use the lemma.

For both Leo-II and Satallax we execute this program on the double-negated
conjecture, since they both work by refutation. If all emulation steps are suc-
cessful, then the execution should yield an Isabelle/HOL theorem corresponding
to that proved by Leo-II or Satallax.

5 Implementation

We implemented this system as an extension to Isabelle, and it consists of around
8600 lines (including comments) of Standard ML and Isabelle definitions—such
as the formalisation of Leo-II and Satallax inference rules as Isabelle rules.1 The
cut machine described in this paper is implemented as an interface to Isabelle’s
kernel; ultimately all the reconstructed proofs are validated by Isabelle’s kernel.

The preceding sections described the design of the framework and its compo-
nents, and how it was implemented to import Leo-II and Satallax proofs into
Isabelle/HOL. These are the limitations of the implemented prototype:

1. Currently we do not handle the rules for the Axiom of Choice in both Leo-II
and Satallax. Emulating those rules is a natural extension to this work.

2. Recall that Leo-II collaborates with E to find a refutation. In our implemen-
tation, E’s proofs are re-found by using Metis [12], whose proofs can already
be reconstructed in Isabelle/HOL. Reconstructing E’s proofs separately, and
reconstructing hybrid Leo-II+E proofs, are discussed elsewhere [19].

3. Our Satallax reconstruction code currently does not support the use of ax-
ioms in proofs. Supporting axioms is logically straightforward: using an ax-
iom involves drawing it from ρ and adding a Cut step for that axiom.

5.1 Evaluation

A set of test proofs was first obtained by running Leo-II 1.6 for 30 seconds on
all THF problems in the TPTP 5.4.0 problem set. In these experiments, Leo-
II cooperated with version 1.8 of the E theorem prover. Leo-II produced 1537
proofs. We used a repository version of Isabelle2013, the versions of Metis and
Z3 packaged for Isabelle2013, and the experiments were done on a 1.6GHz Intel
Core 2 Duo box, with 2GB RAM, and running Linux.

1 All the code can be downloaded from
http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_code.tgz

http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_code.tgz

268 N. Sultana, C. Benzmüller and L.C. Paulson

The translator was then run with a timeout of 10 seconds. By using Metis to
emulate E, 1262 (82.1%) proofs were reconstructed entirely. If we treat E as an
oracle (i.e., assuming E is sound, and that we have a perfect reconstruction for
its proofs), then the number of reconstructed proofs increases to 1442 (93.8%).
Currently, in Sledgehammer [16]—Isabelle’s interface for external provers—Leo-
II proofs are reconstructed by refinding using Metis and Z3 [9]. On the same
problem set, Metis and Z3 were able to reconstruct 57.3% and 68.9% of the
proofs respectively. Our scripts and data for this evaluation are available online.2

To evaluate the reconstruction of Satallax proofs we ran Satallax 2.8 in proof-
generating mode on all THF problems in the TPTP 6.1.0 problem set, with
a 30-second timeout for each problem. This set contains 3036 THF problems,
2458 of which are classified as theorems. Satallax provided proofs for 1860 THF
problems. After removing proofs that involve axioms (because of the limitation
described in §5 point 3) we are left with 1383 proofs.

Our reconstruction code was then run on each of these proofs, with a timeout
of 10 seconds, and succeeded in reconstructing 1149 proofs (82%). On the same
problem set, Metis and Z3 were able to reconstruct 51% and 67% of the proofs
respectively. We used a repository version of Isabelle2014, and ran these exper-
iments on a 2GHz Intel Core i7 machine, with 16GB RAM, and running OSX.
Our scripts and data for this evaluation are available online.3

6 Related Work

There is a fairly large literature on proof translation and reconstruction. We
focus on two recent projects that are similar in spirit and setup to ours. A more
detailed survey is given in the first author’s dissertation [19].

Keller [13] uses an extension of the Calculus of Constructions (as implemented
in Coq) as the host logic for theorems proved by SAT and SMT solvers. She
develops a trusted SMT proof checker and uses it to check proofs produced by
other SMT solvers, or to interpret those proofs in Coq’s logic. Keller’s checker
follows the design of an SMT solver: it mediates between theory-specific solvers to
refute a conjecture. The theory-specific solvers in Keller’s work consist of theory-
specific decision-procedures implemented using Coq. In order to use Keller’s
system, a proof from an SMT solver must first be translated into a form that
can be processed by the trusted checker. (We think that this is not unlike the
generation of cut programs, at least in spirit.) This is done as a preprocessing
step, and this realises an embedding of the source calculus in the target calculus.
The pure logic component of SMT is identical to that of SAT: proofs consist of
refutations expressed using resolution. This means that the pure logic component
of Keller’s system is much simpler than the systems developed in our work: for
one thing, SMT lacks quantification. In a related respect, Keller’s system is
more complex than the systems developed in our work, since Keller’s system
supports a range of theories—as is expected in SMT. Currently, the state of the

2 http://www.cl.cam.ac.uk/~ns441/files/recon_framework_results.tgz
3 http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_eval.tgz

http://www.cl.cam.ac.uk/~ns441/files/recon_framework_results.tgz
http://www.cl.cam.ac.uk/~ns441/files/frocos_2015_eval.tgz

Proofs and Reconstructions 269

art in higher-order theorem proving does not interpret any theories other than
equality [1].

Chihani et al. [8] describe an architecture based on higher-order logic pro-
gramming for checking proof certificates. These certificates can take different
forms, depending on the proof calculus of the source logic they relate to. Check-
ing these certificates involves interpreting them into a form that can be checked
as a proof in LKU, a linear logic they devised.

The system designed by Chihani et al. consists of three components: The
kernel is an implementation of LKU’s proof system; the client is the proof-
producing theorem prover, which encodes its proofs in some format chosen by
the authors of the theorem prover; and clerks and experts are two types of agent-
like functions that carry out proof construction in LKU. They correspond to the
two phases of proof-construction in a focussed proof system. This component
serves to interpret the proof certificate into an LKU proof, that can then be
checked by the kernel.

Together, clerks and experts seem to constitute an embedding of the source
logic into a fragment of LKU. The clerks and experts seem to carry out a similar
role to that of Keller’s preprocessor, described above. (Recall that a different
preprocessor might be needed for each theorem prover whose proofs we want to
import.) In our work, this role is carried out by the emulations of inference rules,
described in §4.4.

Using Keller’s approach does not require the embedding to be described in the
host system (i.e., Coq in that case). In contrast, the approach taken by Chihani
et al., and us, do require this: emulation takes inferences in the source logic and
produces inferences in the target logic.

7 Conclusions

A modular framework for translating proofs between two logics, based on cut
machines, can accomplish efficient and robust proof reconstruction. However,
detailed proofs are essential; otherwise, reconstructing proofs requires excessive
search, which can be very expensive. Our implementation of the framework out-
performs the existing method for reconstructing Leo-II and Satallax proofs in
Isabelle/HOL.

Modularity is achieved partly by breaking up the translation process into
steps (such as interpreting formulas, and emulating inferences) but also by using
an abstract proof-building machine to mediate between the source and target
logics. Our modular design is intended to facilitate reuse and modification. The
extent to which this is the case remains to be seen, but we are encouraged that
similar concepts were used by Keller and Chihani et al.

Acknowledgments. We thank Trinity College, Cambridge University Com-
puter Lab, Cambridge Philosophical Society, and DAAD (the German Academic
Exchange Service) for funding support. The anonymous reviewers and Chad
Brown provided feedback, for which we are grateful.

270 N. Sultana, C. Benzmüller and L.C. Paulson

References

1. Benzmüller, C.: Equality and Extensionality in Higher-Order Theorem Prov-
ing. PhD thesis, Naturwissenschaftlich-Technische Fakultät I, Saarland University
(1999)

2. Benzmüller, C., Brown, C.E., Kohlhase, M.: Cut-Simulation and Impredicativity.
Logical Methods in Computer Science 5(1:6), 1–21 (2009)

3. Benzmüller, C.E., Rabe, F., Sutcliffe, G.: THF0 – The core TPTP language for
classical higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 491–506. Springer, Heidelberg (2008)

4. Benzmüller, C., Theiss, F., Paulson, L.C., Fietzke, A.: LEO-II – A cooperative
automatic theorem prover for higher-order logic. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer,
Heidelberg (2008)

5. Blanchette, J.C.: Automatic Proofs and Refutations for Higher-Order Logic. PhD
thesis, Institut für Informatik, Technische Universität München (2012)

6. Böhme, S., Weber, T.: Designing proof formats: A user’s perspective. In: Fontaine,
P., Stump, A. (eds.) International Workshop on Proof Exchange for Theorem Prov-
ing, pp. 27–32 (2011)

7. Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B.,
Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer,
Heidelberg (2012)

8. Chihani, Z., Miller, D., Renaud, F.: Foundational proof certificates in first-order
logic. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 162–177. Springer,
Heidelberg (2013)

9. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. de Nivelle, H.: Extraction of proofs from clausal normal form transformation. In:
Bradfield, J.C. (ed.) CSL 2002. LNCS, vol. 2471, pp. 584–598. Springer, Heidelberg
(2002)

11. Dowek, G.: Skolemization in simple type theory: the logical and the theoretical
points of view. In: Benzmüller, C., Brown, C.E., Siekmann, J., Statman, R. (eds.)
Festschrift in Honour of Peter B. Andrews on his 70th Birthday. Studies in Logic
and the Foundations of Mathematics. College Publications (2009)

12. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer,
M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics
in Higher Order Logics, number CP-2003-212448 in NASA Technical Reports,
pp. 56–68, September 2003

13. Keller, C.: A Matter of Trust: Skeptical Communication Between Coq and External
Provers. PhD thesis, École Polytechnique, June 2013

14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

15. Paulson, L.C.: Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)

16. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: International
Workshop on the Implementation of Logics. EasyChair (2010)

17. Schulz, S.: E – A Brainiac Theorem Prover. Journal of AI Communications 15(2/3),
111–126 (2002)

Proofs and Reconstructions 271

18. Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledge-
hammer test bench. Journal of Applied Logic (2012)

19. Sultana, N.: Higher-order proof translation. PhD thesis, Computer Laboratory,
University of Cambridge, Available as Tech Report UCAM-CL-TR-867 (2015)

20. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

21. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, pp. 1965–2013.
MIT Press (2001)

Combination Methods

A Rewriting Approach to the Combination

of Data Structures with Bridging Theories

Paula Chocron1, Pascal Fontaine2,�, and Christophe Ringeissen2

1 IIIA-CSIC, Bellaterra, Catalonia, Spain
2 INRIA, Université de Lorraine and LORIA, Nancy, France

Abstract. We introduce a combination method à la Nelson-Oppen to
solve the satisfiability problem modulo a non-disjoint union of theories
connected with bridging functions. The combination method is particu-
larly useful to handle verification conditions involving functions defined
over inductive data structures. We investigate the problem of determin-
ing the data structure theories for which this combination method is
sound and complete. Our completeness proof is based on a rewriting
approach where the bridging function is defined as a term rewrite sys-
tem, and the data structure theory is given by a basic congruence re-
lation. Our contribution is to introduce a class of data structure the-
ories that are combinable with a disjoint target theory via an induc-
tively defined bridging function. This class includes the theory of equal-
ity, the theory of absolutely free data structures, and all the theories in
between. Hence, our non-disjoint combination method applies to many
classical data structure theories admitting a rewrite-based satisfiability
procedure.

1 Introduction

The modular construction of reasoning engines appears very often in logic and
automated deduction, for instance to check whether a property still holds in a
union of theories when this property holds in component theories. Working with
signature-disjoint theories obviously simplifies the problem, e.g. in the Nelson-
Oppen combination method where a satisfiability procedure for T1 ∪ T2 is built
from the satisfiability procedures for the two signature-disjoint theories T1 and
T2. Even in that case, the signature-disjointness of T1 and T2 is not sufficient
for the combination since additional “semantic” requirements on theories are
required to get a complete satisfiability procedure. A first solution by Nelson and
Oppen was to require stably infinite theories. This condition can be refined, and
several other classes of kind theories have been recently investigated: shiny [20],
polite [15] and gentle theories [10]. The Nelson-Oppen combination method is

� This work has been partially supported by the project ANR-13-IS02-0001 of the
Agence Nationale de la Recherche, by the European Union Seventh Framework Pro-
gramme under grant agreement no. 295261 (MEALS), and by the STIC AmSud
MISMT.

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 275–290, 2015.
DOI: 10.1007/978-3-319-24246-0_17

276 P. Chocron, P. Fontaine, and C. Ringeissen

now well-understood for disjoint unions of theories, and it is widely adopted to
solve Satisfiability Modulo Theories (SMT) problems. It has become the core
component of modern SMT solvers. But there is still an increasing demand
on non-disjoint combinations. The extension of the Nelson-Oppen combination
method to unions of non-disjoint theories has been already investigated during
the last decade [11, 19]. This has led to the design of non-disjoint combination
methods requiring some strong “semantic” assumptions on theories. However,
these assumptions are difficult to meet in practical applications. For this reason,
the use of non-disjoint combination methods in SMT solving is currently very
limited.

We focus on simple techniques for non-disjoint combinations where the notions
of polite and gentle theories [8] initially introduced for the disjoint case are also
useful. In this paper, we consider a simple but meaningful non-disjoint case where
the two theories T1 and T2 are connected by a bridging theory, whose axioms can
be easily processed for any combined satisfiability problem. In this way, these
non-disjoint combinations are reducible to disjoint ones. This avoids the need
for complicated non-disjoint combination methods. Practical applications often
involve a data structure theory T1 and an arithmetic theory T2. This particular
union has been extensively studied, especially to combine an equational theorem
prover processing (the axioms of) T1 with an arithmetic solver for T2 [7, 21].
This problem was first studied for disjoint combinations, but non-disjoint unions
naturally arise when considering a bridging theory to relate the data structure
theory T1 to the arithmetic theory T2, e.g. the length function for the data
structure of lists [13,14,16]. The Ghilardi non-disjoint combination method [11]
has been already applied to handle some connections between theories [3,13,14].
In [13, 14], the idea is to use superposition-based satisfiability procedures to
process theory extensions of T2. In that context, it is always a difficult and
tedious task to design a new superposition calculus incorporating T2 as a built-
in theory.

In this paper, we develop a lightweight approach which is sufficient to handle
the special case of bridging theories. This work is clearly inspired by the locality-
based approach presented in [16] to handle bridging functions in local theory
extensions. We consider the same problem by introducing a combination-based
approach using a slight adaptation of the Nelson-Oppen disjoint combination
method. Our approach has been initiated in [9] by studying the case of abso-
lutely free data structures, with a particular focus on the adaptation required
by the restriction to standard interpretations [6, 18, 22]. Like a locality-based
satisfiability procedure applies to other theories of constructors [17], the com-
bination method is actually applicable beyond the case of absolutely free data
structures. In this paper, we investigate the constructor-based theories for which
the combination method is sound and complete.

The main contribution of this paper is to identify a class of data structure
theories for which our combination method is complete. In this class, theories
are many-sorted, with disjoint sorts to denote respectively the data instances
and the structure instances. Our combination method solves the satisfiability

Combination of Data Structures with Bridging Theories 277

problem in a union of a data structure theory plus a target theory and a bridging
theory. With this method, the target theory can be arbitrary. Actually, this is
due to the fact that we are focusing on data structure theories that fulfill a form
of politeness [12, 15]. Hence, our work can be considered as a way to extend
the use of polite theories to some simple non-disjoint combinations. The class
of data structure theories is clearly of practical interest since it includes well-
known theories for which a rewriting approach to satisfiability can be successfully
applied [1, 2]. In this class, one can find the theory of equality, the theory of
(acyclic) lists, the theory of absolutely free data structures (with or without
selectors).

The completeness of our combination method requires the construction of a
combined model from the models available in the component theories. For that
purpose, we introduce the notion of basic data structure theory, for which a sat-
isfiable input admits a Herbrand model with a very particular basic congruence
relation E. The originality of our approach is to define a bridging theory as a
convergent term rewrite system F , and to analyse the interplay between F and
E. The careful study of F ∪ E as a convergent rewrite system modulo E leads
to the construction of the combined model.

Section 2 recalls the classical notations and concepts used for the equational
reasoning and the combination problem. In Section 4, we present the class of
basic data structure theories. Section 3 introduces a combination procedure for
extensions of basic data structure theories with bridging functions. By using a
rewriting approach, the completeness of this combination procedure is proved in
Section 5. Finally, Section 6 reports directions for future work.

2 Preliminaries: Notations and Combinations

We assume an enumerable set of variables V and a first-order many-sorted sig-
nature Σ given by a set of sorts and sets of function and predicate symbols
(equipped with an arity ar). Nullary function symbols are called constant sym-
bols. We assume that, for each sort σ, the equality “=σ” is a logical symbol
that does not occur in Σ and that is always interpreted as the identity relation
over (the interpretation of) σ; moreover, as a notational convention, we omit the
subscript for sorts and we simply use the symbol =. The notions of Σ-terms,
atomic Σ-formulas and first-order Σ-formulas are defined in the usual way. In
particular an atomic formula is either an equality, or a predicate symbol applied
to the right number of well-sorted terms. Formulas are built from atomic for-
mulas, Boolean connectives (¬, ∧, ∨, ⇒, ≡), and quantifiers (∀, ∃). A literal
is an atomic formula or the negation of an atomic formula. A flat equality is
either of the form t0 = t1 or t0 = f(t1, . . . , tn) where each term t0, . . . , tn is a
variable or a constant. A disequality t0 	= t1 is flat when each term t0, t1 is a
variable or a constant. A flat literal is either a flat equality or a flat disequality.
An arrangement over a finite set of variables V is a maximal satisfiable set of
well-sorted equalities and disequalities x = y or x 	= y, with x, y ∈ V . Free vari-
ables are defined in the usual way, and the set of free variables of a formula ϕ is

278 P. Chocron, P. Fontaine, and C. Ringeissen

denoted by Var(ϕ). Given a sort σ, Varσ(ϕ) denotes the set of variables of sort
σ in Var(ϕ). A formula with no free variables is closed, and a formula without
variables is ground. A universal formula is a closed formula ∀x1 . . .∀xn.ϕ where
ϕ is quantifier-free. A (finite) Σ-theory is a (finite) set of closed Σ-formulas.
Two theories are disjoint if no predicate symbol or function symbol appears in
both respective signatures.

From the semantic side, a Σ-interpretation I comprises non-empty pairwise
disjoint domains Iσ for every sort σ, a sort- and arity-matching total function
I[f] for every function symbol f , a sort- and arity-matching predicate I[p] for
every predicate symbol p, and an element I[x] ∈ Iσ for every variable x of
sort σ. By extension, an interpretation defines a value in Iσ for every term of
sort σ, and a truth value for every formula. We may write I |= ϕ whenever
I[ϕ] = �. A Σ-structure is a Σ-interpretation over an empty set of variables.
Given a Σ-interpretation I and signature Σ′ ⊆ Σ, the Σ′-reduct of I is the
Σ′-interpretation, denoted by IΣ′

, obtained from I by restricting it to interpret
only the symbols in Σ′.

A model of a formula (theory) is an interpretation that evaluates the formula
(resp. all formulas in the theory) to true. A formula or theory is satisfiable (or
consistent) if it has a model; it is unsatisfiable otherwise. A formula G is T -
satisfiable if it is satisfiable in the theory T , that is, if T ∪ {G} is satisfiable. A
T -model of G is a model of T ∪ {G}. A formula G is T -unsatisfiable if it has
no T -models. In our context, the T -satisfiability problem for any set of literals
can be equivalently defined as establishing the consistency of T ∪ {G} for a
set of ground literals G expressed over the signature extended with some fresh
constants.

A theory T is stably infinite if any T -satisfiable set of literals is satisfiable
in a model of T whose domain is infinite. A Σ-theory T can be equivalently
defined as a pair T = (Σ,A), where A is a class of Σ-structures, and given a
signature Σ′ ⊆ Σ, the Σ′-reduct of T is TΣ′

= (Σ′, {AΣ′ | A ∈ A}). Given a
set of Σ-equalities E, the relation =E denotes the equational theory of E which
is defined as the smallest relation including E which is closed by reflexivity,
symmetry, transitivity, congruence and substitutivity. As usual, the equivalence
classes of ground Σ-terms modulo E defines the Σ-structure of ground terms
modulo E, denoted by T (Σ)/ =E . A term rewrite system R is a set of oriented
equalities. A convergent term rewrite system R is defined in the usual way [4],
and it implies the existence and the unicity of a normal form, denoted by t ↓R
for each equivalence class of a term t modulo =R.

Let us now introduce some key notions for the combination problem [15].

Definition 1 (Smoothness). Let Σ be a signature and S = {σ1, . . . , σn} a set
of sorts in Σ. A Σ-theory T is smooth with respect to S if:

– for every T -satisfiable quantifier-free Σ-formula ϕ,

– for every T -interpretation A satisfying ϕ,

– for every cardinal number κ1, . . . , κn such that κi ≥ |Aσi |, for i = 1, . . . , n,

Combination of Data Structures with Bridging Theories 279

there exists a T -interpretation B satisfying ϕ such that

|Bσi | = κi for i = 1, . . . , n

Definition 2 (Self Witnessability). Let Σ be a signature, S a set of sorts in
Σ, and T a Σ-theory. A quantifier-free Σ-formula ϕ is S-populated if V arσ(ϕ) is
non-empty for each σ ∈ S. A T -satisfiable S-populated quantifier-free Σ-formula
ϕ is self witnessable in T with respect to S if there exists a T -interpretation
A satisfying ϕ such that Aσ = {A[v] | v ∈ Varσ(ϕ)} for each σ ∈ S. T is
self witnessable with respect to S if any T -satisfiable S-populated quantifier-free
Σ-formula ϕ is self witnessable in T with respect to S.

Definition 3 (Perfect Politeness). Let Σ be a signature and S a set of sorts
in Σ. A Σ-theory T is perfectly polite with respect to S if it is both smooth and
self witnessable with respect to S.

A typical example of a perfectly polite theory is the theory of equality. A perfectly
polite theory is a particular polite theory [12,15]. As shown in [12,15], there exists
a combination method to decide the satisfiability problem in a union of theories
Ts ∪ Tt if

– Ts and Tt do not share function symbols but share a set of sorts S;
– Ts is polite with respect to S;
– and the satisfiability problem is decidable in both Ts and Tt.

In this paper, the considered polite theories are perfectly polite.

3 Combination with Bridging Theories

We investigate the satisfiability problem modulo a non-disjoint union Ts∪Tf∪Tt,
where Ts is a data structure theory, e.g., the theory of absolutely free data
structures [16]. The source and target theories Ts and Tt are connected with
some theory Tf specifying a bridging function f by structural induction over the
“constructors” of Ts. A typical example is trees of sort struct over elements of
sorts in Elem, with tree size as bridging function. We now define these theories.

Definition 4. Consider a set of sorts Elem, and a sort struct /∈ Elem. Let Σ
be a signature whose set of sorts is {struct}∪Elem and whose function symbols
c ∈ Σ (called constructors) have arities of the form:

c : σ1 × · · · × σm × struct× · · · × struct → struct

where σ1, . . . , σm ∈ Elem. To each n-ary constructor c, we associate the selectors
sc1, . . . , s

c
n that are disjoint from Σ and such that sci = sdj iff i = j and c = d. Let

Σ+ = Σ ∪ {sci | c ∈ Σ, i = 1, . . . , ar(c)}. Consider the following axioms (where
upper case letters denote implicitly universally quantified variables)⎧⎪⎪⎨

⎪⎪⎩

(Inj c) c(X1, . . . , Xn) = c(Y1, . . . , Yn) ⇒
∧n

i=1 Xi = Yi

(Disc,d) c(X1, . . . , Xn) 	= d(Y1, . . . , Ym)
(AcycΣ) X 	= t[X] if t is a non-variable Σ-term
(Proj c,i) sci (c(X1, . . . , Xn)) = Xi

280 P. Chocron, P. Fontaine, and C. Ringeissen

The Σ-theory of Absolutely Free Data Structures is

AFDSΣ =
(⋃
c∈Σ

Inj c
) ∪ (⋃

c,d∈Σ,c �=d

Disc,d
) ∪ AcycΣ

and the Σ+-theory of Absolutely Free Data Structures with selectors is

AFDS+
Σ = AFDSΣ ∪

⋃
c∈Σ

(

ar(c)⋃
i=1

Proj c,i)

The class of Data Structure Theories DST+ consists of all theories Ts such that
Ts is any union of axioms among Inj c, Disc,d, AcycΣ, and Proj c,i. The subclass

DST of DST+ consists of all theories without axioms Proj c,i.

DST+ includes inductive data structures (with selectors) such as lists and trees,
but also, e.g., the theory of equality or injective functions alone.

Given a tuple e of terms of sorts in Elem and a tuple t of terms of sort struct,
the tuple e, t may be written e; t to distinguish terms of sort struct from the
other ones. Hence, a Σ-term is denoted by c(e; t).

Definition 5. Consider two signatures Σ and Σt possibly sharing sorts except
struct but no function symbols, where Σ complies with Definition 4. Let f be
a new function symbol f with arity struct → t, where t is a sort in Σt. A
bridging theory Tf associated to f has the form:

Tf =
⋃
c∈Σ

{
∀e∀t1, . . . , tn . f(c(e; t1, . . . , tn)) = fc(e; f(t1), . . . , f(tn))

}

where fc(x;y) denotes a Σt-term.

Notice that the notation fc(x;y) does not enforce all elements of x;y to occur
in the term fc(x;y): in particular only elements in x of sort in Σt are allowed
in fc(x;y). Throughout the paper, we assume that for any constant c in Σ, fc
denotes a constant in Σt, and the equality f(c) = fc occurs in Tf . For instance,
in the case of length of lists, �(nil) = �nil = 0.

For the rest of this section, let T = Ts ∪ Tf ∪ Tt where

– Ts is a Σs-theory in DST+;
– Tt is a stably infinite Σt-theory such that Σs and Σt do not share function

symbols, and struct does not occur in Σt;
– Tf is a bridging theory.

We describe below a decision procedure for checking the T -satisfiability of
sets of literals. As usual, the input set of literals is first purified to get a separate
form.

Definition 6. A set of literals ϕ is in separate form if ϕ = ϕstruct ∪ ϕelem ∪
ϕt ∪ ϕf where:

Combination of Data Structures with Bridging Theories 281

– ϕstruct contains only flat literals of sort struct
– ϕelem contains only literals of sorts in Σs\(Σt ∪ {struct})
– ϕt contains only Σt-literals
– ϕf contains only flat equalities of the form fx = f(x), where fx denotes a

variable associated to f(x), such that fx and f(x) occur once in ϕf and each
variable of sort struct in ϕstruct occurs in ϕf .

It is easy to convert any set of literals into an equisatisfiable separate form by
introducing fresh variables to denote impure terms.

Unlike classical disjoint combination methods, guessing only one arrangement
on the shared variables is not sufficient to get a modular decision procedure.
An additional arrangement on variables of sort struct is considered and the
resulting set of flat Σ-equalities E is translated to a set of Σt-literals CPE .

Definition 7. Given a bridging theory Tf , the target encoding of a set of flat
Σ-equalities E is the set of Σt-literals

CPE = {fx′ = fc(e; fx1 , . . . , fxn) | c(e;x1, . . . , xn) = x′ : struct ∈ E}
∪ {fx′ = fx | x = x′ : struct ∈ E}

The combination procedure below is presented in [9] for the particular case
of absolutely free data structures.

Lemma 1. Let ϕ = ϕstruct∪ϕelem∪ϕt∪ϕf be a set of literals in separate form,
V = Var(ϕstruct ∪ ϕelem) ∪ Varstruct(ϕf), and Vt = Var(ϕt) ∪ Vart(ϕf). The
formula ϕ is T -satisfiable if and only if there exist an arrangement Arrt over
V ∩ Vt and an arrangement Arrstruct over the set of variables of sort struct in
V , such that

– ϕstruct ∪ ϕelem ∪ Arrt ∪ Arrstruct is Ts-satisfiable,
– ϕt ∪ Arrt ∪ CPE is Tt-satisfiable,

where E is the set of equalities in ϕstruct ∪ Arrstruct.

Proof. (Only if direction: soundness) Straightforward, since Tf ∪Tt ∪ϕ |= CPE .
(If direction: completeness) See Lemma 2 in Section 5.

��
For the sake of simplicity in Lemma 1, we have chosen to use arrangements

to fix E. In practice however another solution would be to use a saturation-
based Ts-satisfiability procedure with the capability to deduce E, like the one
introduced in Section 4.

Example 1. Let Tt be the theory of integers and a theory of binary trees over
integers, with Elem = {int}, constructors Σ = {nil : struct, cons : int ×
struct × struct → struct}, and selectors val, left , right , formally defined by
Ts = {val(cons(I,X, Y)) = I, left(cons(I,X, Y)) = X, right(cons(I,X, Y)) =
Y }. The bridging theory for the function sum : struct → int is Tsum =
{sum(nil) = 0, sum(cons(I,X, Y)) = I + sum(X) + sum(Y)}.

282 P. Chocron, P. Fontaine, and C. Ringeissen

Consider the T -satisfiability of

ϕ = {a = cons(e, b, c), d = cons(0, left(a), right(a)), a 	= d,

sum(a) ≤ sum(left(a)) + sum(right(a)), e ≥ 0}
or in separate form ϕstruct ∪ ϕt ∪ ϕsum with

ϕstruct = {a = cons(e, b, c), d = cons(e′, a1, a2),
a1 = left(a), a2 = right(a), a 	= d}

ϕt = {suma ≤ suma1 + suma2 , e
′ = 0, e ≥ 0}

ϕsum = {sumx = sum(x) | x ∈ {a, a1, a2, b, c, d}}
Let us compute the arrangements used in Lemma 1. First, Arrstruct relates a,
b, c, d, a1 and a2; notice that a1 = left(a) = left(cons(e, b, c)) = b and similarly
a2 = c, so these equalities should belong to Arrstruct, as well as a 	= d (from
ϕstruct). Second, Arrt should be {e 	= e′}, since otherwise a = cons(e, b, c) =
cons(e′, b, c) = cons(e′, a1, a2) = d holds, in contradiction with Arrstruct.

The target encoding CPE will contain suma = e + sumb + sumc, as well as
sumb = suma1 , sumc = suma2 , derived from the equalities in Arrstruct. From
suma ≤ suma1 + suma2 in ϕt, we get e = 0, contradicting Arrt since e′ = 0. �

Example 2. Assume that Tsum and Tt are defined as in Example 1. The formula

ϕ = {a = cons(e, b, c), a = cons(e′, a1, a2), sum(a) ≤ sum(a1) + sum(a2), e > 0}
can easily be shown unsatisfiable modulo AFDSΣ ∪ Tsum ∪ Tt. However, in the
combination EQΣ ∪ Tsum ∪ Tt where EQΣ is the theory of equality over Σ,
Arrstruct can be such that a, a1, a2, b, c are all different, and Arrt = {e 	= e′}:
– ϕstruct ∪ ϕelem ∪ Arrt ∪ Arrstruct is trivially EQΣ-satisfiable
– ϕt ∪ Arrt ∪ CPE is satisfiable in the theory of integers, e.g. with e′ = 0.

Consequently, ϕ is satisfiable modulo EQΣ ∪ Tsum ∪ Tt. �

The combination method requires only few restrictions on the target theory to
be sound and complete (cf. Section 5). Actually, Tt could be also a data struc-
ture theory obtained from a previous application of the combination method.
Consider the case T = Ttree ∪ Tsz ∪ Tt where Ttree denotes a theory of trees and
Tsz denotes the bridging theory defining the tree size thanks to a target theory
Tt = Tlist ∪ T� ∪ TZ corresponding to a theory of lists extended with a bridging
function � computing the list length. Applying twice the combination method
is a way to build a T -satisfiability procedure where T corresponds to the union
of two disjoint data structure theories extended with their respective bridging
functions to TZ: T = (Ttree ∪ Tsz ∪ TZ) ∪ (Tlist ∪ T� ∪ TZ). In the same vein, the
combination method applied twice yields a satisfiability procedure for a theory
of lists of trees extended with tree size sz and list length �. The above examples
illustrate the generality of our combination method.

Combination of Data Structures with Bridging Theories 283

4 Basic Data Structure Theories

The class DST+ introduced above includes theories of practical interest worth
considering for non-disjoint combinations with bridging functions. It contains the
theory of Absolutely Free Data Structures, but also the theory of equality and
other theories for which a rewriting approach to satisfiability can be successfully
applied [2]. It appears that those theories satisfy a nice model-theoretic property,
instrumental to prove the completeness of the above combination procedure.
They admit some particular Herbrand models similar to the ones we can build
for the theory of equality. Hence, it is another way to consider data structure
theories that can be “reduced” to the theory of equality. In the same vein, one
could use the locality approach [17] to get a “reduction” to the theory of equality
through a finite instantiation of axioms. Our model-based approach eases the
construction of a model for data structures extended with bridging functions.

Rather than handling a set of literals and a theory, we will consider the theory
extension including a set of (ground) literals.

Definition 8. Consider a finite constant expansion Σs ∪ C of a signature Σs

such that Cσ is non-empty for each sort σ in Σs, and a Σs-theory Ts. A ground
flat Ts-extension is a Σs ∪ C-theory defined as the union Ts = Ts ∪ G such
that G is a finite set of ground flat Σs ∪ C-literals. Ts = Ts ∪ G is said to be
subpopulated if C contains for each sort a constant not occurring in G.

The consistency of a ground flat Ts-extension Ts corresponds to a Ts-satisfia-
bility problem of a set of flat literals. We focus on theories admitting models
defined as structures of terms generated by some constructors and (a superset
of) the free constants occurring in Ts. We will see in the proof of Proposition 1
that the unused constant generators in subpopulated Ts are required to build
the models in the presence of selectors.

The model-theoretic properties of DST+ theories are essential for combina-
tions: models can be generated from some of their symbols (i.e., the construc-
tors). The following definition captures these properties:

Definition 9. Consider a set of sorts Elem, and a sort struct /∈ Elem. Let Σs

be a signature whose set of sorts is {struct}∪ Elem. Let Σ ⊆ Σs be a signature
containing only function symbols whose codomain sort is struct. Let Ts = Ts∪G
be a ground flat Ts-extension whose signature is Σs ∪ C. A Σ-basic Herbrand
model of Ts is a model H of Ts such that HΣ∪C is T (Σ ∪ C)/ =E, where E is
a finite set of ground flat Σ ∪C-equalities defined as the set of Σ ∪C-equalities
in G plus some additional equalities between constants of C occurring in G.

A consistent Σs-theory Ts is a Σ-basic (resp., perfect Σ-basic) data structure
theory if any subpopulated (resp., arbitrary) consistent ground flat Ts-extension
admits a Σ-basic Herbrand model.

A Σ-basic Herbrand model is constructed on a subsignature Σ of Ts. This
introduces a natural distinction between constructors in Σ and defined symbols
in Σs \Σ. The constructors are used to build the domain of the basic Herbrand

284 P. Chocron, P. Fontaine, and C. Ringeissen

model whilst the defined symbols are interpreted as operators on this domain. A
classical example is AFDS+

Σ where the selectors are the defined symbols. From
now on, we assume that function symbols c ∈ Σ have arities as in Definition 4:

c : σ1 × · · · × σm × struct× · · · × struct→ struct.

Notice also that the above definition is suitable for a deductive approach in
contrast to a guessing approach. In a guessing approach, the set E of equalities
would be maximal (obtained from an arrangement) and in that case no additional
equality would be needed.

We now prove that all the source theories Ts considered in Section 3, ranging
from the theory of equality to AFDS+

Σ , are Σ-basic data structure theories.
For any of these source theories Ts, a saturation-based calculus (see Figure 1)
provides a Ts-satisfiability procedure. As a side effect, the saturated set computed
by this calculus yields a Σ-basic Herbrand model.

Proposition 1. Theories in DST+ are Σ-basic data structure theories, and
theories in DST are perfect Σ-basic data structure theories.

Proof. Consider any finite set of ground flat Σs ∪C-literals G and Ts = Ts ∪G.
To check the consistency of Ts, we can use a (simplified) superposition calculus.
It can be viewed as an abstract congruence closure procedure for the theory
of equality extended with additional simplification rules on ground clauses to
take into account the axioms listed above. In Figure 1, we provide a version of
this calculus instantiated for the case of AFDS+

Σ . One may remark that there
is a one to one correspondence between the axioms of AFDS+

Σ and inference
rules of this calculus. If we want to omit an axiom of AFDS+

Σ , we just have to
remove the corresponding inference rule, to get a satisfiability procedure. Hence,
if we omit Injc, Disc,d, AcycΣ and Projc,i, we retrieve the inference system
for the satisfiability problem in the theory of equality. This inference system is
parametrised by an ordering on constants.

For any considered Ts, the calculus terminates by computing a finite satura-
tion. If this finite saturation does not contain the empty clause, Ts is consistent.
Moreover, it is possible to construct a model using the model-generation tech-
nique introduced by Bachmair and Ganzinger [5]: the set of equalities in the finite
saturation leads to a convergent term rewrite system R such that the structure
of R-normal forms T (Σs ∪C)↓R is a model of Ts. Let E be the set of equalities
corresponding to ground flat rules in R. Then, we must distinguish two cases:

– If Ts does not include the Projection axiom, R only consists of ground flat
rules. In that case, we can take Σ = Σs, and T (Σs ∪C)↓R is isomorphic to
T (Σ ∪ C)/ =E .

– Otherwise, we consider the signature Σ obtained from Σs by removing se-
lectors, and a structure whose domain is T (Σ ∪ C) ↓R. By assumption on
the constants used in G, there is a constant us ∈ C not occurring in Ts, for
each s in Σs. On this domain, the selector sci with s as codomain sort is
interpreted as follows:

Combination of Data Structures with Bridging Theories 285

• For any normal form which is a constant x, sci(x) = x′ if sci (x)↓R= x′ ∈
C, otherwise sci (x) = us.

• For any normal form which is a term t = c(t1, . . . , tn), s
c
i (t) = ti

• For any other normal form t, sci(t) = us.

Using this interpretation, we get a structure of the desired form that is still
a model of Ts, when Ts includes the Proj c,i axiom. ��

Sup : x = x′, x = y � x′ = y if x > x′, x > y
Cong1 : xj = x′

j , x = f(. . . , xj , . . .) � x = f(. . . , x′
j , . . .) if xj > x′

j

Cong2 : x = f(x1, . . . , xn), x
′ = f(x1, . . . , xn) � x = x′

Param : x = x′, x �= y � x′ �= y if x > x′, x > y
Ref : x �= x � �
Injc : x = c(x1, . . . , xn), x = c(x′

1, . . . , x
′
n) � x1 = x′

1 . . . xn = x′
n if c ∈ Σ

Disc,d : x = c(x1, . . . , xn), x = d(y1, . . . , ym) � � if c, d ∈ Σ, c �= d
AcycΣ : x = t1[x1], . . . , xn−1 = tn[x] � � if t1, . . . , tn are Σ-terms of depth 1
Projc,i : x = c(x1, . . . , xn) � xi = sci (x)

Fig. 1. Ts-satisfiability procedure

Proposition 2. Theories in DST are perfectly polite with respect to Elem.

Proof. Self witnessability directly follows from the definition of a perfect Σ-basic
data structure theory. The smoothness is a consequence of the fact that sorts in
Elem are only inhabited by constants in C. Thus, the set of generators C can be
extended to any set of generators whose cardinality is larger than the cardinality
of C, and the related term-generated structure remains a model. ��

5 Completeness Proof

We study the satisfiability problem modulo T = Ts ∪ Tf ∪ Tt where Tf is a
bridging theory between a source theory Ts and a target theory Tt fulfilling the
following assumption:

Assumption 1 (Theories) The Σs-theory Ts and the Σt-theory Tt share no
function symbol. The set of sorts in Σs is Elem ∪ {struct}, and struct does
not occur in Σt. One of the following three cases hold:

– sorts in Σs and Σt are disjoint, Ts is a Σ-basic data structure theory and
Tt is arbitrary

– Σs and Σt share sorts, and either
• Ts ∈ DST and Tt is arbitrary
• Ts ∈ DST+\DST and Tt is stably infinite.

286 P. Chocron, P. Fontaine, and C. Ringeissen

The combination procedure described in Section 3 is sound and complete also for
the cases listed above. We prove the completeness of the combination procedure
thanks to a combined model constructed using rewriting techniques. Given a
bridging function f : struct → t where t is a sort from the target theory, we
define a bridging theory via a convergent term rewrite system F such that for
any term s of sort struct, its normal form f(s)↓F corresponds to a term that
can be interpreted in a model of the target theory. To solve this problem, we
must carefully study the interplay between the equational theory E related to a
Σ-basic Herbrand model and the term rewrite system F .

For convenience, we will consider theory extensions including the sets of
(ground) literals rather than handling literals and theories separately.

Assumption 2 (Input formulas) Let Ts and Tt be theories as in Assump-
tion 1. The signatures Σs ∪ C and Σt ∪ Ct are finite constant expansions of Σs

and Σt, respectively.

1. Ts is a consistent Σs ∪ C-theory defined as a subpopulated ground flat ex-
tension of Ts. It admits a Σ-basic Herbrand model H such that HΣ∪C is
T (Σ ∪C)/ =E. The set of C ∩Ct-literals occurring in Ts is an arrangement
denoted by Arrt.

2. Tt is a Σt∪Ct-theory defined as the union of Tt and some finite set of ground
Σt ∪ Ct-literals, such that Tt ∪ Arrt is consistent.

From now on, we assume a context where Assumption 1 and Assumption 2 hold.

A bridging theory Tf (from Definition 5 above) is an equational theory. It
happens that it can naturally be oriented as a term rewrite system F .

Proposition 3. Let Tf be a bridging theory as introduced in Definition 5, and
let TF = Tf ∪ {f(x) = fx | x : struct ∈ C}. The term rewrite system F =
{f(l) → r | f(l) = r ∈ TF } is convergent and satisfies the following properties:

– f(c(e; t1, . . . , tn)) ↓F= fc(e; f(t1) ↓F , . . . , f(tn) ↓F) for any non-constant
constructor c ∈ Σ;

– f(c)↓F= fc for any constant c in Σ, where fc is a constant in Σt;
– f(x)↓F= fx for any constant (x : struct) ∈ C, where (fx : t) ∈ Ct.

Example 3. Consider the length function � from lists to integers, and let Ts =
{a = cons(e, b), b = cons(e′, c), c = nil, a 	= c}. The set of constants of sort
struct in Ts is {a, b, c} and the related term rewrite system F is given by
{�(cons(W,X)) → 1 + �(X), �(nil) → 0} ∪ {�(a) → �a, �(b) → �b, �(c) → �c}. �

We focus on the problem of checking the Ts ∪ TF ∪ Tt-consistency. To get
a well-defined interpretation for f : struct → t, we need a Tt-model in which
f returns the same value of sort t for all E-equal input terms of sort struct.
This motivates the following definition of E-compatibility. Below, a struct-term
denotes a Σ-term in which constants of sort struct are in C.

Definition 10. F is E-compatible in a model A of Tt if for any struct-terms
s and t, s =E t ⇒ A[f(s)↓F] = A[f(t)↓F].

Combination of Data Structures with Bridging Theories 287

Proposition 4. If F is E-compatible in a model of Tt, then Ts ∪ TF ∪ Tt is
consistent.

Proof. Consider the set of sorts S shared by Σs and Σt. Let us first assume
S = ∅. We know that F is E-compatible in a model A of Tt, and there exists a
model H of Ts such that HΣ∪C is T (Σ ∪C)/ =E . Given A and H, let us define
an interpretation M as follows. The domains of M are:

– Mt = At for any sort t in Σt

– Ms = Hs for any sort s in Σs

The function symbols are interpreted as follows1:

– For any g in Σt ∪ Ct, M[g] = A[g]
– For any g in Σs ∪C, M[g] = H[g]
– For any struct-term t, M[f]([[t]]) = A[f(t)↓F]

M is well-defined due to the assumption that F is E-compatible in A. Let us
check that M is a model of Ts ∪ TF ∪ Tt.

– MΣs∪C = H, which is a model of Ts by assumption.
– MΣt∪Ct = A, which is a model of Tt by assumption.
– For any struct-term t, we have that

M[f(t)] = M[f]([[t]]) = A[f(t)↓F] = M[f(t)↓F]
by definition of M. Therefore M is a model of TF .

Consider now the case S 	= ∅. By Assumption 1, Ts is smooth with respect
to Elem, and more precisely there exists also a larger model H of Ts such that
HΣ∪C is T (Σ ∪C ∪D)/ =E, where

– D is a set of elements of sort in S ⊆ Elem,
– Hσ = Aσ for each sort σ ∈ S.

Then the construction of M follows directly from the case S = ∅. In particular,
M is well-defined on C ∩ Ct due to the arrangement Arrt. ��

The missing piece of the method is to provide a way to check E-compatibility
of F in a model of Tt. In the following, we show that this property can be reduced
to a Tt-satisfiability problem.

Proposition 5. F is E-compatible in a model of Tt if the theory Tt∪Arrt∪CPE

is consistent, where CPE is the target encoding of E (Definition 7).

Proof. LetA be a model of Tt∪Arrt∪CPE . LetR be the convergent term rewrite
system associated to E. Since A satisfies Arrt, we have that A[e↓R] = A[e] for
any constant e of sort in Σs∩Σt. We first prove by structural induction that for
any struct-term u, A[f(u↓R)↓F] = A[f(u)↓F].

(Inductive case) Assume u = c(e;u1, . . . , un).

1 For any struct-term t, [[t]] is the equivalence class of t modulo =E.

288 P. Chocron, P. Fontaine, and C. Ringeissen

– If c(e;u1, . . . , un)↓R= c(e↓R;u1↓R, . . . , un ↓R), then we have:

A[f(c(e;u1, . . . , un)↓R)↓F]
= A[f(c(e↓R;u1 ↓R, . . . , un↓R))↓F]
= A[fc(e↓R; f(u1↓R)↓F , . . . , f(un ↓R)↓F)]
= fc(A[e↓R];A[f(u1 ↓R)↓F], . . . ,A[f(un ↓R)↓F)]
= fc(A[e];A[f(u1 ↓R)↓F], . . . ,A[f(un ↓R)↓F)]
= fc(A[e];A[f(u1)↓F], . . . ,A[f(un)↓F])
= A[fc(e; f(u1)↓F , . . . , f(un)↓F)]
= A[f(c(e;u1, . . . , un))↓F]

– Otherwise, c(e;u1, . . . , un)↓R is necessarily a constant x′, and u1, . . . , un are
constants x1, . . . , xn. Then, by assumption on A, we have

A[f(x′)↓F] = A[fx′] = A[fc(e; fx1 , . . . , fxn)] = A[f(c(e;x1, . . . , xn))↓F]
(Base case) Assume u is a constant x. If x↓R= x, then we have f(x↓R)↓F=

f(x)↓F , and so A[f(x↓R)↓F] = A[f(x)↓F]. Otherwise, we have x↓R= x′. Then,
by assumption on A, we have A[f(x′)↓F] = A[fx′] = A[fx] = A[f(x)↓R].

To conclude the proof, let s and t be any struct-terms. If s =E t, then
s ↓R= t ↓R and A[f(s) ↓F] = A[f(s ↓R) ↓F] = A[f(t ↓R) ↓F] = A[f(t) ↓F]. This
means F is E-compatible in the model A of Tt. ��
Example 4. (Example 3 continued). Let Tt be the theory of integers. We have
E = {a = cons(e, b), b = cons(e′, c), c = nil} and so CPE = {�a = 1 + �b, �b =
1+�c, �c = 0}. Since Tt∪CPE is consistent, we get the consistency of Ts∪TF ∪Tt

by applying Proposition 5 and then Proposition 4. �

As a side remark, in the trivial case of F = {f(xk) → fxk
}k∈K , the com-

bination becomes disjoint, and the consistency of Ts ∪ TF ∪ Tt corresponds to
the consistency of the union of three disjoint theories, including the theory of
equality for f .

Proposition 4 and Proposition 5 are instrumental to prove the completeness
of the combination procedure. We thus get this result, subsuming Lemma 1:

Lemma 2. Let T = Ts ∪ Tf ∪ Tt, where Ts, Tt follow Assumption 1 and Tf is a
bridging theory according to Definition 5. The combination procedure introduced
in Lemma 1 is sound and complete for T -satisfiability.

Proof. The soundness is straightforward just like in Lemma 1. Let us focus on
the completeness. Consider the separate form ϕ and the sets of variables V and
Vt given in Lemma 1. By viewing ϕ as a set of ground literals in a constant
expansion of Σs ∪ Σf ∪ Σt, we can introduce the same theories Ts, Tt and TF

as in Assumption 2 and Proposition 3:

– the Σs ∪C-theory Ts is Ts ∪ ϕstruct ∪ ϕelem ∪Arrt ∪Arrstruct,
– the Σt ∪ Ct-theory Tt is Tt ∪ ϕt,
– TF = Tf ∪ ϕf ∪⋃

x:struct∈C\V {f(x) = fx},

Combination of Data Structures with Bridging Theories 289

where C and Ct are as follows:

– C = V when Ts ∈ DST. Otherwise, C is equal to V plus one fresh constant
for each sort in Ts.

– Ct = Vt ∪
⋃

x:struct∈C\V {fx}.
Assume ϕstruct∪ϕelem ∪Arrt∪Arrstruct is Ts-satisfiable and ϕt∪Arrt ∪CPE is
Tt-satisfiable. Equivalently, Ts and Tt are consistent. By applying Proposition 4
and Proposition 5, we get that Ts∪TF ∪Tt is consistent, and so Ts ∪Tf ∪Tt∪ϕ
is consistent, or equivalently, ϕ is T -satisfiable. ��

6 Conclusion

In this paper, we present a combination method to solve the satisfiability problem
in some particular non-disjoint union of three theories including a source, a target
and a bridging theory from the source to the target. The combination method is
sound and complete for a large class of source data structure theories, ranging
from the theory of equality to the theory of absolutely free data structures. For
all these axiomatized theories, the satisfiability problem can be solved by using
an off-the-shelf equational theorem prover.

We envision several further investigations. First, we would like to consider
the case of non-absolutely free constructors, e.g., associative-commutative con-
structors, to allow a more general congruence relation E in the definition of a
data structure theory. Second, it would be interesting to allow non-convex data
structure theories, such as the theory of possibly empty lists [1]. Third, to go be-
yond the considered bridging axioms, a natural continuation is to identify other
“simple” connecting axioms that could be compiled into a combination method
à la Nelson-Oppen.

References

1. Armando, A., Bonacina, M.P., Ranise, S., Schulz, S.: New results on rewrite-based
satisfiability procedures. ACM Trans. Comput. Log. 10(1) (2009)

2. Armando, A., Ranise, S., Rusinowitch, M.: A rewriting approach to satisfiability
procedures. Inf. Comput. 183(2), 140–164 (2003)

3. Baader, F., Ghilardi, S.: Connecting many-sorted theories. J. Symb. Log. 72(2),
535–583 (2007)

4. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press
(1998)

5. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. J. Log. Comput. 4(3), 217–247 (1994)

6. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. JSAT 3(1–2), 21–46 (2007)

7. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstrac-
tion. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 39–57. Springer,
Heidelberg (2013)

290 P. Chocron, P. Fontaine, and C. Ringeissen

8. Chocron, P., Fontaine, P., Ringeissen, C.: A gentle non-disjoint combination of
satisfiability procedures. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS, vol. 8562, pp. 122–136. Springer, Heidelberg (2014)

9. Chocron, P., Fontaine, P., Ringeissen, C.: A polite non-disjoint combination
method: theories with bridging functions revisited. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS, vol. 9195, pp. 419–433. Springer, Heidelberg (2015)

10. Fontaine, P.: Combinations of theories for decidable fragments of first-order logic.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 263–278.
Springer, Heidelberg (2009)

11. Ghilardi, S.: Model-theoretic methods in combined constraint satisfiability. Journal
of Automated Reasoning 33(3-4), 221–249 (2004)

12. Jovanović, D., Barrett, C.: Polite theories revisited. In: Fermüller, C., Voronkov,
A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 402–416. Springer, Heidelberg (2010)

13. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combinable extensions of abelian
groups. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 51–66.
Springer, Heidelberg (2009)

14. Nicolini, E., Ringeissen, C., Rusinowitch, M.: Combining satisfiability procedures
for unions of theories with a shared counting operator. Fundam. Inform. 105(1–2),
163–187 (2010)

15. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining data structures with nonstably
infinite theories using many-sorted logic. In: Gramlich, B. (ed.) FroCoS 2005. LNCS
(LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)

16. Sofronie-Stokkermans, V.: Locality results for certain extensions of theories with
bridging functions. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663,
pp. 67–83. Springer, Heidelberg (2009)

17. Sofronie-Stokkermans, V.: Automated reasoning in extensions of theories of con-
structors with recursively defined functions and homomorphisms. In: Ball, T.,
Giesl, J., Hähnle, R., Nipkow, T. (eds.) Interaction Versus Automation: The
Two Faces of Deduction. number 09411 in Dagstuhl Seminar Proceedings. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)

18. Suter, P., Dotta, M., Kuncak, V.: Decision procedures for algebraic data types with
abstractions. In: Hermenegildo, M.V., Palsberg, J. (eds.) Principles of Program-
ming Languages (POPL), pp. 199–210. ACM (2010)

19. Tinelli, C., Ringeissen, C.: Unions of non-disjoint theories and combinations of
satisfiability procedures. Theoretical Comput. Sci. 290(1), 291–353 (2003)

20. Tinelli, C., Zarba, C.G.: Combining non-stably infinite theories. Journal of Auto-
mated Reasoning 34(3), 209–238 (2005)

21. Tran, D., Ringeissen, C., Ranise, S., Kirchner, H.: Combination of convex theories:
Modularity, deduction completeness, and explanation. J. Symb. Comput. 45(2),
261–286 (2010)

22. Zhang, T., Sipma, H.B., Manna, Z.: Decision procedures for term algebras with
integer constraints. Inf. Comput. 204(10), 1526–1574 (2006)

Unification and Matching in Hierarchical

Combinations of Syntactic Theories

Serdar Erbatur1, Deepak Kapur2, Andrew M. Marshall3, Paliath Narendran4,
and Christophe Ringeissen5

1 Ludwig-Maximilians-Universität, München, Germany
2 University of New Mexico, USA

3 University of Mary Washington, USA
4 University at Albany, SUNY, USA

5 LORIA – INRIA Nancy-Grand Est, France

Abstract. We investigate a hierarchical combination approach to the
unification problem in non-disjoint unions of equational theories. In this
approach, the idea is to extend a base theory with some additional ax-
ioms given by rewrite rules in such way that the unification algorithm
known for the base theory can be reused without loss of completeness.
Additional techniques are required to solve a combined problem by re-
ducing it to a problem in the base theory. In this paper we show that the
hierarchical combination approach applies successfully to some classes of
syntactic theories, such as shallow theories since the required unification
algorithms needed for the combination algorithm can always be obtained.
We also consider the matching problem in syntactic extensions of a base
theory. Due to the more restricted nature of the matching problem, we
obtain several improvements over the unification problem.

1 Introduction

A critical question in matching and unification is how to obtain an algorithm for
the combination of non-disjoint equational theories when there exist algorithms
for the constituent theories. In recent work [7], a new “hierarchical” approach to
the unification problem in the combination of non-disjoint theories is developed
and classes of theories are identified for which the method can be applied. The
main property of these classes is a hierarchical organization of the two equational
theories E1 and E2, where E1 is a set of axioms extending a base theory E2.
The method is successful in providing a unification method to the combination
of theories for which no previous combination method was applicable. However,
the main difficulty in applying the new combination method is that a new type
of unification algorithm, denoted by A1, is required to incorporate the axioms of
E1. The A1 algorithm is not actually a black box unification algorithm. Rather
the algorithm constructs a specific type of solved-form which has the property of
reducing an E1∪E2 unification problem to one or more E2-unification problems.
A general A1 method is developed in [7], based on the general E-unification
methods studied in [10, 19]. However, as with the general unification methods,

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 291–306, 2015.
DOI: 10.1007/978-3-319-24246-0_18

292 S. Erbatur et al.

there is no general termination proof for an arbitrary theory. Termination must
be proven for A1 to satisfy the restrictions of [7].

Here we are able to overcome this limitation by showing that for some classes
of theories, such as shallow equational theories, the unification algorithms for
those theories can be used for the A1 algorithm. This replaces the need to con-
struct a dedicated unification algorithm via the method presented in [7] and
allows one to use an “off the shelf” available algorithm.

In this paper, we also consider the matching problem in this new hierarchical
framework and obtain a new non-disjoint combination method for the match-
ing problem. Due to the more restricted nature of the matching problem, the
combination method introduced in [7] for unification can be simplified. For the
matching problem, we are not restricted to shallow theories but syntactic theo-
ries [5, 11, 12] are allowed. By assuming a resolvent presentation of a syntactic
theory E1, we are able to construct in a modular way a matching algorithm for
hierarchical combination. The matching algorithm we present can be seen as an
extension of the one known for disjoint unions of syntactic (finite) theories [15]
and a variation of the one existing for disjoint unions of regular theories [16,17].
A preliminary version of this algorithm has been presented in [8]. Compared
to [8], we now rely on the standard definition of syntactic theory.

Let us give a brief preview of the remaining portions of the paper. Section 2
presents the preliminary background material. Section 3 presents an overview of
the hierarchical combination. The overview given here is actually an improve-
ment via simplification to the original hierarchical presentation in [7]. Section 4
applies hierarchical combination to shallow theories. Section 5 extends the hi-
erarchical approach from the unification problem to the matching problem by
considering a syntactic theory E1.

2 Preliminaries

We use the standard notation of equational unification [3] and term rewriting
systems [1]. Given a first-order signature Σ and a (countable) set of variables
V , the set of Σ-terms over variables V is denoted by T (Σ, V). The set of vari-
ables in a term t is denoted by V ar(t). A term t is ground if V ar(t) = ∅. For
any position p in a term t, t|p denotes the subterm of t at position p, and t[u]p
denotes the term t in which t|p is replaced by u. Given a set E of Σ-axioms
(i.e., pairs of Σ-terms, denoted by l = r), the equational theory =E is the con-
gruence closure of E under the law of substitutivity. For any Σ-term t, the
equivalence class of t with respect to =E is denoted by [t]E . The E-free algebra
over V is denoted by T (Σ, V)/=E. By a slight abuse of terminology, E will be
often called an equational theory. An axiom l = r is variable-preserving (also
called regular) if V ar(l) = V ar(r). An axiom l = r is linear (resp., collapse-
free) if l and r are linear (resp. non-variable terms). An equational theory
is variable-preserving (resp., regular/linear/collapse-free) if all its axioms are
variable-preserving (resp., regular/linear/collapse-free). An equational theory E
is finite if for each term t, there are only finitely many terms s such that t =E s.

Unification and Matching in Hierarchical Combinations of Syntactic Theories 293

A theory E is subterm collapse-free if and only if for all terms t it is not the case
that t =E u where u is a strict subterm of t. A theory E is syntactic if it has a
finite resolvent presentation S, that is a presentation S such that each equality
s =E t has an equational proof s ↔∗

S t with at most one step ↔S applied at
the root position. A theory E is shallow if variables can only occur at a position
at most 1 in axioms of E. When E is both subterm collapse-free and shallow,
variables can only occur at position 1 in axioms of E. Shallow theories are known
to be syntactic theories [6]. Let us recall some results connecting syntactic the-
ories and unification. First, shallow theories admit a mutation-based unification
algorithm [6]. Second, finite syntactic theories admit a mutation-based matching
algorithm [16]. We will reuse both of these algorithms in this paper. In addition,
any collapse-free and finitary unifying theory is syntactic [12]. For instance the
Associative-Commutative (AC) theory is syntactic, as well as the EAC theory
introduced in [9] as a finitary unifying theory of distributive exponentiation.

A Σ-equation is a pair of Σ-terms denoted by s =? t. An E-unification prob-
lem is a set of Σ-equations, S = {s1 =? t1, . . . , sm =? tm}. The set of variables
of S is denoted by V ar(S). When t1, . . . , tn are ground, S is called a matching
problem, also denoted by {s1 ≤? t1, . . . , sm ≤? tm}, where si ≤? ti denotes a
match-equation. A solution to an E-unification problem S, called an E-unifier ,
is a substitution σ such that siσ =E tiσ for all 1 ≤ i ≤ m. A substitution σ is
more general modulo E than θ on a set of variables V , denoted as σ ≤V

E θ, if
there is a substitution τ such that xστ =E xθ for all x ∈ V . Two substitutions
θ1 and θ2 are equivalent modulo E on a set of variables V , denoted as θ1 ≡V

E θ2,
if and only if xθ1 =E xθ2 for all x ∈ V . A Complete Set of E-Unifiers of S is
a set of substitutions denoted by CSUE(S) such that each σ ∈ CSUE(S) is an
E-unifier of S, and for each E-unifier θ of S, there exists σ ∈ CSUE(S) such that

σ ≤V ar(S)
E θ. An inference rule S � S ′ is sound (resp. complete) for E-unification

if CSUE(S) ⊆ CSUE(S ′) (resp. CSUE(S) ⊇ CSUE(S ′)). An inference system is
sound (resp. complete) for E-unification if all its inference rules are sound (resp.
complete). A set of equations is said to be in dag-solved form (or d-solved form)
if they can be arranged as a list x1 =? t1, . . . , xn =? tn where (a) each left-hand
side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n: xi does not occur in tj .
Each xi in this case is called a solved variable. We call a term (e.g., a variable)
fresh if it is created by applying an inference rule (or a unification algorithm)
and did not previously exist.

Consider the union Σ1 ∪ Σ2 of two disjoint signatures Σ1 and Σ2. A term t
is called a Σi-rooted term if its root symbol is in Σi. Variables, Σi-terms and
Σi-equations are i-pure. We also use the notion of an alien subterm. An alien
subterm of a Σi-rooted term t is a Σj-rooted subterm s (i �= j) such that all
superterms of s are Σi-rooted. A purification procedure can be defined that uses
variable abstraction [2] to replace any alien subterm u in a term t by a fresh
variable x and adds the equation x =? u. Then, equations s =? t between a
1-pure term s and a 2-pure term t are split into two pure equations x =? s and
x =? t where x is a new variable. An equation between two variables is always
both 1-pure and 2-pure. Given a set of pure equations P , we denote by P |Σi the

294 S. Erbatur et al.

set of i-pure equations in P (for i = 1, 2), and we say that P is in Σi-solved form
(partial solved form) if P |Σi is in dag-solved form.

A term rewriting system (TRS) is a pair (Σ,R), where Σ is the signature
and R is a finite set of rewrite rules of the form l → r such that l, r are Σ-
terms, l is not a variable and V ar(r) ⊆ V ar(l). Given a TRS R = (Σ,R),
the signature Σ is often partitioned into two disjoint sets Σ := C � D, where
D := {f |f(t1, . . . , tn) → r ∈ R} and C := Σ � D. Symbols in C are called
constructors, and symbols in D are called defined functions. A term s rewrites
to a term t, denoted by s →R t (or simply s → t), if there exist a position p
of s, l → r ∈ R, and substitution σ such that s|p = lσ and t = s[rσ]p. A term
s is a normal form with respect to the relation →R (or simply a normal form),
if there is no term t such that s →R t. This notion is lifted to substitutions as
follows: a substitution σ is normalized if, for every variable x in the domain of σ,
xσ is a normal form. A TRS R is terminating if there are no infinite reduction
sequences with respect to →R. A TRS R is confluent if, whenever t →R s1 and
t →R s2, there exists a term w such that s1 →∗

R w and s2 →∗
R w. A confluent

and terminating TRS is called convergent. In a convergent TRS, we have the
existence and the unicity of R-normal forms, denoted by t↓R for any term t.
We define an inner constructor to be a constructor f that satisfies the following
additional restrictions: (1) f does not appear on the left-hand side on any rule
in R; (2) f does not appear as the root symbol on the right-hand side of any
rule in R; (3) there are no non-constant function symbols below f on the right-
hand side of any rule in R. We consider a Σ1 ∪ Σ2-theory E1 and a Σ2-theory
E2. The Σ1 ∪Σ2-theory E1 is given by a Σ1-rooted TRS R1 such that for each
l → r ∈ R1, l and r are Σ1-rooted terms. Moreover, Σ2-symbols do not occur
in left-hand sides of R1. We use the notion of convergence modulo an equational
theory. When R1 is convergent modulo E2, we have that for any terms s and t,
s =R1∪E2 t if and only if s↓R1 =E2 t↓R1 .

3 Hierarchical Combination

Our hierarchical combination has been introduced in [7]. We present a simplified
version in Definition 1. The motivation is to simplify the relationships between
the theories and allows for an easier notation. However, the new definition follows
the one presented in [7]. For completeness, we also repeat several results proven
in [7] on hierarchical combination. These results will prove useful in showing
the applicability of hierarchical combination to shallow theories, and then more
generally to syntactic theories.

Definition 1. A hierarchical combination is a pair (E1, E2) such that

– Σ1 ∩Σ2 = ∅;
– E1 is a subterm collapse-free equational Σ1 ∪Σ2-theory given by a TRS R1

which is Σ1-rooted and convergent modulo E2;
– E2 is a finite equational Σ2-theory;
– Σ2-symbols are inner constructors in R1.

Unification and Matching in Hierarchical Combinations of Syntactic Theories 295

A hierarchical combination (E1, E2) is finite (resp., shallow/syntactic) if E1 is
finite (resp., shallow/syntactic). The equational theory of (E1, E2) is E1 ∪ E2.

Since a finite theory is subterm collapse-free, we have that both E1 and E2

are subterm collapse-free.

Proposition 1. [7] If (E1, E2) is a hierarchical combination, then E1 ∪ E2 is
subterm collapse-free.

Let us now introduce a key notion of great interest to relate combined equa-
tional proofs with pure ones. The notion of variable abstraction is widely used
in the context of combined equational theories [2,4,18]. In the following, we use
a slight adaptation to abstract ground terms by constants (C) and non-ground
terms by variables (Y). According to our assumptions, theories are regular and
so a ground term cannot be equal to a non-ground one.

Definition 2 (Variable Abstraction). Let Y be a countably infinite set of
variables, C be a countably infinite set of constants such that V , Y and C are
pairwise disjoint. We consider a bijection

π : (T (Σ1 ∪Σ2 ∪ V)↓R1
� V)/ =E2−→ Y ∪ C

such that π([t↓R1]E2) ∈ C if and only if t is ground. For i = 1, 2, the πi-
abstraction of t is denoted by tπi and defined as follows:

– If t ∈ V , then tπi = t.
– If t = f(t1, . . . , tn) and f ∈ Σi, then tπi = f(tπi

1 , . . . , tπi
n).

– Otherwise, tπi = π([t↓R1]E2).

An inverse mapping of π is a mapping π−1 : Y ∪ C −→ (T (Σ1 ∪ Σ2 ∪ V) � V)
such that π([π−1(z)↓R1]E2) = z for any z ∈ Y ∪ C.

In a hierarchical combination, a key feature is the ability to reuse an E2-
unification algorithm, say A2, to solve 2-pure unification problems without loss
of completeness.

Lemma 1. [7] Let (E1, E2) be any hierarchical combination.

– For any terms s and t, if s ←→E1∪E2 t, then sπ2 =E2 tπ2 .
– E2-unification is a sound and complete method to solve 2-pure E1 ∪ E2-

unification problems.

Let us now present the combination procedure.

3.1 Combination Procedure for Hierarchical Combination

We describe the combination procedure in an abstract way. By applying variable
abstraction, we split the input set of equations P into two sets of 1-pure and
2-pure equations, denoted respectively by P1 and P2. Two algorithms A1 and
A2 aim at solving P1 and P2:

296 S. Erbatur et al.

– A1 returns a Σ1-solved form of 1-pure E1 ∪ E2-unification problems. Thus,
A1 is a special type of algorithm that returns a “partial” solved form. We
address the problem of building such a procedure in Section 4.

– A2 is an E2-unification algorithm.

Lemma 1 shows that an E2-unification algorithm is the right tool for solving
2-pure problems. For unification problems that are not 2-pure, the idea is to use
a rule-based unification procedure A1. The role of A1 is to reduce the problem
to a form for which A2 can be applied. The approach taken is as follows:

1. Run A1 on P1 to obtain P ′
1.

2. Run A2 on P2 to obtain P ′
2.

3. Combine P ′
1 and P ′

2 into a set of equations P ′.
4. If P ′ is not solved, then iterate the procedure with P ′ as input.

In comparison with the combination algorithm presented in [7], the above
description represents the core procedure of hierarchical combination. The algo-
rithm of [7] can be seen as a single iteration of the loop in the above procedure. To
ensure a single iteration is sufficient there are some additional technical restric-
tions present in [7], such as restricting the occurrence of “ping-pong variables”.
Additionally, some machinery, such as variable identification, is also required.

4 Unification in Shallow Hierarchical Combination

In this section we show that shallow theories are another class of theories for
which a hierarchical combination approach can be applied. Let E1 be a shallow
equational theory [6] and E2 an equational theory, both satisfying Definition 1.
Thus, R1 is a rewrite system where variables occur in rules at depth 1 (a variable
cannot occur at depth 0 since R1 is collapse-free). In this particular case, an inner
constructor can only occur in a right hand side of a rule and as the root symbol
of a ground flat term. By applying constant abstraction on right-hand sides
of rules, we can build an “equivalent” shallow rewrite system which is disjoint
from E2. As shown below, we can rely on a unification algorithm for shallow
equational theories [6, 13, 14] to build an A1 procedure.

Let Rπ
1 = {l → rπ1 | l → r ∈ R1}. Obviously, Rπ

1 is also a shallow rewrite
system.

Lemma 2. Let s be a Σ1-rooted term such that its alien subterms are R1-
normalized. If s →R1 t, then

– t is a Σ1-rooted term such that its alien subterms are R1-normalized,
– sπ1 →Rπ

1
tπ1 .

Proof. Let s →R1 t.

1. E1 is subterm collapse free and Σ2 symbols in R1 appear as inner construc-
tors. Thus, if s is Σ1-rooted then t is Σ1-rooted.

Unification and Matching in Hierarchical Combinations of Syntactic Theories 297

2. If s = s[lσ]p →R s[rσ]p = t for some R-normalized σ and position p, then p
must not occur in an alien subterm of s since we assume s has R1-normalized
alien subterms. This implies, sπ1 = sπ1 [(lσ)π1]p and tπ1 = sπ1 [(rσ)π1]p. Let
(σ)π1 := {x �→ (xσ)π1 | x ∈ V ar(l)}. Note, l contains only Σ1 symbols and
any Σ2 symbols in r must be roots of ground terms. Thus, (lσ)π1 = l(σ)π1

and (rσ)π1 = rπ1(σ)π1 . This implies

sπ1 = sπ1 [(lσ)π1]p = sπ1 [l(σ)π1]p →Rπ
1
sπ1 [rπ1(σ)π1]p = sπ1 [(rσ)π1]p = tπ1

��
Lemma 3. Let s and t be Σ1-rooted terms. If s =E2 t then sπ1 = tπ1 .

Proof. Let s =E2 t. For each pair of alien subterms s′ ∈ s and t′ ∈ t such
that s′ ↔∗

E2
t′, π(s′) = π(t′). In addition, s and t have the same root symbol.

Therefore, sπ1 = tπ1 . ��
Proposition 2. Let s =? t be a Σ1-equation, and σ be a R1-normalized substi-
tution. If sσ =E1∪E2 tσ, then sσπ1 =Rπ

1
tσπ1 .

Proof. Since sσ =E1∪E2 tσ, we have sσ →∗
R1

(sσ)↓R1 =E2 (tσ)↓R1 ←∗
R1

tσ.
By Lemma 2, we have sσπ1 →∗

Rπ
1
((sσ)↓R1)

π1 and tσπ1 →∗
Rπ

1
((tσ)↓R1)

π1 . By

Lemma 3, ((sσ)↓R1)
π1 = ((tσ)↓R1)

π1 , and so sσπ1 =Rπ
1
tσπ1 . ��

Proposition 2 shows that the problem of solving 1-pure equations can be reduced
to a Rπ

1 -unification problem. Let us now show that the hierarchical combination
approach initiated in [7] can be applied to the theories under consideration. It is
shown in [7] that if three restrictions are satisfied by the combined theory, there
exists a combined unification algorithm. We present those restrictions below,
rephrased as to conform to the current presentation.

Restriction 1. (Algorithm A1) Let P1 be a set of 1-pure equations. Algorithm
A1 applied to P1 computes a set of problems {Qk}k∈K such that⋃

k∈K CSUE1∪E2 (Qk) is a CSUE1∪E2(P1) and for each k ∈ K:

(i) Qk is in Σ1-solved form.
(ii) No fresh variable occur under Σ2-rooted terms.

Restriction 2. (Algorithm A2)
Algorithm A2 computes a finite complete set of E1 ∪E2-unifiers of 2-pure unifi-
cation problems.

Restriction 3. (Errors)

(i) A Σ2-rooted term cannot be E1 ∪ E2-equal to a Σ1-rooted term.
(ii) E1∪E2 is subterm collapse-free. Therefore, an E1∪E2-unification problem

including a cycle has no solution.

Lemma 4. Shallow hierarchical combination (E1, E2) satisfies Restrictions (1)
through (3).

298 S. Erbatur et al.

Proof. Let us consider the different restrictions.

– Restriction 1: Since Rπ
1 is shallow, Rπ

1 -unification is finitary and a unification
algorithm for shallow theories is known. Given a set of Σ1-equations P1,
it computes a finite complete set of Rπ

1 -unifiers of P1, say {σk}k∈K . By
Proposition 2, {σkπ

−1}k∈K is a CSUE1∪E2(P1). By purification, each σk

can be equivalently written as a unification problem Qk such that Qk is in
Σ1-solved form, and Qk contains only ground Σ2-rooted terms.

– Restriction 2: This restriction follows directly from Lemma 1.
– Restriction 3: E1∪E2 is subterm collapse-free due to Proposition 1. Since E1

and E2 are both subterm collapse-free, Σ2-rooted terms cannot be E1 ∪E2-
equal to Σ1-rooted terms without contradicting Lemma 1. ��

Directly from Lemma 4 and [7] we have the following.

Theorem 1. For any shallow hierarchical combination (E1, E2), there exists a
combined E1 ∪ E2-unification algorithm, provided that an E2-unification algo-
rithm is known.

Proof. In [6], unification is shown decidable and finitary in shallow theories. In
addition, they provide a method for constructing a unification algorithm for an
arbitrary shallow theory. Thus, we can construct a finitary unification algorithm,
A1, from the shallow equational theory of Rπ

1 . By Lemma 4, the result follows.
��

Example 1. Consider the (ground) hierarchical combination (E1, E2) where the
TRS R1 associated with E1 is {f(a, b) → g(a + b), f(b, a) → g(b + a)} and
E2 = {x + y = y + x}. The TRS R1 is convergent modulo E2. The TRS Rπ

1

is {f(a, b) → g(c), f(b, a) → g(c)} where c = π([a + b]E2). A Rπ
1 -unification

algorithm can be obtained by adding to a syntactic unification algorithm some
mutation rules [6]. Then, most general E1 ∪ E2-unifiers of a 1-pure unification
problem can be derived from most general Rπ

1 -unifiers by replacing the constant
c with a+ b.

Shallow theories are particular syntactic theories admitting a terminating
mutation-based unification procedure. In [13], Lynch and Morawska have investi-
gated a larger class of syntactic theories admitting a terminating mutation-based
unification procedure. In Section 5, we consider a mutation-based approach for
the matching problem. This particular unification problem is particularly inter-
esting with respect to our combination method since there will be no termination
issue due to the fact that solutions are necessarily ground.

5 Matching in Finite Syntactic Hierarchical Combination

In this section we consider the matching problem in any finite syntactic hierar-
chical combination. Due to the more restricted nature of the matching problem
we obtain several improvements over the unification problem. One of the im-
provements is that we are able to relax several restrictions we assumed for the

Unification and Matching in Hierarchical Combinations of Syntactic Theories 299

unification problem. In the unification setting it was necessary to restrict vari-
ables which could cause reapplication of the first unification algorithm, denoted
as “ping pong” variables in [7]. This restriction can be easily fulfilled if most gen-
eral solutions can be expressed without any new variable. Considering matching
problems in regular theories, there are only ground solutions, and so no ping
pong variables. Since subterm collapse-free theories are regular, the theories we
are interested in seem well-suited for a hierarchical approach to the matching
problem.

The combination algorithm we propose is similar to the one existing for match-
ing in disjoint unions of regular theories [16, 17]. In that context, matching al-
gorithms A1 and A2 are applied repeatedly until reaching normal forms that
correspond to most general solutions. The key principle of the combination al-
gorithm for matching is to purify only the left-hand sides of matching problems.
Thus, this purification introduces a “pending” equation s =? X that will lead
to a match-equation: since X occurs in a match-equation solved by A1 or A2,
X will be instantiated by a ground term, say u, transforming eventually s =? X
into a match-equation s ≤? u.

Definition 3. Let P be a conjunction of match-equations and equations.
The set of ground-solved variables in P is the smallest set of variables in P such
that

1. variables occurring in left-hand sides of match-equations are ground-solved.
2. if t =? t′ is an equation in P such that variables in t′ are ground-solved, then

variables in t are also ground-solved.

When P contains only ground-solved variables, it is called an extended matching
problem. A matching problem is an extended matching problem containing no
equations. For any match-equation in an extended matching problem, we assume
that the right-hand side is R1-normalized. Hence, there will be an implicit nor-
malization of right-hand sides when new match-equations are generated by some
inference rules.

In the following, we present a rule-based combination method to solve E1∪E2-
matching problems. Let us briefly introduce the main steps of that combination
method. On the one hand, solving match-equations with 2-pure left-hand sides
generate solved match-equations. On the other hand, solving match-equations
whose left-hand sides are Σ1-rooted generate new equalities while preserving
the syntactic form of an extended matching problem. Then, there are some
combination rules to remove successively the equations introduced during the
purification and the solving phases. Eventually, we obtain a matching problem in
solved form. As shown below, this method is sound and complete when (E1, E2)
is a finite syntactic hierarchical combination, which means that E1, E2 are finite
and E1 admits a resolvent presentation denoted by S1. If E1 and E2 are finite,
then E1 ∪ E2 is finite according to the result below.

Proposition 3. (E1, E2) is a finite hierarchical combination if and only if E1∪
E2 is finite.

300 S. Erbatur et al.

Proof. (If direction) Straightforward.
(Only if direction) Assume that this is not the case, that is, there exists a term
t ∈ T (Σ1 ∪Σ2,X) with an infinite set of terms S such that t =E1∪E2 s for each
s ∈ S. Since there exists a convergent rewrite system R1 which is equivalent
to E1, we can consider the unique R1-normal form of each term s ∈ S. Let
S′ = {s↓R1 | s ∈ S}. The set of terms S′ is also infinite, otherwise it would
contradict that E1 is finite. Since R1 is convergent modulo E2, t↓R1 =E2 s′

for each s′ ∈ S′. This implies the existence of an infinite E2 equivalence class
[t↓R1]E2 , which contradicts our assumption that E2 is finite. ��

Since matching is finitary in a finite theory, we could take a brute for approach
to construct an E1 ∪ E2-matching algorithm [15]. Actually, a match-equation
s ≤?

E1∪E2
t has the same set of (ground) E1 ∪ E2-solutions as the syntactic

matching problem ∨
{t′ | t′=E1∪E2 t}

s ≤?
∅ t′

where ∅ denotes the empty equational theory. However, similarly to [15], we can
also proceed in a modular way, by using some “pure” matching algorithms, say
A1 and A2 dedicated respectively to E1 and E2. In the context of matching, A1

aims at handling match-equations whose left-hand sides are Σ1-rooted, whilst
A2 denotes an E2-matching algorithm to solve match-equations whose left-hand
sides are 2-pure.

Restriction 4. (E1, E2) is a finite syntactic hierarchical combination with the
following constituent algorithms:

1. A1 is given by the mutation-based algorithm M depicted in Fig. 1, where S1

denotes a resolvent presentation of the finite syntactic theory E1.
2. A2 is an E2-matching algorithm.

Lemma 5. E2-matching is a sound and complete method to solve E1 ∪ E2-
matching problems whose left-hand sides are 2-pure, provided that the right-hand
sides are replaced by their π2-abstractions.

Proof. Let s ≤? t be a match-equation such that s is 2-pure term, and consider
the corresponding 2-pure match-equation s ≤? tπ2 , where tπ2 can be effectively
computed (up to a renaming). The soundness is obvious: any E2-solution σ of
s ≤? tπ2 leads to an E1 ∪ E2-solution σπ−1 of s ≤? t. For the completeness,
consider an E1 ∪ E2-solution σ of s ≤? t where s is 2-pure. By Lemma 1 (and
induction on the length of derivation), sσ =E1∪E2 t implies sσπ2 =E2 tπ2 where
σ =E1∪E2 σπ2π−1. ��

5.1 Mutation-Based Procedure

We now consider the question of applying a mutation-based inference system
to simplify match-equations whose left-hand sides are Σ1-rooted. The mutation
inference is known to be complete for syntactic theories [5,11,12], and so for E1.
The next lemma shows that this property is preserved when considering E1∪E2.

Unification and Matching in Hierarchical Combinations of Syntactic Theories 301

Lemma 6. Let S1 be a resolvent presentation of E1, and let s and t be Σ1-
rooted terms such that t is R1-normalized. If s =E1∪E2 t, then there exists an
equational proof of s =E1∪E2 t with at most one S1-equational step applied at
the root position.

Lemma 6 justifies the eagerR1-normalization of the right-hand sides of match-
equations, and it implies the completeness of the inference system M (Fig. 1).

Mutate

{f(s1, . . . , sm) ≤? g(t1, . . . , tn)} ∪ P

−→ {r1 ≤? t1, . . . , rn ≤? tn, s1 =? l1, . . . , sm =? lm} ∪ P

If f(l1, . . . , lm) = g(r1, . . . , rn) is a fresh variant of an axiom in S1.

Matching Decomposition

{f(s1, . . . , sm) ≤? f(t1, . . . , tm)} ∪ P

−→ {s1 ≤? t1, . . . , sm ≤? tm} ∪ P

Where f ∈ Σ1.

Matching Clash

{f(s1, . . . , sm) ≤? g(t1, . . . , tn)} ∪ P

−→ Fail

Where f ∈ Σ1, f �= g and Mutate does not apply.

Fig. 1. Mutation-based inference system M for Matching

Lemma 7. M (Fig. 1) is sound, complete and terminating.

Proof. The soundness is straightforward. The completeness is a consequence of
Lemma 6. Let us now prove the termination. The multiset consisting of the sizes
of the right-hand sides of match-equations can be used as a complexity measure.
The three rules of M decrease this complexity measure, and so M terminates.

��
Corollary 1. Let P be a set of match-equations whose left-hand sides are Σ1-
rooted. There exists a finite derivation P � · · · � P ′ in M such that P and P ′

have the same set of solutions, and P ′ is in normal form w.r.t. M.

Lemma 8. If P is an extended matching problem in normal form w.r.t. M,
then P does not contain match-equations whose left-hand sides are Σ1-rooted.

Proof. By contradiction. Let P1 be the set of match-equations in P whose left-
hand sides are Σ1-rooted. If P1 is non-empty, then some rule in M must apply,
which means that P is not a normal form w.r.t. M. ��

302 S. Erbatur et al.

To conclude this section we introduce a complexity measure, which will be
useful to prove the termination of the combined matching procedure (Fig. 2).
Since E1∪E2 is finite, any extended matching problem P has only finitely many
ground solutions, and each non-ground right-hand side of an equation in P , say
t, can only be instantiated among a (possibly empty) finite set of ground terms
Gnd(t). Then, the set of match-equations encoded by P is inductively defined as
follows:

ms({s =? t} ∪ P) =
⋃

t′∈Gnd(t){s ≤? t′} ∪ms(P) if t is non-ground

ms({s =? t} ∪ P) = {s ≤? t} ∪ms(P) if t ground
ms({s ≤? t} ∪ P) = {s ≤? t} ∪ms(P)

To compare match-equations we use the ordering: (s ≤? t) ≺ (s′ ≤? t′) if

– s is a strict subterm of s′,
– or V ar(s) ∩ V ar(s′) = ∅ and t is a strict subterm of t′,
– or t = t′ and s strictly subsumes s′.

The ordering ≺ is well-founded and so its multiset extension ≺m is well-founded.

Lemma 9. Any rule in M strictly decreases ms with respect to ≺m.

The above lemma is another way to prove the termination of M.

5.2 Combination Procedure

Based on the restrictions related to A1 and A2, we can give a new matching
procedure for the hierarchical combination.

Consider CM the inference system depicted in Fig. 2, with the following infer-
ences rules {Solve1,Solve2,VA,RemEq,Rep,Merge,Clash}. We can easily
verify that each rule in CM preserves the set of E1 ∪ E2-solutions. This is clear
for the rules in {VA,RemEq,Rep,Merge,Clash}. Moreover, this is true by
Lemma 7 for Solve1, and by Lemma 5 for Solve2. The inference system CM
aims at computing matching problems in solved form.

Lemma 10. Normal forms with respect to CM are matching problems in solved
form.

Proof. Assume P is an extended matching problem which is not a matching
problem in solved form. Then we can always show that a rule in CM can be
applied:

1. If there is some equation t =? t′ in P , we have two possible cases. First, if t′

is ground, then RemEq applies. Second, if t′ contains some ground-solved
variable, then a match-equation containing some fresh variable must also
occur in P . If this match-equation is solved, then Rep applies. Otherwise,
just like in the third case below, either Solve1 or Solve2 or VA applies on
this unsolved match-equation.

Unification and Matching in Hierarchical Combinations of Syntactic Theories 303

Solve1:
P1 ∪ P

A1(P1) ∪ P
P1 is a set of match-equations with Σ1-rooted left-hand sides

Solve2:
P2 ∪ P

A2(P2) ∪ P
P2 is a set of match-equations with 2-pure left-hand sides

VA:
{s[u] ≤? t} ∪ P

{s[X] ≤? t, u =? X} ∪ P
if s is Σ2−rooted, u is an alien subterm

RemEq:
{t =? t′} ∪ P

{t ≤? t′} ∪ P
if t′ is ground

Rep:
{Y ≤? u, t =? t′[Y] } ∪ P

{Y ≤? u, t =? t′[u]} ∪ P
Merge:

{X ≤? t, X ≤? s} ∪ P

{X ≤? t} ∪ P
if s =E1∪E2 t

Clash:
{X ≤? t, X ≤? s} ∪ P

Fail
if s �=E1∪E2 t

Fig. 2. CM: inference system for the combination of matching

2. If there are X ≤? t and X ≤? s in P , then either Merge or Clash can be
applied.

3. If there is some match-equation s ≤? t in P where s is not a variable, then
either Solve1 or Solve2 or VA can be applied.

��

To show the soundness and completenes of CM, it remains to show that CM
terminates for any input.

Lemma 11. Let P be any input matching problem. Any repeated application of
rules in CM on P terminates.

Proof. Consider the complexity measure ms introduced for Lemma 9 plus the
following ones:

– m1: number of equations (denoted by =?)

– m2: number of Σ2-rooted match-equations

– m3: number of match-equations

– m4: number of variables occurring in equations (denoted by =?)

Then, the termination of CM can be obtained by considering a lexicographic
combination of these complexity measures, more precisely the one given by the
tuple (ms,m1,m2,m3,m4), as shown in the table below.

304 S. Erbatur et al.

ms m1 m2 m3 m4

Solve1 ↓
VA ↓
RemEq ↓= ↓
Solve2 ↓= ↓= ↓
Merge/Clash ↓= ↓= ↓= ↓
Rep ↓= ↓= ↓= ↓= ↓

��
Theorem 2. For any finite syntactic hierarchical combination (E1, E2), there
exists a combined E1∪E2-matching algorithm (Fig. 1 and Fig. 2), provided that
an E2-matching algorithm is known.

Proof. Direct consequence of Lemmas 10 and 11. ��

5.3 Example: Matching in a Theory of Distributive Exponentiation

As an example of the above combination method for matching algorithms we
consider in this section a theory of distributive exponentiation, namely EAC

for which a rule-based unification algorithm is presented in [9]. We recall that
EAC = (E1, E2), where E2 = AC(�) = {(x� y)� z = x� (y� z), x� y = y�x}
and E1 is given by the following convergent rewrite system modulo E2:

R1 =

{
exp(exp(x, y), z) → exp(x, y � z)

exp(x ∗ y, z) → exp(x, z) ∗ exp(y, z)
Lemma 12. EAC is a finite syntactic hierarchical combination (E1, AC(�))
where E1 admits the following resolvent presentation:

S1 =

{
exp(exp(x, y), z) = exp(x, y � z)

exp(x ∗ y, z) = exp(x, z) ∗ exp(y, z)
Note that Restriction 4(2) is addressed trivially since there are well-known

AC-matching algorithms. Therefore, the main task is to instantiate the inference
system M (Fig. 1). This leads to the mutation rules for EAC -matching shown in
Fig. 3.

Example 2. Consider the equational theory EAC and the matching problem

exp(X,V � c1) ≤? exp(b, c1 � c2 � c3)

The combination algorithm CM works as follows with this input. First, Match-
ing Decomposition is applied and leads to {X ≤? b, V � c1 ≤? c1 � c2 � c3}.
Then Solve2 applies and provides a first solved form {X ≤? b, V ≤? c2 � c3}.
Another possibility is to apply the first Mutate rule from Fig. 3, yielding
{Y � V � c1 ≤? c1 � c2 � c3, X =? exp(b, Y)}. By Solve2, the above 2-pure
match-equation has two solutions. The first solution is {Y ≤? c2, V ≤? c3}. Af-
ter Rep and RemEq, we obtain a new solved form: {V ≤? c3, X ≤? exp(b, c2)}.
Similarly, for the second solution {Y ≤? c3, V ≤? c2}, we get the solved form
{V ≤? c2, X ≤? exp(b, c3)}. The other Mutate rules lead to a failure thanks
the application of Matching Clash.

Unification and Matching in Hierarchical Combinations of Syntactic Theories 305

Mutate

{exp(s1, s2) ≤? exp(t1, t2)} ∪ P −→ {Y � s2 ≤? t2, s1 =? exp(t1, Y)} ∪ P

{exp(s1, s2) ≤? exp(t1, t2)} ∪ P −→ {exp(s1, Y) ≤? t1, s2 =? Y � t2} ∪ P

{exp(s1, s2) ≤? t1 ∗ t2} ∪ P

−→ {exp(X, s2) ≤? t1, exp(Y, s2) ≤? t2, s1 =? X ∗ Y } ∪ P

{s1 ∗ s2 ≤? exp(t1, t2)} ∪ P

−→ {X ∗ Y ≤? t1, s1 =? exp(X, t2), s2 =? exp(Y, t2)} ∪ P

Fig. 3. Mutation rules for EAC-matching

6 Conclusion

We have presented a collection of new results about our hierarchical combination
approach for solving unification problems. First we defined a simpler reformula-
tion of the combination method, which is sufficient for the problems we focus on
in this paper. Our application to shallow extensions complement and improve
our earlier work on hierarchical combination presented in [7,9]. Hierarchical com-
bination requires a solver A1, taking in account the axioms of E1, to produce
partial solved forms. Although a general sound and complete method is available
to construct A1, the problem of termination still remains. We solve this problem
for shallow theories by showing how to exploit unification algorithms known for
them. Second, we have shown another combination method for the matching
problem in finite syntactic extensions. Future work includes applying the gen-
eral method developed here to partly ground unification problems and finding
conditions which allow us to combine unification algorithms of larger classes of
equational theories.

References

1. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

2. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories:
Combining decision procedures. Journal of Symbolic Computation 21(2), 211–243
(1996)

3. Baader, F., Snyder, W.: Unification theory. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 445–532. Elsevier and MIT Press (2001)

4. Boudet, A.: Combining unification algorithms. Journal of Symbolic Computa-
tion 16(6), 597–626 (1993)

5. Boudet, A., Contejean, E.: On n-syntactic equational theories. In: Kirchner, H.,
Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 446–457. Springer, Heidelberg (1992)

306 S. Erbatur et al.

6. Comon, H., Haberstrau, M., Jouannaud, J.: Syntacticness, cycle-syntacticness, and
shallow theories. Inf. Comput. 111(1), 154–191 (1994)

7. Erbatur, S., Kapur, D., Marshall, A.M., Narendran, P., Ringeissen, C.: Hierarchical
combination. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 249–266.
Springer, Heidelberg (2013)

8. Erbatur, S., Kapur, D., Marshall, A.M., Narendran, P., Ringeissen, C.: Hierarchical
combination of matching algorithms. In: Twentyeighth International Workshop on
Unification (UNIF 2014), Vienna, Austria (2014)

9. Erbatur, S., Marshall, A.M., Kapur, D., Narendran, P.: Unification over distributive
exponentiation (sub)theories. Journal of Automata, Languages and Combinatorics
(JALC) 16(2–4), 109–140 (2011)

10. Gallier, J.H., Snyder, W.: Complete sets of transformations for general E-
unification. Theoretical Computer Science 67(2–3), 203–260 (1989)

11. Jouannaud, J.-P.: Syntactic theories. In: Rovan, B. (ed.) MFCS 1990. LNCS,
vol. 452, pp. 15–25. Springer, Heidelberg (1990)

12. Kirchner, C., Klay, F.: Syntactic theories and unification. In: Proceedings of the
Fifth Annual IEEE Symposium on Logic in Computer Science Logic in Computer
Science, LICS 1990, pp. 270–277, June1990

13. Lynch, C., Morawska, B.: Basic syntactic mutation. In: Voronkov, A. (ed.) CADE
2002. LNCS (LNAI), vol. 2392, pp. 471–485. Springer, Heidelberg (2002)

14. Nieuwenhuis, R.: Decidability and complexity analysis by basic paramodulation.
Inf. Comput. 147(1), 1–21 (1998)

15. Nipkow, T.: Proof transformations for equational theories. In: Proceedings of the
Fifth Annual IEEE Symposium on Logic in Computer Science Logic in Computer
Science, LICS 1990, pp. 278–288, June 1990

16. Nipkow, T.: Combining matching algorithms: The regular case. J. Symb. Com-
put. 12(6), 633–654 (1991)

17. Ringeissen, C.: Combining decision algorithms for matching in the union of disjoint
equational theories. Inf. Comput. 126(2), 144–160 (1996)

18. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational
theories. Journal of Symbolic Computation 8, 51–99 (1989)

19. Snyder, W.: A Proof Theory for General Unification. Progress in Computer Science
and Applied Logic, vol. 11. Birkhäuser (1991)

Combining Forward and Backward Propagation

Amira Zaki1,2, Slim Abdennadher1, and Thom Frühwirth2

1 German University in Cairo, Egypt
{amira.zaki,slim.abdennadher}@guc.edu.eg

2 Ulm University, Germany
thom.fruehwirth@uni-ulm.de

Abstract. Constraint Handling Rules (CHR) is a general-purpose rule-
based programming language. This paper studies the forward and back-
ward propagation of rules, and explores the combination of both execu-
tion strategies. Forward propagation transforms input to output, while
backward propagation uncovers input from output. This work includes
a source-to-source transformation capable of implementing a backward
propagation of the rules. Furthermore with the addition of annotat-
ing trigger constraints, CHR programs can be executed in a strictly-
forward, strictly-backward or combined interleaved quasi-simultaneous
manner. A programmer should only write one program and then the an-
notated transformation empowers the multiple execution strategies. The
proposed work is useful for automatic implementation of bidirectional
search for any search space through the combined execution strategies.
Moreover, it is advantageous for reversible bijective algorithms (such as
lossless compression/decompression), requiring only one algorithm direc-
tion to be implemented.

Keywords: Forward/Backward, Constraint Handling Rules, Bidirec-
tional Search, Combined Propagation, Source-to-source transformation.

1 Introduction

A program P can be defined as a series of transitions transforming an input
state to an output state, while an inverse (or backward) program P−1 is one
that uncovers the input given the output [11]. The transition rules transforming
input to output are known as forward rules, whereas those reversing output to
input are known as backward rules. For example, compression can be considered
as a forward program, and decompression is its backward program.

The study of transition directions for the same program captures some interest-
ing program pairs, such as encryption/decryption, compression/decompression,
invertible arithmetic functions and roll-back transactions. Despite the relation
between inverse computations, it is common practice to maintain two separate
programs to perform each transition direction. The two programs are similar and
essentially related to one another, however two disjoint programs have to be writ-
ten. Furthermore, maintaining the relationship between the programs can be a

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 307–322, 2015.
DOI: 10.1007/978-3-319-24246-0_19

308 A. Zaki, S. Abdennadher, and T. Frühwirth

source of errors and inconsistency, since any changes must be reflected in both
programs.

To avoid duplication of effort, a user ideally wants to write and maintain a
single program. This work facilitates a combination of forward and backward
propagation directions automatically for any given program. Programs are writ-
ten using Constraint Handling Rules (CHR), which is a high-level programming
language based on guarded rewrite rules [7]. The language was originally designed
to write constraint solvers, however it is a strong and elegant general-purpose
language with a large spectrum of applications. Source-to-source transformations
extend CHR programs to ones with additional machinery [8]. This work presents
a source-to-source transformation, to generate a combined program which is
more expressive and complex, featuring two-way execution.

Programming languages themselves vary in the inference direction used; back-
ward chaining languages are highly non-deterministic compared to committed-
choice forward chaining languages. Languages supporting deterministic forward
and backward computation are known as reversible languages such as the im-
perative language Janus [16]. Recently, [10] proposed a class of programming
languages that generalizes both Constraint Logic and Concurrent Constraint
Programming to combine forward and backward chaining, however the work
lacks a proper implementation. Prolog uses backward chaining, and can be used
to implement two-way programs whose arguments maybe used for input or out-
put. However, implementing such programs is quite tricky, and special care must
be taken while implementing with two-way predicates and operators.

For example, the run-length encoding algorithm is a simple data compression
technique, where consecutive runs of characters within a text are packed and
stored as a single character followed by its count. The text ‘aaaaabccc’ (wrapped
in a compress/1 constraint) is compressed into ‘a5b1c3’ (in a result/1 con-
straint). The run-length encoding algorithm can be expressed in CHR as shown
below, where pack/2 is used to pack consecutive letter runs and comp/3 to ac-
cumulate the encoding. This program encapsulates the combined forward and
backward nature of the algorithm, and two-way execution is explored through
the transformations described this work.

start @ compress(In) <=> comp(In,[],[]).

run-end @ comp([H1,H2|T],Run,Acc) <=> H1\=H2 | Run2=[H1|Run],

pack(Run2,PackRun), append(Acc,[PackRun],Acc2), comp([H2|T],[],Acc2).

run-cont @ comp([H1,H2|T],Run,Acc) <=> H1=H2

| Run2=[H1|Run],comp([H2|T],Run2,Acc).

last-char @ comp([H],Run,Acc) <=> Run2=[H|Run],

pack(Run2,PackRun), append(Acc,[PackRun],Acc2), result(Acc2).

end @ comp([],_,_) <=> result([]).

This work presents a source-to-source transformation that captures the back-
wards operational semantics of CHR for range-restricted programs. The trans-
formation was introduced earlier [17] however in this work it is revisited and ex-
pressed more formally. The previously mentioned run-length encoding program
is transformed into a combined form as presented in this work. Then for a string

Combining Forward and Backward Propagation 309

‘aaaaabccc’, the program can be forwardly run by: ‘fwd, compress([a,a,a,a,a,b,

c,c,c])’ to produce the compressed form: ‘result([[a,5], [b,1],[c,3]])’. Sim-
ilarly, a backward run can be attained through a query: ‘bck, result([[a,5],

[b,1],[c,3]])’ to decompress the sub-lists to: ‘compress([a,a,a,a,a,b,c,c,c])’.
Furthermore this work introduces the addition of annotating trigger con-

straints, to empower the execution of CHR programs in a strictly-forward,
strictly-backward or interleaved quasi-simultaneous bidirectional manner. This
means that only one program is written and the annotated transformation en-
ables multiple execution schemes. This is useful for solving bijective algorithms
and the aforementioned inverse computation pairs. The paper extends by show-
ing how the combined programs can be extended to facilitate bidirectional search.

Previous work, such as [1], tend to use CHR as a language for abduction.
However, the problem is that the user has to write two different programs for
deductive and abductive reasoning. This work presents a technique to write a
program once, then facilitate different reasoning directions.

The paper proceeds by recalling background information about CHR in Sec-
tion 2. In Section 3, the combined two-way programs are presented through
source-to-source transformations, and then the extension for bidirectional search
is given in Section 4. This is followed by an application in Section 5. The paper
concludes by some remarks and future work in Section 6.

2 Constraint Handling Rules

2.1 Syntax

Constraint Handling Rules (CHR) [7,9] is a high level, committed choice, rule-
based programming language. It consists of guarded rewrite rules that perform
conditional transformation of a multi-set of constraints. It distinguishes between
two types of constraints; built-in constraints which are predefined by the host
language and other user-defined CHR constraints which are declared as func-
tor/arity pairs. A generalized CHR simpagation rule is given as:

rule-id @ Hk \ Hr ⇔ G |B

Every rule has an optional unique identifier preceding it given by rule-id. Hk

andHr are a conjunction of one or more CHR constraints; known as the kept and
removed head constraints respectively. The guard G is an optional conjunction
of built-in constraints. The body of the rule B consists of a conjunction of both
built-in and CHR constraints.

Simplification and propagation rules are two other rule types which are special
cases of simpagation rules. Simplification rules have no kept head constraints,
and propagation rules have no removed head constraints. They are of the forms:

simplification-id @ Hr ⇔ G | B

propagation-id @ Hk ⇒ G | B

310 A. Zaki, S. Abdennadher, and T. Frühwirth

Constraint Handling Rules with Disjunction (CHR∨) [2] is an extension of CHR
featuring disjunctive rule bodies to allow a backtrack search over alternatives.
The rules are similar to the rule forms described above, however the rule body
can be composed of two or more disjunctive bodies (B1 ∨ B2). For example a
CHR∨ simpagation rule is of the form:

disjuntive-id @ Hk \ Hr ⇔ G | B1 ; B2

2.2 Operational Forward Semantics

The behavior of a CHR program is modeled through an operational semantics,
in terms of a state transition system. The very abstract semantics (ωva) is a state
transition system, where a transition corresponds to a rule application and states
represent goals consisting of a conjunction of CHR and built-in constraints. An
initial state is an arbitrary one and a final state is a terminal one where no
further transitions are possible. The ωva semantics includes one rule which is
shown below, where P is a CHR program and CT is the constraint theory for
the built-in constraints. The body of a rule (B) and C consist of both built-in and
CHR constraints, moreover Hk and Hr are a conjunction of CHR constraints,
while G is a conjunction of built-in constraints.

Apply
(Hk ∧Hr ∧C) �→r

apply (Hk ∧G ∧B ∧ C)

if there is an instance of a rule r in P with new local variables x̄ such that:
r @ Hk \ Hr ⇔ G | B and CT |= ∀(C → ∃x̄G)

The extended transition system for CHR∨ operates on a disjunction of CHR
states known as a configuration: S1 ∨S2 ∨ · · ·∨Sn. The original apply transition
is applicable to a single state. An additional split transition is applicable to
any configuration containing a disjunction. It leads to a branching derivation
entailing two states, where each state can be processed independently.

Split
((H1 ∨H2) ∧ C) ∨ S �→∨ (H1 ∧ C) ∨ (H2 ∧C) ∨ S

However, these semantics are highly non-deterministic and thus more refined
semantics are needed for the actual implementation of CHR compilers[5]. The
order of constraint execution and rule application determine how a derivation
proceeds and is defined by the implemented operational semantics. Starting with
the same initial query, multiple derivations are possible. If all derivations ulti-
mately lead to the same goal, then the program is known as a confluent one.

2.3 Operational Backwards Semantics

The forward ωva semantics models a forward rule application on an initial state
to a final state. The inverse of this rule application is defined by a backwards
semantics ωb that reverses a final state to an initial state. This semantics was
formally introduced in [17], and it is typically the same as the apply transition
but with exchanging the left and right hand side states of the transition.

Combining Forward and Backward Propagation 311

Backwards
(Hk ∧G ∧B ∧ C) �→r

back (Hk ∧Hr ∧ C)
if there is an instance of a rule r in P with new local variables x̄ such that:

r @ Hk \ Hr ⇔ G | B and CT |= ∀(C → ∃x̄G)

The semantics works by undoing each step of the forward execution. However
without any external knowledge on how to proceed with the inverse tree, the
backwards semantics only shows that any original state can be uncovered. In
fact, inverse programs are normally non-confluent ones.

3 Combined CHR Programs

This work builds upon the K.U. Leuven system [9], which uses CHR with Prolog
as the host language. To introduce the two-way execution, the contribution of
the existing Leuven system is presented and source-to-source transformations
are given to augment additional machinery on-top of the existent CHR system.

3.1 General Formulation

The first part of this work is to define a transformation of a CHR program
for forward/backward execution. Programs are intended to be written once and
then executed in several ways; data supplied is considered as input or output de-
pending on the program direction used. Figure 1 represents the relation between
input and output and the expected transitions of the two-way program.

Fig. 1. Transitions between input and output

The cardinality of the program that transforms the input to output, decides
on the properties of the two-way program required. If the relation is one-to-one,
then for every output there exists only one input and vice versa. This makes
the backward transition quite straight-forward, since for every output there is
only one possible input that caused it. These relations would require a direct for-
ward/backward execution mechanism. This is especially useful for bijective func-
tions such as loss-less compression/decompression and encryption/decryption.

312 A. Zaki, S. Abdennadher, and T. Frühwirth

On the other hand, a list sorting program transforms several permutations
into the same sorted output. Hence the forward transition has a many-to-one
cardinality, and therefore its backward transition (shuffling a sorted list) is one-
to-many. Due to the committed-choice nature of CHR and the deterministic
implementation of the Leuven system, it would never reach all transition possi-
bilities. Thus, it requires using a source-to-source transformation [6] that fully
explores the search-space to reach all final states.

Therefore, for every transition direction two execution strategies are required;
a direct one-way execution and an exhaustive execution. Annotations are added
to the combined program, to decide on the chosen execution strategy. The an-
notation involves adding a kept head constraint to each program rule, where
its presence will denote the activation of this rule. The annotation will involve
four CHR constraints: fwd/0, fwd-ex/0, bck/0 and bck-ex/0. The following
subsections highlight the necessary changes that are needed to transform a CHR
program into a combined two-way one with control terms that steer the direction.
The summary of the transformations can be depicted in Figure 2.

Fig. 2. Bidirectional CHR Transformations

3.2 Forward CHR

In order to change the program execution flow, source-to-source transforma-
tions are used to facilitate a straight-forward implementation on top of existing
CHR implementations whilst exploiting the optimizations of current CHR com-
pilers [15]. The normal execution of a committed-choice CHR program can be
transformed into one featuring exhaustive completion to fully explore a goal’s
search space [6].

Combining Forward and Backward Propagation 313

Directly Forwards. The CHR Leuven system follows a refined operational
semantics with additional fixed orders for explored goals and chosen program
rules. It applies the program rules on a goal, until a fixed point is reached. Thus
this provides the direct forwards execution of the combined program.

A constraint fwd/0 is introduced as a kept head constraint to every pro-
gram rule. Thus for every generalized CHR simpagation rule, a corresponding
annotated rule is added of the form shown below. For other rules, the missing
constraints are non-existent accordingly (i.e Hk or Hr).

fwd-simpagation @ fwd , Hk \ Hr ⇔ G | B

Example 1. Run-length Encoding The compression algorithm presented in the in-
troduction can be rewritten using forward annotation as shown below. For a string
‘aaaaabccc’, the program is forwardly run by: ‘fwd,compress([a,a,a,a,a,b,c,c,c])’
to yield the compressed form: ‘result([[a,5], [b,1],[c,3]])’.

start @ fwd \ compress(In) <=> comp(In,[],[]).

run-end @ fwd \ comp([H1,H2|T],Run,Acc) <=> H1\=H2 | Run2=[H1|Run],

pack(Run2,PackRun), append(Acc,[PackRun],Acc2), comp([H2|T],[],Acc2).

run-cont @ fwd \ comp([H1,H2|T],Run,Acc) <=> H1=H2

| Run2=[H1|Run],comp([H2|T],Run2,Acc).

last-char @ fwd \ comp([H],Run,Acc) <=> Run2=[H|Run], pack(Run2,PackRun),

append(Acc,[PackRun],Acc2), result(Acc2).

end @ fwd \ comp([],_,_) <=> result([]).

Exhaustive Forward. For non-confluent programs, overlapping sets of rule
constraints and the order of constraints within rules and queries entail different
derivation paths to several possible outputs. The exhaustive transformation [6]
was proposed to allow full space exploration for any CHR program to reach all
possible solutions to a query. It changes a CHR derivation into a search tree with
disjunctive branches to reach all leaves.

A depth/1 constraint is added to represent the current depth of the search
tree. The transformation annotates constraint occurrences within the rules with
two additional arguments; one to denote the occurrence number and the other to
represent the current depth within the search tree. Details of the transformation
for forward execution will not be revisited here due to space limitations, and
can be directly referred to in [6]. However it will be presented for backward
execution in the next section, since it is a modification of [6]. Thus for a forward
CHR program, the transformation is applied and the resulting CHR rules are
annotated with a fwd-ex/0 kept head constraint.

Example 2. Sets of Cards Given N cards, each represented with a card/1 con-
straint, a simple program can be written to select three cards whose sum equals 12, to
form a set (set/3) using the predefined sumlist/2 list predicate.

select @ card(A), card(B), card(C) <=> sumlist([A,B,C],12) | set(A,B,C).

Running the program with a query ‘card(1),card(2),card(3),card(4),card(5),
card(6),card(7),card(8),card(9),card(10)’, will result in: ‘card(10), card(8),

314 A. Zaki, S. Abdennadher, and T. Frühwirth

card(7),card(6),set(5,4,3),set(9,2,1)’. Due to the implementation of the CHR
compiler, only one result is reached. However there are multiple other sets that
can be assembled from those 10 cards. The forward program is transformed ac-
cording to the exhaustive transformation to produce the below program (where
card(X,_,_) is equivalent to card(X)):

src-mod @ fwd-ex \ depth(Z), card(A,1,Z), card(B,2,Z), card(C,3,Z)

<=> sumlist([A,B,C],12) | set(A,B,C).

assign @ fwd-ex, depth(Z) \ card(A)

<=> card(A,0,Z); card(A,1,Z); card(A,2,Z); card(A,3,Z).

rest @ fwd-ex, depth(Z) \ card(A,0,Z1) <=> Z1 < Z | card(A).

pruning @ fwd-ex \ end, card(A,_,_), card(B,_,_), card(C,_,_)

<=> sumlist([A,B,C],12) | fail.

The exhaustive forward program can be run with the same query as before but
adding the appropriate fwd-ex trigger. The query’s execution gets transformed
into a derivation tree, producing all possible card set combinations.

3.3 Backward CHR

Directly Backwards. The backwards semantics ωb can be achieved through a
source-to-source transformation of the CHR program. The transformation idea
was introduced in [17] but will be formalized in this paper.

Definition 1. Backwards Transformation Every range restricted rule of the form
(r @ Hk \ Hr ⇔ G | B) in program P (where B = Bb ∧ Bc representing the built-in
and CHR constraints respectively), an inverse rule in-r is added to the transformed
program P−1 of the form (where bck is an annotating trigger constraint):

in-r @ bck, Hk \ Bc ⇔ Bb, G | Hr

Applying the backwards transformation on the cards example, would require
one backward rule as shown below:

bck-select @ bck \ set(A,B,C)<=>sumlist([A,B,C],12)|card(A),card(B),card(C).

Similarly, the previous run-length encoding program (Example 1) can be
transformed using the backwards transformation as follows:

bck-start @ bck \ comp(In,[],[]) <=> compress(In).

bck-run-end @ bck \ comp([H2|T],[],Acc2) <=>

Run2=[H1|Run], pack(Run2,PackRun), append(Acc,[PackRun],Acc2), H1\=H2

| comp([H1,H2|T],Run,Acc).

bck-run-cont @ bck \ comp([H2|T],Run2,Acc) <=> Run2=[H1|Run], H1=H2

| comp([H1,H2|T],Run,Acc).

bck-last-chr @ bck \ result(Acc2) <=>

Run2=[H|Run], pack(Run2,PackRun), append(Acc,[PackRun],Acc2)

| comp([H],Run,Acc).

bck-end @ bck \ result([]) <=> comp([],_,_).

Decompression of the encoded message can be easily attained by a back-
wards transition from output to input. Thus a query ‘bck, result([[a,5],

[b,1],[c,3]])’ decompress the sub-lists to: ‘compress([a,a,a,a,a,b,c,c,c])’.

Combining Forward and Backward Propagation 315

Exhaustive Backward. The completeness of the backwards transformation
relies on the high-level non-determinism of the ωva semantics. The completion
fails when implementing on top of current CHR systems. Thus for implemen-
tation, the backwards transformation is coupled with an exhaustive execution
transformation [6]. To illustrate why this is necessary consider the next sorting
example.

Example 3. (Exchange sort) In CHR, constraints of the form n(Index,Value) can
be sorted by exchanging any pair of constraints with an incorrect order. This is possible
through a forward program consisting of a single simplification rule:

sort @ fwd \ n(I,V),n(J,W) <=> I>J,V<W | n(I,W),n(J,V).

Using the defined transformation, the program becomes:

in-sort @ bck \ n(I,W),n(J,V) <=> I>J,V<W | n(I,V),n(J,W).

The two-way program sorts a query ‘fwd,n(0,9),n(1,1), n(2,5)’ to ordered
numbers represented as ‘n(0,1),n(1,5), n(2,9)’. On the other hand, a query
‘bck,n(0,1),n(1,5),n(2,6) uncovers the permutation ‘fwd,n(0,9),n(1,4),n(2,1)’.
This is a correct input, but not necessarily the exact one used in the forward
run. The reason is that sorting is a many-to-one function, where permutations
of unsorted lists derive the same sorted list. The inverse of sorting problem is a
shuffle operation which generates all possible permutations of the ordered list.
This cannot be achieved here as the backwards transition generates only one
permutation.

The transformation required to generate exhaustive backward program rules
is shown next. All the generated rules are annotated with a bck-ex constraint
to distinguish them within the two-way program. All unannotated inverse rules
(in-r @ Hk \ Bc ⇔ Bb, G | Hr) in program P−1 are transformed as described
by the upcoming Definition 2.

Definition 2. Exhaustive Backwards Transformation A transformed inverse ex-
haustive program P−T is defined for a program P by the three following steps (adapted
from [6] but with no pruning of intermediate states).

1. Each constraint c(X1, ..., Xn) in a forward program’s Bc constraints is changed to
ct(X1, ..., Xn, y, Z), such that constraint occurrences within the program (where m
is the total number of occurrences) are annotated with an argument y and depth
Z. y represents the yth occurrence of the constraint c, i.e. y ∈ [1, m]. Thus, for
every constraint c(X1, ..., Xn) that appears in the forward program’s rule body, an
assignment rule is added to the transformed program, defined as follows:
assignc @ bck-ex, depth(Z) \ c(X1, ..., Xn)
⇔ ct(X1, ..., Xn, 0, Z) ∨ ... ∨ ct(X1, ..., Xn,m,Z)

2. For every rule (Hr ⇔ G | Bb, Bc) in a forward program, with Bc = c1(X11, ...,
X1n1), ..., cl(Xl1, ..., Xlnl

), a modified source rule is added to the transformed pro-
gram, as follows:
in-rt @ bck-ex \ depth(Z), c1

t(X11, ..., X1n1 , y1, Z), ...,
cl

t(Xl1, ..., Xlnl
, yl, Z) ⇔ Bb, G | Hr, depth(Z + 1)

316 A. Zaki, S. Abdennadher, and T. Frühwirth

3. An additional rule is needed to reset unmatched constraints if a newly state in the
tree is derived. Hence, for every constraint c(X1, ..., Xn) that appears in Bc, a reset
rule is added to the transformed program:
resetc @ bck-ex, depth(Z) \ ct(X1, ..., Xn, 0, Z

′) ⇔ Z′ < Z | c(X1, ..., Xn)

Example 4. (Exchange sort - Revisited) Applying the newly defined transformation
on the exchange sort of Example 3, will generate the following rules:

assign-a @ bck-ex, depth(Z) \ n(X,Y)

<=> n_t(X,Y,0,Z); n_t(X,Y,1,Z); n_t(X,Y,2,Z).

in-sort-t @ bck-ex \ depth(Z),n_t(I,W,1,Z),n_t(J,V,2,Z)

<=> I>J, V<W | n(I,V), n(J,W), depth(Z+1).

reset-a @ bck-ex, depth(Z) \ n_t(X,Y,0,Z1) <=> Z1 < Z | n(X,Y).

The transformed rules can be run with the sorted input: bck-ex, depth(0),

n(0,1), n(1,5),n(2,9). It generates several results, which form the complete
set of all permutations of those three numbers. However there exists several
redundancies; the intensive use of disjunction produces several duplicate states
which are revisited multiple times. The backward run is terminating, and the
use of a breadth-first strategy covers the entire search space. The reason for this
is that the number of permutations of a list is finite.

4 Interleaved Forward/Backward Propagation

The combined two-way program enables either a strictly forward or strictly back-
ward execution depending on the used trigger. However, we further propose an
additional transformation towards a combined interleaved execution, which is
inspired from bidirectional search. Bidirectional search tries to find the short-
est path to a node/element by running two simultaneous searches. It involves
one forward search from the initial state, and one backward search from the
goal state. The search stops when the two searches reach the same state, some-
where in the middle. In many problems, bidirectional search can dramatically
reduce the amount of required exploration [14]. The two-way CHR programs can
be modified to implement a bidirectional search for a goal. Instead of running
a transition in a strictly forward or strictly backward manner, we introduce a
technique to have an interleaved forward and backward manner to achieve a
combined quasi-simultaneous two-way execution.

For clarity, bidirectional search is exemplified with direct forwards and back-
wards transitions. The technique can also be applied to the exhaustive variants,
but it makes the presentation too long for the scope of this paper.

Example 5. List Searching Determining whether an element is found within a list
can be performed in CHR as shown below. A constraint find/2 is used to search in the
first argument (a list) for the second argument and a constraint found/1 denotes that
it has been found. A query fwd, find([0,1,2,3,4],3) would reach the goal found(3).

end @ fwd \ find([X],Y) <=> X=Y, found(Y).

middle @ fwd \ find([X|_],Y) <=> X=Y | found(Y).

search @ fwd \ find([X|Xs],Y) <=> X\==Y | find(Xs,Y).

Combining Forward and Backward Propagation 317

The backward search from a found element, constructs arbitrary lists contain-
ing this element. The direct backward rules are given as:

in-end @ bck \ found(Y) <=> X=Y | find([X],Y).

in-middle @ bck \ found(Y) <=> X=Y | find([X|_],Y).

in-search @ bck \ find(Xs,Y) <=> X\==Y | find([X|Xs],Y).

Due to the chosen direct (non-exhaustive) execution, the second rule (in-middle)
becomes unreachable in this context and these rules form a non-confluent pro-
gram; the first two rules have the exact same rule heads and guards. One way
to resolve this problem is to use the previously introduced exhaustive execution.
Alternatively, since these rules are single-headed with the same guards, then it is
sufficient to use Clark’s completion and merge the two rules into one. For clarity
and to save writing space, the second representation is preferred here over the
exhaustive execution. Thus the rules in-end and in-middle are equivalent to:

in-end-middle @ bck \ found(Y) <=> X=Y | find([X],Y) ; find([X|_],Y).

Due to the lossy nature of the program the other un-found values are lost. Thus
a query bck,found(3) would reach several lists with unknown filler values. Some
of the backward goals reached are: find([3],3), find([3,],3), find([,3,],3),
etc.

For the automatic implementation of a bidirectional search, the idea is to
change the execution of these rules such that it follows alternating forward and
backward transitions.

Definition 3. Bidirectional Transform A combined two-way program P−T can be
transformed to enable quasi-simultaneous bidirectional search by the following steps:
1. Trigger constraints bck and fwd should not be kept head constraints. They must

be consumed by the rules, and on rule application, the opposite direction trigger is
added. Thus forward rules (fwd , Hk \ Hr ⇔ G | B) should be changed into:

Hk \ fwd, Hr ⇔ G | B, bck

Similarly, backward rules (bck, Hk \ Bc ⇔ Bb, G | Hr) become:

Hk \ bck, Bc ⇔ Bb, G | Hr, fwd

2. Constraints of the backward rules must be differentiated from the forward rules,
such that each search direction operates on different goals until they meet. Thus
every constraint c(X1, ..., Xn) in the backward rules is changed to cb(X1, ..., Xn).

3. A unification rule must be added to halt the execution once both search goals can be
unified with one another. Thus given a forward goal c(X1, ..., Xn) and a backward
goal cb(Y1, ..., Yn), a possible unifying rule would be of the form:

unify @ c(X1, ..., Xn), cb(Y1, ..., Yn) ⇔ unifiable(c(X1, ..., Xn), c
b(Y1, ..., Yn),)

| write(‘Bidirectionally found!’).

Therefore the interleaved quasi-simultaneous bidirectional list search program
becomes as shown below; all constraints of backward rules are distinguished
with (_b).

318 A. Zaki, S. Abdennadher, and T. Frühwirth

end @ fwd, find([X],Y) <=> X=Y, found(Y), bck.

middle @ fwd, find([X|_],Y) <=> X=Y | found(Y), bck.

search @ fwd, find([X|Xs],Y) <=> X\==Y | find(Xs,Y), bck.

unify @ find(X,Y), find_b(Z,Y) <=> unifiable(Z,X,_)

| write(’Bidirectionally found!’).

in-end-middle @ bck, found_b(Y) <=> X=Y

| (find_b([X],Y); find_b([X|_],Y)), fwd.

in-search @ bck, find_b(Xs,Y) <=> X\==Y

| find_b([X|Xs],Y), fwd.

Searching for an element 3 in a list [0, 1, 2, 3, 4] can be performed by the bidi-
rectional search program, with a query find([0,1,2,3,4],3), found b(3), fwd.
The derivation for this query would be as shown below, while underlining the
matched constraints (a trace is also shown in Figure 3): fwd, find([0,1,2,3,4],3),

found b(3)

�→search find([1,2,3,4],3), bck, found b(3)

�→in-middle find([1,2,3,4],3), fwd, find b([3,],3)

�→search find([2,3,4],3), bck, find b([3,],3)

�→in-search find([2,3,4],3), fwd, find b([,3,],3)

�→unify write(’Bidirectionally found!’).

Fig. 3. Bidirectional search trace: ‘fwd, find([0,1,2,3,4],3), found b(3)’

5 Application for Combined Programs

Another application of the proposed work is for reasoning. Reasoning is the
process of using existing knowledge to infer conclusions, speculate predictions,
and create explanations. The philosopher C. S. Pierce distinguished between
three kinds of reasoning; deduction, induction and abduction [13]. Deduction
involves applying rules to specific cases to deduce a certain result, while induction
is reasoning which infers a rule from a case and result. Abduction is a kind of
backward reasoning which infers a case from the rule and result.

Combining Forward and Backward Propagation 319

The relation between abduction and reverse deduction has been studied in
several works to highlight the difference between them [12]. However, it has also
been argued that abduction is a form of reversed deduction and that there is a
duality in the explanation of abduction and deduction [3].

The combined two-way programs capture the duality relation between deduc-
tion and abduction, and produce a powerful reasoning program. The reasoner
exploits existent knowledge to infer conclusions and speculate predictions for
observed phenomena. Logic theories that describe the real world are modeled
in CHR. Then the exhaustive forward transformation facilitates exhaustive ex-
ploration of a query’s search space and thus enables deductive reasoning. Fur-
thermore, an exhaustive backward execution of the modeled CHR programs
empowers abductive reasoning.

It is not the first time that CHR has been used for abductive reasoning. In [1],
logic programs containing Horn clauses are expressed in CHR while differenti-
ating between intensional predicates and extensional ones to perform abductive
reasoning. However in this work, all logic clauses including non-Horn ones can
be modeled in CHR. Moreover the framework empowers both abductive and
deductive reasoning. This is not possible with [1] since the used representation
relied heavily on the underlying meaning of abduction and manually gathered
similar rule bodies as disjunctive rule bodies.

5.1 Modeling

In order to use the annotated transformations for two-way reasoning, the model-
ing of logic theories in CHR must first be formalized. A logic theory T is a set of
well-formed formulae, where each formula is an implication of the form A → B,
and A and B are conjunctions of one or more literals. Logic implications are
mapped in a one-to-one manner to CHR simplification rules. The mapping is
quite similar to [1], nonetheless in our model both A and B can be conjunctions.

The model is defined by representing literals with CHR constraints and built-
ins. Due to the syntax of CHR, two filtering functions are also defined: a chr/1

function that extracts the predicates/constraints from a set of literals and a
built/1 function that extracts the built-in expressions from a set of literals.

Thus, every implication of the form A → B is modeled as a forward CHR
simplification rule of the form:

fwd \ chr(A) ⇔ built(A) | B
Given the following logic theory which defines some family relations [1]:

Example 6. father(F,C) → parent(F,C), mother(M,C) → parent(M,C),

parent(P,C1), parent(P,C2), C1 �= C2 → sibling(C1, C2)

It is transformed into the following annotated forward CHR rules:

fwd \ father(F,C) <=> parent(F,C).

fwd \ mother(M,C) <=> parent(M,C).

fwd \ parent(P,C1), parent(P,C2) <=> C1\=C2 | sibling(C1,C2).

320 A. Zaki, S. Abdennadher, and T. Frühwirth

Integrity constraints can be added to the modeled program to provide seman-
tic optimization to the reasoner. Since these rules ensure the integrity, they are
not involved in any of the transformations and thus should not be annotated
with any trigger constraints. For Example 6, the following integrity constraints
can be added:

father(F1,X) \ father(F2,X) <=> F1=F2.

mother(M1,X) \ mother(M2,X) <=> M1=M2.

person(P,G1)\ person(P,G2) <=> G1=G2.

father(F,X) ==> person(F,male), person(X,_).

mother(M,X) ==> person(M,female), person(X,_).

An extensional (trigger-less) introduction rule is required to add all the facts
into the constraint store, to be introduced with a start constraint in any query:

start ==> parent(john,mary), father(john,peter), mother(jane,mary),

person(john,male), person(mary,female), person(paul,male),

person(peter,male), person(jane,female).

To ensure a closed world, the set of hypothesis facts for a given predicate
need to be pruned. Closing rules (also without trigger constraints) are added for
these predicates [1]. For a predicate p/n defined by p(t11, . . . , t

1
n), . . . , p(t

k
1 , . . . , t

k
n),

a closing rule is required as a propagation rule shown below:

p(x1, . . . , xn) ⇒ (x1 = t11,∧, . . . ,∧xn = t1n) ∨ · · · ∨ (x1 = tk1 ,∧, . . . ,∧xn = tkn)

To restrict the person/2 predicate of Example 6, a closing rule would be added
as shown below:

person(X,Y) ==> (X=john, Y=male);(X=peter, Y=male); (X=paul, Y=male);

(X=jane, Y=female);(X=mary, Y=female).

5.2 Strictly Forward

Due to the modeling of non-Horn clauses, the normal execution of CHR would
not yield deductive reasoning. However, transforming the program to an ex-
haustive variant would ensure the completeness of the search-space. Using the
transformation, it is possible to start from an initial query and deduce all possible
derivations to goals.

Thus for deductive reasoning, only rules representing the main transformed
implications (i.e. those annotated with fwd) are transformed into rules featur-
ing exhaustive execution using the exhaustive transformation. These other rules
maintain certain properties for the modeling, hence they need not be trans-
formed.

The three implication rules of the family example can be modeled into CHR
and then transformed into their exhaustive executing variant with the constraint
trigger fwd-ex. Using the initial knowledge that John is the father of Peter and
Mary and that Jane is the mother of Mary, one can deduce that Mary and Peter
are siblings and that Paul, Jane, Peter, Mary and John are all persons. This
deduction can be reached using a query ‘fwd-ex, start, father(john,peter),

father(john,mary), mother(jane,mary),depth(0)’, to produce the final state:

Combining Forward and Backward Propagation 321

sibling(mary,peter), person(paul,male), person(jane,female),

person(peter,male), person(mary,female), person(john,male).

5.3 Strictly Backward

For abductive reasoning, the exhaustive backwards transformation is performed
for, again, only the main annotated CHR rules representing transformed impli-
cations from the logic theory.

Abductive reasoning involves deriving hypotheses about certain predicates
that are incompletely defined; these are known as abducible predicates. Thus to
include the notion of abducibles in the proposed model, only the closing rules
of non-abducible predicates are retained (as forward and untransformed rules);
other closing rules are completely removed from the program. All other integrity
constraint rules and extensional introduction rules are also kept unchanged in
the abductive program.

In the family example, predicates father and mother are abducible but
not person. Thus the abductive program should contain only one closing rule
for person. Executing the query ‘sibling(paul,mary),bck-ex’ with the abduc-
tive program, arrived to the following two possibilities: father(john,paul), or

mother(jane,paul).
The goals present two different abductive explanations as to how Paul and

Mary are siblings, i.e. either John is the father of Paul or that Jane is the mother
of Paul. Furthermore, the abductive query ‘sibling(goofy,mary)’ fails because
person is not abducible. These results match those reached by the abductive
CHR modeling of [1].

6 Conclusion

The paper presents a combined perspective for Constraint Handling Rules based
on a source-to-source transformation. It involves transforming CHR programs
into ones capable of both forward and backward propagation, either in a direct
committed-choice manner or in an exhaustive full-space explorative manner. The
combination is especially useful for implementing high-level bijective functions,
such as encryption/decryption and compression/decompression algorithms, for
implementing quasi-simultaneous bidirectional search algorithms and for exploit-
ing dual definitions of reasoning, such as for deduction and abduction.

For future work, an evaluation of the bidirectional search is needed to de-
termine how bidirectionality reduces the amount of required exploration. The
search implementations can also be extended to experimenting with different
search directions, such as the breadth-first traversal of CHR [4]. Moreover, the
proposed reasoning framework is to be compared with other abductive and de-
ductive systems and to evaluate the attained results. Moreover, it could be possi-
ble to include the notion of probabilistic abduction by encoding the probabilities
in the search tree generated by the exhaustive transformation. Then once the
transformation is defined, it would be compared with other implementations of
probabilistic abductive logic programs.

322 A. Zaki, S. Abdennadher, and T. Frühwirth

References

1. Abdennadher, S., Christiansen, H.: An experimental CLP platform for integrity
constraints and abduction. In: Larsen, H.L., Andreasen, T., Christiansen, H.,
Kacprzyk, J., Zadrożny, S. (eds.) FQAS 2000. ASC, vol. 1, pp. 141–152. Springer,
Heidelberg (2000)

2. Abdennadher, S., Schütz, H.: CHR ∨: A flexible query language. In: Andreasen,
T., Christiansen, H., Larsen, H.L. (eds.) FQAS 1998. LNCS (LNAI), vol. 1495,
pp. 1–14. Springer, Heidelberg (1998)

3. Console, L., Dupr, D.T., Torasso, P.: On the relationship between abduction and
deduction. J. Log. Comput. 1(5), 661–690 (1991)

4. De Koninck, L., Schrijvers, T., Demoen, B.: Search strategies in CHR(Prolog).
In: Schrijvers, T., Frühwirth, Th. (eds.) Proceedings of the 3rd Workshop on Con-
straint Handling Rule, pp. 109–124. K.U.Leuven, Department of Computer Science,
Technical report CW 452 (2006)

5. Duck, G.J., Stuckey, P.J., de la Banda, M.G., Holzbaur, C.: The refined operational
semantics of constraint handling rules. In: Demoen, B., Lifschitz, V. (eds.) ICLP
2004. LNCS, vol. 3132, pp. 90–104. Springer, Heidelberg (2004)

6. Elsawy, A., Zaki, A., Abdennadher, S.: Exhaustive execution of chr through source-
to-source transformation. In: Proietti, M., Seki, H. (eds.) LOPSTR 2014. LNCS,
vol. 8981, pp. 59–73. Springer, Heidelberg (2015)

7. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)
8. Frühwirth, T., Holzbaur, C.: Source-to-source transformation for a class of expres-

sive rules. In: Buccafurri, F. (ed.) Joint Conference on Declarative Programming
APPIA-GULP-PRODE 2003 (AGP 2003), pp. 386–397 (2003)

9. Frühwirth, T., Raiser, F. (eds.): Constraint Handling Rules: Compilation, Execu-
tion, and Analysis. Books on Demand, March 2011

10. Haemmerlé, R.: On combining backward and forward chaining in constraint logic
programming. In: Proceedings of 16th International Symposium on Principles and
Practice of Declarative Programming (PPDP 2014) (2014)

11. Hou, C., Vulov, G., Quinlan, D., Jefferson, D., Fujimoto, R., Vuduc, R.: A new
method for program inversion. In: O’Boyle, M. (ed.) CC 2012. LNCS, vol. 7210,
pp. 81–100. Springer, Heidelberg (2012)

12. Mayer, M.C., Pirri, F.: Abduction is not deduction-in-reverse. Logic Journal of the
IGPL 4(1), 95–108 (1996)

13. Peirce, C.S.: Collected Papers of Charles Sanders Peirce, vol. 2. Harvard University
Press (1931)

14. Pohl, I.S.: Bi-directional search. Machine Intelligence 6, 127–140 (1971)
15. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: con-

straint handling rules – a survey of CHR research between 1998 and 2007. In:
Theory and Practice of Logic Programming, pp. 1–47 (2010)

16. Yokoyama, T.: Reversible computation and reversible programming languages.
Electronic Notes in Theoretical Computer Science 253(6), 71–81 (2009). Proceed-
ings of the Workshop on Reversible Computation (RC 2009)

17. Zaki, A., Frühwirth, T.W., Abdennadher, S.: Towards inverse execution of con-
straint handling rules. In: Theory and Practice of Logic Programming, 13(4-5-
Online-Supplement) (2013)

Reasoning in Large Theories

Random Forests for Premise Selection

Michael Färber and Cezary Kaliszyk

University of Innsbruck, Austria
{michael.faerber,cezary.kaliszyk}@uibk.ac.at

Abstract The success rates of automated theorem provers in large
theories highly depend on the choice of given facts. Premise selection
is the task of choosing a subset of given facts, which is most likely to
lead to a successful automated deduction proof of a given conjecture.
Premise selection can be viewed as a multi-label classification problem,
where machine learning from related proofs turns out to currently be the
most successful method. Random forests are a machine learning tech-
nique known to perform especially well on large datasets. In this paper,
we evaluate random forest algorithms for premise selection. To deal with
the specifics of automated reasoning, we propose a number of exten-
sions to random forests, such as incremental learning, multi-path query-
ing, depth weighting, feature IDF (inverse document frequency), and
integration of secondary classifiers in the tree leaves. With these exten-
sions, we improve on the k-nearest neighbour algorithm both in terms of
prediction quality and ATP performance.

1 Introduction

An increasing number of interactive theorem provers (ITPs) provide proof auto-
mation based on translation to automated theorem provers (ATPs): A user given
conjecture together with a set of known facts in a more complicated logic of the
ITP is translated to the logic of an ATP. If a proof is found by the ATP, it can be
used to prove the conjecture in the ITP either by providing a precise small set of
facts sufficient to prove the conjecture or the ATP proof can be used to recreate
a skeleton of an ITP proof. To increase the success rate of the procedure, it is
useful to identify a subset of theorems1 that is most likely to produce a proof.
This process is called premise selection (or relevance filtering) and is used in
most ATP translation tools [AHK+14], e.g. Sledgehammer/MaSh [KBKU13] for
Isabelle/HOL [NPW02], or HOL(y)Hammer [KU15] for HOL Light [Har96], or
MizAR [KU13a] for Mizar [NK09].

Premise selection is also used in ATPs, for example the Sumo Inference En-
gine (SInE) [HV11] improves the prediction quality of the Vampire theorem
prover [KV13] when working with large theories and its algorithm has also been
implemented as a part of E-Prover [Sch13]. Nonetheless, as the complexity of
1 As in premise selection we do not distinguish between axioms and lemmas, we de-

note their union as theorems. Furthermore, we denote the theorems used in a proof
attempt as premises.

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 325–340, 2015.
DOI: 10.1007/978-3-319-24246-0_20

326 M. Färber and C. Kaliszyk

the translations to ATP highly depends on the lemmas to be translated, often
only a subset of the lemmas is translated: For example in higher-order logic, if a
constant f is always used with the same arity, e.g. f(a, b) and f(c, a), it can be
directly translated as FOL function f(x, y). However, if f appears with different
arities, e.g. in f(a) and f(a, b), f cannot be translated as FOL function, and
apply functors are necessary. Similarly, if a polymorphic constant only appears
fully instantiated, its translation can be a FOL constant rather than a FOL
function. Furthermore, the success rates of the ATPs depend significantly on the
translation applied [BBP11], so avoiding unnecessary lemmas can shorten proof
time by a better than linear factor. Premise selection for automated reasoning
in ITPs is also different from that in ATPs due to a large knowledge base of pre-
viously proven theorems. The dependencies extracted both from ITP and ATP
proofs can be used to further enhance premise selection.

Many algorithms used for premise selection stem from machine learning. To
the best of our knowledge, one popular machine learning algorithm not yet tried
in premise selection are random forests. In this paper we evaluate offline and
online random forests for premise selection and propose a number of extensions
to random forests that improve final ATP performance. Specifically we:

– investigate offline [AGPV13] and online [SLS+09] random forests for premise
selection,

– improve an offline random forest algorithm with incremental learning,
– add multi-path querying and depth weighting to improve multi-label output,
– integrate k-NN in the leaves of the random forest trees,
– evaluate the proposed extensions experimentally, confirming that random

forests offer better prediction quality than previously used algorithms, and
more theorems can be proven automatically by the ATPs.

Related work. The Meng-Paulson relevance filter (MePo) [MP06] integrated in
Isabelle/HOL as part of Sledgehammer was one of the first premise selectors for
ITPs. It is an iterative algorithm, which counts function symbols in clauses and
compares them to the function symbols in the conjecture to prove. In contrast
to many other premise selectors, MePo does not consider the dependencies used
to prove similar theorems.

Naive Bayes as implemented by the SNoW framework [CCRR99] was the first
machine learning algorithm used in an automated reasoning loop, and thanks
to dependencies, the prediction quality improved upon syntactic tools [Urb04].
Simple Perceptron networks have also been evaluated for HOL(y)Hammer pre-
dictions [KU14], and their results are weak but complementary to other methods.

Machine learning algorithms such as k-nearest neighbours [ZZ05] and Naive
Bayes were integrated into Sledgehammer as part of MaSh (Machine learning
for Sledgehammer) [KBKU13], significantly improving ATP performance on the
translated problems. The single most powerful method used for premise selection
in HOL(y)Hammer, MizAR, and Sledgehammer/MaSh is a customized imple-
mentation of k-NN [KU13b]. Stronger machine-learning methods that use kernel-
based multi-output ranking (MOR [AHK+14] and MOR-CG [KBKU13]) were

Random Forests for Premise Selection 327

plus

even(plus) ...

tnnnnynnnnyy plus(Pos)

even_sum odd_plus_odd odd_plus_odd even_plus_even plus(Neg)(Pos) plus(int)(int)

tnnnnynnnnynyy tnnnnynnnnynyn is_nat(plus) tnnnnynnnnynnn

plus_int_code_5 plus_int_code_3 tnnnnynnnnynnyy tnnnnynnnnynnyn rat_plus_code

transfer_int_nat_function_closures_1 dup_def

Fig. 1. Excerpt from a decision tree trained on the Isabelle dataset. Leaf nodes
have unique identifiers t[yn]*, which encode their position in the tree. The branch
node with feature even(plus) has a positive leaf node with four theorems, namely
even_sum, odd_plus_odd (two times), and odd_plus_even – all having features plus
and even(plus). The theorem plus_int_code_3 has features plus and plus(Pos), but
neither even(plus) nor plus(Neg)(Pos).

found to perform better, but were too slow to be of practical use for premise
selection in large theories so far.

Decision trees are another machine learning method that can be used for
premise selection: A binary decision tree is either a leaf L(S) with data S or a
branch B(l, f, r) with a criterion (also called feature) f and two subtrees l and
r. Querying a branch B(l, f, r) involves querying l if the criterion f is fulfilled,
otherwise querying r. Querying a leaf L(S) returns S. A part of an example tree
used in premise selection is shown in figure 1: Here, a criterion is the presence
of certain symbols in a theorem, such as plus, and the data in the leaves are
theorems that are relevant if the tree path to them corresponds to the symbols
of the conjecture we seek to prove. We explain building and querying of decision
trees in more detail in sections 3 and 4.

Random forests [Bre01] are a family of bagging algorithms [Bre96] known for
fast prediction speed and high prediction quality for many domains [CNm06].
Many different versions of random forests [AGPV13,Bre96,LRT14,SLS+09] have
been proposed. In general, a random forest chooses random subsets of data to
build independent decision trees, whose combined predictions form the predic-
tion of the forest. Random forests are used in applications where large amounts
of data needs to be classified in a short time, such as the automated proposal
of advertisement keywords for web pages [AGPV13] or prediction of object po-
sitions in real-time computer graphics [SLS+09].

328 M. Färber and C. Kaliszyk

2 Premise Selection

The goal of premise selection (sometimes also referred to as relevance filtering)
is: Given a set of theorems T (i.e. a theorem corpus) and a conjecture c, find
a set of premises P ⊆ T such that an ATP is likely to find a proof of P � c
[AHK+14].

To find relevant premises, one can use information from previous proofs which
premises were used to prove conjectures. We found that the following informal
assumptions can be used to build fairly accurate premise selectors, when theor-
ems are suitably characterised by features:

– Theorems sharing many features or rare features are similar.
– Theorems are likely to have similar theorems as premises.
– Similar theorems are likely to have similar premises.
– The fewer premises a theorem has, the more important they are.

The above assumptions can be encoded as a multi-label classification problem in
machine learning. First we encode a given theorem corpus T as machine learning
input: Every proven theorem s ∈ T gives rise to a training sample 〈s, ϕ(s), λ(s)〉,
which consists of the theorem s, the set of features ϕ(s) and the set of labels λ(s).
The labels are the premises that were used to prove s.

The features ϕ(s) are a characterisation of a theorem s. For example we can
choose to characterise theorems by the constants and types present in their
statements. The features of a set of samples S are ϕ(S) :=

⋃
s∈S ϕ(s). We define

those samples of S having or not having a certain feature f as

Sf := {s | f ∈ ϕ(s)} ,
S¬f := S\Sf .

Example 1. The sample corresponding to the HOL Light theorem ADD_SYM stat-
ing � ∀mn.m+ n = n+m is 〈ADD_SYM, ϕ(ADD_SYM), λ(ADD_SYM)〉 with:

ϕ(ADD_SYM) = {+,=,∀,num, bool}
λ(ADD_SYM) = {ADD_CLAUSES,ADD,ADD_SUC,REFL_CLAUSE,FORALL_SIMP,num_INDUCTION}

Samples encode the relationship between features and labels, i.e. which fea-
tures occur in conjunction with which labels, both of which can be represented
internally as sparse vectors. With this representation, we can view premise se-
lection as an instance of a multi-label classification problem [TK07].

Definition 1 (Multi-label classifier). Given a set of samples S, a multi-label
classifier trained on S is a function r that takes a set of features ϕ and returns
a list of labels [l1, . . . , ln] sorted by decreasing relevance for ϕ.

Using multi-label classification, we can obtain suitable premises from a set of
theorems S for a conjecture c as follows:

1. Obtain a multi-label classifier r for S.
2. Compute ϕ(c), the features of the conjecture.
3. Return r(ϕ(c)), the list of labels predicted by the classifier.

Random Forests for Premise Selection 329

e1 e2 . . .

λ(e1)
ϕ(e1)

λ(e2)
ϕ(e2)

. . .

Fig. 2. In an evaluation, an arbitrary number of samples is learned in a white block
until an evaluation sample e is encountered, for which labels λ(e) are predicted.

2.1 Quality Measures

To evaluate the quality of predicted premises, we can compare them to the
actual premises from our training samples. We first introduce a notation: Given a
sequence of distinct elements X = [x1, . . . , xn], we denote Xe

i = [xi, xi+1 . . . , xe].
Furthermore, when it is clear from the context, we treat sequences as sets, where
the set elements are the elements of the sequence.

The first quality measure is n-Precision, which is similar to Precision [Sor10],
but considers only the first n predictions. It computes the percentage of premises
from the training sample appearing among the first n predicted premises, which
corresponds to our passing only a fixed maximal number of premises to ATPs.
If not stated otherwise, we use 100-Precision in our evaluations.

Definition 2 (n-Precision). n-Precision for a sequence of predictions P and
a set of labels L is

Precn(P,L) =
|L ∩ Pn

1 |
|L| .

The second measure, AUC, models the probability that for a randomly drawn
label l ∈ L and a randomly drawn label m /∈ L, l appears in the predictions
before m.

Definition 3 (AUC [Faw04]). Given a sequence of predictions P and a set of
labels L, the area under ROC curve (AUC) for the predictions is

AUC(P,L) =

{∑|P |
n=1 |L∩Pn

1 |
|L|·|P\L| if |L| · |P\L| > 0

1 if |L| · |P\L| = 0.

2.2 Evaluation

We now explain how to evaluate predictor performance on a set of samples.
For this, we define a subset of the samples as evaluation samples, for which
the classifier will predict premises by iterating over all samples in order and
predicting λ(e) for each evaluation sample e before learning e, as illustrated in
figure 2. We can evaluate the quality of the predictions in two ways: First, they

330 M. Färber and C. Kaliszyk

Table 1. Datasets used in the evaluation

Dataset Samples Evaluation
samples

Features Avg. labels
per sample

Avg. features
per sample

Mizar 3221 2050 3773 8.8 14.2
HOL Light 2548 2247 4331 2.6 13.4

Isabelle 23442 1656 31308 4.2 23.1

can be compared to the actual labels of the evaluation samples, using the a
quality measure from section 2.1. Second, the predictions can be translated to
an ATP problem and given to an automated prover.

2.3 Used Datasets

We use the Mizar MPTP2078 dataset [AHK+14] updated to Mizar
8.1.02 [KU13a] using α-normalised subterms as features, the Isabelle 2014 theory
HOL/Probability together with its dependencies [KBKU13], and the core library
of HOL Light SVN version 193 [KU15]. The statistics are shown in table 1.

3 Existing Algorithms

In this section we describe offline and online random forests and evaluate them
in the context of ITP premise selection.

Multi-Label Learning with Millions of Labels. Agrawal et al. [AGPV13]
use random forests to learn large amounts of data, in order to obtain relevant
advertising keywords for web pages. Their algorithm builds several decision trees
on random subsets of the data as follows: Given a set of samples S to learn and
the minimal number of samples μ which a leaf has to contain (we describe this in
section 4.3), it returns a decision tree. The algorithm first determines a splitting
feature (explained in section 4.4) for S, which is a feature f that splits S in
two sets Sf (samples having f) and S¬f (samples not having f). If |Sf | < μ
or |S¬f | < μ, the algorithm returns a leaf node containing S, otherwise the
algorithm recursively calculates subtrees for Sf and S¬f and combines them
into a branch node with the splitting feature f .

This approach has several disadvantages when used for premise selection:
While we need to learn data quickly and query only a few times after each learn-
ing phase, the algorithm of Agrawal is optimised to answer queries in logarithmic
time, whereas its learning phase is relatively slow. Furthermore, the algorithm
is an offline algorithm, meaning that in order to learn new samples, it is ne-
cessary to rebuild all trees. We found that our implementation of this method
was several magnitudes slower than k-NN even for small datasets, rendering it
impracticable for incremental learning. Furthermore, the prediction quality was

Random Forests for Premise Selection 331

lower than expected: For the first 200 evaluation samples of the Mizar dataset,
a random forest with 4 trees and 16 random features evaluated at every tree
branch achieved an AUC of 82.96% in 1m22sec, whereas k-NN achieved an AUC
of 95.84% in 0.36sec. In section 4, we show how to improve the prediction quality
and speed of this algorithm for premise selection.

On-line Random Forests. Saffari et al. [SLS+09] present an online random
forest algorithm, in which all trees in the forest are initially leaf nodes. When
learning a new sample, it is added to all trees with a probability determined by a
Poisson distribution with λ = 1 [OR01]. Adding a sample to a leaf node consists
of adding the sample to the samples in the leaf node. As soon as the number of
samples in a leaf node exceeds a certain threshold or a sufficiently good splitting
feature for the sample set is found, the leaf node splits into a feature node and
two leaf nodes. When adding a sample to a feature node, the sample gets added
to the left or to the right child of the node, according to whether or not it has
the node’s feature.

The method introduces a bias in that features which appear in early learned
samples will be at the tree roots. Saffari et al. solve this problem by calculat-
ing the quality of predictions from each tree (OOBE, out-of-bag error) and by
periodically removing trees with a high OOBE. However, this introduces a bias
towards the latest learned samples, which is useful for computer graphics ap-
plications such as object tracking, but undesirable for premise selection, as the
advice asked from a predictor will frequently not correspond to the last learned
theorems. Therefore, we do not use the approach of [SLS+09], but adapt its use
of probability distributions to create online versions of bagging algorithms in
section 4.2.

4 Adaptations to Random Forests for Premise Selection

In this section, we describe the changes we made to the algorithms described in
section 3 to obtain better results for premise selection.

4.1 Sample Selection

When learning new samples S, one needs to determine which trees learn which
samples. In [AGPV13], each tree in a forest randomly draws n samples from S.
This approach may introduce a bias, namely that some samples are drawn more
often than others, while some samples might not be drawn (and learned) at all.
Therefore, instead of each tree drawing a fixed number of samples to learn, in
our approach, each sample draws a fixed number of trees by which it will be
learned, where we call this fixed number sample frequency. This approach has
the advantage that by definition, every sample is guaranteed to be learned as
often as all other samples.

332 M. Färber and C. Kaliszyk

4.2 Incremental Update

We present two methods to efficiently update random forests incrementally: The
first one is a method applicable to all kinds of classifiers, the second one is an
optimised update procedure for decision trees.

Onlining Bagging Algorithms. Given a bagging algorithm (such as random
forests) whose individual predictors (in our scenario the decision trees of the
forest) learn a random subset of samples offline, we show a method for decreasing
the runtime of learning new data incrementally. The method is based on the
observation that, when learning only a small number of new samples (compared
to the number of samples already learned), most predictors will not include any
of those new samples, thus they do not need to be updated. To model this, let r
be a binomially distributed random variable r ∼ B(s, P), where s is the number
of samples in each predictor and P = nnew

nnew+nold
is the probability of drawing

a new sample from the common pool of new and old samples. r then models
the number of new samples drawn by a predictor. Each predictor evaluates the
random variable r, and if its value rp is 0, the predictor can remain unchanged.
Only if rp is greater than 0, the predictor is retrained with rp samples from the
set of new samples and s− rp samples from the set of old samples.

While this method gives a performance increase over always rebuilding all
predictors, it still frequently retrains whole predictors. As training a decision
tree is a very expensive operation, this method is clearly suboptimal for our
setting, therefore we present a method to update trees efficiently in the next
section.

Tree Update. We show an improved version of the first algorithm given in
section 3, which updates trees with new samples. Given a tree t and a set of
new samples S, the algorithm calculates S′, which is the union of S with all the
samples in the leaf nodes of t, and a splitting feature f for S′. If t is a node
with f as a splitting feature, we recursively update both subtrees of t with Sf

and S¬f respectively. Otherwise, we construct a new tree for S′: If |S′
f | < μ or

|S′
¬f | < μ, we return a leaf node with S′, otherwise we construct subtrees for S′

f

and S′
¬f and return a branch node with f as splitting feature.

This algorithm returns the same trees as the original algorithm, but can be sig-
nificantly faster in case of updates; for example, predicting advice for the whole
Mizar dataset takes 21m27sec with this optimisation and 57m22sec without.

4.3 Tree Size

At each step of the tree construction, the given set of samples S is split in two by
a splitting feature. A leaf containing S is created if one of the two resulting sets
contains fewer samples than the minimum number of samples μ. We evaluated
three functions to calculate μ, which depend on the samples of the whole tree,
namely μlog(S) = log |S|, μsqrt(S) =

√|S|, and μconst(S) = 1. In [AGPV13] only
μlog is used.

Random Forests for Premise Selection 333

0 20 40 60 80 100

0

1,000

2,000

Occurrences

Fe
at
ur
es

Fig. 3. Feature histogram for the Mizar MPTP2078 dataset [AHK+14]. For example,
there are 2026 features which occur only a single time among all samples, and only 34
that occur ten times.

4.4 Feature Selection

We determine a splitting feature for a set of samples S in two steps: First, one
selects a set of features F ⊆ ϕ(S) to evaluate, then, one evaluates each of the
features in F to obtain a suitable splitting feature.

Obtaining Evaluation Features. In [AGPV13], the evaluation features are
obtained by randomly drawing with replacement (meaning you draw an element
from a set, then place it back in the set) a set of features ϕR from ϕ(S), where
nR = |ϕR| is a user-defined constant. When we applied the method in the context
of premise selection, we frequently obtained trees of small height with many
labels at each leaf, because many features occur relatively rarely in our datasets,
see figure 3. Taking larger subsets of random features alleviates this problem,
but it also makes the evaluation of the features slower. To increase performance,
we determine for each feature in ϕR how evenly it divides the set of samples in
two, by evaluating

σ(S, f) :=
||Sf | − |S¬f ||

|S| .

The best output of σ(S, f) for a feature is 0, which is the case when a feature
splits the sample set S in two sets of exactly the same size, and the worst
output is 1, when the feature appears either in all samples or in none. In the
evaluation phase, we consider only nσ features ϕσ of ϕR that yield the best values
for σ(S, f). The motivation behind this is to preselect features which are more
likely candidates to become splitting features, thus saving time in the evaluation
phase.

Evaluating Features. The best splitting feature for a set of samples S should
be a feature f which makes the samples in Sf and S¬f more homogenous com-
pared to S [AGPV13]. Common measures to determine splitting features are

334 M. Färber and C. Kaliszyk

information gain and Gini impurity [RS04]. Furthermore, to obtain a tree that
is not too high, it is desirable for a splitting feature to split S evenly, such that
Sf and S¬f have roughly the same number of labels.

In general, we look for a function s(S, f), which determines the quality of f
being a splitting feature for S. The best splitting feature can then be obtained
by argminf∈ϕσ

s(S, f). We evaluated two concrete implementations for s(S, f):

1. σ(S, f): While σ optimally divides S into two evenly sized sets Sf and S¬f ,
it does not take into account their homogenicity.

2. G(S, f) = 1
|S| (|Sf |g(Sf) + |S¬f |g(S¬f)): The Gini impurity [AGPV13] g

measures the frequency of each label among a set of samples, and gives
labels with very high or very low frequency a low value. That means that
the more similar the samples are (meaning they possess similar labels), the
lower the Gini impurity.

Definition 4 (Gini impurity). Gini impurity g(S) of a set of samples S is

g(S) =
∑

l∈λ(S)

pS(l) (1− pS(l))

pS(l) =
∑
s∈S

pS(l|s)p(s), pS(l|s) = |λ(s) ∩ {l} |
|λ(s)| , pS(s) =

|λ(s)|∑
s′∈S |λ(s′)|

4.5 Querying a Tree

Querying a tree with features F corresponds to finding samples S from the tree
maximising P (S|F). We show a multi-path querying algorithm, as well as a
method to obtain labels from the samples with classifiers such as k-NN.

Multi-path Querying. To query a decision tree with features F , a common
approach is to recursively go to the left subtree l of a branch node B(l, f, r)
if f ∈ F and to the right if not, until encountering a leaf L(S), upon which
one returns S. We found that this approach frequently missed samples with
interesting features when these did not completely correspond to the features
we queried for. This is why we considered a different kind of tree query, which
we call multi-path querying (MPQ) in contrast to single-path querying (SPQ).
MPQ considers not only the path with 100% matching features, but also all
other paths in the tree. At each branch node where the taken path differs from
that foreseen by the splitting feature of the node, we store the depth d of the
node, as illustrated in figure 4. The output of a multi-path query for a tree t and
features F is mqF (t, 0, ∅), defined as follows:

mqF (t, d, E) =

⎧
⎪⎨

⎪⎩

(S, d,E) t = L(S)

mqF (l, d+ 1, E) ∪mqF (r, d+ 1, E ∪ {d}) t = B(l, f, r) ∧ f ∈ F

mqF (r, d+ 1, E) ∪mqF (l, d+ 1, E ∪ {d}) t = B(l, f, r) ∧ f /∈ F

Random Forests for Premise Selection 335

Fig. 4. Multi-path query example, where the tree is an excerpt from an actual ran-
dom forest tree generated from the Isabelle/HOL Probability dataset. Query features
are {tSet.set, Set.member}. The numbers next to the branches indicate the depth of
wrongly taken decisions, which are accumulated and shown below the samples at the
bottom.

Depth Weighting. We want to assign to each tree leaf a weight, which indicates
how well the features F correspond to the features along the path from the root
of the tree to the leaf. To do this, we consider the depths of the branch nodes
where we took a different path than foreseen by F , and calculate for each of the
depths a weight, which we later combine to form a branch or sample weight.

For each e ∈ E, where (S, d, E) ∈ mqF (t, 0, ∅), we calculate a depth weight,
where the constant μ represents the minimal weight: eascending(d, e) = μ+ (1 −
μ)

(
e
d

)
, edescending(d, e) = 1−(1−μ)

(
e
d

)
, einverse(d, e) = 1− 1−μ

e+1 , and econst(d, e) =
μ. Using the depth weights, we calculate a weight for each sample:

wt(s) =
∑

(S,d,E)∈mqF (t,0,∅), s∈S

∏
e∈E

ei(d, e).

Classifier in Leaves. Regular decision trees with single-path querying return
all the labels of the chosen branch. To order the results from multiple branches in
a tree, which is necessary with multi-path querying, we run a secondary classifier
on all the leaf samples of the tree. The secondary classifier is modified to take into
account the weight of each branch. In our experiments, the secondary classifier is
a k-NN algorithm adapted for premise selection (IDF, premise relevance inversely
proportional to the number of premises [KU13b]), which we modified to accept
sample weights: k-NN will give premises that appear in samples with higher
weights precedence over those from samples with lower weights. In default k-NN,
all samples would have weight 1, while in our secondary classifier the weight of a
sample s is given by wt(s), which stems from the path to s in the decision tree.

336 M. Färber and C. Kaliszyk

4.6 Querying a Forest

We query a forest with a set of features F by querying each tree in the forest
with F , combining the prediction sequences

−→
L of all trees. For each label l, we

calculate its rank in a prediction sequence L = [l1, . . . , ln] as:

�(l, L) =

{
i if l = li and li ∈ L

m otherwise

Here, m is a maximal rank attributed to labels that do not appear in a prediction
sequence. Then, for each label, we calculate its ranks R(l) = �

L∈−→
L
�(l, L) for all

prediction sequences. We sort the labels by the arithmetic, quadratic, geometric,
or the harmonic mean of R(l) in descending order to obtain the final prediction
sequence.

5 Experiments

We implemented the algorithms from section 4 in Haskell.2 Our experimental
results for the Mizar dataset are given in table 2: Random forests give best results
when combined with multi-path querying and path-weighted k-NN+IDF classi-
fier in the leaves. Both considering Gini impurity and taking random subsets of
features decrease the prediction quality, while having a very negative impact on
runtime. Different sample selection methods (samples draw trees vs. trees draw
samples) have a large impact when using small sample frequencies, but when
using higher sample frequencies, the difference is negligible. In this evaluation,
we simulated single-path querying (SPQ) by a constant depth weight with μ = 0
(meaning that all non-perfect tree branches receive the minimal score 0). Run-
ning this method takes longer than real SPQ, but gives a good upper bound on
SPQ’s prediction quality. Random forests have a longer runtime than k-NN, but
still, the average prediction time for our test set is below one second, which is
sufficient for premise selection.

To produce the number of proven theorems in table 3, we predict max. 128 (for
Mizar, for HOL Light 1024) premises for each conjecture, translate the chosen
facts (if no PS: all previous facts) together with the conjecture to TPTP first-
order formulas [Sut09] and run E-Prover 1.8 [Sch13] using automatic strategy
scheduling with 30 seconds timeout.

Alama et al. [AHK+14] have reported 548 proven theorems with Vampire
(timeout = 10s) without external premise selection, which their best premise
selection method (MOR-40/100) increases to 824 theorems (+50.4%). On our
data, E (timeout = 10s) without premise selection proves only 414 theorems,
increasing with timeout = 30s to 653 theorems (+57.7%) and with timeout =
10s and RF premise selection to 962 (+132.3%).

2 Source and detailed statistics (also for HOL Light and Isabelle datasets) are available
at http://cl-informatik.uibk.ac.at/~mfaerber/predict.html.

http://cl-informatik.uibk.ac.at/~mfaerber/predict.html

Random Forests for Premise Selection 337

Table 2. Results for Mizar dataset. By default, we use 4 trees with a sample frequency
of 16, samples draw trees. The minimal sample function is μlog, we do not use Gini
impurity, and we use eInverse with μ = 0.8. The final prediction is obtained by running
k-NN with IDF over the weighted leaf samples of each tree, combining results with the
harmonic mean.

Configuration 100-Prec
[%]

AUC
[%]

Runtime
[min]

Avg. time per
prediction [s]

k-NN + IDF 87.5 95.39 0.5 0.02
RF (IDF) 88.0 95.68 32 0.93
RF (no IDF) 77.8 91.40 25 0.75
RF (single-path query) 53.7 60.86 37 1.07
RF (sample freq. = 2, trees draw s.) 65.6 72.76 2 0.05
RF (sample freq. = 2, samples draw t.) 88.0 95.59 4 0.10
RF (random features nR = 32) 88.0 95.65 151 4.41
RF (Gini impurity, nσ = 2) 88.0 95.65 97 2.84
RF (Gini impurity, nσ = 16) 88.0 95.62 220 6.44
RF (eascending) 88.0 95.72 36 1.07
RF (edescending) 88.1 95.66 39 1.15
RF (einverse) 88.0 95.68 38 1.12
RF (econst) 88.1 95.81 37 1.08
RF (arithmetic mean) 87.5 95.49 33 0.98
RF (geometric mean) 88.0 95.67 35 1.01
RF (quadratic mean) 87.4 95.34 33 0.97
RF (100 trees, sample freq. = 50) 88.5 95.85 137 4.01
RF (24 trees, sample freq. = 12) 88.5 95.83 31 0.90
RF (24 trees, sample freq. = 12, econst) 88.6 95.91 22 0.66

Table 3. Results of k-NN and random forest predictions for two different datasets.
For random forests, we used the best configuration from table 2, i.e. 24 trees, sample
frequency 12, and constant depth weight.

k-NN
AUC

RF
AUC

k-NN
Prec

RF
Prec

k-NN
proved

RF proved Total

Mizar 0.9539 0.9591 0.875 0.886 931 959 (+3.0%) 2050
HOL Light 0.9565 0.9629 0.919 0.929 789 823 (+4.3%) 2247

Table 4. Comparison of runtime necessary to achieve the same number of proven
theorems (969) for the Mizar dataset

Classifier Classifier runtime E timeout E runtime Total runtime

k-NN 0.5min 15sec 341min 341min
RF 22min 10sec 252min 272min

338 M. Färber and C. Kaliszyk

Fig. 5. Comparison of k-NN with random forests by number of evaluation samples on
Mizar dataset

In table 4, we compare ATP runtime required to prove the same number of
theorems using k-NN and RF predictions. While RF classification requires more
runtime than k-NN, the ATP timeout can be decreased by more than 25%,
resulting in overall runtime reduction of about 20%.

Number of Evaluation Samples. In figure 5, we show how the prediction quality
develops for the Mizar dataset as more data is learned: For this purpose, we
calculated statistics for the predictions of just our first evaluation sample, then
for the first two, etc. When comparing the output of our random forest predictor
(24 trees, sample frequency 12, constant depth weight) with k-NN, we see that
it consistently performs better.

6 Conclusion

We evaluated several random forest approaches for ATP premise selection:
Without modifications, the algorithms return worse predictions than the cur-
rent state-of-the-art premise selectors included in HOL(y)Hammer, MizAR, and
Sledgehammer/MaSh, and the time needed to select facts from a larger data-
base is significant. We then proposed a number of extensions to the random
forest algorithms designed for premise selection, such as incremental learning,
multi-path querying, and various heuristics for the choice of samples, features
and size of the trees. We combined random forests with a k-NN predictor at the
tree leaves of the forest, which increases the number of theorems from the HOL
Light dataset that E-Prover can successfully reprove over the previous state-of-
art classifier k-NN by 4.3%. We showed that to attain the same increase with
k-NN, it is necessary to run E-Prover for 50% longer.

In scenarios where the number of queries is large in comparison with the
number of learning phases, the random forest approach is an effective way of im-
proving prediction quality while keeping runtime acceptable. This is the case for
usage in systems such as HOL(y)Hammer and MizAR, but not for Sledgeham-
mer, where data is relearned more frequently. The performance of random forests

Random Forests for Premise Selection 339

could still be improved by recalculating the best splitting feature only after hav-
ing seen a certain minimal number of new samples since the last calculation of
the best feature. This would improve learning speed while not greatly altering
prediction results, because it is relatively unlikely that adding few samples to a
big tree change the tree’s best splitting feature. Further runtime improvements
could be made by parallelising random forests.

Acknowledgements. We thank Josef Urban as well as anonymous CADE and
FroCoS referees for their valuable comments. This work has been supported by
the Austrian Science Fund (FWF) grant P26201.

References

AGPV13. Agrawal, R., Gupta, A., Prabhu, Y., Varma, M.: Multi-label learning with
millions of labels: recommending advertiser bid phrases for web pages. In:
Proceedings of the 22nd International Conference on World Wide Web,
WWW 2013, pp. 13–24 (2013)

AHK+14. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise
selection for mathematics by corpus analysis and kernel methods. Journal
of Automated Reasoning 52(2), 191–213 (2014)

BBP11. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with
SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS, vol. 6803, pp. 116–130. Springer, Heidelberg (2011)

Bre96. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
Bre01. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
CCRR99. Carlson, A.J., Cumby, C.M., Rosen, J.L., Roth, D.: SNoW user guide (1999)
CNm06. Caruana, R., Niculescu-mizil, A.: An empirical comparison of supervised

learning algorithms. In: 23rd Intl. Conf. Machine Learning (ICML 2006),
pp. 161–168 (2006)

Faw04. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers.
Technical report, HP Laboratories, March 2004

Har96. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M.,
Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer,
Heidelberg (1996)

HV11. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 299–314. Springer, Heidelberg (2011)

KBKU13. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine
learning for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D.
(eds.) ITP 2013. LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

KU13a. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. CoRR (2013)
KU13b. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weight-

ing and strategy evolution. In: PxTP 2013. EPiC Series, vol. 14, pp. 87–95.
EasyChair (2013)

KU14. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with
Flyspeck. Journal of Automated Reasoning 53(2), 173–213 (2014)

KU15. Kaliszyk, C., Urban, J.: HOL(y)Hammer: Online ATP service for HOL
Light. Mathematics in Computer Science 9(1), 5–22 (2015)

340 M. Färber and C. Kaliszyk

KV13. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35.
Springer, Heidelberg (2013)

KBKU13. Kühlwein, D.A.: Machine Learning for Automated Reasoning. PhD thesis,
Radboud Universiteit Nijmegen, April 2014

LRT14. Lakshminarayanan, B., Roy, D., Teh, Y.W.: c. In: Advances in Neural In-
formation Processing Systems (2014)

MP06. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-
generated resolution problems. In: ESCoR: Empirically Successful Compu-
terized Reasoning, pp. 53–69 (2006)

NK09. Naumowicz, A., Korniłowicz, A.: A brief overview of mizar. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 67–72. Springer, Heidelberg (2009)

NPW02. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002)

OR01. Oza, N.C., Russell, S.J.: Online bagging and boosting. In: Proceedings of
the Eighth International Workshop on Artificial Intelligence and Statistics,
AISTATS 2001, January 4-7, vol. Key West, Florida, US (2001)

RS04. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the Gini index
and information gain criteria. Annals of Mathematics and Artificial Intelli-
gence 41(1), 77–93 (2004)

Sch13. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A.,
Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer,
Heidelberg (2013)

SLS+09. Saffari, A., Leistner, C., Santner, J., Godec, M., Bischof, H.: On-line random
forests. In: 3rd IEEE ICCV Workshop on On-line Computer Vision (2009)

Sor10. Sorower, M.S.: A literature survey on algorithms for multi-label learning.
Oregon State University, Corvallis (2010)

Sut09. Sutcliffe, G.: The TPTP problem library and associated infrastructure.
Journal of Automated Reasoning 43(4), 337–362 (2009)

TK07. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. Int. J.
Data Warehousing and Mining, 1–13 (2007)

Urb04. Urban, J.: MPTP - motivation, implementation, first experiments. J.
Autom. Reasoning 33(3-4), 319–339 (2004)

ZZ05. Zhang, M.-L., Zhou, Z.-H.: A k-nearest neighbor based algorithm for multi-
label classification. In: Proceedings of the 1st IEEE International Conference
on Granular Computing (GrC 2005), Beijing, China, pp. 718–721 (2005)

Lemmatization for Stronger Reasoning
in Large Theories

Cezary Kaliszyk1, Josef Urban2, and Jiří Vyskočil3

1 University of Innsbruck, Austria
2 Radboud University Nijmegen

3 Czech Technical University in Prague

Abstract. In this work we improve ATP performance in large theories
by the reuse of lemmas derived in previous related problems. Given a
large set of related problems to solve, we run automated theorem provers
on them, extract a large number of lemmas from the proofs found and
post-process the lemmas to make them usable in the remaining prob-
lems. Then we filter the lemmas by several tools and extract their proof
dependencies, and use machine learning on such proof dependencies to
add the most promising generated lemmas to the remaining problems.
On such enriched problems we run the automated provers again, solv-
ing more problems. We describe this method and the techniques we used,
and measure the improvement obtained. On the MPTP2078 large-theory
benchmark the method yields 6.6% and 6.2% more problems proved in
two different evaluation modes.

1 Introduction

When solving many problems in a certain theory, mathematicians usually re-
member and re-use the important lemmas found in related problems. Lemma
usually denotes a statement that was useful or crucial for proving a (important)
theorem, often an important technical step. For example commutativity or dis-
tributivity of some algebraic operations under certain assumptions might greatly
simplify proofs in algebra.

This paper describes several experiments that attempt to improve the efficiency
of automated theorem proving (ATP) over a larger theory by designing automated
methods for re-using lemmas from related problems. We are interested in proving
theorems (and re-using lemmas) in general large-theory mathematics represented
in the first-order TPTP format and giving rise to thousands of related problems,
containing many formulas. We assume that there are many symbols in such prob-
lems and that they are named consistently across all the problems. Such problems
are typically neither purely equational nor Horn nor EPR, and the strongest exist-
ing tools for them are refutational first-orderATPs such as Vampire [10] and E [18].
Hence our task revolves around the refutational proofs obtained from such ATPs.
The important topics that need to be addressed are:

– How do we generate re-usable lemmas automatically from such ATP proofs?
– How do we automatically choose a set of good lemmas from related problems?

c© Springer International Publishing Switzerland 2015
C. Lutz and S. Ranise (Eds.): FroCoS 2015, LNAI 9322, pp. 341–356, 2015.
DOI: 10.1007/978-3-319-24246-0_21

342 C. Kaliszyk, J. Urban, and J. Vyskočil

– What are good lemmas for a particular new ATP problem?
– How do we evaluate the usefulness of re-using lemmas in ATP?
– How much ATP performance can we gain by re-using lemmas?

Therehavebeen several lines ofwork inATPrelated to these questions,webriefly
mention those that are most relevant to our work. So far the most successful tech-
nique for re-using lemmas from ATP proofs has been Veroff’s hints method [26].
It extracts lemmas from the (manually selected and semi-manually re-oriented)
proofs produced by Prover9 and uses them for internally directing Prover9’s given-
clause loop on related problems. The main application have so far been problems
in equational algebra [15]. A recent example where very long proofs of open conjec-
tures are found thanks to this technique is the project AIM-ed at characterizing
loops with Abelian Inner Mappings groups [9]. A similar technique that extracts
and generalizes lemmas from previous proofs and uses them for proof guidance was
implemented by Schulz in E prover as a part of his PhD thesis [17].

We have tried to experiment with this E technique on large-theory problems,
so far without success.1 Our very initial experiments (done with Veroff) with
hints on large-theory problems have shown that unlike the equational proofs, the
proofs of large-theory problems contain many (incompatible) skolem constants
and steps depending on the negated conjecture, and thus are harder to re-orient
into the strictly-forward proofs [9] from which lemmas derived only from the
axioms and containing only known symbols can be extracted. A related issue
is that the large-theory proofs seem to be much more heterogeneous than e.g.
the AIM problems, likely requiring targeted selection of hints for a particular
problem rather than unrestricted use of all available lemmas as hints. To address
such issues, we instead proceed here as follows:

1. We extract all the direct (axiom-derived) skolem-free lemmas used in the
proofs. These lemmas can be immediately re-used in other proofs.

2. To make other lemmas re-usable, we first attempt to heuristically redi-
rect general refutational ATP proofs into Jaśkowski-style natural deduction
proofs using the recent tools developed for Sledgehammer by Blanchette and
Smolka [2,19], so that the proof steps (later translated into lemmas) only de-
pend on axioms.

3. Then we extract and heuristically deskolemize lemmas from the redirected
natural-deduction proofs, so that the lemmas only speak about symbols that
are known in the original large-theory problems (and thus are re-usable).

4. We verify and optionally interreduce the lemmas.
5. Given a new conjecture C, we use several AI methods to estimate which of

the previously extracted lemmas might be most useful for proving C. Various
numbers of the best lemmas are then added to the axioms with which we
try to prove C.

The evaluation is done on the large-theory MPTP2078 benchmark [1], con-
taining 2078 related problems in general topology (and related fields) extracted
1 Schulz confirms that the code has not been maintained and might need various

updates.

Lemmatization for Stronger Reasoning in Large Theories 343

from Mizar. Note that large-theory techniques developed on one large-theory
benchmark or corpus typically transfer well to other large-theory corpora [22,3].
In the following sections, we first describe in more detail the scenario and the
techniques involved, and then we run ATPs on the benchmark with and without
using such lemmatization methods, and evaluate their performance.

2 Lemmatization Scenario and Initial Statistics

Our goal is to prove as many problems over a large theory as possible. Concretely
on the MPTP2078 benchmark, E prover (version 1.8) can prove in 60 seconds 569
of the 2078 large problems containing all previous premises (theorems, definitions
and axioms). E can prove 1208 of the small versions of these problems, obtained by
only givingE the premises thatwere needed for the (human-assisted)Mizar proofs.

The problems are chronologically ordered by their appearance in the Mizar
library. We can assume that for a given problem P in the benchmark, all the
lemmas found in all the previous proofs can be used for proving P . We can use
both the lemmas from the large problems and from the small (human-assisted)
problems, assuming that the mathematician needs to write the human-assisted
formal proof regardless, even when the automation fails him, and that such
human-assisted proofs can then be given to an ATP, which then may produce
useful lemmas when running on such small problems.

The initial statistics of unmodified lemmas extracted from the 1208 proofs
of the small problems is shown in Table 1. There are 75044 total lemmas when
counting the same lemma multiple times (if it was created in multiple proofs).
Only about half of them (38058) do not depend on the negated conjecture. About
60% (43995) of all lemmas contain a skolem symbol. Practically all those (96%)
which depend on the negated conjecture contain a skolem symbol, but that is
also the case for 22% of those that do not depend on the negated conjecture. This
leaves only about 40% (29554) lemmas (with repetition) that are derived with-
out the use of the negated conjecture and that do not contain any skolem sym-
bol. After approximate merging of the same lemmas from different problems,2

Table 1. Initial statistics of lemmas from the small problems

lemmas neg.-conj.-dependent neg.-conj.-independent

all 75044 36986 38058
all skolem 43995 35671 8324

all no skolem 31049 1315 29554

unique 23764 13660 10104
unique skolem 18189 13616 4573

unique no skolem 5575 44 5531

2 This merging is only approximate because for the purpose of this initial statistics
we do not try to detect if the (serial) skolem names used in the different problems
come from the same first-order formula or not.

344 C. Kaliszyk, J. Urban, and J. Vyskočil

these numbers are even smaller: the ratio of usable lemmas that are independent
of the negated conjecture and do not contain skolem symbols drops to 23% of all
lemmas, while 77% do contain skolem symbols and 57% depend on the negated
conjecture.

This is a good motivation for trying methods that make the lemmas inde-
pendent of the negated conjecture and remove the skolem symbols, thus making
many more lemmas generally applicable in the next problems.

3 Extracting Reusable Lemmas from Refutational Proofs

The task of making proof steps independent of the negated conjecture is closely
related to the task of human-level presentation of ATP proofs. There have been
several tools attempting such human-level presentation, for example Tramp [13]
and P.rex [4]. The most recent one that has been tested on a large number of
problems is Blanchette and Smolka’s ATP proof presentation toolchain made for
the Isabelle/Sledgehammer framework [19]. This toolchain relies on Blanchette’s
proof redirector [2], which tries to reverse proofs by contradiction into direct
proofs.

In more detail, Blanchette’s tool takes a refutational TPTP proof and creates
a natural deduction (Isabelle/Isar) proof which has as many forward steps as
possible, i.e., as many steps derived from the axioms as possible. This is roughly
done by reversing the part of the derivation graph that depends the negated
conjecture. For example, a final step that derives ⊥ from two lemmas φ1 and φ2

depending on the negated conjecture:

φ1, φ2 � ⊥ (1)

is redirected into:
� φ1 ∧ φ2 → ⊥ (2)

Assuming further that φ1 was derived using φ0 which is also dependent on
the negated conjecture and using some other lemmas that are not conjecture-
dependent, we further get:

� φ0 ∧ φ2 → ⊥ (3)

The inference step on the redirected lemmas (2,3) is then justified by referring
to the exact same conjecture-independent lemmas that were used in the original
proof to derive φ1 from φ0. This mechanism propagates through the lemmas
dependent on the negated conjecture, ultimately deriving that the negated con-
jecture implies ⊥, i.e., deriving the unnegated conjecture in a forward style.

While Blanchette’s redirection tool works on propositional level, the whole
framework (due to Blanchette and Smolka) also translates the ATP skolemiza-
tion steps into natural deduction steps that fix universally or existentially quan-
tified variables as local constants for parts of the proof. In general, the redirected
Jaśkowski-style natural deduction proofs may also introduce assumptions.

Lemmatization for Stronger Reasoning in Large Theories 345

3.1 Extracting Lemmas from the Natural Deduction Proofs

The above framework assumes that the first-order TPTP problems are a result
of translating higher-order facts and conjectures written in Isabelle/HOL, and
it ultimately tries to create a legal higher-order natural-deduction proof from
the first-order TPTP proof that justifies the higher-order conjecture. In order to
instead process an arbitrary first-order TPTP proof and to generate standard
first-order lemmas, we do the following:

– We modify the tool to be able to start with arbitrary first-order TPTP
proofs that have no Isabelle origin, by using empty internal Isabelle transla-
tion tables, not typechecking the terms and formulas in the resulting natural
deduction proof, and writing a separate TPTP printer that prints such un-
typed proofs.

– We add flattening of the assumption and local-constant block structure of
the natural deduction proofs, producing globally valid TPTP lemmas. This
step is in principal similar to the earlier translation of the Jaśkowski-style
Mizar proofs into TPTP derivations [23], however there are several differ-
ences discussed below.

– The modified functionality is then compiled into a standalone tool,3 which
can be used as an initial lemma extractor for any TPTP proof.

The flattening of the natural-deduction proofs proceeds by tracking the as-
sumption and quantification structure leading to a particular statement in the
natural-deduction proof, and performing universal quantification for each local
constant introduced by Isar’s “fix” step, implication for each supposition (“as-
sume”) step, and existential quantification for each local constant introduced
by Isar’s “obtain” step, changing the corresponding Isar local constants to the
quantified variables.

This procedure is correct, i.e., it cannot generate a lemma that would not
be provable from the initial axioms, and it has the desired property that the
generated lemma will not contain new skolem symbols, thus making the lemma
usable for proving the next conjectures. In order to achieve this, we however
sacrifice completeness in some cases.4 For example, when in the natural deduc-
tion proof a local constant c such that q(c) is obtained from ∃X : q(X), and
in its scope statements p(c) and r(c) are proved, the extracted lemmas will be
∃X : p(X) and ∃X : r(X) instead of the stronger version ∃X : (p(X) ∧ r(X)).
In the Mizar proof export this is handled via additional Henkin axioms about
the local constants, however that means proliferation of such new constants in
the lemmas, which we want to avoid here. A related completeness issue comes
from the fact that proper TPTP skolem functions (not constants) are translated
into higher-order constants by the proof presentation framework. During the
flattening we currently just skip generating all such lemmas instead of trying
3 http://cl-informatik.uibk.ac.at/users/cek/frocos15/redirector/
4 We obviously do not lose completeness in general, because all the lemmas can be

derived from the axioms, however we weaken or lose some of the lemmas during the
translation process.

http://cl-informatik.uibk.ac.at/users/cek/frocos15/redirector/

346 C. Kaliszyk, J. Urban, and J. Vyskočil

more advanced transformations. Figures 1,2,3 show a side-by-side example of
the transformations done on a simple propositional proof. Figure 1 shows the
TPTP proof starting with the conjecture g and eight axioms. The conjecture is
negated, and the contradiction (final line) is derived in eight inference steps. In
the corresponding Isar proof (Figure 2) we use a compressed notation: the num-
bers in brackets refer to the serially numbered assumptions (corresponding to
the TPTP axioms), that are used to justify a particular step. There are various
imperfections (acknowledged by Blanchette), for example f ⇒ g is proved (and
then extracted by us as a lemma in Figure 3) despite being an axiom. Note that
many of the extracted lemmas in Figure 3 are implications whose antecedents
correspond to the Isar assumptions (Isar keyword assume).

fof(0, conjecture, (g)).
cnf(25,axiom,(h|g)).
cnf(26,neg_conj,(~g), [0]).
cnf(32,axiom,(a|~h)).
cnf(33,neg_conj,(h), [25,26]).
cnf(39,axiom,(~a|~b)).
cnf(40,neg_conj,(a), [32,33]).
cnf(45,axiom,(c|b)).
cnf(46,neg_conj,(~b), [39,40]).
cnf(48,axiom,(g|~f)).
cnf(50,axiom,(d|~c)).
cnf(51,neg_conj,(c), [45,46]).
cnf(52,axiom,(f|~e)).
cnf(53,neg_conj,(~f), [48,26]).
cnf(54,axiom,(e|~d)).
cnf(55,neg_conj,(d), [50,51]).
cnf(56,neg_conj,(~e), [52,53]).
cnf(57,neg_conj,(),[54,55,56]).

Fig. 1. Original proof

lemma assumes
"a ∨ ¬h" "a =⇒ ¬b"
"¬b =⇒ c" "c =⇒ d"
"d =⇒ e" "e =⇒ f"
"f =⇒ g" "¬h =⇒ g"

shows "g"
proof -

have "d −→ f" (5,6)
moreover
{ assume f

hence g (7) }
moreover
{ assume "¬ d"

hence "¬ c" (4)
hence b (3)
hence "¬ a" (2)
hence "¬ h" (1)
hence g (8) }

ultimately show g
qed

Fig. 2. Isabelle proof

fof(53___55_0,plain,(d=>f)).

fof(9_0,plain,(f=>g)).

fof(51_0,plain,(~(d)=>~(c))).
fof(46_0,plain,(~(d)=>b)).
fof(40_0,plain,(~(d)=>~(a))).
fof(33_0,plain,(~(d)=>~(h))).
fof(9_0,plain,(~(d)=>g)).
fof(0_0,plain,g).

Fig. 3. Lemmas

4 Filtering Lemmas

We run the lemma extractor on all TPTP proofs obtained from all the small
MPTP2078 problems, taking 260 s in total. For five proofs the redirection phase
runs out of memory, and from the rest we extract altogether 3394 plain (derived
from axioms only) lemmas and 6328 negated (originally depending on negated
conjecture) lemmas. The plain lemmas are in general much smaller (178 bytes
on average) than the negated ones (526 bytes), typically because the redirection
process adds assumptions to such lemmas.

Note that the number of plain lemmas produced by the redirector is much less
than the 29554 plain skolem-free lemmas obtained by the direct extraction in
Section 2. This is mainly due to de-duplication (not) applied at different stages
and other small differences.

Re-proving and tautology removal: The first filter that we apply is fast (1 sec-
ond) proving of each lemma from its problem’s axioms, removing those that do

Lemmatization for Stronger Reasoning in Large Theories 347

not need any axiom (tautologies), and ending up with 5183 unique directly ex-
tracted provable lemmas (pla), 961 unique plain redirected lemmas (plr), 3538
unique negated lemmas (neg) of which 1617 are unique negated lemmas that
do not contain conjunctions (nmu). In total there are 4377 unique redirected
lemmas (red), and combined with pla there are 9057 lemmas in total (all). 768
of these lemmas are (after α-normalization) identical to some of the 4564 original
MPTP2078 formulas.

The re-proving is done to be sure that we do not introduce unsoundness
(which could then prove all the remaining problems) in the extraction phase.
In Isabelle, an occasional error in the proof translation would not be an issue,
because the translated proofs are ultimately checked by Isabelle’s LCF kernel.
Another reason for the re-proving is that we want to determine the exact proof
dependencies of each lemma. This is an important information for learning how
to use the lemmas and other formulas for future proofs.

Making lemmas usable for future problems: Each lemma is inserted into the
chronological sequence of all premises, right after the theorem in which it proved
for the first time (and possibly other lemmas generated in its proof). Even though
the lemmas were proved before their theorem, inserting them before it would
often result in very simple new proofs of the lemma-enriched large problems,
because some of the new lemmas are very close to their theorems. In general,
the lemma only becomes known after the proof is found, so we only allow to use
the lemma for the theorems that follow the problem from which the lemma was
first extracted.

Updating the dependencies: One of the main factors when selecting the most
suitable lemmas for a problem is the information about how each lemma was
previously used, and also how it was proved. This dependency information is
added to the set of proof dependencies that we already have for the main the-
orems and lemmas. After this addition, we have three sets of dependencies for
further experiments:
old: We add the new lemmas (if any) into the chronological sequence as de-

scribed above, but do not add any information about their dependencies
neither about dependencies on them.

all: For each new lemma, we also add the dependency on the axioms from which
it was proved. So far we do not use dependencies between the lemmas.

fut: For each original proved theorem, we also add its dependency on all the
lemmas that were extracted from its proof. We call these future dependencies,
because as mentioned above, we allow these lemmas to be used only after
the theorem is proved.

4.1 Additional Filters

On the set of all (possibly redirected) reproved lemmas (all) combined with
the original MPTP2078 formulas we further apply the three additional filters
explained below. We do not filter the other sets (pla, plr, red, neg, nmu) here
because they are already sufficiently small.

348 C. Kaliszyk, J. Urban, and J. Vyskočil

Forward subsumption: We use the MoMM [21] subsumption tool derived from E’s
perfect discrimination trees on the lemmas in their order, disallowing backward
subsumption, so that future stronger lemmas cannot remove earlier weaker ver-
sions. Such weaker version might be useful before the stronger lemma is proved
later. This optional filter can remove 6956 of the new lemmas which are sub-
sumed by another (older) lemma or by an existing axiom/theorem. 2101 of the
all lemmas are left after this optional phase (mom). The disadvantage of such
interreduction is that suitable frequently derived instances disappear in this way,
and that such instances may contain symbols that make them more eligible for
selection when using further similarity-based filters.

PageRank: One of the graph-based filters we experiment with is PageRank [14]
used on the three graphs of direct proof dependencies (each lemma/theorem
points to those used in its proof). It takes 0.574 s to compute the ranks of all the
(about 13k) nodes. We then choose only the best 2048 new lemmas according to
their PageRanks (pgr), which are then handed over to the final problem-specific
premise selectors.

AGIntRater [16] is a tool that tries to compute important characteristics of
the lemmas in ATP proofs, producing an aggregated interestingness rating for
each lemma. AGIntRater fails to rate the complete set of new lemmas with
dependencies (fut), likely because of the size of the dependency graph. Instead,
we run AGIntRater on all the small proofs. We have considered computing the
sums, averages and maximums of the lemma ratings across all the proofs for
each unique lemma, however it turns out that many of the positive ratings are
for the CNF transformations that do not give rise to new lemmas. Only 3564
of the new lemmas ever have nonnegative rating (ag0). We have also created
an even more strict selection (ag5), where only the 1150 lemmas with average
interestingness rating at least 0.5 were added.

5 Problem-Specific Premise Selection

Each of the above dependency sequences (old, all, fut) restricted to the prese-
lected lemmas (all, pla, plr, red, neg, nmu, mom, pgr, ag0, ag5) provides
information about how theorems and lemmas were proved. This information,
together with suitable characterization (features) of the theorems and lemmas
is incrementally learned from and used for each MPTP2078 theorem T to rank
the preceding theorems and lemmas according to their estimated relevance for
proving T .

For this we run two fast and scalable learning-based premise selectors: our cur-
rently strongest version of distance-weighted k-nearest-neighbor (k-NN) learner
and our implementation of the naive Bayes learner [3]. Both methods use an
IDF-weighted combination of symbol and term features for formula characteri-
zations [5]. For each original MPTP2078 theorem we thus obtain (by training the
learners on the previous proof dependencies) a ranking of the set of previously
available MPTP2078 formulas and the added lemmas. Table 2 shows how often

Lemmatization for Stronger Reasoning in Large Theories 349

Table 2. Ratio (in %) of the new lemmas in the first n k-NN predictions for several
lemma-selection methods and the all sequence

Lemma selection first 10-first 100-first 1000-first

pla 0.57 3.46 16.64 32.56
red 0.48 4.06 22.44 40.61
ag0 0.68 4.94 20.89 36.09

mom 0.72 3.61 15.32 28.91
pgr 0.34 5.18 20.43 32.78

the k-NN predicts the new lemmas among the first n predictions when using
the all proof dependencies (only several interesting sequences are shown). For
comparison we also add to the evaluation the normal non-lemmatizing premise
selection method (non).

6 Evaluation

All the data, tools, and statistics for this paper are available at our web page.5
In particular, the full versions of the tables shown in this section are online.6

There are several approaches to evaluating the improvement. First, we can
compare the ATP performance of the best methods with and without lemmas,
i.e., in both cases after choosing the best-performing combination of learning-
based selection with the underlying lemmatizing method. To find such best
combinations, we try to prove each theorem with the best-ranked selections
(segments) of 16, 32,64,...,2048 MPTP2078 formulas and lemmas, using a 30 s
time limit. As the underlying ATP we always use E 1.8 running in its auto-
mated mode. Note that E itself runs many ATP strategies for each problem in
its automated mode. These strategies are selected for each problem individually
by a machine-learning system developed by Schulz, based on suitable problem
characteristics and performance of the strategies on a large set of problems.

Table 3 compares the best results achieved with and without lemmas for each
number of the best-ranked premises tried, showing also the relative improvement
for each premise number. The complete table of the 336 combinations is available
online.7 The best lemma-based method (k-NN, fut, all lemmas, 128 best-ranked
premises) proves 936 theorems, while the best non-lemmatizing method (k-NN,
old, no lemmas, 128 best-ranked premises) proves 878 theorems, i.e., 6.6% less.

The improvement from lemmatization is relatively low – 3.5% – when using
only 16 best-ranked premises (618 by k-NN/all/ag0 versus 597 by k-NN/old/non).
This rises to 14.8% when using 256 premises and peaks at 20.9% when using 512
premises (851 by k-NN/fut/all versus 705 by NB/old/non), which is a very signif-
icant improvement. Figure 4 shows the success rates for these premise numbers
5 http://cl-informatik.uibk.ac.at/users/cek/frocos15/
6 http://cl-informatik.uibk.ac.at/users/cek/frocos15/statistics/
7 http://cl-informatik.uibk.ac.at/users/cek/frocos15/
statistics/all-single-statistics.html

http://cl-informatik.uibk.ac.at/users/cek/frocos15/
http://cl-informatik.uibk.ac.at/users/cek/frocos15/statistics/
http://cl-informatik.uibk.ac.at/users/cek/frocos15/statistics/all-single-statistics.html
http://cl-informatik.uibk.ac.at/users/cek/frocos15/statistics/all-single-statistics.html

350 C. Kaliszyk, J. Urban, and J. Vyskočil

Table 3. Comparison of the best methods for the 8 premise-selection sizes

Premises 16 32 64 128 256 512 1024 2048

Lemmas 618 820 926 936 915 851 724 657
Old 597 797 877 878 797 705 627 551

Improvement (%) 3.5 2.9 5.6 6.6 14.8 20.7 15.5 19.2

for the different lemmatizing strategies, each aggregated across the two premise
selectors and the various methods of constructing the dependencies.

There are several effects involved in these results. At the low premise selec-
tion numbers, the main challenge is to select premises that really justify the
conjecture, i.e., which do not leave any countermodels left (see e.g., SRASS [20]
and MaLARea-SG1 [24] for more detailed experiments). For this, the original
Mizar library theorems seem to be quite well designed, and only a few of the
strongest lemmas – in particular the ones chosen by AGIntRater and PageRank
– help to increase the performance by 3.5%. On the other hand, when allowing
many premises, insufficient logical power of the premises is usually no longer an
issue, and the main problem is to focus the proof search towards the conjecture.
Such focusing is the core of Veroff’s hints method, which is likely to some extent
being emulated at the higher premise numbers by adding some previously useful
conclusions of the main library theorems. A related effect that we have quite of-
ten observed, is that during the premise selection the more conjecture-related or
more instantiated lemmas replace some less related or more general library the-
orems, which in the no-lemma case more easily confuse the proof search. Lastly,
even if no new lemma is eventually used in a proof, it happens quite often that
the new proof dependencies created with the help of the added lemmas make
it easier for the machine learners to choose the right Mizar theorems for the
proof. The latter effects – useful instantiations, many conjecture-related lemmas
replacing other theorems, and more data for learning – likely also explain the
relatively low performance of the lemmas interreduced by forward subsumption
(MoMM) compared to only α-normalized lemmas (all).

Another way to compare the methods is to look at the aggregated results
(unions of problems solved) across the two machine learners and the eight premise
numbers. This is shown in Table 4. The best new method – k-NN/ag0 – solves in
total 1268 problems, compared to 1217 solved without lemmas, i.e., 4.2% more.
Note that just using all lemmas, relying only on learning-based premise selection
without any further filtering does not perform much worse (1262 problems). In
total, the union of all problems solved by the new and old methods is 1375 prob-
lems, compared to 1217 without lemmas, i.e., 13.0% more. Such comparison is
however unrealistic, because the total time spent on all the new combinations
together is much higher than the total time spent on the old ones.

A fairer way how to do such total comparison is to give the new methods
only as much time as is needed to solve the 1217 problems by the old methods,
i.e., in our case allowing only 14 most complementary new methods, see Table 5.

Lemmatization for Stronger Reasoning in Large Theories 351

16 32 64 128 256 512 1024 2048

30

40

50

Number of premises

Su
cc

es
s

ra
te

(%
)

all
agint≥0.0

pgrank
agint≥0.5

no new
MoMM

Fig. 4. ATP success rates over 8 premise-selection sizes for several strategies

As common in such evaluations [6,8,12] the most complementary methods are
computed by a greedy algorithm, and the resulting greedy sequences are shown
from top to bottom in the table. The total improvement is in this case 6.2%, i.e.
a comparable result to the 6.6% improvement obtained by comparing only the
best single methods.

Table 4. Aggregated ATP results across the premise-selection sizes

Strategy Dependencies Proved % Unique

ag0 fut 1268 61.020 3
all fut 1262 60.731 1
all all 1253 60.298 1
ag0 all 1247 60.010 1
pla all 1247 60.010 0
pgr all 1242 59.769 5
pgr fut 1240 59.673 3
pla fut 1236 59.480 2
ag5 fut 1235 59.432 1
ag5 all 1233 59.336 0
red fut 1230 59.192 0
red all 1228 59.095 0
neg fut 1227 59.047 1
plr fut 1225 58.951 1

mom all 1222 58.807 1
plr all 1222 58.807 2
non old 1217 58.566 0
all old 1216 58.518 3
neg all 1215 58.470 0

any 1375 66.169

352 C. Kaliszyk, J. Urban, and J. Vyskočil

Table 5. Greedy sequence of aggregated ATP results with lemmas compared with the
numbers of lemmas proved by running the ATP without lemmas.

With lemmas No lemmas
Strategy Predict Deps Prems Proved % Predict Prems Proved %

all knn fut 0128 936 45.043 knn 0128 878 42.252
all knn all 0032 1046 50.337 knn 0032 1031 49.615
pla knn all 0256 1141 54.909 nba 0256 1084 52.166
ag5 nba fut 0064 1175 56.545 nba 0064 1124 54.090
mom knn all 0128 1197 57.603 knn 0016 1145 55.101
ag0 knn fut 0016 1218 58.614 nba 0512 1164 56.015
all knn fut 2048 1235 59.432 knn 0064 1176 56.593
pgr nba fut 0512 1248 60.058 nba 0016 1185 57.026
nmu nba fut 0064 1258 60.539 nba 0128 1193 57.411
pgr knn all 0064 1267 60.972 nba 0032 1200 57.748
nmu nba fut 0256 1274 61.309 knn 2048 1207 58.085
all knn old 0016 1280 61.598 knn 0256 1213 58.373

nmu knn fut 0064 1286 61.886 knn 0512 1215 58.470
pla knn all 0128 1292 62.175 nba 1024 1217 58.566

7 Examples of New Lemmas

While the statistics in the previous section gives an global overview of the
strength of the methods, it is also interesting to inspect several examples of
new proofs found thanks to the added lemmas.

1. The first Mizar theorem about basic set operations (in this case symmetric
difference), XBOOLE_0:1,8 states that:

x in X \+\ Y iff ((x in X & not x in Y) or (x in Y & not x in X)).

The ATP proof of this fact includes a CNF statement that in the Mizar
syntax would read:

X1 in X3 implies not X1 in X2 \ X3.

This lemma could be easily derived as a consequence of more general facts
already present in the Mizar library, however it does help in a number of fu-
ture ATP proofs. For examples it lets the ATPs prove XBOOLE_1:40,9 which
states:

(X \/ Y) \ Y = X \ Y,

8 http://mizar.cs.ualberta.ca/˜mptp/7.11.07_4.160.1126/
html/xboole_0.html#T1

9 http://mizar.cs.ualberta.ca/˜mptp/7.11.07_4.160.1126/
html/xboole_1.html#T40

http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_0.html#T1
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_0.html#T1
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T40
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T40

Lemmatization for Stronger Reasoning in Large Theories 353

and to prove ZFMISC_1:72:10

{x,y} \ X = {x,y} iff (not x in X & not y in X).

2. Another example is a new lemma derived by the ATP in the proof of
XBOOLE_1:1:11

X1 \ (X2 \ X1) = X1,

which is useful in the proofs of four more theorems (three of them
in XBOOLE_1, one in TOPS_1).

3. A more complicated new lemma is derived in WAYBEL_7:9:12

with_infima(BoolePoset X).

This is a simple consequence of two facts already present in the Mizar library,
but it enables three new ATP proofs in the formalization of prime ideals and
filters in WAYBEL_7. This is likely because a large number of such simple facts
can be derived in this rich domain, and pointing out the relevant one makes
the three proofs achievable.

8 Related Work

Some relevant related work such as Veroff’s and Schulz’s work is already men-
tioned in the introduction. A more extensive summary of the related methods
is given in our paper on extracting and re-using the millions to billions lemmas
arising in Interactive Theorem Proving (ITP) [7]. Some issues discussed here
overlap to some extent with the ITP setting: for example the need for fast meth-
ods for filtering a large number of lemmas. The need for further fast filters is
however not so big here: we can easily handle all lemmas (thousands) by the
learning-based premise selectors and only use the additional filters to get bet-
ter predictions, whereas in ITP (millions to billions lemmas) fast pre-filtering is
crucial.

A number of further issues differ in the ATP setting: the lemmas need re-
orienting and deskolemizing, and the ATP proofs are short and suitable for
ATP-style tools like AGIntRater. It is also worth mentioning that even in the
ITP setting, ATP proofs are typically a valuable source of training data for learn-
ing premise selection [11,6]. This means that the ATP and ITP lemma extrac-
tion could likely be fruitfully combined in the various strong [AI]TP “hammer”
systems.

10 http://mizar.cs.ualberta.ca/˜mptp/7.11.07_4.160.1126/
html/zfmisc_1.html#T72

11 http://mizar.cs.ualberta.ca/˜mptp/7.11.07_4.160.1126/
html/xboole_1.html#T1

12 http://mizar.cs.ualberta.ca/˜mptp/7.11.07_4.160.1126/
html/waybel_7.html#T9

http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/zfmisc_1.html#T72
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/zfmisc_1.html#T72
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T1
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T1
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/waybel_7.html#T9
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/waybel_7.html#T9

354 C. Kaliszyk, J. Urban, and J. Vyskočil

9 Conclusion and Future Work

We have introduced a toolchain for re-using lemmas across many related ATP
problems, and evaluated it on the MPTP2078 large-theory benchmark. The main
challenges are extraction of reusable context-independent lemmas from the ATP
proofs, their subsequent filtering, and extracting suitable proof dependencies for
learning premise selection. To make lemmas reusable, we first redirect them,
using a modified version of the Isabelle/Isar proof presentation tools, and then
we heuristically deskolemize them. The subsequent filtering is done by several
tools – AGIntRater, PageRank, MoMM – that make use of different aspects of
the proofs and lemmas. The filtered lemmas and their proofs result in modified
proof dependencies, from which we learn along with the old proof dependencies,
and use such learned knowledge to select premises for each MPTP2078 theorem.
The 30 s improvement over the best old method is 6.6% more problems proved,
and the improvement when using 14 most complementary methods is 6.2%. This
comparison is done against the strategy-scheduling E prover, which itself runs
a customized selection of strategies on each problem, choosing these strategies
from a large portfolio. This means that the lemmatizing strategies add nontrivial
performance to the E strategies. We have found that the new lemmas are par-
ticularly useful when using many premises, improving over the no-lemma case
by about 15% and 20% when using 256 and 512 premises, respectively.

In the future we would like to experiment with running the toolchain on
consistently pre-skolemized problems and on harder problems that miss some
of the original MPTP2078 theorems. Another direction is to combine the filters
and to use more of them, possibly on a larger dataset such as the whole MPTP-
translated MML, using also methods for selecting lemmas from the ITP (Mizar)
proofs [25,7]. We can also try more MaLARea-style iterations of the lemma-
enrichment, i.e., extracting lemmas from the newly found problems and trying
unsolved problems with such new lemmas added. And yet another direction is
to re-use the filtering methods for Veroff-style hints selection and for improving
given-clause guidance in ATPs by a large pool of previous lemmas.

Acknowledgments. We thank the CADE-25 referees for a number of useful
comments to an early version of this paper. Kaliszyk was supported by the Aus-
trian Science Fund (FWF): P26201, Urban’s work was funded by NWO grant
612.001.208: Knowledge-based Automated Reasoning, Vyskočil’s work was sup-
ported by institutional resources for research by the Czech Technical University
in Prague, Czech Republic.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selec-
tion for mathematics by corpus analysis and kernel methods. J. Autom. Reason-
ing 52(2), 191–213 (2014)

2. Blanchette, J.C.: Redirecting proofs by contradiction. In: Blanchette, J.C.,
Urban, J. (eds.) PxTP@CADE. EPiC Series, vol. 14, pp. 11–26. EasyChair (2013)

Lemmatization for Stronger Reasoning in Large Theories 355

3. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning (in press, 2015)

4. Fiedler, A.: P.rex: An interactive proof explainer. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 416–420. Springer,
Heidelberg (2001)

5. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting
and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC
Series, vol. 14, pp. 87–95. EasyChair (2013)

6. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning 53(2), 173–213 (2014)

7. Kaliszyk, C., Urban, J.: Learning-assisted theorem proving with millions of lemmas.
Journal of Symbolic Computation 69, 109–128 (2015)

8. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Automated Reasoning (in press,
2015)

9. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups:
An application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.)
Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 151–164. Springer,
Heidelberg (2013)

10. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg
(2013)

11. Kuehlwein, D., Urban, J.: Learning from multiple proofs: First experiments. In:
Fontaine, P., Schmidt, R.A., Schulz, S. (eds.) PAAR 2012. EPiC Series, vol. 21,
pp. 82–94. EasyChair (2013)

12. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: Machine learning
for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013)

13. Meier, A.: System description: Tramp: transformation of machine-found proofs
into nd-proofs at the assertion level. In: McAllester, D. (ed.) CADE 2000.
LNCS(LNAI), vol. 1831, pp. 460–464. Springer, Heidelberg (2000)

14. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the Web. Technical report, Stanford Digital Library Technologies
Project (1998)

15. Phillips, J.D., Stanovský, D.: Automated theorem proving in quasigroup and loop
theory. AI Commun. 23(2–3), 267–283 (2010)

16. Puzis, Y., Gao, Y., Sutcliffe, G.: Automated generation of interesting theorems.
In: Sutcliffe, G., Goebel, R. (eds.) FLAIRS, pp. 49–54. AAAI Press (2006)

17. Schulz, S.: Learning search control knowledge for equational deduction. DISKI,
vol. 230. Infix Akademische Verlagsgesellschaft (2000)

18. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

19. Smolka, S.J., Blanchette, J.C.: Robust, semi-intelligible Isabelle proofs from ATP
proofs. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC Series, vol. 14, pp.
117–132. EasyChair (2013)

20. Sutcliffe, G., Puzis, Y.: SRASS - A semantic relevance axiom selection system. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer,
Heidelberg (2007)

21. Urban, J.: MoMM - fast interreduction and retrieval in large libraries of formalized
mathematics. Int. J. on Artificial Intelligence Tools 15(1), 109–130 (2006)

22. Urban, J.: BliStr: The Blind Strategymaker. CoRR, abs/1301.2683 (2014)
(accepted to PAAR 2014)

356 C. Kaliszyk, J. Urban, and J. Vyskočil

23. Urban, J., Sutcliffe, G.: ATP-based cross-verification of Mizar proofs: Method,
systems, and first experiments. MCS 2(2), 231–251 (2008)

24. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
for automated reasoning with semantic guidance. In: IJCAR, pp. 441–456 (2008)

25. Urban, J., Sutcliffe, G., Trac, S., Puzis, Y.: Combining Mizar and TPTP se-
mantic presentation and verification Tools. Studies in Logic, Grammar and
Rhetoric 18(31), 121–136 (2009)

26. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning
program: Case studies. J. Autom. Reasoning 16(3), 223–239 (1996)

Author Index

Abdennadher, Slim 307
Alagi, Gábor 69
Alberti, Francesco 169

Baader, Franz 33
Backeman, Peter 3
Barrett, Clark 135
Benzmüller, Christoph 256
Böhme, Stephan 17
Borgwardt, Stefan 49
Brewka, Gerhard 33
Burel, Guillaume 205

Chocron, Paula 275
Christ, Jürgen 119

Damm, Werner 186
Dobal, Pablo Federico 151
Dowek, Gilles 205

Erbatur, Serdar 291

Färber, Michael 325
Farooque, Mahfuza 220
Fontaine, Pascal 151, 275
Frühwirth, Thom 307

Ghilardi, Silvio 169
Gil, Oliver Fernández 33
Graham-Lengrand, Stéphane 220

Hoenicke, Jochen 119
Horbach, Matthias 186

Jaroschek, Maximilian 151
Jiang, Ying 205

Kaliszyk, Cezary 325, 341
Kapur, Deepak 291

Liang, Tianyi 135
Lippmann, Marcel 17

Mahboubi, Assia 220
Marshall, Andrew M. 291

Narendran, Paliath 291
Notin, Jean-Marc 220

Paulson, Lawrence C. 256
Peñaloza, Rafael 49
Philipp, Tobias 101

Reynolds, Andrew 135
Ringeissen, Christophe 275, 291
Rouhling, Damien 220
Rümmer, Philipp 3

Sharygina, Natasha 169
Sofronie-Stokkermans, Viorica 186
Sultana, Nik 256

Teucke, Andreas 85
Thiemann, René 239
Tinelli, Cesare 135
Tsiskaridze, Nestan 135

Urban, Josef 341

Vyskočil, Jǐŕı 341

Weidenbach, Christoph 69, 85
Winkler, Sarah 239

Zaki, Amira 307

	Preface
	Organization
	Abstracts of Invited Talks
	Contents
	Invited Talk
	Free Variables and Theories: Revisiting Rigid E-Unification
	1 Introduction
	2 Background
	2.1 Rigid E-Unification
	2.2 Subterm Instantiation and Bounded Rigid E-Unification
	2.3 Bounded Rigid E-Unification Formally

	3 Semantically Solving BREU
	3.1 Semantic Solvability in a First-Order Calculus
	3.2 The Complexity of Semantic Solvability

	4 Towards Bounded Rigid Theory Unification
	5 Challenges and Conclusion

	Description Logics
	Decidable Description Logics of Context with Rigid Roles
	1 Introduction
	2 Basic Notions
	3 Complexity of the Consistency Problem
	4 The Case of EL: LM[[EL]] and EL[[LO]]
	5 Conclusions

	Adding Threshold Concepts to the Description Logic EL
	1 Introduction
	2 The Description Logic EL
	3 The Logic EL(m)
	4 The Membership Function deg
	5 Reasoning in EL(deg)
	6 Concept Similarity and Relaxed Instance Queries
	7 Conclusion

	Reasoning in Expressive Description Logicsunder Infinitely Valued Gödel Semantics�
	1 Introduction
	2 Preliminaries
	3 Automata for Complex Role Inclusions
	4 The Reduction
	5 Conclusions
	References

	Theorem Proving and Model Building
	NRCL - A Model Building Approach to the Bernays-Schönfinkel Fragment
	1
Introduction
	2
Preliminaries
	3
Calculus
	4
Soundness
	5
Termination and Completeness
	6
Related Work
	7
Conclusion

	First-Order Logic Theorem Proving and Model Building via Approximation and Instantiation
	1 Introduction
	2 Linear Shallow Monadic Horn Approximation
	3 Lifting a Conflicting Core
	4 Approximation Refinement
	5 Summary

	An Expressive Model for Instance Decomposition Based Parallel SAT Solvers
	1 Introduction
	2 Background
	2.1 The Satisfiability Problem
	2.2 Partition Functions in SAT Solvers
	2.3 Label Functions

	3 The Instance Decomposition Model ID
	4 Proof Format
	5 Conclusion

	Decision Procedures
	Weakly Equivalent Arrays
	1 Introduction
	2 Notation
	3 A Motivating Example
	4 Weak Equivalences over Arrays
	5 A Decision Procedure Based on Weak Equivalences
	6 Extension to TAxDiff
	7 Implementation and Evaluation
	8 Conclusion and Future Work

	A Decision Procedure for Regular Membership and Length Constraints over Unbounded Strings
	1 Introduction
	1.1 Related Work
	1.2 Formal Preliminaries

	2 A Theory of Strings and Regular Language Membership
	3 A Calculus for Constraint Satisfiability in TLR
	4 Calculus Correctness
	4.1 Termination
	4.2 Correctness
	4.3 Decidability

	5 Conclusion and Further Work

	Adapting Real Quantifier Elimination Methods for Conflict Set Computation
	1 Introduction
	2 Real Quantifier Elimination
	2.1 Cylindrical Algebraic Decomposition
	2.2 Virtual Substitution

	3 Finding Conflict Sets
	3.1 Conflict Sets and Linear Programming
	3.2 Conflict Sets and Quantifier Elimination Optimization

	4 Finding Conflict Sets via Redlog
	5 Conclusion

	Decision Procedures for Verification
	A New Acceleration-Based Combination Framework for Array Properties
	1 Introduction
	2 Notation
	3 Acceleratable Fragments
	4 Acceleration Modules in Satisfiability Procedures
	5 Applications to Imperative Programs
	6 Conclusions and Future Work

	Decidability of Verification of Safety Properties of Spatial Families of Linear Hybrid Automata
	1 Introduction
	2 Spatial Families of Hybrid Automata
	3 Verification Tasks
	3.1 Safety Properties
	3.2 Reduction to Satisfiability Checking

	4 Automated Reasoning
	5 Verification: Decidability and Complexity
	6 Tool Support
	7 Conclusions

	Rewriting and Constraint Solving
	A Completion Method to Decide Reachabilityin Rewrite Systems
	1 Introduction
	2 Polarized Rewrite Systems
	3 Cut-Elimination
	4 Ground Finite Rewrite Systems
	5 Pushdown Systems

	Axiomatic Constraint Systemsfor Proof Search Modulo Theories
	1 Introduction
	2 Ground Calculus and Examples
	3 Constraint Structures
	4 A System for Proof Search with Constraints
	4.1 The Constraint-Producing Sequent Calculus LK?1
	4.2 Instantiations and Compatibility with Constraints
	4.3 Soundness and Completeness

	5 Sequentialising
	5.1 Definition of the Proof System
	5.2 Soundness and Completeness

	6 Relating LK?"526930B 1 to LK1
	7 Implementation
	8 Related Works and Further Work

	Transformations between SymbolicSystems
	Formalizing Soundness and Completeness of Unravelings
	1 Introduction
	2 Preliminaries
	3 Formalizing Conditional Rewriting
	4 Unravelings
	5 Completeness of Unravelings
	6 Soundness of Unravelings
	7 Applying Unravelings to Confluence
	8 Conclusion

	Proofs and Reconstructions
	1 Introduction
	2 Reconstruction Workflow
	3 Cut Machines
	3.1 Validating the Model
	3.2 Using the Model
	3.3 Extending the Model

	4 Framework
	4.1 Proof Generation
	4.2 Formula Interpretation
	4.3 Proof Analysis and Transformation
	4.4 Emulation of Inference Rules
	4.5 Generating a Cut Program
	4.6 Executing a Cut Program

	5 Implementation
	5.1 Evaluation

	6 Related Work
	7 Conclusions

	Combination Methods
	A Rewriting Approach to the Combination of Data Structures with Bridging Theories
	1 Introduction
	2 Preliminaries: Notations and Combinations
	3 Combination with Bridging Theories
	4 Basic Data Structure Theories
	5 Completeness Proof
	6 Conclusion

	Unification and Matching in Hierarchical Combinations of Syntactic Theories
	1 Introduction
	2 Preliminaries
	3 Hierarchical Combination
	3.1 Combination Procedure for Hierarchical Combination

	4 Unification in Shallow Hierarchical Combination
	5 Matching in Finite Syntactic Hierarchical Combination
	5.1 Mutation-Based Procedure
	5.2 Combination Procedure
	5.3 Example: Matching in a Theory of Distributive Exponentiation

	6 Conclusion

	Combining Forward and Backward Propagation
	1 Introduction
	2 Constraint Handling Rules
	2.1 Syntax
	2.2 Operational Forward Semantics
	2.3 Operational Backwards Semantics

	3 Combined CHR Programs
	3.1 General Formulation
	3.2 Forward CHR
	3.3 Backward CHR

	4 Interleaved Forward/Backward Propagation
	5 Application for Combined Programs
	5.1 Modeling
	5.2 Strictly Forward
	5.3 Strictly Backward

	6 Conclusion

	Reasoning in Large Theories
	Random Forests for Premise Selection
	1 Introduction
	2 Premise Selection
	2.1 Quality Measures
	2.2 Evaluation
	2.3 Used Datasets

	3 Existing Algorithms
	4 Adaptations to Random Forests for Premise Selection
	4.1 Sample Selection
	4.2 Incremental Update
	4.3 Tree Size
	4.4 Feature Selection
	4.5 Querying a Tree
	4.6 Querying a Forest

	5 Experiments
	6 Conclusion

	Lemmatization for Stronger Reasoning in Large Theories
	1 Introduction
	2 Lemmatization Scenario and Initial Statistics
	3 Extracting Reusable Lemmas from Refutational Proofs
	3.1 Extracting Lemmas from the Natural Deduction Proofs

	4 Filtering Lemmas
	4.1 Additional Filters

	5 Problem-Specific Premise Selection
	6 Evaluation
	7 Examples of New Lemmas
	8 Related Work
	9 Conclusion and Future Work

	Author Index

