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Preface

ANTS-IX was the ninth edition of the biennial International Symposium on
Algorithmic Number Theory. The first edition of this symposium was held at
Cornell University in 1994. ANTS-IX was held July 19-23, 2010 at INRIA in
Nancy, France.

The ANTS-IX Program Committee consisted of 12 members whose names
are listed on the next page. The selection of the accepted papers among the
submissions was made from mid-January to end of March 2010. Each paper was
thoroughly reviewed by at least two experts, including a Program Committee
member. The Program Committee selected 25 high-quality articles, which are
excellent representatives of the current state of the art in various areas of al-
gorithmic number theory. The Selfridge Prize in computational number theory
was awarded to the authors of the best contributed paper presented at the con-
ference. We gratefully thank the authors of all submitted papers for their hard
work which made the selection of a varied program possible. We also thank the
authors of the accepted papers for their cooperation in the timely production of
the revised versions.

Each submitted paper was presented by one of its co-authors at the con-
ference. Besides contributed papers, the conference included five invited talks
by Henri Darmon (McGill University), Jean-François Mestre (Université Paris
7), Gabriele Nebe (RWTH Aachen), Carl Pomerance (Dartmouth College), and
Oded Regev (Tel-Aviv University). We thank the invited speakers for having
been able to provide abstracts of their talk, which are reproduced in this vol-
ume. This list of invited speakers originally included Fritz Grunewald (HHU
Düsseldorf), who unfortunately passed away on March 21, 2010, four months
before the conference. A special lecture was held to honor his memory.

The conference organizers wish to thank all the people who made the confer-
ence possible. In particular, we gratefully acknowledge the support of the funding
institutions.

May 2010 Guillaume Hanrot
François Morain

Emmanuel Thomé
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Putting the Hodge and Tate Conjectures
to the Test

Henri Darmon

Department of Mathematics,
McGill University, Burnside Hall, Montreal, QC, Canada

henri.darmon@mcgill.ca

The Hodge conjecture asserts that the presence of algebraic cycles on a (smooth,
projective) variety over the complex numbers can be detected in its Betti coho-
mology equipped with the Hodge structure arising from its relation with complex
deRham cohomology. The Tate conjecture makes a similar assertion with �-adic
cohomology replacing Betti cohomology. One of the difficulties with these con-
jectures is that the predictions that they make are often hard to test numerically,
even in specific concrete instances. Unlike closely related parts of number theory
(a case in point being the Birch and Swinnerton-Dyer conjecture) the study of
algebraic cycles has therefore not been as strongly affected by the growth of the
experimental and computational community as it perhaps could be. In this lec-
ture, I will describe some numerical experiments that are designed to “test” the
Hodge and Tate conjectures for certain varieties (of arbitrarily large dimension)
which arise from elliptic curves with complex multiplication and theta series of
CM Hecke characters.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Curves of Genus 3 with a Group of
Automorphisms Isomorphic to S3

Jean-François Mestre

Centre de Mathématiques de Jussieu Projet Théorie des Nombres
mestre@math.jussieu.fr

In this talk, we construct curves of genus 3 with automorphism group equal to
S3; we give some applications of this construction to the problem of optimal
curves, i.e. of curves over a finite field Fq having a number of points equal to the
Serre-Weil bound Mq; in particular, we prove that there exists infinitely many
fields F3n having optimal curves; we prove also that there exists an integer C
such that, for any finite field F7n , there exists a curve of genus 3 defined over
having at least Mq − C points.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Learning with Errors over Rings

Oded Regev

Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
odedr@post.tau.ac.il

The “learning with errors” (LWE) problem is to distinguish random linear equa-
tions, which have been perturbed by a small amount of noise, from truly uniform
ones. The problem has been shown to be as hard as worst-case lattice problems,
and in recent years it has served as the foundation for a plethora of cryptographic
applications.

Unfortunately, these applications are rather inefficient due to an inherent
quadratic overhead in the use of LWE. After a short introduction to the area,
we will discuss recent work on making LWE and its applications truly efficient
by exploiting extra algebraic structure. Namely, we will define the ring-LWE
problem, and prove that it too enjoys very strong hardness guarantees.

Based on joint work with Vadim Lyubashevsky and Chris Peikert.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, p. 3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Lattices and Spherical Designs

Gabriele Nebe

Lehrstuhl D für Mathematik, RWTH Aachen University, Germany
nebe@math.rwth-aachen.de

A lattice is a finitely generated discrete subgroup of Euclidean space. Lattices
are an important algorithmic tool in number theory, integral representation the-
ory, geometry, information theory, cryptography, crystallography and have var-
ious other applications within mathematics and beyond. Any lattice has only
finitely many vectors of a given length, they form the layers of the lattice,
which are finite subsets of spheres in the underlying Euclidean space.

A spherical design of strength t is a finite set X �= ∅ in the Euclidean
sphere for which the mean value 1

|X|
∑

x∈X f(x) equals the integral of f over
the sphere for all polynomials f of degree up to t. This condition is equivalent
to
∑

x∈X f(x) = 0 for all non-constant harmonic polynomials of degree ≤ t.
Spherical designs hence consist of well distributed points on a sphere and are
relevant for numerical integration, in information theory, geometry, statistics and
have applications for instance in medicine.

Boris Venkov combined these two concepts in a very fruitful way that allows
to use lattices to classify spherical designs and to use designs for finding good
lattices. An introduction to this subject as well as some applications are given
in “Réseaux euclidiens, designs sphériques et formes modulaires”, Enseignement
Math., Geneva, 2001. There Venkov introduces the notion of a strongly perfect
lattice, which is a lattice whose minimal vectors form a spherical 4-design. Using
the characterization by Korkine, Voronoi and Zolotarev one shows that strongly
perfect lattices realise local maxima of the sphere packing density function on the
space of all similarity classes of n-dimensional lattices (in fact in the space of all
periodic packings as proved by Schürmann). All local maxima of this function
are known up to dimension 8. In dimension 8 Dutour, Schürmann, Vallentin
and Riener proved that there are 2408 local maxima. The densest lattice sphere
packings are known up to dimension 8 and, thanks to recent results by Elkies
and Kumar, in dimension 24, where the Leech lattice is the densest lattice.

Combining number theory and geometry with combinatorial methods allows
classify strongly perfect lattices, where a full classification up to dimension 12
is obtained in joined work with Venkov. With one exception all known strongly
perfect lattices Λ have the additional property that also the dual lattice Λ∗ is
strongly perfect. Such lattices are called dual strongly perfect, the classifica-
tion of dual strongly perfect lattices in small dimension has been completed in
dimension 14 and is an ongoing PhD project by Elisabeth Nossek in Aachen.

There are two general approaches to study and construct strongly perfect lat-
tices: by modular forms and by invariant theory of finite groups. Both concepts
usually allow to show that all non-empty layers of the lattice form spherical

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 4–5, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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4-designs. Such lattices are called universally perfect and play a role in Rie-
mannian geometry. If Λ is a universally perfect lattice then the torus Rn/Λ∗

defined by the dual lattice Λ∗ provides a strict local minimum of the height
function on the set of all n-dimensional flat tori. R. Coulangeon also shows that
universally perfect lattices Λ achieve local minima of Epstein’s zeta function,
they are so called ζ-extreme lattices. The question to find ζ-extreme lattices has
a long history going back to Sobolev’s work on numerical integration and to
work of Deloné. Universally perfect lattices are dual strongly perfect.

The relation with modular forms arises, because the condition that the min-
imal vectors of the lattice form a 4-design means the annihilation of certain
coefficients in its theta series with harmonic coefficients. In this way one can
prove the strong perfectness of many extremal lattices of small level. For exam-
ple there are more than 106 even unimodular lattices without roots in dimension
32 (by work of Oliver King) and the theory of modular forms shows that all of
them are universally perfect; this is the only known method to prove that all
these lattices are locally densest lattices.

If a lattice Λ has a big automorphism group G := Aut(Λ) which has no
invariant harmonic polynomials of degree 2 and 4, a condition easily expressed
in terms of the character of G ≤ O(n), then Λ is universally perfect. There are
many interesting lattices such as the Barnes-Wall lattices, the 248-dimensional
Thompson-Smith lattice and others which are strongly perfect by this reason.
Tiep and others used representation theory to classify certain matrix groups G
for which all orbits form spherical 4-designs.

On the other hand lattices are an important tool to find and classify good
spherical designs. Fixing the strength t and the dimension n, one tries to find
spherical t-designs X ⊂ Sn−1 of minimal possible cardinality. If t = 2m is even,
then

|X | ≥
(

n− 1 + m

m

)
+
(

n− 2 + m

m− 1

)
and if t = 2m + 1 is odd then

|X | ≥ 2
(

n− 1 + m

m

)
.

A t-design X for which equality holds is called a tight t-design.
Tight t-designs in Rn with n ≥ 3 are very rare. Bannai has shown that such

tight designs only exist if t ≤ 5 and t = 7, 11. The tight t-designs with t = 1, 2, 3
as well as t = 11 are completely classified whereas their classification for t =
4, 5, 7 is still an open problem. It is conjectured that there are just seven tight
t-designs of dimension n ≥ 3 and strength 4, 5, 7, namely in dimensions 6,22
(t=4), 3,7,23 (t=5) respectively 8,23 (t=7); each of these is known to be unique.

One possible approach to prove that there are no further tight designs X is
to investigate the Euclidean lattice Λ generated by X and to obtain properties
of Λ (such as its determinant or its minimum) from the design properties of X
and then prove the non existence of such a lattice Λ. This strategy has been
successfully applied by Bannai, Munemasa and Venkov to show that there are
no further tight designs up to dimension 103.



Fixed Points for Discrete Logarithms�

Mariana Levin1, Carl Pomerance2, and K. Soundararajan3

1 Graduate Group in Science and Mathematics Education
University of California

Berkeley, CA 94720, USA
levin@berkeley.edu

2 Department of Mathematics
Dartmouth College

Hanover, NH 03755, USA
carl.pomerance@dartmouth.edu
3 Department of Mathematics

Stanford University
Stanford, CA 94305, USA
ksound@math.stanford.edu

Abstract. We establish a conjecture of Brizolis that for every prime
p > 3 there is a primitive root g and an integer x in the interval [1, p−1]
with logg x = x. Here, logg is the discrete logarithm function to the
base g for the cyclic group (Z/pZ)×. Tools include a numerically explicit
“smoothed” version of the Pólya–Vinogradov inequality for the sum of
values of a Dirichlet character on an interval, a simple lower bound sieve,
and an exhaustive search over small cases.

1 Introduction

If g is an element in a group G and t ∈ 〈g〉, there is some integer n with gn = t.
Finding a valid choice for n is known as the discrete logarithm problem. Note
that if g has finite order m, then n is actually a residue class modulo m. We
write

logg t = n (or logg t ≡ n (mod m))

in analogy to usual logarithmic notation. Thus, the problem in the title of this
paper does not seem to make good sense, since if logg x = x, then the first x is a
member of the group 〈g〉 and the second x is either an integer or a residue class
modulo m. However, sense is made of the equation through the traditional con-
flation of members of the ring Z/kZ with least nonnegative members of residue
classes.
� The work for this paper was begun at Bell Laboratories in 2001 while the first author

was a summer student working with the second author. A version of this work was
presented as the 2003 Master’s Thesis of the first author at U. C. Berkeley, see [3].
The second author was supported in part by NSF grant DMS-0703850. The third
author was supported in part by NSF grant DMS-0500711.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 6–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In particular, suppose G = (Z/pZ)×, where p is a prime number. This is
known to be a cyclic group of order p− 1. Suppose g is a cyclic generator of this
group, known as a primitive root for p. A fixed point for the discrete logarithm
modulo p to the base g is then an integer x in the interval [1, p − 1] such that
logg x = x, that is, gx ≡ x (mod p). (Note that if x is not restricted to the
interval [1, p− 1] it is easy to find fixed points. Namely, if x is a solution to the
Chinese remainder problem x ≡ 1 (mod p − 1), x ≡ g (mod p), then gx ≡ x
(mod p).)

Brizolis (see Guy [6, Section F9]) made the conjecture that for every prime
p > 3 there is a primitive root g and an integer x in [1, p− 1] with logg x = x,
that is, gx ≡ x (mod p). In this paper we prove this conjecture in a somewhat
stronger form. Brizolis had noticed that if there is a primitive root x for p with
x in [1, p− 1] and gcd(x, p− 1) = 1, then with y the multiplicative inverse of x
modulo p− 1 and g = xy , we would have that g is a primitive root for p as well,
and

gx ≡ xxy ≡ x (mod p),

that is, there is a solution to the fixed point problem. We shall prove then the
stronger result that for each prime p > 3 there is a primitive root x for p in
[1, p− 1] that is coprime to p− 1.

Several authors have shown that the Brizolis property holds for all sufficiently
large primes p. In particular, Zhang [12] showed the strong conjecture holds for
all sufficiently large primes p, but did not give an estimate of what “sufficiently
large” is. Cobeli and Zaharescu [4] also showed that the strong conjecture holds
for sufficiently large primes p, and gave the details that it holds for all p >
102070, but they indicated that their method would support a bound around
1050.

Our method is similar to that of Zhang, who used the Pólya–Vinogradov
inequality for character sums on an interval. Here we introduce a numerically
explicit “smoothed” version of this inequality, see §2. In addition, we combine
the traditional character-sum approach with a simple lower bound sieve. There
is still some need for direct calculation for smaller values of p, which are easily
handled by a short Mathematica program. In particular, we directly verified the
strong conjecture for each prime p < 1.25 · 109.

We mention the article by Holden and Moree [8], which considers some related
problems. The total number of solutions to gx ≡ x (mod p) as p runs up to some
high bound N , where either g is restricted to be a primitive root, and where it
is not so restricted, is considered in Bourgain, Konyagin, and Shparlinski [2].

The smoothed version of the Pólya–Vinogradov inequality that we introduce
in the next section is quite simple and the proof is routine, so it may be known
to others. We have found it to be quite useful numerically; we hope it will
find applications in “closing the gap” in other problems where character sums
arise.

Some notation: ω(n) denotes the number of distinct prime divisors of n.
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2 A “Smoothed” Pólya–Vinogradov Inequality

Let χ be a non-principal Dirichlet character to the modulus q. The Pólya–
Vinogradov inequality (independently discovered by Pólya and Vinogradov in
1918) asserts that there is a universal constant c such that∣∣∣∣∣∣

∑
M≤a≤M+N

χ(a)

∣∣∣∣∣∣ ≤ c
√

q log q (1)

for any choice of numbers M, N .
Let N(p) denote the numer of primitive roots g for p with g ∈ [1, p− 1] and

gcd(g, p−1) = 1. Using (1) one can show (see Zhang [12] and Campbell [3]) that

N(p) =
ϕ(p− 1)2

p− 1
+ O(p1/2+ε),

for every fixed ε > 0, and so N(p) > 0 for all sufficiently large p. The aim of this
paper is to close the gap and find the complete set of primes p with N(p) > 0.
Towards this end it would be useful to have a numerically explicit version of
(1). In [3], the theorem of Bachman and Rachakonda [1] was used (plus a small
unpublished improvement on a secondary term in their inequality due to the
second author of the present paper). Recently, elaborating on the work in an
early paper of Landau [10], plus an idea of Bateman as mentioned in Hildebrand
[7], the second author in [11] proved a stronger numerically explicit version of
(1). Using this simplifies the approach in [3]. However, we have found a way to
simplify even further by using a “smoothed” version of (1). In this section we
prove the following theorem.

Theorem 1. Let χ be a primitive Dirichlet character to the modulus q > 1 and
let M, N be real numbers with 0 < N ≤ q. Then∣∣∣∣∣∣

∑
M≤a≤M+2N

χ(a)
(

1−
∣∣∣∣a−M

N
− 1
∣∣∣∣)
∣∣∣∣∣∣ ≤ √q − N

√
q
.

Proof. We use Poisson summation, see [9, §4.3]. Let

H(t) = max{0, 1− |t|}.

We wish to estimate |S|, where

S :=
∑
a∈Z

χ(a)H
(

a−M

N
− 1
)

.

Towards this end we use the identity

χ(a) =
1

τ(χ̄)

q−1∑
j=0

χ̄(j)e(aj/q),
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where τ(χ̄) is the Gauss sum for χ̄ and e(x) := e2πix. Thus,

S =
1

τ(χ̄)

q−1∑
j=0

χ̄(j)
∑
a∈Z

e(aj/q)H
(

a−M

N
− 1
)

.

The Fourier transform of H is

Ĥ(s) =
∫ ∞

−∞
H(t)e(−st) dt =

1− cos 2πs

2π2s2 when s �= 0, Ĥ(0) = 1,

which is nonnegative for s real. By a change of variables in the integral, we see
that the Fourier transform of e(jt/q)H((t−M)/N − 1) is

Ne
(
− (M + N)(s− j/q)

)
Ĥ
(
(s− j/q)N

)
.

Hence, by Poisson summation, we have

S =
N

τ(χ̄)

q−1∑
j=0

χ̄(j)
∑
n∈Z

e
(
− (M + N)(n− j/q)

)
Ĥ
(
(n− j/q)N

)
.

Estimating trivially (that is, taking the absolute value of each term) and using
Ĥ nonnegative and χ(0) = 0, we have

|S| ≤ N
√

q

q−1∑
j=1

∑
n∈Z

Ĥ
(
(n− j/q)N

)
=

N
√

q

∑
k∈Z\qZ

Ĥ

(
kN

q

)
.

Since (N/q)Ĥ(sN/q) is the Fourier transform of H(qt/N), from the last calcu-
lation we have

|S| ≤ √q
∑

k∈Z\qZ

N

q
Ĥ

(
kN

q

)
≤ √q

(
−N

q
Ĥ(0) +

∑
k∈Z

N

q
Ĥ

(
kN

q

))

=
√

q

(
−N

q
+
∑
l∈Z

H

(
ql

N

))
= − N
√

q
+
√

qH(0) =
√

q − N
√

q
,

by another appeal to Poisson summation and the definition of H . This completes
the proof of the theorem.

In our application we will need a version of Theorem 1 with the variable a
satisfying a coprimality condition. We deduce such a result below.

Corollary 2. Let k be a square-free integer and let χ be a primitive character
to the modulus q > 1. For 0 < N ≤ q, we have∣∣∣∣∣∣∣∣

∑
0≤a≤2N
(a,k)=1

χ(a)
(
1−
∣∣∣ a
N
− 1
∣∣∣)
∣∣∣∣∣∣∣∣ ≤
{

2ω(k)√q always
2ω(k)−1√q if k is even.
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Proof. Since
∑

d|(k,a) μ(d) gives 1 if (a, k) = 1 and 0 otherwise, the sum in
question equals ∑

d|k
μ(d)χ(d)

∑
a≤2N/d

χ(a)
(
1−
∣∣∣ad

N
− 1
∣∣∣)

and using Theorem 1 this is bounded in size by 2ω(k)√q as desired. If (k, q)
is even, then χ(d) = 0 for even divisors d of k, so that we achieve the bound
2ω(k)−1√q, again as desired. Suppose now that k is even and q is odd. For each
odd divisor d of k, we group together the contribution from d and 2d, and so we
may write the sum in question as∑

d|k/2

μ(d)χ(d)
∑

a≤2N/d
a odd

χ(a)
(
1−
∣∣∣ad

N
− 1
∣∣∣).

We replace a in the inner sum by q + a, and since q is now odd, the condition
that a is odd may be replaced with the condition that q + a = 2b is even. Thus,
the above sum becomes∑

d|k/2

μ(d)χ(d)χ(2)
∑

q/2≤b≤q/2+N/d

χ(b)
(

1−
∣∣∣∣2d(b− q/2)

N
− 1
∣∣∣∣) ,

and appealing again to Theorem 1 we obtain the Corollary in this case.

Though we will not need it for our proof, we record the following corollary of
Theorem 1.

Corollary 3. Let χ be a primitive Dirichlet character to the modulus q > 1 and
let M, N be real numbers with N > 0. Then, with θ the fractional part of N/q,∣∣∣∣∣∣

∑
M≤a≤M+2N

χ(a)
(

1−
∣∣∣∣a−M

N
− 1
∣∣∣∣)
∣∣∣∣∣∣ ≤ q3/2

N
θ(1− θ).

3 A Criterion for the Brizolis Property

Let us write the largest square-free divisor of p − 1 as uv where u and v will
be chosen later. We shall assume that u is even, and have in mind the situation
that u is composed of the small prime factors of p− 1, and that v is composed
of the large prime factors; we also allow for the possibility that v = 1. For the
rest of the paper, the letter � will denote a prime number.

Let S denote the set of primitive roots in [1, p− 1] that are coprime to p− 1.
Thus, an integer g ∈ [1, p− 1] is in S if and only if for each prime � | p − 1 we
have both � � g and g is not an �-th power (mod p). Let S1 denote the set of
integers in [1, p − 1] that are coprime to u and which are not equal to an �-th
power (mod p) for any prime � dividing u. Let S2 denote the set of integers in
S1 which are divisible by some prime � which divides v. Let S3 denote the set
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of integers in S1 which equal an �-th power (mod p) for some prime � dividing
v. Now S ⊂ S1, and the elements in S1 that are not in S are precisely those
that, for some prime � | v, are either divisible by � or are an �-th power (mod p).
Thus, S = S1\(S2 ∪ S3). We seek a positive lower bound for

N :=
∑
g∈S

(
1−
∣∣∣ 2g

p− 1
− 1
∣∣∣),

since if N > 0, then S �= ∅. By our observation above we have

N ≥ N1 −N2 −N3,

where, for j = 1, 2, 3,

Nj =
∑
g∈Sj

(
1−
∣∣∣ 2g

p− 1
− 1
∣∣∣).

If d is a square-free divisor of p− 1 and g is an integer in [1, p− 1], let Cd(g) be
1 if g is a d-th power (mod p) and 0 otherwise. Thus,

Cd(g) =
∏
�|d

C�(g) =
∏
�|d

1
�

∑
χ�=χ0

χ(g)

=
1
d

∏
�|d

⎛⎝1 +
∑

χ of order �

χ(g)

⎞⎠ =
1
d

∑
m|d

∑
χ of order m

χ(g).

Note that ∑
d|u

μ(d)Cd(g)

is 1 if, for each � | u, g is not an �-th power (mod p), and is 0 otherwise. By the
above calculation, this expression is∑

d|u

μ(d)
d

∑
m|d

∑
χ of order m

χ(g) =
∑
m|u

∑
χ of order m

χ(g)
∑

n|u/m

μ(nm)
nm

.

The inner sum here is (ϕ(u)/u)μ(m)/ϕ(m), so that

N1 =
ϕ(u)

u

∑
1≤g≤p−1
(g,u)=1

(
1−
∣∣∣ 2g

p− 1
− 1
∣∣∣)∑

m|u

μ(m)
ϕ(m)

∑
χ of order m

χ(g). (2)

Let m | u with m > 1. Using Corollary 2, the terms above contribute an amount
bounded in magnitude by

ϕ(u)
u

2ω(u)−1√p,
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so the total contribution over all m | u with m > 1 has magnitude at most

ϕ(u)
u

(
2ω(u) − 1

)
2ω(u)−1√p.

The sum over g in (2) with m = 1 (and so χ = χ0) is

ϕ(u)
u

∑
1≤g≤p−1
(g,u)=1

(
1−
∣∣∣ 2g

p− 1
− 1
∣∣∣) =

ϕ(u)
u

∑
d|u

μ(d)
∑

h≤(p−1)/d

(
1−
∣∣∣ 2dh

p− 1
− 1
∣∣∣).

The inner sum over h can be evaluated explicitly: it equals (p−1)/(2d) if (p−1)/d
is even, and it equals (p − 1)/(2d)− d/(2(p − 1)) if (p − 1)/d is odd. It follows
that the contribution when m = 1 is(

ϕ(u)
u

)2
p− 1

2
− ϕ(u)

u

1
2(p− 1)

∑
d|u

(p−1)/d odd

dμ(d)

≥
(

ϕ(u)
u

)2
p− 1

2
− ϕ(u)2

u(p− 1)
≥
(

ϕ(u)
u

)2
p

2
− ϕ(u)

u
.

We conclude that

N1 ≥
(

ϕ(u)
u

)2
p

2
− ϕ(u)

u
− ϕ(u)

u

(
2ω(u) − 1

)
2ω(u)−1√p

>

(
ϕ(u)

u

)2
p

2
− ϕ(u)

2u
4ω(u)√p.

Next we turn to N2. Since an element in S2 must be divisible by some prime �|v
we have that

N2 ≤
∑
�|v

∑
h≤(p−1)/�

(h,u)=1

(
1−
∣∣∣ 2h�

p− 1
− 1
∣∣∣)ϕ(u)

u

∑
m|u

μ(m)
ϕ(m)

∑
χ of order m

χ(h�).

If v = 1, then N2 = 0, so assume v > 1. The terms with m > 1 contribute, using
Corollary 2, an amount bounded in size by

ϕ(u)
u

ω(v)
(
2ω(u) − 1

)
2ω(u)−1√p.

The main term m = 1 above contributes (arguing as in our evaluation of the
main term for N1 above)

ϕ(u)
u

∑
�|v

∑
h≤(p−1)/�

(h,u)=1

(
1−
∣∣∣ 2h�

p− 1
− 1
∣∣∣) ≤ (ϕ(u)

u

)2∑
�|v

(p− 1
2�

+
�

v

)
.
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Since
∑

�|v � ≤ v, and using v > 1, we conclude that

N2 ≤
(

ϕ(u)
u

)2
p− 1

2

∑
�|v

1
�

+
(

ϕ(u)
u

)2

+
ϕ(u)

u
ω(v)

(
2ω(u) − 1

)
2ω(u)−1√p

≤
(

ϕ(u)
u

)2
p

2

∑
�|v

1
�

+
ϕ(u)
2u

4ω(u)ω(v)
√

p.

Lastly we consider N3. An element g of S3 must be an �-th power for some prime
�|v, and the indicator function for this condition is 1

�

∑
ψ�=χ0

ψ(g), as seen above.
Therefore we have that N3 is at most∑

�|v

∑
g≤p−1
(g,u)=1

(
1−
∣∣∣ 2g

p− 1
− 1
∣∣∣)(ϕ(u)

u

∑
m|u

μ(m)
ϕ(m)

∑
χ of order m

χ(g)
)(1

�

∑
ψ�=χ0

ψ(g)
)
.

Appealing to Corollary 2 for the terms above with χψ �= χ0 we find that the
contribution of such terms is bounded in magnitude by

ϕ(u)
u

22ω(u)−1ω(v)
√

p.

The main term χ = ψ = χ0 gives

ϕ(u)
u

∑
�|v

1
�

∑
g≤p−1
(g,u)=1

(
1−
∣∣∣ 2g

p− 1
− 1
∣∣∣) ≤ ϕ(u)

u

(ϕ(u)
u

p− 1
2

+
ϕ(u)
p− 1

)∑
�|v

1
�

=
(

ϕ(u)
u

)2 (
p− 1

2
+

1
v

)∑
�|v

1
�
≤
(

ϕ(u)
u

)2
p

2

∑
�|v

1
�
.

Thus,

N3 ≤
(

ϕ(u)
u

)2
p

2

∑
�|v

1
�

+
ϕ(u)
2u

4ω(u)ω(v)
√

p.

Combining these bounds for N1, N2 and N3 we obtain that

N ≥
(

ϕ(u)
u

)2
p

2

(
1− 2

∑
�|v

1
�

)
− ϕ(u)

2u
4ω(u)(1 + 2ω(v))

√
p.

We may conclude as follows: The Brizolis property holds for the prime p ≥ 5,
if we may write the largest square-free divisor of p − 1 as uv with u even,∑

�|v 1/� < 1/2, and with

√
p >

4ω(u)u

ϕ(u)
· 1 + 2ω(v)
1− 2

∑
�|v 1/�

. (3)
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4 Completing the Proof

Our criterion (3) can be used in a straightforward way with v = 1 to get an
upper bound for possible counterexamples to the Brizolis conjecture. Indeed,
after a small calculation (using 4ω(n) < 1404n1/3 and n/ϕ(n) < 2 log log n for n
larger than the product of the first eleven primes), it is seen that the Brizolis
property holds for all p > 1025. It is not pleasant to contemplate checking each
prime to this point, so instead we use (3) with v > 1.

Suppose ω(p − 1) = k ≥ 10, and take v to be the product of the six largest
primes dividing p−1, and u to be the product of the other smaller primes. Since
ω(p− 1) ≥ 10, the primes dividing v are all at least 11, and we have that

1− 2
∑
�|v

1
�
≥ 1− 2

( 1
11

+
1
13

+
1
17

+
1
19

+
1
23

+
1
29

)
> 0.28.

If pj denotes the j-th prime, then 4ω(u)u/ϕ(u) ≤
∏k−6

j=1 (4pj/(pj − 1)), and p >

p− 1 ≥
∏k

j=1 pj. So from our criterion (3), if we have

k∏
j=1

√
pj ≥

13
0.28

k−6∏
j=1

4pj

pj − 1
,

then the Brizolis property holds for all p with ω(p − 1) = k. We verified that
the inequality above holds for k = 10. If k is increased by 1 then the LHS of our
inequality is increased by a factor of at least

√
31 > 5, but the RHS is increased

only by a factor of at most 4× (11/10) = 4.4. Thus, the inequality holds for all
k ≥ 10.

Suppose now that k = ω(p − 1) ≤ 9. If k ≥ 4, we take u to be the product
of the four smallest primes dividing p − 1, and otherwise, we take u to be the
product of all the primes dividing p − 1. Then v has at most 5 prime factors,
and 1 − 2

∑
�|v 1/� ≥ 1 − 2(1/11 + 1/13 + 1/17 + 1/19 + 1/23) ≥ 0.35. Further∏

p|u 4p/(p− 1) ≤
∏4

j=1 4pj/(pj − 1) = 1120. Our criterion (3) shows that if

p ≥
(
1120× 11

0.35

)2
= 1,239,040,000,

then p satisfies the Brizolis property.
Using the functions Prime[ ] and PrimitiveRoot[ ] in Mathematica, we were

able to directly exhibit a primitive root g for each prime 3 < p < 1.25 · 109 with
g in [1, p− 1] and coprime to p− 1. Our program runs as follows. The function
Prime[ ] allows us to sequentially step through the primes up to our bound.
For each prime p returned by Prime[ ], we invoke PrimitiveRoot[p] to find the
least positive primitive root r for p. We then sequentially check r2k−1 mod p for
k = 1, 2, . . . until we find a value coprime to p − 1 with 2k − 1 also coprime
to p − 1. The exponent being coprime to p − 1 guarantees that the power is a
primitive root, and the residue being coprime to p− 1 then guarantees that we
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have found a member of S. If no such primitive root exists, this algorithm would
not terminate, but it did, thus verifying the Brizolis property for the given range.

There are various small speed-ups that one can use to augment the program.
For example, if r = 2 is a primitive root and p ≡ 1 (mod 4), then note that p−2
is a primitive root coprime to p− 1, and so work with this prime p is complete.
The augmented program ran in about 90 minutes on a Dell workstation.

This completes our proof of the Brizolis conjecture.

Acknowledgment. We thank Richard Crandall for some technical assistance
with the Mathematica program and the referees for some helpful comments.
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Abstract. Coleman’s theory of p-adic integration figures prominently
in several number-theoretic applications, such as finding torsion and ra-
tional points on curves, and computing p-adic regulators in K-theory
(including p-adic heights on elliptic curves). We describe an algorithm
for computing Coleman integrals on hyperelliptic curves, and its imple-
mentation in Sage.

1 Introduction

One of the fundamental difficulties of p-adic analysis is that the totally discon-
nected topology of p-adic spaces makes it hard to introduce a meaningful form
of antidifferentiation. It was originally discovered by Coleman that this problem
can be circumvented using the principle of Frobenius equivariance. Using this
idea, Coleman introduced a p-adic integration theory first on the projective line
[9], then (partly jointly with de Shalit) on curves and abelian varieties [10], [8].
Alternative treatments have been given by Besser [3] using methods of p-adic
cohomology, and by Berkovich [2] using the nonarchimedean Gel’fand transform.

Although Coleman’s construction is in principle quite suitable for machine
computation, this had only been implemented previously in the genus 0 case
[5]. The purpose of this paper is to present an algorithm for computing single
Coleman integrals on hyperelliptic curves of good reduction over Cp for p > 2,
based on the third author’s algorithm for computing the Frobenius action on the
de Rham cohomology of such curves [17]. We also describe an implementation
of this algorithm in the Sage computer algebra system.

For context, we indicate some of the many potential applications of explicit
Coleman integration. Some of these will be treated, with additional numerical
examples, in the first author’s upcoming PhD thesis. (Some of these applications
will require additional refinements of our implementation; see Section 5.)

– Torsion points on curves. Coleman’s original application of p-adic integration
was to find torsion points on curves of genus greater than 1. This could
potentially be made effective and automatic.

– p-adic heights on curves. Investigations into p-adic analogues of the con-
jecture of Birch and Swinnerton-Dyer for Jacobians of hyperelliptic curves

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 16–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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require computation of the Coleman-Gross height pairing [11]. This global
p-adic height pairing can, in turn, be decomposed into a sum of local height
pairings at each prime. In particular, for C a hyperelliptic curve over Qp

with p a prime of good reduction and for D1, D2 ∈ Div0(C) with disjoint
support, the Coleman-Gross p-adic height pairing at p is given in terms of
the Coleman integral [10]

hp(D1, D2) =
∫

D2

ωD1 ,

for an appropriately constructed differential ωD1 associated to the divisor
D1. This pairing is effectively computable by work of the first author [1].
Using this work, it should be possible (using ideas of Besser [4]) to add in
local heights away from p, and thus compute the Coleman-Gross height pair-
ing on Jacobians of hyperelliptic curves. (In genus 1, one can then compare
to an alternate computation based on work of Mazur-Stein-Tate [22] and
Harvey [16].)

– p-adic regulators. A related topic to the previous one is the computation
of p-adic regulators in higher K-theory of arithmetic schemes, which are
expected to relate to special values of L-functions. Some computations in
genus 0 have been made by Besser and de Jeu [5].

– Rational points on curves: Chabauty’s method. For C a smooth proper curve
overZ[ 1

N ], theChabauty condition onC is that rankJ(C)
(
Z
[ 1

N

])
< dim J(C),

where J(C) denotes the Jacobian of the curve. When the Chabauty condi-
tion holds, there exists a 1-form ω on J(C)an with

∫ P

0 ω = 0 for all points
P ∈ J(C)

(
Z
[ 1

N

])
. We might be able to compute C(Z[ 1

N ]) if we can find all
points P ∈ Can such that

∫ P

0 ω = 0. This method has already been used in
many cases, by Coleman and many others; see [23] for a survey (circa 2007).
To apply Chabauty’s method in a typical case, one needs the integral of ω at
some point in a residue disc, with which one can find all zeroes of the integral
in the residue disc. Several methods are suggested in [23, Remark 8.3] for
doing this, including Coleman integration. However, no serious attempt has
been made to use numerical Coleman integration in Chabauty’s method; it
seems likely that it can handle cases where the other methods suggested in
[23, Remark 8.3] for finding constants of integration prove to be impractical.

– Rational points on curves: nonabelian Chabauty. It may be possible to use
(iterated) Coleman integration to find rational points on curves failing the
Chabauty condition, using Kim’s nonabelian Chabauty method [18]. As a
demonstration of the method, Kim [19] gives an explicit double integral
which vanishes on the integral points of the minimal regular model of a
genus 1 curve over Q of Mordell-Weil rank 1. The erratum to [19] includes a
corrected formula, together with some numerical examples computed using
the methods of this paper.

– p-adic polylogarithms and multiple zeta values. These have been introduced
recently by Furusho [13], but little numerical data exists so far.
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2 Coleman’s Theory of p-adic Integration

In this section, we recall Coleman’s p-adic integration theory (for single integrals
only) in the case of curves with good reduction. This theory involves some con-
cepts from rigid analytic geometry which it would be hopeless to introduce in
such limited space; some standard references are [6] and [12]. (See also [10, §1].)

Let Cp be a completed algebraic closure of Qp, and let O be the valuation
subring of Cp. Choose once and for all a branch of the p-adic logarithm, i.e., a
homomorphism Log : C×

p → Cp whose restriction to the disc {x ∈ Cp : |x− 1| <
1} is given by the logarithm series log(x) =

∑∞
i=1(1−x)i/i. (The choice of branch

has no effect on the integrals on differentials of the second kind, i.e., everywhere
meromorphic differentials with all residues zero.)

We first introduce integrals on discs and annuli within P1.

Definition 1. Let I be an open subinterval of [0, +∞). Let A(I) denote the
annulus (or disc) {t ∈ A1

Cp
: |t| ∈ I}. For

∑
i∈Z cit

i dt ∈ Ω1
A(I)/Cp

and P, Q ∈
A(I), define∫ Q

P

∑
i∈Z

cit
i dt = c−1Log(Q/P ) +

∑
i�=−1

ci

i + 1
(Qi+1 − P i+1).

This is easily shown not to depend on the choice of the coordinate t.

Remark 2. Note that because of the division by i + 1 in the formula for the
integral, we are unable to integrate on closed discs or annuli.

We next turn to curves of good reduction.

Definition 3. By a curve over O, we will mean a smooth proper connected
scheme X over O of relative dimension 1. Equip the function field K(X) with
the p-adic absolute value, so that the elements of K(X) of norm at most 1
constitute the local ring in X of the generic point of the special fibre X of X.

Let XQ denote the generic fibre of X as a rigid analytic space. There is a
natural specialization map from XQ to X; the inverse image of any point of X is
a subspace of XQ isomorphic to an open unit disc. We call such a disc a residue
disc of X.

Definition 4. Let X be a curve over O. By a wide open subspace of XQ, we
will mean a rigid analytic subspace of XQ of the form {x ∈ XQ : |f(x)| < λ} for
some f ∈ K(X) of absolute value 1 and some λ > 1.

Coleman made the surprising discovery that there is a well-behaved integration
theory on wide open subspaces of curves over O, exhibiting no phenomena of
path dependence. (Note that one needs to consider wide open subspaces even
to integrate differentials which are holomorphic or meromorphic on the entire
curve.) In the case of hyperelliptic curves, Coleman’s construction of these inte-
grals using Frobenius lifts will be reflected in our technique for computing the
integrals. For the general case, see [10, §2], [3, §4], or [2, Theorem 1.6.1].
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Theorem 5 (Coleman). We may assign to each curve X over O and each
wide open subspace W of XQ a map μW : Div0(W ) × Ω1

W/Cp
→ Cp, subject to

the following conditions. (Here Div(W ) denotes the free group on the elements
of W , and Div0(W ) denotes the kernel of the degree map deg : Div(W ) → Z
taking each element of W to 1.)

(a) (Linearity) The map μW is linear on Div0(W ) and Cp-linear on Ω1
W/Cp

.
(b) (Compatibility) For any residue disc D of X and any isomorphism ψ : W ∩

D → A(I) for some interval I, the restriction of μW to Div0(W∩D)×Ω1
W/Cp

is compatible with Definition 1 via ψ.
(c) (Change of variables) Let X ′ be another curve over O, let W ′ be a wide open

subspace of X ′, and let ψ : W →W ′ be any morphism of rigid spaces relative
to an automorphism of Cp. Then

μW ′(ψ(·), ·) = μW (·, ψ∗(·)). (1)

(d) (Fundamental theorem of calculus) For any Q =
∑

i ci(Pi) ∈ Div0(W ) and
any f ∈ O(W ), μW (Q, df) =

∑
i cif(Pi).

Remark 6. One cannot expect path independence in the case of bad reduction.
For instance, an elliptic curve over Cp with bad reduction admits a Tate uni-
formization, so its logarithm map has nonzero periods in general. In Berkovich’s
theory of integration, this occurs because the nonarchimedean analytic space
associated to this curve X has nontrivial first homology.

3 Explicit Integrals for Hyperelliptic Curves

We now specialize to the situation where p > 2 and X is a genus g hyperelliptic
curve over an unramified extension K of Qp having good reduction. We will
assume in addition that we have been given a model of X of the form y2 = f(x)
such that deg f(x) = 2g+1 and f has no repeated roots modulo p. (This restric-
tion is inherited from [17], where it is used to simplify the reduction procedure.
One could reduce to this case after possibly replacing K by a larger unramified
extension of Qp, by performing a linear fractional transformation in x to put
one root at infinity, thus reducing the degree from 2g + 2 to 2g + 1.) We will
distinguish between Weierstrass and non-Weierstrass residue discs of X , which
respectively correspond to Weierstrass and non-Weierstrass points of X.

To discuss the differentials we will be integrating, we review a core definition
from [17]. Let X ′ be the affine curve obtained by deleting the Weierstrass points
from X , and let A = K[x, y, z]/(y2− f(x), yz− 1) be the coordinate ring of X ′.

Definition 7. The Monsky-Washnitzer (MW) weak completion of A is the ring
A† consisting of infinite sums of the form{ ∞∑

i=−∞

Bi(x)
yi

, Bi(x) ∈ K[x], deg Bi ≤ 2g

}
,
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further subject to the condition that vp(Bi(x)) grows faster than a linear function
of i as i→ ±∞. We make a ring out of these using the relation y2 = f(x).

These functions are holomorphic on wide opens, so we will integrate 1-forms

ω = g(x, y)
dx

2y
, g(x, y) ∈ A†. (2)

Note that we only consider 1-forms which are odd, i.e., which are negated by
the hyperelliptic involution. Even 1-forms can be written in terms of x alone,
and so can be integrated directly as in Definition 1. (This last statement would
fail if we had taken A† to be the full p-adic completion of A, rather than the
weak completion. This observation is the basis for Monsky-Washnitzer’s formal
cohomology, which is used in [17].)

Note that the class of allowed forms includes those meromorphic differentials on
X whose poles all belong to Weierstrass residue discs. For some applications (e.g.,
p-adic canonical heights), it is necessary to integrate meromorphic differentials
with poles in non-Weierstrass residue discs. These will be discussed in [1].

Note also that for ease of exposition, we describe all of our algorithms as if it
were possible to compute exactly in A†. This is not possible for two reasons: the
elements of A† correspond to infinite series, and the coefficients of these series
are polynomials with p-adic coefficients. In practice, each computation will be
made with suitable p-adic approximations of the truly desired quantities, so one
must keep track of how much p-adic precision is needed in these estimates in
order for the answers to bear a certain level of p-adic accuracy. We postpone
this discussion to § 4.1.

3.1 A Basis for de Rham Cohomology

We first note that any odd differential ω as in (2) can be written uniquely as

ω = df + c0ω0 + · · ·+ c2g−1ω2g−1 (3)

with f ∈ A†, ci ∈ K, and

ωi =
xi dx

2y
(i = 0, . . . , 2g − 1). (4)

That is, the ωi form a basis of the odd part of the de Rham cohomology of A†.
The process of putting ω in the form (3), using the relations

y2 = f(x),

d(xiyj) =
(
2ixi−1yj+1 + jxif ′(x)yj−1) dx

2y
,

can be made algorithmic; see [17, §3]. (Briefly, one uses the first relation to
reduce high powers of x, and the second to reduce large positive and negative
powers of y.) Using properties from Theorem 5 (linearity and the fundamental
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theorem of calculus), the integration of ω reduces effectively to the integration
of the ωi.

It may be convenient for some purposes to use a different basis of de Rham
cohomology. For instance, the basis xi dx/2y3 (i = 0, . . . , 2g − 1) is crystalline
(see the erratum to [17]), so Frobenius will act via a matrix with p-adically
integral entries.

3.2 Tiny Integrals

We refer to any Coleman integral of the form
∫ Q

P ω in which P, Q lie in the same
residue disc (Weierstrass or not) as a tiny integral. As an easy first case, we give
an algorithm to compute tiny integrals of basis differentials.

Algorithm 8 (Tiny Coleman integrals).
Input: Points P, Q ∈ X(Cp) in the same residue disc (neither equal to the point
at infinity) and a basis differential ωi.
Output: The integral

∫ Q

P ωi.

1. Construct a linear interpolation from P to Q. For instance, in a non-
Weierstrass residue disc, we may take

x(t) = (1− t)x(P ) + tx(Q)

y(t) =
√

f(x(t)),

where y(t) is expanded as a formal power series in t.
2. Formally integrate the power series in t:∫ Q

P

ωi =
∫ Q

P

xi dx

2y
=
∫ 1

0

x(t)i

2y(t)
dx(t)

dt
dt.

Remark 9. One can similarly integrate any ω holomorphic in the residue disc
containing P and Q. If ω is only meromorphic in the disc, but has no pole at
P or Q, we can first make a polar decomposition, i.e., write ω as a holomorphic
differential on the disc plus some terms of the form c/(t − r)i, and integrate
the latter terms directly. (If ω is everywhere meromorphic, this is achieved by a
partial fractions decomposition.)

3.3 Non-Weierstrass Discs

We next compute integrals of the form
∫ Q

P
ωi in which P, Q ∈ X(Cp) lie in dis-

tinct non-Weierstrass residue discs. The method of tiny integrals is not available;
we instead employ Dwork’s principle of analytic continuation along Frobenius,
in the form of Kedlaya’s algorithm [17] for calculating the action of Frobenius
on de Rham cohomology. Note that we calculate the integrals

∫ Q

P
ωi for all i

simultaneously. (We modify the presentation in [17] by keeping track of exact
differentials, which are irrelevant for computing zeta functions.)
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Algorithm 10 (Kedlaya’s algorithm).
Input: The basis differentials {ωi}2g−1

i=0 .
Output: Functions fi ∈ A† and a 2g× 2g matrix M over K such that φ∗(ωi) =
dfi +

∑2g−1
j=0 Mijωj for a p-power lift of Frobenius φ.

1. Since K is an unramified extension of Qp, it carries a unique automorphism
φK lifting the Frobenius automorphism x �→ xp on its residue field. Extend
φK to a Frobenius lift on A† by setting

φ(x) = xp,

φ(y) = yp

(
1 +

φK(f)(xp)− f(x)p

f(x)p

)1/2

= yp
∞∑

i=0

(
1/2
i

)
(φK(f)(xp)− f(x)p)i

y2pi
,

noting the series converges in A† because φK(f)(xp) − f(x)p has positive
valuation. (This choice of φ(y) ensures that φ(y)2 = φ(f(x)), so that the
action on A† is well-defined.

2. Use a Newton iteration to compute y/φ(y). Then for i = 0, . . . , 2g−1, proceed
as in § 3.1 to write

φ∗(ωi) = pxpi+p−1 y

φ(y)
dx

2y
= dfi +

2g−1∑
j=0

Mijωj (5)

for some fi ∈ A† and some 2g × 2g matrix M over K.

We may use Algorithm 10 to compute Coleman integrals between endpoints
in non-Weierstrass residue discs, as follows. (Note that our recipe is essentially
Coleman’s construction of the integrals in this case.)

Algorithm 11 (Coleman integration in non-Weierstrass discs).
Input: The basis differentials {ωi}2g−1

i=0 , points P, Q ∈ X(Cp) in non-Weierstrass
residue discs, and a positive integer m such that the residue fields of P, Q are
contained in Fpm .
Output: The integrals {

∫ Q

P ωi}2g−1
i=0 .

1. Calculate the action of the m-th power of Frobenius on each basis element
(see Remark 12):

(φm)∗ωi = dfi +
2g−1∑
j=0

Mijωj . (6)

2. By change of variables (see Remark 13), we obtain

2g−1∑
j=0

(M − I)ij

∫ Q

P

ωj = fi(P )− fi(Q)−
∫ φm(P )

P

ωi −
∫ Q

φm(Q)
ωi (7)
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(the fundamental linear system). As the eigenvalues of the matrix M are
algebraic integers of Cp-norm pm/2 �= 1 (see [17, §2]), the matrix M − I is
invertible, and we may solve (7) to obtain the integrals

∫ Q

P
ωi.

Remark 12. To compute the action of φm, first perform Algorithm 10 to write

φ∗ωi = dgi +
2g−1∑
j=0

Bijωj.

If we view f, g as column vectors and M, B as matrices, we then have

f = φm−1(g) + Bφm−2(g) + · · ·+ BφK(B) · · ·φm−2
K (B)g

M = BφK(B) · · · φm−1
K (B).

Remark 13. We obtain (7) as follows. By change of variables,∫ φm(Q)

φm(P )
ωi =

∫ Q

P

(φm)∗ωi

=
∫ Q

P

(dfi +
2g−1∑
j=0

Mijωj)

= fi(Q)− fi(P ) +
2g−1∑
j=0

Mij

∫ Q

P

ωj .

Adding
∫ φm(P )

P ωi +
∫ Q

φm(Q) ωi to both sides of this equation yields∫ Q

P

ωi =
∫ φm(P )

P

ωi +
∫ Q

φm(Q)
ωi + fi(Q)− fi(P ) +

2g−1∑
j=0

Mij

∫ Q

P

ωj ,

which is equivalent to (7).

Definition 14. A Teichmüller point of XQ is a point fixed by some power of
φ. Each non-Weierstrass residue disc contains a unique such point: if (x, y) ∈
X is a non-Weierstrass point, the Teichmüller point in its residue disc has x-
coordinate equal to the usual Teichmüller lift of x. This leaves two choices for
the y-coordinate, exactly one of which has the correct reduction modulo p. Note
that Teichmüller points are always defined over finite unramified extensions of
Qp.

Remark 15. A variant of Algorithm 11 is to first find the Teichmüller points
P ′, Q′ in the residue discs of P, Q, then note that from the fundamental linear
system (7), we have

2g−1∑
j=0

(M − I)ij

∫ Q′

P ′
ωj = fi(P ′)− fi(Q′). (8)

From (8), we obtain the integrals
∫ Q′

P ′ ωi. Finally, write
∫ Q

P
ωi −

∫ Q′

P ′ ωi as the

sum
∫ P ′

P ωi +
∫ Q

Q′ ωi of tiny integrals.



24 J.S. Balakrishnan, R.W. Bradshaw, and K.S. Kedlaya

3.4 Weierstrass Endpoints of Integration

Suppose now that P, Q lie in different residue discs, at least one of which is Weier-
strass. Since a differential ω of the form (2) is not meromorphic over Weierstrass
residue discs, we cannot always even define

∫ Q

P
ω, let alone compute it. We will

thus assume (to cover most cases arising in applications) that ω is everywhere
meromorphic, with no pole at either P or Q. We then make the following obser-
vation.

Lemma 16. Let ω be an odd, everywhere meromorphic differential on X. Choose
P, Q ∈ X(Cp) which are not poles of ω, with P Weierstrass. Then for ι the hy-
perelliptic involution,

∫ Q

P ω = 1
2

∫ Q

ι(Q) ω. In particular, if Q is also a Weierstrass

point, then
∫ Q

P
ω = 0.

Proof. Let I :=
∫ Q

P ω =
∫ ι(Q)

P (−ω) =
∫ P

ι(Q) ω. Then by additivity in the end-

points, we have
∫ Q

ι(Q) ω = 2I, from which the result follows.

If P belongs to a Weierstrass residue disc while Q does not, we find the Weier-
strass point P ′ in the disc of P , then apply Lemma 16 to write∫ Q

P

ω =
∫ P ′

P

ω +
1
2

∫ Q

ι(Q)
ω. (9)

The first integral on the right side of (9) is tiny, while the second integral involves
two points in non-Weierstrass residue discs, and so may be computed as in the
previous section. The situation is even better if P, Q both belong to residue discs
containing respective Weierstrass points P ′, Q′: in this case, by Lemma 16,

∫ Q

P ω

equals the sum
∫ P ′

P
ω +
∫ Q

Q′ ω of tiny integrals.

Remark 17. Beware that Lemma 16 does not generalize to iterated integrals. For
instance, for double integrals, if both integrands are odd, the total integrand is
even, so the argument of Lemma 16 tells us nothing. It is thus worth considering
alternate approaches for dealing with Weierstrass discs, which may generalize
better to the iterated case. We concentrate on the case where P lies in a Weier-
strass residue disc but Q does not, as we may reduce to this case by splitting∫ Q

P
ω =

∫ R

P
ω +
∫ Q

R
ω for some auxiliary point R in a non-Weierstrass residue

disc.
In Algorithm 11, the form fi belongs to A† and so need not converge at P .

However, it does converge at any point R near the boundary of the disc, i.e., in
the complement of a certain smaller disc which can be bounded explicitly. We
may thus write

∫ Q

P
ωi =

∫ R

P
ωi +

∫ Q

R
ωi for suitable R in the disc of P , to ob-

tain an analogue of the fundamental linear system (7). Similarly, when we write
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ω as in (3), we can find R close enough to the boundary of the disc of P so that f

converges at R, use (3) to evaluate
∫ Q

R ω, then compute
∫ R

P ω as a tiny integral.
One defect of this approach is that forcing R to be close to the boundary of the
residue disc of P forces R to be defined over a highly ramified extension of Qp,
over which computations are more expensive.

An alternate approach exploits the fact that for P in the infinite residue disc
but distinct from the point at infinity, we may compute

∫ Q

P ω directly using
Algorithm 11. This works because both the Frobenius lift and the reduction
process respect the subring of A† consisting of functions which are meromorphic
at infinity. When P lies in a finite Weierstrass residue disc, we may reduce to
the previous case using a change of variables on the x-line to move P to the
infinite disc. However, one still must use the approach of the previous paragraph
to reduce evaluation of

∫ Q

P
ω to evaluation of the

∫ Q

P
ωi.

4 Implementation Notes and Precision

We have implemented the above algorithms in Sage [24] for curves defined over
Qp. In doing so, we made the following observations.

4.1 Precision Estimates

For a tiny integral, the precision of the result depends on the truncation of
the power series computed. Here is the analysis for a non-Weierstrass disc; the
analysis for a Weierstrass disc, using a different local interpolation, is similar.
(For points over ramified extensions, one must also account for the ramification
index in the bound, but it should be clear from the proof how this is done.)

Proposition 18. Let
∫ Q

P
ω be a tiny integral in a non-Weierstrass residue disc,

with P, Q defined over an unramified extension of K and accurate to n digits of
precision. Let (x(t), y(t)) be the local interpolation between P and Q defined by

x(t) = x(P )(1 − t) + x(Q)t = x(P ) + t(x(Q) − x(P ))

y(t) =
√

f(x(t)).

Let ω = g(x, y)dx be a differential of the second kind such that h(t) = g(x(t), y(t))
belongs to O[[t]]. If we truncate h(t) modulo tm, then the computed value of the
integral

∫ Q

P
ω will be correct to min{n, m+1−�logp(m+1)�} digits of (absolute)

precision.

Proof. Let t′ = t(x(Q) − x(P )). As P, Q are in the same residue disc and are
defined over an unramified extension of K, we have vp(x(Q) − x(P )) ≥ 1. If we
expand g(x(t′), y(t′)) =

∑∞
i=0 ci(t′)i, then by hypothesis ci ∈ O. Thus
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P

ω =
∫ Q

P

g(x, y)dx

=
∫ 1

0
g(x(t), y(t))dx(t)

=
∫ x(Q)−x(P )

0
g(x(t′), y(t′))dt′

=
∫ x(Q)−x(P )

0

∞∑
i=0

ci(t′)idt′

=
∞∑

i=0

ci

i + 1
(x(Q)− x(P ))i+1.

The effect of omitting ci(t′)i from the expansion of g(x(t′), y(t′)) for some i ≥ m
is to change the final sum by a quantity of valuation at least i+1−�logp(i+1)� ≥
m+1−�logp(m+1)�. The effect of the ambiguity in P and Q is that the computed
value of (x(Q)− x(P ))i+1 differs from the true value by a quantity of valuation
at least i + 1− �logp(i + 1)�+ n− 1 ≥ n.

For Coleman integrals between different residue discs, which we may assume are
non-Weierstrass thanks to § 3.4, one must first account for the precision loss in
Algorithm 10. According to [17, Lemmas 2,3] and the erratum to [17] (or [15]),
working to precision pN in Algorithm 10 produces the fi, Mij accurately modulo
pN−n for n = 1 + �logp max{N, 2g + 1}�.

We must then take into account the objects involved in the linear system (7),
as follows.

Proposition 19. Let
∫ Q

P ω be a Coleman integral, with ω a differential of the
second kind and with P, Q in non-Weierstrass residue discs, defined over an
unramified extension of Qp, and accurate to n digits of precision. Let Frob be
the matrix of the action of Frobenius on the basis differentials. Set B = Frobt−I,
and let m = vp(det(B)). Then the computed value of the integral

∫ Q

P ω will be
accurate to n−max{m, �logp n�} digits of precision.

Proof. By the linear system (7), the Coleman integral is expressed in terms
of tiny integrals, integrals of exact forms evaluated at points, and a matrix
inversion. Suppose that the entries of B = Frobt−I are computed to precision
n. Then taking B−1, we have to divide by det(B), which lowers the precision by
m = vp(det(B)). By Proposition 18, computing tiny integrals (with the series
expansions truncated modulo tn−1) gives a result precise up to n−�logp n� digits.
Thus the value of the integral

∫ Q

P ω will be correct to n−max{m, �logp n�} digits
of precision.

4.2 Complexity Analysis

We assume that asymptotically fast integer and polynomial multiplication al-
gorithms are used; specifically addition, subtraction, multiplication, and divi-
sion take Õ(log N) bit operations in Z/NZ and Õ(n) basering operations in
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R[x]/xnR[x]. In particular, this allows arithmetic operations in Qp to n (rela-
tive) digits of precision, hereafter called field operations, in time Õ(n log p). Using
Newton iteration, both square roots and the Teichmüller character can be com-
puted to n digits of precision using Õ(log n) arithmetic operations. (We again
consider only points in non-Weierstrass discs defined over unramified fields.)

Proposition 20. Let
∫ Q

P
ω be a Coleman integral on a curve of genus g over Qp,

with ω = dfω +
∑2g−i

i=1 ciωi a differential of the second kind and with P, Q in non-
Weierstrass residue discs, defined over Qp, and accurate to n digits of precision.
Let Frob be the matrix of the action of Frobenius on the basis differentials, and
let m = vp(det(Frobt−I)). Let F (n) be the running time of evaluating fω at P

and Q to n digits of precision. The value of the integral
∫ Q

P
ω can be computed

to n−max{m, �logp n�} digits of precision in time F (n)+ Õ(pn2g2 + g3n log p).
(Over a degree N unramified extension of Qp, the analysis is the same with the
runtime multiplied by a factor of N .)

Proof. An essential input to the algorithm is the matrix of the action of Frobe-
nius, which can be computed by Kedlaya’s algorithm to n digits of precision
in running time Õ(pn2g2). Inverting the resulting matrix can be (näıvely) done
with O(g3) arithmetic operations in Qp. It remains to be shown that no other
step exceeds these running times. For the tiny integral on the first basis differen-
tial, the power series x(t)/y(t) = x(t)f(x(t))−1/2 can be computed modulo tn−1

using Newton iteration, requiring Õ(n log n) field operations. Each other basis
differential can be computed from the first by multiplication by the linear poly-
nomial x(t) and the definite integral evaluated with Õ(n) field operations, for a
total of Õ(gn2) bit operations. Computing φ(P ) and φ(Q) to n digits of preci-
sion is cheap; directly using the formula in Algorithm 10 uses Õ(g + log p) field
operations. The last potentially significant step is computing and evaluating the
fi at each P and/or Q. The coefficients of the fi can be read off in the reduction
phase of Kedlaya’s algorithm, and have O(png) terms each. Evaluating (or even
recording) all g of these forms takes Õ(png2) field operations, or Õ(pn2g2) bit
operations, which is proportional to the cost of doing the reduction.

4.3 Numerical Examples

Here are some sample computations made using our Sage implementation. Ad-
ditional examples will appear in the first author’s upcoming PhD thesis.

Example 21. Leprévost [21] showed that the divisor (1,−1)−∞+ on the genus
2 curve y2 = (2x − 1)(2x5 − x4 − 4x2 + 8x − 4) over Q is torsion of order 29.
Consequently, the integrals of holomorphic differentials against this divisor must
vanish. We may observe this vanishing numerically, as follows. Let

C : y2 = x5 +
33
16

x4 +
3
4
x3 +

3
8
x2 − 1

4
x +

1
16
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be the pullback of Leprévost’s curve by the linear fractional transformation x �→
(1 − 2x)/(2x) taking ∞ to 1/2. The original points (1,−1),∞+ correspond to
the points P = (−1, 1), Q = (0, 1

4 ) on C. The curve C has good reduction at
p = 11, and we compute∫ Q

P

ω0 =
∫ Q

P

ω1 = O(116),
∫ Q

P

ω2 = 7·11+6 ·112+3·113+114+5·115+O(116),

consistent with the fact that Q − P is torsion and ω0, ω1 are holomorphic but
ω2 is not.

Example 22. We give an example arising from the Chabauty method, taken from
[23, § 8.1]. Let X be the curve

y2 = x(x − 1)(x− 2)(x− 5)(x− 6),

whose Jacobian has Mordell-Weil rank 1. The curve X has good reduction at 7,
and

X(F7) = {(0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3, 6), (3,−6),∞}.

By [23, Theorem 5.3(2)], we know |X(Q)| ≤ 10. However, we can find 10 rational
points on X : the six rational Weierstrass points, and the points (3,±6), (10,±120).
Hence |X(Q)| = 10.

Since the Chabauty condition holds, there must exist a holomorphic differ-
ential ω for which

∫ Q

∞ ω = 0 for all Q ∈ X(Q). We can find such a differential
by taking Q to be one of the rational non-Weierstrass points, then computing
a :=

∫ Q

∞ ω0, b :=
∫ Q

∞ ω1 and setting ω = bω0 − aω1. For Q = (3, 6), we obtain

a = 6 · 7 + 6 · 72 + 3 · 73 + 3 · 74 + 2 · 75 + O(76)

b = 4 · 7 + 2 · 72 + 6 · 73 + 4 · 75 + O(76).

We then verify that
∫ R

Q ω vanishes for each of the other rational points R.

Remark 23. It is worth pointing out some facts not exposed by Example 22. For
instance, since ω is already determined by a single rational non-Weierstrass point,
we could have used it instead of a brute-force search to find other rational points.
More seriously, in other examples, the integral ω may vanish at a point defined
over a number field which has a rational multiple in the Jacobian. Such points
may be difficult to find by brute-force search; it may be easier to reconstruct
them from p-adic approximations, obtained by writing

∫ ∗
∞ ω as a function of a

linear parameter of a residue disc, then finding the zeroes of that function.

5 Future Directions

Here are some potential extensions of our computation of Coleman integrals.
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5.1 Iterated Integrals

Coleman’s theory of integration is not limited to single integrals; it gives rise
to an entire class of locally analytic functions, the Coleman functions, on which
antidifferentiation is well-defined. In other words, one can define integrals∫ Q

P

ωn · · ·ω1

which behave formally like iterated path integrals∫ 1

0

∫ t1

0
· · ·
∫ tn−1

0
fn(tn) · · · f1(t1) dtn · · · dt1.

These appear in several applications of Coleman integration, e.g., p-adic regula-
tors in K-theory, and the nonabelian Chabauty method.

As in the case of a single integral, one can use Frobenius equivariance to
compute iterated Coleman integrals on hyperelliptic curves. One obtains a linear
system expressing all n-fold integrals of basis differentials in terms of lower order
integrals. Note that the number of such n-fold integrals is (2g)n, so this is only
feasible for small n. The cases n ≤ 4 are already useful for applications, but
ideas for reducing the combinatorial explosion for larger n would also be of
interest. (One must be slightly careful in dealing with Weierstrass residue discs;
see Remark 17.)

We have made some limited experiments with double Coleman integrals in
Sage. The Fubini identity∫ Q

P

ω2ω1 +
∫ Q

P

ω1ω2 =

(∫ Q

P

ω1

)(∫ Q

P

ω2

)

turns out to be a useful consistency check for both single and double integrals.

5.2 Beyond Hyperelliptic Curves

It should be possible to convert other algorithms for computing Frobenius ac-
tions on de Rham cohomology, for various classes of curves, into algorithms for
computing Coleman integrals on such curves. Candidate algorithms include the
adaptation of Kedlaya’s algorithm to superelliptic curves by Gaudry and Gürel
[14], or the general algorithm for nondegenerate curves due to Castryck, Denef,
and Vercauteren [7]. It should also be possible to compute Coleman integrals us-
ing Frobenius structures on Picard-Fuchs (Gauss-Manin) connections, extending
Lauder’s deformation method for computing Frobenius matrices [20].

5.3 Heights After Harvey

We noted earlier that our algorithms for Coleman integration over Qp have linear
runtime dependence on the prime p, arising from the corresponding dependence
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in Kedlaya’s algorithm. In [15], Harvey gives a variant of Kedlaya’s algorithm
with only square-root dependence on p (but somewhat worse dependence on
other parameters), by reorganizing the computation so that the dominant step
is finding the p-th term of a linear matrix recurrence whose coefficients are
polynomials in the sequence index. Harvey demonstrates the practicality of his
algorithm for primes greater than 250, which may have some relevance in cryp-
tography for finding curves of low genus with nearly prime Jacobian orders.

It should be possible to use similar ideas to obtain square-root dependence
on p for Coleman integration, by constructing a recurrence that computes not
just the entries of the Frobenius matrix but also the values fi(P ) and fi(Q).
However, this is presently a purely theoretical question, as we do not know of
any applications of Coleman integration for very large p.
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Abstract. We present a variant of the Lagrange-Gauss reduction of
quadratic forms designed to minimize the norm of the reduction matrix
within a quadratic complexity. The matrix computed by our algorithm
on the input f has norm O

�
�f�1�2�Δ1�4

f

�
, which is the square root of

the best previously known bounds using classical algorithms. This new
bound allows us to fully prove the heuristic lattice based attack against
NICE Cryptosystems, which consists in factoring a particular subclass
of integers of the form pq2. In the process, we set up a homogeneous
variant of Boneh-Durfee-HowgraveGraham’s algorithm which finds small
rational roots of a polynomial modulo unknown divisors. Such algorithm
can also be used to speed-up factorization of pqr for large r.

1 Introduction

Binary quadratic forms appeared progressively in the 17-th century, when
Descartes and Fermat first introduced the concept of coordinates as a tool to
algebraically solve geometric problems. Those forms have wide applications in
mathematics and physics, especially in geometry, numerical analysis or algebraic
topology. A binary quadratic form is a homogeneous polynomial of degree two
in two variables, which can be viewed as the Cartesian equation of a surface
f�x, y� � ax2 � bxy� cy2 on a given basis of R2. Of course, this equation varies
with the basis of expression, and it is natural to define an equivalence relation to
regroup all these possible equations into classes. Over the real field, there are six
classes corresponding to the Sylvester’s signatures. They can be distinguished
by the sign of the discriminant Δf � b2 � 4ac, and the sign of a � c. Forms of
strictly negative discriminant (imaginary forms) have a unique zero at the origin,
which is also their unique local and global extremum. Forms of strictly positive
discriminant (real forms) represent a saddle-shape.

Meanwhile, quadratic forms were also used over the integer ring by Fermat,
Lagrange and Gauss to solve long standing problems from number theory. This
time, binary quadratic forms are equations with integer coefficients of discrete
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scatter-plots on a given lattice basis of Z2. One defines a similar equivalence re-
lation by base change, except that transformation matrices are now unimodular,
and that they preserve the value of the discriminant. Problems related to this
equivalence are more complicated than on the real field: for instance, in both
real and imaginary cases, we do not know any polynomial way to compute the
number of equivalence classes of a given discriminant. Deciding the equivalence
of two forms is easy in the imaginary case, where each class contains a unique
reduced representative computable in polynomial time. However, the problem is
hard in the real case, where there are, depending on the notion of reduction, ei-
ther an exponential number of polynomially computable reduced representatives,
or a few representatives computable in exponential time.

A reduction algorithm takes as input a quadratic form and outputs a reduced
form and the reduction matrix, which is a unimodular base-change matrix used
to obtain this form. The most famous polynomial time reduction algorithms are
Lagrange algorithm [15] (1773) commonly known as ”Gauss reduction” algo-
rithm [11] (1801). In [14] (1980), Lagarias modified the Gauss reduction algo-
rithm for make it more efficient. This algorithm is the one used in practice, and
which we refer as the Gauss reduction algorithm, or Classical Gauss, if we need
to differentiate it from new flavors which we propose.

The cryptanalysis of [6] shows experimental evidences that the small size
of reduction matrices have important applications to the factorization of some
large numbers used in public key cryptosystems, especially those of the NICE
cryptosystems (see [12,13]). However the best currently known upper-bounds
on the size of reduction matrices [14,1] are by an order too large, and keep all
these results on the factorization heuristic. In this paper, we specially design
an efficient variant of the Gauss reduction algorithm to minimize the size of
transformation matrix, and we prove constructive upper-bounds which are tight
both in the worst case and in the average case. These bounds, combined with an
improvement of the methods of [6], allows us to prove all the above mentioned
heuristics of on the factorization of integers from the NICE cryptosystems.

2 Preliminaries and Notation

In this section we recall some definitions and properties concerning binary
quadratic forms. For a more detailed account of the theory see [5,4,9]. Then,
we summarize some results on the norm of a matrix.

Quadratic Forms. A binary quadratic form f is a homogeneous polynomial of
degree two in two variables f�x, y� � ax2�bxy�cy2 with �a, b, c� � Z3 which we
abbreviate as f � �a, b, c�. Throughout this paper the word form will be used in
the sense of binary quadratic form. It is said primitive when gcd�a, b, c� � 1. The
discriminant of f is Δf � b2 � 4ac. A discriminant Δf is called fundamental
if all the forms of discriminant Δf are necessarily primitive: for example, it
is the case of all odd and square-free integers. The set of all primitive forms
of discriminant Δf is denoted FΔf

. We impose that the discriminant is not a
perfect square then a and c are always non-zero. The form f can be factored as
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f�x, y� � a�x � yζ�f ��x � yζ�f � where ζ�f and ζ�f are the complex roots of the
univariate polynomial f�x, 1� which we call the affine representation of f . When
Δf � 0, each root of f live in R�Q and the form is real. In this case, ζ�f will denote
the smallest root and ζ�f the largest one. When Δf 	 0, the roots are in C�R
and the form is imaginary. We note λ�f� � min 
�f�x, y�� : �x, y� � Z2��0, 0�� the
first minimum of f .

Composition Action. We note Mt the transpose of a matrix M. The

polar representation of f is the symmetric matrix
�

a b
2
b
2 c

�
of determinant

�Δf
4. Let M �
�

α β
γ δ

�
� M2�Z� be a 2 � 2 matrix with integer en-

tries which we often abbreviate as �α, β; γ, δ�. We note Id the identity ma-
trix of M2�Z�. The composition action of M on f is defined as the form
g�x, y� � f�αx � βy, γx � δy� and it is noted g � f.M. The coefficients of
g are g � �f�α, γ�, b�αδ � γβ� � 2�aαβ � cγδ�, f�β, δ��. We remark that for each
root ζg of g,

�
αζg�β
γζg�δ

�
is a root of f . Finally, the polar representation of g is

MtfM which implies that Δg � det�M�2Δf .

Group action. Let GL2�Z� be the general linear group of matrices in M2�Z�
which are invertible and its subgroup SL2�Z� the special linear group of matrices
which have a determinant equal to one. The action defined with either GL2�Z� or
SL2�Z� on the set of primitive forms FΔf

of a given discriminant is a (right) group
action. Two forms f and g are equivalent if they belong to the same SL2�Z�-orbit.
In this case we note f � g. We define Aut��f� the group of automorphisms of
the form f � FΔf

as 
M � SL2�Z�, trace�M� � 0 and f.M � f�. The set of all
automorphisms of f is �Aut��f�. The group Aut��f� is known to be cyclic, and
we call its generator the fundamental automorphism of f . The largest eigenvalue
of the fundamental automorphism of f is the fundamental unit. It only depends
on the discriminant Δf , and will be denoted εΔf

.

Three specials transformations. We define the symmetry S �
�

1 0
0 �1

�
, the

exchange E �
�

0 1
1 0

�
and the translation by an integer T �h� �

�
1 h
0 1

�
. They are

three (linear) transformations of GL2�Z�. All matrices in GL2�Z� can be written
as a product of powers of these three transformations and SL2�Z� is generated
by the product ES and T �1�. The action of these transformations on f are
f.S � �a,�b, c�, f.E � �c, b, a� f.T �h� � �a, b� 2ah, f�h��. Note the important
fact: the roots of f.S are the opposite of the roots of f and the roots of f.E are
the inverse of the roots of f , and that T �h� subtracts h to each roots of f .

Norms of matrices and forms. LetM � �α, β; γ, δ� be a matrix in M2�Z�.
The Euclidean norm is �M�2 �

�
α2 � β2 � γ2 � δ2, and the maximum norm

is �M� � max ��α�, �β�, �γ�, �δ��. The norm �M� � sup�v�2�1��M.v�2� is the in-
duced Euclidean norm, which is also the square root of the largest eigenvalue
of MtM. All the norms are equivalent: �M� � �M� � �M�2 � 2�M�.
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Additionally, the induced norm is sub-multiplicative: if N � M2�Z� then
�MN� � �M� � �N� and �Id� � 1, and it is lower-bounded by the spectral
radius ρ�M�, which is the supremum among the absolute values of the eigenval-
ues ofM. By extension, we define the norms �f�,�f�2 and �f� of a form as the
corresponding norm of its polar representation.

3 A New Reduction Algorithm for Real Quadratic Forms

A form f � �a, b, c� is reduced if it satisfies two conditions simultaneously: a nor-
malization condition, which defines the choice of the representative of b mod 2a,
and a reduction condition, which often upper-bounds the size of �a� (or �c�). In
the imaginary case, these conditions are very natural: a form is normal if and
only if b �� � �a�, �a�� is minimal, and is reduced if additionally, �a� is the mini-
mum λ�f�. A single translation is needed to normalize any form. However, the
reduction condition takes more steps to be achieved. The classical Gauss re-
duction reduces a form by successive swaps SE and normalizations T ���b
2a��
(see [1]) until f is reduced. The Gauss reduction algorithm operates in quadratic
time (see [1,21,18]). For each form f of discriminant Δf 	 �4, there exists a
unique reduced form g in each equivalence class, and a unique reduction matrix
M � SL2�Z� such that f.M � g. In this case Aut��f� � 
Id�.

In the real case (Δf � 0), the previous reduction conditions applied on f �
�a, b, c� are too restrictive, since the smallest integers �α, β� � �0, 0� such that
�f�α, β�� � λ�f� are in general exponential in the size of f . No polynomial
time algorithm can output an exponential reduction matrix. Thus, according to
classical notions, f is classically normalized if and only if b �� � �a�, �a�� when
�a� � Δf and b � ��

Δf � 2�a�,�Δf

�
when �a� 	 Δf , and f is classically

reduced if additionally,
���Δf � 2�a��� 	 b 	�

Δf . It is known that only a finite
subset of forms of discriminant Δf are classically-reduced, and that they form a
reduced cycle in each class. The Real-Gauss reduction algorithm, which uses the
classical normalization, finds a reduced form equivalent to its input in quadratic
time (see [1]).

In this paper, given a normalized form f , we will bound the coefficients of the
smallest reduction matrix M � �α, β; γ, δ� such that g � f.M � �ag, bg, cg� is
reduced. The case of imaginary forms is eased by the uniqueness of the reduction
matrix. Lemma 5.6.1 in [1] give us that �M� � 2 � max ��a�,�c���

�Δf �
. We improve this

upper-bound with the following theorem:

Theorem 1 (Imaginary Bound). Let f � �a, b, c� be a normalized imaginary
form of discriminant Δf 	 0, and M � �α, β; γ, δ� the reduction matrix such
that g � f.M � �ag, bg, cg�, M satisfies these two upper-bounds:

1) �M� � 2�
3
�
	

�c�
�ag�

2) �αβγδ�1	4 � �γδ�1	2 � 2
31�4 �

�
�ac�
�Δf �

�1	4
.
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Proof. One has �ag� � �f�α, γ�� � �a�γ2
�
�α
γ � b

2a �2 �
�Δf �
4a2

�
, which can be lower-

bounded by �Δf �
4�a� γ

2. It follows that γ2 � 4�aag�
�Δf � , and similarly δ2 � 4�ccg�

�Δf � . There-

fore �γδ� � 4
�

�ac��
3�Δf �

. The first inequality comes from 3�agcg� � �Δf �, because

g is reduced. Unless the transformation is trivial (Id or SE), the normaliza-
tion condition induces the inequalities �α� � �γ� and �β� � �δ�, which proves
�αβγδ�1	4 � �γδ�1	2. ��

Thus, the norm of the reduction matrix is in fact basically in O

�	
�f�
��Δf �

�
.

In the real case however, this proof would not apply directly, because the
term

�
�α
γ � b

2a �2 � �Δf �
4a2

�
can be exponentially close to 0. The problem is that

in the real case, each reduced cycle contains a large (often exponential) number
of equivalent reduced forms, and some of them are exponentially far from f . A
constructive approach is needed to build a polynomial reduction matrix. The
analysis of the Gauss reduction algorithm in [1,14] basically proves that the
norm of the computed reduction matrix is bounded by O��f��. In this paper,
we study a variant of this algorithm which finds a reduction matrix of norm
O
�	
�f�
�Δf

�
and we verify that it is tight even in the average case.

We define new relaxed notions of reduction and normalization, and express
them according to the roots of the forms, which is more intuitive than the clas-
sical conditions on the coefficients:

Definition 1. A real binary quadratic form f is:

– primary normalized if 0 	 ζ�f 	 1 and primary reduced if also ζ�f 	 �1
– secondary normalized if �1 	 ζ�f 	 0 and secondary reduced if also 1 	 ζ�f .

Finally f is largely reduced if it is either primary or secondary reduced.

Both primary and secondary notions are exchanged by the action of S, which
negates the roots. Furthermore, primary and secondary reductions are exchanged
by E, which inverts the roots. As usual, primary and secondary normalization
can always be achieved by the action of some T �h�. Note that a classically
normalized form, which has by definition at least one root in the interval ��1, 1�,
is either primary or secondary normalized. Similarly, a classically reduced form
�a, b, c� is a largely-reduced form satisfying b � 0, which can again be ensured by
the action of S. Our main contribution is to solve the following problems, which
are equivalent.

Lemma 1. The two problems are equivalent:

1. Smallest SL2�Z� matrix Given a classically-normalized real form f , find
M � SL2�Z� such that f.M is classically-reduced and �M� is minimal.

2. Smallest GL2�Z� matrix Given a primary-normalized real form f , find
M � GL2�Z� such that f.M is largely-reduced and �M� is minimal.
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Proof. From a solutionM � GL2�Z� of Problem 2, one deduces a solution of Prob-
lem 1 by left-multiplication by Id or S to make the normalization of the input cor-
respond, followed by a right-multiplication by Id or S to force the coefficient b of
the reduced form to be positive, followed by a right multiplication by Id or E so
that the determinant is �1. The reduction of Problem 2 to Problem 1 is similar.
Since Id, S and E are permutation matrices, they do not modify these norms ���
or � � �. Remark that, reducing a problem to the other also preserves the absolute
value of the product of the coefficients in each row of the reduction matrices. ��
Lemma 1 motivates the search of a reduction algorithm solving the less restrictive
Problem 2, since we can use the above permutation matrices to return to classical
notions in SL2�Z�.

3.1 Algorithm and Analysis

Let f be a real form. We define the two integers h�f and h�f as h�f �


ζ�f
�

and

h�f �
�
ζ�f


. It is easy to show that h�f and h�f are respectively the unique integers

such that f.T �h�f � is primary-normalized, and f.T �h�f � is secondary-normalized.
Among the two integers h�f , h�f the one of smallest absolute value is noted h�f�:
that is h�f� � h�f if �h�f � 	 �h�f �, and h�f� � h�f otherwise. In other words, h�f�
is the shortest normalization of f . As a comparison, there is only a single integer
νf in the classical case such that f.T �νf � is classically-normalized, νf being one of
the integers h�f , h�f but not necessarily the one with the smallest absolute value.
Our reduction algorithm, is a variant of the Gauss reduction which operates in
GL2�Z�. It alternates exchange E and the shortest normalization T �h�f�� at each
loop, and terminates on a largely-reduced form. As we will see later, any kind
of normalization by h�f or h�f would make a reduction algorithm terminate1,
but the choice of the shortest normalization h�f� instead of the classical νf

(especially during the last steps) is the key element to minimize the reduction
matrix. The main result of the section is the following theorem on the quality of
the output of our algorithm, which is the real-case analogue of Theorem 1.

Algorithm 1. RedGL2
Input: f � �a, b, c� a primary-normalized form
Output: f.M a largely-reduced form and M � GL2�Z�
1: M � Id
2: while f not largely-reduced do
3: f � f.E and M � ME � Exchange step
4: f � f.T �h�f�� and M � MT �h�f�� � Normalization step
5: end while
6: return f and M

1 The original Gauss algorithm of 1801 used actually the largest normalization at
each step. The number of reduction steps is exponential on some entries. Lagarias
introduced the classical normalization to obtain a quadratic complexity
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Theorem 2 (Real bound). Let f � �a, b, c� be a primary-normalized form
of discriminant Δ � 0. Given f as input, RedGL2 terminates after at most�

log 
�a�	�Δ�
2�log
ω� � 4

�
iterations where ω � 1��

5
2 is the gold number. Its outputM �

�α, β; γ, δ� and fr � f.M � �ar, br, cr� satisfies:

1) ‖ M ‖� 4 ���a�
�ar�

2) ��αβγδ��1	4 � �γδ�1	2 � �21 �
	
�a�
�Δ.

Before proving this theorem, we remark that the best known upper-bounds
achieved by the classical Gauss algorithm under the same conditions (see theo-
rem 4.4 of [1]) are �M� � �a��1�1
Δ� and �γδ�1	2 � ��a�
�Δ

� �1�1
�Δ�. They are
basically the square of the upper-bounds of RedGL2. Figure 1 and 2 illustrate
respectively the families of forms Fn � ��n, b, 1� and Gn � �n, n, 1� with n � N
and b � �2n
3 � 2
3�, which are families of forms where the Gauss reduction al-
gorithm outputs reduction matrices

�
Δ times larger than our variant RedGL2.

Finally, note that a multiplicative triangular inequality on the norms of the polar
representations of f � fr.M�1 yields

�
�f�
�fr� �

�
2�M�, which confirms

the optimality of Theorem 2 in average. The analysis of Gauss reduction algo-
rithm in [1] upper-bounds the number of iterations by

�
log 
�a�	�Δ�
2�log 
2� � 2

�
reduction

steps. Our upper-bound on the number of iterations of RedGL2 is tight in the
worst case, and is only by a multiplicative factor around 1.4 larger than the
maximum number of iterations of the Gauss reduction algorithm. However the
primary goal of RedGL2 is the minimization of the reduction matrix.

3.2 Proof of Theorem 2

To prove Theorem 2, we first study the termination cases, characterized by the
presence of integers between the roots of f.E, and where the choice of the shortest
normalization is of greatest importance. Eventually, we shall treat the general
case and the complexity.

Termination cases. We first study the two cases where the algorithm ter-
minates in a single step of reduction. The first one deals with normal form f
containing exactly one integer between its roots. This is the only case where
h�f � h�f , so all notions of normalizations (classical, primary, secondary, short-
est) coincide.

Lemma 2. Let f � �a, b, c� be a real form satisfying �1 	 ζ�f 	 0 	 ζ�f 	 1,
and h � h�f.E�. The form fr � f.ET �h� � �ar, br, cr� is largely-reduced, and
its coefficients satisfy ar � c, �cr� � �a�, and h2�ar� � �a�.
Proof. The reduction matrix from f to fr is ET �h� � �0, 1; 1, h�. Consider the
parabola p�x� � cx2 � bx � a which is the affine representation of g � f.E.
Then we have h � h�g�, and ζ�g 	 h�g � �1 	 1 � h�g 	 ζ�g , cr � p�h�g��
and p�0� � a. By definition of h we have two cases: if �b
2c � 0 then we have
h � h�g 	 0 	 �b
2c, else we have �b
2c 	 0 	 h � h�g . In both cases we
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ζ�g

h

h

ζ�g

cr

a

0

p�x�=cx2+bx+a

Gauss RedGL2

�b
2c

νg
h

=h�g�

Fig. 1. Illustration of Lemma 2
This figure illustrates the convexity in-
equalities of Lemma 2. In this case, the
shortest normalization chosen by RedGL2
is h�g� � �ζ�g �, which can be O�

	
Δ�

smaller than the classical normalization
ν�g� � �ζ�g � in Gauss Algorithm. It is clear
that 
cr
 is in the interval �0, 
a
�. Compar-
ison of heights of the two rectangles on the
same convex and decreasing branch of the
parabola, gives 
ch2
 
 
a
.

ζ�g

h=h�g� νg

p�x�=cx2+bx+a

a

cr

ζ�g

h-1

h-1

Fig. 2. Illustration of Lemma 3
This figure is the analogue for Lemma 3. In
this case, the shortest normalization cho-
sen by RedGL2 is h�g� � �ζ�g �, which can

be O�	Δ� smaller than the classical nor-
malization in Gauss algorithm is ν�g� �
�ζ�g �. Inequality on the slopes of p before
and after ζ�g gives 
cr
 
 
a
. Compari-
son of heights of the two rectangles on the
same convex and decreasing branch of the
parabola, gives 
c�h� 1�2
 
 
a
.

graphically verify that �cr� � �p�h�� 	 �p�0�� � �a� (see Figure 1). A convexity
inequality on p between �0, h� and ��b
2c,�b
2c�h� shows �a� cr� � �c�h2. Since
a and cr have the same sign and �a� is larger, then �a� � �ar�h2. ��
Theorem 2 holds in this termination case: the reduction matrix is M �
�0, 1; 1, h�. By Lemma 2, its norm satisfies �M� � h � ��a�
�ar�. Since
f � fr.M�1, its first coefficient is a � arh

2�brh�cr, thus brh � �a�cr�arh
2

and �brh�2 � 4arcrh
2 � Δ � h2 � a2 � c2

r � a2
rh

4 � 2acr � 2aarh
2 � 2arcrh

2 �
��a� � �cr� � �ar�h2�2 � 9�a�2, which proves the second point of Theorem 2.

The second case of single-step termination concerns normalized form f such that
at least two integers lie between the roots of f.E (namely h�f.E 	 h�f.E). We just
write a proof for primary-normalized forms, but it can be easily extended to
secondary-normalized forms.

Lemma 3. Let f � �a, b, c� be a real form satisfying 0 	 ζ�f 	 ζ�f 	 1, and such
that h�f.E 	 h�f.E. If h � h�f.E�, then fr � f.ET �h� � �ar, br, cr� is secondary-
reduced, and its coefficients satisfy ar � c, �cr� � �a�, and h2�ar� � 4�a�.
Proof. The proof of this lemma is also based on convexity inequalities. Let
g � f.E, of affine representation p�x� � cx2 � bx � a. Note that h � �

ζ�g
� � 2.

Again, one has p�0� � a, p�h� � cr. It follows from the definition that fr is
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secondary-reduced. The reduction matrix isM � �0, 1; 1, h�, which proves ar �
c. Application of a convexity inequality (see Figure 2) on p in the two intervals
�0; h� 1� and

�� b
2c � �h� 1�;� b

2c

�
of same length yields �ar��h � 1�2 � �a �

p�h�1�� � �a�, therefore �ar�h2 � 4�ar��h�1�2 � 4�a�. Finally, another convexity

inequality centered on ζ�g gives
p
0��p
ζ�g �

0�ζ�g
� p
h��p
ζ�g �

h�ζ�g
, so �a� � p�0� � ζ�g

h�ζ�g
�

��p�h�� � �cr�. ��
Once again, Theorem 2 holds in this termination case, but this time, �M� �
h � 2

��a�
�ar� and Δ � h2 � ��a� � �cr� � �ar�h2�2 � �6�a��2.

General case. We now prove the general case of Theorem 2. We call fi �
�ai, bi, ci� the successive values of f at the beginning of the while loop of Algo-
rithm 1, and hi � h�fi.E�. We suppose that the primary-normalized form f0
does not have any integer between its roots (otherwise it would either already
be reduced or as in Lemma 2). Thus 0 	 ζ�f0

	 ζ�f0
	 1. For each iteration i in

the loop, if there is at least one integer between the roots of fi.E, then we set
m � i � 1 and the algorithm reaches one of the two termination cases above.
Otherwise the shortest normalization hi is the primary one hi � h�fi.E

	 h�fi.E
.

Thus fi is also primary-normalized and 0 	 ζ�fi
	 ζ�fi

	 1. Note that the

distance between the roots strictly increases
���ζ�fi
� ζ�fi

��� � ���ζ�fi�1�E � ζ�fi�1�E
��� ����ζ�fi�1

� ζ�fi�1

����1
�
���ζ�fi�1

� ζ�fi�1

��� � ���ζ�fi�1
� ζ�fi�1

���. Such process can not hold for-

ever, otherwise the integer sequence of the first coefficients �ai� �
�

Δ

���ζ�fi
� ζ�fi

���
would be strictly decreasing. This proves the termination of the algorithm. The
integer m is the smallest index, such that fm�1.E contains at least one integer
between its roots. The shortest normalization hm�1 � h�fm�1.E � h�fm�1�E is in
this case secondary, and satisfies hm�1 � 2.

We eventually use the following lemma to conclude the proof of Theorem 2.

Lemma 4. Let f � �a, b, c� and g � �ag, bg, cg� be two real forms and M �
�α, β; γ, δ� � GL2�Z� such that f.M � g. If all the roots of g are positive and
γ � 0 and δ � 1 then �ag�δ2 � �a�.
Proof. If γ � 0, then M is triangular, so �α� � �δ� � 1 and �ag� � �a�. We now
suppose γ � 0. Let ζg be a root of g, then ζf � αζg�β

γζg�δ is a root of f . We have
�α
γ � ζf � � 1
��γ2ζg � γδ

�� 	 1
γδ thanks to the positivity conditions. Since this

bound holds for both roots of f , �ag� � γ2�a�
���α
γ � ζ�f

��� ���α
γ � ζ�f
��� 	 �a�
δ2. ��

We continue the proof of Theorem 2 by applying this lemma to the main loop
of RedGL2. Note that for each i � �1; m�, the reduction matrix from f0 to fi is

Mi �
�

0 1
1 h0

��
0 1
1 h1

�
...

�
0 1
1 hi�1

�
�
�

αi βi

γi δi

�
. (1)
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Their coefficients are all positive, and satisfy these recurrence equalities for i � 2:

γi�1 � δi � hi�1δi�1 � δi�2 and �δ0, δ1� � �1, h1�
αi�1 � βi � hi�1βi�1 � βi�2 and �β0, β1� � �0, 1�

Since all the �hj�j�0..i are greater than 1, it follows that αi � min�βi, γi� �
max�βi, γi� � δi and �Mi� � δi � ωi�2 by induction and comparison to
the Fibonacci sequence 2. Applying Lemma 4 on f0 and fm�1 implies that
�Mm�1�2 � �a0�
�am�1�. At iteration m, Lemma 4 can be applied to fm.T ��1�,
which has positive roots and shares its first coefficient am with fm. The trans-
formation matrix MmT ��1� � Mm�1 �0, 1; 1, hm�1 � 1� still satisfies the con-
ditions of Lemma 4 because hm�1 � 2. We obtain �MmT ��1��2 � �a0�
�am�,
and finally �Mm�2 � 4�a0�
�am� after a backwards translation by T �1�.

We already know that fm is secondary-normalized and that the largest root
of fm is positive. There are two cases:

1. If the largest root of fm is strictly greater than 1, then r � m, fr is secondary-
reduced, and the reduction matrix is Mm � �αm, βm; γm, δm�. One already
has �Mm�2 � 4�a0�
�ar�. From f0 � fr.M�1, we draw a0 � arδ

2
m�brδmγm�

crγ
2
m, so Δδ2

mγ2
m � �brδmγm�2�4arcrδ

2
mγ2

m � ��a0���arδ
2
m���crγ

2
m��2. Since

by construction γ2
m � δ2

m�1 � �Mm�1�2 and by Lemma 3 applied on fm�1
and fr, �cr� � �am�1�, one finds Δδ2

mγ2
m � �6 � �a0��2.

2. If the second root of fm is strictly lower than 1, then by Lemma 2, fm�1 is

reduced. The matrix of reduction is M �
�

αr βr

γr δr

�
� Mm �

�
0 1
1 hm

�
, and

r � m�1. Thus �M�2 � �Mm�2�1��hm��2 � 4�a0�
�am� �4h2
m � 16�a0�
�ar�.

One still has Δδ2
rγ2

r � ��a0���arδ
2
r ���crγ

2
r ��2 � �21�a0��2, because �cr� � �am�

by Lemma 2.

This concludes the proof of items 1� and 2� of Theorem 2. It remains the com-
plexity issue, proved in the following paragraph.

Complexity. We now prove the number of iterations performed by RedGL2.
Two steps before the end, at iteration r � 2 of RedGL2, we know that the
form fr�2 � �ar�2, br�2, cr�2� satisfies

�
Δ 	 �ar�2�, because the distance

between the roots of fm�1 is smaller than 1. By Lemma 4 we have ωr�4 �
�Mr�2� �

��a0
ar � 2� �
	
�a0

�

Δ�. It follows that r� 4 is upper-bounded by�
log ��a�
�Δ�
2 log �ω�

�
steps where ω � 1��

5
2 .

The worst case complexity of algorithm RedGL2 is reached when all the nor-
malizations occurring in the algorithm until the index r � 2 are by h � 1. For
instance, we experimentally verify that it is the case on this family of inputs
g.�T ��1�E�n where g is reduced and n grows.

2 The ith number of the sequence of Fibonacci numbers is bigger than ωi�2.
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4 Proof of Heuristic Cryptanalysis of the NICE
Cryptosystems

We propose an application of the results of the previous section to the cryptanal-
yses of the NICE cryptosystems. There are two variants, which are by chrono-
logical order NICE Imaginary [12] (with imaginary forms), and NICE Real [13]
(with real forms). Their security relies on the intractability of factorization of
the public discriminant N . They were designed for a similar level of security
as RSA, but with faster decryption, since the decryption process has quadratic
complexity. Both are now considered as broken. The first one succumbed by a
proved arithmetic attack in [7]. However, the more general attack against both
versions of NICE (in [6]) using lattice reduction remains only experimental and
relies on two heuristic assumptions. In this paper, we provide an alternative point
of view on the lattice attack, which allows to avoid the use of these heuristics
and to prove the attack entirely.

Both variants of NICE (Real and Imaginary) have originally been described
in terms of ideals of quadratic orders, and are based on a morphism between
classes of primitive forms of fundamental discriminant p and classes of primitive
forms of non-fundamental discriminant N � q2p. These notions are actually not
needed here to understand the lattice attack, therefore we will here give a simple
description solely in term of quadratic forms.

4.1 Lifting Quadratic Orders

We summarize some important properties on the relation between the sets Fp and
FN of primitives forms of discriminants respectively p and N � q2p, using the
terminology we introduced in the last section. For the cryptographic interest we
restrict ourselves to the case where q is an odd prime. The following background
theory can be found in [5,4,9].

Integer matrices of determinant q. We define an equivalence relation mod-
ulo SL2�Z� between two integer matrices A and B � M2�Z� by A � B ��
�M � SL2�Z�, AM � B. The 2 � 2 integer matrices of determinant q cor-
respond to matrices of rank 1 mod q, they fall into q � 1 equivalence class,
which are characterized by the (projective) direction from 
0, 1, ..., q � 1, �
of their image mod q. Each class contains a unique Hermite normal form:

Qk �
�

q k
0 1

�
, k � 
0, . . . , q � 1� or Q
 �

�
1 0
0 q

�
.

Lift. As we can see in [5, section 7], for each form f of discriminant N � pq2

and eachM �M2�Z� of determinant q, there exists a (non-unique) form g � Fp

such that f � g.M. When M � Q
, we define a particular function ϕ (also
called lift) which computes such g � Fp from f � �a, b, c� � FN such that
gcd�a, q� � 1 as follows: ϕ�f� � �a, b�2ah

q , ah2�bh�c
q2 � where h � �1� q, . . . , 0� and

h � �b
2a mod q. Note that all the divisions are exact since f is primitive of
discriminant N � 0 mod q2 and q is an odd prime. It must be noted that the
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lift preserves the first coefficient a of the form. It is also clear that ϕ preserves
primary normalization, because its action on the roots of f is a translation by
�h � �0, q � 1� followed by a division by q, which stabilizes the interval �0, 1� of
the largest root. Finally, equivalence of forms is stable by lift !f, f � � FN , f �
f � "� ϕ�f� � ϕ�f ��.

The converse is in general false. Given a form g � Fp and U its fundamen-
tal automorphism, there are exactly q � �p
q� primitive forms (in FN ) among

g.Q0, . . . , g.Qq�1, g.Q
� where �p
q� denotes the Legendre symbol. These forms
split into �q � �p
q��
sq sets of sq equivalent forms (see [5] theorem 7.4), where
sq is the order of U modulo q. The fundamental unit εN is equal to the power
�εp�sq . These �q � �p
q��
sq different classes of equivalence are the only ones to
be lifted to the class of g.

Reduced cycle. Let g � FΔ be a classically-reduced form of discriminant
Δ � 0, the right neighbour of g is the classical normalization of g.SE. If we note
H�g� the largest normalization of g (by the integer among h�g , h�g of largest
absolute value), then the right neighbour of g is g.SET �H�g.SE���. Successive
iterations of the right neighbour enumerates all the reduced forms equivalent to
g, and define the reduced cycle of the class of g. The cardinality of such reduced
cycle is in O�log�εΔ�� where εΔ is the fundamental unit.

Principal cycle, and q-belt. The principal class of a discriminant Δ � 0 is
the class containing �1, 1, #�. The principal form is the classical-normalization of
this form, and the principal cycle �Δ is the reduced cycle of the principal class.
Note that the principal class is the only class containing a form of first (or last)
coefficient equals to 1.

We define the q-belt of a discriminant N � pq2 as the set of all primary
normalized forms �q2, kq, #� of the principal class. Necessarily, k � ���p, 2q��p�.
There are exactly sq � 1 forms in the q-belt of N : let g0 be the principal form
�1, #, #� of FN and f � ϕ�g0� is (necessarily) the principal form of Fp. Let U
be the fundamental automorphism of f , we set by induction k0 �  and ki the
unique integer such that UQki�1 � Qki for i � 1. Note that Qki � U iQk0 , and
that the order of U mod q is precisely sq, therefore the sequence �ki� is periodic
and ksq � k0 �  . Finally, the q-belt of N is the set 
g1 � f.Qk1 , . . . , gk �
f.Qksq�1�. They are indeed primary-normalized and equivalent by construction.
A transformation matrix from gi to gi�1 is by construction Q�1

ki
UQki�1 � SL2�Z�,

because UQki�1 � Qki .

4.2 Cryptosystem Real NICE

We now describe the NICE Real encryption and decryption. The public key is
a composite integer N � pq2 and the secret key �p, q� with p and q two distinct
primes of the same size, satisfies two conditions:

– p is a Schinzel prime [19] which is a positive squarefree integer of the form
p � A2x2 � 2Bx � C with A, B, C, x � Z, A � 0 and B2 � 4AC dividing
4 gcd�A2, B�2. Such special primes implies a very low number of reduced
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forms in each class, namely there are O�log�p�� reduced forms in Fp in each
equivalence class ([8] and [22, theorem 5.8, p. 52]). It is therefore practical
to enumerate every reduced form equivalent to a given one. With a generic
discriminant, the number of reduced forms per cycle would be exponential,
around O��p) (see [3]). To avoid any confusion, please note that even for a
Schinzel prime, the number of classes in Fp remains exponential.

– q is such that sq is linear in q. This imply that the number of reduced forms
of discriminant N � q2p in each equivalence class is at least linear in q and
upper-bounded by O�q log�p��, which is exponential.

The encryption of a message m works as follows: m is embedded into a (usually
prime) integer a � �p
2 which satisfies some low-probability pattern, and such
that q2p is a square modulo a. This integer is expanded into a quadratic form
fs � �a, b�, c�� of discriminant q2p (which is not printed). The ciphertext is a
random reduced form fc equivalent to fs (there are exponentially many). It
can be generated from fs by successive multiplications by random unimodular
matrices and reductions.

The decryption algorithm lifts the ciphertext in Fp and enumerate all the
reduced forms equivalent to ϕ�fc�, looking for the pattern. Of course, the knowl-
edge of q is needed to compute ϕ. There are only O�log�p�� of them. It will
necessarily find it, because the (unknown) lift of fs � fc is an equivalent form
ϕ�fs� � �a, #, #�, whose normalization �a, #, #� is reduced due to the small size
of a, and it satisfies the pattern by construction. Due to the small number of
reduced forms, it is likely the only one of the small reduced cycle to satisfy the
pattern, and the plaintext m is eventually extracted from a.

4.3 Cryptanalysis

The cryptanalysis of NICE Real presented in [6] works as follows. The authors
present an algorithm inspired of Coppersmith methods (see [10,17]), which solves
in polynomial time the equation au2 � buv � xv2 � 0 mod q2 in the variables
�u, v, q� where N � pq2 is known and max��u�, �v�� � O�N1	9�. They call this
algorithm Homogeneous-Coppersmith in [6]. Their cryptanalysis of NICE Real is:
Pick3 a form g of the principal cycle, and try to solve the equation g�u, v� �
0 mod q2 with Homogeneous-Coppersmith. Repeat this until it finds a solution
�u, v, q� and return the private key q.

The proof of the attack of [6] relies on this heuristic assumption:

Assumption 1. The cardinality of the set A � 
g � �N , ��u, v� max��u�, �v�� �
O�N 1

9 � and g�u, v� � 0 mod q2� is linear in sq.

3 The authors of [6] enumerates the forms sequentially, until it finds a solvable one.
They need an assumption not only on the large number of such forms, but also on
their regular repartition on the principal cycle. Randomizing the enumeration avoids
to prove the assumption on regular repartition (Heuristic 2 in [6]), which is feasable
using the distance introduced in Theorem 3, but is beyond the scope of this paper.
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The authors of [6] experimentally verify this assumption. Namely, if ḡk denotes
the reduction of the form gk � �q2, #, #� of the q-belt by Classical Gauss reduc-
tion. The bottom two coefficients of the reduction matrix satisfy ḡk�δ,�γ� � q2.
Homogeneous-Coppersmith experimentally recovers �δ,�γ� for most of the ḡk and
even a few of their direct left or right neighbours on the principal cycle. This
indicates that the norm of the reduction matrix is in general upper-bounded by
O�N1	9�. However we also found rare cases of ḡk where the norm of reduction
matrix was by an order greater than N1	9, and on which Homogeneous-Coppersmith

algorithm cannot find any solution. We call these particular forms unbalanced,
because they have in general an unusually small coefficient. The main three
difficulties which prevented the authors of [6] to prove Assumption 1 were to
justify that that the proportion of unbalanced forms is negligible among the set
of 
ḡk�, that the reduction matrix using Classical Gauss reduction is bounded
by O�N1	9�, and that Classical Gauss is injective on a large enough subset of
the q-belt, which prevents 
ḡk� from being too small.

Our first improvement in their analysis is to replace the Classical Gauss re-
duction algorithm with RedGL2. This allows to square-root the upper-bounds
on the reduction matrix as of Theorem 2. Thus we define ĝk as the reduction
by RedGL2 of the q-belt form gk for each k. We ensure that ĝk is classically
reduced and that the reduction matrix has determinant �1 using Lemma 1. The
first point of Theorem 2 implies that the norm of the reduction matrix is in
O�N1	9� as soon as the smallest coefficient of ĝk is greater than N4	9. We can
either prove that this condition is satisfied by a large proportion of the gk , or
we can also circumvent this limitation by using the second point of Theorem 2,
which indicates that the size of the product �uv� is always upper-bounded by
O�N1	6�.

We therefore improve the Homogeneous-Coppersmith algorithm so that it also
finds unbalanced solutions: namely, we design a rational variant of Boneh-Durfee-
HowgraveGraham algorithm [2] which in particular solves g�u, v� � au2� buv�
cv2 � 0 mod q2 on �u, v, q� as soon as the product �uv� is in O�N2	9�.

Our new polynomial attack on Nice Real is the following: Randomly select a
form g on the principal cycle �N , and try to solve g�u, v� � 0 mod q2 in �u, v, q�
using Rational-BonehDurfeeHowgraveGraham. Repeat until it finds a solution, and
return q.

The proof of this attack works in two steps: first, we prove (in Theorem 3) that
the above-defined ĝk represent a non-negligible proportion of the principal cycle,
and second, we prove (in Section 4.4) that Rational-BonehDurfeeHowgraveGraham

finds q from any of the ĝk in polynomial time.

Definition 2 (distance). we define a notion of distance between two equivalent
forms f � g as dist�f, g� � min
log ��M��, M � SL2�Z� and f.M � g�.
Let f, g, h be three equivalent forms in FΔ, the distance function satisfies the
following properties:

1. dist�f, g� � dist�g, f� � 0
2. dist�f, g� � 0 �� f � g or f � g.SE
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3. dist�f, h� � dist�f, g� � dist�g, h�
4. if M � SL2�Z� satisfies f.M � g and �M� � �εΔ, then dist�f, g� �

log��M��.
Proof. The first three points follow from basic properties of the induced norm,
and the fact that only isometries have a unit norm. To prove the fourth state-
ment, let U be the fundamental automorphism of f , the eigenvalues of U are
εΔ and ε�1

Δ . Any non-trivial automorphism V of f satisfies �V � � εΔ, because
V is a non-zero power of U , and its spectral radius is a positive power of εΔ.
The matrix M of the fourth point is necessarily the smallest transformation
matrix from f to g, otherwise any matrix X � SL2�Z� such that f.X � g and
�X� 	 �M� would produce a non-trivial automorphism MX�1 of f of too
small norm �MX�1� 	 εΔ, which is impossible. ��
One of the greatest advantage of this distance is the fourth statement, which
in general indicates that any polynomial transformation matrix is necessarily
the smallest one. This allows to efficiently lower-bound a distance. As shown in
the proof, it is essential that the group of automorphism is cyclic, the fourth
statement would be false on GL2�Z�. The authors of [6] used another distance
between �f, g�, which could have been formalized as the smallest k � N such that
there exists h1, . . . , hk such that

�k
i�1 SET �hi� transforms f into g or g.SE.

Inside the reduced cycle, this corresponds to Shanks distance [20]. Unfortunately,
it does not satisfy any equivalent of the fourth point: there is no way to efficiently
verify that a given distance, as small as it could be, is correct. All the variants
we found of this distance, which aims to approximate this statement, based
either on the logarithms of the hi or some maximum norms, break the positive
definiteness or the triangular inequality. This explains why we do not base our
proof on Shanks distance and introduce our own instead.

Theorem 3. Given a NICE modulus N � pq2, the set A� � 
ĝk �
RedGL2�gk�, k � �1, . . . sq � 1�� of the reduced of the q-belt has at least K.sq

elements for some constant K � 0.

Proof. We now call Up the fundamental automorphism of the principal form
of Fp. We verify that �U j

p� � 2�εj
p � ε�j

p � and that for all i, j, Q�1
ki

U j
pQki�j

transforms gi into gi�j . Its norm is bounded by 1
q�Qki� � �U j� � �Qki�j� 	

4q�εj
p � ε�j

p �.
Due to point 4, for all j � �1, �sq
2� � 2�, the distance dist�gi, gi�j� �

log��Q�1
ki

U j
pQki�j�� is greater than j log�εp�� log�2q�. By Theorem 2, the norm

of the reduction matrix from a gi to ĝi is upper-bounded by 2�21q2
�N � 42q
�p,
and it follows that dist�ĝi, ĝi�j� � j log�εp�� log�3528q3p�. For this reason, if j �
log�3528q3p�
 log�εp�, then dist�ĝi, ĝi�j� � 0 and ĝi � ĝi�j . Using the NICE pa-
rameters, one has log�3528q3p�
 log�εp� 	 3, thus the forms ĝ1, ĝ4, ĝ7, . . . , ĝ3n�1
are distinct (with n � sq
6�. ��
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4.4 Rational Improvement of the Boneh-Durfee-HowgraveGraham’s
Algorithm

In this section, we describe our Rational-BonehDurfeeHowgraveGraham algorithm
as a variant of Boneh Durfee Howgrave-Graham algorithm [2] solving rational
linear equations u
v � C � 0 mod q in the variables �u, v, q� when a multi-
ple N � pqr is known. The description of Rational-BonehDurfeeHowgraveGraham is
summarized in Algorithm 2. Among others, it can be used to solve all the equa-
tions ĝk�u, v� � au2� buv� cv2 � 0 mod q2 of discriminant pq2 of the previous
section, because they are equivalent to u
v � b
2a � 0 mod q. Since the solu-
tion we are looking for satisfies �uv� � O�N1	6�, the following Theorem 4 proves
that Rational-BonehDurfeeHowgraveGraham finds all solutions �uv� � O�N2	9�, and
concludes the proof of our new attack on Nice Real.

More generally, given a polynomial P , the technique due to Boneh Durfee
Howgrave-Graham transforms the equation P �u
v� � 0 mod q, into a lattice
L of dimension m and bounded determinant, and whose short vectors are or-
thogonal to the integer vector S � �um, um�1v, ..., uvm�1, vm�. The solutions u
and v can be extracted from any of those short lattice vectors. This lattice is
described by a basis B, whose rows contain the coefficients of �m � 1�-degree
polynomials having u
v as a root modulo a power of q. When u and v have ap-
proximately the same size (like in Homogeneous-Coppersmith of [6]), the celebrated
LLL reduction algorithm on B outputs directly the desired vector orthogonal
to S. Otherwise, when u and v are unbalanced, say for instance that u is 1000
times larger than v, one first needs to re-balance the lattice by multiplying each
i-th column by Ci, where C is close to 1000, and only then reduce the basis. The
original Boneh-Durfee-HowgraveGraham’s algorithm, which interests in integer
solutions (arbitrary u and v � 1), follows the above rule: the lattice basis which
is actually LLL-reduced is the basis of Homogeneous-Coppersmith where each i-th
column has been multiplied by X i, where X is a power of 2 just larger than the
solution u. More generally, if we don’t know the relative balance between u and v
but only know that the size of uv is n-bits, then we can test the n possible pow-
ers of two sequentially within a linear-factor overhead. Besides, we remark that
instead of multiplying the columns of the input Homogeneous-Coppersmith basis by
�1, 2, 4, ..., 2m�, we describe the exact same lattice by multiplying the columns of
the LLL-reduced basis, and the second one is almost reduced (LLL terminates in
a very few steps). Thus after the reduction of the first Homogeneous-Coppersmith

basis, one obtains all the other possible balances of u and v for free.

Theorem 4. Given any integer N � pqr (where p and q are unknown), and a
bound β 	 1

4 �qlog
qr�	 log
N�, Algorithm 2 terminates in polynomial time, and finds
a solution (if it exists) of the equation u

v � c mod q where �u, v� are unknown
integers satisfying �uv� 	 β.

Proof. Let �U, V � � R2 such that �u� � U and v � V . We use the same parame-
ters m � N�
0� and t �




m�1��log
qr�

log
N�


.

We denote by Rm�X, Y � the span of homogeneous polynomials of degree
m, and we define the isomorphism ϕ : Rm�X, Y � $ Rm�1 which computes
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Algorithm 2. Rational Boneh-Durfee-HowgraveGraham
Input: An integer N � N of the form pqr (p and q are unknown), an integer c �

�0, N � 1� and a bound β � 1
4
� qlog�qr�� log�N�

Output: �u, v� � N3 such that u
v
� c mod q and 
u
 � 
v
 � β if it exists

1: Choose the smallest m such that
�
N

1
2�

1
8r �m� 1� 1

2

� 1
m�1 � 1.5, and set t ��

�m�1��log�qr�
log�N�

�
.

2: Compute the family Pk�X, Y � � N� t�k
r � � �X � cY �k � Y m�k for k � �0..m�

3: for l � 0 to �log2�β�� do
4: U � 2l; V � �

β�2l
�

5: Express (or update) the family �Pk�k�0..m on the monomial basis
�XkY m�k

UkV m�k �k�0..m, and form a matrix B � Mm�1�Z�
6: LLL-reduce B, and call �α0, . . . , αm� the first vector
7: for each rational root u

v
of R�X� � �m

k�0
αk

UkV m�k Xk � 0 do
8: if 
uv
 
 β and gcd�u� cv, N� is non-trivial return �u, v�
9: end for

10: end for

the coordinates of a polynomial on the basis �XkY m�k

UkV m�k �k�0..m. For instance,
ϕ�XkY m�k� � UkV m�kek where ek is the k-th canonical basis vector. Let
�Pk�k��0..m� be the family Pk�X, Y � � N � t�k

r � ��X�cY �k �Y m�k � Rm�X, Y �. By
construction, any integer linear combination R ��m

k�0 Z �Pk satisfy R�u, v� � 0
mod qt and �R�u, v�� � �

m� 1 � ��ϕ�R���2 (using Cauchy-Schwartz inequal-
ity). We now suppose that ϕ�R� is a short vector of the lattice generated
by the (triangular) basis B � �ϕ�Pk��k��1,m�. By that, we mean ��ϕ�R���2 �
�1.08�m�1 det�B�1	
m�1�. Such a vector can be found by running the LLL al-
gorithm on the lattice basis B (see [16]). The remainder of the proof is just a
formal verification that when m grows, det�B� is small enough to guaranty that
�R�u, v�� 	 qt, and therefore that R�u, v� � 0 (in Z). Since R is homogeneous,
this allows to recover u and v. ��

5 Conclusion

We saw that reduction algorithms are conceptually simpler to study in GL2�Z�,
because we mostly manipulate only positive matrices, which are easy to bound.
The precision of our analysis, in the worst case and also in the average case,
allows us to fully prove a lattice-based total-break attack against Nice cryp-
tosystems [12,13], which is unusual in the history of lattice based cryptology. A
further lead would be to extend these results on the reduction of the forms in
higher dimension.

Acknowledgements. We would like to thank Fabien Laguillaumie and Guilhem
Castagnos for useful discussions and valuable comments on this paper.
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Abstract. We present improvements to the index-calculus algorithm
for the computation of the ideal class group and regulator of a real
quadratic field. Our improvements consist of applying the double large
prime strategy, an improved structured Gaussian elimination strategy,
and the use of Bernstein’s batch smoothness algorithm. We achieve a
significant speed-up and are able to compute the ideal class group struc-
ture and the regulator corresponding to a number field with a 110-
decimal digit discriminant.

1 Introduction

Computing invariants of real quadratic fields, in particular the ideal class group
and the regulator, has been of interest since the time of Gauss, and today has a
variety of applications. For example, solving the well-known Pell equation is in-
timately linked to computing the regulator, and integer factorization algorithms
have been developed that make use of this invariant. Public-key cryptosystems
have also been developed whose security is related to the presumed difficulty of
these computational tasks. See [16] for details.

The fastest algorithm for computing the ideal class group and regulator in
practice is a variation of Buchmann’s index-calculus algorithm [6] due to Jacob-
son [14]. The algorithm on which it is based has subexponential complexity in the
size of the discriminant of the field. The version in [14] includes several practical
enhancements, including the use of self-initialized sieving to generate relations,
a single large-prime variant (based on that of Buchmann and Düllman [7] in the
case of imaginary quadratic fields), and a practical version of the required linear
algebra. This approach proved to work well, enabling the computation of the
ideal class group and regulator of a real quadratic field with a 101-decimal digit
discriminant [15]. Unfortunately, both the complexity results of Buchmann’s al-
gorithm and the correctness of the output are dependent on the Generalized
Riemann Hypothesis (GRH). Nevertheless, for fields with large discriminants,
this approach is the only one that works.
� The second author is supported in part by NSERC of Canada.
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Recently, Biasse [4] presented practical improvements to the corresponding
algorithm for imaginary quadratic fields. These included a double large prime
variant and improved algorithms for the required linear algebra. The resulting
algorithm was indeed faster then the previous state-of-the-art [14], and enabled
the computation of the ideal class group of an imaginary quadratic field with
110 decimal digit discriminant.

In this paper, we describe a number of practical improvements to the index-
calculus algorithm for computing the class group and regulator of a real quadratic
field. In addition to adaptations of Biasse’s improvements in the imaginary case,
we have found some modifications designed to improve the regulator computa-
tion part of the algorithm. We also investigate applying an idea of Bernstein [3]
to factor residues produced by the sieve using a batch smoothness test. Exten-
sive computations demonstrating the effectiveness of our improvements are pre-
sented, including the computation of class group and regulator of a real quadratic
field with 110 decimal digit discriminant.

This paper is organized as follows. In the next section, we briefly recall the
required background of real quadratic fields, and give an overview of the index-
calculus algorithm using self-initialized sieving. Our improvements to the algo-
rithm are described in Section 3, followed by numerical results in Section 4.

2 Real Quadratic Fields

We present an overview of required concepts related to real quadratic fields and
the index-calculus algorithm for computing invariants. For more details, see [16].

Let K = Q(
√

Δ) be the real quadratic field of discriminant Δ, where Δ is a
positive integer congruent to 0 or 1 modulo 4 with Δ or Δ/4 square-free. The
integral closure of Z in K, called the maximal order, is denoted by OΔ. An
interesting aspect of real quadratic fields is that their maximal orders contain
infinitely many non-trivial units, i.e., units that are not roots of unity. More
precisely, the unit group of OΔ consists of an order 2 torsion subgroup and an
infinite cyclic group. The smallest unit greater than 1, denoted by εΔ, is called
the fundamental unit. The regulator of OΔ is defined as RΔ = log εΔ.

The fractional ideals of K play an important role in the index-calculus al-
gorithm described in this paper. In our setting, a fractional ideal is a rank 2
Z-submodule of K. Any fractional ideal can be represented as

a =
s

d

[
aZ +

b +
√

Δ

2
Z

]
,

where a, b, s, d ∈ Z and 4a | b2 −Δ. The integers a, s, and d are unique, and b
is defined modulo 2a. The ideal a is said to be primitive if s = 1, and da ⊆ OΔ

is integral. The norm of a is given by N (a) = as2/d2.
Ideals can be multiplied using Gauss’s composition formulas for indefinite

binary quadratic forms. Ideal norm respects ideal multiplication, and the set
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IΔ forms an infinite abelian group with identity OΔ under this operation. The
inverse of a is

a−1 =
d

sa

[
aZ +

−b +
√

Δ

2
Z

]
.

The group IΔ is generated by the prime ideals of OΔ, namely those integral
ideals of the form pZ+(bp +

√
Δ)/2Z where p is a prime that is split or ramified

in K. As OΔ is a Dedekind domain, the integral part of any fractional ideal
can be factored uniquely as a product of prime ideals. To factor a, it suffices
to factor N (a) and, for each prime p dividing the norm, determine whether the
prime ideal p or p−1 divides a according to whether b ≡ bp or −bp modulo
2p.

The ideal class group, denoted by ClΔ, is the factor group IΔ/PΔ, where
PΔ ⊆ IΔ is the subgroup of principal ideals. The class group is finite abelian,
and its order is called the class number, denoted by hΔ. By computing the class
group we mean computing the elementary divisors m1, . . . , ml with mi+1 | mi

for 1 ≤ i < l such that ClΔ ∼= Z/m1Z× · · · × Z/mlZ.

2.1 The Index-Calculus Algorithm

Like other index-calculus algorithms, the algorithm for computing the class
group and regulator relies on finding certain smooth quantities, those whose
prime divisors are all small in some sense. In the case of quadratic fields, one
searches for smooth principal ideals for which all prime ideal divisors have norm
less than a given bound B1. The set of prime ideals B = {p1, . . . , pn} with
Npi ≤ B1 is called the factor base.

A principal ideal (α) = pe1
1 . . . pen

n with α ∈ K that factors completely over the
factor base yields the relation (e1, . . . , en, log |α|). The key to the index-calculus
algorithm is the fact, proved by Buchmann [6], that the set of all relations forms
a sublattice Λ ⊂ Zn × R of determinant hΔRΔ provided that the prime ideals
in the factor base generate ClΔ. This follows, in part, due to the fact that L,
the integer component of Λ, is the kernel of the homomorphism from Zn to ClΔ
given by pe1

1 . . . pen
n for (e1, . . . , en) ∈ Zn. If p1, . . . , pn generate ClΔ, then this

homomorphism is surjective, and the homomorphism theorem then implies that
Zn/L ∼= ClΔ.

The main idea behind the index-calculus algorithm is to find random relations
until they generate the entire relation lattice Λ. Let Λ′ denote the sublattice of Λ
generated by the relations that have been computed. To determine whether Λ′ =
Λ, one computes an approximation h∗ of hΔRΔ such that h∗ < hΔRΔ < 2h∗.
The value h∗ is obtained by approximating the L-function L(1, χΔ), where χΔ

denotes the Kronecker symbol (Δ/p), and applying the analytic class number
formula. If Λ′ ⊂ Λ, then det(Λ′) is a integer multiple of hΔRΔ. Thus, Λ′ = Λ
as soon as det(Λ′) < 2h∗, because hΔRΔ is the only integer multiple of itself in
the interval (h∗, 2h∗).
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As described in [14], an adaptation of the strategy used in the self-initialized
quadratic sieve (SIQS) factoring algorithm is used to compute relations. First,
compute the ideal a = pe1

1 . . . pen
n = (1/d)[aZ + (b +

√
Δ)/2Z] with N (a) = a/d2.

Let α = (ax + (b +
√

Δ)/2y)/d with x, y ∈ Z be an arbitrary element in a. Then

N (α) =
1
d2

(
ax +

b +
√

Δ

2
y

)(
ax +

b −
√

Δ

2
y

)
= (a/d2)(ax2 + bxy + cy2)

where c = (b2 − Δ)/(4a). Because ideal norm is multiplicative, there exists an
ideal b with N (b) = ax2 + bxy + cy2 such that (α) = ab. Thus, finding x and
y such that N (b) factors over the norms of the prime ideals in the factor base
yields a relation. Such x and y can be found by sieving the polynomial ϕ(x, y) =
ax2 + bxy + cy2, and a careful selection of the ideals a yields a generalization of
self-initialization, in which the coefficients of the sieving polynomials and their
roots modulo the prime ideal norms can be computed quickly. In practice, we
use ϕ(x, 1) for sieving, so that the algorithm resembles the SIQS more closely.
For more details, see [14] or [16].

The determinant of the relation lattice Λ′ is computed in two stages. The
first step is to compute the determinant of the integer part of this sublattice
by finding a basis in Hermite normal form (HNF). Once Λ′ has full rank, the
determinant of this basis is computed as the product of the diagonal elements
in a matrix representation of the basis vectors. The group structure is then
computed by finding the Smith normal form of this matrix. The real part of
det(Λ′), a multiple of the regulator RΔ, is computed by first finding a basis of
the kernel of the matrix consisting of the integer parts of the relations. Every
vector (k1, . . . , km) ∈ Zm in the kernel corresponds to a multiple of the regu-
lator computed with mRΔ = k1 log |α1| + · · · + km log |αm|. The “real gcd” of
the multiples m1RΔ, . . . , mnRΔ computed from each basis vector of the kernel,
defined as gcd(m1, . . . , mn)RΔ, is then the real part of det(Λ′). An algorithm
of Maurer [21] can be used to compute the real gcd efficiently and with guaran-
teed numerical accuracy given explicit representations of the αi and the kernel
vectors.

As mentioned in the introduction, the correctness of this algorithm depends
on the truth of the Generalized Riemann Hypothesis. In fact, the GRH must
be invoked in two places. The first is to compute a sufficiently accurate ap-
proximation h∗ of hΔRΔ via a method due to Bach [2]. Without the GRH, an
exponential number of terms in the Euler product used to approximate L(1, χΔ)
must be used (see, for example, [20]). The second is to ensure that the factor base
generates ClΔ. Without the GRH, an exponential size factor base is required,
whereas by a theorem of Bach [1] the prime ideals of norm less than 6 log(Δ)2

suffice. In practice, an even smaller factor base is often used, but in that case,
the factor base must be verified by showing that every remaining prime ideal
with norm less than Bach’s bound can be factored over the ideals in the factor
base.
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3 Practical Improvements

In this section, we describe our practical improvements for computing the class
group structure and the regulator of a the real quadratic field. Some of these
improvements, such as the double large prime variant and structured Gaussian
elimination, were used in [4] for the simpler case of imaginary quadratic number
fields. On the other hand, the batch smoothness test and system solving based
methods for computing the regulator had never been implemented in the context
of number fields before.

3.1 Relation Collection

Improving the relation collection phase allows us to speed up every other stage
of the algorithm. Indeed, the faster the relations are found, the smaller the factor
base can be, thus reducing the dimensions of the relation matrix and the time
taken by the linear algebra phase. In addition, the verification phase also relies
on our ability to find relations and therefore benefits from improvements to
the relation collection phase. Throughout the rest of the paper, M denotes the
relation matrix, the matrix whose rows are the integer parts of the relations.

Large prime variants. The large prime variants were developed in the context
of integer factorization to speed up the relation collection phase in both the
quadratic sieve and the number field sieve. A single large prime variant was
described by Buchmann and Düllman [7] for computing the class group of an
imaginary quadratic field, and adapted to the real case by Jacobson [14]. Biasse
[4] described how the double large prime strategy could be using in the imaginary
case, and obtained a significant speed-up.

The idea is to keep relations involving one or two extra primes not in the
factor base of norm less than B2 ≥ B1. These relations thus have the form

(α) = pe1
1 . . . pen

n p and (α) = pe1
1 . . . pen

n pp′

for pi in B, and for p, p′ of norm less than B2. We will refer to these types of par-
tial relations as 1-partial relations and 2-partial relations, respectively. Keeping
partial relations only involving one large prime is the single large prime variant,
whereas keeping those involving one or two is the double large prime variant
which was first described by Lenstra and Manasse [17]. We do not consider the
case of more large primes, but it is a possibility that has been studied in the
context of factorization [10].

Partial relations may be identified as follows. Let m be the remainder of ϕ(x, 1)
after the division by all primes p ≤ B1, and assume that B2 < B2

1 . If m = 1
then we have a full relation. If m ≤ B2 then we have a 1-partial relation. We can
see here that detecting 1-partial relations is almost for free. If we also intend to
collect 2-partial relations then we have to consider the following possibilities:



Improvements in Real Quadratic Number Fields 55

1. m > B2
2 ;

2. m is prime and m > B2;
3. m is prime and m ≤ B2;
4. m is composite and B2

1 < m ≤ B2
2 .

In Cases 1 and 2 we discard the relation. In Case 3 we have a 1-partial relation,
and in Case 4 we have m = pp′ where p = N (p) and p′ = N (p′). Cases 1, 2,
and 3 can be checked very easily, but if none are satisfied we need to factor m in
order to determine whether Case 4 is satisfied. We used Milan’s implementation
of the SQUFOF algorithm [22] based on the theoretical work of [12] to factor
the m values produced.

Even though we might have to factor the remainder, partial relations are found
much faster than full relations. However, the dimensions of the resulting matrix
are much larger, thus preventing us from running the linear algebra phase directly
on the resulting relation matrix. In addition, we have to find many more relations
since we have to produce a full rank matrix. We will see in §3.2 how to reduce
the dimensions of the relation matrix using Gaussian elimination techniques.

Batch smoothness test. After detecting potential candidates for smooth in-
tegers via the SIQS, one has to certify their smoothness. In [4,14], this was done
by trial division with the primes in the factor base. The time taken by trial divi-
sion can be shortened by using Bernstein’s batch smoothness test [3], which uses
a product tree structure and modular arithmetic to factor a batch of residues
simultaneously in time O

(
b(log b)2 log log b

)
where b is the total number of input

bits.
Instead of testing the smoothness of every potential candidate as soon as

they are discovered, we rather stored them and tested them at the same time
using Bernstein’s method as soon their number exceeded a certain limit. This
improvement has an effect that is all the more important when the time spent
in the trial division is long. In our algorithm, this time mostly depends on the
tolerance value T, a parameter used to control the number of candidates yielded
by the sieve for smoothness testing.

3.2 Structured Gaussian Elimination

As mentioned in §2.1, in order to determine whether the computed relations
generate the entire relation lattice, we need to compute the HNF basis of the
sublattice they generate. This can be done by putting the integer components
of the relations as rows in a relation matrix, and computing the HNF.

The first step when using large primes is to compute full relations from all of
the partial relations. Traditionally, rows were recombined to give full relations
as follows. In the case of 1-partial relations, any pair of relations involving the
same large prime p were recombined into a full relation. In the case of 2-partial
relations, Lenstra [17] described the construction of a graph whose vertices were
the relations and whose edges linked vertices having one large prime in common.
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Finding independent cycles in this graph allows us to recombine partial relations
into full relations.

In this paper, we instead follow the approach of Cavallar [8], developed for
the number field sieve, and adapted by the first author to the computation of
ideal class group structures in imaginary quadratic number fields [4], which uses
Gaussian elimination on columns. The ideas is to eliminate columns using struc-
tured Gaussian strategies until the dimensions of the matrix are small enough
to allow the computation of the HNF with standard algorithms.

Let us recall a few definitions. First, subtracting two rows is called merging.
If two relations corresponding to rows r1 and r2 share the same prime p with
coefficients c1 and c2 respectively, then multiplying r1 by c2 and r2 by c1 and
merging is called pivoting. Finally, finding a sequence of pivots leading to the
elimination of a column of Hamming weight k is a k-way merge.

We aim to reduce the dimensions of the relation matrix by performing k-
way merges on the columns of weight k = 1, . . . , w in increasing order for a
certain bound w. To limit the growth of the density and of the size of the
coefficients induced by these operations, we used optimized pivoting strategies.
In what follows we describe an algorithm performing k-way merges to minimize
the growth of both the density and the size of the coefficients, thus allowing us to
go deeper in the elimination process and delay the explosion of the coefficients.

As in [4], we define a cost function C mapping rows onto the integers. The
one used in [4] satisfied

C(r) =
∑

1≤|ei|≤Q

1 + c
∑

|ej |>Q

1, (1)

where c and Q are positive numbers, and r = [e1, . . . , en] is a row corresponding
to (α) =

∏
i pei

i . This way, the heaviest rows are those which have a high density
and large coefficients. In our experiments for this work, we used a different
cost function, see §4.1. Then, to perform a k-way merge on a given column, we
construct a complete graph G of size k such that

– the vertices are the rows ri, and
– every edge linking ri and rj has weight C(rij), where rij is obtained by

pivoting ri and rj .

Finding the best sequence of pivots with respect to the chosen cost function C is
equivalent to finding the minimum spanning tree T of G, and then recombining
every row r with its parent starting with the leaves of T .

Unlike in [4], we need to keep track of the permutations we apply to the
relation matrix, and of the empty columns representing primes of norm less
than 6 log2 Δ. This will be required for the regulator computation part of the
algorithm described next.

3.3 Regulator Computation

As mentioned in §2.1, the usual way to compute the regulator is to find a basis
of the kernel of the relation matrix, compute integer multiples of the regulator
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from these basis vectors, and compute their real gcd using Maurer’s algorithm
[21]. If detΛ′ > 2h∗, then either the class number or regulator computed is too
large, and we need to find extra relations corresponding to new generators, and
new kernel vectors involving them.

In this section, we describe a way of taking advantage of the large number of
generators involved in the different partial relations. Indeed, the dimensions of
the relation matrix before the Gaussian elimination stage is much larger than
in the base scenario and thus involves more generators. Consequently, given a
set of k ≤ dim(kerM) kernel vectors (uj

1, . . . , u
j
n)j≤k, the probability that the

corresponding elements

vj := uj
1 log |α1|+ . . . + uj

n log |αn| ,

where αi is the generator of the i-th relation, can be recombined into R is much
larger. On the other hand, the dimensions of the matrix prevents us from running
a kernel computation directly after the relation collection phase. Thus, rather
than attempting to compute the kernel, we use a method similar to that of
Vollmer [24] based on solving linear systems.

The first step of our algorithm consists of putting the matrix in a pseudo-lower
triangular form using a permutation obtained during the Gaussian elimination
phase. Indeed, as part of this computation we obtain a unimodular matrix U ∈
Zn×n such that

UM =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A (0)

(∗)

1 (0)

. . .

(∗) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, solving a linear system of the form xM = b for a vector b ∈ Zm boils
down to solving a system of the form x′A = b′, then doing a trivial descent
through the diagonal entries which equal 1 and finally permuting back the co-
efficients using U . To solve the small linear systems, we used the algorithm
certSolveRedLong from the IML library [9]. It takes a single precision dense
representation of A and returns an LLL-reduced solution.

Once M is in pseudo-lower triangular form, we draw a set of relations r1, . . . rd

which are not already rows of M , and for each ri, i ≤ d, we solve the system
xiA = ri. We then augment M with the rows ri for i ≤ d and the vectors xi

with d extra coordinates, which are all set to zero except for the i-th which is
set to −1.
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M ′ :=

⎛⎜⎜⎜⎝
M

ri

⎞⎟⎟⎟⎠ x′
i :=
(

xi 0 . . . 0 −1 0 . . . 0
)

.

We clearly have x′
iM

′ = 0 for i ≤ d, and the x′
i can be used to find a multiple

of RΔ as described in §2.1.

4 Numerical Results

In this section, we give numerical results showing the impact of our improve-
ments. For each timing, we specify the architecture used. All the timings were
obtained with our code in C++ based on the libraries GMP [11], NTL [23], IML
[9] and Linbox [19]. All timings are in CPU seconds.

4.1 Comparative Timings

The state of the art concerning class group and regulator computation was es-
tablished in [14], where all the timings were obtained with the SPARCStation II
architecture. In addition, most of the code used at the time is unavailable now,
including the HNF computation algorithm. Thus, providing a meaningful com-
parison between our methods and those of [14] is difficult. We chose to implement
the HNF computation algorithm in a way that resembles the one of [14], but takes
advantage of the libraries available today for computing the determinant and the
modular HNF. We used this implementation in each different scenario. The rela-
tion collection phase is easier to compare, since our method relies on SIQS.

In the following, we will refer to the base case as the strategy consisting
of finding the relation matrix without using the large prime variants or the
smoothness batch test, and calculating the regulator by computing its kernel
with the algorithm nullspaceLong from IML library. It differs from the 0 large
prime case (0LP) where we use the algorithm described in §3.3 for computing the
regulator, along with a relation collection phase that does not use large primes.
We also denote the 1 large prime scenario by 1LP, the 2 large primes by 2LP
and 2LP Batch when using batch smoothness test.

Relation collection phase. In Table 1, we give the time taken to collect
all necessary relations. Without large primes, we collected |B| + 100 relations,
whereas when we allow large primes we need to collect enough relations to en-
sure that the number of rows is larger than the number of non-empty columns.
We used a 2.4 GHz Opteron with 16GB of memory and took Δ = 4(10n + 3)
with 40 ≤ n ≤ 70. For each discriminant, we used the optimal parameters given
in [14], including the size of the factor base, even if we tend to reduce this pa-
rameter when optimizing the overall time. The only parameter we modified is
the tolerance value for the SIQS, as a higher tolerance value is required for the
large prime variations. In each case we took B2 = 12B1. It is shown in [4] that
the ratio B2/B1 does not have an important impact on the sieving time.
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Table 1. Comparative table of the relation collection time

n 0LP 1LP 2LP 2LP Batch
40 0.83 0.48 0.63 0.90
45 6.70 3.10 2.70 2.20
50 23.00 9.50 9.20 6.10
55 56.00 26.00 23.00 15.00
60 202.00 86.00 69.00 41.00
65 1195.00 513.00 354.00 227.00
70 4653.00 1906.00 1049.00 834.00

The timings in Table 1 correspond to the optimal value of the tolerance value
in each case, found by trying values between 1.7 and 4, and keeping the optimum
for each scenario. For 0LP, the optimal value is between 1.7 and 2.3 whereas it is
around 2.3 for 1LP, 2.8 for 2LP and 3.0 for 2LP Batch. The latter case has a higher
optimal tolerance value because using the batch smoothness test allows one to
spend more time factoring the residues. When using Bernstein’s smoothness test,
we took batches of 100 residues. In our experiments, this value did not seem to have
an important effect on the relation collection time. We observe in Table 1 that the
use of the large prime variants has a strong impact on the relation collection phase,
and that using the smoothness batch test strategy yields an additional speed-up
of approximately 20% over the double large prime strategy.

Structured Gaussian elimination. Structured Gaussian elimination allows
us to reduce the time taken by the linear algebra phase by reducing the dimen-
sions of the relation matrix. Our method minimizes the growth of the density
and of the size of the coefficients. To illustrate the impact of the algorithm de-
scribed in §3.2, we monitor in Table 2 the evolution of the dimensions of the
matrix, the average Hamming weight of its rows, the extremal values of its co-
efficients and the time taken for computing its HNF in the case of a relation
matrix corresponding to Δ = 4(1060 +3). We keep track of these values after all
i-way merges for some values of i between 5 and 170. The original dimensions of
the matrix are 2000× 1700, and the timings are obtained on a 2.4 Ghz Opteron
with 32GB of memory.

In [4], the first author regularly deleted the rows having the largest coefficients.
To do this, we need to create more rows than in the base case. To provide a
fair comparison between the two strategies, we used the same relation matrix
resulting from a relation collection phase without large primes, and with as few
rows as was required to use the same algorithm as in [14]. We therefore had to
drop the regular row deletion. We also tuned the cost function to compensate
for the resulting growth of the coefficients, using

C(r) =
∑

1≤|ei|≤8

1 + 100
∑

|ej|>8

|ej | ,

instead of (1).
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The HNF computation consists of taking the GCD of the determinants of two
different submatrices of the matrix after elimination using Linbox, and using the
modular HNF of NTL with this value. Indeed, this GCD (which is likely to be
relatively small) is a multiple of hΔ. This method, combined with an elimination
strategy due to Havas [13], was used in [14] and implemented in LiDIA [18]. As
this implementation is no longer available, we instead refer to the timings of our
code, which has the advantage of using the best linear algebra libraries available
today.

Table 2. Comparative table of elimination strategies

Naive Gauss

i Row Nb Col Nb Average weight max coeff min coeff HNF time
5 1189 1067 27.9 14 -17 357.9

10 921 799 49.3 22 -19 184.8
30 757 635 112.7 51 -50 106.6
50 718 596 160.1 81 -91 93.7
70 699 577 186.3 116 -104 85.6
90 684 562 205.5 137 -90 79.0

125 664 542 249.0 140 -146 73.8
160 655 533 282.4 167 -155 72.0
170 654 532 286.4 167 -155 222.4

With dedicated elimination strategy

i Row Nb Col Nb Average weight max coeff min coeff HNF time
5 1200 1078 26.8 13 -12 368.0

10 928 806 42.6 20 -15 187.2
30 746 624 82.5 33 -27 100.8
50 702 580 107.6 64 -37 84.3
70 672 550 136.6 304 -676 73.4
90 656 534 157.6 1278 -1088 67.5

125 637 515 187.1 3360 -2942 63.4
160 619 497 214.6 5324 -3560 56.9
170 615 493 247.1 36761280 -22009088 192.6

Table 2 shows that the use of our elimination strategy leads to a matrix with
smaller dimensions (493 rows with our method, 533 with the naive elimination)
and lower density (the average weight of its rows is of 214 with our method and
282 with the naive elimination). These differences result in an improvement of
the time taken by the HNF computation: 56.9 seconds with our method against
72.0 seconds with the naive Gaussian elimination. The regular cancellation of
the rows having the largest coefficients over the course of the algorithm would
delay the explosion of the coefficient size, but require more rows for the original
matrix. This brutal increase in the size of the extremal values of the matrix can
be seen in Table 2. At this point these higher values propagate during pivoting
operations, and any further column elimination becomes counter-productive.
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Factor base verification. The improvements in the relation collection phase
have an impact on the factor base verification. The impact of the smoothness
batch test is straightforward, whereas the large prime variants act in a more
subtle way. Indeed, we create many more relations when using the large prime
variants, and the relations created involve primes of larger norm. Therefore, a
given prime not in B of norm less than 6 log2 Δ is more likely to appear in a
relation, and thus not to need to be verified. Table 3 shows the impact of the
large prime variants and of the batch smoothness test on the verification time.
We used a 2.4 GHz Opteron with 16GB of memory. We considered discriminants
of the form Δ = 4(10n + 3) for n between 40 and 70, and we chose in every case
the factor base giving the best results for the base scenario.

Table 3. Comparative table of the factor base verification time

n 0LP 1LP 2LP 2LP Batch
40 17.0 11.0 11.0 6.2
45 77.0 44.0 30.0 18.0
50 147.0 85.0 52.0 43.0
55 308.0 167.0 134.0 110.0
60 826.0 225.0 282.0 274.0
65 8176.0 1606.0 1760.0 1689.0
70 9639.0 4133.0 5777.0 2706.0

Regulator computation. Our method for computing the regulator avoids
computing the relation matrix kernel. Instead, we need to solve a few linear
systems involving the matrix resulting from the Gaussian elimination. To illus-
trate the impact of this algorithm, we used the relation matrix obtained in the
base case for discriminants of the form 4(10n + 3) for n between 40 and 70. The
timings are obtained on a 2.4GHz Opteron with 16GB of memory.

In Table 4, the timings corresponding to our system solving approach are taken
with seven kernel vectors. However, in most cases only two or three vectors are
required to compute the regulator. As most of the time taken by our approach

Table 4. Comparative table of regulator computation time

n Kernel Computation System Solving
40 15.0 6.2
45 18.0 8.3
50 38.0 20.0
55 257.0 49.0
60 286.0 103.0
65 5009.0 336.0
70 10030.0 643.0
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Table 5. Effect on the overall time

n strategy |B| relations elimination HNF regulator verification total

40

base 400 0.8 0.1 3.2 14.6 16.8 35.6
0LP 400 0.7 0.1 2.2 6.0 16.6 25.7
1LP 300 0.8 0.2 2.5 6.4 13.1 23.1
2LP 250 1.7 0.3 4.8 8.7 18.0 33.3

2LP Batch 250 0.5 0.2 3.6 6.7 4.4 15.5

45

base 500 6.7 0.1 5.1 18.0 77.0 107.0
0LP 500 5.9 0.2 4.9 10.0 85.0 106.0
1LP 400 4.0 0.4 6.0 11.0 50.0 71.0
2LP 350 3.8 0.5 12.0 17.0 36.0 69.0

2LP Batch 350 2.6 1.1 9.0 14.0 30.0 57.0

50

base 750 23.0 0.3 16.0 38.0 147.0 224.0
0LP 700 21.0 0.4 15.0 20.0 147.0 203.0
1LP 450 20.0 0.4 10.0 17.0 108.0 155.0
2LP 400 14.0 0.8 22.0 23.0 74.0 133.0

2LP Batch 400 10.0 0.6 21.0 25.0 62.0 119.0

55

base 1200 129.0 1.9 60.0 257.0 308.0 756.0
0LP 1300 47.0 0.7 52.0 49.0 265.0 414.0
1LP 650 61.0 0.7 28.0 33.0 255.0 378.0
2LP 550 40.0 1.1 48.0 48.0 177.0 313.0

2LP Batch 550 34.0 1.0 47.0 48.0 141.0 271.0

60

base 1700 322.0 2.9 95.0 286.0 830.0 1535.0
0LP 1700 187.0 1.3 106.0 103.0 846.0 1244.0
1LP 750 309.0 1.0 45.0 64.0 865.0 1284.0
2LP 700 143.0 2.1 152.0 137.0 365.0 799.0

2LP Batch 700 142.0 1.8 103.0 100.0 309.0 655.0

65

base 2700 10757.0 12.0 652.0 5009.0 8176.0 24607.0
0LP 2700 1225.0 2.8 489.0 336.0 3676.0 5730.0
1LP 1900 1003.0 15.0 318.0 262.0 2984.0 4583.0
2LP 1200 753.0 4.7 525.0 398.0 1943.0 3624.0

2LP Batch 1000 1030.0 35.0 199.0 219.0 1642.0 3125.0

70

base 3700 17255.0 24.0 1869.0 10031.0 9639.0 38818.0
0LP 3600 4934.0 19.0 1028.0 644.0 9967.0 16591.0
1LP 2500 3066.0 17.0 845.0 646.0 9005.0 13579.0
2LP 1700 2414.0 27.0 2054.0 1295.0 4590.0 10379.0

2LP Batch 1700 2588.0 20.0 1372.0 934.0 5078.0 9991.0

is spent on system solving, we see that computing fewer kernel vectors would
result in an improvement of the timings, at the risk of obtaining a multiple of
the regulator.

Overall time. We have studied the individual impact of our improvements on
each stage of the algorithm. We now present their effect on the overall time taken
by the algorithm, including the factor base verification time, for discriminants
of the form Δ = 4(10n + 3) with 40 ≤ n ≤ 70 on a 2.4 GHz Opteron with 16GB
of memory. We used the same parameters as in [14], except for the tolerance
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and the size of the factor base. We notice in Table 5 that the optimal size of
the factor base is smaller when we use improvements for the sieving phase. For
example the optimal size for the double large prime variant is half the one of the
base case scenario. This results in an improvement in the HNF and regulator
computation whereas the relation collection time can remain unchanged, or even
increase. The tolerance value we chose varies only with the strategy, but not with
the size of the discriminant. We chose 2.0 for the base case and 0LP whereas we
set it to 2.3 for 1LP, 2.8 for 2LP and 3.0 for 2LP Batch. We eliminated columns
of weight up to w = 150 since Table 2 indicates that further elimination is
counter-productive.

Table 5 shows that there is an overall speed-up of of a factor of 2 for the small-
est discriminants and 4 for the largest. The base case with the largest discrimi-
nants suffers from the necessity of finding some relations in a more randomized
way. This ensures that we can get full rank submatrices of the relation matrix
after the Gaussian elimination to compute a small multiple of hΔ. Matrices pro-
duced using the large prime variants do not need this extra step, even with the
largest discriminants. This naturally affects the sieving time, since we cannot use
SIQS for that purpose, but also affects phases relying on linear algebra. Indeed,
elimination produces a matrix with larger entries and dimensions.

4.2 Large Example

The improvements we described allow us to compute class groups and regulators
of real number fields with larger discriminants than was previously possible. The
key is to parallelize the relation collection and verification phase, while the linear
algebra has to be performed the usual way. These methods were successfully
used in [4] to compute the class group structure of an imaginary quadratic field
with a 110-digit discriminant. We used a cluster with 260 2.4GHz Xeon cores to
compute a relation matrix corresponding to the discriminant Δ110 := 4(10110+3)
in 4 days. We allowed two large primes, used a tolerance value of 3.0, tested
batches of 100 residues, took w = 250 and set |B| = 13000 . Then, we used
three 2.4 GHz Opterons with 32GB of memory each to compute determinants
of full-rank submatrices of the relation matrix after the Gaussian elimination
in 1 day, and one 2.4GHz Opteron to compute the HNF modulo the GCD of
these determinants in 3 days. We had to find 4018 extra relations during the
verification phase that took 4 days on 96 2.4GHz Xeon cores. We thus obtained
that

ClΔ110
∼= Z/12Z× Z/2Z , (2)

and the corresponding regulator is

RΔ110 ≈ 70795074091059722608293227655184666748799878533480399.6730200233 .

We estimate that it would take two weeks (4000 relations per day) to complete
the relation collection for Δ120 with the same factor base as Δ110, thus requiring
a similar time for the linear algebra.
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5 Conclusions

Recently, our work has been extended to the problems of principal ideal testing
and solving the discrete logarithm problem in the ideal class group [5]. The
double large prime variant and improvements to relation generation translated
directly to improvements in this context. However, HNF computations are not
required for this problem, and linear system solving over Z can be used instead.
The numerical results were used to give estimates for discriminant sizes that
offer equivalent security to recommended sizes of RSA moduli.

Some possibilities for further improvements remain to be investigated. For
example, a lattice sieving strategy could be used to sieve ϕ(x, y) instead of
ϕ(x, 1). Factor refinement and coprime factorization techniques may be a useful
alternative to Bernstein’s batch smoothness test. Multiple large primes have
been successfully used for integer factorization and could also be tried in our
context.

There is also still room for improvement to the linear algebra components. For
example, a HNF algorithm that exploits the natural sparseness of the relation
matrix, perhaps as a black-box algorithm, would be useful. If such an algorithm
were available, we could reconsider using Gaussian elimination techniques since
they induce a densification of the matrix. We could also study the effect of
other dense HNF algorithms in existing linear algebra packages such as KASH,
Pari, Sage and especially MAGMA which seems to have the most efficient HNF
algorithm for our types of matrices. In that case, we would need the elimination
phase regardless of how these algorithms are affected by the density and the size
of the coefficients of the matrix. Indeed, we cannot afford manipulating a dense
representation of the matrix before the Gaussian elimination phase.
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Abstract. The negation map can be used to speed up the Pollard rho
method to compute discrete logarithms in groups of elliptic curves over
finite fields. It is well known that the random walks used by Pollard rho
when combined with the negation map get trapped in fruitless cycles. We
show that previously published approaches to deal with this problem are
plagued by recurring cycles, and we propose effective alternative coun-
termeasures. As a result, fruitless cycles can be resolved, but the best
speedup we managed to achieve is by a factor of only 1.29. Although this
is less than the speedup factor of

√
2 generally reported in the literature,

it is supported by practical evidence.

Keywords: Pollard’s rho method, fruitless cycles, negation map.

1 Introduction

The difficulty of the elliptic curve discrete logarithm problem (ECDLP) un-
derlies the security of cryptographic schemes based on elliptic curves over finite
fields [11,13]. The best method known to solve ECDLP for curves without special
properties is the parallelized [17] Pollard rho method [15]. A common optimiza-
tion is to halve the search space by identifying a point with its inverse [18,9,7].
Because representatives for the equivalence classes can quickly be computed us-
ing the negation map, this equivalence relation may result in a speedup by a
factor of up to

√
2 when solving ECDLP. For the elliptic curves over binary

extension fields F2t from [12], order t equivalence relations can be used as well,
resulting in a speedup by a factor of up to

√
2t [18,9].

Usage of the negation map in the context of the Pollard rho method leads
to fruitless cycles, useless cycles trapping the random walks. An analysis of
their likelihood of occurrence appeared in [7]. Various methods have been pro-
posed [18,9] to deal with them, all leading to costlier random walks and admin-
istrative overhead. The literature suggests that the resulting inefficiencies are
negligible, and that a speedup by a factor of

√
2 is attainable [1, Section 19.5.5].

We analyze fruitless cycles and the previously published methods to avoid
their ill effects and show that current approaches to escape from cycles suffer
from recurring cycles. These may have contributed to the lack of practical usage
of the negation map to solve prime field ECDLPs: it was not used for the solutions
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[10,6] of the 79-, 89-, 97- and 109-bit prime field Certicom challenges [5]. Neither
was it used by the independent current 112-bit prime field record [3].

We present and analyze alternative methods to deal with fruitless cycles. All
our analyses are supported by experiments. We found that the negation map
indeed leads to a speedup, but we have not been able to reach more than a
factor of 1.29, somewhat short of the

√
2 that we had hoped for. We also found

that the best attainable speedup depends on the platform one uses: for instance,
if the Pollard rho method is parallelized in SIMD fashion, it is a challenge to
achieve any speedup at all. This has consequences for the applicability of the
negation map in large scale prime field ECDLP solution attempts. For such ef-
forts, all participating processors must use the same random walk definition, so
one may desire to gear the implementation towards processors with the best per-
formance/price ratio, such as graphics cards (which are SIMT, a SIMD variant).

The negation map (while dealing with cycles) slows down random walks in
three ways. In the first place, on average more elliptic curve group operations are
required per step of each walk. This is unavoidable and attempts should be made
to minimize the number of additional operations. Secondly, dealing with cy-
cles entails administrative overhead and branching, which cause a non-negligible
slowdown when running multiple walks in SIMD-parallel fashion. Finally, the
best way to counter the effect of the higher average number of group operations
per step is making the walks “more random” by allowing a finer grained decision
per step. However, the beneficial effects of this approach are, in most circum-
stances on current processors, wiped out by cache inefficiencies. It will be seen
that it is best to strike a balance between the first and third of these slowdowns.
The second slowdown somewhat affects regular PCs, but is a major obstacle to
the negation map in SIMD environments.

This paper is organized as follows. Section 2 recalls background on ECDLP,
the Pollard rho method and fruitless cycles. Section 3 introduces recurring cycles
and presents and analyzes new methods to deal with them. Section 4 compares
the various cycle reduction, detection, and escape methods in practice.

2 Preliminaries

2.1 The Elliptic Curve Discrete Logarithm Problem

Let Fp denote a finite field of odd prime characteristic p. Any a, b ∈ Fp with
4a3+27b2 �= 0 define an elliptic curve Ea,b over Fp. The additively written group
of points Ea,b(Fp) of Ea,b over Fp is defined as the zero point o along with the
set of pairs (x, y) ∈ Fp × Fp that satisfy the shortened Weierstrass equation
y2 = x3 + ax + b. Let p, a, b and g ∈ Ea,b(Fp) of prime order q be such that the
index [Ea,b(Fp) : 〈g〉] is small. For h ∈ 〈g〉, the ECDLP is to find an integer m
such that mg = h. For curves without special properties, solving ECDLP is
believed to require an effort on the order of

√
q. Pollard’s rho method achieves

this run time, while requiring more or less constant memory.
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2.2 Pollard’s Rho Method

If objects are selected truly at random and with replacement from q objects, the
conditional probability at step n + 1 of finding the first duplicate (or collision)
is n

q (if n < q). Via straightforward arguments this leads to
√

πq/2 for the
expected number of steps until the first collision. If random objects are selected
as ug + vh ∈ 〈g〉 for random integer multipliers u, v, a collision corresponds
to u, v, ū, v̄ such that ug + vh = ūg + v̄h. Unless v̄ ≡ v mod q, the value m =
u−ū
v̄−v mod q solves the discrete logarithm problem. The expected number of steps
of this idealized version of Pollard’s rho method [15] is

√
πq/2.

r-adding and r+s-mixed walks. Pollard’s rho method uses an approximation
of a truly random walk in 〈g〉. Let, for a small integer r, an index function � :
〈g〉 �→ [0, r − 1] induce an r-partition 〈g〉 = ∪r−1

i=0 Gi of 〈g〉, where Gi = {x : x ∈
〈g〉, �(x) = i} and all Gi have cardinality close to q

r . For random integers ui, vi,
elements fi = uig + vih ∈ 〈g〉 are precomputed for 0 ≤ i < r. Starting at a
random but known multiple of g, the successor of a point p of the walk is defined
as p + f�(p) ∈ 〈g〉. It is easy to keep track of the u, v such that p = ug + vh.

Such an r-adding walk results in an expected number of steps until a collision
occurs that is somewhat larger than

√
πq/2, as shown by Brent and Pollard [4]

and expanded upon in [2]. Assume that � is perfectly random. Let pi = #Gi

q .
A point in the walk is said to belong to class i if its predecessor upon its first
occurrence belongs to Gi. If the nth point belongs to Gj (with probability pj)
and the (n + 1)st point produces the first collision, the collision point cannot be
of class j (this happens with probability pj), since then the collision would have
occurred in step n. Therefore, the probability that the first collision occurs at
step n + 1 is

n

q
(1−

r−1∑
j=0

p2
j).

With q′ = q

1−∑ r−1
j=0 p2

j

this is n
q′ . We get via the same arguments referred to above√
πq′

2
=
√

πq

2(1−
∑r−1

j=0 p2
j)

(1)

for the expected number of steps until the first collision.
Pollard [15] uses r = 3, f0 = h, and f2 = g, but replaces the i = 1 case by the

doubling 2p. Teske [16] shows that a larger r, such as r = 20, leads to better
performance on average, conform the analysis, even if none of the choices does
an explicit doubling, as Pollard’s i = 1 case.

Inclusion of doublings leads to r + s-mixed walks : with � : 〈g〉 �→ [0, r + s− 1]
partitioning 〈g〉 into r+s parts of cardinality close to q

r+s , the next point equals
p + f�(p) if 0 ≤ �(p) < r, but 2p if �(p) ≥ r. Pollard’s walk is a 2 + 1-mixed walk.
The analysis above applies again, assuming that we consider the doublings as one
class, hit with probability pD. Experiments by Teske show that best performance
is achieved for s

r between 1
4 and 1

2 but that apart from the case r = 3 mixed
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walks are not significantly better. The analysis and our own experiments, as
reported below, suggest that the optimal ratio s

r is close to zero.
Per step the occurrence probability of the event p = fi (and thus a chance to

solve the discrete logarithm problem) is negligible compared to the probability of
a birthday collision. So, for r-adding walks doublings most likely will not occur.

Parallelized random walks. Parallelization of Pollard’s rho method does not
consist of running any number of random walks in parallel, until one of them
collides: on M processors the expected speedup would be by a factor of

√
M , so

overall it would require
√

M more processing power than a single processor. The
proper way to parallelize Pollard’s rho method is presented in [17]. It achieves
an M -fold speedup on M processors, thus requiring the same overall processing
power as a single process, but in 1

M th of the time. Different processes must be
able to efficiently recognize if, probably at different points in time, their walks
collide. To achieve this, each process generates a single random walk, each from
its own random starting point, but all using the same index function � and the
same fi’s. As soon as a walk hits upon a distinguished point, this point is reported.
The idea is that when two walks collide – without noticing it – they will keep
taking the same steps (because they use the same walk definition) and will thus
both ultimately reach the same distinguished point. This will be noticed when
the colliding distinguished point is reported. The discrete logarithm can then be
computed from the two, hopefully distinct, pairs of integer multipliers u, v that
correspond to the same distinguished point.

A distinguished point must be easy to recognize, occur with low enough prob-
ability to make it possible to store them all and to efficiently find collisions, but
occur often enough for every walk to hit one. The distinguishing property could
be that k specific bits of the point’s x-coordinate are zero, in which case walks
may hit a distinguished point once every 2k steps.

The parallelized version of Pollard’s rho method requires a unique, and thus
affine, point representation to make the walks well-defined and to recognize dis-
tinguished points. The fastest suitable type of elliptic curve group arithmetic
uses the affine Weierstrass point representation. Per group operation, it requires
a (usually expensive) modular inversion. Its cost is amortized among the walks
running in parallel per processor, at the cost of three modular multiplications per
step per walk, using Montgomery’s simultaneous inversion [14]. Point doubling
requires an extra modular squaring compared to regular non-doubling point
addition. This makes doubling on average about 7

6 times slower than regular
addition when parallelized walks and simultaneous inversion are used.

Using automorphisms. Following [18], define an equivalence relation ∼ on 〈g〉
by p ∼ −p for p ∈ 〈g〉 and, instead of searching 〈g〉 of size q, search 〈g〉/∼ of size
about q

2 . Denoting the equivalence class containing p and −p by ∼p, it may be
represented by the element with y-coordinate of least absolute value. It is trivial
to calculate since −(x, y) = (x,−y) for (x, y) ∈ 〈g〉. Thus, using this negation
map one would expect to save a factor of

√
2 in the number of steps.

For r-adding and r + s-mixed walks the speedup by a factor of
√

2 is slightly
too pessimistic. Let the definitions of pi, pD, and of class i be as above. Assume
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Table 1. Number of steps required by the Pollard rho method in random elliptic curve
groups of 31-bit prime order q over prime fields of random 31-bit prime characteristic p,
divided by

√
πq/2 or by

√
πq/4 (without or with the negation map). Lowest and highest

averages are over 10 measurements. Each measurement calculates the average number
of steps taken until a collision occurs, over 100 000 collision searches where for each
search a prime p and an elliptic curve over Fp are randomly selected until the order q of
the group of points is prime. Overall average is the average of the 10 averages (thus, the
average over one million searches). Expression (1) and (2) columns are the quotients as
expected based on expressions (1) (with pi = 1

r
for 0 ≤ i < r) and (2) (with pi = 1

r+s

for 0 ≤ i < r and pD = s
r+s

), respectively. Those expressions are for q → ∞ and indeed
for larger (smaller) q they give a better (worse) fit.

Without negation map With negation map
Averages Expression Averages Expression

lowest overall highest (1) lowest overall highest (2)
8-adding 1.079 1.083 1.085 1.069 1.035 1.039 1.042 1.033
16-adding 1.032 1.037 1.040 1.033 1.015 1.017 1.020 1.016
32-adding 1.014 1.018 1.019 1.016 1.007 1.009 1.011 1.008
16 + 4-mixed 1.041 1.043 1.044 1.043 1.036 1.038 1.040 1.031
16 + 8-mixed 1.075 1.078 1.081 1.078 1.075 1.077 1.079 1.069

that the nth point belongs to Gj and that the (n + 1)st point produces the first
collision while hitting the representative p, directly or after negation. If this step
is a doubling then the analysis is as above. This happens with probability p2

D.
Otherwise, we only exclude the case that, as a result of just the addition, the

two predecessors hit the same point (p or −p). This happens with probability
p2

j

2 .
Therefore, the probability that the first collision occurs at step n + 1 is

2n

q
(1− p2

D −
r−1∑
j=0

p2
j

2
).

As above we get √
πq

4(1− p2
D − 1

2

∑r−1
j=0 p2

j)
(2)

for the expected number of steps until the first collision. For the same parameter
values this expression is more than

√
2 smaller than Expression (1). However,

usage of the negation map requires modifications to the iteration function due
to the occurrence of fruitless cycles. This disadvantage of the negation map was
already pointed out in [9,18]. It is the focus of this article.

The group 〈g〉 may admit other trivially computable maps. For Koblitz curves
the Frobenius automorphism of a degree t binary extension field leads to a further√

t-fold speedup. This does not apply to the case considered here.

Small scale experiments. We checked the accuracy of predictions based on
expressions (1) and (2). The results, for 31-bit primes q, are listed in Table 1.
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With all averages larger than 1, both r-adding and r+s-mixed walks on average
perform worse than truly random walks. For most walks with the negation map
the averages are lower than their negation-less counterparts, indicating that the
reduction factor in the expected number of steps is indeed larger than

√
2. This

does not imply a speedup by the same factor, because to obtain the figures costly
fruitless cycle detection methods had to be used. It can be seen that r+s-mixed
walks are disadvantageous if s > r

4 .

2.3 Fruitless Cycles

Straightforward application of the negation map to Pollard’s rho method with
r-adding or r + s-mixed walks does not work due to fruitless cycles. This section
describes the current state-of-the-art of dealing with those cycles.

Length 2 cycles. If a random walk step goes from p to −p − fi (with proba-
bility 1

2 , for some i) and −p− fi ∈ Gi (with probability 1
r ), then the next point

after −p− fi is p again (with probability 1), thereby cancelling the effect of the
previous step. It follows that a fruitless 2-cycle starts from a random point with
probability 1

2r , cf. [7, Proposition 31]. This 2-cycle is denoted as

p
(i,−)−→ −(p + fi)

(i,−)−→ p.

Here “(i, s)” with s ∈ {−, +} indicates that addition constant fi is added to a
point p after which the result is left as is (s = +) or negated (s = −) to find the
correct representative (p + fi if s = +, or −p− fi if s = −). Any walk with two
consecutive steps “(i,−)” is trapped in an infinite loop. Because this happens
with probability 1

2r , all walks can be expected to end up in fruitless cycles after
a moderate number of steps when the negation map is used with r-adding walks.

Looking ahead to reduce 2-cycles. To reduce the occurrence of 2-cycles,
Wiener and Zuccherato propose to use a more costly iteration function that
results in a lower probability that two successive points belong to the same
partition [18]. This can be achieved by using the first i of �(p), �(p) + 1, . . .,
�(p) + r − 1 such that i mod r �= �(∼ (p + fi)), if such an index exists (here and
in the sequel indices i in fi are understood to be taken modulo r). Thus, define
the next point as f(p) with f : 〈g〉 → 〈g〉 defined by

f(p) =
{

E(p) if j = �(∼(p + fj)) for 0 ≤ j < r
∼(p + fi) with i ≥ �(p) minimal s.t. �(∼(p + fi)) �= i mod r.

The function E : 〈g〉 → 〈g〉 may restart the walk at a new random initial point.
The latter is expected to happen once every rr steps and will therefore not affect
the efficiency. The expected cost per step of the walk is increased by a factor of∑r

i=0
1
ri , which lies between 1 + 1

r and 1 + 1
r−1 .

Dealing with fruitless cycles in general. Although the look-ahead technique
reduces the frequency of 2-cycles, they may still occur [18]. This is elaborated
upon in Section 3. Even so, it is well known that just addressing 2-cycles does
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Fig. 1. Total number of steps per second as a function of r, taken by 200 parallel
r-adding walks sharing the modular inversion and not using the negation map, for
Pollard’s rho method applied to a 131-bit prime ECDLP

not solve the problem of fruitless cycles, because longer cycles will occur as
well. Reducing their occurrence requires additional overhead on top of what is
already incurred to reduce 2-cycles. Given that fruitless cycles are unavoidable,
they must be effectively dealt with when they occur.

In [9] a general approach is proposed to detect cycles and to escape from
them: after α steps record a length β sequence of successive points and compare
the next point to these β points. If a cycle is detected a cycle representative p is
chosen deterministically from which the cycle is escaped. One may add f�(p)+c

for a fixed c ∈ [2, r− 1] (the choice c = 1 is bad as it could lead to an immediate
cycle recurrence). Instead one may add a distinct precomputed value f′ that does
not depend on the escape-point, or one may add f′′�(p) from a distinct list of r

precomputed values f′′0 , f′′1 , . . . , f′′r−1.
In the next section we discuss fruitless cycles in greater detail and propose

alternative methods that avoid problems that the method from [9] may run into.

3 Improved Fruitless Cycle Handling

The probability to enter a fruitless cycle decreases with increasing r [7]. This
does not imply that it suffices to take r large enough to make the probability suf-
ficiently low. Fig. 1 depicts the effect of increasing r-values on the performance
of an r-adding walk, measured as number of steps per second. The performance
deterioration can be attributed to the increasing rate of cache misses during
retrieval of the addition constants fi. The effect varies between processors, im-
plementations, and elliptic curves. It is worsened for more contrived walks, such
as those using the negation map where cycle reduction, detection and escape
methods are unavoidable. Unless the expected overall number of steps (of or-
der
√

q) is too small to be of interest, r cannot be chosen large enough to both
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p
−p−fi
= q

p
−p−fi
= q

(i−1, ..) (i−1, ..) (i−1, ..) (i−1, ..)

�(∼(p+fi−1))
= i−1

�(∼(q+fi−1))
= i−1

p̄ =
∼(p+fi−1)

q̄ =
∼(q+fi−1)

�(∼(p̄+fj))
∈ {i−1, j}

�(∼(q̄+fk))
∈ {i−1, k}

(i,−)

(i,−)

(k, ..)(j, ..)

(i,−)

(i,−)

Fig. 2. 2-cycles caused by 2-cycle reduction (left) and 4-cycle reduction. The dotted
steps are prevented.

avoid fruitless cycles and achieve adequate performance. Therefore, in this sec-
tion we concentrate on other ways to deal with fruitless cycles. We first discuss
short-cycle reduction techniques, next discuss cycle detection methods and ana-
lyze their behavior, and finally propose alternative methods.

3.1 Short Fruitless Cycle Reduction

2-cycles. Unfortunately, the look-ahead technique to reduce 2-cycles presented
above introduces new 2-cycles. The dotted lines in the left example in Fig. 2 are
the steps taken by the regular iteration function, the new cycle is depicted by
the solid lines which are the steps taken as a result of f(p) and f(q). This new
cycle occurs with probability 1

2r3 . It is the most likely 2-cycle introduced by the
look-ahead technique.

Lemma 1. The probability to enter a fruitless 2-cycle when looking ahead to
reduce 2-cycles while using an r-adding walk is

1
2r

(
r−1∑
i=1

1
ri

)2

=
(rr−1 − 1)2

2r2r−1(r − 1)2
=

1
2r3 + O

(
1
r4

)
.

Proof. With i as in the definition of f , the probability is r−c that i ≥ �(p) + c
for 0 ≤ c < r (considering the case E(p) as i = ∞), hence i = �(p) + c with
probability r−1

r
1
rc .

We compute the probability of entering a cycle consisting of points p and q
starting at p. Let j = �(p) and k = �(q), and let the steps from p to q and back
be adding fj+c and fk+d, respectively. This implies that j + c ≡ k + d mod r and
that the step from p to q involves a negation. From the definition of f it follows
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�(∼(p̃+ fk)) ∈ {i, k} �(∼(q̃+ fn) ∈ {j, n}

p̃ =∼(p+ fi) ∼(−p− fj+1 + fj) = q̃

p

(j + 1,−)

−p− fj+1

p+ fi+1

(j + 1,−)

−p− fi+1 − fj+1

p̄ =∼(p+ fi+1 + fj) ∼(−p− fi+1 − fj+1 + fi) = q̄

�(∼(p̄+ fl)) ∈ {j, l} �(∼ (q̄+ fm)) ∈ {i,m}

(i+ 1,+) (i+ 1,+)

(i, ..)

(k, ..)

(j, ..)

(n, ..)

(j, ..)

(l, ..)

(i, ..)

(m, ..)

Fig. 3. A 4-cycle when the 4-cycle reduction method is used

that �(q) �≡ j + c mod r, thus d �= 0 and by symmetry c �= 0. Since j is given
and k is determined by j, c and d, the probabilities must be summed over all
possible c and d. The probability for a c, d pair is the product of the following
probabilities:

• r−1
r

1
rc for the first step being c;

• 1
2 for the sign;
• 1

r−1 for �(∼(p + fj+c)) = k

(we know already that �(∼(p + fj+c)) �≡ j + c �≡ k mod r);
• 1

rd for the second step being d (since �(∼(q + fk+d)) �≡ k + d mod r).

This results in the probability
1
2r

r−1∑
c=1

r−1∑
d=1

1
rc

1
rd

. ��

We conclude that, even when the look-ahead technique is used, 2-cycles are still
too likely to occur for relevant values of q and r. Some of the new 2-cycles are
prevented by other short-cycle reduction methods, but the remaining ones must
be dealt with using detection and escape methods. This is discussed below.

4-cycles. Unless the addition constants fi have been chosen poorly, 3-cycles do
not occur as a direct result of the negation map, so that 4-cycles are the next
type of short cycles to be considered. Excluding again that the fi have unlikely
properties, a fruitless 4-cycle without proper sub-cycle is of the form

p
(i,+)−→ p + fi

(j,−)−→ −p− fi − fj
(i,+)−→ −p− fj

(j,−)−→ p.

The cycle may be entered at any of its four points. Hence, a fruitless 4-cycle
starts from a random point with probability r−1

4r3 . This is a lower bound for the
probability of occurrence of 4-cycles when looking ahead to reduce 2-cycles.
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An extension of the 2-cycle reduction method looks ahead to the first two
successors of a point, thereby reducing the frequency of 2-cycles and 4-cycles,
while still being deterministic:

g(p) =

⎧⎪⎪⎨⎪⎪⎩
E(p) if j ∈ {�(q), �(∼(q + f�(q)))} or �(q) = �(∼(q + f�(q)))

where q =∼(p + fj), for 0 ≤ j < r,
q =∼(p + fi) with i ≥ �(p) minimal s.t.

i mod r �= �(q) �= �(∼(q + f�(q))) �= i mod r.

Compared to f(p), the probability that E is called increases from (1
r )r to at least

(2
r )r because �(∼(q+ f�(q))) ∈ {j mod r, �(q)} with probability 2

r for each j. This
iteration function is at least r+4

r times slower than the standard one, because
with probability 2

r at least two additional group operations need to be carried
out, an effect that is slightly alleviated by a factor of ( r−1

r )
1
2 since the image of g

is a subset of 〈g〉 of cardinality approximately r−1
r q. The value ∼(q+f�(q)) can be

stored for use in the next iteration. Usage of g reduces the occurrence of 4-cycles,
and also prevents some of the 2-cycles newly introduced by the 2-cycle reduction
method (such as the one depicted on the left in Fig. 2). But g introduces new
types of 2-cycles and 4-cycles as well, both of which do indeed occur in practice.
A newly introduced 2-cycle is shown in the right example in Fig. 2. There the
points p̄ and q̄ are �∈ Gi−1 ∪ Gi. This 2-cycle occurs with probability 2(r−2)2

(r−1)r4 ,
which is therefore a lower bound for the probability of 2-cycles when using the
4-cycle reduction method. Fig. 3 depicts an example of a newly introduced 4-
cycle: the points reached via dotted lines belong to a partition different from
their predecessors. The probability that such a 4-cycle starts from a random
point is at least 4(r−2)4(r−1)

r11 .
We have not been able to design or to find in the literature short-cycle reduc-

tion methods that do not introduce other (lower probability) short cycles. We
therefore turn our attention to cycle detection and escape methods.

3.2 Cycle Detection and Escape

Recurring cycles. The cycle detection and escape method from [9] described
in Section 2.3, does not prevent recurrence to the same cycle. When using f�(p)+c

to escape (we fixed c = 4 as it worked as well as any other choice �= 1), Fig. 4
depicts how the (wavy) escape from the (solid) 4-cycle recurs to the 4-cycle via
one of the dotted possibilities. The probability of recurrence depends on the
escape method and on which point in the cycle the walk recurs to. With f�(p)+c

as escape, immediate recurrence to the escape point happens with probability 1
2r

when no cycle reduction is used, recurrence happens with probability at least 1
2r2

with 2-cycle reduction, and with probability at least (r−2)2

r4 with 4-cycle and thus
2-cycle reduction. Similar recurrences occur, with lower probabilities, when f′ or
f′′�(p) are used to escape.

Lemma 2. Lower bounds for the probabilities to enter 2-cycles or 4-cycles or
to recur to cycles for three different cycle escape methods are listed in Table 2
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−p− fi − fj

p

−p− fj

(i,+)

(j,−)

p+ fi

(j,−)

(i,+)

p+ fk

(k,+) −p− fk − fj

(j,−)

(k,+)

−p− fi − fk

(i,−)

(k,−)

Fig. 4. Escaping from a fruitless 4-cycle, and recurring to it (i �= j �= k �= i)

if no cycle reduction, or 2-cycle reduction (f), or 4-cycle reduction (g) is used,
along with a lower bound for the slowdown factor caused by f or g.

Proof. The proofs for many entries of Table 2 were given earlier. We prove the
entries in rows four and five.

Let p be the escape point and let q be the point it escapes to. Using f′ or f′′�(p)
one can recur to the escape point p by entering another cycle at q and escaping
from it at q again. This new cycle could be a 2-cycle. For this to happen the first
escape step to q has to involve a negation (probability 1

2 ), a 2-cycle has to be
entered at q (probabilities in first row, but see below), the escape point of this
2-cycle has to be q (probability 1

2 ), and, in the case of f′′i , the partition that q
belongs to has to be the same as the one p belongs to (probability 1

r ). In the
case of 4-cycle reduction the probability to enter a 2-cycle at q is slightly lower
since we do not have the information that �(∼(q + f�(q))) �= �(q); a calculation
analogous to the one done at the end of Section 3.1 produces the values listed
in the table. ��

6-cycles. With proper fi and no sub-cycle, a common 6-cycle is of the form

p
(i,+)−→ p+fi

(j,−)−→ −p−fi−fj
(k,+)−→ −p−fi−fj+fk

(i,+)−→ −p−fj+fk
(j,−)−→ p−fk

(k,+)−→ p

(i �= j �= k �= i) where with appropriate sign changes steps four and five may be
swapped. It may be entered at any of its six points and occurs, when using 4-cycle
reduction, with probability 1

4r3 + O( 1
r4 ). A lower bound to recur to it follows by

multiplying this probability with the recurring probabilities from Table 2.
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Table 2. Summary of effect of cycle reduction, detection, and escape methods. With
the exception of the two bold entries, all figures are lower bounds.

Cycle reduction method: none 2-cycle 4-cycle

Probability to enter

{
2-cycle

4-cycle

1
2r

1
2r3

2(r−2)2

(r−1)r4

r−1
4r3

r−1
4r3

4(r−2)4(r−1)

r11

Probability to recur to escape point using

⎧⎪⎨⎪⎩
f�(p)+c

f′

f′′�(p)

1
2r

1
2r2

(r−2)2

r4

1
8r

1
8r3

(r−2)2

2r5

1
8r2

1
8r4

(r−2)2

2r6

Slowdown factor of iteration function n/a r+1
r

r+4
r

3.3 Alternative Approaches

The purpose of using the negation map is to obtain a speedup, hopefully by a
factor of

√
2. From Fig. 1 it follows that large r-values cannot be used. From

Table 2 it follows that for small r-values and relevant q-values fruitless cycles
are likely to occur and recur. Medium r-values look the most promising, but are
not compatible with all environments.

Since fruitless cycle occurrence and recurrence cannot be rooted out, alterna-
tive methods are needed if we want to make the negation map useful. In this
section several possibilities are offered.

Heuristic. A cycle with at least one doubling is most likely not fruitless.

Proof. Let p = ug + vh be a point on the cycle. The subsequent points are
obtained by adding one of the fi or by doubling, and negating if needed, thus
are up to sign linear combinations of the fi and a power-of-two multiple of p. If
c ≥ 1 is the number of doublings in the cycle, we get a relation of the form

p = ±2cp +
r−1∑
i=0

cifi = ±2cp +
r−1∑
i=0

ciuig +
r−1∑
i=0

civih and thus

(
(1∓ 2c)u −

r−1∑
i=0

ciui

)
g +

(
(1∓ 2c)v −

r−1∑
i=0

civi

)
h = 0,

where ci ∈ Z. Since 1 ∓ 2c �= 0, the expression
(
(1∓ 2c)u−

∑r−1
i=0 ciui

)
is most

likely not divisible by the group order. This also holds if {fi : 0 ≤ i < r} is
enlarged with f′ or with {f′′i : 0 ≤ i < r}. This concludes our heuristic argument.

Cycle reduction by doubling. The regular structure required for cycles is
caused by repeated addition and subtraction using the same set of constants.
This structure would be broken effectively by using an occasional doubling, i.e.,
a mixed walk. If such walks are used, the heuristics suggest that cycles occur
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only between two doublings. If the doubling frequency is sufficiently high, only
short cycles would have to be dealt with.

As borne out by expressions (1) and (2) when using the idealized values pi =
1

r+s for 0 ≤ i < r and pD = s
r+s for r > 0, and as supported by the experiments

reported in Table 1, an r + s-mixed walk with s > 1 always displays noticeably
less random behavior than a well-partitioned r′-adding walk for any r′ > r.
Nevertheless, using properly tuned r + s-mixed walks may be a way to address
the cycle problem while avoiding impractically large r-values.

However, r + s-mixed walks have disadvantages caused by the underlying
arithmetic. Given the relative speeds of addition and doubling, an r + s-mixed
walk is r+7s/6

r+s times slower than an r-adding walk. In a SIMD environment
where many walks are processed simultaneously, per step a fraction of about

r
r+s of the walks will do an addition, whereas the others do a doubling. If the
addition and doubling code differ, as is the case for the affine Weierstrass rep-
resentation, the two types of steps cannot be executed simultaneously. Thus, in
such environments, to avoid a slowdown by a factor of more than 2 one needs
to swap walks to make all parallel step-operations identical (at non-negligible
overhead), or one has to settle for a suboptimal affine point representation that
allows identical code. SIMD-application of the negation map and the possibility
of another point representation are subjects for further study.

Doubling based cycle reduction and escape. Taking into account that dou-
bling should not be used too frequently, usage could be limited to cycle reduction
or escape. This would not solve the SIMD-issue, but the relative inefficiency and
non-randomness would be addressed. If doublings are used to escape from fruit-
less cycles, they would not recur, as that would contradict the heuristics. Cycle
reduction using doubling replaces f(p) and g(p) by f̄(p) and ḡ(p), respectively,
where

f̄(p) =
{
∼(p + f�(p)) if �(p) �= �(∼(p + f�(p))),
∼(2p) otherwise,

ḡ(p) =
{

q =∼(p + f�(p)) if �(q) �= �(p) �= �(∼(q + f�(q))) �= �(q),
∼(2p) otherwise.

It follows from the heuristics that these functions avoid recurring fruitless cycles.

Alternative cycle detection. Because shorter cycles are more frequent, a
potentially interesting modification of the cycle detection method from [9] (de-
scribed at the end of Section 2.3) would be to occasionally compare a point to
its kth successor, where k is the least common multiple of all even short cycle
lengths that one wants to catch. Detecting, for instance, cycles up to length
12 requires only 1

120 th comparison per step. This can be done in several steps,
recording every 12th point to catch 4- and 6-cycles, recording every 10th of
these recorded points to catch 8- and 10-cycles, etc. It can be combined with the
regular method with large α and β to catch longer cycles infrequently.

However, if a cycle has been detected the k points need to be recorded as
before, so an escape point can be chosen deterministically. This argues against
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using large k. It also suggests that an improvement can be expected only if cycles
occur with low probability, and therefore that the improvement will be marginal
at best (cf. α and β choices in Section 4). For this reason we did not conduct
extensive experiments with this method.

4 Comparison

We implemented and compared on a traditional non-SIMD platform all previ-
ously published and newly proposed methods to deal with fruitless cycles when
using the negation map. Here we report on our findings. It quickly turned out
that the cycle detection methods from [9] when combined with doubling based
cycle reduction and escape, are considerably more efficient than r+s-mixed walks
with their on average slower steps and less random behavior. Mixed walks are
therefore not further discussed. Experiments with the alternative cycle detection
method were quickly abandoned as well.

For each combination of iteration function, escape method, and r-value a
search was conducted to determine the α and β to be used for the cycle detection
method from [9]. Using a heuristic argument that for β = 2k with k much smaller
than r, cycles of length ≥ β occur with probability on the order of (k−1)!

(2r)k , values
for k that make this probability low enough resulted in good initial values for
the search for close to optimal α and β. To give some examples, for “f , e,” as
explained in Table 3 we used α = 31 and β = 20 for r = 16, α = 3264 and
β = 12 for r = 128, and α = 52 418 and β = 10 for r = 256. For “f̄ , ē” and
the same r-values we used the same β-values but replaced the α-values by 1 618,
838 848, and 53 687 081, respectively.

Each of the benchmarks presented in Table 3 was run on a single core of an
AMD Phenom 2.2GHz 4-core processor, with each of the four cores processing
a different combination. A 10-bit distinguishing property was used to get a sig-
nificant amount of data in a reasonable amount of time. This somewhat affects
the performance, but not the cycle behavior as walks continue after hitting a
distinguished point. The figures in millions as given in the table are thus an
underestimate for the actual per-core yield in units when a more realistic 30-bit
distinguishing property would be used (since 230/210 = 220 ≈ 106).

In order to be able to compare the long term yield figures, the expected
number of steps must be taken into account using expressions 1 and 2. As a
result, the yields are corrected by a factor of ( r−1

r )
1
2 for the iteration functions

that do not use the negation map, and by a factor of (2r−1
r )

1
2 for the others, with

an extra factor of ( r
r−1 )

1
2 for g and ḡ. After this correction, the best iteration

function without the negation map is the one with r = 64. Comparing that
one with each iteration function that uses the negation map, thus boosting the
latter’s yield ratio by a factor of C = ((2r−1

r )/(63
64 ))

1
2 or C = ((2r−1

r−1 )/(63
64 ))

1
2

for g and ḡ, leads to the long term speedup figure given in Table 3. Note that
the correction factor C depends on the iteration function, and is close to and for
some r larger than

√
2.
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Table 3. For the (iteration function, escape method, r-value) combinations specified,
the non-italics entries list the long term yield (millions of distinguished points, found
during the second half hour) and the long term speedup over the best r-value (r = 64)
without the negation map, taking into account the correction factor C as explained
in the text. Cycle detection and subsequent escape by adding f�(p)+4, f′, f′′�(p) and by
doubling is indicated by “e,” “e′,” “e′′” and by “ē,” respectively. The iteration func-
tions f (2-cycle reduction), g (4-cycle and 2-cycle reduction), f̄ (2-cycle reduction using
doubling), and ḡ (4-cycle and 2-cycle reduction using doubling) are as in sections 2.3,
3.1 and 3.3. The yields are for 256 parallel walks (sharing the inversion) for a 131-bit
ECDLP with a 131-bit prime order group. The yields during the first half hour are
almost consistently higher, considerably so for poorly performing combinations. They
are not meaningful and are thus not listed. The italics entries are A above D, followed
by the maximal achievable speedup factor of C(109−A)

109+D/6
, as explained in the text.

†: This applies to “no reduction, no escape,” “just f ,” “just f̄ ,” “just e,” and “just e′.”

r = 16 r = 32 r = 64 r = 128 r = 256 r = 512

Without negation map
7.29: 0.98 7.28: 0.99 7.27: 1.00 7.19: 0.99 6.97: 0.96 6.78: 0.94

With negation map
† 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00
just g 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.04: 0.01 3.59: 0.70
just ḡ 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.75: 0.15 4.90: 0.96 5.90: 1.16
just e′′ 0.00: 0.00 0.00: 0.00 0.00: 0.00 0.61: 0.12 4.94: 0.97 5.73: 1.12
just ē 3.34: 0.64 4.89: 0.95 5.85: 1.14 6.10: 1.19 6.28: 1.23 6.18: 1.21

f , e 0.00: 0.00 0.00: 0.00 1.52: 0.30 5.93: 1.16 6.47: 1.27 6.36: 1.25
9.4e8
0.0e0}0 .08 6.6e8

0.0e0}0 .48 1.0e8
0.0e0}1 .28 3.6e7

0.0e0}1 .37 2.9e7
0.0e0}1 .38 2.5e7

0.0e0}1 .39

f , e′ 0.00: 0.00 3.24: 0.63 6.04: 1.18 6.41: 1.25 6.29: 1.23 6.21: 1.22
3.9e8
0.0e0}0 .86 8.0e7

0.0e0}1 .30 4.6e7
0.0e0}1 .35 3.3e7

0.0e0}1 .38 2.9e7
0.0e0}1 .38 2.6e7

0.0e0}1 .39

f , e′′ 0.00: 0.00 5.34: 1.04 6.21: 1.21 6.30: 1.23 6.20: 1.21 5.99: 1.17
1.3e8
0.0e0}1 .22 6.0e7

0.0e0}1 .33 4.2e7
0.0e0}1 .36 3.3e7

0.0e0}1 .38 2.9e7
0.0e0}1 .38 2.7e7

0.0e0}1 .39

f , ē 3.71: 0.72 6.36: 1.24 6.50: 1.27 6.57: 1.29 6.47: 1.27 6.30: 1.25
9.2e7
9.9e5}1 .27 6.8e7

2.8e5}1 .32 4.2e7
6.5e4}1 .36 3.3e7

1.5e4}1 .38 2.9e7
3.8e3}1 .38 2.7e7

9.7e2}1 .39

g, e 0.00: 0.00 0.01: 0.00 4.89: 0.96 6.22: 1.22 6.23: 1.22 6.05: 1.19
8.7e8
0.0e0}0 .19 3.7e8

0.0e0}0 .91 6.6e7
0.0e0}1 .34 4.2e7

0.0e0}1 .37 3.3e7
0.0e0}1 .38 1.3e7

0.0e0}1 .41

g, e′ 0.00: 0.00 0.01: 0.00 5.32: 1.05 6.26: 1.23 6.25: 1.23 6.11: 1.20
7.8e8
0.0e0}0 .32 3.0e8

0.0e0}1 .00 6.0e7
0.0e0}1 .35 4.1e7

0.0e0}1 .37 3.0e7
0.0e0}1 .38 5.5e7

0.0e0}1 .35

g, e′′ 0.00: 0.00 1.09: 0.21 5.37: 1.13 6.08: 1.20 6.06: 1.19 5.86: 1.15
7.6e8
0.0e0}0 .34 1.2e8

0.0e0}1 .27 6.0e7
0.0e0}1 .35 4.2e7

0.0e0}1 .37 3.5e7
0.0e0}1 .38 4.3e7

0.0e0}1 .37

g, ē 0.76: 0.15 5.91: 1.17 6.02: 1.18 6.25: 1.23 6.13: 1.20 6.00: 1.18
3.3e8
1.6e5}0 .97 1.7e8

6.0e4}1 .19 8.1e7
8.1e3}1 .32 5.4e7

1.0e3}1 .35 4.0e7
1.2e2}1 .37 2.7e7

9.0e0}1 .39

f̄ , e 0.00: 0.00 0.00: 0.00 2.70: 0.53 5.96: 1.16 6.34: 1.24 6.20: 1.21
8.7e8
2.4e6}0 .18 4.3e8

1.7e7}0 .80 5.4e7
1.5e7}1 .34 1.1e7

7.7e6}1 .41 1.0e7
3.9e6}1 .41 1.4e7

1.9e6}1 .40

f̄ , e′ 0.01: 0.0 4.24: 0.82 6.32: 1.23 6.43: 1.26 6.33: 1.24 6.20: 1.22
2.6e8
4.3e7}1 .03 6.8e7

2.9e7}1 .31 3.9e7
1.5e7}1 .36 3.2e7

7.6e6}1 .38 2.8e7
3.8e6}1 .38 2.7e7

1.9e6}1 .39

f̄ , e′′ 1.34: 0.26 5.80: 1.13 6.23: 1.22 6.21: 1.22 6.15: 1.20 6.00: 1.18
8.9e7
5.2e7}1 .27 5.3e7

2.9e7}1 .33 3.9e7
1.5e7}1 .36 3.6e7

7.5e6}1 .37 2.8e7
3.8e6}1 .38 2.6e7

1.9e6}1 .39

f̄ , ē 5.58: 1.06 6.14: 1.18 6.34: 1.23 6.42: 1.25 6.27: 1.23 6.07: 1.19
6.1e7
4.2e7}1 .31 3.7e7

3.0e7}1 .36 1.8e7
1.5e7}1 .39 1.1e7

7.7e6}1 .41 1.0e7
3.9e6}1 .41 1.4e7

1.9e6}1 .40

ḡ, e 2.56: 0.51 5.80: 1.15 6.02: 1.18 6.09: 1.20 6.19: 1.21 5.74: 1.13
1.4e8
9.9e7}1 .23 7.9e7

5.6e7}1 .31 5.1e7
2.9e7}1 .35 4.1e7

1.5e7}1 .37 2.6e7
7.6e6}1 .39 7.7e6

3.9e6}1 .41

ḡ, e′ 4.74: 0.94 5.88: 1.16 6.14: 1.21 6.28: 1.23 6.05: 1.19 5.80: 1.14
1.2e8
1.0e8}1 .25 7.8e7

5.6e7}1 .31 5.3e7
2.9e7}1 .35 3.9e7

1.5e7}1 .37 2.6e7
7.6e6}1 .39 7.7e6

3.9e6}1 .41

ḡ, e′′ 4.72: 0.94 5.80: 1.15 6.08: 1.20 6.05: 1.19 5.91: 1.16 5.67: 1.11
1.2e8
1.0e8}1 .25 7.7e7

5.6e7}1 .31 5.3e7
2.9e7}1 .35 3.8e7

1.5e7}1 .37 1.8e7
7.6e6}1 .40 7.7e6

3.9e6}1 .41

ḡ, ē 4.83: 0.96 5.87: 1.16 6.09: 1.20 6.16: 1.21 6.09: 1.20 5.70: 1.12
1.2e8
1.0e8}1 .25 7.9e7

5.6e7}1 .31 5.2e7
2.9e7}1 .35 4.0e7

1.5e7}1 .37 2.6e7
7.6e6}1 .39 7.7e6

3.9e6}1 .41
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Non-doubling 2-cycle reduction (f) with doubling-based cycle escape (ē) and
r = 128 performed best, with an overall speedup by a factor of 1.29: although
fewer distinguished points are found than for the best case without the negation
map (r = 64), there is a considerable overall gain because fewer distinguished
points (by a factor of C, for the relevant C) should suffice. For r = 16 most
iteration functions with the negation map perform poorly.

We measured to what extent our failure to achieve a speedup by a factor of
√

2
can be blamed on cycle detection and escape and other overheads, and which part
is due to the higher average cost of the iteration function. For most combinations
in Table 3 we counted the number S of useful steps performed when doing 109

group operations, while keeping track of the number D of doublings among
them. Here a step is useful if it is not taken as part of a fruitless cycle, so all D
doublings are useful. Without the negation map, S would be 109 and D = 0; this
is the basis for the comparison. With the negation map, A = 109− S is counted
as the number of additional additions due to cycle reductions or fruitless cycles.
The inherent slowdown of that iteration function is then 1 + A+D/6

S , so that it

can achieve a speedup by a factor of at most CS
S+A+D/6 = C(109−A)

109+D/6 , with C as
defined above.

Based on Table 3 and Fig. 1, we conclude that our failure to better approach
the optimal speedup by a factor of

√
2 is due to an onset of cache effects combined

with various overheads. The italics figures from Table 3 make us believe that
improvements may be obtained when using better implementations.

Previous results. The only publication that we know that presents practical
data about Pollard’s rho method used with the negation map is [8]. Only rela-
tively small ECDLPs were solved (42- and 43-bit prime fields) and small r-values
were avoided. The adverse cycle behavior that we witnessed can therefore not be
expected and we doubt if the results reported are significant for the sizes that
we consider. Only mixed walks were used, and an overall speedup by a factor of
about 1.35 was reported. Cycle escaping was done by jumping to the sum of all
points in a cycle, which cannot be expected to work in general because the sum
may depend just on the addition constants.

5 Conclusion

With judicious application of doubling, usage of the negation map to solve
ECDLPs over prime fields using Pollard’s rho method can indeed be recom-
mended. In the best of circumstances that we have been able to create, however,
the speedup falls short of the hoped for

√
2, but is with 1.29 still considerable.

This conclusion does not apply to SIMD-environments where occasional dou-
blings cause considerable delays. Alternative point representations need to be
considered to assess the usefulness of the negation map for SIMD platforms, in
particular because such platforms are becoming popular again.
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Abstract. The best known algorithm to compute the Jacobi symbol
of two n-bit integers runs in time O(M(n) log n), using Schönhage’s fast
continued fraction algorithm combined with an identity due to Gauss. We
give a different O(M(n) log n) algorithm based on the binary recursive
gcd algorithm of Stehlé and Zimmermann. Our implementation — which
to our knowledge is the first to run in time O(M(n) log n) — is faster than
GMP’s quadratic implementation for inputs larger than about 10000
decimal digits.

1 Introduction

We want to compute the Jacobi symbol1 (b|a) for n-bit integers a and b, where a
is odd positive. We give three algorithms based on the 2-adic gcd from Stehlé and
Zimmermann [13]. First we give an algorithm whose worst-case time bound is
O(M(n)n2) = Õ(n3); we call this the cubic algorithm although this is pessimistic
since the algorithm is quadratic on average as shown in [5], and probably also
in the worst case. We then show how to reduce the worst-case to O(M(n)n) =
Õ(n2) by combining sequences of “ugly” iterations (defined in Section 1.1) into
one “harmless” iteration. Finally, we obtain an algorithm with worst-case time
O(M(n) log n). This is, up to a constant factor, the same as the time bound for
the best known algorithm, apparently never published in full, but sketched in
Bach [1] and in more detail in Bach and Shallit [2] (with credit to Bachmann [3]).

The latter algorithm makes use of the Knuth-Schönhage fast continued frac-
tion algorithm [9] and an identity of Gauss [6]. Although this algorithm has been
attributed to Schönhage, Schönhage himself gives a different O(M(n) logn) al-
gorithm [10,15] which does not depend on the identity of Gauss. The algorithm
is mentioned in Schönhage’s book [11, §7.2.3], but no details are given there.

With our algorithm it is not necessary to compute the full continued fraction
or to use the identity of Gauss for the Jacobi symbol. Thus, it provides an
alternative that may be easier to implement.

1 Notation: we write the Jacobi symbol as (b|a), since this is easier to typeset and
less ambiguous than the more usual

(
b
a

)
. Also, M(n) is the time to multiply n-bit

numbers, and Õ(f(n)) means O(f(n)(log f(n))c) for some constant c ≥ 0.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 83–95, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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It is possible to modify some of the other fast GCD algorithms considered by
Möller [8] to compute the Jacobi symbol, but we do not consider such possibilities
here. At best they give a small constant factor speedup over our algorithm.

We recall the main identities satisfied by the Jacobi symbol: (bc|a) = (b|a)(c|a);
(2|a) = (−1)(a

2−1)/8; (b|a) = (−1)(a−1)(b−1)/4(a|b) for a, b odd; and (b|a) = 0 if
(a, b) �= 1.

Note that all our algorithms compute (b|a) with b even positive and a odd
positive. For the more general case where b is any integer, we can reduce to b even
and positive using (b|a) = (−1)(a−1)/2(−b|a) if b is negative, and (b|a) = (b+a|a)
if b is odd.

Wefirst describe a cubic algorithmto compute the Jacobi symbol.The quadratic
algorithm in Section 2 is based on this cubic algorithm, and the subquadratic al-
gorithm in Section 3 uses the same ideas as the quadratic algorithm but with an
asymptotically fast recursive implementation.

For a ∈ Z, the notation ν(a) denotes the 2-adic valuation ν2(a) of a, that is
the maximum k such that 2k|a, or +∞ if a = 0.

1.1 Binary Division with Positive Quotient

Throughout the paper we use the binary division with positive quotient defined
by Algorithm 1.1. Compared to the “centered division” of [13], it returns a
quotient in [1, 2j+1 − 1] instead of in [1− 2j , 2j − 1]. Note that the quotient q is
always odd.

Algorithm 1.1. BinaryDividePos
Input: a, b ∈ N with ν(a) = 0 < ν(b) = j
Output: q and r = a + qb/2j such that 0 < q < 2j+1, ν(b) < ν(r)
1: q ← −a/(b/2j) mod 2j+1 	 q is odd and positive
2: return q, r = a + qb/2j .

With this binary division, we define Algorithm CubicBinaryJacobi, where the
fact that the quotient q is positive ensures that all a, b terms computed remain
positive, and a remains odd, thus (b|a) remains well-defined.2

Theorem 1. Algorithm CubicBinaryJacobi is correct (assuming it terminates).

Proof. We prove that the following invariant holds during the algorithm, if a0, b0
are the initial values of a, b:

(b0|a0) = (−1)s(b|a).

This is true before we enter the while-loop, since s = 0, a = a0, and b = b0. For
each step in the while loop, we divide b by 2j, swap a and b′ = b/2j, replace a

2 Möller says in [8]: “if one tries to use positive quotients 0 < q < 2k+1, the [binary
gcd] algorithm no longer terminates”. However, with a modified stopping criterion
as in Algorithm CubicBinaryJacobi, the algorithm terminates (we prove this below).
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Algorithm 1.2. CubicBinaryJacobi
Input: a, b ∈ N with ν(a) = 0 < ν(b)
Output: Jacobi symbol (b|a)
1: s ← 0, j ← ν(b)
2: while 2ja �= b do
3: b′ ← b/2j

4: (q, r) ← BinaryDividePos(a, b)
5: s ← (s + j(a2 − 1)/8 + (a − 1)(b′ − 1)/4 + j(b′2 − 1)/8) mod 2
6: (a, b) ← (b′, r/2j), j ← ν(b)
7: if a = 1 then return (−1)s else return 0

by r = a + qb′, and divide r by 2j. The Jacobi symbol is modified by a factor
(−1)j(a2−1)/8 for the division of b by 2j , by a factor (−1)(a−1)(b′−1)/4 for the
interchange of a and b′, and by a factor (−1)j(b′2−1)/8 for the division of r by
2j. At the end of the loop, we have gcd(a0, b0) = a; if a = 1, since (b|1) = 1, we
have (b0|a0) = (−1)s, otherwise (b0|a0) = 0.

Lemma 1. The quantity a + 2b is non-increasing in Algorithm CubicBinary-
Jacobi.

Proof. At each iteration of the “while” loop, a becomes b/2j, and b becomes
(a + qb/2j)/2j. In matrix notation(

a
b

)
←
(

0 1/2j

1/2j q/22j

)(
a
b

)
. (1)

Therefore a + 2b becomes

b

2j
+ 2
(
a + qb/2j

2j

)
=

2a
2j

+ (1 + 2q/2j)
b

2j
. (2)

Since j ≥ 1, the first term is bounded by a. In the second term, q ≤ 2j+1 − 1,
thus the second term is bounded by (5/2j − 2/22j)b, which is bounded by 9b/8
for j ≥ 2, and equals 2b for j = 1.

If j ≥ 2, then a + 2b is multiplied by a factor at most 9/16. If j = q = 1 then
a+ 2b decreases, but by a factor which could be arbitrarily close to 1. The only
case where a+ 2b does not decrease is when j = 1 and q = 3; in this case a+ 2b
is unchanged.

This motivates us to define three classes of iterations: good, bad, and ugly.
Let us say that we have a good iteration when j ≥ 2, a bad iteration when
j = q = 1, and an ugly iteration when j = 1 and q = 3. Since q is odd and
1 ≤ q ≤ 2j+1 − 1, this covers all possibilities. For a bad iteration, (a, b) becomes
(b/2, a/2 + b/4), and for an ugly iteration, (a, b) becomes (b/2, a/2 + 3b/4). We
denote the matrices corresponding to good, bad and ugly iterations by G, B and
U respectively. Thus
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G = Gj,q =
(

0 1/2j

1/2j q/4j

)
, B =

(
0 1/2

1/2 1/4

)
, U =

(
0 1/2

1/2 3/4

)
.

The effect of m successive ugly iterations is easily seen to be given by the matrix

Um =
1
5

(
1 + 4(−1/4)m 2 − 2(−1/4)m

2 − 2(−1/4)m 4 + (−1/4)m

)
. (3)

Assume we start from (a, b) = (a0, b0), and after m > 0 successive ugly iterations
we get values (am, bm). Then, from Equation (3),

5am = (a + 2b) + 2(2a− b)(−1/4)m, (4)
5bm = 2(a + 2b) − (2a− b)(−1/4)m. (5)

We can not have 2a0 = b0 or the algorithm would have terminated. However,
am must be an integer. This gives an upper bound on m. For a0, b0 of n bits,
the number of successive ugly iterations is bounded by n/2 + O(1) (a precise
statement is made in Lemma 2).

If there were no bad iterations, this would prove that for n-bit inputs the
number of iterations is O(n2), since each sequence of ugly iterations would be
followed by at least one good iteration. Bad iterations can be handled by a more
complicated argument which we omit, since they will be considered in detail in
§2 when we discuss the complexity of the quadratic algorithm (see the proof of
Theorem 2).

Since the number of iterations is O(n2) from Theorem 2, and each itera-
tion costs time O(M(n)), the overall time for Algorithm CubicBinaryJacobi is
O(n2M(n)) = Õ(n3). Note that this worst-case bound is almost certainly too
pessimistic (see §4).

2 A Provably Quadratic Algorithm

Suppose we have a sequence of m > 0 ugly iterations. It is possible to combine the
m ugly iterations into one harmless iteration which is not much more expensive
than a normal (good or bad) iteration. Also, it is possible to predict the maximal
such m in advance. Using this trick, we reduce the number of iterations (good,
bad and harmless) to O(n) and their cost to O(M(n)n) = Õ(n2). Without loss
of generality, suppose that we start from (a0, b0) = (a, b).

Lemma 2. If μ = ν(a−b/2), then we have exactly �μ/2	 ugly iterations starting
from (a, b), followed by a good iteration if μ is even, and by a bad iteration if μ
is odd.

Proof. We prove the lemma by induction on μ. If μ = 0, a − b/2 is odd, but
a is odd, so b/2 is even, which yields j ≥ 2 in BinaryDividePos, thus a, b yield
a good iteration. If μ = 1, a − b/2 is even, which implies that b/2 is odd, thus
we have j = 1. If we had q = 3 in BinaryDividePos, this would mean that
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a + 3(b/2) = 0 mod 4, or equivalently a− b/2 = 0 mod 4, which is incompatible
with μ = 1. Thus we have q = 1, and a bad iteration.

Now assume μ ≥ 2. The first iteration is ugly since 4 divides a − b/2, which
implies that b/2 is odd. Thus j = 1, and a− b/2 = 0 mod 4 implies that q = 3.
After one ugly iteration (a, b) becomes (b/2, a/2 + 3b/4), thus a− b/2 becomes
−(a− b/2)/4, and the 2-valuation of a− b/2 decreases by 2.

From the above, we see that, for a sequence of m ugly iterations, a0, a1, . . . , am

satisfy the three-term recurrence

4ai+1 − 3ai − ai−1 = 0 for 0 < i < m,

and similarly for b0, b1, . . . , bm. It follows that ai = a mod 4, and similarly bi =
b mod 4, for 1 ≤ i < m.

We can modify Algorithm CubicBinaryJacobi to consolidate m consecutive
ugly iterations into one harmless iteration, using the expressions (4)–(5) for am

and bm (we give an optimised evaluation below). It remains to modify step 5 of
CubicBinaryJacobi to take account of the m updates to s. Since j = 1 for each
ugly iteration, we have to increment s by an amount

δ =
∑

0≤i<m

(
a2

i − 1
8

+
b′i

2 − 1
8

+
ai − 1

2
b′i − 1

2

)
mod 2,

where we write b′i for bi/2. However, ai+1 = b′i for 0 ≤ i < m, so the terms
involving division by 8 “collapse” mod 2, leaving just the first and last terms.
The terms involving two divisions by 2 are all equal to (a − 1)/2 · (b′ − 1)/2
mod 2, using the observation that ai mod 4 is constant for 0 ≤ i < m. Thus

δ =
(
a2
0 − 1
8

+
a2

m − 1
8

+ m
a0 − 1

2
a1 − 1

2

)
mod 2.

One further simplification is possible. Since a0 = a1 mod 4, and a0 is odd, we
can replace a1 by a0 in the last term, and use the fact that x2 = x mod 2 to
obtain

δ =
(
a2
0 − 1
8

+
a2

m − 1
8

+ m
a0 − 1

2

)
mod 2. (6)

We can economise the computation of am and bm from (4)–(5) by first computing

d = a− b′, m = ν(d) div 2, c = (d− (−1)m(d/4m))/5,

where the divisions by 4m and by 5 are exact; then am = a− 4c, bm = b + 2c.
From these observations, it is easy to modify Algorithm CubicBinaryJacobi to

obtain Algorithm QuadraticBinaryJacobi. In this algorithm, steps 7–11 imple-
ment a harmless iteration equivalent to m > 0 consecutive ugly iterations; steps
13–14 implement bad and good iterations, and the remaining steps are common
to both. Step 5 of Algorithm CubicBinaryJacobi is split into three steps 4, 13
and 15. In the case of a harmless iteration, the computation of δ satisfying (6)
is implicit in steps 4, 10 and 15.
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Algorithm 2.1. QuadraticBinaryJacobi
Input: a, b ∈ N with ν(a) = 0 < ν(b)
Output: Jacobi symbol (b|a)
1: s ← 0, j ← ν(b)
2: while 2ja �= b do
3: b′ ← b/2j

4: s ← (s + j(a2 − 1)/8) mod 2
5: (q, r) ← BinaryDividePos(a, b)
6: if (j, q) = (1, 3) then
7: d ← a − b′

8: m ← ν(d) div 2
9: c ← (d − (−1)md/4m)/5

10: s ← (s + m(a − 1)/2) mod 2
11: (a, b) ← (a − 4c, b + 2c) 	 harmless iteration
12: else
13: s ← (s + (a − 1)(b′ − 1)/4) mod 2
14: (a, b) ← (b′, r/2j) 	 good or bad iteration
15: s ← (s + j(a2 − 1)/8) mod 2, j ← ν(b)
16: if a = 1 then return (−1)s else return 0

Theorem 2. Algorithm QuadraticBinaryJacobi is correct and terminates after
O(n) iterations of the “while” loop (steps 2–15) if the inputs are positive integers
of at most n bits, with 0 = ν(a) < ν(b).

Proof. Correctness follows from the equivalence to Algorithm CubicBinaryJacobi.
To prove that convergence takes O(n) iterations, we show that a+2b is multiplied
by a factor at most 5/8 in each block of three iterations. This is true if the block
includes at least one good iteration, so we need only consider harmless and bad
iterations. Two harmless iterations do not occur in succession, so the block must
include either (harmless, bad) or (bad, bad). In the first case, the corresponding
matrix is BUm = BU · Um−1 for some m > 0. We saw in §1.1 that the matrix
U leaves a + 2b unchanged, so Um−1 also leaves a + 2b unchanged, and we need
only consider the effect ofBU . Suppose that (a, b) is transformed into (ã, b̃) byBU .
Thus (

ã

b̃

)
= BU

(
a
b

)
=
(

1/4 3/8
1/8 7/16

)(
a
b

)
.

We see that
ã + 2b̃ =

a

2
+

5b
4

≤ 5
8
(a + 2b).

The case of two successive bad iterations is similar – just replace BU by B2 in
the above, and deduce that ã + 2b̃ ≤ (a + 2b)/2.

We conclude that the number of iterations of the while loop is at most cn +
O(1), where c = 3/ log2(8/5) ≈ 4.4243.
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Remarks

1. A more complicated argument along similar lines can reduce the constant c to
2/ log2(1/ρ(BU)) = 2/ log2((11−

√
57)/2) ≈ 2.5424. Here ρ denotes the spectral

radius: ρ(A) = limk→∞ ||Ak||1/k.
2. In practice QuadraticBinaryJacobi is not much (if any) faster than Cubic-
BinaryJacobi. Its advantage is simply the better worst-case time bound. A
heuristic argument suggests that on average only 1/4 of the iterations of Cubic-
BinaryJacobi are ugly.
3. Our implementations of CubicBinaryJacobi and QuadraticBinaryJacobi are
slower than GMP’s O(n2) algorithm (which is based on Stein’s binary gcd, as in
Shallit and Sorenson [12]). However, in the next section we use the ideas of our
QuadraticBinaryJacobi algorithm to get an O(M(n) log n) algorithm. We do not
see how to modify the algorithm of Shallit and Sorenson to do this.3

3 An O(M(n) log n) Algorithm

Algorithm HalfBinaryJacobi below is a modification of Algorithm Half-GB-gcd
from [13]. (Algorithm Half-GB-gcd is a subquadratic right-to-left gcd algorithm;
for more on the general structure of subquadratic gcd algorithms, we refer the
reader to Möller [8].) The main differences between Half-GB-gcd and our algo-
rithm are the following:

1. binary division with positive (not centered) quotient is used;
2. the algorithm returns an integer s such that if a, b are the inputs, c, d the

output values defined by Theorem 3, then

(b|a) = (−1)s(d|c);
3. at steps 4 and 27, we reduce mod 22k1+2 (resp. 22k2+2) instead of mod 22k1+1

(resp. 22k2+1), so that we have enough information to correctly update s0 at
steps 10, 17, 21 and 25;

4. we have to “cut” some harmless iterations in two (step 15).

Remarks. The matrix Q occurring at step 19 is just 22mUm, where Um is given
by Equation (3). Similarly, the matrix Q occurring at step 23 is 22j0Gj0,q. In
practice, steps 13–20 can be omitted (so the algorithm becomes a fast version of
CubicBinaryJacobi) – this variant is simpler and slightly faster on average.

We now state our main theorem. Its proof is based on comparing the GB
sequence of a, b and that of a1, b1, where a1 = a mod 22k1+2 and b1 = b mod
22k1+2. The GB — which stands for Generalized Binary division, see [13] —
sequence of a, b is the sequence of remainders we obtain by applying the binary
division iteratively. Two GB sequences match if they produce the same binary
quotients qi.
3 In Algorithm Binary Jacobi of [12], it is necessary to know the sign of a−n (b−a in

our notation) to decide whether to perform an interchange. This makes it difficult to
construct an recursive O(M(n) log n) algorithm along the lines of Algorithm Half-
BinaryJacobi.
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Algorithm 3.1. HalfBinaryJacobi
Input: a ∈ N, b ∈ N ∪ {0} with 0 = ν(a) < ν(b), and k ∈ N
Output: two integers s, j and a 2 × 2 matrix R
1: if ν(b) > k then 	 b = 0 is possible

2: Return 0, 0,

(
1 0
0 1

)
3: k1 ← �k/2

4: a1 ← a mod 22k1+2, b1 ← b mod 22k1+2

5: s1, j1, R ← HalfBinaryJacobi(a1, b1, k1)
6: a′ ← 2−2j1 (R1,1a + R1,2b), b′ ← 2−2j1(R2,1a + R2,2b)
7: j0 ← ν(b′)
8: if j0 + j1 > k then
9: Return s1, j1, R

10: s0 ← j0(a′2 − 1)/8 mod 2
11: q, r ← BinaryDividePos(a′, b′)
12: b′′ ← b′/2j0

13: if (j0, q) = (1, 3) then
14: d ← a′ − b′′

15: m ← min(ν(d) div 2, k − j1)
16: c ← (d − (−1)md/4m)/5
17: s0 ← s0 + m(a′ − 1)/2 mod 2
18: (a2, b2) ← (a′ − 4c, 2(b′′ + c)) 	 harmless iteration

19: Q ←
(

(4m + 4(−1)m)/5 2(4m − (−1)m)/5
2(4m − (−1)m)/5 (4m+1 + (−1)m)/5

)
20: else
21: s0 ← s0 + (a′ − 1)(b′′ − 1)/4 mod 2
22: (a2, b2) ← (b′′, r/2j0 ) 	 good or bad iteration

23: Q ←
(

0 2j0

2j0 q

)
24: m ← j0

25: s0 ← s0 + j0(a2
2 − 1)/8 mod 2

26: k2 ← k − (m + j1)
27: s2, j2, S ← HalfBinaryJacobi(a2 mod 22k2+2, b2 mod 22k2+2, k2)
28: Return (s0 + s1 + s2) mod 2, j1 + j2 + m, S × Q × R
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Theorem 3. Let a, b, k be the inputs of Algorithm HalfBinaryJacobi, and s, j, R
the corresponding outputs. If

(
c
d

)
= 2−2jR

(
a
b

)
, then:

(b|a) = (−1)s(d|c) and ν(2jc) ≤ k < ν(2jd).

Proof (outline). We prove the theorem by induction on the parameter k. The key
ingredient is that if we reduce a, b mod 22k1+1 in step 4, then the GB sequence of
a1, b1 matches that of a, b, for the terms computed by the recursive call at step 5.
This is a consequence of [13, Lemma 7] (which also holds for binary division with
positive quotient). It follows that in all the binary divisions with inputs ai, bi in
that recursive call, ai and bi/2ji match modulo 2ji+1 the corresponding values
that would be obtained from the full inputs a, b (otherwise the corresponding
binary quotient qi would be wrong). Since here we reduce a, b mod 22k1+2 instead
of mod 22k1+1, ai and bi/2ji now match modulo 2ji+2 — instead of modulo 2ji+1

— the values that would be obtained from the full inputs a, b, where 2ji+2 ≥ 8
since ji ≥ 1.

At step 10, s0 depends only on j0 mod 2 and a′ mod 8, at step 17 it de-
pends on m mod 2 and a′ mod 4, and at step 21 on a′ mod 4 and b′′ mod 4.
Since a′ and b′′ at step 21 correspond to some ai and bi/2ji , it follows that
a′ and b′′ agree mod 8 with the values that would be computed from the full
inputs, and thus the correction s0 is correct. This proves by induction that
(b|a) = (−1)s(d|c).

Now we prove that ν(2jc) ≤ k < ν(2jd). If there is no harmless iteration, it
is a consequence of the proof of Theorem 1 in [13]. In case there is a harmless
iteration, first assume that m = ν(d) div 2 at step 15. The new values a2, b2 at
step 18 correspond to m successive ugly iterations, which yield j = j1 + m ≤ k.
Thus ν(2ja2) ≤ k: we did not go too far, and since we are computing the same
sequence of quotients as Algorithm QuadraticBinaryJacobi, the result follows.
Now if k − j1 < ν(d) div 2, we would go too far if we performed ν(d) div 2 ugly
iterations, since it would give j0 := ν(d) div 2 > k−j1, thus j := j1+j0 > k, and
ν(2ja2) would exceed k. This is the reason why we “cut” the harmless iteration
at m = k − j1 (step 15). The other invariants are unchanged.

Finally we can present our O(M(n) log n) Algorithm FastBinaryJacobi, which
computes the Jacobi symbol by calling Algorithm HalfBinaryJacobi. The general
structure is similar to that described in [8] for several asymptotically fast GCD
algorithms.

Daireaux, Maume-Deschamps and Vallée [5] prove that, for the positive binary
division, the average increase of the most significant bits is 0.65 bits/iteration
(which partly cancels an average decrease of two least significant bits per iter-
ation); compare this with only 0.05 bits/iteration on average for the centered
division.4

4 We have computed more accurate values of these constants: 0.651993 and 0.048857
respectively.
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Algorithm 3.2. FastBinaryJacobi
Input: a, b ∈ N with 0 = ν(a) < ν(b)
Output: Jacobi symbol (b|a)
1: s ← 0, j ← ν(b)
2: while 2ja �= b do
3: k ← max(ν(b), 
(b) div 3) 	 
(b) is length of b in bits
4: s′, j, R ← HalfBinaryJacobi(a, b, k)
5: s ← (s + s′) mod 2
6: (a, b) ← 2−2j(R1,1a + R1,2b, R2,1a + R2,2b), j ← ν(b)
7: if a = 1 then return (−1)s else return 0

4 Experimental Results

We have implemented the different algorithms in C (using 64-bit integers) and in
GMP (using multiple-precision integers), as well as in Maple/Magma (for testing
purposes).

For max(a, b) < 226 the maximum number of iterations of Algorithm Cubic-
BinaryJacobi is 64, with a = 15548029 and b = 66067306. The number of itera-
tions seems to be O(n) for a, b < 2n: see Table 1. This is plausible because, from
heuristic probabilistic arguments, we expect about half of the iterations to be
good, and experiments confirm this. For example, if we consider all admissible
a, b < 220, the cumulated number of iterations is 3.585×1012 for 238 calls, i.e., an
average of 13.04 iterations per call (max 48); the cumulated number of good, bad
and ugly iterations is 51.78%, 25.47%, and 22.75% respectively. For a, b < 260, a
random sample of 108 pairs (a, b) gave 42.72 iterations per call (max 89), with
50.54%, 25.14%, and 24.31% for good, bad and ugly respectively. These ratios
seem to be converging to the heuristically expected 1/2 = 50%, 1/4 = 25%, and
1/4 = 25%.

When we consider all admissible a, b < 220, the maximum number of iterations
of QuadraticBinaryJacobi is 37 when a = 933531, b = 869894, the cumulated
number of iterations is 3.405 × 1012 (12.39 per call), the cumulated number of
good, bad and harmless iterations is 54.51%, 26.82%, and 18.67% respectively.
For a, b < 260, a random sample of 108 pairs (a, b) gave 40.21 iterations per
call (max 76), with 53.70%, 26.71%, and 19.59% for good, bad and harmless
respectively. These ratios seem to be converging to the heuristically expected
8/15 = 53.33%, 4/15 = 26.67%, and 1/5 = 20%.

We have also compared the time and average number of iterations for huge
numbers, using the fast gcd algorithm in GMP, say gcd — which implements
the algorithm from [8] — and an implementation of the algorithm from [13],
say bgcd. For inputs of one million 64-bit words, gcd takes about 45.8s on a
2.83Ghz Core 2, while bgcd takes about 48.3s and 32,800,000 iterations: this is in
accordance with the fact proven in [5] that each step of the binary gcd discards on
average two least significant bits, and adds on average about 0.05 most significant
bits. Our algorithm bjacobi (based on Algorithms 3.1–3.2) takes about 83.1s
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Fig. 1. Comparison of GMP 4.3.1 mpz jacobi routine with our FastBinaryJacobi

implementation in log-log scale. The x-axis is in 64-bit words, the y-axis in milliseconds
on a 2.83Ghz Core 2.

Table 1. Worst cases for CubicBinaryJacobi(b|a), max(a, b) < 2n

n iterations example (a, b) n iterations example (a, b)
5 6 (7, 30) 22 53 (2214985, 2781506)
10 19 (549, 802) 23 55 (1383497, 8292658)
15 34 (23449, 19250) 24 58 (2236963, 12862534)
20 48 (656227, 352966) 25 62 (28662247, 30847950)
21 51 (1596811, 1493782) 26 64 (15548029, 66067306)

and 47,500,000 iterations (for a version with steps 13–20 of Algorithm 3.1 omitted
in the basecase routine), which agrees with the theoretical drift of 0.651993 bits
per iteration. The break-even point between the O(n2) implementation of the
Jacobi symbol in GMP 4.3.1 and our O(M(n) log n) implementation is about
535 words, that is about 34, 240 bits or about 10, 300 decimal digits (see Fig. 1).

5 Concluding Remarks

Weilert [15] says: “We are not able to use a GCD calculation in Z[i] similar to
the binary GCD algorithm · · · because we do not get a corresponding quotient
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sequence in an obvious manner”. In a sense we filled that gap for the computation
of the Jacobi symbol, because we showed how it can be computed using a binary
GCD algorithm without the need for a quotient sequence.

We showed how to compute the Jacobi symbol with an asymptotically fast
time bound, using such a binary GCD algorithm. Our implementation is faster
than a good O(n2) implementation for numbers with bitsize n > 35000. Our sub-
quadratic implementation is available from http://www.loria.fr/~zimmerma/
software/#jacobi.

Binary division with a centered quotient does not seem to give a subquadratic
algorithm; however we can use it with the “cubic” algorithm (which then be-
comes provably quadratic) since then we control the sign of a, b. For a better
quadratic algorithm, we can choose the quotient q so that abq < 0, by replacing
q by q−2j+1 if necessary: experimentally, this gains on average 2.194231 bits per
iteration, compared to 1.951143 for the centered quotient, and 1.348008 for the
positive quotient. In comparison, Stein’s “binary” algorithm gains on average
1.416488 bits per iteration [4, §7][7, §4.5.2].
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Stehlé who suggested adapting the binary gcd algorithm, and Marco Bodrato and
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Abstract. In this paper we study structures related to torsion of el-
liptic curves defined over number fields. The aim is to build families of
elliptic curves more efficient to help factoring numbers of special form,
including numbers from the Cunningham Project. We exhibit a family of
curves with rational Z/4Z×Z/4Z torsion and positive rank over the field
Q(ζ8) and a family of elliptic curves with rational Z/6Z × Z/3Z torsion
and positive rank over the field Q(ζ3). These families have been used in
finding new prime factors for the numbers 2972 + 1 and 21048 + 1. Along
the way, we classify and give a parameterization of modular curves for
some torsion subgroups.

1 Introduction

The Elliptic Curve Method (ECM in short) is a factoring algorithm, whose
complexity depends on the size of the smallest prime factor instead of the size of
the number to be factored. It can be seen as a variation of the p−1 method. The
idea is to build an elliptic curve over the ring Z/NZ with a point P on it and
to compute the scalar multiplication M· P . Since N is not a prime, the elliptic
curve is not defined over a field. However, computations are done as if we were
working on a field and if something fails, this means that a non-trivial factor
of N has been found. The number M is chosen to be the product of powers
of small primes and thus, a prime factor p is found as soon as the order of the
elliptic curve reduced modulo p is smooth.
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Many improvements of the ECM are described in the literature. We will focus
on an improvement consisting in choosing the elliptic curve as the reduction
modulo N of an elliptic curve defined over the field Q with a non-trivial torsion
group and positive rank. The torsion group of an elliptic curve is the group of
elements of finite order and the rank is the number of generators of the torsion-
free part of the group. As soon as small prime factors have been removed from
N , the torsion group is preserved in most cases by the modulo N reduction of
the curve, which helps to make the order of the curve smooth. The positive rank
is needed to set the starting point P of the algorithm. Possible torsion groups
for elliptic curves defined over Q are in finite number, with maximal order 16.
For each possible torsion group, at least a family of elliptic curves with positive
rank has been found.

The idea we follow in this paper is to use a number field K for which reduction
modulo N can be made explicit and to build over K an elliptic curve with positive
rank and a torsion subgroup as large as possible. Let us give an example : if the
number to be factored is of the form N = u2 + 1, we can make use of the field
K = Q(i) with mapping i �→ u. The numbers of the Cunningham Project (i.e.
numbers of the form am±1) allow to use m-th roots of unity. It will be interesting
to focus on cyclotomic fields or on their subfields. It is important to note that
all quadratic extensions of Q lie in cyclotomic fields.

The paper is organized as follows. Section 2 introduces the necessary notions
about modular curves and classifies torsion subgroups that can be of any interest
for ECM integer factoring. Section 3 is devoted to construction of parameter-
ized elliptic curves with given torsion subgroup over some cyclotomic extensions
of the field of rationals. Section 4 focuses on the search for infinite subfami-
lies of elliptic curves having nonzero rank, which is mandatory to ECM usage.
Section 5 rephrases previous sections results in the context of ECM and gives
some instances of new prime factors of Cunningham Project numbers discovered
thanks to the work presented here. Finally, section 6 concludes and suggests
some research areas to go further.

2 Elliptic Curve Torsion and Modular Curves

An elliptic curve E defined over a number field K turns out to be a commutative
group. The Mordell-Weil theorem states that this group is finitely generated and
can be written as:

E(K) ∼= T ⊗ Zr

where the integer r is called rank and T is the so called torsion group, which
consists in elements of finite order. Furthermore, T is isomorphic to Z/m1Z ×
Z/m2Z with the constraints that m2 divides m1 and the m2-th roots of unity
all lie in the field K.

Whereas it is conjectured that the rank is not constrained, the torsion group
can take only finitely many different shapes over the field of rationals:
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Theorem 1 (Mazur). The torsion group T of an elliptic curve defined over
the field Q is isomorphic to one of the following groups:

Z/mZ with 1 ≤ m ≤ 10 or m = 12

Z/2mZ × Z/2Z with 1 ≤ m ≤ 4

This theorem is effective in the sense that for each of these cases, it is possible
to give equations of elliptic curves. These parameterizations come from modular
curves.

Over the field C of complex numbers, there is a one-to-one correspondance
between isomorphism classes of elliptic curves and the Riemann Surface X(1),
which is the quotient H∗/SL2(Z), where H∗ is the compactified Poincaré half-
plane. For any subgroup Γ of SL2(Z), the quotient surface H∗/Γ is called a
modular curve. Extending notations of [3], we define the following subgroups of
SL2(Z):

Γ (m) =
{(

a b
c d

)
∈ SL2(Z), a ≡ d ≡ 1 mod m, b ≡ c ≡ 0 mod m

}

Γ1(m) =
{(

a b
c d

)
∈ SL2(Z), a ≡ d ≡ 1 mod m, c ≡ 0 mod m

}

Γ0(m) =
{(

a b
c d

)
∈ SL2(Z), c ≡ 0 mod m

}
and the quotients:

X(m) = H∗/Γ (m)
X1(m) = H∗/Γ1(m)
X0(m) = H∗/Γ0(m)

X1(m1,m2) = H∗/(Γ1(m1) ∩ Γ (m2)) when m2|m1

A point on the surface X(m) corresponds to an elliptic curve together with a
basis for its [m]-torsion subgroup, up to isomorphism. A point on the surface
X1(m) corresponds, up to isomorphism, to an elliptic curve together with a [m]-
torsion point. A point on the surface X0(m) corresponds, up to isomorphism,
to an elliptic curve together with a cyclic torsion subgroup of order m. A point
on the surface X(m1,m2) corresponds to an elliptic curve with a [m1]-torsion
point and an independent [m2]-torsion point. Though these notions make use of
complex number and analytical tools, the modular curves can also be represented
as algebraic curves. An algebraic model of X1(m) can be found over Q and the
correspondance with an elliptic curve and a [m]-torsion point on it is algebraic
and defined over Q. The curve X(m) involves the full [m]-torsion subgroup and,
due to existence of Weil pairing, m-th roots of unity are involved. The rational
models and correspondance for X(m) (resp. X1(m1,m2)) are defined over the
cyclotomic field Q(ζm) (resp. Q(ζm2)). The modular curves associated to torsion
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subgroups in Mazur’s theorem are genus 0 algebraic curves. This explains why
it is possible to give parametric Weierstrass equations.

The Elliptic Curve Method needs a non-bounded number of elliptic curves to
compute with. Since algebraic curves of genus greater than 2 have only finitely
many rational points over a given number field, we will focus only on torsion
structures for which the associated modular curve has genus 0 or 1. Computing
the genus of an algebraic curve is not an easy task in the general case but the
task is easy with a computer for modular curves of rather small level.

A theorem from Shimura states that the genus of the modular curve X1(p)
for a prime p ≥ 5 is given by :

g =
(p− 5)(p− 7)

24
.

This implies that the only primes for which the genus of X1(p) is 0 or 1 are
{2, 3, 5, 7, 11}. When n|m, there is a surjective mapping X1(m) → X1(n), and
thus the genus of X1(m) is at least the genus of X1(n). Computing the genus
of X1(m) for rather small values of m being easy, we can increase the power of
these primes until the genus is strictly greater than 1 and we get that the only
prime powers for which the genus of X1(pe) is 0 or 1 are {2, 4, 8, 3, 9, 5, 7, 11}.
Now, combining this finite set, it is possible to check the following proposition
with a finite amount of work:

Proposition 1. The integers m such that X1(m) is of genus 0 or 1 are

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15}

When m2|m1, there is a surjective mapping X1(m1,m2) → X1(m1), and thus
the genus of X1(m1,m2) is at least the genus of X1(m1). This implies that if the
genus of the modular curve X1(m1,m2) is 0 or 1, the number m1 is in the list
given in proposition 1. Building on this, for any m1 in this list, we can check if
the genus of X1(m1,m2) is 0 or 1 for all divisors m2 of m1. The result is given
in next proposition.

Proposition 2. The torsion groups for which the associated modular curve is
of genus 0 are:

Z/2Z, Z/2Z × Z/2Z
Z/3Z, Z/3Z × Z/3Z
Z/4Z, Z/4Z × Z/2Z, Z/4Z × Z/4Z
Z/5Z, Z/5Z × Z/5Z
Z/6Z, Z/6Z × Z/2Z, Z/6Z × Z/3Z
Z/7Z
Z/8Z, Z/8Z × Z/2Z
Z/9Z
Z/10Z
Z/12Z
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The torsion groups for which the associated modular curve is of genus 1 are:

Z/6Z × Z/6Z
Z/8Z × Z/4Z
Z/9Z × Z/3Z
Z/10Z × Z/2Z
Z/11Z
Z/12Z × Z/2Z
Z/14Z
Z/15Z

3 Parameterization of Elliptic Curves with Given Torsion
Structure

When the base field is Q, several papers (e.g. [8] and [4]) describe the construction
of elliptic curves with prescribed torsion groups. We will study cases that need
to work over extensions.

3.1 Construction of Z/3Z × Z/3Z

To study torsion points, one can use the division polynomials, whose roots are
the abscises of torsion points. Since we wish all 3-torsion points to be rational,
we start by imposing two rational roots x1 and x2 to the polynomial

ϕ3(x) = 3x4 + 6ax2 + 12bx− a2

The system ϕ3(x1) = ϕ3(x2) = 0 considered as equations in the variables a and
b has roots if and only if −3x1x2 is a square. A convenient parameterization is{

x1 = 6ξ
x2 = −2ρ2ξ

and the corresponding parameters are{
a = −12ξ2ρ(ρ2 − 3ρ + 3)
b = 2ξ3(ρ2 − 3)(ρ4 − 6ρ3 + 18ρ2 − 18ρ + 9)

At this stage, we introduce two linear factors in ϕ3. The remaining quadratic
factor of ϕ3 has discriminant equal to −3(ρ− 1)2(ρ − 3)2. We need −3 to be a
square, which is natural since the Weil pairing introduces cubic roots of unity.
We thus have x-coordinates of point of order 3 rational.

We now turn on to y-coordinates. Substitutions of x1 and x2 in x3 + ax + b
yield y2

1 = 2ξ3(ρ − 3)2(ρ2 + 3)2 and y2
1 = −6ξ3(ρ − 1)2(ρ2 + 3)2. To obtain

squares, we set ξ = 2λ2 and for convenience ρ = 1− τ . In conclusion, an elliptic
curve in short Weierstrass form has rational 3-torsion over Q(ζ3) if and only if
its parameters can be written as:{

a = 48λ4 (τ3 − 1)
b = 16λ6 (τ6 − 20τ3 − 8)
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3.2 Construction of Z/6Z × Z/3Z

Given as an input the results of previous section, we now have to ensure that
x3 + ax + b has a linear factor to get a point of order 2. In a first step, we set
x = ξλ2 to get rid of the homogeneity parameter λ. We consider then x3 +ax+b
as a equation in ξ and τ3, which is quadratic relatively to the unknown τ3.
The discriminant of this quadratic equation is −(ξ − 12)3. It is natural to set
ξ = 12 − ν2. We now have:

x3 + ax + b = λ6(6ν2 + ν3 − 4τ3 − 32)(6ν2 − ν3 − 4τ3 − 32)

Both factors differ only in a sign change for ν. We will keep the first factor, which
is a cubic in ν and τ . Since the underlying modular curve has genus 0, this curve
must have a singularity. We easily find that the point (ν = −4, τ = 0) is singular
and to reduce the degree of the curve, we set ν = μτ − 4. After replacement
and factorization, we have a degree one equation in τ . To keep consistency in
notations and to avoid denominators, we rename μ as 1/τ and modify the scaling
factor λ. In conclusion, an elliptic curve in short Weierstrass form has rational
3-torsion and a point of order 2 over Q(ζ3) if and only if its parameters can be
written as:{

a = −3λ4 (τ12 − 8τ9 + 240τ6 − 464τ3 + 16)
b = −2λ6 (τ18 − 12τ15 − 480τ12 + 3080τ9 − 12072τ6 + 4128τ3 + 64)

3.3 Modular Curve for Z/6Z × Z/6Z

We know that the modular curve X(6) has genus 1. In this section, we will give a
very simple model for this elliptic curve. Let us start with the equation for Z/6Z×
Z/3Z torsion subgroup. The polynomial x3 +ax+ b has by construction a linear
and a quadratic factor. The discriminant of the quadratic factor is −9(8τ3−1)3.
From this we derive the following model:

X(6) : s2 = t3 + 1

3.4 Modular Curve for Z/9Z × Z/3Z

We start from parameterization of curves with full 3-torsion. One can note that
the parameter is involved only to the third power, we thus note σ = τ3 and will
work in a first stage only with σ.

We introduce the polynomial χ9 whose roots are the sums of x-coordinates of
points in cyclic subgroups of order 9 and whose degree is 12:

χ9(z) = z12 + 792az10 + 47520bz9 + ...− 3543478272a6

We can de-homogenize this polynomial by setting λ = 1 and, since a and b are
polynomials in σ, we get a polynomial equation in z and σ having a quadratic
factor in σ. This factor has a root iff z − 48 is six times a square. We set
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z = 6ζ2 + 48 and get σ = (ζ3 + 6ζ2 + 12ζ + 72)/8. We can now factor the
division polynomial ϕ9(x) and obtain an equation of degree 3 in x and 6 in ζ.
The solution x = 12 and ζ = −2 being a singularity, we set x = 12 + ξ(ζ + 2)2

and obtain the relation

ζ = −2
ξ3 + 3ξ2 − 6ξ + 1

ξ3 − 3ξ2 + 1

We are guaranteed that a point of order 9 has rational x-coordinate, its happens
that the y-coordinate is also rational. It is now time to remember that σ must
be a cube. Elliptic curve with torsion group of type Z/9Z × Z/3Z have same
parameters as for Z/3Z × Z/3Z, provided that

τ3 =
8(ξ2 − ξ + 1)3(ξ3 − 6ξ2 + 3ξ + 1)

(ξ3 − 3ξ2 + 1)3

Some algebraic manipulations turn the equation σ3 = ξ3 − 6ξ2 + 3ξ + 1 into the
elliptic model:

X1(9, 3) : s2 = t3 + 16

3.5 Construction of Z/4Z × Z/4Z

In short Weierstrass form, points of order 2 are points whose y-coordinate is 0.
It follows that the general form of curve with Z/2Z torsion is:

y2 = (x− u)(x2 + ux + v)

For the same reasons the general form of curve with Z/2Z × Z/2Z torsion is:

y2 = (x− u)(x− v)(x + u + v)

On this elliptic curve, a point P = (x, y) can be written P = 2Q iff the numbers
x− u, x− v and x+ u+ v are squares, see [2, Theorem 4.2 page 85]. Thus, if we
require that all 4-torsion are rational, all 2-torsion points must be doubles and
we ask for 0, ±(u − v), ±(2u + v) and ±(u + 2v) being squares. One can note
that −1 has to be a square, which is not a surprise: if 4-torsion is rational, the
Weil pairing will produce fourth roots of unity, i.e. square roots of −1.

We first impose 2u + v and 2v + u to be squares. To do so, we invert the
system: {

2u + v = r2

u + 2v = s2 ⇐⇒
{
u = (2r2 − s2)/3
v = (2s2 − r2)/3

Then, it remains to ensure that u− v is also a square. The factorization of u− v
is (r − s)(r + s). It is convenient to write r = μ + ν and s = μ − ν. We get
u − v = 4μν, which must be a square. We can set μ = τ2ν. Last, to get rid of
denominators, we set ν = 3λ. In conclusion, an elliptic curve in short Weierstrass
form has rational 4-torsion over Q(ζ4) if and only if its parameters can be written
as: {

a = −27λ4 (τ8 + 14τ4 + 1)
b = 54λ6 (τ12 − 33τ8 − 33τ4 + 1)
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3.6 Modular Curve for Z/8Z × Z/4Z

To obtain a point of order 8, one of the points of order 4 must be expressed
as the doubling of a rational point. We take for instance one of the points with
x = 3τ4−15. Differences with x-coordinates of 2-torsion points must be squares,
these differences factor as:

−18 (τ2 + 1)
18 (τ2 − 1)
9 (τ4 − 1)

We can easily impose the second expression to be a square by setting

τ = (κ2 + 2)/(κ2 − 2)

Then, the two other expressions are squares iff κ4 +4 is a square. In the equation
σ2 = κ4 + 4, we apply the change of variables σ = s2/t2 − 2t and κ = −s/t and
get the model:

X1(8, 4) : s2 = t3 − t

3.7 Construction of Z/5Z × Z/5Z

To reach full rational 5-torsion, we begin with two rational cyclic subgroups of
order 5. Let χ5 denote the polynomial, whose roots are the sums of x-coordinates
of points over the 6 cyclic subgroups of order 5:

χ5(z) = z6 + 20az4 + 160bz3 − 80a2z2 − 128abz − 80b2

We note z1 and z2 two roots of χ5 and to take benefit of symmetry use the
transformation z1 = u + v and z2 = u − v. We consider the system χ5(z1) =
χ5(z2) = 0 as equations in a and b and eliminate the unknown a, obtaining a
quartic in b with parameters u and v. It is then convenient to set b = (u2 − v2)β
to reduce degrees in u and v. This quartic presents a strong singularity when
v = 0 and β = u/4, which leads us to set β = (u/4 + γv/8). The result is still
a quartic in γ but the degree in v fell down to 2 and the discriminant of this
quadratic equation in v is a square iff 9−5γ2 is five times a square. We use conic
parameterization techniques to obtain:

γ =
6(μ2 + μ− 1)

5(μ2 + 1)

Now v can be expressed as the product of u and a rational function of μ. We
unroll substitutions to get the value of b and come back to equations χ5(z1) =
χ5(z2) = 0. They have a common linear factor in a and we now have values for
a and b.

Knowing that χ5 has two rational roots, we can strengthen our wishes and
factor the division polynomial ϕ5. No surprise that we get two quadratic factors,
whose discriminants are squares if and only if μ2 + 1 and 5(μ2 + 1) are squares.
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We remember that we are working over the field of fifth roots of unity, in which
5 is a square. We just have to set

μ =
2τ

τ2 − 1

Now that x-coordinates for 5-torsion points are rational, we choose the value of
homogeneity parameter u to have y-coordinates rationals

u = −6λ2(τ2 + 1)(τ4 − 2τ3 − 6τ2 + 2τ + 1)(2τ4 + τ3 + 3τ2 − τ + 2)

In conclusion, an elliptic curve in short Weierstrass form has full rational
5-torsion over Q(ζ5) if and only if its parameters can be written as:{

a = −27λ4 (τ20 + 228τ15 + 494τ10 − 228τ5 + 1)
b = 54λ6 (τ30 − 522τ25 − 10005τ20 − 10005τ10 + 522τ5 + 1)

4 Construction of Elliptic Curve with Large Prescribed
Torsion and Positive Rank

4.1 Description of the Method

For an elliptic curve being useful for the Elliptic Curve Method, its rank has to
be non-zero. This means that we still have to produce sub-families of curves with
an extra rational point. When the modular curve is of genus 1, we did not find
any method because we are lacking of freedom on the parameters. This section
is devoted to the method we use to produce sub-families with positive rank in
the case of a parameterization by P1(K).

In this case, the parameters a and b are, up to the scaling factor λ, polynomials
in K(τ) and we can take x to be also a polynomial x = λ2ξ(τ). Then x3 +ax+ b
becomes itself λ6 times a polynomial. The polynomial ξ being fixed, we can look
for values of τ , which turns x3 +ax+b into a square. This approach is equivalent
to looking for rational points on hyperelliptic curves of rather high genus and will
yield only finitely many curves. Our method consists in choosing the polynomial
ξ in such a way that x3 + ax+ b contains as much as possible of square factors.

We note a = λ4α(τ), b = λ6β(τ) and σ(τ) = ξ(τ)3 + α(τ)ξ(τ) + β(τ). For
readability, we will omit the parameter τ for polynomial and all derivatives will
be taken relatively to τ . We wish to have square factors, i.e. relations of type
σ ≡ 0 mod (τ − τ0)2. In most cases, this relation imposes to define ξ modulo
(τ − τ0)2. Since increasing the degree of ξ will in the end increase the degree of
σ, we try to obtain this relation with a constraint only on ξ modulo (τ − τ0).
Let us compute derivatives:

σ′ = (3ξ2 + α)ξ′ + (ξα′ + β′)

To avoid constraints modulo (τ − τ0)2, we must keep freedom on ξ′, which leads
to 3ξ2 + α = 0. Combining this relation with ξ3 + αξ + β, we get the criterion
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Δ = 4α3 + 27β2 = 0 and the value for ξ = −3β/2α. Now, we have to check that
ξα′ + β′ = 0. Under the previous conditions, this is equivalent to Δ′ = 0. The
values τ0 that will be of interest will thus be multiple roots of the discriminant
Δ. To have a maximum number of degrees of freedom, for each of these roots
we try to impose conditions on ξ modulo (τ − τ0)e and check whether we get
σ ≡ 0 mod (τ − τ0)2e.

The last step is to combine multiple roots using the Chinese Remainder The-
orem in K[τ ]. For each possible τ0, we fix ξ modulo some power (τ − τ0)e, the
exponent e being less than the maximum ”useful” exponent. We obtain candi-
dates for ξ and for each candidate we factor σ. Since we wish to have σ being
a square, we write σ = σ2

1σ0 with σ0 square-free. If ξ does not correspond to
torsion points and if the degree of σ0 is less than 5, we can parameterize by a
curve of genus 0 or 1. If the auxiliary curve is of genus one (i.e. an elliptic curve)
and if we can exhibit a point, we build an infinite family of elliptic curves with
given torsion and rank at least one.

4.2 Results for Z/4Z × Z/4Z

Taking the values for a and b given in section 3.5, we first factor the discriminant

Δ = −24312τ4(τ − 1)4(τ + 1)4(τ2 + 1)4

The values of interest for τ are {0, 1,−1, ι,−ι}. We then check that each of them
can be used up to the second power. The number of candidates we can generate
for ξ is 35. To simplify exploration of all these candidates, we compute once for
all a polynomial Ξ that satisfies all modular conditions

Ξ = 9τ8 − 24τ4 + 3

take its remainder modulo the polynomial

τe0 (τ − 1)e1(τ + 1)e−1(τ − ι)eι(τ − ι)e−ι

We get values σ0 of degree 0 that are of no interest since they correspond to
torsion points. We get no values of degree 1, 16 different values of degree 2, 32
of degree 3 and 62 of degree 4. The simplest value of σ0 is 36(τ2 − 3), which
corresponds to ξ = 9τ6 − 15τ4 − 9τ2 + 3. To turn σ0 into a square, one can set

τ =
ν2 + 3

2ν
and λ = 8ν3

Unrolling substitutions, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a = −432ν4 (ν16 + 24ν14 + 476ν12 + 4200ν10 + 18022ν8

+37800ν6 + 38556ν4 + 17496ν2 + 6561)

b = 3456ν6 (ν24 + 36ν22 + 66ν20 − 6732ν18 − 101409ν16 − 707256ν14

−2772260ν12 − 6365304ν10 − 8214129ν8 − 4907628ν6

+433026ν4 + 2125764ν2 + 531441)



106 É. Brier and C. Clavier

The point of infinite order is given by⎧⎨⎩x = 3 (3ν12 + 34ν10 + 117ν8 + 316ν6 + 1053ν4 + 2754ν2 + 2187)

y = 27 (ν2 − 3)(ν2 + 1)(ν2 + 9)(ν6 + 5ν4 + 15ν2 + 27)2

The choice of parameters giving such a torsion group when −1 is a square has
also been studied to speed-up factorisation in [9].

4.3 Results for Z/6Z × Z/3Z

Following the same steps, we start from formulae given in section 3.2 and factor
the discriminant:

Δ = −2836τ3(τ3 + 1)6(τ3 − 8)3

The values of interest for τ0 are {−1,−ζ3,−ζ2
3 , 0, 2, 2ζ3, 2ζ

2
3}. Only the first 3

values can be used up to the second power, the four last ones being of interest
only to the first power. The solution for all modular constraints is

Ξ = 2τ9 − 9τ6 − 42τ3 − 4

The 432 possible candidates for ξ yield 32 cases where σ0 is of degree 4. Among
them, one of the simplest corresponds to σ0 = −3τ(5τ3 + 32) with ξ = −13τ6 −
44τ3 − 4. The elliptic curve ρ2 = −3τ(5τ3 + 32) has nonzero rank over Q, a
point of infinite order being (−1, 9). The points of this auxiliary elliptic curve
parameterize an infinite family of elliptic curve having nonzero rank over Q and
a torsion group containing Z/6Z × Z/3Z over Q(ζ3)

4.4 Results for Z/5Z × Z/5Z

Once again, we start by factoring:

Δ = −28312τ5(τ10 − 11τ5 − 1)5

The eleven values of interest for τ0 can all be used up to the second power and
the polynomial compatible with all constraints is

Ξ = − 1
25

(252τ20 − 5508τ15 + 29019τ10 + 7686τ5 + 75)

Unfortunately, the 311 possible candidates for ξ all give σ0 polynomials of degree
five or more, except for those corresponding to 5-torsion points.

We also noticed that α is of degree 20 and β of degree 30. If we restrict
ourselves to polynomials of degree 10 for ξ, the degree of σ will not exceed 30.
In the case the leading coefficient of ξ is −3, the degree of σ falls down to 28.
One can see this as using the value τ0 = ∞. This is compatible with 10 modular
constraints and we also tried the 24068 candidates built this way, with no success.

Remark: To speed up computations and avoid to compute in a quartic extension
of Q, we instead performed this computations in the field F32621, which contains
fifth roots of unity. For sure, if a solution had been found, we would have needed
to perform actual computations in Q(ζ5).
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4.5 Half Way to Z/8Z × Z/4Z

As the modular curve X1(8, 4) is of genus one, we lack freedom on curve pa-
rameters to ensure in addition a non zero rank. We will try to cover a part of
the path from X1(4, 4) to X1(8, 4). We elaborate on the results of section 4.2
and will use the same parameterization, with a dedicated choice of values for the
parameter ν.

As in section 3.5, we use the characterization of points P that can be written
P = [2]Q with Q a point with rational coordinates. Among the twelve points of
order 4, there is one that needs the quantities ν(ν2 + 3) and (ν2 + 1)(ν2 + 9) to
be squares. Would both be squares, we would get a point of order 8. We limit
ourselves to the first condition only.

At this stage, it is quite natural to consider the elliptic curve

μ2 = ν(ν2 + 3).

The rank of this auxiliary curve over the field Q is one and an infinite subgroup
is generated by the point P0 = (1, 2). Each of the points [k]P0 with k ∈ N yields
a value of ν to be plugged into the formulæ of section 4.2.

We thus get a infinite family of elliptic curves with nonzero rank, Z/4Z×Z/4Z
torsion over Q(ζ4), and better chances to get Z/8Z×Z/4Z torsion over the same
number field.

5 Application to Factoring

One can see an ECM implementation as a black box taking as inputs:

A number N to be factored
Elliptic curve paramaters a and b
Coordinates of a point P on the curve modulo N

and computing the scalar multiplication M·P on this curve for a smooth large
integer M, expecting the result being at infinity for some prime factor of N . In
most implementations, projective coordinates are used and if M·P is at infinity
modulo a prime factor, this factor can be retrieved by a simple GCD between
the number to be factored and the third coordinate. For full explanations on
implementations and improvements of ECM, see [10], [1] and [7].

For the torsion groups Z/4Z×Z/4Z and Z/6Z×Z/3Z, we found curves having
parameters and a point of infinite order defined over Q. These curves can be used
for any number to be factored N . However, the benefit of torsion is attained only
when one knowns that suitable roots of unity exist in the finite fields defined by
prime factors of N . For order 16 torsion groups, numbers of the form a4n−b4n or
a2n + b2n satisfy these conditions. The torsion group of order 18 can be used on
numbers of the form a3n ± b3n. The suggested extension towards torsion group
of order 32 can be used for numbers of the form a8n − b8n or a4n + b4n.

To implement results of section 4.2, the parameter ν can be chosen at random
or iteratively on integers. To implement results of section 4.3, things are slightly
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less simple, since an auxiliary elliptic curve has to be used. In this case one has
to select an integer k randomly or in sequence, compute a scalar multiplication
on the auxiliary elliptic curve to get the inputs of ECM.

We adapted our ECM implementation in order to use these new families of
elliptic curves. Making use of results on Z/4Z × Z/4Z torsion we found several
factors of Cunningham numbers. Among them, one can mention the larger one:

5546025484206613872527377154544456740766039233|21048 + 1

We won’t give here full details of the factorization since they do not correspond
to notations of these paper, this factor having been found in an early stage of
development of this paper.

We also implemented the variant with Z/6Z×Z/3Z torsion. Among the factors
we found, the larger to mention is

1581214773543289355763694808184205062516817|2972 + 1

This factor has been discovered using the input parameters:⎧⎪⎪⎨⎪⎪⎩
a = 29826081614523423723477944537088124780779 mod p
b = 129980809632665349776106077981744185363149 mod p
x = 479946793455925131408573042432160264988537 mod p
y = 341223966666174229961942234304018968605682 mod p

The order of the curve modulo p factors as:

#E(Fp) = 2 × 32 × 29 × 241 × 691 × 5279 × 20353× 252589
× 1489097× 2258261× 199312079

6 Conclusion

We exhibited two torsion groups, that can be used for ECM factoring, of orders
16 and 18. Classical implementations make use of the torsion group Z/8Z×Z/2Z
that can be used for all numbers but of slightly smaller order. It would be really
interesting to have a precise analysis of complexity improvements obtained by
using torsion groups, as well as partial construction of torsion structure as in
section 4.5.

In the case of torsion group of order 25, we did not succeed in constructing
elliptic curves having nonzero rank. This by no way means that no such curves
exist. Solving this issue would result in specific implementations for numbers of
the form a5n ± 1 with the larger available torsion group.

Some torsion groups correspond to a modular curve of genus one. The ob-
struction in using them for ECM is the lack of freedom to build curve with
nonzero rank: to build a curve with this torsion, one only have to select a multi-
ple of a generator on this modular curve. Several approaches could improve the
situation: being able to construct a large number of curves with nonzero rank
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by using rank computation software or being able to construct a point on the
curve modulo N after the curve has been generated.

Last, while infinite families of curves are needed for ECM factoring of integers,
individual curves providing large torsion groups over some number fields could
be used during the sieving phase of the special number field sieve (see [5] and
[6]). Though further research is needed to hunt for interesting individual curves,
we quote one preliminary result: the choice of ν = 1 in section 4.2 ensures a
torsion subgroup of order 32 over the fields Q(ζ24) and Q(ζ40) and of order 64
over the field Q(ζ120).
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Abstract. Mazur proved that any element ξ of order three in the Shafa-
revich-Tate group of an elliptic curve E over a number field k can be
made visible in an abelian surface A in the sense that ξ lies in the
kernel of the natural homomorphism between the cohomology groups
H1(Gal(k/k), E) → H1(Gal(k/k), A). However, the abelian surface in
Mazur’s construction is almost never a jacobian of a genus 2 curve. In
this paper we show that any element of order three in the Shafarevich-
Tate group of an elliptic curve over a number field can be visualized
in the jacobians of a genus 2 curve. Moreover, we describe how to get
explicit models of the genus 2 curves involved.

1 Introduction

Let E be an elliptic curve over a field k with separable closure k. We write
H1(k,E[3]) := H1(Gal(k/k), E[3](k)) for the first galois cohomology group tak-
ing values in the 3-torsion of E (the notation Hi(k,A) is used similarly for other
group schemes A/k later in this paper). We are primarily concerned with the
question which δ ∈ H1(k,E[3]) are visible in the jacobian of a genus 2 curve.
Mazur defines visibility in the following way. Let 0 → E → A → B → 0 be a
short exact sequence of abelian varieties over k. By taking galois cohomology,
we obtain the exact sequence

A(k) �� B(k) �� H1(k,E)
φ

�� H1(k,A) . (1.1)

Elements of the kernel of φ are said to be visible in A. Mazur chose this term
because a model of the principal homogeneous space corresponding to an element
ξ ∈ H1(k,E) that is visible in A can be obtained as a fiber of A over a point
in B(k) (this can readily be seen from (1.1)). By extension, we say that δ ∈
H1(k,E[n]) is visible in A if the image of δ under the natural homomorphism
H1(k,E[n]) → H1(k,E) is visible in A.

Let us restrict to the case that k is a number field for the rest of this section.
Inspired by some surprising experimental data [4], Mazur [5] proved, that for any
element ξ in the Shafarevich-Tate group X(E/k) of order three, there exists an
abelian variety A over k such that ξ is visible in A. The abelian variety that
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Mazur constructs is almost never principally polarizable over k and hence is
almost never a jacobian of a genus 2 curve. In the present paper, we show that
any element from X(E/k)[3] is in fact visible in the jacobian of a genus 2 curve.
Moreover, we describe how to get an explicit model of such a genus 2 curve.

2 Torsors and Theta Groups

Throughout this section let n > 1 be an integer, let k be a perfect field of
characteristic not dividing n and let E denote an elliptic curve over k. In [2],
many equivalent interpretations are given for the group H1(k,E[n]). For our
purposes, we need two classes of objects. The first is most closely related with
descent in general and our question in particular. We consider E-torsors under
E[n](k) and, following [2], call them n-coverings.

Definition 1. An n-covering π : C → E of an elliptic curve E is an unramified
covering over k that is galois and irreducible over k, with Autk(C/E) � E[n](k).
Two n-coverings π1 : C1 → E, π2 : C2 → E are called isomorphic if there exists
a k-morphism φ : C1 → C2 such that π1 = π2 ◦ φ.

Over k, all n-coverings are isomorphic to the trivial n-covering, the multiplication-
by-n map [n] : E → E.

Proposition 1 ([2, Proposition 1.14]). Thek-isomorphismclasses ofn-coverings
of E are classified by H1(k,E[n]).

For δ ∈ H1(k,E[n]) we denote by Cδ the curve in the covering Cδ → E corre-
sponding to δ. We remark that δ ∈ H1(k,E[n]) has trivial image in H1(k,E) if
and only if Cδ has a k-rational point.

We write O for the identity on E. The complete linear system |n·O| determines
a morphism E → Pn−1, where the translation action of E[n] extends to a linear
action on Pn−1. This gives a projective representation E[n] → PGLn. The lift of
this representation to GLn gives rise to a group ΘE , which fits in the following
diagram.

1 �� Gm
αE �� ΘE

βE
��

��

E[n] ��

��

1

1 �� Gm
�� GLn

�� PGLn
�� 1

(2.1)

The group E[n](k) carries additional structure. It also has the Weil pairing eE ,
which is a non-degenerate alternating galois covariant pairing taking values in
the n-th roots of unity

eE : E[n](k) × E[n](k) → μn(k).

The commutator of ΘE corresponds to the Weil pairing, meaning that for x, y ∈
ΘE we have

xyx−1y−1 = αE(eE(βE(x), βE(y))).
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Definition 2. A theta group for E[n] is a central extension of group schemes

1 → Gm
α→ Θ

β→ E[n] → 1

such that the Weil-pairing on E[n] corresponds to the commutator, i.e. for x, y ∈
Θ we have

xyx−1y−1 = α(eE(β(x), β(y))).

Two theta groups

1 → Gm → Θi → E[n] → 1, i = 1, 2

are called isomorphic if there exists a group scheme isomorphism φ : Θ1 → Θ2
over k making the following diagram commutative.

1 �� Gm
�� Θ1 ��

φ

��

E[n] �� 1

1 �� Gm
�� Θ2 �� E[n] �� 1

Over k, all theta-groups are isomorphic to ΘE as central extensions; see [2,
Lemma 1.30].

Proposition 2. ([2, Proposition 1.31]). Let E[n] be the n-torsion subscheme of
an elliptic curve E over a field k, equipped with its Weil pairing. The isomor-
phism classes of theta-groups for E[n] over k are classified by H1(k,E[n]).

The theta group associated to δ ∈ H1(k,E[n]) may allow for a matrix repre-
sentation Θ → GLn that fits in a diagram like (2.1). This is measured by the
obstruction map Ob introduced in [6] and [2]. This map can be obtained by
taking non-abelian galois cohomology of the defining sequence of ΘE :

· · · −→ H1(k,ΘE) −→ H1(k,E[n]) Ob−→ H2(k,Gm) = Br(k) −→ · · · .

Note that, except in some trivial cases, Ob is not a group homomorphism. The
map Ob also has an interpretation in terms of n-coverings. Let C → E be an
n-covering associated to δ ∈ H1(k,E[n]). We have that Ob(δ) = 0 if and only
if C admits a model C → Pn−1 with Autk(C/E) = E[n](k) acting linearly, in
which case C is k-isomorphic to E as a curve and the covering C → E is simply
a translation composed with multiplication-by-n.

Remark 1. Note that if k is a number field, then any element in Br(k) that
restricts to the trivial element in Br(kv) in all completions kv of k, is trivial
itself. It follows that Ob is trivial on the n-Selmer group S(n)(E/k).
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3 Visibility in Surfaces

Let E1 be an elliptic curve over a perfect field k of characteristic distinct from
3. In what follows, we will consider δ ∈ H1(k,E1[3]) with Ob(δ) = 0. A possible
way of constructing an abelian surface A such that δ is visible in A starts by
taking a suitable elliptic curve E2/k together with a k-group scheme isomorphism
λ : E1[3] → E2[3]. Let Δ ⊂ E1 × E2 be the graph of λ so that

Δ(k) = {(P, λ(P )) : P ∈ E1[3](k)}.

Let A := (E1 ×E2)/Δ and write φ : E1 ×E2 → A for the corresponding isogeny.
Since Δ ⊂ E1[3] × E2[3], we have another isogeny φ′ : A → E1 × E2 such that

φ′ ◦φ = 3. We write p∗ for the composition E1 → (E1 ×E2)
φ→ A and p∗ for the

composition A
φ′
→ (E1 × E2) → E1 and q∗, q∗ for the corresponding morphisms

concerning E2. It is straightforward to verify that p∗, q∗ are embeddings, that
φ = p∗ − q∗ (where the projections are understood), and that φ′ = p∗ × q∗.

We combine the galois cohomology of the short exact sequences

0 → E1
p∗
→ A

q∗→ E2 → 0,

0 → E2
q∗
→ A

p∗→ E1 → 0, and

0 → Ei[3] → Ei
3→ Ei → 0 for i = 1, 2

to obtain the big (symmetric) commutative diagram with exact rows and columns

E2(k)
q∗

��

3
��

A(k)

q∗
��

E2(k)

α

��

E2(k)

��

E1(k) 3 ��

p∗

��

E1(k) �� H1(k,Δ) ��

��

H1(k,E1)

��

A(k)
p∗ �� E1(k) �� H1(k,E2) �� H1(k,A)

where we note that H1(k,Δ) � H1(k,E1[3]) � H1(k,E2[3]). We see that δ is
visible in A precisely if δ ∈ H1(k,E1[3]) = H1(k,Δ) lies in the image of α, i.e.,
if the curve Cλ(δ) corresponding to λ(δ) ∈ H1(k,E2[3]) has a rational point. We
summarize these observations, which are due to Mazur.

Lemma 1. Let E1 be an elliptic curve over a perfect field k of characteristic
distinct from 3 and let δ ∈ H1(k,E[3]) with Ob(δ) = 0. Suppose that there exists
an elliptic curve E2/k and a k-group scheme isomorphism λ : E1[3] → E2[3]
such that the curve Cλ(δ) corresponding to λ(δ) has a k-rational point. Then δ
is visible in the abelian surface (E1 × E2)/Δ where Δ denotes the graph of λ.
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Mazur also observed, in the case of a number field k, that if δ ∈ S(3)(E/k), then
Cδ admits a plane cubic model. Furthermore, there is a pencil of cubics through
the 9 flexes of Cδ, and each non-singular member corresponds to a 3-covering
Ct → Et, where Et[3] � E[3] and Ct → Et represents δ. It is therefore easy to
find a t such that Ct has a rational point; simply pick a rational point and solve
for t. To refine the construction, one can ask

Question 1. Can one make δ ∈ H1(k,E[3]) visible in the jacobian of a genus 2
curve?

Note that E1×E2 is principally polarized via the product polarization. This gives
rise to a Weil pairing on (E1 × E2)[3], corresponding to the product pairing. If
A is a jacobian, then A must be principally polarized over k. One way this could
happen is if the isogeny φ : E1 × E2 → A gives rise to a principal polarization.
This would be the case if the kernel Δ is a maximal isotropic subgroup of E1[3]×
E2[3] with respect to the product pairing. That means that λ : E1[3] → E2[3]
must be an anti-isometry, i.e. for all P,Q ∈ E1[3] we must have

eE2(λ(P ), λ(Q)) = eE1(P,Q)−1.

Note that the original cubic C is a member of the pencil that Mazur constructs,
so in his construction λ is actually an isometry, i.e. it preserves the Weil-pairing.
Below we consider a pencil of cubics that leads to an anti-isometry λ.

4 Anti-isometric Pencils

Let k be a perfect field of characteristic distinct from 2, 3. Following [7], we
associate to a ternary cubic form F ∈ k[x, y, z] three more ternary cubic forms.
Namely, the Hessian of F

H(F ) := −1
2

∣∣∣∣∣∣∣
∂F 2

∂x∂x
∂F 2

∂x∂y
∂F 2

∂x∂z
∂F 2

∂y∂x
∂F 2

∂y∂y
∂F 2

∂y∂z
∂F 2

∂z∂x
∂F 2

∂z∂y
∂F 2

∂z∂z

∣∣∣∣∣∣∣ ,
the Caylean of F

P (F ) := − 1
xyz

∣∣∣∣∣∣∣
∂F
∂x (0, z,−y) ∂F

∂y (0, z,−y) ∂F
∂z (0, z,−y)

∂F
∂x (−z, 0, x) ∂F

∂y (−z, 0, x) ∂F
∂z (−z, 0, x)

∂F
∂x (y,−x, 0) ∂F

∂y (y,−x, 0) ∂F
∂z (y,−x, 0)

∣∣∣∣∣∣∣
and a ternary cubic form denoted Q(F ), for which we refer to [7, Section 11.2].
For most cases one can take Q(F ) to be H(P (F )) or P (H(F )), but there
are some exceptional cases where P (F ), Q(F ) span an appropriate pencil and
P (F ), H(P (F )) do not. The left action of GL3 on k3 induces a right action of
GL3 on ternary cubic forms (or, more generally, on k[x, y, z]). For a ternary cubic
form F and an M ∈ GL3 we denote this action simply by F ◦M . The significance
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of the three associated ternary cubic forms lies in the fact that H(F ) depends
covariantly on F (of weight 2) and P (F ) and Q(F ) depend contravariantly on F
(of weights 4 and 6 respectively). This means that for every ternary cubic form
F and every M ∈ GL3 we have, with d := detM that

H(F ◦M) = d2H(F ) ◦M

P (F ◦M) = d4P (F ) ◦M−T

Q(F ◦M) = d6Q(F ) ◦M−T ,

where M−T denotes the inverse transpose of M .
Now consider a smooth cubic curve C in P2 given by the zero locus of a

ternary cubic form F . Then C has exactly 9 different flex points Φ, which all lie
on the (not necessarily smooth) curve given by H(F ) = 0. The smoothness of C
guarantees that F and H(F ) will be linearly independent over k. Hence Φ can be
described as the intersection F = H(F ) = 0. We call Φ the flex scheme of C. At
least one of P (F ) and Q(F ) turns out to be nonsingular (still assuming that C
is nonsingular) and the intersection P (F ) = Q(F ) = 0 equals the flex points Φ∗

of the nonsingular cubics among P (F ) and Q(F ) (if, say, P (F ) is nonsingular,
then Φ∗ can of course also be written as P (F ) = H(P (F )) = 0).

We can consider the pencil of cubics through Φ, explicitly given by

C(s:t) : sF (x, y, z) + tH(F )(x, y, z) = 0. (4.1)

Classical invariant theory tells us the following. This pencil has exactly 4 singular
members and all other members have flex scheme equal to Φ. Conversely, any
nonsingular cubic with flex scheme Φ occurs in this pencil. Furthermore, both
P (sF + tH(F )) and Q(sF + tH(F )) are linear combinations of P (F ) and Q(F ).
This shows that the flex scheme Φ∗ is independent of the choice of C through Φ
and only depends on Φ. We call Φ∗ the dual flex scheme of Φ and we will justify
this name below.

As a simple, but important example we take F := x3 + y3 + z3. Then we
compute

H(F ) = −108xyz, P (F ) = −54xyz, Q(F ) = 324(x3 + y3 + z3).

Now define Φ0 to be the flex scheme of F = 0, i.e.

Φ0 := {[x : y : z] ∈ P2 : x3 + y3 + z3 = xyz = 0}. (4.2)

Then we see that the flex scheme given by P (F ) = Q(F ) = 0 (which is the flex
scheme of Q(F ) = 0) equals Φ0, i.e.

Φ∗
0 = Φ0.

The pencil of cubics through Φ0 (note that 108 �= 0 in k), which is given by

s(x3 + y3 + z3) = txyz,
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is a model over k for the universal elliptic curve over the (genus zero) modu-
lar curve X(3); see [5, p. 225]. Geometrically all flex schemes are linear trans-
formations of each other. In particular, for any flex scheme Φ there exists an
M ∈ GL3(k) such that Φ = MΦ0. This shows that the pencil (4.1) associates to
a general flex scheme Φ is a twist of the universal elliptic curve over X(3).

The contravariance of P and Q implies that the assignment Φ �→ Φ∗ has the
contravariance property that for any flex scheme Φ and M ∈ GL3

(MΦ)∗ = M−TΦ∗. (4.3)

We also note that this implies that the assignment Φ �→ Φ∗∗ := (Φ∗)∗ is covariant
in the sense that for any flex scheme Φ and M ∈ GL3 we have (MΦ)∗∗ = MΦ∗∗.
Writing Φ = MΦ0 and using (Φ0)∗∗ = Φ∗

0 = Φ0 we now get

Φ∗∗ = (MΦ0)∗∗ = MΦ∗∗
0 = MΦ0 = Φ.

This justifies calling Φ∗ the dual flex scheme of Φ.

Remark 2. In the discussion above it was convenient to consider just one projec-
tive plane P2. A more canonical way would be to consider a projective plane P2

with coordinates x, y, z (for a point) and the dual projective plane, denoted (P2)∗,
where the point with coordinates u, v, w describes the line ux+vy+wz = 0. Now
let C be a smooth cubic curve in P2 given by the zero locus of the ternary cubic
form F (x, y, z) with flex scheme Φ. The 9 tangent lines through Φ determine 9
points in (P2)∗. Generically, these 9 points in (P2)∗ will not be the flex points
of a smooth cubic curve, hence generically there will a unique cubic curve going
through these points. This curve in (P2)∗ is exactly given by the zero locus of the
Caylean, i.e. P (F )(u, v, w) = 0; see also [10, pp.151,190–191]. Moreover, if the
characteristic of k is zero, then it turns out that this cubic curve is nonsingular
if and only if the j-invariant of C is nonzero.

To any flex scheme Φ we associate a group Θ(Φ) ⊂ GL3 as follows. Choose a
nonsingular cubic curve C through Φ and let E be its jacobian. After identify-
ing E and C as curves over k, we get an action of E[3] on C, which extends
to a linear action on P2. This determines an embedding χ : E[3] → PGL3.
Obviously, the image χ(E[3]) only depends on Φ. We define Θ(Φ) to be the in-
verse image of χ(E[3]) in GL3. Actually Θ(Φ) can be defined just in terms of
Φ, without choosing C, since it turns out that χ(E[3]) consists exactly of the
linear transformations that preserve Φ. (One way of quickly finding these linear
transformations explicitly is by using the fact that, for any two distinct points
of Φ, the line through these two points intersects Φ in a unique third point.) The
construction gives rise to the theta group

1 → Gm → Θ(Φ) → E[3] → 1.

Note that the isomorphism class of this theta group may still depend on the
choice of identification of C with E. This corresponds to the choice of an iso-
morphism between Θ(Φ)/Gm and E[3]. If Φ is defined over k, then E[3] and
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Θ(Φ) are also defined over k and the element in H1(k,E[3]) corresponding to
this theta group is the same as the element corresponding to the 3-covering
C → C/E[3] � E for any nonsingular cubic curve C through Φ. The construc-
tion also shows that for any M ∈ GL3 we have

Θ(MΦ) = MΘ(Φ)M−1. (4.4)

Proposition 3. Let Φ1 ⊂ P2 be a flex scheme and let Φ2 := Φ∗
1 be the dual flex

scheme. For i = 1, 2 let Ci be a smooth plane cubic with flex scheme Φi, denote
its jacobian by Ei and consider an induced theta group

1 �� Gm
αi �� Θ(Φi)

βi �� Ei[3] �� 1 . (4.5)

Then the outer automorphism (−T ) : GL3 → GL3 given by M �→ M−T , yields an
isomorphism Θ(Φ1) → Θ(Φ2). There exists an anti-isometry λ : E1[3] → E2[3]
making the following diagram commutative.

1 �� Gm
α1 ��

x �→x−1

��

Θ(Φ1)
β1 ��

(−T )
��

E1[3] ��

λ

��

1

1 �� Gm
α2 �� Θ(Φ2)

β2 �� E2[3] �� 1

(4.6)

In particular, let δi ∈ H1(k,Ei[3]) correspond to the theta group (4.5). Then
under the isomorphism H1(k,E1[3]) � H1(k,E2[3]) induced by λ, the cocycle δ1
maps to δ2.

Proof. Once the isomorphism Θ(Φ1) → Θ(Φ2) given by M �→ M−T is estab-
lished, the existence of an isomorphism λ : E1[3] → E2[3] making the diagram
(4.6) commutative, follows immediately. That λ must be an anti-isometry can
readily be seen as follows. Let P,Q ∈ E1[3] and choose x, y ∈ Θ(Φ1) such that
P = β1(x) and Q = β1(y). Then

α2(eE2(λ(P ), λ(Q))) = α2(eE2(β2(x−T ), β2(y−T )))
= x−T y−TxT yT

= (xyx−1y−1)−T

= α1(eE1(β1(x), β1(y)))−T

= α1(eE1(P,Q)−1).

The last statement of the proposition is also immediate, so we are left with
establishing (−T ) : Θ(Φ1)

∼→ Θ(Φ2). It suffices to show that for a flex scheme
Φ ⊂ P2 we have Θ(Φ)−T = Θ(Φ∗). Write Φ = MΦ0 for some M ∈ GL3 with Φ0
given by (4.2). Then a straightforward calculation shows that Θ(Φ0)−T = Θ(Φ0).
We also know that Φ∗

0 = Φ0, so we get Θ(Φ0)−T = Θ(Φ∗
0). Together with (4.3)

and (4.4) we finally obtain,
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Θ(Φ)−T = Θ(MΦ0)−T

= M−TΘ(Φ0)−TMT

= M−TΘ(Φ∗
0)(M

−T )−1

= Θ(M−TΦ∗
0)

= Θ((MΦ0)∗)
= Θ(Φ∗). ��

Remark 3. The construction above of the dual flex scheme Φ∗ of a flex scheme Φ
involved choosing a smooth cubic going through Φ. Without using theta groups,
it was not obvious from this construction that the degree 9 étale algebra k(Φ) is
isomorphic to k(Φ∗). However, there exists a nice explicit geometric construction
of the dual flex scheme that remedies these shortcomings of the earlier construc-
tion. Given a flex scheme Φ, we proceed as follows. We label its 9 points over
k with P1, . . . , P9. There are 4 sets of 3 lines, (corresponding to the 4 singular
members of the pencil of cubics through φ) containing these points. We label
the line that contains Pi, Pj , Pk with l{i,j,k}. One can label the points such that
the subscripts are

{1, 2, 3}
{4, 5, 6}
{7, 8, 9}

,
{1, 4, 7}
{2, 5, 8}
{3, 6, 9}

,
{1, 5, 9}
{2, 6, 7}
{3, 4, 8}

,
{1, 6, 8}
{2, 4, 9}
{3, 5, 7}

,

Naturally, two different lines l{i1,j1,k1}, l{i2,j2,k2} meet in a unique point. If for
example i1 = i2, then the intersection point is Pi1 . If the two sets {i1, j1, k1}
{i2, j2, k2} are disjoint, then the two lines meet in a point outside Φ. We name this
point L{i3,j3,k3}, where {i1, j1, k1, i2, j2, k2, i3, j3, k3} = {1, . . . , 9}. As it turns
out, the four points that have i in their label all lie on a line pi. It is also
straightforward to check that the pi together with the L{i,j,k} form a configu-
ration in (P2)∗ that is completely dual to the Pi with the l{i,j,k}. The pi form
the k points of a flex scheme in (P2)∗, which is justifiably a flex scheme Φ∗

dual to Φ, and its construction immediately implies the contravariance property
(MΦ)∗ = M−TΦ∗.

We can easily verify that the two constructions of Φ∗ coincide for one flex
scheme, for instance Φ0. The general result then follows because any flex scheme
can be expressed as MΦ0 for some M ∈ GL3(k).

Since the action of Gal(k/k) on {P1, . . . , P9} must act via collinearity-pre-
serving permutations, we see that if σ(Pi) = Pσ(i), then σ(pi) = pσ(i). Hence, we
see that the k-points of Φ and its dual have the same Galois action and hence
k(Φ) is isomorphic as a k-algebra to k(Φ∗).

5 Recovering the Genus 2 Curve

Let k be a field and let E1, E2 be two elliptic curves over k with an anti-isometry
λ : E1[3] → E2[3] and denote by Δ the graph of λ as before. Recall that E1×E2 is
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principally polarized via the product polarization and that the induced polariza-
tion on A := (E1 ×E2)/Δ is also principal in this case. It is a classical fact that if
A is not geometrically isomorphic to a product of elliptic curves, then A (together
with its principal polarization) is isomorphic to the jacobian of a genus 2 curve C.
Let us assume from now on that E1 and E2 are non-isogenous. In [8] it is shown
that in this case A is always isomorphic over k to the jacobian of a genus 2 curve
C/k. This is enough to get our main theoretical result.

Theorem 4. Let E be an elliptic curve over a number field k and let ξ ∈
X(E/k)[3]. Then ξ is visible in the jacobian of a genus 2 curve C/k.

Proof. Let δ ∈ S(3)(E/k) be a cocycle representing ξ. By Proposition 2, there
is a 3-covering Cδ → E corresponding to δ. According to Remark 1, we have
that Ob(δ) = 0 and hence that Cδ ⊂ P2. Let Φ ⊂ P2 be its flex scheme. The
construction in Section 4 gives us a pencil of cubics through Φ∗, so we can easily
pick a non-singular one with a rational point. It follows from Proposition 3 that
such a curve is of the form Cλ(δ) for some elliptic curve E2 and some anti-isometry
λ : E[3] → E2[3].

This places us in the situation of Lemma 1, so δ is visible in an abelian surface
A = (E×E2)/Δ. We have ensured that λ is an anti-isometry, which implies that
the surface is principally polarized. As long as we make sure that E,E2 are
non-isogenous (and this is easy given the freedom we have in choosing Cλ(δ)) it
follows that A is a jacobian. ��

Remark 4. We could of course state a more general result about visibility of
elements δ ∈ H1(k,E[3]) with Ob(δ) = 0 for an elliptic curves E over a perfect
field k of characteristic distinct from 2 or 3. Note however that if k is too small,
there might not be enough non-isogenous elliptic curves available. The exclusion
of fields of characteristic 3 is a serious one, the exclusion of non-perfect fields
less so. Most of what we are saying could be generalized to the non-perfect case,
basically because for an elliptic curve over any field of characteristic distinct
from 3, the multiplication by 3 map is separable. The exclusion of fields of
characteristic 2 stems from the fact that the necessary invariant theory in this
case is not readily available.

We continue with the construction of the genus 2 curve C. Define the divisor
Θ := 01 × E2 + E1 × 02 on E1 × E2, which gives a principal polarization on
E1 × E2. Next, consider the set D of effective divisors on E1 × E2 over k which
are linearly equivalent to 3Θ and invariant under Δ. Also consider the set C
of effective divisors C on A over k whose pull-back to E1 × E2 are linearly
equivalent to 3Θ and which satisfy (C · C) = 2. Frey and Kani show that there
exist unique curves D ∈ D and C ∈ C defined over k which are invariant under
multiplication by −1. Furthermore, because E1 and E2 are not isogenous, D and
C are irreducible smooth curves of genus 10 and 2 respectively and the natural
map D → C is unramified of degree 9.

If k is a perfect field of characteristic distinct from 2 or 3, the curves D
and C can be explicitly constructed as follows. Embed E1 in P2, given by, say
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F (x, y, z) = 0, for a ternary cubic F/k (such an F is readily obtained if E1 is
given by a Weierstrass model). Express E2 as G := sP (F )+ tQ(F ) = 0 for some
s, t ∈ k. This way, we obtain an embedding of E1 × E2 in P2 × P2 given by

F (x, y, z) = G(u, v, w) = 0.

Moreover, by appealing to Proposition 3 we obtain that the curve on this surface
given by xu + yv + zw = 0 must be the curve D. The genus 2 curve C is the
image of D in (E1 × E2)/Δ.

E1 × E2

[3]×[3]

��

�������������

(E1 × E2)/Δ

�������������

E1 × E2

The map [3]× [3] is much more accessible, though. We claim that the subgroup
of E1[3] × E2[3] under which D is invariant is equal to Δ. Hence, we can find a
(singular) model of C as a curve on E1 × E2 by computing ([3] × [3])(D). This
can easily be done via interpolation, as explained in the next section by means
of an example. As for our claim above, suppose that D is invariant under some
σ ∈ E1[3] × E2[3] with σ /∈ Δ. Without loss of generality we may assume that
σ = (P, 0E2) ∈ E1[3] × E2[3] with P �= 0E1 . Denote by M ∈ PGL3(k) the linear
action corresponding to translation by P . Now for all ([x : y : z], [u : v : w]) on
D we have

(x, y, z)(u, v, t)T = (x, y, z)MT (u, v, w)T = 0.

This yields (u, v, t) = (x, y, z) × (x, y, z)MT , where × denotes the standard
cross product. This association actually defines a birational transformation φ :
P2 → P2 (a Cremona transformation with singular points corresponding to the
eigenspaces of M). Note that φ is defined on all the [x : y : z] on E1, so the
image of E1 under φ is an irreducible curve birational to E1. Together with the
assumption that E1 and E2 are not isogenous, we get that this image intersects
E2 in only finitely many points, so D is not invariant under σ.

6 Examples

Following the first example in [4, Table 1], consider the elliptic curve 681b1 (in
Cremona’s notation), given by the minimal Weierstrass equation

E1 : y2 + xy = x3 + x2 − 1154x− 15345.

It turns out that the plane cubic curve

C1 : x3 + 5x2y + 5x2z + 2xy2 + xyz + xz2 + y3 − 5y2z + 2yz2 + 6z3 = 0
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defines an element ξ (up to inverse) of order three in X(E1/Q). The contravari-
ants, denoted P0, Q0, are given by

P0 = −478x3 + 2525x2y + 916x2z − 1127xy2 + 29xyz
−160xz2 + 753y3 − 1228y2z + 260yz2 + 301z3,

Q0 = −122314x3 + 618551x2y + 191092x2z − 271157xy2 − 7825xyz
−28120xz2 + 184011y3 − 264916y2z + 55892yz2 + 73663z3.

Now the curve
C2 : 55033P0 − 235Q0 = 0

has a rational point [x : y : z] = [10 : 8 : 7] and its jacobian is the elliptic curve
681c1, given by the minimal Weierstrass equation

E2 : y2 + y = x3 − x2 + 2.

To construct the corresponding genus two curve C such that ξ becomes visible
in its jacobian we could take the curve in C1 × C2 ⊂ P2 × P2 with coordinates
([x : y : z], [u : v : w]) given by the equation xu+yv+zw = 0, and take its image
under C1 ×C2 → E1 ×E2, since this is a twist of [3]× [3] : E1 ×E2 → E1 ×E2
anyway. We will follow Section 5 more closely. Obviously, E1 is given by F = 0
if we define

F := y2z + xyz − (x3 + x2z − 1154xz2 − 15345z3).

The contravariants of the ternary cubic F are given by

P = −2308x3 + 3462x2y − 5x2z − 275056xy2 + 5xyz
+6xz2 + 136951y3 + 13853y2z − 3yz2,

Q = −725020x3 + 1087530x2y + 27721x2z − 65861608xy2 − 27721xyz
−30xz2 + 32749549y3 + 3217559y2z + 15yz2 + 24z3.

Write j(s, t) for the j-invariant of the curve given by sP+tQ = 0. The j-invariant
of E2 equals −4096/2043 and the equation j(s, t) = −4096/2043 has exactly one
solution in P1(Q), namely [s : t] = [55033 : −235] (compare with the definition
of C2). This gives us a new model for E2, namely

E2 : 55033P − 235Q = 0.

We consider the surface E1 × E2 embedded in P2 × P2 as

F (x, y, z) = 0, 55033P (u, v, w)− 235Q(u, v, w) = 0.

The curve D on this surface is given by

xu + yv + zw = 0.
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The image of D under multiplication by 3 on E1 ×E2 is the genus two curve C.
Using the defining properties of C from Section 5 (such as the invariance under
multiplication by −1), we get that as a curve on E1 ×E2 it must be of the form

axu + byv + czw + dxw + ezu = 0

for some a, b, c, d, e ∈ Q. We simply generate 4 points on C (over a number
field), compute the image under multiplication by 3 of these points and solve
for a, b, c, d, e. If the dimension of the solution space is greater than 1, we must
of course add points (or take 4 better ones) so that the solution space becomes
1-dimensional. This gives us our equation for C. By a linear change of the u, v, w
coordinates we can change the model for E2 back to the original minimal Weier-
strass model. Thus, the model for E1 × E2 embedded in P2 × P2 is

E1 : y2z + xyz = x3 + x2z − 1154xz2 − 15345z3,

E2 : v2w + vw2 = u3 − u2w + 2w3

and C is the curve on this surface given by

4xu− 155zu+ xv + 2yv − 40xw + yw + 1314zw = 0.

Hyperelliptic models for C are

Y 2 + (X + 1)Y = 3X5 + 5X4 + X3 − 8X2 − 5X + 2 or
Y 2 = (3X − 1)(X + 1)(4X3 + 4X2 − 9).

Next, consider the elliptic curve 2006e1, given by the minimal Weierstrass equa-
tion

E1 : y2 + xy = x3 + x2 − 58293654x− 171333232940.

It turns out that the plane cubic curve

C1 : 20x3+44x2y+21x2z−77xy2+71xyz+44xz2+31y3+3y2z+150yz2+z3 = 0

defines an element ξ (up to inverse) of order three in X(E1/Q). In the sixth
example in [4, Table 1] the elliptic curve E2 which ‘explains’ X(E1/Q) is 2006d1.
However, for this choice of E2, there only exists an isometry between E1[3] and
E2[3] and not an anti-isometry. The corresponding abelian surface (E1 ×E2)/Δ
visualizing ξ will not be the jacobian of a genus 2 curve. If instead we take for
E2 the elliptic curve 6018c1, then we do have an anti-isometry between E1[3]
and E2[3]. Following the same route as in the first example, we find that ξ is
visible in the jacobian of the genus 2 curve C with hyperelliptic models

Y 2 + (X2 + X)Y = − 9675X6 − 94041X5 − 914X4 + 1301674X3 − 352310X2

− 2071181X − 945269 or

Y 2 = 43(2X + 13)(18X2 − 81X + 89)(25X3 + 193X2 + 224X + 76).
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7 Applications to 3-Descent

In this section we survey some of the ways in which explicit visibility might aid
computations of Mordell-Weil groups and related quantities of elliptic curves. We
recall that given an abelian variety A over a number field k, the group X(A/k) ⊂
H1(k,A) consists of the cocycle classes that are everywhere locally trivial. It
measures the difference between the Mordell-Weil group A(k) and the Selmer
group S(A/k) ⊂ lim←−nH

1(k,A[n]) which is an everywhere local approximation to
A(k), in the sense that the following sequence is exact.

0 → A(k) → S(A/k) → X(A/k) → 0

An n-descent usually means an explicit computational process to compute

S(n)(A/k) = S(A/k)/nS(A/k) ⊂ H1(k,A[n]).

It provides a bound on rkA(k) and conversely, if A(k) is known, then we can use

0 → A(k)/nA(k) → S(n)(A/k) → X(A/k)[n] → 0

to compute #X(A/k)[n] and thus obtain information on #X(A/k). In prin-
ciple, one can use visibility to refine this information. We will argue using an
example. Stein and Watkins [12] found the following elliptic curve

E : y2 + xy = x3 − x2 + 94x + 9.

Using a 2-descent and some point searching (with for instance Magma [1]) it is
straightforward to verify that E(Q) � Z × Z and that #X(E/Q)[2] = 1. Using
a 3-descent (see [2, 3, 11], implemented in Magma), with unproved S-unit data
we find that

C1 : x3 + 2x2z + 2xy2 + xyz − xz2 − y3 + 3y2z − 6yz2 + z3 = 0,

C2 : x3 − 2xy2 + 3xyz + 2y3 + y2z + yz2 + 3z3 = 0

are 3-coverings of E that have points everywhere locally and we can verify by
looking at preimages of representatives of E(Q)/3E(Q) that C1, C2 have no
rational points. The same process allows us to find more than 18 such spaces,
verifying unconditionally that #X(E/Q)[3] ≥ 9. The conditional 3-descent com-
putation suggests that C1, C2 represent cocycles generating S(3)(E/Q)/E(Q),
so one expects that #X(E/Q)[3] = 9 and indeed BSD predicts that
#X(E/Q) = 9.

Visibility could help with proving that #X(E/Q)[3∞] = 9. The construction
in this paper yields an abelian surface A = Jac(C), together with a map

φ∗ : X(E/Q) × X(E′/Q) → X(A/Q)

where we know that ker(φ∗) is contained in the 3-torsion, because multiplication-
by-three factors through φ. If we can make sure that ker(φ∗) contains the classes
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represented by C1, C2 (this implies that E′(Q) is of rank at least 2), it may well
be that #X(A/Q)[3] = 1. If we can compute S(3)(A/Q), we can check this and
the result would follow.

Thus, visibility allows us to substitute a 9-descent on an elliptic curve with a
3-descent on the Jacobian of a genus 2 curve. Both are theoretically computable,
but in neither case does it seem practical at this point. Since A has a 3-isogeny
to E×E′, the 3-torsion algebra (generically of degree 80), splits in two algebras
of degrees 72 and 8 respectively. However, doing class group computations for
degree 72 algebras over Q still seems well out of range.

It is conceivable that some appropriate galois-stable set S of divisors on C
exists with #S < 72. The group Sp4(F3) has an index 27 subgroup, for instance,
predicting a transitive action on 27 objects somewhere. If for some fixed divisor
D0 we have that A[3] = 〈[D −D0] : D ∈ S〉, it may be possible to adapt ideas
about fake Selmer groups [9] for application to A and only require class group
information for algebras of degree #S.

At this point it is unclear if this approach has any advantages to a direct 9-
descent on E and whether either method can be made practical for the example
given in this section.

Acknowledgments. The authors would like to thank the referees, who pro-
vided various helpful comments which found their way into this article.
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Abstract. For K3 surfaces, we derive some conditions the characteris-
tic polynomial of the Frobenius on the étale cohomology must satisfy.
These conditions may be used to speed up the computation of Picard
numbers and the decision of the sign in the functional equation∗∗. Our in-
vestigations are based on the Artin-Tate formula.

1 Introduction

An algebraic integer such that all its conjugates have absolute value
√
r is

called an r-Weil number. Correspondingly, a possibly reducible monic polynomial
Φ ∈ Z[T ] such that all roots have absolute value

√
r is called an r-Weil polyno-

mial.
Let q be a prime power and r = qk. Then, for every smooth projective vari-

ety V over Fq, the eigenvalues of the Frobenius endomorphism Frob on the étale
cohomology Hk

ét(VFq
,Ql) are r-Weil numbers [3, Lemme 1.7]. Conversely, every

qk-Weil number is an eigenvalue of Frob on Hk
ét(VFq

,Ql) for a suitable smooth
projective variety V over Fq. Actually, this fact is a direct consequence of the
results of T. Honda [9].

In this note, we will study the Weil numbers of K3 surfaces. As the second
Betti number of a K3 surface is b2(V ) = 22 and q is always a root of the
characteristic polynomial, the possible Weil numbers are of degree at most 20.

We will show that not all q2-Weil polynomials Φ ∈ Z[T ] satisfying degΦ = 22
and Φ(q) = 0 occur as characteristic polynomials of Frob on the étale cohomology
of K3 surfaces. Concerning K3 surfaces of fixed degree, even more restrictions re-
sult. Our investigations are based on the Artin-Tate formula which we will recall
in section 3.
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An application. The characteristic polynomial of Frob may be computed
by counting points over extensions of the ground field. Indeed, for V a
K3 surface over Fq, the Lefschetz trace formula [13, Ch. VI, §12] yields
tr(Frobe) = #V (Fqe) − q2e − 1.

When we denote the eigenvalues of Frob by r1, . . . , r22, we have
tr(Frobe) = re

1 + · · · + re
22 =: σe(r1, . . . , r22). Newton’s identity [20]

sk(r1, . . . , r22) =
1
k

k−1∑
j=0

(−1)k+j+1σk−j(r1, . . . , r22)sj(r1, . . . , r22)

shows that the knowledge of σe(r1, . . . , r22), for e = 1, . . . , k, is sufficient in order
to determine the coefficient (−1)ksk of T 22−k of the characteristic polynomial Φ
of Frob. Further, there is the functional equation

qdeg ΦΦ(T ) = ±T deg ΦΦ(q2/T ) (1)

which, as degΦ = 22, relates the coefficient of T k with that of T 22−k.
Nevertheless, this method is time-consuming. The size of the fields to be

considered grows exponentially. One would like to avoid point counting over
large fields and, nevertheless, determine Φ sufficiently well in order to decide
things such as the sign in (1). Algorithms of this type were presented in [6].
For example, Algorithm 22 of [6] verifies that the geometric Picard rank is 2,
having counted points over Fp, . . . ,Fp9 for p a prime number.

The main result of the present article leads to a more substantial approach
to this problem. In fact, we will show that certain hypothetical characteristic
polynomials are impossible, in general. This leads to an improvement of [6, Al-
gorithm 22]. Sections 7 and 8 will be devoted to examples showing how this
improvement works in practice.

Remark 1. A continuation of this application, which we have in mind, is the
computation of the geometric Picard rank for K3 surfaces over Q. Here, the
general strategy is to use reduction modulo p. One applies the inequality

rkPic(VQ) ≤ rkPic(VFp
)

which is true for every smooth variety V over Q and every prime p of good re-
duction. Then, the number of eigenvalues of Frob which are roots of unity is an
upper bound for the Picard number. More details are given in [6] and [7].

2 The Galois Group of a Weil Polynomial

For a randomly chosen irreducible polynomial over Q, one expects the Galois
group to be the full symmetric group. In this sense, the irreducible factors of a
Weil polynomial are not very random.

When we consider the operation of Frob on a cohomology group of even
degree, cyclotomic factors do arise. They correspond to the algebraic part of
the cohomology, i.e., to the image of the Picard group and its analogues in
higher codimension. The corresponding Galois group is always abelian.
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Concerning the remaining factors, still, there are restrictions on the Ga-
lois group. Note that, for each root of an irreducible r-Weil polynomial not
of degree 1, the complex conjugate is a root, too. This means, the roots come
in pairs. The product of each pair is equal to r. The Galois group therefore acts
on the pairs. For a suitable integer n, it is a subgroup of the semi-direct product
(Z/2Z)n �Sn ⊂ S2n. Here, each factor (Z/2Z) acts on one pair by complex con-
jugation. The complex conjugation itself belongs to the center of the group.

An experimental result. One could ask for further restrictions on the Ga-
lois group. For that, we computed the characteristic polynomial of Frob for a
few thousand randomly chosen K3 surfaces. In each case, the factorization of
that polynomial had precisely one irreducible factor which was not cyclotomic.
This coincides with Zarhin’s results [18] for ordinary K3 surfaces.

Furthermore, in the vast majority of the examples, the Galois group of the
last factor was actually equal to the semi-direct product (Z/2Z)n � Sn ⊂ S2n.
For example, this was true for 875 out of 1 000 K3 surfaces of degree 2 over F3
and 923 out of 1 000 K3 surfaces of degree 2 over F7.

The resolvent algebra. Let Φ ∈ Q[T ] be a polynomial such that its set of roots
is of the particular form {r1, r′1, . . . , rn, r

′
n} such that r1r′1 = . . . = rnr

′
n =: r ∈ Q.

Then, the sums r1 + r′1, . . . , rn + r′n are the roots of a polynomial R ∈ Q[T ] of
half the degree. We will call R the resolvent polynomial and A := Q[T ]/R the
resolvent algebra of Φ.

Remarks 2. a) When Φ is an r-Weil polynomial of even degree, the assumption
is satisfied if and only if

√
r is a root of even multiplicity (or no root) of Φ. In this

case, (−
√
r) has even multiplicity, too.

In fact, this means exactly that Φ fulfills the functional equation (1) with the
plus sign.
b) On the other hand, when one wants to verify that a given polynomial satisfy-
ing the functional equation is, in fact, a Weil polynomial, the resolvent is helpful.
Observe that the roots of the initial polynomial are all of absolute value

√
r if

and only if the roots of the resolvent are all real and in the interval [−2
√
r, 2

√
r].

That property may easily be checked using Sturm’s chain theorem.
This is a fast and exact replacement of [6, Algorithm 23].

3 The Artin-Tate Formula

Let us recall the Artin-Tate conjecture in the special case of a K3 surface.

Conjecture 3 (Artin-Tate). Let V be a K3 surface over a finite field Fq. De-
note by ρ the rank and by Δ the discriminant of the Picard group of V, defined
over Fq. Then,

|Δ| =
lim
T→q

Φ(T )
(T−q)ρ

q21−ρ#Br(V )
.
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Here, Φ denotes the characteristic polynomial of Frob on H2
ét(VFq

,Ql). Fi-
nally, Br(V ) is the Brauer group of V .

Remarks 4. i) The characteristic polynomial Φ is independent of the choice of
the auxiliary prime l as long as l �= p for q = pe [3, Théorème 1.6].
ii) For a general non-singular, projective surface, the exponent of q in the nu-
merator is b2(V ) − h02(V ) − ρ. Here, h02(V ) denotes the Hodge number.
iii) The Artin-Tate conjecture is proven for most K3 surfaces. Most notably, the
Tate conjecture implies the Artin-Tate conjecture [11, Theorem 6.1].
iv) The Tate conjecture claims that all zeroes of Φ of the form qζ for ζ a root
of unity belong to the algebraic part of H2

ét(VFq
,Ql). I.e., it asserts that the

transcendental part never generates a zero of this form.
The evidence for this is overwhelming as far as K3 surfaces are concerned.
The Tate conjecture is proven for elliptic K3 surfaces [1] and ordinary K3 sur-
faces [15]. In characteristic different from 2 and 3, even more particular cases
were successfully treated [16].
v) It is expected that Br(V ) is always a finite group. This is actually equivalent
to the Tate conjecture. In this case, #Br(V ) is automatically a perfect square.
We may therefore compute the square class of Δ making use of the Artin-
Tate conjecture.

An unconditional version of the Artin-Tate formula
Notation 5. i) For n a positive integer, we will denote by μn the sheaf of
n-th roots of unity with respect to the fppf topology. When l is a prime number,
we put Hd

fppf(VFq
, Tlμ) := lim←−e Hd

fppf(VFq
, μle).

ii) For l a prime number and M an abelian group, the notation Ml-pow
shall be used for the l-power torsion subgroup of M . Similarly, we will write
Ml-div ⊆ Ml-pow for the subgroup of infinitely l-divisible elements.
iii) We will denote by MFrob and MFrob the invariants, respectively coinvariants,
under the operation of Frob on the abelian group M . The coinvariants may have
torsion even when M is torsion-free. Write M ′

Frob for the torsion-free quotient.

Proposition 6. Let V be a K3 surface over a finite field Fq and l be any prime.
Write Φ for the characteristic polynomial of Frob on the étale cohomology of VFq

and ρ for the multiplicity of q as a zero of Φ.
i) Then, the Brauer group Br(V ) is a torsion group. The quotient

Br0(V, l) := Br(V )l-pow/Br(V )l-div

is a finite group of square order.
ii) Further, H2

fppf(VFq
, Tlμ)Frob is a free Zl-module of rank ρ.

iii) Denote by Δl the discriminant of the bilinear form

H2
fppf(VFq

, Tlμ)Frob ×H2
fppf(VFq

, Tlμ)Frob −→ Zl
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defined by Poincaré duality. Then,

νl(Δl) = νl

(
lim

T→q

Φ(T )
(T−q)ρ

q21−ρ#Br0(V,l)

)
.

Proof. i) Finiteness of Br0(V, l) follows immediately from [8, (8.9)]. Fur-
ther, there is a non-degenerate alternating pairing Br0(V, l)×Br0(V, l) → Ql/Zl

constructed in [19, Lemma 3.4.1]. This ensures that the group order is a per-
fect square.
ii) and iii) We denote the zeroes of Φ by r1, . . . , r22.
First case. l �= p. Here, H := H2

fppf(VFq
, Tlμ) = H2

ét(VFq
,Zl(1)) is the same as

l-adic étale cohomology. It is a free Zl-module of rank 22. In the present case,
the operation of Frob on H is known to be semi-simple [4, Corollary 1.10].
The eigenvalues are r1/q, . . . , r22/q. Assertion ii) follows immediately from this.

Further, we have νl(Δl) = νl(#coker(HFrob → Hom(HFrob,Zl))), the map be-
ing induced by Poincaré duality. Identifying Hom(H,Zl) with H , the module
Hom(HFrob,Zl) goes over into H ′

Frob. Here, as shown in [19, Proposition 1.4.2],
(HFrob)tors ∼= Br0(V, l). Further, the order of the cokernel of the canonical ho-
momorphism HFrob → HFrob is equal to the l-primary part of

∏
rj 
=q

(1 − rj/q).
Altogether, this implies the claim.
Second case. l = p. Here, some modifications are necessary which are described
in [11]. More concretely, the short exact sequence

0 → Pic(VFq
)⊗ZZp → H2

fppf(VFq
, Tpμ) → lim←−Br(VFq

)pn → 0

immediately shows that H := H2
fppf(VFq

, Tpμ) is a torsion-free Zp-module. Oth-
erwise, its structure is rather different from the previous case. The rank of H is,
in general, less than 22. Eigenvalues of Frob are only those rj/q which are units
in Qp [11, 1.4]. But this is enough to show ii).

Generally, there are unipotent connected quasi-algebraic groups Ud and étale
group schemes Dd

n for d = 2, 3 and n � 0 which provide short exact sequences
0 → Ud(Fq) → Hd

fppf(VFq
, μpn) → Dd

n(Fq) → 0. For varying n, the vector groups
U3(Fq) are connected by identities. Further, D3

n = 0. Hence, if dimU3 = s then
#H3

fppf(VFq
, Tpμ)Frob = qs the operation of Frob being semi-simple. Actually, one

has s = 0 except when V is supersingular.
Poincaré duality is available [12, Theorem 5.2 and Corollary 2.7.c)] only at the

level of torsion coefficients. Thereby, U2(Fq) and U3(Fq) are dual to each other.
One has lim←−U2(Fq) = 0 and R1lim←−U2(Fq) = 0 as the connecting homomorphisms
are zero. Hence, H2

fppf(VFq
, Tpμ) ∼= lim←−D2

n(Fq). Further, it turns out that the ho-
momorphism HFrob → Hom(HFrob,Zp) does not need to be bijective. It has a
cokernel exactly of order qs (cf. [11, Lemma 5.2]).

Summarizing, we find that Δp has the same p-adic valuation as

qs ·
∏

νp(rj/q)=0
rj �=q

(1 − rj/q) .
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For iii), it remains to show the following. Up to p-adic units, the product of
the remaining factors, i.e.

∏
νp(rj/q) 
=0

(1 − rj/q), equals qs−1. This is worked out in [11,
sec. 7]. �

Remark 7. The Tate conjecture implies H2
fppf(VFq

, Tlμ)Frob ∼= Pic(VFq
)⊗ZZl. Fur-

ther, it is equivalent to Br(V )l-div = 0. Thus, Proposition 6 goes over into the
Artin-Tate formula in its usual form. However, the Tate conjecture is unknown
in general, even for K3 surfaces. For this reason, we prefer to apply the version
of the Artin-Tate formula which holds unconditionally.

4 The Rank-1 Condition

Let V be a K3 surface of degree d over a finite field Fq. Assume that q is a simple
zero of the characteristic polynomial of Frob. Then, the Tate conjecture is true
for V and the arithmetic Picard rank is equal to 1. The discriminant of Pic(V ) is
equal to d. A comparison with the analytic discriminant computed via the Artin-
Tate formula leads to a non-trivial condition for hypothetical Weil polynomials.

Remarks 8. a) This is a condition for rank-1 surfaces of a given degree d. It is
not a condition for K3 surfaces, in general.
b) The degree of a K3 surface may be any even integer greater than zero. On the
other hand, when the arithmetic Picard rank is 1, the number (−q) is necessarily
among the Frobenius eigenvalues. Hence, the Artin-Tate formula can generate
only even numbers.
c) The Artin-Tate conjecture implies the inequality #Br(V )|Δ| ≤ 222−ρq. Thus,
the left hand side is O(q). Observe the following striking consequence. Over the
field Fq, there is no K3 surface of a square-free degree d > 221q and arithmetic
Picard rank 1.

Remark 9. The rank-1 condition may be extended to other situations where
a subgroup of the Picard group is known. For this, one has to compare the
predicted ranks and discriminants with the known ones.

5 The Field Extension Condition

Notation 10. For q a positive integer, let Φ be a q2-Weil polynomial. Then, we
will write

E
(c)
Φ :=

∏
rj 
=q

qc − rc
j

q − rj

/
q(c−1)(21−ρ) .

Here, rj runs over all the zeroes of Φ. Further, ρ is the multiplicity of the zero q.

Observation 11 (Field extension for the characteristic polynomial). Let V be
any smooth, projective variety over Fq and

∏
j(T − rj) the characteristic poly-

nomial of Frob on H2
ét(VFq

,Ql). Then, the corresponding polynomial for VF
qd

is
∏

j(T − rd
j ).
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Theorem 12. Let V be a K3 surface over Fq. Further, let c be a positive in-
teger. Then, for Φ the characteristic polynomial of Frob, the expression E

(c)
Φ is

a perfect square in Q.
Proof. If there is an rj �= q such that rc

j = qc then E
(c)
Φ = 0. Otherwise, for every

prime l, H2
fppf(VFq

, Tlμ)Frobqc is a sublattice of finite index in H2
fppf(VFq

, Tlμ)Frobq .
In particular, the discriminants differ by a factor being a perfect square. Di-
viding the Artin-Tate formulas for VFqc and VFq through each other yields that
νl(E

(c)
Φ ) is even for every l. Finally, it is easy to see that E

(c)
Φ > 0. �

Remark 13. Assume the Tate conjecture. Then, E
(c)
Φ is non-zero if and only if

rkPic(VFq) = rkPic(VFqc).

Definition 14. We will call the condition on E
(c)
Φ to be a perfect square, the

field extension condition for the field extension Fqc/Fq.

Explicit computation of the expression E
(c)
Φ . Our goal is now to describe

the square class of E(c)
Φ more explicitly. It will turn out that, for an arbitrary Weil

polynomial, E(c)
Φ may be a non-square. In other words, Theorem 12 provides a

non-trivial condition.

Remark 15. A priori, there are infinitely many conditions, one for each value
of c. The main result of this section is that there is in fact only one condition.
Further, this condition may be checked easily.

Lemma 16. Let f ∈ Q[T ] be a q2-Weil polynomial. Suppose f(q) �= 0 and
f(−q) �= 0. Then, for r1, . . . , r2l the zeroes of f ,

2l∏
j=1

qc − rc
j

q − rj
∈
{

(Q∗)2 ∪ {0} for c odd,
f(−q)(Q∗)2 ∪ {0} for c even.

Further, the left hand side is actually in f(−q)(Q∗)2 for c = 2.
Proof. First observe that, for c = 2, the numerators q2 − r2

j are all non-zero
according to the assumption. Hence, the additional assertion is clear once we
showed the main one.

For that, let us start with the contribution of one pair of complex conju-
gate roots. Put rj = q(u + iv). Then, the corresponding factor is

(qc − rc
j)(q

c − rc
j)

(q − rj)(q − rj)
=

(qc − qc(u + iv)c)(qc − qc(u− iv)c)
(q − q(u + iv))(q − q(u − iv)

= q2(c−1)
c−1∏
k=1

(1 − ζk
c (u + iv))(1 − ζk

c (u− iv)) .

Using (u + iv)(u− iv) = 1, we get

q2(c−1)
c−1∏
k=1

(1 − 2ζk
c u + ζ2k

c ) .
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Next, for k �= c/2, let us multiply the factors for k and c− k. This yields

(1 − 2ζk
c u + ζ2k

c )(1 − 2ζc−k
c u + ζ2c−2k

c ) = 2 + 4u2 − 8uRe(ζk
c ) + 2 Re(ζ2k

c ) .

As Re(ζ2k
c ) = 2 Re(ζk

c )2 − 1, the latter term is the same as

4u2 − 8uRe(ζk
c ) + 4 Re(ζk

c )2 = (2u− 2 Re(ζk
c ))2 .

Multiplying over all k such that 1 ≤ k < c/2, we find a square in Q(u). Con-
sequently, up to the factor for k = c/2, if present, the contribution of the
pair {rj , rj} is a square in the resolvent algebra A of f .

Multiplying over all l pairs means to form a norm for the extension A/Q.
As the norm of a square is a square, the result is a perfect square in Q. For c odd,
this completes the argument.

For c even, the factors for k = c/2 are still missing. These are the ones
for ζk

c = −1. We find the product
l∏

j=1

(1 + rj/q)(1 + rj/q) = q−2lf(−q) .

The assertion follows. �
Proposition 17. Let Φ be a q2-Weil polynomial of even degree. Then,

E
(c)
Φ ∈

{
(Q∗)2 ∪ {0} for c odd,

qΦ(−q)(Q∗)2 ∪ {0} for c even.

For c = 2, we actually have E
(c)
Φ ∈ qΦ(−q)(Q∗)2.

Proof. First case: c is odd.
Then, the denominator q(c−1)(21−ρ) is a perfect square. The zeroes (−q) con-
tribute factors qc−1 which are squares, too. Finally, the contribution to E

(c)
Φ of

the zeroes not being real is a perfect square according to Lemma 16.
Second case: c is even.
If (−q) is a zero of Φ then E

(c)
Φ = 0. This coincides with the claim as Φ(−q) = 0.

Otherwise, write Φ(T ) = (T − q)ρf(T ) where f(q) �= 0 and f(−q) �= 0. By as-
sumption, ρ is even. Hence, q(c−1)(21−ρ) is in the square class of q. Further, the
zeroes of Φ differing from q are exactly the zeroes of f . Their contribution is
in f(−q)(Q∗)2 for c = 2 and in f(−q)(Q∗)2 ∪ {0}, in general. As ρ is even,
f(−q)(Q∗)2 is the same class as Φ(−q)(Q∗)2. The assertion follows. �
Corollary 18. Let f ∈ Z[T ] be a q2-Weil polynomial.
i) Then, all field extension conditions for Fqc/Fq are satisfied if only if the con-
dition for the quadratic extension Fq2/Fq does hold.
ii) For extensions of odd degree, the field extension condition is always satisfied.
iii) If Fq and Fq2 lead to different Picard ranks then all the field extension con-
ditions are satisfied.

Remark 19. One might want to study the field extension conditions for Fqac/Fqa ,
i.e., for an extended ground field. Our calculations show that this does not lead
to new conditions.
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Simplification of the field extension test. Denote by φn the n-th cyclo-
tomic polynomial. Correspondingly, there is the monic polynomial ψn given
by ψn(T ) := qϕ(n)φn(T/q). This is a q2-Weil polynomial.

Lemma 20. Let n > 1 be an integer. Then,

ψn(−q) ∈

⎧⎨⎩ (Q∗)2 if n is not a power of 2 ,
2(Q∗)2 for n = 2m,m ≥ 2 ,

{0} for n = 2 .

Proof. It is well known (see, e.g., [14, sec. 3]) that φn(−1) = 1 unless n is
a power of 2. Further, the formula φ2e(t) = t2

e−1
+ 1 shows φ2(−1) = 0 and

φ2e(−1) = 2 for e > 1. Observe, finally, that ϕ(n) is always even for n > 2. �

Remark 21. The result used here is a very special case of the value of a cyclo-
tomic polynomial at a root of unity.

Theorem 22. Let Φ ∈ Z[T ] be a q2-Weil polynomial of even degree. Factor-
ize Φ as

Φ(T ) = (T − q)r(T + q)sψn1(T ) · . . . · ψnk
(T )Φ1(T )

such that Φ1 has no root being a root of unity multiplied by q. Denote by M the
number of the powers of 2 among the n1, . . . , nk. Then,

i) if c is odd then E
(c)
Φ ∈ (Q∗)2 ∪ {0}.

ii) If c is even and s > 0 then E
(c)
Φ = 0 for every c.

iii) Finally, if c is even and s = 0 then E
(c)
Φ ∈ 2MqΦ1(−q)(Q∗)2 ∪ {0}. Further-

more, for c = 2, one actually has

E
(2)
Φ ∈ 2MqΦ1(−q)(Q∗)2 .

Proof. i) and ii) are immediate consequences from Proposition 17. For iii),
observe the assumption implies that r is even. In particular, (−2q)r is a per-
fect square. The assertion now follows from Proposition 17 together with Corol-
lary 20. �

Remark 23. Suppose Φ ∈ Z[T ] is a q2-Weil polynomial of degree 22. In order
to show that Φ may not be the characteristic polynomial of the Frobenius for a
K3 surface over Fq, it suffices to verify that s = 0 and 2MqΦ1(−q) is a non-square.

Example 24. As an example, we look at K3 surfaces of Picard rank 18 such that
the Picard group is defined over an extension of odd degree. Then, (−q) is not
an eigenvalue of the Frobenius. The transcendental part of the characteristic
polynomial is given by (T 4 + aT 3 + bT 2 + aq2T + q4). Hence, the field extension
condition usually requires that (2q2 − 2aq + b)q is a perfect square. If, however,
the cyclotomic factors contain an odd number of type ψ2n then 2(2q2−2aq+b)q
is required to be a square.



On Weil Polynomials of K3 Surfaces 135

6 The Special Case of a Degree-2 Surface – Twisting

When a K3 surface has a non-trivial automorphism, one can hope to get
more conditions by inspecting the corresponding twist. This is the case for
degree-2 surfaces.

The Twist. Let the K3 surface V be given by the equation

w2 = f6(x, y, z) .

Then, for n a non-square in Fq, consider the twist Ṽ of V given by

nw2 = f6(x, y, z) .

Fact 25. Assume that q, r2, . . . , r22 are the eigenvalues of Frob for V . Then, the
eigenvalues for Ṽ are q,−r2, . . . ,−r22.
Proof. For e even, VFqe and ṼFqe are isomorphic. When e is odd, we have

#V (Fqe ) + #Ṽ (Fqe ) = 2·#P2(Fqe ) = 2q2e + 2qe + 2 .

It is easy to check that the Lefschetz trace formula, applied to the eigenval-
ues q,−r2, . . . ,−r22, implies exactly this relation. �
Proposition 26. Let V be a K3 surface of degree 2 over Fq. Denote by Φ the
characteristic polynomial of Frob for V and by Φ̃ the corresponding polynomial
for the twist Ṽ .
i) Then, Φ has a simple zero at q if and only if Φ̃ does not have a zero at (−q).
I.e., the rank-1 condition can be applied to the one precisely when the field ex-
tension condition is non-empty for the other one.
ii) The two conditions are equivalent to each other.

Proof. i) immediately follows from Fact 25.
ii) By assumption, we can write Φ(T ) = (T − q)(T + q)2n−1f(T ). Here both,
f(q) and f(−q) are non-zero. Fact 25 shows, the corresponding polyno-
mial for the twist is Φ̃(T ) = (T − q)2nf(−T ). Using these two formulas, one
can make the conditions explicit. The rank-1 condition for Φ simply means
(2q)2n−1f(q) = 2 in Q∗/(Q∗)2 which is equivalent to saying that qf(q) is a per-
fect square. This is precisely the field extension condition for Φ̃. �

7 Examples

Let us show in detail the data for a few examples. Our goal is to illustrate how
the Artin-Tate conditions work in practice.

Example 27 (A K3 surface of degree 2 over F7). Consider the surface V over F7,
given by

w2 = y6 +3z6 +5xz5 +5x2y4 +x2z4 +3x3y3 +x3z3 +5x4y2 +x4z2 +5x5y+2x6 .

Over F7, . . . ,F79 , there are exactly 66, 2 378, 118 113, 5 768 710, 282 535 041,
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13 841 275 877, 678 223 852 225, 33 232 944 372 654, and 1 628 413 551 007 224
points. We claim that rkPic(VF7

) = 2.
Assuming the characteristic polynomial of the Frobenius has more than two

zeroes of the form 7 times a root of unity, [6, Algorithm 22] leaves us with three
candidates Φ1, Φ2, Φ3.

Φi(t) = t22 − 16 t21 + 140 t20 − 1 029 t19 + 5 831 t18 − 36 015 t17 + 268 912 t16

− 1 882 384 t15 + 11 529 602 t14 − 46 118 408 t13 + ait
12 + bit

11 + cit
10

+ (−1)ji [−110 730 297 608 t9 + 1356 446 145 698 t8 − 10 851 569 165 584 t7

+ 75 960 984 159 088 t6 − 498 493 958 544 015 t5 + 3954 718 737 782 519 t4

− 34 196 685 556 119 429 t3 + 227 977 903 707 462 860 t2

− 1 276 676 260 761 792 016 t + 3909 821 048 582 988 049]

for
j1 = 0, (a1, b1, c1) = (161 414 428,−1 129 900 996, 7 909 306 972) ,

j2 = 1, (a2, b2, c2) = ( 80 707 214, 0,−3 954 653 486) ,

j3 = 1, (a3, b3, c3) = (121 060 821, 0,−5 931 980 229) .

Each of the three polynomials leads to an upper bound of 4 for the rank of the
geometric Picard group. All three have roots of absolute value 7, only. Apply-
ing the Artin-Tate formula, we find the following.

Table 1. Hypothetical ranks and discriminants

polynomial field arithmetic #Br(V )|Δ|
Picard rank

Φ1
F7 2 58
F49 2 4524

Φ2
F7 1 4
F49 2 1996

Φ3
F7 1 6
F49 2 2997

The polynomial Φ1 is excluded by the field extension condition as the two val-
ues in the rightmost column define different square classes. On the other hand,
the rank-1 condition excludes Φ2 and Φ3 since we have a degree-2 example.
Thus, relative to the Tate conjecture, geometric Picard rank 2 is proven.

Example 28 (continuation). On the same surface, point counting over F710 leads
to a number of 79 792 267 067 823 523. For the characteristic polynomial of the
Frobenius, we find the two candidates Φ4, Φ5,

Φi(t) = t22 − 16 t21 + 140 t20 − 1 029 t19 + 5831 t18 − 36 015 t17 + 268 912 t16

− 1 882 384 t15 + 11 529 602 t14 − 46 118 408 t13 + 40 353 607 t12 + ait
11

+ (−1)ji [ −1 977 326 743 t10 + 110 730 297 608 t9 − 1 356 446 145 698 t8

+ 10 851 569 165 584 t7 − 75 960 984 159 088 t6 + 498 493 958 544 015 t5

− 3 954 718 737 782 51 9t4 + 34 196 685 556 119 429 t3

− 227 977 903 707 462 860 t2 + 1276 676 260 761 792 016 t

− 3 909 821 048 582 988 049]
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for j4 = 0, a4 = 0, j5 = 1, and a5 = 564 950 498. Φ4 corresponds to the minus
sign in the functional equation, Φ5 to the case of the plus sign. Both candidates,
according to the Tate conjecture, imply geometric Picard rank 2.

To decide which sign is the right one, one would first check the absolute values
of the roots. Unfortunately, both polynomials only have roots of absolute value 7.
The Artin-Tate formula provides the picture given in the table below.

Table 2. Hypothetical ranks and discriminants

polynomial field arithmetic #Br(V )|Δ|
Picard rank

Φ4
F7 1 2
F49 2 997

Φ5
F7 2 55
F49 2 4125

Thus, Φ5 is excluded by the field extension condition. The minus sign in the
functional equation is correct.

Example 29 (A K3 surface of degree 8 over F3). Consider the complete inter-
section V of the three quadrics in P5

F3 , given by q1, q2, and q3,

q1 := −xy + xz + xu + xv + xw − y2 − yz − yv + yw

+ z2 + zu + zw − u2 − uw + v2 + w2 ,

q2 := −x2 + xy + xz − xv + xw − y2 + yz − yu− yv

+ yw − zu− zw + uw − v2 + vw ,

q3 := xu − yz .

V is smooth and, therefore, a K3 surface. As q3 is of rank 4, V carries an
elliptic fibration. There are precisely 14, 98, 794, 6 710, 59 129, 532 460, 4 784 990,
43 049 510, and 387 374 024 points over F3, . . . ,F39 . From these data, let us check
whether one can prove rkPic(VF3

) = 2.
Assume that the characteristic polynomial of the Frobenius has more than

two zeroes of the form 3 times a root of unity. Then, [6, Algorithm 22] leaves us
with five polynomials Ψ1, . . . , Ψ5,

Ψi(t) = t22 − 4 t21 + 27 t18 + 81 t17 − 243 t16 + 6561 t13 + a1t
12 + b1t

11 + c1t
10

+ (−1)ji [531 441 t9 − 14 348 907 t6 + 43 046 721 t5 + 129 140 163 t4

− 13 947 137 604 t + 31 381 059 609]

for j1 = 0, (ai, bi, ci) = (−59 049, 236 196,−531 441) ,

j2 = 0, (a2, b2, c2) = ( 0,−118 098, 0) ,

j3 = 0, (a3, b3, c3) = ( 19 683,−236 196, 177 147) ,

j4 = 1, (a4, b4, c4) = (−59 049, 0, 531 441) ,

j5 = 1, (a5, b5, c5) = (−39 366, 0, 354 294) .

Applying the Artin-Tate formula to these polynomials, we obtain the follow-
ing data.



138 A.-S. Elsenhans and J. Jahnel

Table 3. Hypothetical ranks and discriminants

polynomial field arithmetic #Br(V )|Δ|
Picard rank

Ψ1
F3 2 24
F9 4 1116

Ψ2
F3 2 27
F9 2 81

Ψ3
F3 2 28
F9 2 112

Ψ4
F3 3 144
F9 4 1152

Ψ5
F3 1 2
F9 2 65

Observe that an elliptic surface of Picard rank 2 automatically has a discrimi-
nant of the form (−n2) for n an integer. We may therefore exclude everything
except for Ψ4. Note that Ψ2 is, in addition, incompatible with the field exten-
sion condition.

Thus, using the numbers of points over the fields up to F39 , we only obtain
that, either the geometric Picard rank is equal to 2, or Ψ4 is the characteristic
polynomial of the Frobenius in which case it is 4.

Example 30 (continuation). The number of points over F310 is 34 871 648 631.
This additional information reproduces Ψ1 and Ψ4 as possible characteristic poly-
nomials of Frob. Consequently, the minus sign holds in the functional equation
and the geometric Picard rank of V is equal to 4.

8 Statistics

We tested the Artin-Tate conditions on samples of K3 surfaces of degrees 2,
4, 6, and 8. The possibilities of computing are limited by the fact that point
counting over large finite fields is slow. In degree 2, decoupling [6, Algorithm 17]
(see also [5]) leads to a substantial speed-up. In higher degrees, one may focus
on elliptic K3 surfaces and exploit the fact that point counting on the elliptic
fibers is fast. The numbers and particularities of the examples treated are listed
in Table 4.

Table 4. Numbers of examples computed

p = 2 p = 3 p = 5 p = 7
d = 2 1000 rand 1000 rand 1000 dec 1000 dec
d = 4 1000 rand 1000 ell
d = 6 1000 rand 1000 ell
d = 8 1000 rand 1000 ell

dec = decoupled, ell = elliptic, rand = random

The remaining parameters of the surfaces were chosen by a random number gen-
erator. We stored the equations and the numbers of points over Fp, . . . ,Fp10 in
a file.
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Results I. Point counting until Fp9. First, we tried to show that the ge-
ometric Picard-rank was equal to 2 only using the numbers of rational points
over Fp, . . . ,Fp9 . I.e., we applied [6, Algorithm 22]. This algorithm produces a
list of hypothetical Weil polynomials for each surface. If one is able to exclude
all of them then, relative to the Tate conjecture, rank 2 is proven. To exclude a
particular polynomial, we first checked whether the roots are of absolute value p.
When a surface was known to be elliptic over Fp, we checked in addition that
the predicted Picard rank over Fp was at least equal to 2.

Then, we applied the Artin-Tate conditions to the polynomials. We checked
the field extension condition and the rank-1 condition. For surfaces known to
be elliptic over Fp, we observed the fact that arithmetic Picard rank 2 forces
the discriminant to be minus a perfect square. The results are summarized in
Table 5.

Table 5. Distribution of the remaining hypothetical characteristic polynomials

Number of polynomials 0 1 2 3 4 5 6
d = 2, p = 2 without 84 479 312 89 21 12 3

with A-T conditions 149 598 218 28 7 0 0
d = 2, p = 3 without 116 480 285 88 24 4 3

with A-T conditions 214 573 193 20 0 0 0
d = 2, p = 5 without 85 581 209 96 25 4 0

with A-T conditions 158 651 169 20 2 0 0
d = 2, p = 7 without 92 534 232 98 37 7 0

with A-T conditions 214 611 154 21 0 0 0
d = 4, p = 2 without 40 532 303 87 29 8 1

with A-T conditions 81 638 249 27 5 0 0
d = 4, p = 3 without 22 669 242 57 9 1 0

with A-T conditions 53 785 161 1 0 0 0
d = 6, p = 2 without 39 549 312 70 22 6 2

with A-T conditions 83 645 257 14 1 0 0
d = 6, p = 3 without 16 713 217 47 7 0 0

with A-T conditions 50 797 148 5 0 0 0
d = 8, p = 2 without 25 657 268 38 8 4 0

with A-T conditions 29 723 239 5 4 0 0
d = 8, p = 3 without 12 720 236 27 4 1 0

with A-T conditions 20 803 175 2 0 0 0

Results II. Point counting until Fp10 . Using data up to Fp10 , one obtains
two hypothetical Weil polynomials for each of the surfaces. The two polynomi-
als correspond to the possible signs in the functional equation (1). One has to
exclude one of them. For this, we first checked the absolute values of the roots.
For surfaces known to be elliptic over Fp, we then tested whether the predicted
arithmetic Picard rank is at least 2. Then, we applied the Artin-Tate conditions.
We checked the field extensions and the rank-1 condition. For elliptic surfaces,
supposed to be of arithmetic Picard rank 2, we tested, in addition, whether the
predicted discriminant was minus a square.

Table 6 shows the number of surfaces with known signs. In the case that the
sign is not known, we computed the numbers of points predicted over further
extensions of Fp. Comparing these numbers for both hypothetical polynomials
indicates whether further point counting would lead to a decision of the sign.
We count how often which fields had to be considered in order to decide the sign.
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Table 6. Sign decision in the functional equation

p 2 3 5 7 2 3 2 3 2 3
d 2 2 2 2 4 4 6 6 8 8

Known signs without A-T 768 843 864 869 761 876 790 888 822 897
Known signs using A-T 863 940 940 961 863 943 868 933 867 944
Remaining unknown signs 137 60 60 39 137 57 132 67 133 56
Data up to Fp11 insufficient 84 23 15 12 69 19 77 25 72 21
Data up to Fp12 insufficient 41 11 2 1 39 3 42 11 47 7
Data up to Fp13 insufficient 22 5 1 0 24 2 20 2 24 2
Data up to Fp14 insufficient 13 2 0 0 12 0 13 1 8 0
Data up to Fp15 insufficient 7 0 0 0 8 0 7 0 5 0
Data up to Fp16 insufficient 4 0 0 0 3 0 2 0 4 0
Data up to Fp17 insufficient 4 0 0 0 2 0 2 0 0 0
Data up to Fp18 insufficient 4 0 0 0 0 0 1 0 0 0
Data up to Fp19 insufficient 2 0 0 0 0 0 1 0 0 0
Data up to Fp20 insufficient 0 0 0 0 0 0 0 0 0 0

Using these data, we repeated our attempt to prove that the geometric Pi-
card rank is equal to 2. More precisely, we checked whether only two roots of the
characteristic polynomial are of the form p times a root of unity. The numbers
of surfaces for which we succeeded are listed in Table 7.

Table 7. Numbers of rank-2 cases using Fp10 -data

rank 2 proven rank 2 possible
p = 2, d = 2 without 271 330

with A-T conditions 278 301
p = 3, d = 2 without 397 460

with A-T conditions 409 428
p = 5, d = 2 without 353 425

with A-T conditions 360 382
p = 7, d = 2 without 460 511

with A-T conditions 464 476
p = 2, d = 4 without 132 197

with A-T conditions 138 163
p = 3, d = 4 without 79 114

with A-T conditions 79 81
p = 2, d = 6 without 145 183

with A-T conditions 152 163
p = 3, d = 6 without 74 101

with A-T conditions 74 81
p = 2, d = 8 without 65 93

with A-T conditions 65 74
p = 3, d = 8 without 23 47

with A-T conditions 23 25

Conclusion. The Artin-Tate conditions usually halve the number of cases with
unknown signs. Furthermore, they double the number of cases where geometric
Picard rank 2 may be proven only using data up to Fp9 . Comparing Table 5 with
Table 7, we see, however, that still only about one half of the cases with Picard
rank 2 may be detected when counting until Fp9 .

Remark 31. Let us finally mention that the Artin-Tate conditions came to us as
a big surprise. It is astonishing that the Artin-Tate formula may be incompatible
with itself under field extensions. Thus, it seems not entirely unlikely that there
are even more constraints and one can still do better.
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Abstract. We adapt the CRT approach for computing Hilbert class
polynomials to handle a wide range of class invariants. For suitable dis-
criminants D, this improves its performance by a large constant factor,
more than 200 in the most favourable circumstances. This has enabled
record-breaking constructions of elliptic curves via the CM method, in-
cluding examples with |D| > 1015.

1 Introduction

Every ordinary elliptic curve E over a finite field Fq has complex multiplication
by an imaginary quadratic order O, by which we mean that the endomorphism
ring End(E) is isomorphic to O. The Deuring lifting theorem implies that E
is the reduction of an elliptic curve Ê/C that also has complex multiplication
by O. Let K denote the fraction field of O. The j-invariant of Ê is an algebraic
integer whose minimal polynomial over K is the Hilbert class polynomial HD,
where D is the discriminant of O. Notably, the polynomial HD actually lies in
Z[X ], and its splitting field is the ring class field KO for the order O.

Conversely, an elliptic curve E/Fq with complex multiplication by O exists
whenever q satisfies the norm equation 4q = t2 − v2D, with t, v ∈ Z and t �≡ 0
modulo the characteristic of Fq. In this case HD splits completely over Fq, and its
roots are precisely the j-invariants of the elliptic curves E/Fq that have complex
multiplication by O. Such a curve has q + 1 ± t points, where t is determined,
up to a sign, by the norm equation. With a judicious selection of D and q one
may obtain a curve with prescribed order. This is known as the CM method.

The main challenge for the CM method is to obtain the polynomial HD, which
has degree equal to the class number h(D), and total size O(|D|1+ε). There are
three approaches to computing HD, all of which, under reasonable assumptions,
can achieve a running time of O(|D|1+ε). These include the complex analytic
method [12], a p-adic algorithm [9, 7], and an approach based on the Chinese
Remainder Theorem (CRT) [2]. The first is the most widely used, and it is quite
efficient; the range of discriminants to which it may be applied is limited not by
its running time, but by the space required. The polynomial HD is already likely
to exceed available memory when |D| > 109, hence one seeks to apply the CM
method to alternative class polynomials that have smaller coefficients than HD.
This makes computations with |D| > 1010 feasible.

Recently, a modified version of the CRT approach was proposed that greatly
reduces the space required for the CM method [30]. Under the Generalised Rie-
mann Hypothesis (GRH), this algorithm is able to compute HD mod P using

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 142–156, 2010.
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O(|D|1/2+ε logP ) space and O(|D|1+ε) time. (Here and in the following, all com-
plexity estimates refer to bit operations.) The reduced space complexity allows
it to handle much larger discriminants, including examples with |D| > 1013.

An apparent limitation of the CRT approach is that it depends on some
specific features of the j-function. As noted in [2], this potentially precludes it
from computing class polynomials other than HD. The purpose of the present
article is to show how these obstructions may be overcome, allowing us to apply
the CRT method to many functions other than j, including two infinite families.

Subject to suitable constraints on D, we may then compute a class polynomial
with smaller coefficients than HD (by a factor of up to 72), and, in certain cases,
with smaller degree (by a factor of 2). Remarkably, the actual running time with
the CRT method is typically better than the size difference would suggest. Fewer
CRT moduli are needed, and we may choose a subset for which the computation
is substantially faster than on average.

We start §2 with a brief overview of the CRT method, and then describe a
new technique to improve its performance, which also turns out to be crucial for
certain class invariants. After discussing families of invariants in §3, we consider
CRT-based approaches applicable to the different families and give a general
algorithm in §4. Computational results and performance data appear in §5.

2 Hilbert Class Polynomials via the CRT

2.1 The Algorithm of Belding, Bröker, Enge, Lauter and Sutherland

The basic idea of the CRT-based algorithm for Hilbert class polynomials is to
compute HD modulo many small primes p, and then lift its coefficients by Chi-
nese remaindering to integers, or to their reductions modulo a large (typically
prime) integer P , via the explicit CRT [4, Thm. 3.1]. The latter approach suf-
fices for most applications, and while it does not substantially reduce the running
time (the same number of small primes is required), it can be accomplished using
only O(|D|1/2+ε logP ) space with the method of [30, §6].

For future reference, we summarise the algorithm to compute HD mod p for
a prime p that splits completely in the ring class field KO. Let h = h(D).

Algorithm 1 (Computing HD mod p)

1. Find the j-invariant j1 of an elliptic curve E/Fp with End(E) ∼= O.
2. Enumerate the other roots j2, . . . , jh of HD mod p.
3. Compute HD(X) mod p = (X − j1) · · · (X − jh).

The first step is achieved by varying j1 (systematically or randomly) over the
elements of Fp until it corresponds to a suitable curve; details and many practical
improvements are given in [2, 30]. The third step is a standard building block of
computer algebra. Our interest lies in Step 2.
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2.2 Enumerating the Roots of HD mod p

The key idea in [2] leading to a quasi-linear complexity is to apply the Galois
action of Cl(O) � Gal(KO/K). The group Cl(O) acts on the roots of HD,
and when p splits completely in KO there is a corresponding action on the set
EllO(Fp) = {j1, . . . , jh} containing the roots of HD mod p. For an ideal class [a]
in Cl(O) and a j-invariant ji ∈ EllO(Fp), let us write [a]ji for the image of ji

under the Galois action of [a]. We then have EllO(Fp) = {[a]j1 : [a] ∈ Cl(O)}.
As in [30, §5], we use a polycyclic presentation defined by a sequence of ide-

als l1, . . . , lm with prime norms �1, . . . , �m whose classes generate Cl(O). The
relative order rk is the least positive integer for which [lrk

k ] ∈ 〈[l1], . . . , [lk−1]〉.
We may then uniquely write [a] = [le1

1 ] · · · [lem
m ], with 0 ≤ ek < rk. To maximise

performance, we use a presentation in which �1 < · · · < �m, with each �k as
small as possible subject to rk > 1. Note that the relative order rk divides the
order nk of [lk] in Cl(O), but for k > 1 we can (and often do) have rk < nk.

For each ji ∈ EllO(Fp) and each O-ideal l of prime norm �, the j-invariant [l]ji

corresponds to an �-isogenous curve, which we may obtain as a root of Φ�(ji, X),
where Φ� ∈ Z[J, J�] is the classical modular polynomial [31, §69]. The polyno-
mial Φ� has the pair of functions

(
j(z), j(�z)

)
as roots, and parameterises isoge-

nies of degree �.
Fixing an isomorphism End(E) ∼= O, we let π ∈ O denote the Frobenius

endomorphism. When the order Z[π] is maximal at �, the univariate polynomial
Φ�(ji, X) ∈ Fp[X ] has exactly two roots [l]ji and [̄l]ji when � splits in O, and
a single root [l]ji if � is ramified [25, Prop. 23]. To simplify matters, we assume
here that Z[π] is maximal at each �k, but this is not necessary, see [30, §4].

We may enumerate EllO(Fp) = {[a]j1 : [a] ∈ 〈[l1], . . . , [lm]〉} via [30, Alg. 1.3]:

Algorithm 2 (Enumerating EllO(Fp) — Step 2 of Algorithm 1)

1. Let j2 be an arbitrary root of Φ�m(j1, X) in Fp.
2. For i from 3 to rm, let ji be the root of Φ�m(ji−1, X)/(X − ji−2) in Fp.
3. If m > 1, then for i from 1 to rm:

Recursively enumerate the set {[a]ji : [a] ∈ 〈[l1], . . . , [lm−1]〉}.
In general there are two distinct choices for j2, but either will do. Once j2 is
chosen, j3, . . . , jrm are determined. The sequence (j1, . . . , jrm) corresponds to a
path of �m-isogenies; we call this path an �m-thread.

The choice of j2 in Step 1 may change the order in which EllO(Fp) is enumer-
ated. Three of the sixteen possibilities when m = 2, r1 = 4, and r2 = 3 are shown
below; we assume [l32] = [l1], and label each vertex [le2]j1 by the exponent e.

0 3 6 9

1 4 7 10

2 5 8 11

l2

l2

l1 l1 l1

l1 l1 l1

l1 l1 l1

0 9 6 3

1 10 7 4

2 5 8 11

l2

l2

l̄1 l̄1 l̄1

l̄1 l̄1 l̄1

l1 l1 l1

0 3 6 9

11 8 5 2

10 1 4 7

l̄2

l̄2

l1 l1 l1

l̄1 l̄1 l̄1

l1 l1 l1

Bold edges indicate where a choice was made. Regardless of these choices,
Algorithm 2 correctly enumerates EllO(Fp) in every case [30, Prop. 5].
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2.3 Finding Roots with Greatest Common Divisors (gcds)

The potentially haphazard manner in which Algorithm 2 enumerates EllO(Fp) is
not a problem when computing HD, but it can complicate matters when we wish
to compute other class polynomials. We could distinguish the actions of l and l̄
using an Elkies kernel polynomial [10], as suggested in [7, §5], however this slows
down the algorithm significantly. An alternative approach using polynomial gcds
turns out to be much more efficient, and actually speeds up Algorithm 2, making
it already a useful improvement when computing HD.

We need not distinguish the actions of l and l̄ at this stage, but we wish to
ensure that our enumeration of EllO(Fp) makes a consistent choice of direction
each time it starts an �-thread. The first �-thread may be oriented arbitrarily,
but for each subsequent �-thread (j′1, j′2, . . . , j′r), we apply Lemma 1 below. This
allows us to “square the corner” by choosing j′2 as the unique common root of
Φ�(X, j′1) and Φ�′(X, j2), where (j1, . . . , jr) is a previously computed �-thread
and j1 is �′-isogenous to j′1. The edge (j1, j′1) lies in an �′-thread that has already
been computed, for some �′ > �.

j1 j2 j3 jr

j′1 j′2

· · ·
l′ l′

l l l l

l

j1 j2 j3 jr

j′1 j′2 j′3 j′r

· · ·

· · ·
l′ l′ l′ l′

l l l l

l l l l

Having computed j′2, we could compute j′3, . . . , j
′
r as before, but it is usually

better to continue using gcds, as depicted above. Asymptotically, both root-
finding and gcd computations are dominated by the O(�2M(log p)) time it takes
to instantiate Φ�(X, ji) mod p, but in practice � is small, and we effectively gain
a factor of O(log p) by using gcds when � ≈ �′. This can substantially reduce the
running time of Algorithm 2, as may be seen in Table 1 of §5.

With the gcd approach described above, the total number of root-finding
operations can be reduced from

∏m
k=1 rk to

∑m
k=1 rk. When m is large, this is a

big improvement, but it is no help when m = 1, as necessarily occurs when h(D)
is prime. However, even in this case we can apply gcds by looking for an auxiliary
ideal l′1, with prime norm �′1, for which [l′1] = [le1]. When r1 is large, such an l′1 is
easy to find, and we may choose the best combination of �′1 and e available. This
idea generalises to �k-threads, where we seek [l′k] ∈ 〈[l1] . . . , [lk]〉\〈[l1] . . . , [lk−1]〉.

Lemma 1. Let j1, j2 ∈ EllO(Fp), and let �1, �2 �= p be distinct primes with
4�21�

2
2 < |D|. Then gcd

(
Φ�1(j1, X),Φ�2(j2, X)

)
has degree at most 1.

Proof. It follows from [25, Prop. 23] that Φ�1(X, j1) and Φ�2(X, j2) have at most
two common roots in the algebraic closure Fp, which in fact lie in EllO(Fp). If
there are exactly two, then both �1 = l1l1 and �2 = l2l2 split in O, and one of l21l

2
2

or l21̄l
2
2 is principal with a non-rational generator. We thus have a norm equation

4�21�22 = a2 − b2D with a, b ∈ Z and b �= 0, and the lemma follows.
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3 Class Invariants

Due to the large size of HD, much effort has been spent seeking smaller generators
of KO. For a modular function f and O = Z[τ ], with τ in the upper half plane,
we call f(τ) a class invariant if f(τ) ∈ KO. The class polynomial for f is

HD[f ](X) =
∏

[a]∈Cl(O)

(X − [a]f(τ)) .

The contemporary tool for determining class invariants is Shimura’s reciprocity
law; see [28, Th. 4] for a fairly general result. Class invariants arising from many
different modular functions have been described in the literature; we briefly
summarise some of the most useful ones.

Let η be Dedekind’s function, and let ζn = exp(2πi/n). Weber considered

f = ζ−1
48

η
(

z+1
2

)
η(z)

, f1(z) =
η
(

z
2

)
η(z)

, f2(z) =
√

2
η(2z)
η(z)

,

powers of which yield class invariants when
(
D
2

)
�= −1, and also γ2 = 3

√
j, which

is a class invariant whenever 3 � D. The Weber functions can be generalised
[15, 16, 21, 20, 23], and we have the simple and double η-quotients

wN (z) =
η
(

z
N

)
η(z)

; wp1,p2 =
η
(

z
p1

)
η
(

z
p2

)
η
(

z
p1p2

)
η(z)

with N = p1p2,

where p1 and p2 are primes. Subject to constraints on D, including that no prime
dividing N is inert in O, suitable powers of these functions yield class invariants,
see [15, 16]. For s = 24/ gcd

(
24, (p1 − 1)(p2 − 1)

)
, the canonical power ws

p1,p2

is invariant under the Fricke involution W |N : z �→ −N
z for Γ0(N), equivalently,

the Atkin-Lehner involution of level N , by [17, Thm. 2].
The theory of [28] applies to any functions for Γ0(N), in particular to those of

prime level N invariant under the Fricke involution, which yield class invariants
when

(
D
N

)
�= −1. Atkin developed a method to compute such functions AN , which

are conjectured to have a pole of minimal order at the unique cusp [10, 26]. These
are used in the SEA algorithm, and can be found in Magma or Pari/GP.

The functions above all yield algebraic integers, so HD[f ] ∈ OK [X ]. Except for
we

N or when gcd(N,D) �= 1, in which cases additional restrictions may apply, one
actually has HD[f ] ∈ Z[X ], cf. [16, Cor. 3.1]. The (logarithmic) height of HD[f ] =∑

aiX
i is log max |ai|, which determines the precision needed to compute the

ai. We let cD(f) denote the ratio of the heights of HD[j] and HD[f ].
With c(f) = lim|D|→∞ cD(f), we have: c(γ2) = 3; c(f) = 72 (when

(
D
2

)
= 1);

c(we
N ) =

24(N + 1)
e(N − 1)

; c(ws
p1,p2

) =
12ψ(p1p2)

s(p1 − 1)(p2 − 1)
; c(AN ) =

N + 1
2|vN | ,

where e divides the exponent s defined above, vN is the order of the pole of AN

at the cusp, and ψ(p1p2) is (p1 + 1)(p2 + 1) when p1 �= p2, and p1(p1 + 1) when
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p1 = p2. Morain observed in [27] that c(A71) = 36, which is so far the best value
known when

(
D
2

)
= −1. We conjecture that in fact for all primes N > 11 with

N ≡ 11 mod 60 we have c(AN ) = 30 N+1
N−11 , and that for N ≡ −1 mod 60 we

have c(AN ) = 30. This implies that given an arbitrary discriminant D, we can
always choose N so that AN yields class invariants with cD(AN ) ≥ 30 + o(1).

When the prime divisors of N are all ramified in K, both wp1,p2 and AN yield
class polynomials that are squares in Z[X ], see [11, §1.6] and [18]. Taking the
square root of such a class polynomial reduces both its degree and its height by
a factor of 2. For a composite fundamental discriminant D (the most common
case), this applies to HD[AN ] for any prime N | D. In the best case, D is divisible
by 71, and we obtain a class polynomial that is 144 times smaller than HD.

3.1 Modular Polynomials

Each function f(z) considered above is related to j(z) by a modular polynomial
Ψf ∈ Z[F, J ] satisfying Ψf (f(z), j(z)) = 0. For primes � not dividing the level N ,
we let Φ�,f denote the minimal polynomial satisfying Φ�,f(f(z), f(�z)) = 0; it is
a factor of ResJ�

(
ResJ(Φ�(J, J�),Ψf (F, J)),Ψf (F�, J�)

)
, and as such, an element

of Z[F, F�]. Thus Φ�,f generalises the classical modular polynomial Φ� = Φ�,j .
The polynomial Φ�,f has degree d(�+1) in F and F�, where d divides degJ Ψf ,

see [6, §6.8], and 2d divides degJ Ψf when f is invariant under the Fricke invo-
lution. In general, d is maximal, and d = 1 is achievable only in the relatively
few cases where X0(N), respectively X+

0 (N), is of genus 0 and, moreover, f is
a hauptmodul, that is, it generates the function field of the curve. Happily, this
includes many cases of practical interest.

The polynomial Ψf characterises the analytic function f in an algebraic way;
when d = 1, the polynomials Φ� and Φ�,f algebraically characterise �-isogenies
between elliptic curves given by their j-invariants, or by class invariants derived
from f , respectively. These are key ingredients for the CRT method.

4 CRT Algorithms for Class Invariants

To adapt Algorithm 1 to class invariants arising from a modular function f(z)
other than j(z), we only need to consider Algorithm 2. Our objective is to
enumerate the roots of HD[f ] mod p for suitable primes p, which we are free
to choose. This may be done in one of two ways. The most direct approach
computes an “f -invariant” f1, corresponding to j1, then enumerates f2, . . . , fh

using the modular polynomials Φ�,f . Alternatively, we may enumerate j1, . . . , jh

as before, and from these derive f1, . . . , fh. The latter approach is not as efficient,
but it applies to a wider range of functions, including two infinite families.

Several problems arise. First, an elliptic curve E/Fp with CM by O unam-
biguously defines a j-invariant j1 = j(E), but not the corresponding f1. The f1
we seek is a root of ψf (X) = Ψf(X, j1) mod p, but ψf may have other roots,
which may or may not be class invariants. The same problem occurs for the
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p-adic lifting algorithm and can be solved generically [6, §6]; we describe some
more efficient solutions, which are in part specific to certain types of functions.

When ψf has multiple roots that are class invariants, these may be roots
of distinct class polynomials. We are generally happy to compute any one of
these, but it is imperative that we compute the reduction of “the same” class
polynomial HD[f ] modulo each prime p.

The lemma below helps to address these issues for at least two infinite families
of functions: the double η-quotients wp1,p2 and the Atkin functions AN .

Lemma 2. Let f be a modular function for Γ0(N), invariant under the Fricke
involution W |N , such that f(z) and f

(−1
z

)
have rational q-expansions. Let the

imaginary quadratic order O have conductor coprime to N and contain an
ideal n =

(
N, B0+

√
D

2

)
. Let A0 = B2

0−D
4N and τ0 = −B0+

√
D

2A0
, and assume that

gcd(A0, N) = 1. Then f(τ0) is a class invariant, and if f(τ) is any of its conju-
gates under the action of Gal(KO/K) we have

Ψf

(
f(τ), j(τ)

)
= 0 and Ψf

(
f(τ), [n]j(τ)

)
= 0.

Proof. By definition, Ψf

(
f(z), j(z)

)
= 0. Applying the Fricke involution yields

0 = Ψf ((W |Nf)(z), (W |N j)(z)) = Ψf

(
f(z), j

(−N
z

))
= Ψf

(
f(z), j

(
z
N

))
. The

value f(τ0) is a class invariant by [28, Th. 4]. By the same result, we may assume
that τ is the basis quotient of an ideal a =

(
A, −B+

√
D

2

)
with gcd(A,N) = 1

and B ≡ B0 mod 2N . Then τ
N is the basis quotient of an =

(
AN, −B+

√
D

2

)
. It

follows that [n]j(τ) = j
(

τ
N

)
, and replacing z above by τ completes the proof.

If we arrange the roots of HD into a graph of n-isogeny cycles corresponding to
the action of n, the lemma yields a dual graph defined on the roots of HD[f ], in
which vertices f(τ) correspond to edges

(
j(τ), [n]j(τ)

)
.

In computational terms, f(τ) is a root of gcd
(
Ψf

(
X, j(τ)

)
,Ψf

(
X, [n]j(τ)

))
.

Generically, we expect this gcd to have no other roots modulo primes p that split
completely in KO. For a finite number of such primes, there may be additional
roots. We have observed this for p dividing the conductor of the order generated
by f(τ) in the maximal order of KO. Such primes may either be excluded from
our CRT computations, or addressed by one of the techniques described in §4.3.

4.1 Direct Enumeration

When the polynomials Φ�,f have degree � + 1 we can apply Algorithm 2 with
essentially no modification; the only new consideration is that � must not divide
the level N , but we can exclude such � when choosing a polycyclic presentation
for Cl(O). When the degree is greater than �+ 1 the situation is more complex,
moreover the most efficient algorithms for computing modular polynomials do
not apply [8, 13], making it difficult to obtain Φ�,f unless � is very small. Thus
in practice we do not use Φ�,f in this case; instead we apply the methods of §4.3
or §4.4. For the remainder of this subsection and the next we assume that we do
have polynomials Φ�,f of degree � + 1 with which to enumerate f1, . . . , fh, and
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consider how to determine a starting point f1, given the j-invariant j1 = j(E)
of an elliptic curve E/Fp with CM by O.

When ψf (X) = Ψf(X, j1) mod p has only one root, our choice of f1 is imme-
diately determined. This is usually not the case, but we may be able to ensure it
by restricting our choice of p. As an example, for f = γ2 with 3 � D, if we require
that p ≡ 2 mod 3, then f1 is the unique cube root of j1 in Fp. If we addition-
ally have D ≡ 1 mod 8 and p ≡ 3 mod 4, then the equation γ2 = (f24 − 16)/f8

uniquely determines the square of the Weber f function, by [8, Lem. 7.3]. To
treat f itself we need an additional trick described in §4.2.

The next simplest case occurs when only one of the roots of ψf is a class in-
variant. This necessarily happens when f is invariant under the Fricke involution
and all the primes dividing N are ramified in O. In the context of Lemma 2,
each root of HD[f ] then corresponds to an isolated edge

(
j(τ), [n]j(τ)

)
in the

n-isogeny graph on the roots of HD, and we compute f1 as the unique root of
gcd
(
Ψf (X, j1),Ψf (X, [n]j1)

)
. In this situation n = n̄, and each f(τ) occurs twice

as a root of HD[f ]. By using a polycyclic presentation for Cl(O)/〈[n]〉 rather
than Cl(O), we enumerate each double root of HD[f ] mod p just once.

Even when ψf has multiple roots that are class invariants, it may happen
that they are all roots of the same class polynomial. This applies to the Atkin
functions f = AN . When N is a split prime, there are two N -isogenous pairs
(j1, [n]j1) and ([n̄]j1, j1) in EllO(Fp), and under Lemma 2 these correspond to
roots f1 and [n̄]f1 of ψf . Both are roots of HD[f ], and we may choose either.

The situation is slightly more complicated for the double η-quotients wp1,p2 ,
with N = p1p2 composite. If p1 = p1p̄1 and p2 = p2p̄2 both split and p1 �= p2,
then there are four distinct N -isogenies corresponding to four roots of ψf . Two
of these roots are related by the action of [n] = [p1p2]; they belong to the same
class polynomial, which we choose as HD[f ] mod p. The other two are related
by [p1p̄2] and are roots of a different class polynomial. We make an arbitrary
choice for f1, explicitly compute [n]f1, and then check whether it occurs among
the other three roots; if not, we correct the initial choice. The techniques of §4.3
may be used to efficiently determine the action of [n].

Listed below are some of the modular functions f for which the roots of
HD[f ] mod p may be directly enumerated, with sufficient constraints on D and p.
In each case p splits completely in KO and D < −4N2 has conductor u.

(1) γ2, with 3 � D and p ≡ 2 mod 3;

(2) f2, with D ≡ 1 mod 8, 3 � D, and p ≡ 11 mod 12;

(3) ws
N , for N ∈ {3, 5, 7, 13} and s = 24/ gcd(24, N − 1), with N | D and N � u;

(4) w2
5, with 3 � D, 5 | D, and 5 � u;

(5) AN , for N ∈ {3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}, with
(

D
N

)
�= −1

and N � u.

(6) ws
p1,p2

, for (p1, p2) ∈ {(2, 3), (2, 5), (2, 7), (2, 13), (3, 5), (3, 7), (3, 13), (5, 7)}
and s = 24/ gcd

(
24, (p1 − 1)(p2 − 1)

)
, with

(
D
p1

)
,
(

D
p2

)
�= −1 and p1, p2 � u.

(7) w6
3,3 with

(
D
3

)
= 1 and 3 � u.
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4.2 The Trace Trick

In §4.1 we were able to treat the square of the Weber f function but not f itself.
To remedy this, we generalise a method suggested to us by Reinier Bröker.

We consider the situation where there are two modular functions f and f ′ that
are roots of Ψf (X, j(z)), both of which yield class invariants for O, and we wish
to apply the direct enumeration approach. We assume that p is chosen so that
ψf (X) = Ψf (X, j1) mod p has exactly two roots, and depending on which root
we take as f1, we may compute the reduction of either HD[f ](X) or HD[f ′](X)
modulo p. In the case of Weber f, we have f ′ = −f , and HD[f ′] differs from
HD[f ] only in the sign of every other coefficient.

Consider a fixed coefficient ai of HD[f ](X) =
∑

aiX
i; most of the time,

the trace t = −ah−1 = f1 + · · · + fh will do (if f ′ = −f , we need to use ai

with i �≡ h mod 2). The two roots f1 and f ′
1 lead to two possibilities t and t′

modulo p. However, the elementary symmetric functions T1 = t+ t′ and T2 = tt′

are unambiguous modulo p. Computing these modulo many primes p yields T1
and T2 as integers (via the CRT), from which t and t′ are obtained as roots of
the quadratic equation X2 −T1X +T2. If these are different, we arbitrarily pick
one of them, which, going back, determines the set of conjugates {f1, . . . , fh} or
{f ′

1, . . . , f
′
h} to take modulo each of the primes p � t − t′. In the unlikely event

that they are the same (the suspicion t = t′ being confirmed after, say, looking
at the second prime), we need to switch to a different coefficient ai.

If f and f ′ differ by a simple transformation (such as f ′ = −f), the second
set of conjugates and the value t′ are obtained essentially for free. As a special
case, when h is odd and the class invariants are units (as with Weber f), we can
simply fix t = a0 = 1, and need not compute T1 = 0 and T2 = −1.

The key point is that the number of primes p we use to determine t is much
less than the number of primes we use to compute HD[f ]. Asymptotically, the
logarithmic height of the trace is smaller than the height bound we use for
HD[f ] by a factor quasi-linear in log |D|, under the GRH. In practical terms,
determining t typically requires less than one tenth of the primes used to compute
HD[f ], and these computations can be combined.

The approach described above generalises immediately to more than two
roots, but this case does not occur for the functions we examine. Unfortunately
it can be used only in conjunction with the direct enumeration approach of §4.1;
otherwise we would have to consistently distinguish not only between f1 and f ′

1,
but also between fi and f ′

i for i = 2, . . . , h.

4.3 Enumeration via the Fricke Involution

For functions f to which Lemma 2 applies, we can readily obtain the roots
of HD[f ] mod p without using the polynomials Φ�,f . We instead enumerate the
roots of HD mod p (using the polynomials Φ�), and arrange them into a graph G
of n-isogeny cycles, where n is the ideal of norm N appearing in Lemma 2. We
then obtain roots of HD[f ] mod p by computing gcd

(
Ψf (X, ji),Ψf (X, [n]ji)

)
for

each edge (ji, [n]ji) in G.
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The graph G is composed of h/n cycles of length n, where n is the order of
[n] in Cl(O). We assume that the O-ideals of norm N are all non-principal and
inequivalent (by requiring |D| > 4N2 if needed). When every prime dividing N
is ramified in O we have n = 2; as noted in §4.1, every root of HD[f ] then occurs
with multiplicity 2, and we may compute the square-root of HD[f ] by taking
each root just once. Otherwise we have n > 2.

Let [l1], . . . , [lm] be a polycyclic presentation for Cl(O) with relative orders
r1, . . . , rm, as in §2.2. For k from 1 to m let us fix lk =

(
�k,

−Bk+
√

D
2

)
with

Bk ≥ 0. To each vector e = (e1, . . . , em) with 0 ≤ ek < rk, we associate a unique
root je enumerated by Algorithm 2, corresponding to the path taken from j1
to je, where ek counts steps taken along an �k-thread. For o = (0, . . . , 0) we have
jo = j1, and in general

je = [lσ1e1
1 · · · lσmem

m ]jo,

with σk = ±1. Using the method of §2.3 to consistently orient the �k-threads
ensures that each σk depends only on the orientation of the first �k-thread.

To compute the graph G we must determine the signs σk. For those [lk] of
order 2, we let σk = 1. We additionally fix σk = 1 for the least k = k0 (if any) for
which [lk] has order greater than 2, since we need not distinguish the actions of n
and n̄. It suffices to show how to determine σk, given that we know σ1, . . . , σk−1.
We may assume [lk0 ] and [lk] both have order greater than 2, with k0 < k ≤ m.

Let l be an auxiliary ideal of prime norm � such that [l] = [ab] = [le1
1 · · · lek

k ],
with 0 ≤ ei < ri, where b = lek

k , and [a] and [b] have order greater than 2. Our
assumptions guarantee that such an l exists, by the Čebotarev density theorem,
and under the GRH, � is relatively small [1]. The fact that [a] and [b] have order
greater than 2 ensures that [ab̄] is distinct from [l] and its inverse. It follows that
σk = 1 if and only if Φ�(jo, je) = 0, where e = (e1, . . . , ek, 0, . . . , 0).

Having determined the σk, we compute the unique vector v = (v1, . . . , vm) for
which [n] = [lσ1v1

1 · · · lσmvm
m ]. We then have [n]jo = jv, yielding the edge (jo, jv)

of G. In general, we obtain the vector corresponding to [n]je by computing e+v
and using relations [lrk

k ] = [lx1
1 · · · lxk−1

k−1 ] to reduce the result, cf. [30, §5].
This method may be used with any function f satisfying Lemma 2, and in

particular it applies to two infinite families of functions:

(8) AN , for N > 2 prime, with
(

D
N

)
�= −1 and N � u.

(9) ws
p1,p2

, for p1, p2 primes not both 2, with
(

D
p1

)
,
(

D
p2

)
�= −1 and p1, p2 � u.

As above, u denotes the conductor of D < −4N2.
As noted earlier, for certain primes p we may have difficulty computing the

edges of G when gcd
(
Ψf (X, ji),Ψf (X, [n]ji)

)
has more than one root in Fp.

While we need not use such primes, it is often easy to determine the correct
root. Here we give two heuristic techniques for doing so.

The first applies when N is prime, as with the Atkin functions. In this case
problems can arise when HD[f ] has repeated roots modulo p. By Kummer’s cri-
terion, this can happen only when p divides the discriminant of HD[f ], and even
then, a repeated root x1 is only actually a problem when it corresponds to two al-
ternating edges in G, say (j1, j2) and (j3, j4), with the edge (j2, j3) between them.
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In this scenario we will get two roots x1 and x2 of gcd
(
Ψf (X, j2),Ψf (X, j3)

)
.

But if we already know that x1 corresponds to (j1, j2), we can unambiguously
choose x2. In each of the N -isogeny cycles of G, it is enough to find a single edge
that yields a unique root. If no such edge exists, then every edge must yield the
same two roots x1 and x2, and we count each with multiplicity n/2.

The second technique applies when the roots of HD[f ] are units, as with the
double η-quotients [16, Thm. 3.3]. The product of the roots is then ±1. Assuming
that the number of edges in G for which multiple roots arise is small (it is usually
zero, and rarely more than one or two), we simply test all the possible choices
of roots and see which yield ±1. If only one combination works, then the correct
choices are determined. This is not guaranteed to happen, but in practice it
almost always does.

4.4 A General Algorithm

We now briefly consider the case of an arbitrary modular function f of level N ,
and sketch a general algorithm to compute HD[f ] with the CRT method.

Let us assume that f(τ) is a class invariant, and let D be the discriminant
and u the conductor of the order O = [1, τ ]. The roots of Ψf (X, j(τ)) ∈ KO[X ]
lie in the ray class field of conductor uN over K, and some number n of these,
including f(τ), actually lie in the ring class field KO. We may determine n using
the method described in [6, §6.4], which computes the action of (O/NO)∗/O∗ on
the roots of Ψf(X, j(τ)). We note that the complexity of this task is essentially
fixed as a function of |D|.

Having determined n, we use Algorithm 2 to enumerate the roots j1, . . . , jh of
HD mod p as usual, but if for any ji we find that Ψf (X, ji) mod p does not have
exactly n roots f (1)

i , . . . , f
(n)
i , we exclude the prime p from our computations. The

number of such p is finite and may be bounded in terms of the discriminants
of the polynomials Ψf (X,α) as α ranges over the roots of HD[f ]. We then
compute the polynomial H(X) =

∏h
i=1
∏n

r=1

(
X − f

(r)
i

)
of degree nh in Fp[X ].

After doing this for sufficiently many primes p, we can lift the coefficients by
Chinese remaindering to the integers. The resulting H is a product of n distinct
class polynomials, all of which may be obtained by factoring H in Z[X ]. Under
suitable heuristic assumptions (including the GRH), the total time to compute
HD[f ] is quasi-linear in |D|, including the time to factor H .

This approach is practically efficient only when n is small, but then it can be
quite useful. A notable example is the modular function g for which

Ψg(X, J) = (X12 − 6X6 − 27)3 − JX18.

This function was originally proposed by Atkin, and is closely related to certain
class invariants of Ramanujan [3, Thm. 4.1]. The function g yields class invariants
when D ≡ 13 mod 24. In terms of our generic algorithm, we have n = 2, and
for p ≡ 2 mod 3 we get exactly two roots of Ψg(X, ji) mod p, which differ only
in sign. Thus H(X) = HD[g2](X2) = HD[g](X)HD[g](−X), and from this we
easily obtain HD[g2], and also HD[g] if desired.
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5 Computational Results

This section provides performance data for the techniques developed above. We
used AMD Phenom II 945 CPUs clocked at 3.0 GHz for our tests; the software
was implemented using the gmp [22] and zn poly [24] libraries, and compiled
with gcc [19].

To compute the class polynomial HD[f ], we require a bound on the size of
its coefficients. Unfortunately, provably accurate bounds for functions f other
than j are generally unavailable. As a heuristic, we take the bound B on the
coefficients of HD given by [30, Lem. 8], divide log2 B by the asymptotic height
factor c(f), and add a “safety margin” of 256 bits. We note that with the CM
method, the correctness of the final result can be efficiently and unconditionally
confirmed [5], so we are generally happy to work with a heuristic bound.

5.1 Class Polynomial Computations Using the CRT Method

Our first set of tests measures the improvement relative to previous computa-
tions with the CRT method. We used discriminants related to the construction
of a large set of pairing-friendly elliptic curves, see [30, §8] for details. We re-
constructed many of these curves, first using the Hilbert class polynomial HD,
and then using an alternative class polynomial HD[f ]. In each case we used the
explicit CRT to compute HD or HD[f ] modulo a large prime q (170 to 256 bits).

Table 1 gives results for four discriminants with |D| ≈ 1010, three of which
appear in [30, Table 2]. Each column lists times for three class polynomial com-
putations. First, we give the total time Ttot to compute HD mod q, including
the time Tenum spent enumerating EllD(Fp), for all the small primes p, using
Algorithm 2 as it appears in §2.2. We then list the times T ′

enum and T ′
tot ob-

tained when Algorithm 2 is modified to use gcd computations whenever it is
advantageous to do so, as explained in §2.3. The gcd approach typically speeds
up Algorithm 2 by a factor of 2 or more.

For the third computation we selected a function f that yields class invariants
for D, and computed HD[f ] mod q. This polynomial can be used in place of HD

in the CM method (one extracts a root x0 of HD[f ] mod q, and then extracts
a root of Ψf(x0, J) mod q). For each function f we give a “size factor”, which
approximates the ratio of the total size of HD to HD[f ] (over Z). In the first
three examples this is just the height factor c(f), but in Example 4 it is 4c(f)
because the prime 59 is ramified and we actually work with the square root of
HD[A59], as noted in §4.1, reducing both the height and degree by a factor of 2.

We then list the speedup T ′
tot/T

′
tot[f ] attributable to computing HD[f ] rather

than HD. Remarkably, in each case this speedup is about twice what one would
expect from the height factor. This is explained by a particular feature of the
CRT method: The cost of computing HD mod p for small primes p varies signif-
icantly, and, as explained in [30, §3], one can accelerate the CRT method with a
careful choice of primes. When fewer small primes are needed, we choose those
for which Step 1 of Algorithm 1 can be performed most quickly.

The last line in Table 1 lists the total speedup Ttot/T
′
tot[f ] achieved.
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Table 1. Example class polynomial computations (times in CPU seconds)

Example 1 Example 2 Example 3 Example 4

|D| 13569850003 11039933587 12901800539 12042704347
h(D) 20203 11280 54706 9788
�log2 B� 2272564 1359134 5469776 1207412
(
r1

1 , . . . , 

rk
k ) (720203) (171128, 1910) (327038, 52) (292447 , 312, 432)

Tenum (roots) 6440 10200 10800 21700
Ttot 19900 23700 52200 42400

T ′
enum (gcds) 2510 2140 3440 4780

T ′
tot 15900 15500 44700 25300

Function f A71 A47 A71 A59

Size factor 36 24 36 120*
T ′

tot[f ] 213 305 629 191

Speedup (T ′
tot/T ′

tot[f ]) 75 51 71 132
Speedup (Ttot/T ′

tot[f ]) 93 78 83 222

5.2 Comparison to the Complex Analytic Method

Our second set of tests compares the CRT approach to the complex analytic
method. For each of the five discriminants listed in Table 2 we computed class
polynomials HD[f ] for the double η-quotient w3,13 and the Weber f function,
using both the CRT approach described here, and the implementation [14] of
the complex analytic method as described in [12]. With the CRT we computed
HD[f ] both over Z and modulo a 256-bit prime q; for the complex analytic
method these times are essentially the same.

Table 2. CRT vs. complex analytic (times in CPU seconds)

complex analytic CRT CRT mod q

|D| h(D) w3,13 f w3,13 f w3,13 f

6961631 5000 15 5.4 2.2 1.0 2.1 1.0
23512271 10000 106 33 10 4.1 9.8 4.0
98016239 20000 819 262 52 22 47 22

357116231 40000 6210 1900 248 101 213 94
2093236031 100000 91000 27900 2200 870 1800 770

We also tested a “worst case” scenario for the CRT approach: the discriminant
D = −85702502803, for which the smallest non-inert prime is �1 = 109. Choosing
the function most suitable to each method, the complex analytic method com-
putes HD[w109,127] in 8310 seconds, while the CRT method computes HD[A131]
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in 7150 seconds. The CRT approach benefits from the attractive height factor of
the Atkin functions, c(A131) = 33 versus c(w109,127) ≈ 12.4, and the use of gcds
in Algorithm 2. Without these improvements, the time to compute HD with the
CRT method is 1460000 seconds. The techniques presented here yield more than
a 200-fold speedup in this example.

5.3 A Record-Breaking CM Construction

To test the scalability of the CRT approach, we constructed an elliptic curve
using |D| = 1000000013079299 > 1015, with h(D) = 10034174 > 107. This
yielded a curve y2 = x3 − 3x+ c of prime order n over the prime field Fq, where

c = 12229445650235697471539531853482081746072487194452039355467804333684298579047;

q = 28948022309329048855892746252171981646113288548904805961094058424256743169033;

n = 28948022309329048855892746252171981646453570915825744424557433031688511408013.

This curve was obtained by computing the square root of HD[A71] modulo q, a
polynomial of degree h(D)/2 = 5017087. The height bound of 21533832 bits was
achieved with 438709 small primes p, the largest of which was 53 bits in size.
The class polynomial computation took slightly less than a week using 32 cores,
approximately 200 days of CPU time. Extracting a root over Fq took 25 hours
of CPU time using NTL [29].

We estimate that the size of
√

HD[A71] is over 13 terabytes, and that the
size of the Hilbert class polynomial HD is nearly 2 petabytes. The size of√

HD[A71] mod q, however, is under 200 megabytes, and less than 800 megabytes
of memory (per core) were needed to compute it.
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de Bordeaux 14(1), 325–343 (2002)

[29] Shoup, V.: NTL: A library for doing number theory, 5.5 edn. (2008),
http://www.shoup.net/ntl/

[30] Sutherland, A.V.: Computing Hilbert class polynomials with the Chinese Remain-
der Theorem. Mathematics of Computation (to appear 2010),
http://arxiv.org/abs/0903.2785

[31] Weber, H.: Lehrbuch der Algebra, 3rd edn., vol. III. Chelsea, New York (1961)

http://cm.multiprecision.org/
http://hal.inria.fr/inria-00385608
http://gcc.gnu.org/
http://gmplib.org/
http://cims.nyu.edu/~harvey/zn_poly
http://www.lix.polytechnique.fr/~morain/Exposes/fields09.pdf
http://www.shoup.net/ntl/
http://arxiv.org/abs/0903.2785


Short Bases of Lattices over Number Fields

Claus Fieker1 and Damien Stehlé1,2

1 Magma Computer Algebra Group, School of Mathematics and Statistics,
University of Sydney, NSW 2006, Australia

2 CNRS and Macquarie University
claus.fieker@sydney.edu.au, damien.stehle@gmail.com

Abstract. Lattices over number fields arise from a variety of sources
in algorithmic algebra and more recently cryptography. Similar to the
classical case of Z-lattices, the choice of a nice, “short” (pseudo)-basis is
important in many applications. In this article, we provide the first algo-
rithm that computes such a “short” (pseudo)-basis. We utilize the LLL
algorithm for Z-lattices together with the Bosma-Pohst-Cohen Hermite
Normal Form and some size reduction technique to find a pseudo-basis
where each basis vector belongs to the lattice and the product of the
norms of the basis vectors is bounded by the lattice determinant, up to
a multiplicative factor that is a field invariant. As it runs in polynomial
time, this provides an effective variant of Minkowski’s second theorem
for lattices over number fields.

1 Introduction

Let K be a number field and OK be its maximal order. An OK-module M is a
finitely generated set of elements which is closed under addition and multiplica-
tion by elements in OK . Frequently, we have M ⊆ Km for some m. In the case of
K being Q, we have OK = Z, thus OK-modules are just the classical Z-lattices.
Since Z is a principal ideal domain, every (torsion free) module is free, thus there
exists a basis b1, . . . , bn ∈ M for some n ≤ m such that M = ⊕i≤nZbi. Any two
bases (bi)i and (ci)i have the same cardinality and are linked by some unimod-
ular matrix T ∈ GL(n,Z). The choice of a good basis is crucial for almost all
computational problems attached to M . Generally one tries to find a basis whose
vectors have short Euclidean norms, using, for example, the LLL algorithm [15].

Replacing Z by the maximal order OK makes the classification more compli-
cated since OK may no longer be a principal ideal domain. However, since OK

is still a Dedekind domain, the modules M ⊆ Km have a well known struc-
ture ([7, Cor. 1.2.25], [23, Th. 81:3]): there exist linearly independent elements
b1, . . . ,bn ∈ Km and (non-zero fractional) ideals b1, . . . , bn such that M =
⊕i≤nbibi, i.e., every b ∈ M has a unique representation as b =

∑
i≤n xibi with

xi ∈ bi for all i ≤ n. Such a representation is commonly called a pseudo-basis.
It should be noted that bi may not belong to M , and in fact bi ∈ M if and
only if 1 ∈ bi. Similarly to the case of Z-lattices, different pseudo-bases share the
same cardinality, and it is known how to move from a pseudo-basis to another.
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As for Z-lattices, the choice of the pseudo-basis is of utmost importance.
However, a key difference is that no analogue of LLL is known, as repeatedly
noted in [7]. There have been attempts [10,22,11] but the algorithms are either
limited to certain fields or give no guaranteed bounds on the output size. While
every OK-module is also a Z-lattice and can thus be analyzed with all the tools
available over Z, for many applications the additional structure as an OK-module
is important. This structure is typically lost when applying techniques over Z.

Originally, OK-modules mainly came from the study of finite extensions of K
but now they occur in a wider range of problems from group theory (matrix
groups and representations [9]) to applications in geometry (automorphism al-
gebras of Abelian varieties). OK -modules also occur in lattice-based cryptogra-
phy [17,19,24,25,26], and in that context the module rank n is usually poly-
logarithmic in the degree of the number field. Cryptography based on OK-
modules is increasingly popular, as on one side they lead to compact represen-
tations and to fast operations, and on the other side they enjoy a worst-case to
average-case reduction for variants of the shortest vector problem, which allows
the cryptographic security to be based on worst-case hardness assumptions.

As diverse as the applications are the requirements: only one (or more) short
module element(s) may be needed, or a short (pseudo)-basis may be required,
some applications rely on canonical representations, while any representation
may suffice for others. We note that canonical representations tend to have com-
ponents that are much larger than short representations as obtained by lattice
reduction or our techniques. To find one short element it suffices to consider the
underlying Z-module (of dimension nd with d = [K : Q]). For Z-lattices con-
tained in Qm, a canonical representation is the Hermite Normal Form (HNF).
It has been generalized (BPC-HNF) to OK-modules contained in Km by Bosma
and Pohst [4] and Cohen [7, Chap. 1.4] (see also [12]).

Our results. In the present work, we describe an algorithm that computes a
pseudo-basis made of short vectors. Given an arbitrary pseudo-basis [(ai)i, (ai)i]
of a module M ⊆ Km, it returns a pseudo-basis [(bi)i, (bi)i] such that:

∀i ≤ n : bi ∈ M, N (bi) ∈ [2−O(d2), 1] and ‖bi‖ ≤ 2O(dn)λi(M),

where the O(·)’s depend only on the field K and the choice of a given LLL-
reduced integral basis, the euclidean norm ‖ · ‖ is a module extension of the
T2-norm over K, and the λi(M)’s correspond to the module minima. We refer
to Corollary 1 for a precise statement. Overall, this provides a module equivalent
to LLL-reduced bases of Z-lattices in the sense that the vectors cannot be arbi-
trarily longer than the minima. Since it runs in polynomial time, it can also be
interpreted as an effective approximate variant of the adaptation to OK-modules
of Minkowski’s second theorem (given in Theorem 2). We also study the repre-
sentation of one-dimensional OK-modules, i.e., modules that are isomorphic to
ideals of OK . We show how to modify Belabas’ 2-element representation algo-
rithm [2, Alg. 6.15] so that the output is provably small. Combining the latter
and our module pseudo-reduction algorithm leads to compact representations
of OK -modules.
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The most natural approach to obtain reduced pseudo-bases consists in trying
to generalize LLL, but as mentioned earlier all previous attempts have only
partially succeeded. In contrast, we start by viewing the OK-module as a high-
dimensional Z-lattice. We find short module elements by applying LLL to a basis
of the latter lattice and interpreting the output as module elements. At this point,
we have a pseudo-basis (the input) and a full-rank set of short module vectors
(produced by LLL). If we had a Z-lattice instead of an OK-module, we would
then use a technique common in the lattice-based cryptography community (see,
e.g., [20, Le. 7.1]), consisting in using the HNF to convert a full rank set of short
lattice vectors to a short basis. We adapt this technique to number fields, using
the BPC-HNF and introducing a size-reduction algorithm for pseudo-bases.

Let us compare (pseudo-)LLL-reduced and BPC-HNF pseudo-bases. A the-
oretical advantage of the LLL approach is that it is not restricted to Km but
also works in a continuous extension (similarly to LLL-reduction being well-
defined for real lattices). It should also be significantly more efficient to work
with pseudo-bases made of short vectors because smaller integers and polyno-
mials of smaller degrees are involved. On the other side, (pseudo-)LLL-reduced
pseudo-bases are far from being unique, and seem more expensive to obtain.

Road-map. In Section 2, we give some reminders and elementary results on
lattices, number fields and modules. In Section 3, we modify Belabas’ 2-element
representation algorithm for ideals of OK , as described above. We then give our
module reduction algorithm in Section 4. Finally, in Section 5 we describe our
implementation and give some examples.

Implementation. The algorithms have been implemented in the Magma com-
puter algebra system [3,18] and are available on request. They will be part of
upcoming releases.

2 Preliminaries

We assume the reader is familiar with the geometry of numbers and algebraic
number theory. We refer to [16,20], [5,21] and [7, Chap. 1] for introductions to
the computational aspects of lattices, elementary algebraic number theory and
to modules over Dedekind domains, respectively.

2.1 Lattices

In this work, we will call any finitely generated free Z-module L a lattice. A
usual lattice corresponds to the case where L is a discrete additive subgroup
of Rn for some n. Any lattice can be written L = ⊕i≤dZbi. If the bi’s are Z-free,
they are called a basis of L. A given lattice may have infinitely many bases but
their cardinality d is constant and called rank. Any two bases are related by a
unimodular transformation, i.e., one is obtained from the other by multiplying
by a matrix in Zd×d of determinant ±1.

If L ⊆ Qn is of rank d, then there exists a basis B = (bi)i ∈ Qn×d of L such
that μj = min{i : Bi,j �= 0} (strictly) increases with j, and for all j > k we
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have Bμj ,j > Bμj ,k ≥ 0. If d = n, this means that B is a row-wise diagonally
strictly dominant lower triangular matrix and that its entries are non-negative.
This basis is unique and called the Hermite Normal Form (HNF) of L. It can be
computed in polynomial time from any basis [13].

In order to quantify the smallness of an element of a lattice L, we associate to L
a positive definite bilinear form q : LR ×LR �→ R. We use it to map a basis (bi)i

to its Gram matrix Gq(b1, . . . , bd) := (q(bi, bj))i,j . We denote
√

q(b, b) by ‖b‖q,
and may omit the subscript if it is clear from the context. The determinant of L,
defined as detq(L) = det(Gq(b1, . . . , bd))1/2, does not depend on the particular
choice of the basis of L. Note that if L ⊆ Rn and q is the euclidean inner product,
then det(L) is the d-dimensional volume of the parallelepiped {

∑
i yibi : yi ∈

[0, 1]}. We define the lattice minima as follows:

∀i ≤ d, λi,q(L) = min{r : ∃c1, . . . , ci ∈ L free, maxk≤i ‖ck‖q ≤ r}.

Minkowski’s second theorem states that
∏

i≤d λi,q(L) ≤
√
d

d
detq(L). Frequently

one tries to represent a lattice L by a basis that approximates the minima. In
this article, we assume that we have an algorithm LatRed that takes as input
an arbitrary basis of L and returns a reduced basis satisfying ‖bi‖ ≤ γλi(L), for
all i ≤ d. For example, if we use the LLL algorithm [15], then we can take γ =
2d/2. We proceed as follows: compute the Gram matrix G of the input basis;
use the Gram matrix LLL algorithm (see, e.g., [5, p. 88]), to find U unimodular
such that U tGU is reduced; apply U to the input lattice basis. If the arithmetic
over L is efficient, and if q can be efficiently computed or approximated with high
accuracy, then this provides an efficient algorithm. Apart from being well-defined
for more general lattices (not only for lattices on a rational vector space), a
significant advantage of the LLL-reduction over the HNF is that it provides small
lattice elements. However, it seems more expensive to obtain and the uniqueness
of the representation is lost. Taking the HKZ-reduction instead of the LLL-
reduction allows one to take γ = 1/2

√
d + 3 (see [14]), but the complexity of the

best algorithm for computing it [1] is exponential in d.
Let (bi)i≤d be a lattice basis. For any i > j, we define μi,j = q(bi, b

∗
j )/q(b

∗
j , b

∗
j),

where b∗i = argmin‖bi+
∑

j<i Rbj‖ thus ‖b∗i ‖ = min{‖bi+x‖ : x ∈
∑

j<i Rbj}. We
call the μi,j ’s and the b∗i ’s the Gram-Schmidt orthogonalisation (GSO) of the bi’s.
If the bi’s are LLL-reduced, then ‖b∗i ‖ ≥ 2−d/2‖bi‖ for all i. In the following, we
will assume that LatRed-reduced bases also satisfy this property. Size-reduction
of a vector b ∈

∑
i≤d Rbi with respect to (bi)i≤j consists in subtracting from b

integer multiples of these bi’s so that the magnitudes of the first j coordinates of
the output vector c when written as a linear combination of all the b∗i ’s belong
to [−1/2, 1/2). The latter uniquely defines c, and if j = d we have ‖c‖2 ≤∑

i≤d ‖b∗i ‖2 ≤ dmaxi≤d ‖bi‖2. We call size-reduction of the basis (bi)i the process
of size-reducing each bi with respect to the previous bj ’s for increasing i. The
output remains a basis of the lattice spanned by the bi’s.

A standard technique in the lattice-based cryptography community (see, e.g.,
[20, Le. 7.1]) allows one to derive a short lattice basis from an arbitrary ba-
sis (ai)i and a full-rank free set of short lattice vectors (si)i. As we will adapt
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this technique to modules, we describe it briefly. Since the si’s belong to the
lattice, there exists T ∈ Zd×d such that (si)i = (ai)i · T . We compute the HNF
T ′t of T t: T ′t = T t(U−1)t with U unimodular. We thus have (si)i = (bi)i · T ′

where (bi)i := (ai)i ·U is a lattice basis and T ′ is upper triangular with diagonal
entries ≥ 1. The shape of T ′ implies that for any i we have ‖b∗i ‖ ≤ ‖s∗i ‖. Size-
reducing the basis (bi)i leads to a basis (b′i)i such that max ‖b′i‖ ≤

√
dmax ‖s∗i ‖ ≤√

dmax ‖si‖. It can be checked that if L ⊆ Qn, then all the computations may
be performed in polynomial time.

2.2 Number Fields

Let K be a number field of degree d, with real and complex embeddings (θi)i≤s1 ,
(θi)s1<i≤s1+2s2 . Its maximal order OK is a lattice: there exists a free set (ri)i ∈
Od

K such that OK = ⊕iZri. The ri’s form an integral basis of K, and we
have K = OK⊗Q. We define KR = K⊗R, which is isomorphic (as rings) to Rs1×
Cs2 , and extend the θi’s to KR. Many quadratic forms may be associated to KR,
but the most natural one derives from q(x, x′) = T2(x, x′) :=

∑
θi(x)θ̄i(x′). The

discriminant of K is defined as ΔK = det2T2
(OK). Note that for any x, x′ ∈ KR,

we have ‖xx′‖ ≤ ‖x‖ · ‖x′‖ where ‖x‖ := T2(x)1/2 is the induced norm. The
(field) norm of an element x ∈ KR is defined as N (x) =

∏
i |θi(x)|. Note that

with our definition, the norm cannot be negative.
A (fractional) ideal I is any finitely generated OK-module contained in K.

An integral ideal I is a fractional ideal contained in OK . For any fractional
ideal I there exists r ∈ Z such that rI is an integral ideal. If r ∈ K, we let (r)
denote the (principal) ideal rOK . The product IJ = 〈ij : i ∈ I, j ∈ J〉 and
the sum I + J = {i + j : i ∈ I, j ∈ J} of two ideals are also ideals. A non-
zero integral ideal is said to be prime if it is divisible only by OK and itself.
As OK is a Dedekind domain, any non-zero fractional ideal can be uniquely
decomposed as a product of (possibly negative) powers of prime ideals. If p is
a prime ideal, we define νp(I) = max(k ∈ Z : pk|I). The norm of I is defined
as N (I) = det(I)/ det(OK). If I �= 0 is integral, then this is exactly the index
of I in OK , defined as [OK : I] = |OK/I|. We define N (0) = 0, which allows us
to assert that N (IJ) = N (I)N (J) for any ideals I and J . Note that if I = (r)
is principal, then N (I) = N (r). The inverse I−1 = {r ∈ K : rI ⊆ OK} of a
non-zero fractional ideal I is also a fractional ideal, and we have II−1 = OK .
Note that the arithmetic over the ideals can be performed in polynomial time
(e.g., see [2]).

Any non-zero ideal, including the maximal order, is naturally a free Z-module
of rank d thus a lattice under the T2-norm. By fixing an integral basis for K,
we also fix a Z-lattice structure for OK that we can then reduce. We say that
a basis of a non-zero fractional ideal I is in HNF if the (rational) matrix of the
coefficients with respect to a fixed integral basis of K is in HNF. This provides
a unique representation for any ideal. In the following, we assume that we know
an integral basis (ri)i of K that is LatRed-reduced with respect to T2. It can be
known for particular K’s (e.g., cyclotomic number fields, with max ‖ri‖2 = d),
or can be computed by reducing an arbitrary integral basis. As it is computed
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once and for all, it may prove interesting to strongly reduce it. We have the
following result.

Lemma 1. If (ri)i is a LatRed-reduced integral basis of K, then max ‖ri‖ ≤√
dγd

√
ΔK .

Proof. Using the reducedness and Minkowski’s second theorem, we get
∏

‖ri‖2 ≤
γ2dddΔK . The arithmetic-geometric inequality gives 1 ≤ N (ri)2/d ≤ ‖ri‖2/d for
all i, which provides the result. �

The bounds of our main results involve the quantity max ‖ri‖. Lemma 1 allows
one to express them with field invariants only. We choose to keep max ‖ri‖ in
our bounds since it can be much smaller, as in the case of cyclotomic number
fields.

With our a choice of integral basis, any element of OK with small T2-norm
can be represented with a small number of bits.

Lemma 2. Assume that (ri)i is a LatRed-reduced integral basis of K. If x =∑
xiri ∈ K, then max |xi| ≤ 23d/2‖x‖.

Proof. We show by induction of i that

∀i : |xi| ≤ 2d−i ‖x‖
minj ‖r∗j ‖

.

First, we have ‖x‖ ≥ |xd|‖r∗d‖. Suppose now that i < d and that the result holds
for any j > i. The GSO of the ri’s shows that ‖x‖ ≥ |xi +

∑
j>i μj,ixj |‖r∗i ‖.

Therefore, we have |xi| ≤ ‖x‖/‖r∗i ‖ +
∑

j>i |xj |, which gives the bound. To
complete the proof, note that the reducedness of the ri’s gives minj ‖r∗j ‖ ≥
2−d/2 minj ‖rj‖, and that ‖rj‖ ≥

√
d for all j. �

2.3 OK-Modules

Let b1, . . . ,bn ∈ Km
R with n = rankK(bi)i, and b1, . . . , bn be fractional ideals

of OK . The OK -module M [(bi)i, (bi)i] spanned by the pseudo-basis [(bi)i, (bi)i]
is
∑

bibi. The bi’s are called the coefficient ideals. As each bi is a Z-lattice, so
is M . More precisely, if bi =

∑
j≤d Zβ

(j)
i , then M =

∑
i,j Zβ

(j)
i bi. Two pseudo-

bases [(bi)i, (bi)i] and [(ci)i, (ci)i] represent the same OK-module M if and only
if there exists a non-singular U ∈ Kn×n with ([23, §81 C]):

1. (c1, . . . , cn) = (b1, . . . ,bn)U ;
2. For all i, j, we have Ui,j ∈ bic

−1
j ;

3. For all i, j, we have U ′
i,j ∈ cib

−1
j , where U ′ = U−1.

Cohen [6] generalized the HNF to modules in Km. The algorithm of [4] may also
be interpreted as such a generalization. We refer to [12, Chap. 4] for a detailed
exposure and comparison.
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Theorem 1. Let M ⊆ Km be an OK-module of rank n. There exists a pseudo-
basis [(bi)i, (bi)i] of M such that μj = min{i : Bi,j �= 0} (strictly) increases
with j, for all j we have Bμj ,j = 1 and for all j > k the entry Bμj ,k ∈ K is
size-reduced modulo the HNF of bjb

−1
k . This unique pseudo-basis is called the

HNF of M . It can be computed in polynomial time from any pseudo-basis of M .

Similarly to the HNF for lattices, the above HNF can only handle OK-modules
M ⊆ Km (as opposed to Km

R ) and does not necessarily contain small elements
of M . We now define the concept of small-ness for elements of Km

R . For any
two vectors b = (b1, . . . , bm)t,b′ = (b′1, . . . , b

′
m)t ∈ Km

R , we define T⊗m
2 (b,b′) =∑

i≤m T2(bi, b
′
i), and we denote

√
T⊗m

2 (b,b) by ‖b‖. Notice that for any (r,b) ∈
KR ×Km

R , we have ‖rb‖ ≤ ‖r‖ · ‖b‖. With this definition at hand, we can define
the minima of M :

∀i ≤ n, λi(M) = min{r : ∃c1, . . . , ci ∈ M, rankK(ck)k = i and max ‖ck‖ ≤ r}.

Let [(bi)i, (bi)i] be a pseudo-basis of an OK-module M ⊆ Km
R . Assume that bi =∑

j≤d Zβ
(j)
i . We define det(M) as the square root of the determinant of the nd×nd

symmetric positive definite matrix T⊗m
2 (β(j)

i bi, β
(j′)
i′ bi′)i,j;i′,j′ . This is a module

invariant. When M is a non-zero fractional ideal of OK , this matches detT2(M). It
should be noted that det(M) is not immediately related to the (Steinitz) class of
M nor to the maximal exterior power of M . The following is a direct consequence
of Minkowski’s second theorem over Z-lattices.

Theorem 2. Let M ⊆ Km
R be an OK-module of rank n. Then

∏
i≤n λi(M) ≤√

dn
n

det(M)1/d.

Proof. The module M can be seen as a lattice L of dimension nd, with det(M) =

det(L). Minkowski’s second theorem asserts that
∏

i≤nd λi(L) ≤
√
dn

dn
det(L).

Let c1, . . . , cnd ∈ M be free over the integers such that ‖ci‖ = λi(L) holds for
all i. For all i ≤ n, let φ(i) = min(j : rankK(c1, . . . , cj) = i). As OK has rank d
as a Z-module, we have φ(i) ≤ (i − 1)d + 1. We conclude with the following
sequence of inequalities:∏
i≤n

λi(M) ≤
∏
i≤n

‖cφ(i)‖ ≤
∏
i≤n

λ(i−1)d+1(L) ≤
∏

i≤dn

λi(L)
1
d ≤

√
dn

n
det(M)

1
d . �

We now extend the concept of GSO. Let [(bi)i, (bi)i] be a pseudo-basis of an
OK-module M . We define b∗

i = argmin‖bi +
∑

j<i KRbj‖ for all i ≤ n, and
let μi,1, . . . , μi,i−1 ∈ KR be such that bi = b∗

i +
∑

j<i μi,jb
∗
j .

3 Small 2-Element Representation of an Ideal

We start our study of OK-modules by the one-dimensional case, i.e., fractional
ideals of K. There are several ways of representing an ideal I �= 0. A nat-
ural approach is to provide a basis (bi)i≤d ∈ Kd, or the coordinates matrix
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of a basis with respect to an integral basis (ri)i of K. This coordinates ma-
trix belongs to Qd×d, and it may prove interesting to find the basis of kI such
that the coordinates matrix is in HNF, for the smallest non-zero integer k such
that kI is integral. This representation requires a space of O(d logN (kI)+log k+
d2) = O(d logN (I)+ d2 + d2 log k) bits. Alternatively, one may use the so-called
two-element representation: any ideal I may be written I = (x1) + (x2) for
some x1, x2 ∈ I. A classical way to obtain such a representation consists in
taking an arbitrary x1 ∈ I and then choosing x2 uniformly in I modulo (x1)
(the latter being a full-rank sublattice of the former). This succeeds with prob-
ability ≥

∏
(1 − 1/N (p)), where the product is taken over the prime ideals p

that divide (x1)/I (see [2, Le. 6.14]). If N (x1)/N (I) is small and if there do not
exist too many prime ideals of small norm, then the success probability is large.
Belabas [2, Alg. 6.15] proposed a probabilistic polynomial time variant, which
always succeeds with high probability. However, the obtained representation of I
may still be of bit-size Ω(d logN (I) + d + d2 log k).

We modify Belabas’ algorithm to provide a 2-element representation made of
small elements: I = (x1)+(x2) with both ‖x1‖ and ‖x2‖ small. For instance, the
first element x1 is chosen to be the first element of a LatRed-reduced basis of I.
This may be seen as a rigorous variant of [7, Alg. 1.3.15], in which smallness was
provided but the success probability could be small. Although our analysis is
close to Belabas’, we give a full proof, as there are quite a few small differences.

Theorem 3. Let (ri)i be an integral basis of a number field K. There exists
a probabilistic polynomial time algorithm that takes as inputs a Z-basis of a
non-zero fractional ideal I of OK and a success parameter t (in unary), and
returns x1, x2 ∈ I such that I = (x1) + (x2) holds with probability 1 − 2−t, and:

‖x1‖, ‖x2‖ ≤ 4γ8Δ
4
d

K max ‖ri‖4 · N (I)
4
d , (1)

where ‖ · ‖ corresponds to the T2 norm and γ is the LatRed approximation
constant. As a consequence, the ideal I may be represented on 5 log2 N (I) +
O(logΔK + d(d + log k + log max ‖ri‖)) bits, where k is the smallest non-zero
integer such that kI is integral and the ri’s are assumed LatRed-reduced.

Let us comment on (1). The quantity 4γ8Δ
4
d

K is an invariant of the field, and
max ‖ri‖4 is independent from I (and can be bounded using Lemma 1). The
only term that is not an invariant is N (I)

4
d . If x1 and x2 were basis vectors of

a reduced basis of I, we would expect N (I)
1
d instead of N (I)

4
d (see (2) below).

We do not know how to reach this bound for x2.
Let us now prove Theorem 3. Since the smallest integer k such that kI is

integral can be computed efficiently, we assume that I is integral. As the ideal I
is given by a Z-basis, we can find a basis of it that is LatRed-reduced (for T2).
The algorithm of Figure 1 is an adaptation of [2, Alg. 6.15]. We follow the
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Inputs: A LatRed-reduced basis of a non-zero integral ideal I of OK ;
a success parameter t.

Output: x1, x2 ∈ I such that I = (x1) + (x2), or Fail.
1. Let x1 be the first basis element; a := (x1). If I = a, return x1 and x2 := 0.
2. Find y such that y log y = logN (a); S := {p prime : N (p) ≤ y}.
3. a0 :=

∏
p∈S pνp(a); I0 :=

∏
p∈S pνp(I); a1 := aa−1

0 ; I1 := II−1
0 .

4. For i := 1 to 2t do
5. Sample π1 uniformly in I1/a1. If I1 = a1 + (π1), then go to Step 7.
6. Return Fail.
7. Let b be the first element of a LatRed-reduced basis of a1.
8. Size-reduce π1 with respect to the b · ri’s.
9. Using [2, Alg. 6.8], find π0 ∈ OK such that νp(π0) = νp(I0) for all p ∈ S.
10. Let b be the first element of a LatRed-reduced basis of

∏
p∈S pνp(I0)+1.

11. Size-reduce π0 with respect to the b · ri’s.
12. Using [2, Alg. 5.4], find α0 ∈ a0 and α1 ∈ a1 such that α0 + α1 = 1.
13. Let b be the first element of a LatRed-reduced basis of a.
14. Size-reduce α0 and α1 with respect to the b · ri’s.
15. Return x1 and x2 := (π0α1 + α0)(π1α0 + α1).

Fig. 1. Computing a small 2-element representation of an integral ideal

algorithm step by step. The reducedness of the input directly gives that ‖x1‖ ≤
γΔ

1/2d
K N (I)1/d. By using the arithmetic-geometric inequality, we obtain:

N (a)
1
d = N (x1)

1
d ≤ 1√

d
‖x1‖ ≤ γΔ

1
2d

K√
d

N (I)
1
d . (2)

As a consequence, the variable y of Step 2, can be bounded by a polynomial
in d, logN (I) and logΔK . This ensures that the computation of S can be
done in polynomial time. At Step 3, the computations of a0, I0, a1 and I1 can
be performed in polynomial time: this follows from the above study of S. We
have a = a0a1 and I = I0I1. We also have Ii|ai and Ii +a1−i = OK for i ∈ {0, 1}.

As a1 is a full-rank sublattice of I1, sampling π1 uniformly in I1/a1 can be done
in polynomial time. The equality I1 = a1 +(π1) can also be tested in polynomial
time (see, e.g., [20, Prop. 8.2]). By adapting the analysis of [2, Le. 6.1], we obtain:

Pr [I1 = a1 + (π1)] ≥
∏

p prime, p|a1

(
1 − 1

N (p)

)
≥
(

1 − 1
y

)logy N (a)

≥ 1
e
.

As a consequence, the algorithm returns Fail at Step 6 with probability ≤ 2−t.
At Step 8, the b·ri’s are a basis of a sublattice of a1. Therefore, after Step 8, we

still have I1 = a1 +(π1). After the size-reduction of π1 with respect to the b ·ri’s,
we have:

‖π1‖ ≤
√
dmax

i
‖bri‖ ≤

√
d‖b‖max

i
‖ri‖ ≤

√
dγΔ

1
2d

K N (a1)
1
d max

i
‖ri‖.
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It is shown in [2] that Step 9 can be performed in polynomial time. The bounds
on S imply that Step 10 can be done in polynomial time. Step 11 ensures that

‖π0‖ ≤
√
dγΔ

1
2d

K N

⎛⎝∏
p∈S

pνp(I0)+1

⎞⎠ 1
d

max
i

‖ri‖ ≤
√
dγΔ

1
2d

K N (I0)
2
d max

i
‖ri‖.

After Step 11, we still have that νp(π0) = νp(I0), for all p ∈ S, and thus I0 =
a0 + (π0). It is shown in [2] that Step 12 can be performed in polynomial time.

Step 14 ensures that ‖α0‖, ‖α1‖ ≤
√
dγΔ

1
2d

K N (a)
1
d maxi ‖ri‖. Since a = a0a1, we

still have αi ∈ ai after Step 14, for i ∈ {0, 1}. At Step 15, we have:

‖x2‖ ≤ (‖π0‖‖α1‖ + ‖α0‖) (‖π1‖‖α0‖ + ‖α1‖)

≤ d2γ4Δ
2
d

K max
i

‖ri‖4N (a)
2
d

(
N (I0)

2
d + 1

)(
N (a1)

1
d + 1

)
≤ 4d2γ4Δ

2
d

K max
i

‖ri‖4N (a)
4
d ,

where we used the fact that N (a1) = N (a)/N (a0) ≤ N (a)/N (I0). Combining
the latter with (2) provides the upper bound on ‖x2‖ from Theorem 3.

Also, we have that π′
i := πiα1−i + αi is congruent to πi modulo ai and to 1

modulo a1−i, for i ∈ {0, 1}. Therefore, we have Ii = ai + (π′
i) and Ii + (π′

i−1) =
OK . Finally, we obtain I = I0I1 = a0a1 +(π′

0π
′
1) = (x1)+ (x2), thus proving the

correctness of the algorithm.
We now consider the amount of space needed to represent the coordinates

of x1 and x2 with respect to the integral basis (ri)i. We write xj =
∑

y
(j)
i ri

with y
(j)
i ∈ Z and j ∈ {1, 2}. Using Lemma 2, we have that each y

(j)
i may be

stored on log2 ‖xj‖ + O(d) bits. Combining the latter with (2) and (1) provides
the result. �

4 Computing Short Pseudo-bases

In this section, we (constructively) show that any OK-module M ⊆ Km
R always

has a pseudo-basis [(bi)i, (bi)i] such that the bi’s belong to M and are not much
longer than the module minima.

4.1 From a Short Basis of a Submodule to a Short Pseudo-basis

We are going to generalize to OK-modules the technique we mentioned at the
end of Section 2.1, that takes as inputs a basis of a lattice L and a short basis of
a full-rank sub-lattice of L, and returns a short basis of L. We split the algorithm
into several smaller ones that may be of independent interest.

The algorithm of Figure 2 takes as inputs a pseudo-basis [(ai)i, (ai)i] of an OK-
module M ⊆ Km

R and a full-rank set of short module vectors (si)i, and returns a
pseudo-basis [(bi)i, (bi)i] of M such that bi ∈ spanj≤i sj . This can be interpreted
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Inputs: A pseudo-basis [(ai)i, (ai)i] of an OK -module M ⊆ Km
R ,

a full-rank set (si)i of vectors in M .
Output: A pseudo-basis of M .
1. Compute T ∈ Kn×n such that (s1, . . . , sn) = (a1, . . . ,an)T .
2. Let t1, . . . , tn be the columns of T t.
3. Compute the BPC-HNF [(t′i)i, (b

−1
i )i] of the pseudo-basis [(ti)i, (a

−1
i )i].

4. Let T ′ be the matrix whose rows are the (t′i)t’s, and U = T (T ′)−1 ∈ Kn×n.
5. Let (b1, . . . ,bn) = (a1, . . . ,an)U .
6. Return [(bi)i, (bi)i].

Fig. 2. Constructing a pseudo-basis with small GSO

as a constructive variant of [23, Th. 81.3]. The HNF over lattices is replaced by
the BPC-HNF (Theorem 1), with special care being taken for the coefficient
ideals.

Theorem 4. If given as inputs a pseudo-basis [(ai)i, (ai)i] of a module M ⊆
Km

R and a full-rank set (si)i of vectors in M , then the algorithm of Figure 2
returns a pseudo-basis [(bi)i, (bi)i] of M , which satisfies, for all i ≤ n: bi ∈ M ;
bi ∈ spanj≤i sj; b∗

i = s∗i . If M ⊆ Km, then it terminates in polynomial time.

Proof. We first prove that [(bi)i, (bi)i] is a pseudo-basis of M . We have (bi)i =
(ai)i · U , with U ∈ Kn×n non-singular. It therefore suffices to prove that for
any i, j, we have Ui,j ∈ aib

−1
j and U ′

i,j ∈ bia
−1
j , where U ′ = U−1. This is

ensured by Theorem 1: as the pseudo-bases [(t′i)i, (b
−1
i )i] and [(ti)i, (a

−1
i )i] span

the same module, we have U ′
j,i ∈ a−1

i bj and Uj,i ∈ b−1
i aj , for any i, j.

Because of the definitions of T, T ′, U and (bi)i, we have (si)i = (bi)i · T ′.
Furthermore, by Theorem 1, the matrix T ′ is upper triangular with diagonal
coefficients equal to 1. We thus have bi ∈ spanj≤i sj , for all i. In fact, we even
have bi +

∑
j<i KRbj = si +

∑
j<i KRsj , which gives b∗

i = s∗i . Finally, the shape
of T ′ gives that si = bi +

∑
j<i T

′
j,ibj . As the si’s belong to M , so must the bi’s

(the decomposition of si as an element of
∑

j Kbj is unique). �

The algorithm of Figure 3 generalizes size-reduction to OK -modules.

Theorem 5. If given as input a pseudo-basis [(ai)i, (ai)i] of a module M ⊆ Km
R ,

then the algorithm of Figure 3 returns a pseudo-basis [(bi)i, (bi)i] of M , such
that for all i we have b∗

i = a∗
i , bi = ai and

‖bi‖ ≤
√
dnγΔ

1
2d

K max
k

‖rk‖
(

maxj≤i N (bj)
N (bi)

) 1
d

max
j≤i

‖a∗
j‖.

If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time.

Proof. The operations performed on the pseudo-basis can be checked to preserve
the generated module and the b∗

i ’s. Steps 2, 6 and 7 ensure that the μi,j ’s of the

output pseudo-basis satisfy ‖μi,j‖ ≤
√
dγΔ

1
2d

K N (b−1
i bj)

1
d maxk ‖rk‖. Pythago-

ras’ theorem then provides the result. �
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Input: A pseudo-basis [(ai)i, (ai)i] of an OK -module M ⊆ Km
R .

Output: A pseudo-basis of M .
1. [(bi)i, (bi)i] := [(ai)i, (ai)i].
2. For j ≤ i, let xi,j be the first element of a LatRed basis of b−1

i bj .
3. For i from 2 to n, do
4. For j from i − 1 to 1, do
5. Compute the GSO decomposition bi = b∗

i +
∑

j<i μi,jb
∗
j ,

6. Let y be the size-reduction of μi,j with respect to the xi,jrk’s,
7. bi := bi − (μi,j − y)bj .
8. Return [(bi)i, (bi)i].

Fig. 3. Size-reducing a pseudo-basis of an OK -module

The adaptation to OK-modules of [20, Le. 7.1] is given in Figure 4. The aim
of Steps 2–4 is to allow us to bound the term maxj≤i N (bj)

N (bi)
from Theorem 5.

Inputs: A pseudo-basis [(ai)i, (ai)i] of an OK -module M ⊆ Km
R ,

a free full-rank set (si)i of vectors in M .
Output: A pseudo-basis of M .
1. Use the algorithm of Figure 2 to obtain a pseudo-basis [(bi)i, (bi)i] of M .
2. For any i ≤ n,
3. Let x ∈ bi be the first vector of a LatRed basis of bi,
4. bi := (x)−1bi; bi := xbi.
5. Return the output of the algorithm of Figure 3, given [(bi)i, (bi)i] as input.

Fig. 4. From small vectors to a small pseudo-basis

Theorem 6. If given as inputs a pseudo-basis [(ai)i, (ai)i] of an OK -module
M ⊆ Km

R and a full-rank set (si)i of vectors in M , then the algorithm of Fig-
ure 4 returns a pseudo-basis [(bi)i, (bi)i] of M , such that for all i: bi ∈ M ,

spanj≤i bj = spanj≤i sj, ‖b∗
i ‖ ≤ γΔ

1
2d

K ‖s∗i ‖, N (bi) ∈
[(√

d
γ

)d
1√
ΔK

, 1
]

and

‖bi‖ ≤
√
nγ3Δ

3
2d

K max
k

‖rk‖ · max
j≤i

‖sj‖.

If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time.

Proof. The fact that the algorithm returns a pseudo-basis of M is easy to check.
Also, at the end of Step 1, we have that bi ∈ M , for all i. Since the x of Step 3
belongs to bi, the latter fact is preserved throughout the rest of the execution.
The equality spanj≤i bj = spanj≤i sj directly derives from Theorems 4 and 5.
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At any time after Step 1, we have OK ⊆ bi and thus N (bi) ≤ 1. At Step 3, we

have ‖x‖ ≤ γΔ
1
2d

K N (bi)
1
d . This gives that after Step 4 we have ‖b∗

i ‖ ≤ γΔ
1
2d

K ‖s∗i ‖,
which is preserved throughout Step 5. Also, the arithmetic-geometric inequal-
ity implies that N (x) ≤ (γ/

√
d)d

√
ΔKN (bi). Therefore, after Step 4 the quan-

tity N (bi) has been divided by N (x) and we have N (bi) ≥
(√

d
γ

)d
1√
ΔK

. Using
Theorem 5, this allows us to derive that at the end of the execution we have:

‖bi‖ ≤
√
dnγΔ

1
2d

K max
k

‖rk‖
( √

ΔK

(
√
d/γ)d

) 1
d

·
(
γΔ

1
2d

K max
j≤i

‖s∗j‖
)
.

The inequalities ‖s∗j‖ ≤ ‖sj‖ lead to the result. �

4.2 Computing a Short Pseudo-basis

Suppose we have a pseudo-basis of an OK-module M of rank n. We can expand
it to obtain a basis of M as a Z-module. By LLL-reducing the latter with respect
to T2, we obtain dn module vectors whose integer linear combinations span M .
By using linear algebra over K, it is possible to select n module vectors s1, . . . , sn

among these dn vectors, such that rankK(si) = n. Furthermore, thanks to the
initial reduction, these vectors are also small, and we can apply Theorem 6.

Corollary 1. There exists an algorithm that takes as input a pseudo-basis of
an OK-module M ⊆ Km

R and returns a pseudo-basis [(bi)i, (bi)i] of M , such

that for all i: bi ∈ M , N (bi) ∈
[(√

d
γ

)d
1√
ΔK

, 1
]

and

‖bi‖ ≤ 2
dn
2
√
nγ3Δ

3
2d

K max
k

‖rk‖2 · λi(M).

Therefore: ∏
i

‖bi‖ ≤ 2
dn2
2 (

√
dn)nγ3nΔ

3n
2d

K max
k

‖rk‖2n · (det(M))
1
d .

If M ⊆ Km and LatRed is LLL, then it terminates in polynomial time, and the
output may be stored on a number of bits bounded by

m log2 det(M) + O

(
md2n2 + nm logΔK + mdn log max

k
‖rk‖
)
.

Proof. Let L denote M when considered as a lattice. Let (si)i≤dn be a LLL-
reduced basis of L. We have ‖si‖ ≤ 2dn/2λi(L), for all i. Let ψ(i) = min(j :
rankK(sk)k≤j = i). Since K has degree d, we have ψ(i) ≤ d(i− 1) + 1, for all i.
We use the sψ(i)’s as input to the algorithm of Figure 4. The first statement
on the ‖bi‖’s derives from Theorem 6 and the fact that λψ(i)(L) ≤ maxk ‖rk‖ ·
λ�ψ(i)/d�(M) ≤ maxk ‖rk‖ · λi(M). By combining Theorem 2 and the latter, we
obtain the second statement on the ‖bi‖’s.
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We now consider the bit-size of the representation when M ⊆ Km. Using
Lemma 2 for the first component of the pseudo-basis, we obtain that the bit-size
of the latter is ≤ md(log2

∏
‖bi‖ + O(nd)). To represent the ideal coefficients,

we use Theorem 3 with the inverses of the ideals. The latter are integral, and
have norms ≤ 2d2

ΔK . Therefore, each of these can be represented on O(d2 +
logΔK + d log maxk ‖rk‖) bits. This completes the proof of the theorem. �

Note that the norm bound on the ideals depends only on the field and the choice
for LatRed and is, in particular, independent of M .

By applying Corollary 1 with m = n = 1, we obtain yet another compact
representation of ideals of K. If I is an ideal and k is the smallest non-zero integer
such that kI is integral, then we see that I can be represented on log2 N (I) +
O(logΔK +d(d+log k+logmaxi ‖ri‖)) bits. If N (I) is large, this representation
is smaller than the one from Theorem 3, but for a small N (I), this is the opposite
as the O(·) constant is larger. Considering ((x1) + (x2)) instead of its inverse
leads to a representation whose bit-size grows faster with respect to d.

4.3 Short almost Free Pseudo-bases

A common strengthening of the properties of a pseudo-basis is to pass to an
almost free (or Steinitz) representation: For any M , there exists a pseudo-basis
[(bi)i, (bi)i] of M with bi = OK for i < n. We explain here how to obtain an al-
most free pseudo-basis consisting of short vectors. We first use Corollary 1 to find
a “short” pseudo-basis. We then use the following lemma, from [7, Prop. 1.3.12,
Alg. 1.3.16], which allows us to pass from a module with coefficient ideals (a, b)
to a representation of this module with ideals (1, ab).

Lemma 3. Let a and b be non-zero fractional ideals. There exists a polynomial-
time algorithm that finds a ∈ a, b ∈ b, x ∈ a−1, y ∈ b−1 such that ax− by = 1.

One can use Lemma 3 to progressively change the short pseudo-basis obtained
in Corollary 1 into a short almost free pseudo-basis, collecting all the coefficient
ideals into the last one. The corresponding algorithm is given in Figure 5. It can
be checked that the output is an almost free pseudo-basis of the input module.

Furthermore, if the input of the algorithm is a module pseudo-basis such as
in Corollary 1, then during the execution, Lemma 3 is applied to ideals whose
norms can be bounded independently of the module M . As a consequence, the

Input: A pseudo-basis [(ai)i, (ai)i] of an OK -module M ⊆ Km
R .

Output: An almost free pseudo-basis of M .
1. For i = 1 to n − 1 do
2. Use Lemma 3 with a := ai, b := ai+1 to find a, b, x, y as indicated,
3. Replace ai by aai + bai+1 and ai+1 by yai + xai+1,
4. Replace ai+1 by aiai+1 and ai by OK .

Fig. 5. From a pseudo-basis to an almost free pseudo-basis
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obtained transformation coefficients a, b, x, y have T2-norms that can be bounded
independently of M . At the end of the execution, we still have ai ∈ M for all i,
and the quantity

∏
i ‖ai‖ (resp. each ‖ai‖) remains bounded by det(M)

1
d (resp.

by the corresponding λi(M)) up to a multiplicative factor that is independent
of M . Similarly, the norm of the non-trivial coefficient ideal can also be bounded
independently of M .

Finally, it should be noted that the basis generated by the algorithm of Fig-
ure 5 satisfies bi ∈ spanj≤i+1 aj for i < n, and thus can be compared to the
results from [8].

5 Examples

We start by some example coming from group theory, focusing only on the
use of lattice reduction. Representations of finite groups give easy access to
non-trivial and interesting lattices. In general starting with a finite subgroup
G < GL(m,K) and any OK-module N we obtain a G-invariant OK-module M
via M :=

∑
g∈G Ng. Next we change G to act on M , G ∈ GL(M) and, fixing a

complex conjugation on K, obtain a G-invariant Hermitean form on Km from
H :=

∑
g∈G g∗g. The main application is to find a reduced (short) pseudo-basis

S = MT for M and then replace G by GT = {T−1gT : g ∈ G} to find an
isomorphic version of G where the elements are (hopefully) “smaller”.

Let G be the quaternion group Q8 with 8 elements. As a subgroup of GL(2,K)
for K := Q(i), it can be generated by

1
5

(
i + 2 2i− 6
2i + 4 −i− 2

)
and

1
2

(
−i− 1 3i + 1
i− 1 i + 1

)
.

Computing the OK-module generated by g

(
1
0

)
for all g ∈ G, we use M :=

OK

(
1
0

)
+
( 1+3i

10 OK

)(3
1

)
. As a Hermitean form, we compute

∑
g∈G gg∗ where

g∗ denotes the transposed complex conjugate. We then normalize the matrix to
have 1 as the top left entry and obtain

H :=
1
5

(
5 i + 2

−i + 2 3

)
.

We reduce the corresponding Z-lattice and use the following short Q(i)-indepen-
dent basis elements:

1
10

(
−3i− 1
−i + 3

)
and − 1

5

(
2i− 1
−i + 3

)
.

The two elements can be seen to freely generate the module. Using the transfor-
mation to change G, we now get(

i 0
0 −i

)
and

(
0 1
1 0

)
.

which is a “nicer” version of G.
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Let G := SZ8 the 8th Suzuki group with 29 120 elements. This group has 11
characters, and we consider the second among them. The latter defines a repre-
sentation of degree 14 over some field containing i. For theoretical reasons, the
representation can be defined over Q(i), but it is initially computed over Q(ζ52),
of degree 24. A complicated procedure will now find a representation over Q(i),
i.e., we have three matrices (one for each generator) over Q(i) generating G.
The coefficients of the original matrix entries over Q(ζ52) have about 100 digits
each, and over Q(i) this increases to about 200 digits. In this representation the
group G fixes a Hermitean form M which has again entries with about 200 dig-
its each. Since the representation is absolutely irreducible, the quadratic form is
unique up to multiplication by scalars. We normalized the form to have 1 as the
entry in position (1, 1). After application of our reduction technique, the form as
well as the representation now have only 1 digit entries. The module used here
is generated by Ge1 ⊆ Q(i)2.

We used the following Magma code to generate the second example:

> G := Sz(8);
> T := CharacterTable(G);
> M := GModule(T[2]:SparseCyclo := false);
> N := AbsoluteModuleOverMinimalField(M);
> IsAlmostIntegral(N); //computes the module
true
> _ := InvariantForm(N); // compute the form
> SetVerbose("RLLL", 1);
> O := Nice(N);
> #Sprint(ActionGenerators(M));
1359862
> #Sprint(ActionGenerators(N));
327378
> #Sprint(ActionGenerators(O));
4577

The function Nice implements the procedure outlined above. Note that the
actual result can vary substantially as several parts use randomized algorithms.
The Sprint statements are only used as a very crude indication of the output
size, they simply give the number of characters neccessary to write the generating
matrices for G.
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Abstract. Let p be a rational prime and let Φ(X) be a monic irreducible
polynomial in Z[X], with nΦ = deg Φ and δΦ = vp(disc Φ). In [13] Montes
describes an algorithm for the decomposition of the ideal pOK in the alge-
braic number field K generated by a root of Φ. A simplified version of the
Montes algorithm, merely testing Φ(X) for irreducibility over Qp, is given
in [19], together with a full Maple implementation and a demonstration
that in the worst case, when Φ(X) is irreducible over Qp, the expected
number of bit operations for termination is O(n3+ε

Φ δ2+ε
Φ ). We now give a

refined analysis that yields an improved estimate of O(n3+ε
Φ δΦ+n2+ε

Φ δ2+ε
Φ )

bit operations. Since the worst case of the simplified algorithm coincides
with the worst case of the original algorithm, this estimate applies as
well to the complete Montes algorithm.

1 Introduction

In an algebraic number field K with ring of integers OK , factorization of the
ideal pOK , for p prime, can be determined via polynomial factorization over the
field of p-adic numbers Qp [12].

If K = Q(α) for a given α ∈ OK such that the index
[
OK : Z[α]

]
is not

divisible by p then the factorization of the ideal pOK can be determined by
polynomial factorization modulo p [5,6,7]. In practice, efficient techniques for
polynomial factorization modulo p [1,2,4] combined with Hensel lifting [12,20]
solve the problem of factoring pOK in a straightforward and effective manner
when p does not divide the index.

The complications arising when p divides the index
[
OK : Z[α]

]
have been the

subject of considerable study. Current ideas are derived from the “Round Four”
algorithm of Zassenhaus [20], which has evolved into two main variations, the
“one-element” method [8] and the “two-element” method [16]. Versions of the
one-element method are used by Maple and PARI. The two-element method is
used, e.g., by Magma.

The algorithm of Montes [13] is in a separate category.
Given a monic irreducible polynomial Φ(X) in Z[X ], the Montes algorithm

determines the number of irreducible factors of Φ(X) in Zp[X ] and their respec-
tive degrees. The algorithm exploits classical results of Ore [15,14] on Newton

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 174–185, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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polygons and provides an alternative to the methods based on ideas of Zassen-
haus.

A familiar application of Newton polygons gives the p-adic valuations of roots
of a polynomial in Zp[X ]. If Φ(X) ∈ Zp[X ] has two roots with different p-adic
values then Hensel-lifting techniques can be applied to construct a non-trivial
p-adic factorization of Φ to any desired degree of precision.

This process constitutes “level 0” of the Montes algorithm.
For each factor of Φ revealed at level 0, the algorithm proceeds to higher

levels, either to discover a refined factorization or to establish irreducibility.
At level r, with ϕr(X) an irreducible monic polynomial in Zp[X ] and Vr a

valuation of Qp[X ], the algorithm constructs the ϕr-adic expansion of a given
polynomial and then computes

• a finite field Fqr ,

• the Newton polygon Nr(Φ) of Φ with respect to the valuation Vr ,
• a slope −dr/er, with dr and er coprime positive integers, of an edge of Nr(Φ),
• the “associated polynomial” Ψ

(r)
S,Φ(Y ) ∈ Fqr [Y ] for each segment S of Nr(Φ),

• a monic irreducible factor ψr of Ψ (r)
S,Φ with ξr a root of ψr and fr = degψr,

• a valuation Vr+1 of Qp[X ],

• an irreducible monic polynomial ϕr+1(X) ∈ Zp[X ].

The number of edges of Nr(Φ) and the number of distinct irreducible factors of
Ψ

(r)
S,Φ give information for the factorization of Φ; if either is greater than one then

Φ is reducible.
Our goal being to give an estimate of the complexity of the worst case of the

Montes algorithm, we have restricted the algorithm merely to decide the question
of irreducibility of a given polynomial. When Φ is irreducible over Qp the Newton
polygon at each level is a single segment. It is apparent that this is the most
costly case, i.e., the case that reaches the highest level, for the full algorithm.
So our restricted algorithm operates under the assumption that Nr(Φ) has just
one edge at each level r; the failure of this condition terminates the restricted
algorithm.

In [19, Chapter 3] a complete Maple implementation of the restricted Montes
algorithm is given, together with a demonstration that in the worst case, when
Φ is irreducible over Qp, the expected number of bit operations for termination
is O(n3+ε

Φ δ2+ε
Φ ), with nΦ = degΦ and δΦ = vp(discΦ). In the present paper we

give a refined analysis that yields an improved estimate of O(n3+ε
Φ δΦ +n2+ε

Φ δ2+ε
Φ )

bit operations. Since the worst case of the simplified algorithm coincides with
the worst case of the original algorithm, this estimate applies as well to the full
Montes algorithm.

2 Definitions and Notation

Definition 1. Let ϕ0(X) = X and let V0 denote the standard p-adic valuation
of Qp. For K(X) ∈ Qp[X ] and r ≥ 1, the level-r Newton polygon of K, denoted
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Nr(K), is the Newton polygon of K with respect to the valuation Vr of Qp[X ],
which can be defined recursively as

Vr(K) = min
{
er−1Vr−1

(
Ar−1,k

)
+ kVr

(
ϕr−1

) ∣∣ 0 ≤ k ≤ n
}

with K(X) =
∑n

k=0 Ar−1,k(X)ϕr−1(X)k the ϕr−1-adic expansion of K(X).

Remark 1. Nr(K) is the lower convex hull of the set

{ (k, Vr(Ar,k ϕ
k
r )) | 0 ≤ k ≤ n, Ar,k(X) �= 0 } ,

and if degK < degϕr then Nr(K) = {(0, Vr(K))} and Vr+1(K) = erVr(K).

Definition 2. For r ≥ 1 and K(X) a nonzero polynomial in Zp[X ] we define
Sr,K to be the segment of Nr(K) having slope −dr/er.

Definition 3. For positive integers r and ν we define

αr,ν = νd−1
r mod er ,

βr,ν = (ν − αr,νdr)/er ,

Tr,ν = { (αr,ν + λer, βr,ν − λdr) | 0 ≤ λ ≤ �βr,ν/dr	 } .

Remark 2. If L is the line through the point (0, ν/er) with slope −dr/er then
Tr,ν is the longest segment of L with endpoints having nonnegative integer co-
ordinates.

Definition 4. For r ≥ 0 we define

μr = 0 , νr = 0 , if r = 0 ,

μr = dr−1 + er−1νr−1 , νr = er−1fr−1μr , if r ≥ 1 .

Remark 3. For r ≥ 1 it is easily seen that μr = Vr(ϕr−1) and νr = Vr(ϕr).

Definition 5 (Associated Polynomial). Let r ≥ 0, let α and β be nonnega-
tive integers, and let S be an arbitrary segment of slope −dr/er with left endpoint
(α, β). Let m0 = 0 and for r ≥ 1 and k ≥ 0 define

mr = (1/dr) mod er ,

Ωr =

{
1 if r = 1 ,
Ω

er−1fr−1
r−1 ξ

mr−1fr−1μr
r−1 if r > 1 ,

Θ(S, r, k) =
⌊
mr−1

(β − kdr) − (α + ker) νr

er−1

⌋
,

ΓS,r,k = Ωα+ker
r ξ

Θ(S,r,k)
r−1 ∈ Fqr .

Let K(X) ∈ Zp[X ] have ϕr-adic expansion

K(X) = A0(X) + A1(X)ϕr(X) + · · · + An(X)ϕr(X)n
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with drj + erVr(Aj ϕ
j
r) ≥ drα + erβ for j = 0, . . . , n and let

J =
{
k
∣∣ 0 ≤ k ≤ �(n− α)/er	,

(
α + ker, Vr(Aα+ker ϕ

α+ker
r )

)
∈ S
}
.

We define the level-r associated polynomial of K with respect to S to be

Ψ
(r)
S,K(Y ) =

∑
k∈J ηkY

k

with ηk ∈ Fqr defined as

ηk =

⎧⎪⎪⎨⎪⎪⎩
Aα+ke0 if r = 0 ,

Bk(ξ0) , with Bk(X) = Aα+ke1 (X)
/
pβ−kd1 , if r = 1 ,

Γ−1
S,r,kΨ

(r−1)
Tr−1,νk

,Aα+ker
(ξr−1) , with νk = Vr(Aα+ker ) , if r ≥ 2 .

We further define the natural level-r associated polynomial of K to be

Ψ̃
(r)
K (Y ) = Ψ

(r)
Sr,K,K(Y ) .

Remark 4. The polynomial Ψ̃ (r)
K (Y ) has nonzero constant term.

3 Outline of the Restricted Montes Algorithm

A complete Maple implementation of the restricted Montes algorithm, with
proofs and explanatory comments interspersed, is given in [19]. Here we give an
outline showing the three major phases of the algorithm. The algorithm begins
in phase M0 (level 0), then alternates between phase M1 and phase M2 (level r,
for r = 1, 2, . . . ) until reaching a terminating condition.

• input: Φ(X) ∈ Z[X ] monic and irreducible, p ∈ Z prime

• output:

{
TRUE if Φ(X) is irreducible over Qp[X ],

FALSE if Φ(X) is reducible over Qp[X ].

M0 : 1. Factorize Φ modulo p:

Φ ≡ ψ
a0,1
0,1 · · · ψa0,κ0

0,κ0
(mod p) .

2. If κ0 > 1 then return FALSE.
If κ0 = 1 and a0,1 = 1 then return TRUE.

3. Define ϕ0(X) = X , n0 = 1, d0 = 0, e0 = 1,
ψ0 = ψ0,1, f0 = degψ0, ξ0 a root of ψ0.

4. Set r ← 1.

M1 : 5. If r = 1 let ϕ1(X) be a monic polynomial in Z[X ] such that ϕ1 = ψ0.
If r > 1 construct Hr−1 according to Algorithm 1 in Sect. 6 below
and let

ϕr = ϕ
er−1fr−1
r−1 + Hr−1 .
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6. Define nr = er−1fr−1nr−1 = degϕr.
7. If r > 1 and er−1fr−1 = 1 then replace ϕr−1 ← ϕr and r ← r − 1.

M2 : 8. If ϕr = Φ then return TRUE.
If ϕr | Φ and ϕr �= Φ then return FALSE.

9. Let Sr,1, . . . , Sr,λr be the segments of Nr(Φ) and let ζr,k + 1 be the
number of points on Sr,k with integer coordinates, for k = 1, . . . , λr .

10. If λr > 1 then return FALSE.
If λr = 1 and ζr,1 = 1 then return TRUE.

11. Let −dr/er be the slope of Sr,1, with dr and er relatively prime and
er > 0, and construct Ψ̃

(r)
Φ (Y ) ∈ Fqr [Y ].

12. Factorize
Ψ̃

(r)
Φ = cr ψ

ar,1
r,1 · · · ψar,κr

r,κr

over Fqr , with cr ∈ Fqr a nonzero constant.
13. If κr > 1 then return FALSE.

If κr = 1 and ar,1 = 1 then return TRUE.
14. Define ψr = ψr,1, fr = degψr, ξr a root of ψr.
15. Replace r ← r + 1.

Go to M1.

4 Complexity of Fundamental Operations

Notation. We use
〈
alpha

〉
Fp

and
〈
alpha

〉
Q to denote the number of operations

in Fp and Q respectively required for the execution of the procedure alpha. We
use the notation

f(n) ∈ O(nk+ε)

as an alternative to the “soft-O” notation

f(n) ∈ O∼(nk) ≡ f(n) ∈ O(nk(lnn)c)

for some positive constant c (see [9]). For n ≥ 3 and q a prime power we define
the following.

L(n) = lnn ln lnn F(n, q) = nM(n) ln(qn)

M(n) = n L(n) K(q) = M(ln q) ln ln q

We are concerned with the reducibility of the monic polynomial Φ(X) ∈ Zp[X ]
for some prime p. We let δΦ denote vp(discΦ) and we let pδ∗

Φ denote the p-adic
reduced discriminant of Φ [8, Appendix A]. It is clear that δ∗Φ ≤ δΦ.

Magnitude of p. To simplify the subsequent discussion we impose the condition
that p ∈ O(1), by which we mean that p is a small prime, not exceeding the
magnitude of a single machine word.
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Arithmetic in Zp. If F (X) ∈ Z[X ] with F (X) ≡ Φ(X) (mod p2δ∗
Φ+1Zp[X ])

then Φ(X) is reducible in Zp[X ] if and only if F (X) is reducible in Zp[X ]. Thus
in our computations p-adic integers are represented as rational approximations
with 2δ∗Φ + 1 p-adic digits of precision, i.e., as rational integers reduced modulo
p2δ∗

Φ+1.
Schönhage and Strassen have shown that the time required to perform an

arithmetic operation on two rational integers of length m is O(M(m)); see [9,
Ch.8, §8.3]. It follows that if we represent p-adic integers in this fashion then the
cost of an arithmetic operation is O(ΔΦ), with

ΔΦ = M(δ∗Φ ln p) .

Arithmetic in Fq. By [9, Ch.14, §14.7], a single operation in Fq can be per-
formed in O(K(q)) word operations. If q = pf∗

the assumption that ln p ∈ O(1)
gives ln q = f∗ ln p ∈ O(f∗) and thus the cost of an operation in Fq is

O(K(q)) = O
(
M(ln q) ln ln q

)
⊆ O
(
f∗(ln f∗)2 ln ln f∗) ⊆ O

(
f∗ (1+ε)) .

For α ∈ Fq and any integer n the cost of computing αn is

O(ln qK(q)) ⊆ O(f∗f∗ (1+ε)) = O(f∗ (2+ε))

since we may assume 0 ≤ n ≤ q − 1. By [18, Theorem 10], the asymptotic cost
for constructing an irreducible polynomial of degree n over the finite field Fq is

O
(
(n2 lnn + n ln q) L(n)

)
.

Polynomial Arithmetic. The number of operations required to evaluate a
polynomial of degree n at a given point using Horner’s rule is O(n). By [17] and
[3], the number of operations needed to multiply two polynomials of degree at
most n is O(M(n)). It follows that the number of operations needed to compute
the mth power of a polynomial of degree n is

O
(
nm ln2(nm)

)
⊆ O
(
(nm)1+ε

)
.

By [9, Ch 14, §14.4 and §14.5], the expected number of operations in Fq needed
to factorize a polynomial of degree n over Fq is

O(F(n, q)) ⊆ O(n2+ε ln q) .

Let ϕ(X) be a monic polynomial in Zp[X ] of degree nϕ, let f(X) be a polynomial
in Zp[X ] of degree n, and let kϕ = �n/nϕ	. Let E(f, kϕ) denote the number of
operations in Zp needed to compute the ϕ-adic expansion

f(X) =
∑kϕ

i=1 ai(X)ϕi(X) .

From [9, Ch 5, §5.11], we have

E(f, kϕ) ∈ O(kϕ(kϕ + 1)n2
ϕ) = O(n2

ϕk
2
ϕ) = O(n2) .
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5 Complexity of the Algorithm

Finite Fields. For r ≥ 0 the finite field Fqr+1 is implemented as Fp[ρr ], with

• ρr of a root of ψ∗
r ,

• ψ∗
r (Y ) an arbitrary irreducible monic polynomial in Fp[Y ] of degree f∗

r ,
• f∗

r = f0 · · · fr.

Thus Fqr+1 = Fqr [ξr ] = Fp[ξ0, . . . , ξr ] = Fp[ρr ] and qr+1 = qfr
r = pf∗

r .

Computing the Newton Polygon. It follows from [19, Theorem 15] that the
recursive computation of Vr(Φ) requires O(n2+ε

Φ ΔΦ) operations in Q and that
this dominates the cost of constructing Nr(Φ).

Computing ϕr. The construction of ϕr = ϕ
er−1fr−1
r−1 + Hr−1 is explained in

Sect. 6 below. The cost of computing ϕ
er−1fr−1
r−1 is〈

ϕ
er−1fr−1
r−1

〉
Fp

= 0 ,〈
ϕ

er−1fr−1
r−1

〉
Q ∈ O

(
(nr−1er−1fr−1)1+εΔΦ

)
= O
(
n1+ε

r ΔΦ

)
.

A slight modification of the proof of [19, Theorem 17] shows that the cost of
constructing Hr−1 = Hr−1,νr,γr−1 is〈

Hr−1
〉
Fp

∈ O
(
rfr−1f

∗ (3+ε)
r−2

)
⊆ O(rn3+ε

r ) ,〈
Hr−1

〉
Q ∈ O

(
rn1+ε

r ΔΦ

)
.

Thus the cost of computing ϕr is dominated by the cost of computing Hr−1.

Computing the Associated Polynomial. It follows from [19, Theorem 16]
that if r ≥ 2 then 〈

Ψ̃
(r)
Φ

〉
Fp

∈ O(nΦn1+ε
r ) ⊆ O(n2+ε

Φ ) ,〈
Ψ̃

(r)
Φ

〉
Q ∈ O

(
nΦn

1+ε
r ΔΦ

)
⊆ O
(
n2+ε

Φ ΔΦ

)
.

Total Complexity. The cost of phase M0 is dominated by the cost of factorizing
Φ over Fp. Hence 〈

M0
〉
Fp

∈ O(F(nΦ, p)) ⊆ O(n2+ε
Φ ) ,〈

M0
〉
Q ∈ O(1) .
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The cost of phase M1 is dominated by the cost of constructing ϕr. Hence〈
M1(r)

〉
Fp

∈ O(rn3+ε
r ) ,〈

M1(r)
〉
Q ∈ O

(
rn1+ε

r ΔΦ

)
.

The cost in Q-operations of phase M2 is dominated by the construction of the
Newton polygon Nr(Φ) and of the associated polynomial Ψ̃

(r)
Φ , each of which

require O(n2+ε
Φ ΔΦ) operations in Q. Since Fqr+1 = Fp[ρr ], the necessity of ex-

pressing ξr and ρr−1 in terms of ρr arises. This is achieved in each case by
factoring ψ∗

r−1 over Fp[ρr ], which requires O(f∗
r

3+ε) ⊆ O(n3+ε
Φ ) operations in

Fp. These are the dominant finite-field operations in M2, hence〈
M2(r)

〉
Fp

∈ O(n3+ε
Φ ) ,〈

M2(r)
〉
Q ∈ O(n2+ε

Φ ΔΦ) .

We now estimate the number of operations required for the chain of computations

M0(Φ) → M1(1) → M2(1) → M1(2) → M2(2) → · · · → M1(m) → M2(m)

with the algorithm terminating at level m. We note that at level r we have
n0 < n1 < · · · < nr with n0 | n1 | · · · | nr. Hence 2r ≤ nr and thus r ∈ O(lnnr).
It follows that m ∈ O(lnnΦ) and we have〈

M0(F )
〉
Fp

+
∑m

r=1

(〈
M1(r)

〉
Fp

+
〈
M2(r)

〉
Fp

)
=
〈
M0(F )

〉
Fp

+
∑m

r=1

〈
M1(r)

〉
Fp

+
∑m

r=1

〈
M2(r)

〉
Fp

∈ O
(
n2+ε

Φ + m2n3+ε
Φ + mn3+ε

Φ

)
⊆ O
(
n3+ε

Φ

)
,〈

M0(F )
〉
Q +
∑m

r=1

(〈
M1(r)

〉
Q +
〈
M2(r)

〉
Q

)
=
〈
M0(F )

〉
Q +
∑m

r=1

〈
M1(r)

〉
Q +
∑m

r=1

〈
M2(r)

〉
Q

∈ O
(
nΦ + m2n1+ε

Φ ΔΦ + mn2+ε
Φ ΔΦ

)
⊆ O
(
n2+ε

Φ ΔΦ

)
.

From [16, Proposition 4.1] it follows that the case er−1fr−1 = 1 can occur at
most

2
e∗r−2

nΦ
vp(discΦ) ≤ 2 vp(discΦ)

times. Hence the sequence

M1(r) → M2(r − 1) → M1(r)
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can occur at most 2vp(discΦ) times in the course of the computation. From the
results above we have〈

M1(r)
〉
Fp

+
〈
M2(r − 1)

〉
Fp

∈ O(rn3+ε
r + n3+ε

Φ ) ⊆ O(n3+ε
Φ ) ,〈

M1(r)
〉
Q +
〈
M2(r − 1)

〉
Q ∈ O(rn1+ε

r + n2+ε
Φ ΔΦ) ⊆ O(n2+ε

Φ ΔΦ) .

Since δ∗Φ ≤ δΦ and ln p ∈ O(1) we have

ΔΦ = M(δ∗Φ ln p) ∈ O(δ1+ε
Φ ) .

It now follows that the expected number of operations required for the restricted
Montes algorithm to terminate is

O
(
2δΦ(n3+ε

Φ + n2+ε
Φ ΔΦ)

)
⊆ O

(
n3+ε

Φ δΦ + n2+ε
Φ δ2+ε

Φ

)
.

Remark 5. This is a slight improvement on the estimate O(n3+ε
Φ δ2+ε

Φ ) from [19].
By way of comparison, Pauli [16] gives an estimate of

O
(
n3+ε

Φ δ1+ε
Φ + n2+ε

Φ δ2+ε
Φ

)
bit operations for factorization of a univariate polynomial over Qp via the “two-
element” method.

6 The Construction of ϕr

Algorithm 1 (Montes). Given ds, es, fs, etc., for 1 ≤ s ≤ r and given

• an integer t in the range 1 ≤ t ≤ r,
• an integer ν ≥ νt+1,
• a nonzero polynomial δ(Y ) ∈ Fqt [Y ] of degree less than ft,

to construct a polynomial Ht,ν,δ(X) ∈ Zp[X ] such that

• degHt,ν,δ < nt+1,
• Vt+1(Ht,ν,δ) = ν,

• Ψ
(t)
Tt,ν , Ht,ν,δ

(Y ) = δ(Y ).

Construction. Let ζ0, . . . , ζft−1 in Fqt be such that

δ(Y ) =
∑ft−1

i=0 ζi Y
i .

Since δ(Y ) �= 0 the set Jδ = { i | 0 ≤ i ≤ ft − 1, ζi �= 0 } is not empty. For i ∈ Jδ

we construct Ki(X) as follows.

• We take δi(Y ) to be the unique polynomial in Fqt−1 [Y ] of degree less than
ft−1 such that δi(ξt−1) = ΓTt,ν ,t,i ζi.



On the Complexity of the Montes Ideal Factorization Algorithm 183

• If t = 1 we take Pi(X) to be a polynomial in Zp[X ] of degree less than f0
such that P i(Y ) = δi(Y ) and we set

Ki(X) = pβ1,ν−id1Pi(X) .

• If t ≥ 2 we let νi = (βt,ν − idt) − (αt,ν + iet)νt and we set

Ki(X) = Ht−1, νi, δi(X) .

Having constructed Ki(X) for i ∈ Jδ, we set

Ht,ν,δ(X) =
∑

i∈Jδ
Ki(X)ϕt(X)αt,ν+iet . ��

Remark 6. It follows from [13, Proposition 3.2] that Algorithm 1 correctly con-
structs the polynomial Ht,ν,δ with the indicated properties.

The construction of δi(Y ) in Algorithm 1 being rather complicated, we provide
some implementation details.

Computing Υr. If r > 0 we construct Υr ∈ F
f∗

r ×fr×f∗
r−1

p such that

ρk
r−1 ξ

j
r =

∑f∗
r −1

h=0 (Υr)h,j,k ρh
r

for j = 0, . . . , fr − 1, k = 0, . . . , f∗
r−1 − 1. In practice we construct Υ̃r ∈ Ff∗

r ×f∗
r

p

and M̃ ∈ Ff∗
r

p such that

(Υ̃r)1+h,1+j+kfr = (Υr)h,j,k , M̃1+j+kfr = Mj,k ,

for h = 0, . . . , f∗
r − 1, j = 0, . . . , fr − 1, k = 0, . . . , f∗

r−1 − 1.

Deriving δi from Υt−1. Given i ∈ Jδ and t ≥ 2, let

ΓTt,ν ,t,i ζi = κi,0 + κi,1 ρt−1 + · · · + κi,f∗
t−1−1 ρ

f∗
t−1−1

t−1 ∈ Fp[ρt−1] = Fqt .

For j = 0, . . . , ft−1 − 1, k = 0, . . . , f∗
t−2 − 1, let Mj,k ∈ Fp satisfy∑ft−1−1

j=0
∑f∗

t−2−1
k=0 (Υt−1)h,j,k Mj,k = κi,h

for h = 0, . . . , f∗
t−1 − 1, and let

δi(Y ) =
∑ft−1−1

j=0

(∑f∗
t−2−1

k=0 Mj,k ρk
t−2
)
Y j .

Then δi(Y ) ∈ Fp[ρt−2][Y ] = Fqt−1 [Y ] and

δi(ξt−1) =
∑ft−1−1

j=0
∑f∗

t−2−1
k=0 Mj,k ρk

t−2 ξj
t−1

=
∑ft−1−1

j=0
∑f∗

t−2−1
k=0 Mj,k

∑f∗
t−1−1

h=0 (Υt−1)h,j,k ρh
t−1

=
∑f∗

t−1−1
h=0

∑ft−1−1
j=0

∑f∗
t−2−1

k=0 (Υt−1)h,j,k Mj,k ρh
t−1

=
∑f∗

t−1−1
h=0 κi,h ρh

t−1

= ΓTt,ν ,t,i ζi .

The essential properties of ϕr are as follows (see [19, Proposition 9]).



184 D. Ford and O. Veres

Proposition 1 (Montes). Let ds, es, fs, ϕs, ψs, etc., be given for 1 ≤ s ≤ r−1
and let

γr−1(Y ) = Ω
−er−1fr−1
r−1 (ψr−1(Y ) − Y fr−1),

ϕr(X) = ϕr−1(X)er−1fr−1 + Hr−1,νr,γr−1(X) .

Then ϕr(X) is a monic polynomial in Zp[X ] with the following properties.

• degϕr = nr.
• Nr−1(ϕr) consists of the single segment Sr−1,ϕr .
• Vr(ϕr) = νr.

• Ψ̃
(r−1)
ϕr (Y ) = Ω

−er−1fr−1
r−1 ψr−1(Y ).

• ϕr is irreducible over Zp.

7 Supplementary Remarks

The Maple code from [19], including an example, can be found at this URL.

http://www.mathstat.concordia.ca/faculty/ford/Student/Veres/mmtest.mpl

Two recent monographs by Guàrdia, Montes, and Nart give a thorough revision
of the theory underlying the Montes algorithm [10] and a detailed description
of the algorithm [11]. Algorithm 1 and Proposition 1 in Sect. 6 above appear in
[10]. A simpler choice for Ωr (see Definition 5) is also given, but with no effect
on the complexity of the algorithm.
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7. Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der
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1 Mathematics Institute, Warwick University, Coventry, United Kingdom
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Abstract. We report on a computation of congruent numbers, which
subject to the Birch and Swinnerton-Dyer conjecture is an accurate list
up to 1012. The computation involves multiplying long theta series as
per Tunnell (1983). The method, which we describe in some detail, uses
a multimodular disk based technique for multiplying polynomials out-of-
core which minimises expensive disk access by keeping data truncated.

1 History

The congruent number problem first makes its appearance in the literature of
the classical Islamic period, e.g. in al-Karaji’s text the al-Fakhri. Dickson [11]
states that an anonymous Arab manuscript written before 972 A.D. contains
reference to the problem.

The problem was initially studied in terms of squares of rational numbers:
a natural number n is congruent iff there exist rational numbers x, y, z, w such
that

x2 + ny2 = z2 and x2 − ny2 = w2.

In other words n is congruent iff there exist three rational squares in arithmetic
progression with common difference n. It suffices to consider squarefree n.

Bachet, in translating Diophantus’ Arithmetica, wrote an appendix of prob-
lems on right triangles. Problem 20 was “to find a right-angled triangle such
that its area is equal to a given number”. This equivalent problem refers to right
triangles with rational sides whose area n is a natural number.

The problem was studied by Fermat and Fibonacci the latter of which referred
to a common difference of squares in arithmetic progression as a congruum. Euler
referred to such numbers as congruere meaning to “come together”.

Many authors have contributed to the study of the properties of and compu-
tation of congruent numbers, including Alter, Curtz and Kubota [1] who conjec-
tured that if n is congruent to 5, 6 or 7 modulo 8 then n is a congruent number.
This was shown to be true, subject to the weak Birch and Swinnerton-Dyer
conjecture by Stephens [35] in 1975.

� Supported by EPSRC grant number EP/G004870/1.
�� All authors were supported at workshops administered by AIMath under NSF Grant

number DMS-0757627.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 186–200, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Congruent Number Theta Coefficients to 1012 187

The earliest computations of congruent numbers are due to the classical Is-
lamic mathematicians, the congruent numbers 5, 6, 14, 15, 21, 30, 34, 65, 70,
110, 154, 190, 210, 221, 231, 246, 290, 390, 429, 546 and ten other substan-
tially larger congruent numbers being known to them. Fibonacci, Genocchi and
Gérardin added 7, 22, 41, 69, 77 and forty-three other values below 1000.

Fermat showed that 1 is not congruent in 1659, something which had been
stated but not proved by Fibonacci in 1225. By scaling this is equivalent to the
fact that no square number can be congruent.

Bastien [5] observed that numbers which are prime and 3 modulo 8, products
of two such primes, twice a prime which is 5 modulo 8, twice a product of two
such primes or twice a prime which is 9 modulo 16 are not congruent.

Numerous congruent numbers were demonstrated by Alter, Curtz and Kubota
[1] and by Jean Lagrange in his thesis [23]. See Guy [17] for further details on
the history of the computation of congruent numbers.

More recently Monsky [28] showed that, for example, two times the product
of primes p ≡ 1 (mod 8) and q ≡ 7 (mod 8) with (p/q) = −1 is a congruent
number. For a history of results along these lines see Feng [13]. Also see [27].

By 1980 there were numerous values below 1000 not yet decided either way.
By 1986 Kramarz [26] had handled all cases up to 2000, and Noe’s list up to
10000 is included in Sloane’s database. Matsuno had reached 300000 in 2005.

Subject to a conjecture of Birch and Swinnerton-Dyer (see Tunnell’s Criterion
below), Rogers [32] had computed all congruent numbers up to 107 by the year
2000 and Mike Rubinstein (personal communication) had computed all congru-
ent numbers up to 109 a few years prior to the current work. We had raised that
limit to 2 × 1010 by 2008 and with this paper the current plateau is now 1012.

By counting representations of n or n/2 by ternary quadratic forms, previous
computations had the asymptotic running time O(N

3
2 ) for computing coefficients

up to a limit N . In this paper we describe a multimodular Fast Fourier Transform
technique with quasilinear runtime. We demonstrate that the method is practical
as it permits computations whose data is considerably larger than main memory.

2 Relating Congruent Numbers to Elliptic Curves

If three rational squares in arithmetic progression have common difference n,
their product is a square:

v2 = (u2 − n)u2(u2 + n) = (u2)3 − n2(u2).

This shows immediately that if n is congruent then it corresponds to a point
(u2, v) on the elliptic curve En : y2 = x3 − n2x.

Along similar lines, in 1877 Lucas showed that n is congruent iff y2 = x4 −n2

has a positive rational solution.
The group of points on the curve En is isomorphic to (Z/2Z × Z/2Z) × Zr

where r is the rank. The three non-trivial 2-torsion points do not yield congruent
numbers and so n is congruent iff En has positive rank.
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There has been considerable interest in verifying that the curves En for which
n is thought to be congruent do in fact have positive rank. See for example the
tables of Elkies [12].

As the sign of the functional equation of L(En/Q, s) is +1 for n ≡ 1, 2, 3
(mod 8) and −1 for n ≡ 5, 6, 7 (mod 8) [7] then by the Parity Conjecture (a
special case of the Birch and Swinnerton-Dyer Conjecture) we expect that the
rank of En is even in the +1 case and odd in the −1 case. This is an interesting
test of the Birch and Swinnerton-Dyer Conjecture.

2.1 Tunnell’s Criterion

In 1983 Jerrold Tunnell gave the following criterion:

Theorem 1 (Tunnell). Let n be an odd squarefree positive integer. Set

a(n) = #{(x, y, z) ∈ Z3 | x2 + 2y2 + 8z2 = n}
− 2 #{(x, y, z) ∈ Z3 | x2 + 2y2 + 32z2 = n},

b(n) = #{(x, y, z) ∈ Z3 | x2 + 4y2 + 8z2 = n}
− 2 #{(x, y, z) ∈ Z3 | x2 + 4y2 + 32z2 = n}.

If n is congruent then a(n) = 0. If 2n is congruent then b(n) = 0. Moreover, if
the weak BSD conjecture is true for the curve y2 = x3 − n2x then the converses
also hold: a(n) = 0 implies n is congruent and b(n) = 0 implies 2n is congruent.

We explain briefly the connection between the curves En and Tunnell’s criterion.
The curve En is a quadratic twist of the curve E : y2 = x3 − x. Associated

to E is a weight 2 newform F (z) = η(4z)2η(8z)2 ∈ Snew
2 (Γ0(32)) such that

L(E, s) = L(F, s), where L(E, s) is the Hasse-Weil L-series of the elliptic curve
E and L(F, s) is the Mellin transform of the modular form F .

If we write L(E, s)=
∑

bmm−s then L(En, s)=LF (χD, s)=
∑

χD(m)bmm−s,
where D = n if n ≡ 1 (mod 4) and D = 4n if n ≡ 2, 3 (mod 4).

The importance of this fact is that the conjecture of Birch and Swinnerton-
Dyer (applied to En) then gives a condition on when n can be congruent:

Conjecture 1 (Birch and Swinnerton-Dyer). If E is an elliptic curve defined over
Q then L(E, 1) = 0 iff E has positive rank.

The following theorem of Shimura gives a link between modular forms of half
integer weight k/2 and forms of integer weight k − 1. The correspondence is
called a Shimura lift. We are interested in this theorem in the case k = 3.

Theorem 2 (Shimura). Let f(z) =
∑∞

m=1 a(m)qm ∈ Sk/2(4N,χ) be a modu-
lar form of weight k/2 for Γ0(4N) (actually Δ0(4N)) with χ a Dirichlet character
modulo 4N and suppose that T 2

p (f) = ωpf for all primes p, where T 2
p are the
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Hecke operators. Define F (z) =
∑∞

m=1 A(m)qm where the values A(m) are given
by

∞∑
m=1

A(m)m−s =
∏
p

(1 − ωpps + χ(p)2pk−2−2s)−1.

Then for some integer N0 divisible by the conductor of χ2 we have that F (z) ∈
Mk−1(N0, χ

2), i.e. F (z) is an integer weight modular form of weight k − 1.

As mentioned above, we are interested in whether or not the L-series L(En, s)
vanishes at s = 1.

Tunnell made use of a result of Waldspurger to access information about the
value of these L-series at s = 1. The basic idea behind Waldspurger’s Theorem
and related results is that if F (z) is the Shimura lift of f(z) as per the previous
theorem, then the value of L(Fn, s) at s = (k − 1)/2 for squarefree n, is propor-
tional to the n-th Fourier coefficient of f(z). In particular if suitable forms f(z)
can be identified then it is possible to determine when L(Fn, s) vanishes at the
centre of the critical strip, s = (k − 1)/2.

The following result (which is a reformulation of the theorem of Waldspurger,
see [30]) formulates this more precisely.

Theorem 3 (Waldspurger). If F (z) =
∑∞

m=1 a(m)qm ∈ Snew
k−1 (Γ0(M)) and

δ = ±1 is the sign of the functional equation of L(F, s) then there is a Dirichlet
character χ modulo 4N , a positive integer M |N , a nonzero complex number ΩF

and a nonzero Hecke eigenform

f(z) =
∞∑

m=1

bF (m)qm ∈ Sk/2(Γ0(4N), χ)

such that there are fundamental disciminants n, coprime to 4N and with the
same sign as δ that lie in arithmetic progressions and for which

bF (n0)2 = εn · L(Fn, (k − 1)/2)nk/2
0

ΩF
,

where εn is algebraic and n0 = |n| if n is odd, otherwise n0 = |n|/4. For all
other n with the same sign as δ the Fourier coefficients bF (n0) vanish.

By careful examination of the conditions of Waldspurger’s Theorem, Tunnell was
able to construct modular forms which allowed for identification of the values of
n for which L(En, s) vanishes at s = 1. Even better yet, he was able to write
these weight 3/2 modular forms as the product of explicit theta series.

Following Tunnel we let g = (θ1 − θ4)(θ8 − 2θ32), where θt =
∑∞

m=−∞ qtm2
.

Then

g θ2 =
∞∑

m=1

a(m)qm ∈ S 3
2
(Γ0(128)),

g θ4 =
∞∑

m=1

b(m)qm ∈ S 3
2
(Γ0(128), χ),
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where χ(r) =
( 8

r

)
. Note this agrees with the formulas for a(n) and b(n) given

above for odd n. Tunnell proved that these were Hecke eigenforms whose Shimura
lift was F (z). He then showed that if n is an odd positive squarefree integer then

L(En, 1) = a(n)2 · Ω

4
√
n
, and L(E2n, 1) = b(n)2 · Ω

2
√

2n
,

for a certain real period Ω.
For further information on Tunnell’s approach, see Tunnell’s original paper

[39] and the books by Ono [30] and Koblitz [25].
The above result of Tunnell allows us to determine congruent numbers, subject

to the BSD conjecture, simply by checking whether the Fourier coefficients a(n)
and b(n) are zero.

Thus the entire problem of determining congruent numbers is reduced to com-
puting the theta series g and θt and performing power series multiplications. We
actually use slight modifications of these θ-functions, which allow us to exploit
additional information on arithmetic progressions.

2.2 Our Θ-Functions

Rather than use the modular forms of Tunnell given above, we note (as suggested
to us by N. D. Elkies) that we can split the problem(s) up by a factor of two.
The series g θ2 and g θ4 can each be split into a sum of two similar products,
each of which is supported on (approximately) half as many coefficients.

Indeed, we have the following product expressions:

θ8(θ1 − θ4) × (θ8 − 2θ32) =
∑

n≡1 (mod 8)

a(n) qn,

(θ2 − θ8)(θ1 − θ4) × (θ8 − 2θ32) =
∑

n≡3 (mod 8)

a(n) qn,

θ16(θ1 − θ4) × (θ8 − 2θ32) =
∑

n≡1 (mod 8)

b(n) qn,

(θ4 − θ16)(θ1 − θ4) × (θ8 − 2θ32) =
∑

n≡5 (mod 8)

b(n) qn.

As each factor above is a (shifted) power series in q8, our complexity reduces
by a factor of 8. Indeed, the second factor above is θ8 − 2θ32 = C(q8) where
C = θ1 − 2θ4 is a sparse power series which can be quickly computed. For the
first factor, we can easily compute theta series A1, A3, B1 and B5 such that

θ8(θ1 − θ4) = q A1(q8), (θ2 − θ8)(θ1 − θ4) = q3 A3(q8),

θ16(θ1 − θ4) = q B1(q8), (θ4 − θ16)(θ1 − θ4) = q5 B5(q8).

These series can be computed directly by counting lattice points in 2 dimensions,
taking approximately linear time. So we only need one convolution for each of
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the four cases: two convolutions of 1.25 × 1011 coefficients (for the a(n),) and
two convolutions of 6.25 × 1010 coefficients (for the b(n).)

The computation of the Θ-series can be done efficiently in intervals, taking
essentially

√
N time to compute the coefficients between N and N +

√
N . For N

up to 1.25×1011 this ensures each interval includes less than 500, 000 coefficients,
fitting comfortably in a typical L2 cache. This cache locality is essential for the
computation.

3 “Out-of-Core” Fast Fourier Transform Methods

The complex FFT algorithm was essentially known to Gauss in 1805 (see [19])
but developed in its current form by Cooley and Tukey in 1965 [9].

In 1971 Schönhage and Strassen presented two algorithms for multiplication
of large integers based on the FFT [33]. One of these methods, where the field
of complex numbers is replaced by a finite ring Z/pZ containing a principal root
of unity of order 2K , has become known as the Schönhage-Strassen method. It
can multiply two n bit numbers in asymptotic time O(n logn log logn).

Power series multiplication can be effected by truncating a full polynomial
multiplication of two n term polynomials to length n and by encoding the poly-
nomial multiplication as an integer multiplication using Kronecker Segmenta-
tion. The latter technique is that of evaluating the polynomials at a power of 2
chosen sufficiently large that the product coefficients can be identified from their
binary representation in the output of the large integer multiplication.

In the literature, FFT computations whose data exceeds the size of available
memory are referred to as out-of-core FFT methods.

The literature is replete with many references to methods for defunct vector
architectures, or for distributed memory systems, including those with tree, mesh
or hypercube architectures (see [2], [8], [24], [36] and [38] for examples), where
the emphasis is often on minimising interprocess communication.

In our case, we used a shared memory system where available memory was a
limiting factor for the computation, forcing an “out-of-core” computation.

The principal issue with standard FFT algorithms in a hierarchical memory
system (e.g. where disk is one level of the hierarchy) is that at least K complete
passes over the data are required for a convolution of length 2K . However disk
access is typically a couple of orders of magnitude slower than memory access,
making such algorithms prohibitively slow.

The first FFT technique to deal with a memory hierarchy is that of Gentleman
and Sande [20]. The method has become known as Bailey’s Four Step method
(in the context of complex FFT’s), see [3]. The idea is to break the data into a
two dimensional array and perform small FFT’s in the horizontal and then in
the vertical directions, with certain “twiddle factors” applied between the two
stages. A final transpose stage then follows. This basic strategy is also sometimes
referred to as the Matrix Fourier Algorithm.

Bailey’s method can be extended to a six (or five) step three dimensional
method and beyond. See the above cited paper of Bailey’s for older references,
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or [31] for a more recent reference. For applications to integer multiplication, see
for example [21].

Some other algorithms for out-of-core FFT’s include the algorithm of Cormen
[10] based on the in-core method of Swarztrauber, the method of Takahashi [37]
for the Parallel Disk Model (PDM) of Vitter and Shriver and the parallel FFT
method of Vitter and Shriver [40] for a two level memory system.

Another technique commonly used for out-of-core FFT computations is the
method of performing Number Theoretic Transforms (NTTs) with Chinese Re-
mainder Theorem reconstitution.

A Number Theoretic Transform is an FFT in the ring R = Z/pZ for a specially
chosen small prime p sometimes called an “FFT prime”. Usually p is chosen to
fit into a single machine word, i.e. 32 or 64 bits. For this to work, R must have
sufficiently many roots of unity to support the convolution.

FFT primes p can be chosen to be of the form p = m2K + 1 for some small
value m. Let x be a primitive root modulo p, i.e. a value x such that xp−1 ≡ 1
(mod p), but such that xa is not 1 (mod p) for any value of a dividing p − 1.
Then xm is a 2K-th root of unity, supporting convolutions of length 2K .

In order to perform an out-of-core polynomial multiplication h(x) = fA(x) ×
gB(x) using NTTs the coefficients of the two polynomials are first reduced mod-
ulo a number of FFT primes. Then the Chinese Remainder Algorithm can be
used to reconstitute the full product from the results of the NTTs.

The NTT transform method is a standard one for computing large numbers
of digits of π. See for example the paper of Bailey, [4] where two FFT primes
were used, in that case to avoid the necessity of quad-precision arithmetic in
a complex FFT. The same paper also mentions a proposal to use three FFT
primes, even avoiding double precision arithmetic in the NTT’s, but imposing
severe restriction on the length of convolution possible for machines of that
era.

More recently Carey Bloodworth’s record-holding programs used eight NTTs
and CRT, and were topped in 2004 by the program of Xavier Gourdon [16]
for greatest number of digits of π computed on a home computer. Gourdon’s
program uses an unspecified number of NTTs.

More recent than our theta computation is the record π computation of Fab-
rice Bellard [6], using NTTs and a home computer. For out-of-core operations,
his computation made use of eight 64 bit moduli, however for in-core components
he made use of floating point arithmetic and unproven, heuristically chosen error
bounds on the precision required.

4 The Power Series Multiplication

For any method using FFTs, optimised for out-of-core operation, the main bot-
tleneck becomes disk I/O. To minimise this, it is not only important to minimise
the number of passes over the data, but also to minimise the amount of data
that must be traversed.
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Two issues arise. Firstly, techniques such as the Schönhage-Strassen technique
are difficult to optimise for convolution lengths which are not a power of two, in
the worst case increasing the disk I/O by a factor of two.

Secondly, when performing a large FFT or a small number of very large NTTs
that do not fit into memory, even when combined with Bailey’s technique, trunca-
tion of the polynomial multiplications occurs after each large FFT computation.
In other words, the disk I/O occurs for the entire untruncated FFT computation.

For multiplication of integers of n bits, these methods require a total disk
I/O of 12n bits with a peak usage of 8n bits. Our technique reduces this to a
total disk I/O of just over 6n bits with a peak usage of just over 4n bits. This
is achieved by efficient multimodular reduction and CRT recombination using a
large number of small primes p with truncation occurring in-core.

One advantage of using NTTs is that the primes p can be chosen in such a way
that reduction modulo p can be performed very efficiently. E.g. for primes p of
the form 2K + 1 reduction modulo p can be performed with subtractions rather
than expensive divisions. More generally, many primes of the form p = m2K +1
for small values of m can be used. Reduction modulo p can still be computed
relatively efficiently.

For our computation we chose to use many general word sized primes p and
an alternative method of performing polynomial multiplications over Z/pZ. For
the largest polynomial multiplications, in the 1 (mod 8) and 3 (mod 8) cases,
we used just over 500 primes.

The main reason for this choice was the existence of well-tested, high perfor-
mance packages for doing such computations, such as FLINT [18] and zn poly
[22]. There was also an advantage in having two separate implementations of arith-
metic in Z/pZ[x] in that comparisons could be made between the two implemen-
tations whilst testing. The implementation of multiplication in Z/pZ[x] in zn poly
is highly optimised. It offers a thread-safe, cache-efficient, truncated, Schönhage-
Nussbaumer convolution [21], which performs significantly better than other im-
plementations for general primes p.

In contrast, Victor Shoup’s NTL package [34] was the only library we were
aware of with asymptotically fast NTTs. However NTL is not threadsafe. Also,
numerous recent improvements in polynomial arithmetic are not reflected in
NTL, which is no longer under active development.

Our implementation made use of 16 CPU cores. The data for all 16 threads
must be in memory simultaneously, and thus to benefit from the disk-to-memory
ratio of the multimodular approach it was necessary to use a number of primes
significantly larger than this.

One disadvantage of using so many primes is that multimodular reduction
and CRT reconstruction constitute a significant part of the runtime. The naive
approach is to reduce the large coefficients of the polynomials in Z[x] modulo
each of the primes p in turn and to similarly reconstruct each coefficient one
prime at a time. However for n1 coefficients in Z of n2 bits, reconstruction using
this approach will take time O(n1n

2
2). This is asymptotically much worse than

the time required to do the actual polynomial multiplications over Z/pZ.
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In order to avoid this, a divide-and-conquer approach was used for the multi-
modular reduction and recombination phases. This completes the CRT recombi-
nation in time O(n2 log2 n1n2) ignoring smaller log log factors. Note that this is
asymptotically a log factor greater than the time for the multiplications, however
the running time is still quasilinear in the input size.

The extra theoretical complexity of our approach is offset by the “embar-
rasingly parallel” nature of the multiplications, multimodular reduction and re-
combinations and the large saving in disk I/O (by far the bottleneck for our
computation).

For a straightforward description of the divide-and-conquer approach to the
CRT algorithm see [41], pages 57–58. Similar preconditioning and a divide-and-
conquer approach was of course applied to the multimodular reduction phase. A
slight adjustment was also made to both the reduction and CRT phases to cope
with a number of primes which is not a power of 2.

4.1 The Algorithm in Pseudocode

We now describe our algorithm in full. We make use of two sets of disk files,
F = {Fi : i = 0, 1, .., F ILES − 1} and G = {Gj : j = 0, 1, .., F ILES − 1} .
In our implementation we used FILES = 500 for the 1 (mod 8) and 3 (mod 8)
computations and half that in the 2 (mod 16) and 10 (mod 16) computations.

We also set: LIMIT (the length of the theta functions), BLOCK (number of
theta coefficients computed at a time), BUNDLE (number of theta coefficients
bundled, using Kronecker Segmentation, into each large polynomial coefficient)
and THREADS (number of threads used), PRIMES (number of primes used
in multimodular reduction and CRT). We experimented with various values for
BUNDLE from 500 to 1000. To simplify the computation, PRIMES was rounded
up to a multiple THREADS. The value LIMIT, (1012/8 in the 1, 3 (mod 8)
cases and 1012/16 in the 2, 10 (mod 16) cases), was chosen to be a multiple of
FILES×BUNDLE, and a multiple of FILES×BLOCK.

Coefficients of the product of our θ-series comfortably fit into 16 signed bits.
Thus the Kronecker Segmentation phase used zero-padded fields of 16 bits.

Throughout the following we write FOR i = 0 to A and similar expressions,
by which we mean i in 0 <= i < A.

The algorithm is presented in 3 stages, corresponding to file read/write phases.
The first phase bundles coefficients of the θ-functions thetaA, thetaB using Kro-
necker Segmentation, to produce polynomials fA, fB ∈ Z[x] with multiprecision
coefficients. It then reduces each coefficient of fA, fB modulo each of the word
sized primes, forming a matrix, which is then transposed and written to disk.

Algorithm 1 : Phase 1
PRIMES ←ceil(2 × 16×BUNDLE/62) + 1
PRIMES ← ceil(PRIMES/16)× 16
primes[0] ← nextprime(262)
for k = 1 to PRIMES do

primes[k] ← nextprime(primes[k − 1])
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end for
blocksize ←LIMIT/FILES
for i = 0 to FILES do

for l = 0 to blocksize/BLOCK do
for m = 0 to BLOCK do

theta[l×BLOCK+m] = thetaA(i×blocksize+l×BLOCK+m)
end for

end for
for j = 0 to blocksize/BUNDLE do

for r = 0 to BUNDLE do
ar =theta[j×BUNDLE+r]

end for
B ← 216

cj ← a0 + a1B + a2B
2 + · · · + as−1B

s−1, s = BUNDLE
end for
fi ← c0 + c1x + · · · + ct−1x

t−1 ∈ Z[x], t = blocksize/BUNDLE
for j = 0 to t do

for k = 0 to PRIMES do
M1[j][k] ← cj (mod primes[k])

end for
end for
Transpose M1 and write to file Fi

end for
Repeat above for theta function θB, writing transposes of M2 to files Gi

The second phase of the algorithm reads the data stored in the files Fi and
Gj and multiplies the polynomials in Z/pZ for each of the PRIMES primes p,
truncating the results and storing them back in the files Fi.

Algorithm 1 : Phase 2
for i = 0 to PRIMES do

for j = 0 to FILES do
Read block j of M1[i] from line i of file Fj

for k = 0 to blocksize/BUNDLE do
ak+j·t ← M1[i][k + j · t], where t = blocksize/BUNDLE

end for
end for
fp(x) ← a0 + a1x + · · · + at−1x

t−1

for j = 0 to FILES do
Read block j of M2[i] from line i of file Gj

for k = 0 to blocksize/BUNDLE do
bk+j·t ← M2[i][k + j · t], where t = blocksize/BUNDLE

end for
end for
gp(x) ← b0 + b1x + · · · + bt−1x

t−1

hp(x) = c0 + c1x + c2x
2 . . . ← fp(x) × gp(x)

Truncate hp(x) to length blocksize/BUNDLE
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for j = 0 to FILES do
for k = 0 to blocksize/BUNDLE do

M1[i][k + j · t] ← ck+j·t, where t = blocksize/BUNDLE
end for
Write block j of M1[i] to line i of file Fj

Delete file Gj

end for
end for

The final phase of the algorithm reconstitutes the product polynomial H =
fA × fB ∈ Z[x] using the preconditioned, divide-and-conquer CRT mentioned
above, overlaps and adds the coefficients of H to make a large integer (not
all stored in memory at once), extracts the theta function product coefficients
from bit fields of this integer and counts zeroes and performs other statistical
computations on these small product coefficients. We sieved out non-squarefree
indices so that we were counting primitive congruent numbers.

Algorithm 1 : Phase 3
Let t1 = a0 + a12D + a2 · 22D,
Let t2 = b0 + b12D + b2 · 22D,
Let t3 = c0 + c12D + c2 · 22D, {with ai, bi, ci fields of D bits initialised to 0
and ai, bi, ci < 2D}
Read block 0 of M from file F0
Transpose M
for i = 0 to blocksize/BUNDLE do

di ← CRT(M [i][0] (mod primes[0]), . . . ,M [i][t− 1] (mod primes[t− 1]))
end for
t1 ← d0; v ← 0; carry ← 0; j ← 0
while v < LIMIT do

carry, T ← a0 + b1 + c2+ carry, where T is D bits
Extract BUNDLE coefficients from T , count zeroes, compute stats
t3 ← t2
t2 ← t1
v ← v+BUNDLE
if v ≡ 0 (mod blocksize) and v < LIMIT then

s ← v/blocksize
Read block s of M from file Fs

Transpose M
for i = 0 to blocksize/BUNDLE, (using THREADS threads) do

di ← CRT(M [i][0] (mod primes[0]), . . . ,M [i][t − 1] (mod primes[t −
1]))

end for
j ← 0

end if
t1 ← dj

j ← j + 1
end while
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The theta function computation, Kronecker segmentation, multimodular reduc-
tion, matrix transposes, Z/pZ[x] polynomial multiplications and CRT recombi-
nation phases were all parallelised (trivially) using OpenMP pragmas. For disk
access, the mmap kernel service was used, allowing memory blocks to be mapped
to files. The kernel then schedules reading and writing of the files automatically.

5 Results and Analysis

Our θ-products were all constructed to be divisible by 2 or 4 (with the possible
exception of a single −1 value). The frequency of each possible coefficient value
from −215 to 215 was recorded. Thus if a coefficient were off by 1 this would
be detected as a nonzero count for a value that was not divisible by 2 or 4. In
particular, if an overflow occurred, the overflowed value would have the wrong
sign. Thus an extra borrow would propagate to the next coefficient (or not
propagate when it should). This would be indicated by a value that was out by 1.

The ability to likely detect overflows is important, because no good bound
exist for the size of the initial theta coefficients in the series we are multiplying.

The computation was done on a 4 × Quad Core AMD Opteron server running
at 2.4GHz. The memory was 128GB of registered ECC memory, capable of
detecting and correcting single bit errors. The disk array consisted of 4 drives in
RAID 5 arrangement (with parity stripe), for about 1.3TB of available space.

Each of the 1 (mod 8) and 3 (mod 8) computations could be performed by
the first algorithm in about 30 hours real time, on this machine. Each of the 2
(mod 16) and 10 (mod 16) computations took around 9 hours.

Around the same time David Harvey, Robert Bradshaw and the third author
completed the same computation using an implementation of Bailey’s four step
algorithm. This allowed for verification of the results. Statistics agreed between
the two computations in all congruence classes.

In Tables 1-4 we present some statistics from the computation, namely the
number of zeroes in bins from 0 to 1012. The results are presented per residue

Table 1. Congruent numbers in the 1 (mod 8) class

109 1010 1011 2 × 1011 3 × 1011 4 × 1011

3801661 21768969 142778019 127475330 115249740 107930081
5 × 1011 6 × 1011 7 × 1011 8 × 1011 9 × 1011 1012

102774355 98817294 95656907 93030373 90748990 88803354

Table 2. Congruent numbers in the 3 (mod 8) class

109 1010 1011 2 × 1011 3 × 1011 4 × 1011

2921535 17019170 112979066 101436853 91949066 86213764
5 × 1011 6 × 1011 7 × 1011 8 × 1011 9 × 1011 1012

82196846 79106503 76626341 74546400 72781203 71239101
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Table 3. Congruent numbers in the 2 (mod 16) class

109 1010 1011 2 × 1011 3 × 1011 4 × 1011

2110645 12294626 81759844 73445274 66579936 62455317
5 × 1011 6 × 1011 7 × 1011 8 × 1011 9 × 1011 1012

59536672 57282587 55504389 53993974 52728711 51619397

Table 4. Congruent numbers in the 10 (mod 16) class

109 1010 1011 2 × 1011 3 × 1011 4 × 1011

1842072 10842882 72556705 65378932 59347550 55720114
5 × 1011 6 × 1011 7 × 1011 8 × 1011 9 × 1011 1012

53152609 51190025 49599296 48268971 47158661 46159584

class. Note that only primitive, i.e. squarefree, congruent numbers are counted.
Each zero is only counted in one bin, e.g. the 1010 bin counts all zeroes in
(109, 1010].

6 Future Improvements

Numerous improvements to our method are possible.
• The matrix transposes could be performed in a cache efficient way.
• The second polynomial is sparse. David Harvey suggested that its multi-

modular reduction can be stored on disk in a fraction of the space using a sparse
representation. This trick roughly halves the peak disk usage and I/O.

• The mmap service does not guarantee reading or writing of the data sequen-
tially. A substantial speedup can be obtained if disk access occurs sequentially
and reading of data begins before it is needed.

• It would be interesting to try number theoretic transforms in place of the
current zn poly code for polynomial multiplication over Z/pZ.

• Our implementation did not try to parallelise the CRT reconstruction phase,
and the use of Montgomery’s REDC might speed up the recombination here.

• It may be more efficient to allocate one thread for I/O and use 15 threads
for computation instead of 16, allowing I/O in parallel with computation.

Numerous other interesting θ-series and modular forms await investigation,
e.g. the Mordell curve, or the congruent number-like series of Yoshida [42]. We
ourselves have looked at L-series of symmetric powers of elliptic curves.
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Abstract. Isogeny volcanoes are graphs whose vertices are elliptic curves
and whose edges are 
-isogenies. Algorithms allowing to travel on these
graphs were developed by Kohel in his thesis (1996) and later on, by Fou-
quet and Morain (2001). However, up to now, no method was known, to
predict, before taking a step on the volcano, the direction of this step.
Hence, in Kohel’s and Fouquet-Morain algorithms, we take many steps
before choosing the right direction. In particular, ascending or horizontal
isogenies are usually found using a trial-and-error approach. In this paper,
we propose an alternative method that efficiently finds all points P of or-
der 
 such that the subgroup generated by P is the kernel of an horizontal
or an ascending isogeny. In many cases, our method is faster than previous
methods.

1 Introduction

Let E be an elliptic curve defined over a finite field Fq, where q = pr is a prime
power. Let π be the Frobenius endomorphism, i.e. π(x, y) �→ (xq , yq) and denote
by t its trace. Assume that E is an ordinary curve and let OE denotes its ring of
endomorphisms. We know [21, Th. V.3.1] that OE is an order in an imaginary
quadratic field K. Let dπ = t2 − 4q be the discriminant of π. We can write
dπ = g2dK , where dK is the discriminant of the quadratic field K. There are
only a finite number of possibilities for OE , since Z[π] ⊂ OE ⊂ OdK . Indeed,
this requires that f the conductor of OE divides g the conductor of Z[π].

The cardinality of E over Fq is #E(Fq) = q + 1 − t. Two isogenous elliptic
curves over Fq have the same cardinality, and thus the same trace t. In his
thesis [14], Kohel studies how curves in Ellt(Fq), the set of curves defined over
Fq with trace t, are related via isogenies of degree �. More precisely, he describes
the structure of the graph of �-isogenies defined on Ellt(Fq). He relates this graph
to orders in OK and uses modular polynomials to find the conductor of End(E).

Fouquet and Morain [8] call the connected components of this graph isogeny
volcanoes and extend Kohel’s work. In particular, they give an algorithm that
computes the �-adic valuation of the trace t, for �|g. This can be used in Schoof’s
algorithm [20]. Recently, more applications of isogeny volcanoes were found: the
computation of Hilbert class polynomials [1,23], of modular polynomials [4] and
of endomorphism rings of elliptic curves [2].

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 201–218, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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All the above methods make use of algorithms for traveling efficiently on
volcanoes. These algorithms either need to walk on the crater, to descend from
the crater to the floor or to ascend from the floor to the crater. In many cases, the
structure of the �-Sylow subgroup of the elliptic curve, allows, after taking a step
on the volcano, to decide whether this step is ascending, descending or horizontal
(see [16,17]). Note that, since a large fraction of isogenies are descending, finding
one of them is much easier. However, no known method can find horizontal or
ascending isogenies without using a trial-and-error approach. In this paper, we
describe a first solution to this open problem, which applies when the cardinality
of the curve is known, and propose a method that efficiently finds a point P
of order � that spans the kernel of an ascending (or horizontal isogeny). Our
approach relies on the computation of a few pairings on E. We then show that
our algorithms for traveling on the volcano are, in many cases, faster than the
ones from [14] and [8]. Moreover, we obtain a simple method that detects most
curves on the crater of their volcano. Until now, the only curves that were easily
identified were those on the floor of volcanoes.

This paper is organized as follows: sections 2 and 3 present definitions and
properties of isogeny volcanoes and pairings. Section 4 explains our method to
find ascending or horizontal isogenies using pairing computations. Finally, in
Section 5, we use this method to improve the algorithms for ascending a volcano
and for walking on its crater.

2 Background on Isogeny Volcanoes

In this paper, we rely on some results from complex multiplication theory and
on Deuring’s lifting theorems. We denote by Ell d(C) the set of C-isomorphism
classes of elliptic curves whose endomorphism ring is the order Od, with dis-
criminant d < 0. In this setting there is an action of the class group of Od on
Ell d(C). Let E ∈ Ell d(C), Λ its corresponding lattice and a an Od-ideal. We
have a canonical homomorphism from C/Λ to C/a−1Λ which induces an isogeny
usually denoted by E → â ∗E. This action on Ell d(C) is transitive and free [22,
Prop. II.1.2]. Moreover [22, Cor. II.1.5], the degree of the application E → â ∗E
is N(a), the norm of the ideal a. Now from Deuring’s theorems [6], if p is a
prime number that splits completely, we get a bijection Ell d(C) → Ell d(Fq),
where q = pr. Furthermore, the class group action in characteristic zero respects
this bijection, and we get an action of the class group also on Ell d(Fq).

Isogeny volcanoes. Consider E an elliptic curve defined over a finite field Fq.
Let � be a prime different from char(Fq) and I : E → E

′
be an �-isogeny, i.e. an

isogeny of degree �. As shown in [14], this means that OE contains OE′ or OE′

contains OE or the two endomorphism rings coincide. If OE contains OE′ , we
say that I is a descending isogeny. Otherwise, if OE is contained in OE′ , we say
that I is a ascending isogeny. If OE and OE′ are equal, then we call the isogeny
horizontal. In his thesis, Kohel shows that horizontal isogenies exist only if the
conductor of OE is not divisible by �. Moreover, in this case there are exactly
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d
�

)
+ 1 horizontal �-isogenies, where d is the discriminant of OE . If

(
d
�

)
= 1,

then � is split in OE and the two horizontal isogenies correspond to the two
actions E → l̂ ∗ E and E → ˆ̄l ∗ E , where the two ideals l and l̄ satisfy (�) = l l̄.
In a similar way, if

(
d
�

)
= 0, then � is ramified, i.e. (�) = l2 and there is exactly

one horizontal isogeny starting from E. In order to describe the structure of the
graph whose vertices are curves with a fixed number of points and whose edges
are �-isogenies, we recall the following definition [23].

Definition 1. An �-volcano is a connected undirected graph with vertices parti-
tioned into levels V0, . . . , Vh, in which a subgraph on V0 (the crater) is a regular
connected graph of degree at most 2 and

(a) For i > 0, each vertex in Vi has exactly one edge leading to a vertex in
Vi−1, and every edge not on the crater is of this form.

(b) For i < h, each vertex in Vi has degree � + 1.

We call the level Vh the floor of the volcano. Vertices lying on the floor have
degree 1. The following proposition [23] follows essentially from [14, Prop. 23].

Proposition 1. Let p be a prime number, q = pr, and dπ = t2 − 4q. Take � �= p
another prime number. Let G be the undirected graph with vertex set Ellt(Fq)
and edges �-isogenies defined over Fq. We denote by �h the largest power of �
dividing the conductor of dπ. Then the connected components of G that do not
contain curves with j-invariant 0 or 1728 are �-volcanoes of height h and for
each component V , we have :

(a) The elliptic curve whose j-invariants lie in V0 have endomorphism rings
isomorphic to some Od0 ⊇ Odπ whose conductor is not divisible by �.

(b) The elliptic curve whose j-invariants lie in Vi have endomorphism rings
isomorphic to Odi , where di = �2id0.

Elliptic curves are determined by their j-invariant, up to a twist1. Throughout
the paper, we refer to a vertex in a volcano by giving the curve or its j-invariant.

Exploring the volcano. Given a curve E on an �-volcano, two methods are
known to find its neighbours. The first method relies on the use of modular
polynomials. The �-th modular polynomial, denoted by Φ�(X,Y ) is a polynomial
with integer coefficients. It satisfies the following property: given two elliptic
curves E and E′ with j-invariants j(E) and j(E′) in Fq, there is an �-isogeny
defined over Fq, if and only if, #E(Fq) = #E′(Fq) and Φ�(j(E), j(E′)) = 0. As
a consequence, the curves related to E via an �-isogeny can be found by solving
Φ�(X, j(E)) = 0. As stated in [20], this polynomial2 may have 0, 1, 2 or � + 1
roots in Fq. In order to find an edge on the volcano, it suffices to find a root j′ of
this polynomial. Finally, if we need the equation of the curve E′ with j-invariant
j′, we may use the formula in [20].

The second method to build �-isogenous curves constructs, given a point P of
order � on E, the �-isogeny I : E → E′ whose kernel G is generated by P using
1 For a definition of twists of elliptic curves, refer to [21].
2 The case where the modular polynomial does not have any root corresponds to a

degenerate case of isogeny volcanoes containing a single curve and no 
-isogenies.
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Vélu’s classical formulae [24] in an extension field Fqr . To use this approach,
we need the explicit coordinates of points of order � on E. We denote by Gi,
1 ≤ i ≤ �+ 1, the �+ 1 subgroups of order � of E. In [17], Miret and al. give the
degree ri of the smallest extension field of Fq such that Gi ⊂ Fqri , 1 ≤ i ≤ �+1.
This degree is related to the order of q in the group F∗

� , that we denote by
ord�(q).

Proposition 2. Let E defined over Fq be an elliptic curve with k rational �-
isogenies, � > 2, and let Gi, 1 ≤ i ≤ k, be their kernels, and let ri be the
minimum value for which Gi ⊂ E(Fqri ).

(a) If k = 1 then r1 = ord�(q) or r1 = 2ord�(q).
(b) If k = � + 1 then either ri = ord�(q) for all i, or ri = 2ord�(q) for all i.
(c) If k = 2 then ri|�− 1 for i = 1, 2.

We also need the following corollary [17].

Corollary 1. Let E/Fq be an elliptic curve over Fq and Ẽ its twist. If E/Fq

has 1 or �+ 1 rational �-isogenies, then #E(Fqord�q) or #Ẽ(Fqord�q) is a multiple
of �. Moreover, if there are � + 1 rational isogenies, then it is a multiple of �2.

Z
�n1Z × Z

�n2Z

Z
�n1+1Z

× Z
�n2−1Z

Z
�n1+n2−1Z

× Z
� Z

Z
�n1+n2Z

Fig. 1. A regular volcano

The group structure of the elliptic curve on the volcano. Lenstra [13]
relates the group structure of an elliptic curve to its endomorphism ring by
proving that E(Fq) � OE/(π − 1) as OE-modules. It is thus natural to see how
this structure relates to the isogeny volcano. From Lenstra’s equation, we can
deduce that E(Fq) � Z/MZ × Z/NZ. We write π = a + gω, with:

a =
{

(t− g)/2
t/2 and ω =

{
1+

√
dK

2 if dK ≡ 1 (mod 4)√
dK if dK ≡ 2, 3 (mod 4)

where dK is the discriminant of the quadratic imaginary field containing OE .
Note that N is maximal such that E[N ] ⊂ E(Fq) and by [19, Lemma 1] we
get that N = gcd(a− 1, g/f). Note moreover that N |M , N |(q − 1) and MN =
#E(Fq). This implies that on a �-volcano the structure of all the curves in a
given level is the same.
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Let E be a curve on the isogeny volcano such that v�(N) < v�(M). As ex-
plained in [16] (in the case � = 2, but the result is general), a is such that
v�(a− 1) ≥ min {v�(g), v�(#E(Fq))/2} .

Since N = gcd(a−1, g/f) and v�(N) ≤ v�(#E(Fq))/2, it follows that v�(N) =
v�(g/f). As we descend, the valuation at � of the conductor f increases by 1 at
each level (by proposition 1b). This implies that the �-valuation of N for curves
at each level decreases by 1 and is equal to 0 for curves lying on the floor.
Note that if v�(#E(Fq)) is even and the height h of the volcano is greater than
v�(#E(Fq)), the structure of the �-torsion group is unaltered from the crater
down to the level h− v�(#E(Fq))/2. From this level down, the structure of the
�-torsion groups starts changing as explained above. In the sequel, we call this
level the first stability level.3 A volcano with first stability level equal to 0, i.e.
on the crater, is called regular.

Notations. Let n ≥ 0. We denote by E[�n] the �n-torsion subgroup, i.e. the
subgroup of points of order �n on the curve E(F̄q), by E[�n](Fqk) the subgroup
of points of order �n defined over an extension field of Fq and by E[�∞](Fq) the
�-Sylow subgroup of E(Fq).

Given a point P ∈ E[�n](Fq), we also need to know the degree of the smallest
extension field containing an �n+1-torsion point such that �P̃ = P . The following
result is taken from [7].

Proposition 3. Let E/Fq be an elliptic curve which lies on a �-volcano whose
height h(V ) is different from 0. Then the height of V ′, the �-volcano of the curve
E/Fqs is h(V ′) = h(V ) + v�(s).

From this proposition, it follows easily that if the structure of �-torsion on
the curve E/Fq is Z/�n1Z × Z/�n2Z, then the smallest extension in which the
structure of the �-torsion changes is Fq� . We sketch here the proof in the case
n1 = n2 = n, which is the only case in which we consider volcanoes over
extension fields in this paper4. First of all, note that E lies on a �-volcano
V/Fq of height at least n. We consider a curve E′ lying on the floor of V/Fq

such that there is a descending path of isogenies between E and E′. Obvi-
ously, we have E′[�∞](Fq) � Z/�2nZ. By proposition 3, V/Fq� has one ex-
tra down level, which means that the curve E′ is no longer on the floor, but
on the level just above the floor. Consequently, we have that E′[�] ⊂ E′(Fq�)
and, moreover, E′[�∞](Fq�) � Z/�2n+ΔZ × Z/�Z. By ascending on the volcano
from E′ to E, we deduce that the structure of the �-torsion of E over Fq� is
necessarily

E[�∞](Fq�) � Z/�n+ΔZ × Z/�n+1Z.

Moreover, Δ ≥ 1, because if it were 0, the height of V/Fq� would be n.

3 Miret et al. call it simply the stability level.
4 For the proof in the general case, see [11].
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3 Background on Pairings

Let E be an elliptic curve defined over some finite field Fq, m a number such
that m| gcd(#E(Fq), q − 1). Let P ∈ E[m](Fq) and Q ∈ E(Fq)/mE(Fq). Let
fm,P be the function whose divisor5 is m(P ) − m(O), where O is the point at
infinity of the curve E. Take R a random point in E(Fq) such as the support of
the divisor D = (Q + R) − (R) is disjoint from the support of fm,P . Then we
can define the Tate pairing as follows:

tm : E[m] × E(Fq)/mE(Fq) → F∗
q/(F

∗
q)

m

(P,Q) → fm,P (Q + R)/fm,P (R).

The Tate pairing is a bilinear non-degenerate application, i.e. for all P ∈ E[m](Fq)
different from O there is a Q ∈ E(Fq)/mE(Fq) such that Tm(P,Q) �= 1. The
output of the pairing is only defined up to a coset of (F∗

q)
m. However, for im-

plementation purposes, it is useful to have a uniquely defined value and to use
the reduced Tate pairing, i.e. Tm(P,Q) = tm(P,Q)(q−1)/m ∈ μm, where μm de-
notes the group of m-th roots of unity. Pairing computation can be done in
time O(logm) using Miller’s algorithm [15]. For more details and properties of
pairings, the reader can refer to [9]. Note that in the recent years, in view of
cryptographic applications, many implementation techniques have been devel-
oped and pairings on elliptic curves can be computed very efficiently6.

Suppose now that m = �n, with n ≥ 1 and � prime. Now let P and Q be two
�n-torsion points on E. We define the following symmetric pairing [12]

S(P,Q) = (T�n(P,Q)T�n(Q,P ))
1
2 . (1)

Note that for any point P , T�n(P, P ) = S(P, P ). In the remainder of this paper,
we call S(P, P ) the self-pairing of P . We focus on the case where the pairing
S is non-constant. Suppose now that P and Q are two linearly independent �n-
torsion points. Then all �n-torsion points R can be expressed as R = aP + bQ.
Using bilinearity and symmetry of the S-pairing, we get

log(S(R,R)) = a2 log(S(P, P )) + 2ab log(S(P,Q)) + b2 log(S(Q,Q)) (mod �n),

where log is a discrete logarithm function in μ�n . We denote by k the largest
integer such that the polynomial

P(a, b) = a2 log(S(P, P )) + 2ab log(S(P,Q)) + b2 log(S(Q,Q)) (2)

is identically zero modulo �k and nonzero modulo �k+1. Obviously, since S is
non-constant we have 0 ≤ k < n. Dividing by �k, we may thus view P as a
polynomial in F�[a, b]. When we want to emphasize the choice of E and �n, we
write PE,�n instead of P .

5 For background on divisors, see [21].
6 See [10] for a fast recent implementation.
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Since P is a non-zero quadratic polynomial, it has at most two homogeneous
roots, which means that that from all the � + 1 subgroups of E[�n]/E[�n−1] �
(Z/�Z)2, at most 2 have self-pairings in μ�k (see also [12]). In the remainder
of this paper, we denote by NE,�n the number of zeros of PE,�n . Note that
this number does not depend on the choice of the two generators P and Q of
the �n-torsion subgroup E[�n]. Moreover, we say that a �n-torsion point R has
degenerate self-pairing if T�n(R,R) is a �k-th root of unity and that R has non-
degenerate self-pairing if T�n(R,R) is a primitive �k+1-th root of unity. Also, if
T�n(R,R) is a primitive �n-th root of unity, we say that R has primitive self-
pairing.

4 Determining Directions on the Volcano

In this section, we explain how we can distinguish between different directions
on the volcano by making use of pairings. We give some lemmas explaining the
relations between pairings on two isogenous curves.

Lemma 1. Suppose E/Fq is an elliptic curve and P,Q are points in E(Fq) of
order �n, n ≥ 1. Denote by P̃ , Q̃ ∈ E[F̄q] the points such that �P̃ = P and
�Q̃ = Q. We have the following relations for the Tate pairing

(a) If P̃ , Q̃ ∈ E[Fq], then T�n+1(P̃ , Q̃)�2 = T�n(P,Q).
(b) Suppose � ≥ 3. If Q̃ ∈ E[Fq� ]\E[Fq], then T�n+1(P̃ , Q̃)� = T�n(P,Q).

Proof. a. By writing down the divisors of the functions f�n+1,P̃ , f�n,P̃ , f�n,P , one
can easily check that

f�n+1,P̃ = (f�,P̃ )�n · f�n,P .

We evaluate these functions at some points Q + R and R (where R is carefully
chosen) and raise the equality to the power (q − 1)/�n.
b. Due to the equality on divisors div(f�n+1,P ) = div(f �

�n,P ), we have

T�n+1(P̃ , Q̃)� = T
(F

q� )
�n (P, Q̃),

where T
(F

q�)
�n is the �n-Tate pairing for E defined over Fq� . It suffices then to

show that T
(F

q� )
�n (P, Q̃) = T�n(P,Q). We have

T
(F

q�)
�n (P, Q̃) = f�n,P ([Q̃ + R] − [R])

(1+q+···+q�−1)(q−1)
�n

= f�n,P ((Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + . . .

+ (π�−1(Q̃) + R) − �(R))
(q−1)

�n (3)

where R is a random point defined over Fq. It is now easy to see that for � ≥ 3,

Q̃ + π(Q̃) + π2(Q̃) + . . . + π�−1(Q̃) = �Q̃ = Q,
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because π(Q̃) = Q̃ + T , where T is a point of order �. By applying Weil’s
reciprocity law [21, Ex. II.2.11], it follows that the equation (3) becomes:

T
(F

q� )
�n (P, Q̃) =

(
f�n,P (Q + R)

f�n,P (R)

) q−1
�n

f((P ) − (O))q−1,

where f is such that div(f) = (Q̃ + R) + (π(Q̃) + R) + (π2(Q̃) + R) + ... +
(π�−1(Q̃) + R) − (Q + R) − (�− 1)(R). Note that this divisor is Fq-rational, so
f((P ) − (O))q−1 = 1. This concludes the proof.

Lemma 2. (a) Let φ : E → E′ be a separable isogeny of degree d defined
over Fq, P a �-torsion on the curve E such that φ(P ) is a �-torsion point
on E′, and Q a point on E. Then we have T�(φ(P ), φ(Q)) = T�(P,Q)d.

(b) Let φ : E → E′ be a separable isogeny of degree � defined over Fq, P a
��′-torsion point such that Ker φ = 〈�′P 〉 and Q a point on the curve E.
Then we have T�(φ(P ), φ(Q)) = T��′(P,Q)�.

Proof. Proof omitted for lack of space. See [3, Th. IX.9.4] for (a), [11] for (b).

Proposition 4. Let E be an elliptic curve defined a finite field Fq and assume
that E[�∞](Fp) is isomorphic to Z/�n1Z × Z/�n2Z (with n1 ≥ n2). Suppose that
there is a �n2-torsion point P such that T�n2 (P, P ) is a primitive �n2-th root of
unity. Then the �-isogeny whose kernel is generated by �n2−1P is descending.
Moreover, the curve E does not lie above the first stability level of the corre-
sponding �-volcano.

Proof. Let I1 : E → E1 be the isogeny whose kernel is generated by �n2−1P
and suppose this isogeny is ascending or horizontal. This means that E1[�n2 ] is
defined over Fq. Take Q another �n2 -torsion point on E, such that E[�n2 ] = 〈P,Q〉
and denote by Q1 = I1(Q). One can easily check that the dual of I1 has kernel
generated by �n2−1Q1. It follows that there is a point P1 ∈ E1[�n2 ] such that
P = Î1(P1). By Lemma 2 this means that T�(P, P ) ∈ μ�n2−1 , which is false. This
proves not only that the isogeny is descending, but also that the structure of the
�-torsion is different at the level of E1. Hence E cannot be above the stability
level.

Proposition 5. Let � ≥ 3 a prime number and suppose that E/Fq is a curve
which lies in a �-volcano and on the first stability level. Suppose E[�∞](Fq) �
Z/�n1Z×Z/�n2Z, n1 ≥ n2. Then there is at least one �n2-torsion point R ∈ E(Fq)
with primitive self-pairing.

Proof. Let P be a �n1-torsion point and Q be a �n2-torsion point such that
{P,Q} generates E[�∞](Fq).

Case 1. Suppose n1 ≥ n2 ≥ 2. Let E
I1−→ E1 be a descending �-isogeny and

denote by P1 and Q1 the �n1+1 and �n2−1-torsion points generating E1[�∞](Fp).
Moreover, without loss of generality, we may assume that I1(P ) = �P1 and
I1(Q) = Q1. If T�n2−1(Q1, Q1) is a primitive �n2−1-th root of unity, T�n2 (Q,Q) is
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a primitive �n2-th root of unity by Lemma 2. If not, from the non-degeneration
of the pairing, we deduce that T�n2−1(Q1, P1) is a primitive �n2−1-th root of
unity, which means that T�n2−1(Q1, �P1) is a �n2−2-th primitive root of unity.
By applying Lemma 2, we get T�n2 (Q,P ) ∈ μ�n2−1 at best. It follows that
T�n2 (Q,Q) ∈ μ�n2 by the non-degeneracy of the pairing.
Case 2. If n2 = 1, then consider the volcano defined over the extension field Fq� .
There is a �2-torsion point Q̃ ∈ E(Fq�) with Q = �Q̃. We obviously have �2|q�−1
and from Lemma 1, we get T�2(P̃ , P̃ )� = T�(P, P ). By applying Case 1, we get
that T�2(P̃ , P̃ ) is a primitive �2-th root of unity, so T�(P, P ) is a primitive �-th
root of unity.

Two stability levels. Remember that in any irregular volcano, v�(#E(Fq))
is even and the height h of the volcano is greater than v�(#E(Fq)). Moreover,
all curves at the top of the volcano have E[�∞](Fq) � Z/�n2Z × Z/�n2Z with
n2 = v�(#E(Fq)). The existence of a primitive self-pairing of a �n2 -torsion point
on any curve lying on the first stability level implies that the polynomial P is non-
zero at every level from the first stability level up to the level max(h+1−2n2, 0)
(by Lemma 2). We call this level the second level of stability. On the second
stability level there is at least one point of order �n2 with pairing equal to a
primitive �-th root of unity. At every level above the second stability level all
polynomials PE,�n2 may be zero7. Consider now E a curve on the second stability
level and I : E → E1 an ascending isogeny. Let P be a �n2-torsion point on E
and assume that T�n2 (P, P ) ∈ μ∗

� . We denote by P̃ ∈ E(Fq�)\E(Fq) the point
such that �P̃ = P . By Lemma 1 we get T�n2+1(P̃ , P̃ ) is a primitive �2-th root
of unity. It follows by Lemma 2 that T�n2 (I(P ), I(P )) is a primitive �-th root of
unity. We deduce that PE1,�n2+1 corresponding to E1/Fq� is non-zero. Applying
this reasoning repeatedly, we conclude that for every curve E above the second
stability level there is an extension field Fqs� such that the polynomial PE,�n2+s

associated to the curve defined over Fqs� is non-zero. When the second stability
level of a volcano is 0, we say that the volcano is almost regular.

We now make use of a result on the representation of ideal classes of orders
in imaginary quadratic fields. This is Corollary 7.17 from [5].

Lemma 3. Let O be an order in an imaginary quadratic field. Given a nonzero
integer M , then every ideal class in Cl(O) contains a proper O-ideal whose norm
is relatively prime to M .

Proposition 6. We use the notations and assumptions from Proposition 1. Fur-
thermore, we assume that for all curves Ei lying at a fixed level i in V the curve
structure is Z/�n1Z × Z/�n2Z, with n1 ≥ n2. The value of NEi,�n2 , the number
of zeros of the polynomial defined at 2, is constant for all curves lying at level i
in the volcano.

Proof. Let E1 and E2 be two curves lying at level i in the volcano V . Then by
Proposition 1 they both have endomorphism ring isomorphic to some order Odi .

7 In all the examples we considered for this case, P is always 0.
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Now by taking into account the fact that the action of Cl(Odi) on Ell di(Fq)
is transitive, we consider an isogeny φ : E1 → E2 of degree �1. By applying
Lemma 3, we may assume that (�1, �) = 1. Take now P and Q two indepen-
dent �n2-torsion points on E1 and denote by PE1,�n2 the quadratic polynomial
corresponding to the �n2-torsion on E1 as in (2). We use Lemma 2 to compute
S(φ(P ), φ(P )), S(φ(P ), φ(Q)) and S(φ(Q), φ(Q)) and deduce that a polynomial
PE2,�n2 (a, b) on the curve E2 computed from φ(P ) and φ(Q) is such that

PE1,�n2 (a, b) = PE2,�n2 (a, b).

This means that NE1,�n2 and NE2,�n2 coincide, which concludes the proof. More-
over, we have showed that the value of k for two curves lying on the same level
of a volcano is the same.

Proposition 7. Let E be an elliptic curve defined a finite field Fq and let
E[�∞](Fq) be isomorphic to Z/�n1Z × Z/�n2Z with � ≥ 3 and n1 ≥ n2 ≥ 1.
Suppose NE,�n2 ∈ {1, 2} and let P be a �n2-torsion point with degenerate self-
pairing. Then the �-isogeny whose kernel is generated by �n2−1P is either as-
cending or horizontal. Moreover, for any �n2-torsion point Q whose self-pairing
is non-degenerate, the isogeny with kernel spanned by �n2−1Q is descending.

Proof. Case 1. Suppose T�n2 (P, P ) ∈ μ�k , k ≥ 1 and that T�n2 (Q,Q) ∈ μ�k+1\μ�k .
Denote by I1 : E → E1 the isogeny whose kernel is generated by �n2−1P and
I2 : E → E2 the isogeny whose kernel is generated by �n2−1Q. By repeatedly
applying Lemmas 1 and 2, we get the following relations for points generating the
�n2−1-torsion on E1 and E2:

T�n2−1(I1(P ), I1(P )) ∈ μ�k−1 , T�n2−1(�I1(Q), �I1(Q)) ∈ μ�k−2\μ�k−3

T�n2−1(�I2(P ), �I2(P )) ∈ μ�k−3 , T�n2−1(I2(Q), I2(Q)) ∈ μ�k\μ�k−1

with the convention that μ�h = ∅ whenever h ≤ 0. From the relations above, we
deduce that on the �-volcano having E,E1 and E2 as vertices, E1 and E2 do
not lie at the same level. Given the fact that there are at least �− 1 descending
rational �-isogenies parting from E and that Q is any of the �− 1 (or more) �n2-
torsion points with non-degenerate self-pairing, we conclude that I1 is horizontal
or ascending and that I2 is descending.
Case 2. Suppose now that k = 0. Note that the case n2 = 1 was already treated
in proposition 4. Otherwise, consider the curve E defined over Fq� . By lemma 1
we have k = 1 for points on E/Fq� , and we may apply Case 1.

A special case. If E is a curve lying under the first stability level and that
E[�∞](Fq) � Z/�n1Z × Z/�n2Z, with n1 > n2, then it suffices to find a point
P1 of order �n1 and the point �n1−1P1 generates the kernel of an horizontal or
ascending isogeny (P1 has degenerate self-pairing).

Crater detection. Assume that P �= 0. When � is split in OE , there are two
horizontal isogenies from E and this is equivalent, by propositions 6 and 7, to
NE,�n2 = 2. Similarly, when � is inert in OE , there are neither ascending nor
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horizontal isogenies and NE,�n2 = 0. In these two cases, we easily detect that
the curve E is on the crater.

Note. All statements in the proof of Case 1 are true for � = 2 also. The statement
in Proposition 4 is also true for � = 2. The only case that is not clear is what
happens when k = 0 and n2 ≥ 1. We did not find a proof for the statement in
proposition 5 for � = 2, but in our computations with MAGMA we did not find
any counterexamples either.

We conclude this section by presenting an algorithm which determines the
group structure of the �∞-torsion group of a curve E and also an algorithm
which outputs the kernel of an horizontal (ascending) isogeny from E, when
E[�∞](Fq) is given.

Algorithm 1. Computing the structure of the �∞-torsion of E over Fq

(assuming volcano height ≥ 1)
Require: A curve E defined over Fq, a prime 

Compute: Structure Z/
n1Z × Z/
n2Z, generators P1 and P2

1: Check that q ≡ 1 (mod 
) (if not need to move to extension field: abort)
2: Let t be the trace of E(Fq)
3: Check q + 1 − t ≡ 0 (mod 
) (if not consider twist or abort)
4: Let dπ = t2 − 4q, let z be the largest integer such that 
z|dπ and h = � z

2



5: Let n be the largest integer such that 
n|q + 1 − t and N = q+1−t
�n

6: Take a random point R1 on E(Fq), let P1 = N · R1

7: Let n1 be the smallest integer such that 
n1P1 = 0
8: if n1 = n then
9: Output: Structure is Z

�nZ , generator P1. Exit
(E is on the floor, ascending isogeny with kernel 〈
n−1P1〉)

10: end if
11: Take a random point R2 on E(Fq), let P2 = N · R2 and n2 = n − n1

12: Let α = log�n2P1
(
n2P2) (mod 
n1−n2)

13: if α is undefined then
14: Goto 6 (
n2P2 does not belong to 〈
n2P1〉)
15: end if
16: Let P2 = P2 − αP1

17: If WeilPairing�(

n1−1P1, 


n2−1P2) = 1 goto 6 (This checks linear independence)
18: Output: Structure is Z

�n1Z × Z
�n2Z , generators (P1, P2)

We assume that the height of the volcano is h ≤ 2n2 + 1, or, equivalently,
that the curve E lies on or below the second stability level, which implies that
the polynomial P is non-zero at every level in the volcano. This allows us to
distinguish between different directions of �-isogenies parting from E. Of course,
similar algorithms can be given for curves lying above the second stability level,
but in this case we are compelled to consider the volcano over an extension field
Fqs� . Since computing points defined over extension fields of degree greater than
� is expensive, our complexity analysis in section 5 will show that it is more
efficient to use Kohel’s and Fouquet-Morain algorithms to explore the volcano
until the second level of stability is reached and to use algorithms 1 and 2
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Algorithm 2. Finding the kernel of ascending or horizontal isogenies
(Assuming curve not on floor and below the second stability level)
Require: A curve E, its structure Z

�n1Z × Z
�n2Z and generators (P1, P2)

1: if n1 > n2 then
2: The isogeny with kernel 〈
n1−1P1〉 is ascending or horizontal
3: To check whether there is another, continue the algorithm
4: end if
5: Let g be a primitive 
-th root of unity in Fq

6: Let Q1 = 
n1−n2P1

7: Let a = T�n2 (Q1, Q1), b = T�n2 (Q1, P2) · T�n2 (P2, Q1) and c = T�n2 (P2, P2)
8: If (a, b, c) = (1, 1, 1) abort (Above the second stability level)
9: repeat

10: Let a′ = a, b′ = b and c′ = c
11: Let a = a�, b = b� and c = c�

12: until a = 1 and b = 1 and c = 1
13: Let La = logg(a

′), Lb = logg(b
′) and Lc = logg(c

′) (mod 
)
14: Let P(x, y) = Lax2 + Lbxy + Lcy

2 (mod 
)
15: If P has no roots modulo 
, Output: No isogeny (a single point on the crater)
16: If single root (x1, x2) Output: One isogeny with kernel 〈
n2−1(x1Q1 + x2P2)〉
17: if P has two roots (x1, x2) and (y1, y2) then
18: Two isogenies with kernel 〈
n2−1(x1Q1 + x2P2)〉 and 〈
n2−1(y1Q1 + y2P2)〉
19: end if

afterwards. We assume � ≥ 3, even though in many cases these methods work
also for � = 2.

5 Walking the Volcano: Modified Algorithms

As mentioned in the introduction, several applications of isogeny volcanoes have
recently been proposed. These applications require the ability to walk descending
and ascending paths on the volcano and also to walk on the crater of the volcano.
We recall that a path is a sequence of isogenies that never backtracks. We start
this section with a brief description of existing algorithms for these tasks, based
on methods given by Kohel [14] and by Fouquet and Morain in [8]. We present
modified algorithms, which rely on the method presented in Algorithm 2 to find
ascending or horizontal isogenies. Then, we give complexity analysis for these
algorithms and show that in many cases our method is competitive. Finally, we
give two concrete examples in which the new algorithms can walk the crater of
an isogeny volcano very efficiently compared to existing algorithms.

A brief description of existing algorithms. Existing algorithms rely on three
essential properties in isogeny volcanoes. Firstly, it is easy to detect that a curve
lies on the floor of a volcano, since in that case, there is a single isogeny from this
curve. Moreover, this isogeny can only be ascending (or horizontal if the height
is 0). Secondly, if in an arbitrary path in a volcano there is a descending isogeny,
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then all the subsequent isogenies in the path are also descending. Thirdly, from
a given curve, there is either exactly one ascending isogeny or at most two
horizontal ones. As a consequence, finding a descending isogeny from any curve
is easy: it suffices to walk three paths in parallel until one path reaches the floor.
This shortest path is necessarily descending and its length gives the level of the
starting curve in the volcano. To find an ascending or horizontal isogeny, the
classical algorithms try all possible isogenies until they find one which leads to
a curve either at the same level or above the starting curve. This property is
tested by contructing descending paths from the all the neighbours of the initial
curve and picking the curve which gave the longest path.

Note that alternatively, one could walk in parallel all of the �+1 paths starting
from the initial curve and keep the (two) longest as horizontal or ascending. As
far as we know, this has not been proposed in the literature, but this variant
of existing algorithms offers a slightly better asymptotic time complexity. For
completeness, we give a pseudo-code description of this parallel variant of Kohel
and Fouquet-Morain algorithms as Algorithm 3.

Algorithm 3. Parallel variant of ascending/horizontal step
(using modular polynomials)
Require: A j-invariant j0 in Fq, a prime 
, the modular polynomial Φ�(X, Y ).
1: Let f(x) = Φ�(X, j0)
2: Compute J0 the list of roots of f(x) in Fq

3: If #J0 = 0 Output: “Trivial volcano” Exit
4: If #J0 = 1 Output: “On the floor, step leads to:”, J0[1] Exit
5: If #J0 = 2 Output: “On the floor, two horizontal steps to:”, J0[1] and J0[2] Exit

6: Let J = J0. Let J ′ and K be empty lists. Let Done = false.
7: repeat
8: Perform multipoint evaluation of Φ�(X, j), for each j ∈ J . Store in list F
9: for i from 1 to 
 + 1 do

10: Perform partial factorization of F [i], computing at most two roots r1 and r2

11: if F [i] has less than two roots then
12: Let Done = true. Append ⊥ to K (Reaching floor)
13: else
14: If r1 ∈ J ′ then append r1 to K else append r2 to K. (Don’t backtrack)
15: end if
16: end for
17: Let J ′ = J , J = K and K be the empty list
18: until Done
19: for each i from 1 to 
 + 1 such that J [i] �= ⊥ append J0[i] to K
20: Output: “Possible step(s) lead to:” K (One or two outputs)

Basic idea of the modified algorithms. In our algorithms, we first need to choose a
large enough extension field to guarantee that the kernels of all required isogenies
are spanned by �-torsion points defined on this extension field. As explained in
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Corollary 1, the degree r of this extension field is the order of q modulo � and
it can be computed very quickly after factoring q − 1. As usual, we choose an
arbitrary irreducible polynomial of degree r to represent Fqr . The necessary
points of �∞-torsion are computed in Algorithm 1, multiplying random points
over Fqr by the cardinality of the curve divided by the highest possible power
of �. Once this is done, assuming that we are starting from a curve below the
second level of stability, we use Algorithms 1 and 2 to find all ascending or
horizontal isogenies from the initial curve. In order to walk a descending path,
it suffices to choose any other isogeny. Note that, in the subsequent steps of a
descending path, in the cases where the group structure satisfies n1 > n2, it is
not necessary to run Algorithm 2 as a whole. Indeed, since we know that we
are not on the crater, there is a single ascending isogeny and it is spanned by
�n1−1P1.

Finally, above the second stability level, we have two options. In theory, we
can consider curves over larger extension fields (in order to get polynomials
P �= 0. Note that this is too costly in practice. Therefore, we use preexisting
algorithms, but it is not necessary to follow descending paths all the way to the
floor. Instead, we can stop these paths at the second stabilty level, where our
methods can be used.

5.1 Complexity Analysis

Computing a single isogeny. Before analyzing the complete algorithms, we first
compare the costs of taking a single step on a volcano by using the two methods
existing in the literature: modular polynomials and classical Vélu’s formulae.
Suppose that we wish to take a step from a curve E. With the modular polyno-
mial approach, we have to evaluate the polynomial f(X) = Φ�(X, j(E)) and find
its roots in Fq. Assuming that the modular polynomial (modulo the characteristic
of Fq) is given as input and using asymptotically fast algorithms to factor f(X),
the cost of a step in terms of arithmetic operations in Fq is O(�2 + M(�) log q),
where M(�) denotes the operation count of multiplying polynomials of degree �.
In this formula, the first term corresponds to evaluation of Φ�(X, j(Ei−1)) and
the second term to root finding8.

With Vélu’s formulae, we need to take into account the fact that the required
�-torsion points are not necessarily defined over Fq. Let r denotes the smallest
integer such that the required points are all defined over Fqr . We know that
1 ≤ r ≤ � − 1. Using asymptotically efficient algorithms to perform arithmetic
operations in Fqr , multiplications in Fqr cost M(r) Fq-operations. Given an �-
torsion point P in E(Fqr ), the cost of using Vélu’s formulae is O(�) operations in
Fqr . As a consequence, in terms of Fq operations, each isogeny costs O(�M(r))
operations. As a consequence, when q is not too large and r is close to �, using
Vélu formulae is more expensive by a logarithmic factor.

8 Completely splitting f(X) to find all its roots would cost O(M(
) log 
 log q), but
this is reduced to O(M(
) log q) because we only need a constant number of roots
for each polynomial f(X).
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Computing an ascending or horizontal path. With the classical algorithms, each
step in an ascending or horizontal path requires to try O(�) steps and test each
by walking descending paths of height bounded by h. The cost of each descend-
ing path is O(h(�2 + M(�) log q)) and the total cost is O(h(�3 + �M(�) log q))
(see [14,23]). When � >> log q, this cost is dominated by the evaluations of
the polynomial Φ� at each j-invariant. Thus, by walking in parallel � + 1 paths
from the original curve, we can amortize the evaluation of Φ�(X, j) over many
j-invariants using fast multipoint evaluation, see [18, Section 3.7] or [25], thus re-
placing �3 by �M(�) log � and reducing the complexity of a step to
O(h�M(�)(log � + log q)). However, this increases the memory requirements.

With our modified algorithms, we need to find the structure of each curve,
compute some discrete logarithms in �-groups, perform a small number of pair-
ing computations and compute the roots of PE,�n2 . Except for the computation
of discrete logarithms, it is clear that all these additional operations are polyno-
mial in n2 and log � and they take negligible time in practice (see Section 5.2).
Using generic algorithms, the discrete logarithms cost O(

√
�) operations, and

this can be reduced to log � by storing a sorted table of precomputed logarithms.
After this is done, we have to compute at most two isogenies, ignoring the one
that backtracks. Thus, the computation of one ascending or horizontal step is
dominated by the computation of isogenies and costs O(�M(r)).

For completeness, we also mention the complexity analysis of Algorithm 1.
The dominating step here is the multiplication by N of randomly chosen points.
When we consider the curve over an extension field Fqr , this costs O(r log q)
operations in Fqr , i.e. O(rM(r) log q) operations in Fq.

Finally, comparing the two approaches on a regular volcano, we see that even
in the less favorable case, we gain a factor h compared to the classical algorithms.
More precisely, the two are comparable, when the height h is small and r is close
to �. In all the other cases, our modified algorithms are more efficient. This
analysis is summarized in Table 1. For compactness O(·)s are omitted from the
table.

Table 1. Walking the volcano: Order of the cost per step

Descending path Ascending/Horizontal
One step Many steps

[14,8] h(
2 + M(
) log q) (
2 + M(
) log q) h(
3 + 
M(
) log q)
Parallel evaluation – – h
 M(
)(log 
 + log q)
Regular volcanoes Structure determination

Best case log q log q
Worst case r ≈ 
/2 r M(r) log q r M(r) log q

Regular volcanoes Isogeny construction
Best case 
 


Worst case r ≈ 
/2 r M(r) r M(r)
Irregular volcanoes

(worst case) No improvement
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Irregular volcanoes. Consider a fixed value of q and let s = v�(q − 1). First of
all, note that all curves lying on irregular volcanoes satisfy �2s|q + 1 − t and
�2s+2|t2 − 4q. For traces that satisfy only the first condition, we obtain a regular
volcano. We estimate the total number of different traces of elliptic curves lying
on �-volcanoes by #{t s.t. �2s|q + 1 − t and t ∈ [−2

√
q, 2

√
q]} ∼ 4

√
q

�2s .
Next, we estimate traces of curves lying on irregular volcanoes by

#{t s.t. �2s|q + 1 − t , �2s+2|t2 − 4q and t ∈ [−2
√
q, 2

√
q]} ∼ 4

√
q

�2s+2 .
Indeed, by writing q = 1+γ�s and t = 2+γ�s+μ�2s, and imposing the condition
�2s+2|t2 − 4q, we find that t ∼= t0(γ, μ)(mod �2s+2).

Thus, we estimate the probability of picking a curve whose volcano is not
regular, among curves lying on volcanoes of height greater than 0, by 1

�2 . (This
is a crude estimate because the number of curves for each trace is proportional
to the Hurwitz class number9 H(t2 − 4q)). This probability is not negligible for
small values of �. However, since our method also works everywhere on almost
regular volcano, the probability of finding a volcano where we need to combine
our modified algorithm with the classical algorithms is even lower. Furthermore,
in some applications, it is possible to restrict ourselves to regular volcanoes.

5.2 Two Practical Examples

A favorable case. In order to demonstrate the potential of the modified al-
gorithm, we consider the favorable case of a volcano of height 2, where all
the necessary �-torsion points are defined over the base field Fp, where p =
619074283342666852501391 is prime. We choose � = 100003.
Let E be the elliptic curve whose Weierstrass equation is

y2 = x3 + 198950713578094615678321 x+ 32044133215969807107747.
The group E[�∞] over Fp has structure Z

�4Z . It is spanned by the point
P = (110646719734315214798587, 521505339992224627932173).

Taking the �-isogeny I1 with kernel 〈�3P 〉, we obtain the curve
E1 : y2 = x3 + 476298723694969288644436x+ 260540808216901292162091,

with structure of the �∞-torsion Z
�3 × Z

� and generators
P1 = (22630045752997075604069, 207694187789705800930332) and
Q1 = (304782745358080727058129, 193904829837168032791973).

The �-isogeny I2 with kernel 〈�2P1〉 leads to the curve
E2 : y2 = x3 + 21207599576300038652790x+ 471086215466928725193841,

on the volcano’s crater and with structure Z
�2Z × Z

�2Z and generators
P2 = (545333002760803067576755, 367548280448276783133614) and
Q2 = (401515368371004856400951, 225420044066280025495795).

Using pairings on these points, we construct the polynomial:
P(x, y) = 97540 x2 + 68114 x y + 38120 y2,

having homogeneous roots (x, y) = (26568, 1) and (72407, 1). As a consequence,
we have two horizontal isogenies with kernels 〈�(26568P2 + Q2)〉 and
〈�(72407P2 + Q2)〉. We can continue and make a complete walk around the

9 See [5, Th. 14.18] for q prime.
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crater which contains 22 different curves. Using a simple implementation under
Magma 2.15-15, a typical execution takes about 134 seconds10 on a single core
of an Intel Core 2 Duo at 2.66 GHz. Most of the time is taken by the computa-
tion of Vélu’s formulas (132 seconds) and the computation of discrete logarithms
(1.5 seconds) which are not tabulated in the implementation. The computation
of pairings only takes 20 milliseconds.

A less favorable example. We have also implemented the computation for � =
1009 using an elliptic curve with j-invariant j = 34098711889917 in the prime
field defined by p = 953202937996763. The �-torsion appears in a extension field
of degree 84. The �-volcano has height two and the crater contains 19 curves.
Our implementation walks the crater in 20 minutes. More precisely, 750 seconds
are needed to generate the curves’ structures, 450 to compute Vélu’s formulas,
28 seconds for the pairings and 2 seconds for the discrete logarithms.

6 Conclusion and Perspectives

In this paper, we have proposed a method which allows, in the regular part of
an isogeny volcano, to determine, given a curve E and a �-torsion point P , the
type of the �-isogeny whose kernel is spanned by P . In addition, this method
also permits, given a basis for the �-torsion, to find the ascending isogeny (or
horizontal isogenies) from E. We expect that this method can be used to improve
the performance of several volcano-based algorithms, such as the computation
of the Hilbert class polynomial [23] or of modular polynomials [4].
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Abstract. An isogeny between elliptic curves is an algebraic morphism
which is a group homomorphism. Many applications in cryptography re-
quire evaluating large degree isogenies between elliptic curves efficiently.
For ordinary curves of the same endomorphism ring, the previous best
known algorithm has a worst case running time which is exponential
in the length of the input. In this paper we show this problem can be
solved in subexponential time under reasonable heuristics. Our approach
is based on factoring the ideal corresponding to the kernel of the isogeny,
modulo principal ideals, into a product of smaller prime ideals for which
the isogenies can be computed directly. Combined with previous work of
Bostan et al., our algorithm yields equations for large degree isogenies
in quasi-optimal time given only the starting curve and the kernel.

1 Introduction

A well known theorem of Tate [29] states that two elliptic curves defined over
the same finite field Fq are isogenous (i.e. admit an isogeny between them) if and
only if they have the same number of points over Fq. Using fast point counting
algorithms such as Schoof’s algorithm and others [9,25], it is very easy to check
whether this condition holds, and thus whether or not the curves are isogenous.
However, constructing the actual isogeny itself is believed to be a hard problem
due to the nonconstructive nature of Tate’s theorem. Indeed, given an ordinary
curve E/Fq and an ideal of norm n in the endomorphism ring, the fastest previ-
ously known algorithm for constructing the unique (up to isomorphism) isogeny
having this ideal as kernel has a running time of O(n3+ε), except in a certain
very small number of special cases [4,16,17]. In this paper, we present a new
probabilistic algorithm for evaluating such isogenies, which in the vast majority
of cases runs (heuristically) in subexponential time. Specifically, we show that
for ordinary curves, one can evaluate isogenies of degree n between curves of
nearly equal endomorphism ring over Fq in time less than Lq(1

2 ,
√

3
2 ) log(n), pro-

vided n has no large prime divisors in common with the endomorphism ring
discriminant. Although this running time is not polynomial in the input length,
our algorithm is still much faster than the (exponential) previous best known
algorithm, and in practice allows for the evaluation of isogenies of cryptographi-
cally sized degrees, some examples of which we present here. We emphasize that,

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 219–233, 2010.
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in contrast with the previous results of Bröker et al. [4], our algorithm is not
limited to special curves such as pairing friendly curves with small discriminant.

If an explicit equation for the isogeny as a rational function is desired, our
approach in combination with the algorithm of Bostan et al. [3] can produce the
equation in time O(n1+ε) given E and an ideal of norm n, which is quasi-optimal
in the sense that (up to log factors) it is equal to the size of the output. To
our knowledge, this method is the only known algorithm for computing rational
function expressions of large degree isogenies in quasi-optimal time in the general
case, given only the starting curve and the kernel.

Apart from playing a central role in the implementation of the point counting
algorithms mentioned above, isogenies have been used in cryptography to trans-
fer the discrete logarithm problem from one elliptic curve to another
[9,16,17,20,23,30]. In many of these applications, our algorithm cannot be used
directly, since in cryptography one is usually given two isogenous curves, rather
than one curve together with the isogeny degree. However, earlier results
[16,17,20] have shown that the problem of computing isogenies between a given
pair of curves can be reduced to the problem of computing isogenies of prime
degree starting from a given curve. It is therefore likely that the previous best
isogeny construction algorithms in the cryptographic setting can be improved or
extended in light of the work that we present here.

2 Background

Let E and E′ be elliptic curves defined over a finite field Fq of characteristic p. An
isogeny φ : E → E′ defined over Fq is a non-constant rational map defined over
Fq which is also a group homomorphism from E(Fq) to E′(Fq). This definition
differs slightly from the standard definition in that it excludes constant maps [27,
§III.4]. The degree of an isogeny is its degree as a rational map, and an isogeny
of degree � is called an �-isogeny. Every isogeny of degree greater than 1 can be
factored into a composition of isogenies of prime degree defined over F̄q [11].

For any elliptic curve E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 defined

over Fq, the Frobenius endomorphism is the isogeny πq : E → E of degree q
given by the equation πq(x, y) = (xq, yq). The characteristic polynomial of πq is
X2 − tX + q where t = q + 1 − #E(Fq) is the trace of E.

An endomorphism of E is an isogeny E → E defined over the algebraic closure
F̄q of Fq. The set of endomorphisms of E together with the zero map forms
a ring under the operations of pointwise addition and composition; this ring
is called the endomorphism ring of E and denoted End(E). The ring End(E)
is isomorphic either to an order in a quaternion algebra or to an order in an
imaginary quadratic field [27, V.3.1]; in the first case we say E is supersingular
and in the second case we say E is ordinary.

Two elliptic curves E and E′ defined over Fq are said to be isogenous over Fq if
there exists an isogeny φ : E → E′ defined over Fq. A theorem of Tate states that
two curves E and E′ are isogenous over Fq if and only if #E(Fq) = #E′(Fq) [29,
§3]. Since every isogeny has a dual isogeny [27, III.6.1], the property of being
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isogenous over Fq is an equivalence relation on the finite set of F̄q-isomorphism
classes of elliptic curves defined over Fq. Moreover, isomorphisms between elliptic
curves can be classified completely and computed efficiently in all cases [16].
Accordingly, we define an isogeny class to be an equivalence class of elliptic
curves, taken up to F̄q-isomorphism, under this equivalence relation.

Curves in the same isogeny class are either all supersingular or all ordinary.
The vast majority of curves are ordinary, and indeed the number of isomorphism
classes of supersingular curves is finite for each characteristic. Also, ordinary
curves form the majority of the curves of interest in applications such as cryp-
tography. Hence, we assume for the remainder of this paper that we are in the
ordinary case.

Let K denote the imaginary quadratic field containing End(E), with maximal
order OK . For any order O ⊆ OK , the conductor of O is defined to be the
integer [OK : O]. The field K is called the CM field of E. We write cE for
the conductor of End(E) and cπ for the conductor of Z[πq]. It follows from [12,
§7] that End(E) = Z + cEOK and Δ = c2EΔK , where Δ (respectively, ΔK) is
the discriminant of the imaginary quadratic order End(E) (respectively, OK).
Furthermore, the characteristic polynomial has discriminant Δπ = t2 − 4q =
disc(Z[πq]) = c2πΔK , with cπ = cE · [End(E) : Z[πq]].

Following [14] and [16], we say that an isogeny φ : E → E′ of prime degree
� defined over Fq is “down” if [End(E) : End(E′)] = �, “up” if [End(E′) :
End(E)] = �, and “horizontal” if End(E) = End(E). Two curves in an isogeny
class are said to “have the same level” if their endomorphism rings are equal.
Within each isogeny class, the property of having the same level is an equivalence
relation. A horizontal isogeny always goes between two curves of the same level;
likewise, an up isogeny enlarges the endomorphism ring and a down isogeny
reduces it. Since there are fewer elliptic curves at higher levels than at lower
levels, the collection of elliptic curves in an isogeny class visually resembles a
“pyramid” or a “volcano” [14], with up isogenies ascending the structure and
down isogenies descending. If we restrict to the graph of �-isogenies for a single
�, then in general the �-isogeny graph is disconnected, having one �-volcano
for each intermediate order Z[πq] ⊂ O ⊂ OK such that O is maximal at �
(meaning � � [OK : O]). The “top level” of the class consists of curves E with
End(E) = OK , and the “bottom level” consists of curves with End(E) = Z[πq ].

We say that � is an Elkies prime [2, p. 119] if � � cE and
(
Δ
�

)
�= −1, or equiv-

alently if and only if E admits a horizontal isogeny of degree �. The number of
�-isogenies of each type can easily be determined explicitly [14,16,21]. In partic-
ular, for all but the finitely many primes � dividing [OK : Z[πq]], we have that
every rational �-isogeny admitted by E is horizontal.

3 The Bröker-Charles-Lauter Algorithm

Our algorithm is an extension of the algorithm developed by Bröker, Charles,
and Lauter [4] to evaluate large degree isogenies over ordinary elliptic curves with
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endomorphism rings of small class number, such as pairing-friendly curves [15].
In this section we provide a summary of their results.

The following notation corresponds to that of [4]. Let E/Fq be an ordi-
nary elliptic curve with endomorphism ring End(E) isomorphic to an imaginary
quadratic order OΔ of discriminant Δ < 0. Identify End(E) with OΔ via the
unique isomorphism ι such that ι∗(x)ω = xω for all invariant differentials ω and
all x ∈ OΔ. Then every horizontal separable isogeny on E of prime degree �
corresponds (up to isomorphism) to a unique prime ideal L ⊂ OΔ of norm � for
some Elkies prime �. We denote the kernel of this isogeny by E[L]. Any two dis-
tinct isomorphic horizontal isogenies (i.e., pairs of isogenies where one is equal to
the composition of the other with an isomorphism) induce different maps on the
space of differentials of E, and a separable isogeny is uniquely determined by the
combination of its kernel and the induced map on the space of differentials. A
normalized isogeny is an isogeny φ : E → E′ for which φ∗(ωE′) = ωE where ωE

denotes the invariant differential of E. Algorithm 1 (identical to Algorithm 4.1
in [4]) evaluates, up to automorphisms of E, the unique normalized horizontal
isogeny of degree � corresponding to a given kernel ideal L ⊂ OΔ.

The following theorem, taken verbatim from [4], shows that the running time
of Algorithm 1 is polynomial in the quantities log(�), log(q), n, and |Δ|.

Theorem 3.1. Let E/Fq be an ordinary elliptic curve with Frobenius πq, given
by a Weierstrass equation, and let P ∈ E(Fqn) be a point on E. Let Δ =
disc(End(E)) be given. Assume that [End(E) : Z[πq ]] and #E(Fqn) are coprime,
and let L = (�, c + dπq) be an End(E)-ideal of prime norm � �= char(Fq) not
dividing the index [End(E) : Z[πq]]. Algorithm 1 computes the unique elliptic
curve E′ such that there exists a normalized isogeny φ : E → E′ with kernel
E[L]. Furthermore, it computes the x-coordinate of φ(P ) if End(E) does not
equal Z[i] or Z[ζ3] and the square, respectively cube, of the x-coordinate of φ(P )
otherwise. The running time of the algorithm is polynomial in log(�), log(q), n
and |Δ|.

4 A Subexponential Algorithm for Evaluating Horizontal
Isogenies

As was shown in Sections 2 and 3, any horizontal isogeny can be expressed as a
composition of prime degree isogenies, one for each prime factor of the kernel,
and any prime degree isogeny is a composition of a normalized isogeny and
an isomorphism. Therefore, to evaluate a horizontal isogeny given its kernel, it
suffices to treat the case of horizontal normalized prime degree isogenies.

Our objective is to evaluate the unique horizontal normalized isogeny on a
given elliptic curve E/Fq whose kernel ideal is given as L = (�, c + dπq), at a
given point P ∈ E(Fqn), where � is an Elkies prime. As in [4], we must also
impose the additional restriction that � � [End(E) : Z[πq ]]; for Elkies primes,
an equivalent restriction is that � � [OK : Z[πq]], but we retain the original
formulation for consistency with [4].
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Algorithm 1. The Bröker-Charles-Lauter algorithm
Input: A discriminant Δ, an elliptic curve E/Fq with End(E) = OΔ and a point P ∈

E(Fqn) such that [End(E) : Z[πq ]] and #E(Fqn) are coprime, and an End(E)-ideal
L = (
, c+dπq) of prime norm 
 �= char(Fq) not dividing the index [End(E) : Z[πq ]].

Output: The unique elliptic curve E′ admitting a normalized isogeny φ : E → E′ with
kernel E[L], and the x-coordinate of φ(P ) for Δ �= −3,−4 and the square (resp.
cube) of the x-coordinate otherwise.

1: Compute the direct sum decomposition Pic(OΔ) =
⊗〈[Ii]〉 of Pic(OΔ) into cyclic

groups generated by the degree 1 prime ideals Ii of smallest norm that are coprime
to the product p · #E(Fqn) · [End(E) : Z[πq]].

2: Using brute force1, find e1, e2, . . . , ek such that [L] = [Ie1
1 ] · [Ie2

2 ] · · · [Iek
k ].

3: Find α (using Cornacchia’s algorithm) and express L = Ie1
1 · Ie2

2 · · · Iek
k · (α).

4: Compute a sequence of isogenies (φ1, . . . , φs) such that the composition φc : E →
Ec has kernel E[Ie1

1 · Ie2
2 · · · Iek

k ] using the method of [4, § 3].
5: Evaluate φc(P ) ∈ Ec(Fqn).
6: Write α = (u + vπq)/(zm). Compute the isomorphism η : Ec

∼→ E′ with η∗(ωE′) =
(u/zm)ωEc . Compute Q = η(φc(P )).

7: Compute (zm)−1 mod #E(Fqn), and compute R = ((zm)−1(u + vπq))(Q).
8: Put r = x(R)|OΔ|∗/2 and return (E′, r).

In practice, one is typically given � instead of L, but since it is easy to calculate
the list of (at most two) possible primes L lying over � (cf. [6]), these two inter-
pretations are for all practical purposes equivalent, and we switch freely between
them when convenient. When � is small, one can use modular polynomial based
techniques [4, §3.1], which have running time O(�3 log(�)4+ε) [13]. However, for
isogeny degrees of cryptographic size (e.g. 2160), this approach is impractical.
The Bröker-Charles-Lauter algorithm sidesteps this problem, by using an alter-
native factorization of L. However, the running time of Bröker-Charles-Lauter is
polynomial in |Δ|, and therefore even this method only works for small values of
|Δ|. In this section we present a modified version of the Bröker-Charles-Lauter
algorithm which is suitable for large values of |Δ|.

We begin by giving an overview of our approach. In order to handle large
values of |Δ|, there are two main problems to overcome. One problem is that we
need a fast way to produce a factorization

L = Ie1
1 Ie2

2 · · · Iek

k · (α) (1)

as in lines 2 and 3 of Algorithm 1. The other problem is that the exponents ei

in Equation (1) need to be kept small, since the running times of lines 3 and 4
of Algorithm 1 are proportional to

∑
i |ei|Norm(Ii)2. The first problem, that

of finding a factorization of L, can be solved in subexponential time using the
index calculus algorithm of Hafner and McCurley [18] (see also [6, Chap. 11]).

1 Bröker, Charles, and Lauter mention that this computation can be done in “various
ways” [4, p. 107], but the only explicit method given in [4] is brute force. The use
of brute force limits the algorithm to elliptic curves for which |Δ| is small, such as
pairing-friendly curves.
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Algorithm 2. Computing a factor base
Input: A discriminant Δ, a bound N .
Output: The set I consisting of split prime ideals of norm less than N , together with

the corresponding set F of quadratic forms.
1: Set F ← ∅.
2: Set I ← ∅.
3: Find all primes p < N such that (Δ

p
) = 1. Call this set P . Let k = |P |.

4: For each prime pi ∈ P , find an ideal pi of norm pi (using Cornacchia’s algorithm).
5: For each i, find a quadratic form fi = [(pi, bi, ci)] corresponding to pi in Cl(OΔ),

using the technique of [26, §3].
6: Output I = {p1, p2, . . . , pk} and F = {f1, f2, . . . , fk}.

To resolve the second problem, we turn to an idea which was first introduced by
Galbraith et. al [17], and recently further refined by Bisson and Sutherland [1].
The idea is that, in the process of sieving for smooth norms, one can arbitrar-
ily restrict the input exponent vectors to sparse vectors (e1, e2, ..., ek) such that∑

i |ei|N(Ii)2 is kept small. This restriction is implemented in line 6 of Algo-
rithm 3. As in [1], one then assumes heuristically that the imposition of this
restriction does not affect the eventual probability of obtaining a smooth norm
in the Hafner and McCurley algorithm. Note that, unlike the input exponents,
the exponents appearing in the factorizations of the ensuing smooth norms (that
is, the values of yi in Algorithm 3) are always small, since the norm in question
is derived from a reduced quadratic form.

We now describe the individual components of our algorithm in detail.

4.1 Finding a Factor Base

Let Cl(OΔ) denote the ideal class group of OΔ. Algorithm 2 produces a factor
base consisting of split primes in OΔ of norm less than some bound N . The
optimal value of N will be determined in Section 4.4.

4.2 “Factoring” Large Prime Degree Ideals

Algorithm 3, based on the algorithm of Hafner and McCurley, takes as input a
discriminant Δ, a curve E, a prime ideal L of prime norm � in OΔ, a smoothness
bound N , and an extension degree n. It outputs a factorization

L = Ie1
1 Ie2

2 · · · Iek

k · (α)

as in Equation 1, where the Ii’s are as in Algorithm 1, the exponents ei are
positive, sparse, and small (i.e., polynomial in N), and the ideal (α) is a principal
fractional ideal generated by α.

4.3 Algorithm for Evaluating Prime Degree Isogenies

The overall algorithm for evaluating prime degree isogenies is given in Algo-
rithm 4. This algorithm is identical to Algorithm 1, except that the factoriza-
tion of L is performed using Algorithm 3. To maintain consistency with [4], we
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Algorithm 3. “Factoring” a prime ideal
Input: A discriminant Δ, an elliptic curve E/Fq with End(E) = OΔ, a smoothness

bound N , a prime ideal L of norm 
 in OΔ, an extension degree n.
Output: Relation of the form L = (α) ·∏k

i=1 Iei
i , where (α) is a fractional ideal, Ii

are as in Algorithm 1, and ei > 0 are small and sparse.
1: Run Algorithm 2 on input Δ and N to obtain I = {p1, p2, . . . , pk} and F =

{f1, f2, . . . , fk}. Discard any primes dividing p · #E(Fqn) · [End(E) : Z[πq]].
2: Set pi ← Norm(pi). (These values are also calculated in Algorithm 2.)
3: Obtain the reduced quadratic form [L] corresponding to the ideal class of L.
4: repeat
5: for i = 1, . . . , k do
6: Pick exponents xi in the range [0, (N/pi)2] such that at most k0 are nonzero,

where k0 is a global absolute constant (in practice, k0 = 3 suffices).
7: end for
8: Compute the reduced quadratic form a = (a, b, c) for which the ideal class [a] is

equivalent to [L] ·∏k
i=1 fxi

i .
9: until The integer a factors completely into the primes pi, and the relation derived

from [a] = [L] ·∏k
i=1 fxi

i contains fewer than
√

log(|Δ|/3)/z nonzero exponents.
10: Write a =

∏k
i=1 pui

i .
11: for i=1, . . . , k do
12: Using the technique of Seysen ([26, Theorem 3.1]), determine the signs of the

exponents yi = ±ui for which a =
∏k

i=1 fyi
i .

13: Let ei = yi − xi. (These exponents satisfy [L] =
∏k

i=1 fei
i .)

14: if ei ≥ 0 then
15: Set Ii ← p̄i

16: else
17: Set Ii ← pi

18: end if
19: end for
20: Compute the principal ideal I = L ·∏k

i=1 I
|ei|
i .

21: Using Cornacchia’s algorithm, find a generator β ∈ OΔ of I .
22: Set m ← ∏k

i=1 p
|ei|
i and α ← β

m
.

23: Output L = (α) · Ī |e1|
1 · Ī |e2|

2 · · · Ī |ek|
k .

have included the quantities Δ and End(E) as part of the input to the algo-
rithm. However, we remark that these quantities can be computed from E/Fq

in Lq(1
2 ,

√
3

2 ) operations using the algorithm of Bisson and Sutherland [1], even
if they are not provided as input.

4.4 Running Time Analysis

In this section, we determine the theoretical running time of Algorithm 4, as well
as the optimal value of the smoothness bound N to use in line 1 of the algorithm.
As is typical for subexponential time factorization algorithms involving a factor
base, these two quantities depend on each other, and hence both are calculated
simultaneously.
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Algorithm 4. Evaluating prime degree isogenies
Input: A discriminant Δ, an elliptic curve E/Fq with End(E) = OΔ and a point P ∈

E(Fqn) such that [End(E) : Z[πq ]] and #E(Fqn) are coprime, and an End(E)-ideal
L = (
, c+dπq) of prime norm 
 �= char(Fq) not dividing the index [End(E) : Z[πq ]].

Output: The unique elliptic curve E′ admitting a normalized isogeny φ : E → E′ with
kernel E[L], and the x-coordinate of φ(P ) for Δ �= −3,−4 and the square (resp.
cube) of the x-coordinate otherwise.

1: Choose a smoothness bound N (see Section 4.4).
2: Using Algorithm 3 on input (Δ, E, N, L, n), obtain a factorization of the form

L = Ie1
1 · Ie2

2 · · · Iek
k · (α).

3: Compute a sequence of isogenies (φ1, . . . , φs) such that the composition φc : E →
Ec has kernel E[Ie1

1 · Ie2
2 · · · Iek

k ] using the method of [4, § 3].
4: Evaluate φc(P ) ∈ Ec(Fqn).
5: Write α = (u + vπq)/(zm). Compute the isomorphism η : Ec

∼→ E′ with η∗(ωE′) =
(u/zm)ωEc . Compute Q = η(φc(P )).

6: Compute (zm)−1 mod #E(Fqn), and compute R = ((zm)−1(u + vπq))(Q).
7: Put r = x(R)|OΔ|∗/2 and return (E′, r).

As in [9], we define2 Ln(α, c) by

Ln(α, c) = O(exp((c + o(1))(log(n))α(log(log(n)))1−α)).

The quantity Ln(α, c) interpolates between polynomial and exponential size as
α ranges from 0 to 1. We set N = L|Δ|(1

2 , z) for an unspecified value of z, and in
the following paragraphs we determine the optimal value of z which minimizes
the running time of Algorithm 4. (The fact that α = 1

2 is optimal is clear from
the below analysis, as well as from prior experience with integer factorization
algorithms.) For convenience, we will abbreviate L|Δ|(α, c) to L(α, c) throughout.

Line 2 of Algorithm 4 involves running Algorithm 3, which in turn calls Al-
gorithm 2. As it turns out, Algorithm 2 is almost the same as Algorithm 11.1
from [6], which requires L(1

2 , z) time, as shown in [6]. The only difference is that
we add an additional step where we obtain the quadratic form corresponding to
each prime ideal in the factor base. This extra step requires O(log(Norm(I))1+ε)
time for a prime ideal I, using Cornacchia’s Algorithm [19]. Thus, the overall
running time for Algorithm 2 is bounded above by

L(1
2 , z) · log(L(1

2 , z))
1+ε = L(1

2 , z).

Line 2 of Algorithm 3 takes log(�) time using standard algorithms [12]. The
loop in lines 4–9 of Algorithm 3 is very similar to the FindRelation algorithm
in [1], except that we only use one discriminant, and we omit the requirement
that #R/D1 > #R/D2 (which in any case is meaningless when there is only
one discriminant). Needless to say, this change can only speed up the algorithm.

2 The definition of Ln(α, c) in [6] differs from that of [9] in the o(1) term. We account
for this discrepancy in our text.
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Taking μ =
√

2z in [1, Prop. 6], we find that the (heuristic) expected running
time of the loop in lines 4–9 of Algorithm 3 is L(1

2 ,
1
4z ).

The next step in Algorithm 3 having nontrivial running time is the computa-
tion of the ideal product in line 20. To exponentiate an element of an arbitrary
semigroup to a power e requires O(log e) semigroup multiplication operations [10,
§1.2]. To multiply two ideals I and J in an imaginary quadratic order (via com-
position of quadratic forms) requires O(max(log(Norm(I)), log(Norm(J)))1+ε)
bit operations using fast multiplication [24, §6]. Each of the expressions |Ii||ei|

therefore requires O(log |ei|) ideal multiplication operations to compute, with
each individual multiplication requiring

O((|ei| log(Norm(Ii)))1+ε) = O

⎛⎝((N

pi

)2

log(pi)

)1+ε
⎞⎠ = O(N2+ε)

bit operations, for a total running time of (log ei)O(N2+ε) = L(1
2 , 2z) for each i.

This calculation must be performed once for each nonzero exponent ei. By
line 9, the number of nonzero exponents appearing in the relation is at most√

log(|Δ|/3)/z, so the amount of time required to compute all of the |Ii||ei| for
all i is (

√
log(|Δ|/3)/z)L(1

2 , 2z) = L(1
2 , 2z). Afterward, the values |Ii||ei| must

all be multiplied together, a calculation which entails at most
√

log(|Δ|/3)/z
ideal multiplications where the log-norms of the input multiplicands are bounded
above by

log Norm(I |ei|
i ) = |ei| log Norm(Ii) ≤

(
N

pi

)2

log pi ≤ N2 = L(1
2 , 2z),

and thus each of the (at most)
√

log(|Δ|/3)/z multiplications in the ensuing
product can be completed in time at most (

√
log(|Δ|/3)/z)L(1

2 , 2z) = L(1
2 , 2z).

Finally, we must multiply this end result by L, an operation which requires
O(max(log �, L(1

2 , 2z))
1+ε) time. All together, the running time of step 20 is

L(1
2 , 2z)+O(max(log �, L(1

2 , 2z))
1+ε) = max((log �)1+ε, L(1

2 , 2z)), and the norm
of the resulting ideal I is bounded above by � · exp(L(1

2 , 2z)).
Obtaining the generator β of I in line 21 of Algorithm 3 using Cornacchia’s

algorithm requires

O(log(Norm(I))1+ε) = (log � + L(1
2 , 2z))

1+ε

time. We remark that finding β given I is substantially easier than the usual Cor-
nacchia’s algorithm, which entails finding β given only Norm(I). The usual algo-
rithm requires finding all the square roots of Δ modulo Norm(I), which is very
slow when Norm(I) has a large number of prime divisors. This time-consuming
step is unnecessary when the ideal I itself is given, since the embedding of the
ideal I in End(E) already provides (up to sign) the correct square root of Δ
mod I. A detailed description of this portion of Cornacchia’s algorithm in the
context of the full algorithm, together with running time figures specific to each
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sub-step, is given by Hardy et al. [19]; for our purposes, the running time of a
single iteration of Step 6 in [19, §4] is the relevant figure. This concludes our
analysis of Algorithm 3.

Returning to Algorithm 4, we find that (as in [4]) the computation of the indi-
vidual isogenies φi in line 3 of Algorithm 4 is limited by the time required to com-
pute the modular polynomials Φn(x, y). Using the Chinese remainder theorem-
based method of Bröker et al. [5], these polynomials can be computed mod q in
time O(n3 log3+ε(n)), and the resulting polynomials require O(n2(log2 n+log q))
space. For each ideal Ii, the corresponding modular polynomial of level pi only
needs to be computed once, but the polynomial once computed must be eval-
uated, differentiated, and otherwise manipulated ei times, at a cost of O(p2+ε

i )
field operations in Fq per manipulation, or O(p2+ε

i )(log q)1+ε bit operations using
fast multiplication. The total running time of line 3 is therefore

O(p3+ε
i ) +

∑
i

|ei|p2+ε
i (log q)1+ε ≤ O(N3+ε) +

∑
i

((
N

pi

)2
)

p2+ε
i (log q)1+ε

≤ O(N3+ε) +

√
log(|Δ|/3)

z
N2+ε(log q)1+ε = L(1

2 , 3z) + L(1
2 , 2z)(log q)1+ε.

Similarly, the evaluation of φc in line 4 requires∑
i

|ei|p2+ε
i = L(1

2 , 2z)

field operations in Fqn , which corresponds to L(1
2 , 2z)(log qn)1+ε bit operations

using fast multiplication.
Combining all the above quantities, we obtain a total running time of

L(1
2 , z) (algorithm 2)

+ L(1
2 ,

1
4z ) (lines 4–9, algorithm 3)

+ max((log �)1+ε, L(1
2 , 2z)) (line 20, algorithm 3)

+ (log � + L(1
2 , 2z))

1+ε (line 21, algorithm 3)

+ L(1
2 , 3z) + L(1

2 , 2z)(log q)1+ε (line 3, algorithm 4)

+ L(1
2 , 2z)(log qn)1+ε (line 4, algorithm 4)

= L(1
2 ,

1
4z ) + (log � + L(1

2 , 2z))
1+ε + L(1

2 , 3z) + L(1
2 , 2z)(log qn)1+ε.

When |Δ| is large, we may impose the reasonable assumption that log(�) %
L(1

2 , z) and log(qn) % L(1
2 , z). In this case, the running time of Algorithm 4 is

dominated by the expression L(1
2 ,

1
4z ) + L(1

2 , 3z), which attains a minimum at
z = 1

2
√

3
. Taking this value of z, we find that the running time of Algorithm 4

is equal to L|Δ|(1
2 ,

√
3

2 ). Since the maximum value of |Δ| ≤ |Δπ| = 4q− t2 is 4q,
we can alternatively express this running time as simply Lq(1

2 ,
√

3
2 ).
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In the general case, log(�) and log(qn) might be non-negligible compared to
L(1

2 , z). This can happen in one of two ways: either |Δ| is small, or (less likely)
� is very large and/or n is large. When this happens, we can still bound the
running time of Algorithm 4 by taking z = 1

2
√

3
in the foregoing calculation,

although such a choice may fail to be optimal. We then find that the running
time of Algorithm 4 is bounded above by

(log(�) + L(1
2 ,

1√
3
))1+ε + L(1

2 ,
√

3
2 ) + L(1

2 ,
1√
3
)(log qn)1+ε.

We summarize our results in the following theorem.

Theorem 4.1. Let E/Fq be an ordinary elliptic curve with Frobenius πq, given
by a Weierstrass equation, and let P ∈ E(Fqn) be a point on E. Let Δ =
disc(End(E)) be given. Assume that [End(E) : Z[πq ]] and #E(Fqn) are coprime,
and let L = (�, c + dπq) be an End(E)-ideal of prime norm � �= char(Fq) not
dividing the index [End(E) : Z[πq]]. Under the heuristics of [1, §4], Algorithm 4
computes the unique elliptic curve E′ such that there exists a normalized isogeny
φ : E → E′ with kernel E[L]. Furthermore, it computes the x-coordinate of φ(P )
if End(E) does not equal Z[i] or Z[ζ3] and the square, respectively cube, of the
x-coordinate of φ(P ) otherwise. The running time of the algorithm is bounded
above by

(log(�) + L(1
2 ,

1√
3
))1+ε + L(1

2 ,
√

3
2 ) + L(1

2 ,
1√
3
)(log qn)1+ε.

The running time of the algorithm is subexponential in log |Δ|, and polynomial
in log(�), log(q), and n.

5 Examples

5.1 Small Example

Let p = 1010+19 and let E/Fp be the curve y2 = x3+15x+129. Then E(Fp) has
cardinality 10000036491 = 3 · 3333345497 and trace t = −36471. To avoid any
bias in the selection of the prime �, we set � to be the smallest Elkies prime of
E larger than p/2, namely � = 5000000029. We will evaluate the x-coordinate of
φ(P ), where φ is an isogeny of degree �, and P is chosen arbitrarily to be the point
(5940782169, 2162385016) ∈ E(Fp). We remark that, although this example is
designed to be artificially small for illustration purposes, the evaluation of this
isogeny would already be infeasible if we were using prior techniques based on
modular functions of level �.

The discriminant Δ of E is Δ = t2 − 4p = −38669866235. Set w = 1+
√

Δ
2

and O = OΔ. The quadratic form (5000000029,−2326859861, 270713841) rep-
resents a prime ideal L of norm �, and we show how to calculate the isogeny φ
having kernel corresponding to E[L]. Using an implementation of Algorithm 3
in MAGMA [22], we find immediately the relation L = ( β

m ) · p19 · p24
31
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where β = 588048307603210005w− 235788727470005542279904, m = 19 · 3124,
p19 = (19, 2w + 7), and p31 = (31, 2w + 5). Using this factorization, we can then
evaluate φ : E → E′ using the latter portion of Algorithm 4. We find that E′ is
the curve with Weierstrass equation y2 = x3 + 3565469415x+ 7170659769, and
φ(P ) = (7889337683,±3662693258). We omit the details of these steps, since
this portion of the algorithm is identical to the algorithm of Bröker, Charles
and Lauter, and the necessary steps are already extensively detailed in their
article [4].

We can check our computations for consistency by performing a second com-
putation, starting from the curve E′ : y2 = x3 +3565469415x+ 7170659769, the
point P ′ = (7889337683, 3662693258) ∈ E′(Fp), and the conjugate ideal L̄, which
is represented by the quadratic form (5000000029, 2326859861, 270713841). Let
φ̄ : E′ → E′′ denote the unique normalized isogeny with kernel E′[L̄]. Up to
a normalization isomorphism ι : E → E′′, the isogeny φ̄ should equal the dual
isogeny φ̂ of φ, and the composition φ̄(φ(P )) should yield ι(�P ). Indeed, upon
performing the computation, we find that E′′ has equation

y2 = x3 + (15/�4)x + (129/�6),

which is isomorphic to E via the isomorphism ι : E → E′′ defined by ι(x, y) =
(x/�2, y/�3), and

φ̄(φ(P )) = (3163843645, 8210361642) = (5551543736/�2, 6305164567/�3),

in agreement with the value of �P , which is (5551543736, 6305164567).

5.2 Medium Example

Let E be the ECCp-109 curve [8] from the Certicom ECC Challenge [7], with
equation y2 = x3 + ax + b over Fp where

p = 564538252084441556247016902735257
a = 321094768129147601892514872825668
b = 430782315140218274262276694323197

As before, to avoid any bias in the choice of �, we set � to be the least Elkies prime
greater than p/2, and we define w = 1+

√
Δ

2 where Δ = disc(End(E)). Let L be
the prime ideal of norm � in End(E) corresponding to the reduced quadratic form
(�, b, c) of discriminant Δ, where b = −105137660734123120905310489472471.
For each Elkies prime p, let pp denote the unique prime ideal corresponding to
the reduced quadratic form (p, b, c) where b ≥ 0. Our smoothness bound in this
case is N = L(1

2 ,
1

2
√

3
) ≈ 200. Using Sutherland’s smoothrelation package [28],

which implements the FindRelation algorithm of [1], one finds in a few seconds
(using an initial seed of 0) the relation L =

(
β
m

)
I, where

I = p̄72
7 p̄100

13 p̄14
23p̄

2
47p̄

2
73p̄103p179p191

m = 772131002314472732103117911911
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and

β = 3383947601020121267815309931891893555677440374614137047492987151\
2226041731462264847144426019711849448354422205800884837
− 1713152334033312180094376774440754045496152167352278262491589014\
097167238827239427644476075704890979685 · w

We find that the codomain E′ of the normalized isogeny φ : E → E′ of kernel
E[L] has equation y2 = x3 + a′x + b′ where

a′ = 84081262962164770032033494307976
b′ = 506928585427238387307510041944828

and that the base point

P = (97339010987059066523156133908935, 149670372846169285760682371978898)

of E given in the Certicom ECC challenge has image

(450689656718652268803536868496211, ±345608697871189839292674734567941).

under φ. As with the first example, we checked the computation for consistency
by using the conjugate ideal.

5.3 Large Example

Let E be the ECCp-239 curve [8] from the Certicom ECC Challenge [7]. Then
E has equation y2 = x3 + ax + b over Fp where

p=862591559561497151050143615844796924047865589835498401307522524859467869

a=820125117492400602839381236756362453725976037283079104527317913759073622

b=545482459632327583111433582031095022426858572446976004219654298705912499

Let L be the prime ideal whose norm is the least Elkies prime greater than
p/2 and whose ideal class is represented by the quadratic form (�, b, c) with
b ≥ 0. We have N = L(1

2 ,
1

2
√

3
) ≈ 5000, and one finds in a few hours using

smoothrelation [28] that L is equivalent to

I = p̄2
7p11p19p

2
37p̄

2
71p̄131p211p̄389p̄433p̄467p̄

18
859p863p̄1019p̄1151p̄1597p̄

6
2143p̄

5
2207p̄3359

where each ideal pp is represented by the reduced quadratic form (p, b, c) having
b ≥ 0 (this computation can be reconstructed with [28] using the seed 7). The
quotient L/I is generated by β/m where m = Norm(I) and β is

−923525986803059652225406070265439117913488592374741428959120914067053307\
4585317 − 917552768623818156695534742084359293432646189962935478129227909w.
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Given this relation, evaluating isogenies of degree � is a tedious but routine com-
putation using Elkies-Atkin techniques [4, §3.1]. Although we do not complete
it here, the computation is well within the reach of present technology; indeed,
Bröker et al. [5] have computed classical modular polynomials mod p of level up
to 20000, well beyond the largest prime of 3389 appearing in our relation.

6 Related Work

Bisson and Sutherland [1] have developed an algorithm to compute the endo-
morphism ring of an elliptic curve in subexponential time, using relation-finding
techniques which largely overlap with ours. Although our main results were ob-
tained independently, we have incorporated their ideas into our algorithm in
several places, resulting in a simpler presentation as well as a large speedup
compared to the original version of our work.

Given two elliptic curves E and E′ over Fq admitting a normalized isogeny
φ : E → E′ of degree �, the equation of φ as a rational function contains O(�)
coefficients. Bostan et al. [3] have published an algorithm which produces this
equation, given E, E′, and �. Their algorithm has running time O(�1+ε), which
is quasi-optimal given the size of the output. Using our algorithm, it is possible
to compute E′ from E and � in time log(�)L|Δ|(1

2 ,
√

3
2 ) for large �. Hence the

combination of the two algorithms can produce the equation of φ within a quasi-
optimal running time of O(�1+ε), given only E and � (or E and L), without the
need to provide E′ in the input.
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Abstract. This paper revisits a model for elliptic curves over Q intro-
duced by Huff in 1948 to study a diophantine problem. Huff’s model
readily extends over fields of odd characteristic. Every elliptic curve over
such a field and containing a copy of Z/4Z × Z/2Z is birationally equiv-
alent to a Huff curve over the original field.

This paper extends and generalizes Huff’s model. It presents fast ex-
plicit formulæ for point addition and doubling on Huff curves. It also
addresses the problem of the efficient evaluation of pairings over Huff
curves. Remarkably, the so-obtained formulæ feature some useful prop-
erties, including completeness and independence of the curve parameters.

Keywords: Elliptic curves, Huff’s model, unified addition law, com-
plete addition law, explicit formulæ, scalar multiplication, Tate pairing,
Miller’s algorithm.

1 Introduction

Elliptic curves have been extensively studied in algebraic geometry and number
theory since the middle of the nineteenth century. More recently, they have
been used to devise efficient algorithms for factoring large integers [19,22] or
for primality proving [2,13,23]. They also revealed useful in the construction of
cryptosystems [18,20].

In this paper, we develop an elliptic curve model introduced by Huff in 1948
to study a diophantine problem. We present fast explicit formulæ for adding or
doubling points on Huff curves. We also devise a couple of extensions and general-
izations upon this model. We analyze the impact of these curves in cryptographic
applications. Some of our addition formulæ are unified; i.e., they remain valid for
doubling a point. Even better, they achieve completeness (i.e., are valid for all
inputs) when restricted to a cyclic subgroup, as is customary in cryptographic
settings. We also consider the problem of pairing computation over Huff curves.
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1.1 Background

Elliptic curves and cryptography. In 1985, Koblitz [18] and Miller [20] indepen-
dently proposed the use of elliptic curves in public-key cryptography. The main
advantage of elliptic curve systems stems from the absence of a subexponential-
time algorithm to compute discrete logarithms on general elliptic curves over
finite fields. Consequently, one can use an elliptic curve group that is smaller in
size compared with systems based on either integer factorization or the discrete
log problem in the multiplicative group of a finite field, while maintaining the
same (heuristic) level of security (see [17] for a recent survey on elliptic curve
cryptography).

The use of elliptic curves in cryptography makes the key sizes smaller but
the arithmetic of the underlying group is more tedious (for example, with the
widely-used Jacobian coordinates, the general addition of two points on an ellip-
tic curve typically requires 16 field multiplications). Therefore a huge amount of
research has been devoted to the analysis of the performance of various forms of
elliptic curves proposed in the mathematical literature: Weierstraß cubics, Jacobi
intersections, Hessian curves, Jacobi quartics, or the more recent forms of elliptic
curves due to Montgomery, Doche-Icart-Kohel or Edwards (see [6] for an encyclo-
pedic overview of these models). For instance, since 2007, there has been a rapid
development of the curves introduced by Edwards in [12] and their use in cryptol-
ogy. Bernstein and Lange proposed a more general version of these curves in [7]
and the inverted Edwards coordinates in [8]. Bernstein, Birkner, Joye, Lange,
and Peters studied twisted Edwards curves in [5]. Hisil, Wong, Carter and Daw-
son proposed extended twisted Edwards coordinates in [14]. Bernstein, Lange,
and Farashahi covered the binary case in [9]. The first formulæ for computing
pairings over Edwards curves were published by Das and Sarkar [11]. They were
subsequently improved by Ionica and Joux [16]. The best implementation to
date is due to Arène, Lange, Naehrig, and Ritzenhaler [1]. The present paper is
aimed at providing a similar study for a forgotten model of elliptic curves hinted
by Huff in 1948.

A diophantine problem. Huff [15] considered rational distance sets S (i.e., subsets
S of the plane R2 such that for all s, t ∈ S, the distance between s and t is a
rational number) of the following form: given distinct a, b ∈ Q, S contains the
four points (0,±a) and (0,±b) on the y-axis, plus points (x, 0) on the x-axis, for
some x ∈ Q. Such a point (x, 0) must then satisfy the equations x2+a2 = u2 and
x2 + b2 = v2 with u, v ∈ Q. The system of associated homogeneous equations
x2 + a2z2 = u2 and x2 + b2z2 = v2 defines a curve of genus 1 in P3. Huff, and
later his student Peeples [24], provided examples where this curve has positive
rank over Q, thus exhibiting examples of arbitrarily large rational distance sets
of cardinality k > 4 such that exactly k − 4 points are on one line.

The above mentioned genus 1 curve is birationally equivalent to the curve

ax(y2 − 1) = by(x2 − 1) (1)

for some parameters a and b in Q. It is easily seen that, over any field K of
odd characteristic, Equation (1) defines an elliptic curve if a2 �= b2 and a, b �= 0.
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Indeed, if ab �= 0, the gradient of the curve F (X,Y, Z) = aX(Y 2−Z2)−bY (X2−
Z2) in the projective plane P2(K) is(
∂F

∂X
,
∂F

∂Y
,
∂F

∂Z

)
=
(
a(Y 2 −Z2)− 2bXY, 2aXY − b(X2 −Z2), 2(−aX + bY )Z

)
,

which does not vanish at the three points at infinity (1 : 0 : 0), (0 : 1 : 0) and
(a : b : 0) and vanishes at a finite point (x : y : 1) if and only if ax = by,
which together with Eq. (1) implies that x2 = y2 and therefore a2 = b2. It is
worth noting that in characteristic 2, the point (1 : 1 : 1) is always singular and
therefore the family of curves defined by (1) does not contain any smooth curve.
As will be shown in Section 3, we can extend our study to even characteristic
by considering a generalized model.

1.2 Contributions of the Paper

Our first contribution is a detailed study of Huff’s form for elliptic curves over
finite fields of odd characteristic and a statement of the addition law in these
groups. We show in particular that all elliptic curves over non-binary finite fields
with a subgroup isomorphic to Z/4Z×Z/2Z can be transformed to Huff’s form.
We then analyze their arithmetic and investigate several generalizations and
extensions. In particular, we present explicit formulæ (i.e., as a series of field
operations) that

– compute a complete addition (X1 : Y1 : Z1) ⊕ (X2 : Y2 : Z2) using 12m;
– compute a unified addition (X1 : Y1 : Z1) ⊕ (X2 : Y2 : Z2) using 11m;
– compute a mixed addition (X1 : Y1 : Z1) ⊕ (X2 : Y2 : 1) using 10m;
– compute a doubling [2](X1 : Y1 : Z1) using 6m + 5s

where m and s denote multiplications and squarings in the base field K.
As a further contribution, since bilinear pairings have found numerous appli-

cations in cryptography, we also present formulæ for computing Tate pairings
using Huff’s form. Specifically, we present explicit formulæ that

– compute a full Miller addition using 1M + (k + 15)m;
– compute a mixed Miller addition using 1M + (k + 13)m;
– compute a Miller doubling using 1M + 1S + (k + 11)m + 6s

on a Huff curve over K = Fq of embedding degree k. M and S denote multipli-
cations and squarings in the larger field Fqk while m and s are operations in Fq

as before.

Outline. The rest of this paper is organized as follows. The next section intro-
duces Huff’s model. We develop efficient unified addition formulæ and discuss
the applicability of the model. We explicit the class of elliptic curves covered by
Huff’s model. In Section 3, we present several generalizations and extensions. We
offer dedicated addition formulæ. We generalize Huff’s model to cover a larger
class of elliptic curves. We also extend the model to the case of binary fields.
Section 4 deals with pairings over Huff curves. We exploit the relative simplicity
of the underlying group law to devise efficient formulæ for the evaluation of the
Tate pairing. Finally, we conclude in Section 5.
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2 Huff’s Model

Let K denote a field of characteristic �= 2. Consider the set of projective points
(X : Y : Z) ∈ P2(K) satisfying the equation

E/K : aX(Y 2 − Z2) = bY (X2 − Z2) (2)

where a, b ∈ K× and a2 �= b2. This form is referred to as Huff’s model of an
elliptic curve.

Fig. 1. Example of a Huff curve (over R)

The tangent line at (0 : 0 : 1) is aX = bY , which intersects the curve with
multiplicity 3, so that O = (0 : 0 : 1) is an inflection point of E. (E,O) is
therefore an elliptic curve with O as neutral element and whose group law,
denoted ⊕, has the following property: for any line intersecting the cubic curve
E at the three points P1, P2 and P3 (counting multiplicities), we have P1 ⊕
P2 ⊕ P3 = O. In particular, the inverse of point P1 = (X1 : Y1 : Z1) is &P1 =
(X1 : Y1 : −Z1) and the sum of P1 and P2 is P1 ⊕ P2 = &P3. We note that a
point at infinity is its own inverse. Hence, the three points at infinity (i.e., on
the line Z = 0 in P2) —namely, (1 : 0 : 0), (0 : 1 : 0) and (a : b : 0), are exactly
the three primitive 2-torsion points of E. The sum of any two of them is equal
to the third one. More generally, (X1 : Y1 : Z1) ⊕ (1 : 0 : 0) is the inverse of the
point of intersection of the “horizontal” line passing through (X1 : Y1 : Z1) with
E. When Z1 �= 0, we have

(X1 : Y1 : Z1) ⊕ (1 : 0 : 0) = (Z1
2 : −X1Y1 : X1Z1) ,

and analogously,

(X1 : Y1 : Z1) ⊕ (0 : 1 : 0) = (−X1Y1 : Z1
2 : Y1Z1) .
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From (a : b : 0) = (1 : 0 : 0)⊕(0 : 1 : 0), when Z1 �= 0, we get (X1 : Y1 : Z1)+(a :
b : 0) = (Z1

2 : −X1Y1 : X1Z1) ⊕ (0 : 1 : 0) and therefore

(X1 : Y1 : Z1) ⊕ (a : b : 0) =

{
(a : b : 0) if (X1 : Y1 : Z1) = (0 : 0 : 1)
(Y1Z1 : X1Z1 : −X1Y1) otherwise

.

We remark that adding (a : b : 0) to any of the points (±1 : ±1 : 1) transforms
it into its inverse. It follows that these four points are the four solutions to the
equation [2]P = (a : b : 0) and so are primitive 4-torsion points. The eight
remarkable points we identified form a subgroup isomorphic to Z/4Z × Z/2Z.
When K = Q, this must be the full torsion since, according to a theorem by
Mazur, the torsion subgroup is of order at most 12 (and thus exactly 8 here).

Remark 1. In [15, p. 445], it is noted that the inverse projective transformations

Υ : P2(K) → P2(K) :

(X : Y : Z) �→ (U : V : W ) =
(
ab(bX − aY ) : ab(b2 − a2)Z : −aX + bY

)
and

Υ−1 : P2(K) → P2(K) :

(U : V : W ) �→ (X : Y : Z) =
(
b(U + a2W ) : a(U + b2W ) : V

)
induce a correspondence between Eq. (2) and the Weierstraß equation

V 2W = U(U + a2W )(U + b2W ) .

Observe that point at infinity (0 : 1 : 0) on the Weierstraß curve is mapped
to (0 : 0 : 1) on the Huff curve through Υ−1. Observe also that map Υ−1 is a
line-preserving transformation. This is another way to see that the group law on
a Huff curve E follows the chord-and-tangent rule [25, § 2] with O = (0 : 0 : 1)
as neutral element.

2.1 Affine Formulæ

We give explicit formulæ for the group law. Excluding the 2-torsion, we use the
non-homogeneous form ax(y2 − 1) = by(x2 − 1). Let y = λx + μ denote the
secant line passing through two different points P1 = (x1, y1) and P2 = (x2, y2).
This line intersects the curve at a third point &P3 = (−x3,−y3). Plugging the
line equation into the curve equation, we get

ax
(
(λx+μ)2−1

)
= b(λx+μ)(x2−1) =⇒ λ(aλ−b)x3 +μ(2aλ−b)x2+ · · · = 0 .

Whenever defined, we so obtain⎧⎨⎩x3 = x1 + x2 +
μ(2aλ− b)
λ(aλ− b)

y3 = λx3 − μ
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with λ =
y1 − y2

x1 − x2
and μ = y1 − λx1. After simplification, we have

x3 = x1 + x2 +
(x1y2 − x2y1)

(
2a(y1 − y2) − b(x1 − x2)

)
(y1 − y2)

(
a(y1 − y2) − b(x1 − x2)

)
=

(x1 − x2)
(
a(y1

2 − y2
2) − b(x1y1 − x2y2)

)
(y1 − y2)

(
a(y1 − y2) − b(x1 − x2)

)
and

y3 = −
(y1 − y2)

(
b(x1

2 − x2
2) − a(x1y1 − x2y2)

)
(x1 − x2)

(
a(y1 − y2) − b(x1 − x2)

) .

The above formulæ can be further simplified by reusing the curve equation. A
simple calculation shows that(

a(y1 − y2) − b(x1 − x2)
)
(x1 + x2)y1y2 = a(x2y1 − x1y2)(y1y2 − 1) .

Hence, we can write

x3 = x1 + x2 −
(
2a(y1 − y2) − b(x1 − x2)

)
(x1 + x2)y1y2

(y1 − y2)a(y1y2 − 1)

= x1 + x2 −
x2y1 − x1y2

y1 − y2
− (x1 + x2)y1y2

y1y2 − 1

=
x1y1 − x2y2

y1 − y2
− (x1 + x2)y1y2

y1y2 − 1
.

Furthermore, as easily shown

b(x1y1 − x2y2)(x1x2 + 1) = (y1 − y2)
(
ax1x2(y1 + y2) + b(x1 + x2)

)
,

it thus follows that

x3 =
ax1x2(y1 + y2) + b(x1 + x2)

b(x1x2 + 1)
− (x1 + x2)y1y2

y1y2 − 1

=
(x1 + x2)(1 + y1y2)
(1 + x1x2)(1 − y1y2)

, (3)

since ax1x2(y1 + y2)(1 − y1y2) = by1y2(x1 + x2)(1 − x1x2).
Likewise, by symmetry, we have

y3 =
(y1 + y2)(1 + x1x2)
(1 − x1x2)(1 + y1y2)

. (4)

Equations (3) and (4) are defined whenever x1x2 �= ±1 and y1y2 �= ±1. Ad-
vantageously, curve parameters are not involved. Moreover, this addition law is
unified : it can be used to double a point (i.e., when P2 = P1).
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2.2 Projective Formulæ

Previous affine formulæ involve inversions in K. To avoid these operations and
get faster arithmetic, projective coordinates may be preferred.

We let m and s represent the cost of a multiplication and of a squaring in K,
respectively. The projective form of Eqs (3) and (4) is⎧⎪⎨⎪⎩

X3 = (X1Z2 + X2Z1)(Y1Y2 + Z1Z2)2(Z1Z2 −X1X2)
Y3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)2(Z1Z2 − Y1Y2)
Z3 = (Z1

2Z2
2 −X1

2X2
2)(Z1

2Z2
2 − Y1

2Y2
2)

. (5)

In more detail, this can be evaluated as

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2) −m1 −m3, m5 = (Y1 + Z1)(Y2 + Z2) −m2 −m3,

m6 = (m2 + m3)(m3 −m1), m7 = (m1 + m3)(m3 −m2),
m8 = m4(m2 + m3), m9 = m5(m1 + m3),
X3 = m8m6, Y3 = m9m7, Z3 = m6m7,

that is, with 12m.

2.3 Applicability

If (x1, y1) �= (0, 0) then (x1, y1) ⊕ (a : b : 0) = −( 1
x1

, 1
y1

). Observe that Equa-
tion (5) remains valid for doubling point (a : b : 0) or for adding point (a : b : 0)
to another finite point (i.e., which is not at infinity) different from O; we get
(X1 : Y1 : Z1)⊕ (a : b : 0) = (−Y1Z1 : −X1Z1 : X1Y1) as expected. The addition
formula is however not valid for adding (0 : 1 : 0) or (1 : 0 : 0). More generally,
we have:

Theorem 1. Let K be a field of characteristic �= 2. Let P1 = (X1 : Y1 : Z1)
and P2 = (X2 : Y2 : Z2) be two points on a Huff curve over K. Then the
addition formula given by Eq. (5) is valid provided that X1X2 �= ±Z1Z2 and
Y1Y2 �= ±Z1Z2.

Proof. If P1 and P2 are finite, we can write P1 = (x1, y1) and P2 = (x2, y2).
The above affine formula for (x3, y3) as given by Eqs (3) and (4) is defined
whenever x1x2 �= ±1 and y1y2 �= ±1. This translates into X1X2 �= ±Z1Z2 and
Y1Y2 �= ±Z1Z2 for their projective coordinates.

It remains to analyze points at infinity. The points with their Z-coordinate
equal to 0 are (1 : 0 : 0), (0 : 1 : 0) and (a : b : 0). If P1 or P2 ∈ {(1 : 0 :
0), (0 : 1 : 0)}, the condition X1X2 �= ±Z1Z2 and Y1Y2 �= ±Z1Z2 is not satisfied.
Suppose now P2 = (a : b : 0). The condition becomes X1 �= 0 and Y1 �= 0, which
corresponds to P1 /∈ {O, (1 : 0 : 0), (0 : 1 : 0)}. As aforementioned, the addition
law is then valid for adding P1 to (a : b : 0). ��
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The previous theorem says that the addition on a Huff curve is almost complete.
However, the exceptional inputs are easily prevented in practice. Cryptographic
applications typically involve (large) prime-order subgroups. More specifically,
we state:

Corollary 1. Let E be a Huff curve over a field K of odd characteristic. Let
also P ∈ E(K) be a point of odd order. Then the addition law in the subgroup
generated by P is complete.

Proof. All points in 〈P 〉 are of odd order and thus are finite (remember that
points at infinity are of order 2). It remains to show that for any points P1 =
(x1, y1),P2 = (x2, y2) ∈ 〈P 〉, we have x1x2 �= ±1 and y1y2 �= ±1. Note that
x1, y1, x2, y2 �= ±1 since this corresponds to points of order 4 (and thus not
in 〈P 〉). Suppose that x1x2 = ±1. Then ax1(y1

2 − 1) = by1(x1
2 − 1) =⇒

a 1
x1

(y1
2 − 1) = by1(1 − 1

x12 ) =⇒ ±ax2(y1
2 − 1) = −by1(x2

2 − 1). Hence, since
ax2(y2

2 − 1) = by2(x2
2 − 1), it follows that ∓y2(y1

2 − 1) = y1(y2
2 − 1) =⇒

(y1 ± y2)(1 ∓ y1y2) = 0 =⇒ y2 = ∓y1 or y1y2 = ±1. As a result, when
x1x2 = ±1, we have (x2, y2) ∈

{
( 1

x1
,−y1), ( 1

x1
, 1

y1
), (− 1

x1
, y1), (− 1

x1
,− 1

y1
)
}
. In

all cases, one of (x1, y1) ⊕ (x2, y2) or (x1, y1) & (x2, y2) is a 2-torsion point, a
contradiction. Likewise, it can be verified that the case y1y2 = ±1 leads to a
contradiction, which concludes the proof. ��

The completeness of the addition law is very useful as it yields a natural protec-
tion against certain side-channel attacks (e.g., see [10]). Another useful feature
is that the addition law is independent of the curve parameters.

2.4 Universality of the Model

The next theorem states that every elliptic curve over a field of characteristic
�= 2 containing a copy of Z/4Z×Z/2Z can be put in Huff’s form. Generalizations
and extensions are discussed in Section 3.

Theorem 2. Any elliptic curve (E,O) over a perfect field K of characteris-
tic �= 2 such that E(K) contains a subgroup G isomorphic to Z/4Z × Z/2Z is
birationally equivalent over K to a Huff curve.

Proof. The Riemann-Roch theorem implies that if D = a1P1 + · · · + arPr is a
divisor of degree 0 on E then the dimension of the vector space

L (D) = {f ∈ K(E)× | div(f) � −D} ∪ {0}

is equal to 1 when a1P1 ⊕ · · · ⊕ arPr = O, and to 0 otherwise.
Let H++,H+−,H−+ and H−− denote the four points of G of order ex-

actly 4 (with the convention H++ ⊕ H−− = O). Doubling these points pro-
duces a unique primitive 2-torsion point that we denote R. We further let P
and Q denote the other two 2-torsion points; say, P = &H++ ⊕ H+− and
Q = H++ ⊕ H+−. We have P ⊕ R & Q & O = O; so there exists a nonzero
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rational function x with divisor exactly Q + O − P − R. In particular, x is
well-defined and nonzero at H++ and thus without loss of generality we may
assume that x(H++) = 1. Similarly, there exists a rational function y with
divisor P + O − Q − R such that y(H++) = 1.

The rational function x−1 has the same poles as x and vanishes at H++. Its
divisor div(x− 1) is thus given by H++ + X −P −R for some point X. Since
this divisor is principal, we have H++⊕X &P &R = O. Hence, it follows that
X = P ⊕ R & H++ = &H++ ⊕ H+− ⊕ R &H++ = H+−. Consequently, we
have x(H+−) = 1. Likewise, it is verified that y(H−+) = 1.

Now, consider the map ι taking a rational function f to ιf : M �→ f(&M).
This is an endomorphism of the vector space L (P + R − Q − O). Indeed,
the poles of ιf are &P = P and &R = R and its zeros are &Q = Q and
&O = O. Moreover, since ι2 = id and since L (P + R − Q − O) is a one-
dimensional vector space, ι is the multiplication map by 1 or −1. The equality
ιx = x would imply x(H−−) = x(H++) = 1, which contradicts the previous
calculation of div(x − 1). As a result, we must have ιx = −x. In particular,
noting that H−+ = &H+−, we obtain

x(H−+) = ιx(H+−) = −x(H+−) = −1 ,

and similarly for H−−. Since x + 1 has the same poles as x, its divisor is then
given by div(x+1) = H−++H−−−P −R. Analogously, we obtain div(y+1) =
H+− + H−− − Q − R.

Finally, consider the rational functions u = x(y2 − 1) and v = y(x2 − 1). We
have:

div(u) = div(x) + div(y − 1) + div(y + 1)
= (Q + O − P − R) + (H++ + H−+ − Q − R) +

(H+− + H−− − Q − R)
= H++ + H+− + H−+ + H−− + O − P − Q − 3R

and
div(v) = div(y) + div(x− 1) + div(x + 1)

= (P + O − Q − R) + (H++ + H+− − P − R) +
(H−+ + H−− − P − R)

= H++ + H+− + H−+ + H−− + O − P − Q − 3R .

But the vector space L (P + Q+ 3R−O−H++ −H+− −H−+ −H−−) is of
dimension 1, so there exists a linear relation between u and v. In other words,
there exist a, b ∈ K× such that au = bv; i.e., such that ax(y2 − 1) = by(x2 − 1).

The rational map E → P2(K) given by M �→ (x(M ) : y(M) : 1) extends to a
morphism defined on all of E, and its image is contained in Ea,b in view of the
previous relation (and Ea,b itself is a smooth irreducible curve as seen in §1.1).
We therefore have a non-constant —and hence surjective— morphism of curves
E → Ea,b. Moreover, its degree is at most 1: indeed, if a point (x0 : y0 : 1) ∈
Ea,b(K) has two distinct pre-images M �= M ′ ∈ E(K), the functions x−x0 and
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y − y0 vanish at M and M ′. Since they have the same poles as x and y, their
divisors are respectively M +M ′ −P −R and M +M ′ −Q−R, which yields
P ⊕R = M ⊕M ′ = Q⊕R, a contradiction. As a surjective morphism of degree
1, the map E → Ea,b is thus an isomorphism. ��

3 Generalizations and Extensions

This section presents dedicated addition formulæ. It also presents a generaliza-
tion of the model as originally introduced by Huff so that it covers more curves
and extends to binary fields.

3.1 Faster Computations

Dedicated doubling. The doubling formula can be sped up by evaluating
squarings in K with a specialized implementation. The cost of a point doubling
then becomes 7m + 5s. When s > 3

4m, an even faster way for doubling a point
is given by

m1 = X1Y1, m2 = X1Z1, m3 = Y1Z1, s1 = Z1
2,

m4 = (m2 −m3)(m2 + m3), m5 = (m1 − s1)(m1 + s1),
m6 = (m1 − s1)(m2 −m3), m7 = (m1 + s1)(m2 + m3),

X([2]P1) = (m6 −m7)(m4 + m5), Y ([2]P1) = (m6 + m7)(m4 −m5),
Z([2]P1) = (m4 + m5)(m4 −m5),

that is, with 10m + 1s.

Moving the origin. Choosing O′ = (0 : 1 : 0) as the neutral element results in
translating the group law. If we let ⊕′ denote the corresponding point addition,
we have P1 ⊕′ P2 = (P1 &O′)⊕ (P2 &O′)⊕O′ = P1 ⊕P2 ⊕O′. Hence, we get⎧⎪⎨⎪⎩

X3 = (X1Z2 + X2Z1)(Y1Y2 + Z1Z2)(Y1Z2 + Y2Z1)
Y3 = (X1X2 − Z1Z2)(Z1

2Z2
2 − Y1

2Y2
2)

Z3 = (Y1Z2 + Y2Z1)(X1X2 + Z1Z2)(Y1Y2 − Z1Z2)
.

This can be evaluated with 11m as

m1 = X1X2, m2 = Y1Y2, m3 = Z1Z2,

m4 = (X1 + Z1)(X2 + Z2) −m1 −m3, m5 = (Y1 + Z1)(Y2 + Z2) −m2 −m3,

X3 = m4(m2 + m3)m5, Y3 = (m1 −m3)(m3 −m2)(m3 + m2),
Z3 = m5(m1 + m3)(m2 −m3) .

(6)
This addition formula is unified: it can be used for doubling as well.
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For a mixed point addition (i.e., when Z2 = 1), we have m3 = Z1 and the
number of required multiplications drops to 10m. When used for dedicated dou-
bling, the above addition formula requires 6m + 5s, which can equivalently be
obtained as

s1 = X1
2, s2 = Y1

2, s3 = Z1
2,

s4 = (X1 + Y1)2 − s1 − s2, s5 = (Y1 + Z1)2 − s2 − s3,

X([2]P1) = 2s3s4(s2 + s3), Y ([2]P1) = (s1 − s3)(s3 − s2)(s3 + s2),
Z([2]P1) = s5(s1 + s3)(s2 − s3) .

(7)

Note that the expression for the inverse of point P1 is unchanged: &′P1 =
&(P1 & O′) ⊕ O′ = &P1 = (X1 : Y1 : −Z1).

3.2 More Formulæ

Alternative addition formulæ can be derived using the curve equation. For ex-
ample, whenever defined, we can write (x3, y3) = (x1, y1) ⊕ (x2, y2) with

x3 =
(x1 − x2)(y1 + y2)
(y1 − y2)(1 − x1x2)

and y3 =
(y1 − y2)(x1 + x2)
(x1 − x2)(1 − y1y2)

.

In projective coordinates, this gives⎧⎪⎨⎪⎩
X3 = (X1Z2 −X2Z1)2(Y1Z2 + Y2Z1)(Z1Z2 − Y1Y2)
Y3 = (Y1Z2 − Y2Z1)2(X1Z2 + X2Z1)(Z1Z2 −X1X2)
Z3 = (X1Z2 −X2Z1)(Y1Z2 − Y2Z1)(Z1Z2 −X1X2)(Z1Z2 − Y1Y2)

,

which can be evaluated with 13m as

m1 = X1Z2, m2 = X2Z1, m3 = Y1Z2, m4 = Y2Z1,

m5 = (Z1 −X1)(Z2 + X2) + m1 −m2, m6 = (Z1 − Y1)(Z2 + Y2) + m3 −m4,

m7 = (m1 −m2)m6, m8 = (m3 −m4)m5,

X3 = (m1 −m2)(m3 + m4)m7, Y3 = (m1 + m2)(m3 −m4)m8, Z3 = m7m8 .

Although not as efficient as the usual addition, this alternative formula is useful
in some pairing computations (see Section 4.2).

3.3 Twisted Curves

As shown in Theorem 1, the group of points of a Huff elliptic curve contains a
copy of Z/4Z×Z/2Z. This implies that the curve order is a multiple of 8. Several
cryptographic standards, however, require elliptic curves with group order of the
form hn where h ∈ {1, 2, 3, 4} and n is a prime.

We can generalize Huff’s model to accommodate the case h = 4. Let P ∈ K[t]
denote a monic polynomial of degree 2, with non-zero discriminant, and such
that P(0) �= 0. We can then introduce the cubic curve

axP(y) = byP(x)
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where a, b ∈ K×. The set of points {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (a : b : 0)} ∼=
Z/2Z×Z/2Z belongs to the curve. Moreover, when P factors in K — i.e., when
P(t) = (t − ω1)(t − ω2) with ω1, ω2 ∈ K×, the four points (±ω1 : ±ω2 : 1) are
also on the curve.

When Char K �= 2, we consider P(t) = t2 − d for some d ∈ K×. So we deal
with the set of projective points (X : Y : Z) ∈ P2(K) satisfying the non-singular
cubic equation

Êd : aX(Y 2 − dZ2) = bY (X2 − dZ2) (8)

where a, b, d ∈ K× and a2 �= b2. This equation corresponds to Weierstraß equa-
tion V 2W = U(U + a2

d W )(U + b2

d W ) under the inverse transformations (X : Y :
Z) =

(
b(dU + a2W ) : a(dU + b2W ) : dV

)
and (U : V : W ) =

(
ab(bX − aY ) :

ab(b2 − a2)Z : d(−aX + bY )
)
. The transformation (X : Y : Z) ← (X : Y : Z

√
d)

induces an isomorphism from E = Ê1 to Êd over K(
√
d). Curves Êd are therefore

quadratic twists of Huff curves.
In affine coordinates, we consider the curve equation ax(y2 − d) = by(x2 − d).

The sum of two finite points P1 = (x1, y1) and P2 = (x2, y2) such that x1x2 �=
±d and y1y2 �= ±d is given by (x3, y3) where

x3 =
d(x1 + x2)(d + y1y2)
(d + x1x2)(d− y1y2)

and y3 =
d(y1 + y2)(d + x1x2)
(d− x1x2)(d + y1y2)

. (9)

Extending the computations of § 2.2, it is readily verified that the sum of two
points can be evaluated with 12m (plus a couple of multiplications by constant
d) using projective coordinates. The faster computations of the previous section
also generalize to twisted curves.

3.4 Binary Fields

Huff’s form can be extended to a binary field as

ax(y2 + y + 1) = by(x2 + x + 1) .

This curve is birationally equivalent to Weierstraß curve

v(v + (a + b)u) = u(u + a2)(u + b2)

under the inverse maps

(x, y) =
(
b(u + a2)

v
,

a(u + b2)
v + (a + b)u

)
and (u, v) =

(
ab

xy
,
ab(axy + b)

x2y

)
.

The neutral element is O = (0, 0).

4 Pairings

4.1 Preliminaries

Let (E,O) be an elliptic curve over K = Fq, with q odd. Suppose that #E(Fq) =
hn where n is a prime such that gcd(n, q) = 1. Let further k denote the
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embedding degree with respect to n, namely the smallest extension Fqk of Fq

containing all n-th roots of unity. In other words, k is the smallest positive inte-
ger k such that n | qk − 1. For better efficiency, we further assume that k > 1 is
even.

For any point P ∈ E(Fq)[n], we let fP denote a rational function on E
defined over Fq such that div(fP ) = nP − nO; it exists and is unique up to a
multiplicative constant, according to the Riemann-Roch theorem. The group of
n-th roots of unity in Fqk is denoted by μn. The (reduced) Tate pairing is then
defined as

Tn : E(Fq)[n] × E(Fqk)/[n]E(Fqk) → μn : (P ,Q) �→ fP (Q)(q
k−1)/n .

This definition does not depend on the choice of fP with the appropriate divisor,
nor on the class of Q mod [n]E(Fqk).

In practice, Tn can be computed using a technique due to Miller [21], in terms
of rational functions gR,P depending on P and on a variable point R. Function
gR,P is the so-called line function with divisor R + P − O − (R ⊕ P ), which
arises in addition formulæ when E is represented as a plane cubic. The core idea
is to derive function fP iteratively. Letting fi,P be the function with divisor
div(fi,P ) = iP − ([i]P ) − (i− 1)O, it is easily verified that

fi+j,P = fi,P · fj,P · g[i]P ,[j]P .

Observe that f1,P = 1 and fn,P = fP . Hence, if n = n�−1n�−1 · · ·n02 is the
binary representation of n, the Tate pairing can be computed as follows.

Algorithm 1. Miller’s algorithm
1: f ← 1; R ← P
2: for i = 
 − 2 down to 0 do
3: f ← f2 · gR,R(Q); R ← [2]R
4: if (ni = 1) then
5: f ← f · gR,P (Q); R ← R ⊕ P
6: end if
7: end for
8: return f (qk−1)/n

Contrary to Edwards curves or Jacobi quartics, Huff curves are represented
as plane cubics. This makes Miller’s algorithm, along with a number of im-
provements proposed for Weierstraß curves (e.g., as presented in [3]), directly
applicable to the computation of pairings over Huff curves.

4.2 Pairing Formulæ for Huff Curves

Throughout the for-loop of Algorithm 1, the line function is always evaluated
at the same point Q ∈ E(Fqk) \ E(Fq). It is therefore customary to represent



Huff’s Model for Elliptic Curves 247

this point in affine coordinates. In our case, it is most convenient to choose the
coordinates of Q as Q = (y, z) = (1 : y : z). Indeed, since the embedding degree
k is even, the field Fqk can be represented as Fqk/2(α), where α is any quadratic
non-residue in Fqk/2 . As a result, Q can be chosen of the form Q = (yQ, zQα)
with yQ, zQ ∈ Fqk/2 [4]. To do so, it suffices to pick a point on a quadratic twist
of E over Fqk/2 and take its image under the isomorphism over Fqk .

Now, for any two points R, P in E(Fq), let �R,P denote the rational function
vanishing on the line through R and P . In general, we have

�R,P (Q) =
(zXP − ZP ) − λ(yXP − YP )

YP

where λ is the “(y, z)-slope” of the line through R and P . Then, the divisor of
�R,P is

div(�R,P ) = R + P + T − (1 : 0 : 0) − (0 : 1 : 0) − (a : b : 0)

where T is the third point of intersection (counting multiplicities) of the line
through R and P with the elliptic curve. In particular, if the neutral element of
the group law ⊕ is denoted by U , the line function gR,P can be written as

gR,P =
�R,P

�R⊕P ,U
.

We concentrate on the case when U = O = (0 : 0 : 1). Then for any Q =
(yQ, zQα), we have

�R⊕P ,O(Q) = yQ − YR⊕P

XR⊕P
∈ Fqk/2 .

Since this quantity lies in a proper subfield of Fqk , it goes to 1 after the final
exponentiation in Miller’s algorithm, which means that it can be discarded al-
together. Similarly, divisions by XP can be omitted, and denominators in the
expression of λ can be canceled. In other words, if λ = A/B, we can compute
the line function as

gR,P (Q) = (zXP − ZP ) · B − (yXP − YP ) ·A

and get the required result.

We can now detail precise formulæ for the addition and doubling steps in the
so-called Miller loop (i.e., the main for-loop in Algorithm 1). We let M and S
represent the cost of a multiplication and of a squaring in Fqk while m and s are
operations in Fq as before.

Addition step. In the case of addition, the (y, z)-slope of the line through
R = (XR : YR : ZR) and P = (XP : YP : ZP ) is

λ =
ZRXP − ZPXR

YRXP − YPXR
.
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Therefore, the line function to be evaluated is of the form

gR,P (Q) = (zQα·XP −ZP )(YRXP −YPXR)−(yQ ·XP −YP )(ZRXP −ZPXR) .

Since P and Q are constant throughout the loop, the values depending only
on P and Q — in this case y′Q = yQ · XP − YP and z′Q = zQα · XP , can be
precomputed.

Then, each Miller addition step requires computing R ⊕ P (one addition
on the curve over Fq), evaluating gR,P (Q), and computing f · gR,P (Q) (one
multiplication in the field Fqk).

We consider two types of Miller addition steps: full addition, for which no
assumption is made on the representation of P , and mixed addition, for which
we further assume that P is given in affine coordinates (i.e., XP = 1). Both
steps start with computing R ⊕ P , including all intermediate results.

Full addition. Computing R⊕P requires 13m using the dedicated addition for-
mula from §3.1, including all intermediate results m1, . . . ,m8. Compute further
m9 = (XR + YR)(XP − YP ). We then have

gR,P (Q) = (z′Q − ZP )(m9 + m5 −m6) − y′Q(m1 −m2)

where the first term requires (k
2 + 1)m and the second term k

2m. With the final
multiplication over Fqk , the total cost of full addition is thus of 1M + (k + 15)m.

Mixed addition. Now that XP = 1, computing R ⊕ P using the formula from
§2.2, including all the intermediate results m1, . . . ,m9, only requires 11m, since
the computation of m1 is free. We then have

gR,P (Q) = (z′Q − ZP )(YR − YPXR) − y′Q(2ZR −m4)

where both terms require the same number of multiplications as before, plus one
for YPXR. The total cost of mixed addition is thus of 1M + (k + 13)m.

Doubling step. In the case of doubling, the (y, z)-slope of the tangent line at
R = (XR : YR : ZR) is

λ =
a(ZR)2 − 2bYRZR − a(XR)2

b(YR)2 − 2aYRZR − b(XR)2
=

A

B
.

Thus, the line function is of the form

gR,R(Q) = zQα ·XRB − ZRB − yQ ·XRA + YRA .

Miller’s doubling involves computing the point [2]R, which we do using the
formulæ from §2.2 in 7m + 5s. Then the quantities A and B are obtained by
computing the additional product m10 = 2YRZR = (YR +ZR)2−m2−m3 using
a single squaring. Computing gR,R(Q) requires multiplying those two values by
XR and YR (resp. XR and ZR), hence an additional 4m. And finally, multipli-
cations by yQ and zQα both require k

2m. Taking into account the multiplication
and the squaring in Fqk needed to complete the doubling step, the total cost of
Miller doubling is thus of 1M + 1S + (k + 11)m + 6s.
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5 Conclusion

This paper introduced and studied Huff’s model, a new representation of el-
liptic curves to be considered alongside previous models such as Montgomery,
Doche-Icart-Kohel and Edwards. This new model provides efficient arithmetic,
competitive with some of the fastest known implementations (although not quite
as fast as “inverted Edwards” for now). Moreover, it has a number of additional
desirable properties, including unified/complete addition laws and formulæ that
do not depend on curve parameters (both properties are useful in cryptographic
applications to thwart certain implementation attacks). It is also suitable to
other computations on elliptic curves, such as the evaluation of pairings.

We believe that this model is worthy of consideration by the community, and
hope our contribution might spark further research into efficient implementations
of elliptic curve arithmetic.
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Abstract. In this paper, we present a new approach based on theta func-
tions to compute Weil and Tate pairings. A benefit of our method, which
does not rely on the classical Miller’s algorithm, is its generality since
it extends to all abelian varieties the classical Weil and Tate pairing for-
mulas. In the case of dimension 1 and 2 abelian varieties our algorithms
lead to implementations which are efficient and naturally deterministic.
We also introduce symmetric Weil and Tate pairings on Kummer vari-
eties and explain how to compute them efficiently. We exhibit a nice
algorithmic compatibility between some algebraic groups quotiented by
the action of the automorphism −1, where the Z-action can be computed
efficiently with a Montgomery ladder type algorithm.

1 Introduction

In recent years, many new and interesting cryptographic protocols have been
proposed which use the existence of pairings on abelian varieties. In order to
obtain efficient and secure implementations of these protocols it is important to
be able to compute quickly these pairings. Miller has proposed a method (see
for instance [2]) to compute the function on an algebraic curve given up to a
constant factor by the data of a principal divisor. This method is a key ingredient
of all known algorithms to compute pairings. In this paper, we propose a different
approach based on theta functions. We first make explicit the link between Weil
and Tate pairings and the intersection pairing on the degree 1 homology of an
abelian variety. Our method appears to be a very natural and straightforward
way to compute the pairing associated to the Riemann form (or its arithmetic
counterpart the commutator pairing) of an abelian variety. It is then easy to
deduce practical formulas to compute Weil and Tate pairings. A first benefit of
our approach is its generality: where Miller’s algorithm rely on the representation
of an abelian variety as the Jacobian of an algebraic curve, our method works
with any abelian varieties. The case of the Tate pairing is noticeable: while
the original definition of Tate [8] deals with any abelian varieties, the formula
of Lichtenbaum [9] used in cryptographic applications is restricted to Jacobian
of curves. This restriction does not appear in our formulas. Our algorithm also
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expand the algorithmic toolbox based on theta functions to compute with abelian
varieties.

For the complexity analysis of our algorithm we focus on the case of level
2 and 4 theta functions in order to obtain the best running time and memory
consumption. The only difference between the two cases lies in the initialisation
phase of the algorithm: in level 4 one can recover enough information from the
data of two points to compute the pairings. This is not possible with the level 2
embedding since it does not distinguish a point and its opposite. Nonetheless it
is possible to define a “symmetric pairing” on the quotient of an abelian variety
by the action of the automorphism −1. These notions extend the definition of
the trace pairing proposed in [3].

We have chosen to present all the formulas of this paper using the classical
analytic theory of theta functions. In order to consider also rationality problems
which are essential to the definition of the Tate pairing, we make the assumption
that all the abelian varieties that we consider are defined over a number field
K and we suppose given a fixed embedding of K in its algebraic closure C.
Nonetheless, it should be understood that all our algorithms apply to the case of
abelian varieties defined over any field of characteristic not equal to 2. To see this
one can invoke the Lefschetz’s principle or use Mumford’s theory of algebraic
theta functions. We refer to [10] for proofs of the main formulas of this paper in
the theory of Mumford.

Our paper in organized as follows: in Section 2 we recall some basic definitions
about theta functions. The Section 3 we give a method to compute the usual
pairings by using a double and add algorithm based a theta addition formula. In
Section 5 we make a precise assessment about the complexity of our algorithm.
We also introduce symmetric pairings on Kummer varieties and explain how to
adapt our algorithms to compute them efficiently. We end the paper with an
example of computation in Section 6.

2 Some Notations and Basic Facts
In this section, in order to fix the notations, we recall some well known facts on
analytic theta functions (see for instance [14,6]). Let Hg be the g dimensional
Siegel upper-half space which is the set of g × g symmetric matrices Ω whose
imaginary part is positive definite. For Ω ∈ Hg, we denote by ΛΩ = ΩZg + Zg

the lattice of Cg defined by Ω. If A is an abelian variety of dimension g over the
number field K with a principal polarisation then A is analytically isomorphic
to Cg/ΛΩ for a certain Ω ∈ Hg. In the rest of this paper, we denote by π : Cg →
Cg/ΛΩ = A the canonical projection. The classical theory of theta functions
gives a lot of functions on Cg that are pseudo-periodic with respect to ΛΩ and
can be used as a projective coordinate system for A. More precisely, for a, b ∈ Qg,
the theta function with rational characteristics (a, b) is an analytic function on
Cg ×Hg given by:

θ [ ab ] (z,Ω) =
∑

n∈Zg

exp
[
πit(n+ a).Ω.(n+ a) + 2πit(n+ a).(z + b)

]
. (1)
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In order to write the pseudo-periodicity relations verified by the theta functions
it is convenient to introduce a certain pairing on Cg. First we identify Cg to R2g

via the isomorphism R2g → Cg, (x1, x2) �→ Ωx1 + x2. Then for α, β ∈ R2g with
α = (α1, α2) and β = (β1, β2), we put eΩ(α, β) = exp(2πi(α1β2 − α2β1)). The
pseudo-periodicity of θ [ ab ] is given by

θ [ ab ] (z+Ω.m+n,Ω) = eΩ(Ω.a+b,Ω.m+n)e−πi
tm.Ω.m−2πitm.zθ [ ab ] (z,Ω). (2)

We say that a function f on Cg is ΛΩ-quasi-periodic of level � ∈ N if for all
z ∈ Cg and m ∈ Zg, we have:f(z+m) = f(z), f(z+Ω.m) = exp(−πi�tm.Ω.m−
2πi�tz.m)f(z). For any � ∈ N∗, the set HΩ,� of ΛΩ-quasi-periodic functions of
level � is a finite dimensional C-vector space whose basis can be given by the
theta functions with characteristics: (θ

[ 0
b/�

]
(z, �−1.Ω))b∈[0,...,�−1]g . If � = k2,

then an alternative basis of HΩ,� is (θ
[
a/k
b/k

]
(kz,Ω))a,b∈[0,...,k−1]g . A theorem of

Lefschetz tells that if � ≥ 3, the functions in HΩ,� give a projective embedding
of A in P�

g−1, the projective space over C of dimension �g − 1. For � = 2,
the functions in HΩ,2 do not give a projective embedding of A. It is easy to
check that for all f ∈ HΩ,2, we have f(−z) = f(z). Under some well known
general conditions [7, cor 4.5.2], the image of the embedding defined by HΩ,2 in
P�

2−1 is the Kummer variety associated to A, which is the quotient of A by the
automorphism −1.

Once we have chosen a level � ∈ N, for the rest of this paper, we adopt
the following conventions: we let Z(�) = (Z/�Z)g and for a point zP ∈ Cg

and i ∈ Z(�) we put θi(zP ) = θ
[ 0
i/�

]
(zP , Ω/�). If � = k2, for i, j ∈ Z(k),

we let θi,j(zP ) = θ
[
i/k
j/k

]
(k.zP , Ω). We denote by P̃ the element of A�

g (C)

with coordinates P̃i = θi(zP ) and let P be the associated point of A that
we consider depending on the situation as embedded in P�

g−1 or as a point
on the analytic variety Cg/ΛΩ. In this paper, for n, � ∈ N, such that n di-
vides � we will implicitly consider Z(n) as a subgroup of Z(�) via the morphism
x �→ (�/n).x.

We denote by Ξ� the theta divisor of level � on A which is the divisor of
zero of θ [ 0

0 ] (z, �−1.Ω). There is an isogeny ϕ� : A → Â = Pic0
A, defined by

x �→ τ∗x Ξ�−Ξ� where τx is the translation by x morphism on A. The kernel of
ϕ� is A[�]. For � = 1 we let Ξ1 = Ξ. We denote by K(A) the function field of A
and if f ∈ K(A), we denote (f) the divisor of the function f . Let Z0(A) be the
group of 0-cycles of A that is the free commutative group over the set of closed
points of A. If D =

∑
niPi is an element of Z0(A) and f ∈ K(A) then we put

f(D) =
∏
i f(Pi)ni .

3 Weil and Tate Pairings and Theta Functions

In this section, we present formulas to compute Weil and Tate pairings from the
knowledge of the theta coordinates of some points.
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3.1 The Weil Pairing

For Ω ∈ Hg, let A = Cg/ΛΩ be the associated complex abelian variety and
denote by π : Cg → A the natural projection. Let � be a positive integer, we
denote by μ� the subgroup of C∗ of �th roots of unity. For zP , zQ ∈ Cg, let P,Q
be the associated points of A, we consider the pairing: eW : A[�] × A[�] → μ�,
(P,Q) �→ eΩ(zP , zQ)�. It is clear that eW does not depend on the choice of zP
and zQ representing P and Q respectively and that eW is a non-degenerate skew
linear form. The following proposition gives an expression of this pairing in term
of the values of certain theta functions.

Lemma 1. Let Ω ∈ Hg. Let a, b ∈ Qg, let � be a positive integer and let zP , zQ ∈
Cg be such that �.zP = �.zQ = 0 mod ΛΩ. Set zP = Ω.zP1 + zP2 and zQ =
Ω.zQ1 + zQ2 with for i = 1, 2, zPi, zQi ∈ Rg. Let P = π(zP ) and Q = π(zQ). For
all z ∈ Cg, we have:

eW (P,Q) =
θ
[
a+zQ1
b+zQ2

]
(z,Ω)

θ
[
a+zQ1
b+zQ2

]
(z + �.zP , Ω)

θ [ ab ] (z + �.zP , Ω)
θ [ ab ] (z,Ω)

. (3)

Proof. By (2), we have:

θ
[
a+zQ1
b+zQ2

]
(z + �.zP , Ω) = eΩ(Ω.(a + zQ1) + (b+ zQ2), Ω.�zP1 + �zP2)

exp[(πi�2(tzP1.Ω.zP1)− 2πitzP1.z]θ
[
a+zQ1
b+zQ2

]
(z,Ω),

θ [ ab ] (z + �.zP , Ω) = eΩ(Ω.a+ b,Ω.�zP1 + �zP2)
exp[−πi�2(tzP1.Ω.zP1)− 2πitzP1.z]θ [ ab ] (z,Ω).

The lemma follows immediately.

Let e′W : A[�]×A[�]→ μ� be the usual Weil pairing. We recall a possible definition
for e′W [13, p. 184]. Let P,Q ∈ A[�]. Let D = τ∗QΞ −Ξ, then D represents a
point of Â[�] = Pic0

A[�]. As a consequence, there exists a function fQ ∈ K(A)
such that (fQ) = �.D. In the same way, there exists a function gQ ∈ K(A) such
that (gQ) = [�]∗(D). As [�]∗(fQ) = �.[�]∗D = (g�Q) there exists a constant c ∈ C∗

such that [�]∗fQ = c.g�Q. Thus for X a general point of A, gQ(X)
gQ(X+P ) is an element

of μ� which is equal to e′W (P,Q).

Proposition 1. Keeping the notations from above, let zP = Ω.zP1 + zP2 and
zQ = Ω.zQ1 + zQ2 be elements of Cg such that P = π(zP ) and Q = π(zQ). For
z ∈ Cg, we have the following equalities, up to a multiplication by a constant:

gQ(z) =
θ
[ zQ1
zQ2

]
(�.z, Ω)

θ [ 0
0 ] (�.z, Ω)

, fQ(z) = μQ(z)−1
(
θ [ 0

0 ](z + zQ)
θ [ 0

0 ](z)

)�
, (4)

where μQ(z) : Cg → C is given by μQ(z) = θ[ 0
0 ](z+�zQ)
θ[ 0

0 ](z) .



Efficient Pairing Computation with Theta Functions 255

Remark 1. In the preceding equations, the domain of the functions gQ and fQ
is Cg but we will see in the course of the proof that gQ and fQ are periodic with
respect to ΛΩ and are in fact well defined functions on A.

Proof. As π∗ Ξ is the divisor of zero of θ [ 0
0 ] (z,Ω), π∗D is the divisor of zero of

g′(z) = θ [ 0
0 ] (z + zQ, Ω)/θ [ 0

0 ] (z,Ω). But g(z) = exp[πitzQ1ΩzQ1 + 2πitzQ1(z +
zQ2)]g′(z) has the same zero divisor as g′(z) and g(z) = θ

[ zQ1
zQ2

]
(z,Ω)/θ [ 0

0 ] (z,Ω).
Let [̃l] : Cg → Cg, z �→ �z. It is clear from its definition that up to a multiplication
by a constant gQ = g ◦ [̃l] which gives the left hand of (4). It is easily seen using
(2) that gQ(z) is periodic with respect to ΛΩ and as a consequence descends to a
function on A.

We turn to the proof of the second equality. As μQ(z) is a non vanishing
function, the zero divisor of the function μQ(z)−1 (θ [ 0

0 ](z + zQ)/θ [ 0
0 ](z))� is

π∗(�D). Moreover, it is easily seen using (2) that this function is periodic with
respect to ΛΩ, and descends to a function on A which up to a multiplication by
a constant is fQ(z).

Corollary 1. The pairing eW is the Weil pairing.

Proof. This is an immediate consequence of Lemma 1 with a = b = 0, Proposi-
tion 1 and the definition of the Weil pairing as e′W (P,Q) = gQ(X)

gQ(X+P ) .

Corollary 2. Let Ω ∈ Hg. Let a, b ∈ Qg, let � be a positive integer and let
zP , zQ ∈ Cg be such that �.zP = �.zQ = 0 mod ΛΩ. Let P,Q ∈ A be such that
P = π(zP ) and Q = π(zQ) and let:

L(zP , zQ) = θ [ ab ] (�.zP + zQ, Ω)
θ [ ab ] (zQ, Ω)

θ [ ab ] (0, Ω)
θ [ ab ] (�.zP , Ω)

,

R(zP , zQ) =
θ [ ab ] (�.zQ + zP , Ω)
θ [ ab ] (zP , Ω)

θ [ ab ] (0, Ω)
θ [ ab ] (�.zQ, Ω) .

(5)

If L(zP , zQ) and R(zP , zQ) are well defined and non null, we have:

eΩ(zP , zQ)� = eW (P,Q) = L(zP , zQ)−1.R(zP , zQ). (6)

Proof. Since Q + �P = Q and �P = 0, L(zP , zQ) does not depend on [ ab ] so
we can assume that a = b = 0. The corollary can then be proved by a direct
computation.

But it also follows immediately from Proposition 1 and the formula eW (P,Q) =
fP (Q− 0)/fQ(P − 0). In fact, using the notations of Proposition 1, we have

fP (Q− 0)
fQ(P − 0)

= μP (zQ)μQ(0)
μP (0)μQ(zP )

.

The result follows an immediate computation.

Remark 2. One can recognize in (6) a classical formula to compute the first
Chern class of a line bundle from the knowledge of its factors of automorphy, see
for instance [1, Th. 2.1.2].
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3.2 The Tate Pairing

Let K be a number field and we suppose that A is defined overK. In this section,
we suppose that μ� ⊂ K and that A[�] is rational over K. Let K be the alge-
braic closure of K and let G = Gal(K/K). Let δ1 : K∗/K∗� → Hom(G,μ�)
(resp. δ2 : A(K)/[�]A(K) → Hom(G,A[�])) be the connecting morphism of
the Galois cohomology long exact sequence associated to the Kummer exact
sequence (resp. to the exact sequence 0 → A[�] → A(K) → A(K) → 0).
There exists a bilinear application often referred to as the Tate pairing eT :
A(K)/[�]A(K) × A[�] → K∗/K∗� such that for (P,Q) ∈ A(K)/[�]A(K) × A[�],
eW (δ2(P ), Q) = δ1(eT (P,Q)). In the statement of the next proposition, we sup-
pose that the principal polarization L of A defined by the matrix period is de-
fined over K. Thus for any X ∈ A(K) there exits zX ∈ Cg such that π(zX) = X
and θ(zX)/θ(0) ∈ K. In general this rationality condition on L is not verified
but we will see later on in Remark 4 how to adapt the formulas of the next
proposition to cover the general case.

Proposition 2. Let K be a number field and let A be a dimension g abelian
variety over K. Let Ω ∈ Hg be such that A is analytically isomorphic to Cg/ΛΩ.
Let a, b ∈ Qg, and let � be a positive integer. Let P ∈ A(K)/[�]A(K) and Q ∈
A[�](K) and let zP , zQ ∈ Cg be such that π(zP ) = P and π(zQ) = Q where
π : Cg → A is the natural projection (by abuse of notation we use P,Q to denote
the corresponding points of an algebraic and analytic model of A). Suppose that
we have chosen zP , zQ and zP+Q such that

θ [ 0
0 ](zP + zQ)
θ [ 0

0 ](zP )
θ [ 0

0 ](0)
θ [ 0

0 ](zQ)
∈ K∗, (7)

then we have
eT (P,Q) =

θ [ 0
0 ](�.zQ + zP )
θ [ 0

0 ](zP )
θ [ 0

0 ](0)
θ [ 0

0 ](�.zQ)
. (8)

Proof. By Proposition 1, we have

fQ(P − 0) = θ [ 0
0 ](zP )

θ [ 0
0 ](�.zQ + zP )

θ [ 0
0 ](�.zQ)
θ [ 0

0 ](0)

(
θ [ 0

0 ](zP + zQ)
θ [ 0

0 ](zP )
θ [ 0

0 ](0)
θ [ 0

0 ](zQ)

)�
. (9)

Taking care of the fact that eT (P,Q) has value in K∗/K∗� we just have to
prove that eT (P,Q) = fQ(0− P ). The proof follows exactly the same computa-
tions as [16, p. 280].

4 Pairing Computations

In this section, we describe a general method to compute Weil or Tate pairings
which does not rely on the usual Miller’s loop and prove its correctness. We
postpone to the next section the analysis of the running time of these algorithms.
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Let n, � ∈ N. We suppose that 2 divides n and that � and n are relatively
prime. Let A be an abelian variety over C with period matrix Ω. We represent
A as a closed subvariety of Pn

g−1 by the way of level n theta functions and we
suppose that this embedding is defined over K. Denote by Ã the pullback of
A via the natural projection κ : An

g → Pn
g−1. In the following, we adopt the

following convention: if P is a point of A, we denote by P̃ an affine lift of P that
is a point P̃ of An

g such that κ(P̃ ) = P .
An important ingredient of our algorithm is the Riemann addition formulas.

The usual form of these formulas works for theta functions of level divisible by 4
(see for instance [6, p. 139]). In this paper we need a slight generalisation of these
formulas for working also with level 2 theta functions. We recall that following
the convention for the notation of theta functions described at the end of the
introduction, we let for all i ∈ Z(n), z ∈ Cg, θi(z) = θ

[ 0
i/n

]
(z,Ω/n). Moreover,

we recall that in the following we consider Z(n) (resp. Z(2)) as a subgroup of
Z(2n) via the map x �→ 2x (resp. x �→ nx).
Theorem 1. Let i, j, k, l ∈ Z(2n). We suppose that i+ j, i+k and i+ l ∈ Z(n).
Let Ẑ(2) be the dual group of Z(2). For all χ ∈ Ẑ(2) and z1, z2 ∈ Cg we have
⎛

⎝
∑

η∈Z(2)

χ(η)θi+j+η(z1 + z2)θi−j+η(z1 − z2)

⎞

⎠

⎛

⎝
∑

η∈Z(2)

χ(η)θk+l+η(0)θk−l+η(0)

⎞

⎠

=

⎛

⎝
∑

η∈Z(2)

χ(η)θi+k+η(z1)θi−k+η(z1)

⎞

⎠

⎛

⎝
∑

η∈Z(2)

χ(η)θj+l+η(z2)θj−l+η(z2)

⎞

⎠

Proof. For i ∈ Z(2n) and z ∈ Cg, we let θ′i(z) = θ
[ 0
i/(2n)

]
(z,Ω/(2n)). Let

i, j ∈ Z(2n) be such that i+ j ∈ Z(n) and let z1, z2 ∈ Cg. The usual duplication
formula [6, p. 139] gives θi+j(z1+z2)θi−j(z1−z2) = 1

2g
∑
η∈Z(2) θ

′
i+η(z1)θ′j+η(z2).

For χ ∈ Ẑ(2), using this formula, we compute

∑

η∈Z(2)

χ(η)θi+j+η(z1 + z2)θi−j+η(z1 − z2) = 1
2g
∑

η1,η2∈Z(2)

χ(η1 + η2)θ′i+η1 (z1)θ′j+η2 (z2)

= 1
2g

⎛

⎝
∑

η∈Z(2)

χ(η)θ′i+η(z1)

⎞

⎠

⎛

⎝
∑

η∈Z(2)

χ(η)θ′j+η(z2)

⎞

⎠ . (10)

Using this last equation to compute the left and right hand sides of the preceding
equation we obtain the result.

We suppose that the theta null point 0̃ = (θi(0))i∈Z(n) is known. We deduce im-
mediately from Theorem 1 an algorithm that takes as inputs P̃ = (P̃i)i∈Z(n), Q̃ =
(Q̃i)i∈Z(n) and P̃ −Q=((P̃ −Q)i)i∈Z(n) and outputs P̃ +Q=((P̃ +Q)i)i∈Z(n).
We write P̃ +Q = PseudoAdd(P̃ , Q̃, P̃ −Q). Indeed we will see later (Proposi-
tion 3) that if n = 4, we can recover the projective point P +Q from P and Q
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using the Riemann addition formulas. It is then easy to see that if we moreover
know P̃ , Q̃ and P̃ −Q, then there is a unique affine point P̃ +Q above P + Q
that satisfy the addition formulas from Theorem 1. If n = 2, the point P̃ +Q
is also unique provided the abelian variety satisfies the generic condition from
Theorem 3.

Chaining the algorithm PseudoAdd in a classical Montgomery ladder [2, alg.
9.5 p. 148] yields an algorithm that takes as inputs Q̃ = (Q̃i)i∈Z(n), P̃ +Q =
((P̃ +Q)i)i∈Z(n), P̃ = (P̃i)i∈Z(n), 0̃ = (0̃i)i∈Z(n) and an integer � and outputs
P̃ + �Q. We write P̃ + �Q = ScalarMult(P̃ +Q, Q̃, P̃ , 0̃, �). In particular, we have
�P̃ = ScalarMult(P̃ , P̃ , 0̃, 0̃, �). The following lemma tells that the output of
ScalarMult does not depend on the particular chain of PseudoAdd calls it uses.

Lemma 2. Let L = {0, 1, . . . , �} be a Lucas sequence. Let A0 = P̃ , B0 = 0̃, A1 =
P̃ +Q and B1 = Q̃. For m ∈ L,m � 2, write m = j+ k with j, k, j− k ∈ L. Let
Bm = PseudoAdd(Bj , Bk, Bj−k) and Am = PseudoAdd(Aj , Bk, Aj−k). Then
A� = P̃ + �Q. In other words P̃ + �Q does not depend on the Lucas sequence
used to compute it.

Proof. If there exist zP , zQ∈Cg such that P̃ =(θi(zP ))i∈Z(n), Q̃=(θi(zQ))i∈Z(n)

and P̃ +Q = (θi(zP + zQ))i∈Z(n) then by Theorem 1 and a recursion we see
that Aj = (θi(zP + jzQ))i∈Z(n) and Bj = (θi(jzQ))i∈Z(n). Hence A� = (θi(zP +
�zQ)) = P̃ + �Q.

Otherwise there exist λP , λQ and λP+Q in C∗ such that P̃ = λP (θi(zP ))i∈Z(n),
Q̃ = λQ(θi(zQ))i∈Z(n) and P̃ +Q = λP+Q(θi(zP + zQ))i∈Z(n). Since we have
PseudoAdd(λP+QP̃ +Q, λQQ̃, λP P̃ ) = λ2

P+Qλ
2
Q

λP
PseudoAdd(P̃ +Q, Q̃, P̃ ), an

easy recursion shows that Bj = λj
2

Q (θi(jzQ))i∈Z(n) and Aj = λjP+Qλ
j(j−1)
Q /λj−1

P ·
(θi(zP + jzQ))i∈Z(n). Hence A� = λ�P+Qλ

�(�−1)
Q /λ�−1

P · (θj(zP + �zQ))j∈Z(n) =
P̃ + �Q.

Remark 3. There is a natural action of K∗ on An
g − {0} by multiplication of

the coordinates of a point that we denote by α ∗ P̃ for α ∈ K∗ and P̃ ∈ An
g (K).

In the proof of the preceding lemma we have seen the effect of this action on
the output of the algorithm ScalarMult: let P,Q ∈ A(K) and let P̃ , Q̃, P̃ +Q
be affine lifts of P , Q and P + Q. Let R̃ = ScalarMult(P̃ +Q, Q̃, P̃ , 0̃, �). Let
α, β, γ, δ ∈ K, we have

ScalarMult(α ∗ P̃ +Q, β ∗ Q̃, γ ∗ P̃ , δ ∗ 0̃, �) = (α�β�(�−1)/γ�−1δ�(�−1)) ∗ R̃, (11)

ScalarMult(α ∗ P̃ , α ∗ P̃ , δ ∗ 0̃, δ ∗ 0̃, �) = α�
2

δ�2−1 ∗ ScalarMult(P̃ , P̃ , 0̃, 0̃, �). (12)
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Given P and Q with projective coordinates (θi(zP ))i∈Z(n) and (θi(zQ))i∈Z(n) for
zP , zQ ∈ Cg, we would like to compute eW (P,Q) and eT (P,Q).

We can state the main theorem of this section

Theorem 2. We suppose that n and � are relatively prime. For X,Y ∈ A(K),
denote by X̃, Ỹ , X̃ + Y any affine lifts of X, Y and X + Y . Recall that for i ∈
Z(n), we denote by X̃i the coordinate i of the point X̃. For � ∈ N and i ∈ Z(n),
let fT (X̃, Ỹ , X̃ + Y , 0̃, �, i) = ScalarMult(X̃+Y ,X̃,Ỹ ,̃0,�)i

ScalarMult(X̃,X̃,̃0,̃0,�)i
0̃i
Ỹi
. Then for P,Q ∈ A[�]

and i ∈ Z(n), we have:

eW (P,Q)n = fT (P̃ , Q̃, P̃ +Q, 0̃, �, i)−1fT (Q̃, P̃ , P̃ +Q, 0̃, �, i), (13)

whenever the right hand side is well defined.
Moreover, for P ∈ A(K)/[�]A(K), Q ∈ A[�], if we suppose that 0̃, P̃ , Q̃ and

P̃ +Q are affine lifts of 0, P , Q and P +Q with coordinates in K, then we have
for i ∈ Z(n),

eT (P,Q)n = fT (Q̃, P̃ , P̃ +Q, 0̃, �, i), (14)

whenever the right hand side is well defined.

Proof. Let zP , zQ ∈ Cg such that π(zP ) = P and π(zQ) = Q (recall that π :
Cg → A = Cg/ΛΩ is the natural projection). Let P̃ = (θi(zP ))i∈Z(n), Q̃ =
(θi(zQ))i∈Z(n) and P̃ +Q = (θi(zP + zQ))i∈Z(n). Then applying Corollary 2, if
P,Q ∈ A[�], we obtain that

eΩ/n(zP , zQ)� = eW (P,Q)n = fT (P̃ , Q̃, P̃ +Q, 0̃, �, i)−1fT (Q̃, P̃ , P̃ +Q, 0̃, �, i).

In the same way, by Proposition 2 (which apply for i = 0, but it is easy to see
that the same result is true for any i ∈ Z(n)), we have for P ∈ A(K)/[�]A(K)
and Q ∈ A[�], eT (P,Q)n = fT (Q̃, P̃ , P̃ +Q, 0̃, �, i). Next, let α, β, γ, δ ∈ K. By
Remark 3, we have

fT (α ∗ X̃, β ∗ Ỹ , γ ∗ X̃ + Y , δ ∗ 0̃, �, i) = γ
�δ�

α�β�
.fT (X̃, Ỹ , X̃ + Y , 0̃, �, i). (15)

This shows that the expressions (13) and (14) for the Weil and Tate pairing do
not depend on the choice of affine liftings (rational over K in the case of the
Tate pairing) of P , Q and P +Q.

Remark 4. In this remark we keep the notations of the previous theorem. Let
L be a polarization of A associated to Ξn for n ∈ N∗ which is rational over
K. Let (θ′i)i∈Z(n) be a basis of global sections of a trivialisation of π∗(L ) (and
we rigidify this basis by setting θ′0(0) = 1). In general, it is not true that the
polarization defined by the level n classical theta functions is rational over K.
Nonetheless we know that there exits a non vanishing function ζ of Cg such that
θi = ζθ′i for i ∈ Z(n) (up to a renumbering of the basis θ′i).
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Let 0, zP , zQ, zP+Q ∈ Cg. For zX ∈ {0, zP , zQ, zP+Q}, if we denote by X̃alg =
(θ′i(zX))i∈Z(n), then there exist constant factors cX ∈ C∗ such that for X ∈
{0, P,Q, P +Q} we have cX ∗ X̃alg = X̃ .

As we can suppose that the coordinates of the points X̃alg forX ∈ {0, P,Q, P+
Q} are defined over K, we can rewrite (9) as:

eT (P,Q) =
(
cP+Qc0
cP cQ

)−�
θi(�.zQ + zP )
θi(zP )

θi(0)
θi(�.zQ)

,

for i ∈ Z(n). But by (15) we have the equation: fT (Q̃alg, P̃ alg, P̃ +Q
alg
, 0̃alg, �, i)

=
(
cP+Qc0
cP cQ

)−�
.fT (Q̃, P̃ , P̃ +Q, 0̃, �, i) =

(
cP+Qc0
cP cQ

)−�
θi(�.zQ+zP )
θi(zP )

θi(0)
θi(�.zQ) . Com-

paring these formulas, we obtain that we can compute the Tate pairing by taking
affine lifts of 0, P , Q and P +Q provided by the coordinates θ′i. Now using (15)
again, we obtain that to compute the Tate pairing we only have to choose affine
lifts of 0, P , Q, and P +Q which are rational over K.

As we have shown that the formulas of Theorem 2 do not depend on a choice
of the affine lifts of the input points of the algorithm (as long as the choices are
the same for the computation of the two functions fT in the case of the Weil
pairing), from now on we only consider projective points.

In order to have a working algorithm to compute Weil and Tate pairings, it
remains to explain how to compute P+Q from the knowledge of P and Q. As the
formulas to compute the pairings only involve one of the level n theta functions,
and since the number of the coordinates used in the computation of ScalarMult
is ng, for the sake of efficiency it is important to have a small n. As 2 divides n,
from now on, we focus on the two interesting cases: n = 2 and n = 4.

We first treat the case n = 4. Let zP , zQ ∈ Cg and let P = (Pi)i∈Z(n) =
(θi(zP ))i∈Z(n) and Q = (Qi)i∈Z(n) = (θi(zQ))i∈Z(n). From the knowledge of P
and Q, with the addition formula (Theorem 1), one can compute the products:
(∑

η∈Z(2)

χ(η)θi+j+η(zP + zQ)θi−j+η(zP − zQ)
)(∑

η∈Z(2)

χ(η)θk+l+η(0)θk−l+η(0)
)
, (16)

for χ ∈ Ẑ(2) and i, j, k, l ∈ Z(2n) such that i+ j, i+ k, and i+ l ∈ Z(n). If we
can prove that for any such choice of i, j, k, l ∈ Z(2n) and χ ∈ Ẑ(2) there exist
k′ ∈ k+Z(n) and l′ ∈ l+Z(n) such that

∑
η∈Z(2) χ(η)θk′+l′+η(0)θk′−l′+η(0) 	= 0,

then by summing over the characters the left bracket of (16) one can compute
all the products θi(zP + zQ)θj(zP − zQ), for i, j ∈ Z(n) from which it is easy to
recover by taking quotients the projective point (θi(zP + zQ))i∈Z(n).

Now, using equation (10), we have

∑

η∈Z(2)

χ(η)θk+l+η(0)θk−l+η(0) = 1
2g
(∑

η∈Z(2)

χ(η)θ′k+η(0)
)(∑

η∈Z(2)

χ(η)θ′l+η(0)
)
, (17)

where for k ∈ Z(8), θ′k(z) = θ
[ 0
k/8
]

(z,Ω/8). We have the
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Proposition 3. Let δ ∈ N be such that 4 divides δ. For any a ∈ K(2δ) there ex-
ists an element b ∈ a + K(δ) such that for all χ ∈ Ẑ(2) we have that∑
η∈Z(2) χ(η)θ

[ 0
(b+η)/(2δ)

]
(0, 1/(2δ).Ω) 	= 0.

Proof. This is just a rephrasing of [11, equation (*) p. 339].

Applying the preceding proposition to the factors of the right hand of equation
(17), we obtain that there exists k′ ∈ k + Z(n) and l′ ∈ l + Z(n) such that∑
η∈Z(2) χ(η)θk′+l′+η(0)θk′−l′+η(0) 	= 0 and we are done.
In the case n = 2, as usual, for all i ∈ Z(2), we put θi(z) = θ

[ 0
i/2
]

(z, 1/2.Ω).
Then by Theorem 1, we have for any χ ∈ Ẑ(2) and for well chosen pairs of
quadruples (i, j, k, l), (i′, j′, k′, l′) ∈ Z(2)4 an equation

(∑

η∈Z(2)

χ(η)θi+η(zP + zQ)θj+η(zP − zQ)
)(∑

η∈Z(2)

χ(η)θk+η(0)θl+η(0)
)

=
(∑

η∈Z(2)

χ(η)θi′+η(zP )θj′+η(zP )
)( ∑

η∈Z(2)

χ(η)θk′+η(zQ)θl′+η(zQ)
)
.

(18)

If the kernel of χ does not contain the subgroup of Z(2) generated by k + l
then we have

∑
η∈Z(2) χ(η)θk+η(0)θl+η(0) = 0, so it is not possible to recover

θi+η(zP +zQ) as before. This is consistent with the fact that for i ∈ Z(2) and z ∈
Cg, θi(z) = θi(−z), the right hand side of (18) is invariant for the transformation
zQ �→ −zQ while it is not the case of the left hand side. The best we can hope
is that for almost all period matrices Ω ∈ Hg there exists a k ∈ Z(2) such that
for all l ∈ Z(2) and χ ∈ Ẑ(2) such that k + l is in the kernel of χ, we have∑
η∈Z(2) χ(η)θk+η(0)θl+η(0) 	= 0. This is exactly the content of Theorem 3. In

order to prove this theorem, we let Tk,l,χ =
∑
η∈Z(2) χ(η)θk+η(0)θl+η(0) and we

state the following lemma:

Lemma 3. For Ω ∈ Hg, the two following properties are equivalent:

1. There exists a k ∈ Z(2) such that for all � ∈ Z(2) and χ ∈ Ẑ(2) such that
k + l is in the kernel of χ, we have Tk,l,χ 	= 0.

2. For all i, j ∈ Z(2) such that ti.j = 0, θi,j(0) 	= 0.

Proof. For χ ∈ Ẑ(2), let μ ∈ Z(2) be such that χ(η) = (−1)tη.μ. Let ρ : Z(4)→
Z(2), x �→ x mod Z(2) be the canonical projection. Then we have (see [14,
prop 1.3 p. 124]), for all i ∈ Z(4)

∑
η∈Z(2) χ(η)θ′i+η(0) = 2g.θμ,ρ(i)(0), where

θ′k(z) = θ
[ 0
k/4
]

(z, 1/4.Ω). Combining this relation together with (17), for all
i, j ∈ Z(4) such that i+ j ∈ Z(2), let k = i+ j, l = i− j, we obtain the equality

Tk,l,χ = Ti+j,i−j,χ = 2g.θμ,ρ(i)(0)θμ,ρ(j)(0) = 2g.θμ,k+l(0)2. (19)

Since χ(k + l) = (−1)t(k+l).μ the lemma follows immediately from (19).
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It is well known that for z∈Cg, and k, l∈Z(2), we have θk,l(−z)=(−1)tk.lθk,l(z).
As a consequence, for all k, l ∈ Z(2) such that tk.l = 1 (the odd characteristics),
we have θk,l(0) = 0. Denote by M4 the quasi-projective variety over C defined
as the locus of zeros of θi,j(0) considered as functions of Ω. It is clear thatM4
parametrizes the set of principally polarized abelian varieties together with a
level 4 structure since from the knowledge of a point in M4 one can recover
the projective embedding of the corresponding abelian variety provided by the
Riemann equations.

Theorem 3. For all k, l ∈ Z(2) such that tk.l = 0, the function θk,l(0) on M4
is non-trivial and as consequence, its zero locus is a proper subvariety ofM4 of
codimension 1.

Proof. We sketch the proof of the theorem. Suppose on the contrary that for
k, l ∈ Z(2) such that tk.l = 0, θk,l(0) is a constant function of Ω. This is a
degree 1 relation for level 4 theta constants, call it Rk,l. We have for all k ∈ Z(4),
θk(0) = θ

[ 0
(2k)/8

]
(0, (2Ω)/8). Thus, the level 4 degree 1 relations Rk,l induce

degree 1 relations for level 8 theta constants. The hypothesis tk.l = 0 means that
these level 8 relations are not a linear combination of the symmetry relations
θk(0) = θ−k(0) for all k ∈ Z(8). This is a contradiction with the description of
M8 the modular space of level 8 marked abelian varieties given by Mumford in
[12, main th. p. 83] as an open subset of the reduced projective variety given by
the symmetry relations and the Riemann relations.

Remark 5. The preceding theorem shows that the symmetric pairing computa-
tion algorithms that we describe in the next section works for a general abelian
variety. However, one can ask if the closed proper subset of M4, given by the
cancellation of some even level 4 theta constants contains noticeable abelian vari-
eties. Actually, this is the case since a theorem of Frobenius [15, cor. 6.7 p. 3.102]
tells us that the locus of Jacobian of hyperelliptic curves insideM4 can be given
by equations of the form θk,l(0) = 0 where (k, l) is an even characteristic. As a
consequence, the algorithms of Section 5.2 to compute symmetric pairings don’t
apply to Jacobian of hyperelliptic of genus g when g � 3. It should be noted
however that following [7, cor 4.5.2 and remark (2)], the condition that for all
k, l ∈ Z(2) such that tk.l = 0, θk,l(0) 	= 0 is equivalent to the fact the level 2
theta functions give a projectively normal embedding. Considering this result,
the condition of Theorem 3 should be considered as natural.

5 Complexity Analysis

In this section, we explain how to use the results of the preceding section to
compute efficiently pairings on abelian and Kummer varieties with a special
focus on dimension 1 and 2 since these cases are particularly interesting for
cryptographic applications.
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5.1 Abelian Varieties

We begin with the case of abelian varieties since the main loop of the algorithm
can also be used for the computation of symmetric pairings on Kummer varieties.

Initialisation phase. The initialisation phase depends on the representation
of the points P and Q on the abelian variety A. If P and Q are given by theta
coordinates of level 4 we can apply the procedure described in Section 4 to
compute the homogeneous coordinates of (θi(P +Q))i∈Z(4).

Suppose that another coordinate system is used to represent P and Q that
we denote by (Xi)i∈I where Xi are rational functions on a Zariski open subset
of A. Then by definition there exist formulas to compute θi(P ) and θi(Q) from
the knowledge ofXi(P ) and Xi(Q). In practise, the dictionary between some use-
ful coordinate system and the theta coordinates can easily be deduced from well
known properties of theta functions. It should be remarked that in order to carry
out these computations we might have to do a base field extension since in the
projective embedding of A provided by the level 4 theta functions the 4-torsion of
A is rational over the base field, whereas this may not the case with other models
of A. The advantage of the level 4 is that no square root extraction is needed for
the computation of P +Q, contrarily to the level 2 case as we will see.

From the knowledge of θ
[ 0
i/4
]

(zX , 1/4.Ω), i ∈ Z(4) forX = P,Q, P+Qwe can
then compute the level 2 coordinates given by (

∑
j∈Z(2) θ

[
0
i+2j

4

]
(zX , Ω4 ))i∈Z(2)

for the coordinates of the (isogeneous) points X = P,Q, P +Q.

Pairing computation phase. As we have seen before, we can carry out the
computations of the main loop of the algorithm with level 2 theta functions since
at the end we only need one theta coordinate to compute the pairings. This is
more efficient because we only need 2g coordinates to represent a point and we
can do the computation on the field of definition of the 2-torsion of A.

We suppose that we are given the level 2 coordinates of P , Q, P +Q. Rather
than considering the formulas of Theorem 1 for the double and add algorithm,
we use the level 2 formulas given in [4] for the genus 2 case, and in [5] for the
genus 1 case. For instance, let E be an elliptic curve defined by Ω ∈ H1, let
Ω′ = Ω/2 and put

a = ϑ [ 0
0 ] (0, Ω′); b = ϑ

[ 0
1/2
]

(0, Ω′); A = ϑ [ 0
0 ] (0, 2Ω′); B = ϑ

[ 1/2
0

]
(0, 2Ω′).

The duplication formulas are given by the equalities:
{
aϑ [ 0

0 ] (z,Ω′) = ϑ [ 0
0 ] (z, 2Ω′)2 + ϑ

[ 1/2
0

]
(z, 2Ω′)2,

bϑ
[ 0

1/2
]

(z,Ω′) = ϑ [ 0
0 ] (z, 2Ω′)2 − ϑ [ 1/2

0

]
(z, 2Ω′)2.

{
2Aϑ [ 0

0 ] (2z, 2Ω′) = ϑ [ 0
0 ] (z,Ω′)2 + ϑ

[ 0
1/2
]

(z,Ω′)2,

2Bϑ
[ 1/2

0

]
(2z, 2Ω′) = ϑ [ 0

0 ] (z,Ω′)2 − ϑ [ 0
1/2
]

(z,Ω′)2.

Let x = θ [ 0
0 ] (z,Ω′) and z = θ

[ 0
1/2
]

(z,Ω′) using the above formulas yield the
following algorithms:
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Doubling Algorithm:
Input: A point P = (x : z).
Output: The double 2.P = (x′ : z′).

1. x0 = (x2 + z2)2;
2. z0 = A2

B2 (x2 − z2)2;
3. x′ = (x0 + z0);
4. z′ = a

b (x0 − z0);
5. Return (x′ : z′).

Differential Addition Algorithm:
Input: Two points P = (x : z) and Q
= (x̃ : z̃) on E, andR = (x : z) = P−Q,
with xz 	= 0.
Output: The point P +Q = (x′ : z′).

1. x0 = (x2 + z2)(x̃2 + z̃2);
2. z0 = A2

B2 (x2 − z2)(x̃2 − z̃2);
3. x′ = (x0 + z0)/x;
4. z′ = (x0 − z0)/z;
5. Return (x′ : z′).

Recall that in order to compute the pairing eT (P,Q), we have to compute
P̃ + �Q = ScalarMult(P̃ +Q, Q̃, P̃ , 0̃, �) and �Q̃ = ScalarMult(Q̃, Q̃, 0̃, 0̃, �). It
should be remarked that in the computation of P̃ + �Q, we need exactly the
same values of j.Q for some j ∈ {1, . . . , �} as those required to obtain �Q̃. Since
we want to avoid a division in each step, we use a Montgomery ladder so that
the differences in the adding step are always the same points. To speed up the
differential additions, we have renormalised the theta null point (a, b) to (1, b/a).
It is easy to see by doing the same computation as in Remark 3 that this does
not change the value of the Tate pairing eT (P,Q). Moreover we also have renor-
malised the theta null point (A,B). Looking back at the proof of 1, we see that
this change each affine addition by the constant factor B−2. This also does not
affect the final value of the Tate pairing eT (P,Q), since we use the same Lucas
sequence for computing �Q̃ and P̃ + �Q.

This give the following steps for the pairing: from (j − 1)Q, jQ and P + jQ
we compute 2(j− 1)Q, (2j− 1)Q, P + (2j− 1)Q or (2j− 1)Q, 2jQ and P + 2jQ
depending on the binary decomposition of �. We remark that at each step we
do a doubling and two adding, and that we add the same point to the triple
(j−1)Q, jQ, P+jQ. For instance in genus 1, we only have to compute A

2

B2 (x2−z2)
once, where (x : z) are the coordinates of the doubled point.

The figure below summarises the cost per bit of computation of the Tate
pairing with our algorithm in genus 1 and 2 with the following notations: S
is for squaring, M is for general multiplication, m is for multiplication by a
constant.

Tate pairing First pairing e(P,Q) Following pairings e(P ′, Q)
Dimension 1 8S+4m+4M 2S+1m+2M
Dimension 2 13S+12m+11M 4S+3m+4M

The algorithms that we have presented in this section are deterministic and
generalize immediately to the higher dimension case. Usually when computing
a pairing, the field of definition of Q has a smaller degree than the field of
definition of P , so that at each step one adding and one doubling is done with
points in the smaller field. We also remark that if we have to compute several
pairings e(P1, Q), e(P2, Q), . . . with the same Q, it makes sense to store the
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results of the computations of the jQ so that for the next pairings we only
have to compute the Pi + jQ. For instance when g = 1 if we store the log2(�)
coordinates (x2 + z2, A

2

B2 (x2 − z2)) of each doubling step, we can compute the
subsequent pairings with only five multiplications at each step.

5.2 Kummer Varieties

Let A be a principally polarized abelian variety of dimension g defined byΩ ∈ Hg.
As we have seen in the introduction, the level 2 theta functions defined by Ω
give a projective embedding of the Kummer variety associated to a A. We recall
that the Kummer variety K A of A is the quotient of A by the action of the
automorphism −1 of A. Let ζ : A → K A be the natural projection. In the
following, if P ∈ A(K) we denote by P its image by ζ. The construction of K A

does not preserve the group structure of A. Nonetheless, we remark that from
the data of P ∈K A(K) one can compute 2P without ambiguity, and from the
data of P , Q and P −Q one can compute P +Q. As a consequence, K A inherits
from A of an action of Z on its points which can be computed by a Montgomery
ladder like algorithm.

Let e be a pairing on A, and let K∗0 be the quotient of K∗ by the action of
the automorphism −1. Let ζ0 : K∗ → K∗0 be the natural projection. The pairing
e gives a well defined application e : K A(K) × K A(K) → K∗0, (P ,Q) �→
ζ0(e(P,Q)). It is easily seen that the elements of K∗0 are in bijection with the
set S = {x+ 1/x, x ∈ K∗}. Identifying K∗0 with S, the application ζ0 is given by
ζ0(x) = x + 1/x, x ∈ K∗ from which we deduce the expression of e : (P ,Q) �→
e(P,Q) + e(−P,Q). This pairing has been introduced in [3]. In the following,
if e is a pairing, we say that e is the symmetric pairing associated to e. The
symmetric pairing e can be seen as a version of e for compressed coordinates as
it takes as input points with 2g coordinates rather than 4g.

Its cryptographic relevance comes from the compatibility of e with the Z-set
structures of K A and K∗0: for all λ, μ ∈ Z, P ,Q ∈ K A, we have e(λ.P , μ.Q) =
(λμ).e(P ,Q). In [3], the authors give an algorithm based on Lucas sequences
to compute the action of Z on K0 for certain finite fields. Here we would like
to emphasize that the compatibility of the Z-structure of K A and K0 is also
algorithmic. It comes from the fact and on any quotient of an algebraic group
by the automorphism −1 there exists a natural Montgomery ladder algorithm
to compute the resulting Z-action. In the case of K0 we obtain very simple and
general formulas. For x ∈ K, and i, j ∈ Z, we have

(xi+ 1
xi

)2 = (x2i+ 1
x2i +2); (xi+ 1

xi
)(xj+ 1

xj
) = (xi+j+ 1

xi+j
)+(xi−j+ 1

xi−j
).

We have seen that the codomain of the Tate pairing eT is the multiplicative
group K∗/K∗�. Again, we can take the quotient of this group by the action of
(−1) on it, denote it by (K∗/K∗�)0. It is clear that there is a bijection between
the set (K∗/K∗�)0 and the set ST = {x + 1/x, x ∈ KT} where KT is a set of
representatives of K∗/K∗�. Moreover, one can compute the Z-action on such
representatives using the preceding algorithm.
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Initialisation phase. We suppose that we know the level 2 coordinates θi(zP )
and θi(zQ), i ∈ Z(2) of P and Q. We may assume (by multiplying by a pro-
jective factor) that the values of the projective coordinates (θi(zP ))i∈Z(2) and
(θi(zQ))i∈Z(2) are in K. Using Theorem 1 and Theorem 3, we obtain that for a
general choice of K A, it is possible to compute for all i, j ∈ Z(2) and χ ∈ Ẑ(2)
such that χ(i−j) = 1,

∑
η∈Z(2) χ(η)θi+η(zP +zQ)θj+η(zP +zQ) from the inputs.

By summing over the characters, we obtain for all i, j ∈ Z(2)

κij = θi(zP + zQ)θj(zP − zQ) + θj(zP + zQ)θi(zP − zQ). (20)

We suppose that θ0(zP+zQ)θ0(zP−zQ) 	= 0, if necessary by replacing the index 0
by another one. By rescaling the projective coordinates, we do our computations
as if θ0(zP − zQ) = 1 hence we know θ0(zP + zQ).

For i ∈ Z(2), let Pi(X) = X2−2 κi0κ00
X+ κiiκ00

. The roots of Pi(X) are θi(zP+zQ)
θ0(zP+zQ) ,

θi(zP−zQ)
θ0(zP−zQ) . If P orQ is a point of 2-torsion, P +Q = P −Q ∈K A so each Pi(X)
has a double root. Otherwise, we may suppose that there exist α ∈ Z(2), α 	= 0

such that the matrix M =
(
θ0(zP + zQ) θ0(zP − zQ)
θα(zP + zQ) θα(zP − zQ)

)
is invertible.

We can compute {θα(zP + zQ), θα(zP − zQ)} by finding the roots of Pα(X).
As by hypothesis, P+Q,P−Q ∈ A(K), we deduce that these roots are inK. We
fix an arbitrary ordering (θα(zP + zQ), θα(zP − zQ)) of these roots (depending
on the ordering, we will compute P −Q or P +Q).

We can then find {θi(zP + zQ), θi(zP − zQ)} by solving the system
(
θ0(zP + zQ) θ0(zP − zQ)
θα(zP + zQ) θα(zP − zQ)

)(
θi(zP − zQ)
θi(zP + zQ)

)
=
(
κi0
κiα

)
. (21)

This method requires one square root.

Pairing computation phase. Let P ∈ A(K)/[�]A(K) and Q ∈ A[�] and
denote by P ,Q the corresponding points on K A. Denote by θi(z), i ∈ Z(2), the
level 2 theta functions associated to Ω. We present two methods to compute the
symmetric Tate pairing.

A first method is to consider the formula eT (P ,Q) = eT (P,Q) + eT (P,−Q).
We have explained in the last paragraph how to compute the set S = {P +Q,
P −Q} at the expence of a square root extraction. By choosing a point in S, we
can use the algorithm from Section 5.1 to compute e(P,Q) (resp e(P,−Q)). We
can then compute eT (P,Q) = e(P,Q) + e(P,−Q) with a simple division.

Another approach is to work in the algebra A = K[X ]/(Pα(X)) for α ∈
Z(2) as before. We denote by g the unique automorphism of the algebra of A
leaving K invariant and different from the identity. For each i ∈ Z(2) by using
equation (21) we can express θi(zP + zQ) = γiX + δi. (We can always compute
an inverse of γX + δ except when −δ/γ is a root of Pα. But in this case we
have found a root of Pα and we can use the first method.) Now, consider the
vector (Tj)j∈Z(2) where T0 = 1, Tα = X and Tj = γjX + δj . We compute
R = ScalarMult(T,Q, P, 0̃, �)i. Then it is easily seen that
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R+ g.R = ScalarMult(P +Q,Q, P, 0̃, �)i + ScalarMult(P −Q,Q, P, 0̃, �)i.
By Proposition 2, and using the fact that θi(−zQ) = θi(zQ) we have for

i ∈ Z(2) eT (P ,Q) = [θi(�.zQ+zP )+θi(−�.zQ+zP )]θi(0)
θi(zP )θi(�.zQ) . We can now compute

eT (P,Q)= [ScalarMult(P+Q,Q, P, 0̃, �)i+ScalarMult(P−Q,Q, P, 0̃, �)i]θi(0)
θi(zP )ScalarMult(Q,Q, 0, 0̃, �)i

,

By an application of Lemma 3, the result of the preceding equation is a well
defined element of (K∗/K∗�)0.

With this method, we have to compute 1 ScalarMult with value in A and
1 ScalarMult with value in K. It is interesing to note that it avoids the non
determinism of the square root computation of the first method.

In some cryptographic applications, it is important to have a unique value as
the result of the Tate pairing. In order to have this property, it is common to
compose the Tate pairing with a �th root extraction on K which can be done in
the case that K is a finite field by an exponentiation in K∗0 . This operation can
be performed using the Montgomery ladder type algorithm presented above.

The symmetric Weil pairing computation. Since we compute P +Q with the
first method, we can compute the Weil pairing as in the level 4 case.

We explain how to compute it with the second method: let P,Q ∈ A[�] and
denote by P ,Q the corresponding points in K A. Denote by θi(z), i ∈ Z(2) the
level 2 theta functions associated to Ω. By Corollary 2, we have:

eW (P ,Q) =
θi(zQ)θi(�.zP )

θi(zP )θi(�.zQ)θi(zQ + �.zP )θi(zQ − �.zP )×

[θi(�.zQ + zP )θi(zQ − �zP ) + θi(�.zQ − zP )θi(zQ + �zP )] . (22)

The denominator of this expression can be easily computed from the knowl-
edge of θi(zQ), θi(�.zQ), θi(zP ) and θi(�.zP ) by using the addition formula (1).
The numerator can be computed in the algebra A in the following way: keeping
the notations from above, we compute R′ = ScalarMult(T,Q, P, 0̃, �)i.ScalarMult
(gT, P,Q, 0̃, �)i. We obtain that R′ + g.R′ = ScalarMult(P + Q,Q, P, 0̃, �)i.
ScalarMult(P − Q,P,Q, 0̃, �)i + ScalarMult(P − Q,Q, P, 0̃, �)i.ScalarMult(P +
Q,P,Q, 0̃, �)i, which gives the numerator of (22).

6 An Example in Dimension 2

In this section we give an example of compution of the pairings on a dimension 2
Jacobian. Let H be the hyperelliptic curve over the prime field Fp, p = 331,
given by the equation:

Y 2 = X5 + 204X4 + 198X3 + 80X2 + 179X.

Let J be the Jacobian of H . The cardinal of J(Fp) is 26 · 1889 (since we are in
level 2, all the 2-torsion points of J are rational), so that we let � = 1889, and
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the embedding degree k corresponding to � is 4. A theta null point of level 2
associated to J is given by (328 : 213 : 75 : 1). Let P = (255 : 89 : 30 : 1),
we have P ∈ J [�](Fp). Let Fpk 
 Fp(t)/(t4 + 3t2 + 290t + 3). We let Q be the
Fpk -point of �-torsion whose coordinates are:

(158t3 + 67t2 + 9t + 293 : 290t3 + 25t2 + 235t+ 280 : 155t3 + 84t2 + 15t+ 170 : 1).

We compute (and fix an arbitrary ordering):

P +Q = (217t3 + 271t2 + 33t+ 303 : 308t3 + 140t2 + 216t+ 312 : 274t3 + 263t2 + 284t + 302 : 1),

P −Q = (62t3 + 16t2 + 255t + 129 : 172t3 + 157t2 + 43t+ 222 : 258t3 + 39t2 + 313t+ 150 : 1).

Finally, we let r = pk−1
� = 6354480 and ζ = tr be a primitive �th-root of unity.

We then compute using the doubling and differential addition algorithms:

�P̃ = (12, 141, 31, 327) = 327.̃0,

�Q̃ = (21t3 + 280t2 + 101t + 180, 164t3 + 311t2 + 111t + 129,

137t3 + 282t2 + 123t+ 134, 324t3 + 17t2 + 187t+ 271) = (324t3 + 17t2 + 187t+ 271).̃0,

ScalarMult(P̃ +Q, Q̃, P̃ , 0̃, �) = (45t3 + 118t2 + 219t+ 308, 152t3 + 97t2 + 166t + 40,

200t3 + 267t2 + 201t+ 192, 117t3 + 42t2 + 106t + 205) = (117t3 + 42t2 + 106t+ 205).P̃ ,

ScalarMult(P̃ +Q, P̃ , Q̃, 0̃, �) = (50t3 + 31t2 + 84t+ 309, 168t3 + 196t2 + 275t + 234,

67t3 + 186t2 + 159t+ 102, 243t3 + 320t2 + 222t + 200) = (243t3 + 320t2 + 222t+ 200).Q̃.

We then compute (following the previous ordering):

eW (P,Q) =
243t3 + 320t2 + 222t+ 200

327
.
324t3 + 17t2 + 187t + 271
117t3 + 42t2 + 106t + 205

= ζ−1,

eT (P,Q) =
(

117t3 + 42t2 + 106t+ 205
324t3 + 17t2 + 187t+ 271

)r
= ζ1068

,

eT (Q, P ) =
(

243t3 + 320t2 + 222t + 200
327

)r
= ζ1184.

Here the Tate pairings are normalized by taking their r = (pk−1)/�-power. The
symmetric pairings are then given by eW (P,Q) = 61t3 + 285t2 + 196t+ 257 and
eT (P,Q) = 194t3 + 163t2 + 97t+ 164.

7 Conclusion

In this paper, we have presented an algorithm based on theta functions to com-
pute Weil and Tate pairings. It would be interesting to carry out a fine grained
study of the efficiency of our algorithm depending on the target implementation
(software, hardware etc.) and to compare it with existing implementations based
on Miller’s algorithm.
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Abstract. Let f(x) ∈ Z[x] be a totally real polynomial with roots
α1 ≤ . . . ≤ αd. The span of f(x) is defined to be αd − α1. Monic ir-
reducible f(x) of span less than 4 are special. In this paper we give a
complete classification of those small-span polynomials which arise as
characteristic polynomials of integer symmetric matrices. As one appli-
cation, we find some low-degree polynomials that do not arise as the
minimal polynomial of any integer symmetric matrix: these provide low-
degree counterexamples to a conjecture of Estes and Guralnick [6].

1 Introduction

1.1 History of the Small Span Problem

Let f(x) ∈ Z[x] be a monic polynomial having only real roots. If these roots are
α1 ≤ . . . ≤ αd then we say that f(x) has span αd − α1. In the case where f(x)
is irreducible, the roots are (Galois) conjugates of each other and we then refer
to {α1, . . . , αd} as a conjugate set. If a real interval I has length strictly less
than 4, then it is known [19] that I contains only finitely many conjugate sets
of algebraic integers. If I has length greater than 4 then it contains infinitely
many such conjugate sets [17]. The problem remains open for intervals of length
exactly 4, unless the endpoints are integers, in which case there are infinitely
many such sets [11].

Monic f(x) ∈ Z[x] of span less than 4 have therefore attracted some in-
terest: for convenience we shall call these small-span polynomials. The span is
unchanged if we replace f(x) by εdeg ff(εx+c) for any choice of ε ∈ {−1, 1} and
any integer c: two polynomials related in this way are deemed to be equivalent.
The number of equivalence classes of small-span polynomials of any given degree
is finite. Robinson [18] produced a complete list of representatives for degrees
up to 6, with conjectured lists for degrees 7 and 8 that were later verified as
complete. Recently Capparelli, Del Fra and Sciò [2] extended this computation
(using new techniques) up to degree 14.

For any natural number m, the totally real algebraic integer 2 cos(2π/m) has
its conjugate set lying in the interval [−2, 2]; we call the minimal polyomial of
such a number a cosine polynomial. Examples of irreducible small-span f(x) not
equivalent to one of these cosine polynomials are of special interest.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 270–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.2 Characteristic Polynomials of Integer Symmetric Matrices

For any n-by-n integer symmetric matrix A we define its characteristic polyno-
mial, χA(x), by χA(x) = det(xI − A), where I is the n-by-n identity matrix.
Clearly χA(x) is a monic polynomial with integer coefficients; moreover all its
roots are real since A is a real symmetric matrix. We define the span of A to
be the span of its characteristic polynomial, and we say that A is a small-span
integer symmetric matrix if it has span less than 4.

A more usual measure of the size of the eigenvalues of A is its spectral radius,
defined to be the largest modulus of any eigenvalue. Plainly the span of A is
bounded above by twice its spectral radius. If the spectral radius is at most 2,
then the characteristic polynomial is a small-span cosine polynomial (or a prod-
uct of such polynomials). See [14] for a classification of all integer symmetric
matrices of spectral radius below 2.019: there are no non-cosine small-span exam-
ples. There is a similar list in [14] of all f(x) arising as characteristic polynomials
of integer symmetric matrices for which the Mahler measure of xdeg ff(x+ 1/x)
is below 1.3: if the Mahler measure is 1, then one has a cosine example, and
amongst those for which the Mahler measure is close to 1 one finds some, but
not all, non-cosine small-span examples.

Petrović [16] classified all graphs whose characteristic polynomial has span
at most 4. From this one can easily deduce which cases give span less than 4.
The adjacency matrices of such graphs are special cases of integer symmetric
matrices, with the entries restricted to {0, 1}, and with only zero entries on the
main diagonal.

If f(x) ∈ Z[x] is monic and totally real, then one can sensibly ask whether
or not it arises as the characteristic polynomial of an integer symmetric matrix.
Not every such f(x) arises in this way: we shall see some examples that do not,
below. On the other hand, it is known (see [5], or [1]) that every totally real
algebraic integer α is the eigenvalue of some integer symmetric matrix A, so
that the minimal polynomial of α divides χA(x).

1.3 Minimal Polynomials of Integer Symmetric Matrices: A
Conjecture of Estes and Guralnick

With mystery surrounding the question of which polynomials f(x) arise as χA(x)
for some integer symmetric matrix A, Estes and Guralnick [6] turned their atten-
tion to the minimal polynomial mA(x), defined as the monic polynomial in Z[x]
of minimal degree such that mA(A) = 0. One has that mA(x) divides χA(x), and
that every root of χA is a root of mA [9, §11.6]. For an integer symmetric matrix
A, the minimal polynomial mA(x) must be separable (i.e., its roots are distinct)
since A is diagonalisable. Estes and Guralnick showed [6, Corollary C] that if
f(x) ∈ Z[x] has degree n ≤ 4, has all roots real, and is monic and separable,
then f(x) is the minimal polynomial of a 2n-by-2n integer symmetric matrix.

For example, one can easily show that x2 − 3 is not the characteristic poly-
nomial of an integer symmetric matrix, but it satisfies all the hypotheses of the
Estes-Guralnick theorem, and sure enough we find that
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−1 1 1 0

1 1 0 1
1 0 1 −1
0 1 −1 −1

⎞⎟⎟⎠
has minimal polynomial x2 − 3. For a less trivial example, we shall see below in
§3 that x3−4x−1 is not the characteristic polynomial of any integer symmetric
matrix. Yet it is the minimal polynomial of⎛⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 0
0 1 1 −1 0 1
1 1 −1 0 0 0
1 −1 0 −1 0 0
1 0 0 0 0 0
0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

At the end of their paper [6], Estes and Guralnick ask whether or not every
monic, separable, totally real f(x) ∈ Z[x] is the minimal polynomial of an in-
teger symmetric matrix: they conjecture that the answer is ‘yes’ (p. 84). This
question was answered in the negative by Dobrowolski [4]. He showed that any
degree-n irreducible minimal polynomial of an integer symmetric matrix has dis-
criminant at least nn, and then observed that infinitely many cosine polynomials
have smaller discriminant than this (for a precise formula for the discriminant of
a cosine polynomial see [18, p. 554], derived from a formula in [12]). The small-
est degree of any of Dobrowolski’s counterexamples to the conjecture of Estes
and Guralnick is 2880; we shall give below some counterexamples of degree 6,
for which the discriminant is too large for Dobrowolski’s argument to apply. It
remains an open problem as to whether or not there are any counterexamples
of degree 5.

1.4 The Contributions of This Paper

In this paper we ask which monic, irreducible, totally real polynomials in Z[x]
of span less than 4 arise as characteristic polynomials of integer symmetric ma-
trices. For this restricted class of polynomials, we are able to give a complete
classification (Theorem 3; more precisely, Theorem 3 classifies the integer sym-
metric matrices that give rise to small-span characteristic polynomials). As a
byproduct of this, we are able to address the conjecture of Estes and Guralnick
about minimal polynomials [6, p. 84], and produce some counterexamples with
degree as small as 6.

In §2 we describe the algorithm for computing the complete list of representa-
tives of equivalence classes of small-span integer symmetric matrices up to any
desired degree. This builds on similar algorithms in [13] and [14]. In §3 we detail
the results. In §4, we prove a classification theorem for the small-span polynomi-
als which arise as characteristic polynomials of integer symmetric matrices. The
paper concludes by applying this to the conjecture of Estes and Guralnick.
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2 The Growing Algorithm

2.1 Equivalence

Let On(Z) be the orthogonal group of n-by-n signed permutation matrices. If
A is an n-by-n integer symmetric matrix, and P ∈ On(Z), then we call A and
P−1AP = PTAP strongly equivalent. Strongly equivalent matrices have the
same characteristic polynomial.

Let A be an n-by-n integer symmetric matrix, and let c be any integer. Then
χA+cI(x) = χA(x − c). Also χ−A(x) = (−1)nχA(−x). Thus if f(x) is the char-
acteristic polynomial of an integer symmetric matrix, then so is any polynomial
equivalent to f(x) in the sense of §1.1. We define integer symmetric matrices A
and B to be equivalent if A is strongly equivalent to ±B + cI for some integer
c. Thus equivalent matrices have equivalent characteristic polynomials. If A has
span less than 4, then by adding cI for suitable c we can move to an equiva-
lent matrix B with all eigenvalues in the interval [−2, 3); if B has an eigenvalue
greater than 2.5, then it has no eigenvalue smaller than −1.5, and we replace B
by the equivalent matrix −B+ I. We see that any small-span integer symmetric
matrix is equivalent to one with all eigenvalues in the interval [−2, 2.5).

Our conclusion is that in order to find which monic, totally real polynomials
in Z[x] of degree n and span less than 4 arise as characteristic polynomials of
integer symmetric matrices, it is enough to find all n-by-n integer symmetric
matrices up to strong equivalence that satisfy both: (i) the span is less than 4;
and (ii) all eigenvalues lie in the interval [−2, 2.5).

2.2 Indecomposable Matrices

An integer symmetric matrix will be called decomposable if one can apply a per-
mutation to the rows, and the same permutation to the columns, to produce
a matrix in block diagonal form with more than one block. A matrix that is
not decomposable is indecomposable. The characteristic polynomial of a decom-
posable matrix is the product of the characteristic polynomials of its blocks. In
attempting to understand which polynomials arise as characteristic polynomials,
it is therefore enough to restrict to indecomposable matrices.

There is a nice graph-theoretic description of the property of being inde-
composable. The underlying graph of an integer symmetric matrix has vertices
labelled by the rows, with an edge between vertex i and vertex j precisely when
the (i, j)-entry in the matrix is non-zero. Then a matrix is indecomposable if and
only if the underlying graph is connected. We record a standard lemma whose
proof is obvious given this interpretation.

Lemma 1. Let A be an n-by-n indecomposable matrix, with n ≥ 2. Then there
is a choice of i between 1 and n such that deleting row i and column i from A
leaves an indecomposable submatrix.

When convenient, we shall use the language of graphs to talk about our matrices.
We speak of vertices to indicate rows, edges to indicate non-zero matrix entries,
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with natural interpretations of paths, cycles, connectedness, and so on. The
distance between two vertices will mean the minimal number of edges on a path
from one to the other. If our matrix has a non-zero entry on the diagonal, then
we refer to the corresponding vertex as being charged.

Lemma 1 is a corollary of the following slightly more precise result, which we
shall exploit later.

Lemma 2. Let G be a connected graph with at least 2 vertices, and let i and
j be vertices for which the distance between i and j is maximal. Then deleting
vertex i (and all incident edges) does not disconnect the graph.

Proof. Suppose that after deleting i there was a vertex k not in the same com-
ponent as j. Then every path from k to j in G would have to pass through i,
and so the distance from k to j would be strictly greater than that from i to j,
giving a contradiction.

2.3 Interlacing

We shall make much use of Cauchy’s interlacing theorem [3] (for more accessible
proofs, see [8], [10] or [7]).

Theorem 1 (Cauchy, 1829). Let A be an n-by-n integer symmetric matrix,
with n ≥ 2, and let B be an (n− 1)-by-(n− 1) submatrix formed by deleting row
i and column i from A (for some choice of i between 1 and n). Let λ1 ≤ λ2 ≤
. . . ≤ λn be the eigenvalues of A, and let μ1 ≤ . . . ≤ μn−1 be those of B. Then
these two sets of eigenvalues interlace:

λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ . . . ≤ μn−1 ≤ λn .

From this we have an immediate corollary which will be of use in our algorithm
for computing small-degree small-span integer symmetric matrices.

Corollary 1. Let A be an n-by-n integer symmetric matrix, with n ≥ 2, and
let B be an (n− 1)-by-(n− 1) submatrix formed by deleting row i and column i
from A (for some choice of i between 1 and n). Then the span of A is at least
as large as the span of B. Moreover, if A has all its eigenvalues in the interval
[−2, 2.5), then so does B.

2.4 Reduction

Our situation would be considerably more pleasant if for any integer symmetric
matrix A we could quickly find a canonical representative of its strong equiv-
alence class. Unfortunately this is not the case, and we content ourselves with
a quick ‘reduction’ process that gives us a semi-canonical representative, but
with the possibility that there are several different ‘reduced’ elements in the
same strong equivalence class. Some balance must be struck between the speed
of reduction and the possible number of strongly-equivalent reduced matrices.
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In practice we used two complementary reduction processes, which for conve-
nience we call fast reduction and slow reduction. The first of these is generally
much faster and was used to identify quickly many cases of strong equivalence.
The slower reduction process was then used to produce further weeding of our
lists of matrices. This double reduction was then repeated until no further weed-
ing was achieved. Any matrices in the final list having the same characteris-
tic polynomial (and sharing a few other invariants of strong equivalence) were
flagged for further inspection: in all such cases, either an equivalence between
the two examples was found, or some simple argument established that the two
were not equivalent.

The principle of fast reduction is to give a ‘score’ to each row of the matrix,
such that the multiset of scores is invariant under strong equivalence. The rows
and columns would then be ordered according to this score. Finally, if the first
non-zero entry of any row was negative (and not on the diagonal) then that row
(and the corresponding column) would have its sign changed. A more compli-
cated scoring system would take longer to compute but would reduce the number
of rows having equal score and thereby reduce the risk of having more than one
possible reduced matrix in the same strong equivalence class. The scoring system
that we used was to compute the first three powers of the matrix A and then
rank rows by a linear combination of: (i) the sum of the moduli of the entries in
the row; (ii) the same for A2; (iii) the same for A3; (iv) the size of the diagonal
entry.

The aim of slow reduction was to attempt to find the lexicographically small-
est element of a strong equivalence class. If always successful then this would
provide a perfect reduction process, but to achieve this perfection would be
painfully slow. Instead one deemed a matrix to be reduced if it was ‘locally min-
imal’ with respect to lexicographical ordering in the sense that: (i) changing the
sign of any row (and column) would give a larger matrix (in the sense of the or-
dering); (ii) swapping any two rows (and the corresponding columns) would give
a larger matrix; (iii) cyclically permuting any three rows (and the corresponding
columns) would produce a larger matrix.

There is no claim that the combination of fast and slow reduction detailed
above is optimally efficient, but both reduction methods significantly reduced
the number of matrices needing to be considered, and enabled the computations
to proceed smoothly up to the sizes detailed below.

2.5 Bounds on Entries and Valencies

Using interlacing (Theorem 1 to bound the size of diagonal entries, and Corol-
lary 1 to deal with off-diagonal entries) we can rapidly restrict the possible entries
for integer symmetric matrices that are of interest to us.

Lemma 3. Let A be a small-span integer symmetric matrix with all eigenvalues
in the interval [−2, 2.5). Then all entries of A have absolute value at most 2,
and all off-diagonal entries have absolute value at most 1.
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Proof. Let a be a diagonal entry in A. Then since (a) has a as an eigenvalue,
repeated use of Theorem 1 shows that A has an eigenvalue with modulus at least
as large as |a|. Our restriction on the eigenvalues of A shows that |a| ≤ 2.

Let b be an off-diagonal entry of A. Then deleting other rows and columns

gives a submatrix of the shape
(
a b
b c

)
. By repeated use of Corollary 1, this

submatrix must have span less than 4, giving
√

(a− c)2 + 4b2 < 4. This implies
|b| ≤ 1.

The cases where there is an entry that has absolute value 2 are extremely re-
stricted. The following Lemma describes the complete list.

Lemma 4. Up to strong equivalence, the only indecomposable small-span integer
symmetric matrices with all eigenvalues in the interval [−2, 2.5) and containing
an entry of modulus greater than 1 are:

(−2), (2),
(

2 1
1 −1

)
,

(
2 1
1 0

)
,

⎛⎝2 1 0
1 0 1
0 1 0

⎞⎠ ,

⎛⎜⎜⎝
2 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞⎟⎟⎠ .

(The first two matrices listed in Lemma 4 are equivalent, but not strongly equiv-
alent.)

Proof. Each of the five 1-by-1 matrices (−2), (−1), (0), (1), (2) was grown in all
possible ways to larger indecomposable small-span integer symmetric matrices
with all eigenvalues in the interval [−2, 2.5), allowing entries from {−2,−1, 0, 1, 2}
in accordance with Lemma 3. After producing a provisional list of 2-by-2 matri-
ces, this list was weeded by reduction, as described in §2.4. Repeating this growing
process three more times revealed that there are no 5-by-5 examples containing
an entry having modulus greater than 1, and by interlacing the same must be true
for all larger indecomposable integer symmetric matrices. The output of this com-
putation also established the advertised list.

Having reduced to the problem of considering matrices that have absolute value
at most 1, we now further restrict the possible entries in each row.

Lemma 5. Let A be an indecomposable small-span integer symmetric matrix
with all eigenvalues in the interval [−2, 2.5). Then each row of A has at most 4
non-zero entries.

Proof. After Lemma 4, we can suppose that all entries in A are from the set
{−1, 0, 1}.

If Lemma 5 were false, then by interlacing (and making use of strong equiva-
lence) there would be a small-span integer symmetric matrix M with all eigen-
values in the interval [−2, 2.5) and with M being one of
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⎛⎜⎜⎜⎜⎝
−1 1 1 1 1

1 a b c d
1 b e f g
1 c f h i
1 d g i j

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 a b c d
1 b e f g
1 c f h i
1 d g i j

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 1 1 1
1 a b c d e
1 b f g h i
1 c g j k l
1 d h k m n
1 e i l n o

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the unspecified entries are all from {−1, 0, 1}. A computer search showed
that no such matrix M exists.

2.6 The Algorithm

Lemma 1 and Corollary 1 suggest a means of ‘growing’ indecomposable small-
span integer symmetric matrices with all eigenvalues in [−2, 2.5) from smaller
matrices. This idea has been used before for computing integer symmetric ma-
trices with small spectral radius or small Mahler measure ([13] and [14]). Having
established Lemmas 4 and 5, we grow indecomposable matrices with all entries
coming from the set {−1, 0, 1}, and with the extra restriction that each row can
contain no more than four non-zero entries. After producing a provisional list
of r-by-r matrices, this list is weeded by reduction, as described in §2.4, before
growing to produce a list of (r + 1)-by-(r + 1) matrices.

The complete search up to 13-by-13 matrices was completed in under five
hours on a single processor. This was enough to provide the computational el-
ement of the proof of Theorem 3 below. The computation was pushed up to
20-by-20 matrices in under six days; perfect agreement of the results with The-
orems 2 and 3 for larger matrices provided confidence in the correctness of the
output for smaller matrices. The PARI code for all of this is freely available from
the author on request.

After each growing of a list of (n− 1)-by-(n− 1) matrices to a list of n-by-n
matrices, any examples from the first list that had not been grown to one or
more examples in the second were recorded in a list of maximal examples. Some
of these maximal examples fitted into infinite families, described in Theorem 2;
others did not, and these we call sporadic.

3 Results

We shall call an indecomposable small-span integer symmetric matrix that has all
eigenvalues in the interval [−2, 2.5) maximal if it cannot be obtained by deleting
rows (and corresponding columns) from any larger indecomposable small-span
integer symmetric matrix with all eigenvalues in the interval [−2, 2.5). It turns
out that every indecomposable small-span integer symmetric matrix with all
eigenvalues in the interval [−2, 2.5) can be grown to a maximal one (part of
Theorem 3). In view of Corollary 1, it is enough to describe all the maximal
matrices. Up to strong equivalence there are 197 sporadic examples and 10 in-
finite families. In this section we tabulate the number of sporadic examples of
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each size, found by computation as outlined above. The infinite families and
the proof of completeness of the classification will follow in §4 (Theorems 2 and
3). Members of the infinite families all in fact have eigenvalues in the smaller
interval [−2, 2].

The following table includes the three maximal examples from Lemma 4.
Maximal examples that are members of the infinite families of Theorem 2 are
excluded: only the sporadic cases are counted. The computations had been done
up to size 20-by-20, but the only maximal cases that were not covered by the
infinite families of Theorem 2 were 12-by-12 or smaller. That no further sporadic
maximal examples arise is the point of Theorem 3.

Sporadic maximal indecomposable small-span integer symmetric matrices
with all eigenvalues in [−2, 2.5), up to strong equivalence

n n-by-n cosine examples n-by-n non-cosine examples total
1 1 0 1
2 0 1 1
3 0 1 1
4 10 9 19
5 0 19 19
6 0 43 43
7 0 28 28
8 11 39 50
9 0 15 15
10 0 15 15
11 0 2 2
12 0 3 3

total 22 175 197

For degrees up to 8, most small-span irreducible polynomials arise as charac-
teristic polynomials of integer symmetric matrices: it is simpler to record which
of Robinson’s polynomials from [18] do not arise. It is interesting to note that
all examples of degrees 4 and 5 appear. The missing examples for degrees 2 and
3 are those mentioned in §1.3 above, namely x2 − 3 and x3 − 4x− 1. The other
missing polynomials are numbers 6g, 6i, 6k, 7j, 7k, 7l, 8a, 8c, 8l, 8m, 8t, 8u, 8y
in Robinson’s list [18].

For degree 9, both of the inequivalent cosine polynomials arise as characteristic
polynomials, and three other irreducibles: x9 − x8 − 9x7 + 7x6 + 28x5 − 15x4 −
34x3 +10x2 +12x−1, x9−4x8−2x7 +21x6−5x5−37x4 +12x3 +24x2−5x−4,
x9 − 3x8 − 5x7 + 18x6 + 7x5 − 34x4 − x3 + 20x2 − 3x − 1. For degree 10, the
only irreducible small-span characteristic polynomial is the non-cosine example
x10 − 5x9 + x8 + 26x7 − 21x6 − 49x5 + 40x4 + 42x3 − 20x2 − 15x− 1. For degree
11, the only one (up to equivalence) is the cosine case.

For degree 13 and above, Theorem 3 (below) gives a complete description of
which characteristic polynomials arise. All degree-13 examples that have span
below 4 and all eigenvalues in the interval [−2, 2.5) in fact have all eigenvalues in
the subinterval [−2, 2] (this is the content of Theorem 3), and hence are described
in Theorem 2.
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The following table compares the complete lists of [18] and [2] with the re-
sults of the computations for characteristic polynomials, restricting to irreducible
polynomials.

Number of irreducible Number that arise as
Degree small-span polynomials characteristic polynomials

up to equivalence: of integer symmetric matrices:
cosine + non-cosine = total cosine + non-cosine = total

1 1 + 0 = 1 1 + 0 = 1
2 3 + 1 = 4 2 + 1 = 3
3 2 + 3 = 5 2 + 2 = 4
4 4 + 10 = 14 4 + 10 = 14
5 1 + 14 = 15 1 + 14 = 15
6 4 + 13 = 17 1 + 13 = 14
7 0 + 15 = 15 0 + 12 = 12
8 5 + 21 = 26 5 + 14 = 19
9 2 + 19 = 21 2 + 3 = 5
10 3 + 15 = 18 0 + 1 = 1
11 1 + 10 = 11 1 + 0 = 1
12 7 + 9 = 16 0 + 0 = 0
13 0 + 4 = 4 0 + 0 = 0

4 Classification of Small-Span Integer Symmetric
Matrices

One result of our computations is that any indecomposable small-span 13-by-
13 integer symmetric matrix with all its eigenvalues in [−2, 2.5) in fact has
all its eigenvalues in [−2, 2]. We shall now prove that this holds for all larger
indecomposable matrices too. As a first step, we classify those indecomposable
small-span integer symmetric matrices that have all their eigenvalues in the
interval [−2, 2].

After Lemma 4, we are reduced to considering matrices that have entries 0,
1 or −1. These are conveniently represented by charged signed graphs. Vertices
are labelled with their charges (corresponding to diagonal entries of the matrix);
off-diagonal entries 1 and −1 are represented respectively by solid and dotted
edges. Zero charges can be omitted to reduce clutter. For example, the matrix⎛⎜⎜⎝

1 1 0 0
1 0 1 1
0 1 1 −1
0 1 −1 0

⎞⎟⎟⎠ is drawn as

� � �

�
�
�
�
�
�

�
�

�1 1
.

In the graphs below, the symbol

� ���

k
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denotes apathwithk solid edges (andall vertices uncharged)between thedisplayed
endvertices (ifk = 0 then these endvertices are identified as a single vertex).Define
graphs O2k, O+

2k+1, O
−
2k+1, P

±
n , X+

n , X−
n , Y +

n , Y −
n , Z+

k,l, Z
−
k,l as shown.
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Theorem 2. Every indecomposable small-span integer symmetric matrixM1 that
has all its eigenvalues in the interval [−2, 2] is a submatrix of an indecomposable
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small-span integer symmetric matrix M2 that is maximal subject to being small-
span and having all its eigenvalues in [−2, 2.5). Up to strong equivalence, the pos-
sibilities for M2 are the sporadic maximal examples tabulated in Section 3 and the
adjacency matrices of the charged signed graphs O2k (k ≥ 4), O+

2k+1 (k ≥ 3),
O−

2k+1 (k ≥ 2), P±
n (n ≥ 6), X+

n (n ≥ 7), X−
n (n ≥ 4), Y +

n (n ≥ 6), Y −
n (n ≥ 3),

Z+
k,l (k ≥ l ≥ 0, except for (k, l) ∈ {(0, 0), (1, 0), (1, 1), (2, 1)}), Z−

k,l (k ≥ l ≥ 0)
pictured above.

Proof. This is a tedious but easy extension of the work in [13, §12] where all ex-
amples with eigenvalues in the open interval (−2, 2) were described; here we relax
this to consider the intervals (−2, 2] and [−2, 2). A convenient technique is that of
Gram vectors. If an integer symmetric matrix A has all its eigenvalues in [−2, 2],
then both B = A + 2I and C = −A + 2I have all eigenvalues at least 0. Thus
there are lists of Gram vectors v1, . . . , vn and w1, . . . , wn contained in Rn such
that the (i, j)-entry of B (respectively C) is given by vi · vj (respectively wi ·wj).
Now −2 is an eigenvalue of A if and only if v1, . . . , vn are linearly dependent, and
2 is an eigenvalue of A if and only if w1, . . . , wn are linearly dependent.

We start by noting that the following charged signed graphs have span 4: in
each case one readily writes down linearly dependent sets of Gram vectors as
above, showing that both −2 and 2 are eigenvalues, following the ideas in [13].

�

�

�

�

�

���
�

�
�
�
�

k

�

�

�

�

�

���
�

�
�
�
�

�
�
�
�
�

k

�

�

�

�

� � � � �
�
�
�
�
��

�
� � � � �

� �

�
�

� �
�

�

��
k

�

�

� � �

�

�� � � � �

�
�

� ��
k

1

1

�
�

�

� � � � �

�
�

� �

�

� � �

�

�

�
�

� ��
k

−1

−1

�
�

�

� � � � �

�
�

�

�

�

�

�

� � � � �
�
�
�
�
��

�
��

�
�
�
�

1

1

1

1

�

�

� � �

�

� � � � �

�
�

� �� � � � � ��
�

�

k

1

1

1

1

�

�

� � �

�

�
�

� �� �
�

�

k

−1

−1

−1

−1

�

�

�

�

�
�

��
�

�−1

−1

−1

−1

�

�

� � �� � � � �

�
�

� ��
k

1

1

−1

� � � �

�

�� �
�

�

k

1

−1

−1

�

�

�

�

� � � � �1

−1

� � �

�

� ��
�

�

� � � � �

�
�

� ��
k

1 −1 � � � � �

�

�� �
�

�

� � � � �

�
�

�
k

1 −1

� � �

� � �

� � � � �

�
�

�

�
�

�1

1

−1

1

−1

−1

� � � � �

�

� ��� �
�

�

� � � � �

�
�

� ��
k k

1 −1



282 J. McKee

Next we note that the charged signed graphs O2k, O+
2k+1, O

−
2k+1, P

±
n , X+

n , X−
n ,

Y +
n , Y −

n , Z+
k,l, Z

−
k,l have all eigenvalues between −2 and 2 (they are equivalent

to subgraphs of those listed in [13, §4]), and have span less than 4 (writing down
Gram vector representations for each graph and its negative, one finds that in
every case exactly one of the sets of Gram vectors is linearly independent).

Finally we check readily that any connected subgraph of one of those in [13,
§4] that does not contain any subgraph equivalent to one of the span-4 examples
listed above must be a subgraph of one of O2k, O+

2k+1, O−
2k+1, P±

n , X+
n , X−

n ,
Y +

n , Y −
n , Z+

k,l, Z
−
k,l.

The restrictions on n, k and l require a trawl through the sporadic examples
to see which of them contain any of the members of these 10 infinite families as
subgraphs. For example, P±

5 is a subgraph of the maximal sporadic example
� � � � � �
−1 1 −1 .

Theorem 3. Up to strong equivalence, the indecomposable small-span integer
symmetric matrices with all eigenvalues in the interval [−2, 2.5) are precisely
the indecomposable submatrices of the 197 sporadic cases accounted for in §3
and the 10 infinite families of Theorem 2. In particular, every such matrix with
more than 12 rows has all its eigenvalues in the interval [−2, 2].

Proof. In view of Theorem 2 and the computational results of §3, it is enough
to show that every indecomposable integer symmetric matrix with more than 12
rows and all its eigenvalues in the interval [−2, 2.5) in fact has all its eigenvalues
in the interval [−2, 2]. Suppose for a contradiction that this is not the case. Let
A be a counterexample that has as few rows as possible. We know from our
computations that A has at least 14 rows, and this minimal counterexample
would then have the property that any proper submatrix has all its eigenvalues
in the interval [−2, 2]. The result now follows from the classification of all integer
symmetric matrices minimal subject to not all eigenvalues being in the interval
[−2, 2]: there are no such matrices with more than 10 rows [14]. But the current
case is much easier, so we outline a direct proof. The key idea in the proof is
that the property of having all eigenvalues in the interval [−2, 2] is essentially
described by local structure. In the general case treated in [14] this local structure
is much more complicated than in the small-span case treated here.

Let G be the charged signed graph with adjacency matrix A (using Lemma 4).
Pick vertices u and v as far apart as possible in G. Deleting either u or v leaves
a connected (Lemma 2) charged signed graph with all eigenvalues in [−2, 2] and
with at least 13 vertices, and hence a connected subgraph of one of the infinite
families of Theorem 2.

Deleting u leaves an underlying graph that is either a cycle or not. Suppose
first that the underlying graph of G with u deleted is a cycle. Since u and v
are maximally distant in G, we deduce that u is joined to vertices as far (or
almost as far) as possible from v on this cycle, and since deleting v from G must
give a connected subgraph of one of the infinite families of Theorem 2, the only
possibility for G (up to strong equivalence) is a charged signed graph of the
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shape formed by identifying the end vertices of Z+
k,l, with the charges removed.

But then A has all eigenvalues in the interval [−2, 2] (see [13]) and in fact also
has span 4, giving two contradictions.

Now suppose that deleting u does not leave a cycle. Then it leaves a structure
that is up to strong equivalence either an uncharged path (perhaps with one
negative edge) or is one of P±

n , X+
n , X−

n , Y +
n , Y −

n , Z+
k,l, Z

−
k,l, perhaps with one

or more vertices removed in a way that does not disconnect the graph. Then
either v is near the middle and u is adjacent to vertices at or near both ends
of this structure, or v is at one end and u is adjacent to vertices at or near the
other end. Again one sees (on considering deleting v, and using the classification
in [13]) that A must have all eigenvalues in [−2, 2], giving a contradiction.

5 Low-Degree Counterexamples to a Conjecture of Estes
and Guralnick

Let f(x) be a monic, irreducible, totally real, small-span polynomial of degree
n > 6 that has all its eigenvalues in the interval [−2, 2.5) but is not the charac-
teristic polynomial of an integer symmetric matrix. Suppose further that f(x) is
not a cosine polynomial. Then f(x) cannot be the minimal polynomial of any
integer symmetric matrix. For if it were, then the smallest such matrix would
be indecomposable and have characteristic polynomial f(x)r for some r > 1.
But Theorem 3 precludes the existence of such characteristic polynomials, since
the degree rn would be greater than 12. In particular, none of the polynomi-
als x7 − x6 − 7x5 + 5x4 + 15x3 − 5x2 − 10x − 1, x7 − 8x5 + 19x3 − 12x − 1
or x7 − 2x6 − 6x5 + 11x4 + 11x3 − 17x2 − 6x + 7 is the minimal polynomial
of an integer symmetric matrix. These provide degree-7 counterexamples to the
conjecture of Estes and Guralnick [6].

Finally we remark that none of the three degree-6 cosine polynomials x6 −
x5 − 6x4 + 6x3 + 8x2 − 8x + 1, x6 − 7x4 + 14x2 − 7 and x6 − 6x4 + 9x2 − 3
is the minimal polynomial of any integer symmetric matrix. Our computations
revealed that these three do not arise as characteristic polynomials, nor as min-
imal polynomials for any 12-by-12 or 18-by-18 matrix. Moreover the smallest
span of an indecomposable 19-by-19 matrix is already larger than the spans of
all three of these degree-6 polynomials, so by interlacing they cannot appear as
the minimal polynomial of any larger matrix.

It remains an open problem as to whether or not there exists a degree-5, monic,
separable, totally real polynomial that does not arise as the minimal polynomial
of an integer symmetric matrix. All the small-span cases are covered, so the
techniques of this paper cannot be applied.
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Abstract. We propose some kind of new attack which gives the solution
of the discrete logarithm problem for the Jacobian of a curve defined over
an extension field Fqn , considering the set of the union of factor basis and
large primes B0 given by points of the curve whose x-coordinates lie in Fq.
In this attack, an element of the divisor group which is written by a sum
of some elements of factor basis and large primes is called (potentially)
decomposed and the set of the factors that appear in the sum, is called
decomposed factors. So, it will be called decomposition attack. In order
to analyze the running of the decomposition attack, a test for the (po-
tential) decomposedness and the computation of the decomposed factors
are needed. Here, we show that the test to determine if an element of the
Jacobian (i.e., reduced divisor) is written by an ng sum of the elements of
the decomposed factors and the computation of decomposed factors are
reduced to the problem of solving some multivariable polynomial system
of equations by using the Riemann-Roch theorem. In particular, in the
case of hyperelliptic curves of genus g, we construct a concrete system
of equations, which satisfies these properties and consists of (n2 − n)g
quadratic equations. Moreover, in the case of (g, n) = (1, 3), (2, 2) and
(3, 2), we give examples of the concrete computation of the decomposed
factors by using the computer algebra system Magma.

Keywords: Decomposition Attack, Hyperelliptic curve, Discrete log-
arithm problem, Weil descent attack.

1 Introduction

In this work, we treat the solution of the discrete logarithm problem of the Ja-
cobian of a curve C of genus g defined over an extension field Fqn (n ≥ 2) by
decomposition attack. In particular, when C is a hyperelliptic curve and ng(≥ 3)
is a small integer, we give the concrete algorithm for computing what is called
decomposed factors. In [6], Gaudry proposes the decomposition attack for the
Jacobian of a hyperelliptic curve defined over a general finite field Fq consider-
ing a set of factor basis given by the Fq-rational points of the curve. This attack
is usually called ’Index Calculus’ and such variations are widely used [3], [11].
However, the behavior of this attack, when it is used for solving the discrete
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logarithm of algebraic curve, is quite different to the original index calculus,
which is a method to compute indices, that is, discrete logarithms in multiplica-
tive groups of finite prime fields. Because of this, we use the name decomposition
attack to refer to the attack. By recent works on the decomposition attack, which
are the improvements of [6], it is known that the techniques of 1) using rebal-
ancing [5] and 2) using large primes [15], [13], [7] are available. On the contrary,
the techniques of large prime variations of normal index calculus associated to
number field sieve are known as no contribution and do not lead to a decrease
of the complexity.

In [8](also c.f. [4]), Gaudry also presents the decomposition attack for an el-
liptic curve defined over an extension field Fqn considering the set of factor basis
given by points of the curve whose x-coordinates lie in Fq. Actually, Gaudry
proposes also the rebalancing and the large prime variations. In these varia-
tions, the set of factor basis B is taken by some subset of B0 which is given
by points of the curve whose x-coordinates lie in Fq and an element in B0\B is
called large prime. In these methods, the test for the potential decomposedness
of P ∈ E(Fqn) (i.e., for being a sum of n elements of the B0 ) and the computa-
tion of the decomposed factors (i.e., n elements of B0 whose summation equals
to P ) are reduced to the problem of solving some system of multivariable poly-
nomial equations of degree 2n−1, n variables, and n equations, using Semaev’s
summation polynomials [14]. Moreover, Gaudry generalizes this decomposition
attack to the case of the abelian varieties defined over an extension field, includ-
ing the case of Jacobians of curves. However, in the case of non-elliptic curves,
Semaev’s summation polynomials are not available. It is, in principle, possible
to derive a similar system of equations using the group law. Unfortunately, such
is cumbersome. In fact, in the case of the Jacobian of a hyperelliptic curve of
genus g, the sum of ng generic points is needed. Assuming that an element
of Jacobian is written by the Mumford representation and that the group law
is done by the Cantor algorithm [2], since the Cantor algorithm needs g − 1
times reduction steps, explosions of the degree and terms occur in this compu-
tation.

In this work, we show that instead of using the group law, another system
of equations is obtained from the theory of Riemann-Roch spaces (only in the
case of Jacobians of curves). With this tool, the system of the equations is now
simple to compute, and its parameters are easily controlled. In particular, in the
case of Jacobians of hyperelliptic curves, this system of the equations consists of
(n2 − n)g quadratic equations in (n2 − n)g indeterminates.

So, under the heuristic assumption that this system of the equations is (es-
sentially) projectively 0-dimensional, the computational amount for solving this
system of equations is estimated by O(2(n2−n)g·C) where C is some constant less
than 3. In the case of an elliptic curve (i.e., g = 1), this computational amount
heuristically equals to that of Gaudry’s original equations system using Semaev’s
summation polynomials.



Decomposition Attack for the Jacobian of a Hyperelliptic Curve 287

2 Decomposition Attack for the Jacobian of a General
Plane Curve

This section adapts the idea of [8] to the setting of a smooth plane curve with a
single missing point at infinity, and presents an overview of the decomposition
attack for the Jacobian of a general plane curve using the Riemann-Roch the-
orem. Let Ca be the affine curve of genus g defined over an extension field Fqn

(i.e., n ≥ 2) given by the equation f(x, y) = 0, and let C be the correspond-
ing non-singular complete curve. Assume that Ca is non-singular. From this, we
have a canonical embedding ι : Ca → C. It is also assumed that C\ι(Ca) only
consists of a single Fqn -valued point, which is denoted by ∞ and is called the
point at infinity. These assumptions are true for hyperelliptic curves so there is
no problem for the main results of this work. Let D0 be a divisor of the form

D0 = Q1 + .. + Qg − (g)∞ (1)

where Q1, .., Qg ∈ C(Fqn) and the multiset {Q1, .., Qg} is stable under the action
of galois group Gal(Fqn/Fqn). Put

φ1(x) :=
g∏

i=1

(x − x(Qi)) (2)

and note that it is in Fqn [x].
Also put

B0 := {P ∈ C |P = (x, y) ∈ C(Fqn), x ∈ Fq},

as a set of factor basis and large primes. (Strictly saying, B0 must be a subset
of JacC(Fqn), and it is the set of the elements of the divisors P − ∞ where P
has the above properties. Here, the term “−∞” is omitted for simplicity.)

Assumption 1. Let n be a fixed positive integer. Then the number of the mul-
tisets P = {P1, .., Png} with Pi ∈ B0, which satisfy the relation

∑ng
i=1 Pi ∼∑ng

i=1 P
′
i for some different (P �= P ′) multiset P ′ = {P ′

1, .., P
′
ng} with P ′

i ∈ B0,
is less than qng−ε, where ε is some positive constant.

Here, we shortly state the validity of this assumption in the case of hyperelliptic
curve. Let C : y2 = f(x) be the equation of hyperelliptic curve. For any P =
(x, y) ∈ C, put P̄ = (x,−y) ∈ C. So, there are series of trivial relations P + P̄ ∼
P ′ + P̄ ′ for any P, P ′ ∈ B0. The number of the multisets satisfying the condition
of Assumption 1 and coming from these trivial relations is only O(qng−1) and it
seems to be no series including many trivial relations. So, Assumption 1 seems
to be valid.

Assumption 2. |B0| ≈ q.

Here, we also state the validity of this assumption in the case of hyperelliptic
curve. Let C : y2 = f(x) be the equation of hyperelliptic curve. If f(x) is chosen
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randomly, the probability that f(x) (x ∈ Fq) is square in Fqn is around 1/2 and
this assumption seems to hold.

In the following, we assume Assumption 1 and Assumption 2. From these as-
sumptions, we see easily that since “the number of the divisors of the form(1)”≈
qgn, the probability that there are some P1, P2, .., Png ∈ B0 (exactly ng elements,
Pi = Pj for some i �= j being allowed) such that

D0 + P1 + P2 + ... + Png − (ng)∞
=
∑g

i=1 Qi + P1 + P2 + ... + Png − (ng + g)∞ ∼ 0, (3)

is approximately 1/(gn)!, when q � ng.

Definition 1. If a divisor D0 is written by the form (3) for some P1, P2, .., Png ∈
B0 (exactly ng elements, Pi = Pj for some i �= j being allowed), D0 is called
potentially decomposed and in this case, the elements P1, P2, .., Png are called
decomposed factors and the multiset {Pi}ng

i=1 is called decomposed divisor.

We now fix D0 and discuss how it can be tested that D0 is potentially decom-
posed and the decomposed factors can be computed. So, Q1, ..., Qg and φ1(x),
which are dependent on D0, are also fixed.

Let D =
∑

P∈C(Fqn ) npP , np ∈ Z be a divisor of C/Fqn . Assume that D is sta-
ble under the action of galois group Gal(Fqn/Fqn). Put deg(D) :=

∑
P∈C(Fqn ) np,

and L(D) := {f ∈ Fqn(C) | (f)+D ≥ 0}∪{0}. From the Riemann-Roch theorem
(cf [10] Corollary A.4.2.3), we have the following lemma.

Lemma 1. (Riemann-Roch) 1) L(D) is an Fqn vector space.
2) If deg(D) ≥ 2g − 1, dimL(D) = deg(D) − g + 1.

From this Lemma, dimL((ng)∞−D0) = dimL((ng + g)∞−
∑g

i=1 Qi) = ng −
g + 1. Let {f0(x, y), f1(x, y), ..., fng−g(x, y)} be a base of L((ng)∞ − D0)) and
an element h ∈ L((ng)∞−D0) is written by

a0f0(x, y) + a1f1(x, y) + ... + ang−gfng−g(x, y) (4)

where ai are values in Fqn . From Hess [9], we have the following lemma.

Lemma 2. A base of L((ng)∞−D0) is computable within Poly(ng log q) time.

Let
h(x, y) := A0f0(x, y) + A1f1(x, y) + ... + Ang−gfng−g(x, y) (5)

be a multivariable polynomial in Fqn [A0, ..., Ang−g, x, y].
For

aaff = (a0, a1, ..., ang−g) ∈ Ang−g+1(Fqn)

and some polynomial p(x) ∈ Fqn [A0, ..., Ang−g, x], let paaff(x) be the polynomial
obtained from p(x) by substituting ai for Ai.
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Definition 2. A multivariable polynomial p(x) in Fqn [A0, ..., Ang−g , x] is called
A-homogenous, when paaff

(x) = Const × pkaaff
(x) holds for all

aaff = (a0, a1, ..., ang−g) ∈ Ang−g+1(Fqn) and k ∈ F∗
qn .

For
apro = (a0, a1, ..., ang−g) ∈ Png−g(Fqn)

and some A-homogenous polynomial p(x) ∈ Fqn [A0, ..., Ang−g, x],
let monic(paaff(x)) be the polynomial obtained from p(x) by substituting ai for
Ai and dividing by the leading coefficient. Now, we compute the intersections of
hapro(x, y) = 0 on C. Remember that the equation of Ca is f(x, y) = 0.
Put S(x) := Resultanty(f(x, y), h(x, y)). From this construction, we then have
the following lemma.

Lemma 3.
1) S(x) is a multivariable A-homogeneous polynomial in Fqn [A0, .., Ang−g, x].
2) degxS(x) = ng + g.
3) φ1(x) |S(x).

Proof. 1) is trivial. For any apro = (a0, a1, ..., ang−g) ∈ Png−g(Fqn), since
hapro(x, y) has only poles (ng + g)∞ on points at infinity, we have 2) and since
hapro(x, y) have zeros at each Qi’s, we have 3).

Put g(x) := S(x)/φ1(x). Since φ1(x) ∈ Fqn [x], g(x) is also a multivariable A-
homogeneous polynomial in Fqn [A0, .., Ang−g, x]. Thus, g(x) is written in the
form

g(x) = Cngx
ng + Cng−1x

ng−1 + ... + C0

where each Ci ∈ Fqn [A0, .., Ang−g] has the same multi degree of Ai. Note that if
the indeterminates A′

is are replaced by values ai and the obtained polynomial is
divided by the leading coefficient, then one obtains a polynomial monic(gapro(x))
in Fqn [x]. The solutions of monic(gapro(x)) = 0 mean the x-coordinates of the
intersections hapro(x, y) = 0 on C except Q1, ..., Qg. So, we have the following
lemma.

Lemma 4. The condition that D0 is potentially decomposed is equivalent to
the following: There is some apro = (a0, a1, ..., ang−g) ∈ Png−g(Fqn) such that
monic(gapro

(x)) ∈ Fq[x] and monic(gapro
(x)) ∈ Fq[x] factors completely in Fq[x].

Now, we find such ai’s. Let [α0(= 1), α1, .., αn−1] be a base of Fqn/Fq. We fix
this base. Let Ai,j (1 ≤ i ≤ ng, 0 ≤ j ≤ n− 1) be new indeterminates over Fq,
and let us consider the polynomials obtained by substituting A0 by 1 and Ai by∑n−1

j=0 Ai,jαj (1 ≤ i ≤ ng− g) in g(x). Let us denote the coefficients obtained in
this way again by Ci. Then the coefficients can be written in the form

Ci =
n−1∑
j=0

Ci,jαj , Ci,j ∈ Fq[∪1≤i≤ng, 0≤j≤n−1{Ai,j}].

Then, the condition that there is some apro ∈ Png−g(Fqn) satisfying
1) monic(gapro(x)) ∈ Fq[x] and
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2) First coordinate of apro is non-zero,
is equivalent to the condition that the system of the equations

Ci,j = TiCng,j (0 ≤ i ≤ ng − 1, 0 ≤ j ≤ n− 1) (6)

of (n2 + n)g indeterminates ∪{Ai,j} and T0, ..., Tng−1 defined over Fq has some
solutions Ai,j = ai,j , Ti = ti in Fq. In this case, monic(gapro(x)) is written by

xng−g + tng−g−1x
ng−g−1 + ... + t1x + t0. (7)

Thus, the test of the decomposedness of D0 and the computation of the decom-
posed factors are reduced to find the solutions of the system of the equations (6)
and factorizations of the polynomials (7).

In the next section, we will investigate the case of the hyperelliptic curve. In
this case, there is a concrete representation of the Riemann-Roch space, and so
we have a more concrete system of equations.

3 Decomposition Attack for the Jacobian of a
Hyperelliptic Curve

Now, we discuss the special case of Jacobians of hyperelliptic curves. In this
case, there are concrete representations of the Riemann-Roch space and some
techniques that g(x) can be taken as a monic polynomial, and from this, a
simple system of equations is derived. Let C be a hyperelliptic curve (including
an elliptic curve) of genus g of the form

C : y2 = f(x), where f(x) = x2g+1 + a2gx
2g + ... + a0

over Fqn where the characteristic of Fq is not 2 and n ≥ 2. Put ∞ by the unique
point at infinity on C. Let D0 be a reduced divisor (i.e.,Fqn -rational point of the
Jacobian) of C. To represent D0, we use the so-called Mumford representation:

D0 = (φ1(x), φ2(x)),

where φ1(x) ∈ Fqn [x] is a monic polynomial with deg(φ1(x)) ≤ g and φ2(x) ∈
Fqn [x] satisfies deg(φ2(x)) < deg(φ1(x)) and f(x) − φ2(x)2 ≡ 0 mod φ1(x). In
the following, we will assume deg(φ1(x)) = g. This assumption holds for all
but a negligible fraction of divisor classes D0. Note that there are Q1, .., Qg ∈
C(Fqn)\{∞} satisfying the equation (1) and the multiset {Q1, .., Qg} is stable
under the action of galois group Gal(Fqn/Fqn).

Similarly, put B0 := {P ∈ C |P = (x, y) ∈ C(Fqn), x ∈ Fq} as a set of factor
basis and large primes. Then, from the Assumption 1 and Assumption 2, we can
see easily that the probability, that there are some P1, P2, .., Png ∈ B0 (exactly
ng elements, Pi = Pj for some i �= j being allowed) satisfying the equation (3),
is approximately 1/(gn)!, when q � ng.

In the following, we fix a reduced divisor D0. So, φ1(x), φ2(x), and Q1, ..., Qg,
which are dependent on D0, are also fixed.

In this work, we show the following theorem.
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Theorem 1. Let V1, V2, ..., V(n2−n)g be indeterminates and let D0 be a reduced
divisor of C/Fqn . Then there are some computable degree 2 polynomials

Ci,j ∈ Fq[V1, V2, ..., V(n2−n)g] (0 ≤ i ≤ ng − 1, 0 ≤ j ≤ n− 1)

satisfying the following: The condition that D0 is potentially decomposed is equiv-
alent to the following 1) and 2):
1) The system of equations {Ci,j = 0 | 0 ≤ i ≤ ng − 1, 1 ≤ j ≤ n− 1} has some
solution v = (v1, .., v(n2−n)g) ∈ A(n2−n)g(Fq).
2) Put ci = Ci,0(v1, .., v(n2−n)g) for 0 ≤ i ≤ ng − 1. Then G(x) = xng +
cng−1x

ng−1 + ... + c0 ∈ Fq[x] factors completely.
Moreover, if D0 is potentially decomposed, the x-coordinates of the decomposed
factors are the solutions of G(x) = 0.

From this theorem, the test, whether D0 is potentially decomposed and the com-
putation of the decomposed factors (if possible), is reduced to solving the system
of the equations {Ci,j = 0 | 0 ≤ i ≤ ng − 1, 1 ≤ j ≤ n − 1} and factorizing the
polynomials G(x) obtained form the solutions of the system of these equations.

In the following, we construct such multivariable polynomials {Ci,j} and show
Theorem 1.

From the equation of C, we see ord∞x = 2, and ord∞y = 2g + 1. Put N1 :=
� (n+1)g

2 	 and N2 := �ng−g−1
2 	.

Lemma 5. 1) N1 + N2 = ng − 1.
2) N2 + g − 1 < N1.

Proof. Trivial.

Lemma 6. {1, x, x2, .., xN1 , y, xy, ...xN2y} is a base of L((ng + g)∞).

Proof. From ord∞x = 2, ord∞y = 2g + 1, each element in the above list is in
L( (ng+g)∞). The independence is from the definition of the hyperelliptic curve.
Thus, since the number of the elements of the list N1 + N2 + 2 = ng + 1 is the
same as the dim L((ng + g)∞) (from Lemma 1), we finish the proof.

Lemma 7
{φ1(x), φ1(x)x, ..., φ1(x)xN1−g, (y−φ2(x)), (y−φ2(x))x, ..., (y−φ2(x))xN2} is a
base of L((ng)∞−D0) = L((ng + g)∞−

∑g
i=1 Qi).

Proof. From the definition of φ1(x) and φ2(x), each element in the list has a zero
at each Qi. Since deg(φ1(x)) = g, deg(φ2(x)) ≤ g−1, and N2 + g−1 < N1(from
Lemma 5), each element in the list has at most (ng + g) poles at ∞. Then
they are in L((ng)∞−D0). Now, we show the independence. Assume they are
not independent, and there are some non zero f1(x), f2(x) ∈ Fqn [x] such that
φ1(x)f1(x) + (y − φ2(x))f2(x) = 0. However, the relation φ1(x)f1(x) + (y −
φ2(x))f2(x) = 0 induces yf2(x) ∈ Fqn [x] and f1(x) = f2(x) = 0. As this is
a contradiction, they are independent. On the other hand, the number of the
elements in the list is N1 +N2 + 2− g = ng− g + 1 from Lemma 5, which is the
same as the dimL((ng)∞−D0). So we finish the proof.
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From Lemma 7, an element h ∈ L((ng)∞−D0) is written by

h(x, y) = φ1(x)(a0 +a1x+ ...+aN1−gx
N1−g)+(y−φ2(x))(b0 +b1x+ ...+bN2x

N2)
(8)

where ai,bi are values in Fqn .

Lemma 8. Let h(x, y) ∈ L((ng)∞−D0). Assume div(h(x,y)) is written in the
form P1 + P2 + ... + Png +

∑g
i=1 Qi − (ng + g)∞ for Pi ∈ C(Fqn)\{∞}. Then

we have the following:
1) aN1−g �= 0 when ng + g is even.
2) bN2 �= 0 when ng + g is odd.

Proof. When ng + g is even, assume aN1−g = 0, thus we have the order of the
pole of h(x, y) at ∞ being truly less than ng + g and div(h(x, y)) is not written
by the form of (3). Similarly, when ng+ g is odd, assume bN2 = 0. Thus we have
the order of the pole of h(x, y) at ∞ being truly less than ng+g and div(h(x, y))
is not written by the form of (3). So, we can assume that aN1−g �= 0, if ng + g
is even, and bN2 �= 0, if ng + g is odd.

Now, we compute the intersections of h(x, y) = 0 on C. For this purpose, y must
be eliminated. Note that the point (x, y) fulfills h(x, y) = 0, if and only if the
equation

y =
−φ1(x)(a0 + a1x + ... + aN1−gx

N1−g) + φ2(x)(b0 + b1x + ... + bN2x
N2)

b0 + b1x + ... + bN2x
N2

.

(9)
holds. By this y’s representation, the number of the parameters must be de-
creased. So, put aN1−g = 1 when ng + g is even and put bN2 = 1 when
ng + g is odd (this can be done from the above lemma). Also put M1 ={
N1 − g − 1 when ng + g is even
N1 − g when ng + g is odd , and M2 =

{
N2 when ng + g is even
N2 − 1 when ng + g is odd .

Note that M1 + M2 = ng − g − 2 from Lemma 5.
Put

s(x) :=
{
−(denominator of (9))2f(x) + (numerator of (9))2, if ng + g is even
(denominator of (9))2f(x) − (numerator of (9))2, if ng + g is odd .

and let S(x) be the multivariable polynomial obtained from the definition of
s(x) replacing the values ai and bi by the indeterminates Ai and Bi. From the
construction, S(x) is a monic polynomial of the degree ng + g, whose coeffi-
cients are degree 2 polynomials in Fqn [A0, .., AM1 , B0, .., BM2 ], and φ1(x)|S(x).
Put g(x) := S(x)/φ1(x). Since φ1(x) is a monic polynomial in Fqn [x], g(x) is
also a monic polynomial of degree ng, whose coefficients are degree 2 polynomi-
als in Fqn [A0, .., AM1 , B0, .., BM2 ]. Put Ci ∈ Fqn [A0, .., AM1 , B0, .., BM2 ] by i-th
coefficient of g(x), i.e.,

g(x) = xng + Cng−1x
ng−1 + ... + C0.
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Similarly, for

v = (a0, ...aM1 , b0, ..., bM2) ∈ AM1+M2+2(Fqn)

and some polynomial p(x) in Fqn [A0, ..., AM1 , BM0 , ..., BM2 , x], let pv(x) be the
polynomial obtained from p(x) by substituting ai and bi for Ai and Bi. Then,
the zeros of gv(x) = 0 are the x-coordinate of the intersections of h(x, y) = 0 on
C except Q1, ..., Qg. Thus, we have the following lemma.

Lemma 9. The condition that D0 is a potentially decomposed reduced divisor
is equivalent to the following:
There is some v = (a0, .., aM1 , b0, ...bM2) ∈ AM1+M2+2(Fqn) such that gv(x) ∈
Fq[x] and gv(x) ∈ Fq[x] factors completely in Fq[x].

We now show how to find ai in Fqn (0 ≤ i ≤ M1) and bi in Fqn (0 ≤ i ≤ M2)
such that gv(x) in Fq[x].

Let [α0(= 1), α1, .., αn−1] be a base of Fqn/Fq and fix this base. Let Ai,j

(0 ≤ i ≤ M1, 0 ≤ j ≤ n − 1) and Bi,j (0 ≤ i ≤ M2, 0 ≤ j ≤ n − 1) be new
indeterminates over Fq. Note that the number of the indeterminates {Ai,j} ∪
{Bi,j} is

(M1 + M2 + 2)n = (N1 + N2 − g + 1)n = (n2 − n)g.

For simplicity, substitute the variables Ai,j (0 ≤ i ≤ M1, 0 ≤ j ≤ n − 1) and
Bi,j (0 ≤ i ≤ M2, 0 ≤ j ≤ n − 1) by {V1, V2, ..., V(n2−n)g}. Let us consider the
polynomials obtained by substituting Ai by

∑n−1
j=0 Ai,jαj and Bi by

∑n−1
j=0 Bi,jαj

in g(x). Also let us denote the coefficients obtained in this way again by Ci. Then
the coefficients can be written in the form

Ci =
n−1∑
j=0

Ci,jαj , Ci,j ∈ Fq[V1, V2, ..., V(n2−n)g].

Thus from Lemma 9, the condition gv(x) ∈ Fq[x] is equivalent to the condition
that there are some v1, v2, ..., v(n2−n)g ∈ Fq such that

Ci,j(v1, v2, ..., v(n2−n)g) = 0 for 0 ≤ i ≤ ng − 1, 1 ≤ j ≤ n− 1.

Moreover, when gv(x) ∈ Fq[x], g(x) = xng + Cng−1,0x
ng−1 + ... + C0,0. The

condition that gv(x) factors completely in Fq[x] is equivalent to the above con-
dition, and G(x) := xng + cng−1x

ng−1 + ...+ c0 factors completely in Fq[x] where
ci = Ci,0(v1, v2, ..., v(n2−n)g). In this case, the solutions of G(x) = 0 are the x-
coordinates of the decomposed factor. Then, we finish the proof of proposition
1 and construct the equation system {Ci,j = 0}.

4 Example

In this section, we examine three computational experiments of the decomposed
factors of Jacobian. The computations are done by using the computer algebra
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system magma on a Windows XP preinstalled PC (CPU:Pentium M 2GHz,
RAM:1GB). (In order to solve equation system, the function “variety” prepared
in magma is used.) We compute three cases 1) (g, n) = (1, 3), 2) (g, n) = (2, 2),
and 3) (g, n) = (3, 2) where g and n are the genus and the extension degree of
the definition field of the chosen hyperelliptic/elliptic curve, respectively. In all
cases, one trial, which means the judge as to whether a given element of Jacobian
is decomposed or not and compute its decomposed factor, if it is decomposed,
is done within 1 second. Since the probability that an element of Jacobian is
decomposed is approximately 1/(gn)!, the amount of the time for obtaining one
potentially decomposed reduced divisor is within 6 sec, 24 sec, and 720 sec,
respectively. Further, we will give the following three examples.

Case 1. Let q = 1073741789(prime number), Fq3 := Fq[t]/(t3 + 456725524t2 +
251245663t + 746495860), and let E/Fq3 be an elliptic curve defined by y2 =
x3 + (1073741788t2 + t)x + (126t + 3969) and P0 := (t, t + 63) ∈ E. We in-
vestigate whether nP0 : n = 1, 2, ..30 are decomposed and find the following 7
decompositions. (24P0 is written by 2 forms.)
2P0 = (1050861583, 6509843t2 + 387051565t+ 920296030)

+ (742900894, 362262801t2 + 6480079t+ 886701711)
+ (571975376, 938916909t2 + 910769097t+ 139897863)

5P0 = (806296922, 113931706t2 + 863383473t+ 133427995)
+ (797256157, 360646567t2 + 663390692t+ 1012046566)
+ (389333914, 986077188t2 + 829314065t+ 687783827)

8P0 = (1063441336, 113661172t2 + 942865616t+ 744283566)
+ (894045278, 863335768t2 + 637284565t+ 937810737)
+ (694935460, 740353309t2 + 505910431t+ 597402219)

20P0 = (996570058, 341336613t2 + 450680674t+ 72874200)
+ (141768271, 589122734t2 + 930205049t+ 713557032)
+ (73505168, 432994198t2 + 405986289t+ 233154172)

24P0 = (529735815, 20343700t2 + 780030904t+ 490121669)
+ (515960254, 269821984t2 + 561547517t+ 348990487)
+ (207183771, 712543643t2 + 356522343t+ 895634732)
= (818683055, 1034251164t2 + 705927333t+ 1062879754)
+ (754504105, 23461217t2 + 961620879t+ 1015889110)
+ (489159707, 271295793t2 + 600348670t+ 1022482426)

26P0 = (628174301, 138296704t2 + 104824480t+ 858118320)
+ (371888603, 417445284t2 + 850151153t+ 126970733)
+ (55411433, 560274594t2 + 609956706t+ 821692494)

Case 2. Let q = 1073741789(prime number), Fq2 := Fq[t]/(t2 + 746495860t+
206240189), and let C/Fq2 be a hyperelliptic curve defined by

y2 = x5 + (673573223t+ 771820244)x+ 6t + 9

and let
D0 := (x2 + 1073741787tx+ 327245929t+ 867501600,

(1023168391t+ 350252228)x+ 658555356t+ 446913597)
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be a reduced divisor of C. We investigate whether nD0 : n = 1, 2, ..100 are de-
composed and find the following 9 decompositions. (71D0 is written by 2 forms.)
6D0 ∼ (1025731975, 776505688t+911495013)+ (728060789, 648475468t+1067025179)

+(341799975, 145077925t+187604034)+(61964999, 227570631t+639782700)−4∞
19D0 ∼ (1039361498, 15180988t + 396695374) + (828360115, 179412594t + 719919461)

+ (483171045, 677645208t + 604714840) + (34566209, 753841024t + 14375633) − 4∞
33D0 ∼ (970690833, 608141084t + 889165804) + (260086243, 894605411t + 261264640)

+(208957980, 43330622t+581461318)+(190782894, 124873649t+510328990)−4∞
35D0 ∼ (699447787, 267523741t + 562899544) + (559470007, 197827114t + 99971197)

+(472594781, 579187919t+266558458)+(453661772, 449424806t+977318920)−4∞
48D0 ∼ (1009979214, 959734525t + 990871450) + (995813251, 44186049t + 288496638)

+(521299995, 556594200t+468424666)+(17946008, 977064852t+1071618742)−4∞
71D0 ∼ (1019155056, 573896856t+103042116)+ (944470217, 829781939t+184620624)

+(727156004, 462612591t+582877732)+(281900623, 553507533t+42660552)−4∞
∼ (502979299, 412632304t + 1036827718) + (74527656, 927651409t + 452588110)
+ (50078888, 801072540t + 888737005) + (2986754, 556402789t + 236723678) − 4∞

73D0 ∼ (843747137, 682161676t + 600252618) + (829302257, 145878028t + 853397395)
+(290487906, 645896278t+279001181)+(184873704, 567002729t+620354511)−4∞

80D0 ∼ (907811987, 216534804t + 936839244) + (808513243, 873487475t + 273845273)
+(520893378, 757248670t+381150138)+(486203744, 494475019t+791571132)−4∞

Case 3. Let q = 1073741789(prime number), Fq2 := Fq[t]/(t2 + 746495860t+
206240189), and let C/Fq2 be a hyperelliptic curve defined by

y2 = x7 + (111912375t+ 1046743132)x+ 6t + 9

and let
D0 := (x2 + 1073741787tx + 327245929t + 867501600,

(473621736t + 256126568)x + 145989647t + 687383736)
be a reduced divisor of C. We investigate whether nD0 : n = 1, 2, ..3000 are decomposed
and find the following 6 decompositions.
414D0 ∼ (1001437837, 752632260t+700158497)+(747112084, 656073918t+400137619)

+ (620249588, 127943213t + 635474623) + (614180498, 206297635t + 445250468)
+(515769009, 607297126t+554290493)+(488549466, 627952783t+854182612)−6∞

657D0 ∼ (939617127, 695261735t+239531611)+ (933351280, 935312661t+961494096)
+ (799612924, 341923983t + 677495100) + (294787599, 279723229t + 760003067)
+(273118782053704103t+577497766)+(153381525, 983211238t+517037777)−6∞

921D0 ∼ (1034634787, 400751409t+829801342)+(763888873, 757155774t+829936954)
+ (619620874, 800641683t + 200272230) + (603032615, 115219564t + 655011145)
+(436423191, 285214454t+450812747)+(125198811, 884750621t+123305741)−6∞

1026D0 ∼ (1024020017, 267457905t+41452942)+(794174628, 615676821t+723336407)
+ (738567269, 433647609t + 128304659) + (629287731, 465842490t + 789390318)
+(435082408, 878213106t+603353206)+(79621979, 479459622t+672937516)−6∞

1121D0 ∼ (764081031, 812350603t+347878564)+(673426715, 687737442t+381588704)
+ (6102522082007139t + 99219637) + (467560104, 619342780t + 228756808)
+ (179787786, 333322906t + 75482151) + (59221667, 860686653t + 625301206) − 6∞

2289D0 ∼ (729358563, 482925408t+170057124)+ (529840657, 42328987t+857983002)
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+ (514618236, 436901100t + 416530686) + (350106356, 183495333t + 950710579)
+(175898979, 411808870t+427518366)+(96240558, 703780413t+461022225)−6∞

5 Conclusion

In this manuscript, we have proposed an algorithm which checks whether a
reduced divisor is potentially decomposed or not, and we have computed the de-
composed factors, if it is potentially decomposed. From this algorithm, concrete
computations of decomposed factors are done by computer experiments when
the pairs of the genus of the hyperelliptic curve and the degree of extension field
are (1, 3), (2, 2), and (3, 2).
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6 Appendix

In the appendix, we estimate the complexity of the decomposition attack, as
a function of q, for fixed g, n (i.e., g, n are considered as constants) under the
Assumption 1 and Assumption 2. Here, we apply the ideas of the “Rebalancing
method” [5],“One large prime method” [15], and “Two large prime method” [13]
[7], which are the techniques of solving discrete logarithm of the Jacobian of a
hyperelliptic curve over a general finite field, to our cost estimation for the case
of an extension field. Note that as g and n are fixed, the input length is linear
in log q. These techniques are very complicated, and we only give the outline of
the algorithm and estimation of the complexity.

In this estimation, since n, g are fixed, the cost for solving the system of the
equations is considered as Poly(log q). For simplicity, the terms of Poly(log q)-
part of the complexity is omitted. For this purpose, we denote the symbol Õ
where the complexity Õ(N(q)) is estimated by

Õ(N(q)) < x(log q)yN(q) for some constants x, y ∈ R>0,

and the symbol ≈ that the relation N1(q) ≈ N2(q) is defined by

N2(q)
x1(log q)y1

<N1(q)<x2(log q)y2N2(q) for some constants x1, x2, y1, y2 ∈ R>0,

where N(q), N1(q) and N2(q) are functions of input size q.
Now, let G be a general finite abelian group whose group law is written addi-

tively and we consider the general decomposition attack over G. In the following,
we also assume that
i) The group order is known, and
ii) G has a prime order.
The assumption ii) is not an essential assumption, but make here for simplicity.
Let us now fix a set B0 subset of G.

http://eprint.iacr.org/2004/161
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Definition 3. Let N be a fixed positive integer(fixed constant).
1) An element of g ∈ G written by g = g1 + .. + gN for g1, ...gN ∈ B0 is called
potentially decomposed.
2) g1, ..., gN are then called decomposed factors and the multiset {g1, ..., gN} is
called decomposed divisor.

Further, we also assume the following iii), iv), v), and vi):
iii) The probability that g ∈ G is potentially decomposed is O(1).
iv) For a g ∈ G, the cost for checking whether g is potentially decomposed or
not is Õ(1).
v) For the potentially decomposed g ∈ G the cost of computing decomposed
divisor {g1, ..., gN} from g is Õ(1). (If there are several decomposed divisors, the
computation of all decomposed divisors is needed.)
vi) |B0|2 % |G|.

Note that o(|G|) < |B0|N from ii) and |B0|N < Õ(|G|) from iv). (Otherwise, the
expected number of decomposed divisors is bigger than Õ(qε) for some ε > 0
and iv) does not hold.) In the normal index calculus, the number of B0 which
are used for the decomposition is basically large (i.e.,N � 1). So, the randomly
chosen element is basically written by some linear sum of B0 in many ways.
However, it is difficult to compute such linear sums, so, by the use of the lifting
to integer or number field ring and by the use of the sieving method, one can
find some decomposition of randomly chosen element. So, remark carefully that
the prerequisite condition of the normal index calculus for number field sieve
and that of the decomposition attack for the Jacobian of algebraic curve is quite
different.

In our case (i.e., G being the Jacobian of a hyperelliptic curve of genus g over
extension field Fqn , B0 being the set of Fqn -rational point of the curve whose
x-coordinate lie in Fq, N = ng), iii) is from Assumption 1 and Assumption 2,
iv) and v) are from Theorem 1, and vi) is from the notations.

Let us now fix a set B subset of B0. The set B is called the factor base and
an element in B0\B is called a large prime.

Definition 4. 1) An element of g ∈ G written by g = g1 + ..+gN for g1, ...gN ∈
B is called decomposed.
2) An element of g ∈ G written by g = g1 + .. + gN for one gi ∈ B0\B, and the
other gj ∈ B (1 ≤ j ≤ N, j �= i) is called almost decomposed.
3) An element of g ∈ G written by g = g1 + ..+ gN for two gi1, gi2 ∈ B0\B, and
the other gj ∈ B (1 ≤ j ≤ N, j �= i1, i2)is called 2-almost decomposed.
4)In every case, g1, ..., gN are also called decomposed factors and the multiset
{g1, ..., gN} is called decomposed divisor.

Now, we give the outlines of the algorithms named ’rebalancing method’, ’one
large prime method’ and ’two large prime method’, which are the variants of the
decomposition attack [5], [15], [13], and [7], by Algorithm 1 and Algorithm 2.

Note that Algorithm 1 and Algorithm 2 are probabilistic, since they need
random numbers. Also note that the probability that r1a + r2b is potentially
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Algorithm 1. The outline of the Rebalancing method
Input: a, b ∈ G s.t. a = nb for some unknown n ∈ Z/|G|Z.
Output: find n.
1: Initializing the list of the relations L = {}
2: while |L| < suitable number N0 do
3: For a pair of random numbers (r1, r2), computing r1a + r2b.
4: if r1a + r2b being decomposed then
5: adding the informations of (r1, r2) and the decomposed factor to L.
6: (If there are several decomposed factors, choosing one decomposed factor ran-

domly.)
7: Solving the linear algebraic computation of roughly |B| × |B| size, modulo |G|
8: Computing n

Algorithm 2. The outlines of the One (resp. Two)large prime method
Input: a, b ∈ G s.t. a = nb for some unknown n ∈ Z/|G|Z.
Output: find n.
1: Initializing the list of the relations L = {}
2: while |L| < suitable numberN1 (resp. N2) do
3: For a pair of random numbers (r1, r2), computing r1a + r2b.
4: if r1a + r2b being almost-decomposed (resp. 2-almost decomposed) then
5: adding the informations of (r1, r2) and the decomposed factor to L.
6: (If there are several decomposed factors, choosing one decomposed factor ran-

domly.)
7: Updating L by the elimination of the terms of external elements.
8: Solving the linear algebraic computation of roughly |B| × |B| size, modulo |G|
9: Computing n

decomposed is O(1), since |G| is a prime number and r1a+r2b can be considered
as a random element of G. In Algorithm 1 and Algorithm 2, N0 (resp. N1, resp
N2) be the number of decomposed (resp. almost decomposed , resp. 2-almost
decomposed ) elements of G which are required in the rebalancing method (resp.
one large prime method, resp. two large prime method). From the ideas of [5],
[15], [13], and [7], the estimations of the following conjecture is expected.

Conjecture . 1) N0 is estimated by Const × |B|, i.e., N0 = O(|B|).
2) N2

1 /|B0| is estimated by Const × |B|, i.e., N1 = O(|B|1/2|B0|1/2).
3) N2 is estimated by Const × |B0|, i.e., N2 = O(|B0|).
Further, we have the following estimations of the complexity.

Lemma 10. Under the assumptions of i),ii),iii), iv) v), vi), and Conjecture, we
have the following:
1) The complexity of the general decomposition attack taking B as a set of fac-
tor basis by the rebalancing method is minimized at |B| ≈ |B0|N/(N−1), and it is
estimated by Õ(|B0|(2N)/(N+1)).
2) The complexity of the general decomposition attack taking B as a set of factor
basis and takingB0\B as a set of large primes by the one large prime method is min-
imized at |B| ≈ |B0|(2N−1)/(2N+1), and it is estimated by Õ(|B0|(4N−2)/(2N+1)).
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3) The complexity of the general decomposition attack taking B as a set of factor
basis and taking B0\B as a set of large primes by the two large prime method is
minimized at |B| ≈ |B0|(N−1)/N , and it is estimated by Õ(|B0|(2N−2)/N ).

Proof. (Sketch of the proof) In every case, the cost of the part of linear algebra
is Õ(|B|2), and for the rebalance, which is needed for minimizing the complexity,
it is the same as the cost of the collecting divisors. So, we only need to estimate
the optimized size |B|.
1)In the case of rebalancing method: The probability that the randomly chosen
g ∈ G is a decomposed is O(|B/B0|N ). So, the cost to obtain one decomposed g
is Õ(|B0/B|N). From Conjecture , we must have O(|B|) number of such g. So

|B0/B|N · |B| ≈ |B|2

where the left hand side is the cost for collecting enough decomposed group
elements, and the right hand side is the cost for the linear algebra. Thus we have
|B| ≈ |B0|N/(N+1).
2) In the case of one large prime method: The probability that the randomly
chosen g ∈ G is an almost decomposed is O(|B/B0|N−1). From Conjecture , we
must have O(|B|1/2|B0|1/2) number of such g. Similarly, we have

|B0/B|N−1 · |B|1/2|B0|1/2 ≈ |B|2

and |B| ≈ |B0|(2N−1)/(2N+1) is obtained.
3) In the case of two large prime method: The probability that the randomly
chosen g ∈ G is a 2-almost is O(|B/B0|N−2). From Conjecture , we must have
O(|B0|) number of such g. Similarly, we have

|B0/B|N−2 · |B0| ≈ |B|2

and |B| ≈ |B0|(N−1)/N is obtained.

Now, we apply this lemma for the decomposition attack for the Jacobian of a
curve over an extension field. Note that B0 = {P − ∞|x(P ) ∈ Fq}, |B0| ≈ q,
N = ng and thus, we have the following claim, which is based on the assumptions
i),ii),iii),iv),v),vi),and Conjecture.

Claim . 1) The complexity of the decomposition attack with the rebalancing
method is estimated by Õ(q(2ng)/(ng+1)).
2) The complexity of the decomposition attack with the one large prime method
is estimated by Õ(q(4ng−2)/(2ng+1)).
3) The complexity of the decomposition attack with the two large prime method
is estimated by Õ(q(2ng−1)/(ng)).
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Abstract. We present an algorithm for factoring polynomials over lo-
cal fields, in which the Montes algorithm is combined with elements from
Zassenhaus Round Four algorithm. This algorithm avoids the computa-
tion of characteristic polynomials and the resulting precision problems
that occur in the Round Four algorithm.

1 Introduction

Polynomial factorization is fundamental in working with local fields. In addition
to the irreducible factors of a given polynomial, computer algebra systems that
support extensions of local fields (e.g., Magma [1], Sage [16]) require explicit
representations of the unramified and totally ramified parts of the extensions
generated by arbitrary irreducible polynomials, as these systems represent such
extensions as a tower of unramified and totally ramified extensions. Moreover,
there are many applications of global fields that include the construction of
integral bases, decomposition of ideals, and the computation of completions.

The algorithms [2,4,7,14] for factoring a polynomial Φ(x) over a local field
find successively better approximations to the irreducible factors of Φ(x) until
gaining sufficient precision to apply Hensel lifting. The algorithms differ in how
the approximations are computed.

Algorithms based on the Zassenhaus Round Four algorithm (e.g. [3,4,14])
suffer from loss of precision in computing characteristic polynomials and ap-
proximating greatest common divisors. The Montes algorithm [10,11,7,8] avoids
the computation of characteristic polynomials by exploiting Newton polygons of
higher order. Here the most expensive operations are division with remainder
and polynomial factorization over finite fields.

We present the algorithm of Montes in the terminology of [14] and use the
techniques of the Round Four algorithm to derive a factorization when a breaking
element is found. We also give a complexity analysis.

Notation

Let K be a field complete with respect to a non-archimedian exponential val-
uation ν with finite residue class field K ∼= Fq of characteristic p; we call K a
local field. Assume ν is normalized with ν(π) = 1 for the uniformizing element
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c© Springer-Verlag Berlin Heidelberg 2010



302 S. Pauli

π in the valuation ring OK of K. For γ ∈ OK denote by γ the class γ + (π) in K.
The unique extension of ν to an algebraic closure K of K (or to any intermediate
field) is also denoted ν.

In our algorithm we will be concerned with the first non-zero coefficient of
the expansion of an element in a finite subextension of K/K. We introduce an
equivalence relation on the elements of K which reflects this (also see [9]).

Definition 1. For γ ∈ K
∗

and δ ∈ K
∗

we write γ ∼ δ if

ν(γ − δ) > ν(γ)

and make the supplementary assumption 0 ∼ 0. For ϕ(x) =
∑n

i=0 ϕix
i and

ϑ(x) =
∑n

i=0 ϑix
i in K[x] we write ϕ(x) ∼ ϑ(x) if

min 0≤i≤n ν(ϕi − ϑi) > min 0≤i≤n ν(ϕi).

Let L be a finite extension of K with uniformizing element πL. Two elements
γ = γ0π

v
L ∈ L and δ = δ0π

w
L ∈ L with ν(γ0) = ν(δ0) = 0 are equivalent with

respect to ∼ if and only if v = w and γ0 ≡ δ0 mod (πL). It follows immediately
that the relation ∼ is symmetric, transitive, and reflexive.

2 Reducibility

Assume we want to factor a polynomial Φ ∈ OK[x] of degree N . If Φ(x) splits
into the product of two co-prime factors over the residue class field K of K, say
Φ(x) = Φ1(x) · Φ2(x), then Hensel lifting yields a factorization of Φ(x) to any
given precision. In addition to this classic situation we give two further situations
that we can exploit to obtain a factorization of Φ(x).

We consider a polynomial ϑ(x) ∈ OK[x] as a representative of an element in
the algebra K[x]/(Φ(x)) and determine a polynomial χϑ(x) ∈ K[x] from ϑ(x)
such that χϑ(ϑ(ξ)) = 0 for all roots ξ of Φ(x).

Definition 2. Let Φ(x) =
∏N

j=1(x − ξj) ∈ OK[x], where ξj ∈ K for 1 ≤ j ≤ N
and ϑ(x) ∈ K[x]. Then we set

χϑ(y) :=
N∏

i=1

(y − ϑ(ξi)) = resx(Φ(y), y − ϑ(x)).

Assume we find ϑ ∈ K[x] such that χϑ(y) = χ1(y)χ2(y) with gcd(χ1, χ2) = 1.
Reordering the roots ξi (1 ≤ i ≤ N) of Φ(x) if necessary, we may write

χ1(y) = (y − ϑ(ξ1)) · · · (y − ϑ(ξr)) and χ2(y) = (y − ϑ(ξr+1)) · · · (y − ϑ(ξN )),

where 1 ≤ r < N and obtain a proper factorization of Φ(x):

Φ(x) = gcd(Φ(x), χ1(ϑ(x))) · gcd(Φ(x), χ2(ϑ(x))). (1)
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Definition 3. We say a polynomial ϑ(x) ∈ K[x] with χϑ(t) ∈ OK[t] passes the
Hensel test if χ

ϑ
(t) = ρ(t)g for some irreducible polynomial ρ(t) ∈ K[t].

If ϑ(x) ∈ K[x] fails the Hensel test, that is, χϑ(y) splits into two co-prime factors
over K, say χ

ϑ
(y) = χ

1
(y)χ

2
(y), then Hensel lifting yields a factorization χϑ(y) =

χ1(y)χ2(y) and equation (1) gives a proper factorization of Φ(x).

Definition 4. For ϑ ∈ K[x] we set v∗Φ(ϑ) := minΦ(ξ)=0 ν(ϑ(ξ)) and say the
polynomial ϑ(x) passes the Newton test if ν(ϑ(ξ)) = ν(ϑ(ξ′)) for all roots ξ and
ξ′ of Φ(x).

If ϕ(x) ∈ K[x] fails the Newton test, the Newton polygon of χϕ(y) consists of at
least two segments. Let h/e = v∗Φ(ϕ) be the minimum of the valuations ν(ϕ(ξi))
(1 ≤ i ≤ N) in lowest terms. Then −h/e is the gentlest slope of the segments of
the Newton polygon of χϕ(y). We set ϑ(x) := ϕ(x)e/πh and obtain ν(ϑ(ξ)) = 0
for all roots ξ of Φ(x) with ν(ϕ(ξ)) = h/e and ν(ϑ(ξ)) > 0 for all roots ξ of
Φ(x) with ν(ϕ(ξ)) > h/e. Thus χ

ϑ
(t) splits into two co-prime factors and the

considerations above yield a proper factorization of Φ(x).

3 Irreducibility and the Sequence
(
ϕt(x)

)
t

In the polynomial factorization algorithm we construct a sequence of polynomials
ϕt(x) ∈ OK[x] such that ν(ϕt+1(ξ)) > ν(ϕt(ξ)) for all roots ξ of Φ(x) until we
either find a polynomial that fails the Newton test, which leads to a factorization
of Φ(x) or we have established the irreducibility of Φ(x). If we assure that the
degrees of the polynomials ϕt(x) are less than or equal to the degree of all
irreducible factors of Φ(x), we either obtain a factorization of Φ(x) or we establish
the irreducibility of Φ(x) in finitely many steps [14]:

Theorem 5. Let ξ1, . . . , ξN be elements of an algebraic closure of a local field
K and assume the following hypotheses hold.

– Φ(x) =
∏N

j=1(x− ξj) is a square-free polynomial in OK[x].
– ϕ(x) ∈ K[x].
– Nν(ϕ(ξj)) > 2ν(discΦ) for 1 ≤ j ≤ N .
– The degree of any irreducible factor of Φ(x) is greater than or equal to degϕ.

Then N = degϕ and Φ(x) is irreducible over K.

While we construct the sequence of polynomials ϕt(x) we gather information
about the extensions generated by the irreducible factors of Φ(x). In particular
we will at all times know divisors Et and Ft of the ramification index and inertia
degree of these extensions respectively. If we find that not all of these extensions
have the same inertia degree and ramification index, we will have encountered
a polynomial that fails the Hensel or the Newton test. On the other hand if
Et · Ft = degΦ we know that Φ(x) is irreducible.



304 S. Pauli

Definition 6. Let Φ(x) ∈ OK[x] be irreducible and let ξ be a root of Φ(x). We
call a pair of polynomials Π(x) ∈ K[x] and Γ (x) ∈ K[x] with ν(Π(ξ)) = 1/E
and F =

[
K
(
Γ (ξ)

)
: K
]

such that E ·F = degΦ a two element certificate for the
irreducibility of Φ(x).

Remark 7. If a two element certificate exists then Φ(x) is irreducible and an
integral basis of the extension of K(ξ)/K generated by a root ξ of Φ(x) is given
by the elements Γ (ξ)iΠ(ξ)j with 0 ≤ i ≤ F − 1 and 0 ≤ j ≤ E − 1.

In the polynomial factorization algorithm we construct a sequence of polynomials
(ϕt(x))t∈N where ϕt ∈ OK[x] such that

1. ν(ϕt+1(ξ)) > ν(ϕt(ξ)) for all roots ξ of Φ(x),
2. ν(ϕt(ξ)) = ν(ϕt(ξ′)) for all roots ξ and ξ′ of Φ(x), and
3. the degree of ϕt(x) is less than or equal to the degree of any irreducible

factor of Φ(x).

In the following we assume that all polynomials that occur in our constructions
pass the Hensel and Newton tests, as we can otherwise derive a factorization of
Φ(x). For convenience of notation we define:

Definition 8. If v∗Φ(ϕ−ϑ) > v∗Φ(ϕ) for polynomials ϕ(x) ∈ K[x] and ϑ(x) ∈ K[x]
we write ϕ ∼

Φ
ϑ. For polynomials χ(y) =

∑n
i=0 ai(x)yi ∈ K[x][y] and τ(y) =∑n

i=0 bi(x)yi ∈ K[x][y] we write χ(y) ∼
Φ
τ(y) if

min 0≤i≤n v∗Φ(ai − bi) > min 0≤i≤n v∗Φ(ai).

4 The First Iteration

Let Φ(x) =
∑N

i=0 cix
i and ϕ1(x) := x ∈ OK[x]. Assume the Newton polygon

of Φ(x) consists of one segment and let −h1/E1 be its slope in lowest terms.
Then ν(ϕ1(ξ)) = ν(ξ) = h1/E1 for all roots ξ of Φ(x). This implies that the
ramification index of all extension generated by irreducible factors of Φ(x) is
divisible by E1. Let β ∈ K with βE1 = πh1 where π is the uniformizing element
of K. We flatten the Newton polygon of Φ(x) so that it lies on the x-axis:

Φ�(y) :=
Φ(βy)
βN

=
N∑

i=0

ciβ
i−Nyi.

Because we can only have ν(ciβ
i−N ) = 0 when E1 | i, we have

Φ�(y) ∼
N/E1∑
j=0

cj·E1π
h1(j−N/E1)yj·E1 .

Replacing yE1 by z yields

A1(z) :=
N/E1∑
j=0

cj·E1π
h1(j−N/E1)zj .



Factoring Polynomials over Local Fields II 305

The polynomial A1(z) ∈ K[z] is called the associated polynomial [11,10] or resid-
ual polynomial [7,8] of Φ(x) with respect to ϕ1(x). Assume that A1(z) = ρ

1
(z)r

for some irreducible polynomial ρ
1
∈ K. Otherwise ϕ1(x)E1/πh1 = xE1/πh1

would fail the Hensel test and (1) would yield a factorization of Φ(x). All fields
K(ξ), where ξ is a root of Φ(x), contain an element ξE1/πh1 , whose minimal
polynomial is a power of ρ

1
(z) over K[z]; therefore their ramification indices are

divisible by F1 := deg ρ
1
. Let γ1 ∈ K be a root of a lift ρ1(z) ∈ OK[z] of ρ

1
(z). In

the unramified extension K1 := K(γ1) we have the relation xE1 ∼
Φ

πh1 · γ1. Since

ν
(
ρ1(ϕ1(ξ)E1/πh1)

)
> 0 for all roots ξ of Φ(x), we get

ν

(
πh1F1ρ1

(
ϕ1(ξ)E1

πh1

))
> ν(πh1 ) = ν

(
ϕE1

1 (ξ)
)
> ν
(
ϕ1(ξ)

)
= ν(ξ).

We set ϕ2(x) := πh1F1ρ1(ϕ1(x)E1/πh1) and continue the construction of our
sequence of polynomials (ϕt)t. Obviously degϕ2 = E1F1, which divides the
degree of every irreducible factor of Φ(x).

Remark 9. Because the Newton polygon of ϕ2(x) consists of one segment of
slope −h1/E1 with gcd(h1, E1) = 1 and its associated polynomial with respect
to x is ρ

1
(z) of degree F1, the extensions K(α), where α is a root of ϕ2(x), have

inertia degree F1 and ramification index E1. Hence ϕ2(x) with degϕ2 = E1F1
is irreducible.

5 The Second Iteration

Definition 10. Let Φ(x) ∈ OK[x] of degree N and ϕ(x) ∈ OK[x] of degree n be
monic polynomials and assume n |N . We call

Φ(x) =
N/n∑
i=0

ai(x)ϕi(x)

with deg(ai) < deg(ϕ) the ϕ-expansion of Φ(x).

We use the ϕ2-expansion of Φ(x) to find the valuations ν(ϕ2(ξ)). Set n2 := degϕ2

and let Φ(x) =
∑N/n2

i=0 ai(x)ϕi
2(x) be the ϕ2-expansion of Φ(x). For each root ξ

of Φ(x) we have

0 = Φ(ξ) =
N/n2∑
i=0

ai(ξ)ϕi
2(ξ).

Hence

χ2,ξ(y) =
m∑

i=0

ai(ξ)yi ∈ OK(ξ)[y]

with m = N/n2 = deg(Φ)/ deg(ϕ2) is a polynomial with root ϕ2(ξ). Assume
that ai(x) =

∑n2−1
j=0 ai,jx

j . As the valuations

v∗Φ(ϕ1) =
h1

E1
, . . . , v∗Φ(ϕE1−1

1 ) =
(E1 − 1)h1

E1
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are distinct (and not in Z) and

1,
ϕ1(x)E1

πh1
∼
Φ

γ1, . . . ,

(
ϕ1(x)E1

πh1

)F1−1

∼
Φ

γF1−1
1

are linearly independent over K, we have

v∗Φ(ai) = min
0≤j≤n2−1

ν(ai,j)(h1/E1)j.

If the Newton polygon of χ2,ξ(y) consists of more than one segment then ϕ2(x)
fails the Newton test and we can derive a factorization of Φ(x). Otherwise let
−h2/e2 be the slope of the Newton polygon of χ2,ξ(y) in lowest terms. Then
ν(ϕ2(ξ)) = h2/e2 for all roots ξ of Φ(x). We set E+

2 := e2/ gcd(E1, e2). For all
roots ξ of Φ(x) the ramification index of K(ξ) is divisible by E2 := E1 · E+

2 .
Because the denominator of E+

2 h2/e2 is a divisor of E1 there is

ψ2(x) := πsπϕ1(x)s1 = πsπxs1 ∈ K[x]

with s1 ∈ {0, . . . , E1 − 1} and sπ ∈ Z such that v∗Φ(ψ2) = E+
2 h2/e2.

We flatten the Newton polygon of χ2,ξ(y). Let β ∈ K with βE+
2 = ψ2(x) and

consider the polynomial χ�
2,ξ(y) := χ2,ξ(βy)/βm. As only the valuations of the

coefficients of yi·E+
2 (0 ≤ i ≤ m/E+

2 ) can be zero we get

χ�
2,ξ

(y) =
m/E+

2∑
i=0

ai·E+
2
(ξ)βi·E+

2 −myi·E+
2

=
m/E+

2∑
i=0

ai·E+
2
(ξ)ψ2(ξ)i−m/E+

2 yi·E+
2 ∈ K2[y].

Using the relation xE1 ∼
Φ

πh1 · γ1, which is independent of ξ, we find coefficients

âi ∈ K1 with âi ∼
Φ

ai·E+
2
(x)ψi−m/E+

2
2 (x). We set

A2(z) :=
m/E+

2∑
i=0

âiz
i ∼

Φ

m/E+
2∑

i=0

ai·E+
2
(x)ψi−m/E+

2
2 (x)zi

and obtain the associated polynomial A2(z) ∈ K1[z] of Φ(x) with respect to
ϕ2(x).

If A2(y) splits into two or more co-prime factors over K1 = K(γ1), we can
derive a factorization of Φ(x): Since degψ2(x) is less than the degree of any irre-
ducible factor of Φ(x) we have gcd(ψ2(x), Φ(x)) = 1 and the extended Euclidean
algorithm yields ψ−1

2 (x) ∈ OK1 [x] such that ψ2(x) · ψ−1
2 (x) ≡ 1 mod Φ(x). The

polynomial ϕE+
2

2 (x) · ψ−1
2 (x) fails the Hensel test.

Otherwise A2(z) = ρ
2
(z)r2 for some irreducible polynomial ρ

2
(z) ∈ K1[z]. We

set K2 := K(γ2) where γ2 is a root of a lift ρ2(z) ∈ OK1 [z] of ρ
2
(z) ∈ K1[z], let

F+
2 := deg ρ2, and obtain ϕ2(x)E+

2 ∼
Φ

γ2ψ2(x).



Factoring Polynomials over Local Fields II 307

Next we construct ϕ3(x) ∈ OK[x] with v∗Φ(ϕ3) > v∗Φ(ϕ2) and degϕ3 = E2F2.
The coefficients of ρ2(z) ∈ OK1 can be written as polynomials in γ1 ∼

Φ
xE1/πh1 ,

say

ρ2(z) =
F+

2∑
i=0

F1−1∑
j=0

ri,jγ
j
1z

i

where ri,j ∈ OK. We are looking for

ϕ3(x) ∼
Φ
ψ2(x)F+

2 ρ2

(
ϕ2(x)E+

2

ψ2(x)

)
=

F+
2∑

i=0

F1−1∑
j=0

ri,j

(
xE1

πh1

)j

ψ2(x)F+
2 −iϕ2(x)iE+

2

with degϕ3 = E2F2 = E+
2 F+

2 E1F1. We have v∗Φ
(
ρ1(xE1/πh1)

)
> 0. If we write

ρ1(z) = zF1 + ρ∗1(z) with deg(ρ∗1) < F1 this implies

ϕE1F1
1 ∼

Φ
−(πh1)F1ρ∗1

(
xE1

πh1

)
.

It follows that we can find a polynomial Ri,j(x) with degRi,j < E1F1 such that

Ri,j(x) ∼
Φ

ri,j

(
xE1

πh1

)j

ψ2(x)F+
2 −i = ri,j

(
xE1

πh1

)j

(πsπxs1)F+
2 −i .

Thus the polynomial

ϕ3(x) = ϕ2(x)E+
2 F+

2 +
F+

2 −1∑
i=0

F1−1∑
j=0

Ri,j(x)ϕ2(x)iE+
2

has the desired properties v∗Φ(ϕ3) > v∗Φ(ϕ2) and degϕ3 = E2F2.

Remark 11. ϕ3(x) ∈ OK[x] is irreducible.

6 Data and Relations

In the algorithm we continue the construction of the sequence of polynomials
(ϕt)t from the previous two sections. In the following steps the computation of
ψt(x), the valuation of the coefficients ai(x) of the ϕt-expansion of Φ(x), the
coefficients of the associated polynomial, and ϕt+1 becomes more involved and
relies on the data computed in the previous iteration. We initially set

K0 := K, ϕ1 := x, E0 := 1, F0 := 1

and compute the following data in every iteration:
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ϕt(x) ∈ OK[x] with v∗Φ(ϕt) > v∗Φ(ϕt−1) and nt = deg(ϕt) = Et−1Ft−1;
an approximation to an irreducible factor of Φ(x)

ht/et = v∗Φ(ϕt) with gcd(ht, et) = 1

E+
t =

et

gcd(Et−1, et)
the increase of the maximum known ramification index

Et = E+
t ·Et−1 the maximum known ramification index

ψt(x) = πsπ
∏t−1

i=1 ϕsi

i with sπ ∈ Z and 0 ≤ si < E+
i such that v∗Φ(ψt) = v∗Φ(ϕE+

t
t )

At(y) ∈ Kt−1[y] the associated polynomial of Φ(x) with respect to ϕt(x)

ρ
t
(y) ∈ Kt−1[y] irreducible with ρrt

t
(y) = At(y)

γt ∈ Kt such that ϕ
E+

t
t ∼

Φ
γtψt

Kt = Kt−1(γt) the maximum known unramified subfield

F+
t = [Kt : Kt−1] the increase of the maximum known inertia degree

Ft = F+
t ·Ft−1 the maximum known inertia degree

7 The u-th Iteration

Assume we have computed the data and relations given above for t up to u− 1
and that ϕu(x) of degree nu = EuFu is the best approximation to an irre-
ducible factor of Φ(x) found so far. We compute the ϕu-expansion Φ(x) =∑N/nu

i=0 ai(x)ϕu(x)i of Φ(x) and set χu(y) :=
∑N/nu

i=0 ai(x)yi.

Definition 12. Let a(x) ∈ OK[x] with deg a < Et−1Ft−1. We call

a(x) =
E+

t−1F+
t−1−1∑

jt−1=0

ϕ
jt−1
t−1 (x) · · ·

E+
2 F+

2 −1∑
j2=0

ϕj2
2 (x)

E1F1−1∑
j1=0

xj1 · aj1,...,jt−1 ,

where aj1,...,jt−1 ∈ OK (0 ≤ ji ≤ Ei, 0 ≤ i ≤ t), the (ϕ1, . . . , ϕt−1)-expansion of
a(x).

From the (ϕ1, . . . , ϕu−1)-expansion of ai(x) we obtain the valuations of ai(ξ)
and see that they are independent of the choice of the root ξ of Φ(x). Since, by
construction, the values

v∗Φ(ϕ1), . . . , v∗Φ(ϕE1−1
1 ), v∗Φ(ϕ2), . . . , v∗Φ(ϕE+

2 −1
2 ), v∗Φ(ϕ3), . . . . . . , v∗Φ(ϕ

E+
u−1−1

u−1 )

are distinct (and not in Z) and for 0 ≤ t ≤ u− 1 the elements

1, γt ∼
Φ

ϕt(x)E+
t /ψt(x), . . . , γF+

t −1
t ∼

Φ

(
ϕt(x)E+

t /ψt(x)
)F+

t −1

are linearly independent over Kt−1 = K(γ1, . . . , γt−1) we have (see [7, Lemma
4.21]):
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Lemma 13. Let a(x) ∈ OK[x] with deg a < Et−1Ft−1 and let aj1,...,jt−1 , with
0 ≤ ji < E+

i F+
i − 1, be the coefficients of the (ϕ1, . . . , ϕt−1)-expansion of a(x).

Then
v∗Φ(a) = min

1≤i≤t−1

1≤ji<E
+
i

v∗Φ
(
ϕ

jt−1
t−1 (x) · · ·ϕj2

2 (x) · xj1 · aj1,...,jt−1

)
.

If the Newton polygon of χt(y) consists of one segment, say of slope −hu/eu, with
gcd(hu, eu) = 1, then ϕt(x) passes the Newton test. We set E+

u := eu

gcd(Eu−1,eu)
and construct

ψu(x) = πsπ

u−1∏
t=1

ϕt(x)st

with sπ ∈ Z and 0 ≤ st < E+
t (1 ≤ t < u) such that v∗Φ(ψu) = E+

u hu/eu using
the following algorithm. For q ∈ Q we denote by den(q) the denominator of q in
lowest terms.

Algorithm 14 (Psi)
Input: v∗Φ(ϕi) and E+

i for 0 ≤ i ≤ t, E = E+
0 · · ·E+

t , v ∈ Q with E |den(v).
Output: sπ ∈ Z, 0 ≤ si ≤ E+

i (1 ≤ i ≤ t) such that v∗Φ(πsπϕs0
0 · · ·ϕst

t ) = v.

– d ← E, i ← t
– for i from t to 1 by −1:

• d ← d/E+
i , v′ ← v · d, e ← v∗Φ(ϕi) · d

• Find si such that e · si ≡ v′ mod den(d · e)
• v ← v − siv

∗
Φ(ϕi)

– sπ ← v
– return sπ, s1, . . . , st

Next we determine the associated polynomial Au(y) of Φ(x) with respect to
ϕu(x). Because we have representations of ai(x) (0 ≤ i ≤ N/ni) and ψu(x) by
power products of π, ϕ1, . . . , ϕu−1 we can use the relations ϕt(x)E+

t ∼
Φ

γtψt(x)

to find the coefficients âi ∈ Ku−1 such that âi ∼
Φ

ai·E+
u
(x)ψu(x)i−m/E+

u . We get

the associated polynomial

Au(z) =
m/E+

u∑
i=0

âiz
i

where m = N/nu. Assume that Au(z) = ρ
u
(z)r for some irreducible polynomial

ρ
u
(z) ∈ Ku−1(z). Otherwise we can find ϑ(x) ∈ K[x] with ϑ(x) ∼

Φ
ϕu(x)E+

u /ψu(x)

that fails the Hensel test, which yields a factorization of Φ(x). Let ρu(z) ∈ Ku−1
be a lift of ρ

u
(z), and set F+

u := deg ρu.
Finally we construct ϕu+1(x) ∈ OK[x] of degree EuFu = E+

u F+
u Eu−1Fu−1

such that

ϕu+1(x) ∼
Φ

F+
u∑

i=0

ϑi(x)ϕu(x)iE+
u = ψu(x)F+

u ρu(ϕE+
u

u (x)/ψu(x)), (2)
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where the ϑi(x) are sums of power products of π, ϕ1, . . . , ϕu−1. For t = u−1, u−
2, . . . , 0 we recursively apply

v∗Φ

(
ρt

(
ϕ

E+
t

t

ψt

))
> 0

to reduce the maximum exponent of ϕt(x) to E+
t F+

t − 1, such that the de-
gree of the ϕt(x) term is at most deg(ϕt(x)E+

t F+
t −1) = (Et−1Ft−1)(E+

t F+
t − 1).

Thus we can find a ϕu+1(x) that fulfills the degree condition degϕu+1 = EuFu.
Furthermore

v∗Φ(ϕu+1) = v∗Φ

(
ψ

F+
u

u ρu

(
ϕu(x)E+

u

ψu(x)

))
> v∗Φ

(
ψ

F+
u

u

)
≥ v∗Φ(ϕu).

As a preparation for the next iteration we set Ku := Ku−1(γu) with γu a root of
ρu(z) and obtain the relation ϕE+

u (x) ∼
Φ

γuψu(x).

Remark 15. ϕu+1(x) ∈ OK[x] is irreducible.

8 The Algorithm

We summarize the steps for the construction of the sequence (ϕt(x))t in an
algorithm. Although we use the unramified extensions Kt/K above and in the
algorithm, in practice the γi are represented as elements in the residue class field
Kt. Furthermore, many of the manipulations in the algorithm can be conducted
on the representations of ψt(x) as power products of π, ϕ1(x), . . . , ϕt−1(x) and
of ai(x) as sums of power products of π, ϕ1(x), . . . , ϕt−1(x) thus reducing these
operations to operations of vectors of integers.

Algorithm 16 (Polynomial Factorization)
Input: a monic, separable, squarefree polynomial Φ(x) over a local field K.
Output: a proper factorization of Φ(x) if one exists,

a two-element certificate for Φ(x) otherwise.

(1) Initialize t ← 1, ϕ1(x) ← x, E0 = 1, F0 = 1, K0 = K.
(2) Repeat:

(a) Find the ϕt expansion Φ(x) =
∑N/ deg ϕt

i=1 ai(x)ϕ(x)i of Φ(x).
(b) Find v∗Φ(ai) for 0 ≤ i ≤ N/ degϕt.
(c) If ϕt(x) fails the Newton test: return a proper factorization of Φ(x).
(d) ht/et ← v∗Φ(ϕ) with gcd(ht, et) = 1; E+

t ← et

gcd(et,E) ; Et ← E+
t ·Et−1.

(e) Construct ψt(x) = πsπ
∏t−1

i=1 ϕi(x)si with v∗Φ(ψt) = E+
t v∗Φ(ϕt), sπ ∈ N,

0 ≤ si < E+
i (1 ≤ i ≤ t− 1), degψt < EiFi.

(f) Compute the associate polynomial At(z).
(g) Find a factorization of At(z) ∈ Kt(z).
(h) If At(z) has two co-prime factors: return a proper factorization of Φ(x).
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(i) F+
t ← deg ρ where ρ

t
(z)r = At(z), ρ

t
(z) ∈ Kt−1[z] irreducible; Ft ←

F+
t · Ft−1, Kt ← K[x]/(ρt(x)).

(j) If EtFt = degΦ: return a two-element certificate for Φ(x).
(k) Find ϕt+1(x) ∼

Φ
ρt

(
ϕt(x)E+

t

/
ψt(x)deg(ρ)

)
of degree nt+1 = EtFt in OK[x].

(l) t ← t + 1.

Certificates for Irreducibility

If Φ(x) is irreducible we will have EtFt = N for some t. We obtain the two
element certificate (Definition 6) for the irreducibility of Φ(x) as follows. A poly-
nomial Π(x) ∈ K[x] with v∗Φ(Π) = 1/Et can be found using Algorithm 14. If
Ft = 1 we can choose Γ (x) = x. If Ft �= 1, let i be maximal with F+

i �= 0. We
find Γ (x) ∈ K[x] with Γ (x) ∼

Φ
ϕi(x)E+

i /ψi(x).

9 Complexity

We restrict our analysis of the complexity of the algorithm to the main loop. The
first complexity estimate for the Montes algorithm, restricted to irreducibility
testing, was given by Veres [17] and improved by Ford and Veres [5]. The com-
plexity estimate for determining the irreducibility of a polynomial Φ(x) ∈ Zp[x]
of degree N using this algorithms is O(N3+εν(discΦ) +N2+εν(discΦ)2+ε). The
running time of the Round Four algorithm is analyzed in [14], but without taking
into account the precision loss in the computation of greatest common divisors.
Both estimates rely on Theorem 5 to bound the number of iterations and the
required precision and only differ slightly in the exponent of the discriminant of
Φ(x).

Lemma 17. Let Φ(x) ∈ OK[x] be of degree N and let ϕ(x) ∈ OK[x] be monic of
degree n. Then the ϕ-expansion of Φ(x) can be computed in O(N2) operations
in OK.

Proof. In order to determine the ϕ-expansion Φ(x) =
∑N/n

i=1 ai(x)ϕ(x)i we first
compute q0(x), a0(x) ∈ OK[x] with Φ(x) = ϕ(x)q0(x)+a0(x), which can be done
in O((N − n)n) operations in OK[x]. Next we determine q1(x), a1(x) ∈ OK[x]
with q0(x) = ϕ(x)q1(x) + a1(x) (O((N − 2n)n) operations in OK[x]), and so on.
Therefore the ϕ-expansion of Φ(x) can be computed in

O((N−n)n)+O((N−2n)n)+· · ·+O((2n)n) = O

⎛⎝n

⎛⎝N2

n
− n

N/n∑
i=0

i

⎞⎠⎞⎠= O(N2)

operations in OK.

The computation of the (ϕ1, . . . , ϕt−1)-expansion of a polynomial a(x) ∈ OK[x]
of degree m ≤ degϕt−1 consists of the recursive computation of ϕt−1, ϕt−2, . . . ,
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ϕ2, and ϕ1-expansions. Let ni = degϕi (1 ≤ i ≤ t). The ϕt−1-expansion of a(x)
yields up to m/nt−1 polynomials of degree less than nt. The ϕt−2-expansions of
these polynomials yield up to m/nt−1 · nt−1/nt−2 = m/nt−2 of degree less than
nt−2. Thus the (ϕ1, . . . , ϕt−1)-expansion of a(x) can be computed in

O
(
m2
)

+ O
(

m
nt

nt
2
)

+ O
(

m
nt−1

n2
t−1

)
+ · · · + O

(
m
n1

n2
1

)
+ O(m)

operations in OK. Because ni+1/ni ≥ 2 this is less than

O
(
m2
)

+ O
(

m2

2

)
+ · · · + O

(
m2

2t−1

)
+ O(m) = O

(
m2∑�log2 m�

i=0 2−i
)

= O(m2).

Lemma 18. The (ϕ0, . . . , ϕt−1)-expansion of a(x) ∈ OK[x] with m = deg a ≤
degϕt − 1 can be computed in O(m2) operations in OK.

By Theorem 5 the polynomial Φ(x) is irreducible, if Nv∗Φ(ϕt) > 2ν(discΦ) for
some t ∈ N. In every iteration the increase from v∗Φ(ϕt) to v∗Φ(ϕt+1) is at least
2/N , unless E = N , but that would imply irreducibility. Thus the algorithm
terminates after at most ν(discΦ) iterations.

In our analysis of the cost of the steps in the main loop we exclude the cost of
finding a proper factorization to a desired precision using the methods of section
2 in steps (c) and (h). We assume that two polynomials of degree up to n can be
multiplied in O(n log n log logn) = O(n1+ε) operations in their coefficient ring
[15].

(a,b,c,d) By Lemma 18 the ϕt-expansion

Φ(x) = ϕt(x)N/nt +
N/nt−1∑

i=0

ai(x)ϕt(x)i

of Φ(x) and the (ϕ1, . . . , ϕt)-expansion of the ai(x) can be computed in
O(N2) operations in OK.

(e) The exponents sπ, s1, . . . , st−1 in ψt(x) = πsπϕ1(x)s0 · · ·ϕt−1(x)st−1 with
v∗Φ(ψ) = ht/et can be computed with Algorithm 14. The most expensive
computation is the extended Euclidean construction, which for integers less
than N runs in time O((logN)2), at most log2 N times.

(f) We have a representation of ai(x)ψt(x)i−(N/nt) (1 ≤ i ≤ N/nt) as nt sums
of power products of π, ϕ1(x), . . . , ϕt−1(x). In this representation only the
exponents of ϕi(x) where E+

i F+
i �= 1 are non-zero. There are at most log2 N

such indices i. Let mt be the number of i < t with E+
i F+

i �= 1. Reducing
the coefficients of the associated polynomial in this representation using the
relations ϕi(x)E+

i /ψi(x) ∼
Φ

γi (1 ≤ i ≤ mt) takes at most N
∑mt

i=1 i =

O(N(logN)2) integer additions and N(t− 1) = O(N logN) multiplications
in the finite field Kt with qF elements.

(g,h) The factorization of a polynomial of degree at most N/F over a finite field
with at most qF elements can be done in O((N/F )2 log qF ) bit operations
[6].
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(j) The cost of finding the exponents for the representation of Π(x) ∈ K[x] with
v∗Φ(Π) = 1/E as a power product of π, ϕ1(x), . . . , ϕt(x) is the same as the
cost of finding ψ(x) in step (f). The polynomial Γ (x) can be computed in
the same way as the coefficients ϑi(x) in step (l).

(k) The polynomial ϕt+1(x) is constructed as a polynomial in ϕt(x)E+
t of de-

gree F+
t with coefficients ϑi(x), 0 ≤ i ≤ F+

t , (see (2)), obtained from the
representations of the elements γu as ϕu(x)Eu/ψu(x) and

v∗Φ
(
ρu(ϕu(x)Eu/ψu(x))

)
> 0

for 1 ≤ u ≤ t−1. This is done by manipulating the exponents in the represen-
tation of the polynomials as sums of power products of π, ϕ1(x), . . . , ϕt(x).
The computation of ϕt(x)E+

t takes log2 Et multiplications of polynomials of
degree up to E+

t Et−1Ft−t < N . For 2 ≤ j ≤ F+
t the polynomial

(
ϕt(x)E+

t

)j
can be computed in F+

t multiplications of polynomials of degree up to
EtFt < N . For 1 ≤ t − 2 the exponent of ϕi(x) in the representation of
ϑi(x) as a power product of ϕ1(x), . . . , ϕt−1(x) is less than E+

i F+
i . This

gives less than logN multiplications of polynomials of degree less than N .
As in (e) the exponents of at most logN of the ϕi(x) are nonzero. Therefore
in total this step can be conducted in O(N2+ε) operations in OK[x].

By Theorem 5 the maximum of the valuations ν(v∗Φ(ξ)), where ξ is a root of
Φ(x), is less than 2

(
ν(discΦ)

)
/N . This is also the maximal (absolute) slope of the

Newton polygon of the polynomials under consideration. Therefore a precision
of 2ν(discΦ) is sufficient for all operations in the main loop.

Theorem 1. Let p be a fixed prime. We can find a breaking element or a two
element certificate for the irreducibility of a polynomial Φ(x) ∈ Zp[x] in at most
O(N2+εν(discΦ)2+ε) operations of integers less than p.

10 Example

We show that Φ(x) = x32 + 16 ∈ Z2[x] is irreducible using Algorithm 16.

Initially we set ϕ1(x) = x, E0 = 1, F0 = 1, K0 = Q2.

(a) The ϕ1-expansion of Φ(x) is Φ(x) =
∑32

i=0 ai(x)ϕ0(x)i = x32 + 16.
(b) The valuations of the coefficients are v∗Φ(a0) = 4, v∗Φ(ai) = ∞ for 1 ≤ i ≤ 31,

and v∗Φ(a32) = 0.
(c,d) ϕ1(x) passes the Newton test; we get v∗Φ(ϕ1) = h1

e1
= 4

32 = 1
8 , so E+

1 = 8
and E1 = 8.

(e) We set ψ1(x) = 2 as v∗Φ(ϕE+
1

1 ) = v∗Φ(x8) = 1.
(f,g) A1(z) = z4 + 1 with A1(z) = (z − 1)4 in F2[z].
(h,i) ϕ1(x)8

ψ1(x) passes the Hensel test; we get F+
1 = 1, K1 = Q2, F1 = 1.

(k) We obtain the next approximation of an irreducible factor of Φ(x):

ϕ2(x) = 2
(
x8

2
− 1
)

= x8 − 2.
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Second iteration:

(a) The ϕ2-expansion of Φ(x) is

Φ(x) = ϕ2(x)4 + 8ϕ2(x)3 + 24ϕ2(x)2 + 32ϕ2(x) + 32.

(b) The valuations of the coefficients are v∗Φ(32) = 5, v∗Φ(24) = 3, v∗Φ(8) = 3,
and v∗Φ(1) = 0.

(c,d) ϕ2(x) passes the Newton test; we get h2
e2

= 5
4 , so E+

2 = 1, E2 = 8.

(e) We set ψ2(x) = x2

2 , so that v∗Φ(ψ2) = 5
4 .

(f,g) The associated polynomial with respect to ϕ2(x) is A2(z) = z4 + 1 =
(z − 1)4 ∈ F2[z].

(h,i) ϕ2(x)
ψ2(x) passes the Hensel test, we get F+

2 = 1, K2 = Q2, F2 = 1.
(l) We set

ϕ3(x) = ψ2(x)
(
ϕ2(x)
ψ2(x)

− 1
)

= x8 − 2x2 − 2.

Third iteration:

(a) The ϕ3-expansion of Φ(x) is

Φ(x) = ϕ3(x)4 + a3(x)ϕ3(x)3 + a2(x)ϕ3(x)2 + a1(x)ϕ3(x) + a0(x)

where a3(x) = 8x2 + 8, a2(x) = 24x4 + 48x2 + 24, a1(x) = 32x6 + 96x4 +
96x2 + 48, a0(x) = 64x6 + 96x4 + 96x2 + 64.

(b) The valuations of the coefficients are v∗Φ(a0) = 21
4 , v∗Φ(a1) = 4, v∗Φ(a2) = 3,

v∗Φ(a3) = 3, and v∗Φ(1) = 0.
(c,d) ϕ3(x) passes the Newton test; we get v∗Φ(ϕ3) = h3

e3
= 21

16 , E+
3 = 2, E3 = 16.

(e) We find ψ3(x) = 22x5; so that v∗Φ(ψ3) = v∗Φ(ϕE+
3

3 ) = 21
8 .

(f,g) The associated polynomial with respect to ϕ3(x) is A2(z) = z2 + 3 =
(z − 1)3 ∈ F2[z].

(h,i) ϕ3(x)
ψ3(x) passes the Hensel test; we get F+

3 = 1, K3 = Q2, F3 = 1.
(l) We set

ϕ4(x) = x16 − 4x10 − 4x8 − 4x5 + 4x4 + 8x2 + 4.

Fourth iteration:

(a) Let Φ(x) = ϕ4(x)2 + a1(x)ϕ4(x) + a0(x) be the ϕ4-expansion of Φ(x).
(b) We have v∗Φ(a0) = 85/16 and v∗Φ(a1) = 3.
(c,d) ϕ4(x) passes the Newton test; we get h4

e4
= 85

32 , E+
4 = 2, E4 = 32.

(g) Now E4F4 = 32 = degΦ which implies the irreducibility of Φ(x) = x32 +16.
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On a Problem of Hajdu and Tengely
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Abstract. We prove a result that finishes the study of primitive arith-
metic progressions consisting of squares and fifth powers that was carried
out by Hajdu and Tengely in a recent paper: The only arithmetic pro-
gression in coprime integers of the form (a2, b2, c2, d5) is (1, 1, 1, 1). For
the proof, we first reduce the problem to that of determining the sets of
rational points on three specific hyperelliptic curves of genus 4. A 2-cover
descent computation shows that there are no rational points on two of
these curves. We find generators for a subgroup of finite index of the
Mordell-Weil group of the last curve. Applying Chabauty’s method, we
prove that the only rational points on this curve are the obvious ones.

1 Introduction

Euler ([9, pages 440 and 635]) proved Fermat’s claim that four distinct squares
cannot form an arithmetic progression. Powers in arithmetic progressions are still
a subject of current interest. For example, Darmon and Merel [8] proved that the
only solutions in coprime integers to the Diophantine equation xn + yn = 2zn

with n ≥ 3 satisfy xyz = 0 or ±1. This shows that there are no non-trivial three
term arithmetic progressions consisting of n-th powers with n ≥ 3. The result of
Darmon and Merel is far from elementary; it needs all the tools used in Wiles’
proof of Fermat’s Last Theorem and more.

An arithmetic progression (x1, x2, . . . , xk) of integers is said to be primitive if
the terms are coprime, i.e., if gcd(x1, x2) = 1. Let S be a finite subset of integers
≥ 2. Hajdu [11] showed that if

(a�1
1 , . . . , a�k

k ) (1)

is a non-constant primitive arithmetic progression with �i ∈ S, then k is bounded
by some (inexplicit) constant C(S). Bruin, Győry, Hajdu and Tengely [2] showed
that for any k ≥ 4 and any S, there are only finitely many primitive arithmetic
progressions of the form (1), with �i ∈ S. Moreover, for S = {2, 3} and k ≥ 4,
they showed that ai = ±1 for i = 1, . . . , k.

A recent paper of Hajdu and Tengely [12] studies primitive arithmetic progres-
sions (1) with exponents belonging to S = {2, n} and {3, n}. In particular, they

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 316–330, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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show that any primitive non-constant arithmetic progression (1) with exponents
�i ∈ {2, 5} has k ≤ 4. Moreover, for k = 4 they show that

(�1, �2, �3, �4) = (2, 2, 2, 5) or (5, 2, 2, 2). (2)

Note that if (a�i

i : i = 1, . . . , k) is an arithmetic progression, then so is the reverse
progression (a�i

i : i = k, k− 1, . . . , 1). Thus there is really only one case left open
by Hajdu and Tengely, with exponents (�1, �2, �3, �4) = (2, 2, 2, 5). This is also
mentioned as Problem 11 in a list of 22 open problems recently compiled by
Evertse and Tijdeman [10]. In this paper we deal with this case.

Theorem 1. The only arithmetic progression in coprime integers of the form

(a2, b2, c2, d5)

is (1, 1, 1, 1).

This together with the above-mentioned results of Hajdu and Tengely completes
the proof of the following theorem.

Theorem 2. There are no non-constant primitive arithmetic progressions of
the form (1) with �i ∈ {2, 5} and k ≥ 4.

The primitivity condition is crucial, since otherwise solutions abound. Let for
example (a2, b2, c2, d) be any arithmetic progression whose first three terms are
squares — there are infinitely many of these; one can take a = r2 − 2rs − s2,
b = r2 + s2, c = r2 + 2rs− s2 — then

(
(ad2)2, (bd2)2, (cd2)2, d5) is an arithmetic

progression whose first three terms are squares and whose last term is a fifth
power.

For the proof of Thm. 1, we first reduce the problem to that of determining
the sets of rational points on three specific hyperelliptic curves of genus 4. A
2-cover descent computation (following Bruin and Stoll [3]) shows that there
are no rational points on two of these curves. We find generators for a sub-
group of finite index of the Mordell-Weil group of the last curve. Applying
Chabauty’s method, we prove that the only rational points on this curve are
the obvious ones. All our computations are performed using the computer pack-
age MAGMA [1].

The result we prove here may perhaps not be of compelling interest in itself.
Rather, the purpose of this paper is to demonstrate how we can solve problems
of this kind with the available machinery. We review the relevant part of this
machinery in Sect. 3, after we have constructed the curves pertaining to our
problem in Sect. 2. Then, in Sect. 4, we apply the machinery to these curves.
The proofs are mostly computational. We have tried to make it clear what steps
need to be done, and to give enough information to make it possible to reproduce
the computations (which have been performed independently by both authors
as a consistency check).
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2 Construction of the Curves

Let (a2, b2, c2, d5) be an arithmetic progression in coprime integers. Since a
square is ≡ 0 or 1 mod 4, it follows that all terms are ≡ 1 mod 4, in partic-
ular, a, b, c and d are all odd.

Considering the last three terms, we have the relation

(−d)5 = b2 − 2c2 = (b + c
√

2)(b − c
√

2) .

Since b and c are odd and coprime, the two factors on the right are coprime in
R = Z[

√
2]. Since R×/(R×)5 is generated by 1 +

√
2, it follows that

b + c
√

2 = (1 +
√

2)j(u + v
√

2)5 = gj(u, v) + hj(u, v)
√

2 (3)

with −2 ≤ j ≤ 2 and u, v ∈ Z coprime (with u odd and v ≡ j + 1 mod 2). The
polynomials gj and hj are homogeneous of degree 5 and have coefficients in Z.

Now the first three terms of the progression give the relation

a2 = 2b2 − c2 = 2gj(u, v)2 − hj(u, v)2 .

Writing y = a/v5 and x = u/v, this gives the equation of a hyperelliptic curve
of genus 4,

Cj : y2 = fj(x)

where fj(x) = 2gj(x, 1)2−hj(x, 1)2. Every arithmetic progression of the required
form therefore induces a rational point on one of the curves Cj .

We observe that taking conjugates in (3) leads to

(−1)jb + (−1)j+1c
√

2 = (1 +
√

2)−j(u + (−v)
√

2)5 ,

which implies that f−j(x) = fj(−x) and therefore that C−j and Cj are isomor-
phic and their rational points correspond to the same arithmetic progressions.
We can therefore restrict attention to C0, C1 and C2. Their equations are as
follows.

C0 : y2 = f0(x) = 2x10 + 55x8 + 680x6 + 1160x4 + 640x2 − 16

C1 : y2 = f1(x) = x10 + 30x9 + 215x8 + 720x7 + 1840x6 + 3024x5

+ 3880x4 + 2880x3 + 1520x2 + 480x+ 112

C2 : y2 = f2(x) = 14x10 + 180x9 + 1135x8 + 4320x7 + 10760x6 + 18144x5

+ 21320x4 + 17280x3 + 9280x2 + 2880x+ 368

The trivial solution a = b = c = d = 1 corresponds to j = 1, (u, v) = (1, 0) in
the above and therefore gives rise to the point ∞+ on C1 (this is the point at
infinity where y/x5 takes the value +1). Changing the signs of a, b or c leads to
∞− ∈ C1(Q) (the point where y/x5 = −1) or to the two points at infinity on
the isomorphic curve C−1.
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3 Background on Rational Points on Hyperelliptic
Curves

Our task will be to determine the set of rational points on each of the curves
C0, C1 and C2 constructed in the previous section. In this section, we will give
an overview of the methods we will use, and in the next section, we will apply
these methods to the given curves.

We will restrict attention to hyperelliptic curves, i.e., curves given by an affine
equation of the form

C : y2 = f(x)

where f is a squarefree polynomial with integral coefficients. The smooth projec-
tive curve birational to this affine curve has either one or two additional points
‘at infinity’. If the degree of f is odd, there is one point at infinity, which is
always a rational point. Otherwise there are two points at infinity corresponding
to the two square roots of the leading coefficient of f . In particular, these two
points are rational if and only if the leading coefficient is a square. For example,
C1 above has two rational points at infinity, whereas the points at infinity on C0
and C2 are not rational. We will use C in the following to denote the smooth
projective model; C(Q) denotes as usual the set of rational points including those
at infinity.

3.1 Two-Cover Descent

It will turn out that C0 and C2 do not have rational points. One way of showing
that C(Q) is empty is to verify that C(R) is empty or that C(Qp) is empty for
some prime p. This does not work for C0 or C2; both curves have real points
and p-adic points for all p. (This can be checked by a finite computation.) So
we need a more sophisticated way of showing that there are no rational points.
One such method is known as 2-cover descent. We sketch the method here; for
a detailed description, see [3].

An important ingredient of this and other methods is the algebra

L := Q[T ] =
Q[x]

Q[x] · f(x)
,

where T denotes the image of x. If f is irreducible (as in our examples), then L
is the number field generated by a root of f . In general, L will be a product of
number fields corresponding to the irreducible factors of f . We now assume that
f has even degree 2g + 2, where g is the genus of the curve. This is the generic
case; the odd degree case is somewhat simpler. We can then set up a map, called
the descent map or x− T map:

x− T : C(Q) −→ H :=
L×

Q×(L×)2
.

Here L× denotes the multiplicative group of L, and (L×)2 denotes the subgroup
of squares. On points P ∈ C(Q) that are neither at infinity nor Weierstrass
points (i.e., points with vanishing y coordinate), the map is defined as



320 S. Siksek and M. Stoll

(x− T )(P ) = x(P ) − T mod Q×(L×)2 .

Rational points at infinity map to the trivial element, and if there are rational
Weierstrass points, their images can be determined using the fact that the norm
of x(P )− T is y(P )2 divided by the leading coefficient of f . If we can show that
x− T has empty image on C(Q), then it follows that C(Q) is empty.

We obtain information of the image by considering again C(R) and C(Qp). We
can carry out the same construction over R and over Qp, leading to an algebra
Lv (v = p, or v = ∞ when working over R), a group Hv and a map

(x− T )v : C(Qv) −→ Hv (where Q∞ = R).

We have inclusions C(Q) ↪→ C(Qv) and canonical homomorphisms H → Hv.
Everything fits together in a commutative diagram

C(Q)
x−T ��

��

H

��∏
v C(Qv)

∏
v(x−T )v �� ∏

v Hv

where v runs through the primes and ∞. If we can show that the images of
the lower horizontal map and of the right vertical map do not meet, then the
image of x − T and therefore also C(Q) must be empty. We can verify this by
considering a finite subset of ‘places’ v.

In general, we obtain a finite subset of H that contains the image of x−T ; this
finite subset is known as the fake 2-Selmer set of C/Q. It classifies either pairs
of (isomorphism classes of) 2-covering curves of C that have points everywhere
locally, i.e., over R and over all Qp, or else it classifies such 2-covering curves, in
which case it is the (true) 2-Selmer set. Whether it classifies pairs or individual
2-coverings depends on a certain condition on the polynomial f . This condition is
satisfied if either f has an irreducible factor of odd degree, or if deg f ≡ 2 mod 4
and f factors over a quadratic extension Q(

√
d) as a constant times the product

of two conjugate polynomials. A 2-covering of C is a morphism π : D → C that
is unramified and becomes Galois over a suitable field extension of finite degree,
with Galois group (Z/2Z)2g. It is known that every rational point on C lifts to
a rational point on some 2-covering of C.

The actual computation splits into a global and a local part. The global
computation uses the ideal class group and the unit group of L (or the constituent
number fields of L) to construct a finite subgroup of H containing the image
of x − T . The local computation determines the image of (x − T )v for finitely
many places v.

3.2 The Jacobian

Most other methods make use of another object associated to the curve C:
its Jacobian variety (or just Jacobian). This is an abelian variety J (a higher-
dimensional analogue of an elliptic curve) of dimension g, the genus of C. It
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reflects a large part of the geometry and arithmetic of C; its main advantage is
that its points form an abelian group, whereas the set of points on C does not
carry a natural algebraic structure.

For our purposes, we can more or less forget the structure of J as a projective
variety. Instead we use the description of the points on J as the elements of
the degree zero part of the Picard group of C. The Picard group is constructed
as a quotient of the group of divisors on C. A divisor on C is an element of
the free abelian group DivC on the set C(Q̄) of all algebraic points on C. The
absolute Galois group of Q acts on DivC ; a divisor that is fixed by this action
is rational. This does not mean that the points occurring in the divisor must be
rational; points with the same multiplicity can be permuted. A nonzero rational
function h on C with coefficients in Q̄ has an associated divisor div(h) that
records its zeros and poles (with multiplicities). If h has coefficients in Q, then
div(h) is rational. The homomorphism deg : DivC → Z induced by sending each
point in C(Q̄) to 1 gives the degree of a divisor. Divisors of functions have degree
zero.

Two divisors D,D′ ∈ DivC are linearly equivalent if their difference is the
divisor of a function. The equivalence classes are the elements of the Picard
group PicC defined by the following exact sequence.

0 −→ Q̄× −→ Q̄(C)× div−→ DivC −→ PicC −→ 0

Since divisors of functions have degree zero, the degree homomorphism descends
to PicC . We denote its kernel by Pic0

C . It is a fact that J(Q̄) is isomorphic as a
group to Pic0

C . The rational points J(Q) correspond to the elements of Pic0
C left

invariant by the Galois group. In general it is not true that a point in J(Q) can
be represented by a rational divisor, but this is the case when C has a rational
point, or at least points everywhere locally. The most important fact about the
group J(Q) is the statement of the Mordell-Weil Theorem: J(Q) is a finitely
generated abelian group. For this reason, J(Q) is often called the Mordell-Weil
group of J or of C.

If P0 ∈ C(Q), then the map C ( P �→ [P −P0] ∈ J is a Q-defined embedding
of C into J . We use [D] to denote the linear equivalence class of the divisor D.
The basic idea of the methods described below is to try to recognise the points
of C embedded in this way among the rational points on J .

We need a way of representing elements of J(Q). Let P �→ P− denote the
hyperelliptic involution on C; this is the morphism C → C that changes the
sign of the y coordinate. Then it is easy to see that the divisors P + P− all
belong to the same class W ∈ PicC . An effective divisor D (a divisor such that
no point occurs with negative multiplicity) is in general position if there is no
point P such that D − P − P− is still effective. Divisors in general position
not containing points at infinity can be represented in a convenient way by
pairs of polynomials (a(x), b(x)). This pair represents the divisor D such that its
image on the projective line (under the x-coordinate map) is given by the roots
of a; the corresponding points on C are determined by the relation y = b(x).
The polynomials have to satisfy the relation f(x) ≡ b(x)2 mod a(x). This is
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the Mumford representation of D. The polynomials a and b can be chosen to
have rational coefficients if and only if D is rational. (The representation can be
adapted to allow for points at infinity occurring in the divisor.)

If the genus g is even, then it is a fact that every point in J(Q) has a unique
representation of the form [D] − nW where D is a rational divisor in general
position of degree 2n and n ≥ 0 is minimal. The Mumford representation of D
is then also called the Mumford representation of the corresponding point on J .
It is fairly easy to add points on J using the Mumford representation, see [5].
This addition procedure is implemented in MAGMA, for example.

There is a relation between 2-coverings of C and the Jacobian J . Assume
C is embedded in J as above. Then if D is any 2-covering of C that has a
rational point P , D can be realised as the preimage of C under a map of the
form Q �→ 2Q+Q0 on J , where Q0 is the image of P on C ⊂ J . A consequence
of this is that two rational points P1, P2 ∈ C(Q) lift to the same 2-covering if
and only if [P1 − P2] ∈ 2J(Q).

3.3 The Mordell-Weil Group

We will need to know generators of a finite-index subgroup of the Mordell-Weil
group J(Q). Since J(Q) is a finitely generated abelian group, it will be a direct
sum of a finite torsion part and a free abelian group of rank r; r is called the
rank of J(Q). So what we need is a set of r independent points in J(Q).

The torsion subgroup of J(Q) is usually easy to determine. The main tool used
here is the fact that the torsion subgroup injects into J(Fp) when p is an odd
prime not dividing the discriminant of f . If the orders of the finite groups J(Fp)
are coprime for suitable primes p, then this shows that J(Q) is torsion-free.

We can find points in J(Q) by search. This can be done by searching for ra-
tional points on the variety parameterising Mumford representations of divisors
of degree 2, 4, . . . . We can then check if the points found are independent by
again mapping into J(Fp) for one or several primes p.

The hard part is to know when we have found enough points. For this we
need an upper bound on the rank r. This can be provided by a 2-descent on
the Jacobian J . This is described in detail in [16]. The idea is similar to the 2-
cover descent on C described above in Sect. 3.1. Essentially we extend the x−T
map from points to divisors. It can be shown that the value of (x− T )(D) only
depends on the linear equivalence class of D. This gives us a homomorphism
from J(Q) into H , or more precisely, into the kernel of the norm map NL/Q :
H → Q×/(Q×)2. It can be shown that the kernel of this x − T map on J(Q) is
either 2J(Q), or it contains 2J(Q) as a subgroup of index 2. The former is the
case when f satisfies the same condition as that mentioned in Sect. 3.1.

We can then bound (x − T )(J(Q)) in much the same way as we did when
doing a 2-cover descent on C. The global part of the computation is identical.
The local part is helped by the fact that we now have a group homomorphism
(or a homomorphism of F2-vector spaces), so we can use linear algebra. We ob-
tain a bound for the order of J(Q)/2J(Q), from which we can deduce a bound for
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the rank r. If we are lucky and found that same number of independent points
in J(Q), then we know that these points generate a subgroup of finite index.

The group containing (x−T )(J(Q)) we compute is known as the fake 2-Selmer
group of J [13]. If the polynomial f satisfies the relevant condition, then this fake
Selmer group is isomorphic to the true 2-Selmer group of J (that classifies 2-
coverings of J that have points everywhere locally).

3.4 The Chabauty-Coleman Method

If the rank r is less than the genus g, there is a method available that allows us
to get tight bounds on the number of rational points on C. This goes back to
Chabauty [6], who used it to prove Mordell’s Conjecture in this case. Coleman [7]
refined the method. We give a sketch here; more details can be found for example
in [15].

Let p be a prime of good reduction for C (this is the case when p is odd
and does not divide the discriminant of f). We use Ω1

C(Qp) and Ω1
J(Qp) to

denote the spaces of regular 1-forms on C and J that are defined over Qp. If
P0 ∈ C(Q) and ι : C → J , P �→ [P − P0] denotes the corresponding embedding
of C into J , then the induced map ι∗ : Ω1

J (Qp) → Ω1
C(Qp) is an isomorphism

that is independent of the choice of basepoint P0. Both spaces have dimension g.
There is an integration pairing

Ω1
C(Qp) × J(Qp) −→ Qp, (ι∗ω,Q) �−→

∫ Q

0
ω = 〈ω, logQ〉 .

In the last expression, logQ denotes the p-adic logarithm on J(Qp) with values in
the tangent space of J(Qp) at the origin, and Ω1

J(Qp) is identified with the dual
of this tangent space. If r < g, then there are (at least) g−r linearly independent
differentials ω ∈ Ω1

C(Qp) that annihilate the Mordell-Weil group J(Q). Such a
differential can be scaled so that it reduces to a non-zero differential ω̄ mod p.
Now the important fact is that if ω̄ does not vanish at a point P̄ ∈ C(Fp), then
there is at most one rational point on C(Q) whose reduction is P̄ . (There are
more general bounds valid when ω̄ does vanish at P̄ , but we do not need them
here.)

4 Determining the Rational Points

In this section, we determine the set of rational points on the three curves C0,
C1 and C2. To do this, we apply the methods described in Sect. 3.

We first consider C0 and C2. We apply the 2-cover-descent procedure de-
scribed in Sect. 3.1 to the two curves and find that in each case, there are no
2-coverings that have points everywhere locally. For C0, only 2-adic information
is needed in addition to the global computation, for C2, we need 2-adic and 7-
adic information. Note that the number fields generated by roots of f0 or f2 are
sufficiently small in terms of degree and discriminant that the necessary class
and unit group computations can be done unconditionally. This leads to the
following.
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Proposition 3. There are no rational points on the curves C0 and C2.

Proof. The 2-cover descent procedure is available in recent releases of MAGMA.
The computations leading to the stated result can be performed by issuing the
following MAGMA commands.

> SetVerbose("Selmer",2);
> TwoCoverDescent(HyperellipticCurve(Polynomial(

[-16,0,640,0,1160,0,680,0,55,0,2])));
> TwoCoverDescent(HyperellipticCurve(Polynomial(

[368,2880,9280,17280,21320,18144,10760,4320,1135,180,14])));

We explain how the results can be checked independently. We give details for C0
first. The procedure for C2 is similar, so we only explain the differences.

The polynomial f0 is irreducible, and it can be checked that the number field
generated by one of its roots is isomorphic to L = Q( 10

√
288). Using MAGMA or

pari/gp, one checks that this field has trivial class group. The finite subgroup H̃
of H containing the Selmer set is then given as O×

L,S/(Z
×
{2,3,5}(O

×
L,S)2), where S

is the set of primes in OL above the ‘bad primes’ 2, 3 and 5. The set S contains
two primes above 2, of degrees 1 and 4, respectively, and one prime above 3 and 5
each, of degree 2 in both cases. Since L has two real embeddings and four pairs
of complex embeddings, the unit rank is 5. The rank (or F2-dimension) of H̃ is
then 7. (Note that 2 is a square in L.) The descent map takes its values in the
subset of H̃ consisting of elements whose norm is twice a square. This subset is
of size 32; elements of OL representing it can easily be obtained. Let δ be such
a representative. We let T be a root of f0 in L and check that the system of
equations

y2 = f0(x), x− T = δcz2

has no solutions with x, y, c ∈ Q2, z ∈ L⊗Q Q2. The second equation leads, after
expanding δz2 as a Q-linear combination of 1, T, T 2, . . . , T 9, to eight homoge-
neous quadratic equations in the ten unknown coefficients of z. Any solution to
these equations gives a unique x, for which f0(x) is a square. The latter follows
by taking norms on both sides of x − T = δcz2. So we only have to check the
intersection of eight quadrics in P9 for existence of Q2-points. Alternatively, we
evaluate the descent map on C0(Q2), to get its image in H2 = L×

2 /(Q×
2 (L×

2 )2),
where L2 = L⊗Q Q2. Then we check that none of the representatives δ map into
this image.

When dealing with C2, the field L is generated by a root of x10 − 6x5 − 9.
Since the leading coefficient of f2 is 14, we have to add (the primes above) 7
to the bad primes. As before, the class group is trivial, and we have the same
splitting behaviour of 2, 3 and 5. The prime 7 splits into two primes of degree 1
and two primes of degree 4. The group of S-units of L modulo squares has now
rank 14, the group H̃ has rank 10, and the subset of H consisting of elements
whose norm is 14 times a square has 128 elements. These elements now have to
be tested for compatibility with the 2-adic and the 7-adic information, which can
be done using either of the two approaches described above. The 7-adic check is
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only necessary for one of the elements; the 127 others are already ruled out by
the 2-adic check. ��
We cannot hope to deal with C1 in the same easy manner, since C1 has two
rational points at infinity coming from the trivial solutions. We can still perform
a 2-cover-descent computation, though, and find that there is only one 2-covering
of C1 with points everywhere locally, which is the covering that lifts the points at
infinity. Only 2-adic information is necessary to show that the fake 2-Selmer set
has at most one element, so we can get this result using the following MAGMA
command.

> TwoCoverDescent(HyperellipticCurve(Polynomial(
[112,480,1520,2880,3880,3024,1840,720,215,30,1]))
: PrimeCutoff := 2);

(In some versions of MAGMA this returns a two-element set. However, as can be
checked by pulling back under the map returned as a second value, these two
elements correspond to the images of 1 and −1 in L×/(L×)2Q× and therefore
both represent the trivial element. The error is caused by MAGMA using 1 instead
of −1 as a ‘generator’ of Q×/(Q×)2. This bug is corrected in recent releases.)

The computation can be performed in the same way as for C0 and C2. The
relevant field L is generated by a root of x10 − 18x5 + 9; it has class number 1,
and the primes 2, 3 and 5 split in the same way as before. The subset H ′ (in fact
a subgroup) of H̃ consisting of elements with square norm has size 32. Of these,
only the element represented by 1 is compatible with the 2-adic constraints.

We remark that by the way it is given, the polynomial f1 factors over Q(
√

2)
into two conjugate factors of degree 5. This implies that the ‘fake 2-Selmer set’
computed by the 2-cover descent is the true 2-Selmer set, so that there is really
only one 2-covering that corresponds to the only element of the set computed
by the procedure. We state the result as a lemma. We fix P0 = ∞− ∈ C1 as
our basepoint and write J1 for the Jacobian variety of C1. Then, as described in
Sect. 3.2,

ι : C1 −→ J1 , P �−→ [P − P0]

is an embedding defined over Q.

Lemma 4. Let P ∈ C1(Q). Then the divisor class [P − P0] is in 2J1(Q).

Proof. Let D be the unique 2-covering of C1 (up to isomorphism) that has points
everywhere locally. The fact that D is unique follows from the computation of
the 2-Selmer set. Any rational point P ∈ C1(Q) lifts to a rational point on some
2-covering of C1. In particular, this 2-covering then has a rational point, so it
also satisfies the weaker condition that it has points everywhere locally. Since D
is the only 2-covering of C1 satisfying this condition, P0 and P must both lift to
a rational point on D. This implies by the remark at the end of Sect. 3.2 that
[P − P0] ∈ 2J1(Q). ��
To make use of this information, we need to know J1(Q), or at least a subgroup
of finite index. A computer search reveals two points in J1(Q), which are given
in Mumford representation (see Sect. 3.2) as follows.
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Q1 =
(
x4 + 4x2 + 4

5 , −16x3 − 96
5 x
)

Q2 =
(
x4 + 24

5 x3 + 36
5 x2 + 48

5 x + 36
5 , − 1712

75 x3 − 976
25 x2 − 1728

25 x− 2336
25

)
We note that 2Q1 = [∞+ − ∞−]; this makes Lemma 4 explicit for the known
two points on C1.

Lemma 5. The Mordell-Weil group J1(Q) is torsion-free, and Q1, Q2 are lin-
early independent. In particular, the rank of J1(Q) is at least 2.

Proof. The only primes of bad reduction for C1 are 2, 3 and 5. It is known that
the torsion subgroup of J1(Q) injects into J1(Fp) when p is an odd prime of good
reduction. Since #J1(F7) = 2400 and #J1(F41) = 2633441 are coprime, there
can be no nontrivial torsion in J1(Q).

We check that the image of 〈Q1, Q2〉 in J1(F7) is not cyclic. This shows that
Q1 and Q2 must be independent. ��

The next step is to show that the Mordell-Weil rank is indeed 2. For this, we
compute the 2-Selmer group of J1 as sketched in Sect. 3.3 and described in detail
in [16]. We give some details of the computation, since it is outside the scope of
the functionality that is currently provided by MAGMA (or any other software
package).

We first remind ourselves that f1 factors over Q(
√

2). This implies that the
kernel of the x− T map on J(Q) is 2J(Q). Therefore the ‘fake 2-Selmer group’
that we compute is in fact the actual 2-Selmer group of J1. Since J1(Q) is torsion-
free, the order of the 2-Selmer group is an upper bound for 2r, where r is the
rank of J1(Q).

The global computation is the same as that we needed to do for the 2-cover
descent. In particular, the Selmer group is contained in the group H ′ from above,
consisting of the S-units of L with square norm, modulo squares and modulo
{2, 3, 5}-units of Q. For the local part of the computation, we have to compute the
image of J1(Qp) under the local x−T map for the primes p of bad reduction. We
check that there is no 2-torsion in J1(Q3) and J1(Q5) (f1 remains irreducible
both over Q3 and over Q5). This implies that the targets of the local maps
(x − T )3 and (x − T )5 are trivial, which means that these two primes need not
be considered as bad primes for the descent computation. The real locus C1(R)
is connected, which implies that there is no information coming from the local
image at the infinite place. (Recall that C1 denotes the smooth projective model
of the curve. The real locus of the affine curve y2 = f1(x) has two components,
but they are connected to each other through the points at infinity.) Therefore,
we only need to use 2-adic information in the computation. We set L2 = L⊗Q Q2
and compute the natural homomorphism

μ2 : H ′ −→ H2 =
L×

2

Q×
2 (L×

2 )2
.

Let I2 be the image of J1(Q2) in H2. Then the 2-Selmer group is μ−1
2 (I2).
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It remains to compute I2, which is the hardest part of the computation. The
2-torsion subgroup J1(Q2)[2] has order 2 (f1 splits into factors of degrees 2
and 8 over Q2); this implies that J1(Q2)/2J1(Q2) has dimension g+1 = 5 as an
F2-vector space. This quotient is generated by the images of Q1 and Q2 and of
three further points of the form [Di] − deg Di

2 W , where Di is the sum of points
on C1 whose x-coordinates are the roots of

D1 :
(
x− 1

2

)(
x− 1

4

)
,

D2 : x2 − 2x + 6 ,

D3 : x4 + 4x3 + 12x2 + 36 ,

respectively. These points were found by a systematic search, using the fact that
the local map (x − T )2 is injective in our situation. We can therefore stop the
search procedure as soon as we have found points whose images generate a five-
dimensional F2-vector space. We thus find I2 ⊂ H2 and then can compute the
2-Selmer group. In our situation, μ2 is injective, and the intersection of its image
with I2 is generated by the images of Q1 and Q2. Therefore, the F2-dimension
of the 2-Selmer group is 2.

Lemma 6. The rank of J1(Q) is 2, and 〈Q1, Q2〉 ⊂ J1(Q) is a subgroup of finite
odd index.

Proof. The Selmer group computation shows that the rank is ≤ 2, and Lemma 5
shows that the rank is ≥ 2. Regarding the second statement, it is now clear that
we have a subgroup of finite index. The observation stated just before the lemma
shows that the given subgroup surjects onto the 2-Selmer group under the x−T
map. Since the kernel of the x− T map is 2J1(Q), this implies that the index is
odd. ��
Now we want to use the Chabauty-Coleman method sketched in Sect. 3.4 to show
that ∞+ and ∞− are the only rational points on C1. To keep the computations
reasonably simple, we want to work at p = 7, which is the smallest prime of
good reduction.

For p a prime of good reduction, we write ρp for the two ‘reduction mod p’
maps J1(Q) → J1(Fp) and C1(Q) → C1(Fp).

Lemma 7. Let P ∈ C1(Q). Then ρ7(P ) = ρ7(∞+) or ρ7(P ) = ρ7(∞−).

Proof. Let G = 〈Q1, Q2〉 be the subgroup of J1(Q) generated by the two points
Q1 and Q2. We find that ρ7(G) has index 2 in J1(F7) ∼= Z/10Z ⊕ Z/240Z. By
Lemma 6, we know that (J1(Q) : G) is odd, so we can deduce that ρ7(G) =
ρ7(J1(Q)). The group J1(F7) surjects onto (Z/5Z)2. Since ρ7(J1(G)) has index 2
in J1(F7), ρ7(G) = ρ7(J1(Q)) also surjects onto (Z/5Z)2. This implies that the
index of G in J1(Q) is not divisible by 5.

We determine the points P ∈ C1(F7) such that ι(P ) ∈ ρ7(2J1(Q)) = 2ρ7(G).
We find the set

X7 = {ρ7(∞+), ρ7(∞−), (−2, 2), (−2,−2)} .
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Note that for any P ∈ J1(Q), we must have ρ7(P ) ∈ X7 by Lemma 4.
Now we look at p = 13. The image of G in J1(F13) ∼= Z/10Z ⊕ Z/2850Z

has index 5. Since we already know that (J1(Q) : G) is not a multiple of 5,
this implies that ρ13(G) = ρ13(J1(Q)). As above for p = 7, we compute the set
X13 ⊂ C1(F13) of points mapping into ρ13(2J1(Q)). We find

X13 = {ρ13(∞+), ρ13(∞−)} .

Now suppose that there is P ∈ C1(Q) with ρ7(P ) ∈ {(−2, 2), (−2,−2)}. Then
ι(P ) is in one of two specific cosets in J1(Q)/ kerρ7 ∼= G/ kerρ7|G. On the other
hand, we have ρ13(P ) = ρ13(∞±), so that ι(P ) is in one of two specific cosets
in J1(Q)/ kerρ13 ∼= G/ kerρ13|G. If we identify G = 〈Q1, Q2〉 with Z2, then we
can find the kernels of ρ7 and of ρ13 on G explicitly, and we can also determine
the relevant cosets explicitly. It can then be checked that the union of the first
two cosets does not meet the union of the second two cosets. This implies that
such a point P cannot exist. Therefore, the only remaining possibilities are that
ρ7(P ) = ρ7(∞±). ��

Remark 8. The use of information at p = 13 to rule out residue classes at p = 7
in the proof above is a very simple instance of a method known as the Mordell-
Weil sieve. For a detailed description of this method, see [4].

Now we need to find the space of holomorphic 1-forms on C1, defined over Q7,
that annihilate the Mordell-Weil group under the integration pairing, compare
Sect. 3.4. We follow the procedure described in [14]. We first find two independent
points in the intersection of J1(Q) and the kernel of reduction mod 7. In our case,
we take R1 = 20Q1 and R2 = 5Q1+60Q2. We represent these points in the form
Rj = [Dj − 4∞−] with effective divisors D1, D2 of degree 4. The coefficients of
the primitive polynomial in Z[x] whose roots are the x-coordinates of the points
in the support of D1 have more than 100 digits and those of the corresponding
polynomial for D2 fill several pages, so we refrain from printing them here. (This
indicates that it is a good idea to work with a small prime!) The points in the
support of D1 and D2 all reduce to ∞− modulo the prime above 7 in their fields
of definition (which are degree 4 number fields totally ramified at 7). Expressing
a basis of Ω1

C1
(Q7) as power series in the uniformiser t = 1/x at P0 = ∞−

times dt, we compute the integrals numerically. More precisely, the differentials

η0 =
dx

2y
, η1 =

xdx

2y
, η2 =

x2 dx

2y
and η3 =

x3 dx

2y

form a basis of Ω1
C1

(Q7). We get

ηj = t3−j
(1

2
− 15

2
t + 115t2 − 1980t3 +

145385
4

t4 − 2764899
4

t5 + . . .
)
dt

as power series in the uniformiser. Using these power series up to a precision
of t20, we compute the following 7-adic approximations to the integrals.
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(∫ Rj

0
ηi

)
0≤i≤3,1≤j≤2

=

⎛⎜⎜⎝
−20 · 7 + O(74) −155 · 7 + O(74)
−150 · 7 + O(74) −13 · 7 + O(74)
−130 · 7 + O(74) −83 · 7 + O(74)
−19 · 7 + O(74) 163 · 7 + O(74)

⎞⎟⎟⎠
From this, it follows easily that the reductions mod 7 of the (suitably scaled)
differentials that kill J1(Q) fill the subspace of Ω1

C1
(F7) spanned by

ω1 = (1 + 3x− 2x2)
dx

2y
and ω2 = (1 − x2 + x3)

dx

2y
.

Since ω2 does not vanish at the points ρ7(∞±), this implies that there can be at
most one rational point P on C1 with ρ7(P ) = ρ7(∞+) and at most one point P
with ρ7(P ) = ρ7(∞−) (see for example [15, Prop. 6.3]).

Proposition 9. The only rational points on C1 are ∞+ and ∞−.

Proof. Let P ∈ C1(Q). By Lemma 7, ρ7(P ) = ρ7(∞±). By the argument above,
for each sign s ∈ {+,−}, we have #{P ∈ C1(Q) : ρ7(P ) = ρ7(∞s)} ≤ 1. These
two facts together imply that #C1(Q) ≤ 2. Since we know the two rational
points ∞+ and ∞− on C1, there cannot be any further rational points. ��

We can now prove Thm. 1.

Proof (of Thm. 1). The considerations in Sect. 2 imply that if (a2, b2, c2, d5) is
an arithmetic progression in coprime integers, then there are coprime u and v,
related to a, b, c, d by (3), such that (u/v, a/v5) is a rational point on one of the
curves Cj with −2 ≤ j ≤ 2. By Prop. 3, there are no rational points on C0
and C2 and therefore also not on the curve C−2, which is isomorphic to C2. By
Prop. 9, the only rational points on C1 (and C−1) are the points at infinity. This
translates into a = ±1, u = ±1, v = 0, and we have j = ±1. We deduce a2 = 1,
b2 = g1(±1, 0)2 = 1, whence also c2 = d5 = 1. ��
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Abstract. We extend the known tables of pseudosquares and pseu-
docubes, discuss the implications of these new data on the conjectured
distribution of pseudosquares and pseudocubes, and present the details of
the algorithm used to do this work. Our algorithm is based on the space-
saving wheel data structure combined with doubly-focused enumeration,
run in parallel on a cluster supercomputer.

1 Introduction

It is well-known that testing for primality can be done in polynomial time [1,3].
However, the fastest known deterministic algorithms are conjectured to be the
pseudosquares prime test of Lukes, Patterson, and Williams [6], and its general-
izations, the pseudocube prime test of Berrizbeitia, Müller, and Williams [4], and
the Eisenstein pseudocube test [13,15], all of which run in roughly cubic time,
if a sufficiently large pseudosquare or pseudocube is available. In particular, the
pseudosquares prime test is very useful in the context of finding all primes in an
interval [10], where sieving can be used in place of trial division. This, then, mo-
tivates our search for larger and larger peudosquares and pseudocubes, and our
attempts to predict their distribution. See, for example, Wooding and Williams
[14] and also [7,12,8,2,11].

In this paper, we present extensions to the known tables of pseudosquares
and pseudocubes in §2. We discuss the implications of this new data on the con-
jectured distribution of pseudosquares and pseudocubes in §3, and give a minor
refinement of the current conjectures. Then we describe our parallel algorithm,
based on Bernstein’s doubly-focused enumeration [2], which is used in a way sim-
ilar, but not identical to the work of Wooding and Williams [14], combined with
the space-saving wheel data structure presented in [10, §4.1]. We then suggest
ideas for future work in §5.
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2 Computational Results

Let (x/y) denote the Legendre symbol [5]. For an odd prime p, let Lp,2, the
pseudosquare for p, be the smallest positive integer such that

1. Lp,2 ≡ 1 (mod 8),
2. (Lp,2/q) = 1 for every odd prime q ≤ p, and
3. Lp,2 is not a perfect square.

In other words, Lp,2 is a square modulo all primes up to p, but is not a square.
We found the following new pseudosquares:

p Lp,2

367 36553 34429 47705 74600 46489
373 42350 25223 08059 75035 19329
379 > 1025

The two pseudosquares listed were found in 2008 in a computation that went up
to 5 × 1024, taking roughly 3 months wall time. The final computation leading
to the lower bound of 1025 ran for about 6 months, in two 3-month pieces, the
second of which finished on January 1st, 2010.

Wooding and Williams [14] had found a lower bound of L367,2 > 120120 ×
264 ≈ 2.216× 1024. (Note: a complete table of pseudosquares, current as of this
writing, is available at http://cr.yp.to/focus.html care of Dan Bernstein).

Note that 1025 may be used as a lower bound for L379,2 in the pseudosquares
prime test. Together with trial division to guarantee there are no divisors below,
say, 1010, this means the pseudosquares prime test is practical on integers of 35
decimal digits, especially in the context of a prime sieve [10].

Similarly, for an odd prime p, let Lp,3, the pseudocube for p, be the smallest
positive integer such that

1. Lp,3 ≡ ±1 (mod 9),
2. L

(q−1)/3
p,3 ≡ 1 (mod q) for every prime q ≤ p, q ≡ 1 (mod 3),

3. gcd(Lp,3, q) = 1 for every prime q ≤ p, and
4. Lp,3 is not a perfect cube.

We found the following new pseudocubes (only listed for p ≡ 1 (mod 3)):

p Lp,3

499 601 25695 21674 16551 89317
523,541 1166 14853 91487 02789 15947

547 41391 50561 50994 78852 27899
571,577 1 62485 73199 87995 69143 39717
601,607 2 41913 74719 36148 42758 90677

613 67 44415 80981 24912 90374 06633
619 > 1027

These pseudocubes were found in about 6 months of total wall time in 2009.
Wooding and Williams [14] had found a lower bound of L499,3 > 1.45152× 1022.
For a complete list of known pseudocubes, see [14,4,11].
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3 The Distribution of Pseudosquares and Pseudocubes

Let pi denote the ith prime, and qi denote the ith prime such that qi ≡ 1 (mod 3).
In [6] it was conjectured that, for a constant c2 > 0, we have

Lpn,2 ≈ c22n log pn. (1)

Using similar methods, in [4] it was conjectured that, for a constant c3 > 0, we
have

Lqn,3 ≈ c33n(log qn)2. (2)

In a desire to test the accuracy of these conjectures, for integers n > 0 let us
define

c2(n) :=
Lpn,2

2n log pn
, (3)

c3(n) :=
Lqn,3

3n(log qn)2
. (4)

We calculated c2(n) and c3(n) from known pseudosquares and pseudocubes. We
present these computations in Table 1, for pseudosquares, and in Table 2, for
pseudocubes, below.

From Table 1, we readily see that c2(n) appears to be bounded between
roughly 5 and 162, with an average value near 45. There is no clear trend
toward zero or infinity. Due to the common occurence of values of n where
Lpn,2 = Lpn+1,2 (for example, n = 56), it should also be clear c2(n) does not
have a limit.

Similarly for the pseudocubes, in Table 2 we see that 0.05 < c3(n) < 6.5 for
10 ≤ n ≤ 53, with an average value of roughly 1.22. And again, there is no clear
trend toward zero or infinity, nor can there be a limit for c3(n).

This leads us to the following refinements, if you will, of the conjectures (1),(2)
above.

Conjecture. For the pseudosquares, we conjecture that

lim inf
n→∞

Lpn,2

2n log pn
> 0, (5)

lim sup
n→∞

Lpn,2

2n log pn
< ∞. (6)

Similarly, for the pseudocubes, we conjecture that

lim inf
n→∞

Lqn,3

3n(log qn)2
> 0, (7)

lim sup
n→∞

Lqn,3

3n(log qn)2
< ∞. (8)
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Table 1. Values of c2(n) based on known pseudosquares

n pn Lpn,2 c2(n)
2 3 73 16.61
3 5 241 18.72
4 7 1009 32.41
5 11 2641 34.42
6 13 8089 49.28
7 17 18001 49.64
8 19 53881 71.48
9 23 87481 54.49

10 29 117049 33.95
11 31 515761 73.34
12 37 1083289 73.24
13 41 3206641 105.41
14 43 3818929 61.97
15 47 9257329 73.38
16 53 22000801 84.55
17 59 48473881 90.70
18 61 48473881 44.98
19 67 175244281 79.49
20 71 427733329 95.70
21 73 427733329 47.54
22 79 898716289 49.04
23 83 2805544681 75.69
24 89 2805544681 37.25
25 97 2805544681 18.28
26 101 10310263441 33.29
27 103 23616331489 37.96
28 107 85157610409 67.89
29 109 85157610409 33.81

n pn Lpn,2 c2(n)
30 113 196265095009 38.67
31 127 196265095009 18.87
32 131 2871842842801 137.15
33 137 2871842842801 67.95
34 139 2871842842801 33.88
35 149 26250887023729 152.68
36 151 26250887023729 76.14
37 157 112434732901969 161.79
38 163 112434732901969 80.30
39 167 112434732901969 39.96
40 173 178936222537081 31.58
41 179 178936222537081 15.69
42 181 696161110209049 30.45
43 191 696161110209049 15.07
44 193 2854909648103881 30.84
45 197 6450045516630769 34.70
46 199 6450045516630769 17.32
47 211 11641399247947921 15.46
48 223 11641399247947921 7.65
49 227 190621428905186449 62.42
50 229 196640148121928601 32.14
51 233 712624335095093521 58.06
52 239 1773855791877850321 71.92
53 241 2327687064124474441 47.12
54 251 6384991873059836689 64.15
55 257 8019204661305419761 40.11
56 263 10198100582046287689 25.40
57 269 10198100582046287689 12.65
58 271 10198100582046287689 6.32
59 277 69848288320900186969 21.54
60 281 208936365799044975961 32.14
61 283 533552663339828203681 40.99
62 293 936664079266714697089 35.76
63 307 936664079266714697089 17.73
64 311 2142202860370269916129 20.23
65 313 2142202860370269916129 10.10
66 317 2142202860370269916129 5.04
67 331 13649154491558298803281 15.94
68 337 34594858801670127778801 20.14
69 347 99492945930479213334049 28.81
70 349 99492945930479213334049 14.39
71 353 295363187400900310880401 21.32
72 359 295363187400900310880401 10.63
73 367 3655334429477057460046489 65.54
74 373 4235025223080597503519329 37.86
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Table 2. Values of c3(n) based on known pseudocubes

n qn Lqn,3 c3(n)
10 79 7235857 6.42
11 97 8721539 2.35
12 103 8721539 0.764
13 109 91246121 2.6
14 127 91246121 0.813
15 139 98018803 0.281
16 151 1612383137 1.49
17 157 1612383137 0.488
18 163 7991083927 0.795
19 181 7991083927 0.254
20 193 7991083927 0.0827
21 199 20365764119 0.0695
22 211 2515598768717 2.8
23 223 6440555721601 2.34
24 229 29135874901141 3.49
25 241 29135874901141 1.14
26 271 29135874901141 0.365
27 277 406540676672677 1.69
28 283 406540676672677 0.558
29 307 406540676672677 0.181
30 313 406540676672677 0.0598
31 331 75017625272879381 3.61
32 337 75017625272879381 1.2
33 349 75017625272879381 0.394
34 367 996438651365898469 1.71
35 373 2152984914389968651 1.23
36 379 12403284862819956587 2.34
37 397 37605274105479228611 2.33
38 409 37605274105479228611 0.77
39 421 37605274105479228611 0.254
40 433 205830039006337114403 0.459
41 439 1845193818928603436441 1.37
42 457 7854338425385225902393 1.91
43 463 12904554928068268848739 1.04
44 487 13384809548521227517303 0.355
45 499 60125695216741655189317 0.527
46 523 116614853914870278915947 0.336
47 541 116614853914870278915947 0.111
48 547 4139150561509947885227899 1.31
49 571 16248573199879956914339717 1.69
50 577 16248573199879956914339717 0.56
51 601 24191374719361484275890677 0.274
52 607 24191374719361484275890677 0.0912
53 613 674441580981249129037406633 0.845
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It has been pointed out, both by one of the referees and by Rich Schroeppel [9],
that a value for k > 0 such that

Lpn,2 = Lpn+1,2 = · · · = Lpn+k,2

likely is not bounded. This applies to pseudocubes as well. It implies that we,
most likely, cannot simultaneously have both (5) and (6), nor both of (7) and
(8). This might be avoided if we, say, multiply our upper bounds by n and divide
our lower bounds by n in our conjectures.

Our data also has implications on the relative efficiently of primality testing.
In particular, several researchers have pointed out that if conjectures (1),(2) are
true, then the running time of the pseudocube prime test, which depends on
the value of L

2/3
qn,3, should eventually outperform the pseudosquare prime test,

whose running time depends on Lpn,2. In particular, one infers from conjectures
(1) and (2) that

L
2/3
qn,3

Lpn,2
�

(
32/3

2

)n

> 1 (9)

for sufficiently large n (see [14, §9.1]). This inference follows from our refined
conjectures as well.

We have our first specific value of n to support (9), namely with n = 48, where
L

2/3
qn,3 ≈ 2.214 · Lpn,2. However, given that c2(n) averages about 45, and c3(n)

averages just over 1.2, we would reasonably expect (9) to largely be true only for
n larger than about 75, under the assumption these averages are maintained. To
test this, more pseudosquares and, in particular, more pseudocubes are needed.

4 Algorithm Details

We begin with a review of doubly-focused enumeration, explain how we employ
parallelism, and how the space-saving wheel datastructure is utilized. We also
discuss the details of our implementation, including the hardware platform and
software used.

4.1 Doubly-Focused Enumeration

The main idea is that every integer x, with 0 ≤ x ≤ H , can be written in the
form

x = tpMn − tnMp (10)

where

gcd(Mp,Mn) = 1, 0 ≤ tp ≤ H + MnMp

Mn
, and 0 ≤ tn < Mn. (11)

(See [2] or [14, Lemma 1].) This is an explicit version of the Chinese Remainder
Theorem.



Sieving for Pseudosquares and Pseudocubes in Parallel 337

To find pseudosquares, we set Mn and Mp to be products of small odd primes
and 8, choose tp to be square modulo Mp, and −tn to be square modulo Mn. To
be precise, in our implementation we set

Mp = 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 53 · 89
= 2057 04617 33829 17717 and

Mn = 8 · 3 · 5 · 47 · 59 · 61 · 67 · 71 · 73 · 79 · 83 · 97
= 4483 25952 77215 26840.

Note that both Mp,Mn < 264, allowing us to work in 64-bit machine arithmetic.
To find pseudocubes, the same idea applies, only note that if −tn is a cube

modulo Mn, so is tn. We used only 2, 9 and primes congruent to 1 (mod 3) for
better filter rates:

Mp = 2 · 7 · 13 · 31 · 43 · 73 · 79 · 127 · 139 · 157 · 181
= 701 85635 61110 39402 and

Mn = 9 · 19 · 37 · 61 · 67 · 97 · 103 · 109 · 151 · 163
= 693 11050 43291 92503

4.2 Parallelism and Main Loop

Each processor core was assigned an interval of tp values to process by giving it
values of H− and H+.

For finding pseudosquares, H+ − H− ≈ Mn · 4.76 × 1011. For finding pseu-
docubes, H+ −H− ≈ Mn · 4.99 × 1012.

Parallelism was achieved by having different processors working on different
intervals simultaneously. Once all processors had finished their current intervals,
the work was saved to disk (allowing restarts as needed) and new intervals were
assigned.

To process an interval, each processor core did the following:

1. Using the wheel datastructure, generate all square or cube values of tp with
H− ≤ tpMn ≤ H+, and store these in an array A[].

2. The wheel datastructure does not generate the tp values in order, so sort A[]
in memory using quicksort. Note that H− and H+ are chosen close enough
together so that this array held no more than 40 million integers, using at
most 320 megabytes of RAM per processor core.

3. Using the first and last entries in A[], compute a range of valid tn values to
process, and then use a wheel datastructure to generate all tn values in that
range such that −tn is square modulo Mn for pseudosquares, or tn is a cube
modulo Mn for pseudocubes.
We use an outer loop over tn values in the order enumerated by the wheel
data structure for Mn, and an inner loop over consecutive tp values drawn
from A[].
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4. For each tn generated, we normalize sieve tables for the next 4 primes
(101, 103, 107, 109 for pseudosquares, and 193, 199, 211, 223 for pseudocubes)
to allow for constant-time table lookup to see if an x-value (see below) is a
square/cube modulo these primes, indexed by tp value.
The number of primes to use for this depends on how many tp values will
be processed for each tn – in our case, it was several hundred on average, so
this step improves performance. If it were fewer, say 50, then normalizing the
sieve tables would require more work than is saved by having constant-time
lookup.

5. For each tn generated, using binary search on A[] to find all the tp values
it can match with, generate an x = tpMn − tnMp within our global search
range. (For example, in our last run for pseudosquares, we searched for x
values between 7.5 × 1024 and 1025.)
Note: at this point we do not actually compute the value of x.

6. Lookup each tp value in the normalized tables mentioned above. If it fails
any of the 4 sieve tests, move on to the next tp value. For pseudosquares, a
tp values passes these tests with probability roughly (1/2)4 = 1/16, and for
pseudocubes, roughly (1/3)4 = 1/81.
Note that this step is the running time bottleneck of the algorithm.

7. The next batch of primes q have precomputed sieve tables that are not
normalized, but we precompute Mp and Mn modulo each q so the we can
compute x mod q without exceeding 64-bit arithmetic. Continue only if our
tp value passes all these sieve tests as well. The expected number of primes
q used in this step is constant.

8. Finally, compute x using 128-bit hardware arithmetic, and see if it is a perfect
square or perfect cube. If it passes this test, append x to the output file for
this processor core.

We had two wheel datastructures, one each for Mp and Mn. For details on how
this datastructure works, see [10]. We leave the details for how to modify the
datastructure to handle cubes in place of squares to the reader.

4.3 Implementation Details

To compute the tables presented in §2, we used Butler University’s cluster su-
percomputer, BigDawg, which has 24 compute nodes, each of which has four
AMD Opteron 8354 quad-core CPUs at 2.2GHz with 512KB cache, for a total
of 384 compute cores. As might be expected, we did not have sole access to this
machine for over a year, so the code was designed, and ran, using anywhere from
10 to 24 nodes, or from 160 to 384 cores, depending on the needs of other users.
This flexibility is one advantage of our parallelization method – by tp intervals.
In [14], they parallelized over residue classes, which restricts the CPU count to
a fixed number (180 in their case).

BigDawg runs a Linux kernel on its head node and compute nodes, and the
code was written in C++ using the gnu compiler (version 4.1.2) with MPI. It
has both 10GB ethernet and Infiniband interconnect, but inter-processor com-
munication was not a bottleneck for our programs.
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We tested our code by first finding known pseudosquares (all but the highest
few) and known pseudocubes, in the process verifying previous results.

5 Future Work

We plan to port our code to work with 8 NVidia GPUs recently added to Butler’s
supercomputer, giving it roughly 2-3 times the raw computing power. This will
require a major restructuring of the code, and the removal of recursion in the
wheel datastructure.
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Abstract. We show that a specific even unimodular lattice of dimen-
sion 80, first investigated by Schulze-Pillot and others, is extremal (i.e.,
the minimal nonzero norm is 8). This is the third known extremal lat-
tice in this dimension. The known part of its automorphism group is
isomorphic to SL2(F79), which is smaller (in cardinality) than the two
previous examples. The technique to show extremality involves using the
positivity of the Θ-series, along with fast vector enumeration techniques
including pruning, while also using the automorphisms of the lattice.

1 Introduction

We show that a specific 80-dimensional even unimodular lattice is extremal,
that is, that it has no (nonzero) vectors of norm less than 8. It follows that
the kissing number of this lattice is 1 250 172 000.1 Although two other even
unimodular extremal lattices in dimension 80 are known [3], the one we describe
has a construction related to coding theory, and has an automorphism group
that contains SL2(F79).

In Section 2 we recall some facts and results about extremal lattices.
In Section 3 we follow the method of Schulze-Pillot [40] to construct our

lattice N80 as a 2-neighbour of a lattice derived from a length 80 extended
quadratic residue code over F19. The prime 19 here is not overly significant; the
construction produces five unimodular lattices in correspondence with the class
group of Q(

√
−79), and the ideal class that yields N80 (the only extremal one

among the five) has an ideal of norm 19 in it.2 Alternatively, a variation (see [1])
on a method of Gross [18, §11] can be used to construct N80, and deals more
directly with the ideals of this imaginary quadratic field. Via either method, it is
fairly immediate that N80 has an automorphism group that contains SL2(F79).

In Section 4 we note that various choices of bases make the group action nice
(doubly transitive as signed permutations on the coordinates), and then make a
specific basis choice that relates directly to the construction in [1].
1 We do not describe herein any features of these minimal vectors. In fact, the 2 555

orbits of these vectors under the known automorphisms were first found (without
proof of completeness) by the authors of [1], with whom we started this project.

2 We could also have chosen l = 5 (as indicated in [40, Example 3]), but for technical
reasons (in lattice generation) wanted l not to be too small.

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 340–356, 2010.
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In Section 5 we first briefly outline our method of proof that the lattice N80 is
extremal. We need to show that N80 has no nonzero vectors of norm 6 or smaller.
We can almost immediately eliminate vectors of norm 2, while a slightly more
involved argument is necessary to show there are no vectors of norm 4. We
then use the nonnegativity of the coefficients of the Θ-series of the lattice to
reduce the problem of showing that there is no vector of norm 6 to the problem
of finding (almost) all the vectors of norm 10. The latter is feasible due to
the fact that we need only find one representative in each orbit class under
the known automorphisms, whereas the more direct method of an exhaustive
search for norm 6 vectors would be significantly more time-consuming. After
first cataloguing the norm 10 orbits that have a nontrivial stabiliser, all the
other vectors will have a full orbit under the known automorphisms, and so we
can reduce the problem by a factor of approximately #SL2(F79) = 492 960. This
leaves us with only 15.3 million orbits of norm 10 to find.

In Section 6 we describe our method to find all the norm 10 orbits. One
principal idea is to prune the tree corresponding to the Kannan-Fincke-Pohst
enumeration algorithm that finds all short lattice vectors [21,12]. Our tree prun-
ing strategy, which generalizes that of [38, §7] and improves the one from [39],
considers a truncated search domain that is much smaller but still finds a sig-
nificant proportion of the desired vectors. Note that the pruning strategy we
describe and its analysis have been independently discovered by Gama, Nguyen,
and Regev [15, §4]. In our case, we need only find one vector in each orbit class,
so the fact we miss some vectors when searching is unimportant. Another idea
to speed the search is to periodically apply a random perturbation to the basis
and re-apply lattice reduction (namely LLL with deep insertions [38]), before
again searching with tree pruning. As our lattices are of quite high dimension,
the new basis is very likely to be different than the previous ones. This can help
in two ways: firstly, searching with a given lattice basis for short vectors, even
with pruning available, tends to become less cost-effective over time, in terms of
the number of vectors found per second; and secondly, and rather surprisingly
to us, a “good basis” for searching can sometimes have many orbit classes which
will not show up until quite deep in the search. We still do not understand this
latter phenomenon, but it is easily overcome via the random perturbations.

Section 7 gives our results and verification methods, plus related questions.

Computations. All timings are given for 2.3Ghz Opteron 8356 processors. If
otherwise unspecified, only one processor is used.

2 Extremal Lattices

The extremality of a lattice is typically defined using Θ-series, as for instance
in [7, §7.4].3 In particular, an extremal unimodular even lattice in dimension d
with 8|d has a minimum nonzero vector norm of 2(1+�d/24	), as this is twice the

3 The precise notion of “extremal” seems to vary over time; for instance [6] is more
demanding, asking that the minimum be at least 1 + �d/8
.
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dimension of the associated space of modular forms. For odd lattices, shadow
theory is typically used to obtain satisfactory bounds [8]. A relatively recent
survey on extremality appears in [14].

In particular, there were already two extremal even unimodular lattices known
in dimension 80, both due to Bachoc and Nebe [3] via a coding theory construc-
tion. The first lattice L80 has an automorphism group 2.A7⊗√−7 2.M22.2 of size
212 34 52 72 11 = 4 470 681 600, and this group is known to be a maximal finite
subgroup of GL80(Z) (see [3, Theorem 3.2]). The second extremal lattice M80
has known automorphisms [3, Lemma 4.11] of order 2123452 = 8 294 400. For
comparison, the number of known automorphisms of our lattice is 492 960.

Our lattice N80 is isometric neither to L80 nor M80. The argument for L80 is
immediate, as its automorphism group is known to be maximal but 79 does not
divide the order. For M80 we can compute the minimal vectors in a few days,
and perhaps argue via some property of them versus those for N80. We can also
argue via Aschbacher’s theorem on maximal subgroups of finite classical groups,
and in an appendix, we sketch a proof along these lines, showing that Aut(N80)
is a maximal finite subgroup of GL80(Z) up to a possible index of 4.

The idea of extremality can also be extended to include other lattices which
are isomorphic to their dual(s). In this case, the full space of modular forms is
typically replaced by the subspace that is fixed under the Atkin-Lehner involu-
tions [36]. This then relates the question to a simultaneous maximisation of the
minimum of a lattice and that of its shadow; see [13] and [32] for instance.

Finally, we note that [28] shows that there are only finitely many extremal
lattices, though the most easily computed bound on maximal dimension still
seems to be quite high.4 In the other direction, King [22] classifies all (even)
unimodular lattices in dimension 32 with no roots, and finds there to be at
least 107 such; as the lack of roots implies that the lattices have no vectors of
norm 2, it follows that each is extremal. Similarly, Peters [33] shows there are at
least 1051 extremal lattices in dimension 40.

3 Construction of the Lattice N80

We follow the paper [40] of Schulze-Pillot on quadratic residue codes and cy-
clotomic lattices, which builds on works from Thompson, Feit [9], and Quebbe-
mann [35, §3] about unimodular lattices with an automorphism of prime order.

4 The proof therein is similar in flavour to the idea we exploit, that is, for sufficiently
large dimension, the first form in a triangular basis will have coefficients that are
negative, and thus positivity precludes the existence of an extremal lattice. See the
recent [42, p. 36] for a brief sketch. Our computations give that the qn+2 term in the
expansion is negative for n ≥ 6 775, 6 789, 6 803 for the respective 0, 8, 16 mod 24
classes, which gives an upper bound of 163 264 = (6802 ·24)+16 for the dimension of
an even unimodular extremal lattice. Finally, Rains [37] has followed upon the work
of Krasikov and Litsyn [27] to obtain that the minimal norm of a unimodular lattice
is (asymptotically with dimension d → ∞) smaller than the Siegel bound ∼ d/12 by
at least a constant factor (see N = 1 in the Remark after Theorem 4.2 in [37]).
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The construction gives a unimodular lattice as a sublattice of index p in a
(rescaled) direct sum of two lattices of dimensions 2 and (p − 1). In this, the
2-dimensional lattice T2 can be taken as any integral lattice of determinant p.
The lattice Up−1 of dimension (p− 1) comes about from an (unpublished) con-
struction of Thompson (see [9, §9]). We let E = Q(ζp) be cyclotomic, and take
an ideal A ⊆ OE such that AĀ = (d) with d ∈ E+ totally positive. This ideal
induces a (positive definite) lattice of dimension (p− 1) via a basis for the ring
of integers Z[ζp], with the quadratic form given by Q1(u) = trE

Q(uūd−1). Via a
computation (with the different as in [9, Theorem 9.3], or with a Vandermonde
determinant) one can show that the lattice Up−1 has determinant pp−2.

To obtain a unimodular lattice of dimension (p + 1), we start with the direct
sum T2 ⊕ Up−1, and take the sublattice of this consisting of all vectors whose
norm is a multiple of p. Upon dividing the whole lattice by p, the result will be
integral and unimodular, the latter since (p·pp−2)·p2/pp+1 = 1. We need to show
that this actually yields a sublattice, that is, the resulting subset of the original
lattice satisfies the group law, and this is most easily done via homomorphic
projection maps. We take the lattice

N(T2, Up−1) = {(m,u) ∈ T2 ⊕ Up−1 | π(m) = ρ(u)}

under the quadratic form Q
(
(m,u)

)
=
(
Q0(m)+Q1(u)

)
/p, with the projection

maps being π : T2 → R/radQ0(R) where R = T2/pT2, and ρ̃ : A → A/(1 − ζp)A
(here ρ̃ is on A, with ρ on Up−1). Since (1 − ζp) has norm p, both images will
be vector spaces over Fp of dimension 1, and we can identify them (arbitrarily)
by taking m0 ∈ T2 and u0 ∈ A with Q0(m0) ≡ 1 (mod p) and u0ū0d

−1 ≡ 1
(mod (1− ζp)OE). The lattice N(T2, Up−1) will be even if and only if T2 is even.

3.1 An Odd Lattice

Rather than derive our desired even unimodular lattice directly, we again follow
Schulze-Pillot, who first constructs an odd lattice for which the automorphism
group can be determined via a relation to coding theory, and then passes to an
even lattice via Kneser’s neighbouring construction.

We let K be the imaginary quadratic field Q(
√
−79), and d = l = 19 an

auxiliary prime that splits. Writing (l)OK = l̄l, the location of l in the class
group of K will have a determining factor on the lattice we derive in the end,
and so the choice of l is not completely arbitrary. We let a be the ideal of K
generated by l and the twisted Gauss sum 1

2

[
1 − 33

∑
a χp(a)ζa

p

]
where χp is

the quadratic character modulo p. Using the notation of Schulze-Pillot, we have
p = −j2 + 8ml with p = 79, j = 15, m = 2, and l = 19, so that yj ≡ 1
(mod l) together with y ≡ 1 (mod 4) yields y = 33.5 Noting that aā = (l) and
taking E = Q(ζ79), we write A = aOE so that AĀ = (19) in OE . Letting T2 be
the 2-dimensional lattice (in a basis {w1,w2}) of determinant 79 given by the
5 The import of this numerology only becomes clear when proofs are included, as this

choice of y for the scaling factor of the Gauss sum allows one to show that the
cyclotomic and coding theory constructions agree.
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Gram matrix Q0 =
(
l j
j 8m

)
=
(

19 15
15 16

)
, we fix the gluing via π(w1) = ρ(

[
lζp

]
),

where here
[
·
]

gives the map from A to Up−1. We let No = N(T2, Up−1) with
these choices, noting that No is odd.

3.2 Relation to Coding Theory

We can obtain the correspondence with coding theory by taking p coordinates
as ei = w1⊕

[
lζi

p

]
for 0 ≤ i ≤ p−1 and an additional one e∞ = jw1− lw2, from

which a computation shows that these ei form a scaled root system of type 80A1
in No, that is, each ei has the same norm, and they are all mutually orthogonal.
Indeed, for all 0 ≤ i ≤ p − 1 we have ‖ei‖ =

[
Q0(w1) + (p − 1) · (l2/l)

]
/p = l

since Q0(w1) = l, while ‖e∞‖ = Q0(jw1 − lw2)/p = l(8ml− j2)/p = l. For the
inner products, we have

〈ei, ek〉 = ‖ei + ek‖ − ‖ei‖ − ‖ek‖

=
1
p

(
Q0(2w1) + (l2/l) · trE

Q

[
(ζi + ζk)(ζ̄i + ζ̄k)

])
− 2l

=
1
p

(
4l + l · trE

Q

[
2 + ζi−k + ζi+k

])
− 2l

=
1
p

(
4l + l · [2(p− 1) − 1 − 1]

)
− 2l = 0

when i �= k and i, k �= ∞, while for i �= ∞ we have

〈ei, e∞〉 = ‖ei + e∞‖ − 2l

=
1
p

[
Q0
(
(j + 1)w1 − lw2

)
+ (p− 1) · (l2/l)

]
− 2l

=
1
p

[
l(1 + 8ml − j2) + l(p− 1)

]
− 2l = 0.

Using this root system, it follows that the extended quadratic residue code C ⊆
F80

l (or indeed, any self-dual code) gives an integral unimodular lattice via

NC =
{

1
l

∑
i

aiei

∣∣∣ (āi) ∈ C

}
(1)

where the sum is over all 80 coordinates, and āi is reduction mod l of ai. The
proof that NC is the same lattice as our lattice No is given in [40, Proposition 1],
using the generator matrix and idempotent of the code.6 The appearance of the
value y = 33 with the Gauss sum is of relevance therein.

6 We have taken a sublattice of index lp+1 via the scaled root system, and then taken
a superlattice of the same index via the construction from coding theory, and so just
have to check that these operations are compatible.
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One nicety of this re-visioning is that the code automorphism (of order 4) given
by a∞ → a0, a0 → −a∞, ai → −χp(i)aj , where ij ≡ −1 (mod p), can be seen
to lift to the lattice. Combined with the order p automorphism induced via ζp,
which fixes a∞ and cycles a0 → a1 → · · · → ap−1 → a0, this gives SL2(Fp) as a
subgroup of the automorphism group Aut(No) of the lattice.

In an appendix, we use the classification of finite simple groups to show that
this realisation of SL2(F79) is within a factor of 4 of being a maximal finite
subgroup of GL80(Z), so that [Aut(No) : SL2(F79)] ≤ 4.

3.3 The Even 2-Neighbours

The above lattice No is odd, while we wish to get an even unimodular lattice. The
method of passing to this is given by the neighbouring method of Kneser [26].
Again following Schulze-Pillot, we want to find v ∈ No with Q(v) ∈ 4Z, and then
take the lattice spanned by v/2 and the sublattice of No whose inner product
with v is even. Via linear algebra over F2, we find that there is a 2-dimensional
space of such v satisfying the conditions (Schulze-Pillot notes this in general via
genus theory). Obviously v = 0 does not help us, while we also need Q(v) ∈ 8Z
if the resulting neighbouring lattice is to be even, and this eliminates another
of the initial 4 possibilities. This leaves but 2 choices for v, one of which gives
a lattice with many vectors of norm 4 (note that v itself must have norm at
least 32 if the new lattice is to have minimum 8) and the other of which is our
desired lattice N80.

As in [40, Proposition 2], we could construct N80 directly using a different
choice with T2 in the cyclotomic construction, though the relation to coding
theory then becomes less clear. For instance, [40, Example 3] takes l = 5 and

Q0 =
(

8 1
1 10

)
to get the same N80. Finally, the last Remark of [40] notes the

automorphisms of No given by SL2(Fp) all transfer to N80. As noted above, we
show in an appendix that [Aut(N80) : SL2(F79)] ≤ 4 so that in particular N80
and M80 are not isometric, but our proof of extremality does not use this.

4 Nice Bases for N80

We next link N80 to the construction given in [1] that modifies the method
of Gross. The authors of [1] construct the lattice from a representation that is
irreducible away from 2. In particular, in the basis they obtain, all the coordinates
are of the same parity. Furthermore, the automorphisms are given by a doubly
transitive signed permutation action on the coordinates.

From our construction, we have a lattice N80 with automorphisms gener-
ated by two matrices O79 and O4. We wish to transform this so that the au-
tomorphisms are generated by signed permutations σ79 and σ4 (as in the end
of Section 3.2), thus giving a doubly transitive coordinate action. One way to
achieve this is just to solve the 802-dimensional linear algebra problem given by
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equating the automorphisms, that is, solve O79X = Xσ79 and O4X = Xσ4 for
the unknown matrix X (we try solving this with both σ4 and σ3

4).
It turns out that the resulting solution space is 2-dimensional, and if we write

X1 and X2 for generators of it, then the determinant of the matrix
(
X1t+X2u

)
is given by 240f(t, u)40 where f is a binary quadratic form of discriminant −79
corresponding to the ideal of above. To obtain the representation of [1] we choose
the pair (t, u) so that f(t, u) = 8, so that the transform maps vectors of norm 10
in N80 to vectors of norm 16 ·10 in the resulting sublattice of Z80. The resulting
basis has the property that every vector has coordinates all of the same parity.
We denote this transform matrix from N80 to Z80 by T16, and the resulting
lattice basis by B80.

4.1 Identifying Orbits

As noted above, the action of σ79 and σ4 is doubly transitive, and we can exploit
this to expedite the finding of a canonical representative for a given orbit. We
first find the largest coordinate in absolute value, and move it to the front, and
then cycle the latter 79 coordinates until the second largest is in the second
position. This movement uses 80 · 79 elements of the group, and after modding
out by the centre {±1}, we only have 39 possibilities left to check for their 78
latter coordinates (we use a lexicographic ordering). Of course, we could have
many ties amongst the two largest coordinates (this is basis-dependent, and we
can map to another choice of (t, u) if desired), but this method will still be much
faster than looping over all 492 960 possibilities.

5 Method of Proof

We now describe how we shall show that N80 is indeed extremal. Since the
lattice N80 is even and unimodular, its Θ-series Θ80 lies in the vector space of
modular forms of level 1 and weight 40 (see [30]). This space has dimension 4,
and a triangular integral basis is:

f0 = 1 + 1 250 172 000 q4 + 7 541 401 190 400 q5 + O(q6),

f1 = q + 19 291 168 q4 + 37 956 369 150 q5 + O(q6),

f2 = q2 + 156 024 q4 + 57 085 952 q5 + O(q6),

f3 = q3 + 168 q4 − 12 636 q5 + O(q6).

We thus know that Θ80 = f0 + a1f1 + a2f2 + a3f3 for some integers ai. We shall
derive that a1 = a2 = 0 by showing that there are no vectors of norm 2 or 4 in
the lattice. We will then have

Θ80 = 1 + a3q
3 + (· · · )q4 + (7 541 401 190 400− 12 636 a3) q5 + O(q6).

By positivity we have a3 ≥ 0, and so by finding 7 541 401 190 400 vectors of
norm 10 in the lattice, we deduce that a3 = 0 so that N80 is extremal as claimed.
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The reader might wonder why we do not simply search for norm 6 vectors, but
instead aim to find all those of norm 10, as the latter (at first glance) seems much
harder. However, the search in norm 6 has to be exhaustive, while with norm 10
it need not be: we find one vector in each orbit, and apply automorphisms to
get the whole set. We estimate an exhaustive search for norm 6 vectors would
take more than 1 000 times as much work as our method using norm 10 vectors.

5.1 The Lattice N80 Has No Vectors of Norm 2 or 4

As we noted above in Section 4, we can change the basis by a transform T16 so
that each vector has its norm multiplied by 16, with the resulting basis having
the property that all the coordinates of any vector will have the same parity. In
particular, a vector of norm 2 or 4 will have the square-sum of its coordinates
as 32 or 64, with necessarily all coordinates being even. Also, the inner product
of any two vectors in this basis will need to be a multiple of 16, a fact we exploit
below. Finally, the lattice automorphisms in this new basis are given by signed
permutations, with the action doubly transitive.

No vectors of norm 2 (roots). One proof (from Elkies) first notes that
the only root systems with compatible automorphisms are A80

1 and D80. With
the former, any automorphism of order 79 would necessarily fix at least one
of the 160 roots, but the 2-dimensional sublattice of N80 fixed by a 79-cycle
has no roots. The latter is similarly impossible; a 39-cycle must fix a root
since gcd(39, 12 640) = 1, but the 4-dimensional sublattice therein lacks roots.

Another way (similar to a comment in [40, Example 3]) would be to use l = 5
and note that we must have

∑
i a

2
i = 2l = 10 in (1), while the minimal distance7

of the extended quadratic residue code of length 80 over F5 is > 10, though care
needs to be made here when working with both N80 and the odd lattice L.

A direct computation also easily shows that N80 has no roots. After applying
suitable reduction, the verification typically takes less than 30 minutes. We did
not try a similar computation with norm 4, as we estimate that it would likely
take a few months.

No vectors of norm 2 or 4. We let Be
80 be the sublattice of B80 given by

vectors with even coordinates in the T16 basis, and map Be
80 → Be

80/2 → F80
2

via the additive coordinate map generated by ±2 → ±1 → 1. The image in F80
2

is a binary code C2, and this inherits the automorphisms from the lattice.
We have 16|〈v,w〉 for any v,w ∈ Be

80, which implies that C2 is doubly-even,
that is, each codeword has weight divisible by 4. Similarly, we see that C2 ⊆ C⊥

2 ,
as the inner product between any two codewords is 0 (in F2). We then show
equality here by finding enough vectors in Be

80 to show that dim(C2) ≥ 40.
As C2 is self-dual and has automorphism group PSL2(F79), it follows from

either [25, Theorem 6.2] or [24, Satz 3.4] that C2 is equivalent to the extended

7 It seems that showing the minimal distance exceeds 20 would take about 58 days,
though the computation should parallelise.
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binary quadratic residue code,8 and thus has minimal weight of 16 with 97 565
minimal codewords which lie in 3 orbits under the automorphisms.9

We now check that the preimages of codewords of weight 0 and 16 in C2 do
not yield vectors of norm 2 or 4 in N80.10 This is done using the explicit form
of T−1

16 . For weight 0, we need to check that T−1
16 w is non-integral for

w = 〈8, 0, . . . , 0〉, 〈4,±4, 0, . . . , 0〉, 〈4,±4, (. . .)〉

where in this third expression exactly two of the latter 78 coordinates have size 4.
By the doubly transitive nature of the automorphism action, this suffices. There
are thus 3 + 23

(78
2

)
= 24 027 possibilities to check here.

For weight 16, we have 3 orbits of codewords. For each orbit we take a rep-
resentative, and lift its nonzero coordinates in 216 ways to every choice of sign
for ±2. We then apply T−1

16 to each, and note that none are integral. This com-
pletes the proof that there are no vectors of norm 2 or 4 in the lattice N80.
Presumably we could similarly show that Be

80 has no vectors of norm 96, but
extending our observations to odd-coordinate vectors in B80 looks more difficult.

5.2 Vectors with a Nontrivial Stabiliser

We now describe how to use the known automorphisms to reduce our vector-
finding quota from 7.5 trillion vectors down to about 15.3 million. We make a
separate computation of the norm 10 vectors that have nontrivial stabiliser. If a
vector v has a nontrivial stabiliser under the above action of G = SL2(F79), there
is some nontrivial element g ∈ G such that the kernel of

(
g − id

)
contains v. So

we loop over nontrivial elements (or conjugacy classes) of G, compute this kernel
(which is a sublattice), and then search for short vectors in it. The elements of
order 3 give a kernel sublattice of dimension 28, for which it takes a few seconds
to find the vectors of norm ≤ 10. These yield 465 orbit classes under the action.
The elements of order 5, 39, and 79 give lattices of dimensions 16, 4, and 2, and
yield 15, 2, and 1 orbits respectively. Upon computing the stabilisers, we obtain

– 1 orbit with stabiliser size 79 · 39 = 3081 (order 79),
– 2 orbits with stabiliser size 39 (order 39),
– 15 orbits with stabiliser size 5 (order 5),
– 465 orbits with stabiliser size 3 (order 3).

8 We thank Elkies for recalling this fact, and J. Cannon for the Klemm reference.
9 Here is an alternative method. Assume first that there is a codeword w of weight 4

or 8. Take a 79-cycle σ and note that since (8−1)2 < 79 there is some iterate of σ such
that w and σw intersect only in the fixed coordinate. This implies that 〈w, σw〉 = 1,
which contradicts that C2 is self-dual. Since there are no codewords of weight 4 or 8,
we can then apply Gleason’s theorem [16] and get that the weight enumerator is of
the form q0 + (a + 15 200) q12 + (127 965 + 2a) q16 + (11 347 488− 101a) q20 + . . . for
some a ∈ Z, and in an echo of our proof of lattice extermality, show code extremality
(no codewords of weight 12) via finding 12 882 688 codewords of weight 20; for this,
we find short vectors in the lattice, map to the code, and apply automorphisms.

10 We do not explicitly need the fact that the code is extremal for this step, but only
that we have all codewords of length 16 or less.
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None of the other 78 nontrivial conjugacy classes of SL2(F79) yields an orbit
with vectors of norm 10. We can also note that there no vectors of norm 6 with
a nontrivial stabiliser (though this is not strictly necessary for our proof).

An accounting then tells us that there are presumably 7 541 323 277 280 vec-
tors of norm 10 yet unfound, and dividing by #SL2(F79) = 492 960 predicts
15 298 043 orbits with trivial stabiliser. Via a standard coupon-collecting anal-
ysis [11, p. 213] we expect that about 250 million suitably random vectors of
norm 10 should suffice to hit each orbit at least once.

In fact, for the purposes of proving the lattice extremal, we need only find
(15 298 043 − 12 635) orbits (see the q5 coefficient of f3, and use the fact that
492 960|a3 as we find no vectors of norm 6 with nontrivial stabiliser), and due to
the lengthy final part of coupon-collecting,11 this reduces the expected running
time by about 55%. However, for completeness, we still chose to find all orbits.

6 General Search for Vectors of Norm 10

The general method to enumerate short vectors in a lattice is due to Kannan [21]
and Fincke and Pohst [12]. This corresponds to the computation of the leaves of
a huge tree. As noted by Schnorr and Euchner [38], this tree can be pruned to
some extent. This can be thought of as searching first in the areas of the search
region which are more likely to contain short vectors, or, equivalently, removing
the tree nodes that are less likely to produce useful leaves. The initial pruning
strategy was later improved in [39]. We describe below a further improvement.

6.1 The Full KFP Tree Search

The basic method iteratively looks at the projections to the span of the first i
coordinates for decreasing i. We have a basis given by {bi} and wish to solve
the inequality ‖

∑
i xibi‖2 ≤ 10. Borrowing the common notation for lattice

reduction, we take the Gram-Schmidt orthogonalisation, and translate the xi’s
by the μj,i’s:

b�
i = bi −

∑
j<i

μi,jb
�
j so that μi,j =

〈bi, b
�
j 〉

‖b�
j‖2 for i > j, and yi = xi +

d∑
j=i+1

μj,ixj .

Here d is the dimension. By substituing yi for xi, we get
∑

i y
2
i ‖b�

i ‖2 ≤ 10, which
by positivity leads to the series of inequalities:

y2
d‖b�

d‖2 ≤ 10,
y2

d−1‖b�
d−1‖2 ≤ 10 − y2

d‖b�
d‖2,

. . .

y2
1‖b�

1‖2 ≤ 10 −
d∑

i=2

y2
i ‖b�

i ‖2.

11 The comparison is between
∑N

n=1
N
n

and
∑N

n=12636
N
n

for N = 15 298 043.



350 D. Stehlé and M. Watkins

Note that for all i, the variable xi is an integer, while yi is a shift of xi by a fixed
amount (once xi+1, . . . , xd have been chosen). The KFP method proceeds by look-
ing at all yd’s satisfying the first inequality, then all pairs

(
yd−1, yd

)
satisfying the

second, etc. In particular, the vectors with yi ≈ 0 for all i up to a given point will
be found most easily (and these often correspond to small xi’s). Also, to find more
short vectors earlier in the search procedure, it is useful to run over the different
possible xi’s from the centre of the interval implied by the inequality y2

i ‖b∗i ‖2 ≤
10−

∑
j>i y

2
j ‖b∗j‖2: the variable xi will run across the integers by decreasing prox-

imity to −
∑

j>i μj,ixj . This “zig-zag” strategy, introduced by Schnorr and Euch-
ner [38], allows one to split the search of the tree in different stages: in the first
stage, we have xj = 0 for all j > 1; then in the second stage we have xj = 0 for
all j > 2 but x2 �= 0; etc. We call stage i the period of time during which xj = 0
for all j > i but xi �= 0. Stage i means that we have already reached level i in the
KFP tree but not yet been in level i + 1 (level 1 corresponding to the leaves).

The arithmetic operations corresponding to Gram-Schmidt orthogonalisation
computations can be quite slow. The Magma [5] implementation of the KFP tree
search replaces them by double precision floating-point arithmetic operations, in
a fully reliable way (using [34]).

6.2 Tree Pruning

Our pruning strategy consists in restricting the above inequalities by a “pruning
factor” that depends on the level. So the above inequalities become

d∑
i=j

y2
i ‖b�

i ‖2 ≤ 10 · Pj , ∀j

where Pj is the jth pruning factor. A version of this with a specific choice of Pj

appears in [38, §7], and the general description as well as its analysis below have
been independently obtained in [15, §4]. In the latter, the authors also introduce
the concept of “extreme pruning”, which resembles but differs from our bases
switching strategy (see subsection below).

The “best” choice for the pruning factors appears to be something like Pj =
(d− j + 1)/d. We happened to choose Pj = 1− (j− 1)/100 in practise. The idea
here can be phrased as follows: we have a given quantity of “norm” (here 10) to
spend on a vector; if we spend a lot on the coordinates xj to xd, there will then
be a lesser chance that we can form an integral vector via some possible choice
of the other coordinates, due to positivity and the fact that most coordinates
will have at least some nonzero contribution.

Efficacy of pruning. To give an idea of the efficacy of pruning, we can use the
notion, from [19], of expected enumeration cost for a given lattice basis {bi} and
for vectors of norm A (a function EnumerationCost is available in Magma [5]):

d∑
j=1

√
πd−j+1

∏d
k=j A/‖b�

k‖2

Γ
(
1 + (d− j + 1)/2

) . (2)
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A typical enumeration cost for our bases with N80 was around 1023. This is the
expected number of nodes of the KFP tree. For comparison, the implementation
in Magma [5] has a traversal rate of about 7.5 million nodes per second.

By comparing this enumeration cost estimate to the expected 7.5·1012 vectors
of norm 10, we find that more than 1010 nodes are expected to be searched for
each vector found. In the case of the pruned enumeration, the jth summand in (2)
should be multiplied by the volume of the truncated hypersphere {(zj , . . . , zd) :
∀i ≥ j,

∑
k≥i z

2
k ≤ Pi}. By estimating these volumes with a Monte-Carlo rejec-

tion method (uniformly sampling points in the full hypersphere and counting
how many belong to the truncation), we expect our pruning to gain a factor of
around 104 here, at the cost of missing about 60% of the short vectors. These
speedup and miss ratios are not constant across all levels of the search: they
seem to be closer to 100 and 25% respectively for the levels of our interest (due
to the early abort and perturbation strategy described below).

6.3 Switching Bases

The early stages of the tree search can have a significantly better chance of
providing short vectors, due primarily to the relative paucity of “uninteresting”
branches that tend to become more numerous at higher levels. In practice, we
would find 105 vectors in about 30 minutes, for a ratio of about 150 000 nodes
searched for each vector found, more than an order of magnitude lower than the
above estimate, even with the pruning included.

Every 15-30 minutes we would switch the basis by applying a random per-
mutation to the coordinates of the current basis, and then multiplying by a
random upper triangular matrix with ones on the diagonal and off-diagonal en-
tries in {−1, 0,+1}. We then re-apply LLL (with a δ-value nearly 1) to the
perturbed basis, and then LLL with deep insertions [38]. Overall, this takes only
a few seconds. This basis switching also makes parallelisation essentially trivial.

A second reason for periodically changing the basis is that (a phenomenon we
found experimentally) there are some bases which “hide” many of the orbits, in
the sense that every vector in such an orbit would not be found until we reach
one of the latter stages. We currently have no explanation of this.

7 Conclusion and Related Work

We implemented the above in a combination of Magma [5] and C. As we typically
found 105 vectors of norm 10 in about 30 minutes, the estimated time was around
52 days. Using 14 processors in parallel, it took us about 4 days in April 2009.

7.1 Software to Check Our Data

A verification of our proof can be done in much less time than the computation
itself. We provide software12 that takes less than 10 hours to verify that N80

12 The code is checkit80.c (to be run with arguments “10 〈filename〉”) and the data is
LAT80.n10.sc16.bz2 in the directory http://magma.maths.usyd.edu.au/~watkins
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is indeed extremal. The input consists of 15 298 526 entries that correspond to
coordinate vectors in the T16 basis of Section 4. The following checks are run:

– Each entry lexicographically follows its predecessor,
– Each entry has norm 160 and is integral when multiplied by T−1

16 ,
– Each entry is lexicographically the first in its orbit.

The first condition ensures that all entries are distinct, while the last ensures
that each corresponds to a distinct orbit, with the middle condition implying
that the vectors have norm 10 and are in N80. We can also list the 483 orbits
with nontrivial stabiliser, whose provenance can be checked separately.

7.2 Three Lattices of Dimension 72

The work in progress [1] investigates three lattices of dimension 72. Two of these
are 2-neighbours of a lattice constructed via the extended quadratic residue code
over F3, and the other involves a code over Z/4Z. None of these turned out to be
extremal (minimal norm of 8), and indeed, we know of no extremal lattice of this
dimension. In fact, a recent preprint of Griess [17] claims to be the first to prove
a minimal norm as large as 6 for an even unimodular lattice of dimension 72.

7.3 Other Candidate Lattices for Extremality in Dimension 80

In [3], the authors note three other candidates for extremality amongst even uni-
modular lattices in dimension 80. One candidate comes from a cyclo-quaternionic
construction given in [31, Remark 5.2], and its automorphism group contains
SL2(F41)⊗ S̃3, which is of comparable size to our SL2(F79). We do not see how
to facilitate the calculation of canonical orbit representatives as readily as in our
case, but the fact that canonicalising took only about 5% of our running time
indicates that our methods could work in this case, with sufficient effort.

The other two candidates come from a cyclotomic construction explored in [4],
and have an automorphism group containing the general affine linear group
F+

41�F∗
41. Our initial opinion is that the automorphism group (even if augmented

by an order 4 element) is too small for our method to work well here.
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A Appendix: Proof That M80 and N80 Are Not Isometric

We wish to show that M80 is not isometric to our lattice N80. Bachoc and Nebe
list a subgroup of Aut(M80) of order 2123452, while we have S ∼= SL2(F79) as
a subgroup of Aut(N80). We wish to show that there is no finite matrix group
in GL80(Z) that is a supergroup of both of these (possibly after conjugation).

We let G be such a putative supergroup, and note that [G : S] ≥ 27335. From
a classical theorem of Minkowski [29] on the modular reduction of matrix groups,
we have injective maps ιp : G ↪→ GL80(Fp) for all odd primes p. By taking a gcd
over all odd p this gives a bound of

#G
∣∣ 2198358524714118136175194233292312372412 ·43 ·47 ·53 ·59 ·61 ·67 ·71 ·73 ·79,

though here we really only need such a divisibility result at a specific prime.13

We write H = ι7
(
G∩SL80(Z)

)
, and since every matrix in S ∼= SL2(F79) has

determinant 1 we have ι7(S) ⊆ H . As every matrix in G has determinant ±1,
13 We note in passing that the best upper bound on the size of a finite matrix group is

due to Feit [10], relying on unpublished notes of Weisfeiler [41].
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we get [ι7(G) : H ] ≤ 2, and since [G : S] > 4 and ι7 is injective, this implies
that [H : ι7(S)] > 2. The use of a theorem of Aschbacher (see below) now implies
that 7780

∣∣ #H , which contradicts the above bound. Thus G cannot exist, and
so M80 and N80 are not isometric. Indeed, this argument almost shows that S
is maximal finite in GL80(Z), though a low-index extension could still exist.

We now use Aschbacher’s theorem [2] on maximal subgroups of finite classical
groups (see also [23]). Let l be an odd prime (to be specified below) and suppose
that ιl(S) ⊂ H ⊆ SL80(Fl). We note that S splits into a pair of conjugate abso-
lutely irreducible unitary 40-dimensional representations defined over Q(

√
−79).

We know that H lies in some maximal (proper) subgroup of SL80(Fl), and the
theorem of Aschbacher lists the possibilities. For any inert prime l that does not
divide #S, we can eliminate class 1 of Aschbacher since ιl(S) acts irreducibly
(we could consider split primes also, but choosing an inert prime simplifies the
argument slightly). Classes 2 and 4-7 are not possible simply because 79 must
divide #H . This leaves subgroups of class 3 (splitting as above) or class 8 (inclu-
sions of classical groups), or class 9 (other simple groups, handled below). The
inclusions of classical groups give us G80(Fl) for G = Sp,SO± and SU40(Fl),
while the splitting of class 3 yields SL40(Fl2).2. where the notation indicates that
we have a 2-extension – in this case, we continue the analysis after replacing H
by H ∩ SL40(Fl2), where this subgroup has index at most 2 in H .

We iteratively apply Aschbacher’s theorem to each classical group obtained;
either H is isomorphic to this classical group, or is contained in a maximal
subgroup of it. We again use 79|#H , and find that the only possible maximal
subgroup of Sp80(Fl) that could contain H is SU40(Fl).2, and similarly with the
others. Any maximal subgroup chain of classical groups must end here, since H
contains ιl(S) and S → SU40(Fl) is absolutely irreducible.

So we end in one of the following cases: H is isomorphic to one of

SU40(Fl).ε or SL40(Fl2).ε with ε = 1, 2, or G80(Fl) with G = Sp,SO±,SL;

or [H : ιl(S)] = 2, in correspondence to a 2-extension as above; or (sometimes
called “class 9” for Aschbacher) we have PSL2(F79) ⊂ K ⊂ P, where K is
simple and P is the associated simple group of one of the above classical groups.

There is sundry general knowledge for this latter situation, but for us a case-
by-case analysis (with l = 7 for concreteness) using the known orders of the finite
simple groups is sufficient to show that no such K can exist.14 We conclude that
either [H : ι7(S)] = 2, or that H contains a copy of SU40(F7) and so 7780

∣∣ #H .

14 One can also proceed via degrees of representations, and D. F. Holt indicated to us
that the tables of Hiss and Malle [20] should suffice for this.
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Abstract. We extend methods of Greenberg and the author to compute
in the cohomology of a Shimura curve defined over a totally real field
with arbitrary class number. Via the Jacquet-Langlands correspondence,
we thereby compute systems of Hecke eigenvalues associated to Hilbert
modular forms of arbitrary level over a totally real field of odd degree.
We conclude with two examples which illustrate the effectiveness of our
algorithms.

The development and implementation of algorithms to compute with automor-
phic forms has emerged as a major topic in explicit arithmetic geometry. The
first such computations were carried out for elliptic modular forms, and now
very large and useful databases of such forms exist [2,13,14]. Recently, effective
algorithms to compute with Hilbert modular forms over a totally real field F
have been advanced. The first such method is due to Dembélé [4,5], who worked
initially under the assumption that F has even degree n = [F : Q] and strict
class number 1. Exploiting the Jacquet-Langlands correspondence, systems of
Hecke eigenvalues can be identified inside spaces of automorphic forms on B×,
where B is the quaternion algebra over F ramified precisely at the infinite places
of F—whence the assumption that n is even. Dembélé then provides a compu-
tationally efficient theory of Brandt matrices associated to B. This method was
later extended (in a nontrivial way) to fields F of arbitrary class number by
Dembélé and Donnelly [6].

When the degree n is odd, a different algorithm has been proposed by Green-
berg and the author [8], again under the assumption that F has strict class num-
ber 1. This method instead locates systems of Hecke eigenvalues in the (degree
one) cohomology of a Shimura curve, now associated to the quaternion algebra
B ramified at all but one real place and no finite place. This method uses in a
critical way the computation of a fundamental domain and a reduction theory
for the associated quaternionic unit group [16]; see Section 1 for an overview. In
this article, we extend this method to the case where F has arbitrary (strict)
class number. Our main result is as follows; we refer the reader to Sections 1
and 2 for precise definitions and notation.
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Theorem 1. There exists an (explicit) algorithm which, given a totally real field
F of degree n = [F : Q], a quaternion algebra B over F ramified at all but one
real place, an ideal N of F coprime to the discriminant D of B, and a weight
k ∈ (2Z>0)n, computes the system of eigenvalues for the Hecke operators Tp with
p � DN and the Atkin-Lehner involutions Wpe with pe ‖ DN acting on the space
of quaternionic modular forms SB

k (N) of weight k and level N for B.

In other words, there exists an explicit finite procedure which takes as input the
field F , its ring of integers ZF , a quaternion algebra B over F , an ideal N ⊂ ZF ,
and the vector k encoded in bits (each in the usual way), and outputs a finite set
of number fields Ef ⊂ Q and sequences (af (p))p encoding the Hecke eigenvalues
for each cusp form constituent f in SB

k (N), with af (p) ∈ Ef .
From the Jacquet-Langlands correspondence, applying the above theorem to

the special case where D = (1) (and hence n = [F : Q] is odd), we have the
following corollary.

Corollary 2. There exists an algorithm which, given a totally real field F of odd
degree n = [F : Q], an ideal N of F , and a weight k ∈ (2Z>0)n, computes the
system of eigenvalues for the Hecke operators Tp and Atkin-Lehner involutions
Wpe acting on the space of Hilbert modular cusp forms Sk(N) of weight k and
level N.

This corollary is not stated in its strongest form: in fact, our methods overlap
with the methods of Dembélé and his coauthors whenever there is a prime p
which exactly divides the level; see Remark 5 for more detail. Combining these
methods, Donnelly and the author [7] are systematically enumerating tables of
Hilbert modular forms, and the details of these computations (including the
dependence on the weight, level, and class number, as well as a comparison of
the runtime complexity of the steps involved) will be reported there [7], after
further careful optimization.

A third technique to compute with automorphic forms, including Hilbert mod-
ular forms, has been advanced by Gunnells and Yasaki [9]. They instead use the
theory of Voronŏı reduction and sharbly complexes; their work is independent
of either of the above approaches.

This article is organized as follows. In Section 1, we give an overview of the
basic algorithm of Greenberg and the author which works over fields F with
strict class number 1. In Section 2, using an adelic language we address the
complications which arise over fields of arbitrary class number, and in Section 3
we make this theory concrete and provide the explicit algorithms announced in
Theorem 1. Finally, in Section 4, we consider two examples, one in detail; our
computations are performed in the computer system Magma [1].

The author would like to thank Steve Donnelly and Matthew Greenberg for
helpful discussions as well as the referees for their comments. The author was
supported by NSF Grant No. DMS-0901971.
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1 An Overview of the Algorithm for Strict Class Number 1

In this section, we introduce the basic algorithm of Greenberg and the author
[8] with a view to extending its scope to base fields of arbitrary class number;
for further reading, see the references contained therein.

Let F be a totally real field of degree n = [F : Q] with ring of integers ZF . Let
F×

+ be the group of totally positive elements of F and let Z×
F,+ = Z×

F ∩ F×
+ . Let

B be a quaternion algebra over F of discriminant D. Suppose that B is split at a
unique real place v1, corresponding to an embedding ι∞ : B ↪→ B⊗R ∼= M2(R),
and ramified at the other real places v2, . . . , vn. Let O(1) ⊂ B be a maximal
order and let

O(1)×+ = {γ ∈ O(1)× : v1(nrd(γ)) > 0} = {γ ∈ O(1) : nrd(γ) ∈ Z×
F,+}

denote the group of units of O(1) with totally positive reduced norm. Let

Γ (1) = ι∞(O(1)×+/Z×
F ) ⊂ PGL2(R)+,

so that Γ (1) acts on the upper half-plane H = {z ∈ C : Im(z) > 0} by linear
fractional transformations. Let N ⊂ ZF be an ideal coprime to D, let O = O0(N)
be an Eichler order of level N, and let Γ = Γ0(N) = ι∞(O0(N)×+/Z×

F ).
Let k = (k1, . . . , kn) ∈ (2Z>0)n be a weight vector; for example, the case

k = (2, . . . , 2) of parallel weight 2 is of significant interest. Let SB
k (N) denote

the finite-dimensional C-vector space of quaternionic modular forms of weight k
and level N for B. Roughly speaking, a form f ∈ SB

k (N) is an analytic function
f : H → Wk(C) which is invariant under the weight k action by the group γ ∈ Γ ,
where Wk(C) is an explicit right B×-module [8, (2.4)] and Wk(C) = C when k
is parallel weight 2. The space SB

k (N) comes equipped with the action of Hecke
operators Tp for primes p � DN and Atkin-Lehner involutions Wpe for prime
powers pe ‖ DN.

The Jacquet-Langlands correspondence [8, Theorem 2.9] (see Hida [10, Propo-
sition 2.12]) gives an isomorphism of Hecke modules

SB
k (N) ∼−→ Sk(DN)D-new,

where Sk(DN)D-new denotes the space of Hilbert modular cusp forms of weight k
and level DN which are new at all primes dividing D. Therefore, as Hecke mod-
ules one can compute equivalently with Hilbert cusp forms or with quaternionic
modular forms.

We compute with the Hecke module SB
k (N) by identifying it as a subspace

in the degree one cohomology of Γ (1), as follows. Let Vk(C) be the subspace
of the algebra C[x1, y1, . . . , xn, yn] consisting of those polynomials q which are
homogeneous in (xi, yi) of degree wi = ki − 2. Then Vk(C) has a right action of
the group B× given by

qγ(x1, y1, . . . , xn, yn) =

(
n∏

i=1

(det γi)−wi/2

)
q((x1 y1)γ1, . . . , (xn yn)γn) (1)
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for γ ∈ B×, where denotes the standard involution (conjugation) on B and
γi = vi(γ) ∈ M2(C). By the theorem of Eichler and Shimura [8, Theorem 3.8],
we have an isomorphism of Hecke modules

SB
k (N) ∼−→ H1(Γ, Vk(C)

)+
where the group cohomology H1 denotes the (finite-dimensional) C-vector space
of crossed homomorphisms f : Γ → Vk(C) modulo coboundaries and + denotes
the +1-eigenspace for complex conjugation. By Shapiro’s lemma [8, §6], we then
have a further identification

SB
k (N) ∼−→ H1(Γ, Vk(C)

)+ ∼= H1(Γ (1), V (C))+, (2)

where V (C) = CoindΓ (1)
Γ Vk(C).

In the isomorphism (2), the Hecke operators act as follows. Let p be a prime
of ZF with p � DN and let Fp denote the residue class field of p. Since F has
strict class number 1, by strong approximation [15, Theorème III.4.3] there exists
π ∈ O such that nrdπ is a totally positive generator for p. It follows that there
are elements γa ∈ O×

+ , indexed by a ∈ P1(Fp), such that

O×
+πO×

+ =
⊔

a∈P1(Fp)

O×
+αa (3)

where αa = πγa.
Let f : Γ (1) → V (C) be a crossed homomorphism, and let γ ∈ Γ (1). The

decomposition (3) extends to O(1) as

O(1)×+πO(1)×+ =
⊔

a∈P1(Fp)

O(1)×+αa.

Thus, there are elements δa ∈ O(1)×+ for a ∈ P1(Fp) and a unique permutation
γ∗ of P1(Fp) such that

αaγ = δaαγ∗a (4)

for all a. We then define f | Tp : Γ (1) → V (C) by

(f | Tp)(γ) =
∑

a∈P1(Fp)

f(δa)αa . (5)

The space SB
k (N) similarly admits an action of Atkin-Lehner operators Wpe for

primes pe ‖ DN.
From this description, we see that the Hecke module H1(Γ (1), V (C))+ is

amenable to explicit computation. First, we compute a finite presentation for
Γ (1) with a minimal set of generators G and a solution to the word problem for
the computed presentation using an algorithm of the author [16]. Given such a
set of generators and relations, one can explicitly find a basis for the C-vector
space H1(Γ (1), V (C)) [8, §5].
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We then compute the action of the Hecke operator Tp on H1(Γ (1), V (C)). We
first compute a splitting ιp : O ↪→ M2(ZF,p). The elements αa in (4) are then
generators with totally positive reduced norm of the left ideals

Ia = Oι−1
p

(
x y
0 0

)
+ Op (6)

and are obtained by principalizing the ideals Ia; here again we use strong ap-
proximation and the hypothesis that F has strict class number 1. Then for each
a ∈ P1(Fp) and each γ ∈ G, we compute the permutation γ∗ [8, Algorithm
5.8] and the element δa = αaγα

−1
γ∗a ∈ Γ (1) as in (4). Using the solution to the

word problem, we then write δa as a word in the generators G for Γ (1), and
then for a basis of crossed homomorphisms f we compute f | Tp by computing
(f | Tp)(γ) ∈ V (C) for each γ ∈ G as in (5). In a similar way, we compute the
action of complex conjugation and the Atkin-Lehner involutions. We then de-
compose the space H1(Γ, V (C)) under the action of these operators into Hecke
irreducible subspaces, and from this we compute the systems of Hecke eigenval-
ues using linear algebra.

2 The Indefinite Method with Arbitrary Class Number

In this section, we show how to extend the method introduced in the previous
section to the case where F has arbitrary class number [8, Remark 3.11]. We
refer the reader to Hida [11] for further background.

2.1 Setup

We carry over the notation from Section 1. Recall that O = O0(N) is an Eichler
order of level N in the maximal order O(1) ⊂ B.

Let H± = {z ∈ C : Im(z) �= 0} = C \ R be the union of the upper and
lower half-planes. Then via ι∞, the group B× acts on H± by linear fractional
transformations.

In this generality, we find it most elucidating to employ adelic notation. Let
Ẑ = lim←−n

Z/nZ and let ̂ denote tensor with Ẑ over Z. Consider the double coset

X(C) = B×\(H± × B̂×/Ô×),

where B× acts on B̂×/Ô× by left multiplication via the diagonal embedding.
Then X(C) has the structure of a complex analytic space [3] which fails to be
compact if and only if B ∼= M2(Q), corresponding to the classical case of elliptic
modular forms—higher class number issues do not arise in this case, so from
now we assume that B is a division ring.

We again write SB
k (N) for the finite-dimensional C-vector space of quater-

nionic modular forms of weight k and level N: here, again roughly speaking,
a quaternionic modular form of weight k ∈ (2Z>0)n and level N for B is an
analytic function

f : H± × B̂×/Ô× → Wk(C)

which is invariant under the weight k action of B×, with Wk(C) as in Section 1.
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2.2 Decomposing the Double Coset Space

By Eichler’s theorem of norms, we have nrd(B×) = F×
(+) where

F×
(+) = {a ∈ F× : vi(a) > 0 for i = 2, . . . , n}

is the subgroup of elements of F which are positive at all real places which are
ramified in B. In particular, B×/B×

+
∼= Z/2Z, where

B×
+ = {γ ∈ B× : v1(nrd(γ)) > 0} = {γ ∈ B : nrd(γ) ∈ F×

+ }.

The group B×
+ acts on the upper half-plane H, therefore we may identify

X(C) = B×
+\(H× B̂×/Ô×).

Now we have a natural (continuous) projection map

X(C) → B×
+\B̂×/Ô×,

and by strong approximation [15, Theorème III.4.3] the reduced norm gives a
bijection

nrd : B×
+\B̂×/Ô× ∼−→ F×

+ \F̂×/Ẑ×
F
∼= Cl+ ZF , (7)

where Cl+ ZF denotes the strict class group of ZF , i.e. the ray class group of ZF

with modulus equal to the product of all real (infinite) places of F .
The space X(C) is therefore the disjoint union of Riemann surfaces indexed

by Cl+ ZF , which we identify explicitly as follows. Let the ideals b ⊂ ZF form
a set of representatives for Cl+ ZF , and let b̂ ∈ ẐF be such that b̂ ẐF ∩ ZF = b.
For expositional simplicity, choose b = ZF and β̂ = 1̂ for the representatives of
the trivial class. By strong approximation (7), there exists β̂ ∈ B̂× such that
nrd(β̂) = b̂. Therefore

X(C) =
⊔
[b]

B×
+(H× β̂Ô×). (8)

We have a map

B×
+(H× β̂Ô×) → O×

β̂,+
\H

(z, β̂Ô×) �→ z

where Oβ̂ = β̂Ôβ̂−1 ∩B and O×
β̂,+

= O×
β̂
∩B×

+ , so that O1̂ = O.

For each β̂, let Γβ̂ = ι∞
(
O×

β̂,+
/Z×

F

)
⊂ PGL2(R)+. Then the Eichler-Shimura

isomorphism on each component in (8) gives an identification of Hecke modules

SB
k (N) ∼−→

⊕
β̂

H1(Γβ̂ , Vk(C))+, (9)

where + denotes the +1-eigenspace for complex conjugation. For each β̂, let
O(1)β̂ = β̂O(1)β̂−1 ∩B be the maximal order containing the Eichler order Oβ̂ ,
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and let Γ (1)β̂ = ι∞(O(1)×
β̂,+

/Z×
F ). Further, let Vβ̂(C) = Coind

Γ (1)
β̂

Γ
β̂

Vk(C). Then
Shapiro’s lemma applied to each summand in (9) gives

SB
k (N) ∼−→

⊕
β̂

H1(Γ (1)β̂ , Vβ̂(C))+. (10)

2.3 Hecke Operators

In the description (10), the Hecke operators Tp act on
⊕

β̂ H1(Γ (1)β̂ , Vβ̂(C)) in

the following way. Let p be a prime ideal of ZF with p � DN, and let p̂ ∈ ẐF be
such that p̂ ẐF ∩ ZF = p. We consider the β̂′-summand in (10), corresponding
to the ideal class [b′]. Let f : Γ (1)β̂′ → Vβ̂′(C) be a crossed homomorphism: we

will then obtain a new crossed homomorphism f | Tp : Γ (1)β̂ → Vβ̂(C), where β̂

corresponds to the ideal class of [pb′] among the explicit choices made above.
Let '̂ ∈ Ôβ̂ be such that nrd('̂) = p̂. Then there are elements γ̂a ∈ Ôβ̂ ,

indexed by a ∈ P1(Fp), such that

Ô×
β̂
'̂Ô×

β̂
=

⊔
a∈P1(Fp)

Ô×
β̂
α̂a (11)

where α̂a = '̂γ̂a.
Let γ ∈ Γβ̂. Extending (11) to Ô(1)×

β̂
, we conclude that there exist unique

elements δ̂a ∈ Ô(1)×
β̂

and a unique permutation γ∗ of P1(Fp) such that

α̂aγ = δ̂aα̂γ∗a

for a ∈ P1(Fp). Thus we have

(β̂′β̂−1α̂a)γ = (β̂′β̂−1)δ̂aα̂γ∗a = δ̂′a(β̂′β̂−1α̂γ∗a).

where δ̂′a = (β̂′β̂−1)δ̂a(β̂′β̂−1)−1.
Recall that β̂′Ô has left order Ôβ̂′ and similarly Ôβ̂−1 has right order Ôβ̂ .

Therefore, we may consider the left Ôβ̂′ -ideal

Ôβ̂′ β̂
′Ôβ̂−1Ôβ̂α̂a (12)

noting that the left and right orders in each case match up, so the product is
compatible. Next, recall that the elements β̂′, β̂, '̂ have reduced norms corre-
sponding to the ideal classes [b′], [pb′], and [p], respectively. Thus the reduced
norm of the left ideal (12) has a trivial ideal class. Therefore, by strong approx-
imation (applied now to left ideals of the order Oβ̂′), for each a ∈ P1(Fp), there
exist elements π′

a ∈ Oβ̂′ ∩B×
+ such that

Ôβ̂′ β̂
′β̂−1α̂a ∩B = Oβ̂′π

′
a.
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Hence there exists a unique permutation γ∗ of P1(Fp) such that

π′
aγ = δ′aπ

′
γ∗a

with δa ∈ O×
β̂′,+

. The new crossed homomorphism f | Tp : Γβ̂ → Vβ̂(C) is then
defined by the formula

(f | Tp)(γ) =
∑

a∈P1(Fp)

f(δ′a)π′
a

for γ ∈ Γβ̂ .

2.4 Complex Conjugation and Atkin-Lehner Involutions

We now define an operator W∞ which acts by complex conjugation. Let Cl(+) ZF

denote the ray class group of ZF with modulus equal to the real (infinite) places
of F which are ramified in B. Then we have a natural map Cl+ ZF → Cl(+) ZF ;
this map is an isomorphism if and only if there exists a unit u ∈ Z×

F which
satisfies v1(u) < 0 and vi(u) > 0 for the other real places vi (i = 2, . . . , n) of
F , otherwise the kernel of this map is isomorphic to Z/2Z. Let [m] ∈ Cl+ ZF

generate the kernel of this map.
Let f : Γ (1)β̂′ → Vβ̂′ be a crossed homomorphism, and let β̂ correspond to the

ideal class [b′m−1]; we will define the complex conjugate crossed homomorphism
(f |W∞) : Γ (1)β̂ → Vβ̂(C). The left Oβ̂′ -ideal Ôβ̂′ β̂

′Ôβ̂−1∩B has reduced norm
corresponding to the ideal class [m] ∈ Cl+ ZF , so there exists a generator μ′ ∈
Oβ̂′ of this ideal such that v1(nrd(μ′)) < 0 but vi(nrd(μ′)) > 0 for i = 2, . . . , n.
Then given γ ∈ Γ (1)β̂ , we define

(f |W∞)(γ) = f(μ′γμ′−1)μ′
.

Finally, we define the Atkin-Lehner involutions Wpe for pe ‖ DN. Let p corre-
spond to p̂ ∈ ẐF . Then there exists an element π̂ ∈ Oβ̂ which generates the
unique two-sided ideal of Oβ̂ of reduced norm generated by p̂e. The element

π̂ normalizes Oβ̂ and π̂2 ∈ O×
β̂
F̂×. Let β̂ correspond to the ideal class [pb′].

Then as above, by strong approximation there exists an element μ′ ∈ Oβ̂′ ∩B×
+

such that Oβ̂′ β̂
′β̂π̂ ∩ B = Oβ̂′μ

′. Given f : Γ (1)β̂′ → Vβ̂′ , we then define
(f |Wpe) : Γ (1)β̂ → Vβ̂(C) by

(f |Wp)(γ) = f(μ′γμ′−1)μ′

for γ ∈ Γ (1)β̂.

3 Algorithmic Methods

In this section, we take the adelic description of Section 2 and show how to
compute with it explicitly, proving Theorem 1.
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Our algorithm takes as input a totally real field F of degree [F : Q] = n,
a quaternion algebra B over F split at a unique real place, an ideal N ⊂ ZF

coprime to the discriminant D of B, a vector k ∈ (2Z>0)n, and a prime p � DN,
and outputs the matrix of the Hecke operator Tp acting on the space H =⊕

β̂ H1
(
Γ (1)β̂, Vβ̂(C)

)+ (in the notation of Section 2) with respect to some fixed
basis which does not depend on p. From these matrices, one decomposes the space
H into Hecke-irreducible subspaces by the techniques of basic linear algebra.

Our algorithm follows the form given in the overview in Section 1, so we
describe our algorithm in steps, with a description of each step along the way.

Step 1 (Compute a splitting field): Let K ↪→ C be a Galois number field con-
taining F which splits B: for example, we can take the normal closure of any
quadratic field contained in B. Since all computations then occur inside K ⊂ C,
we may work then with coefficient modules over K using exact arithmetic. (This
step is only necessary if k is not parallel weight 2, for otherwise the action of
B× factors through K = Q.)

Step 2 (Compute ideal class representatives): Compute a set of representatives
[b] for the strict class group Cl+ ZF with each b coprime to pDN. (See Remark
4 below.)

Compute a maximal order O(1) ⊂ B. For each representative ideal b, compute
a right O(1)-ideal Jb such that nrd(Jb) = b and let O(1)b be the left order of
Jb. (In the notation of Section 2, the right O(1)-ideals Jb represent the elements
β̂, and O(1)b = O(1)β̂ .)

Step 3 (Compute presentations for the unit groups): Compute an embedding
ι∞ : B ↪→ M2(R) corresponding to the unique split real place.

For each b, compute a finite presentation for Γ (1)b = ι∞(O(1)×b,+/Z×
F ) con-

sisting of a (minimal) set of generators Gb and relations Rb together with a
solution to the word problem for the computed presentation [16]. (Note that
the algorithm stated therein [16, Theorem 3.2] is easily extended from units of
reduced norm 1 to totally positive units.)

For efficiency, we start by computing such a presentation with generators G
associated to the order O(1) and then for each order O(1)b we begin with the
elements in hand formed by short products of elements in G which happen to lie
in O(1)b (to aid in the search for units [16, Algorithm 3.2]; note that O(1)∩O(1)b

is an Eichler order of level b in O(1)b).

Step 4 (Compute splitting data): Compute a splitting

ιN : O(1) ↪→ O(1) ⊗ZF ZF,N
∼= M2(ZF,N).

Note that since b is coprime to N, we have O(1) ⊗ ZF,N = O(1)b ⊗ ZF,N for all
b, so ιN also gives rise to a splitting for each O(1)b. For each b, compute the
Eichler order Ob ⊂ O(1)b of level N with respect to ιN.

Next, for each b, compute representatives for the left cosets of the group
Γb = ι∞(O×

b,+/Z×
F ) inside Γ (1)b [8, Algorithm 6.1]. Finally, identify

V (K)b = CoindΓ (1)b

Γb
Vk(K)
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as a K-vector space given by copies of Vk(K) indexed by these cosets, and
compute the permutation action of the representatives of these cosets on this
space.

In practice, it is more efficient to identify the above coset representatives with
elements of P1(ZF /N) and thereby work directly with the coefficient module
V (K)b

∼= K[P1(ZF /N)] ⊗ Vk(K).

Step 5 (Compute a basis for cohomology): Identify the space of crossed homo-
morphisms

⊕
b Z1(Γ (1)b, V (K)b) with its image under the inclusion

Z1(Γb, V (K)b) →
⊕

g∈Gb

V (K)b

f �→ (f(g))g∈Gb

consisting of those f ∈
⊕

g∈Gb
V (K)b which satisfy the relations f(r) = 0 for r ∈

Rb. Compute the space of principal crossed homomorphisms B1(Γ (1)b, V (K)b)
in a similar way, and thereby compute using linear algebra a K-basis for the
quotient H1(Γ (1)b, V (K)b) = Z1(Γ (1)b, V (K)b)/B1(Γ (1)b, V (K)b) for each b.

Let H =
⊕

b H
1(Γ (1)b, V (K)b).

Step 6 (Compute representatives for left ideal classes): Compute a splitting ιp :
O(1) ↪→ M2(ZF,p). For each ideal b′, perform the following steps.

First, compute the ideal b with ideal class [b] = [pb′]. Compute the left ideals

Ia = Oι−1
p

(
x y
0 0

)
+ Op

indexed by the elements a = (x : y) ∈ P1(Fp) and then compute the left Ob′-
ideals I ′a = Jb′JbIa.

Compute totally positive generators π′
a ∈ Ob′ ∩B×

+ for Ob′π′
a = I ′a [12].

Now, for each γ ∈ Gb, compute the permutation γ∗ of P1(Fp) [8, Algorithm
5.8] and then the elements δ′a = π′

aγπ
′−1
γ∗a for a ∈ P1(Fp); write each such element

δ′a as a word in G′
b and from the formula

(f | Tp)(γ) =
∑

a∈P1(Fp)

f(δ′a)π′
a

with f in a basis for the b′-component of cohomology as in Step 5 compute the
induced crossed homomorphism f | Tp in the b-component.

Step 7 (Compute the blocks of the intermediate matrix): Assemble the matrix T
with rows and columns indexed as in Step 5 with blocks in the (b, b′) position
given by the output of Step 6: this matrix describes the action of Tp on H .

Step 8 (Decompose H into ±-eigenspaces for complex conjugation): Determine
the representative ideal m (among the ideals b) which generates the kernel of
the map Cl+ ZF → Cl(+) ZF .
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For each ideal b′, perform the following steps. Compute the ideal b such
that [b] = [b′m−1], and compute a generator μ′ with Ob′μ′ = Jb′Jb such that
v(nrd(μ′)) < 0. For each γ ∈ Gb, from the formula

(f |W∞)(γ) = f(μ′γμ′−1)μ′
,

for f in a basis for the b′-component of cohomology as in Step 5 compute the
induced crossed homomorphism f | Tp in the b-component.

Assemble the matrix with blocks in the (b, b′) position given by this output:
this matrix describes the action of complex conjugation W∞ on H . Compute a
K-basis for the +1-eigenspace H+ of H for W∞. Finally, compute the matrix
T+ giving the action of Tp restricted to H+ and return T+.

This completes the description of the algorithm.
In a similar way, one computes the Atkin-Lehner involutions, replacing Step 6

with the description given in Section 2.4, similar to the computation of complex
conjugation in Step 8.

Remark 3. Note that Steps 1 through 3 do not depend on the prime p nor the
level N and Steps 4, 5, and 8 do not depend on the prime p, so these may be
precomputed for use in tabulation.

Remark 4. To arrange uniformly that the ideals b representing the classes in
Cl+ ZF are coprime to the prime p in advance for many primes p, one has
several options. One possibility is to choose suitable ideals b of large norm in
advance. Another option is to make suitable modifications “on the fly”: if p is
not coprime to b, we simply choose a different ideal c coprime to p with [b] = [c],
a new ideal Jc with nrd(Jc) = c, and compute an element ν ∈ Ob such that
νObν

−1 = Oc. Conjugating by ν where necessary, one can then transport the
computations from one order to the other so no additional computations need
to take place.

4 Examples

In this section, we compute with two examples to demonstrate the algorithm
outlined in Section 3. Throughout, we use the computer system Magma [1].

Our first and most detailed example is concerned with the smallest totally real
cubic field F with the property that the dimension of the space of Hilbert cusp
forms of parallel weight 2 and level (1) is greater than zero and the strict class
number of F is equal to 2. This field is given by F = Q(w) where w satisfies
the equation f(w) = w3 − 11w − 11 = 0. The discriminant of F is equal to
2057 = 11217, and ZF = Z[w]. The roots of f in R are −2.602 . . . , −1.131 . . . ,
and 3.73 . . . , and we label the real places v1, v2, v3 of F into R according to this
ordering.

We define the sign of a ∈ F to be the triple sgn(a) = (sgn(vi(a)))3i=1 ∈ {±1}3.
The unit group of F is generated by the elements −1, w + 1 with sgn(w + 1) =
(1,−1,−1), and the totally positive unit −w2 + 2w + 12.
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We begin by finding a quaternion algebra B with D = ZF which is ramified at

all but one real place [8, Algorithm 4.1]. We find the algebra B =
(
w + 1,−1

F

)
ramified only at v1 and v2, generated by i, j subject to i2 = w+1, j2 = −1, and
ji = −ij.

For forms of parallel weight 2, Step 1 is trivial: we can take K = Q.
Next, in Step 2 we compute ideal class representatives. The nontrivial class

in Cl+(ZF ) is represented by the ideal b = (w2 − 2w − 6)ZF , which is principal
but does not possess a totally positive generator, since sgn(−w2 + 2w + 6) =
(−1, 1,−1) and there is no unit of ZF with this sign. We note that N(b) = 7.

Next, we compute a maximal order O = O(1); it is generated over ZF by i
and the element k = (1 + (w2 + 1)i+ ij)/2. Next, we find that the right O-ideal
Jb generated by w2 − 2w− 6 and the element (5 + (w2 +5)i+ ij)/2 = 2+ 2i+ k
has nrd(Jb) = b.

Next, in Step 3 we compute presentations for the unit groups. We take the
splitting

B ↪→ M2(R)

i, j �→
(
s 0
0 −s

)
,

(
0 1
−1 0

)
where s =

√
v3(w + 1). We then compute a fundamental domain for Γ = Γ (1)

[16], given below.

We find that Γ = Γ (1) is the free group on the generators α, β, γ1, . . . , γ7
subject to the relations

γ2
1 = γ2

2 = γ3
3 = γ2

4 = γ3
5 = γ2

6 = γ2
7 = αβα−1β−1γ1 · · · γ7 = 1.
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For example, we have

2α = (w2 − 14) + (2w2 − 4w − 13)i + (−2w2 + 5w + 9)j + (−4w2 + 8w + 26)ij.

The groups Γ and Γb have isomorphic presentations. In particular, we note that
both Γ and Γb have genus 1, so we conclude that dimS2(1) = 1 + 1 = 2.

We illustrate the computation of Hecke operators with the primes p3 = (w +
2)ZF of norm 3 and p5 = (w + 3)ZF of norm 5. Note that p3 is nontrivial in
Cl+(ZF ) whereas p5 is trivial.

Step Step 4 requires no work, since we work with forms of level (1). In Step
5 we compute with a basis for cohomology, and here we see directly that

H1(Γ,Q) ∼= Hom(Γ,Q) ∼= Zfα ⊕ Zfβ

where fα, fβ are the characteristic functions for α and β. We have a similar
description for H1(Γb,Q).

Next, in Step 6 we compute representatives of the left ideal classes. For p3,
for example, for I[1:0] ⊂ O we find that JbI[1:0] = Ob((w + 1) + i + ij) and for
I[1:1] ⊂ Ob we have JbI[1:1] = O(w + 1− i+ ij); we thereby find elements πa, π

′
a

for a ∈ P1(Fp3). For the generators γ = α, β of O and Ob, we compute the
permutations γ∗ of P1(Fp3); we find for example that α∗ is the identity and

π′
[1:0]α = δ′[1:0]π

′
[1:0]

with δ′[1:0] ∈ Ob, namely,

14δ′[1:0] = (7w2 − 98) + (−23w2 + 40w + 167)i+

(−25w2 + 59w + 103)j + (−2w2 + 5w + 20)ij.

We then write δ′[1:0] as a word in the generators for Γ ′
b of length 23. Repeating

these steps (reducing a total of 64 units), we assemble the block matrix in Step
7 as the matrix

Tp3 |H =

⎛⎜⎜⎝
0 0 2 0
0 0 0 2
2 0 0 0
0 2 0 0

⎞⎟⎟⎠ .

In a similar way, we find that Tp5 is the identity matrix.
Finally, in Step 8 we compute the action of complex conjugation. Here we

have simply μ = i (whereas μb is more complicated), and thereby compute that

W∞ |H =

⎛⎜⎜⎝
1 1 0 0
0 −1 0 0
0 0 1 1
0 0 0 −1

⎞⎟⎟⎠ .

We verify that W∞ commutes with Tp3 (and Tp5). We conclude that Tp3 |H+ =(
0 2
2 0

)
and Tp5 |H+ =

(
1 0
0 1

)
.
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We then diagonalize the space H+, which breaks up into two one-dimensional
eigenforms f and g, and compute several more Hecke operators: we list in Table 1
below a generator for the prime p, its norm N p, and the Hecke eigenvalues ap(f)
and ap(g) for the cusp forms f, g.

Table 1. Hecke eigenvalues for the Hilbert cusp forms for F = Q(w) with w3 − 11w −
11 = 0 of level (1) and parallel weight 2

p Np ap(f) ap(g)
w + 2 3 2 −2
w + 3 5 1 1

2 8 −5 −5
2w + 7 9 −2 2

w 11 0 0
w2 − w − 8 17 −5 5

w − 3 17 −5 −5
2w2 − 5w − 10 23 2 −2
w2 − 3w − 2 25 −9 −9

w2 − 6 29 9 −9
w + 4 31 −2 −2

2w2 − 3w − 16 37 −3 3
w2 − 2w − 9 41 −5 5
w2 + w − 3 49 −10 10

We note that the primes generated by w and w − 3 are ramified in F .
By work of Deligne [3], the curves X = X(1) and Xb are defined over the

strict class field F+ of F , and Gal(F+/F ) permutes them. We compute that
F+ = F (

√
−3w2 + 8w + 12). Therefore the Jacobian Jf , corresponding to the

cusp form f , is a modular elliptic curve over F+ with #J(Fp) = N p + 1− af (p)
with everywhere good reduction. The form g is visibly a quadratic twist of f by
the character corresponding to the extension F+/F .

Unfortunately, this curve does not have any apparent natural torsion structure
which would easily allow for its identification as an explicit curve given by a
sequence of coefficients [6, §4].

As a second and final example, we compute with a quaternion algebra defined
over a quadratic field and therefore ramified at a finite prime. We take F =
Q(

√
65), with ZF = Z[(1 +

√
65)/2]. The field F has # Cl(F ) = # Cl+(F ) = 2.

We compute the space S = S2(p5)p5-new of Hilbert cuspidal new forms of parallel
weight 2 and level p5, where p5 is the unique prime in ZF of norm 5.

We compute that dimS = 10, and that the space S decomposes into Hecke-
irreducible subspaces of dimensions 2, 2, 3, 3. For example, the characteristic
polynomial of Tp2 for p2 either prime above 2 factors as

(T 2 − 2T − 1)(T 2 + 2T − 1)(T 6 + 11T 4 + 31T 2 + 9).

Remark 5. By the Jacquet-Langlands correspondence, the space S2(p5)p5-new

also occurs in the space of quaternionic modular forms for an Eichler order of
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level p5 in the definite quaternion algebra ramified at the the two real places
of F and no finite place, and therefore is amenable to calculation by the work
of Dembélé and Donnelly. We use this overlap to duplicate their computations
(as well as ours) and thereby give some compelling evidence that the results are
correct since they are computed in entirely different ways.
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Springer, Berlin (1980)

16. Voight, J.: Computing fundamental domains for cofinite Fuchsian groups.
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Abstract. In August 2002, Agrawal, Kayal, and Saxena described an
unconditional, deterministic algorithm for proving the primality of an
integer N . Though of immense theoretical interest, their technique, even
incorporating the many improvements that have been proposed since
its publication, remains somewhat slow for practical application. This
paper describes a new, highly efficient method for certifying the primal-
ity of an integer N ≡ 1 (mod 3), making use of quantities known as
Eisenstein pseudocubes. This improves on previous attempts, including
the peudosquare-based approach of Lukes et al., and the pseudosquare
improvement proposed by Berrizbeitia, et al.

1 Motivation

In [1], Lukes et al., building on the ideas of Hall [2], Shanks [3, p. 414], and
Selfridge and Weinberger [4], described a highly efficient method for proving the
primality of an integer N using quantities known as pseudosquares. Their test
requires a table of least pseudosquares, denoted M2,x, of sufficient size to ensure
that N < M2,x. If such a table is available, their method certifies the primality
of an integer N using only (logN)3+o(1) operations.

In [5], Berrizbeitia et al. introduced a conjecturally more efficient test, rely-
ing on quantities they termed pseudocubes, denoted M3,x. Though expected to
outperform the pseudosquare-based method asymptotically, this test required a
table of pseudocubes of suffient size to ensure that N < M

2/3
3,x . In [6], we pro-

vided numerical data to support the conjectured asymptotic improvement. In
the same paper, however, we pointed out that it is unlikely we will obtain pseu-
docubes large enough to realize the theoretical gains. Recent results of Sorenson
[7] further support both the asymptotic benefit and the practical limitations of
this method.

In this paper, we propose an alternate definition of pseudocube — the Eisen-
stein pseudocube — with a conjectured growth rate better than that of the
pseudosquares. Furthermore, we propose an algorithm for proving primality
of integers N ≡ 1 (mod 3) that eliminates the troublesome 2/3 exponent of
Berrizbeitia’s method. In the process, we supply numerical evidence to support
the argument that, both asymptotically and practically, proving primality using

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 372–384, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Eisenstein pseudocubes will soon be more efficient than the pseudosquare test
for primes N ≡ 1 (mod 3).

2 Eisenstein Pseudocubes

Let ω be a primitive cube root of unity; i.e. ω = −1+
√

3i
2 , and consider the ring of

Eisenstein integers, Z[ω]. Recall [8, Chap. 9] that Z[ω] is a unique factorization
domain with a norm given by N(α) = αα, and six units: ±1,±ω,±ω2. There
are three types of primes in Z[ω]: (1 − ω), which lies over 3; the inert rational
primes q ≡ −1 (mod 3) with norm q2; and the primes π of norm ππ = p ≡ 1
(mod 3) where p is prime in Z. We say that an element α ∈ Z[ω] is primary if
α ≡ −1 (mod 3).1 It is straightforward to show that every prime in Z[ω] except
(1 − ω) has exactly one primary associate.

For any α, π ∈ Z[ω] with π prime, N(π) �= 3, we can define the cubic residue
character of α modulo π, denoted

(
α
π

)
3
, as follows:

1.
(

α
π

)
3

= 0 if π | α

2.
(

α
π

)
3
≡ α(N(π)−1)/3 (mod π) otherwise, where

(
α
π

)
3
∈ {1, ω, ω2}.

The properties of this symbol are well-known. See, for example [8].
We can extend the notion of cubic residue character to include non-primes as

follows. If α, τ ∈ Z[ω] with 3 � | N(τ), we define(
α

τ

)
3

=

{
1 if τ is a unit of Z[ω],∏k

i=1

(
α
πi

)
3

otherwise

where τ =
∏k

i=1 πi and all πi ∈ Z[ω] are prime.
Finally, recall the Cubic Reciprocity Law (CRL), as it applies to to the cubic

Jacobi symbol [5, §2.3]:

Theorem 1. (Cubic Reciprocity) Let α, β be primary in Z[ω] and of coprime
norm �= 3. Then

(
α
β

)
3

=
(

β
α

)
3
. ��

We are now in a position to define an Eisenstein pseudocube.

Definition 1. Let p be a fixed rational prime. Define μp = a + bω ∈ Z[ω],
a, b ∈ Z to be an element of Z[ω] of minimal norm such that:

1. μp is primary
2. gcd (a, b) = 1
3.
(

q
μp

)
3

= 1 for all rational primes q ∈ Z, q ≤ p

4. μp not a cube in Z[ω].

We will call μp a minimal Eisenstein pseudocube (or simply an Eisenstein pseu-
docube) for the prime p.
1 That is to say, if we write α = a + bω, a ≡ −1 (mod 3) and 3 | b.
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3 Congruence Criteria for Eisenstein Pseudocubes

One technique for efficiently computing a table of Eisenstein pseudocubes μp =
xp + ypω, is that of congruential sieving. In order to use this technique, we must
first establish a set of acceptable residue conditions Sq on μp for each of the
primes q ≤ p corresponding to the requirements of Definition 1. There are 3
cases to consider, one for each type of prime in the Eisenstein integers.

3.1 Case 1: q ≡ −1 (mod 3)

In this case, q is inert and primary. Since μp is by definition primary, we can

invoke cubic reciprocity: 1 =
(

q
μp

)
3

=
(

μp

q

)
3
, and obtain the desired residue

conditions by simply computing μp ≡ (m + nω)3 (mod q) for all 0 ≤ m,n < q;
i.e. the residue classes given by

xp ≡ m3 − 3mn2 + n3 (mod q)
yp ≡ 3mn(m− n) (mod q).

There are

q2 − 1
3

(1)

such solutions modulo q.

Example 1. The set of acceptable residues for Eisenstein pseudocubes modulo 5
is given by

S5 = {(1 + 0ω), (2 + 0ω), (3 + 0ω), (4 + 0ω),
(3 + 1ω), (1 + 2ω), (4 + 3ω), (2 + 4ω)}.

3.2 Case 2: q = 3

Observe that −3ω = (1−ω)2. By the bimultiplicity of the cubic Jacobi symbol,(
3
μp

)
3

=
(
ω(1 − ω)

μp

)2

3
.

Write μp = xp +ypω = (−1)k−1∏k
i=1 αi where αi = ri +siω are primary primes;

i.e. 3 | si and ri ≡ −1 (mod 3).
From the properties of the cubic Jacobi symbol, we know that

(
1−ω
αi

)
3

=

ω
2(ri+1)

3 , and
(

ω
αi

)
3

= ω
ri+1+si

3 giving

(
1 − ω

μp

)
3

=
k∏

i=1

ω
2(ri+1)

3 = ω2
∑k

i=1(ri+1)/3,
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(
ω

μp

)
3

=
k∏

i=1

ω
ri+1+si

3 = ω
∑k

i=1(ri+1)/3+
∑k

i=1 si/3,

and hence
(

ω(1−ω)
μp

)
3

= ω
∑k

i=1 si/3.

Thus (
3
μp

)
3

= ω
2
3

∑k
i=1 si . (2)

Lemma 1. Let μp = xp + ypω = (−1)n−1∏n
i=1 αi where αi = ri + siω are pri-

mary primes. Then xp ≡ (−1)n−1∏n
i=1 ri (mod 9) and yp ≡

∑n
i=1 si (mod 9).

Proof. If n = 1, the statement is trivially true.
Let αj = rj + sjω, αk = rk + skω be primary; i.e. rj ≡ rk ≡ −1 (mod 3) and

sj ≡ sk ≡ 0 (mod 3). Writing si = 3Si, ri = −1 + 3Ri for some Si, Ri ∈ Z,
observe that

−(rk + skω)(rj + sjω) = −(rk + 3Skω)(rj + 3Sjω)
≡ −rkrj − 3(Sjrk + Skrj)ω
≡ −rkrj − 3(−Sk + 3RjSk − Sj + 3RkSj)ω
≡ −rkrj + (sk + sj)ω (mod 9)

which is again primary. Thus, by induction, (−1)n−1∏n
i=1(ri + siω) ≡ (−1)n−1∏n

i=1 ri +
∑n

i=1 siω (mod 9), so writing μp = xp +ypω = (−1)n−1∏n
i=1 αi where

αi = ri + siω are primary primes

xp ≡ (−1)n−1
n∏

i=1

ri (mod 9),

yp ≡
n∑

i=1

si (mod 9)

as desired. ��

From Lemma 1, yp ≡
∑k

i=1 si (mod 9), so yp/3 ≡
∑k

i=1 si/3 (mod 3). Combin-

ing these facts with Equation 2, we obtain
(

3
μp

)
3

= ω
2
3

∑k
i=1 si = ω2yp/3. Clearly,(

3
μp

)
3

= 1 ⇐⇒ 3 | yp

3 which, when combined with the requirement that μp be
primary, gives the requisite congruence conditions:(

3
μp

)
3

= 1 ⇐⇒ 9 | yp and xp ≡ −1 (mod 3).

Example 2. The set of acceptable residues for Eisenstein pseudocubes modulo 9
is given by

S9 = {(2 + 0ω), (5 + 0ω), (8 + 0ω)}.



376 K. Wooding and H.C. Williams

3.3 Case 3: q ≡ 1 (mod 3)

We can write q = πqπq where πq = a + bω and πq is primary. Of course, πq is
also primary.

Lemma 2. Let q be a rational prime,
(

q
μp

)
3

= 1 and q = πqπq with πq ∈ Z[ω]

prime and primary, then
(

q
μp

)
3

= 1 if and only if
(

μp

πq

)
3

=
(

μp

πq

)
3
.

Proof. Recall q = πqπq, and that πq, πq, and μp are all primary. From cubic
reciprocity and the properties of the cubic Jacobi symbol [8, §9.3] we have that(

q

μp

)
3

=
(
πq

μp

)
3

(
πq

μp

)
3

=
(
μp

πq

)
3

(
μp

πq

)
3

=
(
μp

πq

)
3

(
μp

πq

)
3

=
(
μp

πq

)
3

(
μp

πq

)−1

3

And thus it is clear that
(

q
μp

)
3

= 1 if and only if
(

μp

πq

)
3

=
(

μp

πq

)
3
. ��

If
(

q
μp

)
3

= 1, then from Lemma 2 and the properties of the cubic reciprocity

symbol, μ
q−1
3

p ≡ μp
q−1
3 (mod πq). By complex conjugation, we have also that(

μp

πq

)
3

=
(

μp

πq

)
3
, and hence μ

q−1
3

p ≡ μp
q−1
3 (mod πq). Combining these facts, we

obtain (
q

μp

)
3

= 1 ⇐⇒ μ
q−1
3

p ≡ μp

q−1
3 (mod q). (3)

Writing μp = xp+ypω, we will now endeavour to reduce (3) to a set of congruence
conditions on xp and yp. Note that when q is small, these congruence conditions
can be computed by exhaustion. A more elegant algorithm, however, can be
obtained from the theory of Lucas sequences.

First, observe that if q | yp then (3) reduces to the trivial xp ≡ xp (mod q);
i.e. x + 0ω ⊂ Sq for x = 1, . . . , q − 1. For the remaining case, consider the
recurring sequences Sn(x, y), Tn(x, y) ∈ Z[x, y] given by:2

S1(x, y) = x

T1(x, y) = y

Sn + Tnω = (S1 + T1ω)n

with Sn, Tn ∈ Z. Clearly, we have also that Sn + Tnω
2 = (S1 + T1ω

2)n. By
subtraction, (ω − ω2)Tn = (S1 + T1ω)n − (S1 + T1ω

2)n, and thus writing α =
μp = xp + ypω, β = μp = xp + ypω

2, we have

Tn =
αn − βn

ω − ω2 , (4)

a recurrent sequence whose properties are described in [9]. We may parameterize
this recurrence by writing G = α + β, H = αβ, and observing that Tn(G,H) is
2 For simplicity, we will usually write Sn and Tn for Sn(x, y) and Tn(x, y), respectively.
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given by the second-order recurrence: Tn+2 = GTn+1−HTn. From (3),
(

q
μp

)
3

=

1 if and only if q | (α
q−1
3 − β

q−1
3 ) and hence from (4),(

q

μp

)
3

= 1 ⇐⇒ q | T q−1
3

(G,H). (5)

Since only the case q � | yp remains, we can rewrite (5) in terms of a single variable
by defining zp ≡ xpy

−1
p (mod q). Now (xp + ypω)(q−1)/3 ≡ (xp + ypω

2)(q−1)/3

(mod q) if and only if (zp + ω)(q−1)/3 ≡ (zp + ω2)(q−1)/3 (mod q). Setting α =
zp + ω, β = zp + ω2 in (4), we obtain(

q

μp

)
3

= 1 ⇐⇒ q | T q−1
3

(G′, H ′) (6)

where G′ = 2zp − 1, H ′ = z2
p − zp + 1. Since this relationship involves only one

variable, we are in effect considering polynomials Tn(x) where

T0(x) = 0, T1(x) = 1

Tn+1(x) = (2x− 1)Tnx− (x2 − x + 1)Tn−1(x)

for a fixed x ∈ Z. By induction, we see that Tn(x) is a polynomial over Z with
coefficients of degree n− 1 and leading coefficient n.

In fact, Tn(x) = Un(G′, H ′) where Un is the Lucas function, Un = αn−βn

α−β ,
G′ = α + β = 2x − 1, H ′ = αβ = x2 − x + 1, and hence α = (x + ω), β =
(x+ ω2). By drawing on the rich theory of Lucas functions, we can obtain both
an efficient algorithm for computing the acceptable congruence conditions on
xp, yp (mod q), and the number of acceptable residues for the prime q.

To obtain the candidate solutions zp satisfying (6), compute T q−1
3

(x) for all
0 ≤ x < q by the method described in [3, §4.4], retaining solutions for which
T q−1

3
(x) ≡ 0 (mod q). Each zp obtained in this fashion can then be used to

produce (q − 1) acceptable values of μp by evaluating xp = 1, 2, . . . , q − 1 and
computing the corresponding yp = xpzp (mod q)—a procedure illustrated in
Example 3.

To obtain a count of these solutions, observe that in (6), we can write Δ =
(α − β)2 = (2x − 1)2 − 4(x2 − x + 1) = −3. If q is a prime ≡ 1 (mod 3) then
ε =
(

Δ
q

)
= 1. Thus if x ∈ Z and q � | x2 − x + 1 then q | Tq−ε(x) [3, Equation

4.3.3]. It follows that the polynomial Tq−1(x) of degree q− 2 has precisely q− 2
distinct zeros modulo q. Now T q−1

3
(x) ∈ Z[x], and so it divides Tq−1(x) as, from

the theory of Lucas functions [3, Equation 4.2.45], we have

T3n(2x− 1, x2 − x + 1) = 3Tn((x2 − x + 1)n − T 2
n).

It follows that T q−1
3

(x) has exactly q−1
3 − 1 distinct zeros modulo q.

By combining the cases when q � | yp and q | yp, we see that there are(
q − 1

3
− 1
)

(q − 1) + (q − 1) =
(q − 1)2

3
(7)

acceptable residues for a prime q ≡ 1 (mod 3).
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Example 3. Consider the case q = 7. We can derive the acceptable residue con-
ditions on μp as follows.

If q | yp, then (x + 0ω) is acceptable for x = 1, . . . , (q − 1).

If q � | yp then from (6), we have that
(

7
μp

)
3

= 1 ⇐⇒ 7 | T 7−1
3

(G′, H ′) =

T2(G′, H ′). Further, T2(G′, H ′) = G′T1(G′, H ′)−HT0(G′, H ′) = G′−0 = 2zp−1
and hence, (

7
μp

)
3

= 1 ⇐⇒ 7 | 2zp − 1.

Thus, zp ≡ 4 (mod 7). Since we defined zp = xpy
−1
p (mod q), xp ≡ 4yp (mod 7),

and we can obtain all solutions by running xp through all nonzero residue classes
(modulo 7) and computing yp ≡ 4−1xp ≡ 2xp (mod 7); i.e.

xp 1 2 3 4 5 6
yp ≡ 2xp (mod 7) 2 4 6 1 3 5

.

Combining these solutions with the trivial case (q | yp), we obtain a complete
set of solutions (modulo 7):

S7 = {(1 + 0ω), (2 + 0ω), (3 + 0ω), (4 + 0ω), (5 + 0ω), (6 + 0ω),
(4 + 1ω), (1 + 2ω), (5 + 3ω), (2 + 4ω), (6 + 5ω), (3 + 6ω)}.

4 Eisenstein Pseudocubes and Primality Testing

Eisenstein pseudocubes may be employed to prove primality for integers N ≡ 1
(mod 3) via the following theorem [10].

Theorem 2. (Berrizbeitia, 2003, personal correspondence) Let ν = a+ bω be a
primary element of Z[ω], where gcd (a, b) = 1, ν is not a unit, prime, or perfect
power in Z[ω], and N(ν) < N(μp). Then there must exist a rational prime q ≤ p

such that
(

q
ν

)
3
�≡ q(N(ν)−1)/3 (mod ν). ��

Recall that if N ≡ 1 (mod 3) and N is a prime in Z, then N = νν, where ν is a
primary prime in Z[ω]. Furthermore, if q is any rational prime, then(

q

ν

)
3
≡ q

N−1
3 (mod ν).

If we have a table of Eisenstein pseudocubes available to us, Berrizbeitia’s result
gives us a means to certify the primality of N ≡ 1 (mod 3); i.e.

1. Test that N is not a perfect power; e.g. via [11].
2. Find a primary ν ∈ Z[ω] such that N(ν) = N . This can be done efficiently

using Cornacchia’s algorithm [12, §1.5.2] via the method of Williams [13, §5].
If this step fails, then N is composite.3

3 Cornacchia’s algorithm requires the evaluation of a square root modulo N , and hence,
usually requires a factorization of N . For our purposes, however, we simply assume
that N is prime in this step. If Cornacchia fails, it is because N was composite,
which is exactly what we set out to determine.
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3. From a precomputed table of Eisenstein pseudocubes, choose μp ∈ Z[ω] of
minimal norm such that N < N(μp).

4. For each prime q ≤ p, test
(

q
ν

)
3
≡ q

N−1
3 (mod ν). If the test succeeds for

all q, then N is prime.

Step 1 of this algorithm requires (logN)1+o(1) operations. Cornacchia’s algo-
rithm (Step 2) essentially consists of a GCD computation ((logN)2+o(1) oper-
ations), and the computation of a square root modulo a prime ((logN)3+o(1)).
Step 3 is a merely a table lookup. Step 4 appears to be the most computa-
tionally intensive component of the algorithm, requiring a series of modular
exponentiations (each requiring (logN)2+o(1) operations). The precise number
of exponentiations is dependent on the expected growth rate of the Eisenstein
pseudocubes, something which we will now attempt to estimate.

5 Eisenstein Pseudocube Growth Rate

Let pi denote the ith prime (p1 = 2), and let Sp denote the set of acceptable
residues modulo p for the Eisenstein pseudocubes as developed in Section 3.
Writing p = pn, and denoting by (a, b) the Eisenstein integer a + bω, we know
that

S2 = {(1, 0)} ,
S9 = {(2, 0), (5, 0), (8, 0)} , and

Sp =
{

(a, b) ∈ Z × Z

∣∣∣∣( p

a + bω

)
3

= 1, −p− 1
2

≤ a, b ≤ p− 1
2

}
for p > 3

Recall from Equations (1) and (7) that we expect

|Sp| =

⎧⎪⎪⎨⎪⎪⎩
(p− 1)2

3
if p ≡ 1 (mod 3)

(p2 − 1)
3

if p ≡ 2 (mod 3)

acceptable residues modulo p. Writing

S1 =
∏

p≡1 (mod 3)

(p− 1)2

3
H1 =

∏
p≡1 (mod 3)

p

S2 =
∏

p≡2 (mod 3)

(p2 − 1)
3

H2 =
∏

p≡2 (mod 3)

p

for primes p ≤ pn, and invoking the Chinese Remainder Theorem we see that
there are S = 3S1S2 solutions satisfying the congruence criteria of the Eisenstein
pseudocubes in the region −H/2 ≤ a, b < H/2, where H = 9H1H2.
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Assume the S solutions μ = a+ bω are equidistributed in the region −H/2 ≤
a, b < H/2. By a similar argument to that of Lukes et al. [1], we expect the
solution of minimal norm, denoted by μp, to be given by a ≈ b ≈ H√

S
; i.e.

N(μp) ≈
H2

S
. (8)

Consider the primes p = pn as n → ∞. Making an assumption that the primes
are distributed equally between p ≡ 1 (mod 3) and p ≡ 2 (mod 3), we can
approximate H2/S as follows. Write

H2
1

S1
=

∏
p≡1 (mod 3)

p≤x

3p2

(p− 1)2
, and (9)

H2
2

S2
=

∏
p≡2 (mod 3)

p≤x

3p2

(p2 − 1)
. (10)

From Mertens’s Theorem [14, p. 351],
∏

p≤x
1

1−1/p ∼ e−γ

log x as x → ∞, so (9)
becomes

H2
1

S1
≈ 3π(x)/2

∏
p≡1 (mod 3)

p≤x

(
p

p− 1

)2

≈ 3π(x)/2
∏
p≤x

p

p− 1

∼ eγ3π(x)/2 log x.

For (10), recall that
∏

p≤x

(
1 − 1

p2

)
= ζ(2) = π2

6 as x → ∞.4 Hence

H2
2

S2
∼ 3π(x)/2

√
6
π2

Putting these together, and writing n = π(x), c = 27eγ
√

6
π , we obtain

N(μpn) ≈ (9H1H2)2

3S1S2
∼ c3n log pn

as n → ∞. Thus, we expect (logN)1+o(1) exponentiations in Step 4 of our primal-
ity proving algorithm, for a combined (randomized) complexity of (logN)3+o(1)

operations.5

4 See, for example, [15, Theorem 1.4.1].
5 The randomized nature of the algorithm stems solely from the requirement for a

quadratic nonresidue in Cornacchia’s algorithm. Finding this quadratic nonresidue re-
quires, on average, two evaluations of a Jacobi symbol.
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6 Experimental Results

Our experiment followed the same basic approach as [6]. To test our hypotheses,
a table of Eisenstein pseudocubes was developed using the Calgary Scalable
Sieve (CASSIE), a software toolkit for congruential sieving on the University of
Calgary’s Advanced Cryptography Laboratory (ACL) Beowulf cluster [6]. First,
a series of small, non-normalized runs were performs in order to obtain Eisenstein
pseudocubes for values of p ≤ 109. Once these runs were completed, a large
parallel job was executed. This larger job evaluated all candidate solutions with
N(μp) ≤ 264. To parallelize this job, the 11520 acceptable residues formed by

Table 1. Eisenstein Pseudocube Results

p N(μp) μp

18 247 11 + 18ω
5 643 29 + 18ω
7 5113 71 + 72ω
11 13507 23 + 126ω
13 39199 227 + 90ω
17 1 07803 −181 + 198ω
19 3 60007 653 + 126ω
23 39 04969 443 + 2160ω
29 61 07191 −1669 + 1170ω
31 103 18249 3617 + 2520ω
37 273 33067 6023 + 3366ω
41 991 79467 4973 + 11466ω
43 5329 97833 −15451 + 11088ω
47 22785 22747 54017 + 17514ω
53 27417 02809 47477 + 56160ω
59 1 85007 66499 66887 + 156510ω

61, 67 4 15475 53813 235061 + 107172ω
71 11 94233 48797 −139813 + 253764ω
73 82 46210 13649 −267733 + 744120ω

79, 83 115 18103 60731 1227419 + 761670ω
89 2507 90827 69801 5052689 + 4961880ω
97 3393 26375 28481 −2127709 + 4462200ω
101 9175 67688 29893 10322861 + 8601732ω

103, 107 21408 90619 32079 3056387 + 15918570ω
109 81221 66151 53761 −27791551 + 1366560ω

113 10 70670 04348 13749 109364777 + 13014540ω
127 15 84695 56547 47279 −114717193 + 19952010ω
131 21 44850 97583 41459 160585853 + 126202050ω
137 596 03669 06441 31739 845355437 + 667764090ω
139 2127 62708 04110 19739 −724036477 + 954969030ω
149 5736 34194 93471 77659 696254903 + 2666049750ω
151 9708 82344 17235 68077 2979509543 + 3236384556ω
157 14102 28178 31706 25921 3671532959 + 3833807040ω
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combining the solution candidates for moduli 18, 5, 7, and 11 were each used as a
normalization modulus.6 Each of these jobs required approximately 8000 CPU-
seconds. Using 250 processing nodes, the complete job required approximately
4.25 days to complete, obtaining Eisenstein pseudocubes μp for p ≤ 157. These
results are summarized in Table 1.

7 Analysis and Conclusions

In Figure 1, Eisenstein pseudocube growth is shown as a function of n, where
pn is the nth prime. The straight line represents the least squares line fitted to
this data, and is given by:

y = 1.05557x+ 3.79531

a result that is remarkably consistent with the slope predicted by the argument of
Section 5; i.e. log 3 = 1.09861. As a basis for comparison, classical pseudocube
and pseudosquare results (including the recent work of Sorenson [7]) are also
shown.

Two conclusions may be drawn from these results. First, even with the rela-
tively modest amount of computing power used to compute our table of Eisen-
stein pseudocubes, we have already produced a test that is more efficient than
the pseudocube method originally proposed by Berrizbeitia, et al. Second, we
would expect that with a reasonable amount of computational investment, the
Eisenstein pseudocube primality proving method will eventually be more efficient
than existing methods involving the pseudosquares.

8 Summary

In this paper, we have adapted a theorem of Berrizbeitia to produce a highly
efficient primality proving algorithm for integers N ≡ 1 (mod 3), making use of
quantities known as Eisenstein pseudocubes. In addition to theoretical contri-
butions, we have compiled a table of these quantities using an extensive two-
dimensional sieve calculation, and offered numerical evidence for a conjectured
growth rate: N(μpn) ∼ c3n log pn as n → ∞.
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Abstract. Let F/Q be a number field. The space of positive definite
binary Hermitian forms over F form an open cone in a real vector space.
There is a natural decomposition of this cone into subcones. In the case
of an imaginary quadratic field these subcones descend to hyperbolic
space to give rise to tessellations of 3-dimensional hyperbolic space by
ideal polytopes. We compute the structure of these polytopes for a range
of imaginary quadratic fields.

1 Introduction

Let F/Q be a number field. The space of positive definite binary Hermitian
forms over F form an open cone in a real vector space. There is a natural
decomposition of this cone into polyhedral cones corresponding to the facets of
the Voronöı polyhedron [1, 11, 13]. This has been computationally explored for
real quadratic fields in [16, 12] and the cyclotomic field Q(ζ5) in [23].

For F an imaginary quadratic field, the polyhedral cones give rise to ideal
polytopes in H3, 3-dimensional hyperbolic space. In work of Cremona and his
students [6, 7, 5, 14, 22], analogous polytopes have already been computed for
class number one imaginary quadratic fields as well as a few fields with class
number two and three using different methods. The structure of the polytopes
was used to compute Hecke operators on modular forms for the Bianchi groups
over those fields. These polytopes were used by Goncharov [10] in his study of
Euler complexes on modular curves. The data of the polytope and stabilizer could
also be used to give explicit presentations of GL2(O) using results of Macbeath
and Weil [15,21]. Swan [20] has computed presentations of these groups, though
not with the polytopes constructed here, for imaginary quadratic fields Q(

√
d)

for
−d ∈ {1, 2, 3, 5, 6, 7, 11, 15, 19}.

Such explicit presentations have been used to compute cohomology of Bianchi
groups of small discriminant with non-trivial coefficients in work of Berkove,
Sengun, and Finis-Grunewald-Tirao [2, 3, 9, 19].

We remark that there are other ways to obtain the fundamental polytope data.
Riley [18] wrote the first computer implementation of Poincaré’s Polyhedron
Theorem, which works in the more general setting of geometrically finite Kleinian

G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 385–396, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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groups. He computed the fundamental polytopes for many Bianchi groups. From
this data, he computed presentations for the Bianchi groups and calculated the
rank of their abelianizations. Another method is to use reduction theory. An
algorithm of Swan [20] has been very recently implemented by Rahm and Fuchs
[17], who used it to compute the integral homology groups of all Bianchi groups
which are over imaginary quadratic fields of class number less than three.

In this paper, we investigate the structure of these ideal polytopes for a large
range of imaginary quadratic fields. Our approach and implementation works
for general imaginary quadratic fields, but we restrict the range to ease the
computation. We compute the ideal polytope classes for all imaginary quadratic
fields of class number one and two, as well as some fields of higher class number
with small discriminant. Specifically, we compute the ideal polytopes for the
fields Q(

√
d) for square-free d, where

−d ∈ {1, · · · , 100, 115, 123, 163, 187, 235, 267, 403, 427}.

There is no theoretical obstruction to computing these tessellations for higher
class number and higher discriminant.

The structure of the paper is as follows. We set the notation for the quadratic
fields and Hermitian forms in Section 2. The implementation is described in
Section 3. Finally, in Section 4, we summarize some of the data collected so
far. Finally, we describe a general result of Macbeath on computing group pre-
sentations for groups of homeomorphisms, illustrating one possible use of this
data. We use this technique to give an explicit presentation for GL2(Q(

√
−14))

in Section 5.

2 Notation and Background

Let F = Q(
√
d) ⊂ C be an imaginary quadratic number field. We always take

d < 0 to be a square-free integer. Let O ⊂ F denote the ring of integers in F .
Then O has a Z-basis consisting of 1 and ω, where

ω =

{
1+

√
d

2 if d ≡ 1 mod 4,√
d if d ≡ 2, 3 mod 4.

Let ·̄ denote complex conjugation, the nontrivial Galois automorphism of F .

Definition 1. A binary Hermitian form over F is a map φ : F 2 → Q of the
form

φ(x, y) = axx̄ + bxȳ + b̄x̄y + cyȳ,

where a, c ∈ Q and b ∈ F such that φ is positive definite.

By choosing a Q-basis for F , φ can be viewed as a quadratic form over Q. In
particular, it follows that φ(O2) is discrete in Q.
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Definition 2. The minimum of φ is

m(φ) = inf
v∈O2\{0}

φ(v).

A vector v ∈ O2 is minimal vector for φ if φ(v) = m(φ). The set of minimal
vectors for φ is denoted M(φ).

Definition 3. A Hermitian form over F is perfect if it is uniquely determined
by M(φ) and m(φ).

3 Implementation

3.1 Cone of Hermitian Forms and Hyperbolic Space

The space of positive definite binary Hermitian forms over F form an open
cone in a real vector space. There is a natural decomposition of this cone into
polyhedral cones corresponding to the facets of the Voronöı polyhedron Π [11,
13, 1]. The top-dimensional cones of this decomposition correspond to perfect
forms and descend to ideal polytopes in H3, 3-dimensional hyperbolic space.
Details are given below.

Let G be the restriction of scalars G = ResF/Q(GL2). Then the group of
rational points G(Q) = GL2(F ), and the group of real points is G = G(R) �
GL2(C). Let H3 be hyperbolic 3-space:

H3 = {(z, t) : z ∈ C, t ∈ R>0}.

Then G acts on H3 by [
α β
γ δ

]
· (z, t) = (z∗, t∗), where

z∗ =
(αz + β)(γz + δ) + (αt)(γt)

|γz + δ|2 + |γ|2t2 and t∗ =
|αδ − βγ|t

|γz + δ|2 + |γ|2t2

Note that diagonal matrices act trivially on H3, and the stabilizer of the point
(i, 1) is U(2). Thus one gets an identification between H3 and the coset space
GL2(C)/(U(2) · R>0).

A binary Hermitian form can be identified with the 4-dimensional real vector
space V of Hermitian 2 × 2 matrices. The group GL2(C) acts on this space via

g · A = gAg∗

and preserves the open cone C ⊂ V of positive definite Hermitian matrices,
and the stabilizer of I is U(2). Thus one has identification C � GL2(C)/U(2).
Modding out by homotheties, one gets

C/R>0 � H3. (1)
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3.2 Voronöı Decomposition

There is a map q from O2 to the closure C̄ of C ⊂ V given by q(v) = vv∗. The
Voronöı polyhedron Π is the unbounded polytope gotten by taking the convex
hull of {q(v) : v ∈ O2 \ 0}. Taking cones over the facets of Π , one gets a de-
composition of C into polyhedral cones known as the Voronöı decomposition of
C. By (1), this decomposition descends to a tessellation of H3 by ideal poly-
topes. Note that the group Γ = G(Z) = GL2(O) acts on C and preserves this
decomposition.

3.3 Perfect Forms

A perfect form φ is uniquely determined by its minimum m(φ) and set of minimal
vectors M(φ). By scaling, we can assume m(φ) = 1. Since each minimal vector
defines a linear equation in V , and V is 4-dimensional, generically 4 minimal
vectors will uniquely determine φ. Note that this does not imply that #M(φ) =
4. Indeed in many examples, one has M(φ) > 4.

There is a bijection between perfect forms over F and the facets of Π . Let P
be a facet of Π with vertices {w1, . . . , wk}. Then there is a unique form φP ∈ C
such that m(φP ) = 1 and

{q(v) : v ∈ M(φP )} = {w1, . . . , wk}.

There is an algorithm [11] that uses this bijection to compute the GL2(O)-
equivalency classes of perfect forms. The algorithm uses linear algebra and con-
vex geometry, but requires an initial input of a perfect form. To this end, we
describe the method that we used to compute an initial perfect form.

For each field F = Q(
√
d), we need only to find a single perfect form to begin

the algorithm. Thus we limit our search to a particular family of quadratic forms.
Specifically, let S0 ⊂ C be the subset of quadratic forms φ such that{[

1
0

]
,

[
0
1

]
,

[
1
1

]}
⊆ M(φ).

For φ ∈ S0, the Hermitian matrix Aφ associated to φ must have the form

Aφ =
[
1 β
β̄ 1

]
, where β ∈ F with Re(β) = −1

2
and |β| < 1.

If φ ∈ S0 and φ has an additional minimal vector
[
a
b

]
∈ O2, then

β = −1
2

+
(

1 − a1
2 + a2

2d + a1b1 − a2db2 − b1
2 + b2

2d

2 da1b2 − 2 da2b1

)√
d, (2)

where a = a1 + a2
√
d and b = b1 + b2

√
d. Combined with (2), this implies

−
(
1 − a1

2 + a2
2d + a1b1 − a2db2 − b1

2 + b2
2d
)2

d

(2 da1b2 − 2 da2b1)
2 <

3
4
. (3)
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Reduction theory, specifically the existence of Siegel sets, ensures that the values
NF/Q(a), NF/Q(b), and NF/Q(b− a) for a solution are bounded above by a con-
stant depending upon d. Thus we implement a brute force search over a, b ∈ O
beginning at 0 and moving out. When a vector

[
a
b

]
is found satisfying (3), we

check that the corresponding form φ satisfies{[
1
0

]
,

[
0
1

]
,

[
1
1

]
,

[
a
b

]}
⊆ M(φ).

This corresponds to a ideal polytope whose vertices contain {∞, 0, 1, a
b }.

Once the initial form is found, we implement the algorithm of [11] to find all
the perfect forms over F up to the action of GL2(O) (and the corresponding
structure of the Voronöı polyhedron) in Magma [4]. This descends, via (1), to
give a tessellation of H3 by ideal polytopes.

4 Polytope Data

In this section we collect the results of the computations of the GL2(O)-conjugacy
classes of the ideal Voronöı polytopes.

4.1 Example: d = −14

Let F = Q(
√
−14). Then F has class number four and ring of integers O = Z[ω],

where ω =
√
−14. There are 9 GL2(O)-classes of polytopes which are of 3

combinatorial types. There are 3 triangular prisms with cuspidal vertices

P1 =
{
∞, 1,

5 + 2ω
9

,
2 + ω

4
,
4 + 2ω

9
, 0
}

P2 =
{

11 + 4ω
23

, 1,
5 + 2ω

9
,
4 + 2ω

9
,
12 + 4ω

23
, 0
}
, and

P3 =
{

8 + 5ω
23

,
2 + ω

5
,
1 + ω

5
,
2 + ω

6
,
3 + 2ω

10
,
7 + 4ω

21

}
,

and 5 tetrahedra with cuspidal vertices

T1 =
{

11 + 4ω
23

,
2 + ω

5
,
4 + 2ω

9
, 0
}
,

T2 =
{

1,
5 + 2ω

9
,
3 + ω

5
,
12 + 4ω

23

}
,

T3 =
{

11 + 4ω
23

,
2 + ω

5
,
2 + ω

6
, 0
}
,

T4 =
{

8 + 5ω
23

,
2 + ω

5
,
4 + 2ω

9
, 0
}
, and

T5 =
{

4 + ω

6
, 1,

3 + ω

5
,
12 + 4ω

23

}
,
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and a square pyramid with cuspidal vertices

S =
{

8 + 5ω
23

,
2 + ω

5
,
1 + ω

5
,
2 + ω

6
, 0
}
.

Given the cuspidal vertices, one can easily compute the stabilizers of each poly-
tope. The stabilizers are all cyclic in this case. For each stabilizer, we compute
a generator. The results are given in Table 1.

Table 1. Stabilizer groups of Voronöı ideal polytopes for Q(
√−14)

Polytope Stabilizer Generator

P1 C6

[
1 −1
1 0

]
P2 C2

[−1 0
0 −1

]
P3 C4

[
ω + 1 −ω + 6

2 −ω − 1

]
T1 C2

[−1 0
0 −1

]
T2 C2

[−1 0
0 −1

]
T3 C2

[−1 0
0 −1

]
T4 C2

[−1 0
0 −1

]
T5 C2

[−1 0
0 −1

]
S C2

[−1 0
0 −1

]

4.2 Polytope Summary

We compute the Voronöı polytopes for all imaginary quadratic number fields
F = Q(

√
d) with class number one and two as well as higher class number

for d > −100. Although there is no reason an arbitrary convex 3-dimensional
polytope could not arise, in all of these cases only 8 combinatorial types show
up. We give the names and F -vector ([#vertices, #edges, #faces]) for each in
Table 2. We also note that the triangular dipyramid shows up in this range much
less frequently than the other polytopes.

In Table 3, we give the number of GL2(O)-classes of each polytope type for
F with class number one or two. In Table 4, we give the number of GL2(O)-
classes of each polytope type for the remaining imaginary quadratic fields with
d > −100.
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Table 2. Combinatorial types of ideal polytopes that occur in this range

polytope F -vector picture

tetrahedron [4, 6, 4]

octahedron [6, 12, 8]

cuboctahedron [12, 24, 14]

triangular prism [6, 9, 5]

hexagonal cap [9, 15, 8]

square pyramid [5, 8, 5]

truncated tetrahedron [12, 18, 8]

triangular dipyramid [5, 9, 6]

5 Group Presentation

A general result of Macbeath [15] and analogous result of Weil [21] give a general
method of computing group presentations for groups of homeomorphisms. For
the convenience of the reader, we recall these results here and describe how the
polytope data computed above can be used to compute explicit presentations of
GL2(OF ).

Consider a connected space X acted upon by a group of homeomorphisms Γ .
Let U ⊂ X be an open set such that Γ · U = X , and let Σ ⊂ Γ denote the
set

Σ = {g ∈ Γ : g · U ∩ U �= ∅}.
Let F (Σ) be the free group generated by Σ. For g ∈ Σ, let xg denote the
corresponding element of F (Σ). Let W ⊂ Σ ×Σ denote the set

W = {(g, h) : U ∩ g · U ∩ gh · U �= ∅}.

Let R ⊂ F (Σ) denote the subgroup generated by xgxhx(gh)−1 for (g, h) ∈ W .
Suppose π0(X) = π1(X) = π0(U) = 1. Then the subgroup R is a normal sub-
group of F (Σ) and Γ � F (Σ)/R.

To apply this result to the polytope data computed above, choose X = H3.
Fix representatives P1, . . . , Pk of the GL2(O) classes of polytopes such that
D = P1∪· · ·∪Pk is a connected set of polytopes meeting along facets. Let U ⊂ H3
be an open neighborhood of D ∩ H3. We note that since the vertices D are at
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Table 3. GL2(O)-classes of Voronöı ideal polytopes for class number one and two

hF d

1 −1 0 1 0 0 0 0 0 0
1 −2 0 0 1 0 0 0 0 0
1 −3 1 0 0 0 0 0 0 0
1 −7 0 0 0 1 0 0 0 0
1 −11 0 0 0 0 0 0 1 0
1 −19 0 0 1 1 0 0 0 0
1 −43 0 0 0 2 1 0 1 0
1 −67 0 1 0 2 1 2 1 0
1 −163 11 0 1 8 2 3 0 0

2 −5 0 0 0 2 0 0 0 0
2 −6 0 0 0 0 1 0 1 0
2 −10 0 1 0 1 0 2 0 0
2 −13 1 0 0 3 1 1 0 0
2 −15 1 1 0 0 0 0 0 0
2 −22 5 0 1 4 0 2 0 0
2 −35 3 4 0 1 0 2 0 0
2 −37 10 0 0 8 1 8 0 0
2 −51 1 0 1 2 1 0 1 0
2 −58 47 0 0 7 2 6 0 0
2 −91 5 1 0 5 0 3 0 0
2 −115 3 1 0 5 2 4 0 0
2 −123 1 1 1 6 3 3 1 0
2 −187 18 1 1 4 1 9 1 0
2 −235 13 1 0 12 4 11 0 0
2 −267 24 1 1 13 5 10 1 0
2 −403 66 1 0 16 2 20 0 2
2 −427 65 2 0 19 4 24 0 0
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Table 4. GL2(O)-classes of Voronöı ideal polytopes with d > −100

hF d

3 −23 0 1 0 1 0 1 0 0
3 −31 0 0 0 3 0 1 0 0
3 −59 0 1 1 3 0 2 0 0
3 −83 6 0 0 2 2 1 1 0

4 −14 5 0 0 3 0 1 0 0
4 −17 5 0 0 2 1 3 1 0
4 −21 8 2 0 2 1 4 0 0
4 −30 6 0 0 6 4 4 0 0
4 −33 9 0 1 8 1 6 1 0
4 −34 20 0 0 3 1 6 1 0
4 −39 1 0 0 3 1 1 0 0
4 −46 32 1 0 5 0 9 0 0
4 −55 5 1 0 2 0 2 0 0
4 −57 33 1 0 10 3 14 2 0
4 −73 57 1 1 13 1 14 0 2
4 −78 69 1 0 11 4 18 0 0
4 −82 92 0 0 8 3 11 1 0
4 −85 56 0 0 17 0 28 0 0
4 −93 79 1 0 20 7 21 0 0
4 −97 95 0 1 19 3 19 0 0

5 −47 5 0 0 1 1 2 0 0
5 −79 9 0 0 5 0 4 0 0

6 −26 18 1 0 2 1 4 0 0
6 −29 15 0 0 6 0 6 0 0
6 −38 33 1 0 2 1 6 1 0
6 −53 45 0 0 7 2 13 0 0
6 −61 41 1 0 11 1 16 0 0
6 −87 6 0 0 6 2 3 0 0

7 −71 7 1 0 4 0 4 0 0

8 −41 31 0 1 9 0 8 0 0
8 −62 81 0 0 7 2 7 0 0
8 −65 69 2 0 9 0 19 0 0
8 −66 67 1 1 9 4 12 1 0
8 −69 51 2 0 15 2 21 0 0
8 −77 81 1 0 9 2 26 0 0
8 −94 125 1 0 10 2 17 0 0
8 −95 12 0 0 4 0 9 0 0

10 −74 105 1 0 9 1 12 0 0
10 −86 130 0 0 9 1 18 1 0

12 −89 136 0 0 14 1 21 1 0
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infinity, the set U can be chosen so that if g ∈ Σ, then g takes an edge of D to
another edge of D.

We remark that many redundant generators and relations are created when
implementing this result, especially when the stabilizer groups of the polytopes
are large. We can compensate for this using Magma’s commands for simplifying
finitely-presented groups. We illustrate the technique in the example below.

5.1 Example: d = −14

Theorem 1. Let F = Q(
√
−14) with ring of integers O = Z[ω], where ω =√

−14. Then the following is a presentation of GL2(O):

GL2(O) = 〈g1, · · · , g8 : R1 = · · · = R22 = 1〉, where

R1 = g2
7 , R2 = g2

8, R3 = g2
6 , R4 = g2

3 ,

R5 = g2
4 , R6 = g2

2, R7 = g4
5 , R8 = (g2g

−1
1 )2,

R9 = (g4g1)2, R10 = g−1
5 g−3

1 g−1
5 , R11 = (g7g

−2
5 )2, R12 = (g8g

−2
5 )2,

R13 = (g6g
−2
5 )2, R14 = (g4g

−2
5 )2, R15 = (g3g

−2
5 )2, R16 = (g6g

−1
1 g−1

5 )2,

R17 = (g3g
−1
5 g3g1g2)2, R18 = (g3g7g1g8g

−1
1 )2, R19 = g4g5g4g

−1
1 g5g1,

R20 = g8g
−1
5 g7g

−1
5 g3g

−1
1 g3g7g3g7g1g8g3g5g7g

−1
5 ,

R21 = g1g5g7g
−1
5 g3g

−1
1 g3g7g1g

−1
5 g7g

−1
5 g3g

−1
1 g3g7,

R22 = g6g5g7g
−1
5 g3g

−1
1 g3g7g1g6g

−1
1 g7g3g1g3g5g7g5.

Proof. We choose X , U , and D as described above. In fact, one can choose
D to be the polytopes given in Section 4.1. Then F (Σ)/R is defined by 235
generators and 3416 relations. We can simplify this presentation in Magma to
get the presentation of GL2(Z[

√
−14]) above, with

g1 =
[
1 −1
1 0

]
, g2 =

[
0 1
1 0

]
,

g3 =
[
ω + 3 −ω + 1

6 −ω − 3

]
, g4 =

[
4ω −2ω + 13

2ω + 13 −4ω

]
,

g5 =
[
−2ω − 5 2ω − 3
−10 2ω + 5

]
, g6 =

[
−5ω 3ω − 15

−3ω − 15 5ω

]
,

g7 =
[

ω + 9 −2ω − 1
−2ω + 10 −ω − 9

]
, g8 =

[
−2ω − 13 4ω + 4
ω − 14 2ω + 13

]
.

The presentation given in the theorem has torsion elements as generators. In
particular, GL2(O) is generated by elements of order 2, 4, and 6. Since any
torsion-free quotient must map these generators to the identity, one immediately
gets the following corollary.

Corollary 1. GL2(Z[
√

14]) has no torsion-free quotients.

One finds similar results for F = Q(
√
d) for d = −1 and d = −3 in [8].
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fundamental polyhedra. Math. Comp. 40(162), 607–632 (1983)
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Tornaŕıa, Gonzalo 186

Veres, Olga 174
Vergnaud, Damien 234
Voight, John 357

Watkins, Mark 186, 340
Williams, Hugh C. 372
Wooding, Kjell 372

Yasaki, Dan 385

Zimmermann, Paul 83


	Title
	Preface
	Organization
	Table of Contents
	Invited papers
	Putting the Hodge and Tate Conjecturesto the Test
	Curves of Genus 3 with a Group ofAutomorphisms Isomorphic to $S_3$
	Learning with Errors over Rings
	Lattices and Spherical Designs
	Fixed Points for Discrete Logarithms
	Introduction
	A “Smoothed” P´olya–Vinogradov Inequality
	A Criterion for the Brizolis Property
	Completing the Proof
	References


	Contributed papers
	Explicit Coleman Integration for Hyperelliptic Curves
	Introduction
	Coleman’s Theory of $p$-adic Integration
	Explicit Integrals for Hyperelliptic Curves
	A Basis for de Rham Cohomology
	Tiny Integrals
	Non-Weierstrass Discs
	Weierstrass Endpoints of Integration

	Implementation Notes and Precision
	Precision Estimates
	Complexity Analysis
	Numerical Examples

	Future Directions
	Iterated Integrals
	Beyond Hyperelliptic Curves
	Heights After Harvey

	References

	Smallest Reduction Matrix of Binary Quadratic Forms
	Introduction
	Preliminaries and Notation
	A New Reduction Algorithm for Real Quadratic Forms
	Algorithm and Analysis
	Proof of Theorem 2

	Proof of Heuristic Cryptanalysis of the NICE Cryptosystems
	Lifting Quadratic Orders
	Cryptosystem Real NICE
	Cryptanalysis
	Rational Improvement of the Boneh-Durfee-HowgraveGraham’s Algorithm

	Conclusion
	References

	Practical Improvements to Class Group and Regulator Computation of Real Quadratic Fields
	Introduction
	Real Quadratic Fields
	The Index-Calculus Algorithm

	Practical Improvements
	Relation Collection
	Structured Gaussian Elimination
	Regulator Computation

	Numerical Results
	Comparative Timings
	Large Example

	Conclusions
	References

	On the Use of the Negation Map in the Pollard Rho Method
	Introduction
	Preliminaries
	The Elliptic Curve Discrete Logarithm Problem
	Pollard’s Rho Method
	Fruitless Cycles

	Improved Fruitless Cycle Handling
	Short Fruitless Cycle Reduction
	Cycle Detection and Escape
	Alternative Approaches

	Comparison
	Conclusion
	References

	An $O(M(n) log n)$ Algorithm for the Jacobi Symbol
	Introduction
	Binary Division with Positive Quotient

	A Provably Quadratic Algorithm
	An $O(M(n) log n)$ Algorithm
	Experimental Results
	Concluding Remarks
	References

	New Families of ECM Curves for Cunningham Numbers
	Introduction
	Elliptic Curve Torsion and Modular Curves
	Parameterization of Elliptic Curves with Given Torsion Structure
	Construction of $Z/3Z$ × $Z/3Z$
	Construction of $Z/6Z$ × $Z/3Z$
	Modular Curve for $Z/6Z$ × $Z/6Z$
	Modular Curve for $Z/9Z$ × $Z/3Z$
	Construction of $Z/4Z$ × $Z/4Z$
	Modular Curve for $Z/8Z$ × $Z/4Z$
	Construction of $Z/5Z$ × $Z/5Z$

	Construction of Elliptic Curve with Large Prescribed Torsion and Positive Rank
	Description of the Method
	Results for $Z/4Z$ × $Z/4Z$
	Results for $Z/6Z$ × $Z/3Z$
	Results for $Z/5Z$ × $Z/5Z$
	Half Way to $Z/8Z$ × $Z/4Z$

	Application to Factoring
	Conclusion
	References

	Visualizing Elements of Sha[3] in Genus 2 Jacobians
	Introduction
	Torsors and Theta Groups
	Visibility in Surfaces
	Anti-isometric Pencils
	Recovering the Genus 2 Curve
	Examples
	Applications to 3-Descent
	References

	On Weil Polynomials of $K3$ Surfaces
	Introduction
	The Galois Group of a Weil Polynomial
	The Artin-Tate Formula
	The Rank-1 Condition
	The Field Extension Condition
	The Special Case of a Degree-2 Surface – Twisting
	Examples
	Statistics
	References

	Class Invariants by the CRT Method
	Introduction
	Hilbert Class Polynomials via the CRT
	The Algorithm of Belding, Br¨oker, Enge, Lauter and Sutherland
	Enumerating the Roots of $H_D$ mod $p$
	Finding Roots with Greatest Common Divisors (gcds)

	ClassInvariants
	Modular Polynomials

	CRT Algorithms for Class Invariants
	Direct Enumeration
	The Trace Trick
	Enumeration via the Fricke Involution
	A General Algorithm

	Computational Results
	Class Polynomial Computations Using the CRT Method
	Comparison to the Complex Analytic Method
	A Record-Breaking CM Construction

	References

	Short Bases of Lattices over Number Fields
	Introduction
	Preliminaries
	Lattices
	Number Fields
	$O_K$-Modules

	Small 2-Element Representation of an Ideal
	Computing Short Pseudo-bases
	From a Short Basis of a Submodule to a Short Pseudo-basis
	Computing a Short Pseudo-basis
	Short almost Free Pseudo-bases

	Examples
	References

	On the Complexity of the Montes Ideal Factorization Algorithm
	Introduction
	Definitions and Notation
	Outline of the Restricted Montes Algorithm
	Complexity of Fundamental Operations
	Complexity of the Algorithm
	The Construction of $ϕr$
	Supplementary Remarks
	References

	Congruent Number Theta Coefficients to 10$_12$
	History
	Relating Congruent Numbers to Elliptic Curves
	Tunnell’s Criterion
	Our $Θ$-Functions

	“Out-of-Core” Fast Fourier Transform Methods
	The Power Series Multiplication
	The Algorithm in Pseudocode

	Results and Analysis
	Future Improvements
	References

	Pairing the Volcano
	Introduction
	Background on Isogeny Volcanoes
	Background on Pairings
	Determining Directions on the Volcano
	Walking the Volcano: Modified Algorithms
	Complexity Analysis
	Two Practical Examples

	Conclusion and Perspectives
	References

	A Subexponential Algorithm for Evaluating Large Degree Isogenies
	Introduction
	Background
	TheB$r¨o$ker-Charles-Lauter Algorithm
	A Subexponential Algorithm for Evaluating Horizontal Isogenies
	Finding a Factor Base
	“Factoring” Large Prime Degree Ideals
	Algorithm for Evaluating Prime Degree Isogenies
	Running Time Analysis

	Examples
	Small Example
	Medium Example
	Large Example

	Related Work
	References

	Huff’s Model for Elliptic Curves
	Introduction
	Background
	Contributions of the Paper

	Huff’s Model
	Affine Formulæ
	Projective Formulæ
	Applicability
	Universality of the Model

	Generalizations and Extensions
	Faster Computations
	More Formulæ
	Twisted Curves
	Binary Fields

	Pairings
	Preliminaries
	Pairing Formulæ for Huff Curves

	Conclusion
	References

	Efficient Pairing Computation with Theta Functions
	Introduction
	Some Notations and Basic Facts
	Weil and Tate Pairings and Theta Functions
	The Weil Pairing
	The Tate Pairing

	Pairing Computations
	Complexity Analysis
	Abelian Varieties
	Kummer Varieties

	An Example in Dimension 2
	Conclusion
	References

	Small-Span Characteristic Polynomials of Integer Symmetric Matrices
	Introduction
	History of the Small Span Problem
	Characteristic Polynomials of Integer Symmetric Matrices
	Minimal Polynomials of Integer Symmetric Matrices: A Conjecture of Estes and Guralnick
	The Contributions of This Paper

	The Growing Algorithm
	Equivalence
	Indecomposable Matrices
	Interlacing
	Reduction
	Bounds on Entries and Valencies
	The Algorithm

	Results
	Classification of Small-Span Integer Symmetric Matrices
	Low-Degree Counterexamples to a Conjecture of Estesand Guralnick
	References

	Decomposition Attack for the Jacobian of a Hyperelliptic Curve over an Extension Field
	Introduction
	Decomposition Attack for the Jacobian of a General Plane Curve
	Decomposition Attack for the Jacobian of a Hyperelliptic Curve
	Example
	Conclusion
	References
	Appendix

	Factoring Polynomials over Local Fields II
	Introduction
	Reducibility
	Irreducibility and the Sequence $�ϕ-t(x) _t$
	The First Iteration
	The Second Iteration
	Dataand Relations
	The $u$-th Iteration
	The Algorithm
	Complexity
	Example
	References

	On a Problem of Hajdu and Tengely
	Introduction
	Construction of the Curves
	Background on Rational Points on Hyperelliptic Curves
	Two-Cover Descent
	The Jacobian
	The Mordell-Weil Group
	The Chabauty-Coleman Method

	Determining the Rational Points
	References

	Sieving for Pseudosquares and Pseudocubes in Parallel Using Doubly-Focused Enumeration and Wheel Datastructures
	Introduction
	Computational Results
	The Distribution of Pseudosquares and Pseudocubes
	Algorithm Details
	Doubly-Focused Enumeration
	Parallelism and Main Loop
	Implementation Details

	Future Work
	References

	On the Extremality of an 80-Dimensional Lattice
	Introduction
	Extremal Lattices
	Construction of the Lattice N$_80$
	An Odd Lattice
	Relation to Coding Theory
	The Even 2-Neighbours

	Nice Bases for N$_80$
	Identifying Orbits

	Method of Proof
	The Lattice N$_80$ Has No Vectors of Norm 2 or 4
	Vectors with a Nontrivial Stabiliser

	General Search for Vectors of Norm 10
	The Full KFP Tree Search
	Tree Pruning
	Switching Bases

	Conclusion and Related Work
	Software to Check Our Data
	Three Lattices of Dimension 72
	Other Candidate Lattices for Extremality in Dimension 80

	References

	Computing Automorphic Forms on Shimura Curves over Fields with Arbitrary Class Number
	An Overview of the Algorithm for Strict Class Number 1
	The Indefinite Method with Arbitrary Class Number
	Setup
	Decomposing the Double Coset Space
	Hecke Operators
	Complex Conjugation and Atkin-Lehner Involutions

	Algorithmic Methods
	Examples
	References

	Improved Primality Proving with Eisenstein Pseudocubes
	Motivation
	Eisenstein Pseudocubes
	Congruence Criteria for Eisenstein Pseudocubes
	Case 1: q ≡ −1 (mod 3)
	Case 2: q = 3
	Case 3: q ≡ 1 (mod 3)

	Eisenstein Pseudocubes and Primality Testing
	Eisenstein Pseudocube Growth Rate
	Experimental Results
	Analysis and Conclusions
	Summary
	References

	Hyperbolic Tessellations Associated to Bianchi Groups
	Introduction
	Notation and Background
	Implementation
	Cone of Hermitian Forms and Hyperbolic Space
	Vorono¨ı Decomposition
	Perfect Forms

	Polytope Data
	Example: d = −14
	Polytope Summary

	Group Presentation
	Example: d = −14

	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




