

Agility Across Time and Space

Darja Šmite � Nils Brede Moe � Pär J. Ågerfalk
Editors

Agility Across
Time and Space

Implementing Agile Methods
in Global Software Projects

Editors
Darja Šmite
School of Engineering
Blekinge Institute of Technology
372 25 Ronneby
Sweden
Darja.Smite@mac.com

Pär J. Ågerfalk
Dept. Information Sciences
Uppsala University
Box 513
751 20 Uppsala
Sweden
Par.Agerfalk@im.uu.se

Nils Brede Moe
Dept. Information
& Communication Technology (ICT)
SINTEF
7465 Trondheim
Norway
Nils.b.moe@sintef.no

ISBN 978-3-642-12441-9 e-ISBN 978-3-642-12442-6
DOI 10.1007/978-3-642-12442-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2010927809

ACM Computing Classification (1998): D.2, K.6

© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:Darja.Smite@mac.com
mailto:Par.Agerfalk@im.uu.se
mailto:Nils.b.moe@sintef.no
http://www.springer.com
http://www.springer.com/mycopy

Foreword

Drawing from earlier definitions from Jim Highsmith or Steve Adolph and the
OODA loop, I like to define agility as “the ability of an organization to react to
change in its environment faster than the rate of these changes.” This definition uses
the ultimate purpose or function of being agile for a business, rather than defin-
ing agility by a labeled set of practices (e.g., you’re agile when you do XP, Lean,
or Scrum) or by a set of properties defined in opposition to another set (the agile
manifesto approach).

An analogy could be the definition of a road. Would you define a road as some-
thing made of crushed rocks and tar, or define it as a surface that is black rather than
white, flat rather than undulated, and with painted lines rather than monochrome? Or
as a component of a transportation system, allowing people and goods to be moved
on the ground surface from point A to point B? And let the properties or components
be derived from this, allowing some novel approach in road design.

It is quite possible to adopt a labeled set of agile practices, or a set of practices
that perfectly conform to the agile manifesto and not become agile. You then “do
Agile” but are not agile.

Agile software development methods do succeed in contexts which are identical
or very similar to the contexts in which they have been created. As these contexts—
the “agile sweet spot”—are very frequent in software development, representing
more than 50% of all software being developed, this may have led sometimes their
proponents to a certain complacency: thinking that the method has universal value,
that its represents some ultimate recipe, the holy grail.

Agile methods may fail in various ways when they are applied “out of the box”,
i.e., with no or little adaptation, in contexts that are very far, at least on one dimen-
sion, from the context in which they have been originally created. Rather than an
analysis of the root cause, this usually triggers screams of “you must have not done
it right” by its proponents. And this again leads to discussion of “purity”, “scrum-
butts”, etc.

Agile methods can be stretched with variable success outside of the context in
which they have been created; for example, scaling them up to larger projects, or
across distributed teams. In my experience, the contextual factors that have the great-
est risks of derailing agile projects are:

v

vi Foreword

• size
• large systems with a lack of architectural focus
• software development not driven by customer demand
• lack of support from surrounding stakeholders, traditional governance
• novice team
• very high constraint on some quality attribute (safety-critical system, real-time

constraints)

As noted by many authors in the last few years, we cannot just rely on acts of
faith by eloquent process gurus to help us define the adequate process, or set of
practices outside of the agile sweet spot. Cold-headed, impartial investigation is
required. Such research is generally not very easy to conduct; it is often qualitative,
rather than quantitative, it draws more from social sciences than computer science,
not easy to publish, not easy to carve down to masters’ thesis bite size.

This is the reason why I welcome this volume on agility across time and space.
Looking at how agile practices performed once stretched outside of the agile sweet
spot, for large projects and distributed projects, the non-trivial ones. The researchers
and practitioners who collectively wrote this volume have been examining without
prejudice what works and what does not, and trying to get at the root cause, giving
us another and better perspective on this fascinating wave: the agile software de-
velopment movement. They confront some of the factors I mentioned earlier: size,
distribution, role of architecture, culture.

Because all things considered, our stakeholders do not care whether you did or
not your daily stand-up meetings, whether pairing was followed religiously, how
many columns in your kanban, or if you played poker for estimations. They only
care about quality software hitting the market as fast as we possibly can. The soft-
ware developer should only be concerned by what will allow her to achieve this in
her specific context. And in a turbulent environment, can the organization react to
change in its environment faster than the rate of these changes?

Vancouver, BC, Canada Philippe Kruchten

Preface

Despite the progress in the field of software engineering, software projects are still
being late, are over budget, and do not deliver the expected quality. Two major trends
have emerged in response to these: global sourcing and the application of agile
methods. The new paradigms soon became anecdotally popular for their benefits of
cheaper and faster development of high quality software. Many companies recently
started to look into merging these two promising approaches into one strategy.

Globally Distributed Development

Global sourcing promises organizations the benefits of reaching mobility in re-
sources, obtaining extra knowledge through deploying the most talented people
around the world, accelerating time-to-market, increasing operational efficiency, im-
proving quality, expanding through acquisitions, reaching proximity to market and
many more. However, these benefits are neither clear-cut nor can their realization
be taken for granted, as the literature may lead one to believe [1]. In fact, there are
many challenges related to communication, coordination and control when devel-
oping software with global software teams [2].

Agile Development

Agile development has recently attracted huge interest from software industry [3].
It is being recognized for its potential to improve communication and, as a result,
reduce coordination and control overhead in software projects. Methods for agile
software development constitute a set of practices for software development that
have been created by experienced practitioners [4]. The “agile manifesto” was bub-
lished in 2001 by the key people behind the early agile development methods. The
manifesto states that agile development should focus on four core values [5]:

• Individuals and interactions over processes and tools,

vii

viii Preface

• Working software over comprehensive documentation,
• Customer collaboration over contract negotiation,
• Responding to change over following a plan.

Agile methods can be seen as a reaction to plan-based or traditional methods,
which emphasize “a rationalized, engineering-based approach” [6] in which it is
claimed that problems are fully specifiable and that optimal and predictable solu-
tions exist for every problem. The “traditionalists” are said to advocate extensive
upfront planning, codified processes, and rigorous reuse to make development an
efficient and predictable activity [7]. By contrast, agile processes address the chal-
lenges of the increasingly complex nature of software development by relying on
people and their creativity rather than on formalized processes [6]. The goal of opti-
mization is being replaced by those of flexibility and responsiveness [8]. Ericksson
et al. [9] define agility as follows: agility means to strip away as much of the heav-
iness, commonly associated with the traditional software-development methodolo-
gies, as possible to promote quick response to changing environments, changes in
user requirements, accelerated project deadlines and the like. (p. 89)

The Role of Agility in Distributed Development

Global software development has matured considerably since its inception and has
become an integral part of the information technology landscape. Now, rather than
deciding whether or not to get involved in global sourcing, many companies are
facing decisions about whether or not to apply agile methods in their distributed
projects. These companies are often motivated by the opportunities of solving the
coordination and communication difficulties [4] associated with global software de-
velopment.

Empirical evidence from case studies conducted by Paasivaara and Lassenius
[10], and Holmström, Fitzgerald et al. [11] show successful implementation of agile
values and principles in different globally distributed projects. This motivates as-
sessing the viability of agile practices for distributed software development teams.
The interest in becoming agile and distributed is also illustrated by the increasing
number of research publications and seminars devoted to the topic.

Implementing Agility Across Time and Space

Despite the increased attention, merging the two strategies is no easy task due to sig-
nificant differences in fundamental principles of agile and distributed development
approaches. In particular, while agile principles prescribe close interaction and co-
location, the very nature of distributed software development does not support these
prerequisites. Taylor, Greer et al. [12] claim that distributed agile software devel-
opment suffers substantial difficulties because of its complex development environ-
ment and there is little empirical evidence describing actual development experi-
ences. The lack of clear understanding of who, what, when, why and how in agile

Preface ix

distributed development motivated us to collect experiences from various companies
that had started, and also benefitted from, becoming agile and distributed.

Aims of the Book

The idea to write a book on agile and distributed software development gradually
evolved as the critical mass of questions related to merging seemingly incompatible
approaches emerged. The questions that the authors aimed to answer with this book
include:

• What shall companies expect from merging agile and distributed strategies?
• What are the stumbling blocks that prevent companies from reaching the agile

benefits in distributed environment, and how to recognize unfeasible strategies
and unfavorable circumstances?

• What helps managers cope with the challenges of implementing agile approaches
in distributed software development projects?

• How can distributed teams survive the decisions taken by the management and
become efficient through the application of agile approaches?

Book Overview

This book consists of five parts.

1. In the Motivation part the editors introduce the fundamentals of agile distributed
software development and explain the rationale behind the application of agile
practices in globally distributed software projects.

Fig. 1 Book layout

2. The second part of the book is called Transition. Here we have gathered seven
chapters that discuss the transition to being agile and distributed. The chapters
describe implementation strategies, adoption of particular agile practices for dis-
tributed projects, and general concepts of agility.

x Preface

3. The third part of the book, Management, focuses on managerial aspects and de-
cisions in agile distributed software projects. Practical implications for project
planning, time management, customer and sub-contractor interaction, tool sup-
port and architecture-centric development are presented in eight chapters.

4. The fourth part is devoted to agile and distributed Teams. Here we have collected
six chapters that provide in-depth hands-on advice for the team members and
their managers. Topics discussed include agile distributed team configuration,
effective communication and knowledge transfer, the role of architecture in task
division, and allocation of roles and responsibilities.

5. finally, in the Epilogue we summarize the contributions of the different chap-
ters and present results from a Delphi-inspired study that highlights the major
areas of concern and future trends for research and practice in agile distributed
development.

Most of the chapters in this book offer practical advice based on experiences ob-
tained in and from the industry. These experiences are collected through personal
observations of practitioners, empirical research in particular studied contexts or
extensive continuous observations gained from various sources.

Target Audience

This book is primarily targeted at practitioners (managers and team members) in-
volved in globally distributed software projects - those who are practicing agile
methods and those who are not. We believe that it will serve as a useful source of
practical advice, which are based on the real life examples of application of agile
practices in distributed development, and will hopefully motivate companies to try
improving their sourcing strategies by adopting best practices and benefits that agile
promises.

Many book chapters are based on the sound empirical research and identify gaps
and commonalities in the existing state-of-the-art and state-of-the-practice. We thus
believe that our book can be also of relevance and interest for the academic audience,
in particular, researchers working in the field, as well as lecturers and students of
global agile software development.

References

1. Ó. Conchúir, E., Ågerfalk, P. J., Fitzgerald, B., & Holmström Olsson, H. (2009). Global soft-
ware development: Where are the benefits?. Communications of the ACM, 52(8), 127–131.

2. Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., & Ó. Conchuir, E.
(2005). A framework for considering opportunities and threats in distributed software devel-
opment. In Proceedings of the international workshop on distributed software development
(DiSD) (pp. 47–61). Vienna: Austrian Computer Society.

3. Dybå, T., & Dingsøyr, T. (2008). Empirical studies of agile software development: A system-
atic review. Information and Software Technology, 50(9–10), 833–859.

Preface xi

4. Ågerfalk, P. J., & Fitzgerald, B. (2006). Flexible and distributed software processes: Old petu-
nias in new bowls? Communications of the ACM, 49(10), 26–34.

5. Beck, K., et al. (2001). Agile manifesto. Available online. http://agilemanifesto.org. Cited 15
Feb 2010.

6. Nerur, S., Mahapatra, R., & Mangalaraj, G. (2005). Challenges of migrating to agile method-
ologies. Communications of the ACM, 48(5), 72–78.

7. Boehm, B. (2002). Get ready for agile methods, with care. IEEE Computer, 35(1), 64–69.
8. Nerur, S., & Balijepally, V. (2007). Theoretical reflections on agile development

methodologies—The traditional goal of optimization and control is making way for learning
and innovation. Communications of the ACM, 50(3), 79–83.

9. Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile modeling, agile software development,
and extreme programming: The state of research. Journal of Database Management, 16(4),
88–100.

10. Paasivaara, M., & Lassenius, C. (2006). Could global software development benefit from agile
methods? In International conference on global software engineering (pp. 109–113).

11. Holmström, H., Fitzgerald, B., Ågerfalk, P. J., & Ó. Conchuir, E. (2006). Agile practices
reduce distance in global software development. Information Systems and Management, 23(3),
7–18.

12. Taylor, P. S., Greer, D., Sage, P., Coleman, G., McDaid, K., & Keenan, F. (2006). Do ag-
ile GSD experience reports help the practitioner? In Proceedings of the 2006 international
workshop on global software development of ACM (pp. 87–93).

Darja Šmite
Nils Brede Moe
Pär J. Ågerfalk

http://agilemanifesto.org

Acknowledgements

We are thankful to all the authors for their valuable contributions and effort in cre-
ation of this book. We are also thankful to the external reviewers for their timely re-
sponses and valuable feedback. Springer Computer Science Editorial and especially
Ralf Gerstner deserves a special gratitude for initiating the creation of this book and
supporting our ideas on its way. A special thanks goes to Likoebe M. Maruping for
the book title idea and to Claes Wohlin who has brought us together. Last but not
the least we are thankful to our families and friends for their immeasurable support.

This book has been supported by

• the Software Engineering Research Lab in the School of Computing, Blekinge
Institute of Technology,

• the Research Project “Agile”, funded by the Research Council of Norway under
grant 179851/I40, and

• the Department of Informatics and Media, Uppsala University

xiii

Contents

Part I Motivation

1 Fundamentals of Agile Distributed Software Development 3
Darja Šmite, Nils Brede Moe, and Pär J. Ågerfalk
1.1 Introduction . 3

1.1.1 Distributed Software Development 3
1.1.2 Agile Software Development 4

1.2 Merging Agility with Distribution 4
1.2.1 Potential Issues . 5
1.2.2 All or Nothing versus Á la carte 6

1.3 Current Practice . 6
1.4 Conclusions . 7

References . 7

Part II Transition

2 Implementing Extreme Programming in Distributed Software
Project Teams: Strategies and Challenges 11
Likoebe M. Maruping
2.1 Introduction . 11
2.2 Implementing XP Practices: Where Is an Organization to Start? . . 12

2.2.1 The Promise of XP . 12
2.2.2 Understanding How Your Software Project Team Is

Structured and Why It Matters 13
2.3 Case Overview . 14
2.4 XP in Distributed Software Project Teams: Implementation

Strategies and Pitfalls to Avoid 16
2.4.1 The Planning Game . 16
2.4.2 Collective Ownership . 18
2.4.3 Coding Standards . 19
2.4.4 Use of a Metaphor . 20

xv

xvi Contents

2.4.5 Simplicity of Design . 21
2.4.6 Sustainable Pacing . 22
2.4.7 Pair Programming . 23
2.4.8 Continuous Integration and Unit Testing 24
2.4.9 Refactoring . 25
2.4.10 Customer Involvement . 26
2.4.11 Small Functional Releases 27

2.5 Conclusions . 28
References . 29
Further Reading . 30

3 Transitioning from Distributed and Traditional to Distributed and
Agile: An Experience Report . 31
Daniel Wildt and Rafael Prikladnicki
3.1 Introduction . 31
3.2 Case Overview . 32
3.3 Transitioning to Agile in a Distributed Environment 34

3.3.1 Don’t Tell What Agile Is and Be Successful 35
3.3.2 A Fully Cultural Transition from Traditional to Agile

Development . 37
3.3.3 Benefits of Using Agile Methods in Distributed Environment 40

3.4 Practical Recommendations . 41
3.5 Conclusions . 45

References . 45

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value
Calculation . 47
Steve Tendon
4.1 Introduction . 47
4.2 The Case . 48

4.2.1 Background . 48
4.2.2 Management Support and Sponsorship 50
4.2.3 The Pilot Project . 51
4.2.4 The Journey of Implementing Agility 53
4.2.5 The Final: Project Approval 61

4.3 Benefits from Implementing Agility over Traditional Approaches . 62
4.3.1 More Commonality . 62
4.3.2 Smaller Scope . 63
4.3.3 ROI Anticipation . 63
4.3.4 Smaller Country-Specific Dependencies 63
4.3.5 Avoiding Waste Upfront 63

4.4 Why Agile Succeeded? . 64
4.4.1 Induction . 64
4.4.2 Co-location and Alternating On- and Off-Site Activities . . 65
4.4.3 Promiscuous Pair Story Authoring 66

Contents xvii

4.4.4 Economic Value of Story Points 67
4.5 Conclusions . 68

References . 69

5 Scrum and Global Delivery: Pitfalls and Lessons Learned 71
Cristiano Sadun
5.1 Introduction . 71
5.2 Cases Overview . 72

5.2.1 Background . 72
5.2.2 Project NOR1 . 74
5.2.3 Project NOR2 . 76

5.3 The Experiences . 77
5.3.1 Signing Agreements . 77
5.3.2 Establishing Remote Access 79
5.3.3 Overcoming Communication Barriers 80
5.3.4 Actively Managing Distributed Agile Projects 82
5.3.5 Dealing with Idle Time 84
5.3.6 Achieving Motivation and Peer Feeling 86
5.3.7 Adapting Governance and Steering 87

5.4 Conclusions . 88
References . 89

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned . 91
Clifton Kussmaul
6.1 Introduction . 91
6.2 Case Overview . 92

6.2.1 Background . 92
6.2.2 Project Organization . 93
6.2.3 Introduction of Agility . 95
6.2.4 Overview of Project Activities 95
6.2.5 Cross-border Relationship Dynamics 97

6.3 Lessons Learned . 98
6.3.1 People . 99
6.3.2 Processes . 100
6.3.3 Coordination . 102

6.4 Conclusions . 104
References . 105
Further Reading . 105

7 Contribution of Agility to Successful Distributed Software
Development . 107
Saonee Sarker, Charles L. Munson, Suprateek Sarker, and Suranjan
Chakraborty
7.1 Introduction . 107
7.2 Distributed Project Success . 108
7.3 Types of Agility . 109

xviii Contents

7.4 Study Background . 109
7.5 Contribution of Agility to Distributed Project Success 112
7.6 Conclusions . 114

References . 116

8 Preparing your Offshore Organization for Agility: Experiences in
India . 117
Jayakanth Srinivasan
8.1 Introduction . 117
8.2 Distributed Agile Software Development in India 118
8.3 Experiences from AgileCo . 119

8.3.1 Case Overview . 119
8.3.2 Personnel Selection and Training 120
8.3.3 Teaching and Mentoring 122
8.3.4 Managing Customer Expectations 123

8.4 Experience from BankCo . 124
8.4.1 Case Overview . 124
8.4.2 Impact of Senior Leadership Vision 125
8.4.3 Heterogeneous Process Environment 126
8.4.4 Agile Coaching . 127

8.5 Conclusions . 127
References . 129

Part III Management

9 Improving Global Development Using Agile 133
Alberto Avritzer, Francois Bronsard, and Gilberto Matos
9.1 Introduction . 133
9.2 The Projects . 134
9.3 Deploying Agile Techniques in Global Projects 136

9.3.1 Organizational Issues . 136
9.3.2 Communication Issues . 137
9.3.3 Process Issues . 139
9.3.4 Tools and Technical Issues 141

9.4 Improving Global Projects Using Agile Processes 143
9.5 Conclusions . 147

References . 147

10 Turning Time from Enemy into an Ally Using the Pomodoro
Technique . 149
Xiaofeng Wang, Federico Gobbo, and Michael Lane
10.1 Introduction . 149
10.2 Time Is an Enemy? . 151
10.3 The Pomodoro Technique . 152

10.3.1 Pomodoro as Time-box 153
10.3.2 Pomodoro as Unit of Effort 153

Contents xix

10.4 The Application of the Pomodoro Technique in Sourcesense
Milan Team . 154
10.4.1 Background of Sourcesense Milan Team 154
10.4.2 The Development Process of Sourcesense Milan Team . . . 155
10.4.3 Pomodoro as Time-box 156
10.4.4 Pomodoro as a Unit of Effort 159
10.4.5 Addressing Remote Collaboration with Teams That Do

Not Employ the Pomodoro Technique 161
10.5 Turning Time into an Ally . 161

10.5.1 Shared Pomodoro . 162
10.5.2 Collective Breaks . 162
10.5.3 Estimation and Tracking 163
10.5.4 One Pomodoro Rules All Sites? 163

10.6 Conclusions . 164
References . 165

11 MBTA: Management By Timeshifting Around 167
Erran Carmel
11.1 Management by Wandering and Flying Around 167
11.2 Enter Timeshifting . 168
11.3 Conclusions . 170

References . 170

12 The Dilemma of High Level Planning in Distributed Agile Software
Projects: An Action Research Study in a Danish Bank 171
Per Svejvig and Ann-Dorte Fladkjær Nielsen
12.1 Introduction . 171
12.2 Research Methodology . 173

12.2.1 Action Research . 173
12.2.2 Research Settings . 173

12.3 The Action Research Cycle . 174
12.3.1 Diagnosing the Problem and the Underlying Causes 174
12.3.2 Action Planning . 175
12.3.3 Action Taking . 175
12.3.4 Evaluating and Learning 180

12.4 Conclusions . 181
12.4.1 Applying a Holistic Approach to High Level Planning . . . 181
12.4.2 Using Action Research to Software Process Improvement . 182
12.4.3 Summary . 182
References . 182

13 Tools for Supporting Distributed Agile Project Planning 183
Xin Wang, Frank Maurer, Robert Morgan, and Josyleuda Oliveira
13.1 Introduction . 183
13.2 Distributed Planning Tool Requirements 185

13.2.1 Agile Planning Requirements 186

xx Contents

13.2.2 Requirements for Collaborative Interactions 187
13.3 Tool Review . 188

13.3.1 Wikis . 188
13.3.2 Web Form-Based Applications 189
13.3.3 Card-Based Planning Systems 190
13.3.4 Plugin for Integrated Development Environment 190
13.3.5 Synchronous Project Planning Tool 191
13.3.6 Digital Tabletop-Based Agile Planning Tool 193

13.4 Tool Evaluation . 193
13.5 Practical Advice . 195

13.5.1 Advice for Agile Planning Tool User 195
13.5.2 Advice for Designers of Distributed Agile Planning Tools . 196

13.6 Conclusions . 198
References . 199

14 Combining Agile and Traditional: Customer Communication in
Distributed Environment . 201
Mikko Korkala, Minna Pikkarainen, and Kieran Conboy
14.1 Introduction . 201
14.2 Customer Communication in Distributed Agile Development . . . 202

14.2.1 Issues Hindering the Customer Communication in
Distributed Agile Development 204

14.3 Findings . 205
14.3.1 Case Context . 205
14.3.2 The Use of Agile Methodologies in the Case Project 207
14.3.3 The Use of Customer Communication Media 208
14.3.4 Identified Customer Communication Challenges 211

14.4 Discussion and Lessons Learned 214
References . 216

15 Coordination Between Global Agile Teams: From Process to
Architecture . 217
Jan Bosch and Petra Bosch-Sijtsema
15.1 Introduction . 217
15.2 Large-Scale Software Development 220
15.3 Case Study Companies . 221

15.3.1 Case Company GLOembed 221
15.3.2 Case Company GLOtelcom 222
15.3.3 Case Company GLOsoftware 222

15.4 Coordination and Integration Inter-team Challenges 224
15.4.1 Top-Down Approach Challenges 224
15.4.2 Interaction Problems . 225

15.5 Coordination Through Architecture 226
15.5.1 Road Mapping . 227
15.5.2 Requirements . 228
15.5.3 Architecture . 229

Contents xxi

15.5.4 Development . 229

15.5.5 Integration or Composition 230
15.5.6 Architecture-Centric Software Engineering 231

15.6 Conclusions . 232
References . 233

16 Considering Subcontractors in Distributed Scrum Teams 235
Jakub Rudzki, Imed Hammouda, Tuomas Mikkola, Karri Mustonen,
and Tarja Systä
16.1 Introduction . 235

16.1.1 Company Context . 236
16.1.2 Methodology . 236
16.1.3 Main Results . 237

16.2 Subcontractors in an SSP Company 238
16.2.1 Why Subcontractors? . 239
16.2.2 Distributed Development Stakeholders 239
16.2.3 Subcontractor Selection Process 240

16.3 Subcontractors in Scrum Teams 242
16.3.1 Scrum . 242
16.3.2 Communication . 243
16.3.3 Planning and Progress Tracking 244
16.3.4 Code Sharing and Development Feedback 245
16.3.5 Knowledge Sharing . 246
16.3.6 Team Spirit . 246

16.4 Subcontractors and Project Phases 247
16.4.1 Preparation . 247
16.4.2 Development . 248
16.4.3 Release . 251

16.5 Conclusions . 251
16.5.1 Practical Implications . 252
16.5.2 Research Implications . 252
16.5.3 Summary . 253
Appendix . 253
References . 255
Further Reading . 255

Part IV Teams

17 Using Scrum Practices in GSD Projects 259
Maria Paasivaara and Casper Lassenius
17.1 Introduction . 259
17.2 Research Methodology . 260
17.3 Distributed Daily Scrums . 260

17.3.1 Application of Daily Scrums to Distributed Projects 262
17.3.2 Benefits of Daily Scrums 263

xxii Contents

17.3.3 Challenges of Daily Scrums 263
17.4 Scrum-of-Scrums Meetings . 264

17.4.1 Application of Scrum-of-Scrums to Distributed Projects . . 265
17.4.2 Benefits of Scrums-of-Scrums 265
17.4.3 Challenges of Scrums-of-Scrums 266

17.5 Sprints . 266
17.5.1 Application of Sprints to Distributed Projects 267
17.5.2 Benefits of Sprints . 267
17.5.3 Challenges of Sprints . 268

17.6 Sprint Planning Meetings . 268
17.6.1 Application of Sprint Planning Meetings to Distributed

Projects . 268
17.6.2 Benefits of Sprint Planning Meetings 269
17.6.3 Challenges of Sprint Planning Meetings 270

17.7 Sprint Demos . 270
17.7.1 Application of Sprint Demos to Distributed Projects 270
17.7.2 Benefits of Sprint Demos 271
17.7.3 Challenges of Sprint Demos 271

17.8 Retrospective Meetings . 271
17.8.1 Application of Retrospective Meetings to Distributed

Projects . 271
17.8.2 Benefits of Retrospective Meetings 272
17.8.3 Challenges of Retrospective Meetings 272

17.9 Backlogs . 272
17.9.1 Application of Backlogs to Distributed Projects 273
17.9.2 Benefits of Backlogs . 273
17.9.3 Challenges of Backlogs 273

17.10 Frequent Visits . 273
17.10.1 First Visit . 274
17.10.2 Further Visits . 274
17.10.3 Benefits of Frequent Visits 275
17.10.4 Challenges of Frequent Visits 275

17.11 Multiple Communication Modes 276
17.11.1 Benefits of Multiple Communication Modes 276
17.11.2 Challenges of Multiple Communication Modes 277

17.12 Conclusions . 277
References . 277

18 Feature Teams—Distributed and Dispersed 279
Jutta Eckstein
18.1 Introduction . 279
18.2 Context . 280
18.3 Historical Structures of Distributed Teams 280

18.3.1 Consequences . 281
18.4 Building Agile Teams . 281

Contents xxiii

18.4.1 Feature Teams—Co-located or Dispersed 282
18.4.2 Creating Proximity for Dispersed Feature Teams 284

18.5 Technical Service Team Ensures Conceptual Integrity 285
18.5.1 Starting Team as Role Model 286

18.6 Conclusions . 286
References . 287
Further Reading . 287

19 Roles and Responsibilities in Feature Teams 289
Jutta Eckstein
19.1 Introduction . 289
19.2 Context . 290
19.3 Configuration of a Feature Team 291
19.4 Product Owner . 292

19.4.1 Team of Product Owners 292
19.4.2 Lead Product Owner . 293
19.4.3 Collaborating with Both: Customers and Feature Team . . . 293

19.5 Coach—Also Known as Scrum-Master 294
19.6 Architect and Architecture . 295

19.6.1 Chief Architect . 296
19.7 Project Manager . 297
19.8 Key Roles Support Their Teams Directly 297
19.9 Conclusions . 298

References . 299
Further Reading . 299

20 Getting Communication Right: The Difference Between Distributed
Bliss or Miss . 301
Jan-Erik Sandberg and Lars Arne Skaar
20.1 Introduction . 301
20.2 Background Overview . 302

20.2.1 Background . 302
20.3 Starting a Distributed Agile Project 303
20.4 Low-cost and Effective Communication 304
20.5 Empower the Team . 306
20.6 Common Architecture Across Locations 307
20.7 On “Proxies” . 308
20.8 Conclusions . 309

References . 309

21 A Task-Driven Approach on Agile Knowledge Transfer 311
Jörn Koch and Joachim Sauer
21.1 Introduction . 311
21.2 Case Overview . 312
21.3 Hands-On Approach (Task-Driven Approach) 315

xxiv Contents

21.3.1 Joint Task Planning . 316
21.3.2 Question-Driven Task Scheduling 316
21.3.3 Adequate Task Design . 317
21.3.4 Scrupulous Task Sign-Off 318

21.4 Conclusion . 318
References . 319

22 Architecture-Centric Development in Globally Distributed Projects . 321
Joachim Sauer
22.1 Introduction . 321
22.2 Case Overview . 322
22.3 Software Architecture and Architecture-Centric Development . . . 323

22.3.1 Software Architecture . 323
22.3.2 Architecture-Centric Development in General 324
22.3.3 Architecture-Centric Development in Agile Distributed

Settings . 324
22.4 Distributed Continuous Integration and Collective Ownership . . . 325
22.5 Practical Advice for Software Architects 326
22.6 Conclusions . 328

References . 328

Part V Epilogue

23 Agility Across Time and Space: Summing up and Planning for the
Future . 333
Darja Šmite, Nils Brede Moe, and Pär J. Ågerfalk
23.1 The Beginning of the End . 333
23.2 Current Themes . 334
23.3 Practical Advice . 334
23.4 Areas for Improvement and Future Research 336
23.5 The End of The End . 337

Index . 339

List of Contributors

Editorial Board

Darja Šmite is a Senior Researcher at Blekinge Institute of Technology, which has
recently been ranked as number 11 among the top institutions in the world in sys-
tems and software engineering by the Journal of Systems and Software. She also
holds an Associate Professorship form University of Latvia and has been previously
engaged in industrial positions at a number of software houses in Latvia before pur-
suing an academic career. Her major research interests lie in the area of global soft-
ware development, software process improvement and agile software development.
Smite received her Ph.D. from the University of Latvia for her work on address-
ing the software project risks in globally distributed environment. Contact her at
darja.smite@bth.se or darja.smite@lu.lv

Nils Brede Moe is a Research Scientist at SINTEF the largest independent research
organisation in Scandinavia. He has 12 years of experience working as a researcher
within software development and in consulting software companies around Norway.
His research interests include global software development, process improvement,
self-management, and agile software development. Moe has a master’s of science
degree in computer science from the Norwegian University of Science and Technol-
ogy. Contact him at nilsm@sintef.no

Pär J. Ågerfalk is a Professor at Uppsala University where he holds the Chair in
Computer Science in Intersection with Social Sciences. He received his Ph.D. from
Linköping University an has held fulltime positions at Örebro University, Lero—
The Irish Software Engineering Research Centre, Jönköping International Business
School, and University of Limerick, where he is also currently an Adjunct Profes-
sor. His work has appeared in a number of leading journals in the software and
information systems area, including MIS Quarterly, Information Systems Research,
Communications of the ACM, and Information and Software Technology. He is cur-
rently the Dean of the Swedish National Research School on Management and IT, a

xxv

xxvi List of Contributors

Senior Associate Editor with the European Journal of Information Systems, a Sec-
retary of IFIP WG 2.13 on Open Source Software, and the founding Chair of the
AIS Special Interest Group on Pragmatist Information Systems Research. Contact
him at par.agerfalk@im.uu.se.

Contributing Authors

Alberto Avritzer, Siemens Corporate Research, USA
Alberto Avritzer received a Ph.D. in Computer Science from the University of Cal-
ifornia, Los Angeles. He is currently a Senior Member of the Technical Staff in
the Software Engineering Department at Siemens Corporate Research, Princeton,
New Jersey. Before moving to Siemens Corporate Research, he spent 13 years at
AT&T Bell Laboratories, where he developed tools and techniques for performance
testing and analysis. His research interests are in software engineering, particularly
software testing, monitoring and rejuvenation of smoothly degrading systems, and
metrics to assess software architecture, and he has published over 50 papers in jour-
nals and refereed conference proceedings in those areas.

Jan Bosch, Intuit, USA
Jan Bosch is VP, Engineering Process at Intuit Inc. Earlier, he was head of the Soft-
ware and Application Technologies Laboratory at Nokia Research Center, Finland.
Before joining Nokia, he headed the software engineering research group at the
University of Groningen, The Netherlands, where he holds a professorship in soft-
ware engineering. He received a MSc degree from the University of Twente, The
Netherlands, and a Ph.D. degree from Lund University, Sweden. His research ac-
tivities include compositional software engineering, software architecture design,
software product families and software variability management. He is the author of
a book “Design and Use of Software Architectures: Adopting and Evolving a Prod-
uct Line Approach” published by Pearson Education (Addison-Wesley and ACM
Press), (co-) editor of several books and volumes in, among others, the Springer
LNCS series and (co-) author of a significant number of research articles. He is edi-
tor for Science of Computer Programming, has been guest editor for journal issues,
chaired several conferences as general and program chair, served on many program
committees and organized numerous workshops.

Petra Bosch-Sijtsema, Helsinki University of Technology, FINLAND and Stanford
University, USA
Petra Bosch-Sijtsema is a senior researcher at Aalto University School of Science
and Technology, Laboratory of Work Psychology and Leadership in Finland and
currently a visiting scholar at Stanford University, USA, School of Engineering,
Project Based Learning Lab, USA. She received her licentiate from Lund Univer-
sity (Sweden) and her Ph.D. from the University of Groningen (The Netherlands)
in Management and Organization. She has worked at universities in Sweden, the

List of Contributors xxvii

Netherlands, Canada, Finland and the US. Her research focuses on innovation,
knowledge transfer, management and coordination in global distributed organiza-
tions and teams.

Francois Bronsard, Siemens Corporate Research, USA
Francois Bronsard is a Software Engineering Consultant in the Software De-
velopment Technologies Group at Siemens Corporate Research in Princeton, NJ.
He has a Ph.D. in Computer Science from the University of Illinois at Urbana-
Champaign and over 15 years of industrial experience. He has been active in the
areas of static analysis, quality assurance, global software development and agile
processes for many years and he is a certified SCRUMMaster.

Erran Carmel, American University, USA
Erran Carmel is a Professor at the American University in Washington D.C. His
area of expertise is globalization of technology. He studies global software teams,
offshoring of information technology, and emergence of software industries around
the world. His 1999 book “Global Software Teams” was the first on this topic and is
considered a landmark in the field helping many organizations take their first steps
into distributed tech work. His second book “Offshoring Information Technology”
came out in 2005 and has been especially successful in outsourcing and offshoring
classes. He has written over 80 articles, reports, and manuscripts. He consults and
speaks to industry and professional groups. He is a tenured full Professor at the
Information Technology department, Kogod School of Business at American Uni-
versity. In the 1990s he co-founded and led the program in Management of Global
Information Technology. In 2005–2008 he was department Chair. In 2009 he was
awarded the International Business Professorship. He has been a Visiting Professor
at Haifa University (Israel) and University College Dublin (Ireland). In 2008–2009
he was the Orkand Endowed Chaired Professor at the University of Maryland Uni-
versity College. He received his Ph.D., in Management Information Systems from
the University of Arizona; his MBA from the University of California at Los Ange-
les (UCLA), and his B.A. from the University of California at Berkeley.

Suranjan Chakraborty, Towson University, USA
Suranjan Chakraborty is an assistant professor in the Department of Computer and
Information Sciences at Towson University. He also has prior industry experience,
having worked for eight years in Wipro Technologies. He completed his Ph.D. in
Information Systems from Washington State University. His research interests in-
clude requirements engineering, behavioral processes in information systems devel-
opment, distributed information systems development, and use of qualitative meth-
ods in IS research His research has been published (or accepted for publication)
in Journal of Association of Information Systems, European Journal of Information
systems, Decision Support Systems, and Group Decision and Negotiation. His work
has also been presented or appeared in the proceedings of America’s Conference on
Information Systems, Hawaii International Conference on System Sciences, Euro-
pean Conference on Information Systems, and the annual SIG-ED conference.

xxviii List of Contributors

Kieran Conboy, National University of Ireland Galway, IRELAND
Kieran Conboy is a lecturer in information systems at NUI Galway. His research
focuses on agile systems development. Kieran is currently involved in numerous
projects in this area, and has worked with many companies on their agile initiatives
including Intel, Microsoft, Accenture, HP, and Fidelity Investments. Some of his
research has been published in various leading journals and conferences such as ISR,
EJIS, TOSEM, IFIP 8.6 and the XP200n conference series. Prior to joining NUI
Galway, Kieran was a management consultant with Accenture, where he worked on
a variety of projects across Europe and the US.

Jutta Eckstein, IT communication, GERMANY
Jutta Eckstein, a partner of IT communication, is an independent consultant and
trainer from Braunschweig, Germany. Her know-how in agile processes is based on
over ten years experience in developing object-oriented applications. She has helped
many teams and organizations all over the world to make the transition to an agile
approach. She has a unique experience in applying agile processes within medium-
sized to large distributed mission-critical projects with up to 300 project members.
This is also the topic of her books ‘Agile Software Development in the Large’ and
‘Agile Software Development with Distributed Teams’.

Besides engineering software she has been designing and teaching technology
courses in industry. Having completed a course of teacher training and led many
‘train the trainer’ programs in industry, she focuses also on techniques which help
teach technology and is a main lead in the pedagogical patterns project. She has pre-
sented work in her main areas at ACCU (UK), JAOO (Denmark), OOPSLA (USA),
XP (Europe) and Agile (USA).

Ann-Dorte Fladkjær Niels, Jyske Bank, DENMARK
Ann-Dorte Fladkjær Nielsen is Project Manager at the Jyske Bank Group. She holds
an MSc in Business Systems and Management Engineering, Aalborg University.
She has more than 14 years business experience as Project Manager, Project Mentor
and Facilitator. She is Certified Project Manager (IPMA level C).

Federico Gobbo, University of Insubria, ITALY
Federico Gobbo owns a Ph.D. in Computer Science since 2009 obtained at the Uni-
versity of Insubria Varese-Como (Italy), where he actually works with a post-doc
grant. Since 2005, he has participated to diverse Italian research national projects
and he is member of the PASCAL European network of excellence. Before that, he
has worked as a web specialist in start-up companies settled in Milan, Italy.

Imed Hammouda, Tampere University of Technology, FINLAND
Imed Hammouda received his Ph.D. in Software Engineering from Tampere Univer-
sity of Technology (TUT)—Finland in 2005. He is currently an adjunct professor at
TUT where he is heading the international masters programme at the Department of
Software Systems. Dr. Hammouda’s research areas include software architectures,
variability management, social software engineering, and open source software de-
velopment.

List of Contributors xxix

Jörn Koch, C1 WPS GmbH, GERMANY
Jörn Koch works as senior software architect at C1 WPS GmbH since 2001. Starting
as a developer in 1994 he later got his diploma in computer science and until now
gained many years of experience in leading and coaching of agile projects, doing
business analysis, and designing and analyzing object-oriented software architec-
tures. From 2005 to the end of 2008 Jörn was a member of the distributed team of
the case study’s project.

Mikko Korkala, VTT Technical Research Centre of Finland, FINLAND
Mikko Korkala has been involved in agile development since 2002 and is currently
working on his Ph.D. thesis on customer communication in distributed agile devel-
opment. He has been working at VTT Technical Research Centre of Finland since
2007 as a research scientist and has previously worked at the Department of Infor-
mation Processing Science, University of Oulu, Finland from which he also received
his M.Sc. He has also worked as a software engineer. In addition to research, he has
provided several agile trainings and workshops and has held invited agile talks both
in Finland and abroad. He has also worked as an onsite agile consultant for man-
agement in a large software company and has helped to outline agile processes for
software companies.

Clifton Kussmaul, Muhlenberg College and Elegance Technologies, Inc., USA
Clifton Kussmaul is Associate Professor of Computer Science at Muhlenberg Col-
lege, in Allentown, PA. He is also Chief Technology Officer for Elegance Tech-
nologies, Inc., which develops software products and provides software develop-
ment consulting and services. During 2009–2010 he was a visiting Fulbright-Nehru
Scholar at the University of Kerala, in southern India. His professional interests in-
clude software engineering, free and open source software, scientific computation,
and auditory perception.

Michael Lane, University of Limerick, IRELAND
Michael Lane is a lecturer in the department of computer science and information
systems at the University of Limerick, Ireland. Michael’s research interests revolve
around the area of distributed software development. His Ph.D. research is inves-
tigating project management in distributed teams leveraging agile software devel-
opment practices. Prior to joining the University of Limerick in 2005, Michael had
spent over 20 years in software development working in various domains. This ex-
perience incorporated a number of roles ranging from design and programming of
bespoke services in the direct marketing sector to research and development man-
ager of ERP products in the manufacturing sector. His teaching experience includes
the delivery of a wide range of subjects to both undergraduate and postgraduate
students. Additional educational activities have included the provision of various
management training courses.

Casper Lassenius, Helsinki University of Technology, FINLAND
Prof. Casper Lassenius is a professor (pro tem) at the Software Business and Engi-
neering Institute at Aalto University, where he heads the software process research

xxx List of Contributors

group. His research interests include software processes, software measurement,
quality assurance, and software portfolio and product management.

Likoebe M. Maruping, University of Arkansas, USA
Likoebe M. Maruping is an assistant professor of Information Systems in the Sam
M. Walton College of Business at the University of Arkansas. Likoebe’s research
is primarily focused on the activities through which software development teams
improve software project outcomes. His current work in this area focuses on under-
standing how teams cope with uncertainty in software development projects. He also
enjoys conducting research on virtual teams and the implementation of new tech-
nologies in organizations. His research has been published or is forthcoming in pre-
mier information systems, organizational behavior, and psychology journals includ-
ing MIS Quarterly, Information Systems Research, Organization Science, Journal of
Applied Psychology, and Organizational Behavior and Human Decision Processes.

Gilberto Mato, Siemens Corporate Research, USA
Gilberto Matos is a Software Engineering Consultant in the Software Development
Technologies Group at Siemens Corporate Research in Princeton, NJ. He has a
Ph.D. in Computer Science from the University of Maryland at College Park and
over 15 years of industrial experience developing end-user applications and soft-
ware development tools. He has been actively involved in agile and distributed de-
velopment projects since 2003 and is a certified SCRUMMaster.

Frank Maurer, University of Calgary, CANADA
Dr. Frank Maurer is a Full Professor at the University of Calgary and the head
of the Agile Software Engineering (ASE) group at the University of Calgary.
His research interests are agile software methodologies, engineering digital ta-
ble applications, executable acceptance test driven development, integrating ag-
ile methods and interaction design, framework and API usability, tools for agile
teams, specifically for globally distributed software development and experience
and knowledge management. More information about his research can be found at
http://ase.cpsc.ucalgary.ca/. Currently, the group focuses on empirical investigations
of agile techniques, agile product lines, agile interaction design, software design
guidelines and application engineering for digital surfaces. He is a member of the
Agile Alliance, a Certified Scrum Master, a founding member of the Canadian Ag-
ile Network (CAN)—Le Réseau Agile Canadien (RAC), part of the organizers of
the Calgary Agile Methods Users Group and Associate Editor of IEEE Software
responsible for the Process and Practices area.

Tuomas Mikkola, Solita Oy, FINLAND
Tuomas Mikkola is an Account Manager in Solita working as the supervisor of sev-
eral software implementation projects and services under maintenance. Previously
he has worked as Team Manager and Project Manager in Solita. He received MSc
in Software Engineering from Tampere University of Technology in 1999.

http://ase.cpsc.ucalgary.ca/

List of Contributors xxxi

Robert Morgan, Red Duck Solutions, CANADA
Robert Morgan received a M.Sc. from the University of Calgary’s Department of
Computer Science and is a former member of the Agile Software Engineering
group. In addition to developing distributed agile planning tools, he has had experi-
ence working in the financial and oil and gas sectors as a business analyst, developer
and agile champion. He is the founder and CEO of Red Duck Solutions, a Calgary
based agile software development and consulting firm. You can visit the web site at:
www.redducksolutions.com.

Charles L. Munson, Washington State University, USA
Charles L. Munson is an associate professor in the Department of Management and
Operations at Washington State University. His Ph.D. and M.S.B.A. in Operations
Management, as well as his B.S.B.A. summa cum laude in finance, are from the
John M. Olin School of Business at Washington University in St. Louis. For 2 years
he was Associate Dean for Graduate Programs in Business at Washington State Uni-
versity. He also worked for 3 years as a financial analyst for Contel. His research
interests include supply chain management, quantity discounts, international oper-
ations management, purchasing, and inventory control. Munson has published in
journals such as IIE Transactions, Production and Operations Management, Naval
Research Logistics, Decision Sciences, European Journal of Operational Research,
Journal of the Operational Research Society, Interfaces, Business Horizons, and In-
ternational Journal of Procurement Management. He currently serves as a senior
editor of Production and Operations Management and on the editorial board of the
International Journal of Procurement Management.

Karri Mustonen, Solita Oy, FINLAND
Karri Mustonen is a Subcontracting Manager at Solita Oy. He is responsible for
building supplier network, supplier development and supplier performance man-
agement. He received MSc in Computer Science from Tampere University of Tech-
nology, in Finland.

Josy Oliveira, University of Calgary, CANADA
Josyleuda Oliveira is a Ph.D. student in Computer Science at the University of Cal-
gary. Her research interest is agile software methodologies, specifically in globally
distributed software development. She received a M.Sc. in Software Engineering
from University of Fortaleza-Brazil in 2006. She has had 11 years of experience in
industry, in Brazil. She worked as a Project Manager, Software Quality Assurance
Analyst and Business Analyst.

Maria Paasivaara, Helsinki University of Technology, FINLAND
Dr. Maria Paasivaara works as a researcher and project manager at the Software
Business Engineering Institute at Aalto University. Her main research interest is
global software engineering, with a particular focus on collaboration and communi-
cation problems and practices.

www.redducksolutions.com

xxxii List of Contributors

Minna Pikkarainen, VTT Technical Research Centre of Finland, FINLAND
Minna Pikkarainen has graduated from University of Oulu and has a Ph.D. about
the topic of improving software development mediated with CMMI and agile prac-
tices. Minna has been working as researcher, project manager and senior research
scientist in VTT Technical Research Centre of Finland more than 13 years. During
that time she has worked in 18 industrial driven research projects doing close indus-
trial collaboration with more than 15 organizations in Finland, Ireland and Belgium.
Minna’s research has been published in 25+ journal and conference papers in the
forums like ICSE, ICIS and Empirical Software Engineering Journal. So far Minna
has provided trainings, workshops and invited talks for 10+ different industries re-
lated to agile methods and participated in several conference program committees.
Minna has been member of Lero, The Irish Software Engineering Research Centre
since 2006. For the past 4 years, her work and publications have been focused on
research in the area of agile development.

Rafael Prikladnicki, PUCRS, BRAZIL
Dr. Rafael Prikladnicki is Assistant Professor of Computer Science School at PU-
CRS. He has been active in the global software engineering (GSE) community for
the last nine years and in the agile software development community for the last five
years. For the last two years he has been interested in how GSE and agile methodolo-
gies impact organizational decisions on software development, including business
and technical decisions. He has been acting as coach and instructor in agile software
development (focusing on Scrum, XP and Lean). He was member of the organizing
committee of the 2009 Latin-American Conference on Agile Development Method-
ologies, and he is involved with the ICGSE series organizing committee since the
first edition in 2006. He is also the general chair of the Brazilian Conference on
Agile Software Development, to be organized in 2010. More information online at
http://www.inf.pucrs.br/~rafael

Jakub Rudzki, Solita Oy, FINLAND
Jakub Rudzki is a Project Manager at Solita Oy. He has worked primarily with
distributed Scrum teams. He was also involved in subcontracting initiatives from
the beginning at Solita. Jakub Rudzki is a Ph.D. student at Tampere University of
Technology, in Finland. His research interests focus on software quality assurance
in medium and small software companies. He received MSc in Computer Science
from Kielce University of Technology, in Poland.

Cristiano Sadun, Tieto Norway AS, NORWAY
Cristiano Sadun, born 1970 in Milan, Italy, has a degree in Computer Science from
the University of Milan, Italy and has been working actively in the software en-
gineering industry since 1990, both as individual advisor and within commercial
companies. He has extensive experience with software development, architecture
and methodologies, together with business management and sales, primarily in IT
consultancy and services areas. He is particularly focused on organizational effi-
ciency, quality of delivery and the continuous improvement of his organization; he

http://www.inf.pucrs.br/~rafael

List of Contributors xxxiii

loves to bring together engineering and business perspectives to create value for his
company and its employees and customers. When not busy doing all of the above,
he can be found playing the guitar at excessive volumes, checking out good restau-
rants and mostly trying to see the world trough the wise eyes of his 10-years old
son.

Jan-Erik Sandberg, Det Norske Veritas, NORWAY
Jan-Erik Sandberg has been working as an agile Coach more or less for 10 years
now. He currently works as an agile Coach for “Det Norske Veritas”, a world wide
organization with more than 200 locations. In 2001 he founded the Norwegian Fo-
rum For agile Development. He is an active speaker at many different conferences
and seminars, like Microsoft TechEd, Agile200x and XP200X conferences. He is
the sponsor chair for XP2010 and has been awarded the “Microsoft Most Valuable
Professional” award five years in a row. Jan-Erik is a believer of high quality crafts-
manship, pride and enjoyment of work even in large projects.

Saonee Sarker, Washington State University, USA
Saonee Sarker is currently an associate professor in the Department of Informa-
tion Systems at Washington State University. Professor Sarker received her Ph.D.
in Management Information Systems from Washington State University, and an
M.B.A. from the University of Cincinnati prior to that. Her research focuses on glob-
ally distributed software development teams and other types of computer-mediated
groups, technology adoption by groups, technology-mediated learning, and infor-
mation technology capability of global organizations, and has appeared (or sched-
uled to appear) in outlets such as Information Systems Research, Journal of the
Association of Information Systems, Journal of Management Information Systems,
Decision Support Systems, and Journal of Computer-Mediated Communication.

Suprateek Sarker, Copenhagen Business School, DENMARK
Suprateek Sarker is a professor and Microsoft chair of Information Systems at the
Copenhagen Business School, Denmark. Until recently, he was Associate Profes-
sor and Parachini Faculty Fellow at Washington State University, U.S.A. Much of
his research has involved the use of qualitative research approaches, including posi-
tivist or interpretive case studies, grounded theory methodology, hermeneutics, and
virtual ethnography to study phenomena such as IT-enabled organizational change,
ERP implementation, offshoring, and virtual and mobile collaboration. He is cur-
rently serving on the editorial boards of journals such as MIS Quarterly, Journal
of the AIS, IEEE Transactions of Engineering Management, IT and People, IT for
Development, and JITCAR.

Joachim Sauer, C1 WPS GmbH, GERMANY
Joachim Sauer works as software architect at C1 WPS GmbH in the roles of IT
consultant, project leader and architect for agile development projects. He holds a
diploma in computer science and regularly addresses topics of software engineering
and architecture in teaching and research at the University of Hamburg and the HAW
Hamburg.

xxxiv List of Contributors

Lars Arne Skår, Miles, NORWAY
Lars Arne Skår—Lars is the CTO of Miles—a Norwegian IT-consulting company
focusing on system integration and applying agile practices with established IT
departments. Previously he has worked as CTO of a Nordic software develop-
ment company and as CTO in a Norwegian portal consulting company after some
time in an international consulting company. He has been active in the Norwe-
gian agile community which meet regularly at xp.meetup.com in Oslo. As a de-
veloper/architect for about 20 years, he is concerned with effective architecture sup-
ported by healthy processes. Agile practices are important in this regard, as this
has led us back to being conscious about what we really should deliver and en-
gage actively together with the stakeholders both to figure that out and work dili-
gently towards that goal. He has run workshops on former XP conferences (XP2009,
XP2008, XP2007, XP2006 and XP2005) as well as on Agile2008.

Jayakanth Srinivasan, Malardalen University, SWEDEN and Massachusetts Insti-
tute of Technology, USA
Jayakanth “JK” Srinivasan is a researcher with the Lean Advancement Initiative
at MIT, where he focuses on applying and extending lean enterprise thinking to
knowledge-intensive industries. His forthcoming book, Lean Enterprise Thinking:
Driving Enterprise Transformation (co-authored with Debbie Nightingale), presents
both the seven underlying principles of lean enterprise thinking as well as field-
tested frameworks and tools that organizations can adopt to drive their transforma-
tion efforts. His current research focuses on the twin tracks of the sources of enter-
prise agility in software organizations and the architecture of innovative organiza-
tions. Prior to joining MIT, Dr. Srinivasan worked in the public sector on avionics
systems and in the private sector writing networking software. His academic training
includes a bachelor’s degree in computer engineering, masters degrees in avionics
and aeronautics and astronautics respectively, and a doctoral degree in computer
science.

Per Svejvig, Aarhus University, DENMARK
Per Svejvig is a Ph.D. student at the Aarhus School of Business, Aarhus Univer-
sity. His research interests are in the area of implementation and use of enterprise
systems, managing IT-enabled change, interplay between technology and organi-
zations, and IT project management. He holds a BSc in Engineering, Engineering
College of Aarhus and MSc in IT, Aarhus University. He has more than 25 years
of business experience as manager, project manager and consultant. He is Certified
Senior Project Manager (IPMA level B).

Tarja Systä, Tampere University of Technology, FINLAND
Tarja Systä is a professor at Tampere University of Technology, Department of Soft-
ware Systems. Her main field of research is software engineering, including e.g.
topics related to software development, maintenance and analysis, and software ar-
chitectures.

List of Contributors xxxv

Steve Tendon, Agiliter Consultancy Ltd., CYPRUS
Steve Tendon is a Senior Consultant with Agiliter Consultancy, Ltd, Limsassol,
Cyprus (http://agiliter.com). He has matured more than twenty-five years of pro-
fessional experience, mainly in the field of software engineering; he is a member
of the ACM and of the IEEE. He is currently pursuing a MSc in Software Project
Management at the University of Aberdeen. His current interests are in employ-
ing innovative or emergent methods and concepts from the fields of services man-
agement and systems engineering to help businesses improve their internal and
external processes, particularly when bridging software development processes to
other business processes and functional areas. You can reach him through email:
steve.tendon@gmail.com.

Xiaofeng Wang, Lero, The Irish Software Engineering Research Centre, IRELAND
Xiaofeng Wang is a research fellow in Lero, the Irish Software Engineering Re-
search Centre. Her research areas include software development process, methods,
agile software development, and complex adaptive systems theory. Her doctoral
study investigated the application of complex adaptive systems theory in the re-
search of agile software development. She has also worked in a research institute
in Italy for several years in the area of enterprise knowledge systems. She has pub-
lished several papers in major Information Systems journals and conferences.

Xin Wang, Ivrnet Inc., CANADA
Xin Wang is a software developer for the telephony products at Ivrnet Inc. He has
written and presented on topics such as using digital tabletops to support agile
project planning, the design and implementation experiences on tabletop applica-
tions and migrating user interface from desktops to digital tabletops. He received
his Msc. in computer science from the University of Calgary in 2009.

Daniel Wildt, FACENSA, BRAZIL
Daniel Wildt is Professor of System Information School at FACENSA. He has been
active in the Agile Methodologies community since 2004, leading the Rio Grande do
Sul Agile User’s Group (Brazil) and acting as coach and trainer in agile methodolo-
gies adoption, focused on Lean, eXtreme Programming and Scrum. He was member
of the organizing committee of the 2009 Latin-American Conference on Agile De-
velopment Methodologies, and is member of the organizing committee of the Agile
Brazil 2010, a Brazilian Conference on Agile Software Development. More infor-
mation online at http://danielwildt.com.

Scientific Reviewers

Gabriela Avram
Lero, The Irish Software Engineering Research Centre, IRELAND

Gerry Coleman
Dundalk Institute of Technology, IRELAND

http://agiliter.com
http://danielwildt.com

xxxvi List of Contributors

Torgeir Dingsøyr
SINTEF, NORWAY

Tor Erlend Fægeri, SINTEF, NORWAY

Alberto Espinosa
American University, USA

Helena Holmström
IT University, SWEDEN

Daniel Luebke
InnoQ, SWITZERLAND

Bala Ramesh
University College London, UNITED KINGDOM

Jonas Sjöström
Uppsala University, SWEDEN

Richard Vidgen
University of Bath, UNITED KINGDOM

Part I
Motivation

Chapter 1
Fundamentals of Agile Distributed Software
Development

Darja Šmite, Nils Brede Moe, and Pär J. Ågerfalk

Abstract This chapter provides an introduction to the area of agile distributed soft-
ware development. It proceeds as follows. We start by introducing and motivating
(globally) distributed software development, and follow on with agile software de-
velopment. With this foundation we discuss the concept of agile distributed devel-
opment, its motivation and some of the pertinent issues involved.

1.1 Introduction

1.1.1 Distributed Software Development

In the current era of globalization, cross-national and cross-organizational collab-
oration has become a natural evolution in the operation of the global marketplace.
Tight budgets, limited resources and time constraints have motivated many com-
panies to explore global sourcing. This mode of working promises organizations
the benefits of reaching mobility in resources, obtaining extra knowledge through
recruiting the most talented people around the world, reducing time-to-market, in-
creasing operational efficiency, improving quality, expanding through acquisitions,
reaching proximity to market, and many more. As a result, a growing number of
software companies have started to implement global supply chains.

D. Šmite (�)
Blekinge Institute of Technology, Ronneby, Sweden
e-mail: darja.smite@bth.se

N.B. Moe
SINTEF ICT, Trondheim, Norway
e-mail: nilsm@sintef.no

P.J. Ågerfalk
Uppsala University, Uppsala, Sweden
e-mail: par.agerfalk@im.uu.se

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_1, © Springer-Verlag Berlin Heidelberg 2010

3

mailto:darja.smite@bth.se
mailto:nilsm@sintef.no
mailto:par.agerfalk@im.uu.se
http://dx.doi.org/10.1007/978-3-642-12442-6_1

4 D. Šmite et al.

While companies are taking the assumed benefits almost for granted, industrial
experience shows that these are not as easy to achieve as the literature may lead
one to believe [1]. In contrast to other engineering disciplines, developing software
is recognized as a significantly complex task that heavily relies on human inter-
action. Accordingly, distributed software projects with geographically, temporally
and socio-culturally dispersed teams unavoidably experience unique pressures and
challenges. There are major problems related to communication, coordination and
collaboration caused by geographical, temporal and socio-cultural distance.

1.1.2 Agile Software Development

Setting up an agile team is usually motivated by benefits such as increased produc-
tivity, innovation, and employee satisfaction. However the agile approach is also mo-
tivated by the increasing complexity of software development. As information tech-
nology’s role in the modern economy has grown in importance, software developers
have found themselves confronted with the challenges of exceptional complexity. A
software team needs to interact with and consider the viewpoints of a wide variety
of stakeholders, many of whom have conflicting views on the software features and
functionality. The team must then balance disparate needs of diverse stakeholders,
a task far more challenging than merely fulfilling the functional requirements of a
system. Thus, it comes as no surprise that many software developers more than wel-
come agile software development, which embraces these emerging realities at its
core.

The agile approach is built around empowered and self-organizing teams that
coordinate their work themselves. In such teams there is also a strong focus on col-
laboration and communication. Collaboration and coordination depend on commu-
nication, which is central to successful software development. These activities are
supported through various agile practices including pairing, customer collaboration,
stand-ups, reviews, retrospectives and the planning game.

1.2 Merging Agility with Distribution

Addressing the problems related to the complexity of software development and
the strong focus on collaboration, coordination and communication, are primary
reasons for the growing interest in exploring the applicability of agile approaches in
distributed software development. Despite the popularity of the topic, the practice of
agile development has been well ahead of research in the field [2]. Thus, there is still
no consensus or deep, theoretically grounded, understanding of the applicability of
agile methods to different types of software projects and the flexibility in application
of agile methods necessary to realise the benefits promised.

1 Fundamentals of Agile Distributed Software Development 5

Table 1.1 Characteristics of agile versus traditional distributed software development

Characteristics Agile Development Distributed Development

Communication Informal Formal

Face-to-face Computer-mediated

Synchronous Often asynchronous

Many-to-many Tunneled

Coordination Change-driven Plan-driven

Mutual adjustment, self-management Standardization

Control Lightweight Command-and-control

Cross-functional team Clear separation of roles

1.2.1 Potential Issues

While the motivation for implementing agility in distributed software development
is clear, the process of marrying agility with distribution is not straightforward.
Looking at the principles of agile development and the environment of distributed
projects, one can easily characterize the two as opposite extremes on a continuum.
The fundamental differences between agile and distributed development can be il-
lustrated by the following examples (see Table 1.1).

Methodological standardization has often been argued to be the most effective
way to manage global software teams [3]. Consequently, global managers tend to
rely on plan-driven methods, in which the life cycle model specifies the tasks to
be performed and the desired outcomes of each project phase. These projects are
often characterized by defined task division, strict role separation, and preferably
complete documentation. Managers are required to perform proper upfront planning
and check adherence to the processes through supervision.

However, because of geographical, temporal and socio-cultural distance, stan-
dardization and command-and-control oriented management often fail. Distributed
development is associated with computer-mediation, asynchronous communication,
and lack of transparency for remote activities. Thus, the applicability of these coor-
dination mechanisms is typically insufficient. This motivates the application of agile
methods based on mutual adjustment and teamwork for distributed project coordi-
nation.

These differences between agile and distributed foundations suggest that the ap-
plication of agile methods in distributed environments is doomed to fail. In fact,
many believe that being agile and distributed is unrealistic. For example, Kontio et
al. [4] claim that agile practices are hard to implement in distributed teams espe-
cially when the team size is large. On a similar note, Taylor, Greer et al. [5] claim
that distributed agile software development suffers substantial difficulties because
of its complex development environment and lack of empirical evidence describing
the actual development experiences.

Due to geographical separation of stakeholders and teams in distributed projects,
many of the fundamental concepts promoted by agile approaches are indeed difficult

6 D. Šmite et al.

to apply. The implementation of such practices as pair-programming, shared code
ownership and onsite customer, puts demands on the distributed projects and leads
to tailoring the practices and compensating the lack of co-location and face-to-face
interaction through innovative information technology and communication tools.
However, it has been argued that there are issues that cannot be solved through
tools. For example, it is widely believed that trust needs touch. Accordingly, the
application of agile methods for distributed projects, and thus the extent to which
the benefits of agility can be achieved, may be hampered.

1.2.2 All or Nothing versus Á la carte

While agile methods promote flexibility, some agilists advocate an all-or-nothing
attitude to the selection and application of the methods and practices. This is because
only the synergetic combination is recognized to guarantee the maximum benefits.
Hence, the tailoring attitude to agile methods is often not very well received. The
question of the viability of agile approaches in distributed projects then certainly
springs to mind. If distributed projects are forced to select and tailor agile methods
and practices, therefore following á la carte approach, what are the benefits that one
can expect? With this aim a series of studies have been conducted and experiences
clearly show that agility across time and space not only exists but also gains success.
As long as developers understand the rationale behind certain practices suggested
by a method, tailoring or even replacing parts should not be a problem. The issue
at stake is rather to make sure that this rationale is communicated to developers for
them to act upon in an informed way.

1.3 Current Practice

Previous work and published experiences (e.g. by some of the authors and editors of
this book) show successful implementation of agile values and principles in different
distributed projects. This motivates the assessment of the viability of agile practices
for distributed software development teams. Working on this book we have sought
to understand the major areas of interest covered by current research. With this aim,
we conducted a literature study and identified 41 relevant research papers from the
following conferences: XP, ICGSE, Agile, Euromicro, HICSS, COMPSAC, ASPEC
and EuroSPI. Research topics covered by these articles included:

• Benefits of introducing agility in distributed projects;
• Adopting agility for distributed projects;
• Communication in agile distributed projects;
• Planning and coordination in agile distributed projects;
• Customer relationship in agile distributed projects;
• Tool support for implementing agility in distributed projects;

1 Fundamentals of Agile Distributed Software Development 7

• Recommendations for implementing agility in distributed projects;
• XP in distributed projects;
• Scrum in distributed projects;
• User stories in distributed projects.

These topics illustrate three trends. First, researchers are exploring the benefits
of agile methods in distributed environment. Second, considerable effort is put into
exploring the practices that unavoidably require tailoring through, for example, tool
support. Finally, a large number of articles are dedicated to investigating the best
practices for implementing agility, including attempts of validation of selected agile
methods (or parts thereof) in distributed environments.

1.4 Conclusions

Arguably, the combination of agile and distributed development is of immense inter-
est to industry. Agile development practice has always been ahead of research, with
academics struggling to understand what is going on and why it apparently works
so well. The same is true about agile distributed development, where practitioners
started to experiment and quickly adjust their strategies. As a result, a number of
agile methods have been tried out in distributed projects, and there is certainly a lot
to be learnt from that experience.

Despite the popularity of the topic, we still do not understand fully the limi-
tations and viability of agile methods in seemingly incompatible environments of
distributed software projects. Agile methods work well in the settings they were de-
signed for (i.e. small co-located teams). How they will play out in large, globally
distributed projects, is still an open question. However, the remainder of this book is
devoted to explore this question and provide actionable advice for anyone embark-
ing on such a quest, or is just interested in the area for any other reason (including
being a researcher, perhaps).

References

1. Ó Conchúir, E., Ågerfalk, P. J., Fitzgerald, B., & Holmström Olsson, H. (2009). Global soft-
ware development: Where are the Benefits? Communications of the ACM, 52(8), 127–131.

2. Ågerfalk, P. J., & Fitzgerald, B. (2006). Flexible and distributed software processes: Old petu-
nias in new bowls? Communications of the ACM, 49(10), 26–34.

3. Carmel, E. (1999). Global software teams: Collaborating across borders and time zones. En-
glewood Cliffs: Prentice-Hall.

4. Kontio, J., Hoglund, M., Ryden, J., & Abrahamsson, P. (2004). Managing commitments and
risks: challenges in distributed agile development. In Proceedings of the international confer-
ence on software engineering (pp. 732–733).

5. Taylor, P. S., Greer, D., Sage, P., Coleman, G., McDaid, K., & Keenan, F. (2006). Do ag-
ile GSD experience reports help the practitioner? In Proceedings of the 2006 international
workshop on global software development of ACM (pp. 87–93).

Part II
Transition

Chapter 2
Implementing Extreme Programming
in Distributed Software Project Teams:
Strategies and Challenges

Likoebe M. Maruping

Abstract Agile software development methods and distributed forms of organizing
teamwork are two team process innovations that are gaining prominence in today’s
demanding software development environment. Individually, each of these inno-
vations has yielded gains in the practice of software development. Agile methods
have enabled software project teams to meet the challenges of an ever turbulent
business environment through enhanced flexibility and responsiveness to emergent
customer needs. Distributed software project teams have enabled organizations to
access highly specialized expertise across geographic locations. Although much
progress has been made in understanding how to more effectively manage agile
development teams and how to manage distributed software development teams,
managers have little guidance on how to leverage these two potent innovations in
combination. In this chapter, I outline some of the strategies and challenges associ-
ated with implementing agile methods in distributed software project teams. These
are discussed in the context of a study of a large-scale software project in the United
States that lasted four months.

2.1 Introduction

It is not a surprise that constructing software applications is an inherently complex
task that requires significant coordination and project management resources. We
repeatedly read it in the academic and practitioner literature in information systems
and software engineering. The construction of software itself requires significant
expertise to be brought to bear. More often than not, these software construction
efforts must be orchestrated among developers whose work tasks are highly inter-
dependent. In addition to being well-versed in managing the technical domain of
software development, developers need to have some understanding of the business
domain, for which the software is being constructed. As if these challenges were not

L.M. Maruping (�)
Sam M. Walton College of Business, University of Arkansas, Fayetteville, AR 72701, USA
e-mail: lmaruping@walton.uark.edu

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_2, © Springer-Verlag Berlin Heidelberg 2010

11

mailto:lmaruping@walton.uark.edu
http://dx.doi.org/10.1007/978-3-642-12442-6_2

12 L.M. Maruping

enough, the past two decades have seen the rapid evolution of the business environ-
ment for software products. In particular, the cycle times for delivering functional
software have become increasingly aggressive. Further, the very nature of what the
software product is expected to do—that is, the business requirements—have been
changing more frequently. As the introduction to this book has already highlighted,
agile methods have emerged as a highly effective approach for meeting the chal-
lenges posed by today’s demanding software development environment.

Significant advances in the capabilities of information and communication tech-
nologies (ICTs) have enhanced the capacity of organizations to draw on software
development expertise regardless of where it is physically located. An obvious ad-
vantage provided by such reach is that organizations can more readily draw upon
the expertise needed to solve business problems as they arise. Consequently, we are
seeing the increased use of distributed forms of organizing software project teams
[4]. Not surprisingly, given the promise of agile methods for software project per-
formance, there has been tremendous interest in understanding how organizations
can gain the benefits of implementing agile practices in distributed software project
teams [2, 3, 8]. However, distributed forms of organizing software project teams
present their own challenges in terms of communication, coordination, and control
[5, 12]. Distributed software project teams can also differ substantially from each
other in terms of their degree of spatial, temporal, and configurational dimensions—
each of which affects the ability to implement key processes [9]. Unfortunately,
adopting agile methods in distributed software project teams is not a straightforward
process. Each agile method comprises different practices. These practices differ in
the extent to which they can be adopted in a distributed context. Consequently, there
is value in examining strategies for implementing agile methods at the level of the
individual practices. In fact, this process of method tailoring and utilizing an à la
carte approach to adopting agile method practices is more the norm than the excep-
tion in organizations. With these issues in mind, my goal in this chapter is to outline
some strategies for implementing agile practices in a distributed software project
team setting. The suggestions provided here are based on observations from a four-
month study of 56 software project teams following the eXtreme Programming (XP)
method.

2.2 Implementing XP Practices: Where Is an Organization
to Start?

2.2.1 The Promise of XP

Among the various agile development methods that have emerged in response to
the evolving environment for software development, XP has been one of the most
widely adopted. Consistent with other agile methods, and as stated in the agile man-
ifesto, XP places an emphasis on individuals and interactions over processes and

2 Extreme Programming in Distributed Teams 13

tools, working software over comprehensive documentation, customer collabora-
tion over contract negotiation, and responding to change over following a plan [7].
The XP method promises a number of benefits to software project teams including
the production of higher quality functional software, shorter development cycles,
satisfied customers, and less stressed developers. Evidence from academic research
has pointed to the success of XP in yielding positive project outcomes—particularly
under conditions where project requirements tend to be unstable (e.g., [6, 10, 11]).

While there is an abundance of guidance on how to implement XP in software
project teams whose members are co-located, managers find themselves facing un-
certainty about how to implement XP in a distributed setting. Views on whether
XP can be successfully implemented in distributed software project teams are cur-
rently mixed. For instance, Batra [3] suggests that the structure of distributed set-
tings presents challenges that preclude the possibility of successfully implementing
XP in global software project teams. In contrast, Holmström et al. [8] suggest that
agile methods such as XP can actually reduce the challenges posed by distributed
settings. In order to understand the issues surrounding the implementation of XP
in distributed project teams, it is important to focus the discussion on the practices
that make up the XP method. This is critical because XP practices differ in their
functional purpose and the conditions required for their successful implementation.
For example, some XP practices are more planning-oriented in nature whereas oth-
ers are more action-oriented. Furthermore, a practice-oriented approach resonates
quite well with the prevailing à la carte approach utilized by most organizations
implementing XP [6, 10].

2.2.2 Understanding How Your Software Project Team Is
Structured and Why It Matters

It is important that managers be aware of precisely how their software project
teams are distributed. Team distribution is not a unitary concept. Rather it encom-
passes several dimensions—each of which carries different implications for soft-
ware project teams’ ability to effectively execute certain processes. Team member
distribution can be characterized in terms of spatial, temporal, and configurational
dimensions [9].

Spatial dispersion represents the average distance between the physical locations
in which team members are situated. The spatial dispersion of teams can range from
having all team members working in the same building on the same floor to a sit-
uation where team members are spread across different countries. When quantified
in measurement terms, this can range from distances of a mere few meters to dis-
tances of thousands of kilometers. Viewed from this perspective, it is clear to see
that there are various ways in which the distance can be traversed to facilitate com-
munication among team members. In teams with low spatial dispersion, this can
be as simple as walking down the corridor to another teammate’s office. In teams
with slightly higher spatial dispersion it could involve driving a few hundred kilo-
meters to the next city. In more extreme cases it can involve taking an overnight

14 L.M. Maruping

flight to a different country. Of course, advanced ICTs (e.g., VoIP, Skype, Instant
Messenger, videoconferencing) now exist to facilitate inexpensive and high quality
communication regardless of distance.

Temporal dispersion reflects the extent to which there is overlap in normal work
hours for team members. This is conceptually different from spatial dispersion. Two
teams can have the same level of spatial dispersion but have different levels of tem-
poral dispersion. For instance, one team might have its members spatially dispersed
across Boston and Atlanta. This team would be considered to have a high level of
spatial dispersion. However, all team members operate within the same time zone
and therefore have completely overlapping work hours—i.e., low temporal disper-
sion. Another team might have its members spatially dispersed across Boston and
Omaha. Arguably the level of spatial dispersion is similar for both teams. How-
ever, the two locations operate in different time zones. Therefore, this team has a
higher level of temporal dispersion than the first one. In general terms, teams whose
membership is distributed in an East-West orientation are more likely to be tem-
porally dispersed (i.e., span different time zones) than teams whose membership is
distributed in a North-South orientation (i.e., within the same time zone). Increasing
levels of temporal dispersion make it challenging for teams to engage in effective
coordination of work.

Finally, configurational dispersion is the arrangement of team members across
physical locations. These locations can be thought of in terms of the number of dis-
tinct buildings or cities where a team’s members are located. The configurational
dispersion of a team can be understood independently of spatial and temporal dis-
persion. For instance, two six-member teams can have their members spread across
Geneva and St. Gallen. The first team might have three members located in the
Geneva office and three members in the St. Gallen office. In contrast, the second
team might have one member located in the St. Gallen office and five members
in the Geneva office. Clearly both teams have the same level of spatial and tem-
poral dispersion. However, the arrangement of team members across locations dif-
fers. Certain configurations of dispersion have been found to be detrimental to team
functioning [5]. Table 2.1 below includes a summary of these different forms of
dispersion and provides examples of teams exhibiting low and high levels of each.

By understanding the dimensions, along which their software project teams may
be distributed, managers are in a better position to understand what challenges and
opportunities exist for successfully implementing XP practices and enjoying the
benefits those practices provide. In the remainder of this chapter, I briefly introduce
the setting, from which my observations are drawn. I then describe the strategies uti-
lized and pitfalls to be avoided in implementing the XP practices within the context
of specific forms of team distribution.

2.3 Case Overview

I conducted a four-month study of a large-scale software development project in a
large U.S.-based software organization. The organization operated in both the pack-

2 Extreme Programming in Distributed Teams 15

Table 2.1 A summary of different forms of team dispersion

Form of Dispersion Definition Examples

Spatial The average distance between
the physical locations in which
team members are situated

Low: A team where members are
located within close proximity of each
other (e.g., the same building)

High: A team where members are
located in different countries (e.g.,
across an office in the U.S. and an
office in Japan)

Temporal The extent to which there is
overlap in the normal work hours
for team members

Low: A team where members are
located in the same time zone (e.g.,
across an office in Toronto and an
office in Miami)

High: A team where members are
located in different time zones (e.g.,
across an office in Toronto and an
office in Milan)

Configurational The arrangement of team
members across physical
locations

Low: A team whose members are
equally spread across three sites (e.g.,
three members at each site: 3-3-3)

High: A team whose members are
unevenly spread across three sites
(e.g., two members at the first site,
one member at the second site, and six
members at the third site: 2-1-6)

Fig. 2.1 Geographic dispersion of the software project teams

aged software and the custom-built software markets. Given its established opera-
tions in different locations across the globe (e.g., India, South Africa, China), the

16 L.M. Maruping

organization had already gained extensive experience with managing distributed
project teams. In contrast, agile methods had only been adopted by the company
within the last few years. The project involved 73 different software project teams
working independently to create an enterprise-wide software application designed
to support business processes in a U.S.-based customer organization. The sizes of
the project teams ranged from eight to twelve members. As Fig. 2.1 illustrates, most
of the project teams were composed of members who were located within the U.S.
However, a proportion of the project teams had members spread across the U.S.
and India. Even within the U.S., project teams had members spread across the West
Coast, the Mid-West, and the East Coast. The average age of team members was
29.4 and they had an average of 7.2 years of programming experience. The project
teams had a variety of ICTs at their disposal, including videoconferencing, chat,
email, and telephone. In addition to having its own assigned leader, each project
team was also assigned a representative from the customer organization. The cus-
tomer representative assigned to each team was an expert in the specific business
domain for which the software module was being developed.

Each project team was assigned to design and create a specific module of the
system. Although the participating organization encouraged the use of XP practices
by its project teams, team leaders had the autonomy to decide which specific XP
practices their team used. Consequently, teams varied in the extent to which they
implemented various XP practices. It is important to note that this is not unlike ob-
servations from other studies of XP use in other organizations (e.g., [1, 10, 11, 13]).
As noted earlier, the project spanned a four-month period. This afforded me an op-
portunity to observe various phases of the projects unfold over time. All 73 project
teams began work on their assigned modules at the same time. Given the number
of teams involved in the study, I primarily employed a survey-based methodology
for assessing the level and timing of XP practice use. These assessments were con-
ducted at three different points in time over the course of the project timeline. Out
of the 73 project teams involved, 56 participated in all phases of the survey assess-
ment. Consequently, my observations are based on these 56 project teams. In the
discussion that follows, I draw on observations of teams in this project to outline
recommendations for appropriation of XP practices in distributed software project
teams. Table 2.2 provides a summary description of the project and project teams.

2.4 XP in Distributed Software Project Teams: Implementation
Strategies and Pitfalls to Avoid

2.4.1 The Planning Game

Motivation The planning game is a critical process for understanding the require-
ments for the software application under construction. This practice is used to out-
line the scope of the next release of the software, including core features to be in-
cluded and a rough estimate of the timeline for completion. An important benefit of

2 Extreme Programming in Distributed Teams 17

Table 2.2 A summary of project features

Project/Team Feature Description/Statistic

Project duration Four months

Number of project teams 73 teams

Number of developers 689 developers

Average age of team members 29.4 years

Average project team size 11 members (range: 8–12 members)

Average development experience 7.2 years

Locations involved India, U.S. West Coast, U.S. Mid-West, U.S. East Coast

Implemented practices Planning game (approx. 48 teams), collective ownership
(approx. 35 teams), coding standards (approx. 40 teams), use
of metaphor (approx. 10 teams), simplicity of design (approx.
36 teams), sustainable pacing (approx. 27 teams), pair
programming (approx. 40 teams), continuous integration
(approx. 36 teams), unit testing (approx. 36 teams),
refactoring (approx. 29 teams), customer involvement
(approx. 28 teams), small releases (approx. 37 teams)

this practice is that it enables project teams to visualize the business process that will
be supported by the features and functions of the next release. This is accomplished
by working closely with the customer representative and laying out the story cards
in a sequence that reflects business processes of interest.

Implementation Description An important part of implementing the planning
game is the use of story boards to outline the sequence of activities that make up the
business process being supported. This typically involves a large physical space, on
which index cards can be placed and moved around. In a distributed setting such an
approach may not make much sense since not all developers are able to physically
work with that space. Some of the more successful project teams in the study re-
ported replicating this process electronically by using a central digital repository for
the story boards, which all team members had access to. This shared space allowed
all team members to view and manipulate the story boards in real-time.

Limitations The degree of spatial and configurational dispersion did not seem to
affect the ability of project teams in the study to successfully execute the planning
game. In some cases, high levels of temporal dispersion presented a few challenges.
One team that had team members spread across India and the East and West coast
of the U.S. complained that it was often difficult to reach a shared understanding
about the next release because team members could never all meet at the same time
and discuss issues pertaining to the story boards. Often, if team members in the U.S.
had met and agreed upon some elements on the story board, the team members in
India would be left to interpret what was in the repository. It often took a significant
amount of back-and-forth discussion through email and late night (or early morning)
phone calls to resolve inconsistencies in understanding across sites.

18 L.M. Maruping

Practical Tips

Tip 1 For highly temporally distributed project teams it would probably be
beneficial to hold periodic team meetings to discuss the story boards
involved in the next release of the software.

Tip 2 Planning game meetings will be more effective if conducted using syn-
chronous communication such as telephone or videoconference. Chat
software may also work but can be prone to miscommunication. With
chat software it may also take longer for team members to reach a com-
mon understanding of issues.

2.4.2 Collective Ownership

Motivation Collective ownership is an important project team practice because it
provides a clear understanding of the roles and responsibilities of all team members
with respect to the software. This practice has been found to enhance the quality of
software produced by project teams. By giving all team members a shared responsi-
bility for the software, collective ownership encourages quality-enhancing practices
such as refactoring.

Implementation Description Many of the teams that implemented the collective
ownership practice only needed to meet once during the early phases of the project
to discuss roles and responsibilities. For the duration of the project the sense of col-
lective ownership, and the activities it enabled, were reinforced from time to time.
Team members at each site understood that if they needed to make changes to any
part of the software, they were well within their rights to do so. It is important
to note that action-oriented practices such as unit testing, acceptance testing, and
continuous integration served as an important safety net for teams using the col-
lective ownership practice. Through these action-oriented practices, project teams
were able to identify defects or deviations from customer requirements that may
have been introduced by a team member who was making changes to the software
code.

Limitations Because collective ownership pertains to roles and responsibilities,
none of the three forms of team dispersion posed a challenge to the project teams in
the study. Distributed teams generally did not have any problems implementing this
practice.

2 Extreme Programming in Distributed Teams 19

Practical Tips

Tip 1 If you are considering implementing the collective ownership practice,
communicate the roles and responsibilities clearly during the early
phases of the project. Consider having a team meeting involving all
sites for this discussion.

Tip 2 Clearly outline the norms surrounding the behavior encouraged by col-
lective ownership. For instance, if any member can modify any part of
the code at any time, it would be important that other team members be
notified when such a change is being effected. If not, then safe-guards
need to be put in place to prevent defects from inadvertently being in-
troduced.

2.4.3 Coding Standards

Motivation The use of coding standards has tremendous benefits for software
project efficiency and quality, especially when the teams are composed of distributed
members. By having an agreed upon set of standards (e.g., about variable naming
conventions, data types, coding structures), team members have a shared under-
standing for interpreting each other’s work. Project teams find it easier to commu-
nicate and coordinate when such standards are in place.

Implementation Description Project teams that implemented the coding stan-
dards practice used two mechanisms. First, during the team kick-off meeting, the
standards were communicated and discussed by all team members. Some teams
conducted the meeting using telephone conferencing while others employed video-
conferencing technology. This allowed team members to seek clarification and elab-
orate on various issues effectively. The use of these technologies minimized the po-
tential for miscommunication and misunderstanding. Second, the coding standards
that were agreed upon were documented and made available to all team members via
a shared digital repository. Members at each site were able to access this repository
at any time.

Limitations Spatially and configurationally dispersed project teams did not face
any challenges with implementing the coding standards practice. In general, tem-
porally dispersed project teams did not face any challenges either, provided that all
team members were involved in the initial meetings to discuss issues pertaining to
coding standards.

20 L.M. Maruping

Practical Tips

Tip 1 Coding standards should be discussed and established early in the soft-
ware project lifecycle. Managers should make sure that all members of
the project team participate and understand the standards that will guide
their work.

2.4.4 Use of a Metaphor

Motivation Metaphors provide a useful guide to team members on how the sys-
tem, as a whole, should operate. The use of metaphors enables team members to
develop a mental map of the system. As a result, team members are able to under-
stand how their inputs fit into the big picture.

Implementation Description Only a few project teams in the study implemented
the metaphor practice. This is consistent with other observations of XP in the field.
The use of metaphor tends to be the least commonly followed practice. One team
that implemented the metaphor practice held a team meeting at the start of the
project. The team leader solicited the input of team members on what the metaphor
should be. Team members engaged in a lively discussion of the metaphor via video-
conference. In one case, the team members at the India site were not familiar with
one of the metaphors proposed, so members at the U.S. site spent time explaining the
metaphor until it was understood. Once all team members had a good understanding
of the metaphor, they adopted it and used it as a guide for the project.

Limitations Due to the availability of tele- and videoconferencing technology,
spatial and configurational forms of dispersion did not present much of an impedi-
ment to software project teams. Temporally dispersed teams faced some minor chal-
lenges. These challenges occurred in teams that were composed of members in the
U.S. and India and were largely linked to cultural differences in the understanding
of specific metaphors. Differences needed to be resolved via synchronous commu-
nication.

Practical Tips

Tip 1 Consider the composition of your team when implementing the
metaphor practice. Are all team members familiar with the metaphor?
Does the metaphor hold the same meaning for all team members? This
may be especially important if your team has members in another coun-
try that is culturally different from yours.

2 Extreme Programming in Distributed Teams 21

2.4.5 Simplicity of Design

Motivation The emphasis of the simple design practice is on developing software
functionality using the simplest coding structure possible to make it work. Simple
software design yields multiple benefits for project teams. It reduces the potential
for software defects, reduces the amount of effort that team members must expend to
understand the code, and it makes it much easier to implement changes to the code
when necessary. Simple design is especially critical for distributed software project
teams since development efforts need to be coordinated between team members who
have a lack of shared context. Communication and coordination are much easier to
manage when the design of the software is simple.

Implementation Description Many software project teams found it relatively
easy to implement the practice of simple design. During the early phases of the
project, teams discussed the methods through which simplicity would be achieved
in the design of the code. Much of this was articulated in the coding standards used
to guide the team’s development effort. Teams were careful to focus their devel-
opment effort on features and functionality related to the current iteration of the
software and not on anticipated (future) iterations. A few teams sought to simplify
the design by minimizing the number of classes and methods in the software code.

Limitations As a guiding principle for the structure of the software, spatially,
temporally, and configurationally dispersed project teams were unobstructed in their
ability to implement the simple design practice. In fact, the implementation of this
practice yielded significant benefits in temporally and configurationally dispersed
project teams because it reduced the associated coordination challenges.

Practical Tips

Tip 1 Managers should encourage project teams to implement the simple
design practice early in the project life cycle. Adherence to, and rein-
forcement of, this practice will facilitate behaviors such as refactoring
that will yield benefits for the duration of the project.

Tip 2 The simple design practice will be especially beneficial in project teams
that are highly temporally and/or configurationally dispersed. These
types of project teams face considerable coordination challenges. The
simple design practice reduces complexity in the structure of the soft-
ware code, making coordination more manageable.

22 L.M. Maruping

2.4.6 Sustainable Pacing

Motivation Sustainable pacing provides guidelines about how to manage the tim-
ing of code development, testing and deliverables. Developing software to meet a
customer deadline is undoubtedly demanding on project team members. The process
of developing software is, by nature, a complex and knowledge-intensive undertak-
ing. Coordinating team member inputs across multiple sites makes this process even
more demanding. Team members often log a large number of hours, working late to
produce functional software within an established project deadline. Such demands
inevitably create stress, exhaustion, and burnout among team members. Developing
software code in such a state increases the likelihood of defects being introduced or
overlooked. The principle of sustainable pacing ensures that team members work on
a comfortable schedule that can be maintained for the duration of the project. With
sustainable pacing, developers are able to bring more energy to their work on the
project because they do not have to work for an unreasonable number of hours.

Implementation Description The implementation of the sustainable pacing prac-
tice was largely driven by project parameters such as release schedules, module size,
and project team size. For instance, one project team was responsible for designing
a module to support the customer’s procurement processes. Given the complexity
of the procurement process itself, coupled with the importance of the process to
the customer’s business operations, a larger number of release cycles were required.
Consequently, the project team had little control over the pacing of project deliv-
erables. In contrast, another project team was responsible for developing the cus-
tomer’s HR module for processing employee reimbursements. This project required
fewer release cycles and the project team had flexibility in determining the timing
of the releases. Interestingly, project teams that had members located at U.S. and
Indian sites were able to facilitate sustainable pacing more effectively than project
teams with members located in the U.S. only. This was partly because the tempo-
rally dispersed teams were able to send work from one site to another at the end
of the work day, ensuring that progress continued to be made in achieving project
goals.

Limitations Project teams were generally quite limited in their ability to imple-
ment the sustainable pacing practice. Their ability to implement this practice was
contingent on project-related constraints. Within these constraints, temporally dis-
persed project teams were found to be more effective in implementing this practice.

Practical Tips

Tip 1 Although control over sustainable pacing is largely determined by
project parameters and customer deadlines, managers can enhance the
ability to manage this practice through the design of the team. Consider
composing the team of members who are located across different time

2 Extreme Programming in Distributed Teams 23

zones. Alternatively managers can compose larger teams to spread the
workload. However, the benefits of this approach need to be weighed
against the added cost of additional employees devoted to the project.

2.4.7 Pair Programming

Motivation As earlier chapters have already noted, the pair programming practice
in XP involves two developers using one computer to write code. Roles in this prac-
tice include one developer writing software code while the other developer conducts
a real-time code review-identifying errors as they occur-and broadly maps out tests
for the code. The roles rotate between the developers involved. Pair programming
yields numerous benefits, including the ability to produce more software code of a
higher quality.

Implementation Description The ability to implement the pair programming
practice was contingent on the design of the project team. Project teams that were
spatially or temporally dispersed were able to institute the practice by co-locating
developers at each location. Through this structure, pair programming could be ex-
ecuted in much the same way as it would be in a co-located team. Pair programmers
could then coordinate their work with pairs at other physical locations (and in other
time zones). For example, one project team that was responsible for developing the
module to support customer billing was composed of four members at the east coast
site in the U.S., and five members at the Indian site. This team used the pair pro-
gramming practice within geographic sites and then coordinated their work across
sites. Consequently, the project team as a whole was able to realize the benefits of
pair programming.

Limitations Configurational dispersion posed a major challenge to some project
teams. In particular, project teams that had an isolated team member were some-
what constrained in their ability to fully implement pair programming. One such
team attempted to manage pair programming through electronic means. Much of
the communication was conducted through a chat application and telephone. This
approach proved to be highly ineffective as the team experienced numerous delays,
frequent misunderstandings about the code, and a significant amount of frustration
among team members. After several unsuccessful attempts, the project team opted
to change the role of the isolated developer and instead manage all pair program-
ming at sites with co-located team members only.

24 L.M. Maruping

Practical Tips

Tip 1 To the extent possible, avoid distributed pair programming. Depending
on the design of your project team, consider implementing pair
programming within sites rather than across sites. This will enable
your project team to reap the benefits of pair programming much more
effectively.

Tip 2 Manage the coordination of project inputs between pairs of program-
mers across sites. Such an arrangement will reduce the complexity of
managing multiple interdependencies among different team members
within and across development sites.

2.4.8 Continuous Integration and Unit Testing

Motivation Tests and continuous integration are often tightly intertwined. Con-
tinuous integration yields several benefits for project teams. Through this practice,
project teams are able to produce and maintain an application with minimal code
defects. This is because changes to the software code are not committed to the pro-
duction code until the newly integrated software passes all functional tests. When
defects are discovered, it is easier to trace the changes to which those defects are
linked. This iterative approach to development also makes it easier to incorporate
changes to the software and/or add new functionality with minimal effort.

Implementation Description Project teams that implemented the continuous in-
tegration practice were able to work across geographic and temporal boundaries
effectively. Two different approaches were used. In one team, continuous integra-
tion was implemented for components that were developed within the U.S. West
coast site. Simultaneously, continuous integration was used in developing compo-
nents at the Indian site. Once their code passed all functional tests, team members at
the Indian site then handed off their component to the U.S. site. Integration of both
components was then conducted, including associated testing and modification. In
an alternative approach, another project team distributed the continuous integration
process across sites. While the integration of the code was managed at the U.S. East
coast site, the testing and identification of defects in the integrated code was man-
aged at the Indian site. Efforts to eliminate the defects were then managed at the U.S.
site and the process would be repeated. Both approaches proved to be successful in
curbing the emergence of defective software code.

Limitations Spatial and temporal dispersion were not a barrier to effective im-
plementation of continuous integration. Configurational dispersion was also not a

2 Extreme Programming in Distributed Teams 25

challenge. However, project teams that were distributed across three sites needed to
be more careful about how they coordinated the handoffs and responsibilities in this
process. In a few cases there was some confusion about which site was responsible
for implementing changes that were identified through testing. Duplication of effort
occasionally resulted from this confusion.

Practical Tips

Tip 1 When implementing continuous integration with multiple sites in-
volved, it is important to be very clear about the roles and responsibili-
ties of each site. It is also important to be explicit about where handoffs
will occur. It is preferable for handoffs to occur between sites because
each site then has a clear understanding of its role and responsibilities.

2.4.9 Refactoring

Motivation The refactoring practice enables project teams to develop efficient
software code that is easy to comprehend. The elimination of duplicate code re-
duces the potential for defects. Efforts to simplify the structure of the code enable
project teams to more effectively incorporate changes to the design if and when it
becomes necessary to do so. As a result, the costs of making changes to the soft-
ware at later stages of the project life cycle are significantly reduced. This practice
reinforces the principle of simple design.

Implementation Description Project teams that implemented the refactoring
practice successfully were able to leverage the fact that the practice itself repre-
sents a dyadic relationship between a developer and the code. Project team mem-
bers at each site had access to the code from a central repository. Therefore, when
an opportunity to enhance the code was identified, a developer simply downloaded
a copy of the baseline code from the repository and made enhancements to the copy.
Once enhancements were completed, the test code was uploaded to the repository.
Team members at other sites could then conduct the necessary testing and integra-
tion before the enhancements were accepted and committed to the production code.
As in the case of collective ownership, testing and continuous integration served as
important safety nets to prevent the introduction of defective code.

Limitations Spatial, temporal, and configurational dispersion did not present any
challenges to teams that implemented the refactoring practice. Occasionally, highly
temporally dispersed project teams needed to expend additional effort to communi-
cate via telephone or videoconference when clarifications were needed across sites.
For instance, in one case developers at the Indian site were not sure if a calculation
for raw material transportation costs were measured in pounds (lb) or kilograms

26 L.M. Maruping

(kg). The developers at the U.S. site assumed at the measurement was in pounds
but never communicated this to the developers at the Indian site. A conference call
between developers at the U.S. site and the Indian site was conducted to resolve the
ambiguity before enhancements to the software were made.

Practical Tips

Tip 1 Take great care in implementing refactoring across geographically dis-
tant sites. Managers should ensure that the implementation of this prac-
tice is coupled with systematic checks through testing and continuous
integration. This will reduce the need for developers to notify each other
when making enhancements to the software code.

2.4.10 Customer Involvement

Motivation Having the dedicated attention of a member of the customer organiza-
tion has numerous benefits. Project teams are able to get a clearer understanding of
project requirements beyond what is included in requirement documentation. Cus-
tomer representatives on the team have a much better understanding of the business
environment in which the software will be used. They can quickly resolve ambigu-
ities about requirements and can give immediate feedback on design issues. Cus-
tomer representatives also perform a critical role in writing acceptance tests. Such
tests ensure that the software actually meets customer needs.

Implementation Description The customer representative was physically located
at one of the U.S. sites. Therefore, team members who were co-located with the
customer representative were able to share information with team members at other
sites. Occasionally, when team meetings were required, the customer representative
would be located at one site and members at other sites would communicate via tele-
phone or videoconference. For instance, the project team responsible for the billing
module assigned the interface design to developers at the U.S. sites and assigned
much of the coding for data processing to the developers at the Indian site. Devel-
opers at the Indian site would stay at the office late to participate in the team meeting
with the customer and developers at the U.S. site. Through this approach, all team
members were able to gain clarity on various issues pertaining to customer require-
ments as well as receive feedback on results of acceptance tests. Of course, results
of acceptance tests could also be documented and sent to project team members
without need for a formal team meeting.

Limitations As long as project teams were able to use synchronous communi-
cation media, spatial, temporal, and configurational dispersion did not present any

2 Extreme Programming in Distributed Teams 27

challenges to project teams that sought to leverage their client members’ knowledge
and familiarity with the organizational context.

Practical Tips

Tip 1 To the extent possible, managers should ensure that at least one project
team site is co-located with the customer. This will facilitate better
customer-to-project team knowledge sharing through face-to-face in-
teraction. Synchronous communication media can be used to facilitate
site-to-site transfer of information.

Tip 2 Managers should also try to arrange periodic team meetings that involve
the client member. This will ensure that developers at other sites remain
in tune with the customer’s needs as the project progresses.

2.4.11 Small Functional Releases

Motivation The practice of deploying small releases of functional software re-
flects a process for delivering the product to the customer. This approach enables
project teams to focus on first delivering the most critical functionality to the cus-
tomer. Other important components of the software can then be added iteratively
in subsequent releases. This approach also provides flexibility for the project team
to incorporate feedback from users in the customer organization since suggestions
can always be included in the next release. This iterative approach to delivering
functional software often yields high customer satisfaction.

Implementation Description Project teams deployed releases of the software at
the customer site. Since the project teams had a physical presence in the same ge-
ographic location as the customer organization, the deployment of releases was ex-
ecuted easily. Early releases encompassed the critical functionality. Subsequent re-
leases included functionality that was needed but not high priority. Small releases
were deployed after extensive unit and acceptance testing. The release cycles for
each development team differed according to what made sense for the module as-
signed. For instance, for modules that required many different features, development
teams tended to have shorter release cycles. Generally, the practice of deploying
small releases proved to be beneficial for the distributed project teams. They were
able to more effectively coordinate the development of software components for the
module because the project deliverable was decomposed at the level of the required
features and functionality. Project teams that benefitted the most from small releases
were ones that collectively focused on the critical features first. That is, the critical
features were distributed among developers at different sites. Through testing and
continuous integration these features were incorporated into the next release. The

28 L.M. Maruping

next batch of features and functionality would then be distributed across the differ-
ent sites. Some of the less successful project teams did not systematically coordinate
the small release effort. Instead various features and functionalities were assigned to
the different sites without any explicit prioritization. This approach made it difficult
to coordinate schedules in the face of impending deadlines for project deliverables.

Limitations As long as one of the project team sites was in proximity to the cus-
tomer organization, spatial, temporal, and configurational dispersion did not present
any major challenges to the ability to deploy small releases.

Practical Tips

Tip 1 Small releases can be an effective tool for coordinating developer work
across time and space. The key to the effective implementation of this
practice is to prioritize and distribute the development of the core fea-
tures and functionality across the geographic sites involved. This will
ensure that development efforts are focused on a core set of features
and functionality at a time. This will also make it easier for developers
at different sites to coordinate their schedules for delivering required
functionality. This is much more difficult to orchestrate when priorities
across sites are not aligned.

2.5 Conclusions

As noted at the beginning of this chapter, agile methods and distributed forms of
organizing both hold great promise for enabling software project teams to meet the
challenges posed by today’s demanding software development environment. The
purpose of this chapter was to provide some insight into the considerations involved
in combining the use of agile methodologies with distributed forms of organizing
software project teams. This was accomplished by

(1) highlighting the different ways in which distributed teams can be dispersed, and
(2) highlighting some of the successful and unsuccessful approaches taken by the

software project teams that implemented XP practices.

From this discussion I developed recommendations about how teams should
be structured in order to implement practices associated with one specific agile
method—XP.

The discussion on implementation strategies clearly indicates that no single size
fits all XP practices. Specifically, the challenges and opportunities associated with
implementing each XP practice differ for each form of dispersion. The communica-
tion needs associated with implementing each of the XP practices also differ quite

2 Extreme Programming in Distributed Teams 29

markedly. Consequently, there is no single solution to optimize the implementation
of all XP practices [3].

It is also clear that each practice differed in its overall function in the project
team. Some practices served a planning role (e.g., planning game, collective own-
ership, coding standards) that facilitated the execution of action-oriented practices
(e.g., pair programming, refactoring, continuous integration). This also meant that
the effectiveness with which each practice could be implemented was affected, to
some degree, by the overall role played by each practice.

The challenge for project managers is related to determining what is the most
important in terms of the design of the team–i.e., how team members are dispersed
across sites–and the specific XP practices that are germane for achieving team objec-
tives. In some cases project managers may have little control over the team design, in
which case decisions need to be made about which XP practices to implement given
the existing team structure. In other cases certain XP practices may be needed in or-
der to successfully achieve project objectives and project managers must make deci-
sions about how to structure the team to execute those practices. Undoubtedly, this
requires tradeoffs to be made. Project managers must weigh the costs and benefits
of various options and pursue the course that optimizes the project team’s chances
of successfully meeting project objectives. The recommendations outlined in this
chapter are intended to guide project managers in this decision-making process.

Acknowledgements I would like to thank Viswanath Venkatesh for his valuable input on earlier
drafts of this chapter. Thanks also go to Jaime Newell for her assistance with formatting the chapter.

References

1. Abrahamsson, P., & Koskela, J. (2004). Extreme programming: A survey of empirical data
from a controlled case study. In F. Juristo & F. Shull (Eds.), Proceedings of the ACM-IEEE
international symposium on empirical software engineering (pp. 73–82). Redondo Beach:
IEEE Computer Society Press.

2. Ågerfalk, P. J., Fitzgerald, B., Holmström, H., Lings, B., Lundell, B., & Ó. Conchuir, E.
(2005). A framework for considering opportunities and threats in distributed software devel-
opment. In Proceedings of the international workshop on distributed software development
(DiSD) (pp. 47–61). Vienna: Austrian Computer Society.

3. Batra, D. (2009). Modified agile practices for outsourced software projects. Communications
of the ACM, 52(9), 143–148.

4. Conchuir, E. Ó., Ågerfalk, P. J., Olsson, H. H., & Fitzgerald, B. (2009). Global software
development: Where are the benefits? Communications of the ACM, 52(8), 127–131.

5. Cramton, C. D. (2001). The mutual knowledge problem and its consequences for dispersed
collaboration. Organization Science, 12(3), 346–371.

6. Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software
practices at Intel Shannon. European Journal of Information Systems, 15(2), 200–213.

7. Fowler, M., & Highsmith, J. (2001). Agile methodologists agree on something. Software De-
velopment, 9, 28–32.

8. Holmström, H., Fitzgerald, B., Ågerfalk, P. J., & Ó. Conchuir, E. (2006). Agile practices
reduce distance in global software development. Information Systems and Management, 23(3),
7–18.

30 L.M. Maruping

9. Leary, M., & Cummings, J. (2007). The spatial, temporal, and configurational characteristics
of geographic dispersion in work teams. MIS Quarterly, 31(3), 433–452.

10. Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A control theory perspective on agile
methodology use and changing user requirements. Information Systems Research, 20(3), 377–
399.

11. Maruping, L. M., Zhang, X., & Venkatesh, V. (2009). Role of collective ownership and coding
standards in coordinating expertise in software project teams. European Journal of Informa-
tion Systems, 18(4), 355–371.

12. Maznevski, M., & Chudoba, K. (2000). Bridging space over time: Global virtual team dynam-
ics and effectiveness. Organization Science, 11(5), 473–492.

13. Murru, O., Deias, R., & Mugheddu, G. (2003). Assessing XP at a European Internet company.
IEEE Software, 20(3), 37–43.

Further Reading

14. Beck, K. (2000). Extreme programming explained. Reading: Addison-Wesley.
15. Beck, K. (2003). Test-driven development by example. Reading: Addison-Wesley.
16. Carmel, E., & Agarwal, R. (2001). Tactical approaches for alleviating distance in global soft-

ware development. IEEE Software, 18(2), 22–29.

Chapter 3
Transitioning from Distributed and Traditional
to Distributed and Agile: An Experience Report

Daniel Wildt and Rafael Prikladnicki

Abstract Global companies that experienced extensive waterfall phased plans are
trying to improve their existing processes to expedite team engagement. Agile
methodologies have become an acceptable path to follow because it comprises
project management as part of its practices. Agile practices have been used with the
objective of simplifying project control through simple processes, easy to update
documentation and higher team iteration over exhaustive documentation, focusing
rather on team continuous improvement and aiming to add value to business pro-
cesses. The purpose of this chapter is to describe the experience of a global multina-
tional company on transitioning from distributed and traditional to distributed and
agile. This company has development centers across North America, South Amer-
ica and Asia. This chapter covers challenges faced by the project teams of two pilot
projects, including strengths of using agile practices in a globally distributed envi-
ronment and practical recommendations for similar endeavors.

3.1 Introduction
In the last decade large investments have enabled the move from local to global
markets in many business areas [3]. In the same period of time, the global soft-
ware market has undergone several crises: not only a large number of project fail-
ures have plagued the industry, but also the increasing demand for new systems has
been strongly affected by scarcity in appropriate competences. In such environment,
Distributed Software Development—DSD—provides a feasible alternative [2, 14].
Distributed software development has been increasing during the past years [8, 14].
Organizations search for competitive advantage in terms of cost, quality and flex-
ibility in software development, looking for productivity increases as well as risk

D. Wildt (�) · R. Prikladnicki
Agile Methodologies User’s Group (GUMA), Porto Alegre, BR, Brazil
e-mail: daniel@facensa.com.br

R. Prikladnicki
e-mail: rafaelp@pucrs.br

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_3, © Springer-Verlag Berlin Heidelberg 2010

31

mailto:daniel@facensa.com.br
mailto:rafaelp@pucrs.br
http://dx.doi.org/10.1007/978-3-642-12442-6_3

32 D. Wildt and R. Prikladnicki

dilution [11]. Many times the search for these competitive advantages forces organi-
zations to look for external solutions in other countries, identifying global software
development strategies. The key existing challenges however are related to strategic
issues, cultural issues, technical issues, and knowledge management [9]. Various
companies are outsourcing to third party consultant companies situated in emergent
countries, while others decided to open captive development centers with full-time
employees in order to develop internal Information Technology assets (Internal Off-
shoring) [12, 14]. Organizations aim at the development of large projects in offshore
centers (1+ year duration). This is because long projects are more suitable to absorb
the offshore centers’ learning curve regarding the domain knowledge [3].

Usually, an initial strategy defines that offshore centers would be responsible
only for the development effort [3]. This scenario supports an adoption of water-
fall approach as the standard lifecycle. Onshore teams are usually responsible for
planning and testing efforts while offshore teams are primarily assigned to develop-
ing tasks. While captive offshore development centers are increasing their business
domain background they continue to follow waterfall life cycle, and its exhaustive
documentation, which, in fact, is recognized as larger than in similar co-located
projects, can impact team’s productivity negatively. Team members that have an ac-
ceptable business background start to struggle on processes and controls that do not
make sense to their daily activity. Thus it is not acceptable to invest so much effort
on documenting and creating controls as used on the initial strategy of the offshore
centers.

In this context, we report the experience of transitioning from distributed and
traditional to distributed and agile, commenting on two pilot projects within a global
company that used to have waterfall as standard software development life cycle. We
present challenges faced by the project teams, as well as the benefits of using agile
practices in a distributed environment, the impact of changing the waterfall approach
to iterative development, and practical recommendations for those starting similar
endeavors.

3.2 Case Overview
This chapter is based on experiences from a multinational computer company with
headquarters in the U.S. The company maintains software development centers in
Americas and Asia. We contacted stakeholders in both the Brazil and U.S. locations.
There were 500 people working with software development in Brazil, 1000 in India
and around 500 people working in the IT department within U.S., as shown next.

Table 3.1 Case synopsis

Company: UShardwarea

Number of developers 2000 in total, 500 in Brazil, where the study was executed

When was agile introduced 2005

Domain Hardware manufacturing

aName changed due to confidentiality reasons

3 Transitioning to Distributed and Agile 33

From the U.S. perspective, the company has one main business model for DSD:
internal offshoring (both Brazilian and Indian centers develop internal projects for
the headquarters’ client located in U.S). Technical teams work only for captive off-
shore development centers. This company developed a set of global standard pro-
cesses following three market standards:

• Capability Maturity Model Integration (CMMI)
• PM Body of Knowledge (PMBoK)
• Microsoft Solutions Framework (MSF)

In order to disseminate software development culture and processes globally, this
organization decided to pursue Capability Maturity Model Integration (CMMI) level
of maturity assessment. Available set of processes were only based on waterfall
life cycle. Project team members follow available processes and phases, regardless
project size and complexity.

According to the organization strategy and a set of processes available at that
time, documentation is generated onshore. Software product is developed offshore
and tested back again onshore. In the past, distributed location justified extensive
documentation while offshore centers were dealing with their domain learning curve
acquiring business knowledge.

Nowadays this scenario has changed. Offshore centers have 5+ years of back-
ground on application domain knowledge. They are working on large, medium and
small projects. In addition responsibilities have increased from “only development
center” to a center responsible for planning projects, developing, testing and require-
ments engineering.

According to a set of defined processes in this organization project life cycle
should follow extensive waterfall phases generating a significant amount of required
documentation. Lessons learned showed that for larger projects (1+ year duration)
standard practices were suitable. On the other hand, for medium and small projects
(up to 9 months duration) standard practices were adding too much of complex
bureaucracy to team members. In addition business was not satisfied with results
achieved by the end of project as also captured on lessons learned sessions.

For medium and large projects documentation produced usually were outdated by
the end of the project because business most of the time was maturing and changing
their business requirements along the project. Due to this dynamic and changing
environment some issues were listed as possible causes:

1. Powerful project managers were putting processes up front of business interests
causing frustration on business expectation;

2. Weak project managers were accepting so many change requests flooding team
work by paper work in order to keep documentation records up to date. Some
projects had decided to have two project managers. One to track project status
and another one only to maintain documentation. This practice was causing team
members frustration because they were moved out from technical tasks.

Projects lessons learned sessions also showed that benefit of documentation was
low in comparison to effort required to generate and maintain it. Often developers

34 D. Wildt and R. Prikladnicki

with new assignments were contacted to resolve issues on past delivered projects.
Application support teams instead of using existent documentation were reaching
developers to resolve production issues. Those facts demonstrated that processes
should be adapted to medium-small projects on this company. The organization de-
cided to innovate on medium-small projects life cycle. It was clear that waterfall
was not working for short-term projects. Agile methods were then selected to be
run on two projects.

An assumption was that agile methods would bring more interaction between
business partners and technical team. Moreover, unstable requirements would be
gathered on iterative way along the project as business partners were expecting.

3.3 Transitioning to Agile in a Distributed Environment

This chapter shares experiences lived from 2007 to 2009. Looking at the adoption
of agile methodologies in Brazil, a new team member joined the related portfolio,
with previous experience adopting and adapting team realities. Looking at teams not
using Agile Methodologies was just a motivation to start.

The Software Engineering Process Group (SEPG) was based on traditional devel-
opment, globally. Some initiatives running in Brazil and UK were getting attention.
Those two groups merged, and started to share experiences. The discussion moved
to the SEPG, where a new Software Development Life Cycle was standardized: The
Agile Development Method.

The designed agile process was based on eXtreme Programming. With discus-
sions, Scrum and Lean started to grow and attract the attention in the process and
a rich set of agile practices was put in place. Since the company was utilizing dis-
tributed teams, and running a CMMI level 3 based process, compliance with CMMI
was always necessary and became a challenge on the path towards implementing
agility. Nonetheless, the attitude inside teams changed with continuous delivery of
value after each cycle of development and better organization inside teams. The
company was then able to use Agile Methodologies and yet be compliant with the
maturity model in place, using the best of both [7].

The company defined the work having three different levels of agile methodolo-
gies:

• Operational/Engineering: team members were able to set expectations with tech-
nical teams, while looking at eXtreme Programming practices,

• Tactical: business team and management, looking at Scrum,
• Strategic: the whole organization looking at Lean culture and Agile principles

and values, with a continuous improvement mindset.

To help on engagement, evolution and adoption, a global community of practice
started, grouping all related information about agile methodologies and looking in-
side the organization for other groups trying agile, bringing them to the same page.
Discussion forums, white papers, online webcasts to share information across the

3 Transitioning to Distributed and Agile 35

globe and local trainings and presentations were some of the initiatives brought to-
gether to help those teams looking for the transition.

Moreover, each site interested in the transition had local help from a Coach, to
help understanding the environment and help prepare teams and customers for the
transition. In the Brazilian site, one person helped other teams formally, with 20%
of its time available to help other teams to adopt. The same person was responsible
for local internal trainings on agile methodologies.

In every team, there was only one rule, to work with baby steps, trying one spe-
cific practice, perceiving its value, and then try a new one. All of this based on
the cultural change needed to support the transition. The objective was simple. We
wanted to fail as fast as possible, showing one of the benefits to work in an iterative
and incremental development focused on customers, continuous improvement, and
quality and team self-organization. In order to share the experience lived with the
two projects, we first present a brief overview of each project. Due to confidentiality
reasons, we will reference the projects as A and B.

All projects faced challenges while adapting existing organizational processes to
agile practices. Table 3.2 summarizes the main challenges identified.

Table 3.2 Challenges identified

Challenge Project Phase

Lack of formal document for requirements A Planning

Inadequate team structure B Planning

Communication issues A, B Developing

Difficulties on estimating story points A, B Planning

Management not used to agile practices A, B Closing

During the explanation of projects, we will make it clear where these challenges
were faced. The challenges reported were discussed during retrospective sections in
the end of each project development cycle. All teams found ways to improve their
processes, also helping them to increase their maturity while using agile principles
and practices.

3.3.1 Don’t Tell What Agile Is and Be Successful

Project A is a customer relationship domain project related to customer integration
on manufacturing business processes. This project had 7 team members located in
North and South America.

We changed the way the team was working just introducing agile practices and
not telling the whole team what was really being applied. In this context, most of
team members involved were not from Information Technology area and were fo-
cused on their tasks only. So being agile there was nothing but an adjective.

36 D. Wildt and R. Prikladnicki

Table 3.3 Project overview

Project A

Duration 5 months

Status Finished (measured during 5 months) Focus on Scrum Practices

Agile practices Daily meeting, Iteration Review, Iteration Retrospective, Customer Tests,

Collective Ownership, Continuous Flow, Whole Team, Sustainable Pace

Locations US, Brazil

Table 3.4 Project A: team

Locations Number of members Roles

US 2 Product owner

Brazil 5 Developer, Tester, ScrumMaster

The team located in Brazil was new to the customer integration area. We started
using the available process, where each team member had a list of integration activ-
ities to work on, similar to a personal backlog. Every integration activity was based
on EDI (Electronic Data Interchange) integrations to be built and validated between
project team and customer team.

This project had a formal requirements document, but it was not standardized
with the business team. This caused the team working in processes not ready to start
or processes that were not real priority. Actually priorities were a real issue within
the team. Most team members were multi-tasking, with no real focus on what’s
really important for business.

Consequently command and control management and micro management, bad
management practices looking at agile principles, were the only way to make sure
team members were working on what’s important, since it was not clear what inte-
gration process need to stop to prioritize what’s on the “main” priority list.

A lack of a standardized requirements document was a big issue and led to a
large share of impediments during the project execution. Lots of activities were
impeded because information was missing. And since feedback was not online, it
took days to receive an update about an impediment. To avoid this, we reviewed
the requirements document, which reminded more an epic user story than anything
else. We made it clear that an activity could only be prioritized if we have the input
document available and related documentation. Doing that, we guarantee a better
input, and expect a reliable output for activities. The size of the cycle was not a
problem at this moment, but the large amount of work in progress.

Next change was related to multi-tasking. Some team members had 20 activities
“in progress”. Actually two or three in progress and all others impeded. With indi-
vidual to-do lists, it was impossible to manage priorities and check if next activity
could be handled for someone free to start. In this situation, with self-organizing
teams working with self-assigned tasks, and one prioritized list we could achieve

3 Transitioning to Distributed and Agile 37

more focus from the team. The Brazilian team merged individual to-do lists into
a big one. The U.S. team was responsible to prioritize the list based on business
needs. We decided that priorities could change every week. It could be also changed
earlier if it was something really important. Thus all team members in Brazil were
able to work in any type of integration. We were not segmented anymore. Collective
Ownership was in place.

The Brazilian team started a daily meeting using phone, and that meeting was
open to the whole team. That meeting was an opportunity for people outside Brazil
to check how work was being done and help on impediments raised during the short
meeting. Meeting time was defined in an agreed time for those outside Brazil and
for people in Brazil. Every team member had to answer three questions, (1) what I
was doing since the last meeting, (2) what I’m going to do until the next meeting
and (3) is there something blocking my work?

In addition to this, we had one meeting every Monday to make sure we were
looking at the right priority list. The flow was continuous, so this team was not
having the iteration concept. Every time one finishes an integration activity, he/she
pulls the next one at the top priority. This meeting was a weekly cycle meeting,
to get whole team attention and update/refresh priorities. This meeting took 1 hour
every week.

We had another meeting in the end of the week to check improvement opportu-
nities. That meeting ran using a retrospective meeting approach, where we set the
stage and then use three different moments: (1) review the past two weeks looking
at ups and downs, (2) brainstorm to find opportunities and requests for behavior
change in the team, (3) vote and get three most voted items to prioritize in the next
cycle. This meeting also took 1 hour every week.

With these changes, anxiety was overcome. The team had one backlog list to
work on, the business was aware of current evolutions, and new priorities were clear
and established with the whole team.

3.3.2 A Fully Cultural Transition from Traditional to Agile
Development

Project B is related to outbound and fulfillment processes, focused on Global Pro-
cesses with 20 team members in 7 different locations.

This project provides experience with integrating extreme programming and
Scrum, in different locations, with people from different cultures, with different
skills and a rich experience with other agile methodologies. There was a coach
assigned for this project, helping the teams to understand practices such as daily
meetings. Those took place first with the Brazilian team only and then the US team
attended meetings together.

Later on, two daily meetings were implemented due to a high distribution of
the project teams. One meeting involved the teams in UK, Russia and China. The
other meeting involved people in Brazil, Canada, Mexico, US and UK. The Project

38 D. Wildt and R. Prikladnicki

Table 3.5 Project overview

Project B

Duration 14 months

Status Ongoing (measured during 14 months) Focus on Lean, Scrum and XP
Practices

Agile practices Iteration planning, daily meeting, Iteration Review, Iteration Retrospective,
Customer Tests, Collective Ownership, Small Releases, Whole Team,
Sustainable Pace, Test Driven Development, Continuous Integration,
Refactoring, Pairing, Coding Standards, Limited Work in Progress,
Self-Organizing Teams

Locations China, US, UK, Mexico, Canada, Russia, Brazil

Table 3.6 Project B : team

Locations Number of members Roles

US 2 Team lead (global), Product owner

Brazil 9 Developer, Tester

China 3 Product owner, Developer, Tester

UK 2 Product owner, ScrumMaster

Mexico 1 Product owner

Canada 1 Product owner

Russia 2 Developer, Tester

Manager was in the UK, and he was the “glue” between different time zones. This
project was using a Scrum of Scrums [15] approach to keep communication and
transparency.

Organizing the meetings were not the real problem in this project. Lack of formal
requirements was identified as the barrier for the project teams that faced challenges
in terms of capturing business requirements in an easy and effective way.

In the first approach, documents were large, and after meetings and meetings the
business partners signed-off the requirements. Later on, however, defects showed
up due to bad requirements gathering, even though the document was approved.
Business partners were aware they could throw a change request or call it a defect,
to get what they really need.

Project B had developed a software requirements document but experienced dif-
ficulties on having it signed off by business partners that were located in Asia. This
fact caused a lack of commitment from business to agreed requirements during
project development. After requirements were released for the final testing, busi-
ness partners found defects instead of development teams and most defects were
actually related to changes in the original requirements. This environment changed
the process later on, as we will describe further.

Inadequate team structure can be captured as inappropriate decisions in terms
of team organization and task assignment. For instance, this project faced a barrier

3 Transitioning to Distributed and Agile 39

between generalist against specialist behavior in the technical team. Agile practices
state that every team member must collaborate as a generalist in the project tasks.
In this project even with performance testing training available test team avoided
to execute performance testing because they were primarily functional testers. Root
cause for this reaction is a common human avoidance of missing his/her knowledge
silo and avoidance to accept changes. Other than that, testing teams were not ac-
cepting to test partial delivery of requirements, to help on validation and work on
prevention of defects.

Every meeting was an opportunity to create knowledge and improve communi-
cation. That works for planning, daily meetings, reviews and also for estimation
session. Teams had used planning poker as the main estimation technique, and the
best example rely on Project B usage of the technique. Planning poker [5, 10] is a
simple game used to estimate the work from a team perspective. It helps in knowl-
edge creation and consensus creation by stimulating discussion about every feature
being played. To start the game, a moderator needs a list of features. These features
are written usually with a user stories approach and using a unit for sizing. Usually
a team can start with T-Shirt size estimation, using small, medium and large, and
find a category to fit that feature in. In the team’s experiences, using a Fibonacci set
with 1, 2, 3, 5, 8, 13 and “?” was enough to create these boundaries.

To have the game working, every local team defined a leader, to make sure ev-
erybody in the local team has a basic context before going online and have the
discussion with a bigger group. One of the first activities planned was to have the
team looking at features and checking if they were testable, if the business relevance
was available and making sure they had the context. If something is not ok, a busi-
ness user can be available to answer questions. The availability doesn’t have to be
online, it can be by the use of a tool to help on communication, like wikis or forums.
So, in order to come into an estimating game, local teams were aware of what they
would estimate and what would be on discussion. The remote and distribute exercise
helped the whole team to understand features and create knowledge.

The main challenges for all teams were related to low participation in the game,
and the fact that running the game locally the moderator may observe the team mem-
bers behavior, which is unavailable most of the time when working in a distributed
environment.

In project B a lack of team maturity in agile practices impacted team capacity
evaluation. Instead of cutting a sprint scope and postponing the work till the fol-
lowing sprint, the testing team decided to test the outcome using the overtime to
deliver the goal. That resulted in defects and test scenarios not mapped into accep-
tance criteria. Those decisions caused team rework and overtime generating frustra-
tion and impacting software quality in terms of defects. Also, the testing team was
focused on post-development testing, in other words after the development team
finished 100% of the features. That impacted the focus on prevention needed for
testers inside the Agile Team. Without pairing with the development team, the test-
ing team became a “reaction” team, just there to find defects, and not to avoid them
beforehand.

How to change this? Better communication. Some developers started to pair with
the testing team, to establish acceptance testing and create the ownership during

40 D. Wildt and R. Prikladnicki

the development process. Developers knew how to develop some tests, and testers
complemented building tests with the expertise they had.

Continuous integration received more attention too. The team was not only using
a continuous integration server, but also added tools to help achieve the source qual-
ity. A source code audit, code coverage, code metrics were implemented to help the
team to understand the next work tasks when idle during an iteration.

3.3.3 Benefits of Using Agile Methods in Distributed Environment

The organization faced many challenges in their endeavor of implementing agile
since they were more familiar with the waterfall life cycle. Nonetheless, the lessons
learned have also captured a list of important advantages from the application of
agile practices and Scrum.

Bi-weekly software product builds were successfully used in project B: releasing
as many builds as possible project team eliminated the waste in terms of waiting for
a whole package to be tested [15] and get earlier feedback from the management
and business units. Team used to release at least three times a week to get feedback
from testing and business team. Every result could be an opportunity to use that
technology being tested inside a running project. In project A, results were delivered
weekly, since the need to review priorities was higher.

Even though communication with business partners sometimes required more
time than expected to approve new requirements in project B, they participated and
collaborated with the project team anticipating tests and providing adequate support
during development and on defects tracking. A shorter development cycle was used
reducing risks and increasing feedback for other teams. More communication was
needed and it was achieved also because of the use of short cycles. Since time was
shorter, more communication was needed to make sure next priorities in a product
were being prioritized correctly.

Distributed teams were able to look for the same goals and work more integrated
than usual. There was no time to review and wait decisions. Agile brings more
attitude to the team, providing a pace of continuous delivery of working and valuable
software.

Project A reported communication issues as one of the challenge faced. Adding
the Scrum framework to the process gave the sustainable pace the team was longing
for, since the same project also described strength that every sprint delivered not
only increased the team motivation but also improved the collaboration and engage-
ment. Comparing interaction and cooperation levels between the technical teams
and business partners during the first sprint and the last sprint measured, a major
improvement could be noticed in relation to the recorded lessons learned.

It is possible to use Scrum and other agile methodologies to minimize some of the
main difficulties that distribution brings, such as the lack of communication, feeling
of distance, lack of “teamness”, create synergy, responsibility and accountability,
among other factors.

3 Transitioning to Distributed and Agile 41

3.4 Practical Recommendations

Based on challenges and strengths faced, project teams were able to document a set
of recommendations for projects within the same environment and scenario, which
can be also of interest for the companies undertaking the similar endeavors.

Practical Tip: Use cases should be transformed in user stories with the focus
on testing

Project B decided to change the way they used to document requirements and
started to use a user story approach. User stories can be written having all infor-
mation needed to support a requirement. Answering questions like what, for whom
and why it is needed, helps in the basic understanding of a feature. Adding accep-
tance criteria for every user story will lead teams to think more about testing, while
thinking about the given when and then clauses. Those are actually action and reac-
tion clauses that can be found on use case documents, but in a standard language.
The need of a standard way to write and maintain features with requirement docu-
mentation can be supported writing testable and executable documentations. What
happened was that the development team started to write the user stories in a higher
level, thinking more about the business. And another benefit was that the team was
able to merge the business requirements, technical information and test scenarios in
one document mapped from a pairing session with the development and the testing
teams. Documents started to become leaner, and focused on the real needs.

Smooth Transition: start resuming current requirements into user stories approach
with acceptance criteria, and increase its usage from one cycle to another or from
one release to another.

Pitfalls: Do not change documentation 100% from night to day. Use one current
release to start playing with a new way to document, and get approvals inside team.
Validate and increase its use among other teams. Make it a team ownership, get
suggestions and improve to make it feasible for use widely.

Practical Tip: While piloting agile practices the team must document Scrum
iteration

This is necessary in order to have a better material to check on retrospectives.
Mapping agreements, which are usually something to share on a retrospective, and
follow up on impediments help teams to understand what happened during that time.
What can be done is use a tracker (extreme programming role) to map things that
happen during an iteration and discuss that later on a retrospective. Tracker can help
team to maintain a burn down chart to measure flow of features that are adding value
to the product, and can write a blog or something to tell a history about the iteration.
With this, team will have historical data to understand what is happening. Tracker

42 D. Wildt and R. Prikladnicki

role is something to rotate inside team. This way, this is one practice to help on lead-
ership creation inside team. New leaders can grow and new ideas can be suggested,
since someone different will be looking at team problems during iterations.

Pitfalls: do not document everything. Tracker should check highlights and lowlights
of each iteration day, and focus on what is adding value to the product. Document
errors and warnings to talk during retrospectives and see how those can be avoided.

Practical Tip: Continuous training sessions to share and remember practices,
principles and values

These are important to keep team discipline and to add new practices the team
decides to focus. A Coach or ScrumMaster must be helping the team to solve im-
pediments and support discipline during one iteration, training and pairing with the
team when needed. Looking at technical side, practices like a coding dojo [4] could
be used to help teams to improve test automation capacity and to share knowledge
about different tools. The same can happen for user story writing, testing and esti-
mation.

Smooth Transition: find a specialist in one programming language used by team
and propose a challenge to be coded using test driven development [1], refactor-
ing and other eXtreme Programming practices. Do the same thing for User Story
writing, creating the opportunity to have more people understanding how to create
user stories. As soon they like to do that in Dojos, they will like to do that within
projects.

Practical Tip: ScrumMaster needs to be a strong negotiator

And also owns a de-facto political power over technical team and business part-
ners. Since agile practices are based on team collaboration and trust, a ScrumMaster
needs to be a person strong enough to deal with business in terms of requirements
priority, problem solving, and also to work with team members to deliver on agreed
time box. In a global scenario, this is even more complex. For this reason, the Scrum-
Master needs to combine not only leadership on project team and business partners,
but also cope with distance, trust, and cultural diversity. But, do not rely only on
ScrumMaster. Every team member need to pull responsibility and ownership, look-
ing for transparency always.

Smooth Transition: using a tracker and doing Coding Dojos are ways to increase
leadership.

Practical Tip: Assign testers and developers to work together

This is an important recommendation, achieved in Project B. For instance, as-
signing testers to peer review unit test scripts can improve unit tests coverage. This

3 Transitioning to Distributed and Agile 43

decision can help on anticipating defects to development phase instead of finding
only after promoting build to test team. In project B, developers and testers worked
in silos, impacting team collaboration. Moreover, dislocation between engineers
promoted an environment where each group created their own practices, impact-
ing code quality. Every pairing activity was good enough to add value and help on
knowledge creation between development, testing and business team. That became
a usual practice for project B and helped team to increase business knowledge and
increase team spirit. Testing team started to be a prevention team, not a reaction.
Also, doing this makes clear that it’s about only one team, not development and
testing team. It’s just one team.

Smooth Transition: pairing is a good practice to create knowledge. Create oppor-
tunities to create knowledge and share. When creating knowledge, pair.

Practical Tip: Increase testing practices, automated if possible

This means the use eXtreme Programming [1] practices to increase the use of
automated tests and practices like continuous integration, that are excellent to sup-
port distributed teams and guarantee that the software codebase is correct and with
integrity. Projects B and C focused on adding this to their map of practices used.
While Scrum can be useful to support management and bring problems to surface,
when a problem is related to software engineering, the use of extreme programming
practices can add value. The use of static audit tools and code coverage tools can
help the team to keep track of source code and code quality.

Smooth Transition: automate acceptance criteria, use coding dojo to increase team
skills for testing.

Practical Tip: Keeping valuable documentation

Moving project B from a waterfall to an iterative and agile approach did not
change the need for documentation. Since the team is working in a distributed envi-
ronment, the documentation may even increase [6], and the team will need to adapt
some of the documentation to become more effective. For this reason, one should
define and document what brings value to the project and what can be useful to the
distributed teams. Inside project B, documentation become more focused and only
important and mandatory documents continued to be written.

Smooth Transition: question documentation in every continuous improvement cy-
cle. While doing this, suggest changes and show how it would look like to others.

Practical Tip: The use of a “global” taskboard

This kind of tool can help on improving the productivity of global agile teams.
The use of applications to share knowledge, like wikis or file sharing, helped teams

44 D. Wildt and R. Prikladnicki

to control the activities planned for each iteration and the product backlog. Even us-
ing spreadsheet was valuable, since every team member could edit and share evolu-
tions with the rest of team. This sometimes caused delays and unexpected problems,
but that was also a way to keep discipline to share status with teams in different time
zones. A tool to help global teams on the planning and execution of a sprint is a good
approach to manage visual management.

Pitfall: Task board should be updated by the team, not by one member or project
manager. Team owns the task board.

Practical Tip: It’s important to have multi-disciplinary team running the plan-
ning poker game

In a planning poker session different perspectives can help building the shared
view. So developers, testers, database administrators, project managers, business
analysts, all roles in a project are welcome to help in one of those sessions. The
integration with technical roles and business roles are important to increase success
rates. And in a distributed environment this is even harder to achieve.

Smooth Transition: use three different roles while estimating, like developer, tester
and analyst for instance.

Practical Tip: To have the planning poker game working in a distributed en-
vironment, every local team needs to have a leader

The leader will make sure that everybody in the local team has a basic context
before going online and have the discussion with a bigger group. The remote and
distribute exercise will help the whole team to understand features and create knowl-
edge.

Smooth Transition: for every estimation game, define one person responsible to be
the local leader. This way, team will increase business knowledge.

Practical Tip: Leadership is needed, not only leaders

It is important to grow leaders inside teams, and not expect ScrumMaster,
Coaches or Project Managers to take all responsibility. They are part of the team,
they do not own the team. So every team member need to understand they have a
active voice inside the process.

Smooth Transition: use different local leaders for estimation games, use trackers
to understand an iteration, coding dojo moderators, as ways to create and increase
leadership.

3 Transitioning to Distributed and Agile 45

Practical Tip: If you need one practice and one value. . .

Value communication and practice continuous improvement. Find a spot inside
team’s agenda to have a retrospective meeting. Find improvement opportunities and
things to work on prevention. Use whole team capacity to create these opportuni-
ties, with techniques like brainstorming, mind maps, and other practices to share
knowledge and raise a common understanding about a problem.

Pitfalls: do not think that what other team is doing is what you need to do. Value
what you have currently and check with team members what they want to improve,
what they should change, in order to have more suggestions.

3.5 Conclusions

In this chapter we have presented the experience on the usage of agile practices
within a company that has globally distributed project team members. Particularly
we discussed the challenges in implementing Scrum by the company whose cul-
ture was not agile-oriented, and thus it required a change of the mindset for peo-
ple to see and experience the advantages of applying Scrum together with tradi-
tional practices already in place. Despite the initial skepticism, the results were very
positive—it provided a great opportunity to better integrate distributed team mem-
bers and bridge them with the business units. In addition, the experiences with the
two projects showed that it is also possible to use Scrum and other agile methodolo-
gies to minimize some of the main difficulties that distribution brings, such as the
lack of communication, feeling of distance, lack of “teamness”, among other factors.
The lessons learned suggest that Scrum complemented with other agile methodolo-
gies like eXtreme Programming become very important to increase overall team
abilities and the software product quality, looking from the source code perspective.

References

1. Beck, K. (2005). Extreme programming explained: Embrace change.
2. Bohem, B. (2006). A view of 20th and 21st century software engineering. In Proceedings of

the 28th international conference on software engineering (ICSE), Shanghai.
3. Carmel, E., & Tjia, P. (2005). Offshoring information technology: Sourcing and outsourcing

to a global workforce. Cambridge: Cambridge University Press.
4. Coding Dojo. Available online. http://codingdojo.org/.
5. Cohn, M. (2005). Agile estimating and planning (Robert C. Martin Series). Englewood Cliffs:

Prentice Hall PTR.
6. Fowler, M. (2008). Using an agile software process with offshore development. Available

online. www.martinfowler.com/articles/agileOffshore.html.
7. Glazer, H., Dalton, J., Anderson, D., Konrad, M. D., & Shrum, S. (2008). CMMI or agile:

Why not embrace both! Available online. http://www.sei.cmu.edu/library/abstracts/reports/
08tn003.cfm.

http://codingdojo.org/
www.martinfowler.com/articles/agileOffshore.html
http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm
http://www.sei.cmu.edu/library/abstracts/reports/08tn003.cfm

46 D. Wildt and R. Prikladnicki

8. Herbsleb, J. D. (2007). Global software engineering: The future of socio-technical coordi-
nation. In Proceedings of the 29th international conference on software engineering (ICSE)
(pp. 188–198). Minneapolis, USA.

9. Herbsleb, J. D., & Moitra, D. (2001). Guest Editors’ introduction: Global software develop-
ment. IEEE Software, 18(2), 16–20.

10. Online planning poker. http://www.planningpoker.com.
11. Prikladnicki, R., Audy, J. L. N., & Evaristo, R. (2006). A reference model for global software

development: Findings from a case study. In Proceedings of the int. conf. on global software
engineering (ICGSE), Florianopolis, Brazil.

12. Prikladnicki, R., Audy, J. L. N., Damian, D., & Oliveira, T. C. (2007). Distributed software
development: Practices and challenges in different business strategies of offshoring and on-
shoring. In Proceedings of the 2nd int. conf. on global software engineering (ICGSE) (pp. 262–
271), Munich, Germany. Los Alamitos: IEEE Computer Society Press.

13. Robinson, M., & Kalakota, R. (2004). Offshore outsourcing: Business models, ROI and best
practices. Alpharetta: Mivar Press.

14. Sengupta, B., Chandra, S., & Sinha, V. (2006). A research agenda for distributed software
development. In Proceedings of the 28th international conference on software engineering
(ICSE) (pp. 731–740). Shanghai.

15. Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007). Distributed Scrum: Agile
project management with outsourced development teams. In Proceedings of the Hawaii int.
conf. on system sciences (HICSS) (p. 274). Washington: IEEE Computer Society.

http://www.planningpoker.com

Chapter 4
Tailoring Agility: Promiscuous Pair Story
Authoring and Value Calculation

Steve Tendon

Abstract This chapter describes how a multi-national software organization cre-
ated a business plan involving business units from eight countries that followed an
agile way, after two previously failed attempts with traditional approaches. The case
is told by the consultant who initiated implementation of agility into requirements
gathering, estimation and planning processes in an international setting. The agile
approach was inspired by XP, but then tailored to meet the peculiar requirements.
Two innovations were critical. The first innovation was promiscuous pair story au-
thoring, where user stories were written by two people (similarly to pair program-
ming), and the pairing changed very often (as frequently as every 15–20 minutes)
to achieve promiscuity and cater for diverse point of views. The second innovation
was an economic value evaluation (and not the cost) which was attributed to stories.
Continuous recalculation of the financial value of the stories allowed to assess the
projects financial return. In this case implementation of agility in the international
context allowed the involved team members to reach consensus and unanimity of
decisions, vision and purpose.

4.1 Introduction

While agile approaches stress the fact that co-location is of essence, most distributed
software development projects face the challenges associated with the distance when
the engineering teams reside in different locations. Switching to one-site team is not
always the answer, as projects strive for acquiring different domain expertise that
can be often found only through a synergy of multiple collaborating partners. The
case presented in this chapter describes how the need to cope with the distribution
of domain expertise across teams from eight countries led to the tailoring and inno-
vating of processes related to requirements gathering, estimation and planning.

S. Tendon (�)
Agiliter Consultancy, Limassol, Cyprus
e-mail: steve.tendon@gmail.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_4, © Springer-Verlag Berlin Heidelberg 2010

47

mailto:steve.tendon@gmail.com
http://dx.doi.org/10.1007/978-3-642-12442-6_4

48 S. Tendon

The implementation of agility suggested that all domain experts had to meet
together to perform the planning activities. I asked the organisation to allow not only
the product managers, but also a number of other professionals to work together for
almost five weeks. The primary, grounded objection, was that these professionals
could not be “away” from their offices for so long time. I suggested to let the team
meet every other week, and asked the activities to be continued even while the team
members were back at home.

As explained later, this was one of the best decisions taken in this project. The
alternating of on-and off-site weeks not only enabled the people to attend to their
ordinary duties with acceptable regularity (as to counter the original objection), but
also allowed a very high level of involvement and feedback of other people in the
home offices. This created the “ambassador” effect, which was a great motivator for
the people who were sent to the off-site meetings.

The project had been given very little time to deliver results. The idea of promis-
cuous pair story authoring was prompted by the need to achieve results quickly,
and to produce collective acceptance of the plan. The “one-on-one” discussion that
took place during the pair authoring sessions were instrumental in developing agree-
ment. It is easier to converge towards common conclusions when exchanging ideas
and talking to a single person, rather than in a group setting. The pair authoring
simply amplified the effect. The promiscuity (frequent changing of the pairs), made
the convergence on any given topic spread across the team very quick, so that the
team as whole would agree.

The focus on the economic value of a story point was instrumental to overcome
distance and misunderstanding. First, it allowed to reason about the value of user
stories with a metric that is common to all businesses: profit and return on invest-
ment. Second, it allowed to perform story triaging and avoid feature creep without
upsetting any party involved. Agile proponents often claim that the agile methods
are all about “adding value” to the client’s business. An essential aspect is how to
measure such “value.” Unfortunately, most agile approaches give just face value to
business value (pardon the unintended pun), but they have a hard time providing
real numbers. The lack of financial metrics is the Achilles’ heel of agile. In the case
described here, another important tool is added to the arsenal: the definition and
successive re-computation of a story point’s economic value. From a distributed
perspective, the importance of this is that its meaning is universal, and can traverse
and be understood across organisational and national boundaries.

4.2 The Case

4.2.1 Background

This chapter is based on a case study in a multinational company (20.000 employ-
ees) providing information, tools and solutions to professionals in the Health, Tax,
Accounting, Corporate Services, Financial Services, Legal and Regulatory markets,
needed to improve the software development operations throughout their European
organisation.

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 49

Table 4.1 Case synopsis

Company: NLDlegala

Number of developers 56

When was agile introduced 2006

Domain Software for law firms and legal professionals

Project Requirements gathering, estimation and planning for developing
a European software business plan

Duration 5 weeks

Status Finished

Agile practices Tailored from XP, IFM and others, plus innovations

Locations Belgium, France Germany, Italy, Poland, Spain, Sweden, The
Netherlands and others

aName changed due to confidentiality

The company had acquired a number of smaller software publishers during the
first half of the ’00s. The acquired companies were spread throughout Europe; had
very diverse software engineering capabilities; used entirely different software tech-
nologies; targeted a number of different platforms; and used entirely different soft-
ware development methodologies. Some of the acquired companies were supported
by just one or two engineers (“garage bands”) and did not use any specific method-
ology. Others had tens of engineers, and used more formal methodologies, albeit
home grown ones.

Several of the acquired companies developed the same kind of software, but tai-
lored at the specific needs—in particular legal requirements—of their respective
countries. A lot of engineering effort was duplicated in the various countries, and
the company was particularly concerned about consolidating software development
operations. The problem was: how to integrate 23 software business units that orig-
inated from 32 acquisitions over 11 countries with over 300 software engineers in
total. The company had tried a number of times to achieve consolidation through
various initiatives. Some attempts focused on technology alone (selecting develop-
ment environments and deployment platforms). Others focused on organisational
aspects. None of those initiatives were successful at introducing significant and en-
during changes—the main reason being that there were too many walled gardens,
silos and diverse organisational cultures.

In the period 2004–2005 I was called in as a software strategy, process and
methodology consultant to assist in formulating an overall strategic software con-
solidation, process improvement and growth plan. Despite being a pan-European or-
ganisation with so many software business units, there were no distributed or multi-
site software development projects taking place. One of the major propositions of
the plan was to take up distributed, multi-site development. This was a natural con-
sequence of having a consolidated software engineering capability, that nonetheless
had to take into account the differences in culture, languages, customs and laws in
the various markets targeted by the company. Such local customisations could best

50 S. Tendon

be addressed by smaller local software engineering teams; while the generic appli-
cation platforms and frameworks could be developed by larger, technology focused,
co-located teams. In November 2005 I presented the strategic plan to the company’s
CEO and other C-level executives. The plan contemplated, among other things: soft-
ware product line engineering, outsourcing and near-shoring, proprietary software
architecture and framework construction, and methodology and process improve-
ment initiatives.

One recurring theme throughout the proposal was the need to embrace agility, at
all levels of the company, including the Executive Management. Agile was a new
concept for them, but eventually, at the beginning of 2006, they approved the initial
pilot project, in order to evaluate the viability of the agile approach.

4.2.2 Management Support and Sponsorship

In fact, this case begins prior to the approval of the pilot project, with engaging
the Executive Management in accepting agility as an alternative approach. The rea-
sons supporting agile had to be expressed in terms that made sense from a business
management point of view (rather than a project management or technical point of
view). Agile was justified on the grounds that software ventures require:

• A new style of “empirical” management where fiscal responsibility is exercised
differently.

• An investment perspective that is not like a standard capital investment (e.g. “buy-
ing equipment”), but rather like funding a new venture (e.g. “buying knowledge”).

• An investment model that is similar to the one used by Venture Capital companies.
• Flexibility because full qualification of costs and benefits at the start cannot be

expected.

I finally gained Executive Management’s support and sponsorship when adoption
of a “discovery-driven planning” approach was suggested as described in [1] for
controlling all new software projects. It was understood and accepted that funding
had to become iterative and incremental, so that it could incorporate the possibility
to “reconceive” as explained by [2].

Practical Tip: When an organisation is large enough to face the challenge of
distribution, the adoption of agility is not only a team decision. Often, several
departments and business units are involved. For this reason it is essential to
get management’s understanding, support, buy-in, sponsorship and explicit
endorsement: it must become a company objective to adopt agile.

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 51

4.2.3 The Pilot Project

4.2.3.1 Project Selection

The agile pilot was going to support a consolidation initiative in a specific market:
the Legal market (lawyers, attorneys, law firms and legal professionals in general).
This market was chosen for the following reasons:

1. The market was consider the one with the lowest risk in case of project failure
(with respect to the other markets where the company was operating).

2. It had (in relative terms) the smallest development organisations, with 56 soft-
ware engineers in total—including both R&D and maintenance resources.

3. It was representative of the multi-national setting: it covered eight different coun-
tries to start with (Belgium, France, Germany, Italy, Poland, Spain, Sweden and
The Netherlands), with others (Czech Republic, Denmark and UK) to follow
later.

4. It had already been the objective of two prior attempts at technical consolidation,
and therefore had more detail information available.

4.2.3.2 Project Overview

The organisation served the Legal market with more than one application per coun-
try, for a total of 20 applications. Most of those applications were approaching the
end of their useful life-cycle, and in need of redevelopment in order to keep up
with new technology and evolving market demands. The goal was to ultimately de-
ploy one application, supported by one single software architecture for the whole
Legal market in Europe, and replacing all products of all countries. The objectives
included:

• preventing local green field redevelopment;
• impeding duplication of efforts;
• avoiding local investments in sub-scale markets;
• realising a single cost base replacing multiple cost bases;
• reducing full time employee head count; and
• driving up ROS (return on sales) on a European level.

The project had to produce a business plan to allow Executive Management to per-
form an investment appraisal, and decide whether or not to undertake any further
engineering and development efforts.

Notably, the main reason why the prior attempts did not achieve management
approval was mainly of financial nature. The analyses that were produced where not
showing satisfactory financial returns. The failure of these prior attempts was one of
the motives that induced Executive Management to try the agile approach. If the ag-
ile approach could produce a convincing business case, then Executive Management
could draw wider strategic conclusion about the validity of the different approaches.

52 S. Tendon

Practical Tip: When transitioning to agile, a successful strategy is to pick the
toughest project that traditional approaches failed to deliver and which rec-
ognizes the criticality for the change. (If the traditional approaches did not
fail, you have no reason to move!) Set up a focused “SWAT” team, and let
it crack the tough nut. Aim at gaining success. Show that agile can work in
your context, through solving the most complex problems which other ap-
proaches could not solve. After the first success: rinse and repeat! Tackle the
next toughest problem. It is hard to argue with success where you had failure
before. And should you fail, you won’t get compared and measured against a
successful precedent—which would be the case if you picked an “ordinary,”
“bread-and-butter,” “easy” problem!

4.2.3.3 Participant Involvement

I asked the company to make available product managers, project managers, domain
experts, accountants, software engineers and other professionals from the various
countries, in order to execute the activities needed to produce the project plan. The
activities were going to last for almost five weeks. The idea was to use XP’s col-
lective roles of “customer team” and “programmer team”—or, as they were called
in the project, the Product Management Team and the Software Engineering Team.
The PM Team was going to identify—and agree upon—a single and common set
of requirements satisfying the needs of all European countries. The SE Team was
going to evaluate the feasibility of the requirements and provide estimates.

I asked every country to send four people to staff the two teams: an actual product
manager and a domain expert (or, alternatively, a project manager) for the PM Team;
and then a senior and a junior engineer for the SE Team. There were exceptions to
this pattern, depending on the relative size of the countries. In any case, and in order
not to unbalance representativeness, each country was requested to send at least one
but no more than three representatives to staff any of the two teams.

The planning process covered a period of four weeks. Additionally, before the
activities started, I held an initial three day induction workshop. Hence, the planning
process was broken down in the five stages, as shown in the following table:

Table 4.2 Planning stages

Stage Activity Duration Colocation

1 Agile induction workshop 3 days YES

2 Initial requirements gathering with story cards 1 week NO

3 Promiscuous pair story authoring and estimation with story 1 week YES

points

4 Time estimates, story revision and benefit/penalty ranking 1 week NO

5 Financially focused planning game 1 week YES

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 53

The initial workshop, the third and the fifth weeks saw the team member get
together. Each time, a different city was chosen for the meeting—to even out the
burden of travelling amongst all team members (who came from all over Europe).
During the second and the fourth week the teams worked in their respective home
offices. This alternating of on- and off-site activities was fundamental in the overall
process; and particularly significant in order to liaise the team’s work with the re-
spective members’ home offices. I moderated and supervised all activities that were
conducted in co-location; and I gave instructions about what the teams had to do
when working at home.

Practical Tip: When transitioning to agile, make it clear to everybody
involved—from Executive Managers to the junior programmers—that it is
not an easy “let’s try and see” approach. Instead, the entire organisation needs
to commit to and support the transitioning. Resources have to be allocated,
time schedules planned, and so on; at the same time as the daily operational
activities are to be performed.

4.2.4 The Journey of Implementing Agility

4.2.4.1 Agile Induction (Week 1)

It was necessary to have an introductory workshop to explain the agile approach in
detail. During the workshop, the teams could appreciate the iterative nature of the
agile approach. They understood that even what would have been qualified as the
requirements elicitation phase in a traditional setting, was going to be carried out in
an iterative and interactive way. Furthermore, it was going to be a team effort, with
all participants collaborating, rather than having some business analyst interview
the single product managers, and compile requirement documents. The PM Team
learned how to use Story Cards [3] to represent requirements. Similarly, the SE
Team learned how to express story estimates with story points.

The teams spent a lot of time on getting ready to work together. Not only did they
familiarise themselves with the agile approach, but they also understood how to at-
tain participatory decision making as described by [4]. All team member gained an
insight into how they could overcome different points of views, not by seeking com-
promises and face-value consensus, but by actively looking for win-win solutions.
In particular, the teams learned:

• to allow for the full participation of all members;
• to strive for gaining a deep mutual understanding of each other’s needs and points

of views;
• to elaborate inclusive solutions that contemplate everybody’s requirements; and
• to accept sharing the responsibility for all decisions taken.

54 S. Tendon

The teams quickly went through the “forming, storming and norming” phases of the
team development process. They were ready for the “performing” that they needed
in the week after. At the end of the workshop, they knew how to act together to reach
convergence and agreement.

4.2.4.2 Initial Requirements and Story Cards (Week 2)

The second week was a preparation week. The product managers worked in their
own countries, at their offices. All product managers were senior and very experi-
enced in their respective professional role, but they were new to agile. They had to
“trawl” for requirements and express them according to the story card format “As
a [type of user], I want [some goal] so that [some reason]” as described by [5].
I urged them to actually write the stories on physical paper cards—although most of
them resorted to word processors, nonetheless.

They were first asked to get requirements, information and feedback:

• directly from end users;
• from their companies’ support organisations;
• from the sales and marketing teams;
• from the engineering teams;
• and also by examining the offerings of the competition.

They were not to limit, prioritise or in any way triage the stories—they had to treat
this like a brainstorming exercise, where “anything goes.”

Considering that the companies had all dealt with requirements gathering in the
most diverse manners, this preparation phase had the significant result of collect-
ing all requirements from all parties involved and represent them in a common
format—the Story Card format. This was the first step towards achieving some sort
of commonality across the country offices. A simple step, but significant in the con-
sequences that would become tangible later, in the following week.

Another result was raising awareness back in the “home” offices: involvement of
local colleagues was high, since all wanted “their” ideas represented in the overall
international project. All countries wished that “their” requirements would be given
priority, and hence participation was intense—unlike when product managers alone
had been interviewed by business analysts (earlier, when the traditional methods
had been used). The active role of the product managers, and the involvement of
all stakeholders in the local offices was pivotal, to build awareness, consensus and
buy-in at “home.”

Practical Tip: When your project stakeholders are in different departments or
business units, keep in mind that they might have conflicting objectives, and
that they might want to compete for the project’s resources. Turn their con-
cerns into a positive force for the project, and find ways to seek collaborative
solutions, rather than competitive ones.

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 55

4.2.4.3 Promiscuous Pair Story Authoring (Week 3)

One of the major challenges was convincing all product managers to accept the op-
portunity, necessity and viability of developing a single plan for all of business units
in all countries. Initially, there was a strong scepticism about the possibility of find-
ing common grounds amongst all countries. The scepticism could be explained by
a number of factors. Some were obvious, like differences in culture. Others were
more subtle and unstated. For instance, at the outset country product managers were
sincerely convinced that their own requirements were “special” and couldn’t pos-
sibly be shared by others. Another forceful factor was the defensive reactions that
the proposed common project inevitably arose: the country representatives would
naturally be pessimistic towards a project that was meant to replace their own fa-
miliar businesses, and possibly reduce local resources. Finally, one of the strongest
reasons for doubting about the project chances of success was the fact that the two
earlier, traditional, attempts had failed.

All of this scepticism was overcome during the third week, when I introduced
the promiscuous pair story authoring activity. The team came together, in an off-site
location. I gave the PM Team members the assignment of creating a unified story
board of all their respective stories. A commercial web based agile project man-
agement tool was used. Anybody could add stories, as well as edit and modify any
story created by anybody else. This rule was inspired by XP’s practice of collective
code ownership, where any developer can work on any part of the code base [6].
The collective ownership was now applied to User Stories, rather than to code. The
idea was that collective ownership would allow for convergence to emerge during
the authoring process.

Through the web based tool the teams could easily interact with stakeholders in
their respective home offices. Conversely, the tool allowed the teams to continue to
collaborate even during the following week when they all headed back home to their
countries.

The PM Team had to identify and agree on a common set of “personas” [5].1

Any of their individually authored stories had to be related to one specific persona,
which they had to identify on a common basis. Again, the participatory decision
making exercises turned out to be instrumental, and allowed the team to quickly
identify their set of personas.

After having adopted a common format for the user stories, the identification
of a common set of personas was the second significant achievement in terms of
commonality acknowledged by all country representatives.

The Innovation of Promiscuous Pair Story Authoring Representing require-
ments with User Stories is a common practice in agile methods. [3] describes in de-
tail how to employ User Stories. According to Cohn, anybody on the customer team

1A persona is a fictious character, often with a real name and even personality, that is the protag-
onist of a user “story”—it helps visualizing the needs of a user, relating those needs to real-world
people, rather than to abstract roles.

56 S. Tendon

can write a story, and he defines the customer team as anybody who can “ensure
that the software will meet the need of its intended users. This may include testers,
a product manager, real users and interaction designers.” In all cases though, the
actual writing of a story is the activity of a single individual.

The significant process innovation that allowed the team to jump right into the
“performing” phase, and overcome everybody’s original scepticism, was to intro-
duce pair story authoring. I mandated that all stories being added to the web based
project management tool had to be written by a pair. The idea of pair story au-
thoring, likewise the idea of collective story ownership, was inspired by XP, where
the concept of pair programming is documented by [6]. The difference being, of
course, that in this case the pairing was applied to the authoring of stories rather
than to their programming. The pair story authoring concept was further inspired by
how the pair programming was enriched by [7] and [8]. Belshee augmented the pair
programming practice with the concepts of:

• knowledge cross-pollination,
• promiscuous pairing,
• least qualified implementer, and
• exploitation of the beginner’s mindset.

I brought over these concepts to this new setting of pair story authoring. When a new
story was first being worked upon, the participant proposing the story was not al-
lowed to transcribe the original story from the card into the system—or worse, copy
and paste from a word processing document. The second pair member, typically one
coming from another country, had to type the story into the web based project man-
agement tool. According to [6] and [3] a story card is a token of conversation. The
proposing member had to converse and explain, verbally, the concepts represented
by the story to the other pair member who was typing at the keyboard. Since, as
it will be described shortly, the pairing changed very frequently, the original author
had a very short period of time to make sure all concepts were effectively transferred
to his pairing partner. While this can seem unworkable, in practice it turned out to
be one of the most effective tactics that allowed the team to gain momentum.

To promote rapid knowledge sharing, the pairings changed and rotated very fre-
quently. This attained promiscuous pairing, where each story was handled and au-
thored by more than one pair. This caused cross-pollination, where knowledge was
transferred from person to person, through direct conversation and interaction. Pairs
were changed as frequently as every 15–20 minutes. The least qualified pair member
was always the one who materially had to type the story at the keyboard. Anytime
a pair changed, it was the newcomer to the story under consideration that was given
the task of typing the information into the system. At the same time, the previous
writer took over the role of the expert member, because she/he had been exposed
to the story for longer—and it became her/his turn to explain the concepts to the
newcomer. While requiring that the least qualified team member had to materially
write the story can seem an expediency, it had the important effect of exploiting
the beginner’s mindset. As explained by Belshee, this favours knowledge sharing,
because the beginner is more receptive to absorb new knowledge very quickly.

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 57

As mentioned earlier, but worthwhile repeating because of the major effect ob-
served in terms of effective knowledge sharing, anytime anybody proposed a new
story (from her/his own set of stories), she/he was not allowed to input the story into
the system. Instead, the other component of the pair, the one who was unfamiliar
with the story, had to do the actual writing. The most tangible consequence of this
rule was that it forced the original author to thoroughly and quickly explain her/his
points to the writer, making sure to be understood. The short time imposed on this
activity (time until the next change of pairing), had the secondary effect that focus
was always kept sharply on communicating the most important and essential fea-
tures of the stories, thereby enormously clarifying the verbalisation of the original
requirement. Unnecessary or low-level details were left out as a side-effect of the
time-boxing; all explanations were brief, essential and to the point. Productivity was
high; a lot of work was done in a very short time.

Practical Tip: If you decide to use the technique of promiscuous pair story
authoring, be sure to impose the time box (e.g. 15–20 minutes). At the begin-
ning it can be hard: some participants might complain and say that the time is
too short for them to explain all the details of their stories. Suggest that they
might split those stories into several shorter stories; but do not concede more
time than what you decided for the time box. Soon the effects of time boxing
will be tangible. If you have eight pairs each working on a different story,
the analytical productivity will be much higher than discussing a single story
amongst 16 people; and every single discussion will be much shorter and to
the point. The frequent change of pairings will increase the analytical power
and productivity even more.

Approximately every two hours, I interrupted the story pair-authoring activity.
The team members then worked as a group on the stories that had been authored
during the previous two hours. Each story was displayed (with a screen projection
off the web application), and presented by its original author. At that point each
story had almost certainly been seen and worked on by most (if not all) members of
the team. This step served as a collective “reality check,” and as an approval step of
those stories. The process was quick and swift. Many conversations about each story
had already occurred pair-wise, and a common understanding had already developed
between all team members. Rarely did any story need further, deeper discussions.

Once all stories of the 2-hour work block had been examined and approved, they
were passed on to the SE Team for estimation.

Practical Tip: Since this “reality check” seldom introduces further changes,
you might be tempted to forget it altogether: don’t do so! The purpose of the
reality check is two fold. First it does, indeed, allow the team to collectively
approve of their stories. Second—and this is more important—it enforces the

58 S. Tendon

team sentiment, and reassures the team they are all aligned and pulling in the
same direction.

Estimation with Both Story Points and Time Estimates While the PM Team
continued with promiscuous story authoring with another 2-hour work block, the
SE Team took over the stories of the previous 2-hour block, and started estimating
them. On a rotation basis, one representative of the PM Team joined the SE Team
to present the stories that needed to be estimated, one after the other. The represen-
tative actively participated in the estimation process, by conducting and moderating
the meeting (as he/she had learnt to do during the induction workshop). The repre-
sentative also answered any questions that the SE Team might have had about any
story that was under consideration. The SE Team used a wide-band Delphi “Plan-
ning Poker” estimating technique with a scaled Fibonacci sequence as described in
[3, 5]. The story points used were ideal effort points; and in no way related to time
estimates. Any story that got the unknown mark, was sent back to the PM Team for
further elaboration—the outcome of which was either the story’s dismissal or the
splitting up into two or more simpler stories. Any story that was sent back to the
PM Team was then expedited through the next 2-hour block. Occasionally, even the
engineering team members proposed new ideas, which were captured by the PM
Team representative, and then brought back to the PM Team and subjected to the
normal promiscuous pair-authoring process.

4.2.4.4 Revision and Benefit/Penalty Ranking (Week 4)

The fourth week was back in the respective country offices. The PM Team had now
a complete set of stories which they had all agreed upon as representing the totality
of requirements. They had one week to present and discuss the full story board with
whomever was concerned by the project in their countries.

The purpose was to see if there was any gross oversight, and to verify that the
stories could be “welcomed” back at home. If any new stories were needed, they had
to be collected and subjected to the same process as before (the week after, when all
team members would get together again). Surprisingly, very few new stories came
out of this stage, confirming the quality of the work done during the previous weeks.

The PM Team also had to make the first attempt at coming up with a prioritisation
for all stories. The product managers had to autonomously express a Benefit/Penalty
ranking for all stories. This was done with a simplified version of what is described
in [9] and [10]. This ranking was going to be used as input in the subsequent step
(the following week) when the entire team was going to meet again.

Traditional Time Estimates In the meantime, the SE Team members also worked
at their country offices. They had to re-estimate all the stories, but this time accord-
ing to their traditional way, and express the estimates in ideal time (man-days). Each

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 59

country was using their own estimating techniques, based on their own experiences,
with their resources and particular tools and development environments. Like for
the PM Team, these estimates were going to be used as input in the subsequent step
the week after.

The SE Team members had to give ideal time estimates because it was necessary
to have some kind of reference “velocity” to be used in the planning process. Since
it was the first time the approach was used by the company, there was no historic
data to refer to. The mean of the estimated times of all teams was attributed to each
story. The sum of those means gave an estimated project duration; with which a
hypothetical velocity could be computed, simply as the ratio between total number
of story points over the estimated duration.

Practical Tip: When transitioning to a new method, try to find ways to bridge
the old practices to the new ones. This will increase confidence in moving to
the new ones, as they can be interpreted in the light of experience.

Both the benefit/penalty rankings and the time estimates where collected into
a spreadsheet. All countries then sent a copy of their spreadsheet to a coordinator
that compiled a consolidated master spreadsheet out of all data, and computed the
appropriate mean values of the benefit/penalty rankings and of the time estimates
for each story.

4.2.4.5 Economic Value Calculation (Week 5)

The last week saw all team members reconvene, with the purpose of performing a
Planning Game, but with a few variations on the classical Planning Game of XP [6].
The SE Team used the hypothetical velocity to check that the project (as a whole)
was realistically sustainable by any “average” developer on “their” home team. Af-
ter a few adjustments and a positive assessment, the required team size could be
derived as the ratio between the estimated time duration and the desired (time-to-
market) duration. The team size was then doubled, with the intent of catering for
continuous pair programming. All the calculations where also done in a pessimistic
view where duration was multiplied by 1.6, and in an optimistic view where duration
was multiplied by 0.6—this determined lower and upper bounds on expectancies.

The PM Team continued working on prioritisation. As mentioned, each story
was assigned the mean of the countries’ Benefit/Penalty rankings (relative to that
story) that had been established autonomously the week before, and collected in the
master spreadsheet. This created a base line prioritisation sequence. Now, the PM
Team, collectively, expressed a desirability ranking of all stories, with the recom-
mendation to change the base line Benefit/Penalty ranking as little as possible. The
criteria used for expressing this desirability ranking related to each story’s market
positioning, like: “Differentiator,” “Competitive Response,” “Niche,” “Table Stake,”
and “Spoiler” (as initially hinted at in [11] and then described more extensively in

60 S. Tendon

[5]). The main purpose of this step was to make the team appreciate the strategic
reason (marketing positioning) why a story was present in the plan, and to allow
to partition the entire story board according to such strategic views. This partition-
ing was going to be very useful later, when the PM Team was going to identify
minimum marketable features. Again the participatory decision making techniques
proved essential for rapid progress.

Defining the Economic Value of a Story The teams had identified over 200 sto-
ries, estimated their size in story points and expected implementation duration, ex-
pressed an overall prioritisation ranking, and had an initial team-size estimate to
achieve the desired time-to-market. This result would be considered sufficient as an
agile project plan. However, the task was to produce a business plan for investment
appraisal.

To support the business plan, it was necessary to estimate the economic value of
each story. The latest fiscal year’s total revenue generated by all the original products
was taken as a reference figure. An economic revenue value of a single story point
was computed as the ratio between that total revenue and the total number of points.

StoryPointValue = Revenue

TotalNumberOfStoryPoints

It was assumed that the current market was willing to sustain the features described
by all stories under consideration. The “worth” of a story was simply its number of
story points multiplied by the story point revenue value.

ValueOfStory = StoryPointValue ∗ NumberOfPointsOfStory

Re-Computing the Economic Value of a Story Point through Successive Refine-
ment and Triaging Now was the time to discard stories that were worth less than
others. This was a step wise refinement process. After a single story was eliminated,
the economic story point revenue value was re-computed. In other words, the eco-
nomic value of a story point changed continuously during this phase. Naturally, it
increased because the reference revenue of the latest fiscal year was still the same,
while the number of story points had decreased by those points assigned to the story
that had been eliminated.

The PM Team could exercise an aggressive triage process: they realised that
many stories where simply “not worth their price:” the market would not gener-
ate that revenue for that feature! In order to reach their conclusions, the PM Team
often entertained additional discussions (typically via phone or instant messaging)
with representatives from marketing, sales and accounting, both from the company’s
headquarters as well as from the single countries. Eventually a balance was reached
between the economic value of the story point and all the stories left on the story
board. At the end, the number of stories had been reduced to from over 200 down to
118.

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 61

Practical Tip: By using this method, you can reduce the scope and avoid fea-
ture creep. You can eliminate stories on the basis of an economic argument,
rather than opposing opinions and power plays that would break down the
team spirit.

Calculation with the Incremental Funding Method On the basis of the desir-
ability ranking, the PM Team clustered all stories into sets of Minimum Marketable
Features (MMFs) as described by [12] and [13]. Within each MMF, the stories re-
tained the rankings that were attributed to them earlier. Once the number and scope
of the MMFs stabilised, it was possible to apply the Sequence Adjusted Net Present
Value (SANPV) calculations of the Incremental Funding Method (IFM) described
in [12]. A final attempt at manually optimising the sequence was done. All these
calculations were done with the involvement of a corporate accountant, who gave
immediate feedback if they we’re not in line with corporate financial targets. After
a few iterations, the order of implementation of the MMFs was established—even
though it was not the theoretically optimal sequence, it was good enough to support
a sustainable business plan.

4.2.5 The Final: Project Approval

During the last few days of the fourth week, the project plan was finalised and
gained the unanimous consent of all product managers who expressed the recom-
mendation to proceed with the operational project. At the same time, the business
plan was finished with assistance of the company’s headquarters office. Thereafter
the two plans were sent to all country managing directors; who also considered and
endorsed the plan from their viewpoint, after consulting with all local stakeholders.
Shortly after, a Programme Board involving senior country representatives and se-
nior officers from the company’s headquarters met, and collectively expressed all
involved countries’ common and formal assent to the plans. The business plan was
finally submitted to Executive Management who approved it primarily on the basis
of its economic soundness. In addition to this, the fact that all participating countries
unanimously sustained the proposal was seen as a major breakthrough. Likewise,
the fact that the plan was produced in only five weeks, rather than several months
of a roaming business analysts visiting all countries and elaborating project plans
separately, was valued as great improvement over the previous attempts.

Having achieved such a positive outcome, it is interesting to compare and discuss
the journey to implementing agility in an international setting and the benefits of
agile approach with the traditional one. The comparison was a key argument when
I presented the plan to the Programme Board and Executive Management.

62 S. Tendon

4.3 Benefits from Implementing Agility over Traditional
Approaches

The case discussed in this chapter is a real world case where an agile approach can
be compared directly to at least one of the two earlier unsuccessful implementations
of traditional approaches. Information regarding the first attempt is unfortunately
unavailable; while the second one was made according to the PRINCE2 methodol-
ogy, and in particular emphasising the Product-based Planning technique.

4.3.1 More Commonality

The PRINCE2 method enabled the project managers to define in detail the prod-
ucts to be delivered through a Product Breakdown Structure (PBS), with the intent
of capturing all related work activities and intermediary deliverables. Each coun-
try had to employ the product-based planning technique. Subsequent analysis of the
aggregated PBS determined the degree of commonality between all country require-
ments.

The analysis revealed that approximately 30% of all requirements were common.
Most of the common requirements were non-functional requirements (relating to in-
frastructure, rather than to the problem domain). By examining the respective PBSs,
the new products to be developed for each country were deemed to be broadly in
the same order of magnitude of scope. In other words, the amount of work required
to deliver each single product was approximately the same. Therefore, given 100
as the size of any such product, a broad estimate of savings for eight countries was
computed as:

100 × 8 − ((100 − 30) × 8 + 30)

100 × 8
× 100 = 26.25

The common project would require 26.25% less effort than eight distinct country
level green field developments. The savings was naturally significant. However,
since the idea was also to reduce total head count and utilise one team (rather than
eight distinct teams), the overall time to market was deemed too high—the team
could focus on one country at a time only. The total time estimate diluted the break-
even/ROI calculations beyond acceptability. Even worse: some countries at the end
of the implementation queue would have been forced to wait beyond the end of
life-cycle of their current products, exposing them to the risk of being uncovered on
their markets! Naturally, the project was not approved.

With the agile approach, the amount of commonality between the countries—
which was derived directly from the stories being tagged as of interest by all
countries—was much higher. Over 80% of all stories were recognised as of interest
by all countries. Another 5% ca. were considered of interest at least by two or more
countries (but not all). The remaining 15% ca. were truly single country specific. By
applying the original savings formula, the savings was determined as:

100 × 8 − ((100 − 80) × 8 + 80)

100 × 8
× 100 = 70

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 63

Therefore, 70% would be saved on the hypothesised distinct country level green
field developments; this compared very favourably with the 26.25% savings of the
traditional plan.

4.3.2 Smaller Scope

One reason why the degree of commonality was much higher with the agile ap-
proach is the reduced scope of the project. The story cards had been reduced from
over 200 to 118. Assuming those initial 200 stories represent the total requirements
that had been analysed with the traditional approach, the decrease in scope is ap-
proximately 40%. The total estimated effort was much smaller than what had been
estimated by the traditional approach, with an immediate impact on resource re-
quirements and time-to-market.

4.3.3 ROI Anticipation

The usage of MMFs was important for the project’s economic viability. The project
was partitioned in 11 MMFs, of which the first contained “core” functionality. The
second MMF was deemed as sellable: as soon as it was implemented, revenue could
be generated. This would allow ROI to be anticipated, without having to implement
the entirety of the project—as was required by the traditional plan. Furthermore,
by showing the SANPV of the MMFs, it could be sustained that a (near) optimal
revenue generation plan had been derived; at least it was demonstrably better than
any other alternative.

4.3.4 Smaller Country-Specific Dependencies

Only 15% of stories were truly country specific (on average this is less than 2.5
stories per country). This would allow for small “localisation” teams (even a single
developer) to be set up for each country, and quickly supplement the main team’s
work with localisation code. On the one side, this would reduce head count drasti-
cally in most countries, with corresponding cost savings. On the other, this would
enable parallel development of all country versions. Most important, no country was
at risk of being the “last in line” and loose market opportunities because of unattain-
able development timelines.

4.3.5 Avoiding Waste Upfront

The attribution of an economic value to the story could be done—quite obviously—
only after it had been estimated. Although time was spent on the estimation activity

64 S. Tendon

as part of the planning game, by attributing an economic value to each story, it
was possible to decide which stories were worth keeping, and which ones could
be discarded. The crucial point is that it was not necessary to have to code and
implement the stories only to discover—later—which ones would have been wasted
effort.

4.4 Why Agile Succeeded?

The salient question is how come the results of the traditional and the agile approach
where so dramatically different, while the underlying problems and people were all
the same? One well known statement of the agile Manifesto in [14] is to value
“Individuals and interactions over processes and tools”—and this is a point where
the effects of such a viewpoint made a difference. The following success factors
stand out:

1. Induction to learn about participatory decision making;
2. Co-location and alternating on/off-site activities;
3. Promiscuous pair story authoring;
4. Economic value of Story Points.

While the first two were simply the consequence of experience and insight, the last
two were innovative. Let’s examine all these factors in turn.

4.4.1 Induction

The purpose of the three day workshop was to introduce agile concepts to the team
members. The subtler and more valuable activities were about introducing the team
to participatory decision making techniques. The insight gained about participatory
decision making techniques helped the teams to proceed very quickly during the
weeks when they were required to work together. Most strikingly, there was not a
single instance where the flow of work got stuck because of people arguing in defen-
sive ways about their own positions and points of views. This had been a problem
in the earlier attempts, where a common agreement was never reached. Often, in
the earlier attempts, the larger countries wanted to have a lead role, and thus created
conflicts amongst themselves. Likewise the teams did not disperse energies in any
bike shed arguments. Instead, all differences in opinions were seen as obstacles to
be overcome as quickly as possible; or as opportunities to gain deeper insights into
other’s viewpoints. All energy was spend effectively, rather than wasted in unpro-
ductive disputes.

The importance of this initial workshop cannot be stressed enough. It was a hard
call to involve all these people with different backgrounds, experiences, cultures,
etc. and make them work together as a team after only three days, with an approach

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 65

(the agile one) that none had worked with before. There was a huge risk that the agile
approach could have been perceived as “enforced” upon them, and hence rejected.

The workshop focused on two major topics: the nature of software and partici-
patory decision making. By making the team members understand more about the
nature of software, and how agile processes actually work with rather than against
that nature, they were prepared—intellectually—to accept the new ways of work-
ing. By making the team learn to perform participatory decision making, they could
overcome the barriers that separated them one from the other. The exercises of the
workshop made the team appreciate and want—emotionally—to try the agile ap-
proach. The agile approach was not perceived as enforced, but effectively as chosen
by the team members themselves, because they gained the understanding and insight
about why this was beneficial for them.

The most valuable outcome of the workshop was to produce the “buy-in” from all
of the team members; and ability to reflect this positive attitude back home. From
a distributed, multi-site perspective, this in turn, made the managers in the home
office more interested in seeing how the project would actually evolve, laying the
groundwork for the feedback loops that eventually took place between the teams
and their home offices.

Practical Tip: When assembling new teams, primitive team “building” ex-
ercises are performed to make the team “gel.” Unfortunately, most of such
exercises have very little effect on how the teams will perform later, when
they will have to do their real work. It is much more effective—as in the stud-
ied case—to teach the team about what problems they will encounter when
working together, and how to recognise and resolve those problems once they
arise. It is important to involve the team both on an intellectual (“understand-
ing”) level, and on an emotional (“wanting”) level so that they are prepared to
do the work.

4.4.2 Co-location and Alternating On- and Off-Site Activities

Getting all participants together to meet and interact with each others was one ma-
jor difference with respect to the earlier attempts. The communication patterns that
are typical of an agile setting would not have been possible without the frequent
face-to-face interactions. The scheme of working by alternating weeks in the home
offices and weeks in off-site co-location, where all team members got together, was
extremely important. The most significant effect was seen in the “home” offices,
where it was possible to gain the buy-in of all stakeholders, and keep them involved
in the whole planning process.

The situation was very different from the earlier traditional approach, when a
roaming business analyst had been visiting all countries, and interviewed the prod-
uct managers alone as a means to elicit and collect requirements. Typically, the

66 S. Tendon

countries could express their viewpoint only once, and then were practically ex-
cluded from any further involvement and interaction. This naturally had the effect of
inflating all requirements, since everybody was concerned about getting everything
they could think of into the overall plan. Also, while only the product managers were
interviewed to obtained the requirements, all other stakeholders were not involved: it
was simply assumed that the product managers were effectively representing them.

In the agile approach, the product managers and software engineers who were
sent to the workshops acted as “ambassadors” of their country offices. The alternat-
ing between on- and off-site work realised feedback loops with the stakeholders at
home. The stakeholders were much more involved, informed and could effectively
interact with the work in progress. As a result, the plan produced by the team was
much more likely to be well accepted back home.

It is interesting to consider if this kind of result could be achieved without co-
location. Given the collaboration tools that are available today, it is fair to assume
that pair authoring can be technically implemented without co-location. However,
after having seen how the team performed, I am convinced that you can achieve the
productivity and unanimity only when people are co-located.

Practical Tip: Go beyond travelling managers; involve other staff too! In this
case, product managers, project managers, domain experts, accountants, se-
nior and junior software engineers were sent to the off-site location. Further-
more, there were frequent and intense interactions with other stakeholders at
“home,” such as the country and business unit managers, and staff from sales,
marketing, and support.

4.4.3 Promiscuous Pair Story Authoring

The major breakthrough in this success story is the practice of promiscuous pair
story authoring. The tangible impact was in determining the amount of commonality
between the countries; the subtler aspect was how that commonality was established.

In the traditional approach commonality was identified through analysis of re-
quirements that had been elicited by a business analyst. The traditional approach
tried to extract commonality from the elicited requirements. The requirements were
expressed on the basis of past experiences of each product manager, with a perspec-
tive that was restricted only to her/his own country.

In the agile approach, the effect of promiscuous pair story authoring was that
all product managers effectively created a common and shared vision of the fu-
ture product. This is the key point: commonality was not sought after or extracted.
Instead, it was created by the very process employed, which fostered a collective
future vision, with shared understanding and intent.

There were many times, during the promiscuous pair story authoring sessions,
when team members went through “Aha!” moments, as they discovered that similar

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 67

concepts and ideas were described by different words in the various countries, and
were even framed in totally different contexts. The overcoming of such apparent
differences contributed a great deal in creating a common and agreed upon domain
vocabulary, as advocated by [15]. The team members were able to conceive of en-
tirely new ideas. At other times they merged concepts and earlier requirements that
they had brought from their own experience. The resulting shared creation nurtured
sentiments of enthusiasm, ownership and buy-in by all participants. They quickly
felt that they all, together, really owned the project. This sentiment of shared experi-
ence would never have been possible without the aggressive promiscuous pair story
authoring, with pairings changing as often as every 15–20 minutes. It also occurred
that some product managers realised that other colleagues from other countries had
so much better ideas than their own, in some particular requirements area, that they
voluntarily scrapped their own proposals and fully adopted their colleagues’ ones.
This kind of realisation would have been entirely impossible with the traditional
approach. It is explained by the rapid knowledge transfer enabled by exploiting the
beginner’s mindset when forcing the least knowledgeable member of the pair to
write the stories.

4.4.4 Economic Value of Story Points

A crucial stratagem was the effort of making business value explicit and measur-
able by attributing an economic value to the Story Points. The idea was suggested
by the Theory of Constraint’s focus on throughput as described by [16]. For User
Story based software projects, throughput was defined by [11] “as the value of the
delivered Stories. The value is the sales price (or budget) less any direct costs [. . .].”

For the purpose of triaging the stories, it was sufficient to consider the market
value of Story Points, and not necessarily throughput. The essence was that a cost
figure was not assigned to Story Points. Instead the market value of Story Points
was defined relative to the latest revenue figure. Once the market value of the stories
was established, it was possible to recognise the impact of triaging, and this allowed
to reduce the overall scope.

4.4.4.1 Avoiding Feature Creep

Notice that this is very different from other established agile approaches too. They
define a cut-off point in the backlog of stories, identified by velocity measurements,
to decide what to include and what to exclude from a particular release. In this case
an effort was made to explicitly eliminate stories, effectively reducing the overall
backlog and the entire scope of the project, and avoiding feature creep. In the tra-
ditional approach, triaging would have been perceived as an attempt to penalise
the “owner” of the feature being eliminated. It would have provoked defensive
reactions—with the negative consequence of triaging not being exercised at all.

68 S. Tendon

4.4.4.2 Increasing the Value of a Story Point

In an agile setting, but with a conventional cost-based approach, the production of
a story point would always cost the same and therefore would be unaffected by
triaging. The only way to get “more value” would be to achieve a lower cost per
story point, or increase velocity/productivity in terms of work delivered per unit of
time. This is quite different than increasing throughput in terms of real economic
value of the story point, as in this case. Most of the stories that were eliminated
by triaging were those that were worth less (relatively to their ranking and degree
of commonality, of course). Often these were the stories that had been proposed
by one (or a few) of the participating countries. However, since the rationale for
eliminating the story was based on economic value, this did not provoke defensive
reactions; rather the outcome was well accepted, because the stories remaining after
the triage were characterised by higher and higher economic value.

4.4.4.3 Virtuous Circle

The elimination of stories automatically increased the return on investment. The
reason can be found in [11]. The ROI of a software release, from the throughput
accounting perspective is defined as:

ROI = Throughput–Operating Expense

Investment

This last point is worth stressing: eliminating stories has a direct impact, from a
TOC perspective, by reducing the Operating Expenses (i.e. the effort needed to pro-
duce the software). This obviously increases the numerator in the ROI ratio; and
hence it is a practical and financially grounded way to “maximising the amount of
work not done” as it is formulated in one of the twelve principles of the Agile Man-
ifesto by [14] and effectively applying the Lean principle of eliminating waste. In
practice, by continuously re-computing the value of a story point, it became visible
how eliminating stories increased the overall value of the entire project.

Finally, by actively reducing the amount of work by eliminating stories, the im-
plementation time and consequently the time to market would be reduced propor-
tionally (naturally, assuming constant velocity). Therefore (in addition to the already
mentioned effect of ROI anticipation due to the use of MMFs) ROI would not only
increase, but it would also be reaped much earlier.

4.5 Conclusions

While the derivation of the final plan went through a lot of work, with many per-
sons contributing, the key phase was during the practice of promiscuous pair story
authoring. It was during that stage that the team really “gelled” and came together.
While the induction established the collaborative and participatory frame of mind

4 Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation 69

for all subsequent activities, it was the promiscuous pair story authoring that truly
changed the team members’ attitude: it changed from scepticism to a convinced
“can-do” attitude.

The main challenge was persuading the product managers of each product and
country about the opportunity, necessity and viability of developing a single plat-
form for all of them. In fact, at the outset there was strong scepticism about the
possibility of finding common grounds amongst all countries. Through the promis-
cuous pair story authoring practice, all scepticism was overcome by the team collab-
oration, and by the team succeeding in creating a shared and common vision. That
vision then inspired the rest of the activities.

Assigning an economic value to story points allowed the teams to reduce the
overall scope, avoid feature creep, and do so according to sound economic crite-
ria, rather than opinions, hence avoiding many conflicts that would have appeared
otherwise.

The case shows how practices that matured in the field of coding (collective own-
ership, pair programming) can successfully be adapted and applied in other phases
of the life-cycle (requirements gathering). The case also illustrates how some agile
principles, and in particular paying attention to the people involved and teaching
them to collaborate, and then actually giving them the opportunity to put those no-
tions into practice, can radically change not only how the project plan is materially
made, but also the final and financial outcome.

Acknowledgements The author wishes to thank Dr. Bruce Sharlau, Teaching Fellow in the
Computing Science Department at the University of Aberdeen, for reviewing and commenting
on the manuscript.

References

1. McGrath, R. G., & MacMillan, I. (1995). Discovery driven planning. Harvard Business Re-
view, July–August 1995.

2. Austin, R., & Devin, L. (2003). Artful making, what managers need to know about how artists
work. Upper Saddle River: Financial Times Prentice Hal.

3. Cohn, M. (2004). User stories applied: For agile software development. Reading: Addison-
Wesley.

4. Kaner, S., Lind, L., Toldi, C., Fisk, S., & Berger, D. (1998). Facilitator’s guide to participatory
decision-making. Gabriola Island: New Society Publishers.

5. Cohn, M. (2005). Agile estimating and planning. New York: Prentice Hall.
6. Beck, K. (2000). Extreme programming explained: Embrace change. Reading: Addison-

Wesley.
7. Belshee, A. (2005). Promiscuous pairing and beginner’s mind: Embrace inexperience. In Agile

conference 2005.
8. Belshee, A. Promiscuous pairing and the least qualified implementer (podcast).
9. Wieger, K. E. (1999). First things first: Prioritizing requirements. Software Development,

September 1999.
10. Wieger, K. E. (2003). Software requirements (2nd ed.). Redmond: Microsoft Press.
11. Anderson, D. J. (2003). Agile management for software engineering: Applying the theory of

constraints for business results. Englewood Cliffs: Prentice Hall PTR.

70 S. Tendon

12. Denne, M., & Cleland-Huang, J. (2003). Software by numbers: Low-risk, high return devel-
opment. New York: Prentice Hall.

13. Denne, M., & Cleland-Huang, J. (2004). The incremental funding method: Data-driven soft-
ware development. IEEE Software, 21, 39–47.

14. Beck, K. et al. (2001). The agile manifesto.
15. Evans, E. (2003). Domain-driven design: Tackling complexity in the heart of software. Read-

ing: Addison-Wesley Professional.
16. Goldratt, E., & Cox, J. (1992). The goal: A process of ongoing improvement (2nd revised ed.).

Great Barrington: North River Press.

Chapter 5
Scrum and Global Delivery: Pitfalls and Lessons
Learned

Cristiano Sadun

Abstract Two trends are becoming widespread in software development work—
agile development processes and global delivery, both promising sizable benefits in
productivity, capacity and so on. Combining the two is a highly attractive possibil-
ity, even more so in fast-paced and constrained commercial software engineering
projects. However, a degree of conflict exists between the assumptions underlying
the two ideas, leading to pitfalls and challenges in agile/distributed projects which
are new, both with respect to traditional development and agile or distributed efforts
adopted separately. Succeeding in commercial agile/distributed projects implies rec-
ognizing these new challenges, proactively planning for them, and actively put in
place solutions and methods to overcome them. This chapter illustrates some of the
typical challenges that were met during real-world commercial projects, and how
they were solved.

5.1 Introduction

Two trends are becoming widespread in software development work—agile devel-
opment processes and global delivery (i.e. development teams who are spread over
geographically wide areas, typically crossing country borders).

The former—especially the Scrum process [1]—promises an increase in produc-
tivity, quality and value of the software developed; the latter promises both sizable
cost reductions and a mitigation of skilled personnel shortage issues in certain coun-
tries or markets. Combining the two is therefore a highly attractive possibility.

However, certain conflicts exist between the assumptions underlying the two
ideas. Scrum consists of a set of organizational techniques and collaboration mech-
anisms mainly target to local teams working in close physical proximity. Such
techniques and mechanisms assume that, in most circumstances, an empirical,

C. Sadun (�)
Tieto Norway AS, Oslo, Norway
e-mail: cristianosadun@hotmail.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_5, © Springer-Verlag Berlin Heidelberg 2010

71

mailto:cristianosadun@hotmail.com
http://dx.doi.org/10.1007/978-3-642-12442-6_5

72 C. Sadun

communication-heavy and feedback-based process is better suited than a defined-
requirements one to develop nontrivial software. Offshore software development is
often executed with a “detailed requirements” approach, possibly to minimize the
risks due to distance and higher communication barriers (from operational ones—
such as different time zones or different levels of proficiency in the team language—
to cultural and attitude differences).

Furthermore, when global delivery is used in realizing a piece of software, these
issues can be compounded by other factors: expectations about global (offshore) de-
livery centers as production factories; different levels of understandings and expec-
tations of the level of agility of the process among different sub teams; the stronger
emphasis typically placed on defined communication (and related artifacts, like
project reports, meeting minutes, detailed changes documentation), in the attempt
of achieving better control (or assuage fears of failure) over far-away, independent
development groups.

While early research and guidelines exist on how to distribute Scrum-based soft-
ware developments (typically via Scrum-of-Scrums [2]), when Scrum and global
delivery are mixed, there are still risks of a gap of expectations and assumptions
between various subgroups of the development team when agile processes are com-
bined with global delivery.

Based on the experience of some custom-developed application projects deliv-
ered in 2007/2008, in this chapter we will explore some challenges and pitfalls
which we met during the concrete execution of this kind of work, their consequences
and which actions mitigated them and what was the final outcome.

5.2 Cases Overview

5.2.1 Background

This chapter is based on two fixed-price projects, which we’ll call conventionally
NOR1 and NOR2. The projects were delivered by a professional services company
(“Supplier”) to two different organizations (“Customers”) in Norway. The tables
below outline the size and attributes the Supplier organization.

Table 5.1 Case synopsis

aThe name is changed due to
confidentiality reasons

Company: NORSuppliera

Number of developers 10.000+ (international)

When was agile introduced since 2005, but in separate

parts of the organization

Domain IT consultancy and services

The customer organizations (“NORCustomer1” and “NORCustomer 2”) were in
both cases the Norwegian arm of a large multinational (about 25.000 + employees
for “NORCustomer1” and 42.000 for “NORCustomer2”).

5 Scrum and Global Delivery 73

Fig. 5.1 Project partners

The goals of the projects were nontrivial, but well within the complexity and
size of typical modern software engineering efforts. Both Customers were unused
to agile methods, having applied them only in pilot or test form in their internal
IT departments, and certainly not within the Customer/Supplier context, typical of
professional services, where deliverable software is expected from a Supplier at a
target price within a target date and with a defined quality level.

The deliveries implied distribution of work between two onshore and offshore
locations, and in both cases, the Supplier’s Norwegian operation was designated as
the “onshore” one, and the other Supplier’s locations where “offshore”—i.e. remote
delivery units. The figure below illustrates the setup.

Both projects were ultimately successful—both for the Customers (which ob-
tained the deliverables they had purchased) and for the Supplier (which made a profit
and obtained valuable references), and—in agile spirit—for the participants, which
(according to a survey taken at the end of both project) felt the projects rewarded
and benefited them in terms of individual development and experience. However,
this success was far from assured during the projects execution, and active steer-
ing was necessary to achieve the final result. This chapter deals with some of the
challenges we met, and the solutions which ultimately proved successful.

The tables below summarize the two projects.

Table 5.2 Project 1:
overview Project NOR1

Duration: 12 months

Status: finished

Agile practices: Scrum (full implementation)

Involved locations: Norway, Eastern European country

74 C. Sadun

Table 5.3 Project 2:
overview Project NOR2

Duration: four months (first phase)

Status: finished

Agile practices: Daily meetings, user stories-like

requirements, short iterations,

planning gatherings

Involved locations: Norway, Baltic country

Fig. 5.2 Work distribution

5.2.2 Project NOR1

The first project (Project NOR1) was delivered to NORCustomer1 and aimed to
replace an existing sales web portal with one having noticeably improved usability,
while also consolidate functions from other web portals (dealership information,
campaigns, product information) in one single tool. The user base for the portal
consisted of sales people in the customer’s dealership organization; they can both
use the portal functionality to close/register sales in realtime, with the customer in
attendance, and gather back office information such as sales reports, commission
reports and so on. The Customer was a middle-size organization (about 700 people)
fully owned by a much larger Nordic company.

From a technical point of view, the project primarily included:

• the development of the portal application;
• the replacement of an obsolete sales automation process with a novel one—and

the consequent phase-out of the integration platform supporting it, in favor of a
newer SOA platform (already well established and mostly developed);

• integration of CMS (Content Management System) functionality for supporting
information channel;

• development/integration of administration functions.

Scrum was selected as development methodology, primarily due to the uncer-
tainties about the final scope, the prioritization of the consolidated features and

5 Scrum and Global Delivery 75

the technical challenges in the integration platform, all of which could not be pre-
dicted reliably at project start. A typical example was a set of features concentrated
over Christmas-time campaigns, whose realization complexity was difficult to as-
sess with an adequate degree of confidence by Customers personnel, and for which
the tradeoff between features and cost could not be readily identified at start. In this
project, all the practices prescribed by Scrum were adopted.

Project NOR1 duration was of about one calendar year. The project was heavily
distributed at the Supplier side, with a 24 to 20 people staff, and thus a work dis-
tribution over two locations; in the Supplier organization, the ratio of offshore to
onshore personnel (in terms of headcount) is called offshore ratio. Project NOR1
had with an initial offshore ratio of approx. 80%. I.e. 4 people onshore, 20 offshore,
initially. Note that the number (and thus the ratio) changed slightly over time, to a 2
onshore/18 offshore at the last implementation Sprint.

The chosen Supplier’s offshore site was in an Eastern European country in the
same time zone as Norway. The site was chosen primarily for the following reasons
(in order of importance):

• location maturity The site was the first offshore center established by the Supplier
and the one with the largest history of operation;

• available competence types;
• ease of communication due to the time zone.

The offshore staff was divided in three Scrum teams, including junior and senior
developers. The onshore roles included initially a functional/technical architect, a
project manager, a co-project manager in charge of accounting and budgeting, a test
manager, and Scrum masters. The roles were distributed over four people, where
three took the Scrum master role in addition to other as of the following table.

Table 5.4 Project NOR1 team

Location Number of members Roles

onshore 2–4a project manager, scrum master, technical architect, test manager

offshore 18–20 coordinator, developers, testers

aThe number and composition of the teams were modified during the project

Such organization was set up as a tradeoff between an ideal organization (one
person-one role) and the type, number and availability of personnel at project start;
the fact that both onshore and offshore line management were stakeholders in the
project execution; the internal contractual agreements between onshore and offshore
subunits of the Supplier; and, last but not least, strong views on project control and
accountability held by the onshore unit top management.

It is worth noticing that these are typical real-world constraints that may preclude
theoretical ideal organizational setups, even in cases where theoretical or research
guidance exists.

76 C. Sadun

5.2.3 Project NOR2

The second project (Project NOR2), delivered by the same Supplier to NORCus-
tomer2, aimed to realize an order management system for a new range of products
in the Customer organization, automating order acquisition, validation, processing
and fulfillment. No GUI component was to be delivered for the core system, but
ancillary monitoring, control and recovery tools and their GUIs for ensuring accu-
rate processing were also required and delivered. The Customer organization was
a large company in Norway (with over 6000 employees in the country and several
more internationally).

Technically, the project intended to deliver:

• a novel platform for order validation and processing at the Customer, based on ex-
plicit workflow management via a BPEL (Business Process Execution Language)
engine as opposite to traditional process hard coding;

• integration with existing back-end systems as necessary to fulfill orders;
• a monitoring and recovering user interface for blocked or incorrect orders.

The project was intended also as a proof of concept for the platform, to validate
its viability as a replacement for the more traditional, mainframe-based one.

Project NOR2 was actually a subproject in a much larger endeavor at the Cus-
tomer organization. As it was on the critical path for a number of other sub-projects,
there was a particular emphasis to delivery time and quality of the result, i.e., other
subprojects depended heavily from it timely completion in order to start or to com-
plete.

Similarly to Project NOR1, for Project NOR2 there was a receiving organization
at the Customer. Due to the nature of internal agreements in the Supplier organiza-
tion, only a subset of Scrum elements was selected, specifically:

• daily Scrum meetings;
• a work breakdown structure resembling user stories, that is—splitting functional-

ity in roughly estimable, conceptually self-contained pieces. Test criteria specifi-
cations, however, were not explicitly added to each piece;

• partial production level deliveries in short iterations (4/5 weeks).

The rationale for selecting agile elements was that time scheduling was very
tight, and strong progress control was deemed to be a major mitigation of delivery
delays issues. However, due to contract expectations, a full Scrum could not be
selected. In opposition to Project NOR1, a standardized contract was used, which
contained a legally binding declaration of scope of delivery in terms of a fixed set of
requirements to be realized, with no choice for dropping, replacing or adding new
during the project execution. The reason for including Project NOR2 here is that
there is empirical evidence of many projects taking this partial approach—so the
relative findings can be interesting.

The duration of Project NOR2 was of about four calendar months. The project
had a much smaller number of participants (2 onshore and 5 to 4 offshore) than
Project NOR1, with an offshore rate of about 60%.

5 Scrum and Global Delivery 77

The offshore site was located in another country in Eastern Europe—this time, in
the GMT+2 time zone. In Project NOR2’s case, the chief reasons for selecting the
site were:

• concentration and availability at the site of high-level competences for the chosen
technical platform (the site is the Supplier’s “centre of excellence” for the type of
technology which constituted the base of the solution);

• ease of communication due to the time zone (still quite comfortable, with just one
hour of difference from Norway)

• the good reputation for successful deliveries of the site, even if it had been existing
for shorter time than the one selected for Project NOR1.

In Project NOR2, one single team took care of the delivery, with the offshore
team consisting (as for Project NOR1) of senior and junior developers. The onshore
roles were as of the following table.

Table 5.5 Project NOR2
team Location Number of Roles

members

onshore 2 project manager, technical architect

offshore 5–6 coordinator, developers, testers

5.3 The Experiences

5.3.1 Signing Agreements

Internal agreements between units were found to have a large effect on the construc-
tion and efficiency of the project organization.

5.3.1.1 Challenges

By definition, distributed work involves at least two separate country sub-organiza-
tions, which in order to collaborate need to undergo relatively precise contractual
agreements. Two kinds of agreements were available when both Project NOR1 and
NOR2 started: a resource-level agreement and a project delivery agreement. With
the former, individual people are hired in by the onshore unit and the relative hourly
costs invoiced to it; with the latter, the offshore unit retains direct control of the off-
shore people but takes explicit responsibility in delivering desired artifacts and coor-
dinating with onshore. For Project NOR1 onshore and offshore entered a resource-
level agreement, and a project-delivery agreement for Project NOR2.

78 C. Sadun

Resource-level agreements allow tighter formal control of the project and comply
with the Scrum precept that developers and other assets should be allocated 100%
to the project. However, we found that there was less incentive for offshore man-
agement to provide the best people and to particularly stimulate them to participate
with the intensity that Scrum requires—since the agreement does not include direct
responsibility for the final delivery. The responsibility for ensuring (initially) the
suitability of resources, and (during the project) their motivation and coordination
fell mostly on the onshore organization.

Project delivery agreements hold greater incentives in the offshore organization
to take direct responsibility for the outcomes, but staff allocation was handled by
the offshore units, so that it was not entirely dedicated to the project but often split
between several ones. In Project NOR2, we experienced initially lags in commu-
nication, missed participation to daily Scrums, unavailability of people in planning
poker sessions and the likes, which could be traced back to this kind of agreement.
The major consequence of this was in increased load in the onshore Scrum mas-
ter/Project manager, who had to spend considerable energy in “hunting” people,
and the initial production rate, which was lower than expected. While a team ve-
locity is usually observed more than estimated, in Project NOR2 case both time
reporting and random interviews made clear that the production was not happening
at full capacity due to the fact that people were not dedicated solely to the project.

5.3.1.2 Solutions

Formal agreements, even if internal, are not generally easy to change midway, so
no specific action could be reasonably taken to address the problem specifically;
however, we resolved to interpret both situations as a result of both formal agree-
ments and personal motivation of individuals on the onshore and offshore teams (as
opposite of only the formal agreements).

We thus had a twofold approach: on one side, we made active use of both avail-
able contractual tools and internal negotiations to remove/reduce personnel who
was formally allocated to the project but in practical terms was not able to perform
adequately; on the other, we resolved to address explicitly motivation and commit-
ment, attempting to establish the feel of a localized Scrum team by traveling often
on location in both directions, and explicitly emphasize (both in words and actions)
the peer-to-peer relationship between onshore and offshore—all aspects which are
addressed in the following chapters.

Both activities resulted in overhead costs (at both business and project manage-
ment levels and for additional traveling) but succeeded in correcting the situations.

5.3.1.3 Lessons Learned

As a lesson for future projects, mixed resource/delivery and/or shared-risk internal
agreements are being examined by the Supplier, so to provide the opportune incen-
tives to both onshore/offshore organizations for the mix of delivery responsibility

5 Scrum and Global Delivery 79

and resource allocation that is required from Scrum-based efforts also in distributed
situations.

A practical tip to address these issues is perhaps obvious: ensure to establish good
personal relationship with the offshore site management, because in some form you
probably are going to need it.

5.3.2 Establishing Remote Access

Both projects required work either at Customer’s premises or in connection with
Customer’s systems. For non-distributed Scrum effort, this is normally a non-issue:
a suitable location at the Customer’s premises is found, where the entire team or
teams can work. Often, offshore work is instead based on the idea of shipping spec-
ifications, perhaps organizing more or less frequent clarification meetings and re-
ceiving software or other deliverables.

5.3.2.1 Challenges

In both projects, this was simply not possible: agility required that offshore devel-
opers have the same view of customers system as people onshore, share the same
code repository, access logs of daily builds and test runs and so forth. This implied
setting up some form of remote access. Technically, this was relatively feasible, but
we encountered two major challenges:

• for project NOR1, security policies on both Supplier and Customers were not
suited for this kind of remote access, and special policies had to be drafted and
approved to allow controlled exceptions to such policies;

• for project NOR2, the processes in the Customer’s operations unit in charge of
the necessary physical configurations (firewall openings, virtual network clients
setup, and verification of compliance of Supplier’s workstation to acceptable pa-
rameters) were not suited to the tempo, speed and productivity expectations of
agile efforts—and thus were lagging noticeably in time at the start of the project.
In practice, bureaucracy risked to choke the project progress.

Both aspects resulted in delays at project start, which put at risk the productivity
claims made for agile methods and setups.

5.3.2.2 Solutions

The first challenge was met by drafting temporary agreements which allowed ex-
isting security policies bypassed under direct responsibility of high level officers at
both Customer and Supplier. The actual final agreements did not become ready until
the projects were well under way.

80 C. Sadun

The second challenge was addressed, in a somewhat less systematic way, by
using the Supplier’s contact network at the Customer to speed up things.

For project NOR1, the overall time to establish the necessary communication
ended up to be about 5–15 calendar days (not all the systems became accessible at
the same time), with an overall delay of about a week; for project NOR2, making
use of the contact network reduced the time necessary for the necessary network
adjustments to a couple of hours. However, the total delay was also of about a week,
since that time had been spent in waiting for the formal Customer process to take
place before actually attempting to contact directly the relevant Customer personnel.

5.3.2.3 Lessons Learned

The most obvious lesson is to assume that support and operations functions at a
Customer, especially one not used to work in agile ways, will have a response time
tailored to more traditional software development cycles. Therefore, requests such
as firewall openings, hardware ordering, router configurations and so forth need
to be issued well in advance of the first iteration/sprint, otherwise productivity will
suffer. A strong contact network at the operational level at a Customer can, of course,
be extremely helpful, as it happened for Project NOR2.

Regarding the legal agreements, there is hardly a way to speed them up if they
are not already in place when the project is being negotiated between Supplier and
Customers; however, generally project owners or Scrum Customer Representatives
in the Customer organization have an interest in the project progress as strong as
the organization that is delivering it. Therefore, they can generally become its allies
in finding interim solutions and/or work within their own organization so that a
viable solution is found. The tip here is simply to raise the issue as soon as possible
with a customer stakeholder who has both an interest in the project success and the
authority to push or approve interim solutions.

It’s interesting to note that these issues were much easier for subsequent projects
with the same Customers, but for future projects with new customers, the calendar
planning (as opposite to the effort estimates) will have to take such delays into
account.

5.3.3 Overcoming Communication Barriers

Scrum implies tight communication within a fully dedicated project team, both for-
mal (e.g. daily Scrums, planning meetings etc.) and informal. When executing it
with people distributed over different geographical locations, it quickly emerged
that maintaining informal communication was difficult.

5 Scrum and Global Delivery 81

5.3.3.1 Challenges

Both projects started with a short visit of selected customer representatives to the
main offsite locations quickly followed by full-team onsite kick-offs (in Norway)
to allow personnel to get to know each other (and Customer’s representatives) and
develop a sense of teamwork and mutual commitment. However, even if both on-
shore and offshore personnel were on average enthusiastic and committed about the
adoption of agile processes, it soon surfaced they had slightly different expectations
and assumptions on how in practice to execute it; and language and culture barriers
had a bigger impact than initially thought.

Repeated attempts to supply technical tools to facilitate communication (from
chat systems to web cameras to issue tracking systems customized for the project)
did not seem to produce measurable effects. Perhaps predictably, exhortations to
increase the level of communication did not have any better effect. Communication
simply did not seem to happen by itself—even when tools were available, people
were not using them to the degree that seemed desirable and necessary.

5.3.3.2 Solutions

Three main measures were taken to compensate for this and did have the desired
effect of explicitly drive communication:

• on the offshore side, three senior developers were given the roles of local coor-
dinators or co-Scrum masters, taking a similar role of “obstacle remover” in the
physical offsite environment.

• The amount of physical traveling was also increased—with more frequent travels
between key personnel offshore/onshore and vice versa than originally estimated.
Both projects had a travel plan. However, Project NOR1 had explicitly planned
and priced a set of periodic travels between offshore and onshore throughout the
entire effort, making this a transparent cost-driver for the Customer, while for
Project NOR2 the Project manager had simply budgeted a cost as a percentage
of the overall project value in order to determine the overall project cost and
allocated most of it to the initial kick-off.

On hindsight, the first approach allowed more flexibility than the second:
firstly, since communication implied representative of both Customer and Sup-
plier, they both had a joint interest taking the appropriate steps and allow altering
of the travel plan; secondly, the tradeoff between cost and amount of travel was
easier to handle, since with the second approach any rescheduling of travel repre-
sented a cost incurred solely by the Supplier.

• In Project NOR1, about two months into the project calendar schedule, the onsite
architect was replaced by an offshore person, who however moved onsite for
the duration of the project. The intention was to allow someone from offshore
participate directly to the initial period of each sprint (with the accompanying
clarifications and informal communication involved), so to ease communication
to offshore bypassing language and culture barriers.

82 C. Sadun

It is important to note that this person was chosen carefully for his communica-
tion abilities and the degree of respect he commanded among the developers in the
offshore unit.

A reverse approach was taken in Project NOR2, where the onsite people spent
noticeably more time at the offshore operation, while a local coordinator (who had
been ineffective due to overcommitment to other projects) role was replaced by di-
rect coordination by the onsite Project manager—about two months into the project.
Since the delivery group was smaller, the onsite personnel had already established
good communication channels to offsite, so in this case the intent was to provide the
physical opportunity for informal communication to happen.

Both approaches proved successful—the degree of communication increased to
a more than workable degree by physically exchanging a small amount of people
from offshore to onshore or vice versa. Since the time span of the two projects were
appreciatively different, it is possible that one of the two approaches is better than
the other, but no evidence of this can be extracted from the two cases.

5.3.3.3 Lessons Learned

Communication and culture issues are best addressed explicitly at project start, but
this is not sufficient. A few selected persons at both onshore and offshore location
need to be explicitly trained and followed up on facilitating communication. For
them, planned, periodic travel with enough frequency (for example every four or
five weeks) seems to be a better idea than an aggregated, general traveling budget
which usage is determined during the project. Moving a representative of the off-
site location onsite or vice versa seems for the project duration is an excellent, if
expensive, mechanism for facilitating communication, so long he/she his chosen for
his/her communication and bridge-building skills in addition for other technical or
management competences. Such bridging is much easier if the person has informal
authority between his/her original location. Our experience suggests that one person
is enough for groups of up to 20+ developers, at least so long the project execution
time gives him/her the opportunity to get to know the “other site” counterparts well
enough.

5.3.4 Actively Managing Distributed Agile Projects

Agile approaches in general are relatively new, and agile distributed approaches, es-
pecially in a Supplier/Customer context, are even less common and documented. As
a consequence, there is less established guidance on the definition and interconnec-
tion of individual project roles or the best junior/senior competences mix at offshore
sites, and we found that the personal attitudes or skills of project personnel was a
key issue to achieve the expected productivity and results.

5 Scrum and Global Delivery 83

5.3.4.1 Challenges

In Project NOR1, we found that the initial junior/senior mix was too skewed towards
junior competences. Simply put, many senior developers were spending too much
time coaching and correcting work of junior people. While this is not a challenge of
agile or distributed projects per se, the distribution aspect compounded it: the lack
of physical co-location and direct observation (and perhaps a natural tendency of
team members of supporting each other) delayed the recognition of the problem.

5.3.4.2 Solutions

During the project, corrective action was taken by asking the Scrum teams to iden-
tify which people were contributing less, and as a consequence four people were
reassigned to other internal projects, where they had a better opportunity to gain ex-
perience. Productivity (measured in story points) did rise of about 30% on average
on the remaining sprints (rising from about 8 to 12 story points per week). While of
course this was not an experiment in isolation and other causes may have brought
about (or contributed to) the productivity increase, there were clear signals and ev-
idence that senior developers started spending more time in actual production after
the staff reduction. The remedies discussed in this paper were mainly taken during
Project NOR1 first five months of execution.

Similarly, the attitudes of key people to communication and onshore/offshore
relationship were considered carefully and led to the replacement of the onshore
Project manager (with a different onshore project manager who was more commu-
nication and motivation-oriented) and the onshore technical architect as described
in the previous section. These people were selected for their attitudes and standing
in either onshore or offshore organization as much as for the technical skills.

Some specific necessary attitudes we identified:

• peer attitude between onshore and offshore operations
• high level of fluency in English (or the common language between onshore and

offshore)
• high attention to communication issues
• low tolerance for communication blocks and resistance to communication
• high personal prioritization and commitment to the project in case of less than

100% allocation to it.

Similarly, for Project NOR2, the inability of the appointed offshore coordinator to
dedicate enough energy and time to the project was identified as a major issue and
led to the onshore Project manager taking on his duties as described in the previous
section. In this case was neither a matter or skill level or unwillingness, but simply
of prioritization of available time—and perhaps personal commitment.

84 C. Sadun

5.3.4.3 Lessons Learned

While again it is hard to infer general rules, our current working hypothesis is that
agile development assumes all the participants in a Scrum team to be both techni-
cally skilled, and willing and able to establish strong communication between them.
With high productivity expectations and short iterations, the attitude, time availabil-
ity or skill level of individual members can quickly result in lower than expected
results for entire team, concretely visible in burndown charts and progress reports
to the steering group.

Finally, proactive and energetic management actions are essential to correct the
issues that risked delaying or compromising the two projects. A tight communi-
cation loop between the Project manager (who identifies challenges and proposes
corrective actions) and the project owner and a project’s steering group (which pro-
vide the executive support to the actions) were essential to the quick correction of
issues.

5.3.5 Dealing with Idle Time

5.3.5.1 Challenges

An interesting issue that was experienced in both projects was what we came to
call the idle time problem. In a localized Scrum effort, clarifications, short discus-
sions and coffee chats about individual tasks or user stories are routinely taken by
the project members with personnel from the line organization of the Customer. In
an offshore setting, such clarification requests or communications were bound to
happen by email, messenger system, videoconference or phone.

Customer’s staff, however, had their staff work to do. While the project plan had
made allowance for the availability of appropriate personnel on Customer side to
clarify things when necessary, no specific rules had been set for response times. As
a consequence, and notwithstanding the efforts of the onshore Scrum masters, the re-
sponse time to such clarification was much longer than would have been experienced
if the development team were sitting at the same location. Even Scrum masters at
times risked becoming bottlenecks in facilitating communication between offshore
developers and Customer’s representatives. This resulted in offshore developers sit-
ting idle at times, waiting for feedback from Customer’s personnel. Of course, every
effort was taken to switch to tasks for which the work could continue, but that lead
quickly to a fragmentation of the developers’ work which had a sizeable impact on
the velocity.

5.3.5.2 Solutions

The challenge was resolved by negotiating triggering rules for which Supplier and
Customer agreed to well defined response times for different classes of questions;

5 Scrum and Global Delivery 85

whenever response time exceeded the expected one, a certain number of story points
were credited to the Supplier, using a story point equivalent in hours. For Project
NOR1, this was approximately 40 hrs per story point. The actual value depends of
course on which story is used as “unitary” story point and the relative time estima-
tions. The amount of these “idle time” story points was reported at every sprint end
together with other measures (done stories, burndown chart, produced story points
vs. planned etc.). A major element in the negotiation consisted in getting an agree-
ment on the fragmentation problem—whereas a developer could not simply “find
other tasks to work with” and human context switch had a noticeable cost.

Questions were classified, for example, as stopping (i.e. the developer cannot
proceed further without an answer), critical (i.e. the developer can continue, but the
question will become stopping soon enough), need for completion (i.e. the developer
needs an answer before the task or story can be declared done) etc. A practical
example of a rule was, for example, to start counting “compensation” story points
if a critical question was left unnoticed in the issue tracking system for more than
8 hrs.

We also considered the option of defining a “budget” of questions (e.g., n “stop-
ping” question, m “need to complete” questions, etc.) per sprint (for example, as a
function of the total complexity in story points to be delivered in a given sprint).
Ultimately we discarded these ideas for simplicity reasons, since we were midway
in the project, and because that would have further increased the communication
complexity in negotiations—with a Customer who was already experiencing the
challenges of adopting agile thinking up to a contractual level.

This provided a clear incentive to the Customer organization to prioritize clarifi-
cation work and a clear measurement of the consequences of communication inef-
ficiency. At the end of the project, idle time compensation constituted about 5% of
the total amount of story points credited to the Supplier.

Interestingly, even if the midproject negotiation with the Customer for introduc-
ing the rules (and thus make them accountable for their part in potential delays)
was challenging and time-consuming on the business management side, the main
challenge encountered by the project manager in implementing the solution was
in establishing enough discipline in our own team to report and register questions
in a timely matter, so that the corresponding accounting could be performed. The
technical implementation of the rules in the issue tracking system was trivial, and
represented a minimal overhead.

5.3.5.3 Lessons Learned

The general lesson in this case is to provide explicit triggering rules and a compen-
sation mechanism as part of the initial contract. In an agile spirit, this stimulates
collaboration and risk sharing between the delivery and the receiver organizations
on communication delays and ensures that this is not seen as a problem of the deliv-
ery teams only. Once done in the initial contract, and the corresponding setup of the
issue tracking system is performed, the management- and technical implementation-
level problems are practically eliminated.

86 C. Sadun

A classic obstacle at the negotiation table is the idea that developers do not
need be “idle” since there are other tasks to which they could dedicate their at-
tention while waiting for information. The counter-argument here is simple: one of
the reasons for adopting agile methodology is high productivity, and this view is
usually shared by the Customer (which otherwise wouldn’t have agreed to an ag-
ile/distributed model in the first place); therefore a practical way to illustrate the
problems with frequent human context-switching (and thus achieve an agreement
on the need for prompt response from the customer, which in turn leads to agree-
ing on triggering rules) is to provide a simple single-slide example collected from
actual time-reporting or observation, showing how much actual developer produc-
tivity suffers as a consequence of he/she constantly “picking up a different task”.
This worked well in our case, and agreement was ultimately reached.

Finally, an essential tip is not to consider this only a contractual or technical im-
plementation challenge, but also one internal to the team. Initially, the developers
did not focus very much on accurately reporting their questions. The project man-
ager engaged in explicit, repeated communication and follow up with them, so that
they actually perform the necessary reporting, but that was not enough.

We identified as main reason the fact that, while Scrum is a very disciplined
method, none of its practices actually require reporting about communication with
customer people—in a local context, such communication is supposed to just hap-
pen. Therefore, developers tend to resist additional disciplines unless they are ex-
plained extensively and integrated with the rest of the Scrum principles and rou-
tines. In practice, adding a short question about pending questions to the daily scrum
meeting (and checking their presence in the issue tracking system) proved to be an
efficient way to clarify to the team that the activity was as necessary as, for exam-
ple, daily task follow-up. The cost was a little longer stand-up meeting (about 20
minutes) but proved to be worth its value.

5.3.6 Achieving Motivation and Peer Feeling

5.3.6.1 Challenges

One of the reasons for the existence of global delivery of software or services
is obviously cost reduction, achieved via exploiting cost differentials between
countries—an exploit whose cost is, in turn, made negligible by the widespread,
global availability of tele- and data-communication infrastructure.

However, it should be already clear to the reader that having a lower cost is
hardly a motivating factor for most software engineers; rather the opposite. They
are traditionally motivated by their expertise, their ability to perform complex tasks,
understand customer requirements, deliver on time, mutual respect and recognition
and so forth (see for example [3]).

5 Scrum and Global Delivery 87

5.3.6.2 Solutions

As a consequence, an issue which was explicitly addressed in both projects was the
establishment of a peer relationship between onshore and offshore organization. We
made a point to emphasize that cost reduction did not correspond to value reduction,
and acted consequently (in both daily project work, attention to individuals’ atti-
tudes, ritual events—such as milestone meetings and delivery parties, rewards, and
the project manager attitude, for both projects), as allowed by the fact that onshore
and offshore were separate line organizations, with they own rules and expectations.

In surveys taken with the offshore personnel at the end of the project, this was
reported as a major factor for the motivation and commitment of the offshore team.

5.3.6.3 Lessons Learned

This challenge exists, but it may be considered impolite to address it directly. Our
tip is to explicitly state the peer status of all components of the team and ensure
that project manager, technical architect and all other personnel do share the peer
attitude and values; and then take consistently that view in any pertinent practical
decision. Creating and fostering a culture of mutual respect (by both statements and
actions) is invaluable when your delivery, credibility and success are—literally—in
the hands of an offshore operation.

5.3.7 Adapting Governance and Steering

A major issue emerged in the initial phases of both Project NOR1 and Project
NOR2, related to the expectations and language used in steering group meetings
and in taking steering decisions; and it was an issue of mindset.

5.3.7.1 Challenges

At that point in time, some top officials at the Supplier onshore organization thought
of global delivery mainly as a mechanism for specification-driven work. In brief,
where complete specifications are shipped and deliverables are returned. The very
language and expectations in the Supplier internal steering group—including the
processes and measurement in the quality/business systems—were heavily influ-
enced by such mindset. This included items like progress and revenue accounting
(reported in burndown charts and done stories on the side, where hours used vs.
estimated were used for internal accounting), expectation of reports on hours spent,
unfamiliarity with the concept of “done” stories and so forth.

88 C. Sadun

5.3.7.2 Solutions

The language and expectations barrier between some management and the project
team was recognized early by the project owner, who took a large role in translating
the language of the project into the language used by the rest of the steering group.
Scrum or agile-specific wordings (“user story”, “story point”, the notion or “done”
or not “done” stories, “burndown charts” etc.) were initially foreign to such group,
and a vast amount of effort was spent filling the gap and establishing a language and
expectations platform on which effective decision-making could be done.

In hindsight, it is probably more efficient to establish such platform beforehand,
by opportune theoretical and case-based training. Currently, the Supplier is execut-
ing a program of high-level training for sales and management officials about agile
methods (both in conjunction with offshore distribution or not).

5.3.7.3 Lessons Learned

Adopting agile processes can be a challenging and transformative process in both
Customer and Supplier; agile/distributed project add even one more layer of com-
plexity; introducing them need to be seen as a change process—that is, assuming
that language, jargon and even agile concepts are not widespread in the organiza-
tion. Everyone participating in a steering group, including the project manager(s),
should be aware of this and adapt their communication consequently.

Furthermore, as any change process within a delivery organization, successful
change requires a management sponsor, with the understanding, authority and com-
mitment to act as a bridge and change agent in the appropriate layers of the or-
ganization. Having such a sponsor is a very strong success factor for introducing
agile deliveries, and was an essential factor in the success of both Project NOR1
and NOR2.

5.4 Conclusions

Both distributed development efforts and agile practices are becoming widespread
and have entered, or are entering, the mainstream. However, their combination is
relatively new, and this is evident in the kind of challenges and issues we met—from
contracts, processes and mindsets tailored for traditional processes, expectations
of “defined” processes or a less-than-collaborative attitude based purely on cost
accounting.

The benefits and rewards of the agile/distributed model are, however, potentially
immense: the productivity, high-value and efficiency of agile processes together
with the scalability, cost benefits and size allowed by distribution of delivery. In-
tangible benefits also include the opportunity for software engineers from disparate
places to work together in the intense way that is proper of agile efforts, with the
corresponding learning, improvement and ultimately greater quality results.

5 Scrum and Global Delivery 89

For example, in the projects post-mortems we evaluated that realizing equiva-
lent functionality with agile projects in a non-distributed way (i.e. with only local
people) would have cost to the Customers about three and a half times and, on top,
required several distinct projects with the consequent administrative costs; and that
specification-driven distributed efforts would have most likely failed.

Of course, the transition from traditional, distributed or agile models to the
agile/distributed one is—like most substantial changes—neither easy nor free of
charge. It requires investment, dedication, hard work, an open mindset and on occa-
sion, a bit of luck.

An appreciation of the differences and the problems challenges to the combina-
tions—some of which we have illustrated in this chapter—may make a lot of differ-
ence in the final result. However, Project NOR1 and NOR2 are a testimonial to the
fact that the transition can be achieved in the real world: they were actively steered
and ultimately successful. And even if the lessons which we have drawn from their
execution will need further validation and will certainly be improved or surpassed,
we hope that sharing them will contribute to further successes in similar endeavors.

References

1. Schwaber, K., & Beedle, M. (2001). Agile software development with Scrum. Upper Saddle
River: Prentice Hall PTR.

2. Sutherland, J., Schoonheim, G., Rustenburg, E., & Rijk, M. (2008). Fully distributed scrum:
The secret sauce for hyperproductive offshored development teams. In Proceedings of the int.
conf. AGILE (pp. 339–344).

3. DeMarco, T., & Lister, T. (1999) Peopleware: Productive projects and teams. New York:
Dorset House.

Chapter 6
Onshore and Offshore Outsourcing with Agility:
Lessons Learned

Clifton Kussmaul

Abstract This chapter reflects on case study based an agile distributed project that
ran for approximately three years (from spring 2003 to spring 2006). The project
involved (a) a customer organization with key personnel distributed across the US,
developing an application with rapidly changing requirements; (b) onshore consul-
tants with expertise in project management, development processes, offshoring, and
relevant technologies; and (c) an external offsite development team in a CMM-5
organization in southern India. This chapter is based on surveys and discussions
with multiple participants. The several years since the project was completed allow
greater perspective on both the strengths and weaknesses, since the participants can
reflect on the entire life of the project, and compare it to subsequent experiences.
Our findings emphasize the potential for agile project management in distributed
software development, and the importance of people and interactions, taking many
small steps to find and correct errors, and matching the structures of the project and
product to support implementation of agility.

6.1 Introduction

Globalization and other competitive factors continue to push organizations to oper-
ate more effectively and efficiently. Distributed development continues to become
more common, as a result of increased outsourcing and offshoring, as well as the
expansion of free and open source software development. As organizations and in-
dividuals continue to gain experience with distributed development models, they
search for ways to maximize the benefits and minimize risks. Although disciplined
processes have advantages in some distributed projects, agile processes have a great

C. Kussmaul (�)
Muhlenberg College, Allentown, PA, USA
e-mail: clif@kussmaul.org

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_6, © Springer-Verlag Berlin Heidelberg 2010

91

mailto:clif@kussmaul.org
http://dx.doi.org/10.1007/978-3-642-12442-6_6

92 C. Kussmaul

potential in others, particularly when there are frequent requirement changes and
other dynamic factors. Thus, some practitioners and researchers are investigating
the applicability of agile practices in distributed environments.

This chapter describes lessons learned from a three years long agile distributed
project that involved two development centers and key people at several other loca-
tions. The focus of investigation was to retrospectively capture and learn from the
experience emphasizing the following aspects:

• Things that went well in the project (highlights, best practices, etc.)
• Things that did not go well in the project (errors, lessons learned, etc.)
• Dos and Don’ts

The information was obtained from interviews with a variety of participants sev-
eral years after the project finished, and from further conversations with some of
them to clarify or expand upon issues discussed in the responses.

The next section summarizes the experience, including customer context, project
organization, how agility was introduced, project activities, and the evolving rela-
tionship. The following section discusses lessons learned and relevant issues involv-
ing people, processes, and coordination.

6.2 Case Overview

6.2.1 Background

The studied project was initiated by the customer company—a privately funded
software product company based in the mid-Atlantic region of the USA. Most em-
ployees of the company work in a development and operations center, or a smaller
sales and marketing office. Over several years, the company had invested significant
resources to develop a powerful and flexible data processing engine, with a strong
development team, and an extensive feature roadmap. Since the engine was a strate-
gic asset, the customer planned to keep most core development activities in-house.
However, the engine required expertise and effort to configure, and so the company
planned to use it in a series of front-end applications that were more user-friendly,
and domain-specific. These applications presented several challenges:

• Their system requirements could change frequently in response to external market
conditions, customers, and competitors. Some of the front-ends involved external
standards that were not yet stable, and could change significantly from month to
month. Time-to-market was also critical.

• They could require intensive domain analysis phases, and were targeted at busi-
ness users, not technical users. Thus, their analysis, design, and development re-
quired different knowledge and skills than the engine.

• The number and intensity of these application efforts would vary over time, which
presented staffing challenges. Diverting the customer’s development organization
to work on the front-ends would adversely affect the engine.

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned 93

Table 6.1 Customer
company USAsoftware

Number of developers 5–20 (over project life)

When was agile introduced 2003 (start of the project)

Domain B2B software

Table 6.2 Onshore supplier
company USAconsult

Number of developers 3–5 (over project life)

When was agile introduced 2002 (founding of the company)

Domain software development

Table 6.3 Offshore supplier
company INDdevelop

Number of developers approximately 300

When was agile introduced 2003 (start of the project)

Domain software development

• Cash flow was a concern, since the customer was already supporting a significant
development effort for the engine.

• The engine was under active development, with capabilities added regularly, so
the boundaries and interfaces between the applications and the engine would
change over time.

Thus, the customer decided to hire an external supplier to develop the first ap-
plication. Important factors in selecting the supplier were: the technical and inter-
personal abilities of the supplier’s consultants and their proximity (onshore location
within a driving distance of the customer’s development center and primary sales
office). In addition, the supplier also had experience in managing off-site and off-
shore teams and an existing subcontracting relationship with a CMM-5 organization
in southern India.

So, the studied project was spread across three companies: the customer and the
subcontracted supplier chain (see Tables 6.1, 6.2, and 6.3).

6.2.2 Project Organization

The project involved three teams, which will be referred to as: off-site, on-site and
planning (see Tables 6.5, 6.6, and 6.7).

The off-site team (in India) focused on the graphical user interface (GUI) and
database, including low-level design, implementation, and testing, but was also in-
volved in analysis and design, and reviewed design documents and proposals. The

94 C. Kussmaul

Table 6.4 Project overview
Project

Duration 3 years

Status finished

Agile practices adapted from Scrum and Feature-Driven

Development

Involved locations USA, USA, India

Table 6.5 Off-site team

Locations Number of members Roles

India—INDdevelop 5–16 1 lead, developers & testers

(low-level design,

implementation, and testing)

Table 6.6 On-site team

Locations Number of members Roles

USA—USAsoftware 3–6 1 lead, 2–5 developers

(integration between database

and data processing engine)

Table 6.7 Planning team

Locations Number of members Roles

India—INDdevelop 1 off-site project lead

USA—USAsoftware 2 on-site team leader

VP for software development

USA—USAsoftware 1 VP for product management

USA—USAconsult 2 consultants

on-site team (of customer employees) focused on integration between the database
and the data processing engine. At the beginning of the project, the customer’s de-
velopment group had quite informal processes, which became somewhat more for-
mal over time. The planning team focused on analysis, GUI mockups, high-level
design, coordination, and some testing, and resolved any issues that extended be-
yond one of other teams. It was a virtual team, consisting of onshore consultants
(who typically spent one or two days per week on-site at the customer), the leaders
of the other two teams, and the customer VPs for project management and software
development. There is an extensive literature on virtual teams (e.g. [4, 8]; see also
Further Reading). The off-site team ranged from five to sixteen full time people,

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned 95

and the on-site team ranged from three to six full time people. Most planning team
members had other responsibilities, often outside of the project; total effort for the
planning team was typically the equivalent of two to three people (see also Fig. 6.1).
The on-site and planning teams also interacted with the in-house developers work-
ing on the data processing engine, although the latter were not directly involved in
this project.

6.2.3 Introduction of Agility

The relationship began with one hourly consultant, who spent two to three days a
week on-site at the customer site over several months. The consultant studied the
application domain, analyzed requirements, developed a high-level design and a
list of potential features, and supported in-house development of a proof-of-concept
and demo. Based on the confidence and trust developed through these initial deliver-
ables, the customer decided to outsource most of the initial application development
to the supplier and the off-site team.

The challenges described above made it difficult to accurately estimate the scope
or resource requirements of the project. Furthermore, the customer might need to
cancel the project as more was learned about the project scope, resource require-
ments, and commercial potential. Thus, a traditional disciplined process was consid-
ered too risky, and an agile project structure was proposed. The onshore consultants
had studied and used some agile processes, and recommended that the project adapt
Scrum [9] and Feature-Driven Development (FDD) [7] to help manage the risk and
uncertainty. The customer readily agreed with this approach, while the off-site team
was more reluctant, since they were used to CMM-5 processes and most were unfa-
miliar with agile approaches. Thus, the participants decided to focus on agile project
management to help coordinate activities between the off-site and on-site teams, and
not on agile development practices (such as XP). The participants also decided to
emphasize the spirit of these agile processes rather than the details, since several
of the participants had previous experience managing and adjusting development
processes, and since Scrum and FDD were designed primarily for co-located teams.

The next section describes key project activities.

6.2.4 Overview of Project Activities

Early in the project, the planning team developed an initial feature list (or product
backlog) and the overall product architecture (or system model). This feature list
was used to estimate the range of likely project costs, and both the list and the
estimate were updated at intervals throughout the project.

The project was divided into time-boxed sprints of four to six weeks. As the
project evolved the teams grew and some sprints became as long as twelve weeks,

96 C. Kussmaul

Fig. 6.1 Planning team size
(in FTE), offshore team size
(in people), and sprint
duration (in weeks) over the
160 weeks project duration

in part to reduce the testing and documentation overhead for each delivery, although
more time was spent determining the scope of each sprint. Towards the end of the
project, sprints became shorter and the off-site team shrank, as the customer took
ownership of the project.

Before each sprint, the planning team developed and signed a formal proposal
that identified the major milestones, the sprint feature list, and a price range. During
each sprint the teams implemented features from the sprint feature list. After each
sprint, the supplier determined the final price (within the given range) based on
actual effort and the scope of work completed. This allowed the planning and off-
site teams to be more responsive to uncertainty and change requests.

Figure 6.1 summarizes the effort for the planning and off-site teams, and the
sprint durations, over the 160 weeks of the project. (Effort for the on-site team is not
shown, because it was not formally tracked during the project.) The planning effort
grew gradually over the first 20 weeks, in part due to transition periods associated
with some staffing changes involving the onshore consultants. The off-site team
started with five people, expanded to eleven through the middle of the project, and
dropped to four for the second half of the project. The off-site team had sixteen
people for one sprint, but then the planning team realized that some work could
be done more effectively in-house, and reduced the off-site team accordingly. This
illustrates how an agile process enabled the project to adjust staffing promptly to
reflect project needs. Note that some data was unavailable, and that occasionally
there was a delay between the end of one sprint and the start of the next, shown by
the duration dropping to zero briefly.

The on-site team’s work generally paralleled the sprints, but was less formal,
since the team members were salaried employees of the customer. This shifted some
as the project evolved and the teams’ responsibilities became more coupled. In ret-
rospect, it might have been better to use the same processes, including written pro-
posals before each sprint, for both the off-site and on-site teams. This would have
emphasized the shared goals and responsibilities, and avoided some problems where
the on-site team was late in completing work that the off-site team needed to com-
plete a sprint.

The three teams used multiple coordination techniques:

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned 97

• A shared mailing list to archive ongoing communication and discussion. Teams
sent occasional status messages to the list, describing significant changes, current
problems, and any questions. At times these messages were daily (at the end of
their respective work days), at other times they were less frequent, particularly
when there was less coupling between the team activities.

• The off-site team had daily meetings to review status and address major prob-
lems that prevented the project from moving forward. These meetings were usu-
ally conducted via instant messaging or phone with an onshore consultant on the
planning team, and lasted around fifteen minutes, though they occasionally lasted
longer. They were usually late afternoon in India and early morning in the US,
but sometimes early morning in India and late evening in the US. In retrospect,
the on-site team and an onshore consultant should also have had daily meetings,
to improve coordination between the teams.

• A CVS repository stored all requirements, designs, source code, and related doc-
uments. The code was kept in a working state at all times, with any exceptions
noted via email, so that everyone could see the real progress. In effect, there were
daily code deliveries between the teams.

6.2.5 Cross-border Relationship Dynamics

Cross-border relationships can be viewed along two dimensions [5]. Dependence
indicates how much ownership and control is transferred to the partner. Strategic im-
pact indicates how much the relationship affects competitive positioning and long-
term strategy. As a relationship increases in either of these dimensions, collabora-
tion becomes more critical. The following are different options that organizations
can consider when initiating a cross-border relationship:

• Support relationships (low dependence, low impact) simplify internal operations,
such as payroll processing, basic IT functions, or custodial services. They are
used selectively, easily monitored, and easily changed.

• Alignment relationships (low dependence, high impact) are also used selectively,
but usually for more strategic purposes, such as expert consulting, or specific
projects.

• Reliance relationships (high dependence, low impact) are usually used to reduce
costs on a broader scale and for longer time periods.

• Alliance relationships (high dependence, high impact) usually develop from other
types of relationships. These are uncertain and dynamic strategic relationships,
and require trust, communication, and, often, shared goals or incentives. The key
success factor is “a mutual understanding between clients [customers] and their
service providers [suppliers]” [5, pg. 92].

Over time, the customer-supplier relationship evolved through several stages. Ini-
tially, it was support, with an hourly consultant to study and evaluate specific ap-
plication domains. It then evolved to alignment, where the consultant helped define

98 C. Kussmaul

requirements and a high-level architecture for a specific front end. Once a proof-
of-concept was completed, on-site staff and a small off-site team began to design,
implement, and test. The relationship then shifted toward reliance as the off-site
team expanded, the customer developed confidence, the market opportunities be-
came clearer, and the scope of the overall project increased. Finally, the relationship
evolved toward an alliance, where customer and supplier worked together to identify
future directions. As the application matured, the relationship shifted back toward
alignment as the off-site team was reduced and the customer took over ongoing
system maintenance.

Most participants adapted quickly to the agile approach. Both development teams
could continue using familiar development activities (CMM or informal); the agile
project management helped them understand current priorities and directions, and
enabled them to contribute to planning future iterations. Team leaders and man-
agers could track team progress, see working code on a regular basis, avoid conflict
over scope and resources. The customer’s testing and documentation groups liked
having access to working code so they could monitor the project and plan their ac-
tivities accordingly. As described below, agility also improved relationships with
other stakeholders, including sales and marketing.

6.3 Lessons Learned

Many of the issues, problems, and lessons learned that were described by partici-
pants involved familiar themes addressed in the literature. This case study is espe-
cially interesting because the studied project involved three different locations and
multiple outsourcing relationships.

The lessons learned are divided under three topics: people, process, and coor-
dination. Some of the offered findings and practical tips address challenges related
to distribution; others address challenges related to agility. One practice, however,
deserves a special attention, as it is a prerequisite for initiating a good collaboration.

Practical Tip: Focus on win-win aspects wherever possible to prevent con-
tracts and conflicts from disrupting the project.

In this project, each sprint had a separate proposal, which specified a price range
to accommodate incomplete and changing requirements, and to avoid having to fi-
nalize all requirements. As a result, both customer and supplier sought to minimize
costs, but the supplier could adjust the final cost if there were requirement changes
or implementation problems. This helped to avoid the conflicts inherent in fixed-
price contracts, where (rationally) requirements should be interpreted broadly by
the customer and narrowly by the supplier. At a more personal level, the project’s
scope and benefits were explained to the customer’s employees, so they were con-
fident that they would not be replaced by the supplier, and that the supplier was

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned 99

enabling the customer to address new opportunities. In fact, the customer’s devel-
opment group grew by several hundred percent during the course of the project. In
this project, maintaining win-win relationships was easier because most of the key
people had been both customers and suppliers of software development, and thus
they were familiar with each other’s roles and challenges.

6.3.1 People

The first set of lessons learned focus on people and interactions between them, and
particularly some of the challenges of starting and maintaining relationships.

Practical Tip: Ease participants into relationships with remote teams, and ar-
range regular and extended visits between locations when feasible.

Many key participants had previous experience with distributed teams. For ex-
ample, several members of the off-site team in India had worked in the US. The
onshore consultants had all spent time in India, had worked with distributed teams
before, and typically spent at least one day a week on-site. The customer was also
familiar with distributed teams and supporting tools. There were also occasional
teleconferences (usually for training) between the planning team, the on-site team,
and the off-site team. Nevertheless, there were some communication problems early
in the project. For example:

. . . during the first episode, [the planning staff] tried to ’micro-manage’ the team here.
Assigning daily tasks and tracking. It was not well received at our side. . . . Especially
when your customer is faceless, there is this definite overhead of trying to understand his
requirement in addition to the usual pressure of quickly producing results. [Off-site Team
Leader]

In retrospect, this previous experience was important but not sufficient. Some of
the off-site team should have visited the customer, and/or been visited by an onshore
consultant or customer employee to communicate requirements and develop better
relationships.

The cost of such travel was a concern, as it is in many projects. In particular,
this project was organized into sprints, and there was a real probability that the
project could end after only a few sprints. This made it more difficult to justify such
expenses, as compared to a project with a known scope and duration. Thus, this is a
possible disadvantage of this approach to agile distributed development.

Practical Tip: Be sensitive to cultural differences, especially between organi-
zations and between regions or countries, including differences in how people
interact with each other and resolve problems.

100 C. Kussmaul

The cultural awareness is especially important in agile distributed projects, where
culturally diverse team members are required to form a cohesive project team. Cul-
tural differences in the investigated project were exhibited on various levels. For ex-
ample, Indian national and corporate culture is accustomed to centralized, top-down
control, and may view direct questions as a challenge to authority. The off-site team
was accustomed to static requirements and disciplined processes, while the on-site
team had very informal processes. At times it was difficult to convince each team to
explore other approaches.

In this project, the participants minimized cultural differences between the off-
site and on-site teams because most of their interactions went through people who
were used to working across cultures.

Practical Tip: Maintain a good attitude throughout the project, and particu-
larly at the end.

Too often, projects start with energy and enthusiasm, but end with frustration,
regrets, or resentment. In many cases, these problems have grown throughout the
project, and leave everyone with bitter memories. This project started with the ex-
pectation that the customer would take over the maintenance of the code, and the
supplier and customer worked together to make a smooth transition. Therefore, in
contrast to many other outsourcing collaborations, the suppliers in this project were
involved in the challenging work, while the maintenance tasks, often regarded as
boring, were actually back-sourced.

. . .once the initial magic of new ‘development’ is gone, people hate to maintain. . . . But
in this project, once the objective was met, a transition phase was planned where [the cus-
tomer] took back the code and decided to maintain it. I have not seen such happy endings.
[Off-site Team Leader]

Thus, we need to recognize that “the major problems of our work are not so
much technological as sociological” [3, pg. 4] (original emphasis); in other words,
the major benefits and risks are tied to people and relationships rather than to tools
and techniques.

6.3.2 Processes

The second set of lessons learned focus on process, and the importance of selecting
and understanding appropriate projects and processes.

Practical Tip: Avoid projects that are too small to amortize the overhead re-
quired for an effective distributed team.

Very small projects are more suitable for co-located teams, unless a distributed
team is cohesive and already has experience working together. The author has

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned 101

worked on agile distributed projects with as few as three developers, but these
projects have been less successful. In the current project, some of the initial ex-
plorations could have been completed more efficiently by an in-house, co-located
team, but were assigned to a distributed team in anticipation of subsequent phases
of the project.

Practical Tip: Start with a small distributed team and grow it over to meet
project needs.

This may appear to contradict the previous tip, but there is a difference. A small
project that expects to grow can invest time to develop relationships, processes, and
practices that will be valuable later, even though they may be inefficient initially.
Starting small allows participants to work closely and adapt more quickly when
problems occur.

Practical Tip: Explain agile philosophy, not just agile practices.

It is widely recognized that agility is a philosophy, not just a set of processes to
be followed. When the consultants recommended that the customer adopt an agile
process for the project, they explained how it would help manage risks and uncer-
tainty, and the customer readily agreed. There was also a shift during the project.
At first, some participants, particularly from customer’s sales and marketing organi-
zation, pushed hard to have some feature added to the product, partly because they
were accustomed to long development cycles and long delays in adding such fea-
tures. When these demands occurred, the planning team explained that requirements
for the current sprint were frozen, but that a new sprint would start in a few weeks
and finish a few weeks later, and that any urgent features could be considered and
included. As the sales and marketing people became accustomed to this approach,
they recognized that they didn’t have to push so hard to get features in the pipeline
because the project could adjust more quickly to changing market conditions.

The customer’s development group had an informal development process, which
may have made them more open to agile. A customer that followed more formal
processes might have been reluctant to experiment with agile approaches in 2003,
when agile was less well known. Interestingly, the off-site team was more reluctant,
since they were familiar with CMM-5 processes and mostly unfamiliar with agile
approaches. Fortunately, their CMM procedures were flexible enough to accommo-
date agility on the project management level. However, it might have been more
difficult for them to adopt agile engineering practices (e.g. XP), since it would have
required many more changes in their day-to-day activities and processes. Similarly,
it would have been difficult for the customer’s development group to quickly adopt
CMM style processes. It is quite feasible, and sometimes preferable, for teams to
use different methodologies that reflect different cultures and requirements. In this
project, the agile processes bridged these different approaches by providing a com-

102 C. Kussmaul

mon management framework which allowed each team to continue using familiar
development practices.

Nevertheless, during the project the off-site team came to understand some of the
benefits and risks of agile processes, as evidenced by the following quotations:

If I am going to work on anything small like less than 20 people, I would seriously pursue
agile . . . if I have a choice. Because I actually saw it in action. Till you see it, you don’t
really trust it’s possible at a practical level. [Off-site Team Leader]

I am little worried whether this methodology or process will suit for a big system with lot
of modules and lot of developers (more than 15). In that case, we may have to proceed with
requirement analysis, then architecture design and thus creating the module level picture
and its interfaces. I think the module development can follow the agile methodology. [Off-
site Team Member]

Our process recommendations can be summarized in words attributed to Tom Pe-
ters, “test fast, fail fast, adjust fast”. Start with small teams and projects, use sprints
or other short iterations, and provide multiple opportunities to find and correct prob-
lems before they become larger and more serious.

6.3.3 Coordination

The third set of lessons focus on the coordination between the teams.

Practical Tip: Keep requirements analysis, research, and architecture close to
the customer, at least initially.

For example, during the first few sprints the planning team developed the core
architecture and a set of practices to serve as guidelines, particularly as the off-site
team evolved and became more familiar with the project and application domain.
As the project and team grew, the planning team became less involved in coding,
and more involved in planning, reviews, and other coordination to serve as a bridge
between the off-site team and the customer. Similarly, as the off-site team gained
experience, they became a more important part of subsequent planning, since they
were most familiar with the working system.

Practical Tip: Use key documents to bootstrap the project by establishing a
common framework for distributed team members and other stakeholders.

Brooks [1] calls this the documentary hypothesis: “a small number of documents
become the critical pivots around which every project’s management revolves”. Ag-
ile projects generally require less documentation than disciplined projects, but dis-
tributed projects generally require more documentation than co-located projects,
since informal communication is more difficult. For example, questions that can be
answered within seconds in a co-located team can take hours or even days to answer
in a distributed team. This project depended on the following documents:

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned 103

• The master feature list—every completed, scheduled, or envisioned feature—and
the corresponding estimated budget for the entire project.

• A detailed data model and data dictionary, which were key interfaces between
teams and components, including the interface to the software engine.

• Requirements and designs for subsystems in the current or next sprint. These
documents were usually discarded (i.e. not maintained) after the corresponding
features were developed and tested.

• A list of tasks and related information for the current sprint.

Practical Tip: Coordinate carefully, and deliver working software early and
often, so as to respond quickly to the necessary changes.

For example, by focusing on activities such as analysis, customer interaction, and
testing, the planning team was able to send requirements to the off-site team in the
evening, and have the resulting changes implemented the next morning. Because
each team was eager to start work when the other finished for the day, this approach
also discouraged excessive overtime. This round-the-clock cycle can work well for
activities such as analysis and testing, but generally works less well for other de-
velopment activities. In addition, this close coordination can be stressful and tiring,
so often there would be looser coupling in the middle of a sprint, and then tighter
coupling towards the end.

Frequent deliveries gave the customer many opportunities to review the project
status and make appropriate changes, especially for user interfaces. It provided
effective communication between all stakeholders, and built confidence and trust
among the teams. Planning was still important, although it took less time than many
outsourced or distributed projects. Each sprint was a separate proposal and contract,
and included planning for the next sprint.

Practical Tip: Define responsibilities, interfaces, and supporting processes be-
tween organizations, key individuals, and teams.

As in any technical design, seek to minimize coupling and communication be-
tween components and teams; also seek to maximize cohesion so each group can
focus on particular objectives. For example, the planning team decided to use a
database as the primary interface between the front end application and the data
processing engine, in order to reduce coupling and minimize the impact of changes
in the engine. Similarly, it was often beneficial to have a designated liaison between
the teams, to provide conceptual integrity and prevent miscommunication. Thus,
members of the planning team coordinated activities between the in-house and off-
shore teams.

In this project, the partitioning worked well:

The roles were correctly evolved. [Planning staff] played the role of architects and shaped
a wonderful architecture. I mean [they] were able to understand the real objective of the

104 C. Kussmaul

architecture. The need to generate a lot of screens, fully flexible and code generated because
the domain . . . was being very dynamic. I think [they] achieved that admirably.
And [the off-site team] was perfect to ‘assist’ . . . in realizing it. [The off-site team] had
matured enough by then to say no to quick fixes and cowboy programming to add features
without compromising the ideals of the architecture. . . . we were able to handle the code
reasonably well. So I guess the project was blessed to have ‘real’ architects and some senior
programmers from our side. [Off-site Team Leader]

Our coordination recommendations can be summed up by Conway [2] who ob-
served that the structure of an organization determines (or at least biases) the struc-
ture of systems it creates. This is particularly relevant in agile distributed projects,
where the boundaries between organizational units are more pronounced, so that
agile interactions are stronger within co-located units than between units.

6.4 Conclusions

This chapter describes an agile distributed project involving multiple organizations
and relationships, and expands an earlier report [6]. Our findings yield a variety of
best practices and useful lessons learned, including:

• Focus on win-win aspects to minimize potential disruptions.
• Ease participants into relationships with remote teams.
• Be sensitive to cultural differences, and use key people to bridge gaps.
• Maintain a good attitude throughout the project, and particularly at the end.
• Avoid projects that are too small to amortize overhead.
• Start with a small distributed team and grow it over time.
• Explain agile philosophies, not just agile practices.
• Keep requirements analysis, research, and architecture close to the customer.
• Use key documents to bootstrap and provide a common framework.
• Coordinate carefully to allow distributed teams to respond quickly to changes.
• Deliver working software early and often to build confidence and trust.
• Define responsibilities, interfaces, and supporting processes between teams.

Many of these practices can be summarized in three key ideas:

• “The major problems of our work are not so much technological as sociological”
—Tom DeMarco and Tim Lister

• “Test fast, fail fast, adjust fast”—Tom Peters
• The structure of an organization determines (or at least biases) the structure of

systems it creates—Melvin Conway

The first two ideas are consistent with established agile principles, The third is
less familiar, perhaps because traditional agile projects have simple structures. For
agile distributed projects, however, this is a key insight which can enable partici-
pants in different locations to focus on different parts of the problem.

Overall, this project was a success. The system was completed, despite initial
challenges, frequently changing requirements, and a variety of technical issues. Par-
ticipants in all three project teams were generally positive about the experience, and

6 Onshore and Offshore Outsourcing with Agility: Lessons Learned 105

learned about the advantages and disadvantages of some agile practices, so they are
better able to choose or adapt such practices in the future.

We hope that the lessons described above can help other organizations to work
more effectively and efficiently.

References

1. Brooks, F. (1995). The mythical man-month. Boston: Addison-Wesley.
2. Conway, M. E. (1968). How do committees invent? Datamation, 14(4), 28–31.
3. DeMarco, T., & Lister, T. (1999). Peopleware: productive projects and teams. New York:

Dorset House.
4. Duarte, D. L., & Snyder, N. T., (2006). Mastering virtual teams. Hoboken: Jossey-Bass.
5. Kishore, R., Rao, H. R., Nam, K., Rajagopalan, S., Chaudhury, A. (2003). A relationship

perspective on IT outsourcing. Communications of the ACM, 46(12), 87–92.
6. Kussmaul, C., Jack, R., & Sponsler, B., (2004). Outsourcing and offshoring with agility: A

case study. In C. Zannier et al. (Eds.), Extreme programming and agile methods—XP/agile
universe (pp. 147–154). Berlin: Springer.

7. Palmer, S. R., & Felsing, J. M. (2002). A practical guide to feature-driven development. Upper
Saddle River: Prentice Hall PTR.

8. Pinsonneault, A., & Caya, O. (2005). Virtual teams: What we know, what we don’t know.
International Journal of e-Collaboration, 1(3), 1–16.

9. Schwaber, K., & Beedle, M. (2001). Agile software development with Scrum. Upper Saddle
River: Prentice Hall PTR.

Further Reading

10. Anderson, D. (2004). Agile management for software engineering: Applying the theory of
constraints for business results. Upper Saddle River: Prentice Hall PTR.

11. Boehm, B., & Turner, R. (2003). Balancing agility and discipline: a guide for the perplexed.
Boston: Addison-Wesley.

12. Braithwaite, K., & Joyce, T. (2005) XP expanded: Distributed extreme programming. In Ex-
treme programming and agile processes in software engineering, Berlin: Springer.

13. CIO Insight (2003). Research: Outsourcing: How well are you managing your partners? 1(33),
75–85.

14. Cockburn, A. (2003). Agile software development. Boston: Addison Wesley.
15. Drummond, B.S., & Unson, J.F., (2008). Yahoo! distributed agile: Notes from the world over.

In Proceedings of agile 2008 (pp. 315–321). Washington: IEEE Computer Society.
16. Highsmith, J. (2002). Agile software development ecosystems. Boston: Addison-Wesley.
17. Hole, S., & Moe, N. B. (2008). A case study of coordination in distributed agile software

development. In Software process improvement (pp. 189–200). Berlin: Springer.
18. Holmström, H., Fitzgerald, R., Ågerfalk, P. J., & Conchuir, E. O. (2006). Agile practices

reduce distance in global software development. Information Systems Management, 23(3),
7–18.

19. Jarvenpaa, S. L., Knoll, K., & Leidner, D. E. (1998). Is anybody out there? Antecedents of
trust in global virtual teams. Journal of Management Information Systems, 14(4), 29–48.

20. Jensen, B., & Zilmer, A. (2003). Cross-continent development using Scrum and XP. In: 4th In-
ternational conference on extreme programming and agile processes in software engineering.
Berlin: Springer.

106 C. Kussmaul

21. Lander, M. C., Purvis, R. L., McCray, G. E., & Leigh, W. (2004). Trust-building mechanisms
utilized in outsourced IS development projects: A case study. Information and Management,
41(4), 509–528.

22. Lee, G., DeLone, W., & Espinosa, J. A. (2006). Ambidextrous coping strategies in globally
distributed software development projects. Communications of the ACM, 49(10), 35–40.

23. Martins, L. L., Gilson, L. L., & Maynard, M. T. (2004). Virtual teams: What do we know and
where do we go from here? Journal of Management, 30(6), 805–835.

24. Mockus, A., Weiss, D.M., (2001). Globalization by chunking: A quantitative approach. IEEE
Software, 18(2), 30–37.

25. Paasivaara, M., & Lassenius, C. (2004). Using interactive and incremental processes in global
software development. In Proceedings of the international conference on software engineering
(ICSE) third international workshop on global software development (pp. 24–28).

26. Paulk, M. (2001). Extreme programming from a CMM perspective. IEEE Software, 18(6),
19–26.

27. Powell, A., Piccoli, G., & Ives, B. (2004). Virtual teams: A review of current literature and
directions for future research. ACM SIGMIS Database, 35(1), 6–36.

28. Ramesh, B., Cao, L., Mohan, K., & Xu, P. (2006). Can distributed software development be
agile? Communications of the ACM, 49(10), 41–46.

Chapter 7
Contribution of Agility to Successful Distributed
Software Development

Saonee Sarker, Charles L. Munson,
Suprateek Sarker, and Suranjan Chakraborty

Abstract In recent times, both researchers and practitioners have touted agility as
the latest innovation in distributed software development (DSD). In spite of this ac-
knowledgement, there is little understanding and evidence surrounding the effect
of agility on distributed project success. This chapter reports on a study that exam-
ines practitioner views surrounding the relative importance of different sub-types of
agility to DSD project success. Preliminary results indicate that practitioners view
on-time completion of DSD projects, and effective collaboration amongst stakehold-
ers as the top two criteria of DSD project success, with lower emphasis on within-
budget considerations. Among the many agility sub-types examined, people-based
agility, communication-based agility, methodological agility, and time-based agility
emerged as the most important for practitioners in terms of ensuring DSD project
success.

7.1 Introduction

The use of distributed teams, with members situated in multiple locations, to con-
duct software development tasks in organizations has exponentially increased in
recent years (e.g., [9]). Distributed development teams face a number of challenges

S. Sarker (�) · C.L. Munson
Washington State University, Pullman, WA 99164-4743, USA
e-mail: ssarker@wsu.edu

C.L. Munson
e-mail: munson@wsu.edu

S. Sarker
Copenhagen Business School, Solbjerg Plads 3, Frederiksberg 2000, Denmark
e-mail: sarker@cbs.dk

S. Chakraborty
Towson University, Towson, MD 21252, USA
e-mail: schakraborty@towson.edu

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_7, © Springer-Verlag Berlin Heidelberg 2010

107

mailto:ssarker@wsu.edu
mailto:munson@wsu.edu
mailto:sarker@cbs.dk
mailto:schakraborty@towson.edu
http://dx.doi.org/10.1007/978-3-642-12442-6_7

108 S. Sarker et al.

that arise from factors such as geographical and temporal differences, culture, lan-
guage, varying knowledge levels and a primary reliance on computer-mediated com-
munication [9], making it very difficult to effectively harness such teams. Thus, it is
important to examine the factors that affect distributed software development (DSD)
team effectiveness.

Recently, yet another “emergent force”, namely, the notion of agility has drawn
the attention of researchers and practitioners alike. A growing realization that DSD
project teams need to continually react to market dynamics, respond and incorpo-
rate changing customer requirements, and deal with technological innovations [4],
has made agility an important factor. DSD project managers and software organi-
zations have been quick to adopt “agility principles and approaches” in an effort to
render their teams more effective [4, p. 360]. While the promise of higher effec-
tiveness (e.g., [11]), has led to organizations scrambling to adopt agile principles,
there is limited evidence of how these principles and approaches contribute to the
DSD effectiveness [15]. We thus believe that it is critical to seek the answers to the
following questions:

• What are the different indicators of DSD project success?
• What is the relative importance of the different types of agility drivers to the

success of DSD teams?

In this chapter we provide a discussion on DSD project success indicators, fol-
lowed by a general overview of how agility may contribute to distributed organiza-
tions. Next, we outline different types of agility and discuss the importance of each
type from the practitioner perspective.

7.2 Distributed Project Success

While there is an ongoing discussion about the interpretation of the term ‘project
success’, there is a viewpoint that it may be identified by “two concepts” [1, p. 25]:

• Project management success, which refers to the process of the project, especially,
the “successful accomplishment of cost, time, quality objectives”;

• Product success, which “deals with the effects of the project’s final product”.

Similarly with regards to success in information systems development (ISD)
projects there is no consensus on what the measure should be. Jiang and Klein [8]
argue for the focus on on-time delivery and cost (i.e., within budget). Other mea-
sures of ISD project success such as the quality of the system being developed, the
improvements in the quality of the decision-making, and IS usage, have also been
proposed (e.g., [12]). In a more recent study, Chow and Cao [5] assessed the suc-
cess of agile software projects by examining the time, cost, quality, and scope of the
projects. While there is no agreement on the best measures of project success, the
above measures represent the product perspective or the “hard dimensions” [1, 12].
However, it has been argued that for DSD projects, it is important to assess the
process-based success measures or “soft” dimensions such as the collaboration ef-
fectiveness [1, 9], in addition to the product-based measures.

7 Contribution of Agility to Successful Distributed Software Development 109

In this chapter we rely on selected practitioners to determine the relative impor-
tance (or salience) of the three success measures for DSD projects: on-time delivery,
within-budget, and effective collaboration.

7.3 Types of Agility

Agility has been widely discussed from different perspectives. In this book the read-
ers will find experiences and recommendations for adopting different and often stan-
dalone agile methods and practices. In this chapter we observe agility on an orga-
nizational level. Thus, we define agility as the “ability of enterprises to cope with
unexpected changes, to survive unprecedented threats from the business environ-
ment, and to take advantages of changes as opportunities” [7, p. 147].

The gathered knowledge about agility revealed that it is itself composed of dif-
ferent components. Lui and Piccoli [11, pp. 125–126] propose four different com-
ponents of information systems agility - technological agility, process agility, peo-
ple agility, and structure agility. From the perspective of distributed ISD, Lee et al.
[10] propose that agility is composed of agile IT strategy, agile IT infrastructure,
and agile project management. This provides a good start toward our understand-
ing of agility in distributed ISD teams, however, it must be noted that the focus
is on macro issues surrounding DSD. We feel that agility dimensions should also
incorporate micro issues such as day-to-day operations, application and the use of
ideal methodologies, and management of its resources and relationships, which are
crucial for such project teams. Sarker and Sarker [14], takes the above issues into
consideration, and proposes DSD agility as being of three broad categories:

(1) resource-based (agility arising from the DSD team’s access to necessary re-
sources),

(2) process-based (agility arising from the appropriate management of the process
of DSD), and

(3) linkage-based (agility arising from the nature of the ties between the different
DSD team members).

Each of these types can be decomposed further into the following sub-types (see
Table 7.1).

7.4 Study Background

The essence of decision-making lies in choosing between alternatives [13]. Such
choice in turn needs to be facilitated by a supporting framework or an appropriate
“multiple-criteria yardstick” [2, p. 91–92]. Consequently it is important to create
a framework for assessing the relative importance of the different agility elements.
The Analytic Hierarchy Process (AHP) represents a useful technique that enables

110 S. Sarker et al.

Table 7.1 Definition of the types of agility

Agility Types Definition

People-related
Resource Agility

The speed with which the GSD team is able to acquire appropriately,
skilled human resources at each distributed location when necessary,
and the capability to gracefully and speedily reconfigure itself on de-
mand, by rotating and shifting different team members (across loca-
tions or divisions), or by shifting the “control centers” of the project
from one distributed location to another.

Technology-related Re-
source Agility

The ease with which the DSD team members have access to high qual-
ity communication media, and development/testing-related technolo-
gies, irrespective of their location.

Methodology-related
Process
Agility

The ease with which the DSD team is able to a) adapt traditional SDLC
to make the ISD process more responsive, b) implement agile method-
ologies/practices to its project context, and c) deal comfortably with
abrupt methodology changes during the project.

Environmental
Scanning-related
Process Agility

The ability of the DSD team to anticipate, recognize, and react to
changes in the project due to changes in the environment.

Work Transition-related
Process Agility

The capability of the DSD team to enable seamless transition of work
from one location to another.

Time-related Linkage
Agility

The capability of the DSD team to collaborate with each other without
significant temporal delays.

Culture-related Linkage
Agility

The ability of DSD team members to rise above any cultural differences
that may exist within the team, and work seamlessly.

Communication-related
Linkage Agility

The ability of the DSD team to be aware of the actions/reactions of
distributed team-members, utilize cultural difference advantageously
(where possible), and maintain continuous “connectivity” with the cus-
tomers.

decision-makers to assess the relative importance of the different attributes on a par-
ticular outcome [2], and therefore direct more focused attention to the alternatives
that matter the most to an outcome. This is especially relevant for our study too,
while our eight proposed types of agility have been justified on conceptual grounds,
to provide more actionable guidance to DSD project managers, it is important to
determine which of the types need to be considered to achieve project success.

We therefore applied AHP procedures to generate an understanding of the rel-
ative importance of the agility dimensions to project success. Six independent ex-
perts from large international organizations were involved as experts in this process.
All of the respondents were knowledgeable in distributed software development and
had conceptual understanding about agility in the ISD context. The respondents also
represent a balanced mix of technical (R1, R2, R4) and managerial roles (R3, R5,
R6). Therefore their combined responses could be perceived to be unbiased towards
either perspective. Table 7.2 provides a summary of respondent profile.

AHP requires the problem to be structured as a hierarchy. In this hierarchy the top
level consists of the “objective of the problem” [2, p. 92]. For our study, this refers
to overall DSD project success. The next level comprises of the sub-objectives or

7 Contribution of Agility to Successful Distributed Software Development 111

Table 7.2 Respondent profiles

Respondent Affiliation Country Respondent’s Respondent’s National

Number and its HQ Currently Years of Number of Contexts of

Based In Experience Distributed Distributed

with DSD Projects Projects

R1 Infosys UK, 10 10 India with Japan,

(India) Switzerland Singapore, Australia,

South Africa,

and Europe

(including Netherlands,

UK, and Switzerland)

R2 Microsoft India 8 12 US-India

(US),

Sapient

(US)

R3 Intec India 12 100 US-UK-India,

Telecoms UK-Australia-

(UK) India-Poland,

US-UK-Japan-India

R4 Deloitte US 2 2 US-India

Consulting

(US)

R5 Federal US 10 4 Different parts of US

Govt. (US)

R6 Agilent US 4 4-5 US-India

(US)

elements playing a role in achieving the objective(s) (i.e., on-time delivery, within
budget, and effective collaboration). Following this level are any criterion variables
affecting the higher-level objectives (i.e., the different sub-types of agility) (see
Fig. 7.1).

Subsequent to the establishment of the hierarchy, there ensues a “prioritization”
process. In this process the experts provide judgments (through a numerical pair-
wise comparison) about the relative importance of all possible pairs of elements on
the final objective. In course of in-depth interviews lasting between 60–90 minutes,
subjects provided their numerical pairwise comparison ratings using the traditional
AHP rating scale ranging from 1 to 9 (where 1 refers to a situation where both com-
ponents of a comparison is equally important, and refers to a situation where one
component is extremely more important than the other). Based on the pair wise com-
parisons, the relative importance matrix is created for each set of the comparisons.
Scores from the relative importance matrix were then normalized and averaged to

112 S. Sarker et al.

Fig. 7.1 The hierarchy diagram

create relative weights within the comparison set, as well as overall weights (aggre-
gated across the 6 experts) for the entire hierarchy.

7.5 Contribution of Agility to Distributed Project Success

The results of our investigation indicate that DSD practitioners view on-time deliv-
ery as the most important success criteria, followed by effective collaboration, and
within-budget delivery. The highest ranking of on-time completion is not surprising,
given the perception that technology changes at a rapid rate, and if a project is de-
layed, it runs the risk of the information system in question being obsolete or losing
its value for the customer. Given that our respondents were DSD participants, who
deal with the challenges of this form of software development (such as communica-
tion and coordination across time and space), further justified their view of effective
collaboration as a key criterion of DSD project success. As Procaccino et al. [12]
argue, practitioners are increasingly valuing the team development process as a key
success indicator. The relatively low importance assigned to budget also seems to

7 Contribution of Agility to Successful Distributed Software Development 113

Table 7.3 Importance of
rankings of agility
dimensions

Rank Agility Dimensions

1 People-based

2 Communication-based

3 Methodological

4 Time-based

5 Technology

6 Work Transition

7 Environmental

8 Cultural

make sense. Too much focus on the cost can result in sort of a tunnel vision, which
can be counterproductive for the optimal management of the development process
itself. Further the experts also prioritized different types of agility. Table 7.3 displays
the ranking of the different types of agility with respect to DSD project success. We
can see that the people and communication-based agility sub-types are viewed as
most critical for DSD project success, followed by methodological, time-based, and
technological agilities. Finally, work transition, environmental, and cultural agili-
ties were viewed as having the least importance when it comes to enhancing DSD
project success.

The first observation that may be made is that, project success requires different
types of agility, encompassing resource, process, and linkage-based considerations.
This is consistent with recent research that states that a large number of factors
are required to complete a project successfully ranging from highly-skilled peo-
ple to good communication amongst the stakeholders, and the use of a systematic
methodology [5].

The fact that people-based agility has the highest salience indicates the impor-
tance of having qualified personnel readily available to join the project whenever
necessary, along with the ability of project team-members to relocate with ease
to different locations, and is in alignment with the consistent argument in prior
research, which highlight people to be the most important components of such
projects.

The quality of communicative linkage among the important stakeholders is con-
sidered a key factor for project success. Our results too reflect this effect. The geo-
graphical and temporal distance inherent in the distributed ISD context makes such
communicative linkages even more critical, as the resulting communication delays
and coordination issues could have serious implications on project success.

The setting up and adhering to appropriate methodologies (i.e. methodological
agility) was found to be important, given that they provide structure for effective
and flexible utilization of people and technology. In fact, it has been argued that
“poor software development [methodological] practices” place significant risk on
a software development project [12, p. 190]. Research suggests that demonstrated
methodological agility through the tailoring of conventional SDLC phases (e.g. [3]),

114 S. Sarker et al.

or through combinations of agile methodologies [6] may lead to success in DSD
projects, and provide validation for the importance of this agility type.

Further, the emergent importance of temporal agility signifies the fact that avoid-
ing delays due to time is a key factor in the minds of individuals involved in DSD
projects. Finally, given that our study involved ISD projects accomplished across
time and space, where the team focuses on the development of an information
system by utilizing different tools, and collaborates using a variety of computer-
mediated communication tools, the importance of technology agility is also under-
standable.

Our results also indicate that work transition-based agility, cultural agility, and
environmental agility are not considered to be of great importance. The perceived
insignificance of work transition-based agility in our study may be explained by the
skepticism surrounding the feasibility of such agility. Balasubramaniam et al. [3, p.
43] comment that “while 24 × 7 development is sometimes claimed to be a benefit
of distributed development, this was far from reality. . .”. Further, we also feel that
the lack of importance of cultural agility may be due to the fact that the extended ex-
posure to different cultures, with the maturity of the offshoring model, has made this
agility almost a “given” in most teams, thereby reducing its perceived importance
towards project success. Finally, environmental agility pertains to a capability of
distributed teams to prepare, and react to catastrophic upheavals in the distributed
team’s environment. However, such catastrophic events are rare, and may explain
to some extent why our respondents did not consider such agility particularly im-
portant. We feel that our research provides important directions to practitioners by
providing guidance about possible agility dimensions to focus on. However at the
same time we feel that it would be important to conclude with some thoughts on
how such agility may be achieved. We draw on the empirical research conducted by
Sarker and Sarker [14] to provide some tactical advice on how organizations may
strive to achieve the agility dimensions found important in our study. These tactics
are summarized in Table 7.4.

7.6 Conclusions

While there is a growing recognition that the adoption of agility principles can
enhance the success of DSD projects, there is a limited empirical understanding
regarding the effect of agility on project success. This study contributes by em-
pirically examining practitioners’ views surrounding the key criteria for evaluating
DSD project success and relative importance of different sub-types of agility to DSD
project success. Our study indicates that on-time delivery and effective collaboration
form important factors that lead to project success. Further our study indicates that
for overall agility to be achieved, an organization needs to focus on all three broad
categories of agility-resource based, process-based and linkage-based. We also find
evidence that each of these categories of agility may be achieved by focusing on par-
ticular sub-dimensions of each of these categories. Specifically our results indicate
that resource based agility may be achieved by focusing primarily on people-based

7 Contribution of Agility to Successful Distributed Software Development 115

Table 7.4 Tactics for enhancing agility dimensions

Agility Type Tactic

People-based
agility

• Select appropriate locations for overseas operations based on availability of
skilled resources, enabling rapid ramping up/down of team

• Maintain strong skilled resources at different vendor locations
• Increase interchangeability of roles, reconfigurability of team, distributed

decision making across the distributed teams
◦ Increase team member versatility across locations
◦ Increase diversity of team member skills across locations
◦ Rotate personnel across locations to disseminate knowledge and increase

shared frame of reference

Communication-
based agility

• Increase continuous awareness and visibility of distributed team members
◦ Appoint key individuals in each location to provide each other with daily

updates
◦ Increase shared electronic space (through blogs, bulletin boards) reduce

geographical/temporal distance
• Increase maturity of inter-locational communication

◦ Increase social connection and gradual increase of trust among team mem-
bers

◦ Rotate resources across location
• Increase close collaboration among clients and distributed team members

◦ Create open line of communication with team members
◦ Assigning selected members to close physical proximity with clients
◦ Promote client visit and interaction to distributed team locations

Methodology-
based agility

• Increase the use of prototyping which includes remote team members in
addition to team members in proximity to clients

• Tailor conventional SDLC to reduce its rigidity
◦ Shorter time periods for phases
◦ Iterative releases with shorter time periods
◦ Increasing capability of carrying out any phase at any location
◦ Including “agile” perspectives in an overall waterfall framework

• Appropriate harnessing of Agile methodologies
◦ Non-dogmatic use
◦ Tailoring principles to suit context
◦ Identifying aspects of methodology that are more appropriate and discard-

ing less appropriate aspects (see [6]).
◦ Disseminating and increasing consciousness about benefits of agile

methodologies

Time-based
agility

• Promote seamless transition of work across time-zones
◦ Create uniform work practices and similar norms for interaction across

locations
◦ Appoint right personnel/roles in time zones consistent with flow of work

• Increase synchronous meeting times,
◦ Make sure that such meetings are not biased against the physiological and

social clocks of particular location
◦ Use periodic “swap times” in distributed location shifts to match time

zones

Technology-
based agility

• Bypass local public infrastructure
• Invest in globally standardized technology enabling locational transparency
• Make available a portfolio of communication technologies
• Create centralized development and tracking environment

116 S. Sarker et al.

agility and to a lesser extent on technology-based agility, process-based agility may
be achieved by focusing on methodology-based agility and finally linkage-based
agility maybe achieved by focusing primarily on communication-based agility and
to lesser extent on time-based agility. We also provide some actionable tips that we
hope would provide guidance to organizations in achieving these relatively impor-
tant sub-dimensions of agility.

References

1. Baccarini, D. (1999). The logical framework for defining project success. Project Management
Journal, 30(4), 25–32.

2. Bagchi, P., & Rao, R. P. (1992). Decision-making in mergers: An application of the analytic
hierarchy process. Managerial and Decision Economics, 13, 91–99.

3. Balasubramaniam, R., Cao, L., Mohan, K., & Xu, P. (2006). Can distributed software devel-
opment be agile? Communications of the ACM, 49(10), 41–46.

4. Borjesson, A., & Mathiassen, L. (2005). Improving software organizations: Agility challenges
and implications. Information Technology & People, 18(4), 359–382.

5. Chow, T., & Cao, D. B. (2008). A survey study of critical success factors in agile software
projects. The Journal of Systems and Software, 81, 961–971.

6. Fitzgerald, B., Hartnett, G., & Conboy, K. (2006). Customising agile methods to software
practices. European Journal of Information Systems, 15(2), 200–213.

7. Holmqvist, M., & Pessi, K. (2006). Agility through scenario development and continuous im-
plementation: A global aftermarket logistics case. European Journal of Information Systems,
15(2), 146–158.

8. Jiang, J. J., & Klein, G. (1999). Risks to different aspects of system success. Information and
Management, 36, 263–272.

9. Kotlarsky, J., & Oshri, I. (2005). Social ties, knowledge sharing and successful collaboration in
globally distributed system development projects. European Journal of Information Systems,
14(1), 37–28.

10. Lee, O. K., Banerjee, P., Lim, K. H., Kumar, K., van Hillegersberg, J., & Wei, K. K. (2006).
Aligning IT components to achieve agility in globally distributed system development. Com-
munications of the ACM, 49(10), 49–54.

11. Lui, T. W., & Piccoli, G. (2007). Degrees of agility: Implications for information system de-
sign and firm strategy. In K. C. DeSouza (Ed.), Agile information systems: Conceptualization,
construction, and management (pp. 122–133). Burlington: Butterworth-Heinemann.

12. Procaccino, J. D., Verner, J. M., Darter, M. E., & Amadio, W. J. (2005). Toward predicting
software development success from the perspective of practitioners: An exploratory Bayesian
model. Journal of Information Technology, 20(3), 187–200.

13. Saaty, T. L. (1994). How to make a decision: The analytic hierarchy process. Interfaces, 24(6),
19–43.

14. Sarker, S., & Sarker, S. (2009). Exploring agility in distributed information systems devel-
opment teams: An interpretive study in an offshoring context. Information Systems Research,
20(3), 440–461.

15. Sarker, S., Munson, C. L., Sarker, S., & Chakraborty, S. (2009). Assesing relative contribu-
tions of the facets of agility to distributed systems development success: An analytic hierarchy
process approach. European Journal of Information Systems, 18(4), 285–299.

Chapter 8
Preparing your Offshore Organization
for Agility: Experiences in India

Jayakanth Srinivasan

Abstract Two strategies that have significantly changed the way we convention-
ally think about managing software development and sustainment are the family of
development approaches collectively referred to as agile methods, and the distribu-
tion of development efforts on a global scale. When you combine the two strategies,
organizations have to address not only the technical challenges that arise from in-
troducing new ways of working, but more importantly have to manage the ‘soft’
factors that if ignored lead to hard challenges. Using two case studies of distributed
agile software development in India we illustrate the areas that organizations need
to be aware of when transitioning work to India. The key issues that we emphasize
are the need to recruit and retain personnel; the importance of teaching, mentoring
and coaching; the need to manage customer expectations; the criticality of well-
articulated senior leadership vision and commitment; and the reality of operating in
a heterogeneous process environment.

8.1 Introduction

Economic forces are said to be relentlessly turning national markets into global
markets, and spawning new forms of competition and cooperation that reach across
national boundaries [1]. Thus the importance of reduced cycle time for developing
and marketing products (both within emerging markets and globally), and availabil-
ity of human capital emerge as key drivers to distribute work across geographies.
When companies attempt to maximize the benefits of globally distributing work
and leveraging available capabilities, the resultant working environment becomes
multi-site and multi-cultural. Companies now have to address not only the technical

J. Srinivasan
Mälardalen University, Västerås, Sweden

J. Srinivasan (�)
Massachusetts Institute of Technology, Cambridge, USA
e-mail: jksrini@mit.edu

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_8, © Springer-Verlag Berlin Heidelberg 2010

117

mailto:jksrini@mit.edu
http://dx.doi.org/10.1007/978-3-642-12442-6_8

118 J. Srinivasan

issues associated with a new way of planning and executing software projects, but
also the associated social and cultural challenges.

In parallel to the changes introduced by distributed development, the family of
software development approaches that constitute ‘agile methods’, have forced an
equally important paradigm shift [2] in the mechanics and management of soft-
ware development. We use the word paradigm shift because these techniques have
resulted in what is essentially an epochal change. The four values and twelve prin-
ciples espoused in the agile manifesto that was published in 2001 [3], challenge the
conventional notions of a mechanistic model of software development, and focus on
a more organic, human-centric approach. The last eight years have seen increased
adoption by practitioners on the use of these methods, and reported benefits in terms
of increased employee morale [4], productivity [5] and customer satisfaction [6].

In the ideal case, companies would like to be able to combine the strengths of
these emerging techniques, while mitigating their weaknesses. In this chapter, we
discuss how companies can prepare their offshore organizations for agility using
case studies of two companies that have offshored a part of their operations to India
called AgileCo and BankCo respectively.

The rest of this chapter is organized as follows: we first set the stage for dis-
tributed agile software development in India, followed by a discussion of the indi-
vidual cases separately, and then synthesize the lessons learned from the case stud-
ies.

8.2 Distributed Agile Software Development in India
The main reasons for seeking a services partner in India are flexible resources, skills
available, cost savings, and professionalism [7]. Unfortunately the initial ‘over the
wall’ approach to software development, in which requirements were developed at
the customer site and then handed over to the business analysts in India to flesh
out and implement, failed to demonstrate success. Thus, transitioning to an agile
approach promised a greater success. The four key barriers in implementing agility
in India as pointed by Summers are [7]: culture, communication, working practices,
and single vision.

Martin Fowler [8] wrote about the experience of running offshore projects in
India and Australia, wherein he emphasized the importance of retaining their high
standards in selecting employees (offering jobs to 1 in 200 applicants), maintain-
ing a mix of new hires and seasoned employees, and mentoring developers in the
new office on the use of agile methods. Of the 11 lessons learned, two are worth
mentioning here: don’t underestimate the culture change and expect to need more
documentation. One of the fundamental challenges of transitioning to an agile en-
vironment is the increased autonomy that it provides to the software development
team, and the resultant flattening of the decision hierarchy. Thus the importance of
creating an agile infected culture, while noting the uniqueness of the local culture
has been emphasized [9].

The journey towards adopting agility has already started in India. Wipro’s three
year journey in adopting agile methods began to proactively understand, focus and

8 Preparing your Offshore Organization for Agility: Experiences in India 119

deliver to customer needs [10]. Their experiences in 90 projects, mentored through
a central team of certified scrum masters, which has enabled them to create a model
to transition from collocated agile teams to distributed agile teams. The eight best
practices they have identified can be understood from two different perspectives:
a technical perspective (partitioning stories based on functionality and story-wise
collocation of teams; using design structure matrices to understand functional de-
pendencies; technical scrums to prevent speculative coding; visual controls on all
sites to create shared understanding and promote collective ownership), and cul-
tural aspects (rotation of personnel between on-shore and offshore to distribute busi-
ness knowledge; creating a shared understanding between customers and offshore
teams through site visits; dedicated video conference rooms; photo chart of the en-
tire team). Similarly, Shrinivasvadhvani and Panicker [11] emphasize the need for
mentoring for successful agile adoption. As Batra notes [12], the principles and val-
ues provide an effective framework for thinking about the challenges of distributed
agile development. However, we take a different standpoint that it is not impossi-
ble to build high-performance teams in a distributed/outsourced/off-shored environ-
ment. In fact implementing agile methods successfully enhances the competence of
the team as a whole, and leads to growing expertise within the organization. While
we agree with Cusumano’s assessment [13] that truly distributed agile development
will require new contracting mechanisms and enhanced communication and coordi-
nation approaches, effective distributed agile development is at its core about finding
alignment between the values and principles of agile manifesto and the values and
practices of the organization adopting it. The referenced reports provide a set of
best practices that organizations can leverage to apply agile methods in distributed
development.

8.3 Experiences from AgileCo

8.3.1 Case Overview

AgileCo was started in 2001 as the Indian arm of a global software services provider.
Given that their parent company had a long history of applying agile development,
AgileCo also adopted agile methods, but faced significant challenges in terms of
educating their personnel in the use of agile methods and in managing stakeholder
expectations. In 2005, at the time of the study, AgileCo consisted of about 75 peo-
ple and was expected to double in size by 2006. We conducted 12 interviews at
AgileCo in two sessions spanning a week in total. Our interviewees included three
senior managers, four business analysts, and five developers. Additionally, we ob-
served the interactions of members of AgileCoboth intra-organizational and inter-
organizational, when we were teaching them during two workshops. This was sup-
plemented with notes from interactions during breaks between interviews, and after-
work social events.

Over the 2001–2009 timeframe AgileCo has become one of the benchmarks of
agile adoption and usage in India. In addition to mentoring other organizations in the

120 J. Srinivasan

Table 8.1 Company 1 overview

AgileCo

Number of developers 75

When was agile introduced 2001

Domain Software Services

Agile practices used in the organization Pair-Programming, Planning Game, Daily Standup,

40 hr work week, Collective Ownership

adoption of agile methods, their staff was encouraged to share their understanding
of agile methods through conference papers, teaching tutorials, and participation in
local knowledge networks.We focus the discussion of AgileCo along the key aspects
of personnel selection and training, teaching/mentoring, and managing customer
expectations. These aspects emerged as the key components that made the adoption
of agility at AgileCo sustainable and successful.

8.3.2 Personnel Selection and Training

AgileCo was highly selective in picking people for their organization. In addition to
technical excellence, they focused on ability to adapt to the organizational culture
as well as growth potential within the organization. As one senior manager noted:

The selection process we have put into place makes sure that we don’t get any duds—
we look at coding and aptitude, and at least two interviews. As far as growth within the
organization goes, intelligence, communication and technical skills are the foundation, how
fast you grow however, is a function of attitude and willingness to find benefits for the
customer.

Personnel selection at AgileCo can be broadly divided into three categories, new
hires (straight out of school), experienced technical personnel, and experienced
managers. The details of the hiring process for each of these classes are different
as the role expectations are different; however, the overarching structure is similar
to the process shown in Fig. 8.1.

New hires are selected straight from school through both a college recruitment
program, as well as through open calls. In addition to assessing their analytical ca-
pabilities, the foundational technical skills such as data structures, algorithms, and
basic programming are judged. To account for a significant variation in process un-
derstanding, every one of their hires straight out of college is put through a rigorous

Fig. 8.1 AgileCo recruitment process

8 Preparing your Offshore Organization for Agility: Experiences in India 121

training program that teaches them the standard processes that are used within the
organization. In addition to classroom lectures, the new recruits work in teams to
create software solutions to problems that have already been solved for actual cus-
tomers by the organization. This exposes them to both the mechanics of the process,
as well as gives them increased technical skills. Given that India forms their largest
recruitment center for people straight out of school, AgileCo’s parent company has
centered their training program for all of their new recruits in India. As their director
for training noted:

We expect to do a lot more work in India, so it’s good for the young people recruited outside
India to come experience Indian culture, learn the process from expert teachers, and build
their own learning in a ‘safe environment’.

On a lighter note, it was mentioned by multiple people that the training program
initially was referred to as a ‘boot camp’, but that created issues with respect to
getting visas for the global new hires, leading to a renaming of the training program
to ‘AgileCo University’. When talking to some of the global new hires that were
present at the time of the study, one of them pointed:

The great part about coming to India, besides all the great training is that we can get hand-
made suits that are tailored—we cannot get that at this price point back home.

Practical Tip: It is important to create a common underlying culture through
extensive training within the organization, albeit with local cultural variations.
The investment is significant, but the rewards are proportionally greater be-
cause it enables individuals to experience the unique cultures of all the na-
tionalities within the organization; enables leaders within the organization to
be teachers; creates a common base of work practices that individuals can
then expand from; and emphasizes the importance and relevance of the local
operations.

A candidate that has successfully completed initial steps and reached the HR
interview is further assessed for the cultural fit in the organization. AgileCo’s flat
organization structure and focus on open and honest dialogue requires the willing-
ness of team members to be active listeners, and to offer constructive critique to
ideas that are offered. Additionally, their use of first names in the office, irrespective
of organizational rank, can be difficult to people coming from a very hierarchical or-
ganizational background. These attitudes and values that are necessary for building
an agile organization.

Another strategy that AgileCo effectively employs to understand the fit of senior
personnel to the organization, is to use junior members as part of the interview
team. This provides the job candidates with an exposure to AgileCo’s culture, and
provides the team with an opportunity to assess whether or not he/she would be
able to work effectively in their environment. When it comes to hiring managers,
AgileCo’s emphasis is on assessing the individual’s ability to mentor, motivate, and
manage their teams. Given that a significant portion of their technical team is under

122 J. Srinivasan

the age of 25, it becomes critical that managers have a deep understanding of the
processes used by AgileCo, and can effectively coach their team members.

Practical Tip: Given India’s premier position in the software services market,
the available talent base is large but the true skill set of a given individual often
varies from the picture presented by their resume. AgileCo’sexperience sug-
gests that a rigorous recruitment process should pay attention to both technical
competence and cultural fit.

8.3.3 Teaching and Mentoring

Although AgileCowas dominated by young professionals with less than three years
of experience (in 2005) similar to many other Indian fast growing companies, they
blended these young professionals with experienced team members, some of whom
had not used agile methods prior to joining AgileCo. The advantage of having these
experienced people is their deep belief in the process that AgileCo follows, with an
ability to articulate from previous experience as to why the process worked. As a
senior developer noted:

People often miss the rigor of agile methods. One of the things that I have found over my
career is that implementing CMM is commercially unviable—A lot of people that went
through the CMM experience with me, became the best XP programmers. One of the things
with agile methods, is that if you are in the organization for more than two or three years,
is that you have to be really good at what you do or you are extraordinarily lucky!

Practical Tip: The majority of experienced people in the Indian job market
have been trained on plan-based development approaches within organiza-
tions with high process maturity (as assessed using the CMM or CMMI frame-
work). The experience in AgileCo shows that when experienced people are
able combine the discipline of generating the requisite process artifacts at the
appropriate level of detail, with the technical rigor associated with agile soft-
ware development, they act as the change agents that drive successful agile
adoption.

The experienced personnel also act as mentors to younger personnel. When dis-
cussing mentoring, the expression that was used often was that AgileCo was a vil-
lage without doors, and you are really not considered to be a senior member until
people ask for your help. When discussing the role of experienced personnel in the
organization, a senior manager noted:

You have a responsibility to make sure that junior members of the team get face time with
the customer and have the ability to actually deliver a solution. You have to set up the
iterations such that they can see how the customer uses the system, and make them gain

8 Preparing your Offshore Organization for Agility: Experiences in India 123

a perspective that even when the solution seems sub-optimal from a feature standpoint, it
probably delivers greater value from a solution standpoint to the end customer. We started an
on-site project with six experienced people and three freshers (junior members)—midway
through the project, we lost four of our experienced people, but the customers still valued
the contributions of the team.

While the mentor-mentee relationship is both formally and informally enforced
within AgileCo, another role that experienced peopleperform is peer-to-peer men-
toring. All of the experienced members operate in a relatively ego-free environment,
and recognize the critical role that it plays in AgileCo’s culture. As one of the man-
agers noted:

When another senior colleague came on board, he wanted to put his stamp on the way things
are done—we as an organization understand that, but he also has to understand the impor-
tance of what the organization currently has. It would not be proper to call our relationship
a mentor-mentee relationship. Rather it is a peer-to-peer influence that I get to exert that has
allowed him to adapt to the organization culture.

What their experienced team members have been able to do, is foster a culture of
open communication and highlight the importance of taking responsibility for one’s
actions. They emphasize the importance of individuality within the organization’s
value framework. A case in point was the story of a young mentee who had in-
correctly escalated the issue to senior leadership, and received a highly cryptic re-
sponse. His mentor was wondering how amentee would respond to the situation, and
whether he should intervene to support him. As we were discussing the situation,
the mentor received an email from the mentee, stating that he had made a mistake
and he had called the people involved, and had listed a set of actions he was taking
to fix the mess.

Practical Tip: A large number of people in the Indian job market are either
used to a hierarchical governance structure with controlled customer access (if
they come from plan-based organizations), or are inexperienced and have to be
shielded from the customer. The switch to a more fluid development approach
requires adaptability on the part of the individual as well as transparency on
the part of the team. Mentoring of people either by their peers or by their more
experienced managers is critical to effective agile adoption.

8.3.4 Managing Customer Expectations

In 2005, AgileCo was faced with having a customer base that was not well versed
in agile terminology. A case in point was pair-programming, wherein the customer
questioned the idea of having two people programming together on a single system.
They felt that they should not be paying for two people when only one was doing
the work. AgileCo came up with the notion of ideal hours—the amount of time it
would take to solve a given problem and chose to bill customers that way. One of

124 J. Srinivasan

the tensions of doing that was that the development team perceived that it was a
comparison across the number of hours someone worked on a feature as opposed to
the quality of the work. As the manager involved noted:

One of things that I learned to do was to protect the team from the customer and executive
management. We told the client that we were going to ideal hours, and instead of being
adversarial with my team, I told them to give me ammunition to sell their ideas. Over a
couple of iterations, I developed a conversion factor that effectively translated a story point
to a standard number of hours. By keeping the story boards updated prior to a standup, I had
all the information that I needed for the leadership calls, without having to gather ‘overhead’
data from my team.

Practical Tip: Novel work practices require innovative metrics. In the case of
AgileCo, it was recognizing the need to create a common vocabulary with the
customer while retaining team effectiveness. The ‘story points to ideal hours’
conversion is illustrative of creating metrics without fundamentally changing
a functional measurement system.

As AgileCo continues to grow, it has to ensure that is does not become too in-
flexible to tailor the process to the problem. Their team-based culture, ability to mix
personnel with varied experience levels, and ability to maximize the strengths of
their geographical location makes them viable in the long run. As one of the busi-
ness analysts visiting AgileCo from the parent office noted:

This is the purest form of agile in the entire company. Anywhere else, I have to operate
under the pressures of my client, but here, I am shielded from that, and can execute the
process while, at the same time, delivering great customer value.

8.4 Experience from BankCo

8.4.1 Case Overview

BankCo is a new organization that was formed in early 2005 in India to support the
internal software needs of their global parent organization, which specializes in the
banking sector. While some maintenance operations had been previously offshored
to a team in India prior to the formation of BankCo, agile methods were not used by
the legacy teams, and they had not developed any new products.

Our interviews included a vice president of the parent organization, the CEO of
BankCo, their agile coach, a senior project manager, and three developers. One of
the developers was a contractor with little agile experience, the second had recently
joined after two years at AgileCo, and the third developer had joined after a short
stay at another organization that had been using agile methods as their primary de-
velopment strategy. Complementing AgileCo experience, observations at BankCo
suggest that the impact of the senior leadership vision is critical, along with the
ability to mitigate the challenges of working in a heterogeneous process environ-
ment and implementing proper agile coaching.

8 Preparing your Offshore Organization for Agility: Experiences in India 125

Table 8.2 Company 2 overview

BankCo

Number of developers 20

When was agile introduced 2005

Domain Banking

Agile practices used in the organization Planning Game, Daily Standup, Sprint Planning,

Storyboards as Information Radiators

8.4.2 Impact of Senior Leadership Vision

BankCo’s CEO had a clear vision for where he wanted the organization to be. His
vision for growing the business was articulated as follows:

We will do the exact opposite of building a software factory—we will hire talented people
who are equal to their counterparts in London and Paris—we will build quality products
using talented people, and grow the business by moving projects onshore and taking larger
chunks of existing projects—there will be a natural convergence of projects ending up here.

This view was echoed by the VP of their parent organization, who talked about the
cost differentials of operating in India, and the larger talent base that was available
in India. The current approach of revenue generation by BankCo is to charge the
parent organization located in Europe on a unit-cost-per-person basis, such that they
can invest in local projects and still make the books balance. When asked about the
expected size of the organization, BankCo CEO said:

I expect to have about 100 people here, anything more will be a bonus and any less and the
attrition rates would be too high.

Their intent in adopting agile methods was to rapidly demonstrate value to their
parent organization, while gaining maximum utility from the capabilities of their
talent base.

Practical Tip: Having senior leadership understand the dynamics of using ag-
ile methods allows them to articulate a realizable vision, and provides an an-
chor point for assessing progress towards achieving that vision.

Reflecting the vision set forth by their CEO, BankCo has been extremely selec-
tive in who they recruited into the organization. While BankCo is looking to hire
across a broad spectrum of experience levels, their recruitment strategy is seen to
focus on hiring people who:

• have not peaked in their careers,
• and have the ability to think independently.

Given their need to grow to meet their size requirements, they have used a strategy
of hiring contractors to take on junior developmental roles while their permanent

126 J. Srinivasan

staff takes on the senior roles of program managers, business analysts and senior
developmental roles. As one of the contract employees noted:

This is so different from my own organization which is CMMI level 5, I have more au-
tonomy here than with my own organization, and we (BankCo) actually get better quality
products delivered faster. In my organization, we have a system that is based on tenure—
people get promoted just because they had been in the organization long enough—here it is
purely a meritocracy.

In addition to looking for strong talent, BankCo also focused on ‘fit’ with the corpo-
rate culture. BankCo recognizes that their team has to operate in close conjunction
to their European counterparts—being able to communicate their expectations is
extremely important. Given that their parent company’s culture is to manage by
exception, BankCo’s CEO has placed a significant emphasis on employee empow-
erment and open bi-directional communication across the entire organization. The
emphasis on recruiting people that can spot and deliver value has led to rejecting a
large number of job applicants.

Practical Tip: A large number of companies starting their operation in India
leverage the capabilities of consultants drawn from other organizations. By
clearly defining roles and expectations of consultants and employees, BankCo
has enabled a smooth culture transition.

8.4.3 Heterogeneous Process Environment

BankCo currently has green-field teams that use agile methods as their core devel-
opment methodology as well as teams involved in sustainment that operate using
a traditional plan-driven approach. Although one would expect a culture clash be-
tween the agile and non-agile teams, they have successfully avoided the problem
by having the same project manager for both sets of teams. This project manager
served as the bridge between the teams, infusing the open communications and flat-
tening the hierarchical structure in the plan-based development teams, and bringing
in greater documentation discipline to the agile teams. As the project manager noted:

When I first got here, it was as if these teams existed in separate worlds—it didn’t help that
the team doing agile work was physically located in a different building than the rest of the
teams, but the issue was more of product support versus product ownership. Now we have
greater interactions across these teams, and are migrating best practices between them.

Practical Tip: Having a common project manager working across two dif-
ferent development approaches provides a means of creating a shared under-
standing between the teams, and driving towards a common baseline process.

8 Preparing your Offshore Organization for Agility: Experiences in India 127

8.4.4 Agile Coaching

One of the greatest strengths of the agile team was the presence of an agile coach to
train the team in the use of agile methods. As one developer noted:

Working with the agile coach was brilliant–brilliant–brilliant—when I came to BankCo
earlier this year, he was very different from anyone I had ever met before—he was calm
professional and very passionate about work. We were unaware of agile, refactoring, test
driven development. He sat with each of us, showed us how to do things. When we didn’t
have a wall for the story board, he came up with the idea of using the mobile white board
that you see here.

From a mentoring standpoint, the CEO noted that with the exception of the coach,
he had really not put anything else in place. His expectation was that the teams
themselves would self organize and that the senior members of the team would
serve as mentors to the less experienced members, and that the open bi-directional
communication, coupled with a flat organization structure would enable peer-to-peer
interactions as well.

When talking about the impact of the coach on mentoring, the contract developer
noted:

I am actually getting feedback about myself for the first time in my career (this comes
from a person with 8 years of experience)—the right feedback that was required, and more
importantly, he made me think about what other directions I needed to think about. He
encouraged the process of thinking as opposed to telling me what to do. The feedback was
not always positive, but it was put in a constructive manner. He also shared a lot of stories
about his experiences when his projects were cancelled, how he felt, the possible risks of
the project we were currently doing—little things on how to make myself better.

Practical Tip: An agile coach with experience in working in a global market
is critical to successful adoption and sustainment of agile methods.

BankCo’s teams have both technical and business competencies. Their CEO em-
phasized the need for every team member to a clear understanding of where they
fit in the organization and how their role would evolve. This was fundamental both
to growth as well to prevent long-term attrition. In 2005, BankCo was still in the
early stages of its agile adoption. The clear vision articulated by their CEO, coupled
with strong project management and coaching has considerably eased their tran-
sition to using agile methods. Their emphasis on mentoring and adherence to the
agile principles within their development approaches has enabled them to incorpo-
rate the philosophy more easily into their organization. As their CEO noted, they
are currently in the middle of a change, and only time will tell if the change was
successful.

8.5 Conclusions

In synthesizing the learning form the two cases, we highlight the importance of
senior leadership vision in adopting and sustaining agile methods. In the case of

128 J. Srinivasan

BankCo, the driver for adopting agile methods was to show the increased value
provided by the new offshored organization. They were able to effectively translate
the vision provided by their CEO to their work practices, as seen through the vision
articulated by their coach.

Organizations often deal with some degree of heterogeneity in work practices.
In the case of BankCo, it was addressed by using a unique project management
structure with the same project manager dealing with both sets of teams. In the case
of AgileCo, it was addressed by having the project manager serve as the translator
between the India-based team and their international customer. It is important to
point out that heterogeneity is in and of itself, not detrimental to the organization.
The challenge is in finding the right level of standardization that does not inhibit
team autonomy, and at the same time provides sufficient predictability to support
senior leadership decision-making.

Both organizations have emphasized the importance of creating and maintaining
an agile-infected culture. As one of the senior members at AgileCo noted:

We have achieved success through the nature of the projects we work on, and in indoctri-
nating our junior members.

AgileCo’s success in using agile methods as an organization-wide standard has
enabled them to indoctrinate less experienced people in the process, and yet, bal-
ance out that indoctrination through the use of more experienced personnel, most of
whom came from plan-based development environments. The intuitive notion that
such senior personnel would find it hard to function in an agile environment, not
embrace it and act as impediments to change was proved wrong. These mentors
maintained an oral history of the limitations of plan-based approaches, but at the
same time, emphasized the discipline it takes to execute agile processes. Without
the presence of experienced personnel, organizations run the risk of ‘by-the-book’
agile implementations that at a surface-level reflect the adoption of agile practices,
but do not result either in the organization level transformation or the increased de-
livery quality that is expected.

One of the limitations of indoctrination is the literal and rigid interpretation of
agile methods that are espoused by junior members. This was one of the issues that
came up over dinner conversations when someone talking about a more structured
process like the Rational Unified Process was dismissed by the entire table, with
none of the junior members at the table being able to make a coherent argument for
why RUP would not work in their organizational context.

At the fundamental level, the adoption of agile approaches has to change the
nature of the work associated with software development, while at the same time
fostering deeper understanding of the system being developed. From our perspec-
tive, agile approaches focus on providing a means of doing the work of software
development and can drive grass-roots level transformation. Whereas CMMI and
other top-down process improvement efforts provide the means of creating policy-
driven change. That is not to say that organizations can just morph into following
agile methods. There needs to be significant discipline on the part of senior lead-
ership to support the process, and shield the teams utilizing these processes from
pressures from the external environment. For instance, the project manager has the

8 Preparing your Offshore Organization for Agility: Experiences in India 129

responsibility of preventing the team from thrashing either due to customer variation
or due to resource challenges. Since using agile methods drives the organization to-
wards the use of high performance team structures, new incentive and performance
management systems need to be developed.

In summary, the key success factors to successful implementation of agile devel-
opment in the studied Indian companies were:

• Designing a human capital strategy that supports growing an agile-infected cul-
ture

• Creating a shared language to communicate within and across organizational
boundaries

• Finding a balance between experienced and inexperienced personnel to ensure
effective project management

• Establishing formal and informal organizational learning mechanisms
• Mentoring to institutionalize work practices
• Crafting incentives to increase adoption of agile practices

Acknowledgements The research presented in this chapter was supported in part by the Lean
Advancement Initiative at MIT, and the Swedish Foundation for Strategic Research through the
PROGRESS Center at Mälardalen University. Preliminary versions of this chapter were improved
based on comments from Prof. Kristina Lundqvist, Prof. ChristerNorström and Dr. Gustav Naeser,
and two anonymous reviewers. Also, the chapter benefitted significantly from the editorial feed-
back received from Dr. Darja Smite.

References

1. Herbsleb, J., & Moitra, D. (2001). Global software development. IEEE Software, 18(2), 16–
20.

2. Kuhn, T. (1970). The structure of scientific revolutions. 1962. Chicago: University of Chicago
Press.

3. Beck, K. et al. (2001). The agile manifesto. The Agile Alliance.
4. Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. Com-

puter, 34(11), 131–133.
5. Cohn, M., & Ford, D. (2003). Introducing an agile process to an organization. Computer,

36(6), 74–78.
6. Williams, L., & Cockburn, A. (2003). Agile software development: It’s about feedback and

change. Computer, 39–43.
7. Summers, M. (2008). Insights into an agile adventure with offshore partners. In Agile 2008.
8. Fowler, M. (2007). Using an agile software process with offshore development. Electronic.

Available: http://www.martinfowler.com/articles/agileOffshore.html, p. 12-07.
9. Doshi, C., & Doshi, D. (2009). A peek into an agile infected culture. In Agile 2009. New York:

IEEE.
10. Sureshchandra, K., & Shrinivasavadhani, J. (2008). Adopting agile in distributed development.

In IEEE international conference on global software engineering.

http://www.martinfowler.com/articles/agileOffshore.html

130 J. Srinivasan

11. Shrinivasavadhani, J., & Panicker, V. (2008). Remote mentoring a distributed agile team. In
Agile 2008.

12. Batra, D. (2009). Modified agile practices for outsourced software projects. Communications
of the ACM, 52(9), 143–148.

13. Cusumano, M. (2008). Managing software development in globally distributed teams. Com-
munications of the ACM, 51(2), 15–17.

Part III
Management

Chapter 9
Improving Global Development Using Agile

How Agile Processes Can Improve Productivity
in Large Distributed Projects

Alberto Avritzer, Francois Bronsard,
and Gilberto Matos

Abstract Global development promises important productivity and capability ad-
vantages over centralized work by optimally allocating tasks according to locality,
expertise or cost. All too often, global development also introduces a different set of
communication and coordination challenges that can negate all the expected benefits
and even cause project failures. Most common problems have to do with building
trust or quick feedback loops between distributed teams, or with the integration of
globally developed components. Agile processes tend to emphasize the intensity of
communication, and would seem to be negatively impacted by team distribution. In
our experience, these challenges can be overcome, and agile processes can address
some of the pitfalls of global development more effectively than plan-driven devel-
opment. This chapter discusses how to address the difficulties faced when adapting
agile processes to global development and the improvements to global development
that adopting agile can produce.

9.1 Introduction

Globally distributed software development projects present special challenges for
agile processes since the primary tools that agile processes use to effectively solve
complex problems rely on frequent communication and quick feedback [5, 9]. Dis-
tribution directly affects these capabilities by introducing delays and limiting the
bandwidth and quality of communication. Thus, agile processes must be specifically
customized to preserve their qualities in the face of the communication constraints

A. Avritzer (�) · F. Bronsard · G. Matos
Siemens Corporate Research, 755 College rd East, Princeton, NJ 08540, USA
e-mail: alberto.avritzer@siemens.com

F. Bronsard
e-mail: francois.bronsard@siemens.com

G. Matos
e-mail: gilberto.matos@siemens.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_9, © Springer-Verlag Berlin Heidelberg 2010

133

mailto:alberto.avritzer@siemens.com
mailto:francois.bronsard@siemens.com
mailto:gilberto.matos@siemens.com
http://dx.doi.org/10.1007/978-3-642-12442-6_9

134 A. Avritzer et al.

of distributed environments. Once such customization is done, however, agile pro-
cesses can effectively address many of the challenges faced by large distributed
projects [8] and result in extremely productive projects [3, 10].

From our experience on large and small projects within Siemens AG, we have
seen first-hand many of the challenges of using agile in distributed projects and the
many strategies that were tried and adopted to address them. Some of the challenges
for agile are well-known (e.g., the difficulty of communications across distant time-
zones) but others have not been discussed previously (e.g. supporting a formal re-
quirements engineering process, while doing agile development). Furthermore, we
have also witnessed how, once these challenges were addressed, the agile processes
led to improved productivity in contrast to waterfall or plan driven processes.

This chapter is organized as follows: We start with a short description of the
projects in which we participated and present specific success factors and challenges
of these projects. We follow by discussing how global projects can adapt agile pro-
cesses and which issues they must consider. In the next section, we discuss those
characteristics of agile processes that are critical to address the challenges of global
projects and how to preserve them when adapting agile. Finally, we conclude with
a short summary of how to apply agile processes in large distributed projects.

9.2 The Projects

The discussion presented here is strongly inspired by two large distributed projects
in which the authors were key participants. The first project lasted for three years and
involved approximately one hundred developers divided into ten teams distributed
across the USA, Europe and India. The goal of the project was to build a platform for
a product line of PC-based control and monitoring systems to replace a collection
of legacy systems that supported different lines of business. The main challenges
faced by this project were the adoption of multiple new technologies and the design
constraints of making a generic platform.

This global agile project faced significant risks. First, there were communication
challenges: for example, between the teams farthest apart (USA and India) there was
only one overlapping working hour. Because of the expected length of the project,
it was not practical to ask the teams to shift their workday to increase the overlap.
The most serious risk, however, was that the project relied on multiple untested or
very immature technologies. The project adopted agile processes, in part, because
of their ability to handle volatile technologies.

The project enjoyed a number of advantages. First, the development teams in-
cluded a large number of developers that had previously worked on the develop-
ment or the maintenance of the legacy products that the project aimed to replace.
Thus, most teams could count on local domain expertise to quickly resolve or clar-
ify domain questions. Second, the testing process could use sample workflow and
test cases based on the usage of these legacy products. Finally, most members of the
project had previously participated in global projects and many key members had
lived abroad and were accustomed to the cultural differences between the sites. As

9 Improving Global Development Using Agile 135

a result, although cultural differences are frequently cited as a significant risk for
distributed projects, they were not a factor in this project.

Table 9.1 Project overview
The First Project

Number of Developers ≈ 100

Number of Teams 10

Duration 3 years

Status Launched, ongoing incremental releases

Agile practices Scrum

Involved locations USA-5, Europe 3, India 2

The second project was divided into two large subprojects: one working on a
software platform for distributed control of independent embedded devices and the
second using that platform to provide a distributed administration and control ca-
pability. The platform subproject was initiated first and was developed mainly by
co-located teams in Germany, while the application subproject started with sev-
eral distributed teams seeded from the platform project teams and working with the
evolving platform. Both projects were considered a significant success that resulted
in multiple releases of applications with market differentiating features over four
years and continued management support.

Table 9.2 Project Overview
Platform_and_Application

Number of Developers 100

Number of Teams 15

Duration 4 years

Status Launched, ongoing incremental

releases

Agile practices XP, Scrum

Involved locations Germany-4 locations, US 2, Greece 1

Our experience is based on the application subproject, which faced a more dis-
tributed environment, more volatile requirements and technology dependencies, and
much more critical deadline visibility due to the planned end-user deployment. A
large risk was that the project had to rely heavily on remote subject matter experts for
clarifying domain specific issues. The dependency on the evolving platform project
introduced an ongoing technological risk.

The most important factors in the success of this project were the existence of an
initial team with significant expertise in the targeted development technologies, and
the faithful implementation of agile principles that allowed the development team
to effectively tackle the largest risks during the first 2 iterations.

136 A. Avritzer et al.

Our experience is also drawn from a number of smaller agile distributed projects
with five to twenty developers, lasting for several months to a year. In these projects
we were involved in development roles and in agility mentor roles [6]. To the extent
that these projects faced issues similar to those of the larger projects and addressed
them in the same way, they provide further validation for the value of agile tech-
niques on distributed projects.

9.3 Deploying Agile Techniques in Global Projects

This section examines the issues to address when adopting agile in a global project.
We discuss the factors to consider when selecting or adapting the various agile tech-
niques, and illustrate the possible solutions with examples from our projects. We
first discuss some simple organizational issues to set the stage for the discussion
of the communication issues and the process issues. Then we discuss some project
planning issues and various tooling and technical issues.

9.3.1 Organizational Issues

The first issue to confront when adopting an agile distributed process is how to
organize the teams. There are two models of organization:

Co-located Teams In this model, the teams are isolated across geographies and
integrated by a Scrum of Scrums that meets regularly across geographies. In our
projects, most teams were organized as co-located teams and we relied heavily on
the Scrum of Scrums meetings to coordinate the inter-team communications as dis-
cussed below.

Distributed Teams In this model, Scrum teams are cross-functional with mem-
bers distributed across different locations. The main argument in favor of this ap-
proach is that if there is good communication between the team members and if they
all have high expertise, the resulting team exhibits very high productivity [10]. Our
projects included some distributed teams with varying degrees of success. Some
successful distributed teams were initially co-located teams for an extended period
of time, in our project examples, five to six months. After that period they became
distributed and continued to perform well.

Pairing of Developers We have found that many project features tended to be
cross-disciplinary, and that it is a good practice to have the development done by
two to three developers working together, therefore providing some of the benefits
of pair programming. In our experience, pairing of developers worked best when
people were grouped because they had complementary skills (e.g., a tester and two
developers, or an architect, a UI designer, and a developer), or for experienced de-
velopers mentoring less experienced ones.

9 Improving Global Development Using Agile 137

Travel and Delegation No matter the teams’ organization, it is important to oc-
casionally get the teams together. If possible, co-locating the teams for the first one
or two iterations will build trust and greatly help future communication. We used
the travel and delegation approach in one project and developers found it helpful.
Afterwards, having some of the team’s members change locations occasionally for
short periods of time, or getting many developers together temporarily, e.g., to tackle
some complex issue, helped maintain that trust and team spirit.

As a special case of this last example, we found that for infrastructure or archi-
tectural change with project-wide implications or to introduce a new technology,
it was very useful to have such change tackled first by a co-located team made of
representatives from all the teams affected by the change. With such an approach,
all the implications of that change can be detected and evaluated quickly and by
co-locating this change team we allow them to learn together, hence more quickly,
the intricacies of the new infrastructure, architecture or technology. Afterward, the
participants can serve as mentors in their home teams. For example, in one project,
we used an application framework that saw three upgrades during the project. For
the first two upgrades, we relied on the co-located change team approach and could
integrate the upgrades in two to three weeks. For the third upgrade, we used non-
collocated teams and ended up encountering upgrade problems across many teams
for four to five weeks.

9.3.2 Communication Issues

The foremost issues to address when using agile in global projects are the commu-
nication issues. Most agile techniques rely on frequent communications and short
feedback cycles, and these present special challenges in a global project. Significant
effort needs to be invested up-front to lessen the communication requirements of
the project. This means the design of a good architecture that addresses the most
important non-functional requirements. It also means accepting occasional code du-
plication rather than refactoring, since refactoring requires more communication.

It is important to enable the communication required by the agile process rather
than trying to control the communication flow through extensive up-front analysis.

Inter-team Communication Our approach to agile was closely inspired by the
SCRUM method, hence we relied on the scrum-of-scrums meeting to generate the
overall picture of the state of the project and, more importantly, to communicate
critical information between teams. In one project, we had a daily Scrum of Scrum
meeting and, in the other, two to three weekly ones.

In general, the scrum-of-scrums is a forum for discussing the project wide issues
and for identifying team dependencies, which are then communicated to the relevant
team members in order to set up direct communication channels. We commonly
used the scrum-of-scrums for prioritization and backlog reviews, and for resource
planning. The scrum-of-scrums is also the first step in escalating any problem that

138 A. Avritzer et al.

can’t be resolved at the level of a single team, such as unavailability of external
resources for priority tasks, negotiation of interfaces and work split between teams.

The selection of a good representative from each team is critical: the representa-
tives must have enough technical understanding of the project that they can effec-
tively summarize their team’s work, understand the summaries of the work of the
other teams, and, more importantly, understand the implications for their teams of
the work done in the other teams. For example, it’s a mistake to think that the Scrum
of Scrums should be a Scrum of ScrumMasters. If the ScrumMaster for a team is not
a technical member, then it is one of the technical members who should participate
in the Scrum of Scrums.

Informal Communication Informal communications refers to the informal and
spontaneous “corridor talk” that happens between members of a co-located team.
Informal communications keep the team members informed of what is happening
in the project on a day-to-day basis and is often a critical knowledge sharing mecha-
nism. In our projects, we relied mostly on the distributed Scrum of Scrums model of
team organization, so the various teams were co-located and could still rely on the
informal communication channels. For inter-teams communications, we relied on
phone, e-mail, IM, video conference, and web conference to allow people to com-
municate relatively easily. We had also various information sharing spaces (Wiki
sites, SharePoint) for people to share knowledge in a structured and persistent form.

Formal Communication By formal communications we mean the more formal,
official communications like reporting project status, reporting and escalating is-
sues, issuing milestone reports, etc. Although agile tend to eschew such process
documentation, this is usually not an option for large projects. Such projects have
to be planned and monitored at least from a financial standpoint. This entails docu-
menting preliminary efforts and cost estimates and performing a full lifecycle plan-
ning. Furthermore, large projects will also require reporting on the major milestones
achieved by the projects. In our projects, this was addressed by adding correspond-
ing documentation tasks to the backlog of tasks.

Communication with Domain Experts Domain experts are critical, but it is dif-
ficult to obtain these resources. This is particularly acute for long projects, since it
is usually not possible to spare these resources for the duration of the project. In one
project, we were given sets of very high level generic feature descriptions and had
no access to the domain experts to validate the actual detailed scenarios of how the
artifacts were being created, processed and presented. Since the development team
was missing the needed level of expertise in the application domain to indepen-
dently refine the features, we made several attempts to create prototypes that would
minimize the needed verification time by the domain experts. We had to declare
the project in crisis during its first iteration before being given the needed access
to domain experts. The quick prototyping approaches [7] continued to be useful in
minimizing the needed effort for the domain experts and in getting more relevant
and wide ranging feedback from them as the development team was building up its
experience in the domain issues.

9 Improving Global Development Using Agile 139

The emphasis of agile processes on creating some deliverables early contributed
to some initial friction among the stakeholders, but ensured that the needed domain
experts would be made available to the project. The push for including a domain ex-
pert in the creation of some early deliverables was a pivotal moment for the project,
and once this input became available, the project quickly reached a state of continu-
ous progress with new features and architectural improvements being implemented
at close to initial estimates.

9.3.3 Process Issues

Agile processes being non-prescriptive, it is normal that different agile projects ex-
hibit significant process differences. In fact, any agile team should keep evaluating
and refining their process to better meet the project needs. This flexibility, however,
carries the risk of weakening the process and causing problems with project delivery
or quality. When adapting an agile process, one should remember that a key charac-
teristic of many agile techniques is that they induce a positive feedback loop where
the technique improves productivity in a self-reinforcing way. This is important to
keep in mind when process issues come up and the project must decide how to adapt
them.

Transition Out of the Legacy Process Managing legacy processes while transi-
tioning to an agile process is a politically delicate matter as support for existing pro-
cesses is often required during the transition period. We recommend transforming
the existing development process into a coarse process with only the major mile-
stones remaining. Therefore, the organization could follow the agile process while
continuing to deliver the documents and artifacts required by the traditional process
at the major milestones. In our projects, this approach added some documentation
tasks but not a significant number.

Process Refinements The development process itself should be treated as a
project artifact, thus, it should be defined based on best practices, and maintained
through frequent reviews and refactoring. It is best to start with a view on a vertical
slice of the process, and refine it. A first broad view should reveal what develop-
ment specialties will be needed (e.g., build automation, test automation, UI design,
architecture, etc.). Once these specialties have been identified, the initial resource
can be allocated, and the relevant expert can refine the needs of the process from the
standpoint of that specialized need.

During the sprint or during the sprint retrospectives we can review how the pro-
cess worked and whether it needs tuning. Keeping this process under review en-
sures that constraints that are more process-oriented in nature (availability of build
experts, availability of domain experts, etc. . . .) are taken into account during plan-
ning. For example, if the domain experts for the back-end were less available during
a sprint, we would concentrate more on front-end features.

140 A. Avritzer et al.

In one project, the Scrum of scrums was used to discuss not only the current
state of the system but also to discuss and revise the development process. The re-
vision of the development process at the Scrum of scrums meeting helped distribute
and promote to the complete group whatever process variations were experimented
and found useful by one team. In particular, some of the process discussion that
would normally happen in end-of-sprint retrospectives took place during the scrum
of scrums meetings. Thus, the process could be updated quickly.

Backlogs It is important to have a well-fed backlog of tasks so that “lag times”
can be used productively and to encourage correct prioritization: It is important
to make clear to the product owner that the backlog is a tool for them to control
the value of the features that are being worked on, and that it is better to have a
backlog that is clearly too big than one that misses relevant tasks! Thus, product
owner prioritizes features to make sure high value ones are done first, and the low
priority or questionable ones are subject to subsequent decisions. This is particularly
important for a large project because the long duration of the project makes it likely
to face changing needs and priorities of the features.

Minimal Up-front Planning The key planning concern is to enable the initial de-
velopment and to provide a solid base to validate the most important non-functional
requirements. Thus, the analysis must identify the main features of the system to be
developed, how they will be used by the most important stakeholders, and the main
components and services that will make up the system. The initial iterations are
used to validate the architecture, based on the main functional and non-functional
features of the system. The preliminary analysis and planning only need to identify
and enumerate these features and organize them into relevant vertical slices that can
be tackled by the development teams.

Many projects try to enhance agile processes by doing somewhat detailed esti-
mation of the required effort. In all of our projects, the early estimation of com-
plex projects proved to be too optimistic, and caused conflicts related to resource
and project planning. The projects that used a more transparent process and a dy-
namic approach for reprioritizing features were able to detect errors in the estima-
tion of the required effort early in the project lifecycle, and could therefore adjust
the level of resources required in time to meet the project delivery times. Subsequent
projects/releases with the same teams were able to provide significant incremental
updates completely within budget and schedule.

Agile Form Without Function Agile processes are meant to increase trans-
parency in the conduct of complex development and problem solving endeavors.
The associated disciplines and practices are tools that should help with this goal,
but are not goals in themselves. It happens occasionally that teams adopt the agile
process and present their adherence to the practices as a deliverable goal, without
really providing a valuable and verifiable output. On a low level, this behavior can
be seen when Scrum team members define tasks of indefinable value to the product
owner, such as documenting a design or preparing a quality assurance plan, or if the

9 Improving Global Development Using Agile 141

daily Scrum talks primarily about meetings had and meetings planned. On a higher
level, a team iteration review may face a situation where a number of features are
completed but can’t be demonstrated or verified because these features are marked
as “this is just an iteration”.

This situation of agile form without agile function is primarily found in recent
(or unwilling) converts to agile, and in situations where the developers don’t trust
and therefore don’t want to provide transparency to the product owner or other man-
agement stakeholders. While agility clearly strives to empower the developers to ad-
dress important technical issues even if they are not directly visible to the customer,
it is very important to enforce some level of transparency in the work because this is
the primary mechanism for building trust and effective communication. It is never
required that all tasks from a given iteration could be demonstrated to the product
owner, but all agile processes (SCRUM in particular) demand that every iteration
review must have valuable output demonstrated and validated. Various supporting
tasks should be aggregated into valuable features that could be demonstrated to
work, for planning and progress reporting purposes.

9.3.4 Tools and Technical Issues

Although no single tool is strictly mandatory for a successful agile project, the right
set of tools greatly facilitate realizing the various agile processes.

Communication Tools Providing good communication tools (e-mail, Instant
Messaging, phone conferencing, web conferencing, remote computer sharing,
etc. . .) is a must. We found it a good practice to provide a palette of tools so that
people with different styles of interactions can find whichever tool suit them best.
Early co-located face-to-face meetings were quite appreciated by the teams and
were important to building the required trust among the team members.

We also used knowledge sharing tools like Wikis or SharePoint. These tools were
quite useful to provide a shared site to report on the status of distributed efforts
(e.g., the testing of a new release), although the information provided there tended
to have a very short shelf-life. Some items, though, like architectural samples or
code examples were useful over a long period of time.

Continuous Integration In both projects, we found centralized continuous inte-
gration to be a critical enabler. Being able to build and run the full system (even
if in a partial state) frequently, and to have access to the system from all sites was
essential to avoid serious integration problems and to ensure that misunderstandings
were quickly revealed and addressed.

In ours, and others projects within our organization, we found that where con-
tinuous integration was achieved early, and was prioritized higher than any other
feature, the projects achieved steady progress. Conversely, in several other projects,
where the progress on individual features was prioritized above the preservation

142 A. Avritzer et al.

of the integrated system, there were consistent integration problems. In addition,
these integration problems were compounded in global projects by the challenges
of distributed communication which led to inconsistent understanding between the
teams of the purpose and usage of specific locally developed features. However, in
projects where the continuous integration process was achieved at a later point in
the lifecycle, noticeable improvement in productivity and progress were observed.

Integration Tools To enable continuous integration, build automation tools are
required. In our projects we used CruiseControl to rebuild the project whenever
an update was made to the code base. Should that build fails, a notification was
sent to all users that had contributed to that update. This process ensured that any
build failures were detected in a timely manner. If needed, after a short delay, the
technical leads would get involved in trying to identify the error, regardless of which
developer introduced it. The primary responsibility of each team was to ensure that
their errors do not stay in the repository after their work hours. This generally meant
that a few team members looked at every build failure, and in most cases, the build
was restored during the same day without impacting the other teams and location.
Although, it would have been possible to automatically roll-back the code base to
the version of the last successful build, we do not recommend this practice: the
ultimate goal of the continuous integration is to push for a resolution of integration
problems. Therefore, we want to encourage developers to check in their code and
detect integration problems. Finally, for quality control, we used test automation
tools and ran them as part of the continuous integration build.

Configurations Management We recommend a single main trunk for the code
base as we did in one project. A single main trunk requires extra work to schedule
updates from multiple sites, and to prevent bottlenecks on shared files. However, a
single main trunk enables true continuous integration. In the other project, we had
site or team based branches and the integration team merged all the branches prior to
integration. This reduced the interaction overhead but resulted in a stream of serious
integration problems and resulted in a reduced availability of the fully integrated
application, and contributed to delaying the discovery of incompatibilities.

Centralized configuration repository may be a bottleneck for multiple distributed
teams working on the same code base. Remote repositories may impose significant
network latency, and slow down the individual developers. We found that having lo-
cal repositories with a multi-site merging protocol provided good performance with
acceptably low instances of conflict. In order to minimize the update conflicts, we
marked a limited set of files as being critical for sharing, and allocated specific time-
of-day update guidelines to different teams. With this refinement, the distributed
access to centralized configuration management reached satisfactory performance.
Table 9.3 summarizes our recommendations for adapting Agile for globally dis-
tributed software development projects.

9 Improving Global Development Using Agile 143

Table 9.3 Adapting agile for global projects

Issues Recommendation Details

Teams
Organization

Co-located teams Using co-located teams is simpler and they
can become distributed teams after a while

Co-locate early work Co-located work is a good way of creating
an environment with trust and effective com-
munication. It is particularly critical for dis-
tributed teams to develop trust and under-
standing of each others capabilities

Co-locate critical work Important or risky architecture changes,
whether internally motivated or driven by
external dependencies, should be performed
in a co-located team, with delegated experts
from relevant teams

Inter-teams
communication

Scrum of Scrums with tech-
nical representatives

The Scrum of scrums must cover both the
technical and managerial issues spanning
multiple teams but the technical issues must
take precedence

Legacy process Reduce the legacy process to
major milestones

Provide the documentation required of the
major milestones of the legacy process

Process refinement Treat process as a project ar-
tifact

The process should be updated and refined
as needed. It is important however to en-
sure that the refinements preserve the posi-
tive feedback loops of agile

Use Scrum of scrums to dis-
cuss process

Using the Scrum of Scrums to discuss pro-
cess improvement was more effective than
waiting for the sprint retrospective

Integration issues Continuous integration We recommend an automated build process
with optional regression tests and failure re-
ports

Single main trunk in CM sys-
tem

This forces the integration issues to arise,
and be fixed, early on

9.4 Improving Global Projects Using Agile Processes

Agile processes were initially applied on smaller projects with good results in terms
of cost, quality and customer satisfaction. The practical experience indicates that
size and complexity are not an impediment for effectively using agile processes.
Our project experience suggests that agile processes are very effective in addressing
the needs of large distributed projects as long as incremental improvements can be
leveraged into a successful application or system.

Effective Preparation Work A common problem for large projects is to correctly
decide how much time and effort should be spent on architecture and high-level
design for the project, before starting the development work.

The use of agile forces development teams to start with constructive, deliver-
able work as soon as possible. The core requirement of agile is that the teams must

144 A. Avritzer et al.

have demonstrable results by the end of each iteration. To meet the end of the iter-
ation deadline, each team and product owner will have to make decisions on what
achievable objectives they want to prioritize in the current iteration. The architec-
tural analysis, design, and modeling tasks are not dropped, but must be addressed
in the context of delivering end-user features. This approach has dual advantages
over a pre-development architecture phase. First, the experience and feedback on
the developed or prototyped features increases the body of knowledge available to
make architectural decisions. Second, it becomes easier to determine when the re-
sults of preparation work are sufficient and have high enough priority to be assigned
to feature development.

In our experience, the more tightly integrated the deliverables are from an early
stage of the project, the better the distributed collaboration proceeds. Conversely, the
more distributed projects depend on local development, and on a subsequent central
integration phase, the more problems projects have in both phases: development and
integration. By doing local development without the benefit of an integrated appli-
cation, the distributed teams sometimes work without access to the understanding
of the shared domain, and may have difficulty delivering correct functionality to the
integrators.

Product Owner The product owner is expected to provide the developers with a
list of desired features, prioritized to represent the interests of the stakeholders. They
also need to have the organizational knowledge and support to be able to access to
external domain experts. Whenever possible, the product owner should be able to
act as an internal domain expert for a majority of features. The product owner should
be emphasized as a domain-specific role, rather than being a strictly management
role. In large distributed projects, the product owner needs to be fully committed to
the project, and to be able to periodically visit the sites and directly interact with the
developers in elaborating the features and assessing the progress and planning.

The development teams act as suppliers to the product owner, and needs to keep
an open and trusting communication with him/her. In agile projects, this means
providing transparent effort estimates of the immediately planned features, gener-
ally the ones in the current iteration. It also means that reports about development
progress and effort spent need to be frequent and realistic. Finally, the communica-
tion should be open, without a scrum master or site manager acting as an intermedi-
ary.

Communication—Bandwidth Limited communication bandwidth tends to re-
duce the quantity and value of communication within a global project, moreover
the product owner’s and the domain experts’ time is usually limited and this further
reduces the amount of information that can be communicated. Yet, in spite of its
strong reliance on frequent communications, the Agile approach is quite appropriate
even in the face of limited bandwidth or difficulties to get the product owners’ or the
domain experts’ time. Agile processes tend to focus on small-scale and short term
deliverables and this allows agile teams to effectively communicate on the issues of
interest even within the bandwidth limitations of globally distributed projects. Agile

9 Improving Global Development Using Agile 145

approaches also provide a specific benefit in the area of eliciting knowledge from
product owners and domain experts because the ongoing development provides an
operational system that can serve as a frame of reference for elaborating incremen-
tal features, and for identifying risks and opportunities. By reducing the amount of
time and effort that is required from the domain experts, and by focusing on the
interesting areas of system interaction, it becomes easier for agile projects to collect
the needed input or feedback. It is also more effective to get product owners and
domain experts to clarify and resolve issues as they arise, rather than attempting to
detect and resolve all potential problems during an idealized planning and designing
phase.

Continuous Integration The continuous integration process represents both a
supporting technology and a crucial proof of transparency and visibility of devel-
opment results. The existence of a functioning system base provides the first real
verifiable deliverable anchored in reality, and is generally an agile mainstay. Com-
plexity and dependencies in distributed systems often create pressures toward de-
coupling the work at individual locations, and we have seen a multitude of recurring
integration problems in projects with such delayed integration.

The continuous integration process allowed us to do early system and acceptance
testing, to make us aware of the possible sources of system instability, and to in-
clude mitigation strategies for these instabilities in the planning of the development
sprints. Continuous integration also ensures that the various components do not di-
verge too much, and that everyone has the same understanding of the application.
Centralized continuous integration is particularly valuable for distributed projects
since it provides these projects with a stable frame of reference for communication,
planning, and domain-related feature elaboration.

Distribution of Design and Analysis Work A common approach to the analysis,
architecture, and design phases of large distributed projects is to have these phases
done in depth by a central team at the beginning of the project. Our experience is
contrary! In our projects, and in others (see [1, 2]), we found benefits to a more
distributed approach in which multiple development teams get involved at an early
stage. This creates open communication channels and develops high level of trust
leading to more effective collaboration later on. Agile approaches foster such flat
structure and the resulting communication and collaboration channels resulting in
better productivity for distributed teams.

Unstable Requirements Agile approaches are particularly effective in dealing
with unstable requirements because they provide short feedback cycles to review
and re-prioritize features. As the changing competitive landscape and stakeholder
interests lead to evolving requirements, most large projects will confront a signifi-
cant level of requirement volatility simply due to their duration and the low level of
initial understanding of what the end-requirements will be. Agile methods allow for
the requirement elaboration work to be concentrated on a small set of high prior-
ity features, and to incrementally develop a system that incorporates an increasing

146 A. Avritzer et al.

number of desired features. By delaying the requirement elaboration work of low
priority features to a time that is closer to their implementation, the developers will
have better domain and dependency understanding when they start development,
and they will also be able to complete the implementation at some acceptable level
before significant changes occur.

Introducing or Updating Technologies The emphasis on short iterations and
prototyping enables agile methods to efficiently handle new technologies [4]. This
still holds in the context of global projects: a new technology can be quickly pro-
totyped in a separate development track as a special feature during an iteration and
if the prototype is successful, that technology can be deployed widely in later itera-
tions. Moreover, if the prototype is not successful, then only a limited effort has been
expended. The capability to handle new technologies is particularly important for
global projects because they tend to last multiple years and, therefore, will operate
in an environment of evolving technologies.

Managing Customer Expectations The use of short iterations, frequent feed-
backs and a well-managed backlog are powerful techniques to handle customer re-
quirements. The key technique is to keep the backlog very visible and open. With a
view of the backlog and frequent prototyping, the customer is able to see how the
work is progressing. An important advantage of prototyping is the ability to reposi-
tion the project if major deviations from customers’ needs are detected. By keeping
the backlog open, the customer can add features to the project by inserting them
in the backlog and reprioritizing the other features. The referred process gives the
product owner the flexibility to control and prioritize the three most important as-
pects of planning complex development tasks: scope, quality and cost, and to do it
in a very fine grained manner, to the level of individual features, based on the needs
of the different stakeholders.

Table 9.4 How agile affects global projects

Agile technique Impact on global projects

Frequent, short itera-
tions with “demoable”
results

• Avoid excessive up-front planning and design work
• Better handling of unstable requirements
• Help manage customer expectation

Product owner • Provide a representative for all stakeholders
• Keep features prioritized according to changing business reality

Continuous Integration • Avoid late discovery of integration issues
• Improve system level understanding and testing in the project

Develop storyboards
and prototypes

• Storyboards and prototypes are a powerful way to collaborate with
remote domain experts on features

• Help test new technology before introducing them in projects

Access to domain ex-
perts is critical

• Access to domain experts is critically important for clarifying both
the project goals and specific features or user stories

9 Improving Global Development Using Agile 147

9.5 Conclusions

Agile development processes have been successfully used in large distributed
projects by many companies, and the broadening interest in this area testifies to the
success of the methodology. Agile methods address requirement volatility, technol-
ogy changes and evolving stakeholder interests in a much more effective way than
plan-driven development methods. In this aspect, agile methods are well positioned
to address the most important types of problems that face engineering organizations
in the globally outsourced environment: maintaining global partnerships with best-
of-breed service providers in order to achieve fast time-to-market for innovative and
high quality products.

Our experiences in a number of global projects using agile support that charac-
terization. We have found that agile can be successfully adapted for globally dis-
tributed environments and we have presented here guidelines on how to do such
an adaptation. Once a project has successfully adopted agile, the benefits of ag-
ile were preserved in globally distributed environments and addressed many of the
challenges of such environments.

There are a few key elements to keep in mind when adapting agile for a dis-
tributed environment. Simple remote collaboration practices, like providing multiple
communication tools and holding regular cross-site meetings, allowed distributed
teams to significantly reduce the overhead of distributed collaboration. Co-location
for individual teams is important though after a while these teams could become
distributed. All teams should be represented during project inception, preferably by
co-located delegates. Finally, we found centralized continuous integration to be key
to a smooth collaboration of the distributed agile teams.

Once agile processes are adapted to global projects, they effectively address
many of the challenges of distribution. They preserve the flexibility needed to deal
with volatile requirements and multiple stakeholders. The short iterations and fre-
quent feedbacks clarify the customer needs and give customers an actionable insight
into the project’s progress. The backlog management provides a very fine grain con-
trol that makes it easy to satisfy the customer’s customer needs. These observations
allow us to conclude that the advantages of agile over plan-driven development are
preserved in globally distributed environments.

References

1. Avritzer, A., & Paulish, D. (2010). A comparison of commonly used processes for multi-site
software development. In I. Mistrík et al. (Eds.), Collaborative software engineering. Berlin:
Springer. Chap. 14.

2. Avritzer, A., Hasling, W., & Paulish, D. (2007). Process investigations for the global studio
project version 3.0. In ICGSE 2007. Second IEEE international conference on global software
engineering (pp. 247–251).

3. Berczuk, S. (2007). Back to basics: The role of agile principles in success with a distributed
scrum team. In AGILE ’07: Proceedings of the AGILE 2007 conference (pp. 382–388). Wash-
ington: IEEE Computer Society.

148 A. Avritzer et al.

4. Cockburn, A., & Highsmith, J. (2001). Agile software development: The business of innova-
tion. Computer, 34(9), 120–127.

5. Herbsleb, J. D., & Moitra, D. (2001). Guest editors’ introduction: Global software develop-
ment. IEEE Software, 18(2), 16–20.

6. Hwong, B., Matos, G., McKenna, M., Nelson, C., Nikolova, G., Rudorfer, A., Song, X., Tai,
G. Y., Tanikella, R., & Wehrwein, B. (2007). Quality improvements from using agile de-
velopment methods: Lessons learned. In I. G. Stamelos & P. Sfetsos (Eds.), Agile software
development quality assurance (pp. 221–235). Hershey: IGI Publishing.

7. Hwong, B., Matos, G., Rudorfer, A., & Wehrwein, B. (2009). Rapid development techniques.
In B. Berenbach, D. Paulish, J. Kazmeier, & A. Rudorfer (Eds.), Software & systems require-
ments engineering: In practice (pp. 233–255). New York: McGraw-Hill, Inc.

8. Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2009). Using scrum in distributed agile
development: A multiple case study. In ICGSE 2009. Fourth IEEE international conference
on global software engineering (pp. 195–204).

9. Ramesh, B., Cao, L., Mohan, K., & Xu, P. (2006). Can distributed software development be
agile? Communications of the ACM, 49(10), 41–46.

10. Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007). Distributed scrum: Agile
project management with outsourced development teams. In: System sciences, 2007. HICSS
2007 (pp. 274a–274a). 40th annual Hawaii international conference on software systems.
http://www.scrumalliance.org/resources/17.

http://www.scrumalliance.org/resources/17

Chapter 10
Turning Time from Enemy into an Ally Using
the Pomodoro Technique

Xiaofeng Wang, Federico Gobbo,
and Michael Lane

Abstract Time is one of the most important factors dominating agile software de-
velopment processes in distributed settings. Effective time management helps agile
teams to plan and monitor the work to be performed, and create and maintain a fast
yet sustainable pace. The Pomodoro Technique is one promising time management
technique. Its application and adaptation in Sourcesense Milan Team surfaced vari-
ous benefits, challenges and implications for distributed agile software development.
Lessons learnt from the experiences of Sourcesense Milan Team can be useful for
other distributed agile teams to turn time from enemy into an ally.

10.1 Introduction

Time is a priceless and scarce resource for software development projects [4]. It is
especially true in agile software development. A brief review of the 12 agile princi-
ples behind the Agile Manifesto reveals that time is an important dimension of agile
processes, symbolized by terms such as “early”, “frequently”, “couple of weeks”,
“daily”, “regular intervals” in these principles [2]. Agile teams work with short
time-boxed iterations and need to maintain a fast yet sustainable pace throughout
the project lifespan [3]. When moving to a distributed setting, the time dimension

X. Wang (�)
Lero, The Irish Software Engineering Research Centre, Limerick, Ireland
e-mail: xiaofeng.wang@lero.ie

F. Gobbo
DICOM Dipartimento di Informatica e Comunicazione, University of Insubria, Via Mazzini 5,
21100 Varese, Italy
e-mail: federico.gobbo@uninsubria.it

M. Lane
Computer Science and Information Systems, University of Limerick, Limerick, Ireland
e-mail: michael.lane@ul.ie

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_10, © Springer-Verlag Berlin Heidelberg 2010

149

mailto:xiaofeng.wang@lero.ie
mailto:federico.gobbo@uninsubria.it
mailto:michael.lane@ul.ie
http://dx.doi.org/10.1007/978-3-642-12442-6_10

150 X. Wang et al.

Fig. 10.1 A tomato-shaped
timer

is further complicated by issues such as time zones [6], geographical distance [7],
and different cultures [1]. However, there is very little reported evidence of effective
time management techniques applied in agile software development, especially in
the context of distributed teams.

The Pomodoro Technique is a time management tool that was originally intended
to optimize personal work and study. More recently, it has been widely applied by
Italian agile teams [9]. Awareness of this technique is growing among the wider,
international agile community (two tutorials on the Pomodoro Technique have been
given in Agile 2009—the international conference). The technique is named after
the usage of a common kitchen timer in the shape of a tomato (“pomodoro” in Ital-
ian, see Fig. 10.1). The heart of the Pomodoro Technique is 25 minutes of focused,
uninterrupted work on one task, then 5 minutes of rest. There are also rules to keep
the integrity of pomodoro, and tactics to deal with internal and external interrup-
tions. However, starting as a personal time management tool, how is it applied by an
agile team, especially when the team is working in a distributed environment? There
is no ready answer in spite of the increasing popularity of the Pomodoro Technique
in the agile community.

Based on this observation, the objective of our study is to provide a better un-
derstanding of the application of the Pomodoro Technique in agile teams, especially
when they work in distributed contexts. To this end, we studied in-depth one agile
team that has applied the Pomodoro Technique extensively. The team collaborates
with other remote sites of the company where the Pomodoro Technique is not used.
This allows us to reflect on the impact of the Pomodoro Technique (and the lack of
it) in a distributed context.

The remaining part of the chapter is organized as follows. In the next section we
review a set of time-related issues and argue the importance of time management
in software development in general and agile software development in a distributed
context in particular. It is followed by an introduction of the Pomodoro Technique.
Then the experience of Sourcesense Milan Team using the Pomodoro Technique
is presented. We analyse their experience and provide useful guidelines for imple-
menting the Pomodoro Technique in the following section. The chapter ends with a
conclusion section that highlights the contribution of our study and points out future
studies.

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 151

10.2 Time Is an Enemy?

Time occupies a crucial place in software development projects. It is one of the
most important factors dominating software development processes [10]. And just
like many people have experienced, to various degrees, the anxiety associated with
the passage of time, many software development projects have suffered from a set
of time-related issues. Back in 1975, Brooks claimed that “more software projects
have gone awry for lack of calendar time than for all other causes combined” [4]. In
[10] a set of interlinked time-related problems in software development processes
are independent, including: bottlenecks, which occur when one or more functions in
the development process are dependent upon the output of another function within
the process, resulting in developers having nothing to work on in the meantime;
schedule problems, both construction of a feasible project schedule and to meet the
schedule that has been set; difficulty in time estimation of large module/class/task;
time pressure, which happens typically towards the end of a development process
when the development team cannot meet the project schedule either because of poor
time estimations or bottlenecks; and late delivery, which occurs as a result of inap-
propriate project planning, usually due to poor estimations.

These inter-related problems, in essence, are all subjects of time management,
one of the major knowledge areas of project management [12]. This area involves
decomposition of project work into manageable tasks, estimation of task durations,
scheduling of tasks, and controlling and monitoring the execution of tasks. Effective
time management is crucial for addressing the time-related problems and leading
to the success of software development projects. However, [10] argue that in early
software engineering projects, when waterfall versions started to emerge, time issues
were essentially neglected. As we proceed along the software engineering timeline,
time issues receive increasingly more attention and their importance in software
development processes is increasingly recognized, as evidenced in Team Software
Process (TSP) [11], Rapid Application Development (RAD), and recently in agile
software development.

Time plays a more crucial role in agile software development than in conven-
tional waterfall-like software development processes. This is demonstrated by a
review of the 12 agile principles [2] from a time perspective. A review of these
principles shows that 50% of them have an emphasis on time:

• Our highest priority is to satisfy the customer through early and continuous de-
livery of valuable software.

• Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.
• Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
• At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

152 X. Wang et al.

These principles pose new time-related challenges to agile teams, apart from the
previously discussed time issues. Agile teams need to work at a fast yet sustainable
pace. The risk in having sole focus on velocity of development is the reduction of
enthusiasm among team members. This may then have an impact on the sustainabil-
ity of an agile team’s daily work. It is important to achieve this equilibrium in agile
software development, but it is underestimated in practice [9]. As a consequence,
time management in agile software development not only means effective planning
and monitoring of the work to be performed, but also should help agile teams to
create and maintain a fast yet sustainable pace.

These two aspects of time management in agile software development can be
further complicated as software development moves into global, distributed settings,
which is an approach adopted by many current software projects. Issues such as
time zones [6], geographical distance [7], and different cultures [13] will affect the
previously discussed time-related issues and the effectiveness of time management
techniques employed by agile teams. To better understand the impacts of distributed
context, it is useful to consider different distributed team configurations (see Grinter
et al. [8] for different kinds of team configurations). Each different team structure
presents different benefits to the work being undertaken, and would impact the time
management technique used by agile teams in different ways.

In spite of the importance of time and time management in agile software devel-
opment, however, there is a paucity of both time management techniques and stud-
ies on the application of these techniques in agile software development, let alone
in a distributed agile context. The Pomodoro Technique is one promising time man-
agement technique and is increasingly popular in the agile community. A growing
number of agile teams use the pomodoro technique within their agile development
processes [9].

10.3 The Pomodoro Technique

The goal of the Pomodoro Technique is to encourage consciousness, concentration,
and clarity of thought through effective time management. A ‘pomodoro’ is 25 min-
utes of focused, uninterrupted work on one task then 5 minutes of complete rest. The
inventor claims that, based on scientific proof, “20- to 45-minute time intervals can
maximize our attention and mental activity, if followed by a short break” [5]. The
5-minute break aims to support team members in establishing and maintaining an
optimal attention curve while engaged in project activities. In order to increase the
impact of this effect, following every four consecutive pomodoros a longer pause of
15 minutes is recommended.

The technique can improve the productivity of an individual. Improvements in
productivity are achieved through increased motivation and the technique has also
proved effective in supporting the management of complex situations. These bene-
fits can be achieved through the following two inter-related aspects of the Pomodoro
Technique: time-boxing and duration estimations.

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 153

10.3.1 Pomodoro as Time-box

One of the primary inspirations behind the Pomodoro Technique is time-boxing [5].
Time-boxing suggests that, once a series of activities has been assigned to a given-
time interval, the delivery date for these activities should never change. If necessary,
the unfinished activities can be reassigned to the following time interval. Corre-
sponding to the idea of time-boxing, to maximize participant concentration, every
time-box (or pomodoro), needs to be protected. “Protecting pomodoro” leads to
fewer interruptions. There are two kinds of interruptions that need to be addressed:

• Internal: These interruptions are triggered by the participant, e.g. “I should check
email”, or “I need to get a cup of coffee”;

• External: Triggered by other entities, e.g. a phone call or a request from a col-
league.

In order to handle these interruptions effectively, an “indivisible rule” needs to
be enacted. A pomodoro represents twenty-five minutes of pure work that cannot be
split up. There is no such a thing as a half or a quarter of a pomodoro. If a pomodoro
is interrupted definitively, i.e. the interruption is not deflected, then the pomodoro is
considered to have never commenced—it is made void.

Used as a time-boxing tool, the Pomodoro Technique can help enhance focus
and concentration on work by cutting down on interruptions. Consequently, it can
alleviate anxiety linked to the passage of time and reduce both time-wasting and
overtime. A sustainable working pace can be obtained through the alternation of
work and rest and the combination of short breaks and long pauses.

10.3.2 Pomodoro as Unit of Effort

To master and improve the use of the Pomodoro Technique, an underlying daily
process is suggested, which consists of five stages:

• Planning: to decide the activities to do in the day;
• Tracking: to gather raw data on the effort expended and other metrics of interest;
• Recording: to compile an archive of daily observations;
• Processing: to transform raw data into information; and
• Visualizing: to present the information in a format that facilitates understanding

and clarifies paths to improvement.

In each stage, the pomodoro plays the role of unit of estimation. Two rules apply:
(1) if a task lasts more than 5–7 pomodoros, break it down. Complex activities
should be divided into several activities; and (2) if it lasts less than one pomodoro,
add it up. Simple tasks can be combined.

Used as an effort estimation tool, the Pomodoro Technique can support the re-
finement of an effort estimation process through the use of continuous reflection of

154 X. Wang et al.

team activities (more detailed instructions of how to apply the Pomodoro Technique
as a personal time management technique can be found in [5]).

The Pomodoro Technique was invented initially for individual work, as a per-
sonal time management tool. But it has been developed and refined in the context
of teamwork by the inventor and advocates of the technique over the time. [9] re-
port the technique as a team time management tool used by several XP teams. They
claim that the Pomodoro Technique is an unstressful—as well as efficient—way to
help teams find their “natural” rhythm in daily work. Their study is a good starting
point and provides a broad picture for investigating how the Pomodoro Technique
can be applied in agile teams. Our study intends to go into more depth to understand
the benefits, issues and concerns of using the Pomodoro Technique in an agile team
within a distributed context.

10.4 The Application of the Pomodoro Technique in Sourcesense
Milan Team

In this section, we present one case study of the application of the Pomodoro Tech-
nique in an agile software development team. More specifically, we investigate how
Sourcesense Milan Team, an XP team, applied the Pomodoro Technique as both a
time-boxing tool and an estimation tool. We also present their reactions to work-
ing in a distributed setting, collaborating with other locations that did not use the
Pomodoro Technique.

10.4.1 Background of Sourcesense Milan Team

The company, Sourcesense, is a European systems integrator providing consultancy,
support and services around key Open Source technologies (Table 10.1).

It is distributed across several countries, as illustrated in Fig. 10.2.
In Italy, there are two teams that are focused primarily on software development:

Sourcesense Milan Team and Sourcesense Rome Team. Sourcesense UK contains
a team that plays the role of customer proxy: Sourcesense UK Team. The remain-
ing part is based in the Netherlands, Sourcesense Netherlands, and it is responsible
for the provision of consultant-oriented services. In the context of this case study,
Sourcesense Netherlands is not engaged in any of the projects performed. Table 10.2

Table 10.1 Company overview

Company: Sourcesense

Number of developers <50

When was agile introduced 2007

Domain Open Source Systems integrator

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 155

Fig. 10.2 The distribution context of Sourcesense Milan Team

Table 10.2 Team overview

Locations Number of members Roles

Sourcesense Milan 10 Developers, XP coach

Sourcesense Rome 2 Developers

Sourcesense UK 1 Customer proxy

is an overview of the distribution context that Sourcesense Milan Team is embedded
in. In terms of configurations of distributed teams, in the context of this case study,
two structures are in place:

• Modular: Sourcesense Milan Team and Sourcesense Rome Team take responsi-
bility for separate modules or features of the system under development.

• Functional expertise: Sourcesense UK Team is deemed to be the most appropriate
source for requirements elicitation in the absence of customer access.

10.4.2 The Development Process of Sourcesense Milan Team

Sourcesense Milan Team works at a fast pace, restricting itself to 1-week itera-
tions. An iteration planning meeting is held where the work in the current iteration
is planned out. User stories are selected for implementation in the iteration and the
relevant story cards are posted on the white board in the team’s office. The team also
uses online spreadsheets to track the progress of user stories. Because the team does
not have an on-site customer, a progress report to the customer detailing all achieve-
ments/issues of the previous iteration is compiled and sent out to the customer after
the iteration planning meeting.

156 X. Wang et al.

Generally every two weeks the team conducts a retrospective where the members
reflect on their development process. Each team member is given an opportunity to
lead retrospectives, not just the coach.

Every Wednesday is set aside for research activities—the team uses their time
to focus on the study of both project-related concepts and growth of general work-
related skills.

A standup meeting is conducted at 9:30 everyday, generally lasting for no longer
than 15 minutes. The first activity performed by the team members is to individ-
ually review the previous day’s journal. This is a document produced by the team
members at the end of each day outlining the activities performed during the day.
It serves multiple purposes: providing non-collocated team members an immediate
view of overall team progress, enabling the team members to achieve closure on
their day’s work and acting as a review that is used to set the tone for the following
day’s work. Journal reviews are completed before 9:30 each morning as this is the
time scheduled for the daily standup meeting. Having used the journal to review
what was achieved on the previous day, the two main questions addressed in the
standup meeting are: (1) “What am I going to do today?” and (2) “What are the
problems in doing it?”

After the standup meeting, the team goes into development mode. The developers
work in pairs all the time. Pair rotation happens regularly.

The development process of Sourcesense Milan Team would have been similar
to many other XP or agile teams but for their use of the Pomodoro Technique. This
is seen more clearly by reviewing the perspectives of Sourcesense Milan Team in
relation to the impact of their use of the Pomodoro Technique. Two main areas are
presented:

• Having the pomodoro play two key roles in the development approach: “time-
box” and “unit of effort”.

• Issues arising from collaborations with distributed teams that do not use the Po-
modoro Technique.

10.4.3 Pomodoro as Time-box

Pomodoro is used to time-box the development activities of the team. Several as-
pects of using pomodoro as a time-boxing tool in the team are highlighted below.

10.4.3.1 One Pomodoro Rules Them All

The initial application of the Pomodoro Technique involved a pomodoro timer for
every pair of developers. The owner of the story card was responsible for loading the
timer, and updating the card. As a result of the responsibility assumed by each part-
ner within a pair to support their colleague, internal interruptions were minimized.

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 157

The coach was responsible for deflecting external interruptions—he protected the
integrity of each pomodoro as the pair worked on its activities.

As a result of retrospectives on how best to effectively apply the Pomodoro Tech-
nique in a team setting, it was decided to experiment with an extension of the
Pomodoro Technique. The name given to the extended approach was “shared po-
modoro”. This approach proposed that a pomodoro be applied to the whole team,
i.e., “one pomodoro rules them all” (Fig. 10.3 is an illustration of a team working
with a shared pomodoro timer).

Although some developers expressed reservations on this approach initially, it
is now accepted by the team as a good way to address certain issues that were
having an adverse impact on the team. These issues were related to interruptions
that were being caused between pairs of developers. When each pair had their own
pomodoro and their own associated pomodoro timer, there were cases where they
disturbed each other due to different break times. Some pairs preferred to work for
50 minutes and take a longer pause thereafter; others used pomodoro just to track
their work without paying attention to the breaks. This resulted in noise and dis-
tractions for pairs that were not at break. The shared pomodoro approach ensures
that when a pomodoro is being tackled, everybody is working; no one has distrac-
tions from other people having a pause. It is also good for the whole team to have
long pauses all together. Synching up the pomodoros can also increase cross-pair
communication after breaks. Alignment of breaks enables the team to switch pairs
more frequently. When pomodoros were not aligned, it was not possible to switch
partners within pairs and there was an increased risk of a pair attempting too much
in one session. The shared pomodoro approach also helps the team members to be
more disciplined in their adherence to both working time and break time. This helps
the team to obtain a working rhythm. The team actually behaves like a team, and
the cohesion between the team members is increased. An additional benefit to the
shared pomodoro approach is that having breaks shared with other pairs acts as a
motivational device. This is especially true for pairs that find themselves less than
enthusiastic about returning to work due to the types of tasks that are required to
be done in their pomodoros at a given time. Not everybody can get to work on the
“cool” tasks all the time—but having the opportunity to share in the overall envi-
ronment at break time helps to overcome this issue.

The team also realizes that shared pomodoro should not be used to block po-
tentially constructive interactions during a 25-minute time slot. They believe that
the Pomodoro Technique and shared pomodoro in particular, is intended to make
the team members more aware and respectful of everyone’s work. Interruptions that
should be avoided include phone calls, instant messages, and people wandering in
and requesting assistance from the team members on non-project-related activities.
However, as stated above, there are acceptable interruptions. The team works in a
face-to-face setting in an open office. The coach observes that if he hears some-
one having trouble he would intervene and help them. He believes that it might be
worthwhile to interrupt his work for a minute to save the other pair from maybe 30
minutes of “puzzling over something that I know straight away”.

158 X. Wang et al.

Fig. 10.3 Team engaged in planning using the shared pomodoro approach

10.4.3.2 Break is Break

The team realizes that the 5-minute break is as important as the 25-minute working
time for them. The team is well aware of the fact that breaks may be used in a variety
of ways. The uses of a 5-minute break can be viewed as a continuum, ranging from
complete relaxation (day dreaming, practicing Qigong, sleeping), to more active
breaks, such as responding to emails, reading blogs, or even discussing what is just
been completed in the last pomodoro with colleagues. According to the team, it takes
training to rest effectively, just like it takes training to be able to develop software. In
accordance with the recommendations of the Pomodoro Technique the team treats
the breaks seriously and the developers are not encouraged to do activities during
the break. For example, the team keeps a personal machine separate from work
machines. This computer is situated in a different location than the work machines.
The intention is to discourage team members from checking emails and reading
blogs during the breaks. However, it should be noted that the team members do
check emails from time to time on their laptops. The coach admits that, even though
it is a sign of indiscipline, it does happen occasionally.

10.4.3.3 Time-boxing Non-development Activities

Pomodoro is used by the team to time-box not only development, but also other
activities, such as study and meetings.

As previously stated, Wednesday is scheduled for team study. The team spends
four pomodoros studying various topics on Wednesday afternoons. To the team,
study is not a break—customer-focus is maintained during these activities. One of
the goals of study activities is to promote lateral thinking—“to try to solve the prob-
lem from different angles”. The team needs to get quick feedback on what is learnt.

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 159

Therefore, stories used to drive study activities should be as small as possible in
order to shorten feedback cycles. Time-boxing study time with the Pomodoro Tech-
nique could help. Another application of this technique is meetings. These events
are also time-boxed with pomodoro, in order to help people focus and reduce wasted
time.

10.4.4 Pomodoro as a Unit of Effort

Pomodoro is used extensively, as a unit of effort, in planning, estimating and track-
ing progress. In the case of Sourcesense Milan Team, the unit of effort is one po-
modoro per pair. For example, there are 6 full-time people in the team (3 pairs). If
each pair works on 10 pomodoros per day, the total team capacity is 30 pomodoros
per day.

Activities that do not require team members to work in pairs, such as admin-
istrative meetings, are measured by half-pomodoro per person. For example, if a
meeting takes 5 developers half an hour, the total effort the team spends on the
meeting counts for 2.5 pomodoros.

10.4.4.1 Pomodoros vs. Abstract Story Points

The team originally estimated user stories in abstract story points, which is a com-
mon practice suggested by XP [3]. A story point is an abstract complexity measure
of a user story. Initially, the team did not commit to the estimation of durations
for each story point. In time, the team switched to directly estimating everything in
pomodoro per pair. To the team, story points started losing meaning. Instead, the
pomodoro became a more concrete measure of effort.

Another concept utilized by the team, following the suggestion of the original
Pomodoro Technique inventor, was “pomodoro type”. This concept classifies po-
modoros spent into different categories, such as analyzing, coding, refactoring and
testing, to help the team to obtain a better understanding of the effort spent on dif-
ferent types of work, e.g., the ratio of coding over refactoring, or how much effort
spent on “wrestling with the server” in deployment.

10.4.4.2 Tracking Pomodoros

Every morning the team members pick up the story cards from the whiteboard (as
shown in Fig. 10.4) and the current story cards that are on the desk of the develop-
ers. Usually each card holder marks a cross on the back of the story card for each
pomodoro consumed. This helps to track how much real effort was spent on a story.
Every evening they will put all the cards together again on the whiteboard, to under-
stand how many pomodoros of user stories are left unfinished, and if they can finish

160 X. Wang et al.

Fig. 10.4 The whiteboard with user stories in current iteration

them within the iteration. It also helps to measure how much uninterrupted work the
team can do in a day. They have a shared spreadsheet to store historical data about
each iteration. The white board only shows the current iteration.

10.4.4.3 When Not to Measure or Track with Pomodoro

The team realizes that certain activities do not require estimation and also may not
require that the effort spent on them be tracked. The typical activity that the team
does not track is non-project-related exploration. There are two types of exploration:
project related, called spikes, and non project related, more exploratory study that
is driven by the interests of the team members rather than by project issues. Spikes,
which are related to any user story, are tracked using the Pomodoro Technique. In
contrast, the team believes that general exploration, which is described as “useful
exercises of dreaming where you would like to be or to do”, should be conducted
without time pressure. The team often conducts experiments collectively on the
code base without the objective of production work. They believe that the result
of exploration should be shared among the team members. Therefore, presentations
of new technology and new ideas are held from time to time. There is also the con-
cept of a “lunch cinema club”. The team members get together and watch videos
from important agile authors on the big TV. When time permits, these viewing ses-
sions are then followed by a short discussion. All these activities are not tracked in
pomodoros.

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 161

10.4.5 Addressing Remote Collaboration with Teams That Do Not
Employ the Pomodoro Technique

Sourcesense Milan Team operates in a larger, distributed environment, as previously
described. However, the Pomodoro Technique has not been adopted by the other
sites. Sourcesense Milan Team members feel that the use of the Pomodoro Tech-
nique to pace and time-box each day “protects” them from interruptions, because
they believe that “two or three chats open, reading emails while working—you can’t
say it’s concentrated work”. The application of the Pomodoro Technique also en-
hances the teamness of Sourcesense Milan Team. The team members feel that they
are working as a real team, where internal interruptions are minimized and the coach
can protect the team from external interruptions. They also feel that their application
of the Pomodoro Technique makes the project work more transparent. They are able
to demonstrate to other sites how many hours of the day are spent on development,
which helps to build the trust of other sites on Sourcesense Milan Team.

The application of the Pomodoro Technique in Sourcesense Milan Team created
a team working style which could be different from the other sites where the Po-
modoro Technique is not used, which in turn may enlarge the mismatch of team
cultures at different sites. For example, although Sourcesense Rome Team is lo-
cated within the same national borders as Sourcesense Milan Team and functions as
a development site as well, the site is felt to be “just as distant as the Netherlands”.
The fact that the Rome Team does not apply the Pomodoro Technique may have an
adverse influence on this perceived distance.

The other distributed sites (Netherlands and UK) are more engaged in consulting
activities rather than software development. The nature of the work decides that
many of the staff there works as individuals rather than in teams. In such a context,
it is more difficult for them to be free from all sorts of interruptions. They are not as
“protected” as Sourcesense Milan Team by the Pomodoro Technique.

However, Sourcesense Milan Team is aware of the existence of different work-
ing styles and team cultures at the different sites, and believes that they should not
impose the Pomodoro Technique on the other sites. They are concerned that their
use of the Pomodoro Technique may act as a barrier to effective collaboration, as
the coach put it sincerely:

The difficulty is in communication, being reliable, and trying to make yourself useful. You
have the risk of presenting a wall like ‘this is our method, we do it in this way, and you have
to work around us’. This is not what the method is meant to be. So you have to learn to be
humble enough to be helpful to your colleagues, not just with your customers.

10.5 Turning Time into an Ally

In this section we reflect on the experiences of Sourcesense Milan Team using the
Pomodoro Technique, and draw some practical implications.

162 X. Wang et al.

10.5.1 Shared Pomodoro

The shared pomodoro concept used in Sourcesense Milan Team is an adaptation
of the Pomodoro Technique that was invented as a personal time management tool
originally. The team has obtained positive results using shared pomodoro. However,
although not specifically highlighted in the case study, it should be noted that there
are several potential drawbacks to the use of this technique. The working rhythm of
the team is liable to be interrupted by any team member’s necessary and unavoid-
able pause during a pomodoro. It takes more effort to coordinate the whole team to
start the first pomodoro when people come in to the office at different times in the
morning. Similarly, commencing a new pomodoro after short or long breaks may
be delayed. The whole team has to wait for all the team members coming back to
the open space. It is possible that one pair may be working on a really challenging
issue, and following completion of the pomodoro they may need a slightly longer
break than others. Conversely, another pair may work on a relatively easy task and
wish to take a shorter break. These different physical and psychological impacts are
not easily reconciled by shared pomodoro.

Practical Tip: To understand whether shared pomodoro is right for a team, the
team needs to know how confident each individual team member is with the
rhythm set by using the basic Pomodoro Technique. If they are already using it
in a disciplined manner and are comfortable in the environment, then the team
can try shared pomodoro for 4–6 weeks. At that point, they may then decide
whether or not to adopt this extension of the technique. Consultation with the
team about adoption of this approach is preferable to managerial imposition of
it as a mandatory process. Otherwise, there is a risk of making the developers
uncooperative, because they could feel their freedom and creativity are being
constrained by a shared timer.

The experience of Sourcesense Milan Team also reveals that the Pomodoro Tech-
nique should be used to block internal or external interruptions, not constructive in-
teractions among team members. Communication and interaction are a key tenet of
any agile method. The Pomodoro Technique helps a team to be aware of positive
interactions and supports the deflection of unnecessary and unconstructive interac-
tions/interruptions. However, it is up to the team to use the technique in a sensi-
ble way to balance maximum concentration of the team and effective interactions
among the team members.

10.5.2 Collective Breaks

Breaks are taken seriously by Sourcesense Milan Team and the team members are
encouraged to relax and recuperate during their break. Using shared pomodoro can

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 163

help the team members to take breaks regularly, but does not guarantee that team
members take proper breaks. The very fact that the team members are taking breaks
altogether would tend to make breaks more like the extension of a pomodoro. A
simple chat could easily slip into a technical discussion of the work just completed
in the previous pomodoro. Such a situation could result in the break being just as
taxing as the work itself. The case of Sourcesense Milan Team presents some good
practices to foster relaxing breaks, such as placing the personal machine far from
the working machine.

Practical Tip: In Sourcesense Milan Team, the team members also take breaks
individually. This does not specifically promote relaxation. The shared po-
modoro concept can be extended to breaks as well. A collective break can be
taken where team members do some relaxing activity together during breaks,
such as game playing, 5-minute fitness club, etc. Collective breaks can help to
avoid the situation where a pair of developers does not wish to let go of their
work following the signal from the pomodoro timer.

10.5.3 Estimation and Tracking

Sourcesense Milan Team uses a pomodoro per pair as the unit of effort in estimation
and tracking. Pomodoro is actual time measure in contrast to abstract story points,
or “gummy bears”. Consider the purpose of estimation and tracking in agile soft-
ware development. Estimation of user stories is more about granularity of tasks than
about effort needed to implement them, and tracking effort spent on them is less
about amount of work done than about learning and improving the team’s capabil-
ity of estimating throughout. Using actual time makes estimation and tracking more
transparent and learning more concrete.

However, estimates and tracking results should not be used as measurement of
each individual team member’s performance, otherwise there will be a tendency to
game the number, and the Pomodoro Technique used as a Tayloristic approach to
exploit the team or a micro management tool for project management.

10.5.4 One Pomodoro Rules All Sites?

In Sourcesense Milan Team, the Pomodoro Technique is not used in a truly dis-
tributed manner. But the technique is not confined to co-located teams and can be
adapted and used in distributed settings and in a distributed manner. Just as the
expansion of the Pomodoro Technique from a personal time management tool to
a team management tool surfaced various complexities, various benefits and chal-
lenges are likely to emerge when the technique is applied in a distributed context.

164 X. Wang et al.

Practical Tip: Remote pairs or distributed team members could apply the
shared pomodoro approach as a time-pacing tool to synchronize and coor-
dinate their activities. It can help better manage interruptions that are gen-
erally an indispensible element of distributed development, such as emails,
instant messages and phone calls. The shared pomodoro approach can be im-
plemented in distributed teams using virtual space and virtual timer technolo-
gies (a virtual timer on a server), whereas pauses can be shared via Skype or
analogue systems.

If distributed team members keep their individual pomodoro timers, it
would be more difficult for them to be aware if others are in the mid-
dle of a pomodoro or not, since the working status is not as obvious
as in a co-located team where it can be understood at a glance. To ad-
dress this issue, the working status needs to be made more explicit and
visible to each of the distributed members. For example, cherrytomato
(http://www.chrylers.com/cherrytomato/), a software tool that intends to sup-
port the distributed pomodoro technique, integrates a virtual pomodoro timer
with instant messaging tools such as Skype. When a developer starts a new
pomodoro, his status in Skype would be switched to “do not disturb” auto-
matically and can inform other team members how many minutes are left for
the current pomodoro or show other customized messages.

The experiences of Sourcesense Milan Team also indicate that, if used prop-
erly, the Pomodoro Technique can increase the transparency of both estimates and
project-related work expended at different sites. Consequently, this may help to
build up trust among different sites. There are a growing number of agile planning
tools that support distributed estimation and tracking. The Pomodoro Technique can
be easily integrated in these tools to support estimating and tracking in pomodoros.

However, the issues that are associated with shared pomodoro in a co-located
team may become more challenging when temporal, geographical and social/culture
distances are involved. For example, it will take greater effort to coordinate the
whole distributed team to start the first shared pomodoro. In instances where the
team is distributed across different time zones, developers will be involved in differ-
ent phases of a working day, resulting in possible variances in concentration levels
between team members. Therefore, the balance of maximum concentration of team
members and effective interactions among them may be more difficult to maintain
in a distributed context. Last but not least it needs to be cautioned that the Pomodoro
Technique should not be used as a Tayloristic approach to exploit outsourced sites.

10.6 Conclusions

In this chapter we presented a case study of the application of the Pomodoro Tech-
nique in an agile software development team. The effects of the technique on the

http://www.chrylers.com/cherrytomato/

10 Turning Time from Enemy into an Ally Using the Pomodoro Technique 165

team were analysed through two angles: pomodoro as timebox and pomodoro as unit
of effort. We argued the benefits and potential issues of using one pomodoro for the
whole team, team breaks, estimating with pomodoro (real time) rather than abstract
points. We also explored the scenarios where the Pomodoro Technique should not
be applied. If and how the technique can be applied in a distributed setting was also
examined. Even though the Pomodoro technique is not used in a truly distributed
manner in the case we studied (which is a major limitation of our study), we believe
that the technique itself is a welcome addition to the agile development toolkit. We
would hope that the learnings from this case study could be easily adapted into
distributed settings.

Our study contributes to the body of knowledge of an under-developed theme
within agile research: effective time management in fast-paced agile software de-
velopment. The practical implication of our study is a better understanding of time
management in agile software development, and several concrete suggestions of
how to effectively apply the Pomodoro Technique and make the best out of it in an
agile team working in a distributed setting. Our study is just the first step in the in-
vestigation of interesting phenomena arising from the application of the Pomodoro
Technique in agile teams. Our report of the case is presented from the perspective of
the agile team that used the Pomodoro Technique, and claimed it to be an effective
approach. To further establish the effectiveness of this technique, more objective as-
sessment is needed, and the viewpoints of all stakeholders related to the team need
to be obtained. During this research, other issues emerged as candidates for future
exploration, including how to encourage team members to take a break, how to use
timers properly in an open office (visible vs. invisible timer, sound of ticking and
ringing, and mechanical timer vs. digital timer vs. software tool), interesting sec-
ondary effects associated with breaks, and learning associated with using pomodoro
for estimation.

Acknowledgements Special thanks go to Matteo Vaccari and his Sourcesense Milan Team who
collaborated on our study and supported the production of this book chapter. Their experiences
with the Pomodoro Technique were the inspiration of our study.

References

1. Ågerfalk, P. J., Fitzgerald, B., Holmstom, H., Lings, B., Lundell, B., & Ó Conchúir, E. (2005).
A framework for considering opportunities and threats in distributed software development. In
Proceedings of the international workshop on distributed software development (DiSD 2005)
(pp. 47–61), Paris, 29 August 2005. Vienna: Austrian Computer Society.

2. Agile Manifesto (2001). http://www.agilemanifesto.org/, last visit Nov. 2009.
3. Beck, K. (2000). Extreme programming explained: Embrace change (1st ed.). Upper Saddle

River: Addison-Wesley.
4. Brooks, F. P. (1975). The mythical man-month—Essays on software engineering. Upper Sad-

dle River: Addison-Wesley.
5. Cirillo, F. The pomodoro technique (XPLabs Technical Report version 1.3). English Version.

http://www.tecnicadelpomodoro.it. Published 15 Jun 2007.
6. Cramton, C. (2001). The mutual knowledge problem and its consequences for dispersed col-

laboration. Organization Science, 12(3), 346–371.

http://www.agilemanifesto.org/
http://www.tecnicadelpomodoro.it

166 X. Wang et al.

7. Espinosa, J. A., Cummings, J. N., Wilson, J. M., & Pearce, B. M. (2003). Team boundary
issues across multiple global firms. Journal of Management Information Systems, 19(4), 157–
190.

8. Grinter, R. E., Herbsleb, J. D., & Perry, D. E. (1999). The geography of coordination: Dealing
with distance in R&D work. In Proc. int’l ACM SIGGROUP conf. supporting group work
(GROUP ’99) (pp. 306–315). New York: ACM Press.

9. Gobbo, F., & Vaccari, M. (2008). The pomodoro technique for sustainable pace in extreme
programming teams. In Proceedings of XP2008, Limerick, June 2008.

10. Hazzan, O., & Dubinsky, Y. (2007). The software engineering timeline: A time management
perspective. In Software-science, technology & engineering, 2007. SwSTE 2007. IEEE inter-
national conference on (pp. 95–103). Herzlia, Israel.

11. Humphrey, W. S. (2000). Introduction to the team software process. SEI series in software
engineering. Upper Saddle River: Addison-Wesley.

12. PMI (2004). A guide to the project management body of knowledge (PMBOK).
13. Sarker, S., & Sahay, S. (2004). Implications of space and time for distributed work: An inter-

pretive study of US-Norwegian systems development teams. European Journal of Information
Systems, 13(1), 3–20.

Chapter 11
MBTA: Management By Timeshifting Around

Erran Carmel

Abstract How do good managers manage and coordinate? As technologies evolve
the answer has also been evolving—from MBWA (Management By Wandering
Around), to MBFA (Management By Flying Around), and now to MBTA (Man-
agement By Timeshifting Around). The purpose of this chapter is to surface and
introduce this de-facto managerial approach.

11.1 Management by Wandering and Flying Around

How do good managers stay in touch? How do they coordinate? How do they moti-
vate? As technologies evolve, the answers to these questions are also evolving. The
purpose of this chapter is to surface a de-facto managerial approach.

One of the perennial management problems is that fallible managers become
complacent and lose touch. In traditional hierarchical organizations, managers risk
losing touch by relying on layers of intermediaries. In the age of information sys-
tems, managers may lose touch by relying entirely on computer generated data.

Hence, MBWA: Management By Wandering Around. MBWA is a management
“method” relying on interpersonal (face to face) contact. The manager visits with
the workers, often without notice. MBWA managers are widely thought to be more
effective than managers who do not wander around.

MBWA can achieve a myriad of positive process goals for managers: keep
abreast of operational progress and problems, actively listen to and engage with
employees, learn soft information, get to know what employees are thinking and
what they are up to. MBWA also lets employees feel that the manager cares and is
available, and gives opportunities to managers to motivate employees by repeating
key messages.

E. Carmel (�)
American University, Washington, DC, USA
e-mail: carmel@american.edu

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_11, © Springer-Verlag Berlin Heidelberg 2010

167

mailto:carmel@american.edu
http://dx.doi.org/10.1007/978-3-642-12442-6_11

168 E. Carmel

MBWA, also known as Management By Walking Around, was first publicized by
HP’s David Packard in the 1940s [1]. It was revived and became broadly recognized
due to the highly influential book In Search of Excellence [2].

With the dawn of widespread distributed/virtual organizations and teams in the
1990s, MBWA was clearly impossible and had to be substituted with other manage-
ment approaches. In 1999 I wrote about MBFA, Management by Flying Around [3].
I did not coin this term, though my book played an important role in publicizing it.
I learned this new acronym from pioneering virtual managers at IBM and observed
it in the behavior of other managers that I interviewed in the 1990s.

At that time, in the 1990s, we generally believed that the dominant work con-
figuration was that of clustered locations in which co-located programmers work
together in an office (e.g., the American programmers were in an office building
in Reston and the Irish testers in an office building in Stillorgan, and the Swedish
programmers in Kista, the Chinese programmers in a skyscraper in Pudong, and so
on). Therefore managers were able to fly from location to location in order to meet
with and work with their programmers.1

One decade later there are now several million knowledge workers (not just pro-
grammers) involved in international distributed work groups. Technology has be-
come much friendlier since the 1990s. However, travel is prohibitive for most of
these teams and thus, MBFA is impossible.

11.2 Enter Timeshifting

Instead of MBFA, what one finds nearly everywhere today is MBTA, Management
By Timeshifting Around. Managers stay in place, but timeshift to different loca-
tions by adjusting or scattering their work day. Timeshifting is defined as adjusting
one’s work hours to accommodate another’s schedule.

Typical of MBTA is one company I studied in 2009. This American SoC (System
On a Chip) company has R&D centers in France (GMT +1) and China (GMT +8).
Yet the CTO was living in California (GMT −8) (See 11.1). The CTO, working out
of his California home office, addressed the overlap time by breaking up his daily
work routine into two work shifts. The first was in the morning to be available to
the French engineers and the second shift was in the late afternoon to be available to
Chinese engineers. He used the middle of the day to exercise, take care of errands,
or catch a quick siesta. In addition to the timeshifting of the CTO, each of the two
distant R&D sites relied on 3–5 people that do some timeshifting to communicate
on a regular basis.

MBTA is not necessarily prescriptive, but rather descriptive: it is commonly
practiced. Conceptualization of MBTA came about from more than a decade of

1In a corollary I culled key management attributes for such managers [3]. I combined them into 5
special characteristics that the breed of global managers needs to have, represented by the acronym
MERIT: Multi-culturalist, E-Facilitator, Recognition promoter, Internationalist, Traveler. The last
two are closely linked to MBFA.

11 MBTA: Management By Timeshifting Around 169

Fig. 11.1 Locations involved in timeshifting

research, which includes hundreds of formal and informal interviews with man-
agers all over the world (this research is conducted, in part, with my colleague Al-
berto Espinosa). In these time zone-separated work groups we have found one man-
agement/coordination solution prevalent nearly everywhere: timeshifting. A careful
reading of most distributed agile cases and best practices will uncover at least some
timeshifting [cf. [4]].

MBTA managers can potentially achieve many of the advantages of MBWA and
MBFA. They can have one-on-one intimate conversations via Skype or their mobile
telephone. They can work “together” with others examining work products. They
can develop key personal relationships, trust, common mental models and other
important process attributes. Or, they can just share a joke.

The managers that conduct MBTA are often the liaisons [3]. A liaison is a person
who bridges time zones and culture. The liaison is typically a mid-level manager,
such as a project manager. He/she is the one who stays up late at night to make the
critical telephone calls. He/she is the one who is able to speak across cultures and
across languages. The liaison goes by varied labels. For example, at Microsoft, in
distributed agile development, the liaison may be the team-room buddy [4].

Of course, there are other coordination tactics besides MBTA that are used in or-
der to overcome time zones differences. One useful framework is to categorize these
tactics into mechanistic, organic and implicit [5]. Mechanistic tactics are structured
and routine (e.g., methodologies). Organic tactics are ad hoc and usually involve
some conversation or interaction (thus, in time zone distributed teams, organic co-
ordination using asynchronous email tends to be problematic because in complex
tasks, messages frequently require clarification when the other party is sleeping).
Implicit tactics have to do with various kinds of mental models that are shared across
team members.

MBTA can be seen as encompassing elements of all three of the above coordina-
tion tactics. It is mechanistic if it is routine; it is organic in that MBTA is centered

170 E. Carmel

around verbal conversations; MBTA is implicit in that the team members’ mental
models of each other are improved.

My data on MBTA are not specific to agile teams. However, given that many
agile projects are distributed and substantially time-zone challenged, then timeshift-
ing, or more specifically, MBTA, is unavoidable. For distributed agile development
MBTA is useful and necessary: it leads to informal unstructured discussions. And,
it facilitates the important standup meeting.

11.3 Conclusions

A key implication for the agile and distributed community is that the project stake-
holders need to recognize that MBTA is necessary. They must do two somewhat
contradictory things: they must demand that agile members timeshift and they must
demand that all be sensitive to the personal hardship that this takes on their personal
lives.

References

1. Hoover, J., & DiSilvestro, R. P. (2005). The art of constructive confrontation: How to achieve
more accountability with less conflict. New York: Wiley.

2. Peters, T., & Waterman, R. (1982). In search of excellence: Lessons from America’s best run
companies. New York: Harper and Row.

3. Carmel, E. (1999). Global software teams: Collaborating across borders and time zones. Up-
per Saddle River: Prentice Hall.

4. Miller, A. (2009). Distributed agile development: Experiments at Microsoft. In Proceedings
of Agile 2009. Also available as a Microsoft white paper: http://www.pnpguidance.net/Post/
DistributedAgileDevelopmentMicrosoftPatternsPractices.aspx.

5. Espinosa, J. A., Slaughter, S. A., Kraut, R., & Herbsleb, J. (2007). Team knowledge and co-
ordination in geographically distributed software development. Journal of Management Infor-
mation Systems, 24(1), 135–169.

http://www.pnpguidance.net/Post/DistributedAgileDevelopmentMicrosoftPatternsPractices.aspx
http://www.pnpguidance.net/Post/DistributedAgileDevelopmentMicrosoftPatternsPractices.aspx

Chapter 12
The Dilemma of High Level Planning
in Distributed Agile Software Projects:
An Action Research Study in a Danish Bank

Per Svejvig and Ann-Dorte Fladkjær Nielsen

Abstract The chapter reports on an action research study with the aim to design
a high level planning process in distributed and co-located software projects based
on agile methods. The main contributions are the insight that high level planning
process is highly integrated with other project disciplines and specific steps has to be
taken to apply the process in distributed projects; and the action research approach
is indeed suitable to software process improvements.

12.1 Introduction

For several years many organizations have taken advantage of doing distributed soft-
ware development projects, involving cooperation and collaboration between teams
located at different locations [1]. Reduced cost is a main driver for moving into these
distributed projects, but another reason is higher flexibility of competences and re-
sources [2] with talented knowledge workers around the world. To manage teams
in different locations is a great challenge due to asynchrony of communication, re-
duced opportunities for rich interactions, difference in culture and work practices,
and finally lack of trust [1, 3].

Agile methods were introduced in the late nineties in order to develop software
quickly and efficiently [1]. They became popular because they treat requirements
as emergent and volatile during the development process thereby acting to rapid

P. Svejvig (�)
Aarhus School of Business, Aarhus University, Århus, Denmark
e-mail: psve@asb.dk

A.-D. Fladkjær Nielsen
Jyske Bank, Silkeborg, Denmark
e-mail: afn@jyskebank.dk

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_12, © Springer-Verlag Berlin Heidelberg 2010

171

mailto:psve@asb.dk
mailto:afn@jyskebank.dk
http://dx.doi.org/10.1007/978-3-642-12442-6_12

172 P. Svejvig and A.-D. Fladkjær Nielsen

changes in organizations, something that traditional software methods have lacked.
Agile methods are furthermore based on frequent face-to-face interactions in small
teams producing small software products [4]. Applying agile methods in distributed
software projects is a challenging cocktail, because the nature of agile projects with
co-located team members is quite the opposite of that of distributed teams located
at different locations [1]. As a consequence, organizations choosing this approach
need to carefully consider how to implement an appropriate software development
process. We consider agile methods as practices and tools for agility in teams while
agile projects consists of teams of people, often co-located, applying these agile
methods for their work.

Distributed as well as co-located software projects that apply agile methods,
have the mantra “responding to change over following a plan” [4] which may
serve as an excuse for developers to neglect the planning, which is one of the
problems that Jyske Bank, a Danish mid-sized bank, is experiencing in their dis-
tributed and co-located agile software projects. Developers are claiming that high
level planning is difficult in agile projects due to the following: (1) high level plan-
ning is conflicting with the agile manifesto [5], and (2) they “feel” that to prepare
high level plans is like following the old waterfall approach, tagging them as old-
fashioned.

The task of making a high level plan (HLP) ought to be done in every project.
It is a discipline which many plan driven projects are good at. However in agile
projects which furthermore are manned distributed this becomes much more diffi-
cult, because the need for high flexibility regarding scope in the agile process makes
it hard to plan on paper. Furthermore when dealing with distributed teams doing
preparation and follow up on the HLP, it becomes quite difficult due to the physical
separation.

The consequence is that steering committees, external parties and other stake-
holders cannot get appropriate information about “what can be delivered at what
times”, and the business, i.e. customers of the software projects, loses confidence in
the IT organization. This is the dilemma presented in this chapter, which leads to
our research question: How to design a high level planning process in distributed
and co-located software projects based on agile methods?

To address this challenge we set out to undertake an action research study in
several cycles, where this paper reports the findings from the first cycle. The main
contributions are (1) the insight that high level planning process is highly integrated
with other project disciplines and specific steps has to be taken to apply the process
in distributed projects; and (2) the action research approach is indeed suitable to
software process improvements.

The chapter is organized as follows. First we briefly introduce the action research
methodology followed by the research setting describing the Jyske Bank case. Then
we explain the four selected steps in the action research cycle as diagnosing, ac-
tion planning, action taking and evaluation & learning. Finally, we conclude with
practical advices based on the completed action research cycle.

12 The Dilemma of High Level Planning in Distributed Agile Software Projects 173

12.2 Research Methodology

12.2.1 Action Research

To answer the research question we have undertaken an action research study in
Jyske Bank from August to November 2009. Action research (AR) involves close
cooperation between practitioners and researchers to bring about change [6]. The
action research process can be defined as a number of learning cycles consisting of
predefined stages, as presented in Fig. 12.1 below [adapted from [7, 8]]:

Fig. 12.1 Action research process

The AR cycle starts with diagnosing, which refers to the joint (practitioner and
researcher) identification of problems and their possible underlying causes. Action
planning specifies the anticipated actions that can improve or solve the problems.
Action taking refers to the implementation of the specified actions. Evaluating is the
assessment of the intervention, and finally learning is reflection on activities and
outcome [ibid.]. The chapter describes results from the first AR cycle while two
cycles are needed to design and implement the final high level planning process.

Empirical data was gathered through joint workshops (practitioners and re-
searcher), interviews, participant observations, informal meetings, informal com-
munications (e-mails) and documents from the organization and specific projects.

12.2.2 Research Settings

The Jyske Bank group is a financial institution that provides all types of financial
services such as banking and financial deals primarily in Denmark. Jyske Bank em-
ploys 3,800 employees and has more than 500,000 private and business customers
in Denmark. As part of the Jyske Bank Group there is an IT division with 400
employees located at the headquarters in Denmark. IT projects at Jyske Bank vary
widely in size; most are small and short term, but there are also large projects that
have strategic implications for the entire Jyske Bank group. Typically project teams
of three to twenty people handle the small projects, which usually take from six to
twelve months. These projects are the main focus of this AR study.

174 P. Svejvig and A.-D. Fladkjær Nielsen

Table 12.1 Company overview

Jyske Bank

Number of developers 400

When was agile introduced 2006

Domain Financial institution with Banking

The IT division is headed by a Senior Vice President and is organized into de-
partments with typically 20 to 40 people, working on two or more projects. Project
Managers oversee regular projects, while Senior Project Managers have the respon-
sibility for high-profile projects.

Jyske Bank started in 2006 to use agile methods based on Scrum [9] which has
however been adjusted to the Jyske Bank organization. The most essential changes
are as follow.

Table 12.2 Jyske Bank changes to Scrum

SCRUM Jyske Bank Changes

The customer determines the
overall goals and constrains for
projects

The steering committee determines the overall goals and
constrains for projects because there are only internal
customers

The iterative development starts
day one

The iterative development normally starts after high level
design with a duration of two to six weeks

Assign Scrum master Project manager fulfills the role as Scrum master

Assign product owner The business responsible, architecture responsible and project
manager are jointly fulfilling the role as product owner

First Jyske Bank did only work with agile methods in relation to co-located
projects, but in 2008 they started to work with distributed projects as well (Den-
mark and India). We understand co-located projects as one or more teams located
at the same physical work place while distributed projects implies that one or more
teams are spread across two or more separate physical work places.

12.3 The Action Research Cycle

12.3.1 Diagnosing the Problem and the Underlying Causes

There have been several challenges associated with the introduction of the agile
methods including Scrum: (1) to play the roles in the project; (2) to focus on pro-
ducing smaller products, and (3) finally to make the interaction between iteration
planning and high level planning work. The first two points deal with change man-
agement in IT projects, and here the organization has got very far. The last point

12 The Dilemma of High Level Planning in Distributed Agile Software Projects 175

has so far been a “trial and error” process within the projects and with great vari-
ance across the projects. The projects have attempted to make plans without using
templates. They have only been guided by the stakeholder requests regarding timing
overview of the project. This is certainly not good enough so the IT management
decided that a concept should be developed to support the projects, and enable a
standardized approach to high level planning.

An AR task force was established with the purpose “to enable that IT projects
create an overview of the entire project assignment in the form of a high level plan
to be used as a means of communication towards the steering committee, external
partners and other stakeholders”. The problem was recognized as lack of high level
planning and the underlying causes were understood to be resistance against high
level planning in agile projects according to IT management.

The scope for the AR task force is at the project level, as presented in Fig. 12.2
below.

Fig. 12.2 Scope for the action research process

12.3.2 Action Planning

The AR task force decided to use semi-agile methods for developing and implement-
ing the HLP concept for instance with a high degree of “customer collaboration”
[5], which were combined with two action research cycles according to the plan in
Fig. 12.3.

Figure 12.3 shows the main activities in the two AR cycles. The first AR cycle is
completed and reported in this book chapter while the next AR cycle is planned for
spring 2010.

12.3.3 Action Taking

The process was started by a two-day joint workshop in August 2009 involving four
projects (two distributed and two co-located). The first day was allocated to dis-

176 P. Svejvig and A.-D. Fladkjær Nielsen

F
ig

.1
2.

3
A

ct
io

n
re

se
ar

ch
pl

an

12 The Dilemma of High Level Planning in Distributed Agile Software Projects 177

cuss how the four projects deal with high level and iteration planning today (“AS
IS”), and the second day was devoted to discussing the future high level planning
process (“TO BE”). Seven persons participated in the workshop: four project man-
agers representing four projects, two facilitators (the leader and assistant from the
software engineering process group) and a researcher (intervention and inspiration
from theory/practice). The workshop was intense and highly participatory—below
is an annotated photo from one of the project presentations:

Fig. 12.4 Example of “AS IS” process from a project

Important results from the two-day workshop are: (1) a HLP process should be
applicable to both agile and plan-driven projects; (2) most projects have both agile
and plan-driven elements; (3) HLP cannot be isolated from estimation, risk anal-
ysis, stakeholder analysis etc.; and finally (4) different stakeholders have different
needs related to the HLP process. The second day a “high level plan prototype” was
developed to be used in the further process.

There were two surprising outcomes from the workshop. First, the IT project
managers were highly motivated for the HLP process and not resistant against the
HLP process although they expressed the need for a solid and standardized proce-
dure for managing the HLP process, because they find the HLP process difficult.
Second, it is neither possible nor desirable to isolate the HLP process as a “stand-
alone process”, but instead to design a more holistic and coherent process includ-
ing integration with high level estimation process, format for communication to the
steering committee, and other related topics.

The prototype was revised by the AR task force and discussed with key stake-
holders in three interviews. A line manager states that the current high level planning
process is unstructured and not standardized and argues that estimation expertise is
an important and inevitable ingredient of the HLP process. The line manager consid-
ers the HLP plan both as “a written plan and a verbal presentation of the plan”. The
verbal part is the communication going on at steering committee meetings and other
meetings mediated by presentations, plans, documents etc. All formal and informal

178 P. Svejvig and A.-D. Fladkjær Nielsen

F
ig

.1
2.

5
T

he
hi

gh
le

ve
lp

la
nn

in
g

co
nc

ep
tm

od
el

12 The Dilemma of High Level Planning in Distributed Agile Software Projects 179

comments were considered and the prototype was revised accordingly. A simplified
representation of the prototype is shown in Fig. 12.5.

Two projects applying agile methods were selected as pilot projects for the first
AR cycle. The first one is a co-located project about calculation of customer ratings
and the other a distributed project for data reorganization related to the data ware-
house. Both projects have used the new HLP concept at steering committee level
and at project group level.

Table 12.3 Calculation of customer ratings (Project 1)

Duration 18 months

Status Ongoing

Agile practices Jyske Banks methods based on Scrum

Involved locations DK (co-located)

Numbers of participants 8

Roles Project manager, Business responsible person, Architecture responsible

person, IT developers, Business consultants

Table 12.4 Data reorganization related to data warehouse (Project 2)

Duration 20 months

Status Ongoing

Agile practices Jyske Banks methods based on Scrum

Involved locations DK, India (distributed)

Numbers of participants 11 in DK and 3 in India

Roles Project manager, Business responsible person, Architecture
responsible person, IT-developers, Business consultants in DK and
3 IT developers in India

In the two pilot projects the project manager has taken the initiative and been
responsible for the HLP. The project manager has involved the business- and archi-
tecture responsible persons in the work, and introduced a draft which the rest of the
project group has enriched further with their knowledge.

In the distributed project the developers from India was included in a video ses-
sion in which the rest of the project group also were present in Denmark.

We have been actively involved in the two projects by supporting preparation
of steering committee presentations, participation in project meetings and steering
committee meetings, and interviews with the project managers. We have got feed-
back from the project managers and given them feedback as well.

180 P. Svejvig and A.-D. Fladkjær Nielsen

12.3.4 Evaluating and Learning

The project managers from the two pilot projects were positive towards the HLP
concept. Feedback from the project managers and steering committees about using
the HLP concept are shown below:

Table 12.5 Feedback on high level planning concept

Project 1—Co-Located Project 2—Distributed

Use of traffic light to indicate the status of
project and sub-projects is a good way to
communicate the perception of the project
status

The template is a sound way to streamline
project presentations at steering committee
meetings

Resource budget & allocation overview have
to be at an appropriate level of detail

Resource budget & allocation overview is
very useful, but different steering committee
members request different levels of details

The template for the steering committee
meeting serves as a good check list where
project managers can select the elements,
which are relevant for the specific project

Re-estimation and re-planning (revised HLP)
should be done after each iteration

Focus on cost management is relevant The HLP concept is useful to steering
committee meetings, but more problematic to
use in the virtual interaction with the team in
India (e.g. presentation of a four page
MS-Project plan is easier on a notice board
than via a web cam with medium resolution)

Cost management and risk analysis should be
mandatory

The comments in the table above reflect the emergent understanding in the AR
task force about the HLP process as part of a more holistic and coherent overall
process including communication with steering committees and other stakeholders.

The distributed challenges associated with the HLP process and communication
more broadly deserve more detailed evaluation, and this has been discussed thor-
oughly with the project manager of the distributed project. The Indian team was not
involved in the initial HLP process, because they had limited domain knowledge and
was therefore not able to contribute. However the involvement of the Indian team
on a more daily basis is necessary, but also problematic—the project manager says,

The communication of the plan works much better if we can physically place it on the
wall and examine it. The times we have tried to review the plan electronically, it is my
impression that the result has been limited. That applies both in Denmark and India. Since
there are limits to how often we visit the Indians or they visit us, it is limited, how much
they actually get out of the produced plans.

So it is an unresolved challenge from this first AR cycle how to involve distributed
teams in producing, reviewing and discussing high level plans. The project manager

12 The Dilemma of High Level Planning in Distributed Agile Software Projects 181

points at better technology as one step to overcome the problem (i.e. high resolution
video, telepresence equipment etc.), but it might also be related to work practices.

The overall learning from the first AR cycle was the unanticipated turning from
strict focus on high level planning to steering committee communication including
high level planning. High level planning is still a key issue for the projects, but as
an integral part of other project disciplines like communication, estimation, staffing,
risk analysis etc. and it should not be separated from these disciplines.

The learning from the first cycle will be used to revise the HLP concept for the
next AR cycle. We have decided to follow the two pilot projects above in the next
AR cycle, but we will also add more projects to broaden the concept and bring more
practical experience into the process. We will furthermore focus on good examples
of plans and presentations for both co-located and distributed projects prepared by
the project managers of the pilot projects.

12.4 Conclusions

The action research study described in this chapter was initiated by Jyske Bank who
experienced problems with high level planning in distributed and co-located soft-
ware projects applying agile methods. The first AR cycle is completed and implied
a broader scope of the high level planning process than originally anticipated. We
have identified some practical advices from this first AR cycle, which are described
in the following.

12.4.1 Applying a Holistic Approach to High Level Planning

First, diagnose the problem carefully before prescribing the medicine. The discourse
of the HLP process in Jyske Bank (mainly driven by IT management) was that
“project managers are resistant against high level planning in distributed and co-
located projects applying agile methods”. But the AR task force has never met this
resistance in workshops, interviews etc., so the discourse did not reflect the situation,
and we had to prescribe another medicine. However the project manager expressed
concerns about the complexity in the HLP process, but this is not resistance. This
advice is applicable to other software process improvement areas and requires that
practitioners (and researchers) better understand the problem before aiming at to
solve the problem.

Second, consider the high level planning processes as broader than strict plan-
ning. HLP is an integrated part of the project management process and belonging
disciplines and involves especially communication of high level plans to stakehold-
ers such as steering committee and external parties.

Finally, design the distributed approach into the process. Software engineering
groups designing and implementing project templates and processes have to con-
sider both co-located and distributed projects. There is a tendency to understand the

182 P. Svejvig and A.-D. Fladkjær Nielsen

project processes locally and to design templates and processes accordingly. The
challenge with distributed projects has been toned down at Jyske Bank, but the dis-
tributed aspect has to be an essential ingredient in designing project templates and
processes targeting agile methods and project management in general.

12.4.2 Using Action Research to Software Process Improvement

The action research approach with semi agile methods is a promising way to de-
sign project processes and templates. This includes the high degree of customer
collaboration, which has been important and necessary in order to design workable
processes and templates. This is also a nice way to break down barriers between the
people executing projects (project managers, project participants, steering commit-
tee members etc.) and the software engineering process group designing the project
processes and templates.

12.4.3 Summary

The chapter reports on an action research study with the aim to design a high
level planning process in distributed and co-located software projects based on agile
methods. The chapter reports from the first action research cycle and the main con-
tributions are the insight that high level planning process is highly integrated with
other project disciplines and specific steps has to be taken to apply the process in
distributed projects; and the action research approach is indeed suitable to software
process improvements.

References

1. Bose, I. (2008). Lessons learned from distributed agile software projects: A case-based analy-
sis. Communications of the Association for Information Systems, 23, 619–632.

2. Dibbern, J. et al. (2004). Information systems outsourcing: A survey and analysis of the liter-
ature. Database for Advances in Information Systems, 35(4), 6–102.

3. Staples, D. S., & Webster, J. (2008). Exploring the effects of trust, task interdependence and
virtualness on knowledge sharing in teams. Information Systems Journal, 18(6), 617–640.

4. Boehm, B. (2002). Get ready for agile methods, with care. Computer, 35(1), 64–69.
5. Beck, K. et al. (2001). Agile software development manifesto. Available via: http://

agilemanifesto.org/. Accessed 1st July 2009.
6. Gray, D. E. (2004). Doing research in the real world. London: SAGE Publications.
7. Grant, D., & Ngwenyama, O. (2003). A report on the use of action research to evaluate a man-

ufacturing information systems development methodology in a company. Information Systems
Journal, 13(1), 21–35.

8. Davison, R. M., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action re-
search. Information Systems Journal, 14(1), 65–86.

9. Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2008). Using scrum in a globally distributed
project: A case study. Software Process Improvement and Practice, 13(6), 527–544.

http://agilemanifesto.org/
http://agilemanifesto.org/

Chapter 13
Tools for Supporting Distributed Agile Project
Planning

Xin Wang, Frank Maurer, Robert Morgan,
and Josyleuda Oliveira

Abstract Agile project planning plays an important part in agile software develop-
ment. In distributed settings, project planning is severely impacted by the lack of
face-to-face communication and the inability to share paper index cards amongst
all meeting participants. To address these issues, several distributed agile planning
tools were developed. The tools vary in features, functions and running platforms.
In this chapter, we first summarize the requirements for distributed agile planning.
Then we give an overview on existing agile planning tools. We also evaluate exist-
ing tools based on tool requirements. Finally, we present some practical advices for
both designers and users of distributed agile planning tools.

13.1 Introduction

Agile project planning is an important activity for agile teams. It allows a team to
start focusing on the next development iteration and drives the evolution of software
products. The goals of agile project planning include:

X. Wang (�)
Ivrnet Inc., Calgary, Alberta, Canada
e-mail: x.wang@ivrnet.com

F. Maurer · J. Oliveira
Department of Computer Science, University of Calgary, Calgary, Alberta, Canada

F. Maurer
e-mail: maurer@cpsc.ucalgary.ca

J. Oliveira
e-mail: oliveirj@cpsc.ucalgary.ca

R. Morgan
Red Duck Solutions, Calgary, Alberta, Canada
e-mail: robert.morgan@redducksolutions.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_13, © Springer-Verlag Berlin Heidelberg 2010

183

mailto:x.wang@ivrnet.com
mailto:maurer@cpsc.ucalgary.ca
mailto:oliveirj@cpsc.ucalgary.ca
mailto:robert.morgan@redducksolutions.com
http://dx.doi.org/10.1007/978-3-642-12442-6_13

184 X. Wang et al.

• Controlling the software development progress.
• Kicking off a new development iteration and planning tasks for it.
• Providing a focal point for the communications between developers and cus-

tomers.
• Enhancing the collaborations within software development teams.

Project planning benefits agile development in both management and commu-
nication aspects: it reviews project progress, detects development bottlenecks and
generates sound plans to decide on the use of team resources. It connects developers
with customers and reduces the misunderstandings between each other.

Traditionally, agile planning is conducted in a co-located environment. Partici-
pants are situated at the same site, using face-to-face communication to plan future
tasks. Index cards are the major artefact that supports the project planning process.
New tasks are created by writing new cards. Tasks are prioritized by sorting the
cards.

When we observed co-located agile project planning meetings, we found three
primary factors that positively affect their quality:

• shard access index cards describing tasks,
• flexible use of index cards and
• easy interactions among meeting participants.

The shared access to index cards enables participants to understand the current
state of the planning process. The flexibility of using index cards helps develop-
ers plan the project in a convenient manner. Easy interactions among participants
improve collaboration among all stakeholders. The collaborative environment im-
proves the effectiveness of project planning and help shape the group into a unified
and well-communicating team.

In a co-located environment, all three primary factors are easily provided. Paper
index cards on a table provide an intuitive and shared access to project tasks. Phys-
ical cards are easily edited or ranked. Natural interactions are the result of verbal
communications and body gestures.

However, when agile teams are distributed it is difficult to conduct traditional ag-
ile project planning meetings. Sharing planning artefacts among spatially-separated
environments becomes challenging, and interaction among planning participants are
more difficult. When we conducted interviews with distributed agile teams from
Brazil and Canada, several issues where pointed out. These include:

• Making decisions becomes much harder than that in co-located project planning
meetings.

• Sites were not talking like a unified team.
• There is less communications within a distributed team than a co-located one.

Respectively, problems are not reported until they are bigger. Then, they require
more time and money to solve them.

• Misunderstandings are raised and the chance of rework is increased significantly.

A first commonly used approach for distributed project planning is to utilize
audio and/or video conferences with paper index cards at each site. Telephones
and cameras are employed to set up synchronous verbal and visual communication

13 Tools for Supporting Distributed Agile Project Planning 185

among different sites. Although such an approach establishes remote interactions,
index cards are not shared in this context they either reside at one site only or are
replicated manually at the other sites. Story cards from one site are not directly
shown to the distributed teams, and key behaviours, such as modifying index cards
are difficult to share with remote colleagues. When distributed teams replicate paper
story cards to each site, the duplication increases the risk of misunderstandings. To
understand the impact of distributed teams, we conducted a small scale experiment.
We observed a meeting between teams in Canada and United Kingdom that used
conference calls and replicated paper index cards for the meeting. The discussions
were often interrupted by both teams realizing they were not talking about the same
card. The meeting also ended with both sites generating a different number of index
cards for the same topic, which represents a severe misunderstanding between both
sites. Anecdotal evidence from practitioners confirm these findings.

As a result of these experiences, several attempts were made at using comput-
ers and the Internet to set up a card-centered project planning environment. A large
number of tools are now available to support distributed agile planning. In this chap-
ter, we start by discussing high-level requirements for distributed agile planning
tools. We then review existing tools based on these requirements. Practical advice
will be provided for users and designers of distributed planning tools to assist with
selecting or designing an appropriate tool to support distributed agile planning.

13.2 Distributed Planning Tool Requirements

Our study started by setting up a series of requirements for distributed agile plan-
ning tools. The requirements are used as criteria to evaluate and compare existing
tools. From these requirements, users can evaluate the benefits and limitations of
tool usage within their teams. Designers will also understand from which aspects a
distributed agile planning tool can be improved. In this section, we break down the
tool requirements to those specific to agile planning and those specific to collabora-
tive interactions:

• Agile planning requirements: Distributed agile planning tools are specifically de-
signed to support agile developments. Therefore, the primary requirements are
to cover the major functions prescribed by the agile planning processes such as
creating and editing index cards. The agile planning requirements concentrated
on the tools functional capabilities and determine whether and how much agile
planning is supported. They are proposed from reviewing literature from previ-
ous research [1, 8] and our practical experiences on developing agile planning
tools [2, 9, 15].

• Requirements for collaborative interactions: Agile project planning is essentially
a group-based collaborative activity. It can be improved by providing easy interac-
tions for team members. Unhindered interactions are also the main approach that
makes distributed collaborations more effective. In order to improve the interac-
tions among distributed groups, a substantial amount of research was conducted
on computer supported collaborative work (CSCW) processes and groupware.

186 X. Wang et al.

We believe the general studies on CSCW and groupware largely benefit the de-
velopment of distributed agile planning tools. In this section, we referred to the
literature on groupware research and proposed a series of requirements for col-
laborative interactions. The requirements show a higher level goal than just being
able to do agile project planning. These requirements concentrate on tool usability
and highlight the importance of supporting interpersonal interactions by enabling
intuitive human-computer interaction for distributed agile planning. They also in-
dicate how a distributed agile planning tool can be effective and convenient to
use.

13.2.1 Agile Planning Requirements

The agile planning requirements stem from the need to create, organize and
share planning information. Having observed distributed agile planning as well as
analysing the related literature, we found the following requirements are critical
to support distributed agile planning. The first three requirements are derived from
previous studies made by Abrahansson et al. [1] and Larman [8]. The remaining
requirements are a result of our observations of planning meetings and experiences
in developing distributed agile planning tools.

1. Creating, editing and deleting planning objects. The fundamental requirement
of any agile planning tool is its ability to support the creation, modification, and
deletion of planning artefacts. In a co-located scenario, a developer grabs an
empty card and edits it to define a new task. He/she also can remove obsolete
cards from the planning table. Remote agile teams still follow a card-centred
planning process: given only an audio link, they create and manipulate index
cards on their own site. Thus, operations for creating/editing/deleting cards are
needed in any tool supporting distributed planning.

2. Handle effort estimates. Experience working on a project can be an important
piece of information when trying to plan for the future. Keeping track of knowl-
edge from previous iterations and story cards, such as estimates, priority, and
actual effort, can be useful when trying to estimate new tasks. Managing this
information can also be of use when determining the scope of current iterations
(yesterday’s weather).

3. Planning multiple iterations. Supporting multiple iterations when planning al-
lows teams not only to plan at the iteration level but also to conduct long term
release planning.

4. Moving stories from one iteration to another. Observing real-world agile
teams has shown us practical cases where a story card is transferred to next iter-
ation or moved into/out of the backlog. Respectively, distributed planning tools
must provide a feature to support this behaviour.

5. Authentication. Security is important to prevent unauthorized access and modi-
fication to the information contained in the project plan.

13 Tools for Supporting Distributed Agile Project Planning 187

6. Real-time updates of the plan. Remote access to the project artefacts is required
such that, as changes occur, updated information is available on each participat-
ing site instantaneously.

7. Visual characteristics for different types of stories. Stories can often be broken
down into distinguishable types like bug fixes, new features, changes to existing
functionality or enhancements to name a few. Supporting a visual distinction
between these different types of story cards is often used by teams.

8. Integration with the development environment. Planning tools are used by
both the business side and the technical development side of the team. Supporting
integration with the development environment increases access to the planning
information for developers and makes it easier to keep the plan up to date for
progress tracking.

13.2.2 Requirements for Collaborative Interactions

The following requirements outline considerations for how a distributed agile plan-
ning tool can support interpersonal interactions and enhance collaboration within
distributed team members. We determine requirements based on contributions by
groupware researchers [5, 6] and combine them with our observations of distributed
agile project planning meetings.

1. Fluid transition between individual and collaborative work. Systems need to
support distinguishing private data from public data.

2. Telepointers for pointing and gesturing. Telepointers are a groupware technol-
ogy that uses a remote mouse pointer to represent mouse movement happening
on other computers. Telepointers allow remote team members to point to specific
index cards, thereby increasing the shared understanding of the current discus-
sion. They also allow teams to follow interactions happening on remote displays.

3. Real-time information sharing. Sharing information requires that changes to
one workspace be updated in other workspaces instantaneously.

4. Change notification. When changes to the workspace are made those changes
need to be shared with the other team members regardless if they are connected
to the plan or not.

5. Joining and leaving meetings. Team members should be able to connect and
disconnect with ease and not affect others connected to the system.

6. Fluid subgroup formation and dissolution. For large scale projects consisting
of teams of teams, subgroups need to be represented and supported by the plan-
ning tool. When supporting subgroup creation, the potential for isolation needs to
be minimized in order for the subgroup to be informed of the other participants.

7. Simultaneous interaction. Supporting team members interacting simultane-
ously is important as it better simulates how teams interact in a co-located envi-
ronment. Forcing teams to take turns would result in more overhead for the team
during the planning meeting.

188 X. Wang et al.

Table 13.1 Categories and sample tools

Category Sample Tools

Wiki MASE, PMWiki, JSPWiki, MediaWiki

Web-form based application Rally, VersionOne, ScrumWorks, XPPlanner, Mingle

Board-based application CardMeeting, Gluewiki, AgilePlanner, MASE, Mingle, Danube

Plugins for IDE IBM Jazz, Jira+GreenHopper, ProjectCards

Synchronous agile planning
tool

DAP, CardMeeting

Tabletop-based agile planning
tool

APDT

13.3 Tool Review

Software systems to support agile project planning in distributed environments have
been available for some time. Some tools focus on documenting the outcomes of a
planning meeting for progress tracking during the iteration. Others target to support
the actual planning meeting. Unfortunately, this difference is often not highlighted
in the relevant literature and marketing material.

To review existing agile planning tools, we first collected candidate tools that are
published online, mentioned by our interview participants (industrial agile develop-
ers), introduced by our partner companies or described in the literature. We reviewed
the tools and found that although existing tools showed some diversity, they could
still be categorized by design goals, functionalities and supported platforms. The
categorizations help to reveal common features, advantages and limitations of ex-
isting agile planning tools. Table 13.1 lists the basic categories and sample tools in
our study. Some tools are found sharing feature of more than one category.

13.3.1 Wikis

Wiki-based agile planning tools utilize Web technologies to publish, manage, inte-
grate and distribute agile planning information. The advantage of using Wiki-based
systems is that they provide a plain environment, making it easy to check project
status, update task lists and view the team members’ work progress. Wikis are an
asynchronous platform for agile developers’ communication and, thus, mostly help-
ful for progress tracking. The following scenarios show how an agile development
team can use them:

• Publishing story cards [3]: After a project planning meeting, new wiki pages will
be created to publish all the card information. Software developers and project
managers will be able to access the wiki pages and check their tasks.

• Story card management: software developers are responsible for accessing the
wiki pages and updating their cards every day. Updating the card status facilitates
managing the development progress.

13 Tools for Supporting Distributed Agile Project Planning 189

Fig. 13.1 Web form-based project planning tool [10]

• Sharing knowledge: a software developer can post his/her questions to a wiki, and
his/her colleagues can view the questions to provide assistances. Meanwhile, one
developer’s experience of solving some critical problems can also be posted on
the wiki to provide help to his/her teammates.

Wikis support asynchronous interactions for distributed teams. Using wiki pages
does not rely on any specific software on the client side (any web browser will
do). However, wikis only fulfill the minimum requirement of agile planning (creat-
ing/editing/deleting planning artifacts). Specific information of a user story, such as
estimated hours, are mingled with plain text describing the story.

13.3.2 Web Form-Based Applications

Designers of distributed agile planning tools realized the advantages (easy access)
and limitations (loosely organized planning data) of wiki pages and started to use
advanced Web technologies to create a series of Web form-based applications. Com-
pared with plain text wikis, the structured data stored by such tools supports more
sophisticated functions and more flexible operations to manipulate agile planning
information.

Web form-based applications are often used for publishing and managing ag-
ile planning data. Such tools include commercial products like Rally, VersionOne,
ScrumWorks, as well as open source products like XPPlanner. These applications
use Web forms to create and manipulate planning data. They also set up basic work-
flows for sharing data amongst distributed agile developers. Figure 13.1 shows a
screenshot of the Rally tool.

Figure 13.1 shows that agile planning data is more structured by Rally than in
wiki. Using the tool, users can change the status of a story card by clicking the
status button. They can also update the estimated work hours or descriptions of a

190 X. Wang et al.

task. Amongst other features, the Rally tool generates a burn down chart to help
project managers and team developers understand progress of their projects.

The Rally tool shows some common features of Web form-based agile planning
tools. Creating, editing and deleting story cards is supported. Charts are widely used
to visualize the project progress. Agile planning data is well organized in projects,
iterations, the backlog and story cards. Moreover, Web form-based applications can
distinguish the roles of the users (such as developers or managers) and generate
appropriate views for different user groups. The structured data managed in such
tools provide semantically richer views on the agile process than text stored in wikis.

As Web technology is mature and the Web access is easily accepted by users,
Web form-based applications dominate existing agile planning tools. However, most
Web form-based tools are only for asynchronous usage (asynchronous data shar-
ing, reporting, decision making, and daily card management), the synchronous agile
planning, particularly the project planning meetings are not supported.

13.3.3 Card-Based Planning Systems

Card-based planning systems are systems that use visual representations that resem-
ble index cards for representing tasks. These types of systems try to mimic physical
card based planning. Glue Wiki, CardMeeting and AgilePlanner, amongst others,
fall into this category. Several commercial agile planning tools, such as Thought-
works Mingle, integrate a card-based planning with form-based tools. The benefit
that card-based systems bring to planning is that they allow teams to interact with
the cards as they are used from co-located settings.

Mingle (Fig. 13.2) uses two-dimensional representations of index cards that
teams can edit and organize like paper index cards. It uses a browser to allow team
members from any location to interact with the cards. Individuals are able to create
cards and organize them spatially.

Card-based planning systems explore the collaborative interactions in distributed
agile planning. The designs expect that showing the visual effects of “paper index
card” might help agile teams adopting the tools. Card-based planning systems rely
on spatial layout to make the current plan easier to understand. However, existing
card-based planning tools (CardMeeting, Danube) do not show who is participating
in the planning meeting. They specifically do not show if and who is currently inter-
acting with planning artifacts. Knowing who is interacting with a planning artifact
is important as it encourages communication and collaboration.

13.3.4 Plugin for Integrated Development Environment

Integrating project planning tools with Integrated Development Environment (IDE)
will provide software developers a convenient environment for managing both codes

13 Tools for Supporting Distributed Agile Project Planning 191

Fig. 13.2 Card-based system in Thoughtworks Mingle [13]

and planning data, such as story cards. At present, we observed two types of plu-
gins. The majorities are repeating the major functions of native/Web-based project
planning tools, which allow for browsing and editing project planning data. While
another type of plugin, besides showing and managing planning data, have tried to
find and utilize the relation between user stories and the practical working codes. It
enables users to connect high level story cards with low level test cases and codes.
It bridges the logical gaps between the user requirements with developers’ imple-
mentation. IBM Jazz [7] explores integrating project planning tools with software
developing platform. It provides an Eclipse-based client to enable software devel-
opers mapping their story cards with specific source codes. Navigation between
the codes and cards are also provided. Besides IBM Jazz, Microsoft Visual Studio
Team System (VSTS) is also interested in introducing the project planning plugins
to Visual Studio platforms. Other related project planning tools includes “Scurm for
Team System”, “Jira + GreenHopper”, and “ProjectCards”.

13.3.5 Synchronous Project Planning Tool

Although Web technologies allow sharing of agile planning data, the features of
agile planning tools are still limited by the capabilities of Web browsers. Several
requirements of collaborative interactions, such as synchronous notifications, and
using telepointers for pointing and gestures, are not fulfilled. Moreover, by review-
ing the practical needs of industrial agile developers, we found that synchronous
agile planning meetings are weakly supported by such tools.

Distributed Agile Planner (DAP) [9] is a standalone application for synchronous,
card-based agile planning meetings. DAP mimics paper index cards. It simulates a
whiteboard in a meeting room and utilizes electronic index cards to simulate paper

192 X. Wang et al.

Fig. 13.3 Distributed agile planner with telepointers and digital cards

index cards. The user interactions of DAP include creating, moving and deleting
cards. To support distributed collaboration, DAP provides telepointers [4] to rep-
resent mouse pointers of remote clients. The position of a tele-pointer is updated
in real-time. Thus, a collaborator can understand his/her remote partner’s mouse
movement just like looking at hand movements in a traditional co-located meeting.
Figure 13.3 shows the interface of DAP, on which a set of story cards and itera-
tions are displayed. The green arrow is the “telepointer” which acts as a remote
mouse pointer to indicate the focus of remote collaborations. DAP concentrates on
the interactive collaboration but has only limited capabilities for progress track-
ing during the iteration. DAP is more primarily used for conducting the real-time
planning meetings during which interactive collaborations are intensively observed.
When we evaluated DAP during distributed planning meetings, we noticed a sub-
stantial change in interactions between participants at each site: most of the time,
they looked at the shared screen instead of looking at each other. We believe that this
is the result of putting a PC projector into the room and not a result of DAP. I.e. all
other tools will suffer the same effect. Having a screen at the front of the room and
assigning a single person in that room to control the mouse and keyboard, changes
the social interactions between team members. When we observed DAP-based plan-
ning meetings, participants seemed to be less engaged in the planning process than
in traditional agile planning meetings.

13 Tools for Supporting Distributed Agile Project Planning 193

Fig. 13.4 Writing a digital card and the scenario of distributed teams sharing an APDT interface
for their agile planning

13.3.6 Digital Tabletop-Based Agile Planning Tool

Digital tabletops [12] are novel user interaction devices. It has a horizontal dis-
play (a table that IS a computer display) and a multi-touch enabled surface to sup-
port concurrent touch-based interactions with that display. Agile Planner for Digital
Tabletop (APDT) explores using digital tabletops for supporting distributed agile
planning. It employs the interactive features of tabletops to enhance the user expe-
rience during distributed agile planning meetings. Using touch-sensitive interfaces
and a handwriting recognition engine, APDT implements handwriting functions to
simulate writing on a paper-based story card. As the tabletop has a horizontal and
tangible screen, participants can sit or stand around table, using stylus or fingers to
touch the virtual cards on the table surface (see Fig. 13.4). The multi-touch capa-
bility enables APDT users to concurrently interact with story cards without being
hindered by each other. Telepointers are used to display touch interactions from
remote sites.

An advantage of APDT over project planning tools using vertical displays/PC-
projectors is that it simulates the co-located project planning and supports several
user behaviors that were lost by using the traditional PC-based tools. APDT allows
for using pens to write story cards, passing cards on the table surface, using a finger
for dragging a card to a participant’s territory and reorienting cards. The limitation
of using APDT is that present tabletops are not widely available in industry. Only
a small number of tabletops are commercially available (e.g. Microsoft Surface and
SMART Table) and the purchase price is substantially higher than a PC projector.
However, we believe that tabletops will become available in many industrial settings
in the future.

13.4 Tool Evaluation

We now will evaluate agile planning tools based on the requirements for distributed
agile planning identified above. The results are shown in Fig. 13.5. In this figure, F
means the feature is fully supported, N is not yet supported and P is partly supported,
? is not enough data collected.

194 X. Wang et al.

Fig. 13.5 Evaluation table of distributed agile planning tools

This evaluation table indicates that most requirements of agile project planning
are supported by existing tools. Therefore, distributed agile teams can find an appro-
priate application for project management. However, the requirements for collabo-
rative interactions are not yet or only partly fulfilled. Particularly, the key factors
for synchronous interactions: change notifications and telepointers are rarely sup-
ported. The result of this tool analysis matched the results of our interviews with
industrial developers. At present, several distributed agile teams are still using Mi-
crosoft NetMeeting and Skype for their agile planning meetings and no particular
agile planning tools are utilized in the process.

We also conducted a survey to 54 project planning tools published on UserStories
website [14]. We concentrate on knowing their application types (Browse, Native,
Plugin), the license type(commercial, free), and major functions. The survey shows
that:

• application type: 44 tools are designed for browser. 3 tools run as a native stan-
dalone system, and one tool is plugin to IDE. The remaining 6 tools provide
multiple versions to support both plugin and native types.

13 Tools for Supporting Distributed Agile Project Planning 195

• license type: 11 tools are free product, 22 are commercial product. The remaining
21 tools provide both commercial and free licenses.

• supporting agile methods: 15 tools are specifically designed for Scrum and 5
tools are for XP, while 10 tools provide general supports to both XP and Scrum
development. The remaining 24 tools do not specify their supporting methods.

• functionalities: Only one tool supports synchronous planning, while others pro-
vide asynchronous planning features. The features include generating burn down
charts, using board (Kanban, Scrum or story boards) to display planning data,
strategy supports, timebox management, wiki publishing and agile management
logs.

• supporting multi-language: Only one tool provides multi-language versions.

13.5 Practical Advice

In the 10 years of developing and working with agile planning tools along with
the evaluation presented above, we present some advice for users and designers of
distributed agile planning tools. In addition we discuss our assumptions on the future
of distributed project planning tools.

13.5.1 Advice for Agile Planning Tool User

Distributed project planning tools are well developed for supporting asynchronous
agile management. The diversity of application types, license types, and their func-
tionalities, provide enough flexibility to choose appropriate tools for supporting spe-
cific requirements for asynchronous usage. By supporting, amongst others, Scrum,
XP and Lean, agile project planning tools are not restricted to a specific agile
methodology. However, when using existing agile planning tools, the following re-
strictions exist:

• For global agile development, multi-culture and languages are not supported. En-
glish is a dominating language for choosing distributed agile planning tools.

• Data exchange between different agile planning tools is problematic. Although
existing agile planning tools conceptual support similar artifacts, it is difficult
to exchange data between them. Migrating planning data between tools is time
consuming and teams need to agree on using a single tool.

• The data exchanging issue also exists between communicating agile planning
tools and some general project management applications. We observed some dis-
tributed teams using Microsoft Project to manage their development. However,
only 2 out of 54 tools listed on UserStories website [14] are able to communicate
with MS Project. Within the teams using MS Project and other agile planning
tools, data exchanging are still conducted manually.

196 X. Wang et al.

• Synchronous agile planning meetings are hardly maintained by existing tools.
Despite some attempts, such as DAP and APDT were made at employing group-
ware and digital tabletop technologies to set up synchronous agile planning, none
of the tools are fully commercialized and widely applied to industry. Some in-
dustrial agile teams are using non-agile specific groupware tools to address the
problem. We found one team (distributed over two sites) using desktop sharing
tools to set up a shared environment for agile planning meetings. While this is
a pragmatic solution, it limits concurrent interactions and requires a single user
at each site to interact with the planning workspace. Looking at long-term de-
velopments, we believe the support for synchronous agile planning meetings is
becoming a trend with tool suppliers. We expect an increasing number of related
tools to become available in the future.

13.5.2 Advice for Designers of Distributed Agile Planning Tools

Although most existing tools provide enough flexibility and functionality to support
progress tracking, the collaborative interactivity needed for distributed agile plan-
ning meetings are insufficiently considered. As a result, the experience of industry in
using agile planning tools can—and should—be enhanced. Moreover, the inability
of sharing planning data between different tools will be problematic in the future.
To better help distributed agile teams, we suggest that the following aspects will
improve the usefulness and usability of existing agile planning tools.

• Supporting synchronous interactions. At present, synchronous interactions are
not well supported by agile planning tools. Designing a practical synchronous in-
teractive system needs to incorporate results from groupware research. Now that
support for distributed project management has become more ubiquitous, suppli-
ers need to distinguish their tools by properly supporting synchronous planning
meetings. In addition, to enhance collaborative interactions, some advanced tech-
nologies need to be incorporated. It is highly possible that the next generation
of agile planning tools might have to abandon the PC-projector displays and in-
tegrate with new interactive devices like digital tabletops. With the evolution of
Web technology, Web browsers will soon support near real-time interactions and
the accessibility of synchronous agile planning tools will be improved. The fol-
lowing factors should be considered when implementing synchronous tools for
distributed agile planning:

1. Verbal communication. Tools need to incorporate audio and/or video confer-
encing capabilities.

2. A shared card-centered interface: A shared workspace is required for showing
detailed aspects of cards, such as card colors, data on the card, and the card
positions (considering teams often sort card to show their priorities).

3. Showing the interactions of remote participants. One of the goals of distributed
planning tools is to enhance the collaboration across multiple sites. However,

13 Tools for Supporting Distributed Agile Project Planning 197

Fig. 13.6 Ubiquitous project planning model

existing tools do not yet show the remote participants’ interactions. Telepoint-
ers are an appropriate approach to show distributed user interactions. By using
remote mouse pointers to monitor the users’ interactions (clicking, dragging),
the telepointer will show who is interacting with the workspace, and what
they are doing. Telepointers also help with identifying the focus of discussion
across remote sites. Digital tabletops can show arm shadows (the shadows of
users’ arms on the table screens) [11]. Thus, the users can not only see hand
movements, but also recognize the hand or arm gestures.

In designing synchronous agile planning tools, one needs to combine and im-
plement the above factors in an appropriate manner. Admittedly, some advanced
features (such as showing telepointer, or arm gestures) might be restricted by the
hardware or software platforms. However, maintaining a card-centered, real-time
distributed workspace as well as an audio/video communication are required to
support distributed agile planning.

• Ubiquitous project planning. Agile project planning often includes multiple
roles, such as developers and managers. The diversity of participant raised several
types of requirements for having access to agile planning. For example, project
managers would like to read the project process reports or burn down charts on
their mobile devices. Software developers highlight the use of project planning
plugin for their IDE. Meanwhile, both of them would like to have a convenient
environment when sitting together to communicate with another distributed sub-
teams. Generally, everyone wants to view the project progress from their personal

198 X. Wang et al.

computing environment. In Fig. 13.6 we proposed a model to serve agile planning
participants at different environments. Parts of this model, such as plugins and
personal planning tools have been implemented. Other components, such as the
tabletop based planning tools are still being developed or evaluated. However, a
challenging issue for implementing the model is how to exchange data between
the various tools. To solve this issue, the following requirement becomes neces-
sary.

• Exchanging planning data among different tools. Although agile project plan-
ning tools are essentially representing very similar information, none of them can
easily exchange planning data with each other. Current tools are closed and cre-
ate supplier lock in. To solve this issue, we explored the feasibility of exchanging
planning data among different tools. We found most agile planning tools were
based on similar conceptual models. A simple translator should be able to bridge
the terminology differences among existing tools. For example, we modified a
DAP server and added a gateway to translate the planning data from DAP to
IBM Jazz and from DAP to the Rally tool. We believe that the integration of
different tools will become increasingly important as multiple teams will have
to collaborate when agile projects are scaled up. Moreover, card display, editing
and management is not enough to support the complete process of agile develop-
ment. Bug tracing, version control and test automation also play a significant role.
Thoughtworks Studio [13] integrates card-based project planning tools (Mingle)
with its own release management (version control) products (Cruise), and au-
tomation testing platform (Twist). The similar idea is also implemented by the
new Microsoft VSTS 2010. Admittedly, it is not easy for most developers, partic-
ularly those individual developers developing a complete software package that
covers from card planning to release management. However, in designing an ag-
ile planning tool, it is beneficial to reserve some extension points (such as data
structures that keep the path of one or multiple source code files) to allow source
control tools or testing platforms binding their code segments, version updates or
testing cases with digital index cards in the agile planning tool.

13.6 Conclusions

Project management tools for distributed agile teams are currently widely available.
They have shown some benefit to supporting project management and knowledge
sharing. However, our analysis of existing tools shows that nearly all of them fo-
cus on asynchronous features such as supporting progress tracking and card man-
agement. The next major step in distributed agile planning tool development will
require: supporting synchronous project planning meetings, setting up ubiquitous
project planning environments and enabling data exchange between different agile
tools and/or with non-agile project planning. These enhancements still require sub-
stantial research and development combining agile software development expertise
with knowledge about computer supported work and groupware.

13 Tools for Supporting Distributed Agile Project Planning 199

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile software development
methods. Lspoo: VTT Publications. p. 112.

2. Chau, T., & Maurer, F. (2004). Tool support for inter-team learning in agile software organi-
zations. In Proceeding of the workshop on learning software organization (pp. 20–21), Banff,
Canada, June 2004.

3. Chau, T., & Maurer, F. (2005). A case study of wiki-based experience repository at a medium-
sized software company. In Proceedings of the 3rd international conference on knowledge
capture, Banff, Canada.

4. Dyck, J., Gutwin, C., Subramanianand, S., & Fedak, C. (2004). High-performance telepoint-
ers. In Proceedings of the 2004 ACM conference on computer supported cooperative work
(pp. 6–10), Chicago, US, November 2004. New York: ACM.

5. Ellis, C. A., Gibbs, S. J., & Rein, G. (1991). Groupware: Some issues and experiences. Com-
munications of the ACM, 34(1), 39–58.

6. Grudin, J. (1994). Groupware and social dynamics: eight challenges for developers. Commu-
nications of the ACM, 37(1), 92–105.

7. Jazz Overview (2009). IBM Jazz. http://jazz.net/. Cited 13 Nov. 2009.
8. Larman, C. (2004). Agile & iterative development—a managers’s guide. Boston: Addison-

Wesley (pp. 25–34).
9. Morgan, R., & Maurer, F. (2008). An observational study of a distributed card based plan-

ning environment. In Proceeding of the 9th international conference on agile processes and
eXtreme programming in software engineering (pp. 10–14), Limerick, Ireland, June 2008.
Berlin: Springer.

10. Rally Tool (2010). http://www.rallydev.com/agile_products/agile_planning/. Cited 13 Jan.
2010.

11. Robinson, P., & Tuddenham, P. (2007). Distributed tabletops: Supporting remote and mixed-
presence tabletop collaboration. In Proceeding of 2nd workshop on horizontal interactive
human-computer systems (pp. 10–12). Newport, US, October 2007.

12. Scott, S. D., & Carpendale, S. (2006). Interacting with digital tabletops. IEEE Computer
Graphics & Applications, 26(5), 24–27.

13. Thoughtworks studio (2010). http://www.thoughtworks-studios.com/. Cited 13 Jan. 2010.
14. User Stories (2009). http://www.userstories.com/products. Cited 13 Nov. 2009.
15. Wang, X., & Maurer, F. (2008). Tabletop AgilePlanner: A tabletop-based project planning

tool for agile software development teams. In Proceeding of the 3rd symposium of tabletop
and interactive surface, Amsterdam, 1–3 October 2008.

http://jazz.net/
http://www.rallydev.com/agile_products/agile_planning/
http://www.thoughtworks-studios.com/
http://www.userstories.com/products

Chapter 14
Combining Agile and Traditional: Customer
Communication in Distributed Environment

Mikko Korkala, Minna Pikkarainen,
and Kieran Conboy

Abstract Distributed development is a radically increasing phenomenon in modern
software development environments. At the same time, traditional and agile method-
ologies and combinations of those are being used in the industry. Agile approaches
place a large emphasis on customer communication. However, existing knowledge
on customer communication in distributed agile development seems to be lacking.
In order to shed light on this topic and provide practical guidelines for companies
in distributed agile environments, a qualitative case study was conducted in a large
globally distributed software company. The key finding was that it might be difficult
for an agile organization to get relevant information from a traditional type of cus-
tomer organization, even though the customer communication was indicated to be
active and utilized via multiple different communication media. Several challenges
discussed in this paper referred to “information blackout” indicating the importance
of an environment fostering meaningful communication. In order to evaluate if this
environment can be created a set of guidelines is proposed.

14.1 Introduction

The steadily increased popularity of agile development methods has resulted in ag-
ile growing out of its infancy and entering from small-scale collocated development
projects into a world of globally distributed large software enterprises with all their
harsh realities. Distributed environment is already challenging in a world of tradi-

M. Korkala (�) · M. Pikkarainen
VTT Technical Research Centre of Finland, P.O. Box 1100, 90571 Oulu, Finland
e-mail: Mikko.Korkala@vtt.fi

M. Pikkarainen
e-mail: Minna.Pikkarainen@vtt.fi

K. Conboy
National University of Ireland Galway, Newcastle Rd., Galway, Ireland
e-mail: kieran.conboy@nuigalway.ie

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_14, © Springer-Verlag Berlin Heidelberg 2010

201

mailto:Mikko.Korkala@vtt.fi
mailto:Minna.Pikkarainen@vtt.fi
mailto:kieran.conboy@nuigalway.ie
http://dx.doi.org/10.1007/978-3-642-12442-6_14

202 M. Korkala et al.

tional software development.1 In fact, it seems to be so complex that either compre-
hensive understanding on the problem domain, or the potential success factors are
not yet thoroughly known [2, 3].

Agile development emphasizes intense communication between the stakeholders
involved in the project. This tenet has been stretched into extremes by Extreme Pro-
gramming (XP) [4] which proposed an on-site customer practice which promoted
full-time customer participation, thus enabling constant face-to-face communication
and immediate feedback. In reality, having an on-site customer can be very difficult
and solutions for intense communication have to be found out through other means.
Naturally, several solutions to mitigate the problem have been introduced. Audio-
visual communication media approach the problem from the technical side, while
more general level proposals have been introduced e.g. by Layman et al. [5], Ramesh
et al. [6] and Boehm & Turner [1]. The use of different communication media and
applying different coping strategies may relief the problems caused by significant
geographical distances which hinders the possibilities of face-to-face communica-
tion between the participants. Naturally, cultural aspects and the distance created by
them should be taken into account.

At the moment, scientific literature provides only few specific studies listing the
challenges and solutions for customer communication in a distributed agile devel-
opment context. In order to find out these challenges and provide practical solutions
to companies, we conducted a case study which sheds some light on this less studied
field. In addition, we prose some guidelines in order to ensure if the development
environment itself can foster meaningful communication between the distributed
partners.

14.2 Customer Communication in Distributed Agile
Development

Communication plays a significant role in the success of all software development,
regardless of the underlying development approach, but it is particularly emphasized
in agile development as being one of the corner stones of the approach. Communi-
cation however is a difficult task requiring a common understanding on the topics
being discussed [7]. Taking the challenging nature of communication into account,
it is not perhaps difficult to agree that communication and coordination breakdowns
seem to be much more than just occasional incidences of minor significance. In-
stead, they seem to be a commonplace phenomenon. Despite the fact that efficient

1Traditional development is synonymous with plan-driven development. Plan-driven software de-
velopment is an engineering approach in which the software is developed following specific pro-
cesses, commencing at the requirements gathering stage and ending with the final code [1]. There
are several methodological approaches and models describing how to develop plan-driven soft-
ware [1], the best known probably being the ‘waterfall’ model in which all the development phases
are implemented, at least twice at stages after one another to be able to produce the working soft-
ware.

14 Combining Agile and Traditional: Customer Communication 203

Table 14.1 Recommendations by Layman et al. [5]

Proposed recommendations

(a) Define a person to play the role of the customer up front. This individual must be able to make
conclusive decisions on project functionality and scope, must be readily accessible, and must have
a vested interest in the project.

(b) When the project management and development teams are separated, create a role within the
XP team whose purpose is to work closely with both development and project management teams
on a daily basis, preferably someone who speaks all the languages involved.

(c) When face-to-face, synchronous communication is infeasible, use an email listserv to increase
the chance of a response and encourage prompt, useful, and conclusive responses to emails.

(d) Use globally-available project management tools to record and monitor the project status on a
daily basis.

and interactive customer communication is a central tenet in agile development, lit-
tle is known about its actual impacts on development. Some work has however been
conducted focusing e.g. on the quality of the software [8] indicating a relationship
between the increasing of defects and customer involvement.

Naturally, several approaches for mitigating the risks distribution creates for ag-
ile communication have been proposed. Tools capable of mediating audio-visual
communication are a natural choice, but also more general level solutions have been
suggested. E.g. Layman et al. [5] have proposed a set of general guidelines that
aim to create a communication-rich environment for distributed agile development.
These guidelines are presented in Table 14.1.

In addition, Ramesh et al. [6] have identified five different key areas that are chal-
lenging in distributed development. One of these challenge areas is related to com-
munication and is referred as Communication need vs. communication impedance.2

According to [6], the balance between formal non-rich communication channels
and informal rich media should be found in distributed agile development. Gottesdi-
ener [9] has defined a framework for holding requirements workshops with various
time and place combinations. This framework can be applied to distributed agile
development, thus indicating that the stakeholders can select a proper communi-
cation channel from considerably wide collection of different media. In this work,
time can be either synchronous with every participant present at the same time or
asynchronous. Place can be either co-located or distributed when participants are
at different locations [9]. As can be suggested based on what was depicted above,
there is a plethora of different communication media and proposals available for
improving the success of communication and ultimately, the development project.

Theory suggests that attention should be paid on selecting the appropriate com-
munication medium for different tasks. Despite the criticism, Media Richness The-

2Originally, impedance is a quantity related to electricity. Since the term “communication
impedance” is not established in SW literature, we believe that the term deals with similar un-
derstanding of the message by all the parties involved in the context which it is used by Ramesh et
al. [6].

204 M. Korkala et al.

Fig. 14.1 The effectiveness of different communication media as proposed in [11] and [7]

ory (MRT) [10, 11] seems to be the most strongest and prevalent theory of commu-
nication. In its essence, the theory suggests that a media’s ability to convey infor-
mation should be closely aligned to task needs for better performance e.g. certain
media are better suited to conveying ambiguous or uncertain information [10, 11].
If information is considered ambiguous there can be several possibly conflicting
interpretations for the information whereas uncertainty is interpreted as the lack of
information. Rich communication channels should be used while managing ambigu-
ous information, while less rich channels are suitable for processing well understood
messages and standard data [10]. Perhaps since the theory has been proposed over
two decades ago, it does not discuss the effectiveness of modern electronic commu-
nication media such as videoconferencing and email. However, Cockburn [7] has
included them in his personal, yet scientifically unevaluated, comparison on the ef-
fectiveness of communication channels. The findings of both MRT and Cockburn
are combined in Fig. 14.1 describing the richness (i.e. effectiveness) of different
communication media.

In general, it is a common misconception that agility is an “on-off” concept.
Traditional approaches and agile methods do not exclude each other. Instead of fol-
lowing strictly either agile or traditional development approach, these two different
worlds can be combined into a hybrid approach including suitable elements from
both approaches.

14.2.1 Issues Hindering the Customer Communication
in Distributed Agile Development

Challenges involved in distributed agile environments range from individuals’ at-
titudes to organizational level challenges. Some of the challenges are discussed in
this section.

14 Combining Agile and Traditional: Customer Communication 205

Bureaucratic organization is a difficult environment for agile to succeed. Bu-
reaucracy is defined as an organizational form based on specified roles, positions
and strict rules. Thus, it has a direct impact to the efficiency of customer commu-
nication in an organization by possibly restricting the communication. Bureaucratic
culture can be seen as hierarchical, procedural, regulated, established, structured,
cautious and power oriented. The culture of a group can be defined as: A pattern of
shared basic assumptions that the group learned as it solved its problems of external
adaptation and internal integration, that has worked well enough to be considered
valid and therefore, to be taught to new members as the correct way to perceive,
think, and feel in relation to those problems. In addition, blame culture is prevalent
in bureaucratic and hierarchical companies. In a study reported in [12] the level of
culpability went hand in hand with the status of the representatives of upper manage-
ment. Despite the efforts, the culture of blame remained prevalent in the company.
Even though these challenges are not discussed specifically on the distributed con-
text, it can be argued that they are prevalent also within companies working is such
fashion.

Another factor affecting to the customer communication in the agile company are
individual attitudes such as fear of change and either specialized or outdated skills
to fears of losing control especially within the management. Individual attitudes may
hinder agile communication in many ways; for example, fear of change may result
in resistance against informal and active customer communication, if formal and
less personal communication methods have been used as a standard and normative
way to manage customer communications.

Naturally, geographical distance creates challenges in using agile for distributed
environment. Distances between the different parties can be vast and especially
distance across time zones is significant factor separating the collaborating stake-
holders. In fact, temporal distance seems to be more dominating factor than plain
physical distance [13]. However, if face-to-face communication is not possible, the
natural approach in agile context would be to pursue for as efficient communication
channels as possible. As previously explained, there are several different solutions
available for communicating with distant stakeholders.

14.3 Findings

This section presents the findings of the case study including description of the case
context, characterization of the analysed organizational units and evaluation of the
customer communication richness, challenges and solutions.

14.3.1 Case Context

Our case study focuses on analysing customer communication in a globally dis-
tributed environment comprised of two organization units implementing the same

206 M. Korkala et al.

Fig. 14.2 The project organization and customer communication environment of the case project

system within a large globally distributed software intensive company. Agile
methodologies had been used in the organization for over two years at the time
of the data collection. However, this project was the first agile effort for many of its
participants.

A team based in the U.S. was implementing the front-end functionality of the
product, while the implementation of the back-end was allocated to two teams based
in Ireland. Additionally, the project had a quality engineer in India. The Business
Analyst and the Architect of the U.S. organization assumed the roles of the customer
representatives (i.e. the main sources of information for their Irish counterparts) and
provided requirements for the Irish organization. These requirements were defined
and agreed up-front in a traditional manner. The project environment along with the
identified customer communication links between the U.S. and Ireland are depicted
in Fig. 14.2. In addition, the elements inside the triangle depict the interviewed
stakeholders and further illustrate the unit of analysis within this study. Similarly,
the customer representatives of the U.S. unit are circled.

The project manager was responsible for management topics (such as agreeing
on schedule, budget and resources) while the architects communicated more about
technical aspects such as architecture and its technical implementation between the
different development organizations.

The overall relationship between the Irish teams, the US team and the Indian
quality engineer was studied in order to understand the context of the case study.
The Irish main team consisted of experienced developers who were responsible for
difficult tasks. The subteam was composed of junior developers who implemented

14 Combining Agile and Traditional: Customer Communication 207

simpler items allocated by the Irish Architect. The two teams were collocated in
same facilities and the Irish architect was the customer for the subteam, providing
and clarifying them the requirements that should be implemented. Since the teams
were collocated, the Irish architect—Irish subteam relationship is similar to onsite
customer relationship. The relationship between the Irish teams can be seen as a
distributed project with collocated teams. The Irish subteam had their own customer
representative who steered their development and prioritized their requirements. Al-
together, it was found that the collaboration between the collocated Irish teams was
fluent, since significant challenges related to this co-operation were not mentioned
in the interviews. It is quite safe to argue that collocation played an important role
in this fluent collaboration. However, from a larger perspective this project can be
seen as a distributed project with distributed teams since the organizations were
implementing a single product. This latter viewpoint is in the focus of this paper.

As mentioned, the Irish organization also utilized testing services located in In-
dia. Based on the interviews, this collaboration worked without any significant prob-
lems. Since the U.S. organization was working as a customer for the Irish branch,
the case could be observed also from outsourcing and offshoring perspectives. Fur-
thermore, since the Irish branch had offshored its testing services to India, there is
a strong indication that they might have been working as a “bridge”, working both
as a customer for the testing organization in India and as a vendor for the U.S. unit.
The “Irish Bridge” concept is described by Holmström et al. [14].

In this work, distributed development angle is selected due to the fact that the
participants and customer representatives belonging to a same company were imple-
menting equally important parts of the same product in geographically distributed
locations. However, customer-vendor relationship is critical in the success or failure
also in offshored arrangements [14]. Thus the presented challenges can be valid and
proposed solutions could be well adapted also in offshoring context. Since we were
able to interview the representatives of the Irish branch only, we observe the cus-
tomer communication challenges within the project from the viewpoint of the Irish
branch. The lack of data from the U.S. organization is a recognized limitation to this
work.

14.3.2 The Use of Agile Methodologies in the Case Project

At the time of the interview data collection, there was a distinct variance between
the level of agility in the Irish and US units of the case company. Table 14.2 below
provides an overview to the units and their characteristics following the categoriza-
tion by Boehm and Turner [1] explained earlier in Table 14.1. Table 14.2 indicates
that there were hardly any agile elements present in the U.S. organization.

The agile practices used in the Irish organization were a combination of practices
from Extreme Programming and Scrum. The usage of practices is described in Ta-
ble 14.3. Very often usage of a practice is not binary, and so we have divided the
practices in this case into those that are used routinely, occasionally, and not used at
all.

208 M. Korkala et al.

Table 14.2 Characteristics of the case organizations based on Boehm and Turner [1]

Irish organization U.S. organization

Customer Relations Dedicated on-site customer
representative (Architect) for the
Irish subteam. Increments
prioritized internally.

As needed customer interactions;
Active communication with the
Irish unit.

Planning and Control Internalized iterative planning;
Contents of the iteration planned
and estimated.

Documented plans; Steering
based on milestones. No
interaction with the Irish unit
considering their internal
planning and releases.

Communication Tacit interpersonal knowledge;
face-to-face communication within
the Irish organization.

Explicit documented knowledge;
steering based on documentation.
However, active communication
between the Irish unit using
different media.

Technical

Requirements Formalized project, capability, interface, quality, foreseeable evolution
requirements

Development Simple design; short increments:
Internal design process simplified
from the previous approach. Four
week iterations

Extensive design; longer
increments; Up-front defined
plans and designs, very long
increments (over 6 months)

Testing Documented test plans and procedures

Personnel

Customers U.S. organizations stakeholders considered customers for the Irish
branch. Irish architect working as an onsite customer for the Irish
subteam. Customers were not analysed based on CRACK (Collaborative,
Representative, Authorized, Committed, Knowledgeable) criteria.

Developers Not analysed in this study. Not in
the focus of the study.

Not analysed in this study. Not in
the focus of the study.

Culture Comfort and empowerment via
many degrees of freedom (thriving
on chaos): Agile approach used.

Comfort and empowerment via
framework of policies and
procedures (thriving on order):
Bureaucratic environment.

14.3.3 The Use of Customer Communication Media

In this section, both the usage of different communication media is described. As can
be seen from Fig. 14.3, the usage of different customer communication channels was
active and the communication itself was conducted through several different media
varying in their effectiveness. The amount of use of different channels is indicated
by (+) signs.

14 Combining Agile and Traditional: Customer Communication 209

Table 14.3 The use of agile practices in the Irish organization

Combined list of agile practices Extent of use in Irish organization

Pair Programming Not Used

Testing Used Occasionally

Metaphor Not Used

Collective Code Ownership Used Routinely

Refactoring Used Routinely

Coding Standards Used Routinely

Simple Design Used Routinely

40 hour week Used Occasionally

On Site Customer Not used/Used Routinelya

Sprints Used Routinely

Sprint Planning Used Routinely

Architecture Used Routinely

Sprint Review Used Routinely

Post Game Sessions Used Occasionally

Daily Meetings Used Routinely

aThe Irish main team prepared requirements for the sub-team and steered them. The Irish architect
worked as an On-Site customer for the Irish sub-team

Fig. 14.3 The usage of different communication media in the case project

Even though there was not a single communication media that was used more
actively than others, the interviewees considered the project wiki to be the central
medium largely due to the distributed nature of the effort. Face-to-face communica-

210 M. Korkala et al.

Table 14.4 Customer communication media and their usage in the project

Communication medium Usage

Face-to-face Utilized in the beginning of the project for a couple of weeks by
onsite visit in the U.S. Not utilized later. No findings from the time
of the study.

Video conferencing PM: Higher level decisions, analysis discussions. Topics focused
on dates, etc. Video conferences used occasionally, the usage
decreased since the projects inception.

Videoconferencing not used by the Irish architect.

Teleconferencing Teleconferencing was used extensively.

PM: Weekly customer meetings, weekly program meeting,
steering meeting in every two weeks. Solving urgent
(management) issues when needed.

Architect (IRE): Scheduled conference call twice a week,
informal communication in daily basis. A separate meeting had to
be organized a couple of days in advance in order to solve
problems. No instant feedback.

Wiki/Email Used extensively by everyone involved in the project.

Wiki: focus on technical topics. Documents stored in the wiki.
Meeting minutes and high level planning issues documented in the
wiki. Wiki was the main Ireland–U.S. customer communication
channel during the project. The amount of information in the wiki
was extensive and the wiki had become very difficult to navigate.

Email: Email was the main decision making medium between the
Irish architect and the customer (U.S. architect. Decisions
documented in the wiki).

tion is missing from the picture which describes the communication channels used
during the interviews. However, face-to-face communication was used between the
U.S. and Irish organizations in the traditional type of specification phase during the
first three months of the project. In this stage, the Irish analyst spent “couple of
weeks onsite” with the U.S. representatives when the initial requirements specifi-
cation workshops were held. Developers from the U.S. organization and developers
from the Irish branch had never met personally. In addition, the Irish developers had
never seen the U.S. customer representatives.

Table 14.4 discusses the usage of these media in more detail. In addition, the
purposes in which the media were used are described. In this case, PM refers to the
Irish project manager.

Overall, the customer communication on the project was active. Both rich and
non-rich media were used and communication took place in daily basis, excluding
the usage of videoconferencing. Videoconferencing was used in the Irish branch
only by the project manager and the topics themselves focused on very high level
issues such as explained earlier. On the other hand, the architects communicated
about more technical aspects.

14 Combining Agile and Traditional: Customer Communication 211

The customer communication was seen sufficient by the Irish project manager
and the Irish architect. The reasons for this varied, as indicated by the following
comments: “we are communicating pretty much on a daily basis. And, if there is a
particular issue, there isn’t a requirement to wait for a forum, you just pick up the
phone.” (Project Manager): “It’s sufficient for the level we’re at. Again, if the cus-
tomer was more focused on delivery, we’d probably need more, but because they’re
not that focused on it.” (Irish architect). The architects comment indicate the lack of
customer support which is one of the challenges discussed in the next section.

14.3.4 Identified Customer Communication Challenges

In this section, the identified customer communication challenges are discussed. In
addition, also other interesting factors that we found to have contribution to the
presented challenges are discussed.

Detached Customer Despite active communication between the Irish and U.S.
branches, the customer relationship itself left a lot to be desired. This uninvolve-
ment was considered as a significant downside. The detached nature of the customer
organization and its representatives manifested itself most clearly while discussing
the requirements that were supposed to be implemented by the Irish organization.
As mentioned, the fixed requirements provided to the Irish branch were defined
up-front. However, the use of agile was used as an “excuse” to make the require-
ments definition more loosely than before while an entirely traditional development
approach was being used. The level in which the requirements were now defined
would have had required active agile type of interactive planning and active com-
munication between the U.S. and Irish branches in order to clarify their contents in
more detail while the development progressed. This was however not the case. The
customer representatives communicated with the Irish unit about high level aspects.
The Irish organization defined their requirements in more detail by themselves in
their internal iteration planning meetings without any customer support. As the fol-
lowing quote indicates, the Irish branch was not happy with this approach. “They’re
not great customers, because they can just keep talking at a very high level without
actually giving detailed requirements” (The Irish Architect).

What further complicated the situation was that the Irish development teams did
not have any previous knowledge on the domain. This combined with the lack of
support from the U.S. unit can be well considered hazardous, since the Irish or-
ganization had to rely on their “best educated guesses” on how the functionalities
should work. Agile promotes continuous integration which can be considered as
a tool for verifying whether the software does what it should be doing. Since the
front- and back-end functionalities had not been integrated at any point during the
development process, there was not a mechanism to ensure that the requirements
were implemented the way they should have been.

In addition, detachment of roles was visible also internally in the Irish organi-
zation. The project manager, as explained, was focusing on managing higher level

212 M. Korkala et al.

aspects of the project and was not concerned much on the implementation or the
architecture of the product. On the other hand, the U.S. and Irish architects were
communication technical viewpoints. These topics however did not include soft-
ware’s functional requirements but focused more on technical details, such as de-
ciding what database drivers should be used.

The central communication challenge emerging from customers´ detachment in
this case is the meaningfulness of communication. As it was found, the communica-
tion was very active and involved several different communication channels varying
in their level of effectiveness. The contents of the communication however did not
serve the purpose well from the Irish organization’s point of view, since the teams
did not receive any information about the details of the requirements. Overall, a lot
of communication took place, but it did not directly support the development as it
should have been doing.

Organizational Environment Bureaucratic culture can be seen as hierarchical,
procedural, regulated, established, structured, cautious and power oriented. Indeed,
several characteristics of a bureaucratic organization were prevalent. The customer
organization was reluctant to openly share information with the contractor, even
though they were implementing the same system. The following comment indicates
the resistance of openly sharing the relevant information i.e. cautiousness: “We’re
working for a part of the organization which has typically worked by themselves,
and to join them is a very political issue. . . and also because it’s financed, and
it’s sensitive data, they always try to hide it”. Thus, it seems that the reasons for
information hiding emerged from the politics applied by the customer organization.
In this particular case, the protective nature of the organization can be traced directly
to cautiousness of a bureaucratic environment.

Naturally, unfamiliarity of agile processes in itself can create uncertainty and
misunderstandings but again one characteristics of a bureaucratic organization
emerged related to the “status-blame” relationship. There were indications that up-
per management feared that if the project should fail, they could lose their jobs: “at
the high level there’s some worry around about are they losing their jobs”. (Irish
architect about the consequences of failure). There is actually nothing new with this
finding since similar findings related to “status-blame” relationship has been made
previously in bureaucratic environments.

Another finding that supports hierarchical environment, which again is a char-
acteristic of a bureaucratic company, was the indication of tightly defined responsi-
bilities. The employees of the organization “did not cross boundaries” and focused
only on their specific expertise areas. Clear division of responsibilities is counter-
intuitive to agile which promotes cross-functionality of the teams. This aims to in-
crease the knowledge on the software being implemented in the project among the
team members. Since the team members are not limited to work on their correspond-
ing expertise areas alone, they should have more holistic view to the product being
implemented. In this case, the Irish project manager was supporting the work of the
Irish teams more from the management side without involving into technical devel-
opment work. To further illustrate the tight division of roles, the Irish developers

14 Combining Agile and Traditional: Customer Communication 213

were deliberately excluded from communicating directly with the customers. The
reason behind this decision was to ensure that the developers will have the maxi-
mum amount of time available for product development.

Tightly defined roles can create challenges for communication. The lack of first
hand experience on a certain topic might result into misunderstandings and misin-
terpretation of data. In addition, if information has to pass through multiple persons
there is a chance of information distortion, which means that some of the informa-
tion is lost and some of the contents mutated [15]. The longer the communication
chain is, the more the information distorts.

Altogether, organization’s environment in this case proposed a significant chal-
lenge to projects execution, namely in a form of deliberate information hiding. In
addition to the lack of meaningful information considering the details of the require-
ments the Irish organization were implementing, they did not had any access to the
code implemented in the U.S. despite it was a part of the same product. The access
to this program code could have provided more information on the functionality of
the requirements allocated for the Irish branch.

Differences Between Traditional and Agile Approaches The U.S. organization
worked following a milestone oriented approach, which translated to communica-
tion also. In fact, the customers did not want to be involved in “agile communica-
tion”, namely participating to the Irish teams Sprint Plannings and Sprint Reviews.
Instead, they wanted to take a more traditional approach and communicate higher
level topics, as described earlier. Indeed, the U.S. customers communicated actively
with their Irish counterparts but remained more distant than expected from the agile
perspective, since development level issues were not communicated.

This finding indicates the difficult situation in which agile teams working with
traditional teams might encounter; they are not supported they way they should be.
This in turn might have a serious negative impact on the project results, which in
agile context are tried to be achieved through active communication and feedback.
The traditional communication approach taken by the U.S. organization also sug-
gests that agility of the Irish organization did not have any impact on customer
communication. Furthermore, Irish unit’s agility did not have any impact on the de-
velopment approach taken in the U.S. These two organizations were very detached,
even though they were working on a same product.

Lack of Trust Even though indications of bureaucratic organizational character-
istics together with detached customer and the differences between agile and tra-
ditional approaches seemed to be the cause behind ineffective communication, the
issues related to mutual trust were also identified. The following comment made by
the project manager on the sense of belonging to the same team indicates that mu-
tual trust had not been evolved: “Even for trust, on both sides to build, whereby it
would be totally frank and open, it’s still early days”. (Project manager)

Similar situation has been documented in [13], explaining that two different team
without previous experience working together lacked trust on each other. This in
turn, hindered the promotion of their effort to their project sponsors [13]. In fact,

214 M. Korkala et al.

building mutual trust seems to be the key for solving different technical issues effi-
ciently. Thus, lack of trust might have contributed to other challenges mentioned.

14.4 Discussion and Lessons Learned

The key lesson learned from this case can be condensed to a single sentence: It does
not matter how much you communicate, it is what you communicate. The infor-
mation communicated should be meaningful and serve the purpose. Agile develop-
ment relies heavily on active and rich communication in order to solve the problems
and steering of development and elaboration of software requirements, just to name
a few examples. Even though the different organizations communicated actively, it
was clear that the contents of customer communication in this case were only related
to the higher level management and technical aspects and did not serve the needs
of the unit working in agile mode. It can be said that the Irish unit suffered from
information blackout since the U.S. customer unit did not provide them necessary
information, feedback and steering considering the requirements the Irish unit were
implementing. This kind of information is essential since agile development aims to
provide value to the customer in a form of working software as soon as possible. In
this case the progress of the project was tracked against agreed milestones and dates
instead of customer value.

There is quite likely overlapping and cause and effect relationships present be-
tween the challenges discussed in this paper. For example, traditional development
was customary in within the U.S. customer unit and they stayed with this approach
also in this project. Customer relationship is far more distant in traditional develop-
ment than in agile approaches. In this case the organizational differences, the clash
of traditional and agile, might be one of the explaining factors of the customers’
detachment. On the other hand, organizational environment might have affected to
this, as well the as the lack of trust between the participants. However, these re-
lationships are not discussed any further in this work. However, analysing these
relationships would be an interesting topic for a further research.

There is existing work on how to mitigate the risks caused by lack of customer
involvement and clashes between traditional and agile development, but few notes
on these viewpoints should be given also in this work.

Detached Customer It is essential to understand that the customer is a vital part of
agile development. In agile development, the customer is more than a distant entity
providing a set of requirements and then disappearing. On the contrary, customer is
an integral part of the team, ideally available for interactive discussions when ever
needed. Thus it is quite natural that the role of agile customer is often considered to
be more demanding than in traditional development and sometimes the customers
might be even unwilling to participate actively to the development process. Anyone
considering the role of agile customer should realize the expectations of the role
and accept those responsibilities. However, one cannot always have the luxury of
committed and active customer. In these situations, customer proxies could be used.

14 Combining Agile and Traditional: Customer Communication 215

However, there is a downside in this approach due to the possibility of information
distortion, since the proxy might have to negotiate with the real customer and then
translate the customer needs to the development organization. It is always better to
use as short chain of communication as possible.

Considering the Differences between traditional and agile approaches, perhaps
the most common propositions are to carefully assess the best possible development
approach and find a balance between these two approaches. For example, Boehm
& Turner [1] provide guidelines for the first alternative, while Ramesh et al. [6]
propose to find a balance between these two different development methodologies.
Trust on the other hand is something that is evolving during time. E.g. paying visits
to other sites may help establish trust between the distributed partners.

Based on the key learning from this work, we propose the following guidelines
based on our insights to identify whether it is possible to have an environment
for meaningful customer communication. Without this environment, development
might become very challenging and rendering the potential benefits of agile redun-
dant. If this environment is not available, the use of agile practices should be re-
evaluated. These guidelines are presented in a form of questions that should provide
the necessary information:

• What kind of information do we need from the other party?
This information can be for example software requirements, access to the code
implemented by other organizations, etc.

• Who will be providing this information?
This refers to the customers and other relevant stakeholders who provide the infor-
mation relevant to successful completion of the work. These should be identified.

• Are we able to get this information when it is needed?
Agile development is cyclical which means that some of the information, for
example customer support during the Sprint Planning, is required at agreed inter-
vals. On the other hand, the customer should provide information critical to the
development as soon as possible after it has been requested. As an example, the
discussed and agreed requirements might still include ambiguous elements which
should be clarified as soon as possible. This question aims to clarify if necessary
information can be obtained in a timely manner and if the customers are able to
provide it when it is needed.

• Are the sources of information committed to provide the information when
agreed?
In addition to the information itself, the source of the information is equally im-
portant. As explained earlier, the role of the agile customer is more demanding
than in traditional development. It is essential that the stakeholders providing the
information are willing and able to do so.

• Is there something that prevents us from getting this information?
As described in this paper, organizational characteristics may prevent the access
to information from other stakeholders. The possible obstacles should be identi-
fied and solutions to mitigate the problems developed.

This check-list is by no means conclusive, but it could be used as a starting point.
In addition, this list does not discuss what communication media should be used. Ex-

216 M. Korkala et al.

isting work promotes the usage of rich communication media, but since distributed
development can cross several time-zones, using interactive media can be extremely
difficult due to temporal distance. Thus, the decisions on what communication me-
dia to use is left for the collaborating parties based on their needs and capabilities.
As described, there is a wide collection of different communication solutions avail-
able.

References

1. Boehm, B. W., & Turner, R. (2003). Balancing agility and discipline: A guide for the per-
plexed.

2. Komi-Sirviö, S., & Tihinen, M. (2005). Lessons learned by participants of distributed software
development. Knowledge and Process Management, 12, 108–122.

3. Lee, G., DeLone, W., & Espinosa, J. A. (2006). Ambidextrous coping strategies in globally
distributed software development projects. Communications of the ACM, 49(10), 35–40.

4. Beck, K. (2000). Extreme programming explained: Embrace change. Upper Saddle River:
Addison-Wesley.

5. Layman, L., Williams, L., Damian, D., & Bures, H. (2006). Essential communication practices
for Extreme Programming in a global software development team. Information and Software
Technology, 48, 781–794.

6. Ramesh, B., Cao, L., Mohan, K., & Xu, P. (2006). Can distributed software development be
agile? Communications of the ACM, 49(10), 41–46.

7. Cockburn, A. (2002). Agile software development. Indianapolis: Addison-Wesley.
8. Korkala, M., Abrahamsson, P., & Kyllönen, P. (2006). A case study on the impact of customer

communication on defects in agile software development. In AGILE 2006 (pp. 76–86).
9. Gottesdiener, E. (2002). Requirements by collaboration. Upper Saddle River: Addison-

Wesley.
10. Daft, R. L., & Lengel, R. J. (1986). Organizational information requirements, media richness

and structural design. Management Science, 32, 554–571.
11. Daft, R. L., Lengel, R., & Trevino, L. K. (1987). Message equivocality, media selection, and

manager performance: Implications for information support systems. Management Informa-
tion Systems Quarterly, 11, 355–366.

12. Berger, H. (2007). Agile development in a bureaucratic arena—A case study experience. In-
ternational Journal of Information and Management Sciences, 27(6), 386–396.

13. Treinen, J. J., & Miller-Frost, S. L. (2006). Following the sun: Case studies in global software
development. IBM Systems Journal, 45(4), 773–784.

14. Holmström, H., O. Conchuir, E., Åkerfalk, P. J., & Fitzgerald, B. The Irish bridge: A two-
sided perspective on the customer-vendor relationship in offshore sourcing. Presented at 29th
Information Systems Research Seminar in Scandinavia, Helsingoer.

15. Melnik, G., & Maurer, F. (2004). Direct verbal communication as a catalyst of agile knowledge
sharing. In AGILE 2004 (pp. 21–31).

Chapter 15
Coordination Between Global Agile Teams:
From Process to Architecture

Jan Bosch and Petra Bosch-Sijtsema

Abstract Traditional process-centric software development has served software-
intensive companies well for decades. During recent years, however, the trends of
increased adoption of software product lines, software ecosystems and in particular
global software engineering have lead to unmanageable complexity and unaccept-
able overhead. In this paper we present research performed at three global compa-
nies in which we studied the relation between large-scale and agile approaches to
software development as well as current problems. In addition, by integrating the
best practices adopted at the case study companies, we present an alternative ap-
proach: architecture-centric software engineering. This approach largely removes
inter-team dependencies and provides much higher efficiency and productivity in
global software development contexts.

15.1 Introduction

For four decades now, software engineering continues to be a fascinating field. With
Moore’s law, the network law and the storage law doubling capacity every 18, 12 and
9 months, respectively, the size of the software systems on top of the hardware and
communication networks is growing at similar rates. One can find examples of this
within large Internet companies, e.g. around search engines, the IT systems support-
ing Fortune 100 companies and in the software ecosystems surrounding large plat-
forms, ranging from PC operating systems to mobile devices. As a consequence, the

P. Bosch-Sijtsema is visiting scholar at Stanford University, Stanford, CA, USA.

J. Bosch (�)
Intuit, Mountain View, CA, USA
e-mail: Jan@JanBosch.com

P. Bosch-Sijtsema
Aalto University School of Science and Technology, Espoo, Finland
e-mail: Petra@PetraBosch.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_15, © Springer-Verlag Berlin Heidelberg 2010

217

mailto:Jan@JanBosch.com
mailto:Petra@PetraBosch.com
http://dx.doi.org/10.1007/978-3-642-12442-6_15

218 J. Bosch and P. Bosch-Sijtsema

scale of software systems increases with an order of magnitude about every decade
and the architectural, tools, processes and organizational approaches need, to a large
extent, be reinvented at the same frequency.

Over the last decade, we can see three main trends drive the increasing complex-
ity of software development [6]. First, the widespread adoption of software product
lines [3, 4, 8] causes increasing dependencies between different organizational units
that earlier were independently developing their software products and services.
Second, the increasing use of global software development teams, where the devel-
opment of a large software system is spread over two or more continents. This is
causing informal or more formal approaches to software process to become signif-
icantly less productive due to the inefficiencies of coordination over geographical,
cultural and time zone boundaries [see e.g., 7, 11, 12, 16]. Third, there is an increas-
ing popularity of software ecosystems [6, 13], i.e. a company providing a software
platform and group of 3rd party developers that provide functionality on top of the
platform. The factors complicating software development in this context include the
lack of process mechanisms over corporate boundaries and the inherent tension be-
tween the interests of the platform company and the 3rd party developers. The focus
of this paper is on the second trend, i.e. distributed and global development.

During the 1990s and the early 2000s, the complexity of software development
was addressed through large software process efforts such as the Capability Maturity
Model [SEI@CMI] that tried to formalize and standardize the development process
to increase predictability of resources usage, time and quality. The negative impli-
cations of heavyweight process approaches were identified and acted upon by the
agile software development community. Over the last decade, several agile software
development process approaches have been developed, including XP [1], lean soft-
ware development [14] and scrum [15, 17]. In the context of smaller scale software
development projects, agile development projects have shown significant success.
Inspired by the agile approaches, especially for web applications and services, soft-
ware teams now focus on small team size, short release cycles, ranging from weeks
to several times per day, and experimentation in the market place, i.e. the notion of
perpetual beta.

Agile development has been widely documented [1, 2] as working well for small
(<10 developers) co-located teams. From Agile software literature it becomes clear
that agile teams work mainly co-located, have frequent face-to-face contact and
highly motivated team members work in self-organized teams. Techniques such as
pair-wise programming, daily standup meetings and sprint planning meetings are
relying to a large extent on the team being co-located. As a consequence, agile
development has shown success especially in small software development projects.

The key topic we address in this paper is the relation between large-scale and
agile approaches to software development. All process approaches discussed so far
assume what we refer to as an integration-oriented approach [6] to software devel-
opment, i.e. system integration is a major and effort consuming part of the software
development cycle as all system components need to be perfectly aligned with each
other in order to provide the required system functionality. As a consequence, re-
lease cycles, size of software teams, the process overhead, etc. are increasing dra-
matically over time and grow exponentially with increasing system size. Although

15 Coordination Between Global Agile Teams: From Process to Architecture 219

there are application domains where systems need to be highly integrated and the
consequences outlined above do not represent a competitive disadvantage, in most
domains this is not the case.

The premise that we put forward is that although both traditional software pro-
cess approaches and agile approaches propose mechanisms to deal with increasing
scale of software systems, the fundamental problem is that the coordination cost
of taking an integration-oriented, process-centric approach to software development
is fundamentally flawed. Process-centric assumes people performing certain tasks
as part of the process definition. The inherent assumption is that by formalizing
the interactions within and between teams, the pitfalls found in less mature project
organizations, e.g. unpredictability, major mismatches between components late in
the lifecycle, etc. can be avoided. Experience shows that this is indeed the case, but
the price that the organization pays for this is a degree of inefficiency that grows
exponentially with increasing system size. The root cause of this inefficiency asso-
ciated with large-scale software development is the coordination cost between all
the teams and individuals involved in the overall software system. Whereas process
approaches aim to structure and optimize these interactions and coordination efforts,
the consequence is that the symptoms are addressed and not the root cause.

Of the three trends complicating software development that we discussed earlier,
we believe that global software development, i.e. distributed development crossing
geographic, cultural and time zone boundaries, are particularly affected by the is-
sues discussed so far. This is because coordination efforts, in the end performed by
humans, are even more costly in cases characterized by geographic distance, mini-
mal overlap in working hours and cultural differences. Several examples exist where
the coordination cost in a global context were a, if not the, major factor in the failure
of a major software development effort.

The contribution of this paper is that we propose an alternative: rather than rely-
ing on process-centric coordination, we propose the use of the system architecture as
a mechanism for coordination and outline how to achieve inter-team coordination.
By basing software development on a software architecture that provides decoupling
and simplicity, large-scale software development can provide the same efficiencies
as small-scale development by providing individual teams, typically associated with
a system component, ease of development, independent releasing of components of
the system as well as allowing for easy incorporation of external developers and the
components developed by them.

The remainder of the paper is organized as follows. In the next section, we dis-
cuss large-scale software development as well as a number of definitions. After that
we present the case study companies in which we, primarily through participant-
observer case study research, studied the challenges of large-scale software develop-
ment. Subsequently, we discuss the problems of coordination in integration-centric
software development approaches. In the next section, we define the architecture-
centric approach to coordinating development teams. Finally, we conclude the pa-
per.

220 J. Bosch and P. Bosch-Sijtsema

15.2 Large-Scale Software Development

Although many development projects are small scale, many if not the majority of
software engineers work in the context of large-scale software development. We
define large-scale software development along three dimensions, i.e. size, team dis-
tribution and specialization. Size we define in terms of the number of individuals and
teams. The number of individuals ranges from tens at the low end to hundreds or
even thousands of engineers. Similarly, the number of teams ranges from a handful
to tens or more than a hundred.

The second dimension is distribution of teams. We define three levels of distribu-
tion, i.e. local, distributed and global. We consider software development local if all
teams are located at the same site and could, potentially, meet daily for face-to-face
meetings. Distributed teams do not have the ability to frequently meet personally,
but can compensate through technological means, e.g. telephone meetings, video
conferencing, etc. to have synchronous (same-time, different place) communication.
Global teams are located, as the name indicates, around the globe and have very few
overlapping working hours during the day. Communication tends to occur primarily
through asynchronous means such as email and file sharing. To illustrate the latter,
the time difference between California and India is 11.5 or 12.5 hours, depending
on the daylight savings schedule. As a consequence, global teams working on the
same system have no overlapping regular working hours. Inter-team communication
tends to be asynchronous, complemented with individuals at both sides organizing
telephone or video meetings during early mornings and late evenings. In Fig. 15.1,
we visualize the three types of team distribution.

The third dimension is the degree of specialization. In small-scale development,
each team member, independent of the job title, is aware of virtually everything

Fig. 15.1 Illustrating local, distributed and global teams

15 Coordination Between Global Agile Teams: From Process to Architecture 221

that is going on just by virtue of being part of the team. That, however, does not
scale to large-scale software development. Consequently, individuals within the or-
ganization need to specialize into specific tasks associated with specific subsystems
and information sharing becomes a formal activity with dedicated operating mech-
anisms associated with it.

Finally, throughout the paper, we use a number of concepts that require a more
precise definition. Coordination is a consciously organized relation between activ-
ities and forces [10], work tasks are divided over actors and the act of is making dif-
ferent people or things work together for a goal or effect. For coordination a number
of coordination mechanisms or instruments can be applied like direct supervision,
standardizations and interaction or communication. Communication (synchronous,
asynchronous and face-to-face) is an important mechanism used for coordination,
but other mechanisms for coordination exist, including the use of the software archi-
tecture as a coordination mechanism that requires minimal communication between
teams. We define integration as the manual process of combining the components
into a working whole. We define composition as the automated process of combin-
ing components into a working system.

15.3 Case Study Companies

The research and approach presented in this paper is based on a participant obser-
vation methodology applied by the authors in numerous software-intensive system
companies as well as in other industries. The participant observation techniques
were applied per case study and individual case study analysis was performed. As a
second step, the case study data were compared with help of comparative case study
analysis methods [9]. Data was collected in three global organizations by participant
observation, interviews and workshops over a period of 3 years per case company
(see Table 15.1 for an overview).

15.3.1 Case Company GLOembed

Case company GLOembed is a Fortune 100 company that builds a wide variety of
embedded systems for different markets. We mainly focus on the division that de-
velops products for the global consumer market, basically servicing all continents.
The business strategy of the company is focused on having a rich set of consumer
products in the market, while minimizing the development effort through the appli-
cation of software product line principles. The size of the software in the products
ranges in the several million lines of code. The development teams are distributed
across three continents, resulting in global development that requires careful coor-
dination as the company employs a product line approach. Although each product
is built from a standard platform, the development of the platform is not central-
ized, but rather the platform components are owned by distributed teams, but can

222 J. Bosch and P. Bosch-Sijtsema

still be used, extended and changed by product teams in other locations. The case
company does not work with agile teams as such, but has subsystem teams (build-
ing components) and product teams (who build products out of subsystems). The
teams are primarily co-located, although some are global, and intra-team coordi-
nation is mainly performed through same-site and same-place communication and
mostly through informal means. Coordination within the team is a relatively simple
tasks shared by all team members. Inter-team coordination is performed through ar-
chitects in whom the lead architect communicates all strategy related aspects to the
globally distributed teams.

15.3.2 Case Company GLOtelcom

Company GLOtelcom is a Fortune 100 company developing embedded products,
i.e. products that include mechanical, hardware and software parts. The company
releases several new products per year and uses a software product line approach to
decrease the per product software R&D expenditure. As a consequence a significant
part, i.e. more than half, of the software R&D is performed in the central platform
organization. The size of the software ranges in the 7 to 15 million lines of code
range. The company, being global, has development sites in several locations in Eu-
rope, the Americas and Asia, specifically India. The software platform organization
is, consequently, also distributed across the world. The organization is transitioning
to work more with agile teams (currently 30%). In these agile teams full component
responsibility was assigned to a geographically local team in Asia. Development
takes place in 2-week cycles; teams consist of 10–20 members and coordinate de-
velopment efforts mostly through informal means. The head of the team and lead
architect coordinate over geographical and architectural boundaries. The team has
bi-weekly integration processes with HQ through central architecture teams, inte-
gration teams and product management teams. The inter team coordination involves
a large amount of communication between many different teams and organization
members and units.

15.3.3 Case Company GLOsoftware

Company GLOsoftware is a Fortune 500 company developing software products
and services operating, primarily, on personal computers. The company’s products
address both consumer and business markets and the company releases several prod-
ucts per year, including new releases of existing products and completely new prod-
ucts. The products developed by the company range in the multi- to tens of million
lines of code and tend to contain very complex components that implement na-
tional and international regulations. Although significant opportunities for sharing
between different products exist, the company has organized its development based

15 Coordination Between Global Agile Teams: From Process to Architecture 223

on a product-centric approach, i.e. teams are organized around a product and tend
to be geographically local. Consequently, little or no sharing takes place between
teams. The company works for 50% with agile teams and 50% with TSP/PSP teams,
which are fully local (and co-located). It has new product development teams (who
have no interdependency with other teams) and component teams in large estab-
lished products in both Northern America and Asia. The teams are fully co-located
in either the US or in Asia and have a local leader. Intra team coordination is per-
formed by 4-week sprints and the normal agile coordination mechanisms such as
daily stand-up meetings, product backlog, etc. Coordination between teams is per-
formed centrally by the product management organization.

Table 15.1 Summary of the case studies

Summary of
cases

GLOembed GLOtelcom GLOsoftware

Number of de-
velopers

> 1000 > 1000 > 1000

Domain Consumer electronics Telecommunication Software development
Software
development
approach

No agile teams. Top
down approach

– Teams building sets
of components

– Product teams (set
of sub systems of
components build
into product)

Transition to agile teams
(+/−30%). Local teams
in Asia with one remote
team lead at Head quar-
ters.

50% agile teams and
50% TSP/PSP teams

– New product develop-
ment teams (no inter
team coordination)

– Component teams
in large established
products

Size of devel-
opment teams

20–40 team members 10–20 team members
(agile)

5–10 team members (ag-
ile)

Location Primarily co-located de-
velopment teams

Main development team
co-located with remote
team lead.

Primarily co-located de-
velopment teams

Teams all over the world Teams mainly in Europe
and Asia

Teams mainly US and
Asia

Coordination
within team
(intra team)

Teams primarily co-
located, but some
global. Coordination
mainly through informal
mechanisms

Co-located teams in
Asia, 2-week devel-
opment and informal
coordination. Much
contact with lead at HQ
in Europe

Teams fully local (co-
located) in either US or
Asia, with local leader.
Sprints of 4 weeks
periods, daily stand-
up meetings, product
back-log, etc.

Coordination
between teams
(inter team)

Coordination and com-
munication through
architects. Lead archi-
tect communicated to
all teams on strategy
related aspects

Bi-weekly integration
process.

– Central architecture
team

– Integration team
– Product management

teams

Many people involved.

Central coordination be-
tween teams by prod-
uct management organi-
zation.

224 J. Bosch and P. Bosch-Sijtsema

15.4 Coordination and Integration Inter-team Challenges

From our cases we found that the smaller (local) teams were able to coordinate their
work rather efficiently and effective as is confirmed by agile software development
literature. However, the main problems we found in the case studies were chal-
lenges between inter-team communication and inter-team coordination especially
for large-scale software development. These challenges can be placed on a contin-
uum on which on one side local inter-team coordination is placed and on the other
side of the continuum the global inter-team coordination is situated. The inter-team
coordination challenges increase when teams have to coordinate over different time
zones, cultures and countries (global).

Below we discuss the main problems we found from the case studies.

1. Top-down approach challenges or process-centric approach problems related to
inter-team interaction.

2. Interaction problems.

15.4.1 Top-Down Approach Challenges

Process-Centric Coordination All three cases applied a process-centric ap-
proach for inter-team coordination for all phases of the software development lifecy-
cle, including road mapping, requirements, dependency management during devel-
opment, API evolution, integration and release management. Case study GLOem-
bed applied a model in which only architects between the teams communicated
with each other and a lead architect traveled to all the different team sites to com-
municate about the strategic plans and road maps. Case study GLOtelcom had local
teams in India, but the lead architects were at headquarters. Furthermore, road map-
ping, product management and integration were done by numerous meetings that
either took place in person at the headquarters, requiring all remote team represen-
tatives to travel, or through teleconferencing, requiring remote team members to
attend outside work hours. Case GLOsoftware had a central organized inter-team
coordination process lead by a central product management department who com-
municated to all the different component teams. All these teams were dependent on
a central and top-down unit for inter-team coordination, which implied challenges
in amount of communication (case GLOtelcom and GLOsoftware) and coordination
needed for integration, and high dependency on one lead architect (GLOembed). In
all cases, the amount of effort that was spent on non-value adding activities was very
high and increasing over time as more and more items were identified that required
collaboration between teams.

Integration Costs All three cases applied some sort of process-centric approach
for coordinating work between teams for large-scale software development. How-
ever, we found that all cases had high and unpredictable product integration cost.

15 Coordination Between Global Agile Teams: From Process to Architecture 225

We observed in all case study companies that during product integration, incompat-
ibilities between components are detected during system tests and quality attributes
break down in end-to-end test scenarios. This causes a costly and unpredictable
integration process that, being at the end of the development cycle, causes major
difficulties at the affected companies.

Coordination and Communication Costs Between Teams A problem observed
in all case study companies is that when decoupling between shared software assets
is insufficiently achieved, excessive coordination cost between teams are one out-
come. One might expect that alignment is needed at the road mapping level and to
a certain extent at the planning level. When teams need to closely cooperate dur-
ing iteration planning and have a need to exchange intermediate developer releases
between teams during iterations in order to guarantee interoperability, the coordina-
tion cost of shared asset teams is starting to significantly affect efficiency. Case study
GLOtelcom showed an example where communication and coordination costs were
very high due to a large amount of integration meetings between all the different
involved units for large-scale software development.

Unintended Resource Allocation Resource allocation is a tool used by compa-
nies to align resources with the business strategy. In practice, however, at two of the
case study companies, i.e. GLOtelcom and GLOsoftware, teams frequently assign
part of their resources to other software components and their associated teams. The
reason is that they are dependent on the other components to be able to get their own
functionality developed and released. One can view this as a lack of road mapping
activities and inter-team coordination. The consequence is again, that the coordina-
tion costs between teams easily become excessive, resulting in a general perception
in the organization that significant inefficiencies exist.

Insufficient Pre-iteration Cycle Work In some of the teams in case company
GLOsoftware, features that cross component boundaries were underspecified be-
fore the development cycle started and were “worked out” during the development.
In practice, this requires close interaction between the involved teams and causes
significant overhead that could easily be avoided by more upfront design and inter-
face specification. A consequence of this approach is that it builds an “addiction”
between teams in that there is a need for frequent (daily) developer-to-developer
drops of code that is under development in order to avoid integration problems later
on. This, in turn, often results in largely manual testing of new functionality because
requirements solidify during the development cycle and automated tests could not
be developed in time.

15.4.2 Interaction Problems

Global Interaction Problems Between Teams Interaction between global teams
implies more challenges due to time zone differences, cultural and language differ-
ences and, often, different work practices. For example, in one organization that we

226 J. Bosch and P. Bosch-Sijtsema

worked with, case company GLOtelcom, teams were geographically split, with the
team lead architect and senior engineers located at the main site of the organization
in Europe and the remaining engineers in a remote site in India. This required sig-
nificant communication taking place over geographical boundaries resulting in very
inefficient development processes as well as a de-motivated team at the remote site,
due to a lack of autonomy and responsibility of the remote site. Another example is
case company GLOsoftware in which teams from the US cooperate with teams from
Asia with a 12.5 hour time difference. Inter-team communication and coordination
can only happen asynchronously or by traveling to the different locations to meet
face-to-face. In GLOembed the lead architect travelled to all the global sites to visit
the teams in person to discuss road mapping and strategic decisions.

Maintaining Motivation in Remote Teams In all case companies, we observed
behavior at the main site of the organization that would keep the most interesting
and strategic work at the main site and outsource the routine and less strategic work.
In addition, there was a strong desire to maintain control over work that took place
at the remote sites and to exercise that control through direct supervision of remote
individuals and teams. This was caused both by a sense of protectionism at the
main site, where work at the remote site was considered threatening. It also was a
consequence of applying the same operating mechanisms that are applied locally,
where frequent face to face contact is not experienced as supervision, in a global
context where the interaction tends to become much more formal. The consequence
was significantly reduced motivation and retention in the remote sites. This may turn
into a self reinforcing system if work performed at the remote sites is of insufficient
quality, or at least perceived to be, which further reduced trust in the main site to
delegate work to the remote site.

Low Productivity In case study company GLOembed and GLOtelcom, the pro-
ductivity of teams as well as of the overall system integration was very low in the
cases where teams were internally distributed and where the coordination between
teams was very process-centric with extensive coordination taking place during ev-
ery phase of the lifecycle. Especially during systems integration, where the software
assets from the various teams are brought together, many incoherencies were iden-
tified, despite the coordination efforts during the development process.

Table 15.2 presents a summary of the observed problems on inter-team coordi-
nation of both local teams compared to organizations with global agile teams that
need integration between the teams.

15.5 Coordination Through Architecture

Throughout the chapter, we have presented the viewpoint that the root cause of the
inefficiency associated with large-scale software development is concerned with the
amount of coordination that is required between teams. The problems discussed ear-
lier in the chapter are either a direct consequence of that root cause or can be traced

15 Coordination Between Global Agile Teams: From Process to Architecture 227

Table 15.2 Observed problems with process-centric coordination approaches between agile teams

Observed problems in inter-
team coordination

Local Global

Process-centric coordination Relatively inexpensive due to
largely informal, face-to-face
communication. Broad inter-
faces between teams

High costs
– Dependency on archi-

tects/central units for
inter-team coordination
tasks

Integration cost Lower to medium cost. Pro-
ductivity and outcome higher
(faster)

High cost
Low productivity

Communication & coordina-
tion cost

Lower communication and
coordination costs.
– Daily face-to-face or syn-
chronous mediated interac-
tion

High communication and co-
ordination costs. Very costly
– Inconvenience due to time

differences
– Quality of interaction

lower
– Technology solutions

Interaction problems Interaction between teams
easier because of close prox-
imity, same time zone and
similar language, culture and
work practices

Problems with time zones,
cultural and language differ-
ences, differences in work
practice. Influence coordina-
tion and communication cost

back to it. Addressing this root cause is conceptually very simple: remove all need
for inter-team coordination. That would allow small, agile teams to develop and re-
lease independently and increase efficiency of software development tremendously.
However, the teams are still building solutions that are part of a larger system and
therefore cannot be completely independent. The approach that we, based on our
experience with Web 2.0 companies and software ecosystems, describe here is to
move any remaining coordination needs from the process level to the architecture.
This, in effect, replaces manual work with an automated solution.

The cost associated with process-centric coordination is much higher in a global
context than in a local context due to the communication inefficiencies. Develop-
ment approaches that rely on significant inter-team communication perform poorly
in global and distributed contexts. The amount of coordination between teams can
be reduced to a quite significant extent compared to what traditional software devel-
opment approaches dictate. Below, we discuss the coordination needs for each stage
of a traditional software development lifecycle.

15.5.1 Road Mapping

Traditionally, the road mapping process outlines high-level features and assigns
these to releases of a large system. Assuming a release frequency of 6 to 12 months,

228 J. Bosch and P. Bosch-Sijtsema

every release contains several new features. The road mapping process requires the
organization to decide on the relative priority of the things that it could build. In
order to decide on this, the effort associated with each high-level feature needs to
be estimated. The effort estimations are naturally rather coarse and lack accuracy,
which often affects the latter stages quite significantly.

The importance of an accurate ROI (return on investment) and effort estimation
for each high level feature causes most organizations to involve people from virtu-
ally every function and team involved in the development, sales and deployment of
the system. Especially for large systems, this often means that several tens of people
are involved.

In the architecture-centric approach the organization translates its business
strategy into a number of domains of functionality where it wants to see sig-
nificant improvement. The teams take these domains as input for determining
what to build in the next iteration. However, as discussed in the next section,
the organization does not plan and order the exact functionality to be built but
instead relies on the teams to optimize.

For the organization, it means giving up control and predictability in terms of the
functionality delivered. However, it is important to realize that the notion of control
and predictability tends to be an illusion in most companies.

15.5.2 Requirements

In traditional development, at the start of every iteration the high-level features as-
signed to this iteration are translated to more detailed system level requirements.
These requirements are, in turn, translated to component level requirements. At this
stage the overlapping with other activities starts in earnest as the process of trans-
lating system level requirements to component level requirements requires active
involvement of the architects and team leads to make sure that the requirements
allocation is appropriate and that the effort estimations are supported by the teams.

In the architecture-centric approach, there is no centralized requirement man-
agement process. Each team, which is associated with a component in the
system, evaluates the domains in which progress is desired, complements that
with its own customer understanding and announces to the organization what
it intends to release at the end of the iteration. There is no coordination of
requirements and there is a risk that more than one component team attacks
related or similar functionality. On the other hand, because there is no coordi-
nation between teams, no effort was lost on non-value adding activities.

15 Coordination Between Global Agile Teams: From Process to Architecture 229

15.5.3 Architecture

The next activity in development is to determine the impact of the new requirements
on the architecture and to design the changes to the architecture. This typically re-
sults in added and removed components, but the primary area of concern is often
the impact on interfaces between existing components and, by extension, the teams
responsible for these components.

As we discussed earlier in the chapter, in traditional software development, the
architecture is often underspecified and teams are at liberty to develop interfaces
between their components during development in mutual discussion. This may seem
efficient as it allows for working in a decentralized fashion, our research at the case
study companies as well as with other companies shows that architecture is the one
area where discipline needs to be enforced. For every problem not handled by the
architecture, a process coordination mechanism needs to be put in place to allow
teams to release the system.

In architecture-centric development, component teams not only announce the
requirements but also the changes to their component from an external per-
spective, including interfaces to be added, deprecated and removed by the end
of iteration. A separate team manages the architecture, with a focus on com-
positionality and backward compatibility.

15.5.4 Development

The fourth activity is development. The case study companies had, to a significant
extent, adopted agile development methods with four to six week development cy-
cles. Ideally, development takes place in isolation from other teams so that each
team can be as effective as possible. In practice, the teams need to spend a lot of
time aligning their development effort with other development teams, test teams
and the integration team.

The high coordination cost was caused by several of the issues discussed earlier
in the chapter, but two of the key drivers were the lack of architectural specification
and concurrent development of functionality. Teams spent too little time during the
preparation of the iteration on analyzing and designing detailed changes to the com-
ponent interfaces with the intention to “work it out” during the development cycle.
Especially in global development this is particularly inefficient. The second main
cause of coordination overhead is concurrent development. System-level features
often require changes in multiple components and these changes typically have de-
pendencies on each other. Concurrent development requires teams to interact during
the development stage to work out compatibility issues and detailed assignment of
responsibilities.

230 J. Bosch and P. Bosch-Sijtsema

Architecture-centric development is concerned with facilitating independent
development by component teams and to minimize the number of unproduc-
tive hours spent on coordination while maximizing the amount of productive
hours. As the team has announced the interface changes, knows what back-
ward compatibility is required, knows what functionality it wants to build and
the other component interfaces to develop against, this stage should allow the
team to focus solely on development. One of the principles that need to be en-
forced in this context is that no team can initiate development on functionality
that is dependent on functionality that is under development by another team.
Although this at first may seem to slow development as the implementation
of a system level feature requires multiple iterations depending on the number
of dependencies, in practice the removal of coordination cost and the short
cycles for most agile teams outweighs any benefits that may be achieved by
concurrent development.

15.5.5 Integration or Composition

In traditional development, the development of the next version of the components
is followed by an integration phase. Here the fruits of the work of the various devel-
opment teams are brought together and integrated in a product or platform release.
As discussed in the problems statement, in the case study companies, the integra-
tion stage is very effort consuming and unpredictable. All case study companies
used forms of continuous or frequent integration. However, the SCM (source con-
trol management) and test infrastructure did not allow for full coverage and hence
the companies still used an explicit integration and validation phase before releasing
the new product system to market.

The integration phase is especially painful in global software development as
there is enormous need for interaction between the integration team and all of the
component teams. During system testing, many issues are found that require collab-
orative resolution between teams. Although the amount of interaction needed may
be limited, in global contexts there often are significant delays due to time zone dif-
ferences, causing many issues that could be resolved in minutes or a few hours to
become part of a daily rhythm instead.

In architecture-centric development, there is no integration phase, but instead
the system is focused on composition. Each component team releases fre-
quently, but uncoordinated with other teams. When a component team re-
leases, its component has to pass the automated SCM and test system. The
automated test system is improved in response to any problem that manages

15 Coordination Between Global Agile Teams: From Process to Architecture 231

to get through the system and is only surfaced after deployment. As a conse-
quence, over time the quality of the validation reaches a very high level. The
traditional approach is to put process steps in place to avoid problems to oc-
cur, but this requires coordination and manual effort. This additional focus on
the automated SCM, test system and deployment infrastructure removes the
need for an unpredictable and effort consuming integration phase and allows
teams to release their components independently.

15.5.6 Architecture-Centric Software Engineering

Architecture-centric software engineering focuses on minimizing the inefficiencies
associated with traditional process-centric development. The approach adopts a set
of principles that is different and often initially uncomfortable in corporate contexts.
However, there is of course a clear parallel to the development approaches found in
the open-source software communities.

The key enabler for architecture-centric software engineering is to minimize de-
pendencies between components. Although this central to architecture design, ar-
chitects often de-prioritize decoupling to achieve other attributes. In [5], we present
the notion of software ecosystems where architecture decoupling is paramount for
its success. The principles it introduces are valuable in this context as well.

The concerns in a corporate context are often related to the loss of control over
R&D investment, resource allocation and product roadmaps. Our experience from
the case study companies as well as other organizations is that the perception of
control often is an illusion. Either the R&D organization operates at such a low
expectation level that any organization can meet it, or plans and milestones are fre-
quently missed in unpredictable ways.

Architecture-centric software engineering removes so many inefficiencies from
the software development process that the output of the organization is much higher,
even if senior management has less visibility into the operational issues in the R&D
organization.

Although none of the case study companies has implemented all aspects of the
architecture-centric software engineering approach, each employs some of the prac-
tices. The consequences of globalizing their software development while interested
in adopting more agile development approaches necessitated each of the case study
companies to change some of their, initially process and integration-oriented, prac-
tices and adopt a more architecture-centric approach. Based on our research at these
companies, Web 2.0 companies and in the context of software ecosystems, we are
convinced that the presented approach provides enormous benefit to organizations
that adopt it.

232 J. Bosch and P. Bosch-Sijtsema

Practical Tip: Illustrate the lack of predictability in large-scale software devel-
opment by collecting and analyzing historical data. In most companies, there
is a significant gap between plan and outcome. This data can then be used to
break the illusion of control and to create an opening for experimenting with
a new approach. Once the experiment is approved, make sure to deliver real
business value as soon as humanly possible and collect data on relevant met-
rics, e.g. productivity or time to customer of new functionality. Select compa-
rable development efforts using the traditional approach to support the transi-
tion from a belief that the new approach is better to a quantitatively supported
position that the new approach is superior.

15.6 Conclusions

Over the last four decades, software engineering has continuously evolved to ad-
dress the continuous and enormous increase in complexity due to sheer system size,
the complexity of the application domains and level of interaction required with
other embedded and IT systems. The case study companies reported on in this paper
have been very successful in applying traditional software development approaches
to their product development and have, as a consequence, seen significant growth.

With increased globalization of software development and the increasing popu-
larity of agile software development approaches, it has become blindingly obvious
that a process-centric approach to large-scale software development over time re-
sults in unmanageable complexity and unacceptable inefficiency. In the paper, we
discuss several problems, categorized in four categories, i.e. process-centric co-
ordination, integration cost, communication and coordination cost and interaction
problems. These problems can largely be attributed to one root cause: dependen-
cies between components in the architecture and the teams responsible for these
dependencies.

Based on our research with the case study companies, but also with a several
other companies as well as software ecosystems, we propose an alternative: rather
than relying on process-centric coordination, we propose the use of the system ar-
chitecture as a mechanism for coordination and outline how to achieve inter-team
coordination. By basing software development on a software architecture that pro-
vides decoupling and simplicity, large-scale software development can provide the
same efficiencies as small-scale development by providing individual teams, typ-
ically associated with a system component, ease of development, independent re-
leasing of components of the system as well as allowing for easy incorporation of
external developers and the components developed by them.

The contribution of the paper is twofold. First, it presents the results of a case
study into the implications of applying process-centric, integration- approaches in
large-scale oriented software development based on longitudinal case studies at

15 Coordination Between Global Agile Teams: From Process to Architecture 233

three large organizations. Second, it presents architecture-centric software engineer-
ing as a novel approach that combines the best practices from these companies, as
well as from companies in the Web 2.0 and software ecosystem industries.

References

1. Beck, K. (1999). Extreme programming explained: Embrace change. Boston: Addison-
Wesley.

2. Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed.
Boston: Addison-Wesley.

3. Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a product
line approach. London: Pearson Education (Addison-Wesley & ACM Press).

4. Bosch, J. (2002). Maturity and evolution in software product lines: Approaches, artifacts and
organization. In Proceedings of the 2nd software product line conference (SPLC) (pp. 257–
271), San Diego, USA, 19–22 August 2002.

5. Bosch, J. (2009). From software product lines to software ecosystems. In: Proceedings of the
13th international software product line conference (SPLC 2009), August 2009.

6. Bosch, J., & Bosch-Sijtsema, P. M. (2010). From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems and Software,
83, 67–76.

7. Carmel, E., & Agarwal, R. (2001). Tactical approaches for alleviating distance in global soft-
ware development. IEEE Software, 1(2), 22–29.

8. Clements, P., & Northrop, L. (2001). Software product lines: Practices and patterns. Boston:
Addisson-Wesley.

9. Eisenhardt, K. M. (1989). Building theories from case study research. Academy of Manage-
ment Review, 14(4), 532–550.

10. Hatcheul, A. (2001). Coordination and control. In A. Sorge & M. Warner (Eds.), The IEBM
handbook of organizational behavior (pp. 320–339). London: Thompson Business Press.

11. Herbsleb, J. D., & Moitra, D. (2001). Global software development. IEEE Software, 18(2),
16–20.

12. Kraut, R., Steinfield, C., Chan, A. P., Butler, B., & Hoag, A. (1999). Coordination and virtual-
ization: The role of electronic networks and personal relationships. Organisation Scientifique,
19(6), 722–740.

13. Messerschmitt, D. G., & Szyperski, C. (2003). Software ecosystem: Understanding an indis-
pensable technology and industry. Cambridge: MIT Press.

14. Poppendieck, M., & Poppendieck, T. (2003). Lean software development: An agile toolkit.
Boston: Addison-Wesley.

15. Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams.
IEEE Software, 17(4), 26–32.

16. Sanwan, R., Bass, M., Mullick, N., Paulish, D. J., & Kazmeier, J. (2006). Global software
development handbook. New York: CRC Press.

17. Schwaber, K. (2001). Agile software development with Scrum. New York: Prentice Hall.

Chapter 16
Considering Subcontractors in Distributed
Scrum Teams

Jakub Rudzki, Imed Hammouda,
Tuomas Mikkola, Karri Mustonen,
and Tarja Systä

Abstract In this chapter we present our experiences with working with subcontrac-
tors in distributed Scrum teams. The context of our experiences is a medium size
software service provider company. We present the way the subcontractors are se-
lected and how Scrum practices can be used in real-life projects. We discuss team
arrangements and tools used in distributed development teams highlighting aspects
that are important when working with subcontractors. We also present an illustrative
example where different phases of a project working with subcontractors are de-
scribed. The example also provides practical tips on work in such projects. Finally,
we present a summary of our data that was collected from Scrum and non-Scrum
projects implemented over a few years. This chapter should provide a practical point
of view on working with subcontractors in Scrum teams for those who are consid-
ering such cooperation.

16.1 Introduction
In this chapter we discuss industrial experiences in organising distributed Scrum
teams that include members from subcontracting organisations. We present specific

J. Rudzki (�) · T. Mikkola · K. Mustonen
Solita Oy, Satakunnankatu 18 A, 33210 Tampere, Finland
e-mail: jakub.rudzki@solita.fi

T. Mikkola
e-mail: tuomas.mikkola@solita.fi

K. Mustonen
e-mail: karri.mustonen@solita.fi

I. Hammouda · T. Systä
Tampere University of Technology, Korkeakoulunkatu 1, 33101 Tampere, Finland

I. Hammouda
e-mail: imed.hammouda@tut.fi

T. Systä
e-mail: tarja.systa@tut.fi

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_16, © Springer-Verlag Berlin Heidelberg 2010

235

mailto:jakub.rudzki@solita.fi
mailto:tuomas.mikkola@solita.fi
mailto:karri.mustonen@solita.fi
mailto:imed.hammouda@tut.fi
mailto:tarja.systa@tut.fi
http://dx.doi.org/10.1007/978-3-642-12442-6_16

236 J. Rudzki et al.

context of working with subcontractors in such teams. We discuss details of our
experiences in subcontracting [1] and in Scrum projects [2] that have been reported
in our previous publications. However, in this chapter we focus on the practical
aspects of cooperating with subcontractors in distributed Scrum teams.

The practices that we discuss should be particularly helpful for companies that
are planning to use subcontractors in their distributed Scrum teams. However, those
who already have such teams, can use all or selected recommendations in the later
parts of this chapter. First we present, in Sect. 16.2, the process of selecting subcon-
tracting partners we used. Next in Sect. 16.3, we discuss agile practices and tools
that have been used in our distributed and subcontracted project teams. Those prac-
tices and tools are rather generic agile practices, but their specific aspects, for ex-
ample quick feedback, are particularly important in the context of distributed teams
with subcontractors. In Sect. 16.4 we go through a life-cycle of an example dis-
tributed project phases where we present how the agile practices and tools are used
when working with subcontractors. Finally, in Sect. 16.5, we conclude this chapter
with a summary of findings and possible future work. However, before going into
details we should present the company (Sect. 16.1.1), which is the context for this
work, and present our methodology (Sect. 16.1.2) and main results (Sect. 16.1.3) as
an executive summary for the readers who are not interested in the actual details.

16.1.1 Company Context

As the experiences that we discuss have been gained in a context of a specific com-
pany, we will first present this context. Our experiences have been obtained through
a few years of cooperation with subcontractors at Solita.1 Solita is a Finnish software
service provider (SSP) that specialises in providing high quality software services in
various domains. Since 1996 Solita has offered its services to customers in different
domains, ranging from media, telecommunication, to public sector institutions and
others. The diversity of customers and provided solutions demand very close coop-
eration with end customers, which requires a special approach to team organisation
and choice of processes used. Additionally, the company has been changing inter-
nally over the years and has grown into a medium size company of 150+ specialists
with two offices in two cities in Finland. These details give some perspective to the
experiences we report on.

16.1.2 Methodology

Our findings on subcontractors in Scrum teams are based on our experience and the
study we have conducted to find out the differences between Scrum and non-Scrum

1www.solita.fi.

http://www.solita.fi

16 Considering Subcontractors in Distributed Scrum Teams 237

projects. The summary of that study has been already published [2]. To obtain the
data we prepared five questions following the Goal Question Metric (GQM) [3]
methodology. We found this method to be most suitable for finding out how Scrum
teams performed comparing to other teams. In this chapter we focus only on the
study parts that are most relevant for the subcontractors involvement in Scrum
projects.

Our GQM questions were as follows:

• Q1: Do the current agile practices benefit projects? We used three metrics Cus-
tomer Satisfaction, Profitability, and Team Performance to answer this question.

• Q2: Does the customer’s direct involvement in the project benefit project suc-
cess? We distinguished three levels of customer involvement (none, partial and
full involvement) and grouped project results based on this metric.

• Q3: Is the communication different in agile projects? We used two metrics the
Communication Factor (time spend by the whole team for communication tasks)
and Project Manager time (time spent for management tasks).

• Q4: How to adapt agile practices to suit commercial needs? This question was
answered based on interviews with project leaders of all the investigated projects.

• Q5: What kinds of projects suit agile practices? This question was based on the
project results and interviews with project leaders.

The data was collected based on interviews with Solita’s project leaders and data
was also obtained from IT systems that track project work time and financial data.
We would like to clearly indicate that the data we collected was gathered with as
much care as it was possible at the time, but it is not a perfect collection. Our study is
limited to only one specific company. Therefore, our study is placed in the context of
a medium size software service provider. Cases dealing with larger distributed teams
can be found in literature, for example in a report on distributed teams developing
Windows Vista [4].

Additionally, the collected data has also limitations regarding its quality, which
might have affected metrics used for measuring customer satisfaction and team per-
formance in particular. Both of the metrics were based on the subjective judgement
of the project managers. Despite those limitations the data used as indicative ref-
erence point may be useful for other researches or practitioners who seek some
references from similar contexts.

16.1.3 Main Results

All of the analysed projects amounted to 18 projects realised between 2006 and
2008. From those projects 8 projects were Scrum projects, which are most relevant
for this study. We present more detailed data in the Appendix, while in this section
results mostly relevant to subcontractors in Scrum teams are briefly discussed.

Findings to the question Q1: Do the current agile practices benefit projects?
showed that Scrum projects performed in general better than traditional projects.

238 J. Rudzki et al.

The number of subcontractors did not seem to be a factors impacting projects suc-
cess in the analysed cases.

The next question that was relevant to subcontractors was Q3: Is the commu-
nication different in agile projects? An answer to this question showed that both
Communication Factor and PM time were usually higher in projects with one sub-
contractor in a team. That can be explained by a need of additional formal commu-
nication with a person who is on a remote side. In general we found that commu-
nication factor and PM time increased in Scrum projects, but the increase was not
very high (within a few percent points) comparing to traditional projects.

The question Q4: How to adapt agile practices to suit commercial needs? is the
most relevant to work with subcontractors. The answers included observations and
suggestions about the practises used in projects. Those suggestions and observations
are presented in details in Sect. 16.3 and illustrated in the example presented in
Sect. 16.4.

Finally, in the question Q5: What kinds of projects suit agile practices?, which
was based on data analysis and interviews, we did not find any absolute limits for us-
age of Scrum and subcontractors in various project types. Scrum projects performed
well even in cases where the teams included subcontractors and were distributed
across more than two locations. Most of the Scrum projects were implementation
projects where Scrum and subcontractors were used during development phase.

Generally, our findings presented in this chapter indicate better performance in
Scrum-driven projects comparing to more traditional methodologies. In the con-
text of work with subcontractors the quick feedback and organised communication
seem to be the success factors that help project performance. We also discuss a sub-
contractor selection process where among other aspects the compatibility in terms
of methodologies used and culture are criteria taken into account during the selec-
tion. Finally, we provide examples of tools that can be used in distributed projects
to provide easy access and communication channels between team members from
different organisations.

16.2 Subcontractors in an SSP Company

Having defined the company profile in which we operated we can discuss the pro-
cesses we used for selecting subcontractors. The selection processes are important
from the cooperation with subcontractors point of view that we describe as an ex-
ample project walkthrough in Sect. 16.4.

The selection of a suitable subcontracting partner is especially important in the
case of close cooperation between the development team that includes (or consists
of) subcontractors and the end customer. In Solita we used a subcontractor selec-
tion process that has been built to suit our specific needs. The process was based on
our experiences and existing best practices, which for example include a study on
the quality in virtual teams and culture aspects of such teams [5], which was based
on sourcing model eSCM-SP [6, 7]. We have already reported details of this pro-
cess [1], and therefore in this section we focus on the elements that are most relevant
to the creation of distributed teams with subcontractors.

16 Considering Subcontractors in Distributed Scrum Teams 239

16.2.1 Why Subcontractors?

There are many reasons for using subcontractors, the main ones include access to
specialists, flexibility in team creation without the need to temporarily extend own
staff, and potential differences in costs. Usage of specialists from other software
organisations, namely subcontractors, requires careful selection of those partners as
well as good team organisation. Subcontracting in a software service provider (SSP)
company differs from that of product-orientated companies. The main difference is
the direct interaction of subcontractors with the end customer, which usually does
not take place in the case of product development.

In the case of SSP, the company serves its customers by delivering customised
solutions specific to customer’s needs. These solutions may differ in technology and
nature of the solution, which may be a software implementation, but it can also be
specialised consulting service provided to the customer in the area of the expertise
of the SSP. However, in any case a team developing a solution for a customer works
very closely with the customer. In that setting the team members, including the
subcontractors, must be suitable for such a work environment. This is one of the
reasons why Solita carefully selects subcontracting partners.

16.2.2 Distributed Development Stakeholders

Teams that work in the context of SSP companies generally involve a few stakehold-
ers whose roles we should discuss in order to understand their roles in the distributed
development teams. We can list three main stakeholders involved directly in devel-
opment of specific software solutions:

• Software Service Provider is the party that orchestrates the whole development
process of a solution. SSP is responsible for contacts with other parties (i.e. cus-
tomers and possible subcontractors). SSP is responsible for delivering a solution
that the Customer expects. SSP plays the central role in the case of customised
solution development.

• Subcontractor is the other specialised software organisation who provides their
experts to SSP’s teams. The subcontractor takes the responsibility for their staff
but does not have to be directly involved in specific solution development as a
whole. Only selected experts from Subcontractor’s team are directly involved in
development.

• Customer is the ordering party who expects a specific solution to help its busi-
ness. The Customer may be involved in the solution development to a different
degree, depending on the needs and expectations. In the case of teams consisting
of subcontractors the customer is usually not interested in the details of the team
organisation, but the customer is very interested in the results of the team work.

These three stakeholders interact during the solution development process. Fre-
quently, all of these stakeholders are distributed, which contributes to the complexity

240 J. Rudzki et al.

of cooperation. Furthermore, in some cases the stakeholders’ roles may be mixed,
for example, the original SSP organisation may be hired by another SSP. In that case
the original SSP is a subcontractor to the hiring SSP, while the original SSP still has
its own subcontractors. This may make the organisational complexity difficult to
grasp, but the basic roles can still be recognised and the processes and tools specific
to given role are applicable.

16.2.3 Subcontractor Selection Process

The subcontractor selection process used at Solita consists of a few stages. The
process’ steps are depicted in Fig. 16.1. First, we performed an initial search of
all possible candidate companies. Already at this stage the search was limited by
location and technology. In our case the location was limited to a few European
countries that from the Finnish perspective can be regarded as nearshore locations.
This location limitation was imposed in order to have a possibility of arranging face-
to-face meetings quickly, and additionally to reduce timezone problems in the case
of every day communication.

The next step was sending initial offer requests to companies that were selected
from the results of the initial search. Then the replies were analysed for basic com-
pany details and possible pricing provided by the potential subcontracting partner.
Then arranging interview could start. As preparation for the interview, the potential
subcontractor companies were sent a questionnaire with questions about the can-
didate’s organisation. If such a company has experience with agile techniques, or
at least some of them, it is likely that cooperation with the company at that level
will be more straightforward than in the case of companies unfamiliar with such
techniques. Additionally, our questions were related to typical projects done at the
candidate company. We asked, for example, about project size, typical length of
projects, roles in the projects and customer types. Answers to those questions pro-
vided information about the candidate company and its suitability to work in SSP
teams. We conducted the actual interviews with candidate companies as teleconfer-
ences. We also discussed in more details the answers to our questionnaire at that
stage giving us clarifications to answers that might not be clear after reading the
questionnaire answers.

After conducting the interviews we selected a few companies that seemed to be
the most suitable candidates and we arranged an on-site meeting in the candidate’s
premises. One of the reasons for meeting in the candidate office was to see the
environment in which the people work there. For example, the Internet connection
quality, open or closed office space, and equipment can provide some indication
of company infrastructure and the culture, which both are relevant in the case of
cooperation with SSP’s projects. The visits also gave us a chance to talk directly to
specialists from potential subcontracting partners.

Finally, after conducting the interviews and analysing the data the subcontracting
partners could be chosen. The partners selected over a certain period of time are

16 Considering Subcontractors in Distributed Scrum Teams 241

Fig. 16.1 Subcontractor selection phase [1, p. 227]

likely to differ in terms of their technological expertise, but they are likely to have
similar cultures. Further cooperation will reveal possible differences and areas for
improvements. We present an example of cooperation with subcontracting partners
in a project in Sect. 16.4.

242 J. Rudzki et al.

16.3 Subcontractors in Scrum Teams

Before going into details of software development in distributed subcontracted
Scrum teams, we discuss different agile practices and tools used in projects. We
focus on Scrum methodology, but we also discuss other agile supporting practices
used in Scrum projects. These practices and tools can be used together or selec-
tively depending on needs. However, certain practices should always be followed
in the case of agile projects. There are many practices and tools that could be dis-
cussed, however, we are focusing on the ones that have been used at Solita. The
practices and tools we discuss have been gathered based on the literature reports,
experiences of our customers, and our own observations over years [2]. A good
overview of agile practices in a distributed team provides, for example, an article by
Martin Fowler [8].

16.3.1 Scrum

The most prominent agile practice used by us is Scrum methodology [9]. Scrum has
been researched rather extensively in recent years, including the initial methodol-
ogy description by Schwaber [9] as well as later applications in distributed teams
reported, for example, by Sutherland et al. [10] or by Paasivaara et al. [11]. This
methodology consists of a few elements that practically help to organise projects.
One of the most important aspects of Scrum is a quick feedback loop, which bene-
fits projects in cases where corrective actions must be taken. A team performs work
according to a feature list defined in a product backlog. The features reflect cer-
tain functionalities that the end customer wants to have in the final product. Please
note that in this case a product does not have to refer to a real marketable product,
but rather a tailored software solution, which helps the customer to achieve certain
business goals.

The features are implemented in an order determined by the priorities set by a
product owner, who is responsible for setting the priorities according to the business
value of particular features. The product owner selects features that should be im-
plemented in a coming sprint. A sprint is a period of time dedicated to development
of selected features.

An overview of Scrum activities in a project is presented in Fig. 16.2. For each
sprint there is always a planning session when the implementation scope for the
sprint is decided. Then status meetings are held on daily basis. At the end of a
sprint the team demonstrates the implemented features. Also then the past sprint is
analysed as a retrospective and all team members have an opportunity to comment
on the work done. Retrospectives are important in distributed teams as they encour-
age open communication. Finally, either the development continues in following
sprints, or it is finalised with a delivery.

16 Considering Subcontractors in Distributed Scrum Teams 243

Fig. 16.2 Scrum activities overview

Practical Tip: Our experiences show the usefulness of Scrum in distributed
teams with subcontractors. Scrum practices are especially useful in such a
context as they provide important feedback loops. One is a daily feedback
provided in the whole team on the progress of the development, so that the
state of a project should be well known to the whole team regardless of their
location. The other feedback is provided at the end of the sprint when the
sprint has been analysed. This quick feedback gives a Scrum team the oppor-
tunity to take corrective actions before the project goes too far off the planned
track. Finally, Scrum renders subcontractors as equally involved in the team
activities as the team members from the SSP organisation.

16.3.2 Communication

Communication is extremely important especially in the case of distributed teams,
which cannot benefit from direct informal communication as occurs in the case of
co-located teams. Scrum defines a few meeting types (i.e. daily meetings, planning
and demonstration sessions). Naturally, in addition to these meetings other meetings
are often arranged, e.g., special workshop sessions on specific topics, discussions
with customers, etc. In all theses cases, the practical arrangements of the meetings
can be done in different ways.

Face-to-face meetings are most optimal for the efficiency and quality of com-
munication, but such meetings frequently held may not be feasible in the case of
distributed teams or customers located in remote locations. In these cases telecom-
munication tools can be used as a replacement for face-to-face meetings. Of course,
a phone teleconference is a natural choice, but it can be replaced by Voice-Over-IP

244 J. Rudzki et al.

solutions, which are typically more cost efficient. In addition to voice communica-
tion, videoconferencing tools can be used. There are many such solutions, which
often offer very good quality. Videoconferencing can be a really good replacement
for face-to-face meetings, but its use is limited by the infrastructure of the partici-
pating parties. Therefore, we find videoconferencing to be working best between se-
lected locations (e.g., company offices), where the necessary equipment has already
been installed. In addition to high-end hardware-based videoconferencing solutions,
different software clients can be used. Such clients usually also support other func-
tions, in addition to audio and video. A very useful feature during teleconferences
is a shared screen where presentation, or other material can be shared.

Formal meetings that are the official channel of communication, even in the case
of frequent Scrum meetings, may not be sufficient. That is why we use additional
tools that at least try to enable less formal communication within distributed teams.
Instant messaging tools, which often are the same tools as the ones used for voice
or video communication, can be a good substitute of less formal communication.
Usage of IM in projects is not a new concept and usage of IM in distributed teams
has been reported in literature, for example by Herbsleb et al. [12]. In Solita we use
Skype2 as the primarily teleconferencing and instant messaging tool and LifeSize3

for videoconferencing.

Practical Tip: A development team can use a common chat where all the team
members can easily exchange options, notify about changes, ask questions,
and see availability of other team members. A chat can be used more willingly
by subcontractors from other locations than phone, as it is less disruptive and
more cost-effective. Team chat rooms have proved to be quite useful in real
life projects.

16.3.3 Planning and Progress Tracking

The planning of a sprint is done in a meeting of the whole team. The product backlog
features are moved to a sprint backlog, divided into tasks and re-estimated. The team
can do the estimation using planning poker or other techniques, which for example
have been described by Mike Cohn [13]. From our experience planning poker works
well in distributed teams as it involves the participation of the whole team, which
encourages also active participation of subcontractors. Additionally, in this way of
estimating it is easy to notice any differences in opinions concerning the difficulty of
a task. When estimates from individual team members differ significantly additional

2http://www.skype.com.
3http://www.lifesize.com.

http://www.skype.com
http://www.lifesize.com

16 Considering Subcontractors in Distributed Scrum Teams 245

analysis and discussion is needed, as the difference indicates a lack of common
understanding.

When the planning is done the tasks are recorded in an issue/task tracking system.
In our case JIRA4 is used. Issue tracker, like JIRA, allows for following statuses of
individual tasks. Finally, JIRA is a web application, which makes easy for all team
members to use it regardless of their location.

Practical Tip: Planning poker ensures that also team members from subcon-
tracting organisation take part in the estimates. Additionally, the formula of
planning poker, which resembles a card game, relaxes the atmosphere in the
team.

In the case of issue status tracking, if the team members do not update
regularly the task statuses, it can be done in the daily scrum meetings.

16.3.4 Code Sharing and Development Feedback

A development team must be able to share its work and see feedback on individ-
ual work in the context of the whole team. Team members developing a software
solution must be able to share their work artifacts in a way supporting versioning.
Version control systems allow team members to share code and specify possible
access restrictions to it. As the team is spread across multiple sites, all the sites
and team members must have an access to the version control. In the case of Solita
projects, Subversion (SVN)5 is typically used. It is an easy tool to use and can be
integrated with many IDEs or file management applications.

In the context of agile distributed teams, techniques of organising version control
in a way that supports efficient development can also be implemented. One arrange-
ment of SVN that we use is to have two branches for ongoing development and
releasable code. That style of configuring, but in the context of multiple teams, has
been described by Henrik Kniberg [14]. This SVN arrangement allows for having a
stable code base at any time of the development.

In addition to collaboration on the shared code base, the team must be able to get
quick feedback about status of the whole software they develop as a team. Continu-
ous Integration (CI), which was described by Martin Fowler [15], is a technique that
ensures that the code submitted to the version control is verified in a build process.
The CI tool that we use for Java projects is Bamboo,6 but there are also many open
source alternatives.

4http://www.atlassian.com/software/jira.
5http://subversion.tigris.org.
6http://www.atlassian.com/software/bamboo/.

http://www.atlassian.com/software/jira
http://subversion.tigris.org
http://www.atlassian.com/software/bamboo/

246 J. Rudzki et al.

Practical Tip: We typically configure the CI tool in a way that all team mem-
bers get notifications by email if build was unsuccessful. The successfulness
of a build can be determined based on compiled code or test results. Usually,
also other static analysis are done on the code so that, for example, coding
conventions are verified.

16.3.5 Knowledge Sharing

Knowledge sharing among the members of a distributed team is essential for their
success. Moreover in this case a tool that can be easily accessed by all team members
regardless of their original organisation is most useful. Wiki-like web applications
give much freedom in creating and managing documentation on-line. At Solita we
primarily use a commercial tool Confluence.7 There are many other commercial
or free tool alternatives. The main advantage of wiki-like systems is the support for
easy page creation, editing, sharing, so that team members can add and edit informa-
tion themselves. Furthermore, page versioning reveals what kinds of changes have
been done, and by whom.

16.3.6 Team Spirit

As a final note about subcontractors in teams, we would like to mention an impor-
tant aspect of any cooperation, which is a good team spirit. Trust and good relations
between all team members must be built up over time, but in distributed teams that
aspect of team existence should not be neglected. One channel of providing feed-
back of the team spirit are the retrospective sessions where all team members can
have a say about the project. However, in some cases this may not be enough, partic-
ularly if a project is a long lasting one, the team atmosphere can change over time.
Therefore, it may be a good idea to create a survey about the team atmosphere. Such
a survey can be easily created on-line in free services hosted externally. When the
survey is organised this way, the team members can feel comfortable that their re-
sponses are anonymous. A survey should have questions covering different aspects
of working in a distributed team, starting from technical challenges but also includ-
ing motivation, identification with the team, workload (too much/too little work)
and general feeling about the project work. The results of such a survey should be
analysed and if needed corrective actions should be taken.

7http://www.atlassian.com/software/confluence/.

http://www.atlassian.com/software/confluence/

16 Considering Subcontractors in Distributed Scrum Teams 247

16.4 Subcontractors and Project Phases

In order to explain all the typical activities in a Scrum project that is distributed and
uses subcontractors, we now present an illustrative example project walkthrough.
The example project is not any particular project we have done, but rather a repre-
sentation of a typical scenario, which should be more useful than any particular case.
In this walkthrough we point out any issues that in real cases we found important
and which may help the readers in their own projects.

This example project walkthrough starts from team assembling, and does not
include any activities related to offering the project to the customer. The only sell-
ing point which is really relevant to the project organisation, is the project contract
model. The most suitable for Scrum projects is a time-material type of contract as it
is most natural for this kind of project organisation. On one hand the customer has
the freedom to make changes and decide what has to be done, on the other hand the
team is not internally limited by certain scope. Additionally, such contract models
in a way force more active participation from the customer side, which provides
better feedback from the customer. If the project is organised under a fixed scope
and price contract, the scope is known, but the implementation order and internal
communication of the team still can follow Scrum principles.

We can distinguish the following high level project phases: preparation, develop-
ment, and release.

16.4.1 Preparation

In the preparation phase the project team is assembled. Knowing the exact or esti-
mated project scope we can predict the resource needs for the project, and also the
kind of expertise the project needs. At that phase the subcontractors are selected.
Naturally, the initial decision that subcontracting partners can be used is done at the
earlier stage and agreed with the customer. Depending on the required expertise a
specific partner’s resources can be allocated. Our Scrum project typically consists
of a team of three to six members. There are no real limits to the size of a team but
practically smaller teams may not be feasible, while larger ones may be considered
for splitting into smaller groups. If the subcontractors work in a different location
than other team members, the sites should be balanced, so that there is not a site with
only one developer. In such arrangement the isolation of one developer might im-
pact the team integration and communication needs. If there are at least two or more
team members per site, they still can communicate locally and be equally involved,
as a site, in the development.

Once the team is known the tools and access to them can be arranged. All the
team members, regardless of their location, should have access to the needed tools.
The tools depend on the technology of a project, but the communication, knowledge
sharing, and tools providing feedback should be accessible across the whole team.

248 J. Rudzki et al.

The first activity that the whole team does together is to explain the project scope
to the team. It is so called project kick-off meeting. At that point the project practi-
calities must be explained, too. These include the processes in the project. In the case
of subcontractors, especially if they work for the first time with us, it is essential to
explain the methodology and ways of working together. If the team is experienced,
only the new elements specific to the project must be explained. Additionally, the
vision of the project and what is expected from it, must be clear to everybody.

Practical Tip: It is good practice to have the processes and ways of work
documented in a shared place, e.g., wiki. So that all the team members can
access the documentation when they need to. Moreover as the practices are
generally common, they can be reused in major parts across multiple projects.

A project should also collect the basic contact information about all the
team members, so that the people could easily find the correct person. Such
an internal contact directory may also contain photographs of the people, so
that the communication can be more personal even when it is done remotely.

Finally, after assembling the project team, including the subcontractors and in-
ternal personnel, the project development phase can start.

16.4.2 Development

The development phase follows the Scrum principles. Therefore the planning ses-
sion is the first development activity. Such a meeting requires the whole team as
well as preferably a customer representative and/or product owner. In practice often
the product owner role is not performed by a person from outside of the team. So
the role is taken by the technical lead who knows the background of the project. In
some cases it is possible to have a customer representative who is able to present
the customer point of view, but may not necessarily be technically capable of recog-
nising dependencies and impact of different features. In that case the product owner
role is shared between the customer and the technical leader in the project.

During the planning meeting the planned features should be discussed and a few
first ones taken into sprint backlog, divided into tasks and estimated. This estimation
is needed as the team commits to completing specific features in a sprint, and the
whole team should decide how much time they need. At the project offering stage an
initial rough estimation of the features is also done in order to predict possible effort
needed for completion of all features. However, the initial estimate is not done by
the whole team, it is done by experts planning the project. When the team estimates
enough tasks for the following sprint, then the commitment for the sprint can be
done. Additionally, as the efficiency of the team may not be known very thoroughly
at the beginning, it is possible to have new features additionally estimated at the
planning meeting. These features are not in the scope of a sprint, but they can be

16 Considering Subcontractors in Distributed Scrum Teams 249

taken in, if all other features for which the team commits are done before the end of
the sprint.

Practical Tip: The distributed team, especially if working together for the first
time, should have a chance to meet face-to-face. So the introduction meeting
and the first planning meeting can be combined into one session that takes
place at one of the development sites. When the team members meet for the
first time it also may be worth organising an informal event that brings the
team together. A common dinner may be one of the options to start building
up the team spirit.

Furthermore in cases when important matters must be discussed a face-to-
face meeting including at least the key people, may be more productive, than
teleconferences or similar forms of communication.

For the backlogs we use just a spreadsheet which is updated during the planning
session. The reason for using a simple spreadsheet is that it is quicker to edit than
tasks in an issue tracker, and additionally it can be easily sent to a customer with
indicated progress if needed. After the planning the project leader transfers all the
tasks into the issue tracking tool.

Then on a daily basis the team discusses the current development status. It is
important for the whole team to know beforehand when a feature is considered
as complete and can be marked as such in the issue tracking tool. The definition of
completion depends on the nature of the project, but for example, for a Java software
implementation the definition could include: working code, unit tests, automated
acceptance test cases, and documentation. If all these elements that are considered
to be mandatory to regard a feature as complete are in place, only then a feature is
really complete.

Practical Tip: If the team has problems with following the definition of com-
pleteness, individual tasks can be explicitly defined for each element of the
definition, e.g., unit tests, documentation, etc. So that the tasks are at a low
granularity level. Usually after some time the team members remember that
each implemented feature must also include working unit tests and documen-
tation.

For the meetings the teleconferencing tools can be used. If the team notices, and
especially the scrum-master, that there are issues that must be clarified in order to
proceed with the development, then additional workshops on a specific subject can
be organised. Such an issue may be a technical impediment, but it can also be a need
for finding out customer’s preferences for the solution, or some technical decisions
that need additional expertise. Furthermore the workshop in practice can be just a
short phone call where the issue is discussed.

250 J. Rudzki et al.

Practical Tip: If a team is not used to participating in daily Scrum meetings, it
may occur that the status reporting becomes chaotic, and that can happen es-
pecially when the meeting is organised as a teleconference. A simple solution
that we used in such cases, is to have the status records kept in a wiki page
that is displayed and edited on a shared screen during the meeting. The status
record contains the names of all team members, which determines the order of
providing the status, and also the previous status, which allows for observing
the changes in status every day. Finally, the use of written status reports, can
help to avoid misunderstandings if the voice quality is not very good, as the
reported status is visible to everybody.

During the development the team also receives constant feedback about the im-
plementation status from Continuous Integration tool. The builds are done each time
the changes are made to the code base and the notification of build failures are sent
by email. Moreover all team members can check build statues in a web UI of the
application, which again can be easily accessed by all team members regardless of
their location.

A sprint ends with a demonstration and retrospective sessions. Practically that
can be a single meeting. At the demonstration the completed features are presented.
Features can be presented even if the development did not concern any user inter-
face. A running process, web service, file transformations, or database content can
be presented. If some features have not been completed (according to the complete-
ness definition), the team should discuss why the features were not completed. Then
those features should be re-estimated according to their statuses, and included in the
following sprint, providing that the features are still within the scope of the project.
After the demonstration, the team retrospective can be performed. If the customer
actively participates in the development, they can also provide feedback during the
retrospective. The team’s feedback can be gathered as a sprint summary in a wiki
page.

Finally, if there are any other features left for the development, then a new plan-
ning session is carried out. After that the whole Scrum sprint cycle is repeated. If
there are any actions based on the retrospective feedback received that should be
addressed at the time of new planning, they should be included in the planning. One
important aspect of planning is the length of a sprint. If the length of the sprint
seems to be a problem, then it should be adjusted. Typically our sprint’s length is
between two and four weeks.

Practical Tip: In the case of long-lasting projects before a retrospective ses-
sion a survey about the team spirit can be carried out. Then the results can be
discussed at the retrospective session and possible corrective actions can be
agreed.

16 Considering Subcontractors in Distributed Scrum Teams 251

Furthermore at least at the end of each sprint the version control system is up-
dated with the latest version of the solution, so that the changes are also trackable at
the interim release level in addition to constant version control system updates done
during the development.

If all the planned features are done, the development activities may be completed
and the project transforms to the release phase.

Practical Tip: We found it useful for team building to have a small celebra-
tion after a successful sprint completion. As the team is distributed common
activities may be difficult to organise, but one way to have a common activity
is to have a short team game session on-line, which was actually suggested by
one of our customers. The game itself is not as important as a relaxed team
activity. It also does not have to take much time, but rather encourage people
to share their hobbies and interests.

16.4.3 Release

When the implementation is ready there can still be some final activities for the
team. The software to be released should be tested well by the point of the release,
however, the customer may require additional tests, or there may be some man-
ual tests that should be executed once more when the software solution is fully
completed. If the automated tests cover all the functionality, then naturally manual
testing is not needed.

The final activities are the software packaging and possibly deployment. The
packaging is always required as the customer must receive a full package containing
all ordered deliverables, including code, documentation, test reports. If the customer
also requested, the deployment may need assistance from the team side. After the
deployment and acceptance tests on the customer side, the project ends, or if any
problems are found, then they are fixed and software is delivered again.

The project ends when the software is accepted by the customer. Also then the
team gathers for the last meeting to summarise the project. The overall feedback
from the customer, team, and the project leader is analysed. Internally the feedback
received can be used for the future projects. The team ends the project and the final
solution is versioned as the final release. The team members are free to start work
in new projects.

16.5 Conclusions

In this chapter we have presented our experiences with subcontracted Scrum teams
in a software service company Solita. We discussed different agile practices and

252 J. Rudzki et al.

tools highlighting their particular applicability in distributed and subcontracted
Scrum teams. We also presented a process of selecting potential subcontracting part-
ners suitable for specific companies, which in our case was a software service com-
pany. We presented the process steps and certain selection criteria relevant to our
context. We also walked through an example Scrum project that used subcontrac-
tors. The example showed when particular agile practices can be used in different
project phases. The combination of the selection and later working with subcontrac-
tors should provide the reader with a good overview of practices used successfully
in Solita.

Additionally, we have shared our research results that can be regarded as indica-
tive data for further comparison with other cases. The data collection and metrics
we used, can be developed and adjusted to other organisations’ needs. We also noted
problems with our current data collection approach, which should be refined over
time.

16.5.1 Practical Implications

We have discussed a real-life subcontractor selection process used in a software ser-
vice company. We also indicated the process aspects (e.g., compatible methodology
and culture) that are important during the subcontractor selection in addition to tech-
nology and business aspects. We have noted benefits of Scrum feedback loops in the
case of distributed projects with subcontractors. We have also gathered a few prac-
tical tips that have been used in our projects with subcontractors. The tips included:

• Documentation practices in a way that allows all team members easy access and
contribution,

• importance of face-to-face meetings in the process of building team trust and
cooperation,

• usage of wiki pages for Scrum meeting minutes to facilitate daily meetings or-
ganised as teleconferences, and

• social team activities as an additional way of building team spirit.

These practical tips can be used directly in other Scrum teams, and they can be
modified to fit the needs of other environments as well.

16.5.2 Research Implications

Our research findings and detailed data collected from 18 projects of different types,
which included 8 Scrum projects, can be used as a reference point in the case of other
studies. The presented data contains quantitative data obtained from various sources
(e.g., company IT systems and interviews). The data covers a few years between
2006 and 2008, therefore it is relatively extensive for one organisation case.

16 Considering Subcontractors in Distributed Scrum Teams 253

The subcontracting process as well as the agile tools and practices will be fur-
ther mastered and developed in our future projects. Therefore, a more detailed and
broader study in terms of time and number of analysed projects can be presented in
the future. Also we encourage other practitioners to present comparison of findings
from theirs organisations, which would broaden the scope of the research in this
area.

16.5.3 Summary

We hope that the presented practices and tools, as well as practical pieces of advice
for each phase of a project life-cycle, will be a good source of information for other
organisations. Our recommendations can be used by organisations that are about to
start cooperation with subcontractors or by those who have already started their co-
operation. Naturally, we are not providing a silver bullet recipe for cooperation with
subcontractors, but our experiences applied and adjusted to the contexts of other or-
ganisation, should at least provide a good reference point for further improvements.

Appendix

Table 16.1 presents detailed findings for 8 Scrum projects and average values for all
18 investigated projects. The other project types included Iterative projects (marked
Iter.) and traditional/waterfall projects (marked WF). We have used scale from 1
to 5, where 5 is the best result, for the following metrics: Customer satisfaction,
Profitability, and Team performance. In subtotals for different project types, namely
‘Scrum Result’, ‘Iter. Result’, ‘WF Result’, and ‘Grand Total’, the project id (col-
umn Proj.) was replaced by the count of projects in given category. Additionally,
other values in those last four rows represent average values for the corresponding
project type.

254 J. Rudzki et al.

Ta
bl

e
16

.1
Q

ua
nt

ita
tiv

e
re

su
lts

(A
bb

re
vi

at
io

ns
:

Pr
oj

.i
s

Pr
oj

ec
t

id
;

Si
ze

(m
m

)
is

si
ze

in
m

an
m

on
th

s;
C

om
m

.f
ac

to
r

is
C

om
m

un
ic

at
io

n
fa

ct
or

;
Su

b.
is

N
um

be
r

of
su

bc
on

tr
ac

to
rs

;
M

et
h.

is
M

et
ho

do
lo

gy
us

ed
;

C
us

t.
sa

tis
f.

is
C

us
to

m
er

sa
tis

fa
ct

io
n;

Pr
ofi

t.
is

Pr
ofi

ta
bi

lit
y;

Te
am

pe
rf

.
is

Te
am

pe
rf

or
m

an
ce

;
C

us
t.

in
vo

l.
is

C
us

to
m

er
in

vo
lv

em
en

t;
PM

tim
e

is
Pr

oj
ec

tM
an

ag
er

tim
e)

Pr
oj

.
Si

ze
C

om
m

.
Te

am
Su

b.
M

et
h.

C
us

t.
Pr

ofi
t.

Te
am

Si
te

s
C

us
t.

PM

(m
m

)
fa

ct
or

si
ze

sa
tis

f.
pe

rf
.

in
vo

l.
tim

e

P0
3

27
24

.0
0%

6
0

Sc
ru

m
4

3
4

2
Fu

ll
8.

00
%

P0
4

56
20

.0
0%

6
2

Sc
ru

m
4

3
4

3
Fu

ll
9.

00
%

P0
7

19
30

.0
0%

11
2

Sc
ru

m
3

4
4

2
Fu

ll
7.

00
%

P0
9

16
33

.0
0%

4
2

Sc
ru

m
1

4
4

2
N

on
e

18
.0

0%

P1
0

29
19

.0
0%

11
2

Sc
ru

m
5

5
5

2
Pa

rt
ia

l
13

.0
0%

P1
1

7
24

.0
0%

3
1

Sc
ru

m
4

4
4

2
Pa

rt
ia

l
15

.0
0%

P1
2

10
30

.0
0%

7
5

Sc
ru

m
4

5
4

2
Fu

ll
14

.0
0%

P1
8

5
45

.0
0%

3
1

Sc
ru

m
5

5
4

2
Pa

rt
ia

l
16

.0
0%

Sc
ru

m

8
20

.9
6

28
.1

2%
6.

38
1.

88
R

es
ul

t
3.

75
4.

13
4.

13
2.

13
12

.4
2%

It
er

.

4
29

.8
7

22
.7

6%
4.

75
0.

75
R

es
ul

t
4.

5
2.

5
3.

5
1.

75
10

.2
2%

W
F

6
35

.8
4

26
.5

1%
5.

83
2.

33
R

es
ul

t
3.

5
2.

83
3.

83
2

9.
40

%

G
ra

nd

18
27

.9
26

.3
9%

5.
83

1.
78

To
ta

l
3.

83
3.

33
3.

89
2

10
.9

2%

16 Considering Subcontractors in Distributed Scrum Teams 255

References

1. Rudzki, J., Systä, T., & Mustonen, K. (2009). Subcontracting processes in software service
organisations—an experience report. In Q. Wang, V. Garousi, R. J. Madachy, & D. Pfahl
(Eds.), Lecture notes in computer science: Vol. 5543. ICSP (pp. 224–235). Berlin: Springer.

2. Rudzki, J., Hammouda, I., & Mikkola, T. (2009). Agile experiences in a software service com-
pany. In SEAA ’09. 35th Euromicro conference (pp. 224–228). Washington: IEEE Computer
Society.

3. Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). Goal question metric paradigm. In J.J.
Marciniak (Ed.), Encyclopaedia of software engineering (Vol. 1, pp. 528–532).

4. Bird, C., Nagappan, N., Devanbu, P., Gall, H., & Murphy, B. (2009). Does distributed de-
velopment affect software quality? An empirical case study of windows vista. In ICSE ’09:
Proceedings of the 2009 IEEE 31st international conference on software engineering (pp.
518–528). Washington: IEEE Computer Society.

5. Siakas, K. V., & Balstrup, B. (2006). Software outsourcing quality achieved by global virtual
collaboration. Software Process: Improvement and Practice, 11(3), 319–328.

6. Hyder, E. B., Heston, K. M., & Paulk, M. C. (2006). The esourcing capability model for
service providers (escm-sp) v2.01, part 1—the escm-sp-v2: Model overview. CMU-ITSQC-
06-006, Pittsburgh, PA: IT Services Qualification Center, Carnegie Mellon University.

7. Hyder, E. B., Heston, K. M., & Paulk, M. C. (2006). The esourcing capability model for
service providers (escm-sp) v2.01, part 2—the escm-sp-v2: Practice details. CMU-ITSQC-
06-007. Pittsburgh, PA: IT Services Qualification Center, Carnegie Mellon University.

8. Fowler, M. (2006). Using an agile software process with offshore development. Available
online. http://martinfowler.com/articles/agileOffshore.html. Cited July 2006.

9. Schwaber, K. (1997). Scrum development process. In J. Sutherland et al. (Eds.), OOPSLA
business object design and implementation workshop. London: Springer.

10. Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007). Distributed scrum: Agile
project management with outsourced development teams. In HICSS ’07: Proceedings of the
40th annual Hawaii international conference on system sciences (p. 274a). Washington: IEEE
Computer Society.

11. Paasivaara, M., Durasiewicz, S., & Lassenius, C. (2008). Using scrum in a globally distributed
project: A case study. Software Process: Improvement and Practice, 13(6), 527–544.

12. Herbsleb, J. D., Atkins, D. L., Boyer, D. G., Handel, M., & Finholt, T. A. (2002). Introduc-
ing instant messaging and chat in the workplace. In CHI ’02: Proceedings of the SIGCHI
conference on human factors in computing systems (pp. 171–178). New York: ACM.

13. Cohn, M. (2005). Agile estimating and planning. New York: Prentice Hall.
14. Kniberg, H. (2008). Version control for multiple agile teams. Available online. http://www.

infoq.com/articles/agile-version-control.
15. Fowler, M. (2006). Continuous integration. Available online. http://martinfowler.com/articles/

continuousIntegration.html.

Further Reading

16. Eckstein, J. (2004). Agile software development in the large: Diving into the deep. Cambridge:
Dorset House Publishing Company.

17. Upadrista, V. (2008). Managing offshore development projects: An agile approach. Oshawa:
Multi-Media Publications.

http://martinfowler.com/articles/agileOffshore.html
http://www.infoq.com/articles/agile-version-control
http://www.infoq.com/articles/agile-version-control
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html

Part IV
Teams

Chapter 17
Using Scrum Practices in GSD Projects

Maria Paasivaara and Casper Lassenius

Abstract In this chapter we present advice for applying Scrum practices to globally
distributed software development projects. The chapter is based on a multiple-case
study of four distributed Scrum projects. We discuss the use of distributed daily
Scrums, Scrum-of-Scrums, Sprints, Sprint planning meetings, Sprint Demos, Ret-
rospective meetings, and Backlogs. Moreover, we present lessons that distributed
Scrum projects can benefit from non-agile globally distributed software develop-
ment projects: frequent visits and multiple communication modes.

17.1 Introduction

Today, global software development has become a business reality. It offers many
potential benefits, e.g., reduced development costs, but also creates significant chal-
lenges with respect to communication, coordination, and control. The current dy-
namic business environment requires projects to work with uncertain requirements
and implementation technologies. As a consequence, many software development
organizations have started to apply agile development to their geographically dis-
tributed projects [1], as agile methods are particularly suitable for projects facing
high uncertainty [2]. Due to the physical separation of development teams in dis-
tributed projects, many of the key assumptions of agile development, with respect
to, e.g., customer interaction, team communication, and being face-to-face [9], do
not hold. To gain the benefit from agile development, the practices need to be mod-
ified when applied to distributed settings.

Industrial experience reports and a few case studies (e.g. [3, 5–8]) have already
shown that agile methods can be successfully customized to distributed projects.

M. Paasivaara (�) · C. Lassenius
Software Business and Engineering Institute, School of Science and Technology,
Aalto University, P.O. Box 19210, 00076 Aalto, Finland
e-mail: Maria.Paasivaara@tkk.fi

C. Lassenius
e-mail: Casper.Lassenius@tkk.fi

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_17, © Springer-Verlag Berlin Heidelberg 2010

259

mailto:Maria.Paasivaara@tkk.fi
mailto:Casper.Lassenius@tkk.fi
http://dx.doi.org/10.1007/978-3-642-12442-6_17

260 M. Paasivaara and C. Lassenius

However, the number of reported experiences is still limited and more experiences
on how to apply the agile practices to different kind of distributed settings and teams
are still needed. The aim of this chapter is to report such experiences collected in
four distributed projects.

17.2 Research Methodology

This chapter is based on a multiple-case study [10] of four globally distributed
projects that were using Scrum. All the studied projects were developing new soft-
ware, either a new product, a new service, or a new version of a product. The largest
project had seven Scrum teams, all of which were distributed between two sites,
while the smallest project consisted of a single distributed Scrum team. One of the
projects had two collocated Scrum teams, each at different sites. The development
work in all the projects was distributed between two sites, which we call “onsite”
and “offsite”. By onsite, we mean the main site, which holds project ownership. In
the projects we studied, the onsites were located in Norway and Finland. In addi-
tion to project ownership, the onsite locations were responsible for the customer
contacts, and most domain and system experts were located at those sites. In each
project the offsite location was situated in a country with cheaper labor: Malaysia,
the Czech Republic, Russia, and Lithuania. We gathered data from the projects by
interviewing project personnel on the practices used, challenges encountered and
successes achieved. The semi-structured interviews [4] were recorded and later tran-
scribed by an outside professional transcription company. Altogether we performed
24 interviews each lasting 1.5–2.5 hours. In each project, we interviewed product
owners, scrum masters, developers, and testers. We conducted mostly face-to-face
interviews with one researcher asking questions and the other one taking notes. Be-
cause of our limited traveling budget we could visit only the onsite locations in
Finland and Norway, and one offsite location, Czech Republic. However, we were
able to interview offsite personnel during their visits to onsites, to Finland and Nor-
way. Moreover, in one case project, we interviewed two offsite team members from
Malaysia via SkypeOut calls. Table 17.1 summarizes the case projects and data col-
lection.

In all projects, this was the first Scrum project for the team. The personnel in all
teams were very happy about this change from a more traditional process model to
Scrum.

17.3 Distributed Daily Scrums

“I think that daily Scrum meetings were the best thing that happened to these dis-
tributed teams”—A comment by a distributed Scrum team member.

The daily Scrum meeting is clearly the most important Scrum practice for dis-
tributed projects. In this daily team meeting, which lasts approximately 15 minutes,

17 Using Scrum Practices in GSD Projects 261

Ta
bl

e
17

.1
O

ve
rv

ie
w

of
ca

se
pr

oj
ec

ts

C
as

e
Ty

pe
of

co
m

pa
ny

&
Ty

pe
of

de
ve

lo
pm

en
t

Pr
oj

ec
td

ur
at

io
n

(S
cr

um
us

ag
e)

C
ou

nt
ri

es
in

vo
lv

ed
(p

ar
tic

ip
at

in
g

pe
rs

on
ne

l)
Te

am
s

pe
r

si
te

In
te

rv
ie

w
ee

s

A
Se

rv
ic

e
co

m
pa

ny
:D

ev
el

op
m

en
to

f
a

ne
w

ve
rs

io
n

of
pr

in
tin

g
se

rv
ic

e
so

ft
w

ar
e

fo
r

in
te

rn
al

us
e

in
ne

w
m

ar
ke

ts
.

2
ye

ar
s

(5
m

on
th

s)
O

ns
ite

:F
in

la
nd

(7
)

O
ff

si
te

:L
at

vi
a,

tw
o

si
te

s
(2

+
1)

G
er

m
an

y
(1

)

Pe
op

le
fr

om
al

ls
ite

s
vi

ew
ed

as
on

e
si

ng
le

te
am

5: O
ns

ite
(4

)
O

ff
si

te
(1

)

B
In

du
st

ri
al

co
m

pa
ny

:F
ur

th
er

de
ve

lo
pm

en
ta

nd
m

ai
nt

en
an

ce
of

an
in

fo
rm

at
io

n
m

an
ag

em
en

tt
oo

lf
or

in
te

rn
al

us
e.

3
ye

ar
s

(1
4

m
on

th
s)

O
ns

ite
:F

in
la

nd
,m

ai
n

si
te

+
on

e
su

bc
on

tr
ac

to
r

co
ns

ul
ta

nt
w

or
ki

ng
cl

os
e

to
on

si
te

(9
+

1)
O

ff
si

te
:R

us
si

a,
su

bc
on

tr
ac

to
r

(6
)

O
ne

te
am

on
si

te
,o

ne
te

am
of

fs
ite

7: O
ns

ite
(4

)
+

su
bc

on
tr

ac
to

r
co

ns
ul

ta
nt

w
or

ki
ng

cl
os

e
to

on
si

te
O

ff
si

te
(2

)

C
IT

co
m

pa
ny

:F
ur

th
er

de
ve

lo
pm

en
t

an
d

m
ai

nt
en

an
ce

of
a

la
rg

e
en

er
gy

so
ft

w
ar

e
pr

od
uc

tt
ha

ti
s

in
us

e
in

se
ve

ra
lc

om
pa

ni
es

al
lo

ve
r

th
e

w
or

ld
.

∼1
0

ye
ar

s
(1

.5
ye

ar
s)

O
ns

ite
:N

or
w

ay
(∼

20
)

O
ff

si
te

:M
al

ay
si

a
(∼

20
)

5–
7

te
am

s,
of

te
n

co
m

bi
ne

d
ac

ro
ss

si
te

s,
nu

m
be

r
of

te
am

s
an

d
pe

rs
on

s
in

ea
ch

te
am

va
ri

es
ac

ro
ss

ite
ra

tio
ns

7: O
ns

ite
(4

)
O

ff
si

te
(1

fa
ce

-t
o-

fa
ce

,2
ov

er
Sk

yp
e)

D
IT

co
m

pa
ny

(s
am

e
co

m
pa

ny
as

in
ca

se
C

):
D

ev
el

op
m

en
to

f
a

ne
w

in
tr

an
et

fo
r

th
e

ca
se

co
m

pa
ny

’s
in

te
rn

al
us

e.

∼1
ye

ar
(7

m
on

th
s)

O
ns

ite
1:

Fi
nl

an
d

(i
nt

er
na

l
cu

st
om

er
+3

)
O

ns
ite

2:
N

or
w

ay
(7

)
O

ff
si

te
:C

ze
ch

R
ep

ub
lic

(4
)

Pe
op

le
fr

om
al

ls
ite

s
vi

ew
ed

as
on

e
si

ng
le

te
am

5: O
ns

ite
(3

)
O

ff
si

te
(2

)

262 M. Paasivaara and C. Lassenius

each team member answers the three Scrum questions: “What did you do since the
last Scrum meeting? Do you have any obstacles? What will you do before the next
meeting?” After answering the questions a brief discussion will take place. The pur-
pose of the discussion is not to solve problems, but to decide e.g., who will need to
discuss or solve the problems later on.

17.3.1 Application of Daily Scrums to Distributed Projects

When your Scrum project team is distributed between two or several locations, you
can arrange distributed daily Scrum meetings, e.g., using videoconferencing, if un-
available, a good quality voice connection will do, perhaps augmented with web
cameras, or you can even use only instant messaging. Arranging daily Scrums re-
quires that there is at least some overlapping working time for all participating loca-
tions. This is an important consideration when choosing the locations for the project.
We think that using asynchronous daily Scrums, e.g. using only e-mail, is unlikely
to work well.

Originally, daily Scrum meetings were designed to be arranged as face-to-face
gatherings. In a distributed project this is not possible, but you can arrange circum-
stances that are as close to a face-to-face situation as possible. In the absence of a
virtual presence solution, a good quality videoconference connection or even web
cameras make it possible to recognize who is talking and to see facial expressions
during the meeting. This makes the situation more natural, helps in creating joint
understanding and building team spirit for the distributed team.

If your project has several distributed teams that all have their daily Scrum meet-
ings, you can follow the example of one of our case projects. In this project the
teams, distributed between two locations, had consecutive daily Scrums. The 15
minute long meetings took place in the same meeting room, one after another. Thus,
the connection, with voice and web cameras had to be set up only once.

If video- or teleconferencing is not possible because of technological or other is-
sues, such as problems with spoken language, using chat is an option. Some people
might feel more comfortable writing instead of speaking due to (subjective) diffi-
culties with pronunciation or understanding spoken foreign language. One of our
case projects used internet relay chat (IRC) for arranging daily Scrum meetings.
Typically, all team members wrote their answers to the three Scrum questions prior
to the meeting, and the meeting commenced by everybody sending their answers,
and reading the others’ messages. Subsequently, a discussion took place. Chat logs
were saved for those not being able to participate. When we conducted our last in-
terviews, however, this company had acquired videoconferencing equipment and
the team was planning to start using videoconferencing at least once a week for the
daily Scrum meetings, thus abandoning their reliance upon text-only daily Scrums.
Based upon their experiences, it seems that using only chat for daily Scrums is pos-
sible, but we cannot recommend it, as much information is lost compared to tele-
and videoconferencing. For example, in a teleconference the tone of voice often

17 Using Scrum Practices in GSD Projects 263

relays important but non-explicit information, as does the facial expressions seen
when using virtual presence or videoconferencing systems.

If your project has site-specific Scrum teams they can have normal face-to-face
Scrum meetings. However, it is important to share information frequently between
the teams at different sites. One possibility is to use Scrum-of-Scrum meetings for
sharing information between the teams, as explained later in this chapter. In the
case of just a couple of teams, one team member, a representative of the team, can
participate in the other Scrum teams’ daily Scrum meetings every day or a few times
a week to share information between the teams.

17.3.2 Benefits of Daily Scrums

Our interviewees reported that distributed daily Scrum meetings were the most use-
ful practice for distributed projects. The benefits of daily Scrums are numerous:
they provide frequent possibilities to share information and coordinate work be-
tween distributed team members, they help to recognize possible problems early on,
they provide a possibility to create contacts, as well as encourage team members
from different sites to communicate more actively, also facilitating off-line commu-
nication after the meetings.

Daily Scrum meetings provide a good way for everybody in a distributed team to
get an overview of the project situation. In particular, our interviewees reported that
it was easier to monitor the offshore situation than before. Moreover, daily Scrums
help to identify problems quickly, since with daily monitoring it is difficult to hide
problems over a long period of time.

When problems or a need for one-to-one discussion are encountered during daily
Scrums, teams should set up separate meetings after the daily Scrums and continue
discussions in smaller groups or one-to-one either by video-, or teleconference, chat
or email. In all our case projects, daily Scrum meetings encouraged team members
to communicate more also outside the meetings, which was seen as one of the great-
est benefits of these meetings.

17.3.3 Challenges of Daily Scrums

Even though there are numerous benefits in arranging distributed daily Scrum meet-
ings, there are also some challenges. The biggest challenge for distributed teams is
the same as for collocated teams: understanding what the correct amount of informa-
tion to report in a Daily Scrum meeting is. This is challenging even in a collocated
project, but in a distributed project it is even more difficult. Team members do not
know what others find interesting or important. Thus, the team needs to practice this
with the help of their Scrum master. In one of our case projects, the daily Scrum
meetings initially lasted only a few minutes, before the team members learned to

264 M. Paasivaara and C. Lassenius

discuss actively, and in particular to be open about their impediments. The Scrum
masters started to encourage everybody to talk and share more about their tasks and
impediments. Thus, the teams ended up having 15-minute meetings that were found
very useful by all participants.

Cultural differences may have a big impact on what people find appropriate in
reporting in a daily Scrum meeting. We noticed that there are huge cultural differ-
ences in revealing impediments and discussing them in a daily Scrum meeting. For
example, in Scandinavian cultures talking about impediments is much more natural
than in Asian cultures. Moreover, when team members come from different compa-
nies, the risk of team members trying to hide problems is high, in particular in the
beginning of a project.

When comparing projects that had distributed daily meetings to projects having
mainly site-specific daily meetings, a clear difference could be seen. Most of the par-
ticipants of the distributed meetings mentioned the benefits: increased transparency
to the other site, getting a good overview of what was happening in the project, and
well working and open communication across sites. However, the participants of
the site-specific, non-distributed meetings mentioned problems: they did not have
enough communication and contacts with the other site, nor did they know enough
what was happening at the other site. Thus, it is important to share information
also between Scrum teams in the same project. Especially when the teams are site-
specific, informal communication between the team does not occur naturally e.g.,
at the coffee table. We will discuss more about sharing information between Scrum
teams later on, in the section on Scrum-of-Scrums.

Practical Tips:

• Provide a good infrastructure for daily Scrums. Meetings should be easy
to set up and provide as rich communication as possible: virtual reality
systems or videoconferencing is best. If unavailable, a good quality voice
connection will do, perhaps augmented with web cameras. Use text-only
meetings only as a last resort. Avoid asynchronous “meetings”.

• Work actively with the team by practicing and discussing to find the opti-
mum type and amount of information to report in the daily Scrum meetings.

• Create an open atmosphere that makes it easy to raise problems and issues
without fear.

• Encourage discussions in small groups or one-on-one after the daily Scrum
meetings and arrange a technologically good infrastructure for these dis-
tributed discussions.

17.4 Scrum-of-Scrums Meetings

Distributed projects that have two or more Scrum teams need to share information
between the teams. One possibility to share information, mentioned earlier, is to

17 Using Scrum Practices in GSD Projects 265

have one team member participating the other teams’ daily Scrum meetings. This is
practical only when there are no more than two or three teams. When the number of
teams increases, arranging Scrum-of-Scrum meetings is a must.

The objective of Scrum-of-Scrum meetings is to share information between
teams regarding what is happening in the teams, what kind of challenges the teams
are facing, and what kind of interconnections the work done by different teams has.
Scrum-of-Scrum meetings provide good possibilities to create contacts and encour-
age communication between the teams.

One team member from each team participates in the Scrum-of-Scrum meet-
ing as a representative of his or her team. The team decides who participates; the
participant does not always have to be the same person. In addition to the team
representatives, in one of our case projects all Scrum masters participated in these
meetings.

Scrum-of-Scrum meetings normally take place once a week, but they can also be
arranged more frequently, if there is more frequent need for coordination between
the teams. A suitable length for a weekly Scrum-of-Scrum meeting is half an hour.

During the meeting the three Scrum questions are answered, however at the level
of the team. Thus, each team representative tells what his or her team has been doing
since the last meeting, what the team is planning to do before the next meeting and
what kind of impediments the team has had. Moreover, you can have two additional
questions: “Have you put some impediments in the other teams’ way?” and “Do you
plan to put any impediments in the other teams’ way?”

17.4.1 Application of Scrum-of-Scrums to Distributed Projects

Scrum-of-Scrum meetings can be applied to distributed projects in a similar way to
daily Scrum meetings. The only difference to collocated projects is the need to ar-
range the meeting virtually. The same technologies as used in daily Scrum meetings
can be used. Good quality videoconferencing provides the possibility to easily rec-
ognize who is talking and to see facial expressions. This is important since at least
some of the participants may not have met each other face-to-face. In the absence of
videoconferencing, web cameras are helpful to support a teleconference call.

17.4.2 Benefits of Scrums-of-Scrums

The Scrum-of-scrums meetings distribute information between the teams and reveal
possible problems early on. They open discussion channels between the teams and
that way encourage informal communication. One of our case projects that used
weekly Scrum-of-Scrum meetings to coordinate actions between their seven Scrum
teams felt that these meetings were very beneficial. On the other hand, a project
having two site-specific teams at different locations, but not using Scrum-of-Scrum

266 M. Paasivaara and C. Lassenius

meetings, mentioned several problems: they did not have enough communication
and contacts with the other site, nor did they know enough what was happening at
the other site—exactly the problems that Scrum-of-Scrum meetings are designed to
prevent!

17.4.3 Challenges of Scrums-of-Scrums

The challenges of arranging distributed Scrum-of-Scrums are the same as for dis-
tributed daily Scrums: finding a suitable level of reporting that is both useful and
understandable for all parties, cultural challenges and trust issues in reporting im-
pediments, and forwarding the important information to the rest of the team mem-
bers.

Practical Tips:

• Practice and discuss with the participants about the correct type and amount
of information to report in Scrum-of-Scrum meetings.

• Create an open atmosphere that makes it easy to discuss problems and is-
sues.

• Encourage discussions in small groups or one-on-one after the Scrum-of-
Scrum meetings and build a good technological infrastructure for such dis-
cussions.

• Provide a technically good and easy to set up infrastructure for the Scrum-
of-Scrum meetings: a good quality voice connection, preferably also video
to be able to recognize who is talking and to see facial expressions.

17.5 Sprints

“Before [we started to use] Scrum I could not really understand when there is a
deadline and what should be done by that deadline (. . .) because there were many
different deadlines for customers and development stages (. . .)”—A comment by a
distributed Scrum team member.

Iterations in Scrum are called sprints. The length of one sprint in Scrum is nor-
mally from one to four weeks. Our case projects used both four-week and two-week
sprints.

If a project has several teams, it is a good idea to synchronize the sprints, i.e.,
have all teams start and end their sprints at the same time. For example, a large case
project had synchronized 4-week sprints in the development teams. The variation
of the end and start dates was at maximum a couple of days. The same project also

17 Using Scrum Practices in GSD Projects 267

involved a maintenance team that had a sprint cycle of only two weeks synchro-
nized with other teams’ four-week cycle. The reason for this shorter cycle for the
maintenance team was to be able to release fixes to customers every two weeks.
This system of synchronized four and two week sprints worked well according to
our interviewees.

17.5.1 Application of Sprints to Distributed Projects

Using sprints in a distributed project does not differ much from using them in a
collocated project. The sprint length in collocated projects can sometimes be as short
as one week, but distributed projects make the required meetings more cumbersome,
in particular planning, demos and retrospectives, so we think that a two week sprint
length is a good minimum sprint length in a distributed project.

The sprint lengths of different site-specific teams should be the same, but there
can be exceptions. For example, in one of our case projects the sprint length of
the onsite team was four weeks, while the offsite team had sprint duration of only
two weeks. The shorter sprint length at offsite made it possible for onsite to better
support the offsite team.

Different vacation times in different counties may pose challenges, as team mem-
bers might be unavailable for a substantial part of a sprint. Sprints might be length-
ened to keep sprint content reasonable and the sprints of different teams synchro-
nized.

In the beginning of a distributed project it is beneficial to arrange face-to-face
meetings for all team members, so that everybody can at least once meet and learn
to know each other. One approach is to invite the whole team to work together in
a single location for one or two sprints. This way the team can build a common
understanding of the project goals and learn how to work together. Team members
also have a chance to get to know each other. After such a collocated period, it is a
lot easier to work in a distributed manner. Collocation can be a good idea also when
testing and fixing the software, e.g., during the last sprint before a critical release.

One of our case projects used collocated sprints on a need basis. In this project,
especially team members from offsite travelled to the onsite location. The visits nor-
mally lasted between two and four weeks, which made it possible for team members
to really work together. In particular during critical phases, it was considered impor-
tant to collocate the team, e.g. for the last sprint before a release or for the first sprint
in a new release project, when most of the planning took place.

17.5.2 Benefits of Sprints

Short sprints hugely increase the transparency of distributed projects. Sprints with
clear deadlines and goals, make it easier for all team members to understand what

268 M. Paasivaara and C. Lassenius

is supposed to be done during the next sprint. In particular, team members at offsite
locations benefit a lot, since often the offsite team members do not have a clear
picture of the overall project in a traditional distributed setting.

In addition, the frequency of feedback between onsite and offsite is increased.
There is no possibility to delay the completion of a task because it is “only 95%
ready”. Moreover, short sprints reveal quickly, e.g., if offsite personnel have misun-
derstood the requirements, and the problem can be solved immediately.

Finally, short sprints, with frequent regular meetings, make it easier for a dis-
tributed team to create a joint team identity, making members feel like they are on a
single team working for common goals, rather than being on two or several separate
teams, not really understanding each other.

17.5.3 Challenges of Sprints

The main risk with planning on a sprint by sprint basis is losing track of the “big
picture”, i.e. the overall goal of the project. Keeping the overall goal in mind is
important, not least from the point of view of the resulting product architecture.

The planning overhead, involved in each sprint, can tempt one to use too long
sprints, in which case their benefits erode.

Practical Tips:

• Synchronize sprints between teams
• Do not have sprints that are shorter than two weeks in a distributed project
• Arrange collocated sprints when starting a project or facing challenges so

that the whole distributed team can work together

17.6 Sprint Planning Meetings

At the beginning of each sprint, teams hold a sprint planning meeting. In the meet-
ing, the backlog items to be developed in the sprint are selected, broken down to
tasks, and their effort is estimated. The product owner presents and explains to the
team the backlog items and answers the team members’ questions. Then the team
plans the sprint together.

17.6.1 Application of Sprint Planning Meetings to Distributed
Projects

If a Scrum team is distributed, the sprint planning sessions can be arranged as dis-
tributed meetings.

17 Using Scrum Practices in GSD Projects 269

However, if possible, it can be a good idea to invite all distributed team members
to a single location to plan the next sprint face-to-face. If team members are not too
far apart, this can be arranged regularly. You can also consider arranging collocated
sprint planning meetings at least for the first or first few sprints. That makes it pos-
sible for the team members to meet at least once face-to-face, to get to know each
other. Unfortunately, in most cases arranging face-to-face meetings in two or four
week intervals is not economically feasible.

In one of our case projects, where the onsite and offsite locations were located at
a reasonable distance—a one-hour plane trip from each other—a couple of offsite
team members flew to the onsite location for the first few sprint planning meet-
ings, which made these meetings more efficient. After this good start, the meetings
were arranged in a distributed manner supported by teleconference and application
sharing.

Another possibility is to divide the sprint planning meeting into parts: collocated
meetings at the different sites and a common distributed meeting for the whole team.
In a large case project, with only three hours synchronous working time between
the onsite and offsite locations, the sprint planning meetings were divided into three
parts: a distributed meeting, a local meeting at onsite, and a local meeting at offsite.
The distributed meeting was arranged using teleconferencing and application shar-
ing. During the distributed part, the product owner presented the prioritized items in
the backlog, and the team asked questions. Because of the time-zone difference this
part of the meeting was time-boxed for the three common working hours for both
sites. After the meeting, the offsite working day ended. The onsite team continued
by dividing the backlog items into more detailed tasks, adjusting the estimates made
by the product owner and making initial assignments of the tasks to different team
members. The offsite team continued the work the following morning by discussing
and commenting on the draft plan they had received from onsite.

If a project has site-specific collocated teams, sprint planning meetings can often
be arranged face-to-face. However, even if the team is collocated, the product owner
may be located at another site, introducing the need to arrange at least a part of the
meeting virtually.

17.6.2 Benefits of Sprint Planning Meetings

Sprint planning meetings provide team members an opportunity to participate in
planning and thus both better understand what is expected of them, and to commit to
the plans. In a distributed team, these meetings provide visibility to the work on both
sites and offer a regular discussion forum. Sprint planning meetings also provide
opportunities for building team cohesion and identification, despite of distribution.

270 M. Paasivaara and C. Lassenius

17.6.3 Challenges of Sprint Planning Meetings

Arranging a distributed meeting is always a challenge. All our case projects found
collocated planning meetings preferable. However, despite the fact that all case
projects had positive experiences with collocated meetings, arranging them regu-
larly proved too expensive. Project members commented that planning is a chal-
lenging task that requires lots of discussion, which is difficult to do efficiently while
distributed. Also, the issues discussed are sometimes just difficult to explain when
distributed.

Long distributed meetings can be also very tiring, if, e.g. the voice connection
between the sites is not very good—a situation that was not uncommon to the team
members we interviewed. Moreover, if videoconferencing or web cameras are not
used, it can be difficult to know who is talking when not seeing the persons from the
other site.

You have to take into account cultural, as well as knowledge differences between
the sites. Otherwise, experienced developers at onsite might end up doing the plan-
ning with offsite developers just listening and not actively participating.

Practical Tips:

• If possible, plan visits so that sprint planning meetings can at least some-
times be arranged face-to-face

• Encourage all team members to participate actively in planning
• Ensure technically good circumstances for virtual meetings: a quality voice

connection, a working video connection if possible, and application sharing

17.7 Sprint Demos

At the end of a sprint, the team demonstrates the developed functionality to all
interested parties. The meeting is called a sprint demo or sprint review meeting.

17.7.1 Application of Sprint Demos to Distributed Projects

In a distributed project, demos are normally arranged in a distributed manner. Even
though the project team might be collocated, there are often parties, such as the
product owner or team members from other teams, who are interested in participat-
ing in demos from other sites. If your project has just a couple of teams, they can
have joint demos. This allows the teams to give and receive immediate feedback.

All our case projects arranged demos that both onsite and offsite personnel partic-
ipated in. The demos were normally arranged using teleconference and application
sharing. During visits, face-to-face demos were sometimes arranged.

17 Using Scrum Practices in GSD Projects 271

17.7.2 Benefits of Sprint Demos

The demos increase the visibility of the project to all participants of the demo, espe-
cially between the distributed sites. They also offer a possibility to give and receive
feedback, as well as to monitor the work at offsite. For example, in one of our case
projects, before starting to use Scrum, the onsite and offsite teams were working
independently for long periods of time. This commonly led to a lot of rework for
the offsite team, as they often misunderstood the requirements written by the onsite
personnel. Short sprints with demos at the end mitigated this problem.

17.7.3 Challenges of Sprint Demos

The biggest problem with demos is often the same as with other distributed meet-
ings: the technology does not offer good enough possibilities to communicate effi-
ciently. Our case projects typically used teleconferencing with application sharing
to arrange their demos, but they were not happy with this technology.

Practical Tips:

• In a multi-team project, invite also members from other teams to the demo
and provide for a possibility to participate in a demo also virtually, since
even though the team might be collocated there can be interested parties
from other sites. A demo provides a good possibility to share information,
and to give and receive feedback

• Ensure technically good circumstances for virtual meetings: a high quality
voice connection, video connection if possible, and application sharing

17.8 Retrospective Meetings

A retrospective meeting normally takes place at the end of a sprint. During that
meeting the team discusses three questions: “What has been good during this
sprint?”, “What has not been that good?” and “What kind of improvements could
we do?”

17.8.1 Application of Retrospective Meetings to Distributed
Projects

Retrospectives in distributed Scrum projects can be arranged in similar ways as the
planning meetings. In particular in retrospectives, it is important to create an open

272 M. Paasivaara and C. Lassenius

atmosphere in which everybody’s input is welcome and valued. In particular, people
at the onsite location should try not to dominate the meeting too much.

Technically, the meeting can be done using tele- or videoconferencing, and per-
haps application sharing to jointly write the minutes.

In two of our case projects, the retrospective meetings took place directly after
the demos as distributed teleconference meetings.

17.8.2 Benefits of Retrospective Meetings

The main benefit of the retrospective meeting is that it provides a time in which
the whole team reflects upon its own behavior, and how to improve it. Conducted
successfully, the meeting can also provide good opportunities for increased team
identification and commitment.

17.8.3 Challenges of Retrospective Meetings

In order for retrospectives to be successful, it is important that everybody partic-
ipates and tries to contribute. Dominant personalities and experts should make a
special point of recognizing contributions from distance members. As an example
of a suboptimal practice, one case project with several Scrum teams had retrospec-
tives that consisted only of the Scrum masters. While this can be useful as such, it
is no substitute for retrospectives that involves the whole team.

Practical Tips:

• Make sure that the whole team participates actively in the retrospective
meetings

• Create a positive and open atmosphere that makes it easy to participate;
recognize even small contributions

• Be sure to follow up on the issues raised and suggestions presented in the
meeting

17.9 Backlogs

Backlogs are lists of items, e.g., features, to be developed. In the sprint planning
meeting, the product owner, with his or her team, selects items from the product
backlog to be developed during the next sprint. The features are then broken down
into tasks that are estimated and placed in the sprint backlog. There are several
commercial and open source tools for managing backlogs.

17 Using Scrum Practices in GSD Projects 273

17.9.1 Application of Backlogs to Distributed Projects

Collocated Scrum teams may manage their backlogs using physical objects, such as
post-it notes on the wall. In a distributed team, this is not practical, since all team
members, as well as their product owner, need to get access to the backlog. Thus,
electronic tools are needed.

Our case projects used different tools to manage their backlogs, e.g. Wiki was
used by a small project, whereas Jira was used by a large project. There are also spe-
cific backlog management tools available, such as Scrumworks and an open source
tool Agilefant, but none of our case projects used any of them.

How the backlog is managed needs to be decided together with the team, and the
responsibilities for backlog management clearly assigned. In particular, the respon-
sibilities of the product owner are critical.

17.9.2 Benefits of Backlogs

Electronic backlogs with up-to-date information and access by all team members
are necessary for managing tasks and monitoring progress in a distributed Scrum
project.

17.9.3 Challenges of Backlogs

The biggest challenges related to the backlogs in our case projects were related
to unclear updating responsibilities. Especially the responsibilities of the product
owner were quite unclear for new people assuming that role. In some projects, also
the Scrum masters, chief designers or chief architects performed some of the prod-
uct owner’s responsibilities. Moreover, in some projects there were several product
owners who had not clearly divided responsibilities between them.

Practical Tips:

• Choose a tool suitable for your purposes and give access to all team mem-
bers

• Agree on updating responsibilities

17.10 Frequent Visits

In addition to learning how to apply Scrum practices to distributed projects, the
distributed Scrum teams need to take into account lessons learned from managing

274 M. Paasivaara and C. Lassenius

distributed software development projects in general. One important lesson is to
arrange visits for distributed team members frequently enough.

17.10.1 First Visit

Building an efficiently working and communicating team is less painful if the team
members can meet each other face-to-face at least in the beginning of the project.
Preferably, the first visit should not be only a short trip to meetings, but a longer
stay during which distributed team members can start working together on project
tasks. The length of a collocated working period could be, for example, one or two
sprints. During this face-to-face period the team members learn to know each other
and develop joint working habits by working together at least for a short period of
time. This is an efficient start-up for a project and makes it easier to communicate
and collaborate later on when team members are working from different sites.

17.10.2 Further Visits

Later on during the project, both short trips and collocated working periods are
useful. A collocated working period can be scheduled, for example, for a critical
project phase like the last sprint before a release or for the first sprint of a new
release, when most of the planning takes place. It is a good idea to schedule the short
trips so that the visitors can participate the regular meetings face-to-face, making the
meetings more efficient. Thus, it is ideal to schedule trips at the end of a sprint, so
that the visitors can participate in the sprint demo, retrospective meeting and sprint
planning meeting for the next sprint during the same trip.

In the beginning, when arranging the first meeting or a collocated working pe-
riod for a new team, it is important that the whole team can participate. Later on,
when arranging collocated working periods or short trips, the whole team does not
necessarily need to travel. Instead, a few team members at a time can spend time at
a remote site, on a need basis. However, it is important that it is not always the same
persons that travel, but that every team member gets his or her turn. You can, for
example, create a travelling schedule for the project. Moreover, it is a good idea to
arrange trips to all sites, so that team members will get to know the circumstances
at different sites and at the same time learn more about the local culture of their
teammates. This way the task of travelling can be divided more evenly between the
team members.

When planning a travelling schedule for your project, you can plan a regular
schedule, for example a short trip every second sprint, or base your plan on the
critical phases of your project schedule. Moreover, you probably have to arrange
trips on a need basis. When your project is facing challenges, they are often easiest
to solve face-to-face.

17 Using Scrum Practices in GSD Projects 275

All our case projects arranged visits between the sites for team members, either
on a need basis, or according to a regular schedule. The visits also included leisure
activities, such as sauna or dinner. These gave team members a good possibility to
get to know each other on a personal level.

17.10.3 Benefits of Frequent Visits

Frequent visits provide good opportunities for getting to know persons from the
other sites, discuss difficult issues, and get a better picture of the project. Face-to-
face meetings also increase trust between team members and encourage them to
continue communication after the visits. It is important to arrange visits not only in
the beginning of the project, but also during the project. All our case projects found
their current model of frequent visits as very useful and even more visits were hoped
for.

17.10.4 Challenges of Frequent Visits

Travelling comes with a high cost both in working time and money, thus it is impor-
tant to plan the trips carefully. Getting travel plans accepted by higher-level man-
agers is often thought to be the most challenging part of frequent visits. Motivating
the need to travel to managers who might not appreciate the importance of meet-
ing face-to-face and working together to build the team can be difficult. Explaining
that a trip will pay itself back quickly in better communication and in more effi-
cient teamwork might not do it, since management might expect you to do perfectly
well without the team having a chance to meet face-to-face! However, in our case
projects this problem was never mentioned. Even though the case projects arranged
quite a few trips, none of the interviewees mentioned any problems of arranging
trips due to cost.

Finding time to travel can be more difficult, especially for experts who have
more than enough to do anyway. In our case projects, mainly offsite personnel did
the travelling. The reason for this was that onsite personnel was mainly experts who
did not have time to travel, even though that was hoped for by the people at the
offsite locations. Offsite personnel were mainly developers, who found it extremely
useful to meet the onsite experts face-to-face and ask questions and discuss difficult
issues. Our interviewees, especially from offsite, hoped that onsite personnel would
travel more to provide opportunities for additional offsite persons to meet them and
to share the sometimes quite heavy and tiring traveling duties between onsite and
offsite.

Finally, one challenge related to frequent visits, especially in arranging collo-
cated working periods is limited office space. Quite often this problem can be solved
by planning ahead, e.g. by reserving a big enough team room or reserving a meeting
room for the time of a collocated period.

276 M. Paasivaara and C. Lassenius

Practical Tips:

• Even though you might have a good infrastructure for electronic communi-
cation, face-to-face meetings are needed to build a common understanding
and an efficiently working and communicating team

• Start a project preferably by a collocated sprint
• Plan the travelling schedule in the beginning and remember travelling costs

in your budget
• Divide traveling responsibilities between your team members and sites

17.11 Multiple Communication Modes

In addition to face-to-face discussions, members of distributed Scrum teams need
to communicate a lot electronically. Providing several good tools for different kinds
of communication purposes is another lesson learned from managing distributed
software development projects.

Different people, contexts and situations require different communication tools.
The minimum set of tools that should be provided include:

• email
• instant messaging
• unrestricted voice calls
• application sharing

In addition, web- and videoconference solutions should be made available if
possible. Often, videoconferencing equipment is a scarce resource. Optimally, one
videoconference or telepresence room could be made available for spontaneous
short meetings only, e.g. it cannot be reserved or used for hours by a single meeting.

In our case projects, tool choice seemed to depend both on the purpose of the
communication, e.g. chat was used to ask short questions or for checking whether
the other party was available to receive a phone call, as well as the preferences of a
user. Some people preferred synchronous voice communication, while others with
limited language skills preferred written communication.

17.11.1 Benefits of Multiple Communication Modes

The main benefit of allowing and providing for multiple communication modes is
that it lowers the barriers to communication by allowing team members to commu-
nicate in a way that fits them the best outside project meetings. Since poor communi-
cation or the lack of communication altogether is a common problem in distributed
projects, one should not underestimate the importance of this.

17 Using Scrum Practices in GSD Projects 277

17.11.2 Challenges of Multiple Communication Modes

Providing for multiple ways of communicating is in principle easy, but corporate
policies and IT departments sometimes make it unnecessary difficult. Try to find a
way of providing for, in addition to email, at least the possibility for instant mes-
saging and unrestricted voice communication between team members. For voice, an
IP-based solution can help mitigate the fear of otherwise high phone costs.

Practical Tips:

• Aim at providing a rich set of communication tools that personnel can use
also outside official meetings

• Allow people to use the media they like the best with the least possible
limitations. For traceability or other reasons, documentation can be done
after an informal exchange, e.g. by email

17.12 Conclusions

In this chapter we have discussed the use of Scrum practices in global software engi-
neering, as well as provided practical tips for how to apply them. We discussed the
use of distributed daily Scrums, Scrum-of-Scrums, Sprints, Sprint planning meet-
ings, Sprint Demos, Retrospective meetings, and Backlogs. In addition, we dis-
cussed overall lessons learned in global software engineering that can benefit dis-
tributed Scrum projects.

References

1. Ågerfalk, P., & Fitzgerald, B. (2006). Introduction. Communications of the ACM, 49(10), 26–
34.

2. Cockburn, A., & Highsmith, J. (2001). Agile software development: The people factor. Com-
puter, 34(11), 131–133.

3. Fowler, M. (2006). Using an agile software process with offshore development. http://
martinfowler.com/artcles/agileOffshore.html. Referenced: 19.12.2007.

4. Patton, M. Q. (1990). Qualitative research and evaluation methods. Newbury Park: Sage Pub-
lications.

5. Simons, M. (2002). Internationally agile. InformIT, March 15th.
6. Sutherland, J., Viktorov, A., Blount, J., & Puntikov, N. (2007). Distributed scrum: Agile

project management with outsourced development teams. In Proceedings of HICSS 2007
(p. 274a).

7. Sutherland, J., Schoonheim, G., Rustenburg, E., & Rijk, M. (2008). Fully distributed scrum:
The secret sauce for hyperproductive offshored development teams. In Proceedings of agile
conference, 2008. AGILE ’08 (pp. 339–344).

http://martinfowler.com/artcles/agileOffshore.html
http://martinfowler.com/artcles/agileOffshore.html

278 M. Paasivaara and C. Lassenius

8. Sutherland, J., Schoonheim, G., & Rijk, M. (2009). Fully distributed scrum: Replicating local
productivity and quality with offshore teams. In Proceedings of HICSS 2009 (pp. 1–8).

9. Turk, D., France, R., & Rumpe, B. (2005). Assumptions underlying agile software-
development processes. Journal of Database Management, 16(4), 62–87.

10. Yin, R. K. (1994). Case study research, designs and methods. Thousand Oaks: Sage Publica-
tions.

Chapter 18
Feature Teams—Distributed and Dispersed

Jutta Eckstein

Abstract Teams have to be enabled for delivering business value to customers. Or-
ganizing project members in feature teams provides the basis for doing so. Some
(large) global projects are organized in distributed feature teams, where each fea-
ture team is co-located at one site and some in dispersed feature teams, where fea-
ture team members reside at different sites. Besides focusing on delivering business
value projects have to ensure conceptual integrity of the system. While feature teams
deliver the business value, a technical service team ensures conceptual integrity (e.g.
adherence to the same look-and-feel) across the whole system.

18.1 Introduction

The core motivation for agile development is to provide, at any point in time, the
highest possible business value for the customers in terms of working software.
This is a challenge even for a co-located team and it is increasingly difficult the
more distributed a team is. The team structure of a (large) global project can hinder
or support this goal. A project is defined as large and global if it is distributed over
more than one site and more than one team is—or in other words more than fifteen
developers are—working on it.

If a global project needs more project members than can successfully work to-
gether in a single team—which is typically more than ten people—the whole project
team should be divided into subteams.

The first section of this chapter explains the historical organization of these sub-
teams which has its origin in following a linear or rather waterfall process. The next
section elaborates how structuring a project in feature teams enables agility. More-
over it discusses if these diverse feature teams reside at one location (distributed
teams but each feature team is co-located) or span multiple locations (dispersed

J. Eckstein (�)
Gaussstr. 29, 38106 Braunschweig, Germany
e-mail: feedback@distributed-teams.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_18, © Springer-Verlag Berlin Heidelberg 2010

279

mailto:feedback@distributed-teams.com
http://dx.doi.org/10.1007/978-3-642-12442-6_18

280 J. Eckstein

teams). The implications and specifics of these different settings are elaborated in
detail.

Organizing the whole project in feature teams supports the concentration on the
business value. Yet, it is very likely that different technical concepts emerge, be-
cause different feature teams will for example develop different access layers to
the database. The third section explains how a technical service team helps avoid-
ing these discrepancies from happening and ensures instead conceptual integrity by
serving the feature teams.

18.2 Context

The experiences described in this chapter refer to several projects I have been work-
ing on. Moreover, I verified some of my experiences through frequent exchanges
with colleagues of mine. Please find below some ranges for the characteristics of
these projects:

• Most of my projects are rather large in terms of people, between thirty and 300
project members.

• The smallest distribution degree is two sites within one country and the biggest
one six sites spread over the globe.

• The following countries were involved: Austria, China, Czech Republic, Ger-
many, Hungary, Poland, Singapore, Switzerland, UK, USA.

• The domain for the system varied very much, we built systems for embed-
ded products, financial applications, mechanical engineering, multimedia, and
telecommunication.

• Although I refer to all of them as “projects” this doesn’t cover the truth, because
some of them are actually product development. The biggest difference between
the two is that product development has no ending—as soon as the first version
is shipped this product is maintained and additionally the team works on the next
version of the product.

• Some of these “projects” were greenfield applications whereas other ones were
existing ones with a lot of legacy.

I hope this context description helps in order to classify and better understand the
experiences described and the recommendations given.

18.3 Historical Structures of Distributed Teams

The reduction of communication between sites is historically the major motivation
for the decision on team-organization in global projects. In such a situation the team
structure is often based on the different phases, activities, or roles found in linear
development. For example, testers may be located at one site, business analysts at
the next and designers at an additional site. Or as Shao and Smith David wrote,
when describing global development, that using a waterfall approach:

18 Feature Teams—Distributed and Dispersed 281

[. . .] implies that front-end activities such as preliminary requirement analysis and concep-
tual architecture design as well as back-end tasks like system testing, system deployment
and user training will remain in place. [1]

Thus, according to Shao and Smith David, each of the waterfall phases is con-
ducted at one location and moreover typically the front-end and back-end activities
are staying at the headquarters whereas the middle activities like coding are trans-
ferred to a different location. The subteams are shaped according to activities or
rather phases. Building co-located subteams this way makes collaboration difficult.
Distributing these activities across different sites makes it even harder.

Another popular team structure, which is often combined with a structure along
activities, is one which uses the technological know-how of developers, or rather
the architectural layers of the software, as its guiding principle for defining team
boundaries. In the resulting structure some people who concentrate on user inter-
faces reside at one site, database specialists at the next, and middleware experts at a
third site.

18.3.1 Consequences

Often the structure along activities is combined with the one along technical com-
ponents. Such a combinational structure could result in a project made up of a team
of business analysts in the USA, of user interface specialists in Northern Ireland,
and of testers in China. Given such a structure, it is not surprising how often the
following consequences can be observed:

• Things, in general, do not fit together. For example component interfaces often
suffer from compatibility issues.

• Developed functionality does not serve the customer.
• Blaming between sites becomes the norm because nobody has the full responsi-

bility of delivering a feature. Every team or site comprehends a partial responsi-
bility of the delivery only.

Team structures following either activities or/and technical components are the
reason why it is often so difficult to deliver business value during the project’s life-
time (and also at the deadline of the project). This is particularly unfortunate because
only the early delivery of business functionality can trigger the valuable customer
feedback. Without such feedback it is not possible to learn from the customer and
allow the system to gradually adapt to the users’ needs.

18.4 Building Agile Teams

In order to always keep the business value of your customer in mind, and enable a
(sub-) team to deliver business features there is only one solution: organize teams
along features. This is also an implicit request of one of the principles of the agile
manifesto:

282 J. Eckstein

The best architectures, requirements, and designs emerge from self-organizing teams.

That is, instead of structuring teams according to technical know-how or ac-
tivities, organize teams according to business domain areas. A single feature team
should always be able to deliver whole business functionality (features or stories)
or in other words business functionality should never be split across several teams.
Taking the whole responsibility for features allows a team to organize itself and its
work.

This requires every feature team to assemble all roles, knowledge, and skills
(also to acquire the missing knowledge) that are necessary to deliver a complete
business feature. Consequently, a feature team will consist of analysts, testers, user
interface specialists, database experts, and so on—just everyone who is needed for
a complete delivery of the required functionality. Feature team members might be
experts in their specific field however they have to take turns in fulfilling different
roles. Only the latter allows the feature team to become a generalist in its business
domain and makes it possible to spread the knowledge across all its members. This
in turn reduces the risk of depending on specific experts and creates an environment
where all feature team members can support each other.

18.4.1 Feature Teams—Co-located or Dispersed

Structuring teams according to features or domain areas requires creating multi-
disciplinary subteams. Yet, how can you possibly organize teams across different
sites and still ensure this concept? Generally there are two possibilities:

• Distributed feature teams. The first option, especially if you want to simplify
the communication within the team, is to create feature teams site-wise. Thus the
project will be structured in multiple feature teams where each feature team will
possibly reside at a different location, yet the team members of every feature team
are co-located. As aprerequisite for such a setting all roles, knowledge, and skills
(also to acquire the missing knowledge) about a feature team’s domain area exists
at the feature team’s site. However, this may not always be the case. To resolve
this you can either ask the people who have the required know-how to transfer that
missing knowledge to the specific site, or to ask those people to move to that site
and keep the feature team physically together this way. Alternatively implement
the subsequently described strategy of dispersed feature teams.

For distributed feature teams you have to take into account that although the
feature team’s internal communication is easier because the team is co-located,
the communication across the different feature teams is often harder because of
the physical distance between the sites where the feature teams are situated. A
working communication across teams can be critical for the project, because it
will be needed to enable—among other things—conceptual integrity.1

1Conceptual integrity refers to applying the same concepts, such as e.g. the same look and feel,
across the whole system.

18 Feature Teams—Distributed and Dispersed 283

Fig. 18.1 Three distributed
feature teams working on one
project (or product)

• Dispersed feature team. If the roles, knowledge, and skills are spread over many
sites and it seems impossible to co-locate all people comprehending the necessary
wisdom, you have to consider a different approach for building feature teams:
Consciously establish feature teams across different sites. Thus such a multi-site
feature team will be distributed in itself with members being dispersed over di-
verse sites. Internal team communication will require a higher effort. Having a
joint objective becomes more important for dispersed feature teams in order to
jell as a team. Yet, ensuring the delivery of features iteration for iteration pro-
vides such a joint objective. Of course, it is not quite as easy. For this to work
well, the team needs to share some common ideas, such as appreciating the same
set of values and work ethic. This is discussed further in the next section.

Fig. 18.2 One dispersed
feature team working on one
project (or product)

Having dispersed feature teams in place eases this cross-team communication by
the physical proximity of individual team members to people belonging to other
feature teams. This is based on the fact that members of different dispersed feature
teams are co-located at the same site.

• Distributed as well as dispersed. As we have seen a (large) global project has
actually two possibilities for structuring teams. Each possibility has advantages
and disadvantages. In most of my projects we establish a mix—some of the teams
are co-located and thus distributed feature teams, others are dispersed ones. The

284 J. Eckstein

structure for the feature teams should always be driven by the business domain
that needs to be implemented. We typically take the business domain together
with the required technological know-how as the basis for the team structure.
Thus for the sites where we have both—the required business and the techni-
cal knowledge available—we create a co-located feature team. For the business
domains (or/and for the technology) where we don’t have all the requested knowl-
edge available at a single site we create dispersed teams.

Fig. 18.3 Two distributed
feature teams together with
one dispersed feature team
working on one project (or
product)

18.4.2 Creating Proximity for Dispersed Feature Teams

A team is more than the assembly of individuals. The individuals or rather the team
members should trust and support each other and pull together towards a joint goal.
Tuckman has described in his team psychosocial development model how a team
develops trust. This model explains that every team, in order to become a team has
to go through different stages. These stages are forming (getting together, defining
objectives), storming (first conflicts with consequences on roles), norming (accept-
ing rules and evolving guidelines), and performing (working towards a common
goal, constructive resolution of conflicts) [2].

In order to go through these stages timely, the members of the dispersed team
ideally work together (that is by being co-located) at the beginning for a limited
timeframe. Being co-located is not a natural setting for members of a dispersed
team, yet it will still speed up the process of going through the different stages. Al-
though taking more time, starting with a dispersed team in its natural (dispersed)
environment makes the most critical challenge of their natural environment transpar-
ent quickly: Creating proximity over the physical distance. Depending on the degree
of the team’s dispersion there are different options for creating this proximity. If the
team spreads for example over Central and Eastern Europe, then team members can
meet at one of the feature team’s site for a few days every week or at least for every

18 Feature Teams—Distributed and Dispersed 285

iteration turnover.2 If the distance is much bigger you should consider the concept
of expatriates, where team members work at a different team location for a longer
period of time. Imagine you have a feature team composed of five Russian develop-
ers and two German developers. A good way to help the team jell is to have the two
Germans work for the start of the project as expatriates in Russia.

It is crucial to acknowledge that face-to-face meetings are most effective when it
comes to creating solidarity and intimacy among team members. This is also empha-
sized by Vicki R. McKinney and Mary M. Whiteside who conducted a survey with
more than 200 individuals working in virtual teams, and, one of their conclusions is

[a] prior traditional relationship is a shared characteristic of many distributed relation-
ships. [3]

18.5 Technical Service Team Ensures Conceptual Integrity

Having feature teams in place will ensure the focus on delivering the highest busi-
ness value. Without an architect, it might happen that the feature teams focus on
business features only and not on conceptual integrity. So you might end up with
a system showing different look-and-feels, using diverse possibilities for database
access and the like. Only adherence to conceptual integrity makes it possible to un-
derstand and maintain the system easily, because the same concepts will be applied
everywhere. That is the reason why conceptual integrity is the basis for simplicity
and for maintainable systems. The agile manifesto asks for simplicity in the follow-
ing principle:

Simplicity—the art of maximizing the amount of work not done—is essential.

In many projects it is the architect who takes care for conceptual integrity. De-
pending on the size of your project as well as on the complexity of it, this one
architect might need the support of additional architects.3 For ensuring conceptual
integrity, some systems require a specific infrastructure or a framework. For exam-
ple if your system is based on a distinct middleware, embedding and using the mid-
dleware should follow the same approach in the whole system. Another example is
product line development where different products are based on the same architec-
ture. In such settings a so-called technical service team will develop for example, an
architecture or a framework providing the necessary services for all feature teams.
The feature teams will in turn build their features on top of these services using the
same concepts.

The technical service team provides services requested by the feature teams and
understands the feature teams as their customers. The technical service team differs
from the classical team of architects sitting on an ivory tower and creating frame-
works nobody can and wants to use.

2Iteration turnover is the ending of one iteration with review and retrospective and the planning of
the next iteration.
3More on the role of the architect in Roles and Responsibilities, see Chapter 19.

286 J. Eckstein

For the technical service team to act as a pure service provider, the feature teams
have to accept their role as customers. In order to do so, they need to assign some-
body as the product owner for the technical service team. This product owner, just
as a “regular” one, decides on priorities and steers the development of the tech-
nical service team. Compared to the customers of feature teams, the customers of
a technical service team are always developers (but in a sense also end users—of
the technology provided). And compared to the business features the feature teams
are developing, the technical service team works on technical “features”. Yet, the
feature teams will ensure that the technical features are business-driven, because
the feature teams will always request what they need in order to develop business
functionality.

18.5.1 Starting Team as Role Model

It is very rare that product development begins with—for example—a hundred de-
velopers organized in ten to fifteen subteams on day one. Instead, most large global
projects are hardly started with more than one team. This one starting team should
have the task of implementing two to three key user stories together with a refer-
ential architecture. Depending on the complexity of the system under development,
this first referential architecture might be sufficient to ensure conceptual integrity.
The subteams joining the project later can use this initial implementation as a role
model for their further development. This is actually also the reason why this ini-
tial architecture is called referential architecture—it serves as a reference later on
(which doesn’t mean it can’t be changed).

A reasonable creation of the starting team takes people from all project sites
into account. This setting ensures that all sites will create some knowledge about
the referential architecture already during the starting phase.This in turn enables
knowledge-spreading about conceptual integrity across sites.

18.6 Conclusions

It is crucial to enable a team to deliver a whole feature. By having an entire team
responsible for whole business functionalities nobody can be blamed if, at the end
of an iteration, not all tasks have been completed. Instead a feature team has to pull
together and make the features happen.

Organizing a (large) global team in subteams requires deciding on distributed or
dispersed feature teams. Team members of a distributed feature team will be co-
located whereas the ones of a dispersed feature team will be spread over multiple
sites. A joint goal, like regular feature delivery, helps every team to jell. A dispersed
team will additionally need some time to create a team identity so they work together
more effectively.

18 Feature Teams—Distributed and Dispersed 287

Cross-site communication should be in the focus when establishing distributed
(co-located) feature teams. Cross-site communication ensures the common under-
standing of the system and the joint objective of the entire project.

While feature teams ensure the focus on the delivery of business features, they
might lose sight of conceptual integrity. Technical coherence of the system can be
provided as a service by a technical service team. The basis for conceptual integrity
is provided by the starting team.

References

1. Shao, B. B. M., & Smith, D. J. (2007). The impact of offshore outsourcing on IT workers in
developed countries. Communications of the ACM, 50(2), 89–94.

2. Tuckman, B. (1965). Developmental sequence in small groups. Psychological Bulletin, 63,
384–389.

3. McKinney, V. R., & Whiteside, M. M. (2006). Maintaining distributed relationships. Commu-
nications of the ACM, 49(3), 82–86 (Quote on p. 85).

Further Reading

4. http://www.agilemanifesto.org.
5. Eckstein, J. (2004). Agile software development in the large. Cambridge: Dorset House.
6. Eckstein, J. (2010). Agile software development with distributed teams. Cambridge: Dorset

House.

http://www.agilemanifesto.org

Chapter 19
Roles and Responsibilities in Feature Teams

Jutta Eckstein

Abstract Agile development requires self-organizing teams. The set-up of a (fea-
ture) team has to enable self-organization. Special care has to be taken if the project
is not only distributed, but also large and more than one feature team is involved.
Every feature team needs in such a setting a product owner who ensures the continu-
ous focus on business delivery. The product owners collaborate by working together
in a virtual team. Each feature team is supported by a coach who ensures not only
the agile process of the individual feature team but also across all feature teams. An
architect (or if necessary a team of architects) takes care that the system is techni-
cally sound. Contrariwise to small co-located projects, large global projects require
a project manager who deals with—among other things—internal and especially
external politics.

19.1 Introduction

If the world would be ideal, then this chapter would be superfluous. Because then
everyone working on a system would do the right thing. For small co-located agile
teams software development often comes close to the ideal case. Yet, unfortunately
this isn’t the case for large global projects—projects that are spread over at least
two sites and consist of more than one team or more than fifteen developers. In the
latter setting various roles and responsibilities have to be implemented for successful
collaboration.

The first section talks about the more classic roles, like database expert or user
interface designer and what happens with those roles in an agile feature team. The
next section elaborates on the role of the product owner. This person should steer
a feature team business-wise. In a global project this means that the product owner
needs to be close to both—the feature team and the customer. And moreover, in a

J. Eckstein (�)
Gaussstr. 29, 38106 Braunschweig, Germany
e-mail: feedback@distributed-teams.com

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_19, © Springer-Verlag Berlin Heidelberg 2010

289

mailto:feedback@distributed-teams.com
http://dx.doi.org/10.1007/978-3-642-12442-6_19

290 J. Eckstein

large global project many feature teams work on the same product. Thus the product
owners of the diverse feature teams need to collaborate so that the overall delivery
is in the mind of the customer.

The third section discusses the role of the coach. This role ensures adherence and
necessary changes to the agile process. In a large global project every individual
feature team requires a coach and all the coaches together need to take care that the
overall agility isn’t lost in the interworking of all feature teams.

The next section looks into the various possibilities of ensuring conceptual in-
tegrity, or technical soundness of the overall system. Depending on the complexity
of the project and the knowledge and skills of the project members, each feature
team might require one architect. In other circumstances a single architect for the
entire project might be enough. If more than one architect is required, the people
taking this role have to work together. Otherwise conceptual integrity is out of reach.

The fifth section explains the responsibilities of a project manager in a large,
global, and agile project. And finally the last section elaborates on the location of the
various roles. Especially key roles should be close to the team they are supporting.
The product owner steering a specific feature team should for example be co-located
with the respective feature team.

19.2 Context

The experiences described in this chapter refer to several projects I have been work-
ing on. Moreover, I verified some of my experiences through frequent exchanges
with colleagues of mine. Please find below some ranges for the characteristics of
these projects:

• Most of my projects are rather large in terms of people, between thirty and 300
project members.

• The smallest distribution degree is two sites within one country and the biggest
one six sites spread over the globe.

• The following countries were involved: Austria, China, Czech Republic, Ger-
many, Hungary, Poland, Singapore, Switzerland, UK, USA.

• The domain for the system varied very much, we built systems for embed-
ded products, financial applications, mechanical engineering, multimedia, and
telecommunication.

• Although I refer to all of them as “projects” this doesn’t cover the truth, because
some of them are actually product development. The biggest difference between
the two is that product development has no ending—as soon as the first version
is shipped this product is maintained and additionally the team works on the next
version of the product.

• Some of these “projects” were greenfield applications whereas other ones were
existing ones with a lot of legacy.

I hope this context description helps in order to classify and better understand the
experiences described and the recommendations given.

19 Roles and Responsibilities in Feature Teams 291

19.3 Configuration of a Feature Team

A single feature team should always be able to deliver whole business functionality
(features or stories) or in other words business functionality should never be split
across several teams.1 Therefore, for a feature team to perform well the members of
the team should either already comprehend, or be capable of acquiring the required
knowledge that is necessary to complete a unit of business functionality. In addition
to the domain and technical know-how that has to be present in each individual fea-
ture team, the team also requires the knowledge to actually deliver the functionality.
In a typical feature team its members will fulfill the roles of architects, database ad-
ministrators, designers, technical writers, domain experts, infrastructure specialists,
integration experts, programmers, testers, and user interface designers.

Typically in agile teams, feature team members take turns in fulfilling these roles.
There is hardly a single person taking the responsibility for only one role. Head
monopolies—a few people who are regarded as the only experts for a specific area—
have to be avoided, because they create a high risk. The project will have difficulties
making any further progress if these people are for example on vacation, sick, or
change jobs.

Ideally a feature team consists of seven, plus or minus two member (the Miller
rule) and stays together for the whole lifetime of the project. Yet, in many projects
the individual feature team size depends on the complexity and size of the domain
area this feature team is responsible for.

The development of some distinct features might require a specific knowledge for
only a certain amount of time. For example, in one of my projects we rarely required
the expertise of database specialists for data migration (but most of the time this
knowledge wasn’t needed). We had therefore only a few migration specialists for the
whole project, but not for every feature team. In such a situation, I recommend that
this migration specialist gets part of the feature team only while the corresponding
features are developed within this team. Very often such a feature team membership
lasts only for one iteration.

Yet, preferably the required know-how should exist within each team, or else the
team should be supported to build it up. Therefore, it is a good idea to use a similar
approach if a feature team requires support for acquiring some specific know-how.
In that case the respective mentor works with this team for as long as it is necessary
to transfer the knowledge.

It often simplifies the job of these transient team members if they travel to the
site of the feature team they’re currently supporting. But, this is not always required
especially not if the feature team is dispersed because such a team has by definition
no common site. Therefore, for the support of a dispersed feature team—a team that
is distributed in itself—the transient team members stay either virtually in contact
with the people they are supporting or they travel to the sites where these people
reside.

1More on feature teams see Chapter 18: Feature Teams—Distributed and Dispersed.

292 J. Eckstein

19.4 Product Owner

Each feature team has to be made aware of feature prioritization and has to know
whom to ask if there are problems in understanding the specifics of a feature. The
agile manifesto requires in one of its principles that:

Business people and developers must work together daily throughout the project.

In other words: a feature team needs to collaborate with somebody representing
the customer. To simplify matters, this representative is often labeled as the cus-
tomer, or as in XP the on-site-customer. Most often this term is misleading, because
this representative is seldom a customer himself, but somebody providing the busi-
ness perspective in terms of the customer. For example, some systems need to serve
various (competitive) customers who can’t agree on the requirements. The Scrum
term product owner is widely used for differentiating the real customer from the
representative who collaborates closely with the feature team.

The product owner’s task is to clarify the different requirements of the vari-
ous customers and to decide on priorities. Thus, the product owner needs to know
the business domain of the customer in detail and has to have a good communi-
cation channel to the (different) customers. The product owner is caught between
two stools—he needs to support the feature team regarding the business knowledge
and to involve the (real) customers to decide on priorities. This makes fulfilling the
product owner’s responsibilities very exhausting.

Most often product owners are recruited from different areas or departments,
such as: marketing, support, product management, sales, or business analysis. If the
end users of the system under development are developers, of course a developer is
also an excellent candidate for the product owner.

19.4.1 Team of Product Owners

Most often there is a one-to-one mapping between product owner and feature team.
The exception is if the system is rather simple and/or the feature team has built a
similar system in the past, then a product owner can support several feature teams.
For the norm, large global projects have a product owner for each and every feature
team. These product owners need to synchronize the prioritization of the features
so that the resulting system provides a surplus with every iteration. Ignoring the
synchronization leads most likely to a system in which the contained features do not
fit together or even contradict each other.

Thus, in a large global project the product owners have to work together as a
(virtual) team. This team is claimed to be virtual, because the respective feature
team is the “home” for every product owner. Moreover, most often the collaboration
of the product owners happens virtually, because the product owners are situated at
different sites.

19 Roles and Responsibilities in Feature Teams 293

19.4.2 Lead Product Owner

Establishing a (virtual) team of product owners creates the risks that:

• Every product owner pushes his or her own features and ignores the overall busi-
ness functionality of the system.

• Decisions on priorities are delayed, because the team can’t come to an agreement.
• Different product owners contact the same customer with similar questions,

which might upset that customer.

The core of these risks is that too many cooks spoil the broth. The more product
owners belong to that team the more likely it is that the business perspectives differ.
Therefore, the team of product owners has to be steered by a lead product owner,
who mediates in case of discrepancy.

Fig. 19.1 Virtual team of
product owners (in whole
black) with lead product
owner (symbolized with
crown)

The lead product owner is the key contact to the (real) customers and collects
their key ideas. The responsibility of the lead product owner is to spread these key
ideas. Moreover, the lead product owner requires the input of the team of product
owners in order to decide on business priorities.

Depending on the complexity of the system as well as of the project (based on
size, degree of distribution and the like) the lead product owner might be able to
additionally support one of the feature teams. That is next to the responsibility of
leading the team of product owners, this person takes the role of an “ordinary”
product owner. Yet, in most cases fulfilling the role of the lead product owner will
be the unique (full-time) task of that person.

19.4.3 Collaborating with Both: Customers and Feature Team

The lead product owner is the key contact to the customers. Yet, for support-
ing their feature teams adequately—getting feedback and clarifying possible
misunderstandings—also the product owners need to work together with the cus-
tomers.

294 J. Eckstein

Preferably, every product owner is co-located with the feature team he’s support-
ing. It’s a rule of thumb that the more complex the business domain is the nearer the
product owner has to be to the feature team. As a consequence, the product owner
needs to work together with the customers virtually most of the time. At other times,
he has to travel to the customers sites.

Obviously, if the feature team the product owner is supporting is not co-located
but dispersed, he can’t be co-located either but needs to travel to the various sites.
Often it helps if the product owner is then at least situated at a site where a few
members of the dispersed feature team reside. This way he will always be aware
of the current situation. Whenever the product owner can’t be close to his feature
team the conversation between product owner and feature team has to be enriched
by utilizing all kinds of communication media. The most important thing though is
to try to reduce the times when the product owner is not close to “his” feature team.

However, it should be clear that there is no difference between an onshore and an
offshore team. This is stressed, because sometimes it is assumed that offshore teams
don’t need a co-located product owner. A co-located product owner can ensure in
the best way possible the growth of business value in the system. And delivery of
business value is what agile is about.

If the assigned product owner can’t be co-located with the feature team he is
supporting—a different product owner is required. Global projects use often a shad-
owing concept to educate product owners at every site involved. This shadowing
concept relies on experienced product owners at other sites who act as mentors for
the inexperienced ones.

19.5 Coach—Also Known as Scrum-Master

The coach (Scrum term: scrum-master) ensures the agile process is supporting the
feature team in the best way possible. If the process is hindering more than helping,
the coach will work together with the team to improve it. Or whenever impediments
occur that hinder the feature team on making progress, the coach will smooth this
impediment out. An example would be escalating problems to the right people.

This doesn’t necessarily mean that the coach is doing all this operatively himself,
yet, he reminds the team that if something isn’t working it needs to be changed for
the better and asks every team member to responsibly do so. In this way, the coach
acts more as a vivid reminder for the team. It should be the goal for every coach to
become superfluous—and although I have never seen this happening in reality—this
mindset helps the team to understand self-organization better.

In large global projects there is always a one-to-one mapping between coach
and feature team. For every agile team there is only one exception to this rule: the
team is perfectly self-organized and as a consequence the coach is superfluous. In
all other circumstances every feature team is supported by one coach. If there is
no experienced coach available, at least one of the team members has to grow into
that role. The coaches of the different feature teams work together for ensuring the

19 Roles and Responsibilities in Feature Teams 295

overall agility of the project. They help feature teams to benefit from one another by
transferring learnings, and good practices from one feature team to the others.

I find it important that the coach is actually a member of the team and not an out-
sider to the team for example by being one level higher up in the hierarchy than the
team. To ensure this, the coach should support the team additionally as a developer
or tester. However, the coach might not always be able to fulfill his responsibility as
a regular team member—this depends on how well the team jells and how good it is
in self-organization.

It should be obvious that the coach could fulfill his role best if he is co-located
with the feature team he is supporting. Of course, for dispersed and thus not co-
located feature teams the coach needs to communicate and collaborate with team
members in different ways: by phone, e-mail and also by traveling. Moreover, simi-
larly to the product owner, also the coach should be situated at one of the dispersed
feature team’s sites (and not a third site) in order to know what the team is struggling
with.

Fig. 19.2 Coach (in whole black) should be located at one of the dispersed team’s site (right
figure) and not at a third site (left figure)

19.6 Architect and Architecture

Small co-located agile teams typically take the responsibility for the architecture al-
together. While concentrating on business features, close collaboration enables such
a team to additionally ensure that the system is technically sound. This technical
soundness is also called conceptual integrity and is defined by Fred Brooks as fol-
lows:

It is better to have a system omit certain anomalous features and improvements, but to
reflect one set of design ideas, than to have one that contains many good but independent
and uncoordinated ideas. [1]

296 J. Eckstein

Conceptual integrity is according to Brooks the most important consideration
in system design and the basis for simplicity and straightforwardness, which is in
large global teams the main responsibility of an architect. For some projects it is
sufficient for an experienced developer to additionally take the role of the architect.
Yet in a large and global project you will need an experienced chief architect to
ensure conceptual integrity across the entire project.

The need for architects depends on the technology, the technical know-how of the
project members, the complexity and the size of the project. One architect advising
in all technical decisions is enough for many global projects. This architect brings
technical dependencies of features to the awareness of the business site which help
the (lead) product owner to make the right prioritization decisions. In some cases
the technical complexity of the system or the lack of technical know-how requires
every feature team to get the support of one architect. Very often though, this sup-
port is only needed for the start of the project till the knowledge is built up. Then the
responsibility of the architect morphs to regular development with only occasional
pure architectural support. Finally, some projects benefit from a team of architects.
In such a setting feature teams will get full-time support of an architect only for lim-
ited period of time, for example for the duration of one iteration before the architect
moves on to support the next feature team.

Supporting a feature team doesn’t mean that the architect provides concepts or
documents yet it means he assists in implementing the features through actual cod-
ing.

19.6.1 Chief Architect

As soon as more than one architect supports the project it becomes crucial that
the architects collaborate closely—otherwise conceptual integrity isn’t guaranteed.
Similarly to the virtual team of product owners, also the architects benefit from
somebody—the chief architect—leading the group.

It is the chief architect who ensures that the big picture is communicated and
understood well. He will act as the key contact for the business side and will keep
the memory of key ideas alive [2]. Moreover, the chief architect spreads these key
ideas and makes this way certain that more and more people gain the same under-
standing of the system. Without a chief architect feature teams (with the support of
their architect) tend to suboptimize towards their own targets and lose sight of the
total effect on the entire system [1]. An architect should never come up with con-
cepts driven by self-fulfillment. Thus, it is the chief architect’s task to convince all
architects that they are providing a service for the feature teams that supports the
development of business features.

Although the name of the role—chief architect—might imply that this person is
dictating architectural decisions, this is far from being true. Yet, on the other hand
using democracy like majority decision is also not a good advisor for making key
decisions. Instead the guiding concept should be nemawashi defined by the Toyota
Way as:

19 Roles and Responsibilities in Feature Teams 297

Make decisions slowly by consensus, thoroughly considering all options; implement
rapidly. [3]

Taking this concept into account requires the chief architect to ensure that every-
one gets heard, different views are evaluated and everybody is this way involved in
decision making with the consequence that the final decision is backed.

19.7 Project Manager

For small co-located agile projects the classical tasks of a project manager are
mainly performed by the product owner (a few are left for the coach). Yet, in a
large and global setting the burden for the product owner(s) and coach(s) is already
so high that these persons can’t additionally take care of the organizational stuff.
A critical responsibility belonging to that area is politics. A project can be in optimal
shape but still be killed by ignoring political issues (or lobbying)—both externally
and internally.

If a feature team requires specific resources, has difficulties accessing its product
owner or customer, or if a project member wants to change sites or move to another
department—the project manager can support effectively because his network inside
and outside the company is typically more powerful (than for example that of a
coach).

Often the responsibility for the budget lies also in the hands of the project man-
ager. However, this requires close collaboration with the (lead) product owner.

Basically, it is the project manager who enables the entire project team by remov-
ing all impediments that can’t be removed by the feature team members themselves.

If the development of your global project is spread over several locations, it is
unimportant at which location the project manager actually resides. He will have to
travel to all the different locations anyway. However, if development is situated at
one location and project management at a second one then that definition of project
management clearly does not match the project manager role bed here. In such a
situation I recommend project management to move to the development site for the
duration of the project.

19.8 Key Roles Support Their Teams Directly

All key roles—especially coach, product owner and architect (if there is one per fea-
ture team)—should be co-located with their feature team. Actually, they belong to
the team. Some organizations assign key roles to project members located at the site
where the headquarters resides. However, this is by no means supportive. On the one
hand, such a setting implies the key roles are more controlling than participatively
serving the feature team and on the other hand, it feels like the headquarters mis-
trusts the other sites of being able to self-organize. Additionally, proximity makes
collaboration more efficient.

298 J. Eckstein

Yet, if the respective feature team is dispersed there is no specific site where key
roles should be located. The only rule to follow in such a setting is that key roles
should reside at one of the dispersed feature team’s site and not be solely located
at yet another one. Still, the relation between efficient collaboration and proximity
holds also true in a dispersed setting. Therefore, it is crucial for everyone playing a
key role to travel frequently to all sites involved and to stay virtually in touch with
the remote sites.

Fig. 19.3 Key roles (in
whole black) should be
co-located with their feature
team no matter if the team is
co-located or dispersed

19.9 Conclusions

Large global projects require special attention to roles and responsibilities. Each
feature team should be structured in a way that all necessary knowledge and skills
are either available within—or can be acquired by the team. Sometimes, for example
during an educational period it might be necessary that a feature team requires the
support from a mentor over a limited timeframe.

Every feature team is steered business-wise by a product owner. The product
owner decides on the priorities of the features this team is working on and clarifies
possible misunderstandings. In order to do so the product owner stays in contact
to the (real) customer and to his peers. This team of product owners with the sup-
port of a lead product owner ensures that every iteration results in the delivery of a
meaningful business value.

Every feature team is supported process-wise by the coach. Thus the coach en-
sures adherence to the agile process and if the process is inadequate he motivates
the team to change the process for the better.

The focus on business value might lead into ignoring technical aspects. The ar-
chitect brings these technical aspects to the awareness of the product owners. He
explains technical dependencies between features which might influence their pri-
orities. Depending on the project (in terms of size, content, technical complexity)
every feature team might need the support of an architect or at the other extreme
one architect might be sufficient for serving the whole project. If a project requires

19 Roles and Responsibilities in Feature Teams 299

more than one architect, the chief architect will ensure the synchronization of—and
agreement on technical decision by all architects.

Contrariwise to small co-located agile teams, large global ones require a project
manager making certain that the whole project runs smoothly organizational wise.
The major concern of the project manager is to get the backing for the project both
inside and outside the organization. This requires the project manager to deal a lot
with politics.

Unless a feature team is dispersed, all key roles should be located at the same
site as the feature team. In order to support a dispersed feature team the key roles
need to be located at one of the team’s sites, travel frequently to the various sites
involved, and communicate virtually while away.

References

1. Brooks, F. P. Jr. (1995). The mythical man-nonth: Essays on software engineering (20th anniv.
ed.). Reading: Addison-Wesley (Quoted from p. 42 and p. 44).

2. Cockburn, A. (2006). Agile software development: the cooperative game (2nd ed.). Reading:
Addison-Wesley.

3. Liker, J. K. (2004). The Toyota way. 14 management principles from the world’s greatest
manufacturer. New York: McGraw-Hill (Quoted from p. 241).

Further Reading

4. http://www.agilemanifesto.org.
5. Eckstein, J. (2004). Agile software development in the large. Cambridge: Dorset House.
6. Eckstein, J. (2010). Agile software development with distributed teams. Cambridge: Dorset

House.

http://www.agilemanifesto.org

Chapter 20
Getting Communication Right: The Difference
Between Distributed Bliss or Miss

Jan-Erik Sandberg and Lars Arne Skaar

Abstract Communication is challenging in any IT project. In distributed projects
distance, timezones and cultures are thrown into the mix making it even more chal-
lenging. By focusing on getting communication to work within these constraints as
opposed to ignoring them, we have seen great results among those who have taken
a pragmatic yet rigorous approach to making communication work—even in dis-
tributed projects. Although a significant additional cost of distributing the effort is
still there—the cost can be managed and the disadvantage of distributing a project
can be reduced by applying some best practices that are emerging.

20.1 Introduction

Of all that is difficult in standard software development projects, communication
has always turned up as the most important and most challenging in our workshops
on agile practices and while coaching agile teams.

Although communication is essentially difficult between teams, within the teams
and towards external stakeholders, it gets even more difficult when adding cultural
diversity, geographic distances and time zones into the mix. Consequently we have
spent the last 5 years looking into how a team can get this right or at least improve
from current practices. With the strong interest in making agile practices work even
in distributed projects and the pragmatic approach we have seen from those team we
have interacted with we strongly believe it is possible to counter these challenges.

J.-E. Sandberg (�)
Det Norske Veritas, Bærum, Norway
e-mail: jan-erik.sandberg@dnv.com

L.A. Skaar
Miles, Oslo, Norway
e-mail: lars@miles.no

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_20, © Springer-Verlag Berlin Heidelberg 2010

301

mailto:jan-erik.sandberg@dnv.com
mailto:lars@miles.no
http://dx.doi.org/10.1007/978-3-642-12442-6_20

302 J.-E. Sandberg, L.A. Skaar

20.2 Background Overview

20.2.1 Background

Each of the authors behind this chapter have worked as agile coaches in multi-
national software companies were off-shoring has been used extensively. Most of the
recommendations are based on our experiences from these companies. In addition
we have been running workshops at the international XP conferences (XP2005–
XP2009) and Agile2008 in Toronto which have confirmed and augmented these
experiences. Already in XP2005 and XP2006, we noticed that experience reports on
distributed agile started to emerge. We decided to propose a workshop specifically
on distributed agile at the XP2007 conference in Como, Italy based on that our
workshop in XP2006 in reality gave most attention to this issue. With more than
20 participants this was obviously a relevant topic at that time. We would also like
to acknowledge the contribution from Jutta Eckstein at that workshop who already
had gained some experiences in dealing with this and having published a couple of
books on the subject [1, 2]. The workshop has since then been run at XP2008 in
Limerick, at Agile2008 in Toronto, Canada and at XP2009 in Sardinia, Italy.

We have summarized the characteristics of the companies we have worked with
and some of their projects in the tables below. Not all companies and projects can
be disclosed—still the domains they are in give guidance into the relevance of the
experiences.

Table 20.1
Overview—Company 1 Det Norske Veritas, Norway

Number of developers 100

When was agile introduced 2005

Domain Classification of Vessels

Table 20.2
Overview—Company 2

aThe name is changed due to
confidentiality reasons

Company: UKsoftwarea

Number of developers 100

When was agile introduced 2005

Domain Banking

Table 20.3 Overview—Project 1

Mortgage application

Duration: 1 year

Status: finished

Agile practices: Scrum, TDD, pair programming, continuous integration

Involved locations: UK, Finland, India

20 Getting Communication Right 303

Table 20.4
Overview—Company 3

aThe name is changed due to
confidentiality reasons

Company: NORTelecoma

Number of developers 50

When was agile introduced 2007

Domain Telecommunication

Table 20.5 Overview—Project 2

Self-service application

Duration: 1 year

Status: finished

Agile practices: Scrum, TDD, continuous integration, frequent releases

Involved locations: Norway, Czech Republic, India

20.3 Starting a Distributed Agile Project

Many organizations started their first offshoring efforts by relying heavily on formal
written communication and formal hand-overs in the belief that this would over-
come the communication challenges. For most of these organizations this proved
not to be sufficient. Adding even more rigor and formality rarely helps—sometimes
it might even make matters worse. Documents, email and contracts can only get
you so far. You have to acknowledge the investment of effort that is needed to get
collaboration to really work across distances.

Thus, many organizations are looking into agile practices to overcome the com-
munication challenges; between team members, between teams and between stake-
holders. Along with the need to adapt more effectively to requirements, to improve
on quality and predictability through more frequent deliveries—which is a very
transparent communication of what is being done. On quite a few occasions ag-
ile practices were strongly advocated by management on distributed projects due
to failures with traditional approaches, such as waterfall. Due to the nature of dis-
tributed projects, the agile practices need to be adapted and augmented to counter
the challenges of distributed teams. When agile practices were first introduced, it
was assumed that co-location of development resources and even the customer was
a strict prerequisite. However, this is a “luxury” that only rarely can be accommo-
dated in a real-life scenario. In reality co-location is not an absolute requirement, but
traditionally co-location has been used as a technique to improve communication in
projects. Distributed projects needs to find other ways of coping. Simply ignoring
it, does not really help.

Dividing work across locations is both a necessity and an opportunity to cope
with this challenge. Jutta Eckstein covers popular ways of organizing work by
teams and locations in her chapter. Her recommendation of organizing by customer-

304 J.-E. Sandberg, L.A. Skaar

requested business functionality is consistent with our findings. Consequently you
need to establish team with the skill-mix necessary to do so in each location.

To be able to establish the correct and complete skill-mix at each location, an
extra emphasis on skill transfer and building is likely to be necessary. Many organi-
zations have experienced resistance from the onsite teams in facilitating such a skill
transfer. It is likely that this is caused by fear of downsizing locally.

Furthermore you need to cope with cultural diversity. Although obvious, the im-
portance is most often underestimated, and most organizations are usually surprised
by miscommunication caused by not understanding the different cultures.

Practical Tip: Spend money on travel; be at the other location for an extended
period of time; 2–3 months in order to really know the people. When spending
money on travel, consider the following:

• Avoid spending all the travel budget on managers—although unfortunately
that seems to be the normal priority.

• Prioritize travel to those who do the actual work in order to establish a good
relationship with the other parties before working distributed.

• Travel from offshore location to onshore—the psychological effect of com-
mitment to the organization and the project is usually stronger that way
as you get a stronger sense of being part of something larger—rather than
being a province.

• There is a risk of losing people after their “journey of a lifetime”—in
that case consider a requirement to work for 2 years locally before being
awarded travel.

Show that you care about people on the other side by celebrating birthdays, be-
ing respectful of local holidays, showing pictures of those on the other side—
small things that matters significantly.

20.4 Low-cost and Effective Communication

From our experiences, it is crucial to think about getting the communication work-
ing, right from the beginning. All communication comes with a “cost” and it is a
good idea to have a clear focus on how the project will provide for different types of
communication. The cost associated with the technique should be measured against
the value it provides.

As an example, discussion with your pair-programmer partner is something we
consider as “medium cost”-communication giving high value. In a pair, you are
already in the same thought domain and you are already sitting together. When you
get to a point where you need to discuss something, everything is set up and all you
need to do is speak. It is also important to notice that a lot of communication is

20 Getting Communication Right 305

non-verbal (like body language and tone of voice). In a pair, all of this is included
in the default communication pattern.

On the other side of cost, you have large meetings with dial-in members from
multiple locations with different time zones. In this case, you have to schedule a
meeting, often it is hard to find a time that works for everyone. You have to book a
meeting room and make sure that the telecommunication solution works in all loca-
tions that will participate. Quite often there are troubles with the technical solution.
More often than not (at least in the western culture) some people are late, causing
non productive time for the other participants. When the meeting finally starts, it is
often difficult to moderate the discussion in a way that gives high value to all partic-
ipants. Very often people from the business side have a different degree of need for
details, than programmers for example.

Be cautious of expensive video equipment installed in a meeting room. Due to the
high investment costs associated with such equipment, there will rarely be enough
for everybody. You would need to book in advance, you need to make sure the
equipment work, you need to plan well ahead with those on the other side—and
suddenly the cost of communication increases to a level where it is questionable how
much help it really is. You are likely to have similar experience with high-end video
conferences as with the dial-up conference calls, in addition to possibly even more
formality and ceremony added to the use of such equipment. Most of those who
have had access to such equipment reported less success than expected, although
they did appreciate having it available. The figure below illustrates the differences
in cost vs value added when comparing often used communication techniques in
distributed projects.

Fig. 20.1 Cost of communication vs. value added

Thus, high spending on communication equipment is not necessarily a guarantee
for high value and success.

306 J.-E. Sandberg, L.A. Skaar

Practical Tip: Install always-on web cams and big screens at informal loca-
tions, such as by the coffee machine at each site. This way, it is quick and
easy for the teams to discuss issues and they get the benefit of visual body
language (if picture quality is good) and tone of voice. Most laptops come
with web cams these days—those should be used. Buy one if they don’t—
they are cheap and easy to use. Software that supports video calls is widely
available and you only need Internet access to communicate. Simple collab-
oration tools, like Wikis and discussion boards have also proved to be useful
when working across distances.

20.5 Empower the Team

A while into the project, after all the fun of starting a new project, getting to know
new people and working on a new solution, the project starts for real and so do the
challenges to deal with. Although getting the build servers up and running, setting
up the base architecture and getting to know each other is challenging in its own
right, tougher challenges are likely to surface a few months later in the project.
The distances between the teams starts to matter, and the separation of “us” and
“them” starts to be important, not necessarily in a constructive manner, and not
really intentionally either. This behavior often times leads to a decline in overall
quality.

Practical Tip: Establish an on-going improvement process—across the dis-
tributed teams and within each team. We recommend weekly retrospectives
both across teams and within teams regardless of the sprint length. In particu-
lar in the beginning of the project. This way we ensure that problems with for
example quality and communication can be dealt with quickly.

At this point, we want to emphasize the importance of employing active leaders
with a strong focus on keeping the team together. She need to continue the efforts
of enabling good communication and tracking where the project is heading; even
when the customer changes his mind. As with any projects, the “customer” typically
realizes a while into the project that something else is needed or more than the
funding allows is needed. This is challenging in a co-located project, making sure
that the shift is properly communicated and implanted in a distributed project is even
more challenging.

Practical Tip: Nurture common ownership and common responsibility for
the success of the project across locations by celebrating successes together

20 Getting Communication Right 307

and involving and empowering the teams in obstacles that arises during the
project.

20.6 Common Architecture Across Locations

One of the principles behind the agile manifesto states “Continuous attention to
technical excellence and good design enhances agility”. One of the implications
of this principle is to ensure a common architecture regardless of the locations.
Experience shows that there is usually a constant battle between keeping such a
conformity against local initiatives to change or adapt the underlying architecture.

Practical Tip: Establish a central architecture function with a forward-leaning
attitude, making sure that the common architecture always is attractive and
useful for the development. Still avoid up-front architecture and opt for fall-
out when needed. Tap into the skills of each location to leverage those into
the common architecture as well as making sure it is suited for the problems
at hand.

Communicate clearly whether an architectural decision is politically motivated or
technically motivated. Doing so can reduce unnecessary tension and conflicts. For
instance, choosing products from suppliers with a strategic relationship is usually
more politically motivated than technically justified. It is usually better to be candid
when this is the case as opposed to dressing it up as technically justified when it is
not. Technically minded professionals most often will respect such decisions as long
as the reasons behind are communicated clearly. Be honest and respectful towards
the developers regardless of who they are or where they are located—to earn their
respect and trust.

When setting up continuous build and integration across different sites, distance;
hence latency makes a central common repository impractical in reality; regardless
of how much bandwidth you have. The principle of having the continuous build
running on the same code still holds.

Practical Tip: Set up replica of the central repositories that are replicated con-
stantly to make continuous integration work in practice. This is also about
communication—about communicating the code we are building to be tested
and built upon as effective and often as possible.

Be aware of the high turnover in consultant companies providing offshore re-
sources. The high turnover is considered among many of our subjects to be one of
the most major drawbacks and risks when submitting work to offshore locations.

308 J.-E. Sandberg, L.A. Skaar

Extra sites and backup locations are recommended. Common practices and a com-
mon architecture across locations facilitate shifting locations when that turns out to
be necessary.

Practical Tip: Extend the practice of common code ownership from eXtreme
Programming to global code ownership to avoid depending on one particular
team or location. Rotating responsibilities over assets, moving people around
and transparency in general can contribute to this.

20.7 On “Proxies”

Using a proxy; i.e. an extra person or organization to access different aspects of the
different locations is in practice unavoidable. Still, be conscious to the noise or filter
being put in place when using the proxy, and avoid it when it is not needed. The risk
of losing the effect of communication increases significantly when adding a proxy.

You are likely to have different kinds of proxies; management proxies and cus-
tomer type of proxies. Many providers of offshore resources also promote a local
supplier proxy to filter communication with the offshore resources. This has in most
cases we have discussed turned out to be a bad practice; an anti-pattern which we
strongly discourage. It leads to reduced empowerment of the offshored resources
and too much information being lost in the communication.

Practical Tip: Avoid customer proxies if possible. If needed, consider empow-
ering a senior developer or architect to act as a customer proxy and invest time
in understanding the customer domain. Management proxies are a necessity;
you need good strong local leaders to manage the completeness. You need
good managers with a good understanding of the functionality to be delivered
and being good at managing people; even if they are hard to get, this should
be prioritized. Be conscious of the attitude you project to your developers
through proxies—do you consider them code monkeys or creative individuals
that make great software? You get the most out of your people if you treat
them with respect in a humble way. Be aware that people from the Far East
might have less respect for us in the west than we would think. Many of the re-
sources from the Far East have been subject to a highly competitive culture all
the way through their education system to their employment; thus it is usually
the most skilled and educated people that we get access to. Thus, the proxy
needs to be someone the local group respect; their leadership capabilities as
well as their technical skills.

20 Getting Communication Right 309

20.8 Conclusions

Through sharing experiences on how to cope with distributed projects we hope to
see major improvements on such projects. By putting an emphasis on communica-
tion and applying agile practices to deal with the challenges associated with dis-
tributed projects, we are starting to see some best practices emerging. This chapters
cover some essential areas to consider:

• Make sure the rational for running projects in a distributed fashion are under-
stood and through that the rational for applying agile practices to deal with the
challenges associated with distributed projects

• Focus on low-cost and effective communication—pragmatic use of widely avail-
able tools have turned out to be much more effective than high-end video-
conferencing equipment; mostly due to the active use of them rather than bur-
dening the use of such equipment with additional bureaucracy

• The importance of getting the sense of common ownership across locations and
being respectful for those you collaborate with—invest in travel among develop-
ers and show that you care

• Invest in common architecture across locations
• Although you can’t cope without proxies, be careful on how you use them.

References

1. Eckstein, J. (2004). Agile software development in the large. Cambridge: Dorset House.
2. Eckstein, J. (2010). Agile software development with distributed teams. Cambridge: Dorset

House.

Chapter 21
A Task-Driven Approach on Agile Knowledge
Transfer

Jörn Koch and Joachim Sauer

Abstract Constant and unimpeded communication is an essential ingredient when
it comes to successful software development projects. While manageable if the team
is within shouting distance, it poses a considerable challenge in global software de-
velopment (GSD) projects. In this chapter we explore how a lightweight knowledge
transfer process can be established between distributed development teams. The leit-
motif of the transfer process is a hands-on approach that values actual cooperation
on tasks over lecturing the learning team. It introduces a set of practices that take
tasks as a central means to both drive the knowledge transfer and to integrate it with
the ongoing development process. The practical relevance of the described practices
was successfully experienced in a case study.

21.1 Introduction

Communication in distributed projects faces specific challenges. Organizational, ge-
ographical, and temporal gaps need to be bridged, which makes communication by
far more difficult than in a co-located team (see [2, 4]). While impeded communi-
cation can be a roadblock for the distributed team to work cooperatively it is also
very hard to involve stakeholders outside the team such as the customer in an agile
fashion [3]. Though both aspects are important, we focus on overcoming the com-
munication challenges within the distributed team exclusively and do not discuss
how communication with remote customers is affected.

Good agile teams constantly adapt to changing requirements and conditions (e.g.
influences from inside and outside the team). They have to share knowledge about
the business domain, the customer’s requirements, technical details of the imple-
mentation (most notably the software architecture) and established conventions and

J. Koch (�) · J. Sauer
C1 WPS GmbH, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
e-mail: jk@c1-wps.de

J. Sauer
e-mail: js@c1-wps.de

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_21, © Springer-Verlag Berlin Heidelberg 2010

311

mailto:jk@c1-wps.de
mailto:js@c1-wps.de
http://dx.doi.org/10.1007/978-3-642-12442-6_21

312 J. Koch and J. Sauer

practices. A significant part of this knowledge falls into the category of “tacit knowl-
edge” that is hard to become aware of and, thus, can hardly be communicated ex-
plicitly.

In plan-driven projects, knowledge is commonly shared by bulky requirements
documents that are hard to handle due to their sheer size. An agile knowledge trans-
fer is instead characterized by the choice of lightweight practices and artifacts that
fit in and support the agile progress rather than burdening it.

In this chapter we want to share what we have learnt about knowledge transfer
in agile distributed projects. Our conclusions are based on a case study and our
personal participation in distributed agile projects.

We focus on a task-driven process of knowledge transfer that was implemented
in the case study and do not go into details of related agile practices and tools that
were also used in the case study’s project such as distributed pair programming,
shared wikis, usage of instant messengers, daily standup calls, etc. The task-driven
practices that we discuss in the following have proven to be useful to share knowl-
edge effectively in several projects within both distributed and co-located teams.
The practices are easy to apply as they require little organizational adaptations and
leverage existing agile techniques.

21.2 Case Overview

The goal of the case study’s project was to replace a web application for rail ticket
sale that was developed by a third team over a period of three years. The new sys-
tem was developed from scratch by an external German team of five people. It was
successfully released after a development time of 300 person days. Due to strate-
gic reasons, the project was scheduled to be handed over to a company-internal
team in Poland for maintenance and further development. In this situation success-
ful knowledge transfer was mandatory as it was a vital precondition to long-term
project success.

Table 21.1 Company 1
overview USAtravel

Number of developers over 1,000 worldwide

When was agile introduced 2005 companywide

Domain travel

Table 21.2 Company 2
overview C1 WPS GmbH, Hamburg, Germany

Number of developers approx. 40

When was agile introduced 2000

Domain software

21 A Task-Driven Approach on Agile Knowledge Transfer 313

Table 21.3 Project overview
Rail Ticket Sale

Duration 24 months

Status ongoing

Agile practices XP, Scrum, TDD, Pair Programming

Involved locations Germany, Poland, Ukraine

Table 21.4 Team overview

Locations Number of members Roles

Germany 3 (varying) 1 software architect/business analyst, 2 developers

Poland 3 (varying) 1 software architect, 2 developers

Ukraine 1 1 developer

Total: 7

The actual transition was done in multiple stages: The first review of the new
system by a Polish developer took place on-site right before the first release. It was
followed by reviews in more detail, done by two Polish developers offshore. The
remote Polish team then loosely observed the ongoing on-site development process
for a period of approximately one year before the actual transfer started in April
2008, i.e. the Polish team joined the daily standup call without actively participating
in the development or planning process. Most members of the Polish team were
new to the project’s business domain at that time. The transfer was concluded in
December 2008.

Both teams consisted of both senior and junior developers in equal shares. Devel-
opers on all sites were well-versed in agile software development techniques (XP,
AUP [1], and Scrum) and knew how to implement agile practices in projects. The
senior developers had several years of practical experience in various agile projects
in different roles. The agile methodology used in the project was XP supplemented
and enhanced by scrum artifacts such as “product backlog”, “sprint backlog” etc.,
and TDD.

The teams could effectively communicate in English and/or German. Also, there
were no noticeable cultural differences among the teams in passing and taking crit-
icism which granted straightforward communication.

All participants considered themselves as one team that was stretched over mul-
tiple development sites, rather than separate national teams. The team sizes changed
over time (see Fig. 21.1). The Polish team was supported by an additional developer
from Ukraine. The slight time difference of one hour between Germany/Poland and
Ukraine had no mentionable effect as it still allowed to align the working hours of
the teams.

The actual size of the Polish team was larger than the number of persons that
were directly involved in the transitioning process.

314 J. Koch and J. Sauer

Fig. 21.1 The individual assignment of developers to the transitioning process over time

After the transition phase, the German team’s participation was ended while the
Polish/Ukrainian team successfully continued on their own.

The project had to tackle three major challenges: the complexity of the busi-
ness logic, the hard-to-handle behavior of the rail supplier’s external booking web
service, and the rail supplier’s tight release schedule. The system architecture was
designed specifically to improve the comprehensibility of the business logic, to mit-
igate issues with the external web service, and to reduce maintenance costs caused
by its mandatory updates. Maintenance was done along with further development,
whereas maintenance meant adapting the software to those updates, as well as in-
vestigating production issues and applying bug fixes occasionally.

The system was taken into use in June 2007. Approximately 20 production up-
dates were deployed until December 2008 including several minor and four major
feature roll-outs. In December 2008 the system had reached an overall size of 80,000
lines of code including test code.

The system’s architecture and code quality were considered “clean” as per the
involved teams. Positive customer feedback indicated that the system was both suit-
able and mature from their perspective.

Debugging and bug fixing efforts were small and became negligible after the first
1.5 months of operation. In 2008 the longest bug-free period was 2.5 months. Criti-
cal bugs were never reported. The maturity of the system allowed a comprehensive
transition of the project that was considered mandatory to ensure long-term project
success. A less mature system had probably required focusing on its “dark areas”
rather than on all parts of the project. From a practical standpoint, both scenarios
require to apply the project’s priorities to the knowledge transfer process.

21 A Task-Driven Approach on Agile Knowledge Transfer 315

21.3 Hands-On Approach (Task-Driven Approach)

The leitmotif of the transfer process was a hands-on approach that valued actual
cooperation on tasks over lecturing the remote team. Architectural concepts and
details about the process and the software were introduced as they came along the
development path. This allowed focusing on topics that were obviously relevant in
the project and also allowed supporting theoretical knowledge transfer by practical
tasks.

The hands-on approach facilitated a very lightweight knowledge transfer process
and encouraged its integration into the ongoing development process. It enabled the
remote team to contribute to the development progress from the very beginning and
saved the onshore team from preparing bulky presentations for didactical purposes.

This only worked because both teams contributed a fair amount of open-
mindedness and mutual confidence. We consider this positive attitude mandatory
for this approach. The offshore team was highly capable and willing to adopt con-
ventions, rules, and practices that were applied in previous stages of the project and
integrated those with established practices on their side. The onshore team was pre-
pared to hand over responsibilities and to accept dissenting priorities of the remote
team—in plain language: to let go of their former project.

In order to implement the hands-on approach, tasks became the central means as
they define the actual units of activity in an agile process. We are aware of the fact
that varying definitions of the task concept co-exist in practice. Any approach that
defines tasks as small, self-contained action items that are required to implement a
certain feature is compatible with our approach.

Practical Tip: Break down feature descriptions into tasks that

• contain all required information to execute the task,
• are goal-oriented (i.e. completing a task delivers a pre-defined result), and
• are small enough to be completed by a pair of developers in a couple of

days.

As feature descriptions may be vague at an early stage do not try to define
a complete set of tasks upfront. Instead add tasks whenever they emerge
during the incremental implementation and shaping process of a feature.

We established four task-based practices: joint task planning, question-driven
task scheduling, adequate task design, and scrupulous task sign-off.

In the following paragraphs we will describe those practices and their contribu-
tion to agile knowledge transfer.

316 J. Koch and J. Sauer

21.3.1 Joint Task Planning

Tasks were planned jointly by both teams. Technically this was done on confer-
ence calls in combination with desktop sharing in order to collaboratively review,
schedule, and assign tasks in XPlanner and to review documents and source code if
necessary. In addition to the usual joint iteration planning that was also done on a
regular basis tasks from the shared sprint backlog were often scheduled and assigned
ad hoc during distributed pair programming sessions (see end of 21.3.3).

Joint task planning proved to be an ideal technique to implement the hands-on
approach as it touches on all aspects of the project. Starting from this central tech-
nique promotes a common understanding of the project, mitigates the risk of mis-
understandings, decreases churn and makes developers identify with their tasks.

Our experience confirms the findings that voluminous and detailed documents
such as comprehensive feature descriptions do not help to reduce the required
amount of communication. Instead, it turned out to be more important to enable
developers to make the right decisions when working on tasks on their own rather
than specifying tasks as exactly and comprehensively as possible.

The planning process itself lead to a common understanding of the project rather
than the resulting plan did. Also, this process was the starting point the following
techniques were derived from.

21.3.2 Question-Driven Task Scheduling

Along with the joint task planning, work was rather shared than distributed between
both teams. Whichever team was capable of undertaking a due task was a potential
candidate for assignment.

Maintenance tasks usually were of high priority in combination with a deadline,
and they also required a very profound understanding of the software. Thus, at the
beginning of the transitioning process only the on-site team was capable of handling
maintenance tasks while the remote team focused on less critical tasks instead. The
more experienced the remote team became the more they started working on main-
tenance and other critical tasks.

Even though the differing project knowledge of the teams limited the possibilities
of task assignment, a notion of a “leading” and a “following” team was not consid-
ered helpful. Instead both teams steered the knowledge transfer process by their
means: the on-site team by their project knowledge, the remote team by their ques-
tions. Thus, in addition to the business priorities that applied as usual the mandatory
knowledge transfer added its own priorities to task planning.

The remote team was very clear about which parts of the project they needed to
understand better. It became obvious that asking questions proactively was a basic
prerequisite to incorporating knowledge transfer priorities into task planning.

21 A Task-Driven Approach on Agile Knowledge Transfer 317

Practical Tip: In case a learning team hesitates to ask questions,it needs to be
encouraged! It is essential for the learning team to be aware of their respon-
sibility to acquire all the required knowledge they depend on in order to do
their job.

Be aware of the fact, that the learning team may simply be overwhelmed by
the complexity of the project not knowing where to start asking questions. Fo-
cus on small self-contained tasks then and leave everything else out of scope.

Cultural or individual hindrances to ask questions may be hard to detect
and to mitigate. It can help to formalize the way of asking questions and es-
tablish a “project culture” based on a defined set of practices the team agreed
upon.

Within the confines of the overall business priorities the remote teams’ ques-
tions had a direct impact on scheduling and assigning tasks, i.e. the priority of a
task would be pushed up if this helped to dwell on a topic in order to deepen the
understanding. This allowed the remote team to acquire self-contained chunks of
knowledge rather than jumping erratically from topic to topic.

Over time the remote team had fewer and less pressing questions. The absence
of pressing questions on one side that can actually be answered by the other side is
clearly a strong indicator that the knowledge transfer is done.1

21.3.3 Adequate Task Design

Along with pushing up the priorities of interesting tasks we found that it is best
to provide remote developers with as much information as they can chew at a
given time and let them arrive at their own insights when working on the code.
We found in other projects that over- or undersized tasks often turn into both moti-
vation killers and poor results (either through intimidation or overconfidence) while
tasks in-between challenge and inspire most, leading to the maximum amount of
forward-leading questions.

Adequate and coherent tasks enabled developers to deliver good results that have
the potential to become their personal sample solutions for similar tasks in the fu-
ture.

1It may seem hard to tell the difference between the knowledge transfer being complete, and the
learning team just being reluctant to ask questions. As the learning team is required to effectively
work on tasks from the very beginning you can usually tell by their results. If the results are good
and the learning team does not ask questions there may have been no need for a knowledge transfer
in the first place. If the results are poor and yet the team is not asking questions, it is a strong clue
that the knowledge transfer is not yet complete. Note that if a team delivering no more than poor
results is permanently reluctant to ask questions the knowledge transfer is done anyway and will
probably have failed.

318 J. Koch and J. Sauer

Tasks that were coherent in reference to their business requirements made them
both better understandable and easier to communicate. Also, their sign-off was ap-
parently very meaningful as they had coherent acceptance criteria assigned. Thus, it
was a constant challenge not to end up with incoherent tasks when tailoring tasks of
adequate complexity. E.g. in case a complex task involved user interface and internal
programming it turned out to be a better idea to break it down into smaller chunks of
business requirements rather than introducing separate tasks for user interface and
internal programming.

In case an adequate task design could not be found, e.g. because a task introduced
complex new topics, we stuck to the original task design and implemented it in dis-
tributed pair/group programming sessions using remote desktop sharing while com-
municating via phone. This worked out very well after a certain adaptation phase
and was done more often than the task design actually required. We noticed that in
smaller projects with less than about five iterations tailoring tasks for knowledge
transfer is often hard and distributed pair-programming is an appropriate alternate
practice.

21.3.4 Scrupulous Task Sign-Off

The learning effect was intensified by a scrupulous sign-off process that took into
account all aspects of software quality related to business requirements, architecture
requirements, code style, test coverage, etc.

It is understood that the sign-off gives obligatory feedback on the implemented
solution. It also turned out to be a very valuable and effective technique to communi-
cate conventions, rules, and practices that were unfit to be communicated explicitly
as they may have been applied unconsciously or were simply diffuse. E.g. printouts
were rather straightforward to implement from a technical perspective, however, the
criteria for a good layout never needed to be discussed nor had there been a need
before to document those. After the offshore team implemented their first printout
solution the result was signed-off in an iterative process that both improved the lay-
out step-by-step and clarified which layout design criteria actually applied (e.g. cer-
tain parts of the layout should match existing printouts, certain information should
not be shown in certain tables to reduce visual complexity, etc.).

The scrupulous sign-off process provoked enlightening discussions and helped
both teams to become aware of how the project actually worked. In fact, it helped to
emerge diffuse and implicit conventions as explicit rules.

Whenever necessary, those rules and conventions were documented by the re-
mote team in a so-called end to end documentation along with technical topics.

21.4 Conclusion

The task-driven practices of the hands-on approach where rather discovered than
invented. We observed their practical relevance in our case study and found that

21 A Task-Driven Approach on Agile Knowledge Transfer 319

those practices integrated well with the ongoing development process and promoted
an effective and lightweight knowledge transfer process. At the end of the project
transition phase, the Polish/Ukrainian team successfully continued on their own and
from today’s perspective proved that they will do so in the future.

Joint task planning is the starting point of the described task-driven approach. It is
a prerequisite to incorporating the questions of the learning team into task planning.
Those questions lead us to the most interesting, thus, most relevant tasks in regard
to the intended knowledge transfer. However, we found that tasks can be unfit to be
assigned to a learning team either because they do not have a suitable size or do not
cover coherent parts of the business requirements. Thus, we pointed out that tasks
need to be tailored to be adequate for knowledge transfer.

At the end of the task-driven approach the scrupulous sign-off intensifies the
learning effect as it both gives valuable feedback on the implemented solution and
also helps to communicate “tacit knowledge”.

Task-driven agile knowledge transfer relies very much on effective communica-
tion (planning tasks jointly, posing questions, discussing tasks and their sign-off,
distributed pair-programming, etc.). Language barriers are a severe hindrance in
global software development projects that can probably make our approach inappli-
cable.

Differing cultural styles of communication (especially the handling of criticism)
can be a similar challenge as severe interpersonal misunderstandings are a common
implication that can lead affected team members to practically avoid communica-
tion. Our approach can probably still be applied here, if more formalized and boiled
down to a set of roles and practices. The idea is to establish a shared “artificial”
culture of how to interact in a task-driven agile knowledge transfer process.

Acknowledgements The authors would like to thank all participants of the discussed project for
their support in the preparation of this chapter. Special thanks go to Lukasz Pielak and Andreas
Kornstädt for their valuable suggestions in improving the text.

References

1. Ambler, S. W. (2006). The agile unified process (AUP), http://www.ambysoft.com/
unifiedprocess/agileUP.html.

2. Christiansen, H. M. (2007). Meeting the challenge of communication in offshore software
development. In Proceedings of the 1st international conference on software engineering ap-
proaches for offshore and outsourced development (SEAFOOD 2007) (pp. 19–26). Revised
Papers, Zurich, Switzerland, February 5–6.

3. Korkala, M., Pikkarainen, M., & Conboy, K. (2009). Distributed agile development: A case
study of customer communication challenges. In Proceedings of the 10th international con-
ference on agile processes in software engineering and extreme programming (XP 2009) (pp.
161–167). Pula (Sardinien), Italy, May 25–29.

4. Kornstädt, A., & Sauer, J. (2007). Tackling offshore communication challenges with agile
architecture-centric development. In Proceedings of the 6th working IEEE/IFIP conference
on software architecture (WICSA’07). Mumbai, India, January 6–9.

http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.ambysoft.com/unifiedprocess/agileUP.html

Chapter 22
Architecture-Centric Development in Globally
Distributed Projects

Joachim Sauer

Abstract In this chapter architecture-centric development is proposed as a means
to strengthen the cohesion of distributed teams and to tackle challenges due to geo-
graphical and temporal distances and the clash of different cultures. A shared soft-
ware architecture serves as blueprint for all activities in the development process and
ties them together. Architecture-centric development thus provides a plan for task al-
location, facilitates the cooperation of globally distributed developers, and enables
continuous integration reaching across distributed teams. Advice is also provided
for software architects who work with distributed teams in an agile manner.

22.1 Introduction

Global software development projects deal with a number of challenges, includ-
ing communication and coordination between the teams, requirements and knowl-
edge transfer, and division of responsibilities [5]. Agile methods offer approaches
to many of these challenges as is discussed in other chapters of this book. A sub-
stantial area of agile distributed projects is that of coordination between the teams.
While agility offers general advice and some supporting practices, many projects
could benefit from additional detailed procedures for working together while being
distributed. In this chapter I propose architecture-centric development as a means to
strengthen the cohesion of distributed teams by providing a common artifact and re-
lated practices, thus further enhancing the positive effects of agility. It will be shown
that architecture-centric development may also facilitate cooperation between teams
that operate at unequal levels of agility. The chapter includes sections on the related
agile practices of continuous integration and collective ownership as well.

J. Sauer (�)
C1 WPS GmbH, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
e-mail: js@c1-wps.de

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_22, © Springer-Verlag Berlin Heidelberg 2010

321

mailto:js@c1-wps.de
http://dx.doi.org/10.1007/978-3-642-12442-6_22

322 J. Sauer

22.2 Case Overview

The conclusions in this chapter are based on my research at the university of Ham-
burg and personal experience with distributed agile projects and various interviews
with project managers, architects, and developers who have taken part in various
different agile distributed projects. In this chapter I describe a case study in detail,
incorporating results from other studies where appropriate.

The case study dealt with the development of an innovative application in the
mail order business. While the project’s scope was rather restricted both in dura-
tion and in number of participants, it nevertheless was an important trial balloon
for agility and offshoring and the customer expected valuable insights for future
development projects.

The development work was outsourced to a German onshore team and an Indian
offshore team. The onshore team consisted of three to five developers and one archi-
tect who also did the requirements engineering and was the overall project lead. Up
to six members were part of the offshore team. The development took four months
of distributed work following an agile process mainly built on XP (see [10] for de-
tails).

Table 22.1 Project overview
Project A

Duration: 4 months

Status: finished

Agile practices: XP, TDD

Involved locations: Germany, India

Table 22.2 Team overview—Germany

Location Number of members Roles

Germany 4–6 1 software architect and project lead, 3–5 developers

Table 22.3 Team overview—India

Location Number of members Roles

India 5–6 1 team lead, 4–5 developers/testers

The project started with a joint kick-off meeting at the customer’s headquarters
and a co-located first iteration onshore. Two Indian developers took part in this iter-
ation. They had only limited prior experience in agile development. All developers

22 Architecture-Centric Development in Globally Distributed Projects 323

were trained in the customer’s domain, the applied agile process and practices, and
in the necessary technology. The Indian developers returned to their home country
after the first iteration and established the development team there, passing on their
knowledge.

Some weeks into the development process, problems with the agile process
emerged, as the Indian team was not able to work as agile as planned, in some
parts falling back to familiar plan-driven practices. This lead to misunderstandings
with the breakdown of tasks and ultimately to a decrease of the application’s quality.
The offshore team took long to accomplish relatively simple tasks. The integration
of code into the common version control system became tedious and error-prone.

The onshore project lead tried to exert influence on the offshore team and to assist
with unit testing and other agile practices, but these measures did not enhance the
situation. It became apparent that another supporting approach was needed. There-
fore, architecture-centric development was enforced to strengthen the cooperation
between the teams and to improve the application’s overall quality. The members
of the onshore team had gained positive experience with this practice in co-located
projects, so it seemed appropriate to adopt it.

22.3 Software Architecture and Architecture-Centric
Development

22.3.1 Software Architecture

Before exploring the facets of architecture-centric development, we should define
our understanding of software architecture and its meanings in practice. Bass et
al. define software architecture as “the structure or structures of the system, which
comprise software elements, the externally visible properties of those elements, and
the relationship among them” [2]. Every system has a software architecture but only
an active occupation with it exploits advantages.

Smolander identified four metaphors to describe the general meanings of archi-
tecture in practice [14]. These metaphors should not be seen as alternative views but
as four parts of the same concept:

Architecture as blueprint: The software architecture is seen as a blueprint for all
development activities. It serves as a universal plan for the implementation, de-
ployment and further development of a software system.

Architecture as literature: The architecture description contains technical knowl-
edge about the structure and design foundations of a system. It serves as the main
document for understanding a system and facilitates its maintenance and further
development.

Architecture as language: Software architecture establishes a common language
for communicating about a system and its development. This enables different
stakeholders to discuss requirements of a system and its implementation together.

324 J. Sauer

Architecture as decision: A system’s architecture emerges as the result of design
decisions that are often made under the influence of conflicting goals and trade-
offs. The architecture serves as reference of these decisions and constitutes the
basis for future decisions.

22.3.2 Architecture-Centric Development in General

With architecture-centric development, the software architecture takes center stage
in the development process. Most other tasks are aligned along the software archi-
tecture. The roots of architecture-centric development can be found in the Unified
Process [8] and in work at Carnegie Mellon’s Software Engineering Institute [1].

Architecture-centric development brings many advantages (cf. Smolander’s met-
aphors): It helps in gaining better insight into the development process and the state
of the project. The architecture description serves as a common object of work that
all participants use and understand. By referring to terms and concepts of the ar-
chitecture, all stakeholders use a common language that is closely related to the de-
velopment work. This facilitates precise discussions and arrangements and reduces
misunderstandings.

Examination of a system’s architecture assists in breaking down the development
work into smaller tasks that can be carried out as independently from other tasks as
possible. Dependencies between different teams and thereby the need for commu-
nication and coordination decreases. Architecture-centric development also helps in
achieving a balance between rigid requirements and individual responsibilities and
skills of the development teams.

22.3.3 Architecture-Centric Development in Agile Distributed
Settings

Software architecture in distributed projects is treated in the literature mainly from
two points of view: To split the work into meaningful tasks that can be implemented
by distributed teams [7] and as common artifact that allows the teams to coordinate
their work [11].

From the analysis of the incidents in the case study and other examined projects
as well as my personal experience I can conclude that the benefits of architecture-
centric development can be utilized to an even greater degree in distributed projects
that follow an agile philosophy. Beyond the software architects’ elemental task of
designing and maintaining the software architecture, I can identify three compre-
hensive functions which are especially useful in agile distributed development:

• Software architects combine domain knowledge with technological knowledge.
It is crucial in distributed projects that knowledge is maintained in the project and
transferred in an easily comprehensible manner to all team members.

22 Architecture-Centric Development in Globally Distributed Projects 325

• Software architects are able to find a balance between rules and individual respon-
sibilities of the developers. It may be hard to develop common rules for proce-
dures and programming germane to all teams implicitly. A software architect with
overview of the system and his technical knowledge can establish those rules.

• Software architects can moderate between and counsel teams. In nearly all of
the projects that I analyzed, quite a lot of issues arose between the teams, many
of technological nature. As direct communication is hampered in distributed set-
tings, software architects can act as mediators.

Agile projects generally do not depend on extensive documentation but on close,
flexible cooperation of all stakeholders. It may be argued that architecture-centric
development adds more formalism and more documentation to an agile project as
the software architecture is yet another artifact that has to be maintained. On the
other hand, architecture-centric development significantly eases coordination be-
tween the distributed teams and enables better insight into the state of the devel-
opment. The description of the software architecture is a document that has to be
maintained anyway and does not add too much overhead in consideration of the
advantages.

To fit with a flexible, agile approach, care should be taken that the architecture
is not developed entirely up-front and does not restrict the development work more
than necessary. Therefore, the structures below the high-level architecture should be
evolved from the base through the developers without consulting the architect be-
forehand. The changes should later be checked by the architect who can incorporate
them into the official architecture documentation. Automated tools can support this
otherwise tedious and error-prone task [3].

22.4 Distributed Continuous Integration and Collective
Ownership

Architecture-centric development facilitates the agile practice of continuous integra-
tion. The fact that all teams manage to contribute their work to a sound combined
system may be the only indicator that a project is still on track. This explains the im-
portant role of the integration progress in distributed development. With several dis-
tributed teams integrating their code into the same common version control system,
a shared architectural vision helps to ensure integrity and improves the software’s
inner quality.

Continuous integration entails many advantages, mainly with regard to risk re-
duction [6]: Integrations happen frequently with relatively small amounts of new
code. Long, error-prone integrations are avoided. Every developer has instant ac-
cess to the latest code enhancements. Bugs are generally noticed quicker and are
therefore easier to fix. As an up-to-date version of the developed system is always
available, releases may be deployed frequently. These risks are aggravated by not
working co-located, so distributed agile teams benefit from continuous integration
to an even greater extent.

326 J. Sauer

Practical Tip: Some agile methods advocate a separate “integration machine”
in one place that provides a clean environment for integrations. This is plainly
not possible in distributed environments. In practice, this hardware machine
can be substituted without greater loss by software integration guards like
Cruise Control that are accessible by all teams.

A little effort has to be put into the selection and setup of a common version
control system, especially when some teams in less developed countries are forced
to work without a reliable communication infrastructure. In these cases, buffering
version control systems that are able to bridge network dropouts should be used.
An interesting question is whether continuous integrations scales to larger projects.
I could mainly gain experiences with this practice in small to medium-size dis-
tributed projects during my research. But other authors also report positive results in
large-scale projects (see [12]). A related agile practice is collective ownership. This
practice allows every developer to change any resource, most notably the source
code. No one owns pieces of code, everyone is equally responsible for the integrity
and quality of the codebase. In my research it became apparent that many distributed
teams have problems with this practice, mainly because trusting your own work to
external, hardly known colleagues presents psychological barriers for many devel-
opers. As a consequence, individual or team-level code ownership was often reintro-
duced for relevant parts of the code. A look at open-source communities may help
to understand practical options and alternatives of collective ownership.

22.5 Practical Advice for Software Architects

Because of the architecture’s importance in global software development, I recom-
mend to explicitly define the role of a full-time software architect in distributed
projects. It is important to involve the software architect during the whole lifespan
of the project, right from the start. The architect should establish a reasonable usage
of architecture early in the project and regularly check and adapt the procedures,
if necessary. This way it is easier to gain acceptance from all teams and to avoid
negligence that could gradually lead to problems with the software’s inner quality.

Practical Tip: In large-scale projects, each development team should be
guided by a software architect to enable timely decisions and to avoid bot-
tle necks. A chief architect should define and review the high-level architec-
ture and adjust general design and architecture principles to be employed. He
coordinates and moderates the work of the distributed architects. Also see
Chap. 19 by Jutta Eckstein on this subject.

From the analysis of different projects with distributed agile work, I can derive
five problem areas that software architects in distributed projects should keep an

22 Architecture-Centric Development in Globally Distributed Projects 327

eye on. These areas encompass vital and challenging duties and responsibilities of
architects working with distributed teams:

Architecture evolution and documentation: The development of an architecture
should be seen as an iterative process, not as up-front task that establishes unal-
terable structures. The further development of the architecture has to be guided by
architects to ensure that it stays suitable for the system. Future requirements have
to be taken into account. The architecture has to be documented in a way that it is
understandable by all participants [4]. The up-to-date architecture documents have
to be accessible from all sites, e.g. by putting them into a common version control
system or wiki.

Inner quality and unit tests: The system’s inner quality has to be checked on a
regular basis because internal problems and quality trade-offs of the distributed
teams might take some time to surface otherwise. Many of the analyzed projects
showed problems with insufficient unit tests so particular attention should be di-
rected to this area.

Convey the requirements: Business and technological requirements have to be
discussed with the developers. In distributed settings with reduced communica-
tion bandwidth, user stories may not be sufficient. If this is the case, stories should
be augmented with more context and other information like acceptance tests etc.

Supervision and guidance of the development: It can be hard to gain insight into
the progress status of other teams. The teams should have sufficient space to ar-
range their own development processes. Then again the overall development pro-
cess should stay manageable and controllable.

Assignment of tasks: The tasks should be divided between teams in a manner that
they can work independently from each other. By splitting the tasks along appro-
priate architectural units, the dependencies between the teams can be reduced.

Based on my studies, I can also give some advice for the design of software
architectures that are well suited for agile distributed projects.

Practical Tip: As a general rule, one should stick to proven design and archi-
tecture principles: information hiding, loose coupling, strong cohesion, design
by contract, open closed principle, avoidance of type interdependencies, etc.
These principles gear towards understandable software with fewer dependen-
cies, thus easing maintainability and further development. They have proven
to be especially valuable in distributed projects where developers have limited
possibilities to communicate with each other and the main source of informa-
tion is the source code.

When choosing a concrete architecture style, emphasis should be placed on sim-
plicity. The architecture should support remotely working developers rather than
presenting a source of misunderstandings and complexity.

328 J. Sauer

Practical Tip: Components, services, and layers are well-established building
blocks of sound architectures. Good architects are proficient in breaking a
system down into these building blocks while at the same time advancing the
high-level architecture. A well documented model architecture that is built on
these principles and building blocks can help in this task. Especially, if it is
backed up by a sophisticated framework [9].

22.6 Conclusions

In this chapter I argued how architecture-centric development may help in agile
distributed projects. An alignment of processes along the lines of the software ar-
chitecture enables the teams to tackle general challenges of distributed projects, e.g.
breakdown and distribution of tasks, a common language for communication across
sites and project-wide rules and standards. I could observe that distributed projects
profit from an architecture-centric approach.

The usage of architecture-centric development allowed the teams in the case
study’s project to work together in a structured and consistent way while internally
relying on divergent processes and practices: the onshore team utilized an exem-
plary agile process while the offshore team reverted to a more plan-driven process.
The onshore team used pair programming, test-driven development, daily stand-up
meetings, and other important agile practices while the offshore team used single
programming and divided programming and testing tasks between different devel-
opers.

Exchanging team members between the sites (aka dual-shoring), further helped
to establish a sound overall process (see [13]). These measures, together with ex-
panded quality assurance procedures, helped to set the development back on the
right track. Feedback from both teams showed a general acceptance of the read-
justed development process. Delays and problems in one team affected the other
team to a lesser degree than before. Ultimately, the project could be brought to a
successful end on time and on budget. While the overhead of integrating an off-
shore team without prior record of working together was rather high in this rather
small project, valuable experience could be gained. Thus, foundations were laid for
follow-up agile projects with globally distributed development teams.

References

1. Bass, L., & Kazman, R. (1999). Architecture-based development (CMU/SEI-99-TR-007).
Carnegie Mellon University.

2. Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.).
Reading: Addison-Wesley Longman Publishing.

22 Architecture-Centric Development in Globally Distributed Projects 329

3. Bischofberger, W. R., Kühl, J., & Löffler, S. (2004). Sotograph—a pragmatic approach to
source code architecture conformance checking. In F. Oquendo, B. Warboys, & R. Morrison
(Eds.), Proceedings of the 1st European workshop on software architecture (EWSA 2004)
(pp. 1–9). St Andrews, England, May 21–22.

4. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., & Little, R. (2002). Docu-
menting software architectures: Views and beyond. Upper Saddle River: Pearson Education.

5. Damian, D., & Moitra, D. (2006). Global software development: How far have we come?
IEEE Software, 23(5), 17–19.

6. Fowler, M. (2006). Continuous integration. http://www.martinfowler.com/articles/
continuousIntegration.html.

7. Herbsleb, J. D., & Grinter, R. E. (1999). Architectures, coordination, and distance: Conway’s
law and beyond. IEEE Software, 16(5), 63–70.

8. Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development process.
Reading: Addison-Wesley Longman Publishing.

9. Kornstädt, A., & Sauer, J. (2007). Mastering dual-shore development—the tools & materials
approach adapted to agile offshoring. In B. Meyer & M. Joseph (Eds.), Proceedings of the
1st international conference on software engineering approaches for offshore and outsourced
development (SEAFOOD 2007) (pp. 83–95). Revised Papers, Zurich, Switzerland, February
5–6.

10. Kornstädt, A., & Sauer, J. (2007). Tackling offshore communication challenges with agile
architecture-centric development. In Proceedings of the 6th working IEEE/IFIP conference
on software architecture (WICSA’07). Mumbai, India, January 6–9.

11. Ovaska, P., Rossi, M., & Marttiin, P. (2003). Architecture as a coordination tool in multi-site
software development. Software Process: Improvement and Practice, 8(4), 233–247.

12. Rogers, R. O. (2004). Scaling continuous integration. In Proceedings of the 5th international
conference on extreme programming and agile processes in software engineering (XP 2004)
(pp. 68–76). Garmisch-Partenkirchen, Germany, June 6–10.

13. Sauer, J. (2008). Enabling agile offshoring with the dual-shore model. In W. Maalej
& B. Bruegge (Eds.), Software engineering 2008—Workshopband, Fachtagung des GI-
Fachbereichs Softwaretechnik (pp. 35–42). Munich, Germany, February 18–22.

14. Smolander, K. (2002). Four metaphors of architecture in software organizations: Finding out
the meaning of architecture in practice. In Proceedings of the 2002 international symposium
on empirical software engineering (ISESE 2002). Nara, Japan, October 3–4.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

Part V
Epilogue

Chapter 23
Agility Across Time and Space: Summing up
and Planning for the Future

Darja Šmite, Nils Brede Moe, and Pär J. Ågerfalk

Abstract In this epilogue chapter the authors revisit the book content and iden-
tify the emerging trends in understanding the application of agility across time and
space. This book concludes with the findings from an expert survey that put sum-
marize the most important practical advice and the major areas of improvement and
future work.

23.1 The Beginning of the End

This book has been devoted to the concept of agility across time and space. More
specifically it has addressed the motivations, challenges and strategies used when
organizations are adopting agile methods and practices for distributed projects. In
this final chapter we aim to summarize the state of the art and point out some im-
portant future work. We do so based on two sources. First, the chapters in this book
clearly represent up-to-date knowledge in the area that also reflects what people are
currently working on. The chapters were initially submitted in response to an open
call, then subjected to a thorough peer-review process, and finally selected for in-
clusion based on their overall contribution and quality as deemed by the reviewers
(including both other authors and external experts) and the editors. To complement
these, we also conducted a small Delphi-inspired study as part of the production

D. Šmite (�)
Blekinge Institute of Technology, Ronneby, Sweden
e-mail: darja.smite@bth.se

N.B. Moe
SINTEF ICT, Trondheim, Norway
e-mail: nilsm@sintef.no

P.J. Ågerfalk
Uppsala University, Uppsala, Sweden
e-mail: par.agerfalk@im.uu.se

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6_23, © Springer-Verlag Berlin Heidelberg 2010

333

mailto:darja.smite@bth.se
mailto:nilsm@sintef.no
mailto:par.agerfalk@im.uu.se
http://dx.doi.org/10.1007/978-3-642-12442-6_23

334 D. Šmite et al.

process. At the end of the book project we invited all accepted authors to suggest
the three to five most important advice to give to an organization that is transition-
ing to agile distributed development, and the three to five most important areas for
improvement/research in relation to agile distributed development. Altogether 12
authors replied with a total of 47 advice and 39 areas. We compiled these, elimi-
nated redundancies and generated common phraseology. This resulted in 21 advice
and 10 areas for improvement/research. The authors were then invited to rank these
in order of importance and also to suggest up to three additional items that they
thought were missing from the current lists (three advice and three areas). In addi-
tion to the ranked lists, we received in total 14 additional advice and 9 additional
areas for improvement/research. This material, along with the chapters, was then
qualitatively analyzed1 using Atlas.ti, and the results were as follows.

23.2 Current Themes

When looking at the chapters of this book a number of central themes emerge. First
of all, it is clear that most chapters deal with different aspects of organizing agile
distributed development: project management, architecture, planning, and different
aspects of teamwork come to the fore. This is certainly not surprising given the
overall theme of the book. Emphasis is put on the management of inter-team de-
pendencies, which can be reduced by paying attention to the relationship between
software architecture and team structure. Two other themes that are central through-
out the book are changing requirements and the soft, people-related, factors. Indeed,
these themes are at the core of agile methods in general, and apparently play an im-
portant role also when moving into agile and distributed modes of working. A lesson
to learn is that turbulent business environments and changing requirements empha-
size the importance of understanding customer needs in terms of business value. In
order to achieve such understanding, evaluation of the economic value of user sto-
ries and improved financial models are needed. Among the people-related factors,
communication stands out as central to the success of distributed agile development.
Communication is of course central to understanding customer needs, but also to fa-
cilitating teamwork and engagement. Finally, the chapters present various strategies
to handle process- and practice related challenges, such as pair story authoring and
careful consideration of subcontracting practices.

23.3 Practical Advice

In terms of practical advice, three high-level messages stood out clearly from our
Delphi-inspired study. First, make sure to develop a sense of teameness by valu-
ing people-factors and put measures into place to integrate teams across locations.

1Although we followed customary qualitative analysis practices (recursive abstraction; open and
axial coding), we do not claim the results to be anything else than indicative and food for thought.

23 Agility Across Time and Space: Summing up and Planning for the Future 335

Providing appropriate tools and technology can facilitate this. Enabling face-to-face
collaboration when needed, valuing cultural differences instead of seeing them as a
threat, enabling teams to deliver complete functionality independent of localization,
and acquiring skilled human resources at each location and be prepared to reconfig-
ure rapidly are other helpful advice.

Second, make sure to tailor your development processes to the agile and dis-
tributed context and to explain to everyone involved why things are done the way
they are. Make sure to treat the transition into agile distributed as a change process
in its own right, communicate the benefits and forecast possible problems. A good
idea is to start small with a selection of pilot projects. When tailoring the process a
number of practices are worth considering to grow both culture and mutual respect
within the team:

1. Employ effective introspection and retrospectives with defined metrics that can
be used to promote the increased improvement in productivity of the develop-
ment team.

2. Find ways to minimize temporal delays, for example by adopting appropriate
tools for daily cross-site scrum meetings.

3. Use short iterations and do continuous integration on a common deliverable
across locations.

4. Apply intensive mandatory team-wide code inspections of earlier iterations.

Third, it is advised to ground management practices in established management
theory and to educate management in order to ensure proper management support.
This is important in order to secure appropriate resources and to establish effective
reporting and management structures across sites. In doing this it is important to
make sure that financial responsibility matches an agile approach. In the spirit of
agile, it is furthermore important secure and maintain customer involvement using
well-defined acceptance criteria.

Table 23.1 Summary of the most important advice

Practical Advice

Meet face-to-face, co-locate for a while, exchange members, and avoid distribution if possible.

You need patience and stamina.

Provide appropriate tools and communication infrastructure to support rich and intense interper-
sonal communication.

Concentrate on how everyone is helped by agile distributed and give careful consideration to dis-
persion.

Make people enthusiastic and don’t be religious on the method; adopt and adjust what is justified
and explain why.

Enable teams to deliver whole functionality (establish teams independent of the location).

Seek true customer involvement, overcome unavailability of and maintain continuous connectivity
with the customer.

Ensure ability of the team to collaborate with each other without significant temporal delays.

336 D. Šmite et al.

To sum up, the table above presents the top eight advice as resulted from the re-
sponding authors’ ranking. These eight were the suggestions that received a median
ranking less than 10, which indicates relatively high consensus that these are the
most important things to think about when transitioning to agile distributed devel-
opment.

As can be seen from table, a final word of caution is, be prepared to work hard to
get it right—you will need patience and stamina!

23.4 Areas for Improvement and Future Research

The areas suggested by the responding authors primarily centered around four
themes: process, tools, business and research approach. With regards to process,
it was highlighted that we need better to understand how to tailor agile methods for
the distributed context. One way to start would be to try to understand the contin-
gencies surrounding agile distributed projects; how do, for example, project size,
business domain, and different team configurations affect the application of agile.
Is there a difference between greenfield development and expansions of legacy sys-
tems in terms of the configuration of the development process? How can we improve
communication across temporal, geographical and socio-cultural distance?

Tools need to be developed to support development practices, teamwork, and
management of agile distributed projects. While there are many existing tools out
there, they need to be developed in light of a better understanding of the conditions
under which agile teams work in distributed projects.

In terms of business, two primary areas were identified. First, there is a great need
to improve financial models in order to support the goals of the agile organization
rather than just project management metrics, or ordinary business metrics. Second,
these models need to be aligned with developments in agile contracting. This is a
problematic area in agile development in general, and is certainly not less problem-
atic in a global business context, which may involve several legislations and norm
systems related to doing business.

The lack of theoretical models of agile and distributed development needs to
be addressed. It is certainly true for agile in general that theory is lagging behind
practice, and the distributed context is no exception. Developing theoretical models
probably requires studies from both a micro perspective (addressing team dynam-
ics) and from an organizational macro perspective. It was furthermore suggested
to study the combinations of team members from different geographical, cultural,
and temporal areas that appear to employ agile development effectively versus those
who experience greater difficulty using this approach.

Although this book has arguably contributed significantly to our understanding
of agile distributed development, much more is needed in order to learn how to ap-
ply agile methods to distributed projects effectively. Most importantly, we need to
understand better why certain practices work or does not work, and in what partic-
ular contexts. The only suggested area for research/improvement that stood out in
the responding authors’ ranking as more important than the rest was: Understand

23 Agility Across Time and Space: Summing up and Planning for the Future 337

the effects of agile distributed development. While the chapters in this book provide
a lot of useful advice for how to cope with agile distributed development, the actual
effects of this mode of software development remains to be seen as the number of
projects, successful and unsuccessful, increase.

23.5 The End of The End

The aim of this concluding chapter was to summarize the state of the art in the
area of agile distributed development and to point out some important areas for
future work. While a lot has been achieved, much more needs to be done. We started
working on this book project because we believed that there were many lessons
to be learned from current research and practice in the area; lessons that had not
yet been collected into a text that combined actionable advice for the practitioner
with captivating insights and challenges for the academic. We believe that we have
achieved that with this book. We also hope that the content of the book will serve as
food for thought that can trigger new developments and exciting opportunities for
further development of the area.

Index

40 hr work week, 120

A
Agile Distributed Development

á la carte approach, 6
benefits, 40, 62
effect, 146
issues, 5, 136, 142, 204, 211, 225
pitfalls, 77
state of the art, 6

Agility, 107
Agility dimensions, 113
Analytic hierarchy process, 109
Architect, 296
Architecture, 209, 217, 226, 229, 286, 295,

307, 321, 323
Architecture-centric development, 231, 324

C
Case study, 11, 31, 47, 91, 117, 133, 149,

167, 171, 201, 217, 235, 259, 301,
311, 321

CMM, 33, 93, 101
Coaching, 127, 294
Coding standards, 19, 37, 209
Collective ownership, 35, 37, 120, 209, 326
Composition, 221, 230
Concentration, 153
Conceptual integrity, 283, 285, 296
Continuous flow, 35
Continuous integration, 24, 37, 145, 245,

250, 302, 325
Coordination, 221, 321
Customer, 201, 281, 293

expectations, 119, 123, 146

involvement, 26, 202
tests, 35, 37

D
Data dictionary, 103
Data model, 103
Distributed pair/group programming, 318

E
Economic value, 60

F
Feature list, 103
Feature team, 282, 291

dispersed feature team, 283, 291, 294,
295

distributed feature team, 282
Feature-driven development, 93
Fixed-price, 98
Formal processes, 101

H
Heterogeneous process environment, 126
High level planning, 172

I
India, 322
Integration, 221, 230
Integration-oriented approach, 218
Interruptions, 153
Italy, 154
Iteration planning, 37, 155, 177
Iteration reviews, 35, 37

D. Šmite et al. (eds.), Agility Across Time and Space,
DOI 10.1007/978-3-642-12442-6, © Springer-Verlag Berlin Heidelberg 2010

339

http://dx.doi.org/10.1007/978-3-642-12442-6

340 Index

K
Knowledge transfer, 312

L
Large-scale project, 11, 48, 134, 220
Limited work in progress, 37
Linear development, 280
Location

Asia, 224
Australia, 110
Austria, 280, 290
Baltics, 73
Brazil, 35, 37
Canada, 37
China, 37, 168, 280, 290
Czech Republic, 261, 280, 290, 303
Denmark, 173
East Europe, 73
Europe, 48, 110, 135, 224
Finland, 236, 261, 302
France, 168
Germany, 135, 261, 280, 290, 313, 322
Greece, 135
Hungary, 280, 290
India, 93, 110, 117, 135, 174, 206, 302
Ireland, 206
Japan, 110
Latvia, 261
Malaysia, 261
Mexico, 37
Norway, 73, 261, 303
Poland, 110, 280, 290, 313
Russia, 37, 261
Singapore, 110, 280, 290
South Africa, 110
Switzerland, 110, 280, 290
the Netherlands, 110
the United States, 11, 35, 37
the united States, 93
the United States, 110, 135, 168, 206,

224, 280, 290
Ukraine, 313
United Kingdom, 37, 110, 280, 290, 302

M
Mentoring, 122

N
Nemawashi, 296

P
Pair programming, 302, 313
Pairing, 37
Personnel selection, 120
Plan-driven, 177
Planning game, 16, 59, 120, 125
Planning poker, 39
Pomodoro technique, 149
Process-centric coordination, 224, 226
Product owner, 286, 292, 293, 296
Progress tracking, 244
Project planning, 149, 244
Promiscuous pair story authoring, 47, 55

R
Refactoring, 25, 37, 209
Retrospectives, 35, 37, 271
Round-the-clock, 103, 168

S
Scrum, 35, 37, 93, 135, 174, 209, 242, 259,

302, 313
daily meetings, 35, 37, 73, 97, 120, 125,

209, 260
product backlog, 95, 242, 272, 313
product owner, 144, 242
scrum-master, 294
sprint, 209, 242, 266
sprint demos, 270
sprint planning, 125, 209, 268
sprint reviews, 209
sprints, 95

Scrum-of-Scrums, 264
Self-organization, 294
Self-organizing teams, 37
Shared ownership, 245
Short iterations, 73
Simple design, 21, 209
Small releases, 27, 37, 303
Story points, 58
Storyboards, 125
Subcontractors, 239
Subteams, 281, 282, 286
Sustainable pace, 22, 35, 37, 152

T
Task planning, 316
Task scheduling, 316

Index 341

Tayloristic approach, 163
Teaching, 122
Team structure, 280
Technical service team, 285
Test-driven development, 37, 302, 313,

322
The United Kingdom, 154
Time estimates, 58, 149, 152
Time management, 151, 167
Time-boxing, 152
Timeshifting, 168
Tools, 210, 276
Traditional development, 206, 217
Training, 120

U
Unit testing, 24, 327
United, 93
User stories, 327

V
Version control, 245

W
Waterfall, 33, 280
Whole team, 35, 37

X
XP, 12, 23, 37, 120, 135, 154, 292, 313, 322

	Foreword
	Preface
	Globally Distributed Development
	Agile Development
	The Role of Agility in Distributed Development
	Implementing Agility Across Time and Space
	Aims of the Book
	Book Overview
	Target Audience
	References

	Acknowledgements
	Contents
	List of Contributors
	Editorial Board
	Contributing Authors
	Scientific Reviewers

	Motivation
	Fundamentals of Agile Distributed Software Development
	Introduction
	Distributed Software Development
	Agile Software Development

	Merging Agility with Distribution
	Potential Issues
	All or Nothing versus Á la carte

	Current Practice
	Conclusions
	References

	Transition
	Implementing Extreme Programming in Distributed Software Project Teams: Strategies and Challenges
	Introduction
	Implementing XP Practices: Where Is an Organization to Start?
	The Promise of XP
	Understanding How Your Software Project Team Is Structured and Why It Matters

	Case Overview
	XP in Distributed Software Project Teams: Implementation Strategies and Pitfalls to Avoid
	The Planning Game
	Motivation
	Implementation Description
	Limitations

	Collective Ownership
	Motivation
	Implementation Description
	Limitations

	Coding Standards
	Motivation
	Implementation Description
	Limitations

	Use of a Metaphor
	Motivation
	Implementation Description
	Limitations

	Simplicity of Design
	Motivation
	Implementation Description
	Limitations

	Sustainable Pacing
	Motivation
	Implementation Description
	Limitations

	Pair Programming
	Motivation
	Implementation Description
	Limitations

	Continuous Integration and Unit Testing
	Motivation
	Implementation Description
	Limitations

	Refactoring
	Motivation
	Implementation Description
	Limitations

	Customer Involvement
	Motivation
	Implementation Description
	Limitations

	Small Functional Releases
	Motivation
	Implementation Description
	Limitations

	Conclusions
	References
	Further Reading

	Transitioning from Distributed and Traditional to Distributed and Agile: An Experience Report
	Introduction
	Case Overview
	Transitioning to Agile in a Distributed Environment
	Don't Tell What Agile Is and Be Successful
	A Fully Cultural Transition from Traditional to Agile Development
	Benefits of Using Agile Methods in Distributed Environment

	Practical Recommendations
	Conclusions
	References

	Tailoring Agility: Promiscuous Pair Story Authoring and Value Calculation
	Introduction
	The Case
	Background
	Management Support and Sponsorship
	The Pilot Project
	Project Selection
	Project Overview
	Participant Involvement

	The Journey of Implementing Agility
	Agile Induction (Week 1)
	Initial Requirements and Story Cards (Week 2)
	Promiscuous Pair Story Authoring (Week 3)
	The Innovation of Promiscuous Pair Story Authoring
	Estimation with Both Story Points and Time Estimates

	Revision and Benefit/Penalty Ranking (Week 4)
	Traditional Time Estimates

	Economic Value Calculation (Week 5)
	Defining the Economic Value of a Story
	Re-Computing the Economic Value of a Story Point through Successive Refinement and Triaging
	Calculation with the Incremental Funding Method

	The Final: Project Approval

	Benefits from Implementing Agility over Traditional Approaches
	More Commonality
	Smaller Scope
	ROI Anticipation
	Smaller Country-Specific Dependencies
	Avoiding Waste Upfront

	Why Agile Succeeded?
	Induction
	Co-location and Alternating On- and Off-Site Activities
	Promiscuous Pair Story Authoring
	Economic Value of Story Points
	Avoiding Feature Creep
	Increasing the Value of a Story Point
	Virtuous Circle

	Conclusions
	References

	Scrum and Global Delivery: Pitfalls and Lessons Learned
	Introduction
	Cases Overview
	Background
	Project NOR1
	Project NOR2

	The Experiences
	Signing Agreements
	Challenges
	Solutions
	Lessons Learned

	Establishing Remote Access
	Challenges
	Solutions
	Lessons Learned

	Overcoming Communication Barriers
	Challenges
	Solutions
	Lessons Learned

	Actively Managing Distributed Agile Projects
	Challenges
	Solutions
	Lessons Learned

	Dealing with Idle Time
	Challenges
	Solutions
	Lessons Learned

	Achieving Motivation and Peer Feeling
	Challenges
	Solutions
	Lessons Learned

	Adapting Governance and Steering
	Challenges
	Solutions
	Lessons Learned

	Conclusions
	References

	Onshore and Offshore Outsourcing with Agility: Lessons Learned
	Introduction
	Case Overview
	Background
	Project Organization
	Introduction of Agility
	Overview of Project Activities
	Cross-border Relationship Dynamics

	Lessons Learned
	People
	Processes
	Coordination

	Conclusions
	References
	Further Reading

	Contribution of Agility to Successful Distributed Software Development
	Introduction
	Distributed Project Success
	Types of Agility
	Study Background
	Contribution of Agility to Distributed Project Success
	Conclusions
	References

	Preparing your Offshore Organization for Agility: Experiences in India
	Introduction
	Distributed Agile Software Development in India
	Experiences from AgileCo
	Case Overview
	Personnel Selection and Training
	Teaching and Mentoring
	Managing Customer Expectations

	Experience from BankCo
	Case Overview
	Impact of Senior Leadership Vision
	Heterogeneous Process Environment
	Agile Coaching

	Conclusions
	References

	Management
	Improving Global Development Using Agile
	Introduction
	The Projects
	Deploying Agile Techniques in Global Projects
	Organizational Issues
	Co-located Teams
	Distributed Teams
	Pairing of Developers
	Travel and Delegation

	Communication Issues
	Inter-team Communication
	Informal Communication
	Formal Communication
	Communication with Domain Experts

	Process Issues
	Transition Out of the Legacy Process
	Process Refinements
	Backlogs
	Minimal Up-front Planning
	Agile Form Without Function

	Tools and Technical Issues
	Communication Tools
	Continuous Integration
	Integration Tools
	Configurations Management

	Improving Global Projects Using Agile Processes
	Effective Preparation Work
	Product Owner
	Communication-Bandwidth
	Continuous Integration
	Distribution of Design and Analysis Work
	Unstable Requirements
	Introducing or Updating Technologies
	Managing Customer Expectations

	Conclusions
	References

	Turning Time from Enemy into an Ally Using the Pomodoro Technique
	Introduction
	Time Is an Enemy?
	The Pomodoro Technique
	Pomodoro as Time-box
	Pomodoro as Unit of Effort

	The Application of the Pomodoro Technique in Sourcesense Milan Team
	Background of Sourcesense Milan Team
	The Development Process of Sourcesense Milan Team
	Pomodoro as Time-box
	One Pomodoro Rules Them All
	Break is Break
	Time-boxing Non-development Activities

	Pomodoro as a Unit of Effort
	Pomodoros vs. Abstract Story Points
	Tracking Pomodoros
	When Not to Measure or Track with Pomodoro

	Addressing Remote Collaboration with Teams That Do Not Employ the Pomodoro Technique

	Turning Time into an Ally
	Shared Pomodoro
	Collective Breaks
	Estimation and Tracking
	One Pomodoro Rules All Sites?

	Conclusions
	References

	MBTA: Management By Timeshifting Around
	Management by Wandering and Flying Around
	Enter Timeshifting
	Conclusions
	References

	The Dilemma of High Level Planning in Distributed Agile Software Projects: An Action Research Study in a Danish Bank
	Introduction
	Research Methodology
	Action Research
	Research Settings

	The Action Research Cycle
	Diagnosing the Problem and the Underlying Causes
	Action Planning
	Action Taking
	Evaluating and Learning

	Conclusions
	Applying a Holistic Approach to High Level Planning
	Using Action Research to Software Process Improvement
	Summary

	References

	Tools for Supporting Distributed Agile Project Planning
	Introduction
	Distributed Planning Tool Requirements
	Agile Planning Requirements
	Requirements for Collaborative Interactions

	Tool Review
	Wikis
	Web Form-Based Applications
	Card-Based Planning Systems
	Plugin for Integrated Development Environment
	Synchronous Project Planning Tool
	Digital Tabletop-Based Agile Planning Tool

	Tool Evaluation
	Practical Advice
	Advice for Agile Planning Tool User
	Advice for Designers of Distributed Agile Planning Tools

	Conclusions
	References

	Combining Agile and Traditional: Customer Communication in Distributed Environment
	Introduction
	Customer Communication in Distributed Agile Development
	Issues Hindering the Customer Communication in Distributed Agile Development

	Findings
	Case Context
	The Use of Agile Methodologies in the Case Project
	The Use of Customer Communication Media
	Identified Customer Communication Challenges
	Detached Customer
	Organizational Environment
	Differences Between Traditional and Agile Approaches
	Lack of Trust

	Discussion and Lessons Learned
	Detached Customer

	References

	Coordination Between Global Agile Teams: From Process to Architecture
	Introduction
	Large-Scale Software Development
	Case Study Companies
	Case Company GLOembed
	Case Company GLOtelcom
	Case Company GLOsoftware

	Coordination and Integration Inter-team Challenges
	Top-Down Approach Challenges
	Process-Centric Coordination
	Integration Costs
	Coordination and Communication Costs Between Teams
	Unintended Resource Allocation
	Insufficient Pre-iteration Cycle Work

	Interaction Problems
	Global Interaction Problems Between Teams
	Maintaining Motivation in Remote Teams
	Low Productivity

	Coordination Through Architecture
	Road Mapping
	Requirements
	Architecture
	Development
	Integration or Composition
	Architecture-Centric Software Engineering

	Conclusions
	References

	Considering Subcontractors in Distributed Scrum Teams
	Introduction
	Company Context
	Methodology
	Main Results

	Subcontractors in an SSP Company
	Why Subcontractors?
	Distributed Development Stakeholders
	Subcontractor Selection Process

	Subcontractors in Scrum Teams
	Scrum
	Communication
	Planning and Progress Tracking
	Code Sharing and Development Feedback
	Knowledge Sharing
	Team Spirit

	Subcontractors and Project Phases
	Preparation
	Development
	Release

	Conclusions
	Practical Implications
	Research Implications
	Summary

	Appendix
	References
	Further Reading

	Teams
	Using Scrum Practices in GSD Projects
	Introduction
	Research Methodology
	Distributed Daily Scrums
	Application of Daily Scrums to Distributed Projects
	Benefits of Daily Scrums
	Challenges of Daily Scrums

	Scrum-of-Scrums Meetings
	Application of Scrum-of-Scrums to Distributed Projects
	Benefits of Scrums-of-Scrums
	Challenges of Scrums-of-Scrums

	Sprints
	Application of Sprints to Distributed Projects
	Benefits of Sprints
	Challenges of Sprints

	Sprint Planning Meetings
	Application of Sprint Planning Meetings to Distributed Projects
	Benefits of Sprint Planning Meetings
	Challenges of Sprint Planning Meetings

	Sprint Demos
	Application of Sprint Demos to Distributed Projects
	Benefits of Sprint Demos
	Challenges of Sprint Demos

	Retrospective Meetings
	Application of Retrospective Meetings to Distributed Projects
	Benefits of Retrospective Meetings
	Challenges of Retrospective Meetings

	Backlogs
	Application of Backlogs to Distributed Projects
	Benefits of Backlogs
	Challenges of Backlogs

	Frequent Visits
	First Visit
	Further Visits
	Benefits of Frequent Visits
	Challenges of Frequent Visits

	Multiple Communication Modes
	Benefits of Multiple Communication Modes
	Challenges of Multiple Communication Modes

	Conclusions
	References

	Feature Teams-Distributed and Dispersed
	Introduction
	Context
	Historical Structures of Distributed Teams
	Consequences

	Building Agile Teams
	Feature Teams-Co-located or Dispersed
	Creating Proximity for Dispersed Feature Teams

	Technical Service Team Ensures Conceptual Integrity
	Starting Team as Role Model

	Conclusions
	References
	Further Reading

	Roles and Responsibilities in Feature Teams
	Introduction
	Context
	Configuration of a Feature Team
	Product Owner
	Team of Product Owners
	Lead Product Owner
	Collaborating with Both: Customers and Feature Team

	Coach-Also Known as Scrum-Master
	Architect and Architecture
	Chief Architect

	Project Manager
	Key Roles Support Their Teams Directly
	Conclusions
	References
	Further Reading

	Getting Communication Right: The Difference Between Distributed Bliss or Miss
	Introduction
	Background Overview
	Background

	Starting a Distributed Agile Project
	Low-cost and Effective Communication
	Empower the Team
	Common Architecture Across Locations
	On "Proxies"
	Conclusions
	References

	A Task-Driven Approach on Agile Knowledge Transfer
	Introduction
	Case Overview
	Hands-On Approach (Task-Driven Approach)
	Joint Task Planning
	Question-Driven Task Scheduling
	Adequate Task Design
	Scrupulous Task Sign-Off

	Conclusion
	References

	Architecture-Centric Development in Globally Distributed Projects
	Introduction
	Case Overview
	Software Architecture and Architecture-Centric Development
	Software Architecture
	Architecture-Centric Development in General
	Architecture-Centric Development in Agile Distributed Settings

	Distributed Continuous Integration and Collective Ownership
	Practical Advice for Software Architects
	Conclusions
	References

	Epilogue
	Agility Across Time and Space: Summing up and Planning for the Future
	The Beginning of the End
	Current Themes
	Practical Advice
	Areas for Improvement and Future Research
	The End of The End

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

