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I dislike very much to consider any quantita-
-tive problem set by a geologist. In nearly ev-
ery case, the conditions given are much too
vague for the matter to be in any sense satis-
factory, and a geologist does not seem to mind
a few millions of years in matters relating to
time. . .

John Perry, 1895

(In the paper in which he calculated the age of
the earth — previously estimated by Lord Kelvin
to be 90 my — to the correct age of 4.5 Gy.)



Foreword to 2nd edition

I was invited by SPRINGER publishers to write a 2nd edition of this textbook
days before departing for the EGU conference in Vienna in spring 2006.
Naturally, the idea roamed around my mind whilst sitting through a variety
of great talks which presented new results from the field of geodynamics.
Many talks presented incredibly realistic results from advanced numerical
models and I quickly got the feeling that — in order to remain up to date
— a new edition should contain much more on some of these sophisticated
models. Quite clearly, geodynamics is a rapidly developing field that makes
more and more use of computing skills to cope with an ever growing number
of processes that scientists want to consider simultaneously to explain large
data sets.

However, as exciting as this development is, it also bears a danger:
Shouldn’t a good model provide a weighted balance between simplicity and
realistic description? Do we really help the field geologists, our undergrad-
uates or even ourselves by producing models that look more and more like
nature but that are increasingly difficult to follow intuitively and need grad-
uate knowledge in physics and advanced programming skills to understand?

Personally 1 feel that the pendulum has swung a bit too far towards the
“realistic description” side. What use is a model that extracts an awed gasp
from the impressed viewer, but fails to provide an intuitive feel what is going
on or — worse still — might fail on first principles behind the curtain of colorful
animations? I felt myself confirmed when I sat in a talk where 2nd order
morphological features of a drainage system were modeled numerically with
fantastic reality; a talk that was followed by a discussion in which the 1st
order features and their implementation were hotly debated.

I have therefore refrained from diverging too far from the simplistic style of
text, maths and figures of the 1st edition. New sections are written in the same
vein as in the 1st edition and in fact, some pages I deemed too complicated
have been omitted. I still feel that — even in today’s sophisticated world —
there is room for a simplistic view that reminds us of the basics and that
helps the quantitatively inclined field geologist to enter the wonderful world
of geodynamic modeling,.



VIII
Preamble to 1st edition

Field geologists typically interpret their data in terms of tectonic models
that are consistent with their observations in a given terrain, but that often
lack an independent test. Such models can be strengthened considerably if
they are supported by independent estimates of the magnitude of the implied
geodynamic processes. For example, estimates of the thermal energy budget
of a metamorphic terrain are an invaluable aid for the tectonic interpreta-
tion of metamorphic isograds mapped in the field; estimates for the orogenic
force balance of a certain nappe staking geometry interpreted from structural
mapping are a fantastic way to test its mechanical plausibility.

This book was written because there appears to be a strong bi-modality in
the nature of text books dealing with such problems. Books that introduce
the reader to the modeling of geodynamic processes often require a relatively
high maths background. On the other hand, books that deal with basic maths
usually lack any connection to geology. This book was written in an attempt
to bridge this gap. It is the aim of this book to introduce field based geologists
to the power of the quantitative treatment of their field data. Because of this,
the emphasis of this book lies on the interpretation of data that are typically
collected by structural geologists, petrologists and geochronologists in the
field, rather than those collected by seismologists or geophysicists.

As an introductory text, little mathematical knowledge is required. All
calculations are discussed in detail without omitting steps in the derivations
and an extensive appendix on mathematical tools is provided. All computer
codes used to calculate the figures are available from the author. They may
also be downloaded from the address http://wegener.uni-graz.at.
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1. Introduction

The large scale structure of the earth is caused by geodynamic processes
which are explained using energetic, kinematic and dynemic descriptions.
While “geodynamic processes” are understood to include a large variety of
processes and the term is used quite loosely, the methods of their description
involve well defined fields. Fnergetic descriptions are involved with distribu-
tion of energy in our planet, typically expressed in terms of heat and tempera-
ture. Kinematic descriptions describe movements using velocities, strains and
strain rates. Dynamic descriptions indicate how stresses and forces behave.

In the field, we document only the consequences of geological processes. The
underlying causes are much harder to constrain directly. Nevertheless, if we
want to explain the tectonic evolution of our planet, we need to interpret these
causes or: “driving forces” . For this, we need to find a dynamic description of
geological processes that is consistent with our observations. Our descriptions
relate causes and consequences — tectonic processes with field observations. In
many cases, we will use equations as a concise form to describe processes and
observations in nature. As we will be dealing mostly with large scale tectonic
questions, the observations that we shall use are also on a large scale. For
example, we shall use observations on the elevation (Fig. 1.1) and heat flow
of mountain ranges, the thickness of continents and the water depth of the
oceans.

As the processes we seek to describe are changing with time or space,
many of the descriptive equations will be differential equations. However, it
is not the aim of this book to confuse the reader with high level mathematics.
Rather it is the aim to introduce field geologists to the beauty and simplicity
of descriptions with equations. Thus, all equations will be explained from
basic principles so that an intuitive understanding can be achieved. While 1
prefer the term “description”, many colleagues would refer to the contents of
this book as “modeling”. Thus, it appears useful to begin this book with a
discussion what we mean when we use the word “model”.

1.1 What is a Model?

Models are tools that we use to describe the world around us in a simplified
way so that we can understand it better. Sadly, many geologists misunder-
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stand the word model and think of it only as something complicatedly math-
ematical that has little to do with field work (s. Greenwood 1989). In doing
so, many field geologists overlook the fact that field mapping itself is also a
form of modelling:

Geological Mapping: A Typical Modeling Exercise. A map is a trans-
formation of reference frames; for example the projection of the geographic
position of field locations onto a piece of paper. However, a geological map
that is a mere representation of field data in a new reference frame (i.e. our
piece of paper) may be a good map but is usually a poor geological map
(Passchier et al. 1990). It may still be useful to find a given outcrop of a
given lithology, structure or metamorphic grade, but as scientists we are usu-
ally unsatisfied by simply documenting what is there. Usually we want to go
beyond that and map to clarify field relationships, for example when we infer
where a lithological contact is underneath a meadow. We make maps so that
we can explain some features of nature to a colleague geologist without him
or her having to do the same amount of field work we invested to produce
the map in the first place. In order to achieve this aim, the geological map
must illustrate field relationships in a simplified and interpreted manner. This
forces the field geologist to a constant decision-making process. First of all
the geologist has to decide what is to be mapped. Is it topography? Is it
structure? Is it metamorphic isograds or is it lithology? Which of these (and
many others) is to be mapped depends on the question with which we go
into the field (Fig. 1.1). Then, the geologist has to decide on the scale on
which the map should be produced. This decision is not trivial! The scale
of the map depends on the problem to be solved. Once the scale is decided
upon many more decisions are to be made. Which observations are too small
to be mapped and should be neglected? Which ones should be drawn into
the map? Which ones are to be emphasized by lines? Can a contact seen in
two outcrops be mapped as a line, even in the paddock separating the two
outcrops? The geologist is modeling!

If the map is good, then it helps the reader - like any other good model
- to understand nature quickly and easily. It also helps to make predictions
how the geology may look at different places that were not mapped yet.
For example, constructing profiles across our map helps us (to a certain de-
gree) to explain how the geology looks underground. In numerical-, analogue-,
conceptual- or thought-models this process is identical. Mathematical models
consist of a series of rules that determine which observations in nature are to
be neglected and which ones are to be emphasized. The former will not ap-
pear in an equation, the latter will appear as a parameter in the equation. As
such, a mathematical model is no different from the field work of a geologist.

Every model can be considered as a tool that can be used to make pre-
dictions about observations in nature. Just as a geological map can be used
to construct cross sections and thus predict the geology underneath the sur-
face, a numerical model can be used to make predictions about temperatures,
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210 240 270 300 330 0 30 60 90 120 150

Figure 1.1. Topographic map of the continents showing the large mountain ranges
which always have inspired geologists to geodynamic models explaining their origin.
Elevations higher than 1 000 m above sea level are shown as grey, elevations higher
than 3000 m are shown in black. The map bears all the characteristics of a good
model. It captures the essence of the planets distribution of high mountain ranges
within only about 0.01 m? of this page, which is only possible by making a range
of simplifying assumptions, for example on resolution or choice of cut-off elevation.
As such, elevations above 3000 m in the Azores or Japan escape the scale. Also
— while the model largely succeeds in its aim - it is also “wrong” in some places.
For example, much of the land surface of (ice covered) Greenland and Antarctica
is actually below sea level

forces or velocities which cannot be observed directly because of their enor-
mous time scale or depth.

If the choice of parameters that we consider in our model (and the rules
that relate them to each other) are good, then our model is good and it will
predict many new observations which will be proven to be correct by future
observations. If our choice of parameters and rules is bad, then our model
may explain the one or other field observations, but it will predict many
other features that will be proven wrong by future observations. Modeling
is therefore an iterative back and forth between the choice of parameters
and rules that are to be considered or neglected, new observations in nature
and finally improvement of the model based on the new observations. Good
models are consistent with a large number of observations (s. p. 5), but models
are hardly ever unique in fitting those observations.

Consistent versus Unique. The difference between consistent and unique
is an important one that is often not recognized, even by modelers them-
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selves. Unique means - as the word says - that the model is the very only
explanation for a set of observations. Consistent means that the proposed
model does explain a set of observations, but that other models may also
explain the same set of observations. The largest majority of models are con-
sistent but by no means unique. For example, the heliocentric Copernican
model for the solar system (which states that the planets rotate around the
sun as initially suggested by Aristarchus of Samos 310 - 230 B.C., but only
brought to wide acceptance by Corpernicus in the early 16th century) is a
model which is consistent with our observations of when the sun rises and
sets and so on. However, a geocentric model (initially designed by Ptolemy)
in which the planets and the sun rotate around the earth is possible too.
The geocentric model is amazingly more complicated than the heliocentric
model and it involves weird planetary motions including epicycles and cycloid
curves. However, it also is consistent with our observations on planetary mo-
tions. Neither the heliocentric, nor the geocentric model are therefore unique.
When viciously defending a model in a discussion it is always sobering to re-
mind oneself that practically all models are only consistent (at best).

Good versus Accurate. The difference between good (or possibly: “ade-
quate”) and accurate models is related to the difference between consistent
and unique models, but it is not quite the same. Here, it is important to
realize that the best model must not be the most accurate model! The best
model is the one that finds the best balance between accurate description
and simplicity. A good example for this is given by a comparison of New-
ton’s law of gravitation and relativity theory when applied to the description
of planetary motion (e.g. Hawkins 1988). Newtonian theory states that the
gravitational attraction, F', between two masses is directly proportional to
the masses of the two bodies my and m-», and inverse proportional to the
square of the distance r between the two bodies. This model is incredibly
simple and may be described by a simple equation:

F =gl

oz (1.1)
The constant of proportionality is called the gravitational constant, G. Its
value may be found in Table D.4 in the Appendix of this book. This model
describes the elliptic motions of the planets (that were discovered by Kepler
in order to improve the Copernican model) extremely well. However, very
detailed measurements early this century showed that the motions of some
planets differ a bit from those described by eq. 1.1. These differences may be
explained with the model of general relativity, which describes the planetary
motions more exactly than Newton’s law. Indeed, general relativity shows
that many concepts of Newtonian physics are “wrong”, for example the con-
stancy of mass (general relativity states that mass depends on speed). Thus,
one might consider Newton’s model to be superseded by general relativity
and use this new model from now on.
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However, general relativity is much harder to grasp than the intuitive
understanding of eq. 1.1. It is therefore often not very practical to use. In
fact, for the largest majority of purposes — for example to find a planet with
a telescope in the sky, or for the interpretation of gravity anomalies by a
geologist — Newton’s model (eq. 1.1) is sufficient. Thus, for most purposes
Newton’s model is better (because simpler), albeit less accurate. In short, a
good model should find a good balance between simplicity of the model and
accuracy in describing a set of observations and this balance depends on the
problem to be solved.

Accuracy versus Precision. In the last paragraph we have used the word
correct to describe a very good correlation between model description and
observation in nature. In general this is the same what is meant by the word
accurate. However, precision is something different. Precision describes how
good a model or an experiment can be repeated with the same result (s.
p- 419). Let us illustrate this with an example. A radiochemical analysis may
indicate that a rock formed 100 my ago. This analysis is very precise if every
time we perform it, we arrive at the same age of 100 my. This applies to errors
as well. The analysis is still called very precise if we come up with an answer
of 100+ 50 my, if that answer is reproducible with the identical error limits
and we know these error bars very well. However, the radiometric age above
is not very accurate. In fact, even analyses with very small analytical errors
may be not very accurate at all. It could be that a precise but inaccurate age
of 100+ 0.1 my was obtained for a rock that actually formed 150 my ago,
which in itself bears important information, for example, why the chosen
radiometric system re-equilibrated 50 my later.

In conclusion of this section, let us define a good model. A model is a de-
scription of nature that has the three following properties:

— It should describe a large set of observations with a comparably small set
of parameters.

— A good model must be useable as a tool to make predictions about fact
that have not been observed yet.

— It must be possible to test a good model by making new experiments or
observations.

Note that none of these three requirements includes accuracy. The deciding
factor for a good model remains the balance between accuracy and sim-
plicity. Accurate description of nature is a virtue that remains reserved to
(explanation-free) collections of measured accurate data. (Although, remem-
ber that many measured data may not be accurate either.)

Geodynamics describes the dynamic evolution of earth through space and
time. This dynamic evolution occurs on time scales of up to many hundreds
of million years and spatial scales of up to thousands of kilometers. Direct ob-
servation is therefore often difficult. Geodynamics is therefore a science which
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relies to a much larger extent on the model tool than many other sciences.
Mapping in the field, analogue modeling in the laboratory and programming
on the computer are all three modeling techniques that are of equal impor-
tance in this process. Integrated use of various modeling techniques is the
most elegant way to arrive efficiently at a good description of the nature
around us.

v z ' V4 T1
Figure 1.2. Examples of illustrations of one- and two-dimensional models. a shows
an example of temperature evaluated as a function of a single spatial coordinate, 2.
The axes of the surface of this page are used up for this one-dimensional description.
The strange geotherm is uniquely defined: Every depth corresponds uniquely to a
single temperature. b shows a two-dimensional model, for example temperatures in
a subduction zone as a function of depth z and horizontal distance z. The surface of
this page is used up for the two spatial dimensions of the model and the evaluated
variable must be portrayed by the contours

1.2 Spatial Dimension of Geological Problems

When a geological process is to be described by a simple model, one of the
first decisions that has to be made is often the number of spatial dimensions
that are to be considered. This decision has to be made according to the
requirements of a good model, as discussed above. That is, it should be tried
to describe the problem in question with as few spatial dimensions as possible,
without loosing the essence of the problem. Fortunately, a very large number
of geological problems can be considered one-dimensionally or even without
any spatial dimension. Before we go on to discuss some problems that require
one-, two-, or three-dimensional consideration, it should be emphasized that
“dimension” need not always be the “spatial dimension”. For many problems
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it is important to consider time or some other independent variable as the
dimension which may then become an axis on a diagram which we use to
illustrate some feature of our description. In this book we will stick to (unless
otherwise noted) the meaning of a spatial dimension when we talk of the
dimension of a problem and use the SI units, when we use another variable
as our “dimension”.

One-dimensional Problems. A simple example of a one-dimensional prob-
lem is the description of temperature in the lithosphere as a function of
depth (Fig. 1.2a). A one-dimensional description of this problem is sufficient
when the lateral extent of the plate is large compared to the thickness of
the lithosphere and there is no other lateral changes in physical parameters
or structure. Continental lithosphere is often of the order of 100 km thick,
but continents are usually many hundreds or even thousands of kilometers
in lateral extent. The temperature as a function of depth can therefore be
well-illustrated in a diagram in which one axis denotes depth and the other
temperature. The depth axis is the dimension of the problem, the temperature
axis is the evaluated variable. Similar logic may be applied to the description
of temperatures around magmatic dikes.

One-dimensional problems need not be in Cartesian coordinates, but can
also occur in spherical or cylindrical coordinates, for example temperatures
around a spherical intrusion or compositional zoning profiles in a cylindrical
crystal. One-dimensional descriptions are useful when there is little or no
variation of the variable of interest in the other spatial directions.

Two-dimensional Problems. An example of a typical two-dimensional
problem is the temperature distribution in subduction zones. There, the sub-
duction angle as well as the plate thickness are both critical for the shape of
the isotherms and a vertical (2) plus a horizontal spatial coordinate () are
therefore needed for a meaningful description (Fig. 1.2b). Fortunately, the
third spatial dimension — the direction parallel to the trench — can often be
neglected because trenches are usually long and the subduction direction is
often at roughly right angles to the trench. Calculated temperatures can be
illustrated as contours on a diagram with two spatial dimension of the axes.

Figure 1.3. A
“three-dimensional” illustration
of the two-dimensional function
p = sin(z) x sin(y) shown on the P =fly)
two-dimensional paper of this
book page
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The same two-dimensional problem can also be illustrated by using a per-
spective sketch where the two spatial coordinates and the temperature axis
are all shown in one diagram. Fig. 1.3 illustrates such a “three-dimensional”
illustration of a two-dimensional model using the abstract function f(x,y) =
sin(z) x sin(y) as an example. “Three-dimensional” is shown here in quota-
tion marks, firstly because the third dimension (p, or T in Fig. 1.2b) is not
really a spatial dimension but the evaluated variable, and secondly because
a perspective sketch is still drawn on the two dimensions of this page. Thus,
such drawings remain two-dimensional on paper (unless they are built of wire
or something else) and they only appeal to the three dimensional imagination
of the reader. For two-dimensional models that are used to evaluate temper-
atures “three-dimensional” illustrations are not common practice, but for ge-
omorphological models and many geophysical questions “three-dimensional”
illustrations of two-dimensional model results are quite instructive and are
often used.

However, be careful! The fact that two-dimensional models are often shown
as surfaces over a grid of two spatial coordinates should not be mistaken for
a real three-dimensional model. The third dimension is only the evaluated
variable! For Fig. 1.2b we could write T=f(z, z): temperature is a function of
2 and z only. In landscape models (e.g. Fig. 1.4) this is often quite confus-
ing as the evaluated variable (surface elevation) has the same units (meters)
as the two spatial coordinates on which it was evaluated. To stop confusion
it is often useful to use the expression potential surface. Just like geophysi-
cists evaluate gravitational- or electromagnetic- potential as a function of two
spatial coordinates, so can surface elevation or temperature be viewed as a
potential surface overlying the plane defined by the two spatial coordinates.

Three-dimensional Problems. Three-dimensional models are not only
very difficult to design, their results are also hard to understand, to explain or
to show graphically. For many geological problems — for example those that
involve the modeling of stress or strain — three-dimensional models involve
tensors algebra, which makes it often hard to follow their results intuitively.
Three-dimensional models should therefore only be used if the problem that
is to be solved cannot be simplified in its spatial dimensions (s. p. 7). Exam-
ples of important geological problems that are inherently three-dimensional
are mantle convection or oblique subduction. Such problems are only solvable
with three dimensional models and brave earth scientists use modern meth-
ods of calculation and illustration to tackle such difficult problems (e. g. Braun
and Beaumont 1995; Platt 1993a). Practically, three-dimensional model re-
sults can only be illustrated on a computer screen or with series of contoured
diagrams or videos.

Zero-dimensional Problems. A very large number of geological problems
can be solved quite elegantly without considering any spatial dimensions. For
example, the surface elevation of mountain belts in isostatic equilibrium or
the influence of heat production on temperature of rocks can be estimated
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Figure 1.4. a, b “Three-dimensional” illustration of a two-dimensional model
shown on the two dimensions of this page. ¢ Two-dimensional illustration of the
model and H is the evaluated variable - or potential surface. In other models the
vertical axis may be the gravitational potential (in m s~2), temperature of a meta-
shown example, H is of the same units as the spatial coordinates - the model is a
landscape model. a and ¢ are illustrations of field data of the shape of Ayers Rock
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same model results. The coordinates z and y are the spatial coordinates of the
morphic terrain or the concentration of an element in a crystal. However, in the
in Central Australia and b shows the modeled shape according to Stiiwe (1994)

without spatial considerations and can still give use enormous insight into the
nature of many tectonic processes. When neglecting all spatial dependence
of a problem, this gives us the great freedom to evaluate the model results
graphically as a function of two variables simultaneously. Both axes that
may be drawn on paper can be used to evaluate the influence of two different
variables against each other.

Zero-dimensional problems should not be confused with dimensionless
variables or normalized variables. In many problems of this book we will
encounter variables that are normalized to some standard value and there-
fore have no units. This is called a dimensionless variable. Dimensionless
variables are great to get a feeling what a certain number means in relation-
ship to some better known value. For example, the elevation of Mt Blanc,
H(nm1¢Blanc), can be either given in meters, or it could be described in terms
of its proportional elevation h (in %) relative to, say, Mt Everest:

B = H(MtBlanc) o 4807m

= = —0.543 . 19
H(MtEverest) 8848 m ( )
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h = 0.543 is the dimensionless elevation of Mt Blanc relative to Mt Everest.
The use of the dimensionless elevation in eq. 1.2 may not be immediately
clear. The next example will illustrate the usefulness of this approach better.
When describing the thermal evolution of contact metamorphic aureoles,
(sect. 3.6) we will often encounter dimensionless temperatures of the following
form:

0 =(T-T,)/(Ti - Ty) (1.3)

There, T; and 1}, are the temperatures of an intrusion and the background
temperature of the host rock, for example: 73 = 900°C and 7, = 300°C. T is
the variable temperature which may change as a function of distance from the
intrusion or time. When 7' = 600 °C, then this in itself is not very instructive.
However, when expressed as #=0.5 we can see that this temperature is exactly
half way between the host rock and the intrusion temperature. For many
questions this is much more instructive.

In other examples we will encounter even more complicated formulations of
dimensionless variables. For example, in diffusion problems it is often useful
to evaluate temperature as a function of the dimensionless variable:

T—f (%t) (1.4)

This may appear quite confusing, but it has also the purpose of simplifying
the results, similar to what we did in eq. 1.3. Eq. 1.4 shows that the variables
k ( diffusivity ), ¢ (time) and ! (size) are coupled in the particular form of this
equation (“f()” in eq. 1.4 means “function of”). Using dimensionless variables
is not only useful for the better illustration of the meaning of a result, but is
also a great aid in differential calculus.

1.2.1 Reducing Spatial Dimensions

Deformation of lithospheric plates is — in the most general case — a three-
dimensional problem (however: s. sect. 2.2.2). In three dimensions, stress,
strain and strain rate are described by tensors and any fully three-dimensional
description of continental deformation does therefore involve tensor calcula-
tions (s. sect. 5.1 and B.3). In order to reduce the complications that arise in
such calculations, it is useful to see if the number of considered dimensions
can be reduced. When describing lithospheric deformation, there are various
well-established simplifications that allow us to neglect some or even all of
the components of a tensor. Of course, whether or not these simplifications
should be used depends on the nature of the problem. Two of these simpli-
fications are important enough for plate tectonic modeling so that they are
mentioned already in this first chapter of the book.
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Figure 1.5. Illustration of two- and three-dimensional deformation models (ab-
breviated with 2D and 3D in the figure). The shortening of the block shown in a
in the z direction is compensated in b only by stretching in the y direction. The
thickness of the block remains constant. This is plane strain deformation. In ¢ the
shortening of the block is compensated by both stretching in the y and z directions.
The thickening or stretching in the z direction is homogeneous. This corresponds
to the two-dimensional thin sheet approximation. In d the shortening in the z di-
rection is compensated by stretching in the y direction and also by inhomogeneous
thickening in the z direction. This kind of deformation can only be described with a
fully three-dimensional model. In b and c the stretching in the y and 2 directions is
no function of z (in contrast to Fig. 1.6). This is no requirement of the plane strain
or thin sheet approximations. The illustrated geometries are therefore special cases
which could also be described one-dimensionally. Stretching in y and z direction
could both be evaluated as a function of the shortening in z only

Plane Strain Approximation. The plane strain approximation helps to
reduce three-dimensional problems to two dimensions. It assumes that all
deformation is strictly two-dimensional so that all strain and displacement
occurs in plane and no strain perpendicular to this plane. In plate tectonic
modeling we normally consider only the case of no volume change. Then, the
total amount of shortening in one spatial direction must be compensated by
stretching in the other (Fig. 1.5b; Fig. 1.6). No area change occurs. Tapponier
(e.g.1982) has made great advances in our understanding of continental de-
formation using this assumption in his descriptions of the India-Asia collision.
Plane strain deformation may be viewed as the deformation of a thin film of
material that deforms between two fixed parallel plates. It is not plane stress,
as the normal stresses on the surfaces of the confining plates will vary, de-
pending on where deformation concentrates. Plane strain modeling is a good
approximation when the lateral extent of deformation is much larger than the
extent in the direction normal to the two modeled dimensions, e.g. crustal
thickening or thinning when modeling continental deformation in plan view.

Thin Sheet Approximation. When lithospheric shortening in one hori-
zontal direction is compensated both by stretching in the second horizontal
direction and by thickening (or thinning) in the vertical, the lithospheric
deformation becomes three-dimensional. However, such scenarios can still
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Figure 1.6. A comparison of modeling in two dimensions assuming plane strain
(left) and plane stress or a thin sheet (right hand row). The top two diagrams show
the outline of the model region at three different time steps of the runs. The bottom
two diagrams show the mesh at the final time step. The shading indicates plate
thickness. The initial geometry and boundary conditions are chosen to resemble the
India-Asia collision zone (shown as inset at the top) (Houseman and England 1996).
In plane strain, the area of the plate remains constant throughout deformation:
The light shaded area is identical in size to the dark shaded area. The area loss
in the right hand row is compensated by thickening in the third dimension. The
boundaries along the top and left hand sides are force to remain fixed. The right
hand boundary is stress free in both tangential and normal direction. The bottom
boundary is tangentially stress free and is forces to move northwards at the constant
rate that ends up in the shape of the plate boundary between Indian and Asian
plate. The model region is assumed to have a viscous rheology. Model calculated
with the finite element package BASIL of Barr and Houseman (1996)

be modeled in two dimensions assuming the thin sheet approximation (s.
e.g. Houseman and England 1986a; s. however: Braun 1992). The thin sheet
model is based on the assumption that the normal stresses at the surfaces
of the plate are constant and that there are no shear stresses on horizontal
planes. Thus, the thin sheet approximation is also called the plane stress ap-
proximation. As a consequence, the plate may thicken or thin in the vertical
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direction as to maintain the surface stresses constant but there are no vertical
strain rate gradients (Fig. 1.5; 1.6) (England and McKenzie 1982, England
and Jackson 1989). Using z for the vertical spatial coordinate and € for strain
rate, this can be described by:

dé

— =0 . 1.5

P (1.5)
The thin sheet approximation is a good approximation for the description of
lithospheric scale deformation when:

1. The shear stresses at the surface and the base of the lithosphere are neg-
ligible.
2. If the topographic gradients at these two surfaces are small.

Both are usually given on the scale of whole lithospheric plates (s. more
detailed discussion in sect. 5.3 and 6.2). Note however that this descrip-
tion can only describe homogeneous thickening of the lithosphere. Thus, this
thickening strain can be evaluated as a variable without the need for a third
spatial dimension. Extended formulations have been devised that can help to
overcome some of these problems (Medvedev and Podladchikov 1999).



2. Plate Tectonics

In this chapter we repeat basic aspects of the theory of plate tectonics. In the
first part of the chapter a summary of the history of the plate tectonic model
is presented and some basic principles how to describe it are discussed. Some
arguments that suggest why plate tectonics may not work are also presented.
In the second part of this chapter we discuss the layered structure of the
earth and the geographic distribution of lithospheric plates. We will also use
this chapter to introduce the terminology that is used in the remainder of
the book. As such, the chapter is meant as a basis for all following chapters.

2.1 Historical Development

Observations pertaining to the theory of plate tectonics are at least 500 years
old. In the late 16th century, Sir Francis Bacon observed that the coast lines
of the American and African continents have a matching shape. At Dar-
win’s times the connections between the two continents were already well-
established. However, it was only Alfred Wegener who presented the first syn-
thesis explaining these similarities with a theory of plate motion. In part, his
synthesis was based on his own observations on the climatological connections
between the two continents. While Wegener’s synthesis was ultimately proven
wrong by the first detailed bathymetric surveys of the oceans in the middle
of the past century, his publications (and those of others around his time,
e.g. Taylor 1910) are still viewed as the basic foundation of plate tectonic
theory (Wegener 1912a,b; 1915). At the time of Wegener, the significance
of mid-oceanic ridges and subduction zones were still unknown. However,
the deepest point in the world (the Mariana Trench with 11.5 km below sea
level) and the eastern Pacific rise had already been discovered by the research
vessel H.M.S. Challenger around 1875. Also, mantle convection was already
established as the driving force for plate motion (Holmes 1929; Griggs 1939).
Nevertheless, Wegener had no model for the processes on the ocean floors
and thought of plate motion as some “plough-like” motion of the continents
through the oceans. From the time of this theory, only the names of the an-
cient super continents Gondwana and Laurasie (du Toit 1937) are still being
used.
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Figure 2.1. Topographic map of the ocean floor. Most regions where the water
depth is less than 200 m (nearly white regions) are made of continental lithosphere.
Note that in some regions substantial portions of continental lithosphere are actu-
ally below sea level, for example around New Zealand, between North-America and
Siberia, in the Mediterranean or east of southern South America

The real break through of plate tectonics came not until the mid-twentieth
century when the first detailed bathymetric surveys of the Atlantic were
performed around 1950 to 1965 (Heezen 1962; Menard 1964). During these
surveys, the gigantic mountain ranges and valleys of the ocean floors were
discovered that are now known as mid-oceanic ridges and subduction zones.
Earlier on, however, these valleys and ridges were interpreted by all kinds of
theories, for example the expanding earth theory (Carey 1976; King 1983).
However, since the mid-sixties it is well-established that mid-oceanic ridges
are areas of lithosphere production, while subduction zones are areas where
lithosphere is being consumed (destructive plate margins). The chains of vol-
canoes that produce new oceanic lithosphere along the mid-oceanic ridges
had already been predicted by some authors, but they were only discovered
by the submarine research vessel Alvin (s. Edmond and Damm 1983). Sub-
duction zones and mid oceanic ridges are in volumetric balance so that there
is no need for an expanding earth theory (Hess 1961; Vine and Mathews
1963). Today our knowledge of mid-oceanic ridges and subduction zones is
well-established as the basic foundation of plate tectonic theory (sect. 2.4.3)
(e.g. Morgan 1968).

Modern Understanding of Plate Tectonics. Our modern understanding
of plate tectonic theory is largely based on observations from the ocean floors
(Le Pichon et al. 1976). The total length of mid-oceanic ridges is of the order
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Figure 2.2. The intraplate stress field of the world. The different symbols indicate
different methods of determination including earthquake focal mechanisms, bore-
hole breakouts and geological indicators. The different shadings indicate different
deformation regimes: darkest are thrust faults, medium gray are normal faults and
light shading are strike slip faults. For detailed resolution of this figure see the orig-
inal CASMO facility on the world stress map home page, which was used to create
this map (Miiller et al. 2000)

of 60 000 km. Most of them are located on the ocean floors (s. sect. 2.4.3). The
average rifting rate at these ridges is about 4 cm per year, (Table 2.3) which
implies that the total production rate of new surface on earth is about is about
2 km? y~!. This surface production is balanced by surface wasting at the
subduction zones. The total surface of the oceans is about 4y = 3.1-108 km?
which means that all oceanic lithosphere is being renewed about every 155
my. This is a geologically short time span and means that oceanic lithosphere
is one of the younger features of this globe. It is therefore ironic that plate
tectonic theory — which is now mostly being applied to our very detailed
observations in the continents — has its origin not on the continents, but
at the deepest points of the ocean floors. Cox (1972) has summarized the
revolution of plate tectonic theory. He considers the plate tectonic theory to
be based on four independent data sets:

The topographic maps of the ocean floors (Fig. 2.1).

— The magnetic maps of the ocean floors.

The age dating of the magnetic maps (Fig. 2.4).

— Detailed maps of the epicenters of global earthquakes (Fig. 2.5).
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Figure 2.3. Plate reconstructions for the last 170 my. Produced with the ODSN

home page (s. p. 455). Maps are in Mollweide projection reconstructed relative to
the magnetic reference frame

With the advance of GPS measurements of active plate motions over the last
10 years (e.g. Kreemer et al. 2003), it may be said that a 5th data set must
be added to the list:

— Direct measurement of plate motions.

Since the fundamental break through of the sixties, plate tectonic theory has
made dramatic and rapid advances. It was soon discovered that many obser-
vations can be explained by astoundingly simple physical models, all within
the plate tectonic concept. For example, the startlingly simple quadratic re-
lationship between space- and time scales of diffusion processes (sect. 3.1.4)
has now been used to explain an enormous variety of processes including the
water depth of the oceans (sect. 4.4.1), the duration of metamorphic events,
the magnitude of contact metamorphic aureoles (sect. 3.6.2) or the shape of
chemical zoning profiles in minerals (sect. 7.2.2).

Such amazing success of simple physical models has lead in the past 30
years to an unparalleled development of plate tectonic theory. Much of this
development has been characterized by the application of simple analytical
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Figure 2.4. The age of the ocean floor (Miiller et al. 1997). Shading intervals
are every 10 my from 0 (white) to 160 my (black). Ocean floor older than 160
my is black. Areas with no data ar white. These regions are both on continental
and on oceanic lithosphere. Landmasses are grey. Oldest known parts of oceanic
lithosphere are around 180 my in the western Pacific just east of the Mariana
Trench, between Madagascar and Africa and in the westernmost Atlantic just east
of the US. Compare this map also with the topography of the ocean floor (Fig. 2.1)
and note the similarities.

models to geological problems. Many of these models are introduced in this
book.

Are We Sure that it Works? Despite the wide spread acceptance of the
plate tectonic model, there are observations and ideas that indicate that
it may not work after all. Most important among these observations are the
occurrence of zircons with continental signatures found in oceanic islands, for
example in Mauritius or Iceland (e.g. Schaltegger et al. 2002). It also has been
argued that there is a discrepancy between the observed long narrow zones
of axial volcanism at the mid ocean ridges and the geometry of upwelling
mantle plumes (McKenzie 2001). As an alternative, it is being discussed if
mid ocean ridges may reflect zones of asthenospheric downwelling and that
the magnetic striping of the oceanic plates is the consequence of narrowing
of formerly much more expanded zones. Within this view substantial parts of
the oceanic plates may represent the ultimate end member of an extremely
thinned continental margin. Even if arguments can be found that refute such
models, some of these hypothesis remind us not to accept the plate tectonic
model uncritically.

Nevertheless, there is no debate about the fact that plates move and that
the surface of earth includes zones of divergence and convergence that sepa-
rate zones of less internal strain which we often refer to as cratonic interiors
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or plates (Fig. 4.2). More than calling the plate tectonic concept “wrong” it
could be said that it becomes slowly outdated in view of our much better
understanding of the processes that govern plate motion and deformation.

Recent Developments and Future. Although the global distribution of
earthquakes shows that oceanic plates act according to the principles of plate
tectonic theory, continental plates do not: Oceanic plates are large and flat
and their margins are narrow compared to their size and seismicity is confined
to the rims of these plates. Continents behave differently. They are charac-
terized by deformation and seismicity which reaches wide into the continents
themselves, their thickness varies dramatically and some seismicity even oc-
curs in their centers. Their plate boundaries are diffuse. It has therefore been
suggested to use the term “cheese tectonics” as a superceding term for “plate
tectonics”, because continents seem to deform rather like soft camembert
than like rigid plates. Like many good jokes this one has a true core. It has
been known since the turn of the century that rocks behave like fluids on ge-
ological time scales (s. summary by Gordon 1965 or England 1996). However,
only in the past 30 years geologists have begun to actually use the theory
of deformation of viscoelastic materials to describe the dynamic evolution of
continents (England and McKenzie 1982; England and Jackson 1989). In part
these new descriptions were triggered by studies like those of Goetze (1978)
or Brace and Kohlstedt (1980) who provided us with the first simple models
of lithospheric rheologies.

Because of such models it has now been possible to describe largest scale
tectonic processes with simple dynamic models. Even coupled thermomechan-
ical approaches can now be performed with startling simplicity (e.g. Sonder
and England 1986) and have found their use even by non-geophysically ori-
ented earth scientists.

The current development of plate tectonics is going more and more to-
wards the use of numerical models and further away from simple analytical
models. Digital data sets of global observations — for example the global dig-
ital elevation model SRTM3 or the global sea floor topography of Smith and
Sandwell (1997) — make it now possible to tackle problems that can only be
solved using large numbers of data. Such models can now be used to explain
problems that go beyond single observations and pertain to the whole globe.
The future will surely be characterized by an increasing use of large data sets
and numerical models.

2.2 Working on a Spherical Surface

The earth is nearly a sphere (s. sect. 4.2) and many aspects of the geometry
and the mechanics on a sphere are different from its Cartesian equivalent. In
this section we discuss some aspects of spherical coordinates that may need
to be considered when solving geodynamic problems on very large scales. We
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Figure 2.5. Global seismicity. All recorded earthquakes above magnitude 6 since
1973 are shown. Note that most earthquakes along oceanic plate boundaries (e.g.
the Mid-Atlantic Ridge) occur very near the plate boundary, while earthquakes
associated with plate boundaries in continental lithosphere cover much more diffuse
areas (e.g. the India-Asia collision zone). See Fig. 2.20 and Fig.4.2 for more details
about the plates and strain distribution

also discuss some ball park estimates that can be used to judge whether it is
sufficient, to neglect the spherical geometry.

2.2.1 ...or is the Earth Flat After All?

By far the largest number of geodynamic problems can be described assuming
a flat earth. Fig. 2.6 shows that over a line two thousand kilometers in length,
the curvature of the earth causes about 80 km deviation from a straight line.
This is only about 5% of the extent of the feature. For geological features
of some tens of kilometers extent, the deviation is only some tens of meters,
which is about 0.1% of the extent of the feature. We can conclude that only
for geodynamic problems that have a length scale of substantially more than
thousand kilometers the curvature of earth must be considered.

A famous example for a problems that can not be described on a flat
earth is the shape of long subduction zones. On a flat earth, the trace of a
subduction zone should be linear, just like the linear trace of the curvature
of a sheet of paper hanging off the edge of a table. In contrast, the trace of
many deep ocean trenches is curved along the surface of earth. For example,
the Aleutian, Kurile, Japan, Izu Bonin and Mariana trenches from northeast
to southwest) along the Pacific ring of fire, the South Sandwich Trench east
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Figure 2.6. Illustration of the ping pong model. a Slab contours for the Aleutian
slab and the Kuril-, Japan- and Mariana slabs. Depth contours are shown every
50 km from 0 km to 700 km (in the Japan Trench). Data from Gudmundsson
and Sambridge (1998), (http://rses.anu.edu.au/seismology /projects/RUM). b The
difference between a flat and a curved surface of the earth. The maximum deviation
of a curved surface from a flat surface, H, is given from geometric relationships by
H =R—+/R?>— 72 For r = 1000 km as shown here and the value for R from Table
D.3 the deviation is H =80 km

of South Georgia or the Java (Sunda) Trench south of Sumatra and Java
are all curved concave towards the subduction direction in plan view. This
is often explained with the ping pong ball model. This model compares the
curvature of trenches on the surface of the earth with the curvature of the
indentation edge on a dented ping pong ball. If the indented part of a ping
pong ball is not deformed in itself, then this edge forms a small-circle on the
surface of the ball. Exactly this is observed in subduction zones. In fact, the
model can be used to predict the subduction angle (26), which should be
given (according to Fig. 2.6) by:

sin(6) = % (2.1)

where r is the small circle radius and R is the radius of earth. Most of the small
circle radii of subduction zones on earth correspond well with the subduc-
tion angle predicted by eq. 2.1 (s. Isacks and Barazangi 1977). However, the
subduction angles may also depend on a large number of other parameters,
for example whether subduction occurs in or against the direction of convec-
tion in the asthenosphere (Doglioni 1993). In fact, it has been suggested that
the earths rotation causes a westward drag between lithosphere and astheno-
sphere which also influences the direction and steepness of subduction zones
(Doglioni et al. 1999). Other plate scale examples for the influence of the cur-
vature on plate motions are the transform faults in the oceanic lithosphere
(Fig. 2.9).

Geometrical problems can be described on a flat earth using the familiar
Cartesian coordinate system. In this book we use z and y for the coordinates
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Figure 2.7. Six plates on a flat
surface. The relative motions of
some plates are shown by the
arrows. However, the relative
motions of plates C and E, D
and E, B and E, B and F as
well as that between A and F
are completely unconstrained
by the shown relative motions

oriented parallel to the surface of the earth and z for the vertical direction. In
section 2.3 we discuss the relationship between those coordinates and those
of other coordinate systems. In section 4.2 we discuss some confusions that
may arise from mixing different reference frames.

Kinematic and dynamic problems on a flat earth can be described by
motion and forces in the horizontal and vertical directions. Velocities and
forces are described by vectors. This means that they have a direction and a
magnitude and can be split up into vector components that are parallel to the
axes of a Cartesian coordinate system. For combined paths we can therefore
use the rues of vector algebra. Be careful to note, however, that all motions
(and forces) are relative! This is important to realize as an observed motion
in one place of the globe must not imply that this motion is elsewhere the
same (for example China is moving towards Tibet, but the region between
China and Tibet is under extension). Fig. 2.7 illustrates some more examples.
All this is quite different on a spherical surface.

2.2.2 Geometry on a Sphere

On a spherical surface the position of a point is described by its longitude
¢, and latitude X (Fig. 2.8). As with time, spherical geometry is one of the
few branches in science where the duo-decimal system is still in use: a right
angle has 90 degrees and longitude and latitude around the globe are divided
into 360 degrees. (The use of 100 degrees for a right angle was attempted
by the introduction of “new degrees” but has not found footing in science).
Every degree of longitude is described by a great circle which goes through
the geographic poles. These great circles are called Meridians. Great circles
are lines on the surface of a sphere that are defined by the intersection of
a planar surface through the center of the sphere, with the surface of that
sphere. Meridians are therefore a special kind of great circle, namely one that
goes through the poles. Small circles are defined as intersections of all other
planar surfaces with the surface of a sphere. 180 of the 360 Meridians are
numbered west of Greenwich and the other 180 east of Greenwich, which
has been internationally agreed upon to be the reference for longitude. Each
degree of latitude is defined by a small circle parallel to the Equator and
at right angles to the axis that connects the poles. 90 degrees of latitude
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are north of the equator and 90 are south. Note that there is a total of 360
Meridians, but only 180 degrees of latitude. The spacing of the degrees of
latitude is chosen so that they divide the Meridians into 360 sections of equal
length. Thus, the distance (along the surface of the earth) between degrees
of latitude is constant everywhere on the globe, while the distance between
degrees of longitude is largest at the equator and zero at the poles. For
more detailed description of locations on a spherical surface, every degree is
divided into 60 arc minutes and every arc minute into 60 arc seconds. Just to
make things worse, the duo-decimal system is often coupled with the decimal
system: Geographic locations are often described by degrees and decimals.
That is, tenth and hundredths of degrees are given, rather than arc minutes
and arc seconds.
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Figure 2.8. Definitions of important lines and angles on a spherical surface. The
geographic longitude ¢ of point X is west of Greenwich. The white dot is the mag-
netic pole. The angle between magnetic and geographic north (labeled at point X))
is the declination and the plunge angle of the magnetic field lines is the inclination

The circumference of a great circle on earth is about 2Rw = 40000 km. (If
it were exactly 40000 km, then the radius of the earth would have to be R
= 6366.2 km; in reality the equatorial radius is 6 378.139 km and the polar
radius is 6 356.75 km). In fact, one meter was long defined as the 1/40000000
part of the circumference of earth. One degree of longitude at the equator
(and all degrees of latitude) is therefore about 40 000/360 ~ 111 km. On small
circles north and south of the equator, the distance between full degrees of
longitude, I, decreases with the cosine of the latitude:

I~ cos(A)-111 . (2.2)

In eq. 2.2 we have used the approximate value for one degree of longitude at
the equator. Correspondingly, the small circle radius of each small circle of
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constant latitude shrinks with the cosine of the latitude: r= cos(A\) x R, where
R is the radius of earth. One arc minute of latitude is defined as one nautical
mile which is &~ 1.8 km. Along the equator, distances between degrees of
longitude and latitude are of equal length.

Other important lines on spherical surfaces are rhumb lines (also called
lozodromes). These are lines that intersect degrees of latitude and longitude
at constant angles. Rhumb lines are easy to follow, for example when setting
constant course on a ship, but they form spiral-shaped curves on a sphere and
they are not the shortest connection between two points (Fig. 2.8). The angle
between magnetic north and the lines of longitude (geographical north) is
called the magnetic declination. The vertical angle between the normal to the
Geoid surface and the magnetic field lines is called the magnetic inclination.

All distances and angles on a spherical earth can be calculated with sim-
ple combinations of the trigonometric functions. Throughout the book it is
assumed that the use of those, as well as some sound spatial imagination is
familiar to the reader. As a reminder, some of the relationships we will need
are summarized in Appendix C, Tables C.4, C.6, C.7, and Fig. C.1.

2.2.3 Kinematics on a Sphere

On a flat surface, velocity v and speed have the units of m s™!. Velocity is
a vector and speed is a scalar quantity. For example, the Indian Plate has a
speed of 0.05 m s™1, but a velocity of 0.05 m s~ mowving north. The equivalent
to velocity on a spherical surface is the angular velocity w. w has the units of
radian per time, which is s~!. The axis that is perpendicular to the planar
surface swept over by angular motion is called the pole of rotation or Fuler
pole (Fig. 2.9). The velocity that corresponds to a given angular velocity
depends on the distance of the angular motion from the pole of rotation.
Acceleration in a straight line is the change of velocity over time and has the
units m s~2. Correspondingly, the angular acceleration has the units of s—2.
The differences in units between linear velocity and angular velocity has lead
to a lot of confusion in the literature. For example, a constant rate of plate
motion with a constant angular velocity will cause differences in the rates of
relative plate motions along the plate margin. The relative plate motion rate
depends on the small circle radius of the velocity vector (Fig. 2.9). In fact,
even qualitative changes from divergent plate motion to convergent plate
motion may occur along a plate margin because of this (compare Fig. 2.7
and 2.9). This is spectacularly illustrate by the transform faults on the ocean
floors which solve the space problem caused by the angular rotation.

2.2.4 Mechanics on a Sphere

Plate tectonic forces are often described in the literature as “torques” (e.g.
Sandiford et al. 1995). For example, ridge “push” is a force, while many
authors rather use the term ridge “torque”. Strictly speaking, we should
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rotational axis
of earth rotation pole

Figure 2.9. Illustration showing the meaning of rotation poles. The arrows are
vectors showing the direction and magnitude of relative motion of the two plates
(shaded regions). The thick line connecting the arrow heads is the new plate margin
after some time. The axis of the earth is only shown to emphasize that it has nothing
to do with the rotation pole of plate motion. The enlargement illustrates the origin
of transform faults

only use torques to understand the mechanics that cause plate motion on the
earth’s surface as plates do not move in a linear direction but rather around a
rotation pole (the center of earth). In calculating a force or torque balance of
a mountain belt, where every point in the belt is virtually the same distance
from the pole of rotation, the distance to the rotation pole cancels out and
torque balances and force balances are practically equivalent (s. p. 216).
Force F is given in Newtons [N] and: 1 N=1 kgms~2. Force is a vector
with a magnitude and direction. Horizontal forces are therefore tangential to
the globe. The equivalent on a spherical surface is torque. Torque (which is
different from angular momentum!) is the turning moment which is exerted
by a force about an axis. It is given by the product of force and the distance
from the axis about which the torque acts. Torque has the units of Nm or
kgm?s72. A force of 1012 Newton that acts in direction of a great circle on
the earth’s surface, corresponds to a torque of 6.37 - 10'®* Nm. The torque
changes along a plate margin, as the normal distance of the plate margin to
the rotation pole changes. The units of torque can be read as “Newton times
meter of leverage”, where the “meters of leverage” are the normal distance
to the rotation pole. In the literature, “forces” are often given in Newton
per meter, meaning for example, that the force building a mountain range is
normalized “per meter length of orogen”. It is important not to confuse this
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Table 2.1. Important kinematical and mechanical parameters and their units. Each
parameter is given with both, the linear and the spherical equivalents

physical parameter unit

velocity ms
angular velocity 571
acceleration ms2
angular acceleration s7?

force kgms™2
torque kg m?s2
mass kg
moment of inertia kg m?
linear momentum kgms™1
angular momentum kgm?s1

with torques, which have the units of Newton times meters, there the meters
are the distance to the rotation pole.

Force = mass x acceleration (F = m x dv/dt) and similarly torque =
mass x angular acceleration. In plate tectonics the changes in velocity and
angular velocity occur over very long time periods, so that accelerations and
angular acceleration are negligible (s. p. 218). Thus, the common assumption
is that the sum of the torques or the net torque acting on a plate is zero or,
correspondingly, that the sum of the forces or net force acting on a smaller
region such as a mountain belt is zero.

Aside from force and torque, there are some other important mechanical
parameters that we will need in this book. The linear momentum I is the
product of mass and velocity: I = mv =kgms~!. Just as momentum is given
by I = muw, the change of momentum is given by: AI = mAv, mass times the
change in velocity. Considering that force has the units of the product of mass
and acceleration (the change in velocity) we can write that: F = mdv/dt.
Thus, the change of momentum is: Al = Ft, force acting over a given time.
On a spherical surface, the angular momentum is analogous to the linear
momentum. The angular momentum D is the product of the moment of
inertia J and the angular velocity w: D = Jw. The moment of inertia is the
ratio of torque and angular velocity and has the units of J =kgm?. Angular
momentum has the units of D =kgm?s~!. In plate tectonics, changes in
momentum and angular momentum are ignored because changes in veloc-
ity and angular velocity of plates takes place over very large time periods
(s.sect. 5.1.1). In most problems then, the net forces or torques acting on a
given plate must balance or add up to zero (s. p. 216). However, momentum
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and angular momentum help to understand why forces or velocities can form
the boundary conditions for orogenic processes.

2.3 Map Projections

Map projections are mathematical or geometrical models that portray the
features of the spherical surface of our globe on the two dimensions of paper.
The map projection model serves the purpose to make these features easier
to look at and pays for that by accepting some distortion. Usually, the pro-
cess of projection involves the conversion of latitude A and longitude ¢ into
Cartesian coordinates (Robinson et al. 1984). Map projections have become
an increasingly important part of geology since global data sets are used. Map
projections can be performed geometrically or they can be purely mathemat-
ical, without any apparent geometrical equivalent. Among projections with a
geometrical equivalent we discern three important types (Fig. 2.10):

Figure 2.10. Schematic illustration of three examples of commonly used geometri-
cal map projections. a Cylindrical projection with examples of (i) normal or equato-
rial, (ii) transverse and (iii) oblique orientations of the projection surface; b conical
projection with examples of (i) tangential orientation (touching the sphere along
the thick line) and (i) secant orientation (intersecting the globe) of the projection
surface; ¢ Azimuth projection with polar orientation of the projection surface

— Cylindrical projections,
— conical projections,
— azimuth projections.

These three types of projections can be imagined as projections of the earth’s
surface from an imaginary light source (usually assumed to be located at the
center of earth) onto some enveloping surface which is then rolled open to
form a planar surface. In these three projections, the enveloping surface is
a cylinder, a cone or a planar surface. The enveloping surface can touch the
globe along one line (tangential orientation) or transect it (sectant orienta-
tion) so that it has two lines along which there is no distortion. In total,
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there are several hundreds of known projections that serve a large variety
of purposes. A large number of other projections are explained by Snyder
(1987) and Snyder and Voxland (1989). All their projections are usable with
the software PROJ by Evenden (1990) and there is great overlap with the
projections incorporated in GMT and described therein (Wessel and Smith
1995). A bit more detail was also given in the first edition of this book. Most
known projections are not geometrical but are only described by a projection
function that relates spherical and planar coordinates. Just about all map
projections are either:

— Conformal (orthomorphic) projections,
— equivalent (equal-area) projections,
— azimuthal projections.

Conformal projections represent angular relationships the way they are on
the spherical surface. FEquivalent projections render the same areas as those
on the spherical surface. Azimuthal projections retain azimuthality, that is,
the directional relationships along great circle bearings are the same on the
map as they are on the sphere. No projections on two-dimensional paper can
retain more than one of these relationships from a sphere at the same time.
However, many projections aim to find a useful compromise between different
relationships, on the expense of being neither true in angle nor true in area
or great circle bearing.

Most geologists are familiar with at least one conformal and one equivalent
projection, even if they have never used maps of the globe. These are the
nets of Schmidt (also known as Lambert’s equivalent projection ) and Wulff
(also known as stereographic projection) that are used by crystallographers for
the presentation of angular relationships of crystal faces and by structural
geologists for the equivalent illustration of planar structures, respectively
(Fig. 2.11). Note that lines of constant latitude and longitude need not look
like they do on Fig. 2.11. If the orientation of the projection surface is oblique
to the axis of the globe, then these lines may have very different shapes as
shown on Fig. 2.12.

2.3.1 The Mercator Projection

The Mercator projection is one of the most familiar projection and is one
of several known cylindrical projections where the projection surface is a
cylinder as shown in Fig. 2.10a. It was first used by G. Mercator in 1569
for navigation on the oceans. For this projection, the projection surface is
a cylinder a cylinder that touches the globe along the equator and has its
axis therefore parallel to the axis of earth (Fig. 2.10a). Every point of the
earth’s surface is projected onto this cylinder from an imaginary light source
at the center of earth. The imaginary cylinder is then rolled open. The map
is ready! There is two great advantages of this projection:
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Figure 2.11. a The equal-area net by Schmidt. b The conformal net of Wulff

1. There is no distortion along the equator and the distortion in equator-near
regions is negligible.

2. Lines of constant longitude, latitude and rhumb lines appear as straight
lines.

Because rhumb lines are easy to navigate along, Mercator projections used
to be common for shipping (before navigation software made more direct
routing much easier). However, note that the shortest connection between
two points on the globe — a great circle — appears on the Mercator projection
as a curved line. The biggest disadvantage of the Mercator projection is that
the areal distortion increases with latitude. Areas near the poles appear too
large and the poles themselves cannot be represented at all. For example,
Greenland appears to be larger than south America although it has only an
eight part of its size.

This problem can be avoided by using the transversal Mercator projection.

There, the cylinder touches the globe along one of the Meridians and its axis
is at right angles to the axis of the earth. Accordingly, there is no distortion
along this Meridian and the distortion goes towards infinity on the equatorial
points of the Meridian that is 90° from the Meridian where the cylinder
touches. Both lines of constant longitude and latitude are curved on this
projection.
The UTM Projection. The Universal Transversal Mercator projection
(UTM) is defined by a total of 60 different Meridians (all separated by 6
degrees of longitude) all of which are touching Meridians for 60 assumed
projection cylinders (Fig. 2.13). In other words, it is a combination of 60
transversal-Mercator projections. This avoids serious distortion of any point
on the surface of the globe.

2.3.2 National Grids

Using latitude and longitude is not always the best way to define a point on a
map. Lines of constant latitude and longitude may be curved lines or — even
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Figure 2.12. Four examples of map projections with circular outlines. a ortho-
graphic projection, b equidistant azimuthal projection, ¢ Lambert’s equal area
projection and d stereographic projection. All shown examples are for inclined
orientations of the rotation axis of earth relative to the projection direction. If ¢
and d were projected parallel to the axis of earth, then lines of constant longitude
and latitude in ¢ would correspond to those of Fig. 2.11a and lines of constant
longitude and latitude in d would correspond to those of Fig. 2.11b

if they are straight lines — their spacing is unlikely to be constant. Thus, in
order to simplify the use of maps, national grids are used. National grids are
orthogonal grids with equal spacing in two horizontal directions z and y that
are superimposed on projected maps (Figs. 2.13; 2.14). Different countries
use different grids for their national mapping but many of them are based on
the UTM projection or slight modifications thereof.

For example, topographic maps in Austria are based on the Gauss Kriiger
projection which differs from the UTM projection by having transversally
oriented cylinders touching earth (described by a Bessel ellipsoid) every 3
degrees (not 6), starting at Ferro (instead of Greenwich) and going east (for
details on the Bessel ellipsoid and its difference to the WGS84 system see
sect. 4.2.1). Within this projection, the axes of the superimposed orthogonal
national grid are assumed to be the equator and the touching Meridian (which
are called M28, M31 and M34 in Austria).  and y values on the orthogonal
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Figure 2.13. Illustration of the
UTM projection. A series of
transversally oriented cylinders
touch the reference ellipsoid
along longitudinal lines. A given
point along this line is then
chosen as the origin of an
orthogonal national grid with
northing and easting values.

grid are then counted eastwards from the touching Meridian in kilometers
and northwards from the equator, respectively. Just to make it a bit more
complicated surveyors have decided that — in Austria — the y values get too
large if counted from the equator and that negative z values west of the
touching Meridian look ugly. To resolve this, the origin at the equator is
assigned an arbitrary x and y value (=150 km and y = - 5000 km for the
M28) so that the numbers at 45° have reasonable values and eastings don’t
get negative.

Figure 2.14. Example of the top left
corner of a topographic map sheet.
Typically, referenced map sheets are 11°05'

bound by lines of constant latitude and 47°15" 208 »10
longitude. The “lat” and “long” values ‘ﬁ‘-——
are indicated at the corners. Because =
these may be curved (depending on the 734
projection), the corners are usually not
parallel to the edges of the paper. The
superimposed national grid is usually 732 1—
slightly oblique to the lat and long lines
and is labelled in kilometer. The fact that
the first digit is printed small has no 230 + '
significance other than to save some space | l

Similarly, the National Imagery and Mapping Agency (NIMA) of the
United States has divided the United States into 10 zones (numbered from 10
through 19), each of which is 6 degrees wide and which lie between 126° west
and 66° west. Within each zone, a transversally oriented cylinder is assumed
to touch a central Meridian and northings and eastings on the superimposed
orthogonal grid are counted in kilometers from 10000 km south of the equa-
tor and 500 km west of the touching Meridian. The shifting of the grid origin
for each zone to 10000 km south and 500 km to the west is done to avoid
negative numbers south of the equator or on western halves of zones, because
the US use this system for maps world wide.
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Figure 2.15. Eight examples of projections commonly used to portray the entire
globe. a Mercator projection shown up to 75 degrees north. b The Robinson projec-
tion is pseudocylindrical and is neither conformal nor equivalent but “looks right”.
¢ Winkel tripel projection. d The Eckert IV projection is pseudocylindrical and
equivalent. It is common in Atlases. e The Mollweide projection is also pseudo-
cylindrical and equivalent with longitudes being straight lines and Meridians parts
of ellipses. f The equivalent sine projection is often used for south America.g The
Hammer projection is also equivalent. h A split version of the sine projection shown
above

2.4 The Layered Structure of Earth

Earth can be divided into layers according to:

— different materials,
— different physical properties.

When considering the layers made of different materials, there is three: a
crust, a mantle and a core (layers above the surface of solid earth like the
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Figure 2.16. The layered structure of earth

hydrosphere, biosphere or atmosphere are not considered here). The crust is
the uppermost layer. In its normal state, it is between some 5 to 7 and 30 km
thick, depending on whether we deal with oceanic or continental crust. In
regions of deformed continental crust — for example underneath the Tibetan
Plateau or the Alps — continental crust can get up to 80 km thick. Chemically,
the crust is highly-differentiated and very heterogeneous, but many of its
mechanical and physical properties (e.g. density, conductivity or rheology)
can be well-approximated with those of quartz. The mantle is largely made
up of olivine and — at larger depths — its high-pressure breakdown products.
The seismically clearly visible contact between crust and mantle is called the
Mohorovi¢ié¢-discontinuity (short: Moho). From the Moho the mantle reaches
down to a depth of about 2900 km. The core consists mainly of iron and
nickel.

When considering the physical properties, the layered structure is quite
different. Then, the outermost layers of earth are the lithosphere and the
asthenosphere. The lithosphere is solid and acts like rock on geological time
scales. Therefore its name. It involves both a crustal and a mantle part.
The asthenosphere consists of the soft mantle that underlies the lithosphere.
Some authors call the entire upper mantle underneath the lithosphere the
asthenosphere. Others use the term only for the mantle section that lies above
the point where the adiabatic melting curve comes nearest to the temperature
profile (Fig. 3.11). According to Ringwood (1988) the mantle can be divided
into three zones:

1. The upper mantle, which reaches down to about 400 km and is character-
ized by a seismic p-wave velocity of about 8.1 kms™?.
2. A transition zone from about 400 km to the 650 km discontinuity.
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3. The lower mantle which reaches from the 650 km discontinuity to the
core-mantle boundary at 2 900 km depth.

Below that is the core. The outer core is liquid and the inner core is solid.

2.4.1 Crust and Lithosphere

The lithosphere is the outer solid layer of the earth (s. sect. 3.4). As for
the whole globe, the lithosphere can be divided according to its physical
properties or according to its chemical (material) properties. Because there
is overlap between layers distinguished on the basis of different properties it
is crucial for the understanding of this book to be familiar with the nomen-
clature illustrated in Fig. 2.17. However, for many geodynamic questions it
is not necessary to consider these subdivisions, as the lithosphere acts as a
whole.

When considering its chemical properties, the lithosphere consists of a
crust and a mantle part. The crust consists of highly-differentiated partial
melts from the mantle. The mantle part of the lithosphere is largely made
up of the similar material to that of the underlying asthenospheric mantle,
but it acts like a solid, because of its lower temperature. However, we note
that chemical differences between the mantle lithosphere and the underlying
asthenosphere do exist and account for example for unusually thick, but ap-
parently mechanically stable mantle lithosphere, underneath southern Africa.
Modern research has been able to document much detail of the compositional
variation within the uppermost mantle, both on chemical grounds (e.g. Mc-
Donough and Rudnick 1998) and based on seismic velocities (Jordan 1981a;
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1989). Nevertheless we take in this book the simple-minded view that den-
sity variations between mantle lithosphere and asthenosphere may be largely
attributed to differences in temperature (e.g. on p. 165).

A schematic but characteristic thermal and density profile of the litho-
sphere is shown in Fig. 2.18. A very large number of the geodynamic pro-
cesses discussed in this book are a function of the fundamental shape of the
curves on this figure.

Within the crust the temperature profile is curved, because of radiocactive
heat production. Within the mantle part of the lithosphere, the thermal pro-
file is linear (in a steady state). The base of the thermal lithosphere is defined
by the point where the temperature profile intersects the 1200°C or 1300°C
isotherm (sect. 3.4). At higher temperatures, mantle material begins to flow
rapidly on geological time scales and any temperature gradients will be elim-
inated by convection. Thus, temperature and density are constant below the
depth 2 on the scale of Fig. 2.11. Both curves of Fig. 2.18 will be useful help
throughout this book.

Definition of the Lithosphere. The term “lithosphere” comes from the
Greek lithos = rock and was introduced by Suess (1885). The term was later
used by Barrell (1914) and ultimately defined by Isacks et al. (1968) as a near
surface layer of strength of earth. Even today it remains difficult to find a
more precise definition than this. Most of the physical parameters, for exam-
ple temperature or density, change continuously underneath the Moho and
the transition from the rigid outer shell of the earth (the mechanical bound-
ary layer) into the more viscous hot asthenosphere (from the Greek asthe-
nia = soft) is also continuous. This transition zone is called thermal boundary
layer) (Fig. 2.19; sect. 6.3.2; Parsons and McKenzie 1978; McKenzie and
Bickle 1988). However, even on the definition of the term “thermal boundary
layer” there is no clear consensus in the literature. Some authors refer with
this term only to the transition zone between lithosphere and asthenosphere
and others to the entire lithosphere as being a thermal boundary layer to
earth (s. p. 89, p. 64 and Fig. 2.19).

One thing can be said with certainty: the definition of the lithosphere de-
pends on the question that is being asked. For example, it can be shown that
the thickness of the lithosphere is a function of the observed time scale. Seis-
mic motion, isostatic uplift and ductile deformation occur on time scales of
seconds, 10* y and > 109 y, respectively. The larger the time scale of the pro-
cess, the smaller the thickness of the lithosphere. Seismically, the lithosphere
is of the order of 200 km thick, while the elastic thickness of the lithosphere
is only some tens of kilometers thick. Very generally the lithosphere may
be defined mechanically as the outer part of the earth in which stresses can
be transmitted on geological time scales (s. McKenzie 1967). According to a
somewhat different mechanical definition the thickness of continental litho-
sphere may be defined as the layer that is in isostatic equilibrium with the
mid-oceanic ridges (Cochran 1982). This is meaningful, because the mid-
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Figure 2.18. a Temperature and b density of the continental lithosphere as a
function of depth. The depth of the Moho below surface is z., that of the whole
lithosphere is 2. a The curvature of the geotherm within the continental crust is
caused by radioactive heat production. The light shaded area corresponds to the
heat content of the lithosphere that can be attributed to radioactive decay in the
crust. The dark shaded region corresponds to the heat content conducted into the
lithosphere from the asthenosphere. The relative contributions of the radioactive
and the mantle heat flow will be discussed in sect. 3.4.2 and sect. 6.2.1. Here it
may be seen that the heat content of the crust consists to roughly equal part of
mantle heat and of radioactive heat. b The slope of the density profile within the
crust and within the mantle lithosphere is a function of the thermal expansion.
A comparison of the shaded areas shows that the density deficiency in the crust
(light shaded area) is comparable to the density excess in the mantle lithosphere
(dark shaded area) — both relative to the asthenosphere. Within the asthenosphere
convective flow equalizes all density and temperature heterogeneities. Both curve
are therefore vertical

oceanic ridges may be interpreted as manometers of the upper mantle (s. p.
166, Turcotte et al. 1977).

According to a thermal definition the lithosphere is the part of earth in
which thermal energy is largely transferred by heat conduction, in contrast
to the asthenosphere, where heat is transferred by convection (s. sect. 3.4 for
more detail). In some ways the thermal definition encompasses the mechanical
definition because many of the mechanical properties of rocks depend on the
ratio of their temperature to their melting temperature. In stable continental
lithosphere, thermal and mechanical definitions indicate thicknesses of 100—
150 km. The thickness of the crust and its content in radioactive minerals is
crucial to the thickness of the lithosphere, because they strongly influence the
Moho-temperature (s. Fig. 3.20). Many studies that are concerned with the
rheology of the lithosphere avoid to use a number for lithospheric thickness.
Rather, the lithosphere is defined via the Moho-temperature (s. sect. 6.2.2).
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Types of Lithosphere. There is two fundamentally different types of litho-
sphere on earth: oceanic and continental lithosphere. Despite these names, the
correlation of oceanic lithosphere with the geographic area of the ocean and
vice versa is only very approximate and there are substantial parts of conti-
nental lithosphere that lie under water and vice versa. A very rough indicator
for the line separating continental from oceanic lithosphere is about 500 m
water depth. On Fig. 2.1 most of the white colored regions within the oceans
are actually continental lithosphere.

e Oceanic lithosphere. Oceanic lithosphere begins its life at the mid oceanic
ridges. There, it consists only of an about 7 km thick oceanic crust, which
is made up of crystallized partial melts from the uppermost mantle. The
thickness of the mantle part of the oceanic lithosphere is zero near the mid-
oceanic ridges. With increasing age — that is: with increasing distance from the
ridge — the thickness of the mantle part of the oceanic lithosphere increases
as the asthenosphere successively freezes to the base of the cold crust. In the
oldest parts of known oceanic lithosphere the thickness of the oceanic mantle
lithosphere is almost as thick as continental mantle lithosphere. However,
oceanic lithosphere is being produced and consumed at all times, so that
there is hardly any oceanic lithosphere on earth that is much older than
about 150 my. Because of the young age (and therefore low thickness) the
mean oceanic heat flow is significantly higher than that of the continents.
Although there is practically no radiogenic heat production in oceanic crust
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the mean oceanic heat flow is 101 mWm™—2 (Pollack et al. 1993; Wei and
Sandwell 2006) (s. p. 17, Figs. 3.1, 2.4).

e Continental lithosphere. In contrast to the oceanic lithosphere, the total
area of continental lithosphere has remained largely constant in the entire
Phanerozoic. Thus, the present day continents consist largely of Proterozoic
continental lithosphere, which has been reworked in many places. Neverthe-
less there ae enough places around the world where Archaean and Proterozoic
continental crust is preserved giving us a glimpse of tectonic processes in the
Precambrian (e.g. Greenland, Canadian Shield, East Antarctic Shield, Kongo
Craton, Arunta Block, Yilgarn block and many others). Continental crust is
chemically highly-differentiated, it has a high content in radioactive elements
and in its stable state it is about 30-50 km thick. According to thermal and
mechanical definitions, the mantle part of the lithosphere is 70-100 km thick,
so that the total thickness of stable continental lithosphere is of the order of
100-150 km. However, in old shield areas this thickness can be much more,
probably due to a different chemical composition of the mantle lithosphere.
The mean heat flow of the continental lithosphere is about 65 mWm™~2 (Pol-
lack et al. 1993; Wei and Sandwell 2006).

2.4.2 The Lithospheric Plates

The surface of the earth can be divided into seven major lithospheric plates
plus a number of smaller plates (Fig. 2.20, Table 2.2). Not all major plates
correspond to the seven continents and it is of some coincidence that the
number of continents equals that of the major plates. Most major plates
consist of both continental and oceanic lithosphere.

Among the seven major plates, the Antarctic Plate and the African Plate
have a special position as they are surrounded on just about all sides by
mid-oceanic ridges. Both plates increase therefore permanently in size and
they form a good example where plates go from a compressive state into an
extensional state purely as a function of their increasing age (Sandiford and
Coblentz 1994; sect. 5.3.1).

2.4.3 The Plate Boundaries

Most geodynamically interesting processes occur along the plate boundaries.
These boundaries can be divided according to:

— their kinematics,
— the types of plates that are in contact.

When choosing a division according to the types of bounding plates, we can
discern:

— plate boundaries between two continental plates,
— plate boundaries between two oceanic plates,
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Figure 2.20. Plate tectonic division of the surface of earth. Contlnents are Whlte
and oceans are shaded. The difference between continental and oceanic lithosphere
is not shown. For that, see Fig. 2.1. Note that the plate boundaries coincide only in
a few places with the coast lines that delineate the continents (s. Table 2.2). The
seven major plates are labeled with their names. The most important minor plates
are labeled with letters. They are: a Nazca Plate; b Cocos Plate; ¢ Philippine Plate;
d Caribbean Plate; e Scotia Plate; f Chinese Subplate; g Arabic Plate; A Juan-de-
Fuca Plate

— plate boundaries between a continental and an oceanic plate.

When choosing a division according to the kinematics, we can discern be-
tween convergent, divergent and transform plate boundaries (s. Tables 2.3;
2.4). Passive margins are formerly divergent plate boundaries between two
continental plates which now consist of a passive contact between oceanic-
and continental lithosphere. They are often listed as its own type of plate
margin.

Divergent Plate Boundaries. Divergent plate boundaries are regions
where two plates move into opposite directions or where one plate is split-
ting into two. Divergent plate margins exist only between two continental
plates (e.g. central African rift system) or between two oceanic plates (e. g.
Mid-Atlantic Ridge). The passive seams between continental and oceanic
lithosphere are mechanically very strong and it would be a great coincidence
if a divergent plate margin would form exactly along them. However, there
are places on the globe where divergent plate margins cross passive margins.
The Sheba Ridge in the Gulf of Aden and the Carlsberg Ridge in the Indian
Ocean are examples. Divergent plate boundaries on the continents are called
rifts. The best know examples (in order of progressive rift development) are
the Rheingraben, the Central African rift system and the Red Sea. Divergent
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Table 2.2. Approximate parts of oceanic and continental lithosphere of each of the
major plates

plate % oceanic lith. % continental lith.

major plates

Pacific Plate 100 0
North-American Plate 30 70
South-American Plate 50 50
Eurasian Plate 30 70
Antarctic Plate 50 50
African Plate 50 50
Indo-Australian Plate 40 60
important minor plates
Nazca Plate 100 0
Cocos Plate 100 0
Juan-de-Fuca Plate 100 0
Scotia Plate 100 0
Philippine Plate 100 0
Caribbean Plate 100 0
Arabic Plate 10 90

Table 2.3. The twelve most important relative motions of plates (after DeMets
et al. 1990). 1° corresponds to about 110 km

plate boundary rotation pole angular velocity
longitude latitude .10 /y

Africa — Antarctica 5.6°N 39.2°W 1.3

Africa — Eurasia 21.0°N 20.6°W 1.3

Africa — North-America 78.8°N 38.3°E 2.5

Africa — South-America 62.5°N 39.4°W 3.2
Australia — Antarctica 13.2°N 38.2°E 6.8
Pacific — Antarctica 64.3°S 96.0°E 9.1
South-America — Antarctica 86.4°S 139.3°E 2.7

India — Eurasia 24 .4°N 17.7°E 5.3
Eurasic — North-America 62.4°N 135.8°E 2.2
Eurasia — Pacific 61.1°N 85.8°W 9.0
Pacific — Australia 60.1°S 178.3°W 11.2
North-America — Pacific 48.7°N 78.2°W 7.8

plate margins between two oceanic plates (mid-oceanic ridges) are — in most
cases — the last stage of a rift (sect. 2.4.4, Fig. 2.21).

Convergent Plate Boundaries. Convergent pate boundaries may form
between two continental plates (Fig. 2.15), between two oceanic plates or
between a continental and an oceanic plate. In convergent plate boundaries
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Figure 2.21. Nomenclature of rift valley
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between continental and oceanic plates, the oceanic plate dives beneath the
continent, because of its higher density. This is called subduction and its
surface expression is a trench (Fig. 2.23). The most famous example for sub-
duction is the subduction of the Nazca Plate underneath the south-American
continent along the Peru-Chile Trench. Subduction leads to high pressure
metamorphism in the hanging wall of the subducted plate. This metamor-
phism is associated with dehydration and partial melting of the plate of the
oceanic plate in the Benioff zone. Fluids that rise through the overlying man-
tle wedge react with the wedge material in endothermic reactions (Fig. 3.28).
However, additional heat input by convection in the wedge leads to partial
melting (Hoke et al. 1994) and ultimately to the development of volcanic arcs
on the surface.

The kinematics of subduction zones is complicated. The forces and veloci-
ties with which subducting plates sink into the asthenosphere are comparable
to the forces exerted by mid-oceanic ridges onto the plate. Subduction zones
can therefore move backwards (towards to mid-ocean ridge) if the downward
velocity of the subducting plate is larger than the rifting rate at the ridge
(e. g. South-Georgia, Scotia Plate). They can move forward (towards the con-
tinent) if the rifting rate at the ridge is larger than the downward velocity
(e. g. Pacific Plate — Alaska). In other words, the distance between the trench
and the continent in the far field hinterland increases, decreases or remains
constant. Depending on details of the force and velocity field in subduction
zone environments, forearc- or backarc basins may develop. In some cases of
collision between oceanic and continental lithosphere, parts of the oceanic
plate are welded onto the continental plate or even thrust over it. This is
called obduction.
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Figure 2.22. Nomenclature of important parts of continental plates

In contrast to subduction zones — where one of the two plates usually dives
underneath the other — the convergence of two continental plates leads to a

continental oceanic
lithosphere lithosphere
ﬂ—h’d—b
andesitic accretionary wedge
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Figure 2.23. Nomenclature of important parts of subduction zones. Forearc- and
backarc basins are even more clearly developed during subduction of oceanic litho-
sphere underneath another oceanic plate. Good descriptions of various phenomena
on this figure can be found for slab break off by: Blanckenburg and Davies (1995);
about the mantle wedge by: Spiegelman and McKenzie (1987) (sect. 3.5.2); about
metamorphism by: Miyashiro (1973); about accretionary wedges in: sect. 6.2.3;
about the elastic fore bulge: sect. 4.4.2
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head-on collision of both plates. The reason for this is because continental
lithosphere is (i) much thicker, (ii) less dense and (iii) much softer than
oceanic lithosphere. Why the continental lithosphere is much softer than the
oceanic lithosphere although it is much ticker will be discussed in sect. 5.2.
This leads to the formation of the collisional mountain ranges that form most
of the topographically high mountain belts of our globe (Fig. 1.1). During
this head on collision the crust gets typically pervasively deformed, while
the mantle parts of the lithosphere override each other (a bit like shown
schematically on the cover of this book).

When two oceanic plates converge, no collision occurs and subduction
zones form, similar to those that form when two plates of different kind
collide. In contrast to the collision between two continental plates, no collision
occurs between two oceanic plates because they are thinner, much stronger
and because they are much denser and can therefore dive easier into the upper
mantle (sect. 5.2.2). Because little internal deformation of the plates occurs,
island arcs form that are clearly defined in space. Two beautiful examples for
this are the subduction of the Pacific Plate underneath the Philippine Plate
along the Mariana Trench or the subduction of the Pacific Plate underneath
North-America along the Aleutes.

Figure 2.24. Topography of the
Dragonsback Ridge segment of
the San Andreas Fault in
California. The shown segment
is about 3 km long and the
resolution is less than 0.5 m.
The fault is oriented northwest -
southeast (top left to bottom
right). Image was obtained by
the B4 Project using Airborne
Laser Swath Mapping (Hudnut
and Bevis, pers. comm., 2006)

Transform Plate Boundaries. When two plates glide past each other
without much convergence or divergence, their contact is called a trans-
form plate boundary. No topographic features as significant as rift valleys
or mountain ranges form. However, transform plate boundaries are well-
known because they form some of the most important zones of seismicity
on the globe. The best known examples are the San-Andreas-fault zone (Fig.
2.24), (probably because it crosses one of the most densely populated parts
of North-America) or the Alpine fault in New Zealand.

Triple Junctions. The spherical geometry of the earth requires that three
or more plates touch each other in some places. This is called a triple junction.
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Figure 2.25. Cartoons of four types of triple junction and vector diagrams showing
their relative velocities. The shown examples are all stable because the sum of the
vectors results in zero velocity

Triple junctions have a stable configuration if the relative motions of the
bounding plates can maintain the geometry through time. They have an
unstable configuration if their geometry is transient. Places where four or
more plates touch are always unstable and will quickly resolve into two or
more triple junctions. Such an area occurs currently west of New Guinea,
where the Philippine, Australian, Eurasian and Pacific Plates meet . However,
detailed mapping shows that this area may be divided into a series of micro
plates and triple junctions and that the touching of more than three plates has
only occurred transiently. Depending on the kinematics of plate boundaries,
we can discern between a large number of different triple junctions. Using “R”
(as in Ridge) for divergent plate boundaries, “I” (as in Trench) for convergent
plate boundaries and “F” (as in Fault) for transform boundaries, we can
describe RRR-, TTT-, FFF-, RTF- and a number of other triple junctions
(McKenzie and Morgan 1969). Four examples are shown in Fig. 2.25. The
examples shown there are all stable because the sum of the velocity vectors
(U) is zero in all cases.

Figure 2.26. Schematic map of
the most famous triple junction
on earth: the meeting point of
the East African rift system
(dashed) with the Red Sea rift.
The black dots are volcanoes,
the light shaded areas show the
rift flank uplift

i

Eurasian
Arabian Plate
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Table 2.4. Different types of plate boundaries divided according to their kine-
matics and according to the plate type (O =oceanic lithosphere, C' = continental
lithosphere)

relative motion type plate tectonic feature example
convergent 0-0 island arc Philippines

0-C subduction zone west coast of

trench South-America

Cc-C collisional mountain belt  Himalaya
divergent 0-0 mid-oceanic ridge Atlantic

C-C continental rift east African rift
passive 0-C passive plate margin eastern Australia

One of the most famous triple junction is the RRR triple junction between
the Gulf of Aden, the Red Sea and the Central African rift system (Fig. 2.26).
With this, as with other RRR triple junctions, the three different branches
occur in various stages of development and, in fact, one arm may stop rifting
leaving behind a failed rift and a single plate boundary. A beautiful example
of this is given by the failed Lambert Graben rift in Antarctica which stopped
rifting in the Cretaceous while the ridge in the southern Indian Ocean con-
tinued to separate Australia from Antarctica.

2.4.4 The Wilson Cycle

The Wilson-cycle is a model that brings the individual processes that we
discussed in the last sections into an imaginary cycle (Fig. 2.27). This cy-
cle was first suggested by Wilson (1972) and supersedes the old terms of
“geosynclines”.

The Wilson-cycle begins with extension of a continent. This stage of the
Wilson-cycle can be currently observed in the Rheingraben. In the second
stage, the continent breaks up and a spreading center forms in its middle.
Oceanic lithosphere begins to form. This is the stage of the Red Sea. The
third stage involves the development of a classic ocean with passive continen-
tal margins on both sides and a mid-oceanic ridge in its center. This is cur-
rently being observed in the Atlantic. The following stages describe processes
that occur during opposite relative plate motion. These stages may therefore
occur independent of the first three stages. The fourth stage describes the
commencement of subduction of an oceanic plate underneath a continental
plate as it is currently observes along the west coast of South-America. The
fifth stage involves the subduction of a mid-oceanic ridge underneath the
continental plate. A present day example for this is the subduction of the
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Figure 2.27. The Wilson cycle. The arrows indicate the relative plate motions

ridges bounding the Juan de Fuca Plate underneath North-America. During
the sixth and final stage the collision between two continents occurs. Clearly,
the India-Asia collision is the most spectacular example for that.

2.5 Problems

Problem 2.1. Small circles and subduction zones (p. 22):

Make a very rough estimate of the small circle radius of the Aleute arc (from
Fig. 2.5 or any atlas) and estimate the subduction angle of the Pacific Plate
underneath Alaska using the model of Fig. 2.6. This subduction angle is ac-
tually known. It is = 45°. Discuss possible reasons for the difference between
your estimate and this value. Compare your estimate with an estimate of the
subduction angle of the Indoaustralian Plate underneath the Eurasian Plate
along the Java Trench.

Problem 2.2. Understanding longitude and lotitude (p. 23):

Find a point on the surface of earth (outside the north pole!) where the
following experiment is possible: You walk 1 km south then 1 km west and
then 1 km north and you are where you started from. (It is said that this
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question was asked by Sir Ernest Shackleton in 1908 to applicants for his
south pole expedition.)

Problem 2.3. Understanding longitude and latitude (p. 23):

The city of Vienna is located at 16° east and 48° north; the city of Munich is
located at 11° east and the same latitude as Vienna. How much earlier does
the sun rise in Vienna?

Problem 2.4. Understanding arc-minutes in decimals (p. 23):

Improve your result of Problem 2.3 using the following values: Vienna:
16°21° east, 48°11° north; Munich: 11°39’ east and the same latitude as Vi-
enna.

Problem 2.5. Estimating the curvature of earth (p. 24):

a) How far is it from Vienna to Munich going directly from east to west along
the surface of the globe? (use eq. 2.2). b) How far is it from Vienna to Munich
going the shortest distance along a great circle? (use the formula for angular
separation of 2 points in Table C.4). ¢) How far is it from Vienna to Munich if
you could go along a tunnel connecting the two cities in a straight line through
the earth? (use the result from b) and the logic illustrated in Fig. 2.6). Use
the longitudes and latitudes given in Problem 2.3 and a perfectly spherical
earth with radius E= 6370 km.

Problem 2.6. Spherical kinematics (p. 25):

What is the west-east velocity of a plate that has rotation pole that coincides
with the geographic north pole and rotates relative to another plate with an
angular velocity of 1071%s!; a) at the equator; b) at 48° north? (Use R=
6370 km).

Problem 2.7. Understanding torque (p. 25):

A north-south striking mid-oceanic ridge has a west-directed force of 1012 N.
At which latitude is the torque of this ridge around the axis of the earth
4-10' Nm? (The radius of earth is: R =6370 km)

Problem 2.8. The Mercator projection (p. 29):

Derive the function that is used in the Mercator projection to convert longi-
tude ¢ and latitude A into the Cartesian coordinates & and y. Detailed study
of Fig. 2.10 is helpful to answer this problem.

Problem 2.9. Physics of the lithosphere (p. 37):

Put numbers on the axes of the diagrams on Fig. 2.18. (This problem requires
the use of parameter values that have not been discussed up to this chapter
vet. It is meant as a self-test for the interested reader.)

Problem 2.10. Modern and ancient plate boundaries (p. 40):

a) Draw relative velocity vectors between the plates onto Fig. 2.20. b) Draw
three future new plate boundaries and three plate boundaries that will dis-
appear within the next 50 my on Fig. 2.20. ¢) Draw three ancient plate
boundaries onto Fig. 2.20.
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Problem 2.11. Understanding triple junctions (p. 44):

How many different types of triple junctions exist, using the three possi-
ble relative motions R, T and F? Not all of the triple junctions you should
come up with are stable. Draw an example of a stable and an unstable triple
junction.



3. Energetics: Heat and Temperature

In this chapter we discuss geodynamic processes that may be described with
the units of energy or temperature. This general theme is an obvious starting
point in geodynamics, as so many properties of rocks that may be observed
in the field are a strong function of temperature, for example the formation
of metamorphic parageneses or the mechanisms with which rocks deform.

Energy has the unit Joule [J], which is equivalent to mass x velocity® (1
J =1 kg m?s™2), or volume x pressure (1 J = 1 m® x Pa = 1 N m, which,
because 1 N = 1kgm s~2 is also 1 kg m?s~2). These conversions give us a first
indication that thermal and mechanical energy are often hard to separate.
Thermal energy may be converted into temperature using heat capacity and
density which are parameters that we shall discuss in some detail on the next
pages.

The production and redistribution of heat in the lithosphere is done by
three fundamentally different processes:

— heat conduction,
— heat advection (or convection) and
— heat production.

The relevance of these three processes for regional metamorphism is sum-
marized at the start of sect. 3.4 in Table 3.4. However, in the first part of
this chapter we will present some basic methods how to estimate if and how
important each of these three processes may be for the thermal budget of the
lithosphere. In this context we also discuss the basics of their mathematical
description. The importance of such estimates is enormous: it will enable the
reader to critically evaluate in his or her metamorphic study terrain to which
degree heat conduction (e. g. because of burial), heat production (e. g. friction
heat or radioactivity) or active transport of heat (e.g. by fluid or magma)
may have played a role during metamorphism. Thus, the information on the
following pages provides a powerful tool for the interpretation of heat sources
for field geologists.
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3.1 Principles of Heat Conduction

3.1.1 The Heat Conduction Equation

The heat conduction equation - more commonly known as the diffusion equa-
tion - is fundamental for the understanding of the transport of heat in the
lithosphere. We will also show in other chapters that the very same equa-
tion cannot only be applied to the transport of thermal energy, but also to
the diffusion of mass. It finds therefore application in many other fields, for
example geomorphology, metamorphic petrology or hydrology (s. p. 185; p.
343). Thus, the diffusion equation is the first equation of this book that we
will discuss in some detail. The fact that it is a second order partial differ-
ential equation should not scare us off. We will show that it is possible to
understand it quite intuitively. There is also some explanations on how to
read differential equations in section B.1.

Fourier’s Law of Heat Conduction. Fourier’s 1. law is the basic law un-
derlying the diffusion equation. This law states that the flow of heat ¢ is
directly proportional to the temperature gradient (Fourier 1816). This state-
ment can easily be formulated in an equation:

q=—-k P (3.1)
In this equation ¢ is short for heat flow, T stands for temperature and z
for a spatial coordinate, for example depth in the crust. The ratio dT'/dz is
the change of temperature in direction z. We call this ratio the temperature
gradient. k is the proportionality constant between the gradient and the flow
of heat. In order to understand this law better (and understand the units
of k), let us consider a more familiar analogue: the flow of water in a river.
The same law applies. In a river the flow of water can be described by the
volume of water passing per unit of time and per area of cross section of the
river (in Sl-units: m®s~'m=2 =ms~!). This is called the volumetric flow.
When normalized only to the width of the river and not to the cross sectional
area of the river, the volumetric flow has the units of m?s~! (sect. 4.5). In
contrast, the flow of mass has the units kgs~! m~2. Fourier’s law — applied to
our example of water flow — states that the flow of water is proportional to the
topographic gradient of the river. This corresponds well to our observations
in nature: The steeper a river bed, the faster the flow of water in the river (per
square meter of cross sectional area). Fourier’s law seems to be a good model
description for this observation. This simple example also explains why there
is a negative sign in eq. 3.1. The flow is against the gradient: it is positive in
the downwards direction of the gradient.

In the theory of heat conduction, the flow of heat has obviously not the
units of volume per time and area, but energy per time and area. (in ST units:
Js7!m~2 = Wm™2). The thermal gradient now replaces the topographic gra-
dient of the river. Because of historical reasons heat flow is sometimes given
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Figure 3.1. Map of global surface heat flow. The map is contoured in milli W
m~? and data above 300 mW™? are omitted so that only a conductive response is
shown. Nevertheless, because of the highly irregular distribution of the data, the
contouring on a global scale is strongly dependent on the contouring algorithm
and is associated with large uncertainties in areas of low data density. {made with
the Global Heat Flow Data Base of the International Heat Flow Commission, W.
Gosnold, Custodian pers. comm. 2006). As a consequence, this map is exclusively
a representation of the data base with no consideration of the data distribution, its
density or their reliability. As such, it appears (wrongly) that the heat flow on the
oceans is lower than that of the continents. For a more considered heat flow map
see Pollack et al. (1993) or Wei and Sandwell (2006)

in heat flow units, or hfu. One hfu corresponds to 10~% cals~™'cm™2 and
can easily be converted into Wm™2 (s. Problem 3.2, Table D.8). The units of
the proportionality constant k, in eq. 3.1, follows now easily from the units
of the other components of the equation: Because temperature has the units
of K (or °C) and # has the unit m, ¥ must have the units Js~!m=tK~! so
that the equation is consistent in its units. The constant k is called thermal
conductivity. We can now try to read eq. 3.1. We can see that the flow of
heat trends to zero if the conductivity is very low, regardless of the thermal
gradient. Correspondingly, if the conductivity is very large, the flow of heat
becomes large, even if the thermal gradient is very low. The equation may
therefore be understood quite intuitively.

Would the thermal gradient be constant everywhere, we could write it
as AT /Az. However, in geological problems this gradient is never constant.
Thus, we use the derivative d7/dz, which states that we want to be careful
and consider our thermal gradient only to be constant within each infinitely
small section of the thermal profile. If the gradient changes along the z di-
rection, then eq. 3.1 states that the heat flow must also change.
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ume of rock. The heat production inside this
volume S, is not considered until we discuss |
eq. 3.23

Figure 3.2. The flow of heat in a unity vol-
out

JE—

d;\ -— dx —

Energy Balance. The second part of the diffusion equation (often called
Fourier’s 2. law) describes an energy balance. This energy balance relates heat
and temperature and the change of heat flow with change in temperature.
This relationship may be established independently from eq. 3.1 and may be
written as:

oT Oq

5 <5, (3.2)
This equation states that the rate of temperature change of a rock must be
proportional to the rate with which its heat content changes (o is the symbol
for “proportional to”). The rate with which the heat content of a rock changes
(Dq/0%) is given by the difference between the flow of heat into the rock and
the flow of heat out of the rock (Fig. 3.2). If the heat flow into the cube of
Fig. 3.2 is larger than the flow of heat out of it, then the heat content of
the cube will rise and its temperature will increase. If the heat flow into the
volume is just as large as that that flows out, the temperature will remain
constant. If more heat flows out of the cube than into it, then its temperature
will decrease.

In the last sentences we have begun mixing the terms “temperature” and
“heat” . However, we have to remain careful no to confuse them as the rate of
temperature change is not the same as the rate of heat content change. They
relate by:

H =Tpc, (3.3)

where H is the volumetric heat content in J m~2 (s. sect. 3.6.4). The rate,
with which the temperature will change for a given change in heat content
depends on another material specific proportionality constant. This is the
specific heat capacity cp. The specific heat capacity or short “specific heat”’
has the units of Jkg=! K—! and defines how many Joules are required to
heat the mass of one kg of rock by one degree Kelvin. The most common
abbreviation for specific heat is ¢. The subscript p symbolizes the condition
that the specific heat is measured at constant pressure (s. sect. 3.2.2). If the
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specific heat of a rock is large, we need many Joules to heat the rock and even
a rapid increase of its heat content will lead to slow temperature increase and
vice versa. Specific heat is formulated in terms of the mass that is heated.
Considering that the energy balance in eq. 3.2 is formulated in terms of the
spatial coordinate z, and heat capacity is formulated in terms of mass, we
need to multiply ¢, with the density p, so that the relationship between
the spatial change of heat flow and the temporal change of temperature is
consistent with the units. We can write the proportionality of eq. 3.2 as:

or  0Oq
P9t =~ oz
It should now be straight forward to understand eq. 3.4 intuitively using
Fig. 3.2. The negative sign arises because the temperature increase when
0¢ = Qout — Gin 18 negative, that is, more heat flows into the rock volume
than out of it. You may have noticed that the step from eq. 3.2 to eq. 3.4
was accompanied by the change from total- to partial differentials. This was
necessary, because different parts of this equation are now differentiated with
respect to different parameters (s. sect. B.1.1).

(3.4)

The Diffusion Equation. If we substitute Fourier’s law of heat conduction
(eq. 3.1) into the thermal energy balance of eq. 3.4, we arrive at:

ar 8 (k3L)
Prae = oz
Eq. 3.5 is the general form of the one-dimensional diffusion or heat conduc-
tion equation. If k is independent of z (e.g. if we consider heat conduction
in an area without lithological contrasts), it is possible to simplify eq. 3.5
significantly. k& can then be taken out of the differential and we can write:

pca—T: 00T or: 8—T=ma2—T
P ot 020z ' ot 972
The constants k, p and ¢, are now summarized to K = k/(pcp). k is called
thermal diffusivity. Eq. 3.6 can also be understood intuitively, without follow-

ing the detailed derivation given above. Eq. 3.6 may be formulated in words
as:

(3.5)

(3.6)

— The rate of temperature change is proportional to the spatial curvature of
the temperature profile.

If you do not understand the relationship between this sentence and eq. 3.6,
then remember that the first differential of a function describes its slope (or:
“gradient”, or: “rate”) and the second its curvature (s. sect. B.1, Fig. B.3,
B.2).

Figure 3.3 illustrates this graphically. In our daily lives we encounter
many examples that are described by this equation. Think for example that
a piece of toast cools much quicker on its corners than along the edges or in
its middle. This is because the spatial curvature of the isotherms in the toast
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is the largest at the corners! The same is true for the rapid cooling of the tip
of a needle, the rapid erosion of ragged mountain tops and countless other
examples in nature, all the way down to the rapid chemical equilibration of
fine grained rocks in comparison with coarse grained rocks.

If we want to use eq. 3.6 we must solve it. For this we need boundary- and
initial conditions. We also need some mathematical knowledge so that we can
integrate this equation. Various methods how to go about this are discussed in
sect. B.1.1. A large part of this chapter will deal with various solutions of this
equation. In this context we will often meet the terms “boundary conditions”
and “initial conditions”. Make sure you understand what they mean (s. p.
398).

e The magnitude of k. A quantitative application of eq. 3.6 requires the
knowledge of & and therefore the knowledge of &, p and ¢,. The specific heat
of rocks is about ¢, =1000 — 1200 Jkg= 'K~ (Oxburgh 1980). For most
rocks ¢, does not vary by more than 20 % around this value. Thus, the nice
and even value of ¢, =1000 Jkg=! K~! is a sound assumption that can be
used for many thermal problems. The density of many crustal rocks is of the
order of 2750 kgm—2 and varies also not all that much around this value.
However, thermal conductivity, varies by the factor 2 or 3 between different
rocks types (Table 3.1). Fortunately, it is between 2 and 3 Js™*m~! K~ for
many rock types. For k=2.75 Js~! m~! K~! and the values for specific heat
and density from above the diffusivity is: & = 1079 m? s~1. Because this value
is easy to remember it is commonly used in the literature. Note, however, that
x may also be twice- or half as large if the thermal conductivity of rocks is
twice or half as large.

Heat Refraction. If rocks of different thermal conductivity are in contact,
the phenomenon of heat refraction may occur. What this is, is easily ex-
plained with eq. 3.1. In thermal equilibrium, the flow of heat in two adjacent
rocks must be equal. Following from eq. 3.1 we can formulate:

Figure 3.3. The thermal equilibration of a ran- Az

dom temperature profile. The temperature pro- A
file is drawn at two different time steps to and #;.
Note that the largest change in temperature be-
tween the two time steps has occurred in those
places of the profile where the curvature of the
profile is the largest (s. eq. 3.4). Where the cur-
vature of the profile is zero (at the inflection
points) the temperature does not change at all

Y~
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AT AT:

—q= klA—; = k2A—; : (3.7)
where the subscripts 1 and o denote two different, rocks as shown in Fig. 3.4.
We can see in this equation that, if the conductivities k1 and ko are different,
the temperature gradient in the rock with the higher conductivity must be
lower and vice versa (Fig. 3.4). This is called heat refraction. Eq. 3.7 can also
be written in differential form. This means, the temperature gradient must
not change abruptly, but can also change continuously, if there are continuous
changes in thermal conductivity.

Let us illustrate the phenomenon with an example. A rock with extremely
high thermal conductivity, for example an iron ore body, will be practically
isothermal, even if it stretches over many vertical kilometers in the crust.
Its high conductivity will cause it to adapt some average temperature. Thus,
the upper part the body may have a significantly higher temperature than
its surroundings while its lowest part is colder than its surroundings. As a
consequence, it is conceivable that the process of heat refraction will even
leads to some kind of contact metamorphism (s. Problem 3.3).

Jaupart and Provost (1985) have noticed that there are some important
differences in thermal conductivity between the sediments of the Tethys zone
and the high Himalayan crystalline complex. They suggested that the pro-
cess of heat refraction may have been of relevance in connection with the
melting of the Himalayan leucogranites. The process has also been discussed
as the cause for high grade metamorphism in several Australian provinces
(e.g. Mildren and Sandiford 1995) and as the trigger for a range of tectonic
processes (Sandiford 1999). In fact, several exploration companies currently
explore for geothermal energy sources in Australia by looking for regions
where rocks of low thermal conductivity insulate underlying rocks of high
thermal conductivity (Hillis et al. 2004).

If we want to describe the process of heat refraction quantitatively, we can
not assume the simplification that we have made in going from eq. 3.5 to
eq. 3.6. We must stick with eq. 3.5 to describe conductive equilibration. If we
form the derivative of the right side of eq. 3.5 using the rules of differentiation
of products (Table C.1) we get:

Table 3.1. Thermal conductivi-
ties and heat capacities of some rock type k Cp
rocks and common materials. k is
given in J s7' m™!'K™! and ¢, in

7 kg_lK_l. The change of ther- san(.istone 1.5-4.2 920
mal conductivity as a function of 8"¢'%S 2.1-4.2 800
pressure and temperature are neg- amphibolite  2.5-3.8 840
ligible at geologically relevant tem- granite 2.4-3.8 790
peratures in the crust (Cull 1976; '€ 2.2 1800
Schatz and Simmons 1972). Never- We:ter 0.58 4200
theless, the numbers given here are oot 5.4-7.2 880

Iron 73 460

only approximate
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Figure 3.4. Illustration of the process of heat
refraction. The flow of heat in the dark and the
light shaded bodies is the same. However, the
temperature gradient in the dark shaded body
is larger, because its thermal conductivity &; is
smaller. The subscripts 1 and 2 denote the dark
and the light shaded body, respectively

| 45— | - —m|

or 9 (k%) okoT N 9T
Cp—r = — 2t = —— —
Perat oz 020z 022
In this form the heat conduction equation can be used for the description of
many problems with variable conductivity.

(3.8)

Heat Conduction in Several Spatial Dimensions. Eq. 3.6 is a linear
differential equation (s. p. 396). This means that heat conduction in two
or three dimensions can be described by the sum of heat conduction in the
individual directional components. In general, we can write:

or _ (0T T 9T
at "\ 922 T a2 T 5:2

if the thermal diffusivity is the same in all three spatial directions. In the
literature eq. 3.9 is often written as:

oT N

o = kV2T (3.10)
The symbol V is called the “Nabla-” or: “Del”-operator and is defined
in eq. B.32. V2 describes the same thing for the second partial derivative
(s. sect. B.3). Partial differentials (or derivatives) are discussed in detail in
section B.1.1. An important property of the diffusion equation is that it con-
tains an energy balance. This means that no energy can be gained or lost by
diffusion processes. If a rock cools by conduction, then it is by heat loss at
the model boundaries, not because of the conduction itself.

(3.9)

o Complicated geometries. The diffusion equation we presented above is lin-
ear in temperature if all the material constants are independent of temper-
ature and time. Therefore, it is possible to describe diffusion problems of
complicated geometries simply by a linear superposition of the solutions for
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more simple problems. We will use this approach extensively when we de-
scribe the cooling history of intrusions in sect. 3.6. For the same reason is it
possible to describe time dependent, problems by a superposition of a steady
state solution and a time dependent component.

Heat Conduction in Polar Coordinates. Many heat conduction prob-
lems in the earth sciences are much better described in cylindrical or spherical
coordinates. In cylindrical coordinates, eq. 3.6 adapts the form:

or . o*T 10T
ot or2  r or
If we consider heat conduction in spherical coordinates (and restrict ourselves

to heat flow in the radial direction), then the heat conduction equation adapts
the form:

or _ (02T 28T>

(3.11)

ot or2  ror (312)
In egs. 3.11 and 3.12 r is the distance from the coordinate origin on the cylin-
der axis or at the sphere center, respectively. Detailed derivations of these
equations will not be described here, but they can be found - among many
others — by Carslaw and Jaeger (1959); Crank (1975) or Smith (1985). Exam-
ples for spherical conduction problems that can be described with eq. 3.12 are
the Kelvin model for the cooling of the earth or the chemical diffusion of ele-
ments in garnet crystals. Note that eqs. 3.11 and 3.12 are one-dimensional and
their results can therefore be directly compared with eq. 3.6 (e.g. Fig. 3.32
and 3.37).

The Kelvin Model for the Cooling of Earth. The most famous example
for the application of the heat conduction equation is the estimate of the
age of the earth by Lord Kelvin (1864). However, we note that very similar
estimates were already performed by Fourier himself in 1820. Both physicists
realized that - in principle - one could estimate the age of the earth from the
present day thermal gradient at the surface (surface heat flow, s. Table D.3)
if the following assumptions are made (Fig. 3.5): 1. The whole earth was
at the time of its formation of constant temperature (which was assumed
by Kelvin to be 4000 °C); 2. the surface temperature has remained constant
ever since and 3. heat conduction is the principle process of cooling. Using
eq. 3.12, Kelvin concluded that the earth must be around 100 my old (he
used a very similar solution to the one we introduce in sect. 3.6.1). Today we
know that his calculation was wrong for two important reasons. The first (and
most quoted) reason is that there are heat producing elements in the crust
that prolong the cooling of earth. Radioactivity was unknown at Kelvin’s
time. The second reason is that convection in the upper mantle rises the
isotherms. While this process actually leads to a faster cooling of earth, both
radioactivity and convection cause the present day geothermal gradient in
the lithosphere to be steeper than it would be without these two processes.
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lithosphere

earth

Figure 3.5. Schematic illustration of the model of Lord Kelvin for the estimation
of the age of earth. The small T-z-diagram is an enlarged section of outer 300 km
of the globe. The shaded area is the lithosphere. a is the initial thermal profile of
the earth at the time of its formation. b is the present day thermal profile that was
calculated by Kelvin based on the measured surface heat flow g5 (thick drawn part
on the thermal profile) and on a spherical heat conduction model. However, be-
cause of radioactivity (unbeknown to Kelvin), the lower lithosphere is much hotter
than Kelvin thought possible. Moreover, in the asthenosphere convection destroys
a conductive thermal gradient, which is very low in this part of earth. (convection
was know at Kelvin’s time but ignored in his estimates). d is the thermal profile
that we should measure today, if the earth had only cooled by conduction since its
formation at = 4.5-10° y. The surface heat flow would be much lower than what we
measure today

This leads to a massive underestimate of the age of earth. Interestingly, the
error that is caused in Kelvin’s estimate by him neglecting convection is
much larger than that caused by neglecting radioactivity. In 1895 John Perry
improved Kelvin’s estimates drastically, by assuming a “convective mantle
conductivity” which he assumed to be ten times larger than the conductivity
of the crust (s. p. V). With this assumption he arrived at an almost correct
age.

Why Kelvin ignored convection in the mantle, although it had been known
for some time, we do not know. However, in defense of his estimate it should
be said that he di¢d mention in his discussion that heat production, for exam-
ple by chemical reaction, was not considered in his model but might change
the results. The model of Kelvin remains a fantastic example for a conduction
model that turned out to be completely wrong because other heat transport
mechanisms were not considered. It should serve us as a reminder when in-
terpreting the heat sources of a metamorphic terrain.

3.1.2 The Laplace Equation

Equations 3.6 and 3.10 describe the evolution of temperature as a function
of time. Thus, we can use them to describe heating and cooling curves of
rocks. However, for many geological questions we are not all this interested
in the temporal changes of the temperature, but rather in the steady state
shape of a temperature profile, for example the shape of a stable continental
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geotherm. For all those problems, where it is reasonable to assume that there
is no temporal change of a temperature profile, we can write:

oT
ot
Any geological situation where this equation applies is called the steady state.

When we make this assumption, & can be cancelled out of eq. 3.6 and eq. 3.10.
We are left with:

=0 . (3.13)

VT =0 . (3.14)

Eq. 3.14 is called Laplace-equation. Just like the diffusion equation, it is an
extremely important equation for many geological problems. In this chapter
we will need it when we consider stable geotherms, but it also has applications
in many other branches of the earth sciences.

3.1.3 The Error Function

If we want to use eq. 3.6 to describe a time dependent conduction problem, we
must solve it for a given set of boundary- and initial conditions. If we try this,
we would quickly realize that this is only possible for a very few boundary-
and initial conditions. Periodic problems are some of those for which there
are “real” solutions of this equation (sect. 3.7.1). For most problems there
are simply no solutions of eq. 3.6 possible. For example, for many geological
problems we will see that it is useful to assume that the boundary conditions
lie at infinity (at distances that are far away compared to the scale of the
problem). In all such problems, the results of integrating eq. 3.6 will contain
a term of the form:

% /On e~ dn = erf (n) (3.15)

This integral cannot be solved. However, because it occurs so often in solu-
tions of the heat flow equation, it has its own name: the error function. The
values of the error function for different values of n have been determined
numerically and can be looked up on tables, or it can be calculated with some
numerical approximation (s. Table C.9). Fig. 3.6 shows the shape of the error
function. In many solutions of eq. 3.6 the variable n from eq. 3.15 has the
formn = z/ V/4kt. There, time ¢, and distance z are inside the error function
and they are in a quadratic relationship to each other. Most solutions that we
will use for the description of contact metamorphism contain error functions
of this form (sect. 3.6). We will need the term n = z/v/4kt in sect. 3.1.4,
4.4.1 and others. The complementary error function erfc is defined as:

erfc(n) =1—erf(n) . (3.16)
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Figure 3.6. The error function and the complementary error function. The dashed
frame in a shows the part of erf(n) that is shown enlarged in b

3.1.4 Time Scales of Diffusion

In the last sections we have seen that heat conduction approaches thermal
equilibrium asymptotically. Even after a very long time the new equilibrium
is not reached a 100 % and isotherms will still be curved, even if ever so
slightly. Thus, if we want to define a duration of thermal equilibration we need
to define some arbitrary point along the equilibration curve which we use as
a time scale, for example when half or 90 % or 99 % of the new equilibrium
is reached. We call such a number along an asymptotically evolving process
characteristic time scale, in this case: time scale of diffusion or: thermal time
constant, t.,. We can use t., as a scaling factor for the duration of a thermal
event. It is a fantastic aid for an enormous number of estimates, even when
in the field. It can be used to estimate the width of contact aureoles, the
duration of metamorphic events, the chemical zoning profile of crystals and
much more (s. Problem 7.8). The thermal time constant ., is given by the
relationship

tog O (g) : (3.17)

There, I is the spatial size, or: characteristic length scale of a thermal event
(e.g. the diameter of an intrusion, of a hydrothermal vein or a metamorphic
terrain). & is the thermal diffusivity and o means “proportional to”. Eq. 3.17
tells us that the duration of diffusive equilibration is proportional to the
square of the size of the equilibrating body. In other words, if for example
there are two granitic plutons with one being twice the size of the other, then
the duration of cooling will be four times longer for the larger body. The
proportional relationship from eq. 3.17 adapts various forms, depending on
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the problem solved and on how exactly we want to define the thermal time
constant. Usually it is defined as:

we(B) e () o

The different formulations are based on different assumptions about the mag-
nitude of the scaling factor for ¢.,. In eq. 3.20 we will discuss this in some
more detail. Table 3.2 shows some numerical values for different sizes of cool-
ing bodies.

The value of t., can be used either way. It can be used to estimate the

duration of a diffusion process or it can be used to estimate the length scale
of a thermally influenced region after a given time scale. We should try to
remember that the typical duration of thermal equilibration of length scales of
10 m, 100 m, 1 km, 10 km and 100 km is of the order of 1 y, 100 y, 10000 y,
1 my and 100 my, respectively. Table 3.2 gives a number of examples of
thermal time constants for different length scales.
The Meaning of the “Time Scale” of Diffusion. We now want to define
a bit more clearly what is meant by the terms “length scale” and “time scale”
which we have introduced in the last section. For this, we have to use some
information from sect. 3.6. There, we shall see that many solutions of the heat
conduction equation contain an error function of the form: erf (1/v/4xt). For
example, the solutions discussed on page p. 111 or in eq. 3.80 are all of the
form:

T() =a+b (erf <\/iﬂ)) (3.19)

where a and b are constants. In eq. 3.19 the expression (I/ \/M) corresponds
to the variable n from eq. 3.15. The length scale [ and time ¢ are both con-
tained within the error function and do not appear elsewhere in the solution.
The shape of the error function in Fig. 3.6 shows that it reaches asymptot-
ically 1 as n get very large. Correspondingly, from eq. 3.19, the term inside

Table 3.2. Different values of the thermal time constant fe, for a series of geolog-
ically relevant length scales I, and calculated for one of the two proportionalities
given in eq. 3.18 as well as for one used much later in this book (p. 279) for the
same purpose

l teq =12/2 teq =12 /7k

10m 5-107 s 158 y ~10° y 1.01-107 s~ 16 weeks =~ 107" y
100 m 5-10° s~ 158 y =~ 10% y 1.01-10° s~32y =10' y

1 km 5-10" s~ 15000y =10y  1.01-10' s~3200y ~10% y
10 km 5-10" s=1.5 my=10° y 1.01-10" s~320000 y ~10° y
100 km  5-10%° s~158 my ~10%y  1.01-10%® s=32 my =107 y




64 3 - Energetics: Heat and Temperature

the brackets will always remain 1 for very large ! (regardless of t), or for very
small ¢ (regardless of I). We can also see that — because time is in the denom-
inator inside the error function — complete equilibrium is reached only after
infinite time (when the term inside the brackets asymptotically approaches
zero). In order to define a “duration of equilibration” we may want to arbi-
trarily choose a point in the equilibration process where the argument of the
error function (for which we use n in eq. 3.15) is 1. This means that:

) 12
(m) =1 or: t= % = teq . (320)

Figure 3.6 illustrates that for the argument to be 1 (where ¢t = 12/(2x)), the
thermal equilibration is 84.3 % complete. Just for simplicity, this arbitrary
value is often chosen as a scaling factor for the equilibration history where it
may be said that the diffusive equilibration is “largely complete”.

As the value of 84.3% seems a bit arbitrary, thermal time constants are
sometimes formulated using the reverse consideration: What is the thickness
of a layer, which has equilibrated to 90 % within a given time? From Fig. 3.6
we can see that erf(n) = 0.9, for n ~ 1.16 or I =~ 2.32v/kt. This expression for
thickness is also used for the thermal definition of the lithosphere (sect. 3.4).
It is what is sometimes called the thermal boundary layer.

Both formulations discussed above are chosen in an arbitrary way, and ei-
ther can be used depending whether one wants a slightly simpler formulation
of t.q, or the value of the percent of thermal equilibration. It is important to
note that t., gives an approximation of the time it will take for most of the
thermal equilibration to take place. In summary, it will be sufficient for most
purposes to remember the basic message of eq. 3.17:

— During conductive processes the duration of thermal equilibration in-
creases with the square of the length scale of the equilibrating body.

— For geologically realistic thermal diffusivities, the characteristic time scale
of equilibration of a 10 m length scale is of the order of 10* y. On the
scale of the lithosphere (10® m), the time scale of equilibration is of the
order of 10% y.

This means that regional metamorphism of nappe piles that are several tens
of kilometers thick should last of the order of several tens of my. We shall
discuss the implications of this in much more detail in sect. 6.2.1.

3.2 Principles of Heat Production

We discern three fundamentally different geological mechanisms that produce
heat:

— radioactive heat production,
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— chemical heat production,
— mechanical heat production.

In the next sections we derive the basic equations that are needed to describe
these three mechanism and we discuss their respective geological relevance.
In general, the rate of temperature change due to heat production may be
described by:

SUA

= - = 21
dt  pcp (321)

There, T, ¢, p and ¢, correspond to temperature, time, density and heat
capacity as discussed on p. 53 and 5 is the volumetric rate of heat production
in Js~!m™% = Wm™3. Heat production rate must be divided by density and
specific heat to convert the volumetric heat production rate into a rate of
temperature change, just as we have done with heat flow in section 3.1.1.
If S is positive, heat is produced, dT'/d¢ is positive and rocks heat up. If S
is negative, heat is consumed, d7T'/d¢ is negative and rocks cool. The heat
production rate S can be of radioactive, chemical or mechanical origin so
that we can write:

S= Srad + Schern + Srnec . (322)

All three of these components may have a significant influence on the thermal
evolution of rocks depending on the circumstances and all three have different
characteristics that require different methods of description.

Production or Conduction? From section 3.1 we remember that the rate
of temperature change due to conduction is proportional to the difference
between heat flow into and out of a unit rock volume (¢, — ¢out) - However,
we now learn that the rate of temperature change also depends on the amount
of heat that is produced inside this unit volume (Fig. 3.2). This value must
be added to the difference gin — gout- Thus, if we adapt eq. 3.6 to formulate a,
thermal energy balance considering conduction and production, we can write:

oT o*T S
Pl el _ . 2
ot 922 * (pcp> (3:23)

Note that we now need to use partial derivatives. Whether or not we need to
consider eq. 3.23 to model a given thermal problem, or if we can use the sim-
pler form of eq. 3.21 (neglecting heat production) or eq. 3.21 (neglecting heat
conduction) depends on the magnitude and relative rates of heat production
and heat conduction. Some heat production rates are very rapid (e.g. friction
heat production during an earthquake), others are very slow (e.g. reaction
heat production during retrograde metamorphism) but it really is on their
rate relative to conduction that is critical to consider. A comparison between
the diffusion and the heat production term on the right hand side of eq. 3.23
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element u Th K

mean mantle concentration (kg/kg) 31x107°  124x107% 31x107°
mean crustal concentration 1.24 x 107% 5.6 x107% 143 x 1072
mantle heat production (W /kg) 3x10712  32x107'? 11x107!2
crustal heat production (W /kg) 1.4x1071% 1.5x107° 05 x1071°

Table 3.3. Concentrations of heat producing elements in the crust and undepleted
mantle (after Turcotte and Schubert 2002). In granites, the heat production is about
2-3 times higher than the values listed here. The heat productions are per kg of
rock, i.e. the values come from concentrations given in the first two rows multiplied
with the heat productions given in the text

can help us to judge if one of the two processes is much smaller than the
other and can therefore be neglected in the problem that is being considered.
Such a comparison could be made two ways:

1. Comparison. The characteristic time scale of diffusion #¢4 of diffusion may
be compared with the duration of heat production. If ¢., is much larger
than the duration of heat production, then conduction can be neglected
and heat production will dominate the temperature change. However, if .,
is much smaller than the duration of heat production, then all heat that
is produced will be conducted away at a much faster rate than it is being
produced. Even large amounts of heat production will have a comparably
small influence on the temperature and it may be possible to neglect the
production term. If heat production- and conduction occur on similar time
scales, then the following comparison may be of value.

2. Comparison. Consider the case of stable temperature where d7'/d¢=0.
Then we can see from eq. 3.23 and eq. 3.6 that: —S/k = d*T/dz?. In
words: if the ratio S/k corresponds to the curvature of the temperature
profile, then the rate of heat production is balanced by the rate of heat
conduction. An important example for such a balance is given by the steady
state shape of isotherms in subduction zones (p. 107) and a corresponding
example in the theory of mass transfer is discussed on p. 192.

However, for this chapter, let us remain with the case where heat production
is much more important than heat conduction and we neglect any diffusion
processes in the first instance.

3.2.1 Radioactive Heat Production

Radioactive (or: radiogenic) heat is produced in the earth predominantly by
the naturally occurring radioactive isotopes 223U, 235U, 232Th and K. Of
the two naturally occurring uranium isotopes 99.28% is 2**U and only 0.72%
is 235U. All of the naturally occurring thorium is 2*2Th and only 0.0119% of
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Figure 3.7. a Radioactive heat production in the crust through time. Note that
the heat production in the Archaean 3 Ga ago was about twice as high as today. Also
note that U and Th are the primary heat producing elements today, but it was U an
K in the past. b Rates of radiogenic heat production in granites from the Mt Painter
province, a low-pressure high-temperature metamorphic terrain in Australia (after
Sandiford and Hand 1998b). Heat production rates in other Proterozoic terrains of
Auystralia are similar. N is the number of data points

the natural potassium is K (Turcotte and Schubert 2002). As pure metals,
these 4 isotopes produce the following amounts of heat: 238U = 9.46 x 107°W
kg!; 235U = 5.69 x 107*W kg!; 232Th = 2.64 x 107°W kg~! and °K =
2.92 x 107°W kg~!. Fortunately, the concentrations of these elements in
rocks are quite low so that substantially less heat is produced per cubic me-
ter of rock. Table 3.3 lists some average concentrations of the heat producing
elements in the continental crust and in the mantle. We can see that the
earth’s mantle (oceanic crust has comparable values) contains about 2 orders
of magnitude less radioactive elements than the crust. These concentrations
are still important when considering problems related to cooling of earth as
a whole or when thinking about the vigor of mantle convection in the Ar-
chaean, but for considerations of the heat budget of the Phanerozoic crust
we need not consider radioactivity in the mantle. However, the crustal heat
production is significant: The sum of the values listed in this table is about
3.4 x 10719 Wkg~!, which corresponds roughly to a heat production rate of
about one pWm™3. Using typical values for heat capacity and density of
crustal rocks and eq. 3.21, S= 1 uWm™? converts to a heating rate of of
about 10°C per million years (s. Problem 3.6). So the burial of highly ra-
diogenic bodies by deformation can cause significant heating ! In fact, most
granites have substantially higher heat productions than those listed in Ta-
ble 3.3 and there are many terrains around the world where radiogenic heat
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production rates is significantly higher than some pW m~3 (Fig. 3.7b; San-
diford and Hand 1998b). Radiogenic heat production in the continental crust
is responsible for about half of the heat flow that we can measure at the
surface of the earth (Chapter 2, Fig. 2.18). However, in total, about 80 % of
the cooling of earth is related to radicactive decay because even the low ra-
dioactivity in the mantle has an important influence on enhancing convective
motion in the mantle and therefore on the heat that flows from the mantle
into the lithosphere. Radioactive heat production is an important contributor
to the heat budget of the crust as a whole (Chamberlain and Sonder 1990;
MacLaren et al. 1999; Sandiford et al. 1998).

Radioactivity in Space and Time. We know that heat producing ele-
ments are not homogeneously distributed across the crust, but that the bulk
of the heat producing elements is concentrated in the upper crust. This is
because all of the important radiogenic elements occur in granite and the
intrusion of granites has been the principle agent of fractionating and redis-
tributing matter from the earth’s interior towards the surface. Uranium and
thorium are very large atoms and are therefore incompatible and thus con-
tained in granitic melts. Potassium is less radioactive, but there is so much
of it in potassium feldspar so that it also has a significant contribution. Over
time, granitic melts have transported those elements into the upper crust.
Nevertheless, the vertical distribution of heat producing elements in the crust
may be extremely variable (e. g. Haack 1983; Lachenbruch and Bunker 1971).
In the section on the calculation of geotherms we will spend some time to
discuss the influence of the vertical distribution of these elements on the
temperature profile of the lithosphere (sect. 3.4.2, see also p. 289).

The temporal variation of radioactivity in the earth’s crust through time
has been a topic of significant debate, as it is intimately connected to the
question if plate tectonics is a modern feature or if it occurred in the Archaean
as well. The half lives of the four important radioactive isotopes are known
to us. They are: 238U = 4.47 Ga; 235U =0.704 Ga; 2°2Th = 14 Ga and °K =
1.25 Ga. As such, the half lives are comparable to the age of earth and it is
easy to estimate the radioactivity in the past. Fig. 3.7a shows that the heat
production in the Archaean was about twice as high as today. Of course this
is true for the mantle as well. A series of authors have discussed the influence
of higher heat production in the Archaean for secular changes observed in
the style of ore deposits (Groves et al. 2005), the style of metamorphism
(Sandiford 1989) and the style of continent formation in general (Abbott and
Hoffman 1984).

3.2.2 Mechanical Heat Production

The forces that deform rocks can be viewed as mechanical energy that is
added to the rock. The work done on the system is the product of force
applied to the system times the distance over which it is deformed. This
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energy will be taken up by a variety of mechanical energy sinks. A part of
this energy will be transformed into potential energy (s. sect. 5.3.1), some into
dislocation energy in crystal lattices, some in noise and other forms of energy.
However, most authors agree that the majority of this mechanically produced
energy will be transformed into friction heat. Frictional heating is also often
referred to as shear heating (because it is produced when rocks are sheared)
or wiscous dissipation (because momentum is dissipated, see details in sect.
5.1.1). We abbreviate this mechanical heat production with Smec. The rate of
mechanical heat production Sy is given by the product of deviatoric stress
7 and strain rate é. Stress has the units of Pascal. One Pascal is one Joule
per cubic meter (1 Pa=1 Jm™—3). Thus, stress can be expressed as energy
per volume and energy is stress fimes volume. These conversions between
the different units should be straight forward, remembering the well-known
relationships:

. force
force = mass x acceleration and  stress =

area
The units of acceleration are ms~2 and those of force are therefore: kgms—2.
Stress and pressure therefore have the units of kgms~?m~2 or Pa=kgm~!s~2
and energy has the units of J=kgm?s~2. Accordingly, if high deviatoric
stresses are required to deform a rock, a lot work is done on the system and
the mechanical energy production rate is high, and vice versa. We notice that
when we rub our hands together: The harder we press and the faster we rub,
the warmer they get. Both deviatoric stress and strain rate are tensors and
the rate of mechanical heat production is therefore given by a tensor product.
Considering tangential and normal components in three dimensions, friction

heat is given by:
Smec = Tez€ra + Tyyéyy + Tez€zz +2 (T:cyewy + Tpz€ez + Tyzéyz) (324)

(see e.g. Burg and Gerya 2005). The subscripts and notation of the compo-
nents of deviatoric stress and strain rate should not worry us here and will
be discussed in some detail in sect. 5.1.1. For now, we consider only the one-
dimensional case (and only normal components, i.e. we neglect shear stresses
and shear strain rates). Then we can view the mechanical heat production
rate as the simple scalar product:

Smec = T (3.25)

Some of the implicit assumptions in this simplification are discussed in
sect. 5.1.1 and 6.2.2. In order to write the temperature change that arises
from frictional heating we can write in analogy to eq. 3.21:
dT :
== (3.26)
dt  pep
Note that eq. 3.26 is independent of the deformation mechanism. Both brittle
and ductile deformation mechanisms will produce the same amount of friction
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heat if they support the same deviatoric stresses. We only may need to be
careful with the units: Brittle faults do not have a strain rate (in s~1) but a
slip rate in meters per second. The product of slip rate and deviatoric stress
does not have the units of heat production per cubic meter, but the units of
heat flow (i.e. Js~' m~2 normal to the fault surface) which can be converted
into a heating rate using the laws of heat conduction discussed in previous
sections.
Temperature Dependent Strength. In chapter 5 (p. 231) we will show
that the deviatoric stresses that rocks can support during viscous deformation
are a strong function of temperature. Thus, eq. 3.26 should strictly have been
written as:

dT  7(T)é

dt  pep

(3.27)

We can see from this equation that the temperature increase that may occur
due to shear heating is in itself a function of temperature. There is a negative
feedback between shear heat production and thermal weakening so that any
incremental amount of shear heating will instantaneously soften the rocks
and subsequent heating becomes more and more difficult as temperature gets
higher. Shear heating is self limiting.

For some assumptions about the deformation mechanism it is possible to
integrate eq. 3.27, even though temperature occurs both on the left and right
hand sides of the equation. For example, for the deformation law described
by eq. 5.46, it is possible to integrate eq. 3.27 (Stiiwe 1998a). While this
analytical solution will not be repeated here, a graph of this solution is shown
in Fig. 3.8 for the rheological parameters of quartz and olivine. It may be
seen that — if rocks are very soft (e.g. at very high temperatures) — there is no
shear heating and temperatures before and after deformation are the same.
However, at temperatures below about 600°C shear heating may be quite
significant. Due to the self limiting nature of shear heating, curves become
parallel to the vertical axis at even colder temperatures.

Note that Fig. 3.8 can only be used to evaluate the effects of shear heating
if conduction of heat may be neglected. The time scale of conductive equili-
bration of the lithosphere is of the order of hundreds of my, while the duration
of continental deformation processes is only 1-10 my. Thus, on the scale of
the lithosphere, the duration of mechanical heat production is at least one
order of magnitude less than the duration of heat conduction. Thus, conduc-
tion of heat may be neglected if shear heating is considered on the scale of the
lithosphere (s. comparison on p. 66). Also note that Fig. 3.8 was calculated
assuming that the strain rate remains constant. While this describes some
geological scenarios, there are many others where stress is a constant and the
strain rate changes in order to balance it (s. p. 246).

Shear Zones of Finite Width. If we consider problems on a small scale,
for example shear heating around a small shear zone, then the influence of
conduction during heat production needs to be considered. For the solution
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Figure 3.8. Temperature of rocks at the start of deformation, plotted against the
temperature at the end of deformation. Mechanical heat production is assumed to
be the only heating process and heat conduction is neglected. The diagram was
calculated with the solution presented by Stiwe (1998a), which was derived from
eq. 3.27 and eq. 5.46. The various curves are labeled according to the following
syntax: before the dash: oTLog(é) between ¢ = 107'% and 107'® s~'; after the dash:
elongation from 1-10. Obviously, the increase in temperature is larger for larger
strains. However, during crustal shortening, a stretch of 2-3 is rarely exceeded.
Thus, the effects of shear heating are likely to be much larger in strike slip regimes
where much larger strains are possible than during crustal thickening. Rheological
assumptions for quartz are: Q@ = 1.9-10% Jmol™, A =5-10"% MPa~%s™!, n=3.
Rheological assumptions for olivine are: Q = 5.2-10° Jmol ™', A = 7-10* MPa=3s7"',
n=23

of such problems, eq. 3.26 must be enlarged by a term that describes diffu-
sion. The equation we must solve is eq. 3.23, subject to initial and boundary
conditions that describe the shear zone geometry. Fortunately, many shear
zones have reasonably simple planar geometries that may be described with
simple initial and boundary conditions. If we define the width of a shear zone
to be 2] and assume a one-dimensional spatial coordinate z that extends
normal to the shear zone and has its origin in the shear zone center, then
the boundary conditions for a planar shear zone of constant width may be
formulated as follows:

— T = 0 at the time ¢ = 0 in the half space z > Q.

— For all ¢ > 0 there is heat production in the region 0 < z < [ at a constant
rate S.

— For all ¢ > 0 the thermal gradient at z = 0 is: dT'/dz = 0.

— At z = oo the temperature stays at T = 0 at all times.

You can visualize yourself these initial and boundary conditions by sketching
them into a diagram where z is plotted against T'. Using these initial and
boundary conditions it is possible to find solutions of eq. 3.23 that describe the



72 3 - Energetics: Heat and Temperature
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temperatures in and around the shear zone. This and many other solutions
of the heat flow equation are discussed by Carslaw and Jaeger (1959) and can
be looked up therein. Fig. 3.9 shows a graph of the relevant solution (given
in the first edition of this book). The largest error in this figure is introduced
by the assumption that the mechanical energy production rate was assumed
to be constant. In reality, there is a feed back mechanism between heating
and softening in the shear zone. Carslaw and Jaeger (1959) present for this
problem some solutions in which the heat production rate can be varied as
a function of time. However, for most realistic problems, where shear heat
production feeds back on the rheology of the rock (e. g. in Fig. 3.8) it is wiser
to use a numerical solution of eq. 3.23.

Geological Relevance of Shear Heat Production. A range of authors
have discussed the importance of shear heating on a geologically significant
scale (e.g. Burg and Gerya 2005; Nabelek and Liu 1999; Brun and Cobbold
1980; Lachenbruch 1980; Scholz 1980; Barton and England 1979; Graham and
England 1976). Nevertheless, its importance in many tectonic and metamor-
phic processes remains contentious. This is because both, deviatoric stresses
and strain rates on the scale of the crust are not very well constrained and
are among the most discussed geological parameters. We can constrain shear
heating to a certain degree using eq. 3.26 to estimate the temperature in-
crease a rock might experience for some realistic deviatoric stresses and strain
rates. For this, we neglect heat conduction away from the site of mechanical
heat production in the first instance. Qur estimates are therefore an upper
constraint but may be quite appropriate if the length scale of shear heat pro-
duction is very large (e.g. deforming nappe piles of several tens of kilometers)
and the time scale of heat production is short (e.g. less than a few millions
of years).
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Methods to measure geological strain rates show an upper limit of é =
10712 t0 10~1* s~L. These numbers imply that deformation doubles the thick-
ness of a rock package (strain of about 100 %) within 1-10 my. The magnitude
of deviatoric stresses is much less constrained. Stress determination experi-
ments are performed at strain rates of ¢ = 1076 s7! and must be extrapolated
by six to eight orders of magnitude of strain rate. The relevance of such ex-
perimental results remains therefore debated. Moreover, deviatoric stress is
strongly temperature dependent. Nevertheless, we know that the order of
magnitude of plate tectonic driving forces is between 10'2 and 10'* Nm~!
(s. sect. 5.3) and we will show on p. 300 that this implies a rock strength
of 50-100 MPa, averaged over the thickness of the lithosphere. However, the
vertical distribution of this strength in the lithosphere is largely unclear. In
fact, in section 6.3.5 and 5.2.1 we will see that the middle crust may exceed
those values dramatically. In problem 3.7 we use some number to estimate
the arising heating rates.

An estimate for total heating can be arrived at even easier: During oroge-
nesis, the crust typically changes its thickness by a factor of two (it doubles
in collisional orogens and halves its thickness in many extensional settings).
Remember that a stretch of 2 corresponds to a longitudinal strain (or elon-
gation) of 1 (€ -t = € = 1; 5. eq. 4.1). Assuming all else being constant, it
is easy to integrate eq. 3.26. The temperature at the end of deformation for
a longitudinal strain of 1 can simply be estimated with: T = 7/(p¢;). Us-
ing standard values for the density and specific heat (p=2700 kgm~2 and
¢, =1000 Jkg=! K1) we can see that a rock that has a shear strength of
100 MPa will be heated by about 37°C. If rocks are twice as strong, then
the temperature increase is twice as high. As the strength of rocks may be
several hundreds of MPa under some circumstances, we must conclude that
viscous dissipation may be of significant importance to the thermal energy
budget of the lithosphere.

Figure 3.10. Field photographs
of pseudotachylites. The left
photo shows network typical of
many pseudotachylites, the right
photo shows a pseudotachylite
with chilled margin and
recrystallised center. Both
photos are 550 my old
pseudotachylites from the
Woodroffe Thrust system,
Central Australia (Camacho et
al. 1995)
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Examples where friction heat production has a significant influence on the
temperature of rocks are well-known to us from pseudotachylites from all
crustal levels (Camacho et al. 1995; 2001; Austrheim et al. 1996) (Fig. 3.10).
In those, friction heat was sufficient to even melt the rock. Pseudotachylites
form during seismic events where extremely rapid deformation occurred on
a very local scale. They are therefore not very appropriate to estimate the
influence of friction heat on the thermal evolution of the entire crust where
we have to deal with averaged strain rates and averaged stresses (e.g. Kin-
caid and Silver 1996; Stiiwe 1998a). Regardless, even significant amounts of
friction heat need not be reflected in significantly increased temperatures.
Whether or not shear heating actually becomes geologically significant on a
crustal scale depends largely on 2 factors:

— 1. It depends on the relationship between the length scale of heat produc-
tion (which determines how rapidly heat may be conducted away from the
site of production) and the time scale of heat production. The same con-
siderations that we discussed on p. 66 apply. For example, if a 100 m thick
shear zone is active for 1 my, then eq. 3.18 tells us that the characteristic
time scale of diffusion of this shear zone is of the order of only 1000 y.
Thus, shear heat produced over a time interval of 1 my will be largely con-
ducted away as it is produced. In contrast, if a 15 km nappe pile deforms
under the same conditions, then its thermal time constant will be tens of
my and all heat produced within 1 my will be largely retained in the pile.

— 2. It depends on the feedback between heating and softening of rocks.

In summary we can say that shear heating is a potential candidate for signif-
icant heating of rocks and that every argument for or against shear heating
should be reduced to an argument about one of the following three points:

— What is the strength of the rocks under consideration?

— What is the strain rate?

— What is the relationship between the duration of deformation and the size
of the deforming rock body?

We can also conclude from the active discussion in the literature that the
question is partly open and that it is unwise to take sides without some
valued consideration of the problem.

Adiabatic Processes. “Adiabatic” means: “without change in heat con-
tent” or: “without change in enthalpy”. If a rock is buried, the pressure rises
because of the weight of the increasing overburden. The rock is compressed
and there is work done to change its volume. The energy of the rock increases
by the product of the applied lithostatic force and the distance of shortening
during the volume change. It is a type of mechanically produced energy. If
no change of the heat content of the system is allowed, then the rock must
get warmer. The rock heats adiabatically. Correspondingly, an adiabatically
heated rock will cool and expand when it is decompressed. We can observe
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adiabatic cooling on gas bottles that freeze on their surface when they are
opened and adiabatic heating on bicycle tires that warm up when they are
pumped up. Rocks are compressible enough so that adiabatic processes is a
geologically relevant process, in particular in the earths mantle. For the con-
sideration of adiabatic processes we define the isothermal compressibility 3
as the relative volume change, 8V, per increment of pressure change, 9P, at
constant temperature. This has the units of Pa=! (sect. 5.1.2):

5= _% (%)T . (3.28)

We discuss the compressibility in sect. 5.1.2. More commonly we will en-
counter the thermal expansion coefficient . Corresponding to the isother-
mal compressibility, a is given by the relative volume change per increment
of temperature change at constant pressure. This is given by:

o= —% (g—‘T/)P . (3.20)

Rocks have typical values of a~3-107% K=! and 8 ~ 10~!! Pa—!. When
discussing adiabatic heating processes we need yet another parameter, which
is the adiabatic compressibility (which is different from the compressibility at
constant temperature). This is given by the change in density with change in
pressure at constant entropy and should not be confused with the isothermal
compressibility discussed in eq. 3.28. The adiabatic compressibility is smaller
than the isothermal compressibility.

Whatever the case may be, to the geologist it is relevant to remember
that part of the temperature increase with depth in the earth is due to an
adiabatic temperature gradient. Without going into the derivation in any
detail we state here that this gradient is given by:

dT’ _ ogT

T e (3.30)

The constant g is the gravitational acceleration, T is temperature and ¢, is
the specific heat. Without further explanation we also want to remember that
this gradient is understood to be at constant entropy. Detailed derivations
of eq. 3.30 are given by Turcotte and Schubert (1982) and in many other
geophysical teaching texts. If we insert realistic numbers we see that the adi-
abatic temperature gradient in the mantle is about 0.3-0.5°Ckm™*. In other
words, the adiabatic temperature change between the surface and the base
of a 100 km thick lithosphere is about 50°C. For most geological processes
within the crust this is negligible. However, for geodynamic processes that
require the consideration of large vertical length scales in the mantle, the pro-
cess is of relevance. It is particularly important for melting processes in the
upper mantle (Fig. 3.11). In fact, because convection in the asthenosphere is
rapid enough to equalize most conductive gradients, the adiabatic gradient
is often the only temperature change with depth that there is.
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Figure 3.11. The temperature profile (thick line) and the melting curve (dashed
line) between the earth’s surface and the center of the earth in 6300 km depth
(after Jeanloz and Richter 1979; Jeanloz 1988). See Fig. 2.16 for scaling of this
figure. In the mantle, the temperature increase is given by the adiabatic temperature
gradient (eq. 3.30). The steps in the temperature profile arise from exothermic and
endothermic reactions during phase transitions. Note that only the outer core is
liquid according to this diagram. However, rapid exhumation of the upper mantle
may lead to a cross over of the two curves above 500 km depth and therefore to
partial melting. This is what happens underneath mid oceanic ridges or during
continental extension

3.2.3 Chemical Heat Production

Different rocks are characterized by different internal heat contents defined by
the strength of bonding of the atoms in the crystal lattices in the rock-forming
minerals. During chemical reaction, the difference in heat content between re-
actants and products is released or consumed as latent heat of reaction. We
abbreviate this chemically produced or consumed heat with Sghen. By far
the largest majority of chemical reactions are endothermic when the temper-
ature increases. Because of this, temperature rise of rocks may be buffered by
the phase transition. Correspondingly, most reactions are exothermic when
crossed down temperature. However, most chemical reactions have a posi-
tive slope in a pressure-temperature diagram. Thus exothermal reaction can
not only be triggered by a decrease in temperature, but also by an increase
in pressure (at constant temperature). In very general terms, we can chem-
ical reactions that produce heat into three groups. In decreasing order of
importance these are:

— Phase transitions: The chemically produced heat of reactions involving
phase transitions is significant to the thermal budget of rocks.
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— Dehydration reactions: In the solid state, dehydration reactions are
the most important producer of reaction heat (Connolly and Thompson
1989; Peacock 1989). In the greenschist facies they produce of the order
of 4-10% J per kg of released water. However, rocks contain only of the
order of 4% H,O and this water is being released over quite a large tem-
perature interval. Thus, the heat of reaction is fairly insignificant during
regional metamorphism. Connolly and Thompson (1989) estimated that
metamorphic reaction produce of the order of 5-10-10~'* Wem™3.

— Solid - solid reactions: The chemical heat production of solid — solid
reaction is negligible for geological problems.

The geologically most important reactions that involve phase transitions are
the melting reactions where the latent heat of fusion is released or the latent
heat of melting is consumed. As a consequence, it is important to consider
reaction heat when dealing with the thermal energy budget of migmatites and
intrusions. A commonly used value for the latent heat of melting of rocks is
L =320000Jkg~!. Evaporation and condensation reactions are also strongly
exothermic and endothermic respectively, but they are not very important in
the geodynamics of the lithosphere.

Quantitative Description of Chemical Heat Production. The rate of
reaction heat production Sgpem has the same units as any other heat produc-
tion rate: Wm~3. It can be described by:

dVv
Schern = LpE . (331)

In this equation L is the latent heat of reaction in Jkg™!. Since we think of
the chemical heat production rate as a volumetric heat production rate, it is
necessary to multiply L by the density p to convert it into a volumetric heat
content. The expression dV/dt is the volumetric proportion of the reaction
that occurs per unit time (in s~1). Note that V has the units of percent and
not cubic meters. Thus, the equation determines the part of L that is freed
in every time step of the reaction. Substituting eq. 3.31 into eq. 3.21 we can
now formulate the temperature change during chemical heat production to

be:
oT LoV
= =7 3.32
at ¢, Ot (3:32)

If we consider one dimensional diffusion of heat in direction z as well, but

neglect other heat sources we can write:
oT T LoV
g 2 3.33
T = T (3:33)

where the first term on the right side is the diffusion term discussed at length
in eq. 3.6. You will recall from there that K = k/pc,. In this form of the
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equation we also have neglected differences in density between the reactants
and the products. It may help you to understand eq. 3.33 by formulating it in
terms of energy rather than in terms of temperature. It then takes the form:

OH T v

% k6z2 + Lp T (3.34)
There, H is the heat content in Jm—3. The conversion between heat and
temperature is illustrated in Fig. 3.12 and was briefly discussed in eq. 3.3.
In principle, it is possible to implement the heat of reaction quantitatively
and describe the evolution of PT paths under consideration of buffering pro-
cesses. However, the estimates of Thompson and England (1984), Connolly
and Thompson (1989), Peacock (1989), Barr and Dahlen (1989) and others
shows that the magnitude of reaction heat does not justify to implement such
a model in great detail and that it is only important to consider latent heat
when rocks melt. Then, reaction heat has indeed quite a significant effect on
the thermal evolution of rocks and we will now discuss how to describe it.

Thermally Buffered Melting. Melting during prograde metamorphism in
the upper amphibolite and granulite facies is a strongly endothermic process.
Thus, the rate with which temperature increases during metamorphism at
this grade will be buffered by the melting reactions. At univariant melting
reactions, the temperature will remain constant until the phase transition
from solid reactants to liquid products is complete. It is the very same reason
why we have so much snow slush on our roads in spring: ice and water will
both have a temperature of 0°C, until all ice has melted, even if the air
temperature has been above freezing for quite some time. For the same reason
water will boil at a constant temperature of 100°C, regardless of the heat
added by the stove, until it all has evaporated. In the buffering interval, the
amount of heat added to the rock from the outside is exactly balanced by the
amount of heat consumed by the phase transition.

Most rocks consist of many chemical components in complicated chemical
systems. As a consequence, they do not melt at a single temperature, but over
a melting interval between their solidus (where the first melt appear during
temperature increase) and liquidus (where the last remaining piece of rock
melts). If we want to describe such rocks, we must find a formulation that
allows us to release (or consume) the latent heat over a large temperature
interval. For this it is useful to reformulate the rate of volume change from
one phase to another from eq. 3.31 into:

ov. oV oT
ot 9T at
In this form it is easier to add the heat of reaction to the time derivative on
the left side of eq. 3.33. This reads then as:
(o1 20) Z 22T
r or ) ot p 022

(3.35)

(3.36)
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Figure 3.12. a A schematic model for the description of the relationship between
melt volume and temperature. The curves are labeled for different values of the
constant o in eq. 3.38. For a = 0, eq. 3.38 simplifies to the linear relationship
V(T) = T/(Ti — Ts). The thick drawn line is probably the most realistic curve for
the melting of hydrated metapelitic rocks. b The relationship between heat content
and temperature in the melting interval of a melting rock (shown between solidus
temperature Ty and liquidus temperature 7. The slope of the curves within the
melting interval are for five different assumptions of the melting process according
to eq. 3.38; after Stiiwe 1995)

or:

ar 82T
gt modga

There, kmod = k/(pCmoa) is the modified diffusivity and ¢meq is a modified
heat capacity: ¢mod = ¢p — Lp(0V/IT). We wrote down these equations to
illustrate that chemical buffering of thermal processes can be described by
modifying the diffusivity. The numerical problems that can arise when doing
this were first described by Price and Slack (1954).

(3.37)

How Do Rocks Melt? Many migmatite terrains have equilibrated around
700°C, although their peak pressures vary considerably from terrain to ter-
rain. This leads one to suspect that this common peak temperature may be
unrelated to the burial depth of the terrain and has other causes. The prox-
imity of 700°C to the solidus temperature of rocks suggests that thermal
buffering by the effects of latent heat is a conceivable cause of this common
phenomenon (Stiiwe 1995). In order to explore this hypothesis, it is neces-
sary to know the amount of melt that is formed at or around 700°C, because
only eutectic melts form at the solidus. Petrogenetic studies have rapidly ad-
vanced over the last five years and can — in principle — be used to determine
the relationship between melt volume and temperature in the melting inter-
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val (White et al. 2001; Riesco et al. 2004; Kelsey et al. 2005). However, for a
ball park estimate, a useful relationship may be:

eaT _ eaTS

V(T) - m (338)
In this freely invented equation, a can be adjusted to explore different rela-
tionships (i.e. different melting models) between melt proportion, V(T') and
temperature T between the solidus temperature 7, and the liquidus temper-
ature T (Fig. 3.12). If a has a large positive value, then most of the rock
melts near the solidus. If a adapts large negative values, then most of the
melting occurs near the liquidus. For values of a — zero, melting becomes
linear in temperature. Many rocks contain hydrated phases at the onset of
melting. As water is a great catalyst for melting processes, it is likely that
more melting will occur near the solidus than near the liquidus. Realistic
values for a are therefore likely to be positive and possibly around a = 0.01.
If we accept eq. 3.38 as a melting model, then the change of melt volume
with temperature dV/dT can be derived from eq. 3.36 to be the following:

dv a oT
d_T = (M) e . (339)

This relationship can be used directly to estimate the influence of melting
on the thermal evolution of rocks. Stiiwe (1995) showed that it may be large
enough to account for the equilibration of parageneses in the low-pressure
high-temperature metamorphic environment.

3.3 Principles of Heat Advection

Heat can be transported actively by the motion of warm rocks. We discern
between advection and convection of heat. Advection is generally used if the
active transport of heat is only in one direction, for example the transport
of heat by an intrusion that moves in the vertical direction. Convection is
generally used when referring to material transport in a closed loop, for ex-
ample the convection of mantle material in the asthenosphere, or that of fluids
in a hydrothermal system. In this book, we only deal with advection. One-
dimensional active transport of heat (for example in the vertical direction z),
relative to the z direction may be described by:

or  oT
ot~ "oz
In eq. 3.40, u is the transport velocity; the derivative 0T /02 describes the
thermal gradient and 87'/8¢ is the change of temperature with time. For posi-
tive u, eq. 3.40 describes transport agaeinst the spatial coordinate z: transport
is from high z towards lower z (Fig. B.7 illustrates the sign of 4). Eq. 3.40 is

(3.40)
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also called the transport equation and is equally applicable to the transport
of mass, for example during advection of concentration profiles through a
crystal lattice. In three dimensions, the heat advection equation is:

oT oT oT oT

azuw%-l-lbya—y-i-uza . (3.41)
Although we shall discuss below some examples where eq. 3.40 may be solved
analytically, the vast majority of geological problems require numerical solu-
tions of eq. 3.40. Indeed, although eq. 3.40 looks much simpler to solve than
eq. 3.6 it is much more complicated to solve it. In numerical solutions of
advection problems we are often faced by the problem of numerical diffusion

(sect. B.2.3, B.2.3). One way to avoid problems with numerical diffusion is

by converting the problem from an advection problem into one where there
is no advection, but moving boundary conditions; i.e. we describe the prob-
lem in a Lagrangian, rather than a Eulerian reference frame (sect. 4.2.2). In
Lagrangian descriptions the material is transported through the coordinate
system. Eulerian reference frames move with the material.

There are three different important mechanisms by which heat is advected
in the lithosphere that require different methods of description. These three
mechanisms are:

— advection of heat by magmas, e. g. magmatic intrusion;
— advection of heat by solid rock motion, e. g. erosion or deformation;
— advection of heat by fluids, e. g. during infiltration events.

The difference between these three processes in terms of their mathematical
description arises mainly from the relative rates of advective and diffusive
processes. These three processes will therefore now be discussed separately.

3.3.1 Heat Advection by Magma

During intrusion of magma from deeper into shallower levels in the crust, the
heat of the magma is transported to higher crustal levels by the motion of
the magma itself. The process of magmatic intrusion is - in general - much
faster than most other geological processes, for example the thermal equili-
bration during contact metamorphism. It is therefore usually not necessary
to describe the intrusion process itself by an advection equation. For ques-
tions related to the thermal evolution of contact metamorphism is usually
suffices to assume that intrusion is infinitely rapid and can be described by
instantaneous heating problems (s. sect. 3.6). Simple examples for good model
assumptions to describe intrusions into the crust are given by Jaeger (1964)
and for intrusion at the Moho (under plating) are given by Wells (1980) and
Huppert and Sparks 1988). Thermal processes related to intrusion will be
discussed at length in sect. 3.6. Nevertheless, we want to note that country
rocks that heated during contact metamorphism are often referred to as being
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“advectively heated”. Strictly speaking this is not correct as it is conduction
from the intrusion into the country rocks, not advection itself that causes
contact metamorphism (s. sect. 6.3.3).

3.3.2 Heat Advection by Solid Rock

Any movement and deformation of rocks will carry the heat it contains with
it. for example, during exhumation of rocks by erosion, the lithosphere (and
its heat) are moved vertically upwards (s. sect. 4.3.4). The column is moved
through a surface of constant temperature - the surface of earth. Erosion is
therefore a heat advection process. In a similar way, any other motion of rocks,
for example during thrusting or folding may be interpreted as an advective
process (if viewed in an externally fixed Eulerian reference frame, s. p. 144).
Here we will only discuss one-dimensional, vertical advection of heat to and
from the earth’s surface. The time scale of continental denudation processes
is comparable to the time scale of thermal equilibration on the scale of the
crust and we can therefore not neglect to consider both processes at the same
time. If we want to describe advection and diffusion of heat simultaneously,
then we must expand eq. 3.40 by the diffusion term from eq. 3.6. The equation
that must be solved becomes:
or _ 0°T oT
o "2 TV
A schematic illustration how the two processes interact to shape a geotherm
during erosion is shown in Fig. 3.13. You may also want to consider to expand
this equation by yet another term describing heat production (e.g. the term in
eq. 3.21). Then, we would have a complete thermal energy balance to describe
any thermal problem. However, it is strongly recommended to perform a
careful evaluation of the relative importance of heat conduction, advection
and production for a given problem to decide which terms must be considered
and which not. Such a comparison may be done similar to that we have shown
on p. 66. Here we consider only diffusion and advection.

(3.42)

Figure 3.13. Schematic illustration of one-
dimensional advection of heat by erosion. The
coordinate system is fixed with z = 0 at the
earth’s surface. Temperature profiles through
the crust are shown for two times: at the on-
set of erosion tp, at which a linear geotherm is

Y |t
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diffusiqn and
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assumed and a later time ¢;. The advection rate t
4 is positive upwards. In the shown time inter-
val the erosion process advects the geotherm by
. vy , +u
% X t1 meters upwards. Simultaneous diffusion
causes the curvature of the temperature profile h %
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Geotherms During Erosion and Sedimentation. Eq. 3.42 can be used
to describe the evolution of a crustal geotherm that is advected through the
earth’s surface, for example during erosion (upwards advection) or sedimen-
tation (downwards advection) (Benfield 1949) or — on a smaller scale — the
evolution of temperature profiles in soil during accumulation or ablation of
snow. For simple assumptions about advection rate (e.g. that this is constant)
and boundary conditions, analytical solutions of eq. 3.42 may be found. In
the following we present some examples of useful boundary conditions for
both steady state and time dependent scenarios.

e Steady state geotherms during erosion. For fixed boundary conditions a
thermal steady state will be reached by geotherms during erosion if the up-
wards advection of heat is exactly balanced by conductive cooling from the
surface. Then, there is no temperature change with time (i.e. 87 /8t = 0) and
eq. 3.42 simplifies to:

8 (0T udT

—[=)=_2== A

Oz <8z> K Oz (343)
(Spiegel 1968, Mancktelow and Grasemann 1997). Using A = u/k and v =
0T /D= this can also be written as: v'(2) = —Av(z). This is a very common
differential equation and its solution is: v(z) = v(0)exp(—Az). Written in full:

oT oT

T, e (ue/k)

EP B |(z_0)e (3.44)

The derivation is explained in the appendix on p. 416. There are three geo-
logically relevant boundary conditions with which this equation can be easily
integrated a 2nd time to give a closed solution for steady state thermal profiles
during advection. In all three examples we assume that one of the two re-
quired boundary conditions is given by zero surface temperature (T(,—g) = 0),
but any surface temperature can simply be added to the given solutions.

e 1. If the other boundary conditions is defined by the mean geothermal
gradient g at z = 0, then this boundary condition can be directly inserted
into eq. 3.44 and integrated a 2nd time. The solution is:

T= “fu—” (1 - e—W/”)) . (3.45)

e 2. If the lower boundary is fixed with the temperature T, as the depth
goes to infinity (T, ,o0) = Too) then a steady state solution of eq. 3.42 is:

T =Ty (1 - e—<“z/ﬁ>) . (3.46)

e 3. If the lower boundary is fixed at the temperature T = T}, at a fixed
depth z = L, a steady state the temperature is described by the solution:

1-— e_(uz/”) )

e i/m (3.47)

T:TL(
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Figure 3.14. Examples of steady state geotherms during simultaneous upwards
advection and diffusion. a Geotherms fixed at the surface with 77 = 0 and at infinite
depth at temperature To, = 1000°C (calculated with eq. 3.46). b Geotherms fixed
at the surface with T = 0 and at depth L = 100000 with 77 = 1000°C (calculated

with eq. 3.47). Contours are for different advection rates w labeled in meters per
million years and x = 10™%m?s™!

This latter case is quite a realistic scenario for the lithosphere where is may
be fair to assume that the temperature at its base is constant (Stiiwe et
al. 1993b) (Fig. 3.14). More refined solutions for a range of other problems
including variably erosion rate and erosion of a heat producing crust are
discussed by Mancktelow and Grasemann (1997) as well as Batt and Braun
(1997).

e Time dependent evolutions and cooling paths. Time dependent solutions
may also be found for the two problems discussed above (Mancktelow and
Grasemann 1997). Here we present a time dependent evolution for yet another
scenario, namely one where there is no lower boundary condition, i.e. the
advection of a semi-infinite half space with a constant thermal gradient ¢
through the surface. For that, a solution of eq. 3.42 is:

_ g s /s z+ut) (z—ut))
T =gz—gut+= | (z + ut)e erfc + (ut — z)erfc 3.48
gzmguir (e s et (T2 ut - dete (222) 9

(Benfield 1949; Carslaw and Jaeger 1959, chapter XV; Mancktelow and
Grasemann 1997). While this equation may be used to calculate time de-
pendent geotherms, most geologist do actually not want to know tempera-
tures as a function of depth but the temporal evolution of a given rock. In
other words, the evolution of temperature in a Lagrangian reference frame in-
stead of the Eulerian description given by the equations above (s. sect. 4.2.2).
Within the reference frames of the geotherm descriptions, rocks move (are
advected) through the coordinate system at the rate u. Thus, if they were at
the initial depth z; at the onset of erosion, they change their depth to:
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Z2=2z—ut (3.49)

at time ¢. Thus, if we want to calculate cooling histories of a given rock that
are due to its exhumation by erosion, we can simply use eqgs. 3.46, 3.47 or
3.48 and substitute eq. 3.49 for z. Cooling curves that were calculated with
this approach and eq. 3.48 are shown in Fig. 3.15.

3.3.3 Heat Advection by Fluids

Heat may also be advected by fluids that circulate through rocks. Heating of
rocks due to fluid advection is different from the previous examples, because
only part of the rock volume is being advected, namely the fluids that fill
the pore volume. Thus, when formulating an advective term in an advection-
diffusion equation, we need to take care so that we describe only the advection
of a fraction of the total rock volume. In a general one-dimensional form
eq. 3.40 can be written as:

oT oT
-7 = ¢ur <—p;pr> 9 (3.50)
P

(McKenzie 1984). There, ¢ is the porosity of the rock (s. sect. 6.1.3) and vt
is the fluid flux in m®m~2s~!. The product ¢uvs is the fluid volume that is
transported per unit time and per unit area through the rock. This product
has the units of ms~!, which corresponds to the standard definition of fluxes
(sect. 4.5.3). It is called the volumetric fluid flux. p and pr are the densities
and ¢, as well as ¢,¢ are the specific heat capacities, both of the rock and the
fluid, respectively. The term inside the brackets is the ratio of the volumetric
heat capacities (volumetric heat capacity = heat capacity x density) of the
fluid to that of the rock.

Eq. 3.50 may be used to describe the thermal effects of fluid advection.
However, in many geological processes heat advection by fluids occurs on
similar time scales as heat conduction. Thus, it is usually necessary to expand

Figure 3.15. Cooling curves of rocks

that cool as the consequence of cooling curves
exhumation only. The three curves are for
three different erosion rates in mmy~'. 600 100\
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eq. 3.50 by a term describing diffusion as we did in eq. 3.50. The importance
of the transport of heat by fluids for the thermal evolution of the crust was
discussed by Bickle and McKenzie (1987), Connolly and Thompson (1989) as
well as Peacock (1989). These authors agree that the fluid flux that may be
caused by metamorphic dehydration reactions is less than about 1 kg fluid
per square meter and per year. This is not enough to transport heat very
efficiently by fluids. Peacock (1989) estimated that the thermal evolution of
rocks can only be influenced by fluids if these are focused into narrow zones
from regions as wide as 10 km. We can conclude that heat advection by fluids
is insignificant at least when we are interested in thermal budgets of the crust
as a whole. Clearly, in special geological settings, for example hydrothermal
cells, heat advection by fluids may be the controlling process. Note also that
equations similar to eq. 3.50 may be used to describe advection of fluids
through rocks in general and are among the important equations governing
fluid flow through fractured media.

3.3.4 The Peclet Number

In many geological processes the diffusion rates and advection rates are of
the same order of magnitude. This is true for fluid infiltration processes,
for erosion that occurs during thermal equilibration of the crust, thermal
profiles around moving faults and many more (sect. 3.7.4). In such processes
the Peclet number Pe is a useful parameter which can be used to estimate
the relative influence of diffusive and advective processes. The Peclet number
is defined as:

pe="d _ure

K k

where u is the rate of advection, & the diffusivity and [ the characteristic
length scale of the advection process. The second way to write the Peclet
number is only inserted above to remind us that the diffusivity is the ratio of
conductivity &, density p and heat capacity cp. If Pe is about 1, then diffusion
and advection are of similar importance to a process. If Pe is much larger
than 1, advection dominates the process. If Pe is much smaller than 1, then
diffusion dominates the process. Eq. 3.51 can be used to derive advection
rates. For example, on Fig. 3.16 isotherms have been displaced by a thrust.
Consider the 400°C isotherm. On any length scale that is larger than Iy, this
isotherms is simply displaced by the material advection of the hanging wall
(i.e. Pe > 1). On the length scale of I; (dark shaped region) both diffusion
and advection have played a role in shaping the curved isotherm (i.e. Pe = 1).
On the length scale Iy (light shaded region), diffusion has dominated and the
isotherm appears not displaced across the fault (i.e. Pe < 1).

Aside from its importance for the description of thermal processes, the
Peclet number finds many other application. For example, Bickle and McKen-
zie (1987) have used the Peclet number for some fundamental interpretations
about the relative importance of diffusive and advective processes during

(3.51)
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Figure 3.16. a Schematic cartoon showing the displacement of isotherms during
thrusting. Note that — within the length scale 1 — diffusion has eliminated any
displacement of isotherms across the fault, while above length scale I> only dis-
placement, but no curvature is visible. b Diffusion and advection of isotopes from
a layered sequence. The vertical axis is isotope concentration, the horizontal axis is
a profile across the three rock types shown. The continuous step shaped line shows
the concentrations at the time of formation. The dotted line after subsequent diffu-
sion (Pe < 1), the dashed line after fluid infiltration (Pe > 1), but without diffusion
(Pe = 1). The asymmetric line during both (Pe = 1)

fluid infiltration of rocks (Fig. 3.16 and Sandiford (2002) has used the Peclet
number to argue about the stability of orogens.

3.4 Heat in the Continental Lithosphere

In the past sections we have discussed the three fundamental processes that
produce and redistribute heat in the lithosphere: conduction, production
and advection. In summary from above we can conclude that a full one-
dimensional description of the thermal energy balance for the lithosphere has

the form:
oT k 82T oT S
E (E> FEr <E> 7 (3:52)

where the diffusivity is the ratio of conductivity and density x heat capacity:
k& = k/pc, and the heat production S may have mechanical, chemical and
radioactive contributions (s. eq. 3.22). In this section we will apply our knowl-
edge from the last sections and describe aspects of the thermal structure of
the continental lithosphere. For this, not all of the terms in eq. 3.52 may be
relevant. Table 3.4 shows (as a summary from the last sections), which ther-
mal energy parameters may be relevant to thermal estimates on the scale of
the lithosphere. In order to set the scene, we begin with a brief explanation
how the lithosphere may be defined thermally and what “geotherms” actually
are.
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Table 3.4. Summary of possible heat transfer mechanisms in the crust and their
potential relevance for the heat budget of metamorphic terrains. The column “rel-
evance” makes some very crude suggestions whether the processes listed in the 1st
and 2nd column can be of relevance for terrain scale metamorphism. The relation-
ships shown in the 4th column are the key relationships that should be considered
when estimating the relevance of a given transfer mechanism in a given terrain.
Conduction is only relevant if the time scale of conduction, t.q, is comparable to
the ratio of the square of length scale ! and thermal diffusivity . Advection is
only relevant if the Peclet number, Pe, is larger than 1, where  is the advection
rate, I length scale of the advective process and & the diffusivity. Heat production is
only relevant if the heat production rate S times its duration ¢ produces significant
amounts of thermal energy (which may then be converted into temperature rise
using density and heat capacity). For radioactivity this product is generally large
on geological time scales, for chemical heat production this product is only large
for melting reactions and for mechanical heat production it is given by the product
of stress and strain rate. Both stress and strain rate are not well known and the
relevance of mechanical heat production to metamorphism remains a much debated
topic in earth sciences. Acronyms for selected key references are: ER77 = England
and Richardson (1977); ET84 = England and Thompson (1984); HS88 = Huppert
and Sparks (1988); BM87 = Bickle and McKenzie (1987); J64 = Jaeger (1964); L86
= Lux et al. (1986); L.70 = Lachenbruch (1970); S98 = Sandiford et al. (1998); C90
= Chamberlain and Sonder (1990); ME90 = Molnar and England (1990a); S98 =
Stiiwe (1998a); S95 = Stiiwe (1995); P89 = Peacock (1989); CT89 = Connolly and
Thompson (1989)

transfer geological geol. relationship key
mechanism process relevance to consider ref.
conduction large teg =1*/x ERT7; ET84
advection by fluids rare BM87
by magma - intrusion large Jo4; L86
- underplating large Pe=wl/k HS88
by rock - erosion large

- deformation  large

production radicactive large L70; S98; C90
mechanical unknown ME90; 598
chemical - melting large Sxt 595
- dehydration  small P89; CT89
- solid-solid negligible P89

Thermal Definition of the Lithosphere. The lithosphere may be de-
fined thermally or mechanically (s. sect. 2.4.1). According to the thermal
definition, the lithosphere is the outer shell of the earth, in which heat is
transported primarily by conduction. In contrast, in the asthenosphere, heat
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is transported primarily by convection. Thus, the lithosphere itself is noth-
ing but a thermal boundary layer of the earth, although we defined thermal
boundary layer somewhat differently in Fig. 2.19 . This boundary layer looses
heat at all times through the earth’s surface into the atmosphere and further
— by radiation — into space. The average heat flow through the surface of
the continents is 0.065 Wm™2. The total surface area of the continents is
about A = 2-10% km?. Thus, the total heat loss of earth from the conti-
nents is 1.3-10'% Js~!. This heat loss is balanced by radioactive heat pro-
duction within the lithosphere and by heat flow into the lithosphere from the
asthenosphere, so that this thermal boundary layer has a largely constant
temperature profile, if it is not disturbed by orogenesis. Thermally stabilized
lithosphere has a thickness between 100 and 200 km (Pollack and Chapman
1977).

Definition of Geotherms. The function that describes temperature in the
lithosphere as a function of depth is what we call a geotherm. We discern:

— stable or steady state geotherms,
— transient geotherms.

e Stable geotherms. Stable or steady state geotherms form by long term ther-
mal equilibration of the lithosphere (sect. 3.4.1). In general, this is understood
that the term “steady state” refers to a geotherm in a stationary lithosphere
and we shall use it in this way in this section. However, in other reference
frames, steady state geotherms may also occur in a moving lithosphere (for
example a lithosphere that moves upwards relative to the surface during ero-
sion, s. p. 82). In sect. 3.7.3 and 3.5.2 we discuss examples of steady state
geotherms in Eulerian reference frames.

In most geological situations, the temperatures of steady state geotherms
increase steadily with depth. Stable geotherms are only found in regions that
have had at least about 100 my time for equilibration and have not changed in
thickness during this time. The origin of this number is discussed in sect. 3.1.4.
Thus, active orogens are not characterized by stable geotherms. Regardless,
the calculation of steady state geotherms in orogens may help us to esti-
mate the maximum or minimum temperatures that can be attained during
an orogenic process at a given depth. This maximum or minimum possible
temperature is often called potential temperature (e.g. Sandiford and Powell
1990).

e Transient geotherms. Transient geotherms are only valid for a particular
point in time. In some geological situations, transient geotherms do not in-
crease steadily with depth and the change of the geotherm with time can be
different in different depths. For example, after rapid stacking of nappes,
rocks may simultaneously heat above a major thrust, but cool below it
(sect. 7.4.2). In principle it is possible to document such relationships of
transient geotherms in space and time with careful observation in the field.
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If they can be documented, then such information is invaluable for the in-
terpretation of the nature of a tectonometamorphic process (s. sect. 7.4.2).
We discuss the transient, evolution of geotherms during orogenic processes in
several other chapters (e.g. sect. 3.6 and 6.2.1).

In this section we calculate the quantitative shape of stable continental
geotherms as shown schematically in Fig. 2.18.

3.4.1 Stable Geotherms: The Relevant Equation

For the stable or steady state case, the heat conduction equation (eq. 3.6) or
the full thermal energy balance (eq. 3.52) can be simplified enough so that
it is possible to find simple analytical solutions that provide useful tools to
understand the thermal structure of the lithosphere, even without a lot of
mathematical knowledge. This is therefore a good example to familiarize
ourselves with the involved thought process. The equation we must solve is
the now familiar heat conduction equation with a heat production term:

6_T_<k>62T s

o = e (3.53)

022 " pey
We need the heat production term to account for radioactivity, which is of
substantial importance to stable geotherms. However, we can neglect advec-
tive terms as we consider only steady state. For steady state geotherms, there
is no change of the temperature with time (s. sect. 3.1.2). This means:

oT

ot
Eq. 3.53 simplifies to:

E\Na&3T S
( ) +—=0. (3.54)

pep) dz2 T pey

=0 .

Note that eq. 3.54 is no partial differential equation anymore. By canceling
out of the constants we get:
2T
k—=-5 . 3.55
2 (3.55)
The integration of this equation forms the basis for all calculations of stable
geotherms.
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Geotherms Without Radioactivity. Equation 3.55 may be integrated
the easiest, if we neglect radioactive heat production all together. Although
we have shown in chap. 2 and sect. 3.2.1 how important radioactivity is for
the temperature profiles of the lithosphere (e.g. Fig. 2.18) we can easiest
understand the integration of eq. 3.55 by assuming the heat production is
negligible: S = 0. Eq. 3.55 then simplifies to:

k— =0 or even : — =0 . (3.56)

As this still is a differential equation of the second order, me must integrate
it twice to solve it. A first integration gives:

§Z=01 (3.57)
dz

and a second:
T=Ciz+Cs . (3.58)

The two integration constants Cy and Cy must be determined by the geolog-
ical boundary conditions (s. sect. B.1.1). For example, we can assume that
we know that the temperature at the surface of earth (at z = 0) is constant
and has the value T' = 0. Then, for eq. 3.58 to hold, Cs must be zero so that
the temperature is zero at z = 0. It we assume a thermal definition of the
lithosphere, then we can determine the other constant with the assumption
that T = T} at depth z = z where T} and 2 are the temperature and the
depth of the base of the lithosphere. With this assumption C; must have
the value C; = Ti/z. The temperature as a function of depth is therefore
described by:

T=2:2 . (3.59)

Equation 3.59 describes a linear temperature profile between the surface and
the base of the lithosphere. This is not very surprising as we have assumed no
heat production and no other reasons why the temperature profile should be
anything else but a straight line between the assumptions at the boundaries.
With a thermal conductivity of k=2-3 Wm~'°C~1, and T} = 1200°C as
well as a lithospheric thickness of z; = 100 km, our equation describes a surface
heat flow of 0.024-0.036 W m~2. This value is much lower than the average
surface heat flow of the continents which is between 0.04 and 0.08 W m™2.
This is one of the proofs of the existence of radioactivity in the lithosphere.
We can easily conclude that eq. 3.56 is not a very good model description
and that it is wiser to integrate eq. 3.55 using a meaningful function that
describes S as a function of depth. When we do so, we will always assume
that S = Syad, i-e. there is no other heat production sources but the radiogenic
ones. In the steady state mechanical or chemical heat production sources are
irrelevant.
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3.4.2 The Contribution of Radioactivity

The radioactive heat production rate of rocks is of the order of some mi-
crowatts per cubic meter (s. Table 3.3). However, unusually high heat produc-
tions have been reported from a series of locations around the world, in partic-
ular from Australia (McLaren et al. 1999) (Fig. 3.7). A typical value measured
from samples at the earth’s surfaceis: § = 2—5uWm=3 =2-5-107 Wm—3.
The contribution of this value to the surface heat flow is simply the heat pro-
duction times its depth extent. For example, if the heat production were
constant in the entire crust of 30 km thickness (2, = 30 km) then the surface
heat flow caused by radioactivity is:

g=¢ =952 =003Wm™2 . (3.60)

This can be converted into a temperature gradient using eq. 3.1 where we have
seen that the thermal gradient has the units of heat flow divided by the ther-
mal conductivity. If the thermal conductivity is k =3 Wm™! K~!, then the
assumptions from above indicate: d7'/dz=¢/k = 0.05°Cm~! =50°Ckm™1.
This geothermal gradient of 50°C per kilometer is only due to the contribu-
tion of radioactivity. The mantle heat flow would have to be added to this.
Since the resulting thermal gradient would be much higher than just about all
thermal gradients measured on earth, we can conclude that the radioactivity
of rocks measured at the earth’s surface must be higher than that of the rest
of the crust (for more information on the radioactive heat flow contribution
see p. 289).

The Distribution of Heat Production. The considerations above have
shown that the radioactive heat production of the crust is unlikely to be that
of the surface in the entire crust. Various studies have therefore explored the
vertical distribution of heat producing elements (e.g. Cermak and Rybach
1989; Pinet and Jaupart 1987; Pribnow and Hurter 1998; Heier and Brown
1978). The most simple model for a heat source distribution is that the heat
production is constant to the depth 2.4 and zero below that. This model
depth, to which the crust produces radioactive heat at the same rate as
on the surface, has been elegantly determined using the relationship of two
independent sets of data that can be measured at the surface: The surface
heat flow and the heat production rate at the surface, Sy. Roy et al. (1968)
explored this relationship in the eastern US and its significance was described
by Lachenbruch (1968; 1970; 1971). They found a roughly linear relationship
between these two parameters (Fig. 3.17). The straight line that fits these
data has the form:

Gs = Gm + Grad = gm + ZraaSo - (3.61)

In this equation, gs is the surface heat flow, gy, is the mantle heat flow, ¢aq the
radiogenically produced heat flow and 2,54 is the thickness of a hypothetical
layer in which radioactive heat is produced at the same rate as on the surface.
gm can be measured from the intersection of the line with the heat flow axis
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Figure 3.17. Measured data of
surface heat flow ¢; and surface
heat production Sy in the < 100
eastern US. The best line that '
fits the data is described by the
equation g5 = 0.035 + 741355.
Accordingly, the thickness of the
layer that produces heat at a
rate S is 7413 m thick and the
contribution of mantle heat flow
to the total heat flow is

0.035 Wm™2 (after Roy et al.
1968)
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and the value of z..q is given by its slope. The data of Roy et al. (1968) show
that zpaq 18 about 7 km in the eastern US. Similar considerations in other
areas indicate thicknesses of 10-15 km. Of course, the crust does not produce
heat constantly in this layer and no heat at all below it, but the relationship
is useful to estimate the total heat production in the crust. This is given by
the product z;aqS0. This product corresponds to the area underneath the
different model curves in Fig. 3.18.

For the calculation of geotherms in the following sections we will use dif-
ferent model assumptions about the distribution of radioactivity with depth
(Fig. 3.18). We will see that these different assumptions have important dif-
ferent implications for the temperatures in both the crust and the mantle
part of the lithosphere. So we want to remember that both the magnitude
and the distribution of radioactive heat production are important for the
thermal budget of the crust (Sandiford et al. 1998; 2002; Chamberlain and
Sonder 1990).

3.4.3 Geotherms with Heat Flow Boundary Condition

We begin our calculations of stable geotherms by integrating eq. 3.55 by as-
suming a somewhat different boundary condition at the base than what we
have used to derive eq. 3.59. We will assume as boundary condition that the
heat flow at the Moho is constant, instead of assuming the temperature at
the base of the lithosphere. We do this for three reasons: Firstly, because
this boundary condition has been the assumption of England and Thompson
(1984). Their model has become the classical model to describe Barrovian
metamorphism and is therefore the obvious starting point. Secondly — fol-
lowing the argument of England and Richardson (1977) — we want to argue
that we know the heat flow at the Moho much better than the temperature
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Figure 3.18. Four simple models describing So
the distribution of heat production with depth 4
in the crust (s. Haack 1983). The total heat pro-
duction of the crust is given by the area under-
neath the model curves. It is the same for all
four models and is shaded for model c. a Con-
stant concentration in the entire crust and no / b
a

s

LC

]
lal
- Zrad

heat production in the mantle. b Constant con-
centration in the upper crust in a layer with
the thickness z,,4 and no heat production below
that. ¢ Exponential drop off of the heat produc-
tion with depth. d Heat production peaking in
the middle crust. Such a situation may occur if
a crust with heat source distribution ¢ is buried
underneath a low heat producing sedimentary
pile. Note that the surface heat production is * z
different in the different models, while the total

heat production is the same

\
MOHO

or depth of the base of the lithosphere. Thirdly, we assume this boundary
condition because the integration of eq. 3.55 is quite easy with this boundary
condition.

Constant Heat Production. If the heat production is independent of
depth, S is a constant. Integration of eq. 3.55 results in:

k?g =-5z+C; . (3.62)

dz

The left side of this equation has the units of heat flow. The constant of
integration €y must be derived from the boundary conditions. If we know
the mantle heat flow at the Moho, and assume that it is constant through
time, we can describe this condition as: ¢mn=constant at z = z.. If no details
are known about the changes of the heat flow at this depth, then this is the
most simple assumption and corresponds therefore with the idea of a good
model (sect. 1.1). With this assumption, the constant of integration must be:

Cl :Szc+Qm ,

so that at the depth z = 2 (2. is the crustal thickness) we get: k (%) = ¢m-
After inserting C; into eq. 3.62 and integrating a second time we get:
S22
kT = - + Szez + gmz + Ca . (3.63)
The most meaningful assumption for the second boundary is that the tem-
perature at the surface at 2 = 0 has the value T = 0. This gives us that
Cy = 0. After some simplification we get the following expression:



3.4 - Heat in the Continental Lithosphere 95

Figure 3.19. Two calculated T(°C)
continental geotherm. It was 200 600 1000
assumed that the mantle heat 0
flow has the value continental
gm =0.025 Wm~2. Curve a was geotherms
calculated assuming that the
entire crust has a constant heat
production. It was calculated
with eq. 3.64. Curve b was
calculated with eq. 3.70
assuming that the heat
production decreases
exponentially with depth

(hr =10 km). For ¢ and b
following other assumptions were
made: z, =35 km;
8=3-10"°Wm® (= Spin

eq 3.70); k=2Js 'm K™!

depth (km)
)

N
[=]

30

T:%(zc—%)+% . (3.64)
Equation 3.64 describes the temperature as a function of depth in the crust.
It is an analytical solution of the differential equation eq. 3.55. An analysis
of the units can be used to confirm the internal consistency of this equation.
A geotherm calculated with eq. 3.64 is shown in Fig. 3.19a. It is immediately
obvious that the temperatures are much too high, although we made mean-
ingful assumptions for mantle heat flow, crustal thickness and surface heat
production. However, we also made the incorrect assumption that the heat
production is constant in the whole crust and has everywhere the same value
as that measured on the surface. This assumption is in contrast to what we
argued on p. 93, where we discussed the distribution of heat production with
depth. The real distribution of the heat producing elements in the crust is
not very well known, but we can help ourselves with one of the models from
Fig. 3.18. If we make the assumption b from that figure (heat is only produced
at a constant rate down to the depth zra4), then there is a discontinuity in
the heat production with depth. As a consequence, we can integrate eq. 3.55
only to the depth 2 = z.,4. We get a result that is very similar to eq. 3.64:

T = % (zrad — %) + % in the region: 2 < Zad - (3.65)

For larger depths we can help ourselves with the knowledge that the geother-
mal gradient must be a straight line (i.e. the heat flow must be constant and
is gm) because there is no disturbing influence or heat production anymore
(s. eq. 3.59). The temperature at the base of the heat producing layer may
be found by evaluating eq. 3.65 at the depth 2 = 2paq- Below this depth the
temperature gm(z — zrad)/k must be added to the temperature at the base of
the assumed heat producing layer. It follows that:
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2
T= S;—r];d % in the region: 2> Zmaq - (3.66)

If you do not understand what we did in the last lines, draw a little sketch
that illustrates every written sentence. Equations 3.65 and 3.66 are those
that England and Thompson (1984) used for their classic model explaining
regional metamorphism (s. sect. 6.2.1). If we insert reasonable values for the
parameters, then we get temperatures at the base of the crust between 500°C
and 600°C. We also get a depth for the base of the lithosphere (the depth
of the 1200°C isotherm) around 100 to 150 km. Both corresponds to a large
number of observations from the stable continental shields and the equation
provides a good model description of continental geotherms.

Exponential Heat Production. A much more elegant model assumption
for the distribution of the heat production in the crust is the assumption that
there is a continuous exponential drop off in radioactive heat production with
depth (model ¢ in Fig. 3.18). This model has the great advantage that there
is no discontinuity in the heat production in the crust and we do therefore
not need several equations to describe a single geotherm as we did above. A
continuous distribution of radioactivity with depth also appears intuitively
more appropriate. We assume that:

Sezy = Sge(_hz_r) . (3.67)

The variable h, is called the characteristic drop off or skin depth of heat
production. According to eq. 3.67, the heat production at depth z = h, is
only the 1/e part of the heat production at the surface Sp. Our new starting
equation is now:
2T -
kS = —Spe7) 3.68
dz?2 0 (3.68)
The integration of this equation is a bit harder than those of the previous
section but it still only involves the integration of simple exponential functions
(s. Table C.2). A first integration gives:
dT =
ko= = heSoel %) 40y (3.69)
dz
Note that we used the “product rule” for this integration (s. appendix C,
Table C.1, C.2). Assuming the same boundary condition that we used in the
last section, the constant of integration is:

Cl = _hrsoe(_}%) + Gm

After inserting this constant into eq. 3.69 and a second integration we get:

_ Zc

KT = —h280el=%) — 21, S0el=5) 4 gz + Cs (3.70)



3.4 - Heat in the Continental Lithosphere 97

Figure 3.20. This illustration

shows how the thickness of the |
mantle part of a thermally de-
fined lithosphere is automatically

determined by the condition of
a constant mantle heat flow at
the Moho. All three geotherms on
this figure have the same thermal
gradient at the Moho and there-
fore the same heat flow through
the Moho. However, the mantle
parts of the lithosphere (thickness
shown by double arrows) is very
different for the three examples

Moho (z)

| K4

The second constant must be Cy = hng so that the condition T = 0 at
the surface (z = 0) is fulfilled. Fig. 3.19b shows a geotherm calculated with
eq. 3.70 after inserting this integration constant and using reasonable values
for all parameters. We see that the geotherm has a realistic shape. Eq.3.70 is
a good model description of stable continental geotherms.

How do Geotherms Continue at Larger Depth? In the previous sec-
tions we have used a known mantle heat flow as the lower boundary condition
for our integration of the steady state heat flow equation. Our calculations
were therefore confined to the description of the crust. The thickness of the
mantle part of the lithosphere was implicitly determined by the boundary
conditions (Fig. 3.20). The depth of the base of the lithosphere is thermally
defined by the temperature 7] =~ 1200 °C, so we only need to find the depth
where our geotherm reaches this temperature to determine the thickness of
the mantle part of the lithosphere. With a thermal conductivity of k = 3, and
a mantle heat flow at the Moho of 0.03 Wm™2, the steady state thermal
gradient is 10°Ckm™~! at the Moho. As we assumed no radioactive heat pro-
duction in the mantle part of the lithosphere, this gradient will be constant in
the remainder of the mantle lithosphere. If the Moho-temperature is 500°C
then this gradient implies a thickness of the mantle part of the lithosphere of
70 km (if we define the lithospheric base thermally by the depth where the
geotherm intersects the 1200°C isotherm).

This is quite a reasonable value for the thickness of the mantle lithosphere.
Nevertheless, we have only implied this thickness of the mantle part of the
lithosphere whereas the equations of the last sections were only designed
to describe the crust. Because there is many reasons why we may want to
prescribe the thickness of the mantle lithosphere as well (for example because
we know it from considerations of surface elevation or lateral buoyancy forces)
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Figure 3.21. Examples of T(°C)
continental geotherms calculated 200 600 1000
with a lower boundary condition

of a fixed temperature at the

base of the lithosphere.

Geotherm a was calculated 20
assuming constant heat
production in the crust and no
heat production in the mantle
lithosphere. Geotherm b was
calculated for a continuous,
exponentially decreasing heat
production using eq. 3.74. The 80
temperature 73 is assumed to be

1280 °C; all other parameters

are the same as in Fig. 3.19 100

40

60

depth (km)

continental
geotherms

a lower boundary condition at the base of the lithosphere is often more useful.
In the next section we discuss such alternative lower boundary conditions.

3.4.4 Geotherms with Fixed Basal Boundary Condition

If we define the lithosphere thermally, we implicitly state that we know the
temperature at its base. An obvious choice for a lower boundary condition
may therefore be: T = Tj at the depth z = 2. This choice allows us to describe
temperatures in the entire lithosphere. However, we have to pay for this
advantage by having to deal with various discontinuities of the parameters at
the Moho, for example density. This complicates the integration of eq. 3.35.

Constant Heat Production. In a model where we assume constant heat
production rate in the crust and no heat production in the mantle part of
the lithosphere, density end heat production are discontinuous at the Moho.
This complicates the integration of eq. 3.55 dramatically. We will not present
the equations here and refer the interested reader to the original works of
Sandiford and Powell (1990) or Zhou and Sandiford (1992). However, for
comparison with the thermal model of England and Thompson (1984) we
show an example of a geotherm calculated with these assumptions as curve a
in Fig. 3.21. We see that this model results in unrealistically high tempera-
tures if we assume the surface heat production rate to be representative for
the whole crust.

Exponential Heat Production. If we assume a continuous heat produc-
tion in the whole lithosphere that decreases exponentially with depth, then
we can derive from eq. 3.68 an elegant and simple description of stable con-
tinental geotherms. After two integrations we get:

kT = —h?Soe(_ﬁ) +Ciz+Csy . (371)
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Both constants of integration can only be evaluated after this second inte-
gration. The second integration constant Cs is fairly easy to determine if we
assume again that T' = 0 at the surface where z = 0. At 2 = 0 the exponential
term in eq. 3.71 goes to 1 so that Cy must be:

Cy=h2S, . (3.72)

The lower boundary condition of T = T} at the depth z = 2; can be evaluated
by rearranging eq. 3.71:

z

_ KD 1SRy

Ci (3.73)
21 21 |
After inserting both constants into eq. 3.71 we get:
_ 2y h2S, (&) (-2 2
T=""+ (1-e)) - (1-e hr)z—l . (3.74)

Curve bin Fig. 3.21 is an example of a geotherm calculated with this relation-
ship. Eq. 3.74 provides a realistic and useful description of stable continental
geotherms and has been presented and used by a number of authors (Zhou
and Sandiford 1992; Stiiwe and Sandiford 1995; Mancktelow and Grasemann
1997: eq. 13).

More General Formulations. Using a lower boundary condition where
we explicitly prescribe the thickness of the mantle part of the lithosphere (as
we did in the previous section) is extremely useful to explore the influence
of thickness variations of crust and mantle lithosphere on the temperatures
in the crust. In order to do this more efficiently, it is useful to introduce two
new parameters: the vertical thickening (or thinning) strain of the crust and
that of the lithosphere. We call these parameters f. and f; and will discuss
them in some detail in sect. 4.2.3 (s. a. sect. 5.1)(Sandiford and Powell 1990).
A value of f. =2 means that the crust is twice as thick as in the reference
state (Sandiford and Powell 1990; Zhou and Sandiford 1992). Using these
parameters, eq. 3.74 can be generalized. All we need to do is multiply the
reference crustal and lithospheric thicknesses z. and z with their respective
thickening strains. We also need to be careful with the thickness of the skin
depth of the heat production which also changes with crustal thickening or
thinning. Eq. 3.67 becomes:

Sy = Soe(_hrzT) . (3.75)

If we substitute of these generalized formulations for the thicknesses of crust,
lithosphere and skin depth into eq. 3.68 and integrate it subject to the same
boundary conditions we used for eq. 3.74, we arrive at:

_ T f(?h?SO — i ——zcl%lr- i
T—H+T<(l—e( fcr)>—<1—e( 7 )> fm) . (3.76)
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This equation is the most general and most elegant, form of a geotherm equa-
tion that can be used to calculate temperatures in the entire lithosphere for
any thickening geometry of our choice. We only need to keep in mind that
the temperatures we caluclate are only potential temperatures which means
that they may not be reached during an orogenic cycle. In the next section
we will use this equation to calculate some important temperatures.

e Moho Temperature from eq. 3.76. For many thermal and mechanical con-
siderations the Moho-temperature is a meaningful parameter that can be used
to characterize the thermal structure of the entire lithosphere (sect. 6.2.2). If
we want to calculate this temperature for a series of crustal and lithospheric
thicknesses, we must evaluate eq. 3.76 at z = z. for a series of f. and fj.
Figure 3.22 shows an f.-fi-diagram of Moho-temperature. It shows that the
Moho-temperature does not change very much for homogeneous thickening
of the entire lithosphere (which would appear on this figure as a diagonal
path from f. = fi = 1 towards f. = fi = 2). This is because the heating ef-
fect of the increased thickness of the heat producing crust is almost balanced
by the cooling effect of the thickened mantle part of the lithosphere. We
have indicated this effect already in the discussion of Fig. 2.18a. However,
the strong curvature of the contours on Fig. 3.22 shows that in very thin
crusts (fo << 1), the Moho-temperature depends largely on the thickness
of the mantle part of the lithosphere. Also, in very thick crusts (fo >> 1),
the Moho-temperature depends mostly on crustal thickness. This is because
there the Moho-temperature is largely determined by the radioactivity in the
crust. Small changes in crustal thickness will lead to quite significant tem-
perature changes, while the thickness of the mantle part of the lithosphere is
comparably insignificant.

Figure 3.22.

Moho-temperatures of / /
continental lithosphere for
different crustal thickening
strains (expressed by f.) and for 300
different total thickening strains 15

of the lithosphere (expressed /

by f1). The diagram was 400

calculated with eq. 3.76 fi
assuming z = z.. The 500
assumption of the parameters 10 /

Moho temperature

are the same as in Fig. 3.21. The 600 /
thick line in the bottom right

hand corner of the diagram 700
marks the limit of the allowed /

part of parameter space. It is

explained in more detail in the 0.5 —
context of Fig. 4.7 0.5 1.0 15 2
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e Surface Heat flow from eq. 3.76. The surface heat flow ¢ is one of the
few important thermal parameters of the lithosphere that can be measured
directly. It is therefore a much used parameter to define thermal features
in the lithosphere (e.g. Zhou and Sandiford 1992). Within the models dis-
cussed above, heat flow is simply given by the derivative of the geotherm
equations with respect to depth and divided by the thermal conductivity.
The surface heat flow ¢s; can then be found by evaluating these derivatives
at the depth z = 0. For a boundary condition at the base of the lithosphere
(and exponentially decreasing heat production with depth) we get from from
eq. 3.76:

Figure 3.23. The surface heat
flow (contoured in 107*W m—2) / /
for a range of crustal thicknesses surface heat flow
30
[

(expressed by the vertical

thickening strain f.) and for a

range of total thicknesses of the 15
lithosphere (expressed by the

vertical thickening strain fi).

The diagram was calculated fi 50
with eq. 3.77. The assumptions
for all parameters are the same 60
as in Fig. 3.21, curve b 1.0
/ :
05 //
0.5 1.0 1.5 2
fc
T h _ha
g5 = k= + So foh (1 _ Jele (1 —el fchr))) (3.77)
fra fia

Figure 3.23 shows an f.-fi-diagram, which is contoured for ¢;. We can see
that the surface heat flow depends much more on the crustal thickness than
the Moho-temperature does (compare Fig. 3.22 ).

3.5 Heat in the Oceanic Lithosphere

Oceanic lithosphere contains practically no radioactive elements. Thus, one
could think that it is simple to describe stable oceanic geotherms. In analogy
to continental geotherms we might want to formulate the geotherm equation
as:

—— =0 . (3.78)
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After one integration we get:

k—=C
dz !
Using the boundary conditions that are well-known to us from sect. 3.4.3
with: ¢ = gm at the depth z = z., we get:

If we also assume that T = 0 at the surface z = 0, then C5 = 0 and we can
write:

T = z‘%‘ , (3.79)
... if the same boundary conditions as in sect. 3.4.3 are used. However, eq. 3.79
is not a very good model to describe oceanic lithosphere. A simple consider-
ation of the time scale of conductive equilibration will show us why: oceanic
lithosphere is produced at the mid-oceanic ridges and it gets its thickness
only by its increasing age. The oldest oceanic lithosphere is about 150 my
old (Fig. 2.4). However, in sect. 3.1.4 we showed that the characteristic time
scale of equilibration for thermally stabilized lithosphere is of the order of
150 my or more! We can conclude that oceanic lithosphere is not thermally
stabilized. The assumption underlying eq. 3.78 is wrong. There is no ther-
mally stabilized oceanic lithosphere! We can not assume that d7' / d¢t =0 and
we must solve the time dependent diffusion equation (eq. 3.6).

3.5.1 Aging Oceanic Lithosphere

The oceanic crust, that is produced from partial mantle melts at the mid-
oceanic ridges is only of the order of 5-8 km thick. That is, it is much
thinner than the continental crust. At the mid-oceanic ridge the thickness
of the entire oceanic lithosphere is that of the crust (Fig. 3.24). The high
potential energy of the ridges forces this crust to move away from the ridge.
As the oceanic crust ages and moves further and further away from the mid-
oceanic ridge, the asthenosphere cools and becomes part of the oceanic mantle
lithosphere. It is often said that the mantle successively “freezes” onto the
base of the oceanic lithosphere as it ages. While this describes the process
quite intuitively, it is somewhat incorrect as the asthenosphere itself is not
molten. Regardless, the process of the successive cooling of the aging oceanic
lithosphere can be described with the diffusion equation using simple initial
and boundary conditions. Indeed, the description of oceanic lithosphere with
these boundary conditions has become one of the most successful models
of plate tectonic theory (s.a. Sclater et al. 1980). It is called the half space
cooling model (s. sect. 3.6.1).
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Figure 3.24. Thickness and thermal profile of oceanic lithosphere at a series of
points. The oceanic crust is not drawn separately. On the scale of this sketch it would
appear as a very narrow band of constant thickness near the upper boundary of
the gray shaded region

The Half Space Cooling Model. As any other problem in the theory of
heat conduction, the half space cooling model relies on the integration of
eq. 3.6, using a set of boundary and initial conditions. These conditions are
provided by geological observation: The temperature at the surface of mid-
oceanic ridges is that of the water temperature. For simplicity, we assume
that it is 7y = 0. Below the ridge, the mantle temperature is almost con-
stant — convection equalizes all temperature gradients. Thus, we can write a
very simple initial condition describing the thermal profile below mid-oceanic
ridges:

— T =T at the depth z = 0 and:
— T =1Tj in all depths 2z > 0 at time ¢ = 0.

This initial condition is illustrated in T-z-diagram on the bottom right corner
of Fig. 3.24. For the upper boundary condition it is obvious to assume that
the temperature at the ocean floor remains constant. As there is effectively no
lower boundary, we assume that it lies at infinity and that the temperature
there is T = 13. We can write this as follows:

— T=T,at z=0for all £ > 0 and:
—T=Tatz=occforallt>0.

(Fig. 3.24). The solution of the heat conduction equation for these boundary
conditions is:

T=T,+ () —T,)ert ( (3.80)

z
Vv 4&1?)
This solution is already a bit familiar to us from section 3.1.3 and we discuss
this solution in some more detail in sect. 3.6.1 (s. a. sect. 3.1.3). Fig. 3.25a
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shows temperature profiles through oceanic lithosphere of different, ages, that
were calculated with eq. 3.80. The curves correspond to the two sketches of
thermal profiles in the middle and on the left of Fig. 3.24. Fig. 3.25b shows
the depth of a series of isotherms as a function of age.

Surface Heat Flow: The Test for the Model. Temperature profiles cal-
culated with this model for the cooling oceanic lithosphere can not be tested
directly, as we cannot drill deep enough into the oceanic lithosphere. Our ob-
servations are confined to parameters which we can measure near the surface.
One of these parameters is easy to measure and very useful to infer the ther-
mal profile: the surface heat flow (Pollack et al. 1993) (Fig. 3.1). The surface
heat flow is the product of thermal conductivity and the thermal gradient
at 2z = 0. This can be calculated from eq. 3.80 and can be compared with
measured data in the oceans. To obtain surface heat flow we must differen-
tiate eq. 3.80 with respect to depth and evaluate it at z = 0. From eq. 3.80
this is:

)

(3.81)

As the error function itself is an integral (see eq. 3.15), it is easy to differen-
tiate eq. 3.80 (sect. 3.1.3). We get:

1
s = k(T — Ty — .
4 k(l ) K

(3.82)
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Figure 3.25. a Temperature T versus depth profiles through oceanic lithosphere
at a number of different ages labeled in my. b The depth of isotherms (in °C)
in oceanic lithosphere as a function of age between 0 and 100 my. The curves on
both figures were calculated with eq. 3.80 assuming 7} =1280°C. The age can be
converted into distance from the mid-oceanic ridge by using z = wu/t where z is
the distance from the ridge and w is the rifting rate. Compare the curves also with
Fig. 3.40
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This equation can be generalized for the description of different oceanic plates
with different rifting rates. For this, we express the rifting rate u as u = /1.
There, z is the distance from the mid-oceanic ridge and ¢ is the age. If we
replace ¢ in eq. 3.82 by z/u, we get:

u

gs = k(11 — Ty) — (3.83)
Eq. 3.83 shows us that the surface heat flow as a function of distance from the
mid-oceanic ridge is a square root function. Fig. 3.26 shows the surface heat
flow in oceanic lithosphere as calculated with eq. 3.83. The heat flow data of
Sclater et al. (1980) show that these curves correspond well with heat flow
measured in the deep oceans. In sect. 4.4.1 we will show that the half space
cooling model is not only a good description for the temperatures and heat
flow in oceanic lithosphere, but can also be used to describe the water depth
of the oceans. It can even be used to calculate the magnitude of the ridge
push force (sect. 5.3.2). The relationship between all these parameters that
are described with the half space cooling model is called the age-depth-heat
flow relationship of oceanic lithosphere. This age-depth-heat flow relation-
ship corresponds fantastically well with our observations up to an age of the
oceanic lithosphere of 50 — 80 my. The age-depth-heat flow relationship is
generally accepted as one of the greatest successes of plate tectonic theory.

Alternative Models for the Aging Oceanic Lithosphere. The half space cooling
model is the most famous model for the description of oceanic lithosphere,
but there is several reasons why it may not be a perfect description:

— The half space cooling model assumes implicitly that the heat flow at the
base of the lithosphere changes through time. It is not clear that this should
be so.

Figure 3.26. The surface heat distance from mid-oceanic ridge (km)
flow of oceanic lithosphere as a 500 1000 1500
function of age and therefore as
a function of distance from the
mid-oceanic ridge as calculated
with eq. 3.83. Contours are for
different rifting rate labeled in
cmy !

0.08

0.06 \

surface heat flow gs (W m™)
(]
(=]
=
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— The model fails to describe the water depth and the surface heat flow of
oceanic lithosphere beyond an age of about 80 my.

Moreover, various recent studies have shown that the increase in water depth
and changes in heat flow with distance from the ridge deviate a bit from the
half space cooling model and that there is a relationship between seafloor
subsidence rate and height of the ridge (Dumoulin et al. 2001). One possible
alternative model is to assume that the mantle heat flow through the base of
the lithosphere is kept constant by small scale convection (Doin and Fleitout
1996). This assumption leads to a description which corresponds much better
with the long term evolution of oceanic lithosphere than the half space cool-
ing model. This idea is know by the name of CHABLIS-model. This name
is an acronym for: Constant Heat flow Applied to Bottom of Lithospheric
Isotherm . Some authors have also argued that the observed seafloor depth
and heat flow can be better explained if small amounts of radiogenic heat
production of the thin oceanic crust are considered (Hillier and Watts 2005).

3.5.2 Subduction Zones

The description of the kinematics, thermal evolution and dynamics of sub-
duction zones is a fundamentally two-dimensional problem. It is the first
problem in this book for which we require more than one spatial coordinate
to characterize the essence of the problem (Fig. 3.27). Many problems re-
lated to subduction zones concern the accretionary wedge that forms near
the surface between the surface of the subducting slab and the upper plate.
Dynamic and kinematic models for accretionary wedges will be discussed in
sect. 6.2.3 and also in sect. 5.3.2. Here we discuss some general aspects about
the deep thermal structure of subduction zone environments.

Figure 3.27. Schematic illustration of the temperature distribution in subduction
zones. the subducted lithosphere is shaded light, the upper plate dark. The thick
dark line that follows the 1600 °C-isotherm outside the subduction zone is the
Clapeyron-curve. It marks the olivine-spinel phase transition
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Isotherms in Subduction Zones. Fig. 3.27 shows, schematically, the
shape of isotherms in subduction zones. In the subducting slab, the isotherms
will be bent and subducted with the slab. The further they are subducted, the
more they merge to the center of the slab as both surfaces of the subducting
slab equilibrate with the surrounding mantle temperatures. A thermal steady
state will be reached when the curvature of the isotherms is large enough so
that the rate of thermal equilibration is balanced by the subducting velocity
(s. Fig. 3.3; s. Molnar and England 1995). In this stage, diffusion (which leads
to the decay of the high curvature of the temperature profile in the tip of the
subducting slab) will be balanced by advection (which moves the isotherms
to larger depths). A steady state is reached that is very similar to the balance
discussed in the second comparison on page 3.2 and also equivalent to the
steady state that landforms between incising drainages may reach (discussed
in Fig. 4.37). The time that is needed by subduction zones to reach this ther-
mal steady state depends on the thickness of the plate and on the subduction
rate. It can be estimated with the Peclet number (sect. 3.3.4).

At a temperature of about 1600°C, which is in about 400 km depth,
olivine reacts to form spinel. The depth of this phase transition is called
the Clapeyron-Curve. This reaction is exothermic with about 1.7-10% Jkg='.
Thus, the isotherms in this depth have a kink. The positive slope of the
Clapeyron curve in P-T-space causes that the Clapeyron curve is somewhat
higher within the subducting slab than it is outside. At a depth of 650 km
(about 1700°C) there is another kink in the geotherm, caused by the phase
transition from spinel to oxide (not illustrated on Fig. 3.27). The qualitative

upper plate

partial melts

flow lines of
mantle convection

Figure 3.28. The motion of melts in and above the Benioff zone according to
Spiegelman and McKenzie (1987). The dashed lines show the convective motion in
the asthenosphere, the continuous lines are the motion of the partial melts. The
enlarged sections show how the velocity field of the partial melts is given by the
sum of the upward velocity of the melt and the motion in the mantle wedge
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direction of this kink is opposite to that of the Clapeyron curve as the spinel-
oxide phase transition is endothermic.

Fig. 3.27 shows schematically that the isotherms within the upper plate are
closer to the surface near the subduction zone than they are in the far field.
This is because of the dehydration of the subducting plate and the conse-
quential rise of partial melts and other hot fluids. This leads typically to high
temperature metamorphism in the rocks of the upper plate and ultimately
to the development of magmatic arcs (see next section). This is in contrast
to the very low temperatures that occur in the subducting plate up to very
large depths. This coupled occurrence of low-pressure - high-temperature and
high-pressure - low-temperature metamorphism was recognized by Miyashiro
(1973) as one of the characteristic features of metamorphic terrains in sub-
duction zone environments. He called this a paired metamorphic belt.

Island Arcs and Subduction Zones. An interesting observation in the
upper plate of subduction zones is that there is volcanic arcs that always
form a narrow line that is exactly where the seismically active surface be-
tween the subducting slab and the upper plate is about 150 km deep (Isacks
and Barazangi 1977). In subduction zones that have a dip of 45° this im-
plies a horizontal distance of the arc from the trench of 100-150 km. If the
subduction angle is steeper, then this distance is shorter and vice versa. This
observation is true for the distance of the Aleute-volcanoes to the Aleute
Trench, for the distance of the Indonesian volcanoes from the Java Trench
and many other volcanic arcs around the globe. This observation is not trivial
to explain. The volcanics that erupt from these volcanoes are derived from
partial melts in the mantle wedge that melted during fluid infiltration of
fluids that were derived by dehydration of sediments on the surface of the
subducting slab in the Benioff-zone. This zone stretches for several hundreds
of kilometers along the surface of the subducting slab and is definitely much
wider than the width of the volcanic arcs on the surface. Some authors have
suggested that there are important pressure sensitive dehydration reactions
that occur in exactly 150 km depth, but there is little petrological evidence
for this.

An alternative explanation was suggested by Spiegelman and McKenzie
(1987) (Fig. 3.28). Their model describes the motion of partial melts through
the mantle wedge as the sum of two vector fields:

1. The motion of the asthenosphere in the mantle wedge. This motion follows
the wedge and is illustrated in Fig. 3.28 by the dashed lines.

2. The motion of the partial melts. Partial melt is produced continuously
along the surface of the subducting plate and moves vertically upwards.

The sum of the two velocity fields results in curved paths that converge at
the tip of the mantle wedge (Fig. 3.28). This elegant model is a beautiful
example for a successful model description of fluid flow in deforming rocks.
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Figure 3.29. Integrated thermomechanical model of Gerya and Yuen (2003) to
describe subduction related processes. The shown model also considers metamor-
phic processes, for example dehydration reactions and is set up to investigate the
development of mixed and unmixed plumes in the mantle wedge in response to slab
dehydration (Gerya pers. comm. 2006). Different gray shades are different layers.
The inset at left shows more detail in the accretionary wedge but is actually from a
different model run. The P-T diagram at right shows P-T paths of different rocks
in the wedge as indicated by the symbols in the inset at left. Note that crustal rocks
can easily reach 2.5 GPa by being dragged down along the surface of the subducted
slab. Because they are then rapidly exhumed within the same wedge, they have not
found time to heat up and remain in the eclogite and blueschist facies (s. Fig. 7.1)

molten wet peridotite

50 km 100 " 450 200

P-T Paths in Subduction Zones. Although the model shown in Fig. 3.28
is extremely elegant, a range of observations and new modeling results have
made it somewhat redundant. Geologists have noted that arc volcanoes are
not as narrow as thought by Isaacks and Barazangi (1977) and our recent
understanding of dehydration processes on subducted slabs have indicated
that the temperature range of dehydration may be small enough to cause
some focusing of fluids without having to appeal to the model of Fig. 3.28.
One of the most sophisticated models that have recently been used to describe
such processes is the model of Gerya and Yuen (2003) (Fig. 3.29).

3.6 Thermal Evolution of Intrusions

Intrusion of magmatic rocks into higher levels in the crust is an important
geodynamic process that can be responsible for a large range of thermal,
chemical and mechanical changes in the crust. Intrusive rocks, as well as
their contact aureoles, are familiar to us from field observations. Thus, their
geodynamic interpretations can often be tested directly with structural and
petrological data. The process of intrusion itself is a very efficient mechanism
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for the transport of heat. Thus, most intrusions do not cool very much on their
intrusive path and their temperature may be used to infer the temperature
of rocks at the depth of their origin. There are two important reasons, why
the quantitative description of the thermal evolution of intrusions is quite
simple:

— In comparison to the duration of a contact metamorphic event or the du-
ration of an orogenic cycle, the rate of intrusion is very rapid. Thus, for the
thermal modeling of intrusions it is possible to assume that their emplace-
ment was infinitely rapid, compared to the time of the subsequent thermal
equilibration. This is what is called an instanteneous heating model. The
thermal equilibration of intrusions with their surroundings can therefore
be described with the heat conduction equation (eq. 3.6), assuming the
intrusion geometry as an “initial condition”.

— Most intrusions are small if compared to the size of their surroundings, for
example the distance to the surface or to the base of the lithosphere. Thus,
the boundary conditions that are needed to solve the heat conduction
equation can often be assumed to lie at infinity in comparison to the scale
of the problem.

With these two assumptions, it is possible to solve the heat conduction equa-
tion. The solutions may then be used for the analytical description of the
thermal evolution of intrusions. For simple intrusion geometries, for example
dikes, the description is very similar to description of the thermal evolution
of oceanic lithosphere (sect. 3.5.1). However, before we use such a model,
we need formulate two more simplifying assumptions which we will make
initially:

— The latent heat of fusion - which actually plays an important role for
the thermal energy budget of intrusions - will be neglected. Thus we will
analyze in the first instance none of the processes discussed in sect. 3.2.

— The thermal conductivity is assumed to the constant in space. Thus we
will also not consider any of the problems discussed in sect. 3.1.1.

With these assumptions, it is possible to integrate eq. 3.6. We begin with
some simple examples.

3.6.1 Step-shaped Temperature Distributions

The most simple of all model examples describing the cooling of rocks in
the direct vicinity of intrusions is given by the thermal equilibration of step-
shaped temperature profiles in one dimension. This example is illustrated in
Fig. 3.30 and is one of the most useful examples for the understanding of
the cooling history of intrusions. We interpret the temperatures on the two
sides of the step as the intrusion- and the host rock temperatures; 7} and
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Ty, respectively. The step itself is the intrusion contact. If we choose a one-
dimensional coordinate system in which the origin z = 0 is exactly at the
contact of the model intrusion, then the initial and boundary conditions of
this equilibration problem may be described by:

— Initial condition: T =T; for all z > 0and T =T for all z <0 at t = 0.
— Boundary conditions: T =T}, at z = —oco and T = T} at z = oo for all
t>0.

You may have noticed that there is fwo boundary conditions that are located
a very long distance from the contact inside the intrusion and far away from
the contact in the host rock (at z = 400 and z = —o0). We need two
boundary conditions because the equation that is to be solved (eq. 3.6) is a
partial differential equation of the second order (s. sect. B.1.1). Integration
of eq. 3.6 using these boundary and initial conditions gives:

T:Tb+w<l+erf<\/iﬂ)> . (3.84)

We will not discuss how eq. 3.84 was derived (s. sect. 3.1.3) but when you
compare this equation to eq. 3.80 you will see that it is very similar and differs
from the most simple form of the half space cooling model only by some
shifting and scaling of the error function. Because of the choice of coordinate
system we have made to formulate this problem (Fig. 3.30), this solution looks
very simple. In another coordinate system in which the coordinate origin is
located at a distance ! from the temperature step, the initial condition must
be reformulated to: T = Tifor all z >l and T =Ty all z <l at t = 0. The
boundary conditions remain the same. The solution gets the form:

T:Tb+w<l+erf<f/;_’;t)> . (3.85)
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Figure 3.31. Schematic TA
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Again, in comparison to eq. 3.85 you can see that this solution only shifts the
temperature profile to the right place. On Fig. 3.30 it may be seen that the
thermal evolution on both sides of the mean temperature between 75 and T},
develops symmetrically. This is to be expected as the initial and boundary
conditions are also symmetric.

e Cooling of half spaces. In the example of eq. 3.84, the temperature at z = 0
stays constant in time. It has the value T}, + (T; — T3,)/2. Thus, this problem
is very similar to the description of the cooling of semi-infinite half spaces
(sect. 3.5.1). This thermal problem is very important in the earth sciences
and may be described by the following initial and boundary conditions:

— Initial condition: T =Ty, at all z >0 and T'=T; at 2 =0 at time ¢ = 0.
— Boundary conditions: T =T at z =0 and T =Ty, at 2 = oo for all ¢ > 0.

These conditions are very similar to those of the last problem. Thus, the
corresponding solution is also similar to eq. 3.84:

T=T,+(T: —Ty) (1—erf<\/iﬂ>> . (3.86)

We have met this equation in a slightly different form already in sect. 3.5.1.
The result of eq. 3.80 and eq. 3.86 can be simplified if it is expressed as the
dimensionless temperature § = (T — Ty)/(T} — Th) (sect. 1.2). Then, using
the complementary error function, eq. 3.86 simplifies to:

§ = erfc (ﬁ) . (3.87)

This simplification is shown here to illustrate that cooling curves of this
problem have the shape of an error function. However, in the remainder of
this section we will not use dimensionless temperatures. We begin with some
geologically relevant examples that may be described with this solution.

3.6.2 One-dimensional Intrusions

One of the simplest but also most important applications of the equations
introduced in the last section is the description of the cooling history of
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intrusions (Jaeger 1964). As the solutions shown above are one-dimensional,
their application is particularly relevant to the description of the thermal
evolution of dikes that are narrow compared with their lateral extent. When
using the solutions described above to describe the cooling history of dikes,
it is implied that the dike extends “infinitely” in the two spatial directions
normal to the coordinate described in the cooling problem. In contrast to
the previous sections, we only need to be careful to consider both surfaces
of the dike. For a coordinate system with its origin in the center of a dike
with the thickness [, the initial conditions may be described by: T = T; for
—(1/2) < z < (1/2) and T = T}, for (I/2) < 2z < —(I/2) (Fig. 3.31). The
boundary conditions remain the same as for the step problem. With these
conditions, a solution of eq. 3.6 may be found to be:

Figure 3.32. Thermal
equilibration of one-dimensional

0
intrusions, for example 700 20
magmatic dikes of large lateral ( \
extent (calculated with eq. 3.88 600 1000

and labeled in years after initial
intrusion). All parameters are
the same as in Fig. 3.30. Cooling
curves of rocks from a range of 400 @
distance from the dike center are
shown in Fig. 3.33a
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It may be easily seen, that the solution is made up of descriptions for two
opposing step-shaped temperature profiles at z = —/2 and z = /2. Fig. 3.32
shows the thermal evolution described by eq. 3.88. As the diffusion equation
is a linear differential equation, the diffusive equilibration of just about any
one-dimensional geometry may be described by the summation of solutions
for various initial conditions.

In contrast to Fig. 3.30, the temperature at the intrusion contact departs
from the temperature (T3 + T4)/2 after some time in Fig. 3.32. The contact
of the dike begins to cool. This is because the dike contact at z = +/2
begins to follow the thermal effects of the temperature step at z = —I/2.
Correspondingly, the other dike contact at z = —I/2 cools, because it “feels”
the cooling at z = +/2.
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Cooling History of Simple Intrusions. In the following paragraphs we
will use eq. 3.88 to infer some characteristic features of contact metamor-
phism. Firstly, eq. 3.88 shows us that — in the absence of other thermal
processes — the maximum temperature that may be reached by contact meta-
morphism is much lower than the intrusion temperature: Only at the very
contact of the intrusion the contact metamorphic temperatures may reach
the half way mark between the initial host rock and intrusion temperature.
We can conclude that field observations of contact metamorphic haloes doc-
umenting haloes of considerable width and temperature imply that thermal
processes other than conductive equilibration have played a role in their for-
mation (s. sect. 3.6.4).

e Cooling curves. In order to interpret heating and cooling curves of rocks
in the contact metamorphic environment, it is useful to plot eq. 3.88 in a
temperature-time diagram (Fig. 3.33a). This figure illustrates that rocks lo-
cated at different distances from the intrusion may experience very different
cooling curves. For example, it may be seen that some rocks cool, while others
heat up, or that rocks cool with different rates. In fact, near the contact of the
intrusion, cooling curves have extremely complicated shapes including more
than one maximum in the cooling rate {(e.g. the 490-m-curve in Fig. 3.33a).
Spend some time and think through why these different shapes come about.
As simple as the model is, it teaches us much about the equilibration of con-
tact metamorphic aureoles: Many metamorphic processes, for example grain
growth or cation diffusion, are strongly dependent on both temperature and
cooling rate (e.g. Dodson 1973). The interpretation of these curves is there-
fore extremely important (s. sect. 7.2).

e Cooling rates. The cooling rate s for a chosen point near the intrusion is
described by the time derivative of eq. 3.88. As the error function itself is
an integral, it is not too difficult to find this derivative, although we will not
explain it in detail here. It is:

_dT . (T —-Ty) z—0.5] z+ 0.51
- e((0.51-2)2/4kt) ~ o((0.51+2)2/4xt)

Tt At/ 7Kt

(s. sect. 3.1.3, 3.5.1). Cooling rates as a function of time as calculated with
this equation are shown in Fig. 3.33b. They correspond directly to the curves
in Fig. 3.33a.

For many petrological questions the cooling rate at a given temperature
is much more important than the cooling rate at a given time. For this,
a parametric plot of temperature against cooling rate is useful. Parametric
plots are diagrams in which two independent functions of the same variable
(here: time) are plotted against each other. Thus, the parametric plot of T
against s shown in Fig. 3.34 is a combination of Figs. 3.33a and 3.33b. The
time dependence of temperature or cooling rate can not be illustrated on this
figure. Thus, Fig. 3.34 may appear a bit confusing at first view. Nevertheless,

(3.89)
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Figure 3.33. a Temperature-time paths (cooling curves) for a series of rocks within
and within the contact aureole of a 1 km thick magmatic dike (!=1 km) shown
up to 40000 years after intrusion (all constants are the same as in Fig. 3.32). The
figure was calculated with eq. 3.88. The curves are labeled for distance from the
center of the intrusion in km. As the thickness is / =1 km, the first three curves are
within the magma and the others in the country rock. b Cooling rates for the same
points as shown in a plotted against time. Curves are calculated with eq. 3.89

such diagrams are crucial for a meaningful interpretation of petrological and
geochronological data.

e Contact Metamorphic Peak. Aside from cooling curves or cooling rates,
there is even more important information on the thermal evolution of in-
trusions that may be extracted from eq. 3.88. For example, the time of the
contact metamorphic thermal peak t7__ for the model of eq. 3.88 may also

max

be found analytically. At the thermal peak the rate of temperature change is
zero: sl=7,.. = 0 (read: s at ¢ = Tmax). Thus, this time is given by setting
eq. 3.89 to zero and solving for time. We get:

Figure 3.34. Parametric plot of

cooling rate against temperature. The \“
diagram was constructed from 600
Figs. 3.33a and 3.33b. Although the
diagram may not appear intuitive at
first, it is simply a combination of the
curves from Fig. 3.33a,b and is
extremely useful for the interpretation
of the equilibration of mineral
parageneses (sect. 7.2)
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Iz

z2—0.51
Zrkln (z+0.5l)
From this, we can also get the thermal peak temperature as a function of dis-
tance from the intrusion. We get this by substituting the time obtained from
eq. 3.90 into eq. 3.88 and solving that for temperature (Fig. 3.34; Fig. 3.35).

With this diagram we can make some fundamental predictions about the
nature of contact metamorphism:

Pree = — (3.90)

1. The contact metamorphic peak temperature drops rapidly with increasing
distance from the heat source.

2. The time of peak contact metamorphism increases rapidly with increasing
distance from the heat source and with decreasing metamorphic grade. This
predicts that — if contact metamorphism occurred — low grade metamorphic
rocks should experience their metamorphic peak later than high grade
metamorphic rocks (Den Tex 1963).

These predictions help to infer heating mechanisms of metamorphic terrains.
For example, during regional metamorphism the relationships between grade
and timing of metamorphism are reversed (sect. 6.3.3 and sect. 7.4.1). In
the chapter on P-T-t-paths we will discuss further implications of the timing
relationships of various cooling curves.

More Complicated One-dimensional Geometries. One of the largest
drawbacks of the model discussed in the last section (eq. 3.88 and its derived
relationships) is that it predicts much narrower contact metamorphic aureoles
than those that are generally observed around intrusions. One of the reasons
for this may lie in the geometry of the heat source. Other causes will be
discussed in sect. 3.6.4.

¢ Dike swarms. In terrains that are penetrated by many intrusions, the mean
contact metamorphic temperature may be much higher than that would be
observed around a single intrusion. This may be described schematically by
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Figure 3.36. Two examples of complicated one dimensional intrusion geometries.
a Contact metamorphism between two neighboring intrusions. The figure was cal-
culated with eq. 3.91 using z; = —1000, 2o = 1000 and I; = I, = 1000. Curves
are shown in thousands of years (e.g. the line labeled for 0.2 corresponds to 200
years). Note that the contact metamorphic aureole between the intrusions is much
wider than on their outside. b Schematic illustration of the diffusive equilibration
of a step-shaped temperature profile (for example a one-dimensional intrusion like
a sill) superimposed on a linear geotherm. Temperature profiles are shown at two
different time steps to and t1. As the diffusion equation is a linear differential equa-
tion, the temperatures of eq. 3.88 can simply be added to the geotherm equation
(in this case a straight line)

the combination of a series of temperature steps. If there is N intrusions of
the thicknesses [,,, that intrude at the depths z,,, then this can be described
by the summation of 2N steps in the temperature distribution. The solution

9= %fj <erf (%\/%5[")) + erf (%) + ) (3.91)

n=1

where 6 is again the normalized temperature # = (T'—Ty,) /(T3 —T}). Fig. 3.36a
shows an example of two intrusions calculated with this equation. It may
be seen that the contact metamorphic halo between the intrusions is much
wider and of a higher temperature than on their outside. Because of this
observation, Barton and Hanson (1989) suggested that multiple intrusion
may be the principle heat source for low-pressure high-temperature meta-
morphism (s. sect. 6.3.3). Fig. 3.36b shows another schematic example for a
one-dimensional problem that may be solved by the summation of a series of
one-dimensional model geometries (s. p. 58).

e Spherical intrusions. The thermal evolution of spherical intrusions is also a
one-dimensional problem in polar coordinates. The equation we need to solve
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Figure 3.37. Cooling history of
a spherical intrusion. For easy
comparison, all chosen 700 20
parameters and the shown time ( W
steps (labeled in years) are the 600 0
same as those in Fig. 3.32.
Calculated with eq. 3.92. -
S 500 1000
F 400
300 10000
I
200
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is eq. 3.12. If we want to compare the thermal evolution of spherical intrusions
with that described by eq. 3.88, then we formulate the following boundary
conditions: T =T}, at r = oo and r = —o0, and the initial condition T' = T
in the region —R < 2 < R and T = Tj, in the region —R > 2 > R at t = 0,
where R is the radius of the intrusion and is analogous to //2 in the Cartesian
example discussed in eq. 3.88. r is the distance from the origin. The solution
of eq. 3.12 under these conditions is:

o B () (55
_(Ti;_mm (e‘((R@:)Q) _ e‘(w)> _ (3.92)

Temperature profiles across cooling spheres at different times are shown in
Fig. 3.37. They may be directly compared with those in Fig. 3.32. It may
be seen that spheres cool much faster than dikes, which is intuitively clear
as they have a much larger ratio of surface to volume in comparison to one
dimensional steps in Cartesian coordinates.

3.6.3 Two-dimensional Intrusions

The description of two-dimensional thermal problems is — for most bound-
ary conditions — not much harder than one-dimensional problems because
heat conduction in several spatial dimensions can be described as the sum of
conduction in the individual directional components (s. egs. 3.9 to 3.10). In
general it can be said that two-dimensional heat conduction problems may
be described by the product of the one-dimensional solutions if: 1. the initial
conditions may be expressed as the product of two functions f(z) and f(y)
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and 2. the boundary conditions are given by a constant temperature or con-
stant heat flow. Solutions of the two-dimensional heat conduction equation
with z and y as the spatial coordinates can therefore be expressed as:

T =solution in z-direction x solution in y-direction

For example, the cooling history of a corner is described by the product of
the cooling of two initial step-shaped temperature profiles as we discussed
them in eq. 3.86:

Z Y
T =T+ (T} — Tj erf( )erf( ) . 3.93
b+ b) Vaxt Vaxt ( )
The diffusive equilibration of squares may be used to describe the cooling
history of a rectangular hot region. The solution for this can be derived
directly from eq. 3.88:

(Ty —Tb) ( (0.5l—z) <0.51+z>)
T=T,+ —— {erf +erf [ —Z
b 2 VAt Vakt

X <erf <0514ﬁ) + erf (%)) . (3.94)

This solution may be used to describe the cooling history of a rectangular
hot region (Fig. 3.38) and longer expansions of the same solution can be
used to describe the cooling of any two dimensional shape of an instanta-
neously emplaced heat source (Fig. 3.39). However, it also finds a series of
important applications in the fields of geomorphology (sect. 4.5) and petrol-
ogy (sect. 7.2). In Chapter 4.5 we will see that weathering of granites can be
described with the same solution.

Figure 3.38. Three dimensional illustration of the cooling of a two-dimensional
intrusion (2 times 1 km in size) of 700 °C intruding 300 °C hot rocks. Calculated
with eq. 3.94. Temperatures are shown 100, 4000 and 10000 years after initial
intrusion
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Figure 3.39. Temperatures around a series of intrusions with complicated shapes
Modeled with a series of equations like eq. 3.94 after Kiihn et al. (2004)

3.6.4 Modeling Realistic Intrusions

A series of observations in contact metamorphic aureoles of intrusions show
that these are much wider and of a higher temperature than those we have
predicted in the last section even as in the two dimensional examples shown.
There is two important reasons for this:

— All problems we have discussed so far have been “instantaneous cooling”
problems. This means, we have assumed that the cooling history com-
mences at the time of intrusion. This need not be the case. In fact, in
dikes through which magma is fed into a pluton, this would be highly un-
likely. We need to describe some contact aureoles with a model where the
temperature is fixed at the intrusion contact.

— So far we have neglected the latent heat of fusion as part of the cooling
history. This latent heat of fusion amounts to about 320 kJ per kg of rock
or roughly 8.64-10® Jm~2. During crystallization of intrusions this heat is
added to the thermal energy budget available to cause temperature change
and causes buffering of the cooling history.

In the following we discuss some simple model tools to describe both pro-
cesses.

Fixed Boundary Conditions. Intrusion near the surface, where the tem-
perature is constant, or intrusions through which magma flows to keep them
at constant temperature must be modeled assuming a fixed temperature at
the model boundary. If only one of the boundaries is fixed in temperature,
then such problems may be described as a half space problem (sect. 3.6.1), as
we have done when describing the evolution of oceanic lithosphere (see also
Fig. 3.40). However, if both boundaries of a one-dimensional problem are
fixed in temperature, then none of the solutions we discussed so far can be
used. Under fixed boundaries the integration of eq. 3.6 is quite difficult and
the solutions are not as simple as those we have discussed in sect. 3.6.2 and
3.6.3. Eq. 3.6 may only be solved by a Fourier transform (s. sect. B.4). Such
solutions contain infinite summations. In their most general form, boundary
and initial conditions of diffusion problems with fixed boundaries are given
by:
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— Initial condition: In the region 0 < 2z < [ the temperature is given by
T = f1(2) at time ¢ = 0.

— Boundary conditions: At times ¢ > 0 the temperature at z = 0 is given by
T = fo(t) and at z =l it is given by T = f3(¢).

The function f(z) can be used to describe the shape of a cooling body and
the functions f» and f3 can describe a large number of thermal processes at
the model boundaries. The fact that fo and f3 are functions and not fixed
values is also a sort of “fixed boundary” (s. sect. B.2.4). In other words, fixed
boundary conditions need not be a fixed value of temperature, but they need
to be defined at all times by external parameters. Eq. 3.6 can only be solved
using Fourier series and such solutions therefore contain infinite summations
and trigonometric functions. However, for many special cases of the space and
time dependent functions f;(z), f2(t) and f3(¢) Fourier series solutions are
relatively easy to derive and can be looked up in the literature (e.g. Carslaw
and Jaeger 1959).

The Stefan Problem. The latent heat of reaction is an important part
of the heat budget of high grade metamorphic terrains when phase transi-
tions occur (see sect. 3.2.3). As we need about 1000 Joules to heat one kg
of rock by one degree (c, = 1000 Jkg=! K~'), the latent heat of fusion in
enough to heat a rock by about 320°C (because L = 320 kJ kg~!). An intru-
sion of T; =700°C, that intrudes host rocks of Ty, =200°C, is AT =500°C
hotter than its surroundings. This corresponds to AT'c¢, = 500000 Jkg=*
additional energy that is brought into the rock by this temperature differ-
ence. However, the total heat content of the intrusion (including its latent
heat) that is brought into the rock is ATc, + L=2820000 Jkg='. The ex-
cess energy is therefore about 1.64 times as large as the excess temperature.

Figure 3.40. Temperature 800
profiles around a dike which is
kept at constant temperature by

the flow of magma. The curves
were calculated with eq. 3.86
. 600

(curves are labeled in my). —_
Compare this figure with <
Fig. 3.25 and Fig. 3.30 =~

400

200
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This means that we have underestimated the cooling history in the previous
sections substantially (s. p. 123).

If we want to describe the cooling history properly (rather than being
satisfied with the ball park estimate above) we need to consider where and
when this crystallization heat is added to the energy budget. To illustrate
this, it is useful to imagine the processes involved in the freezing of a lake.
During cooling of the air below the freezing point, at first the lakes surface will
freeze. The crystallization heat that is freed during this process buffers the
further freezing process. During further cooling of the surface, the subsequent
thickening of the ice layer will slow down, as the frozen layer insulates the
water to the outside and the latent heat of crystallization freed at the ice-
water interface remains contained in the water. For this reason it is rare to
find pack ice on the polar oceans that is thicker than about 2 m. In fact,
it was the observation of ice on the polar oceans that lead Stefan (1891) to
describe the problem that now bears his name.

For the one-dimensional case and if the magma of a cooling intrusion
crystallizes at a single eutectic temperature, there is an analytical solution
that can be used to describe its thermal evolution under consideration of
the latent heat of fusion. This is the solution found be Stefan (1891) for the
freezing of water. However, most rocks crystallize in divariant reaction over
a large temperature interval between a solidus and a liquidus temperature,
rather than at a single temperature. Then, numerical solutions of the heat
flow equation must be used to consider the effects of latent heat (s. sect. 3.2.3).
Regardless, the solution of Stefan (1891) gives important insights into the
thermal processes involved. It solves the heat conduction equation under
consideration of the latent heat crystallization at the rock- magma interface
for the geometry described by:

—T=Tyatallz>0and T =T, at z <0 at timet =10

and boundary conditions at infinity. It is also assumed that the magma crys-
tallizes at temperature T' = T;. The solution that describes the temperatures
outside the crystallising interface is given by:

erfc (ﬁ)

T =T T, — T —_— 3.95
b+ b) 1+ erf(A)) (3.95)
In this equation, A is given by the function:
L —A*
VT e (3.96)

(T —Ty) M1 +erf(V)

The derivation of this equation is complicated and of no relevance here.
Eq. 3.96 may be solved iteratively or its solutions can be looked up in ta-
bles. Values for A can then be inserted into eq. 3.95. This equation describes
the temperature profile around a crystallizing dike margin. Fig. 3.41 shows
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Figure 3.41. Temperatures in 800
the contact aureole of a
crystallizing interface between 700
magma and host rock after 1000
and 5000 years, as calculated 600
with eq. 3.95. Note that the
contact metamorphic aureole is o
wider and of higher temperature = >00
than when only heat conduction
is considered (Fig. 3.32). All 400 %
parameters assumed here 2 X
correspond to those used for 300 @
Fig. 3.32 with the only difference
being that latent heat is 200
considered here
[ L
100 o 1
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some curves calculated with eq. 3.95. The thickness of the dike is no part of
this solution. The position z = 0 is the location of the dike margin at the
onset of crystallization. The solution may be used up to the time where the
crystallization interfaces of the opposite walls of the dike meet at its cen-
ter. Thereafter numerical solutions must be used to describe the subsequent
cooling history.

Heat Content of Intrusions and Metamorphic Terrains. If we recall
eq. 3.3, there is a simple relationship between heat and temperature. The
relating proportionality constants are the heat capacity ¢, and density p. In
fact, all problems we have described using temperature, could have also been
formulated in terms of heat using:

oo oT

5~ arPr (3.97)

Instead of going through many calculated examples here, we only want to
state that the heat content of an intrusion or a metamorphic terrain can be
viewed — in one dimension — as the area underneath a T'— z curve (Fig.3.42).
In essence, this is what eq. 3.3 and eq. 3.97 state (some more detail is given
in the first edition of this book). In other words, the heat content of a dike of
thickness [ and temperature T; relative to its surroundings of temperature Ty,
is given in Jm~2 by: (T} — Tv)lpc,. Using typical values of p=2700 kgm—3
and ¢, =1000 JK~'kg~!, the intrusion of Fig. 3.32 has a heat content of
H=1.89-10'2 Jm—2. This is the heat content per square meter of dike sur-
face.

In high grade metamorphic terrains containing syn-metamorphic intrusives
it is often discussed if the volume of the intrusions is sufficient to contribute
significantly to the metamorphism. In other words, it is discussed if the meta-
morphism is contact metamorphism in the widest sense (e. g. Problem 3.14).
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In order to do this estimate properly, the heat content of the intrusives must
be compared with the heat content of the terrain. If the specific heat capaci-
ties of the intrusives and the metamorphic host rocks are the same, then the
comparison of energy contents can also be made as a comparison of the tem-
peratures. However, we must consider the latent heat of fusion that is part
of the heat of the intrusives, but not of the host rocks. As simple calculation
shows that:

L Vin rusives
) —Jntrusives (3.98)

Tmax:Tb'i'(T‘i_Tb'i'_

Cp V},errain

There, Ty, and T; are the temperature of the host rock before metamorphism
and that of the intrusion, respectively. Vingrusives i the volume of the intrusives
and Vierrain is the volume of the entire metamorphic terrain. Tax is the
maximum temperature that can be reached by contact metamorphism.

If the eerial proportion of intrusives to host rock are representative for the
volumetric proportion of intrusives in the terrain, then the volumes of eq. 3.98
may be replaced by areas. Using T} = 700°C, T}, = 300°C, L = 320000 Jkg—!
and ¢, =1000 Jkg=' K1, eq. 3.98 shows the following: only about 55 % of
the terrain must consist of syn-metamorphic granites in order to heat the
entire terrain to 700°C, even if the intrusion temperature itself was only
700°C. If the intrusives are 1200°C hot mafic magmas, then only 30% of
the terrain must be intrusives in order to heat the terrain to 700°C.

e Using heat content as a boundary condition. In numerical calculations of
thermal evolutions on grids of finite extent it is often not possible to assume
boundary conditions at infinity. Then, a consideration of the heat content
may come in handy as a boundary condition. For example, the boundary
conditions for eq. 3.88 were assumed at infinity there, but may also be for-
mulated in terms of the heat content of the intrusion. As no heat can be
lost from the system if it cools by conduction only, the area underneath the
curves in Fig. 3.32 must stay constant between 7z = 400 and 2z = —oc. This is
schematically shown on Fig. 3.42. During cooling of the intrusion, the area A
must always be as large as the sum of 2B + 2C. When solving the heat flow
equation numerically on grids of finite extent, for example between the two
straight lines on Fig. 3.42, problems are often easier to handle this way than
they are if the temperature is assumed to be constant at infinity. In this
case the heat flow at the model boundary (given by the angle &) could be
adjusted so that the areas C' have the correct size. From Fig. 3.42 it may
be seen that A = 2B + 2C and tan(a) = Az/AT. From this, the thermal
gradient at the model boundary is given by:

a=tg™ ((A-2B)/AT?) . (3.99)

This relationship is a useful in many numerical descriptions of diffusion prob-
lems with boundary conditions at infinity.
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Figure 3.42. Schematic
illustration of the heat content AT
of a dike. The sum of the areas
of the two dark-shaded

regions B, plus the white
triangles C must be the same as
the light-shaded area A. Then,
the heat content of the total s
system remains constant

3.7 Selected Heat Transfer Problems

In this section we discuss a selection of geologically important heat transfer
problems that do not belong directly to any of the past sections but are
important to understand geodynamic processes. We discuss mainly problems
which are subject to spatially or temporally changing temperatures. Such
problems can be described with periodic boundary conditions and have the
great advantage that analytical solutions of the heat conduction equation
can be found for them. In particular, we have selected three geodynamically
relevant sets of problems, which may be described with periodic boundary
conditions as well as the temperature distribution around faults. Analytical
solutions for these and many others interesting heat transfer problems can
be found in the literature (e.g., Carslaw and Jaeger 1959)

3.7.1 Periodic Temperature Fluctuations

The temperatures at the surface of earth are subject to the daily or annually
periodically changing temperatures of the atmosphere. Problems where this
is relevant, range from understanding the thickness of permafrost soils, to
the regulation of temperatures in tunnels and insulation of walls of buildings.
Many of these problems can be described with a one-dimensional coordinate
system with z as the coordinate normal to the surface and with boundary
conditions that describe a periodic fluctuation of the temperature at the
surface. This may be written as:

— Initial condition: T = Ty at all z at time ¢ = 0.
— Boundary condition: T' = Ty + AT'cos(ft) at z = 0 for all t > 0, and
T =Ty at z=o0 for all t > 0.

There, AT is half the amplitude of the annual fluctuation, ¢ is time and f
is the frequency of the periodic temperature cycle (Fig. 3.43 a). T is the
mean temperature over one cycle. The time dependent diffusion equation
(eq. 3.6) can be integrated using these assumptions. We will not go through
this integration here, but the result is amazingly simple. It is given by:

T =Ty + ATe (_‘/I) cos (ft - z@) . (3.100)
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Figure 3.43. The temperature in the upper few meters of the crust as a function
of annually changing surface temperature. a shows the upper boundary condition:
the temperature T as a function of time ¢ at z = 0. The annual mean temperature
was assumed to be To=10°C. The variation about this mean was assumed to be
AT =20°C. b shows six thermal profiles in the ground at six different times through
the course of half a year. The curves are labeled for time in years. It may be seen
that below depths of about 2 m temperatures never sink below the freezing point

This equation may be used to describe temperature fluctuations at depth
as a function of a periodic temperature variation at the surface. It may be
seen that this equation contains a trigonometric function and an exponential
function. At each time ¢ it describes a cosine function of temperature which
decays in amplitude exponentially with depth. At the depth z = (f/2x)~%-%
the amplitude of the temperature oscillation is that of the surface divided
by e. This depth is often called the characteristic depth of equilibration or
skin depth (s. sect. 3.4.3). Eq. 3.100 is extremely important for many near
surface problems, for example temperature profiles in snow, air temperatures
in caves and many more (Fig. 3.43b).

3.7.2 Folded Isotherms

A beautiful problem illustrating the relationships between length and time
scales of heat conduction and advection (s. sect. 3.1.4, 3.3.4) is given the
shape of isotherms during folding. Before we discuss this problem it should
be said that — strictly speaking — isotherms can not be folded, as they are not
material lines. However, a number of model descriptions use the term “fold-
ing” even when talking of isotherms and we use it here as well. Fig. 3.44a
shows schematically how isotherms may be folded during deformation of
rocks. This process may occur if the axial plane of the folds is not par-
allel to the isotherms. Whether or not folding of isotherms has a thermal
influence on rocks depends on the relationship between the wavelength and
amplitude of the fold, on the folding rate and of course on the diffusivity «. If



3.7 - Selected Heat Transfer Problems 127

the wavelength, the amplitude and the folding rate are large, then isotherms
will be folded together with the stratigraphy. If the folding rate is small, then
the rate of thermal equilibration is rapid compared with the folding and the
isotherms will remain flat. Field observations like the updoming of the Tauern
Window in the eastern Alps, together with the updoming of the Alpine meta-
morphic isograds show that it may be important to estimate the magnitude
of this effect. If the estimates show that folding of rocks is rapid enough to
fold the isotherms as well, then we should observe that antiforms cool and
synforms heat. With the methods of modern petrology it is conceivable that
such details of the thermal evolution can be tested (sect. 7.2).

A first estimate of the potential magnitude of an isotherm folding process
can be made using the Peclet number (sect. 3.3.4). For a geologically reason-
able shortening rate of 1 cmy~! an amplitude of a single antiform of 5 km
forms in about 0.5 my. The rate u, with which the material lines are deformed
is therefore 10* mmy~—'. Using ! as the amplitude and £ = 107 m2s~! we
get from eq. 3.51, that Pe = 1.5. This shows that diffusion and advection pro-
cesses are both relevant for the assumed parameters and that a more detailed
investigation of the problem is justified.

A quantitative and very simple model that can be used for the description
of this process was developed by Sleep (1979). This model is based on the
following assumptions:

slow folding

rapid folding

0 0.2 04 0.6 08 1

Figure 3.44. Tlustration of folded isotherms. a Schematic illustration. The light
and dark shaded regions are folded strata, the thick lines are isotherms. During slow
folding, equilibration is faster than folding and isotherms will not be folded with
the rock. During rapid folding of the rock conductive equilibration can not keep
up with the material advection and the isotherms will be folded with the rock. b
Folding of stratigraphy and isotherms as calculated with the model of Sleep (1979).
The continuous lines show the shape of a layer at three different points in time.
The folding is characterized by a principal fold with wave length and amplitude
of 1, overprinted by a parasitic fold with wavelength and amplitude 0.25. For this
model two sets of eq. 3.101 and eq. 3.102 must be summed up. For details see Sleep
(1979) or the first edition of this book



128 3 - Energetics: Heat and Temperature

1. Before folding, isotherms are parallel to each other and to the surface
of earth. The isotherms have a constant distance to each other so that the
initial temperature distribution as a function of depth is: T{;—g) = gz, where
g is the geothermal gradient and z is depth.

2. Folding of rocks occurs by shear folding along axial planes that are
perpendicular to the isotherms and a sine-shaped fold is produced that has
the form:

2 2
v = v Asin <%x> or: z=tygAsin <%x) . (3.101)

In this equation, v is the displacement rate at each point of the fold, vy is
the displacement rate of the fold hinge and x is the horizontal coordinate. z
is the depth of the folded rock at time #. A is the amplitude of the fold. This
assumption describes shear folding at constant volume and does not consider
shortening perpendicular to the axial plane of the folds. A is the wavelength
of folding. Using these assumptions, eq. 3.42 may be integrated. According
to Sleep (1979) this gives:

T=g (z ~ 2 (1 - e—t/fo) Asin <2WT$)> . (3.102)

There, the constants 2y and ty are:

Vo )\2 )\2
= — ta =
472K and 4o 4nk

This equation may — of course — also be reformulated to solve for the depth
z of a chosen isotherm T'. Folding events that last shorter than ¢y will cause
a significant deformation of the isotherms. If they last longer, then the ad-
ditional deformation is negligible. For most field examples of folding, the
geometry assumed for the folding process in this model is too simple. How-
ever, Sleep (1979) notes that all fold geometries that have formed by shear
folding can be represented by a summation of sine-functions. Thus, eq. 3.102
could be applied to all sine-shaped components of a random folding geometry
and the results could then be summed up. Fig. 3.44b shows an example in
which the amplitude and wavelength of two folds, a principal fold and a par-
asitic fold is considered. There, the amplitude of the overprinting parasitic
fold is 1/4 of that of the principal fold.

20 (3.103)

3.7.3 Isotherms and Surface Topography

An important example of a heat conduction - advection problem concerns
the influence of the surface topography on isotherms at depth. Rocks inside
mountains are thermally insulated, while rocks nearer the surface of an in-
cising valley are cooled by the surface. As a consequence, isotherms follow
the earth’s surface it in a damped form. Just how the distance of a given
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isotherm from the surface varies with amplitude and wavelength of the to-
pography is of large importance for the interpretation of low temperature
geochronological data in mountainous regions, for the design of ventilation
systems in tunnels and more (Fig. 3.45) (Braun 2002; 2006). In this section
we discuss some models that can be used to estimate the magnitude of this
effect.

The Upper Boundary: The Topography. For simplicity we assume that
the surface topography may be described by a sine-function with the wave-
length A and the amplitude hg/2 where we interpret the wavelength X as
the distance between two parallel valleys and hg as the maximum elevation
of the peaks above the valleys. Using the coordinate system illustrated in
Fig. 3.46a,b, the elevation h at any point of the topography is described by:

1 2
Zr=0) = —h = —h0§ (1 + cos (%w)) (3.104)

Using such a simple function to describe topography allows us to evaluate
the magnitude of the thermal effects as a function of two simple parameters
of topography: the wavelength and the amplitude.

We also assume that the temperature along the curve described by
eq. 3.104 is the surface temperature Ty = 0 and neglect any atmospheric
temperature gradient or seasonal variation. However, even for these simpli-
fied assumptions, integration of the two-dimensional diffusion- or diffusion-
advection equation (eq. 3.6 or 3.42) under this boundary condition is very
difficult (s. sect. 3.6.3). A common way to surround this problem is by substi-
tuting this boundary condition of constant temperature at a variable spatial
position, by a boundary condition of variable temperature at a constant ele-
vation, for example at z = 0. This would be described by:

1 2rx
T(#)(z=0) = AT (1 + cos (%)) (3.105)
Figure 3.45. Schematic illustration of @A
isotherms underneath topography. (a), (b) and @B

(c) show three different isotherms at depth.
Note that the topographic perturbation of
isotherms decreases with depth in proportion
to the wavelength of the topography. Using a
geochronological system that closes at isotherm
(b), a comparison of samples from A and
B (vertical age profiling) could be used to
determine the erosion rate, while a comparison b
of samples from A and C may be used to study
the landform evolution. Using age elevation
relationships at A and B with an isotopic
system that closes at isotherm (a) would result

in an overestimate of the erosion rate (Braun e e

2006; Stiwe et al. 1994).
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where AT = hgg and g is the geothermal gradient in the absence of topogra-
phy. This assumption implies that the thermal gradient inside the mountains
is linear. AT corresponds to hg in the proper formulation (s. Fig. 3.46). This
approximation is good if the wavelength of the topography is large compared
to the amplitude because then the lateral cooling through the sides of the
valley can be neglected. Note that this approximation of the topography is
actually quite a correct description if the surface temperature on a flat shield
does vary laterally, for example because of the presence of lakes. Using these
assumptions, we can discern three different types of scenarios described by
different solutions of the diffusion — advection equation:

Topography Without Erosion. If there is no erosion, there is no advection
towards the surface. As a consequence, the topographic perturbation effect on
isotherms is substantially smaller than it would be in an eroding terrain. To
estimate it we need to solve the two dimensional diffusion equation (eq. 3.9)
subject to the boundary conditions of eq. 3.105. The solution is:

Tiz,z) = T(@)(z=0) X €27/ (3.106)

We can see from this solution a fundamental result (shown in Figs. 3.46b):
The perturbation of isotherms decreases exponentially with depth and in
proportion to the wavelength of the topography. In other words: at a depth
A/2m the amplitude of the isotherm is a mere e=! =~ 0.3 of the amplitude
of the surface topography. Lets use the Alps and an isotherm relevant for
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Figure 3.46. Isotherms underneath regions of high topographic relief. b, ¢ and
d show two-dimensional profiles through a mountainous topography. The two
isotherms in b are for a non-eroding topography calculated with eq. 3.105 and
adding a linear thermal gradient to the solution to place the different isotherms at
the correct depths. ¢ shows a thermal steady state case for an eroding topography.
In d the time dependent evolution underneath an eroding topography is shown for
a single isotherm, in this case 100 °C. The two black dots in a and b are at equal
depth, but they have a different temperature. Note that in the chosen coordinate
system the surface is located at negative values for z, but (according to eq. 3.104)
at positive values for h (s. Fig. 4.3)
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fission track analysis (= 100°C corresponding to a depth of =~ 3 km) as an
example: The Alps have a topographic amplitude of about 3 km and a series
of topographic wavelengths from about A &= 2 km in the most rugged regions
to A & 200 km from the northern to the southern Molasse basin. Inserting
these numbers into the exponential term of eq. 3.106 shows that the narrow
wavelengths are just about invisible for the 100°C isotherm, while 90% of the
longest wavelength is preserved at 3 km depth. This caused Brown (1991)
to conclude the interpretation of age — elevation profiles from apatite fission
tack data may be done without topographic correction.

Eroding Topography. During erosion material is advected towards the
surface, isotherms are compressed into the topography and the amplitude
of a given isotherm is substantially larger than when no erosion occurs. To
estimate the perturbation effect quantitatively we need to solve a two dimen-
sional form of the diffusion — advection equation (eq. 3.42). Eqs. 3.45, 3.46
and 3.47 are three examples for geotherms during erosion but without consid-
eration of topography. These equations may be expanded into two dimensions
and modified to account for the variable boundary at the top surface. Solu-
tions typically show the same fundamental relationship discussed in connec-
tion with eq. 3.106, namely that the effect decreases exponentially with depth
and in proportion to the wavelength of the topography. However, depending
on the erosion rate, the advection processes may be strong enough to perturb
isotherms of geological relevance. Stiiwe et al. (1994) found a semi-analytical
solution of the two-dimensional diffusion-advection equation to describe this
problem (Fig. 3.46¢ and 3.45). They concluded that at erosion rates above

Figure 3.47. Example
of a three dimensional
conduction-advection model
to  consider topographic
perturbation effects on to-
pography (Hergarten and
Stiiwe in prep). For this
example, the digital elevation
model of the Gotthard region
was interpolated onto a three
dimensional grid to consider
thermal effects important
for ventilation in the longest
road tunnel on earth: the
Gotthard base tunnel. Be-
low the topography, two
isotherms are shown (labeled
for temperature and depth).
Assumed erosion rate was
1 mm per year. North and
south entrance of the Got-
thard tunnel are shown by
the white arrows
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500 m my ! it becomes important to consider the topographic effects on the
interpretation of apatite fission track results.

Asymmetric Advection, Three-dimensionality and Time Depen-
dence. Several other processes not considered in the discussion above may
be of interest when estimating topographic corrections on isotherms at depth.
These include radiogenic heat production, time dependent effects, atmo-
spheric temperature gradients, convective heat transfer by fluids or seasonal
temperature variation and asymmetric advection due to variable erosion rate.
To account for such processes properly, it is usually necessary to use numer-
ical solutions of the diffusion — advection equation. Then, all these processes
can be considered in a much more straight forward manner. A nice exam-
ples of the use of a three dimensional model is presented by Craw et al.
(2005) and another one is shown in Fig. 3.47. Several three dimensional mod-
els are currently in use to describe these effects. Mancktelow and Grasemann
(1997) investigated the time dependent effects how this steady state is reached
(Fig. 3.46d). However, as the Peclet number of most topographies is small,
it is usually not necessary to investigate the time dependent evolution of
isotherms. Asymmetric erosion due to differential rain fall on different sides
of a mountain range was considered by Stiiwe and Hintermiiller (2000) and
also discussed in the first edition of this book. With the advent of a series
of new thermochronological methods (e.g. House et al. 1998; 2000) enough
detail of low temperature cooling curves is starting to be resolved to justify
careful modeling of all these processes.

3.7.4 Temperature Distribution Around Faults

The thermal evolution of rocks around faults is a typical two-dimensional
problem in which all three heat transfer mechanisms may play a role: diffusion
in the foot and hanging wall of the fault, advection of heat by the relative
motion of the two sides of the fault and production of friction heat in the fault
itself (s. Fowler and Nisbet 1982). In the following analysis we only discuss
diffusion and advection. For the importance of mechanical heat production,
the interested reader is referred to the now classic discussions by Molnar and
England (1990a), Graham and England (1976) and Pavlis (1986), sect. 3.2.2
and a wealth of modern literature on the subject.

Fig. 3.48 shows a vertical cross section through a package of rock that is
transected by a fault (in the shown orientation it is a normal fault). The
normal fault is inclined with 60° to the left and the initial isotherms are
inclined with 20° to the right. The displacement along the fault (10 km in
this case) opposes the hot rocks in the foot wall with the relatively cold
rocks in the hanging wall. As a consequence, the isotherms are stretched
near the fault. The lateral temperature gradient in the vicinity of the fault
is decreased by the fault displacement (Fowler and Nisbet 1982). If the fault
were a reverse fault of the same angle, then the situation would be reversed:
the foot wall would be cooled, the hanging wall would be heated and the



3.7 - Selected Heat Transfer Problems 133

isotherms would be compressed. The heating of rocks by reverse faulting is
one of several processes that have been made responsible for the formation of
inverted metamorphic gradients (s. discussion by England and Molnar 1993).

o Estimating the thermal influence. In order to estimate the thermal influence
of a fault zone on its surroundings, we can employ two simple tools which
we have discussed in previous sections: The thermal time constant (eq. 3.17)
and the Peclet number (eq. 3.51). In Fig. 3.48a,b and ¢, the rate of material
advection v (displacement rate) is 1, 10 and 20 km my~!, respectively. From
eq. 3.51 we can estimate the length scale [ where both diffusion and advection
influence the thermal structure (i.e. Pe = 1) by (Fig. 3.16):

l= o (3.107)
With £ = 1079 m?s~1, this gives I= 30, 3 and 1.5 km, respectively. A compar-
ison with Figs. 3.48a,b and ¢ shows that the region over which isotherms are
curved corresponds indeed to these length scales. This suggests that a more
detailed description with sophisticated numerical models is not necessary to
understand the first order effects.

o Temperature-time evolution during exhumation in the vicinity of faults. In
many regions of active and ancient mountain belts it is observed that displace-
ment along fundamental structures leads to different rates of exhumation of
the foot wall and the hanging wall. This may lead to a complicated thermal
evolution of rocks as there are two competing thermal processes:

i ~— —
11 u=20km my-1

Figure 3.48. Isotherms in a crustal cross section around a normal fault that is
inclined with 60 degrees to the left. The shown area is 50 km by 50 km in size.
The figures are labeled for the rate of normal displacement u. a, b and ¢ show the
temperatures after 10 my, 1 my and 0.5 my. Thus, the displacement is the same in
all three figures. The gray shaded region indicates schematically a lithological layer.
The isotherms are shown every 50 °C. The isotherms were inclined with 20 degrees
to the right before the fault became active (dashed line). The boundary conditions
on all four sides are given by constant heat flow. This implies that the crustal
section shown is surrounded on all sides by matter and that the diagram can be
rotated arbitrarily. The diagram was calculated with a numerical solution of a two-
dimensional form of eq. 3.41. For an analytical solution of related problems see e. g.
Voorhoeve and Houseman (1988)
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Figure 3.49. Isotherms in a
vertical cross section through the
crust with a vertical fault. Both
sides of the fault exhume with
different rates u; and wus. The
shown section is 50 km by

50 km. The boundary condition
at the top boundary is given by
a constant temperature. The
boundary conditions on all other
sides are given by constant flow
of heat. In contrast to Fig. 3.48
all isotherms are preserved,
because of the fixed top “
boundary

1. The heating and cooling of the two respective sides of the fault.
2. The cooling of rocks with proximity to the surface.

Fig. 3.49 illustrates this with a vertical cross section through the crust. This
figure differs from Fig. 3.48 in that the upper boundary (the earth’s surface)
is now defined by a boundary condition of constant temperature. Thus, in
contrast to Fig. 3.48, no isotherms intersect the surface. The crustal section
shown is divided into two blocks separated by a vertical fault. The two blocks
exhume with two different rates, u; and u,.

In order to understand the thermal evolution of rocks near the fault, con-
sider rocks in the slower exhuming block (left block on Fig. 3.49) near the
fault. There, the cooling influence of the surface is opposed by the heating
influence of the block on the right hand side. Because of this, it may happen,
that rocks that cool during exhumation experience a late stage heating event
caused by the other side of the fault. An example of such a thermal evolution
was documented by Grasemann and Mancktelow (1993) at the Simplon-line
in the central Alps.

3.8 Problems

Problem 3.1. Converting different units of energy (p. 51):

In nuclear reactions, mass is converted to energy. How long can a 60-W-light
globe be lit with 1 g of mass assuming that this mass may converted com-
pletely into energy? Remember: energy = mass x speed of light?. The speed
of light is = 300000 kms~!. A related problem is found in Problem 5.3.

Problem 3.2. Converting different units of energy (p. 53):
What is the conversion factor between hfu (1 hfu =107 calecm=2s7!) and
the Sl-units Wm~2.



3.8 - Problems 135

Problem 3.3. Understanding heat refraction qualitatively (p. 56):

A gpherical iron ore body of 10 km diameter (with extremely high thermal
conductivity) lies in the middle of a 30 km thick crust. Draw a cross sec-
tion through the crust and sketch schematically some isotherms. Discuss the
thermal consequences that such a geometry may have for the surrounding
rocks.

Problem 3.4. Understanding heat refraction quantitatively (p. 56):
Calculate the temperature at 10 km depth in the crust using the follow-
ing assumptions. The crust is made up of schists with a conductivity of
k =2 Js7!m~1K~!. These schists are intruded by a 2 km thick sill that
has a conductivity of k =4 Js~'m~' K~!. The upper contact of the sill is
in 5 km depth. The thermal gradient at the surface is 20°Ckm~! and the
temperature at the surface is 0 °C. The temperature profile is in steady state
(there is no exchange of heat between the layers) and there is no heat pro-
duction in the crust (i.e. the different sections of the geotherm are linear).
You can use eq. 3.7.

Problem 3.5. Using thermal time constant (p. 62):

Two continental plates collide and deform a 35 km thick crust. The deforma-
tion rate ¢ is a) 10712 s~1 and b) 10716 s~1. During and after deformation,
the thermal structure of the crust re-equilibrates by diffusion. For the given
deformation rates, estimate whether the equilibration of the crust is faster,
slower or of similar rate as the deformation? The time scale of the thermal
equilibration may be estimated with the thermal time constant (eq. 3.17).
What consequences may your results of a) and b) have for structures and
parageneses that may be observed in a thin section?

Problem 3.6. The importance of radiogenic heat production (p. 66):

A roughly spherical radioactive ore body of 10 km diameter produces about
Strad & 100 micro Watts of heat per cubic meter. Estimate how hot the center
of the body will get after about t= 10° years. Use eq. 3.21 but before you
do, make an argument why it may be realistic to neglect heat conduction.
Use eq. 3.18 and estimates for the necessary parameter values as discussed in
the text, for example x = 107 %m2s™!, ¢,=1000 J kg7'K~! and p = 2 700kg
m~3.

Problem 3.7. The importance of mechanical heat production (p. 68):

a) What is the mechanical heat production rate of a 5 km wide shear zone
which deforms at a rate of i) ¢ = 10713 71 or: ii) ¢ = 1071 5717 As-
sume that the deviatoric stress that the shear zone material supports is be-
tween 30-300 MPa. Give minimum and maximum values using both strain
rates and both shear strengths using eq. 3.25. b) How warm could the shear
zone possibly get if deformation lasts for 1 my? (¢, = 1000 Jkg='K=!;
p=2700 kgm~=2). ¢) Which parameters control if (and how much) the shear
zone heats up during this process? (Another problem related to mechanical
heat production is Problem 5.3)
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Problem 3.8. Understanding heat of reaction (p. 76):
How much mass is converted to energy when burning 5 kg of wood?

Problem 3.9. The importance of latent heat of fusion (p. 78):

A high grade metamorphic rock contains 30 % partial melts. All of this partial
melt was formed by a single melting reaction at a fixed temperature. The
rock cools conductively from its metamorphic peak (which was much higher
than this melting temperature) with a constant cooling rate of 100°Cmy~1.
Estimate how long the rock will be buffered to a constant temperature when
this melt crystallizes? Give the result in my. The latent heat of fusion is
320000 Jkg~!, the rock has a density of p =2 700 kgm~3 and a specific heat
capacity of ¢,=1000 Jkg~! K~!. Discuss the potential effect of your result
on geothermometry that may be planned for this rock.

Problem 3.10. Understanding the Peclet number (p. 86):

A regional metamorphic event occurred over the whole of a 30 km thick
crust. A mountain belt at the surface eroded at the same time and exhumed
the metamorphic rocks during this process. Estimate whether the regional
thermal evolution can be described by only considering heat conduction (that
caused the regional metamorphic event) or if heat advection (due to erosion)
must also be considered. Use erosion rates of a) 100 m my~!; b) 1000 m
my~!; ¢) 5000 m my~! and eq. 3.51.

Problem 3.11. Contribution of radioactivity to heat flow (p. 92):

Use eq. 3.61 to estimate how the surface heat flow changes if the radiogenically
caused heat flow doubles and the mantle heat flow is decreased by 50%. Note
that both will occur when the lithosphere is doubled in thickness.

Problem 3.12. Cooling of oceanic lithosphere (p. 101):

The temperature distribution in oceanic lithosphere may be described with
the half space cooling model (eq. 3.80). a) Calculate the depth of the 1000°C-
isotherm for an 80 my old oceanic lithosphere. Assume the temperature of
the asthenosphere is 7} = 1200°C and the temperature at the surface is
T, = 0°C. The diffusivity & is 107 m?s~!. Use eq. 3.80 and Fig. 3.6 or the
approximation in Table C.9 to solve the error function. b) Draw a tempera-
ture profile through 10 my old oceanic lithosphere with the same assumptions.

Problem 3.13. Qualitative thermal evolution of intrusions (p. 112 - 116):
a) Estimate the total duration of cooling of a 50 m wide dike with x =
107% m?s~!. Use eq. 3.18. b) Assume that the dike has intruded with
700°C into host rocks that are 300°C hot. What is the maximum contact
metamorphic temperature? ¢) How much additional heat does the dike bring
into the rock it intrudes? Use eq. 3.3 and eq. 3.97 and p=2700 kgm~3,
¢, =1000 Jkg=! K~!. d) Draw a qualitative temperature profile across the
dike at 40 years after intrusion. Help yourself for this with the result from a).
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Figure 3.50. Ilustration for Problem 3.15

Problem 3.14. Inferring metamorphic heat sources (p. 123):

Estimate if the following metamorphic terrain could have been heated by con-
tact metamorphism. The terrain has reached a peak temperature of 600°C.
About 10% of the area of the terrain are syn-metamorphic mafic intrusions
that had an intrusion temperature of 1100°C. Another 30% of the area of the
terrain are syn-metamorphic granitoids that had an intrusion temperature of
700°C. The peak metamorphic pressure was 5 kbar, which corresponds to a
depth of 18.5 km. Before metamorphism the terrain was at the same depth
and had a temperature corresponding to a stable geothermal gradient of
16.2°Ckm™'. The density of the rocks is p=2700 kgm~3 and the specific
heat capacity is ¢,= 1000 Jkg=! K~!. Answer the question graphically and
algebraically with and without consideration of the latent heat of fusion of
the magmas (L= 320000 Jkg™!).

Problem 3.15. Inverted isograds and numerical solutions of the heat flow
equation (sect. 3.1.1, B.2):

Calculate the thermal evolution above and below a thrust that has doubled
the entire crust of z. =40 km. Assume that the thrusting rate was much faster
than the rate of thermal equilibration. Thus, we can assume a “saw tooth”
geotherm as our initial condition (Fig. 3.50). The initial geotherm is defined as
follows: In the region 0 < z < z it is given by T' = Tmono(2/2c); in the region
Ze < 2 < 22 it is given by T = Tmono((2 — 2c — A2)/2). (TMono = 500°C
and z. = 40 km). The distance between discrete points for your calculation
is Az=10 km. Use eq. B.16 and eq. B.18 in order to approximate eq. 3.6.
For the mathematical stability of your solution you have to make sure that
the constant R = (kAt)/(Az?) is smaller than 0.25. This condition gives you

the maximum time step At that you can use. & is 107% m?s~1.



4. Kinematics: Morphology and Deformation

In this chapter we discuss the position, shape and the motion of rocks. In
short: geodynamic processes measured in meters. This includes the discussion
of strain and ventures therefore a bit into the field of structural geology. How-
ever, mostly we shall discuss processes like the elevation of mountain ranges,
and the depth of the oceans, as well as the change of such parameters: kine-
matics. We begin with a consideration of the basics of strain. Our summary
remains brief and the interested reader is referred to a number of excellent
textbooks in the field of structural geology (Pollard and Fletcher 2006; Ram-
say and Huber 1983; 1987; Ramsay and Lisle 2000; Twiss and Moores 1992;
Pluijm and Marshack 1997).

4.1 Strain - The Basics

The deformation of rocks can be described by gradients in displacement,
(at least for an infinitely small time step). Such displacement gradients may
occur in the considered direction and normal to the considered direction.
These two gradients are often referred to as normal strain and shear strain
but these descriptions are somewhat imprecise and in fact sometimes wrong
(as we will show). It is part of the aim of this section to clarify the meaning of
displacement and strain on a simple and intuitive level. Because we want to
keep things intuitive, we take a lot of unexplained shortcuts around a rigorous
treatment of the subject (for example by assuming volume constancy and
many other assumptions common to many rocks, but not explicitly stated
here). We will also refrain from the excessive use of general subscripts ¢ and
j (both being short for z, y and z). We will also discuss strain in only two
dimensions and use u, and wu, for the displacements in z and y direction.

It is noted that most of the tensors related to deformation discussed here
are very much analogous to the stress tensor (and its related quantities)
discussed in sect. 5.1.1. Thus, you can read through that section and draw
analogs to strain. Before venturing into the necessary tensors, we begin with
a definition of the most common parameters referred to as “strain”:

e Normal strain. Normal- or logitudinal strains are encountered very often
in this book, for example when we talk about the thickening parameters f.
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and f; (e.g. sect. 4.2.3) or about the stretching factor § in sect. 6.1.4. Normal
strain simply relates the length of a body after deformation [ to the length
before deformation ly. We define the following common terminology: The
stretch of a rock s is the ratio of its length after deformation [ to that before
deformation ly. Its elongation is the ratio of the change in length and the
original length. We call this e. We can write the relationship between stretch
(uniaxial strain), elongation and length in short:

s:i:1+e:1+(l_l°) . (4.1)
To lo
a b .d"-lf‘—.
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Figure 4.1. Deformation of a unity cube for the explanation of strain. a Deforma-
tion under normal strain also referred to as pure shear. b Deformation under shear
strain also referred to as simple shear. ¢ Rotation of the unity cube showing that
displacement gradients can exist without internal strain. Conversely, deformation
can usually be split into a rotational and a strain component.

Both s and e are often loosely referred to as “strain”. It is therefore im-
portant to understand their respective meaning when we try to understand
kinematics. With reference to Fig. 4.1a: s = (dy + du,)/dy, where du,, is the
displacement du in direction y.

e Shear strain. is defined as the change in displacement with respect to a
direction that is normal to this displacement. Shear strain is often referred
to as v and is given by the ratio of du, to dy in Fig. 4.1 b so that:

dug
v = tang = CZ/ . (4.2)

The angle ¢ is called the angular shear strain.

o General displacement. In a general state of deformation (for example some-
where between Fig. 4.1a and b) scalar values of s and ~ are insufficient to
describe the deformation and we require both shear and normal displace-
ments, both in all considered spatial directions. In total, the deformation of
a rock may be described by what is called the displacement gradient tensor,
which is a tensor containing all shear and normal gradients in displacement.
This tensor is given by:
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The displacement gradient is also called the Jacobian matriz or the deforma-
tion tensor and its individual components might be abbreviated with du;/8j.
This tensor describes the deformation of a unity cube perfectly well. Clearly,
the examples for simple and pure shear discussed above may also be written
in terms of this tensor, but several of the terms will be zero.

It is important to note that the displacement gradient tensor does not
describe strain. For example, the rotating cube in Fig. 4.1c has definitely
displacement gradients in both x and y direction, but it does not strain.
Indeed, even for the simple shear example shown in Fig. 4.1b, the shear strain
~ does not describe the strain of the body correctly, as it may be shown that
part of the “simple shear” deformation is rigid body rotation. Fortunately
(because of its symmetry), the displacement gradient tensor may always be
expanded so that it can be resolved into two parts:

Bu,- 1 au, 67.Lj 1 3ui 6’&]'

== = — 4.4
5 2 <8$]- + am,-) T3 <6w]- ax,-) (4.4)
The first term on the right hand side of this equation is called the strain

tensor €;;, the second part describes the rigid body rotation w;;. Adding a
translation of the body u, we can write the full deformation of a body by:

u; + du; = u; + 6,‘jd$i + w,-]-da:i (4.5)

Eq. 4.5 is a full description of deformation of rocks including their translo-
tion (first term), their strain (second term) and their rotation (third term).
Rotational components of deformation are very much the field of structural
geology and are not discussed further here. However, the strain tensor and
its time derivative, the strain rate tensor, are needed in several parts of this
book and we therefore write it out in full as:

Bus 1 [ Oua Ouy
oL (0w Ouy oz %+ 5)
Gij = 2 \ Ox; ox; - L (Buy + Oua Buy

J 2 Oz oy By

The strain rate tensor looks identical to eq. 4.6 if « is considered to be velocity
and not displacement. Just like the stress tensor, the strain tensor is sym-
metric and the invariants of the strain tensor matrix are of some importance,
for example when considering flow laws or shear heating. As an example, a
map of global strain rate is shown in Fig. 4.2 where the magnitude of the 2nd
invariant of the strain rate tensor is shown by the shading (for explanation
see p. 304).

(4.6)
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Figure 4.2. Global map of strain rate (Kreemer et al. 2003). Data from
http://gsrm.unavco.org/intro/ . Plotted is the 2nd invariant of the strain rate ten-
sor on a logarithmic scale between 0 (white) and 3 x107%y~! (black). Invariants of
tensors are discussed in more detail in connection with the stress tensor in chapter
5. Compare also with Fig. 2.5

4.2 Reference Levels

All geological motion, for example the motion along faults, the uplift of a
mountain range or the approaching of two lithospheric plates may only be
observed relatively (s. Fig. 2.7). Thus, for any kinematic problem it is nec-
essary to define a coordinate system to which the motion may be related.
Usually we do this quite intuitively. For example, when talking of a dextral
foult, we all understand that we mean the motion of one side of the fault as
seen relative to a reference frame fixed to the other side of the same fault.
For other examples, in particular those revolving around vertical motions or
those around plate motions on a large scale there has been much confusion
with reference frames in the literature. For example, in all previous sections
(when discussing geotherms), we have fixed our coordinate system to the sur-
face of the crust. This reference level is useful when describing geotherms as
it is irrelevant to a thermal evolution whether the entire lithospheric column
is being uplifted or remains stationary. However this reference level is not
very meaningful when considering vertical motion of this surface itself: the
elevation of a mountain range relative to its own surface is always zero. It
cannot be described in a reference frame that is fixed to the surface. Thus,
for problems dealing with surface elevation, we need to change our reference
frame and fix it to sea level or some other externally fixed reference frame
(Fig. 4.3). In sect. 4.3.1 we will show in some detail how careless handling of
reference levels may lead to grave misinterpretations. However, we begin by
discussing some important reference levels for geodynamic problems.
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Figure 4.3. Schematic sketch of two different
vertical axes that are used by earth scientists
to describe vertical motions in the lithosphere.
The surface elevation H is usually described rel-
ative to sea level or the reference lithosphere
and is generally assumed to extend positively
upwards. This reference frame is used by geo-
morphologists. The depth of rocks in the crust is
generally measured relative to the surface and is
measured positively downwards. This reference
frame is used by petrologists. Note that both
the direction and the origin of the axes are dif-
ferent for the two reference levels.

4.2.1 Sphere, Spheroid and Geoid

When considering geological problems for which it is not possible to make
the two-dimensional approximation that the earth is flat (s. sect. 2.2.1), it
is necessary to make another approximation: we must find a good model
description of the shape of our three-dimensional globe. The best first or-
der approximation is that the earth is a sphere. For a long time one meter
was defined as the 40 000000th fraction of the circumference U of the globe.
According to this definition, the radius R of a spherical earth would be:
R = U/(2r) ~6366 km. This approximation of the earth’s radius is sufli-
cient for most plate tectonic problems, for example those that consider the
curvature of mountain belts or subduction zones, or those that consider the
torques exerted by mid-oceanic ridges (s. sect. 2.2.2). However, the “real”
shape of the earth deviates from a sphere by being flattened in the direction
of the rotation axis: the centrifugal forces that arise because of the rotation
of the globe cause the earth to have more the shape of an ellipsoid. This
flattening of the globe at the poles is much more pronounced in the atmo-
sphere than it is in the solid part of earth. In fact in the atmosphere it is
pronounced enough so that Mt Everest could not be climbed if it were at any
higher latitudes (Fig. 4.4). The polar radius of earth is Rp =6356.75 km.
The equatorial radius is Ea =6 378.139 km. Because the difference between
polar and equatorial radius is very small (only about 20 km which is =~ 0.3%
of the radius), the ellipsoid of earth is also often referred to as a spheroid. The
ellipsoid defined by these radii is the ellipsoid used by the World Geodetic
System WGS84. This is the geodetic system in which the GPS measurements
are based. The fractional difference between the two radii of an ellipsoid is
given by:

f= RAR— Rp

A

and is called the ellipticity. Using this ellipticity, the radius of earth at any
location is often described by:

~ 0.0034 ~ 1: 298 (4.7)
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Figure 4.4. a The drop of atmospheric pressure with elevation and b the change
of atmospheric pressure at the elevation of the top of Mt Everest with latitude. The
pressure is given in Torr which corresponds to millimeters Hg. The conversion to
SI units is 1 Torr = 133.32 Pa (s. Table D.8)

R = Ra(1 — fsin?)) (4.8)

Another commonly used reference ellipsoid is the Bessel ellipsoid which differs
in both radii by about 700 meters. The Bessel ellipsoid provides a better fit
for many places, in particular for the northern hemisphere and is therefore
used as the basis for many national mapping grids (sect. 2.3.2).

The geoid is the surface of constant gravitational potential energy (Fig.
4.5. In areas of high density, the gravitational acceleration is relatively high
and the surface of the geoid lies low and vice versa (as to compensate the
high acceleration with a lower mass of the column). Geoid anomalies are the
differences between the equipotential surface of earth and a reference shape
that is somewhat more complicated than an ellipsoid (Marsh et al. 1990).

4.2.2 Lagrangian and Eulerian Reference Frames

Most problems we have discussed in the previous chapters of this book were
discussed in fixed reference frames. That is, temperatures change and rocks
move relative to the coordinate system. Such a coordinate system is called a
Eulerian reference frame. The description of processes in Eulerian reference
frames is referred to as Fulerian or spatial description. For many problems
in the earth sciences, it is more useful to choose a coordinate system that
moves with the rock. Such coordinate systems are called Lagrangian reference
frames. Lagrangian descriptions are also referred to as material description.
Fig. 4.6 illustrates both reference frames. Fig. 4.6a illustrates the evolution of
geotherms during erosion. From the point of view of a Eulerian observer (who
stands on the eroding surface) rocks (and the geotherm) are moved through
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Figure 4.5. Geoid map of the world. The largest geoid anomaly (labeled in meters)

is in the Indian Ocean where the geoid has an 80 m deep hole relative to the reference
spheroid

the surface. From the point of view of a Lagrangian observer, the coordinate
system is fixed to the rock and the location of the surface boundary condition
changes its location downwards in the coordinate system.

Both reference frames have advantages and disadvantages and it depends
on the nature of a problem in terms of which reference frame it should be dealt
with. The Fulerian description has the advantage that it is easy to describe
the motion of material relative to an unmoved area, for example relative to
the reference lithosphere. One advantage of Lagrangian descriptions is it that
the history of a given rock is much easier to track. For example, in numerical
calculations using a Lagrangian reference frame, the time dependent changes
of a variable at a given grid node will always describe the evolution of a rock
at this location, while in Eulerian reference frames, rock trajectories will go
through the grid.

As the description of a problem changes with the choice of reference frame,
so does the relevant equation. Consider the example of Fig. 4.6a. In a Eulerian
description, the thermal evolution of the geotherm during erosion may be de-
scribed as advection of the material through the grid. The relevant equation
is the diffusion - advection equation (e.g. eq. 3.42). In steady state problems
(which Fig. 4.6a is not), the temperature at a given depth stays constant,
which makes it easy to illustrate, but rocks track through the coordinate sys-
tem, which makes it difficult to track them. Within a Lagrangian description,
the same problem may be described without advection. The process of ero-
sion is described by moving the boundary condition through the coordinate
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system. This is mathematically much more difficult to handle, but has the
great advantage that a fixed coordinate describes the thermal evolution of a
given rock. We will encounter the description of a very similar problem in
two different reference frames in the context of Fig. 4.37.

Figure 4.6b illustrates another example of Lagrangian and Eulerian de-
scriptions of the same problem, using a two-dimensional deformation model.
The gray area represents a body of rock and the grid is a two-dimensional
coordinate grid. The rock is deformed towards the walls on the right and at
the top by forces acting from the left. Within a Eulerian reference frame,
this deformation appears like material is being transported through the co-
ordinate system. The coordinates of individual rocks change with time. For a
Lagrangian observer the deformation appears to be caused by an approach-
ing side wall and a retreating upper wall. Individual rocks remain at the
same coordinates and the grid is distorted together with the rock (Fig. 4.6).
Again, the principle advantage of the Lagrangian description is that a given
coordinate remains fixed to a rock.

As a final example, consider the flow of a river across a waterfall from
two different observers. The Eulerian observer (e.g. a fisherman on the river
bank) will not see that the river accelerates. If he fishes above the waterfall
he will observe that the water is slow and flows with constant velocity. If he
looks towards the fall he will see that the water flows fast and also at constant
velocity. The Eulerian observer (e.g. a fish floating with the stream) will feel
the acceleration across the edge, but he has no sense of being elsewhere as
the water around him does not move.

a b 3
T T Euler
: T i ©
2 r 6 :
@ | T 4 5 6

t4 )
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t2 AT

zy t1 zy
Euler Lagrange Lagrange

Figure 4.6. Differences between reference frames according to Lagrange and to Eu-
ler. a One-dimensional model of the evolution of geotherms during erosion. b Two-
dimensional deformation of a square block. In both cases, the Eulerian description
is within a coordinate system that is fixed externally (material is transported rel-
ative to the coordinate system) and the Lagrangian description is in a coordinate
system that moves with the material
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4.2.3 The Undeformed Reference Lithosphere

For most geological problems of the field geologist most reference levels dis-
cussed above are not very instructive. In fact, only if we deal with gravity
data or global seismology, reference frames like the geoid, or the spheroid be-
come important. For the large majority of the problems of the field geologist,
the most useful reference frame is the undeformed reference lithosphere (Le
Pichon et al. 1982). The undeformed reference lithosphere is a hypothetical
lithospheric column which remains unchanged relative to the orogen under
observation. If the undeformed state of the lithosphere under observation is
unknown, then it is most simple to assume that the surface of the undeformed
reference lithosphere corresponds to the mean surface of the continents. This
is 840 m above sea level and the mean depth of the oceans is 3700 m. How-
ever, about 80% of the land surface is only between 100 and 200 m above
sea level. All heights and elevations that are given in the following sections
without a detailed mention of the reference level, are understood to be rela-
tive to the surface of the reference lithosphere. That is, they are relative to
the elevation of the respective lithospheric level (e. g. the surface, the Moho
etc.) prior to onset of thickening or thinning.

The f.-fi-Plane. This plane is a diagram that allows to explore a range
of parameters in comparison with an undeformed reference lithosphere. The
axes of the plane show:

— 1. the thickness of the crust,
— 2. the thickness of the mantle part of the lithosphere,

both relative to the reference lithosphere (s. Fig. 2.18). During orogenesis,
these two parts of the lithosphere may change their thickness at different rates
and by different amounts. It is therefore instructive to explore the influence
of thickening of the two parts of the lithosphere explicitly but simultaneously.
Strictly speaking, f. and fi are nothing but the vertical strains of the crust
and lithosphere, but instead of the typical abbreviation fro strain, €, we follow
the original authors and use f. and fi. They are defined as:

fo= Zdefc and fi = Zdefl ’ (49)
Zc Fal

where zgere and 2zgen are the thicknesses of crust and lithosphere at a given
time during orogenesis and z. and 2z are the thicknesses of undeformed ref-
erence crust and lithosphere, respectively. Orogenic thickness evolutions may
be plotted in the f.-fi-plane as paths. Such paths are parametric in time
(P — T paths in P — T space are also parametric int ime s. p. 338). This
diagram was given to us by Sandiford and Powell (1990; 1991) and has since
been used by a number of authors (e.g. Zhou and Stiiwe 1994, Hawkesworth
et al. 1995, Turner et al. 1995). Note that, according to the original definition
of Sandiford and Powell (1990), fi is the thickening strain of the entére litho-
sphere and not only that of the mantle lithosphere. While other definitions



148 4 . Kinematics: Morphology and Deformation

are of course possible, we retain this original nomenclature here. Note also
that fi is the inverse of the stretching factor 8 (fi = 1/8) that is commonly
used in the description of continental extension (sect. 6.1.4).

Fig. 4.7a shows the f.- fi-plane with some schematic lithospheric profiles of
different deformation geometries of crust and mantle part of the lithosphere.
As it is impossible that the whole lithosphere is thinner than the crust, the
fe-fi-plane is not defined in the region fiz1 < feze (shaded region in Fig. 4.7).
The slope of the limiting line of this region is given by the initial thickness
ratio of crust and whole lithosphere in the undeformed reference state: ¢ =
2./ 7. Fig. 4.7b shows a range of deformation paths that are end members of
different orogenic evolutions.
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Figure 4.7. The fc-fi-plane. a The little schematic lithosphere columns indicate
the thickness relationships of crust and mantle lithosphere in different parts of the
diagram. Light shaded part of the columns is the crust, dark shaded part is the
mantle part of the lithosphere. The point f. = fi = 1 is the reference lithosphere.
b Some important lines in the f.-fi-plane. Note that f; describes the thickening
strain of the entire lithosphere (that is: the mantle part of the lithosphere plus
the crust). i is the line of constant thickness of the mantle lithosphere. i is the
line of homogeneous thickening (thinning) of the entire lithosphere. i is the line
of variable crustal thickness at constant lithospheric thickness. It implies that the
mantle part of the lithosphere must thin along this line as the crust thickens and
vice versa. v illustrates thickening of the mantle part of the lithosphere without
crustal thickening. v limits the allowed space in the fc-fi-plane. Along this line,
the crustal thickness and the lithospheric thickness are the same. That is, there
is no mantle part of the lithosphere. Clearly, the lithosphere can not be thinner
than the crust (not allowed dark shaded region). All lines are dashed in the region
of thinning and continuous in the region of thickening relative to the undeformed
reference lithosphere
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The principal value of the f.-fi-plane is that it may be contoured for a
range of important geodynamic parameters, for example surface elevation,
Moho temperature (Fig. 3.22), potential energy (Fig. 5.32), strain rate and
others. The influence of the deformation geometry of the lithosphere on these
parameters may then be explored in this diagram. As such, the f.-fi-plane is
in contrast to Fig. 3.20, where the thickness of the mantle part of the litho-
sphere is only émplicitly determined by thermal considerations (s. Fig. 6.20).
One of the disadvantages of the fc-fi-plane is that both axes of the horizon-
tal plane are used to describe the thickening strains. Thus, the use of the
fe-fi-plane and the two dimensions of this page limit us to the illustration
of a single variable for which the plane may be contoured. For example on
Fig. 3.22 the fc-fi-plane is contoured for Moho-temperature as a character-
istic temperature for the entire lithosphere.

4.3 Uplift and Exhumation

In the past decade, much progress in our understanding of mountain building
processes has been made with studies in the interdisciplinary field between
geomorphology and tectonics. In such studies, the interaction of two different
processes that occur with respect to two different reference frames are studied
(Fig. 4.3): 1. The evolution of surface elevation and landforms at the surface.
2. The evolution of depth and distance of rocks in the crust. The two different
reference levels are:

— The distance to the surface of an undeformed reference lithosphere. This
is the reference level labeled with H on Fig. 4.3.

— The distance to the surface of the lithosphere under consideration. This is
the reference level we have used for most considerations in chap. 3.

The latter tells us about depth and pressure of rocks in the crust, the former
about the geomorphic evolution of the surface. In the following section we
discuss vertical motions of rocks relative to both of these reference levels. In
this context, it is pointed out that the vertical axis z is sometimes measured
positively upwards and sometimes positively downwards, depending on the
question that is being asked (s. sect. 3.7.3). As it is very easy to get confused
with these different reference frames, we begin with a careful definition of our
terminology.

4.3.1 Definition of Uplift and Exhumation

Motion of rocks relative to the surface of the lithosphere under consideration
is called exhumation or burial, depending on the motion being towards the
surface or away from it (Tab. 4.1). In contrast to the geomorphological use
of the word “exhumation” (where it is only used to describe the surfacing of
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Table 4.1. Definition and methods of interpreting uplift

uplift: vertical motion of the earth’s surface
relative to a reference level

direction of motion upwards: called: uplift

direction of motion downwards: called: subsidence

may be directly interpreted from: palaecbotany, palaeoclimatology,
may be indirectly interpreted from: sediments in the surrounding basins

Table 4.2. Definition and methods of interpreting exhumation

exhumation: vertical motion of rocks,
relative to the surface

direction of motion towards the surface: called: exhumation

direction of motion away from the surface: called: burial

may be directly interpreted from: geobarometry
geothermometry

(via assumption of a geotherm)

may be indirectly interpreted from: geochronology
(via assumption of a geotherm)

rocks that were previously at the surface, for example exhumation of a fossil
or the exhumation of a river delta), tectonicists use the word “exhumation”
also when describing upwards motion that has not brought rocks all the
way to the surface (e.g. partial exhumation), or upwards motion of rocks
that have never been on the surface previously (e.g. exhumation of a core
complex) (Stiwe and Barr 1998). Exhumation is often used interchangeably
with the word denudation.

Motion of rocks relative to the surface of an undeformed reference litho-
sphere is called uplift or subsidence depending on the motion being upwards
or downwards with respect to an externally defined reference frame. In gen-
eral, the words uplift and subsidence are only used to describe the vertical
motion of the surface itself. Thus, when using these terms for another level in
the crust, for example the uplift of a rock relative to another rock e. g. on the
other side of a fault, then the term “uplift” should only be used together with
a specification of the reference level — in this case: “the other side of a fault”
(England and Molnar 1990). The terminology of uplift and exhumation is
not very consistently used in the literature. England and Molnar (1990) have
defined these terms precisely. In the following we will follow their definition
and the expansion of their logic by Stiiwe and Barr (1998). Table 4.1 and 4.2
summarize these definitions and their use.
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Uplift and exhumation are both measured in units of distance. Uplift and
exhumation retes are measured in velocities: in ms—'. For the following dis-
cussion we call the uplift rate vy, and define it positively upwards. The ex-
humation rate is abbreviated with vex. The rate of uplift of rocks vy, (relative
to a fixed reference frame) is given by the sum of the uplift and the exhuma-
tion rate:

Vro = Vex + Uup - (4.10)

The variable v, describes the vertical motion of rocks relative to a fixed
reference level and is one of the most used and misused variables describing
vertical motions. Ironically, v, is the only of the three vertical motions of
eq. 4.10 which can not be determined directly from field or laboratory ob-
servations. It can only be determined from eq. 4.10. The importance of this
equation can not be overemphasized. It is also emphasized that geobaromet-
ric or thermochronological data may only be used to infer exhumation and
can not be used to interpret uplift. If there is no exhumation, then vye = vyp.
In the next section we illustrate with some examples, how important the
discrimination of different reference levels can be for the interpretation of
tectonic features.

before deformation & erosion &
deformtion compensation compensation

Figure 4.8. Schematic sketch of the vertical kinematics in isostatically compen-
sated mountain belts. a shows a crustal column before deformation. b shows the
crustal column after shortening. Note that all rocks below depth A are displaced
downwards relative to a. ¢ shows the crustal column after exhumation by erosion.
Note that the dome structure that is now observed on the surface was formed by
the exhumation processes only and not by the shortening
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4.3.2 Vertical Motion in Active Orogens

In many mountain belts the highest grade metamorphic rocks crop out near
the region of the highest topography. Well documented examples for the
simultaneous occurrence of vertical motions are found in just about all con-
vergent orogens, for example by the fact that the highest grade metamor-
phic rocks often crop out near the axis of highest surface elevation. In the
eastern European Alps, P-T-t-paths have been documented that show that
exhumation of rocks occurred synchronously with shortening deformation
phases (Cliff et al. 1985). Equivalent observations have even been made in
the granulite facies roots of ancient mountain belts (Carson et al. 1997). This
suggests that the regions of the largest exhumation are also typically the re-
gion of largest uplift. This may not appear unusual, but the coincidence of the
two has been the seed for much of the confusion about the different vertical
motions. In fact, there are many examples where uplift and exhumation do
not correlate. For example, there are small sedimentary basins on the Tibetan
Plateau which imply that the rocks at the base of these basins were buried at
a time of rapid surface uplift. Correspondingly, there are many sedimentary
basins in which the surface subsides (negative uplift) during burial of rocks.

Vertical Motion in Convergent Tectonics. During convergent tectonics
all rocks will be buried, i.e. increase their distance relative to the surface.
However, Fig. 4.8b illustrated that — in isostatic equilibrium — rocks above
depth A will be uplifted relative to an externally fixed reference frame during
the process, while most rocks in the crustal column will not only increase in
distance from the surface, but also move downwards with respect to an exter-
nal reference frame. The upwards motion of rocks below A can only be caused
by exhumation processes as shown in Fig. 4.8¢c. In the literature upwards and
downwards motions are often confused, for example by drawing the vertical
arrows like those on Fig. 4.8c on the same diagram as the shortening arrows
like those on Fig. 4.8a.

Figure 4.9. Schematic

illustration of the vertical motion Ae ~, L jr depth
of the hanging wall (4) and the

foot wall (B) of a ramp anticline, J\ A

relative to the surface. Note that A® L

the thrusting process itself does B

not cause any exhumation and B

that it is only the subsequent

erosion that brings the rocks A jL /

nearer the surface

Y time

If the shortening is not homogeneous as shown on Fig. 4.8b but discontin-
uous, for example during nappe stacking, then rocks will still only be buried
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by the process. “Thrusting to the surface” is a commonly used term when
talking of exhumation of rocks in association with a thrust, but the term is
misleading. Fig. 4.9 shows that exhumation is not caused by the thrusting,
but because the thrusting process places rocks in a position where they can
easily be removed. If there is no erosion or other process removing material
from the surface, then thrusting can not bring rocks closer to the surface!
During thrusting, rocks in the upper plate will remain at constant depth be-
low the surface, even though they are uplifted with respect to a reference
frame fixed to an undeformed reference lithosphere (Fig. 4.9). Rocks in the
foot wall on the other hand can only be buried.

4.3.3 Exhumation Processes

We discern a range of fundamentally different exhumation processes. Many
of the will be encountered again in later sections of this book when we talk
about dynamic processes (sect. 6.3.4). Here we restrict our discussion to the
exhumation “end members” and how they differ with respect to the vertical
motions of a crustal column. We discern:

— Exhumation by erosion,
— Exhumation by extension,
— Exhumation by compressive deformation.

Exhumation by Erosion. This is one of the earliest models proposed for
exhumation, largely because of the recognition that mountain belts exposing
high grade metamorphic rocks are flanked by sedimentary basins. Several
studies have correlated volumes derived from sedimentary basins with those
estimated from geobarometry and shown that there is a good correspondence
(England 1981; Kuhlemann et al. 2001). Although we restrict our discussion
here to erosion at the surface, it should be noted that erosion also occurs
at depth, for example by scraping off material by an overriding plate. This
process is often referred to as subduction erosion and has been described in
Costa Rica, Mexico, Alaska and in connection with several other subduction
zones. However, subduction erosion does not cause exhumation and will not
be discussed further here.

Exhumation by erosion involves always a vertical translation of the column
upwards, or — more generally — in direction normal to the erosion surface
(Fig. 4.11). As such, the column below the eroding surface remains intact,
which has implications for the interpretation of metamorphic field gradients
recording burial depth of rocks.

Exhumation by Extension. This is by far the most eflicient exhumation
mechanism for rocks from large depths. It is also referred to tectonic denuda-
tion and is a much discussed process in connection with the interpretation of
high pressure metamorphic rocks (Avigard 1992; Platt 1993b) (sect. 6.3.4).
Platt (1993b) subdivided exhumation processes that occur due to extension



154 4 . Kinematics: Morphology and Deformation

in convergent orogens into those that occur in connection with underplating
in orogenic wedges and those that occur in collisional orogens (sect. 6.2.2).
This distinction is important when interpreting high pressure metamorphism.
However, for the purpose of understanding vertical motions, it may be simpler
to discern between

— Exhumation by normal faulting,
— Exhumation by ductile thinning.

Similar to erosion, normal faults and crustal scale detachments can bring
large areas of high pressure metamorphic rocks practically undeformed to
the surface and translate the vertical column upwards. In contrast, pure shear
thinning or simple shear deformation can pervasively deform enormous rock
packages causing telescoping or thinning of metamorphic isograds. Also note
that ideal pure shear can never lead to complete exhumation as the complete
thinned column of rock will always remain preserved (Fig. 4.10b). During
extension by simple shear processes it is easy to exhume rocks as part of the
column is physically removed from the top (Fig. 4.10c).

v

a C

Figure 4.10. Exhumation during pure and simple shear of the lithosphere. a Start-
ing situation with five marked depths. b In pure shear thinning rocks get partially
exhumed, but can never exhume completely to the surface, even at very large ex-
tensional strains. The entire column above the rocks remains preserved in thinned
form. ¢ In simple shear it is easy to exhume rocks to the surface

o0 000
® 90O

Exhumation by Compressive Deformation. Although we have shown
in section 4.3.2 that convergent deformation leads only to burial, it must be
said that this is only true when this is considered one-dimensionally. In two or
three dimensions exhumation during convergence can occur by buoyant up-
raise, by channel flow, wedge forcing and a range of other processes that will
be discussed in some more detail when we talk about orogenic wedges and ex-
humation of high pressure metamorphic rocks (sect. 6.3.4). Most exhumation
mechanisms that occur during compressive deformation are characterized by
a very heterogeneous distribution of vertical motions. In the field this may be
reflected by the close proximity of high and low pressure metamorphic rocks.

4.3.4 Modeling Vertical Kinematics

In most convergent orogens the various vertical motions discussed above oc-
cur simultaneously. Thus, it is often not clear at what stages of the evolution
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rocks should exhume or get buried and if the surface uplifts or subsides at
the time. In the following, we want to introduce an extremely simplistic one
dimensional kinematic model that can be used to illustrate typical relation-
ships between different vertical motions during orogensis. The model is based
on eq. 4.10 an describes a convergent orogen subject to homogeneous crustal
thickening and erosion at the surface (Stiiwe and Barr 1998). It bears many
characteristic features of real orogens.

Vertical Coordinates for the Model. For the model we define z as the
vertical distance of a rock from the surface of an undeformed reference litho-
sphere and 2’ as the vertical distance of the same rock from the surface above
it, i.e. the depth of burial (Fig. 4.11). With these assumptions it is possible
to describe the vertical motions of rocks with:

v, =t —(z+ H) . (4.11)

There, v, is the rate with which rocks move relative to the reference column
(measured positive if they move upwards), € is the vertical strain rate (i.e.
thickening rate) and H is the surface elevation of the lithosphere under con-
sideration, again measured relative to the surface of an undeformed reference
lithosphere. Eq. 4.11 is fundamental for the understanding of the following
considerations so read it carefully before going on. If v., = 0 and 2 = —H
(this means: rocks at the surface), then: v, = 0. Relative to the reference
frame of the deforming lithosphere under consideration we can also write:

Vgt = Upx = Ugr — €27 . (4.12)

There, ver is the rate with which material is removed from the surface, e. g.
the erosion rate. Note that v, is different from wvex. The rate of exhuma-
tion depends on the difference between e, (exhuming the rocks) and the
deforming strain rate € (burying the rocks at a rate that is proportional to
their depth 2'). However, it should be clear that v,, = vex. The relationship
between the different reference levels may also be written as:

Z=z+H . (4.13)

The first term on the right hand side of eq. 4.11 describes the vertical motion
of the lithosphere as a consequence of removal of material at the surface and
isostatic compensation thereof. It is positive, because v, is defined positively
upwards. The second term of the equation describes the vertical thickening
of the lithosphere during thickening. It is negative because thickening leads
to burial of rocks. The sum of both motions is v, or v,/, depending on the
chosen reference frame (eq. 4.11). From eq. 4.11 we can read the following:
At high crustal levels, where z is small, the second term of the equation is
also small. The contribution of the first term is relatively large, so that v, is
likely to be positive. Rocks move upwards in the crust during simultaneous
thickening and erosion at the surface (Fig. 4.11). At deep crustal levels the
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Figure 4.11. Schematic illustration of the vertical motions of rocks in the crust
relative to the surface of the undeformed reference lithosphere. a reference litho-
sphere. b vertical motion as the consequence of thickening. ¢ vertical motion as the
consequence of erosion at the surface and isostatic compensation. d vertical motion
during simultaneous thickening and erosion (after Zhou and Stiiwe 1994; Stiiwe and
Barr 1998)

second term is larger than the first term and v, is likely to be negative.
Rocks move downwards. It may be concluded that - even during homogeneous
thickening - vertical motions in the crust may be very heterogeneous if there
is simultaneous erosion.

Modeling Simple Vertical Motions. If we want to analyze these het-
erogeneous vertical motions in a bit more detail, we must pre empty some
information from sect. 4.4, because we need eq. 4.35. This equation may be
used to calculate the surface elevation of an isostatically compensated moun-
tain range as a function of the thickness of crust and mantle lithosphere
(expressed by f. x z. and fi X 21) using some very simple assumptions on the
density structure (expressed by the density terms § and &). If we can find
the time derivative of this equation we have a description for the change in
elevation as a function of time: the uplift rate. The time derivative of eq. 4.35
is:

% 5 (ij;) e (%J:) _ (4.14)

We can find the time derivatives of f. and fi in eq. 4.14 if we assume that
the crustal and lithospheric thickening rates (the change of f. and fi with
time) are described by the difference between thickening due to deformation
and thinning due to erosion at the surface:




4.3.4 - Vertical Motion in the Crust 157

df c . Ver df 1 . Ver
- = - — and : —_— = fie—— .
di feé Ze dt A 21
Inserting these into eq. 4.14 we get the surface elevation as a function of
time (the uplift rate). After some rearrangement of this equation, which you

should be able to follow on paper, we find this to be:

dH

dt
In this equation, ¢ and b summarize the constants from eq. 4.35 that are
explained in eq. 4.32. They are: a = (02, — &z1) and: b = (§ — £). Eq. 4.15
describes the evolution of surface elevation of a mountain range in which there
is simultaneous vertical thickening (for example due to lateral shortening) and
material removal from the surface (for example due to erosion).

Eq. 4.15 may be solved, if the erosion rate ver is known. So let us assume
a simple erosion model for a mountain range in which the erosion rate is
proportional to the elevation of the range:

Ver = e . (4.16)
3D

In sect. 4.5.1 we will discuss this equation in a bit more detail and show that
this model may be quite a realistic description for many mountain belts. In
eq. 4.16 tg is an erosional time constant that indicates the time scale over
which the elevation H is removed by erosion. According to eq. 4.16 erosion
is more rapid, if g is small. If we insert eq. 4.16 into eq. 4.15 it is possible
to calculate the incremental uplift rates of a mountain range subject to the
simple model boundary conditions assumed here.

= Vyp = Verb — €(H + a) . (4.15)

Geomorphic Steady State. Eq. 4.16 states that the erosion rate gets
higher as the elevation increases. The consequence of this model is that a
mountain range will reach a geomorphic steady state when the elevation —
and therefore the erosion rate — becomes high enough to balance further
thickening. This is a realistic scenario observed in many mountain belts and
can eb described with the model of eq. 4.15. In this steady state, vy, and vey
at the surface have the same absolute value and it is true that: dH/dt = 0.
From eq. 4.15 we get (s. Zhou and Stiiwe 1994):
bH tpéa

Eq. 4.17 can be used to explore the geomorphic steady state constraints on
mountain belts as a function of thickening strain rate and erosion rate as
characterized by #g (Fig. 4.12a). It may be seen that - for the surface to
remain constant - the erosion rate must be larger (i.e. tg must be smaller)
the higher the mountain range and the faster the thickening rate. This result
is actually quite intuitive.

Let us now consider the case of a mountain range not in the steady state
and explore the uplift or subsidence rates it will undergo. However, we need

€
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Figure 4.12. a Strain rates (contoured in 19Log(é)) necessary to maintain a geo-
morphic steady state (where the uplift rate is zero: vy, = 0) as a function of surface
elevation H and erosion rate (characterized by the erosion parameter tg). The di-
agram was calculated with eq. 4.17. b The instantaneous uplift rate (contoured
in meters per million years) of an isostatically compensated mountain range as a
function of surface elevation and thickening strain rate. Calculated with eq. 4.15

using eq. 4.16 to describe the erosion rate. For uplift the values are positive, for sub-

sidence negative. Assumptions for the physical parameters are: p, = 3200 kgm ™3,

pe=2700 kgm™3, 2. =35 km, 2z =100 km, T1=1280°C, o = 3 - 1075 K~1. With
these parameters the constants in the equations are: ¢ =~ 3545 and b =~ 0.14 (s.
eq. 4.32)

to keep in mind that we can only explore the instantaneous uplift rates as
they will immediately change as a different elevation is reached. This may
be recognized as both (dH/dt) and H occur in eq. 4.15 and we have not
expressed H as a function of time. Fig. 4.12b shows the instantaneous uplift
rates as a function of thickening rate and surface elevation as calculated with
eq. 4.15 and eq. 4.16. The figure still shows some interesting results. For
example, it shows that for thickening strain rates below about ¢ = 107!%) the
uplift rate is negative (subsidence occurs) and the subsidence rate increases
with elevation, while this relationship is reversed for other thickening rates.
Above around é = 1073 there is uplift with the uplift rate increasing for
higher mountain belts. Let us remember that such counter intuitive results
are useful to teach us about the processes controlling the evolution of surface
elevation in mountain belts, but that the model presented here is far too
simplistic for any direct application.

Evolution of Surface Elevation. We can also use the model above to
explore the evolution of surface elevation with time. For this it is necessary
to integrate eq. 4.15. Using the erosion model of eq. 4.16 integration of eq. 4.15
(using the method of Appendix B.5.1) gives:
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Figure 4.13. The evolution of surface eleva- £ f a
tion and depth of rocks in the crust in a moun- el;\‘j;t‘?‘gﬁ
tain belt during simultaneous thickening and g !
erosion. a Surface elevation for four different 2b/g
erosion parameters tg (eq. 4.18). b Rock trajec- 6
tories for the assumption of: tg = 0.5b/¢ in a, b/&
as calculated with eq. 4.19. Note that all rocks
with an initial depth of less than 30 km will 4
be exhumed under these assumptions. All other 0.5b/t —
assumptions are the same as in Fig. 4.12 3
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Fig. 4.13a shows four examples for the evolution of surface elevation with
time as described by eq. 4.18. It may be seen that surface elevation converges
only to a steady state if g < b/¢ (s. Problem 4.4).

So far we have only considered the vertical motion of the surface. How-
ever, we can use our model also to describe the vertical motions of rocks in
the crust. From Fig. 4.11 we know that rock trajectories in the crust may be
divided into two groups: paths that track upwards and those that track down-
wards in the crust. The two groups are separated by the point where v, =0
or v, = 0. This point is of great geological importance, as rocks can only get
exhumed by material removal from the surface if their depth z is z < z,_—g.
We can actually calculate this point and all rock trajectories in the crust
within our simple model. We can do that because we know that the vertical
motion of rocks relative to an externally fixed reference frame is described by
Vo = (dz/dt). Rock trajectories showing the evolution of depth through time
may therefore be calculated by integrating eq. 4.10. After inserting eq. 4.15
and eq. 4.13 in eq. 4.10 and integrating (which we do not derive in detail
here) we get:

2(t) = zett + % (1 _ eét) +H (%) . (4.19)
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There, z; is the initial depth of rocks in the crust. Fig. 4.13b shows rock tra-
jectories calculated with eq. 4.19. Within our simple model, the depth z,,—¢
or zy,,—¢ may now be calculated reasonable easy. It is given by inserting
eq. 4.15 and eq. 4.13 in eq. 4.10 assuming v, = 0. Solving for 2 gives:

H

Z(y,=0) = @+ % 1-b) . (4.20)
Inserting a range of realistic numerical values for the physical parameters
into eq. 4.20 shows that this transition point lies at roughly 30—40 km depth.
This means, that rocks can only be exhumed in orogens subject to simulta-
neous thickening and erosion at the surface if they lie at depths shallower
than 30-40 km. This is in good correspondence with our observation that
greenschist and amphibolite facies rocks with metamorphic pressures up to
roughly 10 kbar (see eq. 7.1) are common in convergent, orogens, while eclog-
ites and other high pressure rocks are rare and usually confined to structures
of the orogen that can only be describe with two-dimensional models (e.g.
subduction zones, lithosphere scale thrusts etc.). Our model also shows that
the exhumation of high pressure rocks requires consideration of other ex-
humation mechanisms (s. sect. 6.3.4; s. Platt 1993b).

4.4 Isostasy

Isostasy is a stress balance. However, since it is used to describe the elevation
of the surface the concept of isostasy is discussed in this chapter. Isostasy
relates the vertical distribution of mass to elevation in a state of equilibrium in
which the lithosphere is considered to be floating on the underlying relatively
weak asthenosphere. Isostasy does a good job of explaining the first-order
variation of elevation over most of the earth’s surface. In general, isostasy is
concerned with the comparison of the surface elevation in two different places.
For example, we might want to interpret the elevation difference between a
mountain range and its foreland (assuming isostatic equilibrium) in terms
of its implications for their different thicknesses. When we consider isostatic
equilibrium it is useful to discern:

— hydrostatic isostasy and
— flexural isostasy.

Hydrostatic isostasy is a stress balance in the vertical direction only (s. sect.
5.1.1). Thus, hydrostatic isostasy is a model that should really only be applied
to regions that are large compared to the elastic thickness of the lithosphere.
In other words, to geological features that are of at least several hundreds
of kilometers in extent, i.e. areas like the Tibetan Plateau or the Canadian
Shield. Flezural isostasy describes a stress balance in two or even three di-
mensions (s. Fig. 4.14). As a consequence, flexural isostatic considerations can
be used to interpret the shape of much smaller scale features, for example
foreland basins or subduction zones.
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Figure 4.14. Illustration of the difference between a hydrostatic isostasy and
b flexural isostasy. In a all vertical columns are considered independently of each
other. In b the shear stresses between vertical columns are akso considered. g is the
load

Isostatic Equilibration Rates. Isostasy describes an equilibrium state and
is therefore independent of time. Nevertheless, many geologists misinterpret
the temporal evolution of isostatic rebound as a feature inherent to isostasy.
For example, we observe that isostatic equilibrium of Scandinavia in response
to its deglaciation in the last ice age, occurs on a time scale of 10* years (e. g.
Sabodini et al. 1991). Such isostatic compensation rates can be measured, for
example by dating raised beaches (Fig. 4.15). However, this observation does
not tell us that isostasy itself is time-dependent. Isostasy is a stress balance
and as such independent of time. If a plate tries to rise or sink to reach its
isostatic equilibrium state in response to a changed load, it has to displace
the underlying asthenosphere. Thus, the rate of isostatic compensation can
be used to estimate the viscosity of the asthenosphere (e.g. Lambeck 1993).

4.4.1 Hydrostatic Isostasy

The hydrostatic isostatic model is based on the assumption that all vertical
profiles through the lithosphere may be considered independently of each
other. That is, shear stresses on vertical planes are neglected (Fig. 4.14a).
Then, there will be a depth at which the vertical stresses of all vertical profiles
are equal. This depth is called the isostatic compensation depth. At this depth,
the weight of all columns are equal. If you dive underneath a boat you dive
beneath this isostatic compensation depth: Regardless if the boat is above
you or not, the water pressure is the same. If we consider two profiles A
and B, the isostasy condition may be formulated in terms of an equation

(s. Fig. 4.16):
UzAz F=zK U,]zgz|z:zx . (4.21)

In this equation o2, and o2 are the vertical normal stresses of the two
columns A and B and the depth zx is the isostatic compensation depth.
The vertical dash stands for “at the location”. For most geological purposes
we want to compare the elevation of two neighboring lithospheric columns



162 4 . Kinematics: Morphology and Deformation

. ,{\0(\ b—

sea level

/

isostatic rebound

<4 ~10% years —p

Figure 4.15. Observed and interpreted sea level changes. a Typical evolution of
surface uplift relative to sea level in regions of recent deglaciation, for example
Scandinavia (e. g. Lambeck 1991). Such curves typically contain two distinct parts
and may be interpreted as the sum of sea level rise due to deglaciation (because of
increased water mass in the oceans) and sea level drop because of isostatic rebound.
A simple example for the former is shown in curve b consisting of a linear sea level
rise until deglaciation ceases. Isostatic rebound (curve ¢) decreases exponentially
as isostatic equilibrium is approached and therefore outlasts the deglaciation. From
such curves, mantle viscosities of the order of 10?° Poise have been calculated

in isostatic equilibrium. For this, it is useful to assume as isostatic compen-
sation depth the shallowest possible depth below which there is no density
differences between two neighboring columns. For most examples this can
be assumed to be the base of the lithosphere of the column which reaches
deepest, into the asthenosphere.

The downward force that is exerted by one cubic meter of rock is given
by the product of its mass x gravitational acceleration. The downward force
that is exerted by an entire vertical column per square meter (the vertical
normal stress) is thus the product of density and acceleration integrated over
the thickness of the column:

2K
:/ pgdz . (4.22)
0

Ozz
2=zK

Inserting eq. 4.22 into eq. 4.21 gives:

/0 pa()gdz = /0 pn(2)gdz | (4.23)

where pa(z) and pp(z) are the densities of the two columns that are to be
compared, both as a function of depth, z. Within the coordinate system
shown in Fig. 4.16, the lower limit of integration 0 corresponds to the upper
surface of the higher of two columns that are to be compared. The upper limit
of integration is the isostatic compensation depth z2k. g is the gravitational
acceleration. Eq. 4.23 is the basis of all calculations of isostasy.
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Figure 4.16. Tllustration of isostatic equilib-
rium. Note that the z-axis is defined positively
downwards and has its origin at the surface of
the light shaded block (e.g. an iceberg or the
lithosphere) that is assumed to float in a dark
shaded region of higher density (e.g. water or
the asthenosphere)

I

When considering the isostatically supported elevation of a mountain belt,
it is useful to divide the density variations in the lithosphere into two parts:

— density variations that are due to material differences and
— density variations that are caused by thermal expansion.

The fact that both types of density variations may form significant contri-
butions to the density structure of the lithosphere is familiar to us from
Fig. 2.18. We begin by considering material differences.

Isostasy due to Material Differences. We begin by solving the balance
written out in eq. 4.23 for the elevation of a single lithospheric column above
the asthenosphere. For simplicity we forget in the first instance about the
mantle part of the lithosphere and consider the crust only so that zx = 2z
(Fig. 4.16; s. also sect. 5.1.1). The block in Fig. 4.16 has a constant density p.
(e.g. density of the crust) and floats in a denser medium of the constant
density pm (e.g. density of the mantle). We call its elevation above the surface
of the denser medium Hy, 4, although it is just labeled as H in Fig. 4.16. We
use the subscript n.¢ to emphasize that — for now — we consider only the
materiol contribution to density differences between the profiles A and B.
The densities and the acceleration are independent of z. Thus, they can be
drawn out of the integrals on both sides of eq. 4.23 and integration is easy.
By integrating the left half of the equation and splitting up the right half of
eq. 4.23 we get according to Fig. 4.16:

Ze Hmat Zec
= g/ Pairdz +g/ pmdz . (4.24)
0 0 Henat

The density of air is negligible in comparison with pm, or p.. Thus, the first
integral on the right hand side of eq. 4.24 is also negligible. After finishing
the integration, canceling out g and inserting the integration limits we get:

Pegz

Pclc = PmRc — pernat . (425)

Solving for elevation H gives:

H = Hmat = Zc (%) . (426)
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Airy Pratt

Figure 4.17. Comparison of the interpretations of the isostatic model according
to Airy and Pratt. The shading indicates density. Darker shading means higher
density

This relationship describes the hydrostatically balanced elevation of the
surface of a floating body above the medium it floats in. Remember that
H = H.,,,; emphasizes the fact that this elevation difference is only based on
the material difference between the block and the liquid. We can control this
equation for some end member scenarios: If p. is zero, then this equation
states that H = z;: the entire column floats on top of the liquid. This is the
scenario given by a kids balloon floating on a lake. Alternatively if the two
densities approach each other (pm = p¢), then the entire body is submerged
(H = 0). This is the scenario we observe with water soaked logs that float al-
most completely submerged in water. We can conclude that our observations
confirm the simple model.

Isostasy According to Airy and Pratt. Two centuries ago, different
models were developed to explain elevation differences observed in the moun-
tain belts of the world in terms of the isostasy model. The two most notable
models are those of Airy and Pratt (Fig. 4.17). Both earth scientists recog-
nized that mountain belts are likely to rest in isostatic equilibrium and that
their elevation is proportional to the density contrast between crust and man-
tle, as expressed by eq. 4.26. Pratt observed that many low lying Proterozoic
shields are made up of high grade metamorphic rocks of high density, while
mountain belts are often made up of hydrated, low grade metasediments and
carbonates. He concluded that most continental crusts extend to roughly
similar depths and that the observed differences in surface elevation are the
consequence of horizontal density variations in the crust.

In contrast, Airy estimated that the density of the crust is largely the
same in all continental regions and therefore concluded that topographically
higher regions, must be compensated by crustal roots at depth. The models
of Airy and Pratt still bear their names. Seismic studies in many mountain
belts show that most regions of high surface elevation are indeed compensated
by significant roots at depth. On the other hand, it is true that there is a
relationship between surface elevation and density of rocks. In short, the truth
lies between the models of Airy and Pratt, although much success has been
made by following Airy’s model.

Isostasy Due to Thermal Expansion. In order to calculate the con-
tribution of thermal expansion to surface elevation we need to introduce
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«: the coefficient of thermal expansion, which we encountered already in
eq. 3.29. « has the units of strain per temperature increment, which is
K~! (s. sect. 5.1). For most rocks the coefficient of thermal expansion is of
the order @ = 3- 107 K~!. Using a and the density of the mantle p,, (at the
temperature of the asthenosphere), the density of colder rocks of the same
material as a function of temperature may be calculated with:

p(T) =pm(1+ (i - T)) . (4.27)

There, T} is the temperature at the base of the lithosphere at z = 2. Accord-
ing to eq. 4.27: p = pm, where T' = T7. At lower temperatures, the density
increases linearly. At the surface, where we can assume that the temperature
is Ty, =0°C, eq. 4.27 becomes:

pr=1,) = po = pm (1 +aTi) . (4.28)

If the density of the mantle is about pm=3200 kgm—2 at Tj, then the den-
sity at the surface is: pg=3300 kgm 3. Assuming a linear geotherm in the
lithosphere, we can describe the mean density of the lithosphere with:

T+ T
2

In order to estimate which proportion of the elevation of a mountain belt
is due to thermal expansion (Hinerm), we insert eq. 4.29 into the left hand
side of eq. 4.23. The following algebra remains the same as in eq. 4.24 and
eq. 4.25 except that the upper limit of integration is not the base of the crust,
but the base of the lithosphere, because thermal expansion and contraction
affects the entire lithospheric column. After integration according to the same
principles as we did before we get here:

Hiverm = _zla(ﬂ + Ts)/2 . (430)

The negative sign arises because p is larger than pm,.

The Elevation of Mountain Belts. First off a warning: Gravimetric data
tell us that many active orogens are not in isostatic equilibrium, but that their
topography is dynamically supported. This means the surface elevation is ac-
tively held up or pushed down and is out of isostatic equilibrium. Dynamically
supported topography may generally be found on length scales that are com-
parable to the elastic thickness of the lithosphere and will be discussed there
(e.g. Forsyth 1985; Lyon-Caen and Molnar 1983; Molnar and Lyon-Caen
1989) (sect. 4.4.2). It is therefore emphasized that the model of hydrostatic
isostasy should only be used for topographic features that are at least some
hundreds of kilometers in lateral extent. For example, the European Alps are
barely 200 kilometers across and are only partly compensated isostatically
(Karner and Watts 1983). This limitation of the hydrostatic model should be
kept in mind when we interpret the simple considerations below.
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Nevertheless, let us now consider the elevation of a lithosphere with the
thickness 21 and a crustal thickness of z. above its surroundings considering
both the influence of the different materials and the influence of thermal
expansion. The higher density of the cold lithosphere provides a negative
contribution to the overall buoyancy (eq. 4.30). The material contribution
of the crust to the elevation, on the other hand, is positive and was derived
in eq. 4.26. Density variations within the mantle part of the lithosphere are
neglected here (s. however p. 37). Then, the isostatically supported surface
elevation relative to the surroundings is given be the sum of the thermal and
the material contributions:

Pm — Pc

H = Hmat + cherm = Zc (p—) - Z](I(Ti + Ts)/2 . (431)

If we summarize all the material parameters into the constants:

5 = (pm — pe)/pm and : {=ai+1)/2 (4.32)
then this eq. 4.31 simplifies to:

H=906z.—&xn . (4.33)

If we insert meaningful numbers into eq. 4.31 (e.g. pm =3200 kgm~3,
pc =2700 kgm~3), we get:

d~ 0.15 and : £~ 0.018 . (4.34)

This implies that the influence of material difference between crust and man-
tle, per meter of lithospheric column, is about ten times more important to
the isostatically supported surface elevation than the influence of the ther-
mal expansion. However, because the crust constitutes only about one third
of the lithosphere, the crustal material contribution to the elevation is in to-
tal only about 3 times larger than the contribution of thermal contraction,
which applies to the whole lithosphere. In total, H is about 3600 m.

This is the elevation of the upper surface (of a lithosphere with z. and z
as above) above the hypothetical surface of a liquid mantle, as we illustrated
in Fig. 4.16. Mid-oceanic ridges are the only place on the globe where we can
measure the depth of this reference level. It turns out that mid-oceanic ridges
lie indeed about 3600 m below the average elevation of the continents and
lie at a very constant depth below sea level (Turcotte et al. 1977; Cochran
1982).

In most geological problems it is much more interesting to know the el-
evation of a mountain belt above its surroundings, rather than above the
mid-oceanic ridges. For this purpose, it is useful to reformulate eq. 4.31, so
that the elevation is given as the elevation difference between a thickened (or
thinned) lithosphere and an undeformed reference lithosphere:

H = (0fcze — Efimn) — (02c — &) = b2c(fe —1) —Ea(fi—1) . (4.35)
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The parameters f. and fi describe the thickening strains of the crust and
the mantle lithosphere and were discussed in detail in sect. 3.4.4 and 4.2.3
(also: sect. 6.1.4, eq. 6.10). The elevation of isostatically supported mountain
belts above the undeformed reference lithosphere is shown in Fig. 4.18 (for the
concept of an undeformed reference lithosphere see: Le Pichon et al. 1982).
More detailed assumptions about the thermal expansion have no influence on
the surface elevation (e. g. Zhou and Sandiford 1992). Fig. 4.18 shows clearly
that homogeneous thickening of the entire lithosphere (a diagonal line from
bottom left to top right in this diagram) causes relatively small changes of the
surface elevation, because the two contributions in eq. 4.33 and eq. 4.35 have
opposite signs. Accordingly, the negative buoyancy caused by the thickening
of the mantle part of the lithosphere is largely compensated by the positive
buoyancy of the thickened crust. It may also be read from this figures, that
doubling of the crust, without thickening of the lithosphere would imply an
isostatic uplift of about 3-4 km (compare the paths in Fig. 4.7b, s. sect.
2.4.1).

The Depth of the Oceans. The water depth of the oceans is a direct func-
tion of the distance to the mid-oceanic ridges (Fig. 2.1). The functional rela-
tionship between water depth and distance from the mid-oceanic ridge was
described with a fantastically simple model by Parsons and Sclater (1977).
Their model is one of the largest successes of the theory of heat conduction
(sect. 2.1, 3.5.1). It can be derived using the principles of hydrostatic isostasy.

Oceanic lithosphere consists (except for a thin 7 km thick crust) largely of
asthenosphere material that has cooled to form lithospheric mantle. Because
of the small and constant thickness of the crust, material contributions to
density variations may be neglected and thermal expansion (contraction) is
the governing factor for variations in the density structure. In order to use

Figure 4.18. Isostatically 2

supported surface elevation of

mountain belts in the f.-fi-plane

(after Sandiford and Powell
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this density variation to estimate the isostatically supported elevation of the
ocean floor, we use the model sketched in Fig. 4.19. According to eq. 4.23
the vertical normal stresses of the columns A and B must be the same in
the compensation depth z = 2. For column A the vertical normal stress at
depth 2z = 2 is given by:

21
U?z|z=zl = Pwgw +/0 p(z)gdz . (4.36)

There, w is the water depth in column A, p,, is the water density, g is the
gravitational acceleration and p() is the density of the lithosphere as a func-
tion of depth which we shall discuss on the next page. For column B we can
formulate:

T8 |z = PmgW + pmga (4.37)

It should be possible to follow egs. 4.36 and 4.37 by considering Fig. 4.19.
After inserting eqs. 4.36 and 4.37 into eq. 4.23, the isostasy condition of gets
the following form:

21
Pm2 + Wi(pm — pw) = /0 pydz . (4.38)

With foresight to the following steps, we bring the first term of this equation
to the right hand side, find its derivative with respect to z and write it
therefore into the integral. Eq. 4.38 gets the form:

w(pm — pw) = /Oz1 (Pz) — pm)dz . (4.39)

This equations states that the water depth is dependent on the density struc-
ture as a function of depth p(;). In oceanic lithosphere this density function
is a direct function of the temperature profile (s. sect. 3.5). Thus, if we know
the temperature as a function of depth, then p; in eq. 4.39 is known, be-
cause we know already the relationship between density and temperature
from eq. 4.27. Thus we can begin by inserting eq. 4.27 into eq. 4.39:

Z1
W(Pm — pu) = / pmalTi — T(2))dz . (4.40)
0
A A B
z=-w
z=0 /
/ plz)

z=1z | pm

| L -

Figure 4.19. Schematic profile through a mid-oceanic ridge and the oceanic litho-
sphere as used for the calculation of water depth. The oceanic crust is neglected
because it is everywhere of the same thickness
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The variable T'(#) is the only unknown in this equation, but we determined
it in sect. 3.5.1. It is well-described by the half-space cooling model. Thus,
the temperature profile of eq. 3.80 may be directly inserted into eq. 4.40:

W(pm — pw) = /Ozl Py <T1 — T, — (T, — T)ert (\/%» dz . (441)

After simplification using eq. 3.16 we get:

wW(pm — pw) = /Ozl pma(T) — Ty)erfc (&) dz (4.42)

or, after taking the constants out of the integral and solving for w:

w= % /0ZI erfc <\/iﬂ) dz . (4.43)

If we introduce the variable n = z/v/4kt, we can take all the constants out
of the integral (s. Appendix C) and get:

ma(T) — T =t

w= \/4th/ erfc (n)dn . (4.44)
(pw —pm) Jo

The definite integral of the error function is not know for integration limits

of 0 and 2z, but it 4s known for integration with limits at infinity. It is:

oe 1
erfc(n)dn = —
J 7
This is a close enough approximation, in particular since p — pn at the
base of the lithosphere. Thus, the integral of eq. 4.44 may be substituted by
the integral from above. The water depth as a function of distance from the
mid-oceanic ridge may thus be described with this model by:

w = 2PmOé(Tl - TS) ’f_t
(pm — pw) l

If we insert standard values for all the constants in this equation we get:

wa 5.91-1075vV% . (4.46)

(4.45)

In words, the depth of the water is proportional to the square root of age
of the oceanic lithosphere. Note that this water depth is only the additional
water depth on top of the water depth at the mid-oceanic ridge (Fig. 4.19).
We can convert this into water depth as a function of distance from the mid-
oceanic ridge if we substitute age by the ratio of distance to rifting rate: z/u,
(which is also age). Fig. 4.20 shows some water depth profiles calculated with
this equation. The fantastic coincidence of these curves with bathymetric
measurements in the oceans of the world to at least an age of the oceanic
lithosphere of about 50 my, confirm the model (see also its correspondence
with heat flow data in sect. 3.5.1).
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Figure 4.20. Profiles of water
depth as a function of distance
from the mid-oceanic ridge as
calculated with eq. 4.45. The
curves are shown for different
rifting rates in my~!. Following
constants were used:

pm =3200 kgm ™3,

pw =1000 kgm ™3,

a=3-10"° K™, T} =1280°C,
T: =0°C and k= 10~ %m?s~!
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4.4.2 Flexural Isostasy

Most topographic features of our planet that are less than many hundreds of
kilometers across are not completely in hydrostatic isostatic equilibrium. This
includes whole mountain ranges like the European Alps (Karner and Watts
1983; Lyon-Caen and Molnar 1989) and can be measured gravimetrically:
Gravimetry measures mass and in isostatic disequilibrium the total mass
above the isostatic compensation depth is not everywhere the same. Thus,
gravity anomalies may be interpreted in terms of the degree of isostatic dis-
equilibrium. Isostatic disequilibria may form in response to a large range of
processes. For example, a continental plate may be actively pushed down-
wards by the load of another plate, or it may be actively held up by mantle
convection exerting an upwards force to the bottom of a plate. Topographic
features that are created by non-isostatic processes are called: dynamically
supported.

Flexural isostasy is a stress balance that also considers horizontal elastic
stresses (Fig. 4.14b). Flexural isostasy is therefore at least a two-dimensional
stress balance. It may be used to interpret surface topography in terms of
both, hydrostatic balance and elastic flexure. In flexural isostasy, lithospheric
plates are viewed as elastic plates that are bent by vertical loads. Interest-
ingly, this model describes a large number of observations extremely well,
although it is not at all trivial that the lithosphere should behave elastically
at all. For example, we will show in sect. 5.2, that deformation of the litho-
sphere on geological time scales may be best described by brittle and ductile
deformation mechanisms (sect. 5.1.2). Nevertheless, we observe a number of
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large scale features that are well-described by elastic lithospheric models. In
the following we summarize a few of these observations.
Examples of Elastic Deformation. Although it may not be intuitive that
rocks can be elastic, there are quite a few observations that show us that they
are! For example, regular spacing between joints and other cracks is a function
of the elastic behavior of rocks and the continuous versus discontinuous dis-
placement across seismically active structures is an elastic deformation that
can be measured even with GPS measurements (Fig. 4.21). Elastic strains
are of the order of about one per mil at the most.
o Ezamples in oceanic lithosphere. QOceanic lithosphere is rheologically stronger
than continental lithosphere and is therefore little internally deformed. IT has
a very uniform thickness and a largely flat surface. As a consequence, plate
scale elastic features that develop in response to vertical loads may spectac-
ularly be seen without much disturbance by features created by other defor-
mation mechanisms. The best known example for elastic deformation of the
oceanic lithosphere are the valleys around sea mounts, for example around
the Hawaii-Emperor chain. Sea mounts are volcanoes that have formed far
from mid-oceanic ridges. They were created by hot spots that have their ori-
gin deep inside the mantle (Fig. 4.22). Thus, hot spot volcanoes that have
formed on the surface of the oceanic lithosphere have no compensating root
at the base of the plate. The volcano may be considered as an external load
to a plate of more or less constant thickness that bends it downwards.
Another example of elastic deformation of oceanic lithosphere is the bend-
ing of the plates at subduction zones. The shape of trenches and the fore

b t0 t1¢213

T

Figure 4.21. Examples of elastic deformation of rocks. a Tension veins in compe-
tent layers between incompetent shale from Prince William Sound, Alaska (paddle
for scale). The spacing is determine by the length scale that can support elastic
deformation. Note that the spacing of veins is larger in the narrower layer at the
top than in the wider layers at the bottom. b Schematic illustration of the elastic
deformation around a fault. The marker lines are before deformation (t0), during
elastic deformation (t1 and t2) and after rupture (t3)
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bulge on the seaward side of the trench are also the consequence of elastic
bending of the plate.

e FEzamples in continental lithosphere. The elastic bending of continental
plates may be observed in the foreland of many collisional orogens, where
molasse basins form as the consequence of the elastic deflection of the plate
in response to the load of the mountain belt. One of the best know examples
is the northern molasse of the European Alps. There, the European Plate is
bent downwards under the load of the alpine mountain chain. The deepest
point, of the deflection is the valley of the river Donau. However, in collisional
orogens the ezternal load applied by the weight of the mountain belt is partly
compensated by an internal loads: the root of the mountain belt. Thus, the
distribution of loads is not as clear or as easy to interpret as the examples of
oceanic plates.

Passive continental margins also show often evidence for elastic bending of
continental lithosphere (Fig. 4.26). The best known examples for this are the
great escarpments along the coasts of southern Africa and Australia (Tucker
and Slingerland 1994; Kooi and Beaumont 1994). There, the unloading of
the plate that is caused by the asymmetric erosion of the continental margin
is compensated by elastic updoming of the coastal foreland. The Australian
Great, Barrier Reef, for example, may be interpreted as an elastic fore bulge
similar to those observed in the vicinity of subduction zones (Stiiwe 1991).

Interestingly, many geological structures that may be explained with the
theory of elasticity — as for example the shape of the Australian escarpment —
are preserved for many tens of millions of years. In sect. 5.3 we will show that
on such a large time scale most stresses should be compensated by viscous
deformation.

The Flexure Equation. In order to describe flexural isostasy quantita-
tively, we need to preempt some information on elastic deformation from

Figure 4.22. Flexure of oceanic X
lithosphere due to the loading of Py
a sea mount

Y

hot spot
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sect. 5.1.2. Elastic deformation describes an empirically derived constitu-
tive relationship in which stress and strain are proportional to each other
(eq. 5.24). The proportionality constant between stress and strain is called
the modulus of elasticity or Young’s modulus E. How much a plate bends un-
der an applied stress depends on E and its compressibility, which is described
by the Poisson ratio v.
Let us now consider the bending of a simple, ideal elastic plate like the
one sketched in Fig. 4.23. We also neglect buoyancy forces for now. When
integrating the horizontal normal stresses ¢4, over the thickness of the elastic

plate h, then it may be shown (or even intuitively seen) that the bending
moment M is proportional to the curvature of the plate (s. Fig. 4.23):
dPw
dz?
In this equation, w is the vertical deflection of the plate and the constant
of proportionality D is called the flexural rigidity of the plate. The bending
moment M is the integrated torques on both sides of the load. The derivation
of eq. 4.47 and the following steps are explained in some detail by Turcotte
(1979) and Turcotte and Schubert (1982) and will not be repeated here.

Eq. 4.47 is in itself not yet very useful. However, it may be coupled with a
force balance equation that relates bending moments, the vertical load ¢, any
applied horizontal forces F' and the shear forces (s. Fig. 4.23) to each other
(s. Turcotte and Schubert 1982; Ranalli 1987). When coupled with eq. 4.47,
one arrives at the one-dimensional flexure equation:

dlw d?w
At - T g
There, g, is the vertical load as a function of horizontal distance x and has
the units of force per area: stress. Thus, if the distribution of loads is known,
this equation may be solved for either the deflection of the plate w or for its
flexural rigidity D (in N x m). Usually, the deflection is well known from
bathymetric or topographic observation and eq. 4.48 is used to derive the
rigidity or “stiffness” of the plate. This flexural rigidity is a direct function
of the elastic material properties of an ideal elastic plate of thickness A and
is related to these by:
Eh3

D=5a 7 - (4.49)

Figure 4.23. Bending of an ideal M M

elastic plate in a simplified model
view which is useful for the de- Q‘[
plates \

scription of bending lithospheric

M=-D (4.47)

(4.48)
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Thus, if the material constants & and v are known and the flexural rigidity of
a plate was derived from modeling its shape using eq. 4.48, then this may be
converted directly into an elastic thickness of the lithosphere using eq. 4.49.
All descriptions of the bending of elastic plates are based on the integration
of eq. 4.48, or its two-dimensional equivalent.

Application to the Lithosphere. Eq. 4.48 may be directly applied to
describe flexural isostatic equilibrium, i.e. the elastic bending of lithospheric
plates under external and internal loads. When we do this, we need to be
aware of at least three important points:

1. We have to keep in mind that the flexure equation is based on completely
different deformation mechanisms from those that we will discuss in sect. 5.2,
where we consider the rheology of the lithosphere. In other words: eq. 4.48
is only a model that describes some field observations very well, but may be
quite useless for the description of many other observations.

2. The flexural rigidity D must be interpreted correctly. Field observations
tell us that the rigidity of lithospheric plates is of the order of D ~ 10%* Nm
(£ about one order of magnitude) and laboratory experiments show that the
material constants are about E ~ 10! Pa and v ~0.25. According to eq. 4.49
these parameters imply that the elastic thickness of the lithosphere A is only
some tens of kilometers. Thus, the elastic thickness of the lithosphere is much
thinner than the lithosphere according to thermal or mechanical definitions.
The elastic thickness must be considered as the theoretical thickness of a plate
with homogeneous elastic properties. Considering that the brittle strength of
the upper crust as well as the ductile strength of the lower most lithosphere
are likely to be very small, it is only the central part of the lithosphere that

qa AY positive load
Hw ..... sy yB B

Zc

...... negative load
mantle

Figure 4.24. Distribution of loads during the elastic bending of lithospheric plates.
The shown example illustrates the displacement of the mantle by crustal material.
At the left margin of the diagram the case of water covered oceanic lithosphere is
illustrated (Problem 4.10). The central part of the figure illustrates the case of a
continental plate. The right hand part of the figure shows how this plate can be
split up into parts in order to consider the different forces acting on the plate. w is
the plate deflection in both the left and the right hand example. Points A and B
are marked for Problem 4.10
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is dominated by elastic behavior on time scales that are short compared to
the viscous response. However, it is important to note that the concept of an
elastic thickness remains a theoretical one. Ranalli (1994) showed that the
elastic thickness of the lithosphere is largely dependent on the depth of the
900°C-isotherm (s. sect. 5.2.1, Fig. 5.16). As the rigidity is proportional to
h3 (eq. 4.49), it might therefore be expected that D is indirectly proportional
to the cube-root of the geothermal gradient (Molnar and Lyon-Caen 1989).
This, however, is not the case. For example, the rigidity of the Indian and
Adriatic plates varies by about three orders of magnitude but the difference
in geothermal gradients is less than one order of magnitude. Thus, the elastic
thickness is likely to be not only dependent on the 900 °C-isotherm.

3. The distribution of loads on the plate must be thought through. The
load as a function of distance g, as used in eq. 4.48 is the sum of a series of
internal and external loads that act upwards and downwards onto a plate.

In order to clarify which different forces act on the plate, it is useful to
divide the plate under consideration according to the scheme illustrated in
the right hand part of Fig. 4.24. There, it may be seen that the downward
force exerted by the mountain range on the plate is given by the vertical
normal stress gext = pcgH. This is the external or the positive load. This
load is opposed by a buoyancy force in the region of the displaced mantle.
This is the internal or negative load shown on Fig. 4.24 with the upwards
arrows. This internal load has the magnitude gint = (pm — pc)gw, where w
is the deflection of the plate. The net load that is applied to the plate is
therefore:

(%) = gext = Gint = PegH (x) — (pm — pc)gw . (4.50)

Note that the load is here already expressed as a function of horizontal dis-
tance z. If eq. 4.50 is inserted into eq. 4.48, this may be solved for w nu-
merically or — for some simple boundary conditions - also analytically. When
considering multi-layered plates, the same principle may be followed in de-
riving the net load on the plate (s. Problem 4.10).

Applications to the Oceanic Lithosphere. A series of elastic bending
problem in the oceanic lithosphere may be well-described with eq. 4.48 if
two simplifying assumptions are made:

— 1. We assume that there are no horizontal forces applied to the plate. Then,
the entire last term of eq. 4.48 is zero. This is justified as many oceanic
plates are not pushed from the side, but have open ends. Moreover, the
forces that do act from the sides cause only a second order effect in plate
deflection.

— 2. We assume that the vertical load is only applied at a single location at
the end of the plate; i.e. there is no dependence of the load on z. When
we consider subduction zones or island chains, this is also justified as both
are largely linear features loading the plate.
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Based on the second assumption, and assuming that the downwards deflected
region is filled with water, eq. 4.50 simplifies to:
q=¢a— (pm — pw)gw - (4.51)

as illustrated on the very left hand edge of Fig. 4.24 (p,, is the water density).
Eq. 4.48 simplifies to:

dtw
ot = lem —pwgw (4.52)

Eq. 4.52 describes a range of geological features surprisingly well and has
the great advantage that it may be integrated analytically for a range of
geologically relevant boundary conditions. After integration, the constants D,
g, pm and p. often occur in the following relationship:

« is called the flexure parameter of the lithosphere (s. Problem 4.11).

(4.53)

e Seamount chains. The first example we want to discuss is that of a line-
shaped load of islands on a continuous plate of constant thickness. For ap-
propriately formulated boundary and initial conditions (e.g. the load applies
only at = 0, symmetry of the deflection so that dw/dz=0 at z = 0 and
others) a solution of eq. 4.52 is:

w = woe™ %/ (cos(x/a) + sin(z/a)) . (4.54)

There, wg is the maximum deflection of the plate directly underneath the
load and w is normalized to this value (we can see from eq. 4.54 that w — wq
for 2 — 0). Interestingly, the maximum deflection wyq is given by:

_ 9@
- 8D
Eq. 4.54 is a good approximation for the description of the water depth
around the Hawaii and Emperor Island chains (s. Fig. 4.25a). The equation
is also historically important, as is was one of the first models used to estimate
the elastic thickness of the lithosphere using the bathymetric surveys around
Hawaii.

wo (4.55)

e Trench morphology. The second example that may be described with the
approximation of eq. 4.52 is the shape of oceanic lithosphere near trenches.
There, the loading of the subducting oceanic plate may be viewed as a line-
loading by the margin of the upper plate. For this case, boundary conditions
must be assumed that describe a broken half plate which is subjected to a
load at its end. For appropriately formulated boundary conditions a solution
of eq. 4.52 is:

w = woe™*/* (cos(x/a)) . (4.56)
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The shape of plates as described by eq. 4.56 is illustrated in Fig. 4.25b. Note
how similar this solution is to eq. 3.100: They both describe sine-functions
that decay exponentially with distance. A comparison of the curves shown on
Fig. 4.25b with bathymetric measurements shows that most subduction zones
are steeper near the trench than what is described by the curves at the left
margin of Fig. 4.25b. It is interpreted that this indicates that subducted plates
are not only loaded by the upper plate but that convection in the mantle
wedge and other forces exert a additional torques on subducting plates. For
other reasons of strange subduction angles see p. 22.

Applications to the Continental Lithosphere. Continental lithosphere
deforms internally much easier than oceanic lithosphere by pervasive duc-
tile mechanisms. Thus, elastic features are often not so clearly exposed and
loads of mountain ranges and the like are distributed over large parts of the
plates. As a consequence, continental lithosphere does not lend itself so eas-
ily to description with analytical solutions of eq. 4.48. Nevertheless, it should
be said that the load of long mountain chains on homogeneous continental
plates is analogous to the problem of long island chains on oceanic litho-
sphere. Thus, eq. 4.54 can — in principle — also be used to describe foreland
basing, but care must be taken by accounting for sedimentary fill of foreland
basins, compensating crustal roots etc (s. Turcotte and Schubert 1982). For
example, p,, must be replaced by p. in the formulation of the flexural pa-
rameter (s. eq. 4.50). However, much more progress has recently been made

broken plate

continuous plate

a b

100 200 100 200
x (km) x (km)

Figure 4.25. Shape of elastically bent plates. a Continuous plate loaded only at
z = 0: the left margin of the diagram (eq. 4.54). Only half of the plate is shown.
b Broken plate, also loaded only at 2 = 0 {eq. 4.56). The curves are labeled with
the flexural rigidity of the plates in Nm. In a, the volume of the formed basin is
shown by the shaded region for onw curve. However, the basin volume is for all
rigidities the same! Note the elastic bulges that occur outwards of the basins before
the plates return to their normal position in the far field
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in foreland basin modeling by using numerical approximations, where more
realistic scenarios may be described (Garcia-Castellanos et al. 1997).

I\t1 t2 t3‘--..._,
to
L (km)
I T T T T T |
100 200 300 400 km

Figure 4.26. Elastic flexure at passive continental margins. The map shows the
Great Escarpment of southern Africa. The straight line shows the profile which is
schematically modeled at right. The model at right is a cross section through an
idealized passive margin showing surface elevation H as a function of distance from
the continental shelf L at four different time steps to to ¢3 during the successive
erosional retreat of a 1000 m high escarpment. The land region of the cross section
is shaded for time step to. Topographic profiles similar those at ¢1 to f3 can be
found in southern Africa and eastern Australia (after Stiiwe 1991)

The topography of passive continental margins is probably the example in
the continental lithosphere that is most obviously described by elastic flexure
(Fig. 4.26). While the geometry of passive margins may be characterized with
a very simple geometry, there is no analytical solution of the flexure equation
to describe it and models in the literature rely on numerical approximations.
Passive margins feature a range of interesting morphological relationships
between the position of the drainage divide, the shape and direction of the
drainage networks, the position of a characteristic great escarpment and the
slope of the range (s. p. 184). Many of these relationships indicate that the
relief of the plate margin is characterized by elastic bulges in the foreland
of the escarpment that are interpreted to have formed in response to the
unloading of the plate margin by erosional retreat of the escarpment. The
Great Barrier Reef in Australia has been explained as such a forebulge (e. g.
Stiiwe 1991; Gilchrist et al. 1994; Tucker and Slingerland 1994). Other curious
features of passive continental margins, for example the inland drainage of
rivers, are consistent with such interpretations.

4.5 Geomorphology

The interpretation of geomorphological features in terms of an integrated
geodynamic understanding of plate tectonic processes has become an impor-
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tant topic in the earth sciences. This new direction has become known by the
name “tectonic geomorphology” or “neotectonics” and the appearance of a
range of recent excellent textbooks testifies of the topical nature of this new
field (e.g. Burbank and Anderson 2001; Summerfield 1991; Keller and Pinter
1996; Schumm et al. 2000; Kirkby 1994; Julien 1998).

Figure 4.27. Schematic car- Incisian corirolied

toon illustrating the develop-
ment of uplift versus incision | ﬂ
controlled topography. From
left to right the three little Uplift controlled

blocks in each row show differ- L [ B A
ent time steps during the land- { - . W
scape evolution ‘

For the description of geomorphic processes it is often useful to discrimi-
nate between:

I_\'\—---..'r \‘—\f/-\/\/.

— geomorphic shaping by tectonic (“endogenic”) processes, and
— geomorphic shaping by erosion and sedimentation (“exogenic”) processes.

We could define these two basic end members as “uplift controlled” and as
“incision controlled” topography, respectively (Fig. 4.27). In many tectoni-
cally active regions both processes interact (Fig. 4.28) and an understanding
of the relative contributions of these two processes is crucial for an integrated
understanding of the evolution of such regions. Most of both process groups
may be described using some very basic principles of which some are intro-
duced on the following pages. From the viewpoint of a Eulerian observer,
both process groups may be described as a material transport into or out
of the system. Tectonic (“endogenic”) processes move material by faulting,
by uplift or by subsidence. Erosion and sedimentation (“exogenic”) processes
move material by removing or depositing material. In many cases the mate-
rial transport may be described with the same principles as the transport of
heat. That is, by:

— diffusion,
— advection or
— production

of material in the system. Accordingly, many geomorphic processes may be
described with the same principles discussed in sect. 3.1, 3.2 and 3.3, by
considering the transport of mass instead of energy. However, there are also
processes that are unique to landscape formation, for example, the hydrolog-
ical processes in drainage networks or the threshold mechanisms governing
landslides. Before we discuss the description of individual processes in some
detail, the following paragraphs illustrate the difference between endogenic
and exogenic landscape formation.
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Figure 4.28. Digital elevation model and tectonic cartoon of a 120 km by 120
km section at the transition zone between the Alpine orogen and the Pannonian
Basin (centered around 47°N and 15°E). The region shows a series of spectacular
neotectonic features, for example the incision of the river Drava which is clearly
antecedent with respect to the uplift of the dome made by the Pohorje Pluton. This
pluton is the eastern most of a series of plutons within the suture zone between
the Adriatic and European plates. Also note that some of the north south striking
ridges within the basin show a clear asymmetry with steep west flanks and shallow
east flanks indicating that the basin inversion was assciated with morphological
shaping by block tilting. The topographic highs at H and V are tectonic horsts and
active volcanoes, respectively, both evidencing the high activity of the region

o Geomorphic shaping by tectonic processes. Relief development by tectonic
processes is generally described with mechanical and kinematic models and
— while undoubtedly an integral process of landscape formation — are usually
not the subject of the modeling of geomorphic processes as such. Rather,
tectonic processes form boundary conditions to geomorphic modeling, which
generally concentrates on the description of the exogenic processes. For exam-
ple, tectonic processes that are rapid compared to the subsequent geomorphic
shaping can be assumed as starting condition, not unlike the assumption we
discussed for the description of contact metamorphism on p. 81. Alterna-
tively, slow tectonic uplift over long time scales can be modeled as an uplift
function that interacts with the geomorphic shaping.

o Geomorphic shaping by erosion and sedimentation. Erosion and sedimen-
tation processes are governed by a large range of different physical processes
including soil creep, solution, rain splash, chemical- and aeolian weathering,
down- and sideways cutting of drainages, debris flows, as well as discontinuous
processes like landslides and many others (e. g. Carson and Kirkby 1972). In
order to describe these processes with simple models it is useful to summarize
them into three groups:
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Figure 4.29. Map of global rain fall. The plotted range is from
zero (black) to 3 m (white) annual mean precipitation. Data from
http://daac.gsfc.nasa.gov/data/datapool/TRMM. Data processed and plotted by
Robl, pers. comm. (2006)

— short range continuous transport,
— long range continuous transport,
— discontinuous processes.

Short range transport describes the local redistribution of mass on a hill slope
scale and is discussed starting on p. 184. Long range transport describes the
erosion and sedimentation processes in rivers (p. 193) and discontinuous pro-
cesses are processes that are episodic in time, like landslides (p. 200). Fortu-
nately, geological time scales are long enough so that many local discontinuous
processes may be described by continuous models. However, as always, the
chosen model description depends critically on the question being asked. For
example, when modeling the first order morphological features of orogens as
a whole, the subdivision discussed above is unnecessary. We begin therefore
with a summary of geomorphic modeling on the largest scale.

4.5.1 Erosion Models on Orogenic Scale

Erosion models are not only important for geomorphologists. Many questions
typically asked by tectonicists and metamorphic petrologists also require the
consideration of erosion in some simplified way. For example, when we discuss
the exhumation mechanism of a metamorphic rock we may want to know if
erosion or extension drove the exhumation. The studies of England (1981),
Summerfield and Hutton (1994) or Harrison (1994) show that at least in
some orogens, erosion is the principle exhumation mechanism. Thus, it is
crucial to consider erosion processes as an integral part of geodynamic models
(e.g. sect. 6.2.1). In many models where the description of the landscape
evolution is not the primary focus of the study, the process of surface erosion
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A
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Figure 4.30. The influence of four different erosion models on the shaping of an
asymmetric mountain belt. The light shaded area shows the mountain before the
onset of erosion. The dark shaded region shows the shape of the mountain after some
time. a constant erosion rate, b erosion rate proportional to elevation, ¢ erosion
rate proportional to slope, d erosion rate proportional to surface curvature. In all
four erosion models, the erosion rate is the rate of removal of vertical section of

the topography, measured in ms~!. Note that only in models a and b the highest
point of the topography remains laterally fixed during erosion
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is simplified as much as possible. Then, one of the following erosion models
is often used (Fig. 4.30):

a Erosion rate is constant through time and space,
b erosion rate is a function of elevation,
¢ erosion rate is a function of slope,

There are also more refined models in which erosion rate is assumed to be

proportional to terrain curvature (diffusion) and those that model fluvial in-
cision. These latter descriptions are important for landscape evolution models
and are discussed in some detail in sect. 4.5.2 and sect. 4.5.3, respectively.
Which of the three more simple models listed above should be used for a
given problem to describe erosion on the most simple level is discussed in the
three next paragraphs.
Constant Erosion Rate. Assuming that the erosion rate during a given
orogenic process is constant through space and time is the most dramatic
thinkable simplification of real erosion processes. However, let us recall that
a good model must find the right balance between accurate description and
simplicity (p. 4). For example, erosion models assuming constant erosion
rate have been very successful to explain the causes of the clockwise shape
of metamorphic PT paths during regional metamorphism (sect. 6.2.1). Thus,
for many purposes and problems of metamorphic petrologists, this model is
the best. The model can be formulated as:

H
Ver = _dd_t = constant . (4.57)

where ve, is the erosion rate, H is elevation and ¢ is time. Note that the sign
must be negative for erosion to decrease surface elevation (this is different
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from other vertical reference frames we have used elsewhere in this book).
Remember that the erosion rate can only be set equal to the rate with which
the surface goes downwards if the uplift rate of rocks is vy = 0 (s. eq. 4.10).

Erosion Rate Proportional to Elevation. Assuming that the erosion
rate of a mountain belt is proportional to its elevation is the next closer
approximation of nature. In fact, this model describes many aspects of real
erosion processes very well and we have used it extensively in the section
around page 157. For example, we observe that high mountain ranges like
the European Alps erode much quicker than low lying hills in the German
or ITtalian foreland. However, there are also examples where the opposite is
true: the Tibetan Plateau is 5000 m high, but erosion rate is practically zero.
Nevertheless, this erosion model has found much application in the literature.
In the most simple case, the proportionality between elevation and erosion
rate is linear and may be described by the relationship:
dH H

Ver = _E = —E . (458)
Note again that the sign convention used here is consistent with the conven-
tion used in the last paragraph, but opposite to that used in eq. 4.16, where
we used a different reference frame. The erosion parameter ¢g (in units of
time) describes how long it takes to erode a mountain of the elevation H.
The model implies that the erosion rate drops immediately as the first in-
crement of erosion has decreased the elevation of a mountain. If eq. 4.58 is
integrated (e.g. using the principle explained on p. 416), the model describes
an exponential decrease of the elevation through time:

H=H xel®) | (4.59)
where Hy is the original elevation at the onset of erosion.

Erosion Rate Proportional to Slope. A proportionality between erosion
rate and slope may be described by:

_4H _ _ dH
dt dz

There, z is a horizontal spatial coordinate and dH /dz is the topographic
gradient: the slope. The proportionality constant u is the horizontal rate
of displacement of the slope. As with eq. 4.57, it is important to note that
erosion rate only corresponds to the rate of elevation change, if all other uplift
or subsidence processes are zero. Equation 4.60 should remind us of eq. 3.40.
Both are one-dimensional transport equations, which may be solved with the
methods discussed in sect. 3.3 (s. Fig. 3.13 or Fig. B.7). The model is a good
description for the evolution of many landforms, for example the motion of
sand dunes. The model has also been applied to describe the geomorphic
evolution of passive continental margins.

Ver =

(4.60)
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e Advection at passive margins. Markedly asymmetric mountain ranges are
developed at several locations around the globe along the passive margins of
continents. The best developed examples are the Great Dividing Range along
the east coast of Australia and the coastal ranges along much of the southern
African continent (Fig. 4.26) . In both these examples, the inland side of
the mountain range has a very small slope angle, while the coastal side is
characterized by much steeper slope, often referred to as Great Escarpment
(Ollier 1985). Because of this marked asymmetry, King (1953) concluded
that erosion occurs largely along the escarpment which causes that the shape
of the range remains largely self similar through time and that the great
escarpment retreats inland (s. Fig. 4.26). In southern Africa this process is
aided by the fact that the escarpment is often made up by the very resistant
Karoo-basalts. This erosion model and the implied morphological evolution
of passive continental margins has found much interest in the past decade.
The simple model of King (1953) is now largely superseded (e. g. Stiiwe 1991;
Kooi and Beaumont 1994; Tucker and Slingerland 1994), but it still must be
acknowledged that it describes a number of features quite well.

4.5.2 Short Range Transport

Modeling erosion rate as a function of terrain curvature is the most refined
description of erosion on short length scales, in particular on hill slopes. It is
important enough so that we will spend some pages on it. This mass transfer
process is also called diffusion and we have already met and discussed this
process in much detail on p. 55. We will recall from there, that diffusion
describes a proportionality between temporal change and spatial curvature
(egs. 3.1, 3.4). That this model can also be applied to describe the geomorphic
shaping of landforms was established by Culling (1960), Ahnert (1970) or
Andrews and Bucknam (1987). Many observations in nature lend themselves
to description with this proportionality: We can observe that ragged, pointy
mountains erode much quicker than flat plateaus (even if they lie very high);
that sharp escarpments erode quicker than smoothly curved hills and many
more. Among diffusion models we discern:

— linear diffusion,
— non-linear diffusion.

Before we describe and apply diffusion models on the next pages we want
to recall that the diffusion model is only a simple description summarizing
a range of physical processes (including even discontinuous processes like
landslides if they may be temporally averaged).

e Linear diffusion. Linear diffusion of mass is completely analogous to the
logic discussed on p. 52. It is based on the assumption that the rate of down
slope transport of mass (described by mass flux ¢) is proportional to the hill
slope:
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Figure 4.31. Comparison between linear and non-linear diffusion in the evolution
of a degrading scarp. Note that in the non-linear case slope curvatures are more
localized than for the linear case

g= —Dg . (4.61)
dz

where dH/dz is the topographic gradient, (i.e. the slope) and the erosional
diffusivity D corresponds to & in the theory of heat conduction and has the
units of m?s~!'. This equation is directly analogous to Fourier’s first law
(eq. 3.1). Note that the mass flux ¢ has the units of m?s~! which may be
interpreted as the volumetric flow normalized to the width of a profile. In
other parts of this chapter we will encounter fluxes that are normalized to the
channel cross section and have therefore the units of ms™! (e.g. p. 198). The
diffusivity D may be interpreted as the product of horizontal rate of mass
transport v and thickness of an erodable near surface layer hs (Beaumont
et al. 1992; Carson and Kirkby 1972):

D =vhg . (4.62)

From this equation, we can recognize the origin of the variability of D: ks is
dependent on rock type, but v is not. As in the theory of heat transfer, the
flux equation eq. 4.61 may be combined with a one-dimensional mass balance
of the form:

oH _ dq

ot Oz
This equation is analogous to eq. 3.2 and is not derived in detail here. By
inserting eq. 4.61 in eq. 4.63 we obtain the mass diffusion equation in one
dimension:

OH o

— =D— . 4.64

ot Ox? (464)
Eq. 4.64 is analogous to eq. 3.6. If we insert concentration instead of elevation
into eq. 4.64 then this equation may also be used to model the distribution
of elements in minerals (s. eq. 7.3). In mineralogy and geochemistry, the
equations governing diffusion are known as Fick’s laws.

(4.63)
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e General conservation of mass. The diffusion equation describes conserva-
tion of mass on a local scale. However, just as we have combined conduction,
advection and production of heat in a complete thermal energy balance in
eq. 3.52, we can write a more general form of a mass conservation equation
in two dimensions as:

O0H PH 8°H o0H o0H

EZD(W+6_3/2>+uw%+Uy6_y+U . (4.65)
This equation describes the change in elevation at a given point of the to-
pography as the sum of diffusion (first term on right hand side), sidewards
advection of a topographic profile (e.g. dune motion or retreat of an erosional
escarpment) at the horizontal rates u, and uy (second and third term) and
material “production”, i.e. upwards advection at the rate v. This “upwards
advection rate” v may be seen as the sum of uplift and sediment deposition
and is particularly important for descriptions in Lagrangian reference frames.

Note that this equation describes a two-dimensional model, although all
three spatial dimensions z, y and H occur in it and although the model can
be represented as a three-dimensionally (e.g. as a plaster model). However, I
is evaluated only on the basis of two model variables and landscape models
are therefore in general two-dimensional models (s.p. 7).

e Non-linear diffusion. In linear diffusion it is assumed that the mass trans-
port is directly proportional to slope. However, this need not be so. Non-linear
diffusion describes in effect a down-slope change of the erosional diffusivity
D (Pierce and Coleman 1986). It may be intuitively seen that this may be a
good description of nature: On many slopes, the material is more and more
loose the steeper the slope gets and erosion may therefore be more rapid
there. A more general formulation of diffusion that accounts for this may
therefore look like:

O0H o (OH\"

ot Daw ( Oz ) (4.66)
If n = 3 this equation describes what is called cubic diffusion. (For an ex-
planation of the definition of a general non-linear differential equation see
p. 396). If the rate of down slope transport is related to some power of slope,
then this will have the consequence that more even slope profiles develop with
sharper edges as illustrated in Fig. 4.31. Non-linear diffusion was discussed
by Newman (1983) and established for the modeling of scarps by Andrews
and Bucknam (1987) and most recently discussed by Roering et al. (2001).
Hanks and Andrews (1989) suggested a “linear plus cubic” diffusion model
as a good fit to some field data. Modern discussion of non-linear versus linear
diffusion in landform processes are found by Avouac (1993) or Avouac and
Peltzer (1993).
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Figure 4.32. Double terrace riser in the Tien
Shan. The risers are very much degraded as they
are high above the present river bed. More de-
tails on these particular risers are described by
Avouac (1993) (photo by Avouac)

Scarp Degradation. As a first example for the application of the short
range diffusion model, let us discuss the morphological dating of fault scarps.
Scarps form by earthquakes as a practically instantaneously created steps
in the surface (Fig. 4.33). Their subsequent morphological decay may be
described as a mass diffusion process and lends itself to a description with
similar solutions as we discussed for the diffusion of heat around step-shaped
temperature perturbations in sect. 3.6 (Fig. 3.30, eq. 3.84). As we did there,
boundary conditions can often be assumed at infinity because scarps are
often small compared to the extend of the slope they occur on. Using H
for elevation, x for a spatial coordinate system normal to the fault scarp and
with its origin in the center of the scarp (as shown in Fig. 4.31), the boundary
conditions may be formulated as H = a at x = oo for t > 0 and H = —a at
x = —oo for t > 0. These boundary conditions describe a scarp displacing a
flat surface by the height 2a. For these conditions, eq. 4.64 may be integrated
to give:

scarp profile slope profile scarp profile slope profile

(c)
initial state » gravitational phase

(b) & H (d) I
/ faulting event L 5 diffusion phase

Figure 4.33. Stages in the evolution of a fault scarp (after Avouac 1993). Note
the similarity of the slope profile during the diffusion process from ¢ to d to the
cooling of intrusions shown in Fig. 3.32. Parameters labeled in ¢ are those used in
eq. 4.68

(a) 4

H=axerf (—) , (4.67)
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which is completely analogous to eq. 3.84, except that we shifted the coor-
dinate system to the middle of the scarp. However, field observations show
that many fault scarps are not vertical, in part because they did not form on
vertical faults and in part because they sag gravitationally after a faulting
event and assume a stable angle of repose (angle o on Fig. 4.33c) only some
time thereafter. Fortunately, this “gravitational phase” is usually short com-
pared to the subsequent degradation and the decay of the landform may still
be described with the diffusion equation. However, an analytical solution of
eq. 4.64 for the initial geometry shown in Fig. 4.33 is unlike more complicated
than eq. 4.67. It is:

= (52 ¢ (e (55 o (o))

+ (%) X ((m + c)erf (%) — (z — c)erf <%>) +bx , (4.68)

where ¢ = a/(a — b), the half height of the scarp is a and b = tan(f3), as
shown in Fig. 4.33c.

Instead of fitting this equation to measured scarps, it is often possible date
the decay of scarps by using a single value: the maximum scarp slope tan(8).
That may be found by taking the derivative of eq. 4.68 with respect to z and
evaluating this at © = 0. This gives much more simple expressions which have
been used to date scarps by a variety of authors (e.g. Avouac 1993; Avouac
and Peltzer 1993). The slope distribution shown in Fig. 4.31 and 4.33 shows
that diffusive decay of scarps is characterized by a Gaussian distribution of
slope. Diffusion of landforms may therefore also be described by Gaussian
smoothing (Avouac 1993).

Mass Diffusion with Fixed Boundary Conditions. While the degra-
dation of scarps may be described with boundary conditions fixed at infin-
ity, most geomorphological diffusion problems are characterized by spatially
fixed boundary conditions. For example, the rounding of hill slopes is usually
spatially confined to a hill between two drainages from where material is effi-
ciently transported out of the system. Similarly, the weathering and erosion
of granitic boulders occurs between joints from where material is removed out
of the system. Below we discuss two examples for which there are analytical
solutions of eq. 4.64.

e Spheroidal weathering. Mechanically isotropic rocks (for example granite)
often weather in typical rounded shapes (Fig. 4.34). This spheroidal weath-
ering occurs because individual blocks are separated relatively quickly by
jointing, but the rounding off by erosion takes a much longer time scale. The
weathering process is most effective on surfaces that have a high spatial cur-
vature: it is a diffusion process and may be described with eq. 4.64. In order
to formulate appropriate boundary conditions for the integration of eq. 4.64
it is useful to choose a coordinate system with an origin at the center of the
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Figure 4.34. Illustration of spheroidal weathering. a Schematic illustration. The
top diagram shows the starting geometry, the middle diagram shows how jointing
of the rock surface occurs rapidly due to climatic influence and occurs rapidly in
comparison with the subsequent erosion. The bottom diagram shows the typically
rounded shapes that form during the subsequent weathering and the coordinate
system is shown that is used for the formulation of eq. 4.69. b shows an example from
the Devils Marbles, Central Australia. The coordinate systems on the photograph
are drawn for Problem 4.14

block (Fig. 4.34). If the diameter of the block is 2[, then the joints on either
sides of the block lie at = [ and z = —[. Initial and boundary conditions
may be formulated as:

— Initial condition: H = Hy,p in the region — < o <1 at time ¢ = 0.
— Boundary conditions: H =0 at x =l and z = -l at ¢ > 0.

Hi,p is the height of the block as shown in Fig. 4.34a. A solution of eq. 4.64
subject to these boundary conditions requires the use of Fourier series (for
reasons explained on p. 413 and p. 120) and therefore contains infinite sum-
mations and trigonometric functions. It is:

AHyop o~ _—1" 2 2,472
H = — 1
- HEZO 2n_'_lexp( D(2n + 1)*m%t/41%)

XCOoS (W) . (4.69)

The shape of weathering profiles as a function of time calculated with this
equation are shown in Fig. 4.35. The mismatch between the curves shown in
this figure and the photograph in Fig. 4.34b is predominantly because eq. 4.69
is one-dimensionally, while the boulders in the photograph also round off in
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the plane normal to the photograph, plus from below. Fortunately, a two-
dimensional equivalent to eq. 4.69 is easily formulated as the product of two
solutions in orthogonal directions, as we discussed on p. 119.

Figure 4.35. The shape of an initially rect-
angular ridge that erodes by mass diffusion 1000
processes after 1000, 10000 and 30000 years.
Streams transporting eroded material out of the
system must be imagined in the bottom left and
right corners to run normal to this page. Calcu- 70000
lated with eq. 4.69 using /=1 km, Hy,p =1 km 400
and D=107% m?s™!

H(m)

30000

- 0 /

e Hill slope profiles. Eq. 4.69 and its graph on Fig. 4.35 may not only be
used to date spheroidally weathered granite boulders. It can also be used
to model the shape of ridge profiles between parallel drainages (Fig. 4.36).
However, when modeling hill slopes between drainages we need to be careful,
as the boundary conditions we have formulated in the last paragraph describe
stationary (non-incising) river beds. Thus, the model applies only to rivers
where the material transport in the stream equals the amount of material fed
into them by the ridge. If the streams incise into the landscape simultaneously
with the diffusion on the hill slope, we must formulate the problem with
variable boundary conditions.

Figure 4.36. Example of hill
slope formation due to mass dif-
fusion with incising boundaries.
Western Mac Donnell Range,
Central Australia. The length of
the visible part of the princi-
ple ridge is about 500 m. Dif-
ferent stages of hill slope devel-
opment may be seen. Near the
principle drainage divide, (where
head waters in the gullies have in-
cised last), profiles are similar to
the youngest profile of Fig. 4.37
(profile @), while hill slopes have
adapted a steady state by b which
is maintained in ¢ before the slope
disintegrated into smaller land-
forms
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Mass Diffusion with Variable Boundary Conditions. If the incision
rate of drainages is comparable to the rate of diffusion, then the incision
itself is part of the hill slope shaping process and the boundary conditions
of the previous sections may not be used. The description of simultaneous
diffusion and incision at the model boundaries depends on the reference frame
used. Two possibilities offer themselves.

e Eulerian description. For an observer fixed to an external reference frame,
the incision of drainages may be formulated as follows:

— Initial condition: H = 0 in the region — < x <[ at time ¢t = 0.
— Boundary conditions: H = vgt for x = [ and £ = —[ at time ¢ > 0.

In this formulation we used H = 0 at the surface before the onset of erosion
as the origin of a vertical axis going positively downwards and a horizontal
coordinate system with the origin half way between two parallel streams that
are a distance 2! apart. vg is the vertical incision rate of the rivers. The
elevation H increases linearly at the model boundaries with time. Note that
we changed the direction of the vertical axis from the last section, for clearer
illustration. Solving eq. 4.64 subject to these temporally varying boundary
conditions is difficult and will not discuss here. However, an example of a
result from a corresponding solution is shown in Fig. 4.37a.

e Lagrangian description. From the observation point in the river bed it
appears as if the landscape uplifts between the river beds (Fig. 4.37b). We
can describe this using the uplift rate vy, for which it is true that: vre = —va.
The uplift is a kind of “material production” between the model boundaries
and we can not use eq. 4.64 for a description in a Lagrangian reference frame.
The equation we need to solve includes a term describing the rock uplift. It
is:

o0H ot

E = DO_Z'Z “+ Vo - (470)
which is equivalent to the heat conduction equation with a heat production
term (see eq. 3.23, also see eq. 4.65). The initial and boundary conditions
that apply for the solution of this equation are:

— Initial condition: H = 0 in the region —{ < x < at the time ¢t = 0.
— Boundary condition: H =0 at = and z = —[ at all times ¢ > 0.

For these boundary conditions a solution of eq. 4.70 is given by Crank (1975):

=, <l2 - $2) B 161200

2D Dr3

X Z —(2'[’),_-11-711)3 exp (—D(Qn + 1)27T2t/412) cos (%) (471)

n=0
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Figure 4.37. Landscape evolution of a ridge subject to mass diffusion processes be-
tween vertically incising drainages. a Within in a Eulerian reference frame (spatially
fixed) and b in a Lagrangian reference frame (fixed to the incising drainages). The
shape of the ridge is shown after 1000, 10000 and 30000 years and was calculated
using eq. 4.71, =1 km, vy, =0.05 m per year and D=10"°% m2s~!

A model example of a hill slope profile calculated with this solution is shown
in Fig. 4.37b. Note that the landscape profiles in Fig. 4.37a and b have the
same shape at the same times. They differ only in the reference frame and
thus the profiles occur at different absolute elevations.

On Fig. 4.37b we can see that the landscape evolution described here
approaches a steady state shape after about 20000 years. This is what is
called an erosional steady state (Ahnert 1984). In the steady state, the shape
of the hill slope profile does not change anymore. This steady state is reached
when the curvature of the landscape profile is exactly large enough, so that
the diffusive mass transport balances the mass production described by the
rock uplift v, (8. p. 66 to estimate when such steady states are reached).
The attainment and preservation of an erosional steady state can be observed
on Fig. 4.36. We have discussed an equivalent steady state in the theory of
heat conduction when discussing the steady state temperatures in subduction
zones (p. 107).

Time Scales of Mass Diffusion. For the construction of the curves in
Fig. 4.35 or 4.37 we have assumed that D = 107 m?s~!. We have assumed
this value in order to retain some analogy to chapter 3 where we have dis-
cussed that the thermal diffusivity is & &~ 107% m?s~! and rarely varies by
more than a factor of two from this value. However, the diffusivity of mass
in erosion processes is much more variable. It depends on climate, mate-
rial and many other parameters. Mass diffusivities have been reported to
range between D = 1 x 1071%m?s™! or D = 1.7 x 107%m?s~! for largely
unconsolidated materials in different regions in China and the Tien Shan
(Tapponier et al. 1990; Avouac and Peltzer 1993), to D = 5.3 x 107 12m2s~!
and D = 1.8 x 10~"m?s~! as estimates for the in-strike and cross-strike
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diffusivities for vertically bedded sandstone at Ayers Rock, Australia (Stiiwe
1994). Mass diffusivities may vary by many orders of magnitude and unless
we have measured D in our region of interest, we can usually not know if a
given landform formed over a long time with a small diffusivity or a short
time with a high diffusivity.

However, we can see that in eqs. 4.69 and 4.71, time and diffusivity occur
always as a linear product and profiles are therefore identical if the product
of time and diffusivity is a constant. Thus, it is often useful to define a
“degradation coefficient”, t,, as the product of time and diffusivity:

ta =Dt . (4.72)

Degradation coefficients are also known by the name “diffusion age”, although
we can see from eq. 4.72 that it has the units of m?. Note however, that degra-
dation coefficients are only defined by the simply linear product of eq. 4.72 if
the diffusivity is constant in time. If the diffusivity changes with time (as of-
ten is the case if climate or the state of consolidation change during erosion),
then the degradation coefficient is defined by a more complicated function
discussed and explained in detail by Avouac (1993).

o Diffusive time versus length scale. The degradation coefficient corresponds
to the product ¢, x x in eq. 3.17 and can therefore be used to convert between
time and length scale in diffusion processes (s. also eq. 7.4). The diffusive
time scale argument used on p. 62 can directly be applied to estimate the
rough time scale of erosion processes and is therefore a useful tool for the
field geologist. As the analogy between energy and mass diffusion is straight
forward, the discussion from p. 62 is not repeated here.

4.5.3 Long Range Transport: Drainages

Fluvial erosion is one of the most important landscaping processes and the
transport of material by rivers is an efficient mechanism for redistribution
of mass on a large scale. Fluvial erosion is therefore often called long-range
transport. In the field, this is documented by the enormous incision rates of
some rivers and their extensive sedimentary fans elsewhere; for example the
Indus or the Tsangpo in the Himalayas. In fluvial erosion processes it is often
useful to discern between:

— supply limited erosion,
— transport limited erosion.

In supply-limited processes the transport of material out of the system is
much more efficient than the sediment production rate, while transport, lim-
ited processes are limited by the fluvial transport of rapidly supplied sediment
(e.g. Tucker and Slingerland 1994). In the following we discuss some methods
of characterizing fluvial erosion.
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Figure 4.38. Schematic sketch of two different spatial relationships between
drainage divide (continuous line), axis of the highest topography (dashed line)
and direction of drainages (arrows). In the eastern European Alps the principle
drainage divide corresponds to the region of the highest topography and the prin-
ciple drainages are parallel to this axis. In the Himalayas, the principle drainage
divide is some hundreds of kilometers north of the line of the highest topography
and the drainages are perpendicular to this axis

Networks. The geometry of drainages — both with respect to a longitudi-
nal profile along the drainage, as well as in plan view — usually have spatial
patterns that are characteristic of tectonic and erosion processes (s. Summer-
field 1991, Burbank and Anderson 2001), (Fig. 4.38). It is therefore useful to
discuss some model tools that can be used to describe the spatial pattern of
drainages. In plan view, the spatial characteristics of drainage networks may
be described by their:

— topological properties,
— geometrical properties.

Both properties are often largely independent of scale. They are self-similar
and lend themselves to a description as fractal shapes (s. sect. 4.5.6).

e Network rules. The topological properties of drainage networks may be
characterized by allocating each stream section an order. There are different
rules, how this may be done. According to Horton (1945), Strahler (1964)
and Schumm (1956) the first stream after the spring has the order 1. When
two streams of different order merge, the subsequent stream has the order
of the higher order stream at the confluence. If both streams have the same
order, then the order of the subsequent stream is larger by one (Fig. 4.39a).
According to the scheme of Shreve (1967) the order of a stream is the number
of contributing springs (Fig. 4.39b). If one uses the scheme of Horton (1945),
then the topology of most natural networks appear to follow simple exponen-
tial laws. For example, the law of stream number states that the number of
streams of order ¢ may be described by:

Ni = alebli . (473)

There, N; is the number of streams of the order ¢ and a; and b; are constants.
Similar laws apply to the length of streams of different order I; and the size
of the catchment of each stream A;:
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Figure 4.39. Stream order according to two different schemes: a according to
Horton (1945) and Strahler (1964); b according to Shreve (1967)

bai

l; = ase and A; = aze?t . (4.74)

There, as, az, b3 and b3 are constants. These network laws can be used to
characterize the topology of an entire network with only a small portion of
the network. However, Kirchner (1993) showed that practically all networks
follow these laws and that it is therefore difficult to discern between artificial,
random and natural networks using these rules (s. also Tarboton 1996).

Models Describing Fluvial Erosion. In order to describe landscaping by
rivers, a series of elegant models have been designed in the last few years
(Ahnert 1976; Kooi and Beaumont 1994; Beaumont et al. 1992; Willgoose
et al. 1991; Chase 1992; Tucker and Slingerland 1994, 1996). In many of
these models two different types of fluvial channels are distinguished which
are thought to form due to different physical processes:

— bedrock channels,
— alluvial channels

e Bedrock channels. For the description of the erosion of bedrock channels, it
may be assumed that the rate of incision due to bedrock erosion is a function
of discharge and channel gradient:

oH oI\
Ver = _6_t X qf‘ <8_l> . (475)

There, ¢ is time, H is the elevation of the channel, v,, is the erosion rate, [ is
the horizontal distance along the channel and the discharge ¢, has the units

of discharge volume per drainage width and time (m s~'). The negative sign
arises because the elevation gets smaller for larger discharge and slope. o and
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a b c

Figure 4.40. Three different time steps of a landscape evolution model. The shown
drainages incise exclusively according to the erosion law formulated in eq. 4.75 into
a flat topography disturbed only by numerical noise. Despite this simple model
assumption, interesting patterns develop. In particular note that the river develop-
ing in the central diagonal of the shown section disappears between b and c¢. The
pattern shown in c¢ approaches a steady state and further time steps do not show
significant differences (after Hergarten 2002)

B are exponents defining the non-linearity and are not to be confused with the
“proportional to” sign oc. This model is based on an empirical relationship
between slope and drainage area found by Hack (1957). If it is assumed that ¢,
correlates with the size of the drainage basin above a given point, eq. 4.75 can
be numerically solved for erosion rate at any given point of a digital elevation
model to produce an elegant description of evolving landscapes (Fig. 4.40)
(Beaumont et, al. 1992; Hergarten 2002).

However, in many natural channels, the general law of eq. 4.75 can be
simplified enough so that an analytical solution can be found that can then
be compared with measured longitudinal river profiles (Fig. 4.42). For this,
we assume that the erosion rate is directly proportional to the discharge (i.e.
a = 1) and that the discharge is directly proportional to the area A of
the drainage basin (which is a fair assumption, unless there are hydrological
peculiarities like strong precipitation gradients or karst features like sinks).
Then:

OH oH\"
The proportionality in eq. 4.76 could be replaced by an equality if a propor-
tionality constant is added to the right hand side. However, in the following
steps, several other proportionality constants must be inserted, so that we
rather stick with eq. 4.76 and retain the “o” sign. The area A is usually
related to the channel length I by:

loc AR . (4.77)

The exponent would be h = 0.5 if the basin area rose quadratically with river
length. However, most basins are somewhat elongated and for many rivers
this exponent appears to be around A = 0.56. The exact exponent can be
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Figure 4.41. Example of an inte-
grated landscape evolution model
for the India- Asia collision zone
where a simple erosion model
according to eq. 4.75 (causing
thinning of the crust) was cou-
pled with force balanced finite
deformation producing topogra-
phy (and thickening of the crust).
See also Fig. 1.6 which was per-
formed with similar boundary
conditions, but no erosion. Shad-
ing is surface elevation. Drainages
are exclusively dynamically de-
veloped, white parts of drainages
are where they sediment

derived from an area - distance plot as shown on Fig. 4.42. Using eq. 4.77,
eq. 4.76 becomes:

0H oI \"
e VIO N il
Ver = — 7 ol < o ) . (4.78)

In an equilibrium channel, where the erosion rate is the same at every point,
the erosion rate OH /0t is a constant and eq. 4.78 may be written as:

H
dd—l oc VB or s Al o 1YBRgL (4.79)
Integration (according to the rules given in appendix B.5.2) gives:
_pi-1/Gah) |
Hx —— +C . 4.80
1700 (

The integration constant C' determines the absolute elevation of the profile.
The proportionality constant that must be inserted to make eq. 4.80 into a
proper equation summarizes a series of erodibility terms that determine how
rapid H falls with /. However, the shape of curves plotted with eq. 4.80 is
independent of the constant. Eq. 4.80 provides a good description of eroding
rivers in equilibrium and is a useful model that can be used to determine knick
points by comparing equilibrium channels with channel profiles measured
from digital elevation models (Fig. 4.42).

o Alluvial channels. Alluvial channels are those where the sediment transport
of the channel is important to its erosion / deposition characteristics. For the
description of those, it is often useful to consider the erosion/sedimentation
processes in terms of the sediment carrying capacity of the stream
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Figure 4.42. Longitudinal profile along the Indus River (between the mountain
K2 in the Karakorum and the Indian ocean), in comparison with the analytical
description of eq. 4.80. The deviation in the Himalayan syntaxis is clearly due to
recent uplift causing the channel to be out of equilibrium. The deviation in the
lower course is because there is no erosion but sedimentation in this part of the
river. It can therefore not be described with the model discussed here. The right
hand diagram is a simplified area - distance plot for the Indus River basin

n
dfeq) = —Kiqt" (%_I;T) : (4.81)
where ¢ (oq) is the equilibrium carrying capacity of a river (i.e. that a graded
river bed carries), Kt is a constant of proportionality and m and n are expo-
nents defining the non-linearities (Beaumont et al. 1992; Begin et al. 1981;
Willgoose et al. 1991). The other parameters are as above. Most modern
models assume simply that m = n = 1 (see Kooi and Beaumont 1994; Beau-
mont et al. 1992). Erosion / sedimentation processes may then be modeled
by comparing the equilibrium carrying capacity of the river gy(.q) given by
eq. 4.81 with the actual sediment freight carried by a drainage ¢r. Whether
the river erodes- or sediments onto its bed, then depends on whether the
sediment flow g¢ is larger or smaller than the sediment equilibrium carrying
capacity. The actual sediment freight ¢r can be calculated using the following
two assumptions:

— 1. The rate of change of the sediment content of a river is proportional to
the magnitude of the disequilibrium dgt/dt o< (gpeq) — @)- If ¢ < Gf(eq),
then the amount of sediment in the river increases and the river will erode
its bed. If g > gf(eq), then there is more sediment in the stream than it
can hold and there is sedimentation in the river bed.

— 2. The change of the sediment content dgr/d¢ is inversely proportional to a
length scale of reaction, Iy, which may be interpreted as the distance that
water needs to flow along a river bed in order to do work on the river bed.
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If the reaction length scale is large, then the change of sediment freight of
the river occurs slowly and over larger length scales and vice versa.

Using these two assumptions ¢r may be evaluated by numerical integration
along the river bed. The rate of vertical lowering (by erosion) or rising (by
sedimentation) of the river bed may be then described by:

dH o dqf 1

& Ak (4req) — ) - (4.82)

Figs. 4.43b, ¢ and d show schematic illustrations of the temporal evolution
of drainages as calculated with eq. 4.82. All drainages may be divided into
two sections: a lower part where the slope of the river decreases and an upper
part where the slope of the river increases. In the lower section of the rivers a,
graded river bed develops. The section of the river bed which is graded grows
with the evolution of the drainage upwards. The length of the section of the
grade river bed and the rate with which it grows drainage upwards, depends
on the reaction length scale.

o Graded river beds. If we plot the surface elevation of a river bed against
distance from the spring (a cross section along the river) many drainages
have a shape that reminds of an exponential function: The drainage bed
is steep at first and then gets shallower with increasing distance from the
spring. This natural development often leads to the development of graded
river beds (Mackin 1948). In a graded river, the slope of the drainage and
the flow of water are in equilibrium so that neither erosion nor sedimentation
takes place. The flow rate is exactly large enough to transport the sediment
from the drainage basin above. Because of this, a graded river can maintain
its shape and is in geomorphic equilibrium.

o Integrated landscape models. Eq. 4.82 describes many field observations
made about the geometry of river profiles very well and has therefore been
used by a range of authors to describe the temporal evolution of drainages
and drainage networks. However, it fails to describe processes at the drainage
divide for which different models must be invoked. Within the model of
eq. 4.82 the parameters g, and therefore qfq and ¢¢ are zero at the water-
shed and drainage divides will therefore remain preserved as steep ridges.
The steepness of the ridge is proportional to the reaction length scale. How-
ever, the decay of the drainage divide itself may be well-described by diffusive
mass transport discussed in the previous sections. Beaumont et al. (1992),
Tucker and Slingerland (1994) and others have integrated combinations of
diffusive short range transport and long range transport to describe two-
dimensional landscape evolutions. This model was transferred onto irregular
grids by Braun and Sambridge (1997) which is today probably one of the
most elegant model for the integrated description of landscape evolutions.
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Figure 4.43. Erosion of a model landscape. a Relief formation by diffusion. If
the starting profile is asymmetric, then diffusion will lead to a lateral shift of the
drainage divide. b, ¢ and d Relief formation by fluvial erosion (eq. 4.82). The model
rives flow on both sides of the drainage divide along the surface of the gray shaded
region outwards. The water shed (drainage divide) itself is not affected by this. The
three examples differ in the magnitude of the reaction length scale l;. In b, I is
much smaller than the length of the river, in ¢ it is comparable and in d I is much
longer than the length of the river
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4.5.4 Discontinuous Landscape Formation

Not all geomorphic processes may be described using continuous models like
those discussed in the previous sections. For example, the occurrence of land-
slides is a classic discontinuous process that requires its own class of model
description. How continuous geological processes may cause discontinuous
processes will be discussed in some detail in sections 6.3.6 and 6.3.6. We
will show there that discontinuous processes may be triggered by threshold
mechanisms, or be the direct cause of non-linear feedback between different
processes. The particular example of landslide occurrence is a beautiful ex-
ample illustrating the meaning of self-organized criticality (Hergarten 2002).

Consider an incising valley. As a river incises into the landscape, the slopes
will steepen until they reach a critical angle where a steady state geomorphic
profile is reached (s. p. 192, Fig. 4.37b). However, in many real landforms, this
steady state will not be maintained by continuous incremental transport of
material into the drainage, but by discontinuous landslides that cause a tem-
poral fluctuation of slope around the steady state angle. The size-frequency
distribution of such land slides is fractal and the state of the slope is said to
be in a state of self-organized criticality (Turcotte 1997).

4.5.5 The Shape of Volcanoes

Many strato-volcanoes have an intriguingly similar shape and surface eleva-
tion suggesting that they formed by similar processes (Turcotte 1997). For
example, Etna in Sicily, Mt. Fuji in Japan as well as many volcanoes in In-
donesia and in Alaska are all about 3500 m high and have conical profiles
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Figure 4.44. Two models for the formation of strato volcanoes. a This model
assumes that volcanoes get their shape from the interaction of mass production at a
single point at the center of the volcano and mass diffusion distributing the material
(s. also Fig. 3.9). b This model assumes that volcanoes describe surfaces of constant
hydrostatic pressure. Magma does not necessarily extrudes at the tip of the volcano,
but follows the way of least resistance giving the mountain its shape without erosive
influence. While both models lead to similar shapes, detailed comparison between
measured shapes of volcanoes with the two models may help to provide constraints
on future eruption sites

with concave flanks. Two very simple (but very different) models may be
used to explain this shape. One relies on the principals of mass production
and diffusion as we have discussed in several parts of this book; the other is
a hydrostatic model.

e Diffusion model. The diffusion model is based on the assumption that
magma erupts always from the same point on the surface and that the erupted
material is distributed from there by mass diffusion (Fig. 4.44a). This model
may be described with the equations we have used in sections 3.1 and 3.2
for the simultaneous production and diffusion of heat. If we assume that the
erupted magma is distributed concentrically around the eruption point, then
we can describe this problem in cylindrical coordinates using the eruption
point as the origin and using an equivalent of eq. 3.23 in cylindrical coor-
dinates (s. p. 59). Initial and boundary conditions for the problem may be
formulated as:

— Initial condition: H = 0 for all r at ¢ = 0 as well as vr, = magma production
rate at r = 0 and v,,=0 at r > 0.
— Boundary condition: dH/dr=0atr =0and H=0atr — oofort > 0.

Uro 18 the rate of magma production at the coordinate origin and replaces the
heat production rate in eq. 3.23. These conditions are equivalent to those we
have used on p. 71 for the description of the influence of frictional heating
around shear zones. The only difference lies in that we have used Cartesian
coordinates there (as shear zones are generally planar) and will require cylin-
drical coordinates for the description of volcanoes. However, the curves in
Fig. 3.9 give a qualitative indication of the shape obtained with this model.

o Hydrostatic head model. The second model that has been used to describe
the shape of volcanoes relies on the assumption that the surface of a volcano
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Figure 4.45. The first four stages of Koch’s snow flake, a typical example for the
development of a fractal geometry. The final form at d has a fractal geometry as it
is self similar. The sections inside the box in b and ¢ or in ¢ and d are identical

corresponds to a surface of constant hydrostatic head over a point source
where the magma erupts (Fig. 4.44b). Thus, it is assumed that magma will
always erupt to the surface where it finds the least resistance, even if this
is not the crater vertically above the point source. This second model is
discussed in detail by Turcotte and Schubert (1982).

Both models discussed above lead to cone shapes with concave surfaces,
just like we observe volcanoes to look like. However, there is sufficient dif-
ference in the details of the two models, so that it may be possible to use
the observed shape of a volcano in comparison with both model to predict
what processes govern the magma distribution in the chosen example. It may
be possible to use the models described here to make predictions about the
likely points of future eruptions.

4.5.6 Fractals

Many morphological forms on the earth’s surface have a fractal shape, for
example coast lines (Mandelbrot 1975) or the shape of the earth’s surface
itself (Chase 1992). Fractals are usually brought in connection with non-linear
feed back and chaotic processes because many geometric representations of
non-linear phenomena do indeed render fractal shapes (e.g. Turcotte 1997;
8. sect. 6.3.6). However, fractals themselves have nothing to do with chaos or
feedback. Rather, they are simply defined as a geometric object that has the
following properties (Fig. 4.45):

— The shape of the object must be able to be characterized without having
to give a scale. This property is called self similarity or scale independence.
— It must be possible to characterize the object with a fractal dimension.

o Fractal dimension. The fractal dimension of an object is defined as follows:
_ log(m)
~ log(n)

There, m is the number of objects and n is a characteristic linear dimension.
This may be illustrated with the fractal dimension of a simple geometric

(4.83)
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Figure 4.46. Fractal drainage
patterns in the Chinese Loess
Plateau. Similar fractal patterns
can be found in the shape of the
Grand Canon and countless
other examples around the
world. However, the Chinese
Loess Plateau is probably the
largest and most spectacular
example in the world (because of
the isotropy and high erodability
of the material). This example
was also chosen by Turcotte
(1997) as a title image for his
textbook on fractals

object (called a geometrical fractal). Consider a square that is subdivided
into four sub-squares. If the edge of the square is subdivided into n pieces,
then the total number of small squares is m = n?. If one magnifies the length
of the edge of each sub-square by the factor n we return to the original
square. Using eq. 4.83 we arrive at D = log(m)/log(n) = 2. For a square
(having obviously two dimensions) this is quite trivial. However, for the snow
flake of Koch things are not so clear (Fig. 4.45). Each edge of a triangle with
length a corresponds to four edge sections each of which has a length of a/3
in each subsequent figure in Fig. 4.45. We can write: D = log(4)/log(3) =
log(16)/log(9) ~ 1.262.

In natural landscapes there are two important fractal dimensions that may
be defined and used to characterize the landscape:

— the fractal dimension of the drainage network,
— the fractal dimension of the topography itself.

Both can be obtained statistically from natural landscapes and they are there-
fore called “statistical fractal” (in contrast to the geometrical fractal dimen-
sion of Koch’s snow flake). The fractal dimension of drainage networks is
defined as the ratio of the logarithms of bifurcation ratio and length-order
ratio:

_ log(Ry)
log(R,)

where R, is the ratio of the number of streams of a given order, to the number
of streams of the next higher order and R, is defined as a length ratio in a
corresponding way. Typical drainage networks (like that shown in Fig. 4.46)
have fractal dimensions that are somewhat less than space filling with D =
1.8. The fractal dimension of coast lines is similar to that of drainage networks

(4.84)
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Figure 4.47. a The coast of Britain in three different resolutions (labeled in km).
The figure was constructed using the generic mapping tool GMT. The length of the
coast line segments are determined by the resolution of the digital elevation models
used and are therefore not exactly of the same length. Nevertheless, the figure
illustrates the relationship between segment length and coast line length used to
determine the fractal dimension in b (after Mandelbrot 1967)
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Figure 4.48. a Schematic cartoon of an idealized landscape made up of horsts and
grabens which were subsequently eroded and sedimented upon by mass diffusion
processes. Curve fo describes the landscape at the end of the tectonically induced
horst and graben formation. The other two curves show the landscape at two sub-
sequent times ¢; and 3 b shows the fractal dimension of the landscape at times
to, t1 and t2 in a plot of relief against length scale I. There, relief is the elevation
difference between two points separated by a distance ! {(after Braun and Sambridge
1997)

inasmuch as it is smaller than 2. The fractal dimension of coast lines may be
measured by taking m as the length of a measured coast line and n as the
length of the measuring rod (Figs. 4.47). For the classic example of the west
coast of Britain it is D = 1.25 (Mandelbrot 1967).

Corresponding to the measurement of the fractal dimension of coast lines,
the fractal dimension of entire landscapes may be defined as the ratio of the
logarithm of the relief and the logarithm of length scale. Natural landscapes
have a fractal dimension around D & 2.1-2.7 (Mandelbrot 1982).

Using Fractal Dimension. Consider a landscape that was created by tec-
tonic processes, for example the idealized horst and graben structure shown
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for time step t¢ in Fig. 4.48a. If the tectonic processes created a more or less
random topography, then such a landscape may be characterized by a sin-
gle fractal dimension as shown by the straight line for time ¢y in Fig. 4.48b.
Subsequent erosion and sedimentation processes will destroy landforms at
a rate that is proportional to their length scale. Small landforms will be
quickly destroyed by mass diffusion processes, while intermediate landforms
are only rounded and the largest landforms will preserve their original shape
the longest. The length scale of the landform that separates smaller landforms
(that are now characterized by “erosive shapes”) from larger landforms (that
still retain the shape created by the initial tectonic event) may be used to
derive a characteristic diffusive length scale of the landscape. At time ¢; this
is roughly the length scale of the landform e for the example in Fig. 4.48a.
At time t3 erosion has proceeded further and only the valley located to the
right of landform fis large enough so that its original shape is still dominant.
The landscape becomes multi fractal as indicated by the curves for ¢; and ¢,
in Fig. 4.48b. As we have discussed on p. 193, the diffusive length scale may
now be converted into a time scale and therefore can be used to date the time
of the last landscape forming tectonic event. Such qualitative considerations
can be considerably improved by using statistic evaluation of length scales
over an entire landscape (Chase 1992). Braun and Sambridge (1997) used
this approach to date the age of the eastern Australian highlands.

4.6 Problems

Problem 4.1. Vertical reference frames (p. 143):

The summit of Chimborazzo in Equador is 6 180m above sea level. The sum-
mit of Mt Everest is 8848 m above sea level. Use eq. 4.8 to calculate the
elevation difference between the two summits measured from the center of
earth rather than from sea level. Chimborazzo lies practically at the equator,
Mt Everest at roughly A = 28°N.

Problem 4.2. Uplift versus exhumation (p. 150):

a) How much was a rock uplifted relative to a fixed external reference level if
it was exhumed from 10 km depth to 5 km depth by erosion and the eroding
mountain range decreases in this time from 8000 m to 3000 m elevation. b)
What is the amount of exhumation a rock experienced if the surface uplift
was 5 km and the rock was uplifted 4 km relative to a fixed reference level.

Problem 4.3. Vertical kinematics (p. 159):

Use eq. 4.15, eq. 4.17 and eq. 4.18 to calculate the uplift and the exhumation
history of a simple model mountain range that may be described with these
equations. Assume that the range is in geomorphic steady state, so that its
surface elevation remains constant because ver = vro. a) What is the magni-
tude of the erosion parameter tg of this range? Use the following constants:
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a =2500m and b = 0.13 and é = 107! 571, b) What was the depth of
rocks that reach the surface after 40 my at the start of their evolution? Use
eq. 4.19. ¢) How long is the hiatus between the onset of surface uplift and
the onset of exhumation of these rocks? Use eq. 4.19.

Problem 4.4. The principle of isostasy (p. 163):

We are familiar with the fact that 90% of icebergs are under water and 10%
above the surface. Use Fig. 4.16 and eq. 4.23 to determine the density of ice
from this observation. The density of water is p, = 1000 kg m~3.

Problem 4.5. Relationship between relief and uplift (p. 163):

Parallel rivers incise an isostatically compensated plateau with a vertical in-
cision rate of: v =5 mm y~! (Fig. 4.49). The slopes on both sides of the rivers
are 45° steep. All rivers have a distance of [ =10 km from each other. Draw
the surface elevation of the ridges and the river beds as a function of time
assuming the plateau remains isostatically compensated during the incision
process. Assume the following numerical values for the necessary physical
parameters: p, =3200 kgm~—3 and p. =2700 kgm~3. (An interesting dis-
cussion of this problem may be found by Montgomery 1994.)

Figure 4.49. Illustration of -— 10km —
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Problem 4.6. Controls on surface elevation (p. 163):

Calculate the surface elevation changes of an isostatically compensated moun-
tain belt that occur in response to the following processes: a) Continental
crust of thickness z. =30 km (p. =2700 kgm~2) is being underplated by
a 10 km thick basaltic layer of density p, =2900 kgm~3. The density of
the underlying mantle is pn, =3200 kgm~3. b) Continental crust is being
thinned to half its thickness (f. = 0.5) and underplated by a 5 km thick layer
of basaltic underplate of density p, =2950 kgm~2. ¢) What is the difference
in surface elevation between a) and b)?

Problem 4.7. Age depth relationship of oceanic lithosphere (p. 167):

a) Is the rifting rate at the Mid-Atlantic Ridge 1.5 cmy~!, 2.5 cmy~! or
3.5 cmy~!? Calculate the answer assuming that the bathymetry of the
Atlantic may be described with the model of eq. 4.45 (Fig. 4.20), and
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use the following bathymetric data from the north Atlantic Ocean. The
data are given in pairs for water depth/distance from the Mid-Atlantic
Ridge: 300 m/50 km; 500 m/175 km; 800 m/250 km; 1300 m/500 km;
1500 m/700 km; 1800 m/825 km; 2300 m/1300 km; 2600 m/1575 km ;
2800 m/1775 km; 2900 m/1950 km; 3200 m/2500 km; 3200 m/3125 km;
3300 m/3375 km; 3200m/3625 km. py, = 3200 kgm~?; p,, = 1000 kgm~3;
a=3-10"%°C"1; 71 =1200°C; k = 10~ m?s~!. b) From a certain distance
from the ridge (age) onwards, these data do not correspond very well with
the model, even for the correct answer of a). What is this distance (age) and
why does the model not work for older oceanic lithosphere?

Problem 4.8. Understanding the flexure equation (p. 173):

Perform a dimensional analysis of eq. 4.49 and eq. 4.48. a) What are the units
of D, F and ¢? b) Typical continental lithosphere may be described with a
Poisson’s ratio around » = 0.25 and a Young’s modulus of E = 10! Pa.
What is the flexural rigidity of a continent that may be described with an
elastic thickness of A = 10km to A = 70 km?

Problem 4.9. Understanding the flexure equation (p. 173):

(a) Integrate the flexure equation (eq. 4.48) to describe the shape of a fishing
rod of length L held horizontally at its end and bent downwards under its
own weight. Use the geometry shown in Fig. 4.50. (Equivalent curves are
described by a piece of paper hanging off the edge of a table, or a bridge
under construction extending half over a valley).

Some hints: 1.) Since there is no horizontal force applied to the rod, the last
term of eq. 4.48 is zero. 2.) Since the load per unit length is everywhere the
same, the load is independent of z. Eq. 4.48 simplifies to d*w/dz*=¢/D. 3.)
Since there is no torque or change in torque applied to the free-hanging end
of the rod, it is true that d>w/dz? =0 at « = L as well as that: d®w/dz® =0
at o = L. 4.) Since the rod is held out horizontally, it is also true that w =0
at = 0 and that: dw/dx=0 at =0. (b) Use your result to estimate the
flexural rigidity of a piece of paper hanging L = 10 cm off the edge of a
table with the lowest point of the paper tip hanging w,—; = 3 cm down. The
weight, of the paper corresponds to a load of ¢ = 2 N m—2.

Figure 4.50. Ilustration of
Problem 4.9
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Problem 4.10. Internal and external loads (p. 174):

a) Repeat the derivation of eq. 4.50 using the principles of eq. 4.21. In other
words, derive eq. 4.50 by comparing the weights of the vertical columns in
Fig. 4.24 at the points A and B. b) Derive an equation for the load on oceanic
plates that corresponds to eq. 4.50. This case is illustrated in Fig. 4.24 on
the very left. The variable ¢, is a line load. That is, it has to be imagined to
extend infinitely in the direction normal to this page.

Problem 4.11. Understanding the flexural parameter o (p. 176):

What are the units of the flexure parameter « in eq. 4.537 How large
is a roughly for the continental lithosphere? Use D =~ 10?2 Nm; pn, =
3200 kgm—? and pr = 1000 kgm—3.

Problem 4.12. Plate flexure near Hawaii (p. 176):

The water depth of the Pacific in the vicinity of the Hawaii- and Emperor
Island chains is somewhat deeper than in the remainder of the abyssal planes
of the Pacific. Also, there is a high point in the ocean floor, about 250 km
off the coast of Hawaii. (Fig. 4.22). This water depth profile corresponds
well with the shape of an elastically flexed plate loaded by the weight of the
island chain with the high point in the ocean floor being the flexural bulge.
What is the thickness of the elastic lithosphere in the Pacific? Use eq. 4.54,
4.53, 4.49 and the following values for the physical parameters: E = 70 GPa,
Pm = 3200 kgm~3; p, = 1000 kgm~3; g = 10 ms~! and v =0.25. For the
most elegant solution of this problem we need not even know the details of
the shape of the flexed plate or the maximum water depth at the point of
maximum flexure.

Problem 4.13. Fault scarp degradation (p. 187):

Avouac and Peltzer (1993) report a fault scarp from China with the following
profile: (27,1; 51,1.1; 68,1.2; 77,1.8; 90,1.8; 110,1.9; 111,2.0; 120,2.2; 122,2.45;
125,2.6; 128,3.1; 130,4; 133,4.5; 135,5; 140,6.6; 143,7.5; 147,8.8; 150,10; 155,11;
160,12; 170,12.8; 180,13.5; 190,13.5; 220,13.7). This list shows the scarp co-
ordinates (z1,H1; x2,H5 ...), where 2 horizontal distance from a fix point in
the far field and H is the surface elevation above the base, both in meters.
Assuming that the surface is flat in the far field and that the scarp was ini-
tially vertical, use eq. 4.67 to date the earth quake that formed it. Assume
that the mass diffusivity is 5.5 m? per 1000 years.

Problem 4.14. Spheroidal weathering (p. 189):

Measure the topographic profiles off the two boulders with the marked co-
ordinate systems on Fig. 4.34 and use eq. 4.69 to estimate whether the two
boulders commenced weathering at the same time, or if the smaller one has
been subjected to weathering longer.



5. Mechanics: Force and Rheology

In this chapter we discuss the forces involved in geodynamic processes. Know-
ing a bit about forces is a great tool for the field geologist to test field obser-
vations. Let us consider an example: A field geologist finds folds and thrusts
in a Precambrian terrain that he or she interprets to have formed as the
consequence of crustal shortening. Strain analysis shows that 80% shortening
occurred and the geometry of shortening indicates that this resulted in four-
fold thickening of the crust. He therefore further infers (using the principle
of isostasy) that - at the time - a mountain range of some 15 km elevation
existed above the metamorphic terrain. This interpretation is consistent with
the field observations, but it has no independent test. In this particular exam-
ple we could argue that we have no knowledge of any present day mountain
range that is this high and that, therefore, this interpretation is unlikely.
However, in many less obvious examples there are no direct analogies and
the resulting model is - albeit perfectly imaginable and fully consistent with
field observations - wrong. One way to provide an independent test of such
models is to make a rough estimate of the forces involved. In the next chap-
ters we want to perform such estimates. In order to do so, it is necessary to
commence with a brief repetition of the basics of stress and strain. For more
details on the basics the interested reader is referred to a range of excellent
text books on the subject. For example:

— Pollard and Fletcher (2006) Fundamentals of Structural Geology

— Twiss and Moores (1992) Structural geology.

— Ramsay and Huber (1983) Modern Structural Geology. Volume 1: Strain
Analysis

— Ramsay and Huber (1987) Modern Structural Geology. Volume 2: Folds
and Fractures

— Ramsay and Lisle (2000) Modern Structural Geology. Volume 3: Applica-
tions of Continuum Mechanics in Structural Geology

— Weijermars (1997) Principles of Rock Mechanics.
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5.1 Stress - The Basics

Many field geologists and metamorphic petrologists are only ever confronted
with a single variable that has the units of force per area: pressure. Only
with in situ stress measurements and some palaeopiezometric methods is
it possible to resolve the stress state in more detail than this single value.
However, as soon as we try to describe the forces that act on a structural
feature in some more detail we will discover that the words “pressure” or
“stress” are simply not precise enough to describe what we see. In fact, we
will soon discover that the state of stress of a rock can only be described
by nine numbers that form a tensor. Because many field geologists remain
uncertain about the relationship between the pressure they measure and the
complete stress tensor, we begin in sect. 5.1.1 with a very brief summary of
the stress tensor and its most important derived quantities. Much of the logic
discussed below also applies to the strain tensor discussed in sect. 4.1.

5.1.1 The Stress Tensor

There are many excellent descriptions of stress in an abundance of good text
books (e.g. Means 1976; Suppe 1985; Engelder 1993; Pollard and Fletcher
2006). Here we only summarize the definitions of a few terms related to
stress (Engelder 1994).

Force. Force is a vector and - like all vectors - is described by a magnitude
and a direction. It has the units of mass x acceleration: 1 N = 1 kg m s~2.
A related vector quantity is traction. Traction is a force (with magnitude
and direction) per area, where the orientation of this area is not defined.
Tractions may be subdivided into normal and parallel components called
normal traction and shear traction. It is important to note that tractions
are vectors, although they have the same units as stress. In contrast, stress
is a tensorial quantity described by all the tractions acting on a unit cube
(s. sect. B.3). We will now discuss the stress tensor in a bit more detail.

The Stress Tensor. In three-dimensional space, the state of stress of a
single point inside a rock (i.e. a unit cube) is given by nine numbers, all of
which have the units of force per area. These nine numbers are all tractions
acting on different planes and different directions that need to be defined
by using subscripts. These nine numbers define the stress tensor which is
typically written as:

011 012 013 Oz Ozy Ogzz
o= on 02 o013 | =| oyz Oyy Oy (5.1)
031 032 033 Ozz Ozy Ozz

(s. sect. B.3). The two different notations of subscript used in eq. 5.1 are both
common in the literature. The first of the two specifying spatial indices z, y
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Y /
a b

Figure 5.1. a The state of stress of a unit square within the two dimensions
of this book page. In two dimensions, the stress tensor has only four independent
components illustrated here by the four labeled arrows. In b the coordinate system
x', %y, 2’ was chosen in such an orientation so that the shear stresses become zero.
The normal stresses become therefore principal stresses. The state of stress of the
square in a and b is identical

and z (or 1, 2 and 3) indicates the direction in which the stress component
acts. The second index indicates the normal to the plane on which this stress
component acts. We can see that the three tensor components in the diagonal
of this matrix have two identical indices. They are called normal stresses
because the surface onto which the stresses act are normal to the direction
in which they act, (i.e. the indices for “direction in which it acts” and “plane
onto which it acts” are the same). In the following we abbreviate normal
stresses with o;,. The remaining six components of stress in eq. 5.1 are shear
stresses. In these, the stress components they describe act parallel to the
plane onto which they are exerted. Shear stresses are abbreviated in this
book with oy

The stress components in a given column of eq. 5.1 act on the same plane,
but in different directions. The rows contain stress components oriented in
the same direction, but acting on different planes.

In the literature, shear stresses are often abbreviated with 7 and normal
stresses with o. However, this notation is somewhat confusing as all com-
ponents of the tensor have the same units and should be abbreviated with
the same symbol. We therefore stick to the notation of eq. 5.1 in particular
to the use of z and y rather than 1 and 2 as subscripts and describe shear
stresses with o;; or g, and normal stresses with o;—; or o,. We reserve 7 as
a symbol for deviatoric stress.

The stress tensor is symmetrical, that is, each component above the diag-
onal has an equivalent component of equal magnitude below it: gy, = 04y,
Oae = Ogz, Oy, = Ozy. LThus, the stress tensor consists of only six indepen-
dent numbers: three normal stresses (written in the diagonal) and three shear
stresses (the off diagonal terms).

The state of stress described by eq. 5.1 can be expressed a bit more simply
in a differently oriented coordinate system. Because of the symmetry of the
stress tensor, it is always possible to assume a coordinate system with the
coordinates ', ¢’ and 2', in which all shear stresses (all off diagonal terms



212 5 - Mechanics: Force and Rheology

in eq. 5.1) become zero. The diagonal components in this new coordinate
system are called principal stresses. Principal stresses are denoted with a
single subscript as o1, o2 and ¢3. In the earth sciences it is common to use
the subscript “1” for the largest principal stress and “3” for the smallest.
Thus, the state of stress at a point may always be characterized by only
three principal stresses (Fig. 5.1):

a0 0 s 0 0
od=10 Opy O =[ 0 o2 0 . (5.2)
0 0 o 0 0 o3

The order in which o, 09 and o3 appear in eq. 5.2 implies that the new
coordinate system was chosen here so that the z'-axis is parallel to the largest
of the three principal stresses. Of course this need not be the case. Also note
that the numbers denoting the three principal stresses have nothing to do
with the spatial subscripts we briefly used in eq. 5.1. They simply refer to
the largest, the intermediate and the smallest of the three principal stresses.

In the stress diagrams of this book the coordinates are generally drawn
parallel to the principal stress directions so that we can write: ¢ = o'.
Fortunately, in the earth’s crust the principal stresses are often oriented
roughly parallel to the vertical and the horizontal directions, because the
shear stresses at the earth’s surface (e.g. by wind) and at the base of the
lithosphere (e.g. by mantle convection) are both negligible.

The stress tensor has a series of invariants that are independent of the
choice of the coordinate system. For example the trace (the sum of the di-
agonal terms) or the determinant of the stress tensor is constant regardless
how the coordinate system is oriented. There is three important invariant
quantities. The first is given by the sum of the three normal stresses:

L =04 +0yy+0.,=01+02+03 . (5.3)

Note that pressure is directly related to the first invariant (see eq. 5.5). The
second invariant of the stress tensor is given (in terms of the principal stresses)
by:

_[2 :—(0’20’3 +0'30'1 +0102) 3

and the third invariant is given by the determinant of the tensor, which —
again in terms of the principal stresses — is:

Iy = 010303 . (5.4)

The 2nd and 3rd invariants are relevant for the understanding of some fun-
damental geodynamic processes (e. g. sect. 6.2.2).
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Mean Stress. The mean stress om is given by the mean of the three principal
stresses. It is therefore independent of the coordinate system:
am:P:U'm-l-a;y-l-a;z:al+02+03 ‘ (5.5)
3 3
The mean stress is also called pressure P. Strictly speaking, the mean stress
is the mechanical definition of pressure, while a chemist or thermodynamicist
would say that work is the product of pressure and volume change and that,
therefore, pressure has the units of energy per volume (1 Pa = 1 J m~3).
The most common place where geologists encounter these non-intuitive units
for pressure is when looking up the molar volumes of mineral phases. These
are generally quoted in the units Joule per bar. As the volume change may
be highly anisotropic in an anisotropic stress state, chemically defined pres-
sure may be determined by integrating the volume change over the surface
of a unit volume. Chemical and mechanical pressure only correspond in an
isotropic state of stress. Earth scientists measure pressure using geobarom-
eters (sect. 7.2.1). Many geobarometers rely on the pressure sensitivity of
chemical equilibria. It is therefore not clear if we measure mechanical or
chemical pressure with them. This is some of the reason why the relationship
between geobarometrically measured pressure and depth is often discussed
in the literature (e.g. Harker 1939; Wintsch and Andrews 1988). However,
in the following we assume that the differences between chemical and me-
chanical pressure are so small (if any) that we need not be concerned with
them.

Differential Stress. Differential stress is a scalar value defined as the dif-
ference between the largest and the smallest principal stress:

0d =01 — 03 . (5.6)

It is a measure of how far the stress state deviates from the isotropic state.
As such, differential stress relates directly to deviatoric stress 7. In fact,
we will see that 1 = 04/2 and that 73 = —0q/2. During viscous (ductile)
deformation, the application of any differential stress will cause permanent
deformation. Of course, differential stresses also arise when the deformation is
not permanent, for example during elastic deformation. In the brittle regime,
deforming rocks will only record the differential stress that causes failure (i.e.
if it is large enough to touch the failure envelope on the Mohr circle).

Deviatoric Stress. Unlike mean stress, pressure or differential stress, devi-
atoric stress is not a single number, but a tensor, denoted commonly with 7.
This tensor is defined by the deviation of the stress tensor in a general coor-
dinate system (i.e. eq. 5.1) from the mean stress (i.e. pressure):

Tzz Tzy Tzz Opz — P Oy Oz
T=| Ty Tyy Tyz | = | Oy oyy — P 0y . (5.7)
Tze Tzy Tzz Oz Oy 0., — P
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It can be seen that the total stress tensor is the sum of the isotropic stress
tensor plus the deviatoric stress tensor:

Ozz Oy Ozz P 0 0
Oye Oyy Oyz | =1 0 P 0O
Ou5 Ozy Ozz 0O 0 P
wa_P Ory Tz
+| Oy Oy — P oy, . (5.8)
Ozz Oy Uzz_P

This equation may also be writte in short as:
c=Pl+71 . (5.9)

where 1 is the identity matrix. In the viscous regime, only deviatoric stresses
(right hand term in eq. 5.8) cause deformation. In contrast, elastic deforma-
tion occurs in response to the total stress state as described by the left hand
side of eq. 5.8 (Fig. 5.2).

a % i —

- ainyely aug
<

&
\ / /
V
Elastic Ductile
deformation deformation

Figure 5.2. a Relationship between stress ¢ and strain e for elastic, plastic and
brittle deformation. Curve i is for the ideal case of plastic (ductile) deformation;
¢ is with strain hardening; ¢ with strain softening. b Relationship between stress
and strain rate é for three different viscous materials. For a Newtonian fluid this
relationship is linear. The number 7 is the power law exponent which we will discuss
in some detail in sect. 5.1.2

For a coordinate system parallel to the principal stress directions the devia-
toric stress tensor may simply be written as (in analogy to eq. 5.2):

7. 0 0 o1 —0m O 0
7', = 0 T?I;y O = 0 g2 — Om 0 . (510)
0 0 7! 0 0 03 — Om

zz
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In this book, just about all discussed examples are for orientations of the
stress field where 7 = 7/. Also, we usually use many terms related to the
stress tensor as if they were a scalar, i.e. we use them in equations that
involve no tensor calculus. This is because most problems discussed in this
book are reduced — for simplicity — to mere one-dimensional scenarios where
there is only a single direction in which stresses are non-zero.

o Simple examples for the use of deviatoric stress. The deviatoric stress ten-
sor is important as its components cause viscous deformation. The absolute
magnitude of the deviatoric stress tensor components indicates how rapidly
a rock will strain (deform). A rock will eztend in the direction in which the
deviatoric stress components are negative (negative is tensional in the earth
science convention), even if all the principal stresses indicate compression
(s. Fig. 5.3). Thus, when making cartoons of a field terrain it is always most
instructive to sketch arrows for the principal components of the deviatoric
stress tensor onto them, as their magnitude and direction corresponds to
what is observed kinematically in the field (s. Fig. 6.26). Two rocks from
different crustal levels may suffer the same deviatoric stresses and therefore
deform similarly, but they may be in completely different states of total stress
(Problem 5.4).

Deviatoric 01 = 1.5MPa
compression
T=1MPa
Deviatoric
tension 02=03=0MPa
T=-0.5 MPa

a ﬁ b

Figure 5.3. Cartoon illustrating a typical uniaxial deformation experiment. The
state of deviatoric stress of the cylinder in a is identical to that of the cylinder
in b. However, in a is is not specified what the confining pressure is. This may
be an arbitrary number added to all deviatoric stress values. Nevertheless, if there
is no additional confining pressure, then a is consistent with the pressure inside
both cylinders being 0.5 MPa, although both o4 and o are 1.5 MPa. In a the state
of stress is illustrated in terms of the components of the deviatoric stress tensor.
In b in terms of the uniaxially applied stress. Because the experiment is uniaxial,
all illustrated stress components are also principal stress components both for the
deviatoric stresses in a and the applied stress in b (after Engelder 1994)

Let us consider a simple two dimensional example (there are only two
principal stresses o1 and o3) where both o1 and o2 are positive (the rock is
under compression) and the mean stress is om = (61 +02)/2. Then, according
to eq. 5.8, the principle components of deviatoric stress are: 4 = 01 — om =
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(61 —02)/2 and 73 = g2 — om = —(01 — 02)/2. We can see that the largest
principal component of the deviatoric stress tensor is 1 = o4/2 and the
smallest is 72 = —oq/2. We can summarize this information with a more
applied example of a continent that is under horizontal compression where
the principle components of stress o, and o,, are parallel to the horizontal
(z) and vertical (2) directions. There, the principle horizontal deviatoric stress
is:
Tzz = Ogz — Om = Tow ~ T2z = 2
2 2
Fig. 5.3 illustrates the state of stress of a rock cylinder as expressed in terms
of the deviatoric stresses (left) and total stresses (right).

(5.11)

Strength. Strength, failure strength or shear strength are terms used to de-
scribe the critical value which the differential stress must reach to cause per-
manent deformation. As such it is a material property. In the elastic regime,
the term “strength” does not really have a meaning and it is better to refer
to rigidity or other terms explained in some more detail in section 4.4.2 and
5.1.2. In the brittle regime, the strength depends directly on the magnitude of
the principal stresses and is given by the stress where the curve on Fig. 5.2a
deviates from its linear course. In the wiscous regime, all differential stresses
will lead to permanent deformation (Fig. 5.2). and “strength” is dependent
on strain rate. Strictly, therefore, strength has no meaning in viscous de-
formation either and it is better to describe viscous stresses via viscosity.
Nevertheless, in this book we use the terms “strength”, “viscous strength”
and “differential stress” in a similar meaning and note that they relate by a
factor two:

strength = 02—(1 . (5.12)

Stress Balance. The equations describing the balance of stresses are the
basics for all mechanical descriptions of deformation. A stress balance is a
generalized form of Newton’s second law:

force = mass x acceleration . (5.13)

This equation is applied to a small volume of rock which may be subjected to
surface forces (applied to the surfaces of the small volume, e.g. by pushing it)
and body forces (applied to the small volume itself, e.g. by gravity). Eq. 5.13
has its only complication in that it is a vector equation, because force is
a vector. That is, it consists of three equations each of which describe a
force balance in one of the three spatial directions. Also, within each of these
equations, several surface and body forces must be summed up and set equal to
the product of mass times acceleration on the right hand side of the equations.
Also note that the equations of force balance are generally considered per
unity volume so that eq. 5.13 is usually written in terms of force/volume =
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Figure 5.4. Different surface forces acting on a
unity cube in the z direction. If z is the vertical, Ozz
then there is also a body force due to gravity
of the magnitude pg. At rest, each of the three
labeled forces is compensated by a force of equal

o;
magnitude but opposite direction. Other forces "
in the y- and z-directions are not labeled for
clarity
Az Oyz
i g

— ¥

density x acceleration. The different forces acting in the z direction can be
summed up from Fig. 5.4. The sum is:
do

Oas + 0 Az ) AxAy — 0., AzAy + (0., + —2 Az | AyAz
0z ox

—0,. AyAz + (Uzy + ag;y Ay) Az Az — 0,y AxAz — pgAxAyAz

= pa,AzAyAz (5.14)

where z, y and z are the three spatial directions, p is density, g is acceleration
due to gravity and a, is the acceleration of the body in the 2z direction. Even
if this equation appears enormously complicated, it should be easy to follow
it using Fig. 5.4. It simply states that the difference in forces between any
two sides of a unity cube result in acceleration. We can see that the equation
has six similar looking terms on the left hand side. Every group of two terms
describes a difference between the force on one side of the cube (e.g. the
2nd term in eq. 5.14: 0., AxAy) and the force on the opposite side of the
cube (e.g. the 1st term in eq. 5.14: (0, + (00,,/02) Az) AxAy). If these are
equally large, then the body does not accelerate. If this difference is finite,
then the body accelerates with the rate written on the right hand side of the

equation: pa{;:i; Ax Ay Az. Writing eq. 5.14 a bit shorter we can write:

00,4 i 80'zy + do; _ _ (5 15)
or T By | 02 TP |

o Navier-Stokes equation. Eq. 5.15 (plus its corresponding versions for the x
and y directions) can be reformulated into the famous Navier-Stokes equation
if it is coupled with a viscous flow law. We will encounter this in eq. 5.42,
but use it already here briefly to introduce this important equation. We also
need the definition of strain rate from eq. 4.6 and the relationship between
the stress and deviatoric stress tensors shown in eq. 5.9. Then, we can insert
the definition of strain rate into eq. 5.42 and that into eq. 5.9. The resulting
description of stress is then differentiated according to eq. 5.15 and we arrive
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at the Navier-Stokes equation for an incompressible medium with constant
viscosity:

—VP +9V3u=pa+pg , (5.16)

In this form, we have placed both acceleration terms (that due to surface
forces and that due to body forces) on the right hand side of the equation.
In particular the surface force related acceleration term in eq. 5.16 (which
is a instead of the earlier a, meaning that acceleration may be in all three
directions) can also be expressed in terms of velocity changes, but we need
not do this here, as we will show below that is is negligible for most geological
problems.

e Force balance equations. In most geodynamic problems, acceleration is neg-

ligible. Then, in the horizontal directions the term pagtm = % — 0 and in

the vertical direction p%“t& — pg, as gravitational force is still felt as a body
force. Thus, eq. 5.14 simplifies to the following:

00.; 00.; 004 e =0
9z oz Ay pg==x -

Eq. 5.15 describes the equilibrium of stresses in the vertical direction and
is generally applicable in the earth sciences. The first three terms of this
equation are the sum of the surface forces acting in the z-direction, the fourth
term is the volume or body force downwards. In analogous equations for the
2- and y-direction this fourth term does not appear. The relationships for
the z- and y-directions are:

(5.17)

0044 + 00 4y + 004,

Ox oy 0z

and:

=0 (5.18)

do oo 00y
vy | Yyz | D0y

Oy Ox Oz

Eqgs. 5.15, 5.18 and 5.19 are the basics of all mechanical equilibria discussed
in this book (e.g. sect. 4.4.1; 6.2.2, s. Problem 5.5).

=0 . (5.19)

Tectonic Relevance of Momentum. In this section we discuss the nature
and relevance of momentum in tectonic processes to show that momentum is
practically negligible to most geological problems. The momentum of a body
I is given by the product of its mass m and its velocity v (sect. 2.2.4):

I=mv . (5.20)

While the velocities of plate tectonic motions are very small, the mass of
plates is very large and it is therefore not immediately obvious if momentum
plays a role in the tectonic force balance.
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Momentum is a physical quantity that is preserved: During the collision of
two plates the momentum of the entire system remains constant. However,
the momentum of one of the plates may be transferred to the other. This
transfer of momentum occurs by a force. The magnitude of this force is given
by the change of momentum AI per time At that occurs during the slowing
of plate motion due to collision.

Al
F=— . 5.21
gy (5.21)
If a plate is slowed down due to collision very abruptly, then the force is large.
If it slows over a large time period, the force is small. The slowing of a plate
has also the consequence that its kinetic energy Ex decreases. Kinetic energy
is given by the integrated momentum integrated over the change in velocity:

B =— . (5.22)

Let us now check if momentum, kinetic energy and the forces that arise
from them could be responsible for the acceleration or slowing of plates. For
this, let us hypothesize that the slowing of a continental collision is caused
by a waning momentum. Lets use the India-Asia collision and make some
very simple assumptions. The area of the Indo-Australian Plate is roughly
A = 5-10% km?. If the mean plate thickness is 21 = 100 km and the mean
density is p = 3000 kgm™3 then its mass is: m = Azp = 1.5-10%! kg.
If the relative plate velocity between India and Asia is v = 0.lmy ' =~
3.2-107% ms!, then, according to eq. 5.20, the momentum of the collision
is: I = mv = 4.7-10"2 kgm~'s~! and the kinetic energy of the Indian
Plate is: B, = 7.6 - 10® J. If we now assume that the Indian Plate will be
brought to a complete halt within one million year of the collision, then:
F = 47-10"/3.15 - 10'® =~ 0.15 N. Distributed over almost 5000 km of
collision length this leaves only about: 3 - 1078 Nm~!. We can infer that
plates would have to be brought to a halt within fractions of a second of a
collision in order for momentum to have any influence on the orogenic force
balance. In short, momentum is negligible in plate tectonics.

Indeed, we know that the relative rate of motion between the Indian and
the Asian plates has hardly changed since the Tertiary. We can conclude that
any changes in velocity are due to changes in the boundary conditions and
have nothing to do with momentum. It is for this reason that force balance
equations in the earth science (e.g. eq. 6.25) need not consider acceleration
terms.

The Difference Between Lithostatic and Non-Lithostatic. The pres-
sure measured by petrologists with geobarometers in metamorphic rocks is
generally interpreted as the “burial pressure”, that is, the pressure is directly
correlated with the depth of the rocks at the time of metamorphism accord-
ing to eq. 7.1 (s. sect. 7.1.1). This interpretation is based on the assumption
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that rocks have negligible strength, i.e. they cannot support any differential
stress. This state of stress is called lithostatic. In this state, the lithostatic
pressure is of the same magnitude as each of the principal stresses (eq. 5.5).
The state of stress is isotropic. An every day example is the state of stress
inside fluids which have negligible strength, for example a glass of beer. The
force exerted by the beer onto the outside glass is exactly as large as the
weight of the vertical section of beer lying above this point (s. Problem 5.6).
However, if we consider a more general state of stress (i.e. a material that can
support differential stresses), then we can see that only part of the pressure is
caused by depth. The magnitude of the difference o1 — o3 also contributes to
pressure and the orientation of o, o3 and o3 determines how pressure relates
to depth. The discussion on the magnitude of the differential stress oy —o3 in
rocks can be summarized under the term “tectonic overpressure” (Rutland
1965; Ernst 1971) and will be discussed in a bit more detail in s. sect. 6.3.5.

For some special orientations of a general stress field it is possible to divide
pressure into a lithostatic and a non lithostatic component. Such a division
helps to illustrate the different contributions to pressure and allows us to
estimate the magnitude of differential stresses under different boundary con-
ditions. In a stress field where ¢; and o3 are the maximum and minimum
principle stresses and are oriented horizontally and vertically, respectively we
can write:

P:—Ul+a3203+01_03201ith+a—d:pgz+71 . (5.23)
2 2 2

There, oiyn is the component of pressure caused by the weight of the over-
lying rock column, and the non-lithostatic component is given by the largest
principal component of the deviatoric stress tensor. Of course, eq. 5.23 is only
valid if oy = (o1 + 03)/2. For other values of o3, or for differently oriented
stress fields, this simple subdivision in lithostatic and non-lithostatic terms of
pressure is not possible and non-lithostatic components of pressure can only
be calculated from the complete tensor. In sect. 6.3.5 we discuss how large
such tectonic contributions to pressure might be.

5.1.2 Deformation Laws

For a mechanical description of deformation we need a mathematical rule
that relates stress (or force) to strain (or strain rate). Such a relationship
is called a flow law, deformation law or constitutive relationship. If we know
the flow law for a given rock, then we can use the relationships of mechanical
equilibrium (eqs. 5.14 t0 5.19) to describe the deformation of rocks in response
to an applied force.

On a microscopic scale, structural geologists discriminate between a large
number of deformation laws. On geological time scales and lithospheric length
scales, most geologists use only one of five terms to describe deformation
mechanisms (Table 5.1):
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brittle deformation
— plastic deformation
ductile deformation
— elastic deformation
viscous deformation.

These five terms have very different meanings and some of them are very
rigorously defined and others are not. We will deal with these five terms
at length over the next sections (s. also: Weijermars 1997; Twiss and Moores
1992; Jaeger and Cook 1979). Here we summarize some of the most important
information on these five terms and how they relate stress to strain in general
terms.

e Brittle deformation is no really a deformation mechanism at all. We
will see below that the laws of brittle deformation only describe a stress state
and not a relationship between stress and strain. The deformation law usually
used to describe rocks in a brittle fashion is plastic deformation.

e Plastic deformation law states that a constant stress is required to deform
the rock. Irregardless how much or how fast we deform, the required force is
all the same. Deforming sand is a good example.

e Ductile deformation is a wonderful term that has no specified meaning
other than that we want to say that the deformation is not elastic and not
brittle. It is therefore an extremely useful term for the field geologist who
does not want to specify himself by using words like “viscous”, “plastic” or
“dislocation creep” - all of which have very rigorously defined meanings.

e FElastic deformation is the law that states that the strain of a rock is
proportional to the applied total stress. As such, it is the only deformation
mechanism which is not permanent: As soon as the stress is released, the
strain is gone as well.

o Viscous deformation is the law that is most commonly used to describe
ductile deformation on the crustal scale. Viscous means that the strain rate
of a rock is proportional to the applied deviatoric stress.

We all have every day encounters with these two deformation mechanisms,
namely with rubber bands (elastic) and mixing cake dough (viscous). When
stretching a rubber band, the amount of stretch depends on how hard we pull.
The more pull, the more stretch. The applied stress and the resulting strain
are proportional. On the other hand it does not matter at all whether we
pull fast or slow. The stretch is always the same for the same applied force,
independent on the speed (strain rate) with which we do the experiment.
With mixing dough its exactly opposite: It does not matter at all whether we
mix it only a bit or very thoroughly (little or much strain in the dough), the
needed force is always the same. However, how much force we need depends
very strongly on the mixing rate. If we mix it rapidly, we need much more
force than if we mix slowly.

Elastic Deformation. Elastic deformation is characterized by a proportion-
ality between stress and strain (Fig. 5.2). Both these parameters are described
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Table 5.1. Deformation laws, for more information see also Tabel 5.2

brittle no deformation law but a stress state;
usually described with plastic law

plastic (ductile) constant stress; example: sand

viscous (ductile) stress and strain rate are proportional - linear
(Newtonian)
- non linear
(power law)

elastic stress and strain are proportional

by tensors which each include 6 independent values. However, if this propor-
tionality is ideally linear, and we only consider uniaxial (one-dimensional)
loading then this relationship is called Hooke’s law and may be simply writ-
ten as:

Oue = Eeyy . (5.24)

where the subscripts emphasize that this equation is meant to be one dimen-
sional (and not a full tensor equation). When the deformation is uni-axial,
then ¢ is the (dimensionless) longitudinal normal strain and is defined as
the change in length during deformation relative to the original length (s in
eq. 4.1). The proportionality constant E is called the Young’s modulus and
has the units of stress (Nm~2). The Young modulus corresponds to the slope
of the elastic section of the curve in Fig. 5.2. For rocks, the Young’s modulus
is of the order of 10'° to 10'! Pa. Young’s modulus is a kind of a summary of
the Lame elastic constants which are the elastic coefficients that occur when
eq. 5.24 is written as a full tensor equation.

If more than one of the three principal stresses is larger than zero, then it
is also important to consider that rocks are compressible. This is described
by the Poisson constant v. For the largest principal stress we can write:

o =aFE +vos +vo; (5.25)
or, if strain is written as a function of stress:
1 v v
€1 = =01 — =03 — =03 . (5.26)

E E E

For the other two spatial directions equivalent equations may be formulated.
The Poisson constant is given by the ratio of two stretches, namely the in-
finitesimal strain normal to the applied stress and the stretch in direction of
the applied stress (Fig. 5.5).

During compressive deformation, a rock will shorten in the direction of the
applied stress. Thus, the incremental stretch e; in Fig. 5.5 is negative. If the
rock is isotropic, then this shortening is distributed evenly between expan-
sion in the other two spatial directions. Thus, » = 40.5 for incompressible



5.1 - Stress and Strain 223

Figure 5.5. Stretch of a cube as the conse-

quence of compression in the vertical direction.
The Poisson constant is defined as v = —eg/eq w
I Ve
€z
I

materials. For example, rubber is almost incompressible and has a Poisson
constant of almost ¥ = +0.5. In contrast, the Poisson constant of rocks is
of the order of 0.1-0.3. We can see that rocks are quite compressible in the
elastic regime. However, the total strains of rocks in the elastic regime are
quite small, because the Young’s modulus of rocks is very large. Thus it is
no obvious to us that rocks are actually quite compressible.

While the Poisson constant is directly related to how compressible a rock
is, it should not be confused with the compressibility 5. Under isotropic stress
(with pressure P) a rock will compress isotropically (i.e. €7 = €3 = €3) and

1

P==(ei=e=¢€3) . (5.27)
5
J is related to Young’s modulus and the Poisson constant by:
3—6v
_ 5.28
=" (5.29)

We can see from this equation that, for incompressible materials where v =
+0.5, the compressibility becomes: 8 = 0. The inverse of the compressibility
is called the bulk modulus: K = 1/8. For a more rigorous treatment of the
theory of elasticity the reader is referred to the literature.

Brittle Fracture. When the stresses applied to rocks cannot be compen-
sated elastically, permanent deformation will occur. This may occur by ductile
or brittle processes. Among brittle processes, two different modes of brittle
deformation may be discerned: rocks deform either by creating new cracks,
or by friction along existing fractures. In both cases the friction along the
failure planes plays a critical role. Brittle failure is commonly described
with the Mohr-Coulomb-criterion. However, it should be said here that —
strictly speaking — the Mohr-Coulomb-criterion describes only a state of
stress, namely the critical state at which failure occurs. It does not place
stress and strain in a relationship to each other and is therefore not a consti-
tutive relationship or flow law.
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e Mohr-Coulomb-criterion. Coulomb (1773) was the first to recognize that
the brittle strength of materials is largely a linear function of the applied
normal stress o, and that it depends only to the second order on a material
constant called cohesion ¢¢. At geological stresses cohesion is largely negligi-
ble. According to the Coulomb criterion, failure occurs when the shear stress
on a given plane reaches a critical value ¢ that is a function of the normal
stress acting on that plane o, as:

g =00 + [on . (5.29)

The coefficient i that relates shear stress and normal stress on a failure plane
is called the internal coefficient of friction. This coefficient is dimensionless. In
the literature, the critical failure stress is often abbreviated with 7 (including
in the first edition of this book). However, it is probably clearer if we reserve 7
exclusively for deviatoric stresses and we therefore choose a different notation
in this edition: We use the subscript g for all shear stresses (for both stress: o
and deviatoric shear stress: 73) and apply additional superscripts if necessary.
According to the Coulomb criterion (eq. 5.29) brittle deformation is a nearly
linear function of total stress. It is independent of temperature or strain
rate € and almost independent of the material as the cohesion is almost
negligible and the internal coefficients of friction are very similar for most
rocks (Byerlee’s law).

Mohr (1900) then discovered that the failure criterion of Coulomb may be
elegantly portrayed graphically. His graphical analysis is called the Mohr dia-
gram. In the Mohr diagram shear stresses are plotted against normal stresses

Figure 5.6. The relationship between normal stress (horizontal axis) and shear
stress (vertical axis) in the Mohr circle. The normal stresses are compressive (pos-
itive) to the right of the origin and tensional (negative) to the left. Eq. 5.29 de-
scribes the tangent to the Mohr circles drawn around centers at (o1 + 03)/2 with
the radius (61 — ¢3)/2. In the ductile regime shear stresses do not increase lin-
early with normal stresses anymore. However, for many rocks the curve is even in
the brittle regime not completely linear, but slightly concave against the normal
stress axis. For failure planes in a rock it is true that: o5 = sin26{c1 — #3)/2 and
on = (01 + 03)/2 — cos(20) (a1 — 03) /2
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and the stress state in a rock is plotted as a circle. Fig. 5.6 shows (for example
for point B) that the shear stresses in a rock o5 are a function of the angle
# between the considered plane and the directions of the principal stresses.
This may be formulated in terms of the equation:

20

sin(26) = )

(5.30)
where the angle § is the angle between any considered plane in a rock and
the principal stress directions. From eq. 5.30 we can see that oy is the largest
on planes that lie at an angle of 45° to the principal stress direction (i.e.
26 = 90° and sin(26) = 1):

o_sl;‘na.x — 01— 03 . (531)

2

Thus, the maximum shear stress a rock can support is half as large as the
applied differential stress. However, it is important to note that the largest
shear stress is not where failure occurs. From Fig. 5.6 we can see that the
normal stress at o™ is just a little bit larger (it is: o, = — (o1 + 03)/2 than
the normal stress at the critical failure stress ¢ (at point A, for which the
normal stress is explained in Figure caption Fig. 5.6.

The slope of the tangent to the Mohr circles in Fig. 5.6 is given by the
internal angle of friction. This angle of friction ¢ and coefficient of friction pu
are related by:

tang = o . (5.32)

For most rocks this angle is about 30—40°, which is equivalent to an internal
coefficient of friction between roughly 0.6 and 0.85. This relationship is called
Byerlee’s law as he was the first to measure p on a crustal scale and derived
¢ from p.

If fluid pressure plays a role, then the Mohr-Coulomb criterion is often
formulated as:

of =00+ plon—F) , (5.33)

where Fr is the pore fluid pressure. This can be approximated as of = o¢ +
poy (1 — A), where A = P; /oy, is the ratio of pore fluid pressure to lithostatic
stress, gr,, if o, & or. If both are of the same magnitude, then A = 1 and the
shear stress necessary for failure is only a function of the cohesion. If there is
no fluid, then eq. 5.33 reduces to eq. 5.29.

e Byerlee’s and Amonton’s laws. If preexisting cracks occur in a rock then
there is no cohesion. To be more precise: the remaining cohesion is negligible
compared to the cohesion of an intact rock. The shear stresses needed to
deform a rock only need to overcome the coefficient of friction and the normal
stresses applied to the rock. Eq. 5.29 simplifies to:
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Figure 5.7. Brittle failure as a 0, -03 (MPa)
function ?Lf- depth gnd normal” 100 300 500 700
stress or “lithostatic pressure”, — " ; " ; ; .
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This equation is usually called Amonton’s law. Byerlee (1968; 1970) showed
empirically that, at pressures below 200 MPa, (roughly less than 8 km) the
crust may be characterized by an internal coefficient of friction around 0.85:

o¢ = 0.850, . (5.35)

At larger depths, but above the brittle ductile transition brittle failure in the
crust appears to be best described by:

o¢ = 60 MPa + 0.60, . (5.36)

These empirical relationships are called Byerlee’s laws (Fig. 5.7). Because of
the fact that p = 0.85, most faults occur at 30 degrees angle to the maximum
principle stress. Byerlee’s laws state that rocks at 5 km depth will fail at
roughly 110 MPa, in 10 km depth at roughly 230 MPa and in 15 km depth
at about 300 MPa. If we want to consider fluid pressure as well we can
reformulate Byerlee’s laws to:

o; =0.850n(1 —2A) and 7. =60MPa+ 0.60,(1—2) . (5.37)

o Anderson’s theory. Byerlee’s laws describe the relationship between shear
stresses (in particular of) and normal stresses (which relate to depth in the
crust) in general, but they do not explain the spatial orientation of failure
planes relative to the principal stresses.

Anderson (1951) reformulated the Mohr-Coulomb law in terms of differ-
ential stress (o1 — 03) and lithostatic stress (o1, = pgz) instead of shear
stress and normal stress. He took three cases to represent reverse faults, nor-
mal faults and strike slip faults and assumed that o, = o3, 61, = o1 and
o1, = o3 = 0.5(cy + o3) for each of these cases, respectively (Fig. 5.8). Then,
the differential stress as a function of depth (or o1,) may be written as follows:



5.1 - Stress and Strain 227
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Figure 5.8. Geometry of a brittle fault during: a extension, b compression and
¢ strike slip motion

2 1-X
reverse faults: o3 —o03= (90 + por{ ) , (5.38)
pr+1l—p

—2(0g — 1—X
normal faults: o) —o3 = (90 — po( ) , (5.39)

ViR +l+p

2 1—AX
strike slip faults: o1 —o3= (90 + pov( ) . (5.40)

V2 +1
The relationship for each case can be directly derived from Fig. 5.6 using
trigonometric relationships (e. g. Weijermars 1997). Fig. 5.7 shows these three
linear relationships for p = 0.85 and oy = 0.

o Interpretation of fault orientations. The spatial orientation of faults in the
earth’s crust is one of the most important pieces of evidence for the interpre-
tation of the magnitude and geometry of the stress field in the lithosphere
(s. sect. 6.2; Zoback 1992). If the orientation of faults can be measured di-
rectly in outcrop, then there is a series of statistical methods that may be
used to derive the palaeostress field at the time of fault formation (Ange-
lier 1984; 1994). For the interpretation of the present day stress field of the
lithosphere the most important methods are:

— Interpretation of seismic data,

— Interpretation of bore hole break outs (e.g. Bell and Gough 1979; Mastin
1988; Wilde and Stock 1997),

— direct in-situ- measurement of stresses (Zoback and Haimson 1983),

— Interpretation of GPS data (Global Positioning System; e.g. Argus and
Heflin 1995),

— interferometric methods (e.g. Molnar and Gibson 1996).

The application of interferometric methods has only been possible since they
are accurate enough to measure plate motions directly. However, strictly
speaking, these methods (and those using GPS data) measure motions rather
than stresses. Data from all these methods are collected in the world stress
data base http://www-gpi-physik.uni-karlsruhe.de/wsm/) ( see also Fig. 2.2).
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Figure 5.9. Polarity and intensity of P-waves Ce
Be

in two dimensions. The two planes along which
there are no P-waves are called nodal lines or  »
nodal planes ®

Ge

The most reliable data source for the interpretation of the intra plate stress

field remains the interpretation of seismic data, in particular because it allows
to characterize processes that occur deep inside the lithosphere (Fig. 2.2).
Thus, they can not only be used to determine the stress field in two di-
mensions, but also its depth dependence on a plate scale. Seismic data are
commonly interpreted with the aid of fault plane solutions (s.e.g. Michael
1987; McKenzie 1969a).
e Foult plane solutions. Fault plane solutions illustrate the qualitative direc-
tion of motion (polarity) of seismic P-waves (primary longitudinal waves) on
a Schmidt net (s. Figs. 2.11, 5.11). In order to be able to do this, a seismic
event must be recorded by a large number of seismic stations around the
globe. Fig. 5.9 illustrates how such data are then used to plot a fault plane
solution using a two-dimensional example. The gray shaded bar and the ar-
rows in the middle of this figure symbolize a dextral fault, and we assume that
the center of the seismic event lies in the middle of the figure. Points A to G
are seismic stations in the region that have recorded the event. The very first
motion along the fault as measured by the seismic stations is either tensional
or compressional. According to their position relative to the epicenter, the
stations A, B and F will register a tensional first motion, while stations G
and D will register a compressional first motion. Stations C' and E will record
no P-waves at all. These results are illustrated by the clove leaf around the
center of the diagram. Tensional regions are colored white and characterized
by a “~7, compressional regions are drawn black and characterized by a “+”.
The distance of the clove leaf circumference from the middle indicates the
intensity of the measured P-waves. The arrow from the origin towards sta-
tion B is a vector indicating direction and intensity of the P-waves measured
at B.

For the interpretation of a fault in three-dimensional space, we cannot
restrict ourselves to the two-dimensional cartoon of Fig. 5.9 and it is nec-
essary to use data from seismic stations around the globe. Fig. 5.10a shows
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a

Figure 5.10. a Schematic cross section through the earth. Point P marks the
occurrence of a seismic event. Point § marks a seismic station that has recorded the
event. b Enlarged section from a. The polarity of all P-waves emanating downwards
from point P is plotted in a Schmidt net surrounding the fault. The fault itself
intersects the Schmidt net along line A. Plane B is the normal to this plane and to
the movement direction. A and B are called nodal planes

a schematic cross section through earth. Now consider a seismic event that
occurs at point P. From there, P-waves will begin to propagate in all direc-
tions. Because of the refraction of waves through the interior of the globe, the
wave measured at point S will have departed from point P almost straight
downwards. In order to know ezactly which direction this wave hags left from
point P, we need to know the curvature of the wave through earth. However,
this is known and may be looked up in seismic tables. It is therefore possible
to plot the relative position of all seismic stations that have recorded the
event into a Schmidt net. All stations in the vicinity of the epicenter (i.e. on
a tangential plane to earth at the epicenter) will plot near the circumference
of the net. For these stations we could use the two-dimensional illustration
of Fig. 5.9. Fig 5.10b is an enlarged section from Fig. 5.10a. The polarity of
the P-waves on the projection hemisphere is indicated by the light and dark
shading.

Fig. 5.11a shows the fault plane solution for the seismic event in the three-
dimensional cartoon in Fig. 5.10b. Note that the solution has two alternative
interpretations. Firstly, Fig. 5.11a may be interpreted as a normal fault with a
steep eastwards dip. Then, the boundary between the right hand black colored
region and the central white region is the fault plane (plane 4 in Fig. 5.10b)
and the boundary between the left hand black region and the white region is
the normal to this plane (auziliary plane; plane B in Fig. 5.10b). However,
the figure may alternatively be interpreted as a normal fault with a shallow
westward directed dip. All fault plane solutions have two alternative inter-
pretations for the orientation of the fault they represent. Fig. 5.11b is the
fault plane solution of the reverse fault of the same orientation as in a and
Fig. 5.11c is the fault plane solution of a strike slip fault. Fig. 5.11d is the
fault plane solution for a fault containing reverse thrust as well as strike slip
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Figure 5.11. Some examples of fault plane solutions. a Fault plane solution for a
normal fault that dips steeper than 45° towards the right (east) or shallower than
45° towards the left (west). b Fault plane solution for a reverse fault of the same
orientations as in a. ¢ Fault plane solution of a north south striking dextral- or
an east-west striking sinistral strike slip fault. d Fault plane solution for a reverse
fault that is inclined with roughly 45° towards the left (west) and has a dextral
strike slip component in its motion. Alternatively, this fault plane solution could be
for a reverse fault that is inclined towards the south east and contains a sinistral

component. Note that the polarity of the center of the fault plane solution always
indicates the overall kinematics of the structure (i.e. extensional vs. compressional)

components in its motion. Fault plane solutions as illustrated in Fig. 5.11 are
a common means of interpretation of geodynamic processes in active orogens
(Molnar and Lyon-Caen 1989) and plate boundary processes (s. e. g. Frohlich
et al. 1997).

Viscous Deformation. On the scale of a thin section, rocks behave not vis-
cously but according to a large range of deformation mechanisms (e.g. grain
boundary migration, diffusion creep and many others). The dependence of
deformation mechanism on the physical conditions may be portrayed in defor-
mation mechanism maps (Frost and Ashby 1982). In such maps parameters
like temperature, grain size, stress and viscosity are plotted against each other
and the diagrams a divided into different fields where different mechanisms
apply. However, on a larger scale, it is useful to average different deformation
mechanisms and assume that rocks behave like viscous fluids. Viscous defor-
mation of ideal fluids is described by a proportionality between deviatoric
stress and strain rate. If we make a simple shear experiment in which we
compare the scalar quantities of the shear strain rate 4 and the shear force
(per area) we require to shear it 75, then we can write:

=0 (5.41)

If we use the full deviatoric stress tensor 7 and the full strain rate tensor &,
then this is given by:

T =2 . (5.42)

where the factor 2 arises from the definition of strain rate (eq. 4.6). Both
equations are used in the literature (Ranalli 1987). In both the proportionality
constant 7 is called the dynamic wviscosity. There is also a parameter called
the kinematic wviscosity which is the ratio of dynamic viscosity and density
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and has the units of diffusivity, namely: m?s~'. The dynamic viscosity has
the units of Pascal times second (Pas) or kgm~!s~1. For air it is roughly
105 Pas, the viscosity of water is roughly 10~2 Pas, the viscosity of ice
roughly 10'0 Pas, of salt 10'7 Pas and of granite it is roughly 1020 Pas. If
7 is constant with respect to strain rate then eq. 5.42 is linear. A fluid that
behaves according to such a linear relationship is called a Newtonian fluid.
Eq. 5.42 states that the larger the deviatoric stress that is applied, the faster
the rock will deform. Note that, in the orientation of the mazimum shear
strain rate, the stress in eq. 5.42 will be Tiax, which is equivalent to half of
the differential stress oq/2 = (o1 —0o3)/2, (s. eq. 5.31). There are two reasons
why rocks typically don’t deform according to the simple form of eq. 5.41
with a constant viscosity:

e 1. The Arrhenius relationship. Viscosity is extremely strongly tempera-
ture dependent. This temperature dependence is described by the Arrhenius
relationship:

= Age/ T (5.43)

In this relationship the constants Ay and ( are material-specific constants
called the pre ezponent constant and the activation energy (in Jmol™!), re-
spectively. The parameter R is the universal gas constant and T is the
absolute temperature. If we try to read eq. 5.43 we can see that it states that
the viscosity of any material will trend towards infinity at absolute zero and
will decrease exponentially from there to approach the value 4y asymptoti-
cally at high temperatures. The Arrhenius relationship will be discussed in
some more detail in sect. 7.2.2 in connection with eq. 7.5. Do not forget to
always use absolute temperature when performing calculations with eq. 5.43.

e 2. Non linearity. Rocks rarely deform as a Newtonian fluid (i. e. there is
rarely a linear relationship between the applied deviatoric stress and strain
rate). In fact, many rocks deform roughly 8 times as rapid if the applied
stress is doubled. More generally, this may be written in terms of a power
law relationship:

= Aeg (5.44)

There, the exponent n is called the power law exponent. It is a material
constant and is between 2 and 4 for many rock types. The parameter Aeg is
a material constant. It is analogous to 1 in eq. 5.42, but does not have the
units of viscosity and we therefore use a different symbol. Aeg has the units
Pa™s. However, in analogy to a Newtonian fluid, it is possible to derive an
effective viscosity from eq. 5.44 which is given by the ratio of deviatoric stress
and strain rate. This is:

e = = AL x A (5.45)

We will meet this relationship again in eq. 6.29.
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Figure 5.12. Differential stress (in MPa) during viscous deformation as a function
of a range of parameters as calculated with eq. 5.46. A power law exponent of
n = 3 was assumed. a Differential stress as a function of temperature and strain
rate for the material constants of quartz. b Differential stress as a function of
activation energy @ (in Jmol™') and pre exponential constant A (in MPa=3s~1).
Continuous lines are for 500 °C, dashed lines are for 1000 °C. The assumed strain
rate is € = 10713 s71. The rheological data for quartz and olivine from sect. 5.2.1
are plotted

o General viscous flow law for the lithosphere. If we want to apply a non-
linear viscous relationship like eq. 5.44 to rocks, it is useful to couple it with
the Arrhenius relationship. However, because of the parameter A.g does not
really have the units of viscosity, and because experiments are typically not
performed as shear experiments (where ¥ is measured), viscous flow laws are
usually formulated somewhat differently. Typically, they are formulated as a
relationship between differential stress (o1 — ¢3) and longitudinal strain rate
€;, as it is measured in uniaxial shortening experiments. Such an empirical
relationship is called Dorn’s law and is typically written as:

-\ (1/n)
(o1 —03) = <€—l> e(=7T) or: €= agAe_%, (5.46)

A

(e.g. Sandiford et al. 1991; Sonder and England 1989 or Houseman and Eng-
land 1986). The three material constants A4, ) and n are constrained by series
of experiments performed at constant strain rate and temperature (e.g. Glea-
son and Tullis 1995). For exponents larger than 1, Dorn’s law is also called
simply power law. Note that the constant A has (in contrast to Aes), the
units of Pa~"s~! and incorporates the factor 2 we encountered in eq. 5.42.
Also note again that — if you want to use eq. 5.46 to estimate the litho-
spheric strength or non lithostatic contributions to pressure — only half of
the differential stress contributes to pressure (e.g. eq. 5.12; eq. 5.23 or: eq.
6.33).

For mechanical models in which temperature is not considered explicitly,
it is useful to summarize the temperature dependent terms of eq. 5.46. We
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Table 5.2. Dependence of brittle and viscous deformation on some physical pa-
rameters

dependent on brittle viscous

total pressure (depth) ves (linear) no

material no yes (= power of 3)
strain rate no yes

temperature no yes (exponential)

will discuss this in some more detail in sect. 6.2.2 on p. 304. Fig. 5.12a shows
the differential stress as a function of temperature and strain rate for the
material constants of quartz. Fig. 5.12b shows differential stress as a function
of activation energy and pre exponent constant at fixed temperatures and
strain rates.

Dorn’s law is an empirical deformation law and in some cases it is nec-
essary to modify it empirically. One example where this is necessary is the
deformational behavior of olivine. Fig. 5.12b shows that olivine deforms at
500°C (which may be a realistic assumption for the Moho-temperature) only
at unrealistically high stresses around 107 MPa if it were described with
eq. 5.46. Thus, Goetze (1978) and Goetze and Evans (1979) suggested that
a better description of the behavior of olivine above 200 MPa is given by the
relationship:

(01 — 03) = o (1 - %m (%3)) . (5.47)

There, Qp is again an activation energy, op a critical stress that must be
exceeded and ¢p is the critical strain rate (s. Table 5.3). Comparing eq. 5.47
with eq. 5.46 shows that this law is by far not as temperature dependent
as the power law. Combinations of eqgs. 5.46, 5.47 and Byerlee’s laws form
the basics of many simple quantitative models describing the rheology of the
lithosphere as a whole (Brace and Kohlstedt 1980).

Eq. 5.46 shows that the stresses during viscous deformation are strongly
dependent on temperature, strain rate and material constants, but are inde-
pendent of the confining pressure. Thus, ductile deformation is subject to
completely different laws than brittle deformation (Table 5.2).

5.2 Rheology of the Lithosphere

Rheology is the science of the flow characteristics of materials. In a more
general sense, rheology is often used as a term to describe the deformational
behavior of material (in the case of geologists: rocks), independent of whether
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the deformation is actually by flow or rather by brittle fracture or other defor-
mation mechanisms. Rheology describes the relationships between forces and
motions, and between stress and strain. As such, constitutive relationships
form the basics for the all rheological questions (s. p. 220).

In the previous section we showed that two of the most important deforma-
tion mechanisms in the lithosphere, namely brittle and viscous deformation,
depend on very different physical parameters (Table 5.2). This is the rea-
son for strong rheological heterogeneities in the lithosphere and also for the
different rheological behavior of continental versus oceanic lithosphere. This
will be the subject of the next sections.

5.2.1 Rheology of the Continental Lithosphere

In the late seventies of last century Brace, Goetze and others summarized
much of the information from the previous sections to formulate a simple
rheological model for the lithosphere. This rheological model is sketched in
Fig. 5.13 and the following figures and will be the basis for our discussion
in this book. Note that in these strength profiles (e.g. Figs. 5.13, 5.14 and
5.15) differential stress rather than deviatoric stress is usually plotted on
the horizontal axis, because g4 is a single scalar value that may be used to
characterize the stress state. It is important to note throughout this chapter
that 4/2 corresponds to the maximum deviatoric stress (s. discussion around
egs. 5.31 and 5.42).

The strength profiles in Fig. 5.13 consist of two different types of curves.
The straight lines are for brittle fracture. They show increasing rock strength
with increasing depth as the normal stresses in the crust increase with
depth as shown in eq. 5.29 (Fig. 5.13b, s. sect. 5.1.2). The curved lines de-
scribe viscous deformation. The strength they describe decreases exponen-
tially downwards, because temperature increases with depth roughly linearly
(s. sect. 5.1.2) and viscosity for a given mineral decreases exponentially with
temperature. Each curve is for a given strain rate that is assumed to be
constant over the entire lithosphere. A higher strain rate will yield a curve
that has a higher strength at a given depth. Fig. 5.13b shows that, for a
given strain rate, two different failure strengths may be associated with each
depth. A rock at a given depth will always deform according to the defor-
mation mechanism that requires less stress. Using this logic, we can draw
strength profiles like those illustrated in Fig. 5.13c and 5.13d. We can see
that the model predicts that, at shallow levels, rocks deform in a brittle fash-
ion, as is familiar to us from the fact that rocks at near the surface break
in brittle fashion or break (instead of flow) when we hit them with a ham-
mer. At large depths and high temperatures, viscous deformation prevails as
is familiar to us from the fact that high grade metamorphic rocks are often
characterized by folding and other features indicating viscous (ductile) defor-
mation. The depth at which brittle strength and viscous strength have the
same magnitude is called the brittle-ductile transition. Note that the depth
of this transition is strain rate dependent in this model.
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Figure 5.13. Schematic illustration of a Brace-Goetze lithosphere. a Tempera-
ture T as a function of depth z. This curve has the shape of a typical continental
geotherm. b, ¢ and d show shear strength as a function of depth. b Shear strength
due to brittle failure (straight line) and viscous deformation (curved lines) for two
different strain rates and the material constants for quartz and olivine. At any
given depth, the curve with the higher strength corresponds to the higher strain
rates. ¢ and d Strength profiles constructed from b for low and high strain rates.
Integrating the shaded area yields the vertically integrated strength. The units of
this integrated strength are Nm™"'. This integrated strength may be interpreted as
the force per meter length of orogen applied to the orogen in direction normal to
the orogen (assuming the orogen is everywhere deforming). Note that the cartoon
indicates that - at high strain rates (profile d) - the upper mantle will deform in a
brittle fashion just below the Moho

In first approximation it is fair to assume that a rock will begin to deform
when the rheologically weakest phase fails. As quartz is one of the softer
minerals and most crustal rocks contain quartz, the ductile deformation of
the crust may well be described with the rheological data for quartz. Rocks
in the mantle part of the lithosphere are quartz absent and dominated by
olivine. Therefore, Fig. 5.13 shows two pairs of curves for power law creep;
one pair for the creep stresses of quartz at low and high strain rates, the
other for the creep behavior of olivine at low and high stain rates. Together,
all these curves result in a strength profile for the continental lithosphere
that contains two strength maxima, one at mid crustal levels, the other in
the uppermost portions of the mantle part of the lithosphere. This extremely
simple model for the rheological stratification of the lithosphere is called a
Brace-Goetze lithosphere (after a suggestion by Molnar 1992).

Qualitative Features of the Brace-Goetze Lithosphere. The model
of the Brace-Goetze lithosphere has a large number of features that are in
phenomenal correspondence with observations in nature. Some of these are
discussed here. Whilst we discuss these features, we want to keep in mind that
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the Brace-Goetze lithosphere is only a model (also referred to as the “jelly
sandwich model” and that there are also arguments against it (Jackson 2002).

e Brittle failure in the mantle. A comparison of Figs. 5.13c¢ and d shows
an interesting qualitative difference between the two strength profiles. At
low strain rates the entire lithosphere below the brittle ductile transition
deforms viscously. However, at large strain rates, the viscous strength of the
upper mantle is larger than its brittle strength and the uppermost mantle
will fracture. Of course, the occurrence of brittle fracture in the upper mantle
depends on a large number of other factors as well. However, we want to note
that the brittle strength of the upper mantle is comparable to its viscous
strength at geologically realistic strain rates. Should it be true that the upper
most mantle deforms brittle under some circumstances, then this process
might have important consequences for the accumulation of mafic material
(underplating) at the Moho (Huppert and Sparks 1988).

The transition from viscous flow to brittle failure in the upper most man-
tle may not only occur due to a change in strain rate (increase of viscous
strength), but may also occur due to a decrease of the brittle strength. This
may occur if there is a transition from compression to extension (sect. 5.1.2;
Fig. 5.14, Sawyer 1985). Eq. 5.39 shows that the brittle strength of rocks is
smaller in extension than it is in compression. It is therefore possible that
brittle failure of the upper most mantle is caused by a qualitative change of
the deformation regime.

a b c
compression extension
Oq g—= 04

zY zV zY

Figure 5.14. Schematic diagram showing the changes in mechanical strength of
a Brace-Goetze lithosphere when changing the deformation regime qualitatively,
i.e. from compression to extension. a The change from compression to extension
decreases the brittle failure strength (see. eq. 5.38 and eq. 5.39; Fig. 5.7), while
the viscous strength remains unaffected by this change, if the absolute value of the
strain rate remains constant. Potentially, this may be reflected in brittle failure of
the upper mantle. This is illustrated in the strength profiles in b and c that were
constructed from a: In b the entire mantle part of the lithosphere deforms viscously,
while in ¢ the upper most mantle fails in brittle fashion
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e Changes in the rheological stratification. Changes in the strain rate of an
orogen can also change the rheological stratification of the lithosphere. This
is illustrated in Fig. 5.15 using a simple model lithosphere made up of three
lithological layers. The figure shows that a change in the strain rate may
change the rheological layering. At low strain rates there are three strength
maxima, while at high strain rate there are only two (Fig. 5.15b,c). Such weak
points may be the nucleus for the formation of a tectonic nappe boundary.
Thus, it is possible that the thickness of nappes in a lithologically stratified
crust is a function of the strain rate (Kuznir and Park 1986).

e Changes in the geotherm. During viscous deformation it is not only changes
in the strain rate that can change the strength of the lithosphere. Changing
the geotherm may have the same influence. In the following we will encounter
a series of examples where the shape of the geotherm is critical to the defor-
mation mechanism. Other mechanisms that can cause changes in the strength
of the lithosphere are, for example, strain hardening, or metamorphism.

e Strength change due to metamorphism. During metamorphism and defor-
mation, both mineralogy and grain size change. It is therefore conceivable
that a rock has a higher shear strength after metamorphism than before. For
example, a garnet mica schist has a larger shear strength than its precursor:
a clay. This is an interesting aspect which may be crucial in the consideration
of postorogenic extension of mountain belts. In general it is thought that the
stresses required for the late extension of an orogen are smaller than those
required for its shortening. This is based on the fact that brittle deforma-
tion requires smaller stresses in tension than in compression. However, this
is contrasted by the fact that the crust may have increased its strength by
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Figure 5.15. Schematic diagram showing how changes of the deformation rate
can cause changes in the rheological stratification of the lithosphere. In the shown
example the crust is assumed to consist of three rock strata with different viscous
rheologies (e.g. the upper, middle and lower crust). During deformation at low
strain rate the lithosphere has three strength maxima. If the strain rate increases,
the central strength maximum disappears. In a the continuous lines are for low
stain rate and the dashed curves for large strain rate

Y
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metamorphism by the time it wants to extend. It is therefore possible that
larger rather than smaller stresses are required to extend an orogen, than to
build it.

¢ Rheology considering elastic criteria. The Brace-Goetze lithosphere as we
have discussed it in the last sections is based on the assumption that only
viscous and brittle deformation mechanisms dominate its behavior. As such,
it is in contrast to our assumption of the lithosphere as an elastic plate as
we have done in sect. 4.4.2 when we have discussed flexural isostasy. Which
model assumptions are made always depends on the question we are trying
to answer (sect. 1.1).

Ranalli (1994) suggested to describe the rheology of the lithosphere using
a coupled viscous, elastic and brittle approach. His model is illustrated in
Fig. 5.16, but we need to be careful not to confuse it with the strength
profiles in Figs. 5.13 or 5.14. Elastic deformation is instantaneous and does
not reflect a strength envelop for a given strain rate as the viscous curves do.
Thus, the model illustrated in Fig. 5.16 may be used to infer a stress state,
but should not be interpreted as a failure envelope.

In a downward bent elastic lithosphere there is a stress neutral layer in the

middle of the lithosphere. Above this point the lithosphere is under compres-
sion, below this point it is under extension (Fig. 4.23). These elastic stresses
are shown in Fig. 5.16 by the straight line that goes from positive to negative
stresses in the middle of the diagram. It may be seen that — in the upper most
and lower most lithosphere — elastic stresses are extremely large but brittle
and ductile stresses are small. However, in the central lithosphere, elastic
stresses are smaller than brittle or viscous stresses and elastic stresses can
therefore support internal and external loads. This model also shows that
the elastic part of the lithosphere is significantly thinner than the thermally
defined lithosphere (Fig. 5.16).
e Quantitative description of a Brace-Goetze lithosphere. In order to describe
the Brace-Goetze lithosphere quantitatively we require quantitative infor-
mation on 1. the depth dependence of temperature, i.e. a description of a
geotherm; 2. the material constants (both 1 and 2 we need in order to calcu-
late viscous stresses); 3. we need density and thickness of the crust and mantle
part of the lithosphere in order to calculate vertical stresses and therefore the
brittle strength. Table 5.3 lists typical numerical values for these parameters
(Brace and Kohlstedt 1980). For the thermal structure of the lithosphere we
will assume in the following that the radiogenic heat production decreases
exponentially with depth according to eq. 3.67 with the characteristic drop
off depth h, = 10 km. We also assume that the thermal conductivity is
k=2Js 'm~'K~!, and that the temperature at the base of the lithosphere
is 71 = 1280°C. Assumption on thickness and density are also listed in Ta-
ble 5.4.

We also make the assumption that the viscous behavior of olivine is de-
scribed by eq. 5.46 below stresses of 200 MPa and by eq. 5.47 for stresses
above 200 MPa. Brittle failure is described with Byerlee’s law. That is, below
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Figure 5.16. Rheology of the lithosphere considering elastic, viscous and brittle
constitutive relationships. Note that this model illustrates a siress state rather than
a failure envelope and should therefore not be confused with illustrations like those
in Figs. 5.13 or 5.14. Compressive stresses are plotted towards the right, tensional
stresses towards the left. a Strength profile for the crust (viscous stresses are only
plotted for a single mineral phase, e.g. quartz). b Strength profile through the
lithosphere considering the rheology of quartz and olivine. In both strength profiles
elastic stresses are also plotted as the straight line with positive stresses in the
upper crust and negative stresses in the lower parts (s. Fig. 4.23). The deformation
mechanism that dominates at a given depth is given by the lowest stresses at a given
depth. The elastic section of the crust in a is therefore restricted to the region h.
In b the elastic portion of the lithosphere is in two regions h; and hs, that are
separated from each other (after Ranalli 1994)

500 MPa brittle failure is assumed to occur without cohesion and an internal
coefficient of friction of 0.8 and above 500 MPa the cohesion is 60 MPa and
the internal coefficient of friction is 0.6. Some strength profiles calculated
with these assumptions are dawn in Fig. 5.17.

Strength of the Lithosphere. When considering the distribution of stresses
in the continental lithosphere, we have so far always only considered the
stresses at a given depth. However, if we want to consider the deformation of
entire continental plates, we need to know the mean stresses averaged over the
entire lithosphere, or we need to know the total force that it needed to deform
the entire lithosphere from top to base. Within the model of a Brace-Goetze
lithosphere, this force is given by the vertically integrated stresses. This inte-
grated strength is abbreviated with F] and corresponds to the shaded region
in Figs. 5.13, 5.14 and 5.15). If we make the thin sheet approximation, then
the integrated strength of the lithosphere may be calculated as:

F’] :/0 (0'1 —Og)dz . (548)

It has the units of force per meter or Pam = Nm~!. I} may be interpreted
as the force acting in the direction normal to the orogen per meter length of
orogen (i.e. in direction parallel to the orogen), that is required to deform
the orogen with a given stain rate (Fig. 5.13, 5.14, 5.15). In the literature,
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Table 5.3. Rheological parameters of the continental lithosphere relevant for its
viscous behavior. These data are largely after Sonder and England (1986). However,
the activation energy was changed from Sonder and England (1986) (Qp = 5.4-10°)
to the value of (Jp = 5.454 - 10° in order to allow a smooth transition between the
stresses at 200 MPa. Instead of changing Qp, Zhou and Sandiford (1992) changed
for the same reason ep from 5.7 - 10" to 3.05-10'. If all other parameters remain
constant, then the two changes have the consequence that stresses are about 40 MPa
larger than those of Sonder and England (1986)

parameter value/unit definition
power law (eq. 5.46)
Aq 5.107% MPa=3s7! pre exponent constant for quartz
Qq 1.9-10° Jmol~! activation energy for quartz
nq 3 power law exponent for quartz
Ao 7-10* MPa=3s7! pre exponent constant for olivine
Qo 5.2.10° Jmol™* activation energy for olivine creep
No 3 power law exponent for olivine
Dorn’s law (eq. 5.47)
@b 5.4-10° Jmol™* activation energy for olivine creep
€D 5.7-10" 57! strain rate
op 8500 MPa critical stress

Table 5.4. Rheological parameters of relevance for the brittle deformation of a
Brace-Goetze lithosphere

parameter value/unit definition
(< 500MPa) 0.8 coefficient of friction in the crust
14(>500MPa) 0.6 coefficient of friction in the mantle
O0(<500MPa) 0 cohesion of the crust
O0(>500MPa) 60 MPa cohesion of the mantle

0.4 and 0.8 pore fluid/lithostatic pressure ratio
Z 35 km thickness of the crust
z 125 km thickness of the lithosphere
Pe 2750 kgm™3 density of the crust
Pm 3300 kgm™3 density of the mantle lithosphere

the terms “strength” is often used very loosely. Strength (in Pa), integrated
strength (in Nm™1!), sometimes stress and occasionally even force are all often
confused. We want to remember that strength has the units of stress (it is the
stress that leads to brittle failure or viscous flow) and that integrated strength
is a force per meter (which is equal to stress X meter). In the viscous regime
strength is only defined for a given strain rate. This should be clear from
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Figure 5.17. Strength profiles for the continental lithosphere as calculated with
the model for a Brace-Goetze lithosphere and the data from Table 5.3 and 5.4).
a, b, c and d are profiles for four different geologically relevant strain rates. The two
diagrams show the strength profiles for two different Moho-temperatures that result
from assumptions for the radiogenic surface heat production of So = 5-107% Wm™3
and Sy = 7-107% Wm™2. In each diagram two linear curves for brittle failure for
A =0.4 and A = 0.8 are plotted. The stress curve with the higher stresses is for the
lower value of A. It was assumed that Ac = Ai. The vertically integrated stresses F}
are given in 10'2 Nm™!

eq. 5.46, where it is shown that the viscous stresses (strength) are strongly
dependent on strain rate.

o Integrated strength as a function of Moho-temperature. The strength of
the lithosphere is very strongly dependent on the Moho-temperature. The
details of the temperature distribution above and below the Moho are only a
second order effect (Sonder and England 1986). Thus, for many mechanical
questions on the scale of the lithosphere it is sufficient to characterize the
geotherm by a single number: the Moho-temperature. Above and below the
Moho it is sufficient to assume linear geotherms. However, in the following
sections we continue to use curved geotherms characterized by exponentially
decreasing radiogenic heat productions and so use the relationships derived in
sect. 3.4.4. Thus, we determine the Moho-temperature indirectly by assuming
the radiogenic surface heat production, the thermal conductivity and the
surface heat flow. As a reminder to sect. 3.4.1, Fig. 5.18 shows the Moho-
temperature and the surface heat flow as a function of thermal conductivity
and heat production.

In order to quantify the integrated strength of the lithosphere we must
integrate eq. 5.48. However, it is near impossible to integrate this equation
analytically as the strength profile between z = 0 and z = 2 is composed
of several very different functions (Zhou and Sandiford 1992). The values for
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integrated strength quoted in the following sections were derived by numerical
integration of eq. 5.48. Fig. 5.19 illustrates that the integrated strength rises
dramatically with increasing strain rate (which corresponds to eq. 5.46). At
geologically realistic strain rates the integrated strength ranges between 1012
and 10'* Nm™! (s. Fig. 5.17). These magnitudes correspond well with the
magnitude of estimated plate tectonic driving forces (sect. 5.3).

5.2.2 Rheology of the Oceanic Lithosphere

The fundamental assumptions which we have made for the calculation of
stresses and strength profiles for the continental lithosphere are also valid for
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the oceanic lithosphere. However, there are two important differences: 1. In
contrast to the continental lithosphere, oceanic geotherms are time depen-
dent and there is no radiogenic heat production in the oceanic lithosphere.
As a consequence, different relationships must be used to calculate the tem-
perature profile with depth and ultimately the rheology (sect. 3.5). 2. There
is practically no quartz bearing crust in the oceanic lithosphere and the rhe-
ology of oceanic lithosphere is therefore largely governed by the rheology of
olivine. As a consequence, there is only one maximum in the strength profile
(Fig. 5.20). On the other hand, the strength profiles of oceanic lithosphere are
highly dependent on its age (sect. 3.5.1). The depth dependent temperature
profile of oceanic lithosphere may be calculated with eq. 3.80. A strength
profile for the oceanic lithosphere may then be calculated using eqs. 5.38,
5.46 and 5.47 as well as the data from table 5.3 and 5.4. Fig. 5.20 shows some
examples for such strength profiles through oceanic lithosphere.

Strength of the Oceanic Lithosphere. Eq. 5.48 may be used to calculate
the integrated strength of the oceanic lithosphere just like we used it above to
calculate the integrated strength for the continental lithosphere. In fact, it is
possible to calculate the integrated strength of the oceanic lithosphere with
much higher accuracy than of the continental lithosphere, because oceanic
geotherms are much better known than continental geotherms. Fig. 5.21a
shows the calculated integrated strength of oceanic lithosphere as a function
of different strain rates and age as calculated numerically with eq. 5.48.
Fig. 5.21a may be compared directly with Fig. 5.19. In Fig. 5.21b the same
information is shown in a diagram with age on the horizontal axis. A compar-
ison with Fig. 5.19 shows that only very young oceanic plates have a smaller
integrated strength than continental lithosphere. This result from Figs. 5.21
and 5.19 corresponds to our observations: We know that most intra plate
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Figure 5.21. a Integrated strength of the oceanic lithosphere as a function of
strain rate for 5 differently aged oceanic lithospheres. Curves were calculated with
eq. 5.48 using the results of Fig. 5.20. b Integrated strength of oceanic lithosphere
as a function of age for three different strain rates. a and b contain the identical
information

Figure 5.22. The strain rate
with which oceanic lithosphere
will deform in response to ridge
push. The strain rate is plotted
against age of the oceanic
lithosphere. Clearly, the older
the oceanic lithosphere is, the
larger the applied ridge push
and the larger the strain rate.
Note that all strain rates are
several orders of magnitude
below anything that might be
geologically relevant. In other
words, oceanic lithosphere does
practically not deform under the
force exerted by ridge push force
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seismicity occurs in the continents and not in the oceans (Fig. 2.2). There is
practically no deformation inside the oceanic plates of the earth. An oceanic
plate acts - because of its high integrated strength - like a passive transmitter
of stresses from the mid oceanic ridges to the continents (s. sect. 6).

o Strength relationships between continental and oceanic lithosphere. In the
previous paragraph we have shown that oceanic lithosphere is significantly
stronger than continental lithosphere, even though it is generally much thin-
ner. We have come to this important conclusion by comparing the integrated
strength of continents and oceans if they would deform under the same strain
rate. However, in geodynamics it is often more meaningful to compare the de-
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formation rate of continental and oceanic lithosphere under the same applied
stresses, rather than the stresses under the same applied strain rates.

One of the most important plate tectonic driving forces is the potential
energy of the mid oceanic ridges (sect. 5.3.2). The force that is exerted by
these ridges onto the surrounding continents increases with the age of the
oceanic lithosphere. We can now ask ourselves if it is the continents or the
oceanic lithosphere that are deformed by this force. In order to answer this
question, we have plotted the strain rate of oceanic lithosphere with which
oceanic lithosphere would deform under its own ridge push against age of the
oceanic lithosphere (s. sect. 6.2.2). Fig. 5.22 shows that these strain rates are
geologically irrelevant. The vast majority of the plate divergence at the mid
oceanic ridges is compensated by deformation inside the continents and not
inside the oceanic lithosphere.

5.3 Forces Applied to Lithospheric Plates

5.3.1 Transmission Mechanisms

Plate tectonic driving forces may be divided into two fundamental groups
according to the way they are transmitted:

— transmission by shear stresses,
— transmission by normal stresses.

Because plate tectonic driving forces act horizontally, shear stresses must be
applied to horizontal surfaces and normal stresses to vertical surfaces. If the
transmission occurs by shear stresses, this is often called basal traction. If
the transmission occurs by normal stresses, we speak of end loading or side

e
‘H@A«Q i~

a force applied at base b force applied at sides

Figure 5.23. Tllustration of the two fundamental mechanisms for the transmission
of plate tectonic driving forces. a illustrates transmission by basal friction. In i basal
friction is shown in a Eulerian reference frame (“conveyer belt” model). In #ii basal
friction is shown in a Lagrangian reference frame (“bulldozer” model). b illustrates
transmission by lateral normal stresses (“side forcing”)
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forcing. Fig. 5.23 illustrates that different deformation geometries may arise,
depending on the transmission mechanism. However, in reality it is often
difficult to interpret which of the two mechanisms is responsible for a given
plate motion (Wilson 1993). In fact, the scientific community remains divided
between those who believe that plate tectonics is driven by basal traction and
those who consider lateral normal stresses as the principal driving force.

Transmission of Stresses by Shear- or Normal Stresses. One model
for the explanation of plate motions is that the friction between the base of the
lithosphere and the convective motion in the asthenosphere is the principal
driving mechanism (Ziegler 1992; 1993). The most important argument for
this model comes from the reconstruction of past plate motions. These do
not correspond very well with the global geometry of mid oceanic ridges
and subduction zones. Thus, it is thought that these plate motions reflect
the geometry of convection cells in the mantle instead. The most important
argument against this model is implicit in Fig. 5.13. This figure shows that
differential stresses at the base of the lithosphere are much too small to be able
to transmit forces from the mantle into the lithosphere. It is therefore hard
to imagine that this softest part of the lithosphere can transmit stresses large
enough to build the mountain ranges of our planet (s. mechanical definition
of the lithosphere in sect. 2.4.1). The tractions at the base of the lithosphere
are not likely to be larger than 10~2 MPa (Richardson 1992).

The other - and by far more accepted - model for the explanation of plate
motions is that plate boundary forces drive plate tectonics by lateral normal
stresses (e.g. Forsyth and Uyenda 1975). These forces are predominantly
caused by potential energy variations. Such variations occur inside the conti-
nents and along the boundaries of oceanic lithosphere and will be discussed
on the following pages.

Despite the two different models for the origin of plate tectonic driving
forces we should not forget that, ultimately, all plate tectonic forces find their
origin in the thermal energy of earth. On the scale of an individual orogen it is
often easier to determine the way forces are transmitted into the orogen. For
example, the geometry of accretionary wedges shows clearly that they form
by basal traction with the subducting plate below (sect. 6.2.3). An example
for deformation in response to lateral normal stresses is the deformation of
intra continental mountain ranges like the Tien-Shan in central Asia. The
Tien Shan developed at the same time as the Himalaya. The forces involved
in the India - Asia collision were transmitted horizontally across the Tarim
Basin into the Tien Shan.

Boundary Conditions of Deformation. In the last section we have dis-
cussed normal and shear stresses that cause the deformation of plates. How-
ever, it is not clear that it is stresses that are the appropriate boundary
conditions for plate deformation. For example, the India-Asia collision keeps
going at constant convergence rate irregardless the stresses that arise as a
consequence of the build up of the Himalaya. Thus, this may be an example



5.3 - Forces Applied to Lithospheric Plates 247

ox=0 oxx=0

= =
{

Q :
oy=0 X owx=0
i viy=0 l oxy=0

a vyy >0 b vyy >0

Figure 5.24. Ilustration showing how apparently small differences in the bound-
ary conditions can cause very different deformation geometries. In both examples
a square body is subjected to two-dimensional plane strain deformation. In both a
and b the tangential and normal components of the boundary conditions on the
left and right boundaries are given by stresses, which are assumed to be zero
(020 = 0yz = 0). Also, in both examples the normal component at the bottom
boundary is given by a velocity with which the bottom boundary moves towards
the top boundary (vy, > 0). a and b differ only in the tangential component of
the boundary condition along the bottom boundary. In a this is given by a velocity
{vzy = 0), in b it is given by a stress (x4 = 0= free slip)

where velocities rather than stresses form an appropriate boundary condition.
We therefore discriminate between:

— Orogenic boundary conditions given by velocities,
— Orogenic boundary conditions given by stresses.

Both types of boundary conditions may have a normal and a tangential
component. Thus, for a two-dimensional mechanical model with the two spa-
tial coordinates x and y, we require a tangential and a normal boundary
condition on each boundary. A total of four variables must be defined by the
boundary conditions. Fig. 5.24 illustrates that the difference between velocity
and stress boundary conditions may have a very profound influence on the
deformation geometry. A boundary condition is called free slip if the shear
stresses along this boundary are considered to be zero.

The reason why we require four boundary conditions for the description
of two-dimensional deformation may be also seen from the stress balance
equations (eq. 5.15, 6.25 and 6.26). If we integrate these equations with two
variables, then there are four constants of integration. In order to determine
these constants we need four independent pieces of information: the four
boundary conditions.

If a medium is not everywhere a continuum, for example because it contains
a brittle fracture, then all mechanical properties may have discontinuities.
Such problems may not be solved using a single set of boundary conditions
as in Fig. 5.24 and we must use internal boundary conditions or other special
tricks to be able to solve such problems. For example, the medium can be
subdivided into several continuous regions that are described separately.
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Potential Energy. Practically all important plate tectonic driving forces
find their origin in differences of the potential energy of different parts of the
earth (Turcotte 1983). In this section we explain what we understand with
the term potential energy in a plate tectonic context. We will return to this
concept again in the sections 5.3.2, 5.3.3 and 6.2.2.

In sect. 4.4.1 we have shown that the vertical normal stress at a given depth
in the crust z is given by the product of density, gravitational acceleration
and the height, or thickness of the vertical rock column above it. This vertical
normal stress is the vertically acting force per ares. It may be calculated by
integrating pg between 0 and z, as we did in eq. 4.22. If the density over the
thickness z remains constant, then this is simply pgz. This term has the units
of Paor kgs™?m~! or Jm™3. We can see that stress has the same units as
energy per volume.

This quantity can also be interpreted as the potential energy of a cubic
meter of rock at depth z. If we want to know the potential energy not of a
single cubic meter, but that of a whole body, for example that of a mountain
range, then we need to integrate this potential energy per cubic meter over
the lateral and vertical extent of the range. Fortunately, it is usually sufficient
to know the potential energy per areq, i.e. that of a complete vertical column,
but only for one square meter of area. Using this potential energy per area
we can compare different regions on the globe, for example two neighboring
lithospheric columns of different thickness and density distribution. In the
following we will represent the potential energy per ares with E;,. In order to
determine Ei, at depth z we simply need to sum up (i.e. integrate) the vertical
stresses in the lithospheric column of interest between the surface (which
usually is z =0 in the reference frame we use) and the depth of interest z:

Ep=/ azzdzz/ / p(gdzdz . (5.49)
0 o Jo

Very often the “depth of interest” is the isostatic compensation depth. If the
density is independent of depth, then eq. 5.49 may be simplified to give:

z z 2
E, = / 0,4z = / pyzdz = pIz_ (5.50)
0 0 2

This integral corresponds to the gray shaded region in Fig. 5.25b. We want to
remember that £, has the units of energy per area and is, therefore, strictly
speaking, no energy as such.

Horizontal Forces Arising from Potential Energy Variations. In a
static, non-deforming lithosphere the horizontal and vertical normal stresses
have the same magnitude (see Fig. 5.25). It is true that:

T2z = Ogz = Oyy - (551)

This is also stated in eq. 5.42, which says that there is no deviatoric stress
if the strain rate is zero. The sum of all vertical stresses integrated over the
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Figure 5.25. Density p and vertical normal stress o.. as a function of depth z.
The value o, is the vertically integrated density, times acceleration. Thus, the
curve in b corresponds to the gray shaded region in a. The row of little unity cubes
next to a illustrates how the vertical stress increases with depth. The column of
cubes next to b illustrates that the horizontal force exerted by the column on its

surroundings is given by the sum of all vertical stresses. This corresponds to the
gray shaded area in b
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thickness of a plate is the potential energy of the plate per area. Since hor-
izontal and vertical stresses are the same, this potential energy per area is
equivalent to the force exerted by the lithosphere onto its surroundings, per
meter length of orogen. If two neighboring vertical lithospheric columns have
the same potential energy per unit area, then they also exert equally large
horizontal forces onto each other and there is no “net force” between them.
However, if they have different potential energies per area, then this poten-
tial energy difference between the two plates may be interpreted as the net
force Fj, that is exerted by one column onto the other in the horizontal di-
rection and per meter length of orogen. This net force arising from potential
energy differences is also called horizontal buoyancy force (somewhat cum-
bersome) or gravitational stress and it is important to remember that it has
the units of force per meter length of orogen. This potential energy difference
may be written as (s. Fig. 5.26):

ZK 2K 2K K
AE, = F, = / / o™ (2)gdzdz — / / P2 (2)gdzdz . (5.52)
o Jo o Jo

There, zx could be any depth, but for many purposes it is useful to assume
that it is the same isostatic compensation depth we used on p. 161. Below
this depth there is no density differences between the vertical columns 4 and
B (s. eq. 4.21). p*(2) is the density of profile A as a function of depth z.

If density is a continuous function of depth, then eq. 5.52 may be usually
integrated without too much trouble. However, in the lithosphere, the density
distribution has (a the least) a discontinuity at the Moho so that it may be
necessary to split the integral in eq. 5.52, even for very simple assumptions on
the density distribution in the lithosphere. For example, the potential energy
of the two-layered column A in Fig. 5.26 for column A may be described by:
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e Zc

Zc

It should be easy to understand this equation graphically by plotting density
and vertical stress as a function of depth as we did in Fig. 5.25, 5.27, 5.31
and 5.33.

The importance of the density distribution in the lithosphere for the po-
tential energy may be illustrated nicely with an interesting example. Fig. 5.26
shows two columns in isostatic equilibrium. The two columns have the same
isostatically supported surface elevation, because they are made up of sections
of the same densities and thicknesses. However, they have different potential
energies because in column B the dense part lies up high. Potential energy
does not only depend on thickness and density, but also on the distribution
of density with depth. Thus, there is a net buoyancy force between the two
columns shown in Fig. 5.26. This net force is exerted by column B towards
column A.

We can conclude that it is dangerous to infer lateral forces from topography
on the surface of earth (England and Molnar 1991). Surface elevation is a
linear function of thickness (eq. 4.23 and 4.24), while potential energy per
unit area is a quadratic one (eq. 5.49 and 5.52). In fact, it is even possible, that
topographically lower regions exert a gravitational stress on topographically
higher regions, averaged over the thickness of the lithosphere (Stiiwe and
Barr 2000). Geoid anomalies on the other hand can be used to estimate the
density distribution within the lithosphere. Coblentz et al. (1994) have used
a combination of information on surface elevation and on geoid anomalies to
estimate the potential energy of the lithosphere.

Force Balance Between Mountains and Foreland. In this section we
estimate the forces exerted by a mountain range onto its foreland (Fig. 5.27).
For this, we will follow the logic of Molnar and Lyon-Caen (1988) and also
use their choice for the vertical axis of the cross section. We assume an ori-
gin at the Moho and measure the vertical direction positively upwards as
illustrated in Fig. 5.27b. This choice for the vertical axis helps the intuitive
understanding if the integration of eq. 5.52, as one of the integration limits is
always zero (s. Molnar and Lyon-Caen 1988). However, note that the results
are independent of the chosen reference frame as we do not calculate absolute
potential energies, but only potential energy differences between two neigh-
boring columns. Thus, as long as we choose the same coordinate system for
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Figure 5.26. Schematic cartoon showing two columns in isostatic equilibrium (p; <
p2 < p3). The surface of both columns has the same elevation above the liquid of
density p2, because both bodies consist of equally thick sections of the densities
p1 and ps, i.e. they have the same weight. However, column B has a much higher
potential energy per unit area than column A, because the distribution of density
is different. In column B the high density part of the section lies higher. As a
consequence, B exerts a net force towards A. The cartoon obviously represents no
geologically realistic scenario for the lithosphere. However, it is useful to illustrate
why mountain ranges need not exert a net force onto their lower lying surroundings
even if they have a higher surface elevation. Note however, that this logic only
applies if forces may be averaged over the thickness of the lithosphere. Problem
5.16 is related to this figure

the two columns that are to be compared, it does not matter which reference
frame we pick.

We begin by calculating the potential energy per unit area of the foreland
following the logic of Molnar and Lyon-Caen (1988). We can find this by inte-
grating eq. 5.49. For the undeformed lithosphere in the foreland the potential
energy above the Moho is simply:

Elf;’rela“d = peg2l/2 . (5.54)

Correspondingly, the potential energy of the thickened crust relative to the
Moho is:

EF"8¢ = pg(H + 2:)%2/2 + Apguw? |2 . (5.55)

where Ap = (pm — pc) and the thicknesses H, Z,. and w are as labeled on Fig.
5.27. The first term in the equation above is simply the potential energy of
the thickened crust above the chosen origin at the Moho of the undeformed
lithosphere. the second term is in the negative z direction, but the density
contrast is also negative (as it acts as a buoyant force) providing in total a
positive contribution to the potential energy. Note that these relationships
were derived according to the same principal as eq. 5.53. The potential energy
difference per unit area is given by the difference of eq. 5.54 and eq. 5.55 (s.
eq. 5.52). It is:

_ __ gpmrange _ pforeland
AE, = R, = E} Ef

= pegH?/2 + pegHze + Apgw®[2 . (5.56)
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Figure 5.27. Cartoon contrasting the distribution of vertical stresses in mountain
ranges relative to their foreland. a The thickness of the crustal root is w, the
surface elevation relative to the reference lithosphere in the foreland H. In isostatic
equilibrium it is true that: Hps = w(pm — pc) = wAp. In b the vertical stresses
are drawn for the mountain range and the foreland. The dark shaded area between
the two stress curves has the units of stress x meters or force per meter length
of orogen exerted by the range onto the foreland. It corresponds to the potential
energy difference between the mountain range and the foreland

Eq. 5.56 may be simplified because we assume that both, mountain range
and foreland are in isostatic equilibrium. The isostasy condition states that:
Apw = Hp.. Using this we can simplify eq. 5.56 to:

AE, = Fy = pegH (H/2+ 2. +w/2) . (5.57)

The force F}, corresponds to the dark shaded region in Fig. 5.27b. It is the
difference between the vertically integrated vertical stresses o, of two vertical
columns in the mountain range and in the foreland, respectively (Tapponier
and Molnar 1976). For a 3 km high mountain range with a 30 km root,
eq. 5.57 gives a force Fy, of the order of 3-4-10'2 Nm~!. We will see that this
number is comparable with the forces applied to and exerted by mid ocean
ridges.

Despite its simplicity, eq. 5.56 may be used to draw some very fundamen-
tal conclusions. For one, we can see that the third term is significantly larger
than the first term. Thus, the potential energy difference between two moun-
tain ranges of the same elevation becomes larger if the compensating root is
thicker. For example, a 100 km thick root of a mountain range made up of
low density mantle material contributes significantly more to the potential
energy of a range than a 60 km thick root of crustal material. We can also
see from eq. 5.56 that the potential energy of a mountain range grows with
the square of both the surface elevation and the thickness of its root. The
work that must be done to increase the surface elevation of a mountain range
by one meter increases therefore as the mountain range gets higher (Molnar
and Tapponier 1978; s. sect. 6.2.2). This is the reason why mountain ranges
do not grow infinitely on this planet and have a limiting elevation. As poten-
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tial energy variations are some of the most important driving forces in the
lithosphere we will continue with more details in the following sections 5.3.2
and 5.3.3.

5.3.2 Forces in Oceanic Lithosphere

The forces exerted by oceanic lithosphere onto the continents around them
are considered to be the fundamental driving mechanism for plate tectonic
motion (McKenzie 1969b). There are two important driving forces in oceanic
lithosphere: 1. the potential energy of the mid-oceanic ridges and 2. the forces
that occur in subduction zones. The former is called ridge push, the latter
are called slab pull and trench suction. In the following we discuss the nature
of both types of forces and discuss their magnitude.

Ridge Push. Mid-oceanic ridges have a high topography and a high poten-
tial energy relative to the average oceanic lithosphere. This potential energy
is one of the more important (and certainly best known) plate tectonic driv-
ing forces. While strictly speaking the mid-oceanic ridge applies a torque to
the plate (s. p. 25), we will neglect here the curvature of the earth and con-
tinue using the term “ridge push”. It is important to understand that ridge
push finds its origin in the high potential energy of the ridge, rather than
in the frictional stresses between an outward welling mantle plume and the
oceanic plate as drawn in Fig. 5.28a.

The ridge push force per meter length of ridge (equivalent to the potential
energy of the ridge per unit area) may be calculated with eq. 5.52, using
similar assumptions to those we have made when designing a model to explain
the water depth of the oceans (s. Fig. 4.19). The density of oceanic lithosphere
must be expressed in terms of temperature (eq. 4.27) and temperature as
a function of depth (eq. 3.80; s. Turcotte and Schubert 1982; Parsons and
Richter 1980). Then - using the half space cooling model - it may be shown
that the ridge push force is a function of the thermal profile through the
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Figure 5.28. Cartoon showing two possible motions of the asthenosphere below
mid oceanic ridges. a Asthenospheric material wells up below the mid ocean ridge
in form of a mantle plume. During this process, adiabatic decompression of astheno-
sphere material will cause massive partial melting. It is thought that this situation
pertains to regions where these melts are now present as large igneous provinces
like the Karoo Basalts in southern Africa or the Deccan Traps in India and may be
Iceland (Fig. 6.34). b shows the mantle motion that is thought to be representative
for most mid oceanic ridges
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oceanic lithosphere and therefore of age. Without reiteration the derivation
of the ridge push force here, we simply state that it is given within this model
by the equation:

m\ 207
Fy = gpmaTit (1 + (p—) ﬂ) ~1.19-107% . (5.58)
Pm — Pw ™

All parameters of this equation are explained in sect. 4.4.1. From eq. 5.58 we
can see that the ridge push force is a linear function of age of the oceanic litho-
sphere (Fig. 5.29). As such it is different from water depth which - within
this model is described by a square root function of age (Fig. 4.20). The
numerical value of the proportionality constant between age and force in
eq. 5.58 (1.19-1073) is derived using the following constants: 77 = 1200°C;
pm=3200kgm™3; p, =1000 kgm—3;  =3-107° K~! and k =107 m? s~ 1.
Fig. 5.29 shows that ridge push is about an order of magnitude smaller
than the integrated strength of continents at normal orogenic strain rates
(s. Fig. 5.19). Thus, we may conclude that ridge push alone is insufficient as
the principal plate tectonic driving force.

o Asthenospheric flow at mid-oceanic ridges. In the past, ridge push has been
interpreted to be related to frictional stresses of upwelling asthenosphere that
“pushes” the ridge apart as illustrated in Fig. 5.28a. However, several obser-
vations speak against this model. For example, if upwelling material causes
ridges, then it would be expected that different ridges have different elevations
above the abyssal planes - dependent on the force exerted by the upwelling
materials. In contrast, practically all mid ocean ridges lie at a constant water
depth. Today we know that there are only very few places where mid-oceanic
ridges coincide with diapirically upwelling mantle material. Rather, the as-
thenospheric flow at most mid-oceanic ridges is of the geometry shown in
Fig. 5.28b. Among other arguments, this was recognized by McKenzie and
Bickle (1988) using on geochemical arguments. These authors showed that
partial melting that would occur due to adiabatic decompression of upwelling
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melt in a mantle plume would be enough to form a 15 km thick oceanic crust.
In contrast, normal oceanic crust is measured to be only about 5-7 km thick.
This thickness can be produced by adiabatic melting of only the upper most
asthenospheric regions. Asthenospheric flow as sketched in Fig. 5.28b is suf-
ficient to produce a 5-7 km thick oceanic crust. Thus, it is thought that
the flow directions of asthenospheric convection have little to do with the
position of the mid-oceanic ridges. There are only very few places where
mid-oceanic ridges coincide with diapirically upwelling mantle material. One
of these places is Iceland (Fig. 6.34). There, not only is the oceanic crust
significantly thicker than 7 km, but also the mid oceanic ridge is uplifted by
the stresses exerted to its base by the upwelling mantel material not unlike
a jet of water shot from below onto a rubber sheet. Other regions where
mantle plumes are thought to coincide with rifting margins are those of flood
basalts (p. 315) (White and McKenzie 1989).

Slab Pull and Trench Suction. Old oceanic lithosphere is denser that
the underlying asthenosphere and it has therefore a negative buoyancy and
it wants to sink. However, because oceanic lithosphere is very strong and stiff,
it cannot immediately do this as soon as it reaches this critical age where its
density becomes large compared to that of the underlying asthenosphere.
Rather, the oceanic plate “glides” along the surface of the asthenosphere
until this gravitationally unstable configuration is brought out of balance
and a subduction zone forms. Once the edge of such an old oceanic plate
has begun to subduct, it drags the remainder of the plate behind it. This
is what is called slab pull. Such subduction processes may cause, or may be
caused by, small scale convection in the upper mantle. This convection occurs
predominantly in the wedge shaped region between the subducting and the
upper plate. Once such a convection system is set up, it may actually drag
both the upper plate and the subducting plate into the subduction zone
(s. Fig. 3.28). This is what is called trench suction.

Slab pull is gravitationally induced, simply because the dense oceanic litho-
sphere wants to sink into the less dense upper mantle. In fact, the slab pull
force is reinforced by the fact that the density of the down-pulling slab in-
creases significantly once it has passed the olivine-spinel-transition at roughly
400 km depth. The magnitude of slab pull is roughly 10** Nm~! (s. Turcotte
and Schubert 1982). Thus, slab pull is about an order of magnitude larger
than ridge push. However, it is likely that slab pull is being counteracted
by frictional stresses of about the same magnitude between the sinking plate
and the surrounding asthenospheric mantle. Thus, the net force exerted by
subduction zones onto the foreland need not be very large. Estimates by Bott
(1993) and Bott et al. (1989) suggest that both slab pull and trench suction
may be of the magnitude of roughly 4-10'2 Nm~!. In general it may be said
that the force balance in subduction zones is much less well understood than
that around mid-oceanic ridges. Nevertheless, most authors agree that forces



256 5 - Mechanics: Force and Rheology
rifting rate -€—

snnkmg rate

w3 059

¥

Figure 5.30. Four possibilities for the shape of subducted slabs at trenches. ¢ Shal-
low subduction as probably occurs if subduction occurs in the same direction as
the convective flow of the upper mantle (Doglioni 1993). b Steep subduction as it
is often observed around the globe with slab break off at depth (Blanckenburg and
Davies 1995). ¢ Vertically hanging plate with folding at the 650-km-discontinuity
(Frottier et al. 1995; Houseman and Gubbins 1997). d Hypothetical (in nature not
observed) shape of a subducted plate that would occur if no deformation of the
plate would occur subsequently to subduction in the trench

in and around subduction zones may be much larger than those exerted by
the mid-oceanic ridges.

Roll Back of Subduction Zones. Slab pull and trench suction are pre-
dominantly forces acting downwards, while ridge push acts mainly in the
horizontal direction. Slab pull and trench suction are not related to potential
energy variations, but to gravitational instabilities similar to those that are
responsible for convective motions. Because slab pull and trench suction act
downwards it is possible that the kink in the subducting plate near the trench
shifts laterally. If the rifting rate at the mid-oceanic ridge exceeds the sinking
rate of the subducting slab, then the trench will move towards the upper plate
(Fig. 5.30). However, if the sinking rate is larger than the rifting rate, then
the trench moves away from the upper plate towards the mid-oceanic ridge
(e.g. Dewey 1988). This process is called roll back of a subduction zone. The
most famous example for roll back is the Scotia arc west of South Georgia.
The formation of extensional basins in front of subduction zones, in particu-
lar the formation of Fore-arc- and Back-arc-basins, is thought to be related
to roll back (Royden 1993a). Roll back does not only depend on the relative
rates of rifting and sinking of the oceanic plate, but also on how easily the
asthenosphere may be displaced underneath the subducting plate.

Deformation of Subducting Plates. The deformation of subducted plates
in the upper mantle is not very well-understood. We know from bathymetric
data that oceanic lithosphere is kinked at the trenches (Fig. 2.23). However,
tomographic and seismic imaging indicates that subducted slabs are mainly
planar slabs below the trench. This implies that the kinks of the subducted
plates are unbent again at depth (Houseman and Gubbins 1997). Blanck-
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enburg and Davies (1995) showed that slabs may also break off at depth
(Fig. 5.30).

The long term evolution of subducting plates depends on the processes
at the upper-lower mantle transition in about 650 km depth. Creager and
Jordan (1984) showed that the processes there are of large importance to the
possibility of recycling lithospheric material. In general it is thought that
subducting plates cannot perforate this 650 km transition, predominantly
because the density of the lower mantle is higher than that of the subducting
slabs (e.g. Christensen and Yuen 1984) (Fig. 5.30c). This model has since
been confirmed by tomographic imaging (e. g. van den Hilst et al. 1991; Gud-
mundsson and Sambridge 1998). It appears that the 650 km discontinuity
is a graveyard for subducted slabs. There is a range of recent analogue and
numerical experiments that test details of the geometry of deformation of
subducted slabs at this discontinuity (Frottier et al. 1995).

5.3.3 Forces in Continental Plates

Inside the continents, plate tectonic driving forces arise predominantly from
lateral variations in the density structure, which cause lateral variations in
potential energy. When we discussed Fig. 5.27 we have already estimated the
magnitude of these forces for a plate of constant density but variable thick-
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Figure 5.31. Illustration of vertical stresses and potential energy differences be-
tween two neighboring lithospheric columns. Vertical normal stress is plotted as
a function of depth. The shaded region between the two curves is the potential
energy difference per area between the two adjacent columns. In a this difference
is positive in the upper part of the lithosphere (light shading) but negative in the
lower part (dark shading). This means, that there is a net force acting from the
right hand column towards the left hand column, while this net force is directed
towards the right in the lower part. Because both shaded regions are roughly of
the same area, there is practically no net force between the two columns, averaged
over the thickness of the lithosphere. In b the entire right hand lithospheric column
exerts a net force onto the left hand column
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ness (eq. 5.56). In this section we want to refine our estimates by considering
a more realistic lithosphere consisting of a dense mantle lithosphere and a
much less dense crust (s. Fig. 2.18). We also want to remember that momen-
tum (often considered by students as an important contributor to mountain
building processes) is completely irrelevant in plate tectonics (s. p. 218).

Fig. 5.31 illustrates two examples of potential energy differences between
two lithospheric columns. Similar to Fig. 5.27 this potential energy difference
is given by the shaded region between the two curves for vertical normal
stress as a function of depth. This area corresponds to Fj}, in eq. 5.52 and
may be interpreted as the net force exerted by one column onto the other
per meter length of orogen and averaged over the thickness of the lithosphere
(horizontal buoyancy force). In Fig. 5.31b the vertical normal stresses in the
right hand lithosphere column is larger than that of the left hand column at
all depths. Thus, there is a net force from the right towards the left column at
all depths. However, for the two columns shown in Fig. 5.31a the situation is
different. In the upper part of the profile the vertical stresses in the column of
lower surface elevation are smaller. Interestingly, the vertical normal stresses
are smaller for the column of higher surface topography in the lower part of
the profile. This means that there is a net force exerted from the right hand
column towards the left hand column in the upper part (light shaded region
in the 0,,-2-diagram), but that this force is directed in the opposite direction
in the lower part (dark shaded region; see Problem 5.19).

The qualitative considerations of Fig. 5.31 may be quantified by integrating
eq. 5.52 and using simple descriptions for density as a function of depth. If we
assume a simple lithosphere of two layers (a crust and a mantle lithosphere)
and assume a linear thermal profile in the lithosphere so that the density
due to thermal expansion may be described with eq. 4.29, then the lateral
buoyancy force is described by:

Fy _ (5(1 — 5) . oy
g = )~ gy (1= 30k~ 1)
2T ‘
+—8(Zc/zll)2 (1= £) (5.59)

(Turcotte 1983; Sandiford and Powell 1990). All parameters in this equation
are the same as those we used in eq. 4.35 to calculate the elevation of moun-
tain belts in isostatic equilibrium but the definition of § differs from that
of Sandiford and Powell (1990) and the way eq. 5.59 is written here differs
therefore slightly from theirs as well. Here (and elsewhere in this book) § is
the density ratio of crust and mantle lithosphere § = (pm — pc)/pm, g is the
gravitational acceleration, 7] the temperature at the base of the lithosphere
and « is the coefficient of thermal expansion. Lateral forces calculated with
eq. 5.59 are shown in Fig. 5.32. The shape of these curves hardly changes for
more refined assumptions on the thermal structure of the lithosphere (Zhou
and Sandiford 1992). Fig. 5.32 shows that the absolute values of the net lat-
eral forces exerted by very thin or very thick continental lithosphere on its
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surroundings are of the order of 10'2-10'® Nm~". Thus, they are comparable
to the magnitude of forces arising from ridge push or slab pull. This is really
no surprise, as the thickness variations within the continental lithosphere are
themselves only caused by plate driving forces in the oceans. Fig. 5.32 can
also be used to explain why there is no place on the earth where the crustal
thickness is significantly thicker than double of normal (f. > 2). Such regions
can only form by forces in excess of F}, > 10 Nm™!, which is greater than
any known plate tectonic driving force.

e Potential energy excess created by external forces. The potential energy
of plates may not only be increased by internal deformation of the plates,
but also by passively uplifting the entire plate, for example by the vertical
stresses exerted from upwelling mantle plumes to the base of the lithosphere.
McKenzie et al. (1974), McKenzie (1977a;b) as well as Houseman and Eng-
land (1986b) showed that these forces are large enough to lift lithospheric
plates by several hundreds of meters. On the abyssal planes of the oceans,
such upwelling convection streams may even cause topography of the order
of 1 km (Crough 1983; Watts 1976). Such topography has a higher potential
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Figure 5.32. Diagram of lithospheric thickening strain f; plotted against crustal
thickening strain f. and contoured for potential energy difference per area (equiva-
lent to: “horizontal buoyancy force per meter” or: “lateral force”). The fc-fi plane
was explained in detail in Fig. 4.7. The potential energy difference is always that
between any point in f.-fi space and the reference lithosphere at {,: fi=1. The
diagram was calculated with eq. 5.59 and is contoured for F, in 10'? Nm™!. Other
assumptions are: pp, = 3200 kgm™3; p. =2750kgm™%; @ = 3-107%; 2, = 35000 m;
z1 = 125000 m; 71 = 1200 °C. The curvature of the contours arises because of the
quadratic dependence of potential energy on thickness. As such, these contours for
lateral force between two columns are fundamentally different from those for surface
elevation (s. Fig. 4.18) (Sandiford and Powell 1990; Stiiwe and Barr 2000)
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energy than its surroundings and will - just like a mountain range in a region
of thickened crust - exert a horizontal buoyancy force onto its surroundings.
The geometry of this phenomenon is schematically drawn in Fig. 5.33. The
horizontal force exerted by plate A onto plate B may also be calculated by
integrating eq. 5.52, just as we did when calculating the potential energy
difference between mountains and their foreland (Fig. 5.27). The magnitude
of this force corresponds to the shaded region between the two curves for
vertical stress as a function of depth in Fig. 5.33. The principal difference
between this and the example discussed in Figs. 5.27 and 5.31 is that the
vertical stresses of the two profiles do not converge, because the two columns
in Fig. 5.33 are not in isostatic equilibrium. Integration according to the same
principles we used in eq. 5.54 to eq. 5.57 gives:

2
TH +pegHze . (5.60)
Using the same numerical values for the physical parameters as we did in
Fig. 5.32, we get for an uplifted elevation of # = 1 km a horizontal force
of the order of F, =~ 9- 10" Nm~!. This results shows that convectional
stresses in the mantle may have a significant influence onto the stress regime
and therefore on the deformation of continents (s. sect. 6.1.4).

Fb :AEP =

5.4 Problems

Problem 5.1. Units of strain (p. 140):

During orogenesis a continental crust has thickened from 30 km to 60 km.
What is the stretch, the elongation and the vertical strain it has experienced?
Use eq. 4.1.

Problem 5.2. Difference between weight and mass (p. 210):
What is the weight of 1 kg of rock at the surface? Give the result in SI units.

N
M

Figure 5.33. Illustration for the
calculation of the potential
energy change that is caused by
actively lifting plate A with the
thickness z. and the density p.
by the amount H. Note that the
two plates are not in isostatic
equilibrium and that, therefore,
the two curves for o,, do not
meet at the depth z. + H. The
shaded area corresponds to the
net horizontal force exerted by
plate A onto plate B
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Problem 5.3. Conversion of different energy forms (p. 213):

A continent collides with another with a force of 10'* N and rams 100 km into
the other continent. How much mechanical energy is released in the process?
Discuss where this energy goes, i.e. into which other forms of energy it may
be transformed.

Problem 5.4. Formulations of stress state (p. 215):

A continent is under extension because an attached subducting plate pulls
it apart. The tensional stress has the absolute value A. Another continent is
under extension because it collapses under the weight of a mountain range
on its surface. Let us assume that the vertical normal stress exerted by the
mountain range onto the plate has also the magnitude A. Are the states
of stress of the two continents the same? For simplicity, consider the two
continental plates to be represented by little cubes that have no weight of
their own: one that is pulled on its side and the other that is loaded from
above. Consider the problem only in two dimensions.

Problem 5.5. Stress balance, pressure and deviatoric stress (p. 210- 220):
Fig. 5.34 shows a rock that lies atop the plane z = 0. a) How large are the
vertical and horizontal normal stresses inside the rock at a given depth 27
b) How large is the pressure at this depth? ¢) How large are the components
of the deviatoric stress tensor? For your answers, use the stress balance equa-
tions (eq. 5.15 and corresponding relationships in the other spatial directions;
s. also eq. 6.25 and 6.26) and ignore elastic effects. Note that the coordinate
system for this problem (Fig. 5.34) implies that the upper surface of the rock
is at negative z. This is different from many other examples in this book
where the origin of the vertical axis is often located at the highest point of
the surface (see Fig. 4.3).

Figure 5.34. Tllustration to Problem 5.5 — z=-H
r
=0
ffffﬁf///ifml"

Problem 5.6. Stress balance, pressure and deviatoric stress (p. 210- 220):
The rock from Problem 5.5 has melted. The shape it has in Fig. 5.34 is
only maintained because we have put a box around it. a) How large are the
vertical and horizontal normal stresses inside the rock in a given depth 27
b) How large is the pressure at this depth? ¢) How large are the components
of the deviatoric stress tensor? For your answers, use the stress balance equa-
tions (eq. 5.15 and corresponding relationships in the other spatial directions;
s. also eq. 6.25 and 6.26).
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Problem 5.7. Stress balance and deviatoric stress (p. 210- 220):

Assume that the rock from Problem 5.6 cannot flow freely apart but pushes
onto a fixed side wall (e.g. an indenter). How large is the force per meter
that the rock exerts onto the side wall?

Figure 5.35. Illustration for Wy Az
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Problem 5.8. Stress balance and deviatoric stress (p. 210- 220):

Fig. 5.35 shows a rock of density p¢, floating in a fluid with the density pp,.
Write relationships describing the principal stresses, the pressure and the
principal components of the deviatoric stress tensor in the rock and in the
fluid, both as a function of depth.

Problem 5.9. Understanding elastic deformation (p. 221):

Granite has a Young’s modulus of roughly 50 GPa. What is the elastic strain
of a granite to which a uniaxial stress of 50 MPa is applied? Use eq. 5.24 and
eq. 5.25.

Problem 5.10. Understanding elastic deformation (p. 221):

What is the elastic change in thickness of the lithosphere (assuming that
it is perfectly elastic) that arises solely as a function of its own weight?
Assume the pre-elastic thickness 21 = 100 km as well as E=60 GPa, and
p=3000kgm™3.

Problem 5.11. Fault plane solutions (p. 227):

Draw qualitative fault plane solutions for the following faults: a) a north
- south striking vertical dip-slip fault where the eastern block is displaced
downwards; b) a horizontal fault where the top wall is displaced to the west;
¢) a north - south striking vertical fault at which the eastern side was dis-
placed with roughly 45° towards the north and down; d) a thrust that dips
a bit steeper than 45° to the east along which the upper plate was thrust
obliquely to the north.

Problem 5.12. Power law rheology (p. 232):
Use the material constants for quartz and olivine from Table 5.3 (the acti-
vation energies @), the pre exponent constants A and power law exponent
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n) and calculate the shear stresses supported at strain rates of é = 107 14s~!
and a temperature of 500° C. Investigate how the stresses change if the power
law exponents were actually 2 or 4 instead of 3. Compare your result with
Fig. 5.12.

Problem 5.13. Power law rheology (p. 232):

The data from experiments that are used to derive the rheological material
constants for viscous deformation (those required in eq. 5.46 are usually rep-
resented as lines in diagrams where log(oq) is plotted against log(é), or in
diagrams where log(é) is plotted against 1/7. Why ?

Problem 5.14. Lithospheric strength (p. 244):
Fig. 2.5 shows that seismicity along continental plate margins is distributed
over much larger regions than seismicity along oceanic plate margins. This
indicates that continental lithosphere is softer than oceanic lithosphere, al-
though it has a larger thickness. Why is this so?

Problem 5.15. Understanding potential energy (p. 248):
Calculate the potential energy per unit area of the rock shown in Fig. 5.34.

Problem 5.16. Understanding potential energy (p. 248):

Estimate the potential energy (per unit area) of the two columns in Fig.
5.26 above the base of the lithosphere algebraically and graphically. For your
graphic estimate, use the scheme illustrated in Fig. 5.31. For the calculation
use the scheme explained in eq. 5.53 and 2, =30 km; z = 100 km; p; =
2700kgm—3, p3 =3200kgm—2 and g = 10ms~2.

Problem 5.17. Understanding gravitational stress (p. 252):

What is the lateral buoyancy force exerted by a mountain range onto its
foreland if the mountain range is characterized by a crust that is twice the
thickness from the foreland (f. = 2), but the same thickness of the entire
lithosphere (fi = 1). Use eq. 5.57 and z. =30 km, p. = 2700kgm =3, pm, =
3300kgm~ and g = 10ms~2. In order to use eq. 5.57 we also need to
know the surface elevation of the range H and the thickness of the root w,
both at f. = 2 and fi = 1. Recalling eq. 4.35 the elevation is H=5454 m.
Consequently, the thickness of the root is w = 24 546m. (See also Problem
6.9.)

Problem 5.18. Understanding gravitational stress (p. 258):

Refine your estimate from Problem 5.17 using eq. 5.59 with 7; = 1200°C,
21 = 100 km and « = 3 x 1075°C~!. (Note that the surface elevation need
not be known when using eq. 5.59). Compare your result with the result from
Problem 5.18 and the graphically presented result in Fig. 5.32.

Problem 5.19. Understanding gravitational stresses (p. 257):
Fig. 5.36 shows a schematic lithosphere: a) Normal thick lithosphere of thick-
ness z; with crust of thickness z.; b) after homogeneous thickening to double
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thickness (221, 22¢); ¢) after doubling the entire lithosphere by over thrusting.
How large are the net horizontal forces that the columns exert on each other?
Estimate the result graphically using the scheme used in Fig. 5.31. Calculate
the result using eq. 5.49 to eq. 5.53) and use the parameter values given in
the caption of Fig. 5.36.

Figure 5.36. Illustration to Problem 5.19.
pe = 2700kgm™3, po = 3300kgm ™3, pm =

R
1
3200kgm~3, g = 10ms~2. Note that the sur- - IZC
2zl

face elevation of the columns in b and ¢ is the
same as both columns have the same weight
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Problem 5.20. Understanding momentum (p. 218):

A 100 km thick continental plate that has a mean density of 3000 kgm~2 and
is 1000 x 1000 km large collides with a much larger continent at a velocity of
0.03 my~!. The collision stops the plate. How large is the kinetic energy of
the plate? How high can a mountain belt be built if all kinetic energy of the
collision process is transformed into potential energy? Assume that all other
forces that may apply to the plates may be neglected.



6. Dynamic Processes

This chapter is the first of two chapters in which we integrate the information
of the previous three chapters into “real” tectonic models. The first two thirds
of this chapter are dedicated to the description of continents in extension
and in collision. In the last third of this chapter we touch upon a range of
interesting and currently very topical geodynamic problems.

6.1 Continents in Extension

Under certain stress states continents may extend. In the process, they usu-
ally decrease in their thickness. In general, extensional processes are divided
into active and passive processes (e.g. Allan and Allen 1990; Ruppel 1995).
An extensional process is considered to be active if the extension occurs as
the consequence of forces inherent to the extending area, for example gravi-
tational collapse of a region of high potential energy. Examples are mid ocean
ridges, high continental plateaus or regions actively uplifted by mantle plumes
(Keen 1980). Active rifting is therefore also called “mantle generated” and we
have estimated the forces that cause active rifting in eq. 5.60. We describe
an extension process to be passive if the forces causing extension are ap-
plied outside the extending area, for example the force of a subducting plate
that pulls at the passive margin of an adjacent continent (e.g. Le Pichon
1983). Passive rifting is also called “lithosphere generated” rifting. However,
we should remember that the stress state of an extending plate is identical
for both active and or passive extension (s. Fig. 5.3 and Problem 5.4).

o Uplift or subsidence. It is not trivial that extension of the lithosphere must
lead to subsidence of the surface. The density of continental crust is lower
than that of the underlying asthenosphere and the density of the mantle
lithosphere is higher (s. Fig. 2.18). Whether or not extension leads to subsi-
dence depends therefore on the partitioning of the extensional strain between
the crust and the mantle part of the lithosphere (Fig. 6.1). It also depends
on the initial thickness ratio of the two prior to onset of extension (Fig. 6.2
s. also: Fig. 4.18). McKenzie (1978) showed that surface subsidence during
extension will only occur during homogeneous lithospheric extension if the
crustal thickness at the onset was more than 14 km, as part of a thermally
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equilibrated continental lithosphere. If the crust is thinner than this, then
lithospheric extension will lead to surface uplift.

Heterogeneous extension, same initial thickness ratio

a <A i) 0> b <o o, =2
Pc Pe
Pm 1| Pm
Pc< pm< O pc< pm< p|

Figure 6.1. The influence of the heterogeneous stretching on surface up-
lift /subsidence during lithospheric extension. The variables pc, p1 and pm are the
density of the crust, mantle lithosphere and asthenosphere, respectively. In a ex-
tension causes surface uplift, because the mantle lithosphere is stretched more than
the crust. In b extension causes subsidence because the crust is streched more than
the mantle part of the lithosphere

Subsidence and the development of sedimentary basins must not have been
caused by extension: Several types of sedimentary basins form in collisional
environments during crustal thickening. However, the processes of continental
extension and sedimentary basin formation are so intimately related, that this
first section of this chapter is concerned with the origin, nature and processes
of the formation of all types of sedimentary basin. The processes that form
basins in collisional environments are also discussed here.

Homogeneous extension, different initial thickness ratio

. Pc< pPm< O ' h pc< pm< p| i

Figure 6.2. The influence of the initial thickness ratio of crust (light shaded area)
and mantle part of the lithosphere (dark shaded areas) on the nature of the vertical
motion of the surface during homogeneous lithospheric extension. The variables pc,
o1 and pm are the density of the crust, mantle lithosphere and asthenosphere, re-
spectively. In a extension causes surface uplift, because the mantle lithosphere con-
stitutes a large proportion of the lithosphere by thickness. In b extension causes
subsidence because the crust forms a larger proportion of the lithosphere

The temporal evolution of the subsidence of sedimentary basins is one
of the most important sources of information for the geodynamic interpre-
tation of continental extension processes. In many ways, the processes and
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Figure 6.3. Global sediment thickness map. Contours are shown for 1, 10 ans
15 km sediment thickness. Greatest sediment thicknesses are in the oceans, in the
Bengal Fan and the Gulf of Mexico, greatest thicknesses on land are north of the
Caspian Sea (data from Laske and Masters 1997; see also Divins 2006; data set at:
http://www.ngdc.noaa.gov/mgg /sedthick /sedthick.html )

methods of interpretation of the subsidence of basins is analogous to the pro-
cesses and interpretation of surface uplift during collisional processes (e.g.
in sect. 4.3.1, 4.4.1). However, they differ fundamentally in one respect: the
thickness of a basin fill is usually substantially larger than the amount of
subsidence that could be accredited to tectonic processes alone. Earth scien-
tists first explained this phenomenon at a time when the COST drill holes
on the continental shelf of the eastern USA were drilled by the ocean drilling
program: the density of sediments is substantially larger than that of water
or air. Thus, in isostatically compensated basins, sedimentary loading of tec-
tonically formed basins will cause additional subsidence which in turn makes
room for additional sediment loads.

We therefore discriminate between tectonic subsidence and total subsi-
dence. Total subsidence is the total amount of vertical change of the former
surface. The rate of downward motion of the former surface is called the sub-
sidence rate. As such this definition is not quite analogous to the definition of
uplift rate (s. sect. 4.3.4). The tectonic subsidence is only the component of
total subsidence that is caused by tectonic mechanisms. In order to interpret
the tectonic processes that lead to sedimentary basin formation, knowledge
of the total subsidence (i.e. the sediment thickness in the basin) is only the
starting point. It is then necessary to subtract the influence of sedimentary
loading from the total subsidence to determine the tectonic contribution to
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subsidence (Sclater and Christie 1980; Steckler and Watts 1978; 1981). This
exercise is referred to as back stripping and will be discussed in sect. 6.1.3.

6.1.1 Basin Subsidence Mechanisms

The subsidence of just about all sedimentary basins is caused by one or more
of the following three processes. Each of these processes has been discussed
in previous sections of this book:

— isostatic subsidence,
— flexural subsidence,
— thermal subsidence.

The three mechanisms may be intimately related. In the following we dis-
cuss briefly the nature of these three mechanisms and then go on to explain
different types of sedimentary basins using these terms. Good summaries of
models for the development of sedimentary basins are published by Angevine
et al. (1990) and Allen and Allen (1990) and we rely here — in part — on their
work.

e [sostatic subsidence is caused by physical changes in the thickness of the
lithosphere. For example, if physical stretching of the lithosphere causes thin-
ning, then isostatic compensation will generally lead to subsidence (sect. 4.4.1;
Fig. 6.4).

o Flexural subsidence relies on elastic bending of the lithosphere (s. sect. 4.4.2).
If the lithosphere is loaded, it bends and a basin forms near the load
(Fig. 4.22). For very strong plates, such basins are wide and shallow, while for
less competent plates such basins are narrow and deep. However, the basin
volume is independent of the rigidity of the plate (s. Fig. 4.25).

e Thermal subsidence occurs if the density structure of the lithosphere is
thermally changed by cooling (sect. 4.4.1). Thus, thermal subsidence is also
a type of isostatic subsidence, except that the thickness change is caused
thermally and not mechanically. As cooling of the lithosphere occurs only
in thermally destabilized lithosphere, thermal subsidence can only occur in

| l— cl . |

Uplift Erosion Subsidence
Figure 6.4. Sketch illustrating one of the first models for the development of
sedimentary basins (Sleep 1971). A continent is uplifted by external processes, for
example by upwelling asthenospheric material of a mantle plume. Erosion thins the

uplifted region. When the uplifting process terminates, the continent returns to its
original position and a shallow sedimentary basin is formed
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lithosphere that has previously been heated. Everything else being equal,
the amount of thermal subsidence during cooling is exactly as large as the
amount of thermal uplift during the heating phase. Thus, no sedimentary
basin can form as the consequence of thermal processes on their own. Erosion
or extension must have separated the thermal uplift and thermal subsidence
in order to form a sedimentary basin (Fig. 6.4; sect. 6.1.4; McKenzie 1978).

6.1.2 Basin Types

Different types of sedimentary basins were classified by Dickinson (1976)
according to the three subsidence mechanisms discussed above (s. also Buck
1991).

¢ Passive margins and rift basins. Rift basins form as the consequence of con-
tinental extension and ultimately rifting (Fig. 2.27a). The extensional process
during the formation of rift basins may be symmetrical (Keen et al. 1989) or
asymmetrical (Wernicke 1985; Lister et al. 1986; 1991) about the rift axis.
The subsidence associated with the isostatic compensation of the rifting is
usually followed by a later phase of thermal subsidence during which the me-
chanically rifted mantle lithosphere thickens by cooling. Thus, the subsidence
of rift basins may usually be divided into a rift phase and a sag phase, both
of which are characterized by specific sedimentary environments. During the
rift phase, sedimentation is rapid, highly energetic and associated with the
development, of half grabens and other tectonic structures. During the sag
phase, sedimentation is slow and static. Both phases are best developed if
the rifting has not gone to completion. Examples for rift basins that have
gone to completion in their successive stages of development are to be found
in the Rhein Graben, the East African Rift system, the Red Sea and the
Atlantic coast.

e Transform basins. Transform- or pull-apart basins also form due to conti-
nental extension. The most important difference between these and proper
rift basins is that they are smaller because their extensional phase terminated
much earlier. Transform basins never get to a rifting stage. They are bound
on at least two sides by strike slip faults and they are usually rectangular or
diamond shaped. Because of their limited size, heat conduction processes do
not only occur in the vertical direction, but also in the lateral direction. As a
consequence, thermal thinning of the mantle lithosphere is limited. Therefore,
transform basins usually lack the sag phase that is so typical for rift basins
(Pitman and Andrews 1985). Subsidence of transform basins is usually short-
lived and is largely a linear function of time. This is especially because the
deformation history of the brittle structures that control their shape is very
short-lived. Other structures in the same orogen will soon take over and ac-
commodate the strain. Examples of transform basing are the Death Valley
in California, the Vienna Basin in Austria as well as a large number of small
intramontane basins within the European Alps.
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e Foreland basins. Foreland basins form during the collision of two continen-
tal plates and are the continental analogue to fore-arc and back-arc basins
(see next paragraph). The principle subsidence mechanism is elastic flex-
ure of the plate in response to the loading by external and internal loads
(Beaumont 1981; Jordan 1981b; Karner and Watts 1983). According to their
location relative to the lower plate, foreland basins may be divided into two
groups (Fig. 2.23). Peripheral foreland basins form near subduction zones in
collisional environments as a consequence of loading of the lower plate by
the upper plate. Retroarc foreland basins form on the upper plate in the hin-
terland of a subduction zone. Good examples of peripheral foreland basins
are the molasse basins near the Alps or the Himalayas. Examples of retroarc
foreland basins are those that form east of the Andes and also the molasse
basins of the Alps. The subsidence rate in peripheral foreland basins may be
used to determine the rate of loading of the plate and therefore ultimately
the collision rate of two plates.

e Fore-arc and Back-arc basins. Fore-arc-basins have their name because
they form in front of an island arc. There is a range of models that have
been used to explain their origin, but none of them is really well-constrained
or completely satisfactory. Some of the models include: 1. Subduction of an
oceanic plate underneath another leads to a doubling of the plate thickness
beneath the accretionary wedge. Since the density of oceanic lithosphere may
be higher than that of the underlying asthenosphere, doubling the plate thick-
ness leads to subsidence and formation of a fore-arc basin. 2. Subduction of
a cold plate underneath a hot plate may cause cooling of the upper plate and
thus lead to thermal subsidence and basin formation. 3. Loading of the plate
from above by an island arc and loading from below by the buoyancy of the
accretionary wedge may lead to elastic back-bending of the plate. Basins on
oceanic lithosphere that form behind a subduction zone are called back-arc
basins. Their formation is usually interpreted as the consequence of upwelling
asthenospheric material in the mantle wedge and they have a characteristic
basaltic signature (Taylor and Martinez 2003). However, they also have been
thought to be connected with potential energy differences (Stiiwe and Barr
2000). Examples of Fore-arc basins are those developed along the south mar-
gin of Sumatra and Java, along the east margin of Japan and a famous ancient
example is the Californian Great Valley. Examples of back-arc basins are the
Mariana back-arc basin west of the Mariana Ridge, or the North Fiji Basin.

e Intracontinental basins. Some large sedimentary basins form intracontinen-
tally, for example the Michigan Basin in the USA. The amount of tectonic
subsidence in these basins is rarely more than 2 km. Their round shape and
slow subsidence rates indicate thermal subsidence as a subsidence mechanism.
However, the origin of these basins remains largely unconstrained.
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6.1.3 Subsidence Analysis

The large variety of tectonic processes that form sedimentary basins discussed
above illustrates the necessity to find a data set that can be collected in the
field and that can be used to constrain the nature of the basin forming process.
Such a data set exists in the subsidence history of a basin as recorded by the
sedimentary bagsin fill. In order to constrain the evolution of subsidence from
the stratigraphic record, three steps are necessary:

— Documentation of the stratigraphic section,
— Consideration of compaction of sediments,
— Consideration of the water depth.

If we are also interested in the tectonic component of the subsidence (as we
usually are), then a fourth step is necessary:

— Consideration of the sedimentary loading: back stripping.

When mapping the stratigraphy of the basin fill with the intention of using it
for subsidence analysis, the following data must be collected or assumed for
each layer: 1. thickness, 2. lithology, 3. age and 4. water depth at deposition.
Porosity of the sediments and information on the thermal evolution are ad-
ditional data that can be extremely helpful. On the following pages we show
how the subsidence history may be extracted from this data.

Compaction. Because of their porosity, sedimentary strata are compacted
by overlying layers after their deposition. Thus, the thickness of each layer
in a sedimentary sequence was larger at the time of its deposition than it is
when measured in the field. In order to consider the influence of sediment
compaction on the thickness and density of the stratigraphic column, the
porosity must be known. Empirical studies show that the porosity of rocks
decreases exponentially with depth. In general we can describe this with the
relationship:

¢ = ¢pe™ % . (6.1)
Figure 6.5. The decrease of porosity of a porosity ¢
range of rock types with depth. Calculated with 0.1 02 03 04

eq. 6.1 and using the following material con-
stants. Sandstone: ¢o = 0.4, ¢ = 3-10"* m™';
limestone: ¢9 = 0.5, ¢ = 7-107* m™!; slate: — limestone
$o = 0.5, ¢ = 5-10"* m~'. The grain den- £ 1000

sity pg of these three rock types is: sandstone: £
pe=2650 kgm™?%; shale: p,=2720 kgm™®; &
limestone: p; =2710 kgm™> (data from Sclater © 2000
and Christie 1980; s. also Bond et al. 1983)

sandstone
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There, ¢ is the porosity of the rock at depth z, ¢ is the porosity at the surface
and ¢ is a rock specific compaction constant (Fig. 6.5). If we now want to
derive the original thickness of a layer Ly from that measured for this layer in
the field, L, we must solve an integral. Assuming that the thickness was only
changed by changing the porosity (and not by metamorphism, diagenesis,
cementation or dissolution), it must be true that:

/OLO(l — ¢)dz = /jL+L(1 ~p)dz . 6.2)

ZL

This equation states that the rock volume without the pore space (1-¢) re-
mains a constant, regardless of the fact whether the upper surface of the layer
L is at depth 2 = 27, or at 2 = (. Eq. 6.2 is a one-dimensional volumetric bal-
ance. This equation forms the basis of our following considerations. Clearly it
is important to check the applicability of this equation before embarking on a
compaction analysis. If the sediment is cemented or partially dissolved, then
it is easily possible that the processes did not occur at constant volume and
the compaction analysis becomes more complicated. It may then be necessary
to study the cementation material petrographically to see if it was derived
internally or externally, and so on. It comes back to the universal fact that
field and laboratory data determine how simple a model is allowed or how
complicated it must be designed.
By substituting eq. 6.1 into eq. 6.2 and integrating we get:

Lo+ %e(—czo)(e(—clzo) —1)=L+ %e(_m)(e(_d) —1) . (6.3)

Sadly, it is impossible to solve eq. 6.3 for Ly - the original depositional thick-
ness of a layer of which we measured the thickness L at depth z. When using
eq. 6.3, Ly can only be determined numerically by iteration (sect. B.5.2).
However, for most cases this is not necessary. It is usually sufficient to use
the following approximation:

(1-9¢)

Ly=1L oy (6.4)
Using eq. 6.4 it is now possible to calculate the original thickness of a layer
at the end of its sedimentation Ly from field data on the porosity ¢ and
the thickness L as measured from a drill hole. For this, the porosity ¢q is
calculated using eq. 6.1. The original thickness of the layer is needed for the
further steps in the subsidence analysis. Obviously, eq. 6.4 can also be used
to determine the thickness of a layer at any other stage of the decompaction
process L* and not only the fully decompacted thickness Lg. We just need
to use the porosity (and depth) at the right stage of the analysis ¢* instead
of the original porosity ¢g. ¢* can also be calculated with eq. 6.1 (Fig. 6.5).

If we have additional information on the porosity or thermal evolution of
our rocks, it is possible to refine the compaction analysis. However, we do
not want to discuss this here. We only want to remember that — using eq. 6.1
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and eq. 6.4 — it is possible to calculate subsidence curves for the basin floor.
The method is also illustrated on Fig. 6.6.

The subsidence evolutions that may be calculated with the method de-
scribed above give us the depth evolution of the basin floor underneath the
surface of the basin fill as a function of time. However, it is important to note
that the surface of the basin fill need not remain at a constant depth below
(or above) sea level. If, for example the water depth in a sedimentary basin
changes over time, then the water depth must be added to the subsidence
curve to obtain the subsidence evolution relative to a fixed reference level.
In marine basins, the water depth at the time of deposition can usually be
constrained by lithology, sedimentary structures and fossil record. If the sea
level itself changes during deposition, the interpretation becomes more dif-
ficult. Sometimes it is possible to document sea level changes by comparing
synchronous stages in the sedimentation record of two independent basins
subjected to the same sea level change. Basins that develop in terrestrial en-
vironments are much harder to interpret, as it is difficult to document the
changes of surface elevation through time and the water depth is not so easy
to determine.

Backstripping. In the previous sections we have shown how to determine
the evolution of total subsidence (i. e. the depth evolution of the basin floor)
as a function of time. This subsidence history is the sum of tectonic subsidence
and subsidence caused by the sedimentary loading. The process of determin-
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Figure 6.6. Illustration showing the influence of compaction on a sedimentary
section. The columns on the left and right of the central diagram show cartoons
of stratigraphic columns as they evolve through times %1, ¢2, t3 and £4. On the
left these columns are for sediments that compact during successive deposition, on
the right these columns are for sediments that do not compact. For both sets of
columns the oldest layer is shaded the darkest, the youngest the lightest. At present
(t4) the stratigraphy of both profiles is identical. However, these identical columns
at time ¢4 were arrived at by different sedimentation and subsidence histories. On
the right sedimentation rates were constant through time and none of the units were
compacted (curve a on the central diagram). On the left, sedimentation rates were
rapid at time ¢; and then decreased through time (curve b). The similar thickness of
all units at time ¢4 arises here only because compaction has balanced the variations
in sedimentation rate for the columns on the left
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ing the tectonic contribution to subsidence from the total subsidence is called
back stripping (Watts and Ryan 1976; Steckler and Watts 1978; Sclater and
Christie 1980). The inverse of back stripping — back stacking — is also possible,
using thermochronological data from sedimentary basins (Brown 1991).

Back stripping is a mental exercise in which layers are successively removed
from the sedimentary column of a basin. During each step of removal, the
hypothetical depth of the basin floor without being loaded is calculated. In
other words, we determine the isostatic loading of the column during succes-
sive steps of sedimentation. Depending how careful we need to do this (as
required by the large scale geological situation, for example the size of the
basin) we discern between:

— Back stripping assuming hydrostatic isostatic compensation,
— Back stripping assuming flexural isostatic compensation.

Back stripping assuming hydrostatic isostasy is straight forward as all we
need to do is apply eq. 4.23. We will illustrate this initially with an example
of a basin filled by a single layer.

e Back stripping of a single layer. For our Example we assume a marine
(i.e. water covered) basin that was created by a single tectonic process. We
further assume that the tectonic process started when the surface was at sea
level and caused a tectonic subsidence of the amount z7. Today, the basin is
filled by water of the depth w and a single sedimentary layer of thickness L
and density pr. On Fig. 6.7 we can see that the tectonic subsidence (z1) can
be written as the sum of the water depth at present w and the basin depth
change due to sedimentary loading: 21 = w+ 2s. We can use this relationship
to determine the tectonic subsidence. So we first need to calculate z: the
depth of the basin floor prior to the sedimentary fill below sea level. The
calculation of z4 follows the same principle as the relationships we have used
for the calculation of isostatic equilibrium (sect. 4.4.1; Problem 6.4), (Steckler
and Watts 1978):

_ Pm — PL

s ’ .

z—L( ) (6.5)
Pm — Pw

if we disregard any change in sea level during the period of loading. Somewhat
more refined we can also write:

sr=1L <M> tw—ASL—Pm (6.6)
Pm — Pw Pm — Pw

if we formulate the relationship in terms of z1 and also consider a sea level
change that may have occurred during sedimentation. The densities pm, pr
and p,, are those of the asthenospheric mantle, that of the sediment layer L
and that of water, w is the water depth and ASL is the change in sea level
during the deposition of the unit of thickness L (Fig. 6.7).

The thickness of the crust or even that of the lithosphere are not needed
for eq. 6.5 or eq. 6.6, as we assume that no thickness change of the crust
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Figure 6.7. Cartoon illustrating ASL
the origin of eq. 6.5 (s. also R A
Problem 6.4). The right hand e P w o z
column shows a crustal profile in et B g P |7
isostatic equilibrium after

tectonic subsidence but before fill
of the depression by sediments.
The left hand profile shows the
total subsidence of the column
after the sedimentation of a layer
with the thickness L. pc, pm
and py are the densities of crust,
asthenospheric mantle and water
and z. is the thickness of the
crust. z; is the change of surface
after removing the sedimentary
basin fill and compensating

isostatically. As p. and z. are Pm bef
the same in both columns, they . after . o
cancel out in eq. 6.5 sedimentation sedimentation
Before After
compaction compaction

Figure 6.8. Cartoon illustrating eq. 6.7. Compaction of sediments decreases the
water filled pore volume, but not the grain volume (unless diagenesis accompanies
compaction). This is schematically shown by two profiles of water volume and
grain volume for both the situation before compaction and after compaction. The
variable p., is the density of the pore fluid and pg is the grain density

occurred during the sedimentation, i.e. for the purpose of this example we
have assumed that the tectonic amount of subsidence occurred entirely before
the onset of sedimentation. If the basin was not filled by water at any stage of
the evolution, then p,, must be substituted by pa;, = 0 for the corresponding
period. Eq. 6.5 is analogous to eq. 4.26, but it is solved for another variable.
The density of the porous sediment layer py, that occurs in eq. 6.5 may be
determined from the grain density p, and the pore fluid density py (which - in
most cases - is the density of water: p,=1000 kg m~3) from the relationship:

pL = ¢pw + (1 —d)pg (6.7)

if the porosity ¢ is known. eq. 6.7 is illustrated in Fig. 6.9. The amount of
tectonic subsidence of basins that are filled by more than one sedimentary
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Before After
compaction compaction

Figure 6.9. Cartoon illustrating eq. 6.7. Compaction of sediments decreases the
water filled pore volume, but not the grain volume (unless diagenesis accompanies
compaction). This is schematically shown by two profiles of water volume and
grain volume for both the situation before compaction and after compaction. The
variable p,, is the density of the pore fluid and pg is the grain density

layer may also be determined with eq. 6.5. All we need to do is use the mean
values for L and pg from all layers in the sequence.

e Back stripping for multi layered sedimentary basins. Using eq. 6.5 we can
determine the complete evolution of tectonic subsidence by stepwise removal
of the top layer at any one stage during the analysis and performing the
analysis as above. For the remaining column mean densities and thicknesses
must be used at each time step. The value 2zt is then the tectonic amount
of subsidence during sedimentation of the top most layer only and L* and
pr+ are the thickness and density of the entire remaining sedimentary column
after removal of the top layer ¢ (i.e. the decompacted thickness). The thickness
of a sediment pile with 4 layers is then:

L*=>"L; . (6.8)
=1

The density of the sedimentary column underneath layer ¢ is given by the
mean density of all remaining layers. This is simply the sum of all densities,
multiplied by the respective thickness and divided by L*:

23:1 Lj (9jpw + (1 — $;)pg)

L*
Now we can use eqgs. 6.8 and 6.9 to determine the tectonic subsidence history
of a basin by stepwise reconstruction. If we do this by hand, then we need to
iteratively apply eq. 6.1, eq. 6.5 and eq. 6.7 (using L* and pr- instead of L
and pr). An example is shown in Fig. 6.10 (s. also Problem 6.5). The anaylsis
can be refined by considering flexural isostasy instead of hydrostatic isostasy
as we did here. Computer programs that do sedimentary basin analysis follow
exactly this procedure.

pLe = (6.9)

6.1.4 Models of Continental Extension

We have shown in the last section how a careful analysis of the sedimen-
tary basin fill may be used to constrain the tectonic subsidence history of a
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Figure 6.10. Example for a subsidence analysis with consideration of compaction.
a, b and c show the field data of a simple basin filled by three sedimentary strata.
a Lithology and thickness of strata (slate: horizontal lines; sandstone: shaded; lime-
stone: brick signature); b age of the unconformities; ¢ water depth as derived from
fossil record. No sea level changes occurred during the sedimentation process. Strata
are numbered from base to top. The center of each layer is the reference point used
for the following calculations. For the values of porosity and density we use the data
from Fig. 6.5. Porosity and density of the top layer (with a mean depth of 250 m)
may be derived from eq. 6.1 and eq. 6.7. These data are written in the 1st column
of Table d. The second column lists the porosity of the second layer (with a mean
depth of 750 m =mean depth of second layer minus the thickness of the first layer)
and so on. The thickness of the second layer is given by eq. 6.4 using the porosities
of the 1. and 2. column as well as the thickness from the first column. The sum of
the thicknesses and densities in the bottom two rows were calculated with eq. 6.8
and eq. 6.9 respectively. Their mean values are written in the third column. In e
the result of the subsidence analysis are illustrated graphically. Black dots show the
measured field data, white dots the calculated decompacted thicknesses and black
squares show the decompacted thicknesses plus water depth. The curve given by
the white squares was calculated with eq. 6.5 and shows the tectonic component of
subsidence

basin. Based on analyses of this kind it was recognized that the evolution of
subsidence of many sedimentary basins follows very process-specific patterns.
Some of these characteristic patterns and simple models that have been used
to explain them are discussed on the next pages.

The McKenzie- and its Follow up Models. Subsidence analysis has
shown that the tectonic subsidence rate of many sedimentary basins is rapid
at first and then decreases abruptly to continue at a much slower rate for a
much longer time. The model of McKenzie (1978) was one of the first and
certainly most famous model that has successfully explained this pattern.
Despite its simplicity it remains the basis of a large range of more refined
models. Like other models of its time (e.g. Le Pichon et al. 1982) the model
is one-dimensional and describes the subsidence of the surface as a function
of lithospheric extension. Within the model, typical subsidence histories are
divided into two phases: a rift phase and a sag phase. The model holds well in
examples where the phase of physical extension of the lithosphere (rift phase)
is short compared to the duration of the subsequent thermal equilibration (sag
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Figure 6.11. Subsidence of sedimentary basins according to the model of McKenzie
(1978) and that of Jarvis and McKenzie (1980). a Geotherms at three different
times: prior to onset of extension (¢1), at the end of a rapid stretching phase (¢2)
and during subsequent thermal equilibration of the lithosphere (¢3). b Thickness of
the crust (light shaded region) and that of the mantle part of the lithosphere (dark
shaded region) at these three different time steps. ¢ Schematic subsidence curve
corresponding to the cartoons in a and b

phase). In fact, within the original McKenzie (1978) model, the stretching
phase (rift phase) is assumed to have occurred instantaneously (Fig. 6.11).
The amount of subsidence during this instantaneous rifting phase Hy may
be calculated with the relationship:

o o — Pc 1y pocdy 1
s (222) (1) (5225) (-3) - oo

Equation 6.10 is largely analogous to eq. 4.35, which we have used previ-
ously to describe the changes in surface elevation as a function of changed
thicknesses of crust and mantle part of the lithosphere. Therefore, we do not
derive the details of eq. 6.10 here and the reader is referred to sect. 4.4.1.
In eq. 6.10, z. and 2 are the thickness of crust and lithosphere. p¢, p,, and
po are the densities of crust, water and mantle at 0°C. « is the coefficient
of thermal expansion, 7] is the temperature at the base of the lithosphere, §
the stretching parameter of the crust and § that of the mantle part of the
lithosphere. The stretching parameters are defined as the ratio of starting
thickness to stretched thickness and the stretching parameter for the crust 6
is therefore the inverse of the thickening strain f. which we have used in sev-
eral other sections of this book: § = 1/f. (s. sect. 4.2). However, 3 does not
correspond to 1/ fi, but rather to 1/ fm1. Because of this eq. 6.10 looks some-
what different from eq. 4.35, although both may be used to answer similar
questions (Fig. 4.18).
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Eq. 6.10 is already a refined McKenzie model: it allows to explore the
consequence of different amounts of stretching in the crust and in the mantle
lithosphere (s.e. g. Royden and Keen 1980). In the original McKenzie model
& = 5. In other words, the original McKenzie model assumed homogeneous
stretching of the entire lithosphere.

When we discussed eq. 4.35 we saw that the initial ratio of crust to mantle
lithosphere determined if homogeneous thickening of the whole lithosphere
leads to surface uplift or subsidence. The same is true for eq. 6.10 (s. Fig.
6.2, Problem 6.6).

The subsidence described by eq. 6.10 (Fig. 6.12a) is followed by a phase
of thermal equilibration: the sag phase. During this subsequent phase, active
extension has stopped and thickening of the mantle part of the lithosphere
occurs due to cooling. The surface subsides as a consequence of this cool-
ing (Fig. 6.11). This is largely analogous to the surface subsidence associated
with cooling of the oceanic lithosphere (Fig. 3.24). Thus, we can describe this
subsidence with a similar model to the one we have discussed in sect. 3.5.1.
The principle difference to the cooling of oceanic lithosphere arises because
McKenzie assumed the bottom boundary not at infinity, but at depth z;. Be-
cause of this boundary condition at finite depth, the heat conduction equation
may only be solved with the aid of Fourier series (s. sect. B.4). As a conse-
quence, the solution presented below contains trigonometric functions instead
of an error function (s. sect. B.4). The solution is:

Hypg = (%) <§sin(7r/ﬂ)> (1—etie) (6.11)

This relationship describes the subsidence of rift basins during the sag phase
as a function of time ¢. The parameter t.q is the time scale of thermal equili-
bration and is given by: teq = 22/(n?&) (which differs from the time constant
discussed on p. 63 by the factor n2, but is in principle equivalent). While
we will not derive the origin of this equation in any detail, we note that it
should be possible, at least in principle, to follow it from the information given
in previous chapters of this book (s.e.g. eq. 4.69). In contrast to eq. 4.69,
eqg. 6.11 contains no infinite summations, because it is an approximation in
which all terms for n > 1 were omitted. Aside from this, eq. 6.11 (and also
eq. 4.69) describe a similar model to that of eq. 4.45, which we have used
to calculate the water depth in the oceans. Examples of subsidence during
the sag phase are shown in Fig. 6.12b. For very large times, the last term of
eq. 6.11 becomes 1 and the simplified equation may be used to estimate the
total amount of subsidence during the entire sag phase.

e Finite extension. In contrast to the assumptions of the McKenzie model,
many sedimentary basins show evidence that the duration of physical stretch-
ing or rifting of a continent was not instantaneous, but was comparable to
the time scale of diffusive thermal equilibration of the lithosphere, i. e. rifting
is slow and rift and sag phase are, in fact, of similar duration. In order to ac-
count for finite duration of the rifting phase Jarvis and McKenzie (1980) and
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Figure 6.12. a Subsidence of rift basins at the end of the rift phase (H,;f;) and
at the end of the sag phase (H.,y) both as a function of the amount of initial
stretching as given by 4. It is assumed that the lithosphere stretched homogeneously,
i.e. d = B (s. eq. 6.10). The total amount of subsidence is given by the sum of
the two curves. For 8 < 1 the curve go to negative values, i.e. thickening leads
to uplift. b Subsidence during the rift and subsequent sag phase as a function
of time for two different values of 8 (describing different amounts of rifting at
the onset). All curves were calculated using eq. 6.10, eq. 6.11 and the following
values for the variables: z = 125 km; 2z, =35 km; T1=1280°C; po =3 300 k% m~3;
pe=2750kgm™3 py=1000kgm 3 o =3-10"°°C"! and x=10"° m?s~

Cochran (1983) expanded the McKenzie model. Jarvis and McKenzie (1980)
suggested as a rule of thumb that the duration of stretching, ¢, must only be
considered in their model for basin development if the following relationship
holds:

60my
32

If the duration is shorter than time ¢, then it is sufficient to assume that

stretching was instantaneous and occurred prior to any thermal equilibration.

1 2
t< JifB<2 or: t<60my(1—g) JfB>2 . (6.12)

o Two-dimensional models for continental extension. Most rift basins are
one-dimensional in their geometry, i. e. they are long compared to their width.
If however, lithospheric stretching occurs two-dimensionally so that basins
extend into two direction, then the modeling of subsidence during the sag
phase must account for two-dimensional heat conduction. Some of the first
two-dimensional models describing this were designed by Buck et al. (1988),
Issler et al. (1989) and Wees et al. (1992). Those models assume that exten-
sion occurs symmetrically about the rifting axis.

e Heterogeneous extension. One of the first models describing asymmetric
extension of the lithosphere was designed by Oxburgh (1982). Oxburgh as-
sumed that both the crust and the mantle part of the lithosphere extend
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homogeneously, but that the location of maximum crustal extension is lat-
erally displaced from the location of maximum extension of the mantle part
of the lithosphere. Wernicke (1985) and Lister et al. (1986) were among the
first who explored the consequences of simple shear geometries on lithospheric
extension processes by assuming low-angle normal faults that transect the en-
tire lithosphere. These models were based on observations in the Basin and
Range province of the western US. Lister and Etheridge (1989) and Lister
et al. (1991) applied this model to the east coast of Australia in order to
explain the simultaneous uplift of the Australian Great Dividing Range and
the subsidence of continental lithosphere at the west coast of New Zealand
(Fig. 6.13).

An elegant analytical solution describing some aspects of the models of
Wernicke and Lister was published by Voorhoeve and Houseman (1988).
Some geometric considerations of extension models based on heterogeneous
stretching geometries may be found in Buck et al. (1988).

Dynamic Extension Models. In all previous paragraphs we have consid-
ered the evolution of extension and sedimentary basin formation purely on the
basis of kinematic and thermal assumptions. We will now consider dynamic
models, that is, models for continental extension that are based on mechani-
cal assumptions. One of the many questions that can only be explained with
dynamical models relates to the causes for terminating extension: we observe
that some rift basins extend until rifting occurs and a passive continental

<] Pm / E>

| B

uplift subsidence

Figure 6.13. Extension of the lithosphere by normal faulting along a low angle
normal fault that transects the entire lithosphere. The upper cartoon shows the
situation at the onset of extension, the lower cartoon after full separation of the two
plates and the development of passive continental margins. Note that at location A,
extension only decreased the thickness of the mantle part of the lithosphere, while
at location B, extension only decreased the thickness of the crust. Lister et al.
(1986) and Wernicke (1985) interpreted that the uplift of the left hand plate at
location A (e.g. eastern Australia) and the subsidence of the right hand plate at
location B (i.e. western New Zealand) are only caused by the changed thickness
ratio of crust and mantle lithosphere at these two locations
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margin forms (sect. 2.4.4), while in others the extension was limited. Exam-
ples for the former are the central African rift or the Red Sea, examples for
the latter include the Michigan Basin in the US, the Cooper Basin in Aus-
tralia of the Pannonian Basin in Europe. There is two fundamentally different
processes that may be responsible for the termination of extension:

1. External reasons: In this case the termination of extension has nothing to
do with the plate itself and is only a function of processes in the surround-
ing plates. Extension is controlled by the boundary conditions. The forces
or velocities with which a plate is pulled apart and a basin is formed may
simply decrease.

2. Internal reasons: Extension may terminate because the rheology of the
plate changes to become stronger. In this case no changes in the boundary
conditions need to occur; the plate boundary forces may remain constant.
The extension process itself is self limiting (s. sect. 6.2.2).

Analogous to the terms active and passive extension, these two processes
might be called active and passive termination to extension. Which of these
two mechanisms caused the termination of a particular basin is a question
which often can only be answered using dynamical models. Some of the first
dynamic models for continental extension were those of Bassi (1991), Bassi
et al. (1993) and Cloetingh et al. (1995). These models showed that the
extension geometry is strongly dependent on the tectonic processes in a plate
that occurred prior to the onset of extension. For example, they showed that
continental extension onsets most easily in regions of thickened continental
crust, as this is the region where the plate is the weakest (s. sect. 5.2.1, 6.3.6;
Houseman and England 1986b). As another example, it was shown by Buck
(1991) that the width of continental rift basins depends on the geothermal
gradient, and ultimately on the rheology. One of the more elegant models
explaining the temporal limitation of extension processes is that of Houseman
and England (1986b). In the following section we discuss this model in some
more detail.

e The model of Houseman and England. The one-dimensional model for con-
tinental extension by Houseman and England (1986b) is an elegantly simple
model that can be used to illustrate why extension can be self limiting. The
model is a coupled thermal and mechanical model in which extension is a
function of both thermal and rheological development. For this, the authors
assumed a model geotherm and a model rheology for the lithosphere. Active
extension is assumed to be driven by upwelling asthenosphere of a mantle
plume which initially lifted the entire continental plate by the amount Hy
(Fig. 6.14a). Note that the extension is called “active” because it is triggered
by potential energy of the lithosphere that was created by an external pro-
cess. Fig. 6.15 illustrates the evolution of extension in response to this uplift
(s. also Fig. 5.33). According to the calculations of Houseman and England
(1986Db) this extension can ultimately lead to three different scenarios:
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Figure 6.14. Possible evolution of an active extension process initiated by uplifting
of the entire lithosphere for the amount Hy by upwelling asthenospheric material
over mantle plumes. a Starting geometry at the onset of extension. b If the ex-
tensional forces are large enough, then the lithosphere is thinned and thermally
weakened until a rift zone develops. ¢ If the extensional forces are small, thickening
(and strengthening) of the mantle lithosphere by cooling is more rapid than physical
stretching. The extension process is self limiting. Note that the mantle lithosphere
in c¢ is thickest in the region of maximum crustal thinning

1. If Hy is smaller than about 100 m, then the extensional forces caused by
the excess potential energy are too small to be reflected in any appreciable
strain rate.

2. If Hy is of the order of several hundreds of meters, then the extension is
self limiting. The extensional forces are large enough to cause extension at
an appreciable rate, but this rate is still slower than the rate of thickening
of the mantle lithosphere by cooling (as in Fig. 6.11 between t» and t3).
Thus, the mantle part of the lithosphere thickens, while the crust thins.
This leads to a successive strengthening of the lithosphere (because the
rheology of the mantle lithosphere is much stronger than that of the crust;
s. sect. 5.2.2) and ultimately to a termination of the extension process
(thick lines in Fig. 6.15; Fig. 6.14c).

3. If Hy is of the order of one or even several kilometers, then the exten-
sion rates are rapid enough so that physical extension outweighs thermal
thickening (as in Fig. 6.11 between 1 and t3). The geotherm steepens, the
lithosphere is thermally weakened and the excess potential energy leads to
an acceleration of the extension process. Extension leads to rifting and ulti-
mately to the development of a new passive margin (thin lines in Fig. 6.15;
Fig. 6.14b).

The basic principles of the force balance underlying the scenarios discussed
above will be explained in sect. 5.3.1 and 6.2.2. Models equivalent to the
model of Houseman and England (1986b) but with application to continental
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Figure 6.15. Two model evolutions of continental extension according to the model
of Houseman and England (1986b). Thick lines show a self limiting extension pro-
cess. Thin lines are for conditions that ultimately lead to rifting. a the evolution
of the stretching factor; b evolution of surface elevation; ¢ evolution of viscosity;
d evolution of surface heat flow (normalized to that at the onset of extension). The
scaling of the vertical axes of all four plots depends strongly on the model assump-
tions. The shoulder in the evolution of surface elevation as seen for the thick line
in b corresponds to the transition from rift phase to sag phase

collision will be discussed in the context of Fig. 6.23 (Sonder and England
1986; Molnar and Lyon-Caen 1989).

6.2 Continents in Collision

When two plates of continental lithosphere move toward each other, they
will eventually collide. In contrast to the collision between two oceanic plates
(during which one of the plate generally dives below the other and no in-
tense deformation occurs in either of the plates), continental collision leads
to intense deformation and interfingering of both plates (Fig. 2.22). This fun-
damental difference between the collision of continental and oceanic plates
occurs because of three reasons:

— because of their different thickness,



6.2 - Continents in Collision 285

— because of their different strength,
— because of their different densities.

Continental lithosphere is much thicker, much weaker much less dense than
oceanic lithosphere. The lower density and larger thickness of continental
plates make it more difficult to subduct them underneath each other. How-
ever, importantly, the weakness of continental lithosphere allows internal per-
vasive deformation including nappe stacking, folding and more, while the
much larger strength of oceanic lithosphere does not allow such processes.
This internal deformation leads to mountain building, metamorphism and a
series of other tectonic events which we can observe today in active orogens
and which are preserved for us in the metamorphic rocks of ancient orogens.

Although only a relatively small number of all plate boundaries around
the globe are formed by collisional orogens, such orogens are among the
best studied tectonic features of our planet. This is certainly in part because
continental collision processes form some of the most eye catching features on
the planet: the spectacular mountain ranges of the Himalayas or the European
Alps. In this section we deal with aspects of the thermal and dynamical
evolution of such orogens.

6.2.1 Thermal Evolution of Collisional Orogens

It is widely observed that collision of two continental plates leads to heating
of rocks at depth. In present day orogens this is evidenced by increased heat
flow. In ancient orogens it is documented by the preservation of metamor-
phic rocks from a well known range of metamorphic facies. However, heating
and convergent deformation need not occur simultaneously. In fact, in many
convergent orogens it is observed that peak metamorphism occurred later
than the deformation phases that were responsible for the crustal thickening.
359 Many aspects of this typical relationship between deformation and meta-
morphism may be explained by a simple comparison of the duration of three
processes: 1. The duration of crustal thickening processes; 2. The duration of
thermal equilibration of the crust and 3. the time scale of exhumation pro-
cesses. A comparison of these three time scales was the basis of the model
by England and Richardson (1977) which is one of the first elegant models
unifying deformation and metamorphic processes in collisional orogens into a
single model. This model will form the basis of the following section. Precur-
sors of the model were already published by Oxburgh and Turcotte (1974)
as well as Bickle et al. (1975) and the model was quantified later by England
and Thompson (1984), but the model is often referred to as the “England and
Richardson” model and we use this name here. Today, their concept is still
the standard model to explain “regional” or: “Barrovian” metamorphism (s.
Fig. 7.1).
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Fundamentals of the Thermal Evolution. England and Richardson
(1977) recognized that the following relationships are fundamental to the
thermal characteristics of collisional orogens (s. also Ridley 1989):

— Thickening of the crust is substantially more rapid than thermal equili-
bration on the scale of the crust. The former generally occurs at rates of
the order of ¢ ~ 10714 s~1 (i. e. doubling the crustal thickness in less than
10 my), the latter takes of the order of several tens of my (as given by
eq. 3.17).

— The time scale of thermal equilibration is comparable to that of many
exhumation processes, in particular to erosion: both often take several
tens of my.

The time scale of deformation and the time scale of exhumation are functions
of the geological boundary conditions of the orogen in question and may vary.
Their absolute and relative magnitudes are known to us from field observa-
tions. In contrast, the time scale of thermal equilibration is independent of the
geological processes. It is given directly by the laws of heat conduction and
depends largely on the length scale of the equilibrating body (s. sect. 3.1.4).
These relationships give rise to the following stages in the tectonic evolution
of collisional orogens:
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Figure 6.16. Cartoon illustrating the thermal changes that occur in the crust
as the consequence of rapid crustal thickening. a and b show two end member
scenarios of crustal thickening geometries: homogeneous crustal thickening in a
and overthrusting of the whole crust (block 1 over block 2) in b. In each a and b
a cartoon of a crustal column is shown on the left (the radioactive heat producing
part of the crust is shown with the coarse dots) and a corresponding temperature
- depth (T-z) diagram is shown on the right. The T-z diagrams show geotherms
before thickening (labeled 7) and after thickening but before thermal equilibration
(labeled ). The dashed line in b is the geotherm during early subsequent thermal
equilibration. It shows that the “saw tooth geotherm” has rapidly equilibrated to
a T-z profile not unlike ¢ in a (rapidly in comparison to the overall duration of
subsequent thermal equilibration). Thus, the overall thermal evolution of thickened
crust is robust towards the initial thickening geometry. The vertical arrow between i
and 4 in a indicates the T-z path of a rock during thickening. The horizontal arrow
shows that thickening leads to cooling at a constant depth
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e Thermal evolution during thickening. The fact that continental deforma-
tion is typically much more rapid than thermal equilibration on the length
scale of the crust has two immediate consequences: 1. Thickening leads to
burial of rocks without appreciable heating. This is indicated in Fig. 6.16a by
the small vertical arrow in the T-z-diagram. 2. From the point of view of an
Eulerian observer the crust cools. This is indicated in Fig. 6.16a by the small
horizontal arrow in the T-z-diagram. Most of the interplay of heating and
cooling mechanisms that governs the thermal evolution of collisional orogens
occurs after the thickening. In order to understand this interplay it is useful
to discuss heating and cooling mechanisms separately.

e Heating mechanisms following thickening. There are two mechanisms that
lead to heating:

1. Prior to thickening the stable gotherm formed an equilibrium between
surface heat flow out of the crust, the heat flow from the mantle into the
crust and the radiogenic heat production én the crust. This equilibrium
was perturbed by the thickening process. The geotherm was cooled. Given
that the mantle heat flow does not change, heating will occur to reestablish
the equilibrium geotherm.

2. Thickening of the crust increases the total amount of radiogenic elements
in each vertical column the crust (coarse dotted part in Fig. 6.16). This
increased radiogenic heat production has the consequence that the new
equilibrium geotherm will have a steeper gradient than before. Heating
will therefore occur in order to attain an equilibrium beyond the initial
stage.

e Cooling mechanisms following thickening. Crustal thickening leads not only
to heating, but also to mountain building. This is followed by erosion and
extension processes thinning the crust and leading to exhumation of meta-
morphic rocks. In analogy to the last paragraph, there is two cooling processes
that interact with the heating processes:

1. Denudation of the upper crust removes the heat producing elements from
the upper crust. This has the consequence that the thermal equilibrium
heat flow decreases in the whole crust.

2. All rocks must cool to the surface temperature by the time they reach
the surface. The closer rocks get exhumed to the surface, the stronger the
cooling influence of this surface becomes.

The thermal evolution of rocks in a given orogen depends on the interplay
and competition of the heating and cooling mechanisms listed in the last
paragraphs. Usually, heating mechanisms outweigh cooling mechanisms in
the early phase following the crustal thickening. During the later evolution,
in particular after the onset of denudation at the surface, the heating mech-
anisms wane and the influence of cooling mechanisms increases. Eventually,
cooling processes win over the heating processes and rocks begin to cool
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Figure 6.17. Geotherms (thin lines) and T-
z-paths (thick lines) of rocks in typical colli-
sional orogens as predicted by the model of
England and Richardson (1977). ¢ is the start-
ing geotherm at the onset of collision, ¢; the
geotherm immediately after thickening, ta, ts
and ¢4 geotherms at later time steps. The Moho ~35 km—
heat flow (given by the slope of the lower tip to
of all geotherms) is assumed to remain constant
throughout the evolution. The black and white
dots that lie on each geotherm label the evolu-
tion of rocks at two different depths. Note that B
the rocks of the shallower T-z-path (black dots)
experience their thermal peak at time ¢ and yZ 2
cool thereafter, while the rocks at larger depths
(white dots) reach their metamorphic thermal
peak only at time ¢4

?

t4

(s. Fig. 6.17). The competition between these various heating and cooling
mechanisms has the consequence that the T-z-paths of rocks in collisional
orogens have smooth curvature in a T-z diagram. They follow this curvature
in a clockwise sense if the depth axis is drawn upwards and the temperature
axis is drawn to the right (Fig. 7.7). Depending on the relative importance
of heating and cooling mechanism, such paths are more or less tight in a T-
z diagram (Fig. 6.17). The slope and curvature of T-z paths is therefore an
important indicator for tectonic processes (Fig. 7.5). It is the art of the meta-
morphic petrologist to extract such information from metamorphic mineral
equilibria.

The Model of England and Thompson. England and Thompson (1984)
designed a quantitative numerical model based on the “England and Richard-
son” model discussed above. Their model is one of the most simple and intu-
itive models that can be used to explain the shape and nature of metamorphic
P-T paths in collisional orogens. Thus, we will discuss the assumptions and
results of their model in some more detail here.

o Thermal assumptions. The thermal assumptions made by England and
Thompson (1984) to describe the evolution of collisional orogens are those
necessary to calculate an initial geotherm with eq. 3.23 (s. sect. 3.4.3. Fol-
lowing boundary conditions are assumed:

— The temperature at the surface of earth T is constant.
— The mantle heat flow at the Moho ¢, is also constant.

These boundary conditions are assumed to remain the same throughout the
thermal evolution. It is also assumed that the radiogenic heat production is
of the constant value S;,q down to the depth 2z..9= 15 km and is zero below
that (sect. 3.4.3). With those assumptions, integration of eq. 3.23 gives a
description of a stable geotherm as given by eq. 3.65.



6.2 - Continents in Collision 289

The numerical values needed in this equation are those for ¢ and S;aq.
England and Thompson chose them so that the surface heat flow g5 (which is
one of the few thermal parameters that may be measured directly) is between
0.045 and 0.075 W m~2, which is reasonable for continental shield regions
(Table 6.1).

e Heat flow relationships. The relationship between surface heat flow, man-
tle heat flow and radioactive heat production can be illustrated clearly by
interpreting the surface heat flow g5 as the sum of the mantle heat flow g,
and the heat flow caused by radiogenic heat production gaq:

gs = gm + Grad - (6.13)

In this equation, the radiogenic heat flow is given by: ¢aqa = Srad2rad, as
we explained when we discussed Fig. 3.17 (see also eq. 3.61). England and
Thompson (1984) assumed that the radiogenically caused heat flow is com-
parable to the mantle heat flow (¢raqa & ¢m; Table 6.1) and that the mantle
heat flow remains unchanged, regardless of the thickness of the crust (the
problems and implications of this are discussed on p. 293).

Thickening of the crust without thickening of the mantle part of the litho-
sphere doubles the radiogenic heat flow (because zraq is doubled) but does
nothing to the mantle heat flow. We can write:

Gs = Qm + 2Graa - (614)

Thus, the surface heat flow in thermal equilibrium after thickening is expected
to be of the order of 1.5 times as high as before if ¢raq0 = ¢m (Eq. 6.13).

However, if the mantle part of the lithosphere thickens together with the
crust (homogeneous lithospheric thickening), then this halves the heat flow
through the Moho (as the mantle lithosphere is thermally defined). We can
then write:

Table 6.1. Three different simple but geologically realistic assumptions about the
distribution of heat sources in the crust (after England and Thompson 1984). The
mantle heat flow ¢, and the radiogenic heat production gaq are chosen in a way so
that they give three different values for surface heat flow covering a realistic range of
measured surface heat flows. The thickness of the heat producing layer in the crust
is always assumed to be 254 = 15 km. England and Thompson have coupled these
three heat source distributions with three different thermal conductivities (1.5, 2.25
and 3.0 Wm~!K~1!) to obtain a total of nine groups of T-z-paths

gs (Wm=3) Srad ((107% Wm™3) Grad (Wm™3) gm (Wm™32)
0.045 1.666 0.025 0.020
0.060 2.000 0.030 0.030

0.075 2.333 0.035 0.040
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g = %m + 2raa - (6.15)
Thus, if grag = ¢m and the entire lithosphere thickens to double thickness,
the surface heat flow in thermal equilibrium and after thickening would be
only 1.25 times as large as the value given by Eq. 6.13. If ¢raq = ¢m/2, then
thickening or thinning of the lithosphere as a whole does not change the
surface heat flow at all.

e Kinematic assumptions. England and Thompson (1984) made the follow-
ing simple assumptions about the kinematic evolution of collisional orogens
(s. Fig. 6.18):

— Thickening of the crust occurs homogeneously and instantaneously at the
start of an orogenic cycle (there is no separation between ty and #; in
Fig. 6.18; s. p. 286). This assumption was made because many observations
of plate tectonic velocities show that the rate of continental deformation
is indeed about an one or two orders of magnitude more rapid than the
lifetime of an orogen (at rates of centimeters per year, crustal thickening
events last only few millions of years, while orogenic cycles last of the order
of tens to one hundred million years).

— Following initial thickening, there is no vertical motion in the crust for
about 20 my (Fig. 6.18). This assumption was made based on the obser-
vation that erosion and extension (causing the most important vertical
motions in orogens) do not commence with the onset of thickening, but
only once substantial topography is developed and potential energy is cre-
ated.

— After 20 my erosion sets in. Denudation of the thickened crust is linear in
time and lasts for several tens of my. While this assumption may be also
an extreme simplification, it is the most simple assumption that can be
made for the orogen to return to its normal thickens after some tens of
my.

These three kinematic assumptions are illustrated in Fig. 6.18. The z-t-paths
in this figure correspond to homogeneous thickening. Fig. 6.16 shows the
thickening geometry and geotherms during the initial thickening process for
two end member scenarios of thickening explored by England and Thompson
(1984): homogeneous thickening and stacking of the entire crust. The dashed
curve in Fig. 6.16b is drawn for a short time (some few my) after thickening
by thrusting. It shows that the subsequent T-z-paths of rocks are quite robust
towards the geometry of initial thickening. This justifies the assumption of
the most simple of all thickening geometries.

e Model results and application. Fig. 6.17 illustrates the thermal evolution of
a rock in a collisional orogen according to the model of England and Richard-
son (1977). According to this figure and the model, the involved processes
occur in the following order:
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Figure 6.18. Kinematic
assumptions of the continental
collision model of England and
Thompson (1984). The
depth-time-(z-t)-paths A-E
correspond to 5 different rocks
that originally (before
thickening) were located at the
depths indicated by the black
dots. The labeled times tg to ¢4
correspond to those of Fig. 6.17

tolt'l tz t3 t4

1. At the onset of the evolution (time #;) crustal thickening causes burial of
rocks to great depths. In metamorphic rocks this is likely to be documented
by an early high pressure metamorphic event.

2. Some tens of my later rocks reach their thermal metamorphic peak at mid-
crustal depths. In Fig. 6.17 it may be seen that, depending on crustal level
of the rocks, this occurs at times £3 or £4. In metamorphic rocks this stage
may be documented by the metamorphic peak paragenesis.

3. Following the thermal peak, T'-z-paths are first characterized by isothermal
exhumation and later by cooling and finally exhumation to the surface
(s. a. sect. 7.3).

This evolution is shifted in time for different crustal levels (s. sect. 7.4.1).

In Fig. 6.17 cooling of the upper crust commences at time t3, while the
lower crust heats at least until time ¢y. Overall, there is a positive cor-
relation between metamorphic grade and the time of metamorphism: The
higher the metamorphic grade of a rock, the later its peak metamorphism
occurred. For contact metamorphic rocks this relationship is exactly the op-
posite (sect. 3.6.2). We can conclude that the relationship between meta-
morphic grade and time of peak metamorphism is an important tool for the
interpretation of heat sources of metamorphism (s. sect. 7.4.2).

The space, time and grade relationships predicted by the model discussed
above (and shown in Fig. 6.17) are documented in the eastern Alps. There,
Cretaceous high pressure parageneses are overprinted by mid Tertiary am-
phibolite facies parageneses. This observation was made by Oxburgh and his
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students in the early seventies of last century and formed the basis of the
model discussed here (e. g. Oxburgh and Turcotte 1974).

e An example of some calculated T-z-paths. Fig. 6.19a,b shows depth-time
and temperature-depth paths calculated with the model discussed above.
We can see that these paths pass through conditions typical of Barrovian
metamorphism (s. Fig. 7.1). Metamorphic peak temperatures between 600°C
and 800°C are measured at metamorphic peak depths of 20-40 km in many
regional metamorphic terrains. However, the temperatures that the model
predicts for the lower crust are unrealistically high. This is indeed a major
problem of the “England and Richardson” and “England and Thompson”
models. It illustrates that — although the model is fantastic to teach us the
fundamental relationships governing the thermal evolution of convergent oro-
gens — it required refinement for more realistic modeling.

More Refined Thermal Modeling. The model discussed above has two
important limitations that can be improved upon, even if we want to retain
a one-dimensional model geometry:

— The model does not allow for simultaneous deformation and metamor-
phism as observed in many orogens.

— By assuming a constant mantle heat flow at the Moho, the model does not
allow for any processes in the mantle part of the lithosphere.

The influence of both is discussed here.

e Simultaneous deformation and metamorphism. Fig. 6.19¢,d show T-t- and
T-z-paths calculated assuming that deformation occurs simultaneously with
heating, in particular with the kinematic assumptions discussed in sect. 4.3.4.
We can see that there are important differences between the T-z-paths shown
in b and d:

— If deformation, exhumation and thermal development occur on similar
time scales, then metamorphic rocks reach their maximum depth and peak
metamorphic temperature roughly at the same time (Fig. 6.19d). In con-
trast, if deformation of the orogen is short compared to the thermal devel-
opment, then metamorphic depth and temperature peak are separated in
time (Fig. 6.19b).

— The pro- and retrograde sections of the T-z-paths are distinctly differ-
ent if deformation precedes thermal development (Fig. 6.19b), but are
much more similar if deformation and metamorphism occur simultane-
ously (Fig. 6.19d).

These differences may form useful criteria for the tectonic interpretation of a
metamorphic terrain for which the T-z- and T-t-path is roughly known, but
any other geodynamic information is unknown.
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Figure 6.19. Kinematic and thermal evolution of rocks in collisional orogens: a
and b show depth-time (z-¢) and depth-temperature (2-T') curves using the kine-
matic assumptions of England and Thompson (1984); ¢ and d show corresponding
paths assuming deformation, exhumation and thermal evolution occur simultane-
ously (as described in terms of a simple model in sect. 4.3.4 (eq. 4.19) (Stiiwe and
Barr 1998)

e The influence of the mantle lithosphere. Within the “England and Richard-
son” the mantle heat flow through the Moho is assumed to remain constant
during orogenesis. Considering the thermal definition of the mantle part of
the lithosphere, this implicitly defines the thickness of the mantle part of
the lithosphere (Fig. 6.20; s. also Fig. 3.20). Within the model heating of the
crust causes thinning of the mantle part of the lithosphere. This in turn leads
ultimately to unrealistically high temperatures in the lower crust (Fig. 6.19)
and has some quite peculiar implications for the evolution of surface eleva-
tion and the dynamic state of orogens as a whole (Fig. 3.20 and Fig. 4.18).
For example, England (1987) and Ridley (1989) showed that orogens with
geotherms as predicted by the England and Thompson (1984) model, would
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Mantle lithosphere

Figure 6.20. The thickness evolution of the lithosphere according to the models of
England and Richardson (1977) and England and Thompson (1984). The thickness
evolution of the erust is explicitly prescribed by the model. The thickness evolution
of the mantle part of the lithosphere is determined implicitly by the lower boundary
condition of constant heat flow at the Moho. The labeled times o to t3 correspond
to the time steps labeled in Fig. 6.17 and 6.18

be mechanically extremely unstable (s. sect. 6.2.2). Interestingly, the implied
evolution of the thickness of crust and mantle part of the lithosphere has a
lot of similarities with an orogenic evolution characterized by early homo-
geneous thickening of the whole lithosphere and later delamination of the
mantle part of the lithosphere (s. also sect. 6.3.2). Whatever the case may
be, we may conclude that more refined models for the thermal evolution of
the crust must consider the thickness of the mantle part of the lithosphere,
even in one dimensional models.

6.2.2 Mechanical Description of Colliding Continents

So far we have considered the collision of continents only in terms of their
thermal (sect. 6.2.1) and kinematic (sect. 4.3.4) evolution. If we want to con-
sider their mechanical evolution, we need to consider the force balance equa-
tions we discussed on page 218 and probably use a constitutive relationship
to relate forces to motions (or stresses to strain rates) (sect. 5.3.1). In thermo
mechanical descriptions, thermal processes and mechanical evolution are con-
sidered simultaneously. If the mechanical problem we are interested in is a
three-dimensional one, then all three equations of mechanical equilibrium
must be integrated. Because this is often very difficult and even more dif-
ficult to interpret, most models try to reduce the explain the mechanics of
orogens in two dimensional plan view or in cross section. We dicuss such two
dimensional mechanical models and their implicit assumptions later in this
chapter. However, in the first part of this section we make it even simpler and
make a series of one dimensional considerations about mechanical equilibria
in orogens.

e Boundary conditions to orogens. Orogens may be subject to either “stress”
or “velocity” type boundary conditions that drive their deformation and it
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Figure 6.21. Illustration of the fact that the same boundary conditions may be
reflected in two completely different stress states and strain fields (after Jackson
and McKenzie 1988; England and Jackson 1989); (for an interpretation of the fault
plane solutions see p. 227) . The processes in the left diagram may best be illustrated
on a vertical section. The processes in the right hand diagram are best described
with a plane strain model

is important to discriminate between the two (s. Fig. 5.24). The India-Asia
collision is an example for an orogenesis subject to a “constant velocity” type
boundary condition: The convergence rate between the two plates has been
largely constant over the last 30 million years, even though the potential
energy of the Himalayas has increased dramatically during this time and is
now opposing the driving force of the Indian Plate.

o Plan view or cross section ? It is also important to realize that the same
boundary conditions may lead to very different strain distributions. Fig. 6.21
illustrates an example. In both cartoons of this figure plate A moves towards
plate B. However, in the example on the left, the convergence is compensated
by overthrusting. In the example on the right, the convergence leads to oro-
gen parallel extension. Although the overall velocity across the boundaries is
the same, the strains are different. Clearly, the two geometries are different,
because the boundary conditions in the wvertical direction are different.
Force Balances in Orogens. Proper force balance equations were dis-
cussed in other sections of this book (e.g. eq. 5.18). Here, we want to in-
troduce a more intuitive way to formulate a force balance for orgens that we
can use without too much algebra. For this we divide (very loosely and not
very precisely) the forces that keep orogens in mechanical equilibrium into
three groups:

1. Driving forces: Driving forces are forces applied from the outside to an
orogen, for example ridge push or slab pull. In the following we abbrevi-
ate these forces with Fy. Some of these forces were already discussed in
sect. 5.3.2.

2. Internal forces: These are the forces internal to the lithosphere which resist
the driving forces and are limited by the inherent strength of the rocks in
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the lithosphere. These are the forces discussed in detail in sect. 5.2.1. As
we are often interested in the whole lithosphere we often use the vertically
integrated strength of the lithosphere, which has the units of force/meter
and was explained on p. 239. We represent this in the following with Fj.
3. Potential energy: Forces resulting from the potential energy difference of
an orogen relative to its surroundings are also called gravitational stresses
or: horizontal buoyancy forces. We denote those in the following with Fi,.

This division is not completely sound, as many of the plate tectonic driving
forces themselves are also caused by potential energy differences and many
of the other forces are also coupled. However, it helps us to understand the
balance of forces in orogens which we can write as:

F=F,—F, . (6.16)

Basically this equation states that the strength of the lithosphere balances
the effective force applied to the orogen, with the “effective force” being
the difference between the external driving force causing convergence and
the buoyancy force causing extension. We will discuss this equation in some
detail in a few pages. However, first we want to discuss the process of building
up potential energy in an orogen in some more detail. Note also that all
orogenic forces are usually not given in the units of force (N), but that they
are discussed in terms of force per meter (Nm~1) and that the unit of “force
per meter” is equivalent to the units of “potential energy per area” or the
units of “stress x distance”.

e Building up potential energy. In sect. 5.3.1 we showed that the potential
energy of orogens grows with the square of the surface elevation and with the
square of the thickness of the orogenic root. Thus, it takes significantly more
energy to increase the surface elevation of a high mountain range by one meter
than it takes to increase the elevation of a low range by the same amount
(Molnar and Tapponier 1978). As a consequence, the height of a mountain
range and the thickness of an orogenic root are limited, if the driving force
is a constant. This limiting elevation is reached when the potential energy of
the range per square meter area is exactly as large as the tectonic driving
force per meter length of orogen. Then, a steady state equilibrium of the
forces is reached.

In order to understand how this equilibrium is reached, consider Fig. 6.22a,
which illustrates a very simple model orogen. The left of this diagram shows
normal thick crust of the thickness z. and the density p.. On the right,
this diagram shows an elevated mountain range in isostatic equilibrium of
the elevation H. The diagram is equivalent to Fig. 5.27. The difference in
potential energy between the two mountain range and the foreland per square
meter of area is given by eq. 5.56 and 5.57. Let us also recall that AE}, is
a potential energy per area and has the units of Jm~™2 and may also be
interpreted as the mean net horizontal force exerted by the mountain range
onto the foreland per meter length of orogen.
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By analogy, the potential energy per meter length of orogen may also be
interpreted as the product of the potential energy per area times the width
of the mountain range I. From eq. 5.57 we can derive directly that:

AE, -1 = pegHI(H/2 + 2. + w/2) . (6.17)

The subscripts are used to emphasize that we are dealing with the units
of potential energy difference per meter , while the AE, that we used in
eq. 5.56 and eq. 5.57 has the units of potential energy difference per area.
Further growth of the mountain range may now proceed either in the vertical
direction (Fig. 6.22b) or in the horizontal direction (Fig. 6.22¢). If the crust
ingide the orogen is doubled in thickness, then the potential energy of the
range per meter grows to the following value:

AEMEY = 95 gHI(H + 2. + w) . (6.18)

p,m~1 T

If the growth of the mountain range is by doubling its width (at constant
thickness, as shown in Fig. 6.22c¢), then the potential energy per meter growth
to the following value:

AEYSS, = 2pcgHI(H[2 + 2c + w/2) . (6.19)

-1 —
, 1N

The difference of the potential energy increases between the two deformation
styles is given by the difference between eq. 6.18 and eq. 6.19:
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Figure 6.22. a Cartoon of a collisional orogen showing crust of normal thickness
on the left and a mountain range on the right. Further displacement of the crust
from left to right is compensated in b by further thickening and in ¢ by lateral
growth of the range. The difference in deformation style between b and c causes a
significant difference of the potential energy of the mountain range (see eqgs. 6.17
to 6.20) (s. also Fig. 5.27; after Molnar and Lyon-Caen 1988)
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AEMER | AEYe | = pogHI(H +w) = (%) glH? . (6.20)
The last simplification in the equation above was performed using the isostasy
condition Apw = Hp. that we also used in eq. 5.57. Eq. 6.20 shows us that it
takes significantly less energy to thicken the crust in the foreland of a moun-
tain belt (i.e. to widen the range) than it takes to increase the thickness of the
crust in the mountain range itself (i.e. to increase the elevation of the range).
Because of this, it is not necessary that convergence between two plates will
stop when the gravitational extensional force Fj, has reached the same mag-
nitude as the tectonic driving force Fy acting towards the orogen. It is just
that the convergence cannot be compensated anymore by vertical growth of
the range, but will be compensated by {ateral growth of the range towards the
fore- or hinterland. Thus, active deformation in the range itself will come to a
halt, the zone of active deformation propagates into the fore- and hinterland.
A plateau will form in the center. In the process, the transition zone between
the region where the largest principle stress is oriented horizontally and the
region where it is oriented vertically will shift also towards the foreland.

Note that - despite these dramatic changes of the deformation and stress
fields in the orogen - nothing has changed in the overall kinematics or stresses
of the collision zone as a whole (Molnar and Lyon-Caen 1988) (s. p. 301): The
driving forces have remained constant and so has the convergence between
the two colliding plates. Understanding these relationships should therefore
serve as a warning to structural geologists who are tempted to infer the overall
kinematics of an ancient orogen from field observations on the kinematics of
a few rocks.

e FEvolution of orogens in the equilibrium of forces. The force balance we
have discussed in the last paragraphs may be summarized in the following
equation:

Fg=F—F, . (6.21)

which we already introduced in eq. 6.16. There, Fj is the tectonic driving force
per meter length of orogen, Fj, is the gravitational stress times the thickness
of the lithosphere. Fj, is also called horizontal buoyancy force, or: extensional
force or: potential energy per area. The difference between the driving force
and the horizontal buoyancy force is the effective driving force applied to
a continent Feg. Equation 6.21 is often referred to as the “orogenic force
balance”. Note that — although this equation is called a “force balance” — it
really balances parameters that have the units of force per meter or stress x
meter. Eq. 6.21 is often also written as:

Fg=Fy—-F,=F . (6.22)

There, F is the vertically integrated strength of the lithosphere in Nm~! and
corresponds to the area under the failure envelope discussed in Figs. 5.13,
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Figure 6.23. Schematic

illustration of the evolution of a | 3km
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5.14 and several others. Note that F] can only equal the left hand side of
the equation if the orogen is deforming (i.e. at the point of failure). When
For < F, there is no deformation. However, we assume that active orogens
are always on the point of failure so that Fer = Fi (sect. 5.2.1, eq. 5.48).
The bulk of the lithosphere is dominated by viscous deformation mechanisms
where deviatoric stress and strain rate are proportional. Thus, an orogen will
always deform with a strain rate that is just large enough so that the vertically
integrated flow stresses balance exactly the effective driving force (per meter).
If the strain rate would be lower than this, the integrated strength of the
lithosphere would be smaller than the effective driving force (per meter) and
the deformation rate would increase. Conversely, if the strain rate would be
larger than the effective driving force, then the strength would be too large
for any deformation to occur. Note also that, within eq. 6.22, the integrated
failure strength of the lithosphere is zero when the effective driving force is
ZEero.

Because of the balance described by eq. 6.21 it is possible to solve this
equation for strain rate of an orogen, if a relationship is assumed that re-
lates stress to strain rate (e.g. a viscous flow law). Such an analysis has been
done by a number of authors and provides insights into the basic principles
of the mechanical evolution of collisional orogens (e.g. Sonder and England
1986; Sandiford et al. 1991; Stiiwe et al. 1993a). If the tectonic driving force is
assumed to be constant, then such orogenic evolutions track towards an equi-
librium where Fi, = Fy and Fo = Fi = 0 (Fig. 6.23). Thus, collisional orogens
are self limiting. As such, collisional orogens are fundamentally different from
extensional orogens, which are not necessarily self limiting (sect. 6.1.4).

The limiting values for a range of geodynamical parameters (e.g. surface
elevation, crustal thickness) depend not only in the driving force Fy, but also
on the integrated strength of the lithosphere. This may be illustrated if we
reformulate eq. 6.22 to:

Fi=R+F, . (6.23)
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Remember that F}, is a direct function of the surface elevation and the thick-
ness of the lithosphere. Thus, if the strength (F]) of the lithosphere becomes
smaller, for example because the lithosphere becomes warmer or the material
changes due to metamorphism, then it is possible that the potential energy
of the range per unit area (F;,) increases, even at constant driving force - the
mountain belt grows (Houseman and England 1986a). Because of this pro-
cess, sudden changes of the thermal structure of the lithosphere may cause
sudden deformation events without changes in the driving force.

e The mean strength of the lithosphere. Differences in surface elevation of
the continental lithosphere can only be created if the lithosphere has a finite
strength (Fig. 2.2). That is: if the horizontal and vertical principle stresses
are of different magnitude (Artyushkov 1973; McKenzie 1972; Molnar and
Lyon-Caen 1988). If the were no stress differences, then the surface of a plate
subjected to lateral forces from the outside would lift everywhere by the same
amount; like water between two converging sides of an aquarium. There would
be no mountain ranges and the surface of the continents would look rather
boring. Conversely, it is possible to use the thickness and surface elevation
of a mountain belt to estimate the mean strength of the lithosphere (Molnar
and Lyon-Caen 1989).

Consider a mountain range which collapses under its own weight and to
which there is no forces applied externally. We could then reformulate eq. 6.23
to:

F,=-F . (6.24)

The left hand side of eq. 6.24 is the potential energy difference between moun-
tains and foreland per unit area and was evaluated in eq. 5.57 or, somewhat
more precisely, with eq. 5.59 (s. also Fig. 5.27). The right hand side of
eq. 6.24 is the integrated strength of the lithosphere (s. eq. 5.48, Fig. 5.19
and Fig. 5.21). It is the product of the mean differential stress of the extend-
ing mountain range and its thickness. Thus, the elevation contrast between
mountain belts and their foreland may directly be used to provide an upper
bound on the mean strength of the lithosphere.

According to the estimates of Molnar and Lyon-Caen (1988), the surface
elevation contrast between the Tibetan Plateau and the Indian foreland indi-
cates a mean strength of the Asian lithosphere of o4 =69 MPa. For the Alti-
plano in the Andes similar estimates indicate a mean strength of oq = 52 MPa.
This mean strength is estimated purely on the basis of topography differences
and is therefore quite a sound estimate. If we acknowledge that some parts
of the lithosphere will be significantly “softer” than this value (e.g. the up-
permost and lowermost parts of the crust as shown in Fig. 5.13), then there
must be other parts of the lithosphere that are significantly “stronger” than
this value to maintain the mean value given by these estimates. These con-
siderations provide a strong argument for the existence of a significant shear
strength of parts of the lithosphere (s. sect. 6.3.5).
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Figure 6.24. Distribution of horizontal and vertical stresses in a simple collisional
orogen. If the topographic gradients at the surface and the base of the lithosphere
are small, then the horizontal and vertical stresses 0., and o,, are parallel to the
principal stresses. The horizontal stresses are constant across the orogen. However,
the vertical stresses at a constant crustal level are higher in the orogen and smaller
in the foreland. Thus, the largest principal stress in the foreland is given by oz,
while it is given by o, in the orogen

Mechanics on Vertical Sections. Many continental orogens are long com-
pared to their width. In such orogens many parameters do not change very
much in the direction parallel to the orogen and it is often possible to neglect
this direction altogether when describing the orogen: We can characterize
them with a description on a vertical cross section and the equations that
must be solved to describe this are eq. 5.15 and eq. 5.18, but omitting all
terms that contain y. However, in this section we refrain from integrating
these equations and simply expand on the discussion of the last section.
More elegant two-dimensional models on cross sections are then discussed in
sect. 6.2.3.

e Changes in the stress field in collisional orogens. In the discussion of
eq. 6.20 we have shown that the stress field in an orogen may change over
time, even if the far field plate boundary stresses remain constant. Here we
illustrate this in some more detail by looking at the changes of the stress state
across a mountain belt. In this discussion we follow the logic of Dalmayrac
and Molnar (1981) as well as Molnar and Lyon-Caen (1988).

If the shear stresses at the base of the lithosphere are negligible, then
the horizontal forces in a simple orogen (simplified as shown in Fig. 6.24) are
constant, regardless of thickness of the plate or surface elevation (Artyushkov
1973; Dalmayrac and Molnar 1981) (s. Problem 5.7). In other words, the
product of the mean horizontal stress ¢,, and the thickness of the plate
remains a constant. Thus, if the stresses are a similar function of depth in
different parts of the orogen, then the horizontal stress o, is constant at
any one depth across the orogen. This also implies that mountain ranges and
plateaus transmit horizontal forces from the foreland to the hinterland of the
orogen without changing their magnitude. On Fig. 6.24 this is indicated by
the horizontal white arrows that are of the same size everywhere across the
orogern.

This logic does not apply to the vertical stresses. Vertical stresses are the
largest in regions where the overlying rock column is the thickest and the
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Figure 6.25. Fault plane solutions for the two great plateaus on this planet. a The
Tibetan Plateau as the consequence of the India — Asia collision and: b the Altiplano
as the consequence of the collision between the Pacific and the South American
plates. Note that the majority of the fault plane solutions at low elevation regions
indicate compression, while those on top of the plateau indicate largely extension

smallest where it is the thinnest (s. Fig. 5.27). As a consequence, the stress
distribution in an orogen may be like that shown in Fig. 6.24. In the foreland
(on the left in this figure) the vertical stress is smaller than the horizontal
stress. The region is thickening, for example by thrusting. In the mountain
belt (strictly: in the region of high potential energy, s. sect. 5.3.3), the largest
principle stress is the vertical stress. The region is extending. In short: al-
though the horizontal stress on Fig. 6.24 is everywhere the same, there is
thickening in parts of the Figure and extension in others. On earth, there
are two orogens that have reached mechanical equilibrium and have formed
plateaus. The Altiplano and the Tibetan Plateau. On both the transition
from compression (in the foreland) to extension (on the platean) can be ob-
served (Fig. 6.25).

The lateral qualitative change in the deformation regime is not caused
by changes in the horizontal- but changes in the vertical stress. This also
explains why the observation of extension in mountainous regions must not
occur because the surrounding plates are moving apart. The Tibetan Plateau
is an example for such a situation: although the plateau is extending laterally,
there is thrust tectonics in the surrounding regions (s. p. 303 and p. 306).

e Changes in the stress field during the aging of plates. If the driving force in
an orogen remains constant, the qualitative nature of the orientation of the
principal stresses may be changed during orogenesis because of: 1. Increasing
the potential energy of the mountain range or 2. decreasing the mean poten-
tial energy of the entire plate (Coblentz and Sandiford 1994; Sandiford and
Coblentz 1994). The former was discussed in the last section, the latter is the
subject of this paragraph.
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The geoid anomalies at continental margins tell us that the potential en-
ergy of old oceanic lithosphere is very low, while that of the mid oceanic
ridges and that of large parts of the continental lithosphere is relatively high.
Thus, the mean potential energy of a lithospheric plate is largely governed
by the relative proportions of oceanic and continental lithosphere within this
plate. If a plate is largely surrounded by mid ocean ridges (as both the African
and the Antarctic Plate are) then the proportion of oceanic lithosphere in the
plate will grow over time and the mean potential energy of the plate will sink.
Correspondingly, the part of the continental lithosphere that has a higher po-
tential energy than the mean value, will also grow over time. Thus, some areas
that have long been under compression because of the high potential energy
of the surrounding mid ocean ridges, may go into extension only because the
plate is aging (the proportion of oceanic to continental lithosphere rises as
the area of oceanic lithosphere rises). Sandiford and Coblentz (1994) have
suggested that all continental plates will ultimately go into extension as a
function of their age and suggested that features like the central African rift
system may be largely caused by the aging of the African Plate.

Mechanics in the Plane. Many collisional orogens have features that may
only be described by considering deformation in plan view, for example pro-
cesses like lateral extrusion. In order to explain such observations (and avoid
a full three dimensional description) two dimensional models in plan view
are used. Because the vertical direction can then not be considered, verti-
cally averaged assumption for lithospheric rheology and thermal structure
have to be made. There are two common ways how to do this. These are
the plane strain assumption and the thin sheet (plane stress) assumption
(s. p. 10; Fig. 6.21). Which of the two assumptions is more appropriate for
the description of orogens has been a subject of debate between the schools
of Tapponier on the one side (e.g. Molnar and Tapponier 1975; 1978) and
that of England, Houseman and McKenzie on the other side (e.g. England
and McKenzie 1982; Houseman and England 1986a; England and Houseman
1986; 1988; Molnar and Lyon-Caen 1988). Within both the plane strain and
the thin sheet model we need to consider the force balance equations:

0040 Uy ~0 and - O0ye  O0yy

Oz Oy ’ Oz Oy

which are the two dimensional versions of the force balance introduced on
p. 218 for the 2 and y direction, respectively. Within the plane strain model
these equations are solved subject to the appropriate boundary conditions.
In contrast, the thin sheet model (e.g. England and Jackson 1989; England
and McKenzie 1982; England et al. 1985; Houseman and England 1996) also
considers a reduced vertical force balance with the body force term:

=0 . (6.25)

00,

Oz

= —pg (6.26)
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Note that — as long as there are no vertical strain rate gradients considered
— such a body force term can simply be considered as a variably on a two
dimensional model region described by egs. 6.25 and the model is still two
dimensional. Substituting these equations into eq. 5.8, the force balance may
be written in terms of the depth averaged components of deviatoric stress and
a horizontal buoyancy force arising from horizontal gradients in the vertical
stress. For the z and y directions these equations are:

OTpe  OTay _arzz _ _6ozz and - OTya +67'yy _07'22 _ _aozz (6.27)

Jz dy Oz dx oy ox Oy oy

If the horizontal gradients of the vertical stress can be obtained indepen-
dently, i.e. without solving a three dimensional set of equations, then eq. 6.27
remains a two dimensional description called the thin sheet approximation. It
may be solved for evolving orogens is a flow law is assumed. Usually this flow
law is assumed to be a non-linear viscous flow according to the relationship:

(01 —03) = Bél(l/n> or: & =B (o1 —o3)" (6.28)

in which we can recognize a simplification of the viscous relationships ex-
plained in eq. 5.42 and eq. 5.45. The constant B summarizes all temperature
dependent terms of the power law (eq. 5.46) and represents a depth aver-
aged value when doing thin sheet calculations. A comparison of eq. 5.46 with
eq. 6.28 shows that: B = A(=1/meQ/7BT 1p short, B depends on strongly on
temperature, but it can be shown that it is largely independent of the dis-
tribution of temperature within the lithosphere. Using the simplification of
eq. 6.28 the lithosphere may be considered as a simple medium deforming ac-
cording to a power law relationship between stress and strain rate (described
by eq. 4.6). However, eq.6.28 is not really a tensor equation (s. discussion of
eq. 5.46) and it needs to be generalised to be coupled with the force balance
above. Usually eq.6.28 is generalised in the form:

r=BEH"D¢ (6.29)

where E is the 2nd invariant of the strain rate tensor (E = \/é;¢;) and 7
and € are the deviatoric stress and strain rate tensors as elsewhere in this
book. Eq.6.29 is a proper vector equation (like eq. 5.42) and the flow law can
now be coupled with the force balance above. The non linearity between de-
viatoric stress and strain rate is taken care of by introducing the deformation
dependent term E. In this form, eq.6.29 is the basis of many dynamic models
for the description of continental deformation, for example those of England
and McKenzie (1982) or Vilotte et al. (1982). In these models, the nature of
deformation is often characterized by a single value: the Argand number.

e The Argand number. The Argand number Ar is a measure for the ease with
which the lithosphere deforms in response to gravitational stresses. It tells
us if an orogen is likely to flow apart at the same rate it is being built, or if
significant amounts of potential energy may be stored within it before it would
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Length scale L = Uo/éo
Velocity scale Uy = L xé
Strain rate scale éo = Up/L
Viscosity scale B = To/éo
Stress scale To = B x &g
Argand number Ar x L/7o

Table 6.2. Scaling parameters in non dimensional viscous calculations. For sim-
plicity, the stress exponent is assumed to be n = 1. Time scale ¢ is not specifically
listed here as it is simply ¢t = ¢ ! In calculations where there is no Argand num-
ber, two of the top three variables and one of either viscosity- or stress scale are
independent. Specifying Ar relates the top three to the next two variables, so that
only two other scaling parameters must be chosen to define the system

collapse slowly under the influence of gravitational stress. It stems from the
need to obtain horizontal gradients in the vertical stress when solving eq. 6.27.
England and McKenzie (1982) showed that these gradients in vertical stress
are proportional to the square of the crustal thickness S:

2 2
T o gE=(Ea-edm) G 60
for reasons discussed on p. 248. In eq. 6.30 the densities are those commonly
used in this book and L is a thickness of the considered layer. If this is
substituted into eq. 6.27 and the equation is brought into a non-dimensional
form by normalizing to the length scale L, stress scale 75 and velocity scale
Up (the collision velocity), then the Argand number is:

_ P
Ay — Pl = pe/pm) _ Py

B(UO/L)]'/” - To (631)

and may be interpreted as dimensionless ratio of the additional pressure Pz,
that arises because of the thickness difference L between two plates and the
stress 7y, that is necessary to deform a plate with a significant rate ég = Uy /L
(England and McKenzie 1982).

In this form, Ar may be used as an input parameter for mechanical model-
ing of orogens without having to explicitly consider the rheology, the material
constants or the temperature profile of the lithosphere (Table 6.2). The ad-
ditional pressure rises linearly with the thickness of the orogen and the stress
To increases with the effective viscosity of the plate.

We can see that — if the effective viscosity of a plate is large, then the
Argand number is small. Then, the flow properties of a mountain belt will
depend largely on the orogenic boundary conditions. The belt will only begin
to extend once its potential energy is very large. In contrast, if the Argand
number is large (say between 10 and 20), then the effective viscosity of the
range is very small and the forces caused by potential energy differences are
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large. The crust will quickly flow in response to applied forces. No significant
thickness variations between foreland and orogen will ever develop during
orogenesis. England and McKenzie (1982) have shown that orogens charac-
terized by an Argand number of 30 show practically no thickness variation
and their deformation is already nearly plane strain.

e The Deborah number. A number similar to the Argand number is the Deb-
orah number. In contrast to the Argand number (which is defined in terms of
stresses), it is defined as the ratio of two time scales, namely the time scale of
viscoelastic stress relaxation and the characteristic time scale of deformation
(Reiner 1964; 1969). Akin to the Argand number it can be used as a mea-
sure of the fluid-like behavior of continents. When applied to the evolution
of continents, the Deborah number may be interpreted as the duration for
which an orogenic driving force is applied to a plate, relative to the duration
an orogen takes to flow apart (England 1996). The Deborah number has also
been employed on a much smaller scale to characterize outcrop scale folding
(e.g. Mancktelow 1999; Schmalholz and Podladchikov 1999).

e Orogen parallel displacement. Collision of continents causes displacement
of rocks in all three spatial directions. The wvertical displacement results in
thickening, the horizontal displacement in direction normal to the indenta-
tion direction is called loosely lateral extrusion and may occur in either a
compressional or extensional regime.

Fig. 6.26a shows the collision of a plate with a rigid indenter that deforms
the plate in front of it. The rocks in front of the indenter are displaced both in
the direction of indentation and perpendicular to that direction. In Fig. 6.26a
the amount of displacement decreases with distance from the indenter as the
deformation there dissipates more. However, despite the orogen parallel dis-
placement of rocks, all points of the indented plate are under compression.
There is no lateral extension. This conclusion from Fig. 6.26a is in contrast to
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Figure 6.26. Different deformation regimes that occur during collision of an in-
denter with a much larger continental plate (gray shaded region). The arrows are
velocity vectors. In a the plate is infinite or bound at all sides. In b the side bound-
aries of the plate are free and lateral extension occurs. The absence of confined
model boundaries is one of four mechanisms that can account for orogen parallel
extension during convergent plate motion
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many observations in active collisional orogens where lateral extension does
occur. According to England and Houseman (1989) orogen parallel exten-
sion in convergent orogens must find its nature in one of the following four
processes:

1. unconstrained boundaries,

2. decrease in the convergence rate between two plates,
3. changes in the rheology of the plate,

4. external addition of potential energy to the plate.

The first of these four processes is illustrate in Fig. 6.26b. There — in
contrast to Fig. 6.26a — the gray shaded region is not bound on the sides.
The other three processes may be illustrated with an analysis of eq. 6.23. A
decrease in the convergence rate is reflected in this equation by a decrease
in Fy. If F} remains constant, the horizontal buoyancy force must decrease
and extension sets in. This process is generally known as “post orogenic col-
lapse”. Changing the rheology of the plate (e. g. by heating, recrystallization,
metamorphism etc.) is reflected in eq. 6.23 by changes in F]. In order to
maintain the force balance, strengthening of the plate must be accompanied
by a decrease in the deformation rate or a decrease in the horizontal buoy-

a

Figure 6.27. Model for the lateral extrusion of the Eastern Alps illustrating the
influence of Argand number Ar on the deformation regime during continental in-
dentation (after Robl and Stiiwe 2005). a The 4 considered regions and their rela-
tive viscosity contrasts: European foreland (10), Adriatic indenter (10), Pannonian
Basin (0.8) and Eastern Alps (1). For Ar = 1 and even for Ar = 10, significant
topography (gray shading) is built in the Alps and lateral extrusion is exclusively
due to tectonic forcing. For Ar = 100, lateral extrusion is increased (a little bit) by
an additional contribution of extensional collapse. However — although barely any
topography is suported — the extensional collapse is still in an overall compressive
regime (because indentation goes on).
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Table 6.3. Definition of terms related to lateral displacement of rocks during in-
denter tectonics on an orogenic scale

term meaning

(key reference)

lateral extrusion kinematic description for displacement of
(Ratschbacher et al. 1991) rocks normal to indentation direction

(stress regime: undefined)

gravitational collapse extension under its own potential energy
(Dewey 1988) (stress regime: extensional)

tectonic escape active lateral forcing along strike slip faults
(Tapponier et al. 1982) (stress regime: compressional)

ancy force Fj,. Extension occurs as a consequence. The external addition of
potential energy, for example by delamination of the mantle part of the litho-
sphere, has a similar influence on eq. 6.23. It may also cause the transition
from compression to extension.

e Lateral extrusion. Lateral extrusion of orogens is a great term that can
be used when referring to lateral displacement of rocks without wanting
to specify if its under a compressional or extensional regime. According to
Ratschbacher et al. (1991), lateral extrusion describes lateral motion of rocks
as the consequence of a combination of tectonic escape (in a compressional
regime) and gravitational collapse (in an extensional regime). While the term
lateral extrusion is mechanically not specified and is a largely a kinematic
description, the terms tectonic escape and gravitational collapse have well de-
fined mechanical implications that were described by Tapponier et al. (1982)
(Jones 1997) and Dewey (1988), respectively. Both processes are observed
in the eastern European Alps, where extensional tectonics is observed along
the east and west margins of the Tauern window ) and simultaneous tectonic
forcing along major strike slip lineaments has occurred (Selverstone 1988;
Ratschbacher et al. 1991; Robl and Stiiwe 2005).

6.2.3 Orogenic Wedges

All considerations of the last paragraphs are based on the thin sheet model
assumption. That is, we have assumed thickening processes to be homoge-
neous. Using this simplification we were able to understand some important
aspects of the mechanics of continental orogens, but we have limited our-
selves to the understanding of symmetrical orogens and plateaus. However,
most orogens have a fundamentally asymmetric geometry in cross section
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(e. g. Pfiffner et al. 1997). In fact, on a sub-orogen scale, wedge shaped pack-
ages of rock are very common in the foreland of orogens. According to the
appropriate assumptions used to describe them, wedge shaped orogens may
be very loosely divided into:

— Mohr-Coulomb wedges (fold and thrust belts, accretionary wedges)
— S-point wedges (used to describe orogens as a whole)

Both have in common that they have characteristic geometries that are a
function of the fact that stresses are imposed at the base and that the upper
surface is stress free. As such they differ significantly from another use of the
term “orogenic wedge”: The term is also used for wedge shaped packages of
rocks that are extruded in the horizontal or vertical direction between two
fault zones, for example the Central Himalayan Crystalline complex (that
extrudes between the Main Central Thrust and the South Tibetan Detach-
ment), The Chugach Metamorphic complex of Southern Alaska or the East-
ern European Alps. Extruding wedges of this type were discussed in the last
section and we spend some time on them on page p. 323,

Mohr-Coulomb Wedges. Wedge shaped orogenic bodies that are charac-
terized by a fixed angle between the surface of the earth and a detachment
surface at the base of the plate form in many orogens both on land and under
water. The mechanics and geometry of such wedges is well described with the
Mohr-Coulomb criterion (Dahlen 1984; sect. 5.1.2) and we call them there-
fore here “Mohr-Coulomb wedges” although we also discuss thermal models
in this section. Mohr-Coulomb wedges that form in connection with the sub-
duction of oceanic lithosphere are usually below sea level and are called ac-
cretionary wedges. In continental orogens, such wedges form above sea level
and are called fold and thrust belts (McClay 1992). One of the fundamental
characteristics of both fold and thrust belts and accretionary wedges is their
constant overall shape during growth and in different examples throughout
the world. Most accretionary wedges have a surface slope which dips at about
1°. In fold and thrust belts, this angle is typically of the order of 3°. In the
following section we use the term “wedge” or “orogenic wedge” for both ac-
cretionary wedges and fold and thrust belts.

The wedge shape of all orogenic wedges stems from the fact that an inclined
plane moves material towards a fixed back stop. This inclined plane is usually
referred to as the basal detachment and the transmission of forces into the
wedge is by friction along this detachment (s. sect. 6.2.2). In accretionary
wedges marine sediments that lie on top of the subducting oceanic lithosphere
are moved towards the upper plate (s. Fig. 2.23; 5.23). The upper plate is
the back stop or indenter, depending on whether the process is seen in a
Lagrangian or Eulerian reference frame (Fig. 6.29). A good example of such
a wedge is the accretionary wedge that forms between the Pacific Plate and
the North American continent in Alaska. The best known example of a fold
and thrust belt is Taiwan, which formed as a consequence of the subduction of
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Figure 6.28. Geometrical parameters of accretionary wedges and fold and thrust
belts. The angles o and S are the inclination angle of the surface and that of the
basal detachment both measured relative to the horizontal. In models that are based
on Mohr-Coulomb criteria, the coordinate system is often chosen so that the axes
and the indenter are parallel to the direction of the principle stresses as shown here

the Eurasian continental margin underneath the island arc of Luzon (Suppe
1981; 1987). Using Taiwan as an example, a number of models have been
developed in the past 20 years that may be used to explain orogenic wedges
around the world (Davis et al. 1983; Dahlen et al. 1984; Dahlen 1984; Barr
and Dahlen 1989; Dahlen and Barr 1989; Platt 1990; 1993a).

Modeling orogenic wedges is a typical two-dimensional problem. The most
important parameters necessary for the geometrical description of the wedge
are the angle of inclination of the basal detachment 3 and that of the surface a
(both relative to the horizontal Fig. 6.28). Models describing accretionary
wedges may be divided into:

1. Models, describing the geometry and the state of stress.
2. Models, describing the kinematics and thermal development.

Both types of models will be discussed briefly in the next sections. In the
context of doing so we will show that indenters are not necessary for the
formation of an orogenic wedge.

e 1. Geometry and State of Stress. The origin of the typical shape of orogenic
wedges may be understood by comparing orogenic wedges with the familiar
analog of a snow plow. If a snow plow starts moving through a fresh layer
of snow, we know that there are two possibilities of how the snow deforms:
1. If the internal strength of the snow is higher than the friction with the
road (e.g. if the snow is icy and the road is warm), then the snow will be
moved as an undeformed slab in front of the plow. 2. If the internal strength
is smaller than the friction with the road (as usually is the case) then the
snow deforms internally and its surface will become inclined. According to
the Mohr-Coulomb criterion, the strength of the snow will increase as the
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thickness of the snow wedge increases (and the normal stresses within it do,
8. eq. 5.29). This will continue until a critical taper between surface and
basal detachment (in our example: the road) is reached where the strength
of the snow is exactly as large as the basal traction (on Fig. 6.28 this is the
angle a+ ) (Davis et al. 1983). In this state, the wedge can now move along
the basal detachment and during progressive deformation the wedge stays
constant in shape. However, while constant in shape, it still may grow in size
as more snow is scraped up always retaining a balance between (increasing)
internal strength and (increasing) basal friction. The wedge has a self similar
geometry.

Dahlen (1984) showed that many orogenic wedges may be described very
well with the assumption that they consist of cohesion-free material deforming
according to Mohr-Coulomb criterion (sect. 5.1.2). In this case the orientation
of the principal stresses are constant everywhere within the wedge (Fig. 6.28).
Summarizing this we can write:

o + = constant . (6.32)

The constant in this equation depends on two parameters: the strength of the
wedge material and the strength of the basal detachment. Both parameters
are functions of the coefficient of internal friction g and the fluid pressure
(eq. 5.33). High stresses on the basal detachment increase the critical taper,
high internal strength decreases it. Similarly, high fluid pressure inside the
wedge decreases the strength of the wedge and increases the critical taper,
while high fluid pressure along the basal detachment decreases the friction
along this surface and thus decreases the critical taper.

The model discussed in the last paragraph was a great advance in our

understanding of orogenic wedges (Dahlen 1984). Before the consideration of
Mohr-Coulomb rheologies, wedges were generally described with models that
do not consider the depth dependence of stresses (Chapple 1978; Stockmal
1983).
e Differences between limited and unlimited wedge size. In the last paragraph
we have shown that an orogenic wedge will grow infinitely while maintaining
a self similar shape. Depending on the position of the observer this growth
may be interpreted in two different ways. An observer on the indenter (e.g.
a snow plow driver) will see that the wedge grows at the toe and increases in
thickness. This is illustrated in Figs. 6.29a and Fig. 6.30a and this situation
corresponds to most accretionary wedges. However, if seen from the point of
view of the wedge toe on the subducting plate, the wedge grows at its wide
end and the region of most intense deformation moves progressively towards
the foreland (Fig. 6.29b and Fig. 6.30b). This is observed in Fold-and-thrust
belts where the deforming area progressively propagates forward into the
orogen. There are two possibilities to limit not only the shape but also the
size of a wedge:

— In the snow plow model, the size of the wedge is limited by the height of the
plow. During progressive deformation, the wedge will eventually become as
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high as the plow itself and the snow will be removed from the system over
the top of the plow blade. Koons (1990) showed that exactly this process
may be relevant to the geometry of deformation in New Zealand.

— The surface of the wedge may erode rapidly enough so that the erosive
removal of material from the system balances the input of material at the
wedge toe.

The second possibility appears to be realized in many accretionary wedges
around the world. It forms the basis of the kinematic models we discuss in
the next section.

Indenter-model ] Forward propagation - model |

a b

Figure 6.29. Cartoon illustrating the growth of accretionary wedges and fold and
thrust belts. The arrows and light shaded wedge sections indicate the growth direc-
tion. The black regions show undeformed parts of the foreland. a From the point
of view of the indenter, the wedge grows at its toe. b From the point of view of the
basal detachment, the wedge growth appears to be caused by forward propagation
of the deformation into the foreland. The indenter model is more appropriate to
accretionary wedges. The forward propagation model more appropriate to fold-and-
thrust belts

Figure 6.30. Schematic illustration of the kinematic and thermal structure in
accretionary wedges (after Dahlen and Barr 1989; Barr and Dahlen 1989). The
velocity vectors penetrate the surface because it is assumed that there is a steady
state equilibrium between material input at the wedge toe (left edges) and material
output by erosion at the surface. a Velocity vectors relative to the indenter (upper
plate); b Velocity field relative to the subducting plate; ¢ Rock trajectories in the
accretionary wedge; d Isotherms
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Figure 6.31. Two different plate margin settings showing that they have similar
geometries. In both, point S is a discontiniuty in the basal boundary condition

e 2. Kinematics and Thermal Structure of Orogenic Wedges. If there is no
erosion and the height of the indenter is infinitely high, then wedges would
grow infinitely. The velocity field of rocks in the wedge relative to the indenter
would look like a radial vector field starting at the toe of the wedge (coor-
dinate origin in Fig. 6.28). There is no exhumation. However, if the wedge
formation is accompanied by erosion at the surface, then the rock trajectories
follow curved paths. If the total volume of the eroded material is exactly as
large as the amount of material that is put into the wedge at its toe by the
subducting plate, then the wedge does not grow and the rock trajectories are
in a steady state (Fig. 6.30c). For such wedges with a constant shape and
size, there is a range of models that describe their internal kinematics.

The most simple models are based on methods used in fluid dynamics
for the description of the flow behavior of fluids in corner (corner flow mod-
els; Cowan and Silling 1978; Cloos 1984; Cloos and Shreve 1988). In further
developments, Barr and Dahlen (1989) as well as Dahlen and Barr (1989) suc-
ceeded in developing analytical models that may be used to describe the in-
ternal kinematics of wedges that are subject to the Mohr-Coulomb-criterion.
For this, they chose a coordinate system that is parallel to the principal
stresses in the wedge (Fig. 6.28).

The thermal structure of wedges has also been described in models de-
signed by Royden (1993b); Platt (1993a) as well as Barr and Dahlen (1989);
(Fig. 6.30d). Similar models have been designed by Bird and Piper (1980),
Beaumont et al. (1992) and Willet (1992).

S-point Wedges. “S-point wedges” bear their name because Willett et, al.
(1993) and Beaumont et al. (1996) recognized that a series of plate margin
settings can be described by a simple discontinuity at the basal boundary
and that a back stop — like in the bulldozer model discussed on the last
pages — is not explicitly required to describe wedge shaped orogens or parts
thereof (Fig. 6.31). The model of S-point wedges is also more appropriate to
doubly vergent orogens and in fact, effective back stops develop dynamically
during model evolutions. As such, the S-point wedge model is more simple,
more elegant and it now largely supersedes the geometry described for Mohr
Coulomb wedges in the last section in most model studies describing orogenic
wedges.
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The S-point wedge model of Willett et al. (1993) is described by a rectangle
that is subjected to zero stress boundary conditions at the sides and at the
top (Fig. 6.32a). The lower boundary is subjected to kinematic boundary
conditions with a discontinuity at point S in the center. To the left of point S
there is a constant tangential velocity imposed at the base (vr = wvp) To
the right of point S the velocity is zero. The lower boundary conditions is
assumed to represent the Moho and implies that the mantle lithosphere of
the plate PB (ProBeam) subducts at point S towards the right underneath
plate RB (RetroBeam).

Figure 6.32. Boundary conditions of the two-dimensional model for S-point
wedges. a The original model of Willett et al. (1993). The white arrows show the
velocity boundary condition along the lower margin of the plate. On the other three
boundaries it is assumed that both normal and shear stresses are zero. The dashed
lines with the shear sense indicators are not part of the model assumptions. They il-
lustrate regions of high shear as they develop dynamically during model simulations
with these boundary conditions (Fig. 6.33b). b The general subduction-collision
model of Beaumont et al. (1996). The geometry of the initial condition shown here
is the consequence of the magnitude of the downwards acting load L applied at
point §'. PB and RB are the lower and upper plate (PR for pro beam and RB
for retro beam). The shear zone between § and S, is no model assumption but
develops dynamically during model runs with these boundary conditions. b If the
load L is assumed to be zero, the model recovers the geometry shown in a

Beaumont et al. (1996) expanded this model to describe subduction of the
entire lower plate within the same model (Fig. 6.32b). For this modification
they assumed a vertical load L (simulating a downwards pulling plate) to
apply at point S’. To the left of point S’ and to the right of point S, the same
boundary conditions as in Fig. 6.32a apply. Between S’ and S the velocities
are assumed to be the same as at point S’. These boundary conditions imply
that the entire crust is subducted between these two points. As the load L
in Fig. 6.32a becomes zero, the model becomes that of Fig. 6.32b.

Model runs performed with these boundary conditions reproduce a series of
structures commonly observed in collisional orogens, in particular the conju-
gate shear zones that are schematically indicated in Fig. 6.32. It is important
to note that these shear zones are not predefined, but develop dynamically
during the model runs. The crustal scale shear zones give the orogen quite
a symmetric appearance, despite the fundamental asymmetry of the basal
boundary conditions. This apparent symmetry warns us to be careful with
the interpretation of the direction of subduction of plates in an orogen, if this
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Figure 6.33. Results of model evolutions using the boundary condition geometry
shown in Fig. 6.32. a Cartoon of a typical model geometry Convergence between
probeam and retrobeam has produced a doubly vergent orogen. Fg and Fa are
the mass outflux and influx showing that there may be a balance between erosion
and convergence in steady state orogens (Willett and Brandon 2002). b Lagrangian
tracking grid of a typical model run used to study morphological evolutions by
considering erosion explicitly (Willett 1999). Gray shading is strain rate. Note that
two conjugate directions concentrate the strain

is solely interpreted on the basis of observations of structural trends at the
surface

The model shown in Fig. 6.32 has been use extensively in the past years
(e.g. Fig. 6.33, for example to illustrate the effects of erosion on the dynamics
of orogens (Willett 1999), to explore the balance between mass in flux by
collision and mass outflux by erosion (Willett and Brandon 2002), and even
effects of asymmetric precipitation or climate change (Willett 1999; Willett
et al. 2006).

6.3 Selected Geodynamic Processes

In this section we discuss, very superficially, a random selection of some
important and currently actively debated geodynamic problems. There is no
direct connection between the individual sections.

6.3.1 Flood Basalts and Mantle Plumes

Around the globe there are a large number of regions where enormous quanti-
ties of basalts have erupted (Fig. 6.34). These regions are known by the name
of “large igneous provinces” or just “LIP”. Aside from the rocks formed at
the mid oceanic ridges, they are the second largest accumulations of mostly
mafic igneous rocks on earth. LIPs are a typical feature of Phanerozoic geol-
ogy and are largely unknown from the Proterozoic or Archaean. LIPs include
three types of basaltic provinces:

— continental flood basalts,
— rifted continental margin volcanic sequences,
— oceanic plateaus.
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Figure 6.34. Large igneous provinces on earth. The most important labeled
provinces are: 1=Karoo Basalts; 2=Deccan Traps; 3=Otong-Java Plateau (largest
province with 2x10%km?); 4=Kerguelen Plateau; 5=Siberian Traps; 6=Broken
Ridge Plateau; 7=Iceland; 8=Columbia River basalts; 9=Hawaii; 10=Chagos Kac-
cadive Ridge; 11=Maskarene Plateau. Data are from Coffin and Eldholm (1993a,b)

The formation of LIPs has been discussed by a large number of authors (see
recent summary edited by: Mahoney and Coffin 1997). In general, it is ac-
cepted that most of such provinces are caused by plume activity in the mantle.
Initially mantle plumes were considered to be part of the general convection
system of earth (Morgan 1971). However, within our modern understanding
of plumes, they are known to be secondary features unrelated to the plate
scale convection in the mantle (Sleep 1992). Today, authors discern between
two types of plumes:

— Plumes that initiate from the core - mantle boundary that have narrow
stems and large heads (Fig. 6.35). These plumes will be associated with
“active” rifting that follows active uplift of the overlying lithosphere by the
plume (s. p. 253).

— Plumes that form due to adiabatic upwelling of the asthenosphere in re-
sponse to passive lithospheric extension (White and McKenzie 1989). Such
plumes are themselves the consequence of the rifting but there may be
positive feedbacks that cause an accelerating extension process.

(For a discussion of active versus passive rifting see also p. 265 and 253). The
island chain of Hawaii was the first place where mantle plume activity was
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Figure 6.35. a Scaled cross section through earth showing the size and geometry
of mantle plumes. The circles for the Otong-Java Plateau and the Deccan Traps
show minimum and maximum estimates for the volumes of melt extracted from the
mantle during their activity (after Coffin and Eldholm 1994). See also Fig. 4.22.
b The occurrence of the last 5 large igneous provinces in the last 150 my in rela-
tionship to other episodic events during this time. Shown are the time of the long
magnetic normal in the Cretaceous, some important mass extinctions, important
black shale deposition events as well as sea level, global temperature and oceanic
crust production curves (after Larson 1991, as well as Coffin and Eldholm 1994)

suggested to be responsible for the appearance of the volcanic chain (Wil-
son 1963), although Hawaii is now known to be one of the smaller basaltic
provinces on the planet (Fig. 6.34). Some of the largest LIPs form in places
where rifted continental margins coincide with plumes (see also discussion
of Fig. 5.28 and White and McKenzie 1989). There, LIPs may occur on the
surface or below sea level, depending on the relationship between rifting rate
and magma supply (Saunders et al. 1996). If the spreading rate is low in com-
parison to the rate of magma supply, then the plateaus become subareal as in
Iceland. If the spreading rate is low the igneous province remain submarine.

Geometry. In the nineties people have begun to explore the geometry and
volumes of LIPs mainly using the facilities of the international ocean drilling
program ODP. For example, it is now known that plumes account at present
for abut 5-10% of the mass and energy flux from the mantle to the crust and
that this value may have been much larger in the past (Coffin and Eldholm
1994). Thicknesses of LIPs are between 20 and 40 km and appear to have
formed in relatively short-lived pulses of increase global production. Many
oceanic plateaus have refractory depleted keels that are more buoyant than
normal oceanic crust. As a consequence, oceanic plateaus may be preserved
much longer in the plate tectonic cycle than normal oceanic crust. When they
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collide with active margins, they choke the subduction zone and may cause
back-stepping of the zone.

Thicknesses and aerial extent are well enough known to estimate magma
production rates. For example, it is now known that the magma production
rate for the formation of the Otong-Java Plateau may have exceeded the
entire production rate of mid ocean ridge around the world at present (Coffin
and Eldholm 1994).

Plumes or no Plumes. While mantle plumes have been generally accepted
as the cause for the formation of most LIPs; it is worth mentioning that they
may not be the only cause (Coffin 1997). Several authors have discussed
alternative mechanisms for the formation of large igneous provinces (King
1996; Seth 1999). Three alternative ideas have been discussed:

— Linear chains of volcanoes may indicate propagating rifts where the vol-
canic chain delineates the stress field, rather than the displacement field.
This idea has been discussed by Turcotte and Oxburgh (1973) and Jack-
son and Shaw (1975) and the origin of the Deccan Traps as well as the
Laccadives-Reunion hot spot has been suggested as an example by Seth
(1999). Within this model volcanic chains are piezometers rather than
speedometers.

— LIPs may be leaky transform faults (Smoot 1997).

— Linear chains of volcanoes are produced by magma surge channels (Mey-
erhoff 1995).

However, it should be said that none of these models have found wide
acceptance and plumes are still the most widely accepted model for the for-
mation of LIPs.

Large Igneous Provinces and Mass Extinctions. Large igneous provinces
have formed episodically during the entire Phanerozoic. This episodicity has
been brought in connection with a range of other episodically occurring events
(Fig. 6.35b). For example, super plume activity and oceanic crust production
have been brought in connection with cessation of the magnetic field rever-
sal in the mid Cretaceous and in the Permian (Larson 1991) (s. also Yale
and Carpenter 1998). Correlations with mass extinction events have been
attempted by a number of authors. However, in a recent summary Wignall
(2001) considers most of these correlations as unduly optimistic. On the other
hand, Wignall (2001) does recognize correlations with some mass extinction
events, namely with the Karoo basalts, the Siberian traps, the central At-
lantic volcanism and the Emeishan flood basalts.

6.3.2 Delamination of the Mantle Lithosphere

The mantle part of the lithosphere is colder and thus may be denser than
the underlying asthenosphere (Fig. 2.18, eq. 4.30). Thus, the mantle part of
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the lithosphere can have a negative buoyancy (in contrast to the crust) and it
is conceivable that it falls down into the asthenosphere. If this happens, the
overlying orogen experiences dramatic changes to its potential energy, surface
elevation and thermal structure. There are several mechanisms why and how
in detail such sinking of the mantle lithosphere into the asthenosphere may
occur. In particular, there are two models regarding how this may happen:

1. Delamination of the entire mantle part of the lithosphere from the crust
along the Moho.

2. Convective removal of only the mechanically unstable thick root of the
mantle lithosphere which, during progressive thickening, successively pro-
trudes into the asthenosphere (Fig. 6.36).

e Delamination. The first mechanism was initially suggested by Bird (1979)
to explain the uplift of the Colorado Plateau in the western US. However,
the model implies that the asthenosphere comes in direct contact with the
crust and it is therefore expected that abundant crustal melts occur in con-
nection with the surface uplift. This is not observed in Colorado. However,
mantle xenolith studies in several regions around the world show that the up-
permost mantle lithosphere is significantly younger than the overlying crust,
indicating that this process does happen under some conditions. Jull and
Kelemen (2001) have even suggested that the lowermost (eclogitized) crust
may delaminate together with the mantle lithosphere.

¢ Convective removal. The second mechanism was suggested by Houseman
et al. (1981) and has since been confirmed by many field observations (e.g.
Platt and England 1994). The model relies on the following argument: The
uppermost, part of the mantle lithosphere is so viscous that its sinking rate
is geologically irrelevant, despite its high density. The viscosity of the low-
est part of the mantle lithosphere, on the other hand, approximates that of
the asthenosphere. This part, where heat is still being transported mainly
by conduction (and therefore part of the thermally defined lithosphere), but
which has a negative buoyancy and a viscosity comparable to that of the as-
thenosphere, is also called the thermal boundary layer (Parsons and McKenzie
1978) (Fig. 2.19). This part of the mantle lithosphere may be removed from
the rest of the mantle lithosphere by convective processes in the surrounding
asthenosphere and it may ultimately sink (Houseman et al. 1981; Fleitout
and Froidevaux 1982; Houseman and Molnar 1997; Molnar et al. 1998).

Temporal Evolution of Convective Removal. The evolution of the con-
vective removal of the mantle part of the lithosphere may be divided into three
temporal stages:

— The first stage is the development of a lithospheric root, during collision. It
is necessary to develop a substantial root of the mantle lithosphere in order
for the negative buoyancy forces to be large enough to cause stain rates
that overcome geologically relevant values. Only then convective removal
can set it.
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Figure 6.36. Schematic illustration of the Houseman et al. (1981) model for the
convective removal of the mantle lithosphere in thickening orogens. a Thickening
of the lithosphere during collisional orogenesis {crust is shaded light, mantle part
of the lithosphere dark). The arrows indicate convergent motion. The labels on the
schematic geotherms in the little T-z diagrams on the right are: b= before thick-
ening, a = after thickening. 7] is the temperature at the base of the lithosphere and
21 is the thickness of the lithosphere prior to deformation. b Delamination of the
thermal boundary layer from the mantle lithosphere. Note the uplifted surface and
the dramatically changed thermal profile. ¢ Subsequent thermal equilibration will
cause the mantle lithosphere to thicken again. This process counteracts the simulta-
neously occurring rapid extension that occurs in response to the increased potential
energy of the orogen. The two geotherms in the 7-z diagram are: ¢t = during thermal
equilibration, f =a =final stable stage

— The second stage is the beginning of the removal process. This process is
initially very slow and may take of the order of 1-10 my.

— The third stage is the completion of the removal. This occurs very rapidly
once the sinking velocity has reached its maximum.

At the end of the detachment of the thickened root, the mantle part of the
lithosphere is of similar thickness, or even thinner than at the start of the
orogenic process (Fig. 6.36b).

The numerical experiments of Houseman et al. (1981) showed that con-
vective removal may occur much more rapidly than orogenic evolution as a
whole. Removal may be completed within a total of 1-10 my, while orogenic
cycles last on the order of several tens of my. Thus, convective removal of
the mantle part of the lithosphere may even be a cyclic process that occurs
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more than once during the evolution of a collisional orogen. Recent studies
of Houseman and Molnar (1997), Molnar et al. (1998), Conrad and Molnar
(1999) and others have shown that the non-linear viscous behavior of the
lithosphere may cause asymmetries between the location of maximum thick-
ening and the location of convective removal.

Mechanical Consequences of Convective Removal. The removal of
the dense root of the mantle lithosphere of an orogen causes rapid isostatic
uplift of the overlying orogen. The amount of surface uplift depends on the
thickness of the removed thermal boundary layer. England and Houseman
(1989) estimated about 1-3 km surface uplift, which in turn causes an increase
of the potential energy of the orogen by about 2-10-10'2 Nm~!. This increase
is comparable to the magnitude of several plate tectonic driving forces and
will therefore significantly influence the evolution of deformation events in
the orogen. In particular, it is very likely that the removal of the lithospheric
root may trigger the onset of extension in convergent orogens (sect. 6.1.4).

Thermal Consequences. The rapid removal of a lithospheric root has the
consequence that hot asthenospheric material is brought much closer to the
Moho than before (Fig. 6.36b). This causes increased heat flow through the
Moho and ultimately partial melting in the lower crust. The amount and
chemistry of partial melts that may form due to decompression in the mantle
and due to partial melting of the lower crust is discussed by McKenzie and
Bickle (1988) as well as White and McKenzie (1989).

However, it is not trivial that the increased heat flow at the Moho can also
lead to high temperature metamorphism in the middle crust. Because of the
slow rates of heat conduction on crustal length scales it may take up to tens of
my until the middle crust “feels” the thermal effects at the base of the crust.
In this time span extension may also have caused an increase of the geother-
mal gradient. Thus, a metamorphic event, that occurred synchronously with
removal of a lithospheric root may occur due to rapid extensional processes
rather than heat conduction. Platt and England (1994) showed that if the ex-
tensional processes are short-lived, then metamorphism caused by heat flow
changes at the Moho may be characterized by isobaric heating and cooling.

6.3.3 Low Pressure - High Temperature Metamorphism

In many regions of this planet, in particular on the Precambrian shields,
we can find metamorphic terrains that experienced peak metamorphism at
unusually high temperatures, if compared with the depth of metamorphism
(Fig. 7.1). In other words, the ratio of peak pressure to peak temperature in
these terrains is much higher than that corresponding to a “normal” geother-
mal gradient or that predicted by models for regional (Barrovian) metamor-
phism (e. g. sect. 6.2.1). Such terrains are generally called “low-pressure-high-
temperature”, or short LPHT- terrains and the metamorphism is often re-
ferred to as “Buchan style”. LPHT terrains occur at all grades, ranging from
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greenschist facies metamorphism at less than a kilobar peak pressure (e.g.
Xu et al. 1994) to granulite facies metamorphism at less than 3 or 4 kilobars
(Greenfield et al. 1998). The heat sources of metamorphism in these terrains
are intensely debated. In principal there are two fundamentally different heat
sources that might be considered: “external” and “internal” heating.

External Heat Sources. One school of thought argues that the T'— P ra-
tio of peak metamorphic conditions in LPHT terrains is much too high to be
possibly attainable by a conductive geotherm. Thus, so it is argued, the heat
sources must originate from “outside” the terrain under consideration (the
heat sources are: “external heat”) (e.g. Bohlen 1987; Lux et al. 1986; San-
diford et al. 1991). Examples of external heat sources would be heat sources
that are advected from larger depths into the terrain, for example magma
or fluids. This process can be considered as “contact metamorphism” in the
widest sense. The most important arguments in support of this external
heating model are:

— If the terrain was heated by conductive response of the lithosphere to a
changed thickness geometry of crust and mantle lithosphere, then this im-
plies that the measured PT ratio corresponds more or less to a geothermal
gradient (curve a in Fig. 6.37). Typical PT ratios of LPHT terrains imply
that a geotherm would reach the base of the lithosphere (=~ 1200°C) at
a depth of about 30 km. Today, we observe such small lithospheric thick-
nesses only in regions of active extension and intra continental rift zones.
In contrast, LPHT terrains are usually characterized by convergent struc-
tures and evidence for a plate margin setting are usually absent. Thus,
alternative (external) heat sources must be made responsible.

— In many LPHT terrains metamorphism occurred synchronously with de-
formation. This observation is easily explained if external heat sources are
responsible for metamorphism (s. p. 360). However, it is in contrast with
the models that explain regional metamorphism as a function of conductive
processes (s. sect. 6.2.1) (s. Problem 3.5).

— Many LPHT terrains are characterized by isobaric cooling curves. This
observation indicates that the rate of cooling was substantially larger than
the rate of burial or exhumation (s. sect. 7.3.1). As the duration of con-
ductive cooling of a terrain is proportional to the square of the size of the
cooling region, the rates of exhumation or burial may be used to constrain
the length scale of the heated terrain. Assuming normal rates of vertical
motion of rocks, such estimates indicate that only a region substantially
smaller than the entire lithosphere could have been affected by the LPHT
event.

Internal Heat Sources. In contrast to the arguments presented above,
another school of thought argues that neither enough magmatic bodies nor
sufficient evidence for fluid infiltration is found in LPHT terrains to justify
external heat transfer into the terrains (s. sect. 3.6.4, Problem 3.14). Thus,
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Figure 6.37. Left: Typical field appearance of LPHT terrains with multiple genera-
tions of partial melts (some syndeformational, some post deformational) and garnet
— cordierite bearing melanosomes. Right: Three different models for the interpre-
tation of geotherms in LPHT terrains. ¢ is a monotonously rising geotherm. Such
a geotherm implies that the base of the thermally defined lithosphere at 1200 °C
is located at a depth of only 30 km (arrow). b and ¢ show two other possibilities
for geotherms that are characterized by LPHT metamorphism, but allow normal
lithospheric thicknesses. However, geotherms can usually not get such a shape by
conductive processes only

so it is argued, LPHT metamorphism must have similar causes as regional
Barrovian type metamorphism (s. Harley 1989). In order to explain the ex-
ceptional peak metamorphic PT ratios a series of models have been invoked
that all are based on extremely unusual thickness geometries of crust and
mantle lithosphere. For example, extreme thinning of the crust and the man-
tle lithosphere may cause conditions appropriate to LPHT metamorphism.
Another possibility that has recently received some attention is unusually
high radioactive heat production within the crust (Chamberlain and Sonder
1990; Sandiford and Hand 1998a;b). This might lead to a geotherm of the
shape of curve b on Fig. 6.37. Spear and Peacock (1989) discuss models of
internal and external heating of metamorphic terrains in some detail. Their
contribution also includes a series of computer programs that can be used to
model these heating mechanisms.

6.3.4 High Pressure Metamorphism

Metamorphic rocks that were buried to depths above 60 km are a common
minor constituent of the lithological assembly of many orogens (Ring et al.
1999). In sect. 4.3.4 (and several others of this book) we have shown that it is
difficult to exhume rocks in convergent orogens from more than 30 km depth
both via exension or erosion, when considering only a simple one-dimensional
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model. Therefore, the terms “high pressure metamorphism” (and: “ultrahigh
pressure metamorphism” above the quartz - coesite transition, s. Fig. 7.1)
have found their own meaning in the literature. The exhumation of such rocks
must be considered as a two dimensional problem and a series of models have
been suggested that can be used to explain exhumation from much larger
depths (s. sect. 4.3.3). These models can be grouped according to the nature
of the exhuming forces into (s. Platt 1993b):

1. Models that rely on forces that are applied externally to the metamorphic
terrain (extrusion).

2. Models that rely on buoyancy forces caused by density differences.

3. Models that rely on extensional processes caused by gravitational stresses.

Compare this division also to the subdivsion for exhumation processes made
on p. 153. The third of these three mechanisms was already discussed on
p- 153 and cannot be responsible for exhumation of more than from about
30 km depth. The first two both play a role in extruding high P terrains
(Fig. 6.39). The currently most popular model quoted for the exhumation
of high pressure rocks is the model of Chemenda (Chemenda et al. 1996;
Shemenda 1994), which relies on a complicated interaction of processes from
all three model groups in subduction zones. Before we discuss these model
groups in some more detail, we note that the observation of high pressure
metamorphic parageneses must not necessarily be interpreted as an indicator
of large burial depths (e. g. Ernst 1971; Mancktelow 1993; 1995; s. sect. 6.3.5).

a b ergsion c

Figure 6.38. Exhumation of rocks according to the Chemenda (1996) model. a
and b show two time steps during subduction and extrusion of the accretionary
wedge; ¢ shows schematically the extrusion process in the circled region in b

1. Exhumation by External Forces. Exhumation mechanisms of the first
group may be characterized by the key words Extrusion, strike slip foulting
and corner flow (s.p. 308). The process of vertical extrusion means that
material is squeezed out between two hard blocks of rock, for example in a
flower structure. The process is quite similar to what we discussed as “lateral
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extrusion” on p. 308, but in the vertical direction. Vertical extrusion does not
help to exhume the rocks by itself, but it brings rocks rapidly into a position
where they may be exhumed by erosion. The amount of vertical extrusion as
a function of the forces between the two hard blocks may be calculated from
the relationships we discussed in sect. 5.1.1, 5.3.1 and 6.2.2 (e.g. eq. 6.21,
5.57).

The corner flow model is different. During the continuous deformation of
accretionary wedges it is possible that rocks will be exhumed without the re-
moval of a corresponding amount of material from the surface (s. sect. 6.2.3).
However, this process can only be invoked as an explanation of exhumation if
the viscosity of the rocks is very low or the exhumed rocks occur as isolated
blocks in a soft melange (Cloos 1982).

a _ b

upper plate

Figure 6.39. Competing flow during shearing and buoyancy in a subduction chan-
nel (England and Holand 1979; Mancktelow 1995). The net flow shown in b corre-
sponds well with the distribution of metamorphic rocks in parts of the Himalayan
crystalline complex that extrudes between the Main Central Thrust and the South
Tibetan Detachment zone

2. Exhumation by Buoyancy Forces. If high pressure metamorphic rocks
have a lower density than their surroundings, then it is conceivable that they
rise through the crust only due to their positive buoyancy - a bit like plutons
in the solid state (Fig. 6.39). One example where this may occur is if crustal
material is brought down into the mantle (Wheeler 1991; Chemenda et al.
1996). However, one of the most common high pressure metamorphic rocks
is eclogite which is generally embedded into rocks of much lower density and
grade. This observation cannot be explained by buoyancy forces. England
and Holland (1979) observed that eclogites from the eastern Alps are often
embedded in carbonates. They infer that the buoyancy of eclogites plus car-
bonates may be low compared to the density on a regional scale, so that
exhumation by buoyancy forces is possible.
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6.3.5 Tectonic Overpressure

The term “tectonic overpressure” is very loosely used for all non-lithostatic
components of pressure (s. sect. 5.1.1; eq. 5.23). In other words, the compo-
nent, of pressure that deviates from eq.7.1. Ernst (1971) and Rutland (1965)
suggested that the non lithostatic stresses may form a significant contribution
to the pressure measured with geobarometers in metamorphic parageneses.
However, today most petrologists assume that this component of pressure
is so small that it may be neglected completely when interpreting results
from geobarometers applied to metamorphic parageneses. Whether this as-
sumption is always justified is not trivial and needs testing. In very general
terms, we can say that there is two mechanisms to create tectonic over- or
underpressure:

1. Deformation (via shear stresses that contribute to pressure)
2. Static confinement (via increased principal stresses)

Deformation causes overpressure because the inherent strength of rocks is
responsible for a deviation from the isotropic stress state. Then, shear stresses
contribute to the mean stress. Deformation is only possible if rocks have a
finite strength so that the mean stress (pressure) will always be different from
the lithostatic stress. Static confinement may be important when rocks are
squeezed into an area where all the principal stresses are increased.

L |

muscovite

.‘\

Figure 6.40. Examples of local pressure variation in outcrop and model. a Partial
melt in a boudin neck from Namibia. Did it form there (?) or migrate there (?7) —
do to local pressure gradients during boudinage ? (photo by Grasemann, hat by
Mancktelow). b Biotite growth in the pressure shadow of a garnet crystal from the
Plattengneiss shear zone in the Eastern Alps. The rock contains only muscovite
and quartz in the matrix and biotite forms exclusively in the pressure shadows —
probably due to local decompression. ¢ Finite element model of pressure variation
during viscous folding (Mancktelow pers. comm. 2006). Competence contrast be-
tween central layer and matrix is 20:1. Highest pressure in the core of folds is about
twice the normal flow stress
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Some Field Observations. The fact that non lithostatic stresses have an
influence on the pressure distribution in rocks is quite obvious on a large
range of scales from the hand specimen scale (Fig. 6.40) to the intra plate
stress field on the largest scale (Fig. 2.2). On the hand specimen scale we
know of the existence of pressure shadows behind minerals, pressure solution,
boudinage and folding (Fig. 6.40). In fact, any fabric formation in rocks can
all only occur if there is deviations from the isotropic stress state of rocks. For
the mechanical analysis of such deviations, numerical methods, in particular
the finite element method are now of common use. The interested reader is
referred to the classics of Stromgard (1973) and Stephansson (1974), more
modern studies of Barr and Houseman (1996), Bons et al. (1997), Tenczer et
al. (2001) or Schmid (2005) and — of course — to the wonderful text book of
Ramsay and Lisle (2000). On a larger scale, large isothermal sections of the
crust (as they are common in many areas around the world, s. Fig. 7.14)
may indicate overpressure on a crustal scale.

Estimating its Magnitude and Interpretation. To illustrate overpres-
sure, let us consider the different parameters that contribute to pressure
during viscous deformation. For this we consider a simple convergent defor-
mation geometry in which the largest principal stress is oriented horizontally
and the smallest vertically and where we can write: o2 = (07 + 03)/2. In this
case pressure is the mean of the largest and smallest principal stress and may
be described as follows: (s. sect. 5.1.1, eq. 5.23 and eq. 5.46):

p Yt + 03 L o1L= 03 4 0d - 1/¢ (1/m) orir (6.33)
— —_ =g _—= - —_ n . .
5 03 2 3 Py o\ A
where €; is longitudinal strain rate, as we described it in eq. 5.46. The sec-
ond term in this equation may be called the “non lithostatic component of
pressure”. It depends on the material constants ), A and n as well as tem-
perature T and strain rate €. As it is very difficult to determine the material
constants experimentally, geologists have tried to constrain their magnitude
using field observations (e.g. Molnar and England 1990a; England and Molnar
1991; Mancktelow 1993, 1995; Stiiwe 1998a).

e Constraints from the elevation of mountain ranges. One of the most impor-
tant field observations used to constrain the magnitude of differential stress
(strength) of the crust is the elevation of mountain belts: The mean eleva-
tion of a mountain ranges implies that the mean differential stress in the
lithosphere must be of the order of 50 MPa (s. p. 300). This implies that
the mean contribution of non-lithostatic components to pressure is about
0.25 kbar. However, considering the rheological anisotropy of the lithosphere,
it is very likely that some parts of the lithosphere are significantly weaker
than this and others therefore stronger. For example, the rheological model of
the Brace-Goetze-lithosphere implies that differential stresses near the brittle
ductile transition are of the order of several hundreds of MPa (s. Fig. 5.17 and
Fig. 5.20). Thus, the Brace-Goetze-model is in contrast to the wide spread
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Figure 6.41. This diagram illustrates that the temporal evolution of differen-
tial stress need not correlate in any intuitive way with either the evolution of
temperature or the evolution of strain rate. This is because differential stress
in the ductile regime has such a complicated exponential and power law depen-
dence on temperature and strain rate (eq. 6.33). a Schematic illustration of tem-
perature and strain rate in a metamorphic terrain. These curves were calculated
with the purely artificial assumptions that temperature may be described by:
T =Ty +(To —T1)(t/t1)e ~**) and strain rate by: € = €, (t/t2)el*~%/*2). b The dif-
ferential stress contribution to pressure with the assumed temperature and strain
rate evolutions from a. Calculated with eq. 6.33 using A = 2-107* MPa%s7!;
Q=210 Jmol ™}, n=3

opinion that differential stresses are of negligible influence to the interpreta-
tion of geobarometric data.

o Constraints from metamorphic PT paths. Metamorphic PT paths — in par-
ticular those from low-P high-T" terrains — show a large variability including
decompression, compression and isobaric cooling. Many of these paths are
constrained only by directions of PT changes rather than by absolute pressure
changes and it has therefore been argued that they may reflect counter intu-
itive variations of non-lithostatic stresses, rather than depth changes. From
eq. 6.33 we can see that temperature and strain rate are related to differential
stress by complicated exponential and power law functions. Thus, it is not
trivial to see if differential stresses (and therefore the tectonic overpressure)
will rise or fall when the temperature or the strain rate in a metamorphic ter-
rain change. In low-P high-T terrains deformation and temperature change
are often intimately related, as shown, for example in Fig. 6.41a. Fig. 6.41b
shows the differential stress that results from these strain rate and temper-
ature evolutions if inserted into eq. 6.33. Despite the simple and intuitive
shape of the functions in Fig. 6.41a, the resulting evolution of stress as a
function of time is completely counter intuitive. Fig. 6.41b should serve us as
a warning to attribute too much significance to some complications observed
in P-T paths of metamorphic rocks (s. Stiiwe and Sandiford 1994).
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6.3.6 Feedback and Episodicity

Feedback between different geological processes is a common phenomenon in
the earth science. In general, we discriminate between two types of feedback
processes:

— positive feedback,
— negative feedback.

In both cases one process has an effect on another, the changes of which in-
fluence in turn the first process. Feedback processes are called positive if two
or several processes “accelerate” each other. Feedback processes are called
negative, if two or several processes hinder each other. We have encountered
positive feedback processes between lithospheric extension and thermal weak-
ening in Fig. 6.15: There, the onset of lithospheric extension causes steeping
of the geothermal gradient (thermal weakening), which accelerates the exten-
sional strain rates, which in turn results in accelerated thermal weakening.
The process begins to “run away” until rifting occurs. Another currently very
topical positive feedback processes occur between global glaciation and CO»
content of the atmosphere possibly resulting in very rapid formation of a
snowball earth (North et al. 1981; Hoffman et al. 1998). Negative feedback
is more intuitive, for example the feedback between potential energy and ef-
fective driving force during collisional orogenesis (Fig. 6.23). There, collision
causes an increase of the potential energy of a new orogen which opposes
the driving force and therefore causes the collisional strain rate to decrease,
which in turn leads to a slowed increase of the potential energy until orogen-
esis comes to a rapid halt. Because of feedback processes the question on the
cause or consequence of one or the other geological process is often difficult
to answer. Most feedback processes in the earth sciences are non-linear, that
is, there is not a direct linear relationship between cause and consequence.

Non-linear Feedback. Consider a very simple theoretical example. If we
iterate the non-linear function z = x> for many iterations, then the result will
depend on our assumption for the starting value of z. For all positive starting
values of z that are smaller than 1, this function will converge toward zero. For
all starting values of z that are larger than 1 this function will diverge towards
x — 0. Because of the non-linearity, it will do so at an increasingly large
rate, the more iterations we perform. Only a single starting value, namely
x = 1, separates the two different trends. (If the starting value is not a real
number but a complex number, then this critical starting guess separating
different evolutions will become a series of starting values forming a line in
complex plane. This line often has a complicated fractal shape and is known
by the name Julia set).

Many geological processes behave that way due to non-linear feedbacks:
depending on the starting situation, they either “run away” or converge to
a steady state. For instance, in the example we discussed in Fig. 6.15, we
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noted that there is single set of starting conditions separating two completely
different orogenic evolutions. These are evolutions terminating in self-limiting
extension and those terminating in “run away” rifting processes. Even a very
small difference in starting conditions is sufficient to result in these very
different evolutions, if the two starting conditions lie on either side of this
critical set of starting conditions. The example is therefore equivalent to the
simple illustrative iteration of x = 2.

For some functions, convergent and diverging evolutions are not separated
by a single starting value, but by a whole region of starting values. Within
this critical region the evolution may behave oscillatory or chaotic. In this
context chaotic means that the evolution of the function may not be predicted
directly from the choice of starting parameters.

e Lorentz Attractor. Although it has no direct geodynamic applications, the
so called Lorentz attractor provides a nice simple illustration how non linear
feedback processes may cause chaotic and oscillatory behavior of processes.
The Lorentz attractor describes the feedback between three independent dif-
ferential equations:

dx

—=-1 1
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i 22 +28zx—y (6.34)
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All three equations are functions of the same parameters: z, ¥ and z. Also,
all three equations are non-linear (the fact that variables occur as themselves
and as their own derivative within the same equation indicates that they are
exponential functions; s. p. 416). Numerical simultaneous solution of these
three equations using the method of finite differences is straight forward
and results in the irregular temporal evolution of the three variables z, y
and z that is illustrated in Fig. 6.42b. We can see that x, ¥ and 2z have
unpredictable ups and downs as a function of time, although each of the three
functions in eq.6.34 are continuous functions. It is therefore very tempting
to interpret the z and 2 as shown in Fig. 6.42b as — for example — the
evolution of metamorphism and deformation of a polymetamorphic terrain
and suggest that the repeated occurrence of deformation or metamorphic
events in orogens may have nothing to do with separate events and is solely
a function of non-linear feedback processes.

Geological Examples of Non-linear Feedback. Non-linear feedback pro-
cesses are very familiar to geophysicists who model dynamic processes, but
their potential influence on shaping the observations that field geologists make
in the outcrop is not appreciated. In this section we therefore illustrate feed-
back processes with three examples with direct relevance to field observations.
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Figure 6.42. a The Lorentz-attractor in the z-y-plane, calculated with the
egs. 6.34. b chaotic evolution of the variables x and z plotted as a function of
time ¢

e 1. Feedback between erosion and deformation. Feedback processes
between surface erosion and the tectonic and thermal evolution of the crust
are well recognized (England and Richardson 1977; Willett 1999). Even feed-
backs between climate changes and mantle processes have been suggested
(e.g. Molnar et al. 1993; Koons 1990; Harrison et al. 1992; Pinter and Bran-
don 1997). Many of these models are based on the fact that the rate of
erosion and that of the thermal equilibration on the scale of the crust are
comparable. As a consequence, erosion may or may not advect heat towards
the surface, depending on the relative rates. This in turn may cause ther-
mal weakening, which may be reflected in deformation events (Hoffman and
Grotzinger 1993). We have discussed this interaction in several sections of
this book and it is well documented in New Zealand, where the difference in
surface heat flow between the west and the east coast of the South Island may
be correlated with the difference in rain fall on the two sides of the island
(Koons 1990). Similarly, Molnar and England (1990b) have speculated that
the Indian Monsoon is closely linked to the uplift of the Tibetan Plateau and
Zhou and Stiiwe (1994) showed that this connection of events is only possible
for exceptional rates during orogenesis.

e 2, Deformation and metamorphism — cause or consequence. Ob-
servations from many metamorphic terrains show that there are character-
istic temporal relationships between metamorphism and deformation indi-
cating that feedback processes between deformation and metamorphism are
likely. In principle, there may be three different timing relationships: the de-
formation of a terrain may occur pre-, syn- or postdate to metamorphism
(s. sect. 7.4.1). Clearly, it is useful to know if one caused the other, or if there
are feedback processes between metamorphism and deformation.
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Models that are used to explain regional Barrovian type conductive meta-
morphism (where deformation precedes metamorphism) consider metamor-
phism to be the consequence of deformation (e.g. the model of England and
Richardson, s. sect. 6.2.1): the deformation causes thickening which in turn
causes a thermal disequilibrium. The subsequent thermal equilibration that
causes metamorphism is therefore the result of deformation (s. sect. 7.4.1;
Fig. 7.13). Conversely, metamorphism can cause a deformation event. For
example, if a strong lithospheric plate is thermally-weakened, then it might
deform in response to the thermal event, while the far field stress field re-
mains constant (s. eq. 6.23, sect. 5.3.1). In this model, deformation is the
result of metamorphism and deformation is likely to be syn- metamorphic.

e 3. Orogeny as a non-linear feedback between many processes. Mountain
building processes are characterized by a series of non-linear relationships
between physical parameters (e. g. Malanson et al. 1992; Hodges 1996; Stiiwe
et al. 1993). Fig. 6.43 gives an overview over some non-linear processes and
their interaction during orogenesis. Many of the processes illustrated there
may be described by mathematical relationships not unlike those of Eq. 6.34.
A correlation between the evolutions of z, y and z on Fig. 6.42b and strain
rate of thermal events may therefore be not completely wrong.
Episodicity in Geological Events. Most eological events occur episodi-
cally: Field geologists map out discrete events of repeated deformation and
metamorphism (s. Fig. 7.11); volcanoes erupt cyclically; earthquakes, mass
extinctions, glaciations, magmatic activity and orogenesis all occur over time
spans that are short compared to the periods of quiescence before they occur
again (e.g. Waschbush and Royden 1992; Malniverno and Pockalny 1990).
In a very general way, the episodicity of a process may be explained in three
different ways:

— Episodicity at the boundaries,
— threshold mechanisms,
— non-linear feedback.

The last of these three mechanisms was dealt with in the last section. The

first mechanisms (“episodicity at the boundaries”) simply refers to an expla-
nation of the cyclicity of events by cyclicity of events elsewhere. For example,
the cyclic nature of tectonic events in the western US has been interpreted
as the consequence of the episodic subduction of the Pacific Plate under the
North American continent (Elison 1991). This interpretation explains the
cyclic occurrence of events in North America, but it does not explain episod-
icity as such. Rather, it defers the causes of episodicity to an area outside the
region of consideration - in this case outside North America.
e Threshold mechanisms. The most common way how continuous processes
are broken up into discrete episodically occurring events is by threshold mech-
anisms. In principle this means that a certain value of a parameter — the
threshold — needs to be exceeded by a continuous evolution before a process
can occur (Tong 1983; Hergarten 2002). Two examples:
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Figure 6.43. Interaction and feedback between some selected processes during
orogenesis. Note that the functional relationship between several of the processes is
non-linear. For example, the strain rate is an ezponential function of temperature,
a cubic function of stress (eq. 5.46) and potential energy is a quadratic function of
thickness (eq. 5.49). It is therefore possible that interaction between the different
processes may lead to a chaotic evolution of processes during orogenesis

— Earthquakes occur if a certain threshold stress is exceeded. During defor-
mation elastic stresses are cumulatively built up until the failure stress of
a rock is exceeded. An earthquake dissipates these stresses then by defor-
mation. This is followed by a period of quiescence during which stresses
build up again, until the threshold stress is exceeded again.

— Partially molten rocks often intrude into higher crustal levels. For a melted
rock to leave its source rocks and form an intrusion a threshold melt volume
must be exceeded in the source rock (Wickham 1987).

Both the above examples are characterized by a regular, but episodic evolu-
tion, even though the applied boundary conditions remain constant. However,
in reality, earth quakes and magmatic activity occur much more randomly
than the above models and thresholds suggest. This is because the thresh-
olds in question are coupled with a spatial length scale. For example, an
earth quake will not occur if the necessary threshold stresses are only ex-
ceeded along a single micro fracture. Instead, it will be necessary that the
mean stress over a certain area exceeds the threshold stress. Similarly, magma



334 6 : Dynamic Processes

segregation will not occur if a critical melt volume is exceeded on the scale
of a thin section. Instead, it will be necessary that melt can only segregate
once the critical melt volume is exceeded over a certain length scale.

Thus, in order to be able to predict the occurrence of earth quakes or mag-
matic intrusion (or any other process relying on threshold mechanisms), it is
necessary to know the relationship between the magnitude of the threshold
and the length scale over which this threshold needs to be exceeded. Sadly,
this relationship is a function of so many variables that is practically im-
possible to know it. The problem is akin to the problem of meteorologists,
who would need to know the motion of every gas molecule in the atmosphere
in order to be able to predict weather patterns with any accuracy. The fact
that infinitely small variations of a single small parameter are sufficient to
bring the whole system out of predictability, this called the butterfly effect,
reminding us of the possibility that the air current caused by the flight of a
butterfly may cause complete weather patterns to change.

6.4 Problems

Problem 6.1. Eaxtension: uplift or subsidence? (p. 266):

Fig. 6.2 illustrates that continental extension can lead to surface uplift or
to surface subsidence, depending on the initial thickness ratio of crust and
mantle lithosphere and their densities. Use eq. 4.35 and Fig. 4.18 to under-
stand which parameters control whether uplift or subsidence will occur (s.
also Problem 6.6).

Problem 6.2. Porosity estimates (p. 271):

Use eq. 6.1 to estimate the depth at which the porosity of sandstone is the
same as that of shale. Use the parameter values given in the caption for
Fig. 6.5.

Problem 6.3. Compaction of sediments (p. 272):

Use eq. 6.4 to calculate the thickness of a 100 m thick sandstone unit at
2000 m depth at the time of its deposition. For the porosity data of sandstone
use those in Fig. 6.5.

Problem 6.4. Isostasy of sedimentary basins (p. 275):
Derive eq. 6.5 using Fig. 6.7 and eq. 4.23.

Problem 6.5. Subsidence analysis (p. 277):

Describe the subsidence evolution of the sedimentary basin characterized be-
low. What tectonic process might have formed the basin and discuss field
observations you would look for to test your model? What subsidence mech-
anism might have been responsible for the evolution of subsidence you have
derived? Note that your subsidence analysis must include back stripping to
answer these questions.
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The basin we consider is filled by a 6 km thick pile of sediments. A drill
hole has shown that the pile is made up of five strata which we number from
the base to the top with ¢ = 1 to ¢ = 5. Fossils were found in each layer
and allowed to determine a detailed record of the sedimentary succession:
The 1. layer is a 3 km thick sandstone layer that was deposited during an
increasing water depth from 500 m to 800 m between 55 my and 60 my. The
second layer is a 500 m thick shale layer that was deposited in a water depth
of 800 m between 40 my and 55 my. The third layer is a 1 km thick sandstone
unit, deposited during decreasing water depth from 800 m to 300 m in the
time between 40 my and 30 my. The 4. layer is a 500 m thick shale unit that
was deposited during a decrease of water depth from 300 m to 0 m in the
time between 30 my and 15 my. The 5. layer was deposited between 15 my
and present in the tidal environment.

For your analysis use Eq. 6.1, 6.4 and 6.5 (note that you will also need
Eq. 6.7 for Eq. 6.5). Use the values for densities and porosities from Fig. 6.5.
The density of the asthenosphere is: p, = 3200 kgm™3.

Problem 6.6. Extension: uplift or subsidence? (p. 278):

According to McKenzie (1978) homogeneous stretching of the lithosphere
will only lead to subsidence if the initial ratio of crustal thickness to litho-
spheric thickness exceeds a certain ratio. Derive how large this ratio is using
Eq. 6.10 and making the following assumption for the physical parameters.
po=3300kgm™3; p. = 2750 kgm™>; p,, = 1000 kgm~3; a = 3-1075°C~L;
T1=1280°C and z =130 km. (See also Problem 6.1.)

Problem 6.7. Estimating thermal sag (p. 279):

Estimate roughly the total duration of the thermal sag phase that may be
expected in a hypothetical basin forming in Europe, where the lithosphere is
roughly 100 km thick and another one in southern Africa, where the litho-
sphere is almost 200 km thick. Use eq. 6.11.

Problem 6.8. Radioactive contribution to heat flow (p. 290):

Table 6.1 lists a range of geologically realistic radiogenically caused heat flows
¢raqa and mantle heat flows ¢p, for the continental lithosphere. Calculate the
expected equilibrium surface heat flow in lithosphere that is (a) doubled in
thickness and (b) halved in thickness using the logic outlined in eq. 6.13 to
eq. 6.15

Problem 6.9. Understanding orogenic force balance (p. 295 — p. 301):

A mountain belt has formed in response to the collision of two plates. How
high can the (isostatically supported) mountain range grow if the driving force
for collision is Fy=5-10'2 Nm~!? Use eq. 6.21. Tackle the problem in 3 differ-
ent ways and compare the answers: (a) Solve the problem graphically by using
the logic of eq. 6.21 and comparing Fig. 4.18 and Fig. 5.32 (assuming that
only the crust thickens but that the complete lithospheric thickness remains
unchanged, i.e. fi = 1 at all times). (b) Calculate the answer using eq. 5.57
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and z. =30 km, p. = 2700kgm™>, p, = 3300kgm— and g=10ms2. (c)
Refine that answer of (b) by using eq. 5.59 (using &« = 3x1075°C~1 T1=1200
°C and #=100 km as additional variables) to calculate the buoyancy force
and eq. 4.31 to calculate the isostatically supported surface elevation (as-
suming again that only the crust thickens but that the complete lithospheric
thickness remains unchanged), (s. also Problem 5.17.)

Problem 6.10. Estimating the Argand number (p. 305):

Use eq. 6.31 to make a rough estimate how an orogen will look like in which
the thickness increase is L = 50 km, p. = 2700 kg m™3, p, = 3300 kg
m~?2 and the collision rate is 5 cm per year. For the parameter B use the
relationship given in the text following eq. 6.29 (see eq. 5.46) and the values
for the material constants of olivine given in Table 5.3. Calculate the Argand

number for 400°C and 500°C and discuss what difference this makes.

Problem 6.11. Estimating tectonic overpressure (p. 327):

How large is the tectonic overpressure in a quartz dominated rock in 10
or 15 km depth if the thermal gradient from the surface to that depth is
30°Ckm™! and the strain rate is large enough to double the thickness of the
crust in 5 my? Use eq. 6.33 and the rheological data for quartz given in Table
5.3. Assumed eq. 5.46 to be the governing constitutive relationship.



7. Metamorphic Processes

One of the basic data sets used by geologists for the geodynamic interpre-
tation of a metamorphic terrain is the spatial and temporal evolution of
pressure P, temperature T and deformation D that the rocks experienced:
the metamorphic evolution of the rocks. Data on the metamorphic evolution
are particularly important when interpreting ancient orogens where it is im-
possible to measure many other parameters directly (e.g. surface elevation,
surface heat flow, gravity etc.). The relative evolution of pressure, tempera-
ture and deformation may well be illustrated as curves in P-T-space. Such
curves are called P-T-paths or P-T-t-D-paths, if the path is also labeled for
deformation events and time. As the interpretation of metamorphic rocks is
so crucial to any geodynamic interpretation performed by a field geologist, we
dedicated it here its own chapter. For detailed treatment of thermodynamics
underlying all petrological studies of P-T-paths we recommend: Anderson
and Crerar (1993) or: Atkins (1994). For more petrologically oriented texts
with geodynamic applications we recommend: Spear (1993) or: Spear and
Peacock (1989).

7.1 Introduction

Most tectonic processes are characterized by process-specific spatial and/or
temporal relationships between the evolutions of pressure, temperature and
deformation. Thus, when inferring tectonic processes from such relationships,
it is important to subdivide these three parameters in as much detail as pos-
sible: The thermal evolution may be subdivided into a heating phase and
a cooling phase, the baric evolution may be subdivided into a phase of in-
creasing pressure and into one of decreasing pressure and the evolution of
deformation may be subdivided into phases of increasing and phases of de-
creasing strain rate. When collecting field observations it is important to
discriminate between two different sets of data pertaining to two different
questions:

— What is the temperature, pressure and deformation evolution of a single
rock? (temporal evolution)
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— How does this temporal evolution change in space across the terrain in
question; for example as a function of a regionally decreasing or increasing
metamorphic or strain gradient? (spatial structure)

The more detailed these questions can be answered in the field or in the
laboratory, the easier it is to constrain the tectonic processes that formed
the terrain in question. However, answering these questions is not always
easy. An observed regional strain gradient could be the consequence of both
a regional change in the duration of deformation or a regional change in
strain rote. In other words, it remains unclear if the observation should be
interpreted in terms of a spatial or temporal change. Corresponding problems
may arise during the interpretation of pressure or temperature changes: A
rise of temperature need not imply heat conduction and may be related to
other thermal processes like those discussed in sect. 3.1, 3.2 and 3.3. A
change in pressure need not correlate with a change in depth. Finally, the
interpretation of these questions is complicated by the fact that the evolution
of temperature, pressure and deformation may not be independent. Thermal
expansion may have an influence on the pressure field, pressure changes may
be followed by adiabatic heating or friction heat released during deformation
may influence the thermal evolution.

Fortunately, such couplings do not necessarily hinder the geodynamic in-
terpretation. To the contrary, this interaction of processes is often the very
reason for very process specific spatial or temporal relationships between
metamorphic rocks. They provide an exciting playground for the geodynam-
ically oriented field geologist in which we can probe our art of interpretation
of metamorphic P-T-paths.

7.1.1 What Exactly are P-T- and P-T-t-D-Paths?

P-T-paths are curves on a diagram in which pressure and temperature form
the axes. Thus, a P-T-path illustrates the relative change of pressure and
temperature in a rock, but it cannot show the temporal evolution of either
of them. P-T-diagrams are parametric diagrams because they show the re-
lationship between two independent functions of the same variable (in this
case: time). In rocks it is much easier to document the relative evolution of
pressure and temperature, than the absolute temporal changes of these two
parameters. Thus, P-T-diagrams have become one of the standard tools for
the interpretation of metamorphic rocks. If absolute timing information is
available, or the timing of deformation relative to pressure and temperature
is known, then we speak of P-T-t- or even P-T-t-D-paths.

Relationship Between Pressure and Depth. The interpretation of P-T-
paths is often made with the basic assumption that pressure is only caused by
the weight of the overlying rock column, i.e. it is hydrostatic or, as geologists
say:lithostatic. Then the principal stresses are of the same magnitude in all



7.1 - Introduction 339

spatial directions: 0y = o3 = 3. Moreover, if this stress field is oriented
parallel and normal to the earth surface, then= 0y = 09 = 03 = 04, =
Oyy = 0,, and pressure correlates directly with depth, more specifically: to
the vertical normal stress . At depth z this may be calculated by integrating
the density over depth (s. also sect. 4.4.1):

P=g,, =/ P94z (7.1)
0

If the density is independent of depth, then this integral is easily solved. It
is: P = pgz. Checking the units confirms that this equation is dimension-
ally consistent: stress =force per area, force =mass times acceleration and
mass = density times volume. For a 10 km thick column of rock with the
density p = 2700 kgm 3, we get a mass per area of: 2700 x 10000 kgm~2.
Multiplied with the gravitational acceleration (g ~10 ms~2), this gives a
pressure of 2.7-10% kgm—1 572 =2.7-10% Pa =270 MPa=2.7 kbar. In short:

P(kbar) &~ 0.27 x z(km) or : z(km) =~ 3.7 x P(kbar) (7.2)

In words: the depth in kilometers times ~ 0.27 gives us the pressure in kilo-
bar. Correspondingly, the pressure in kilobar times ~ 3.7 gives us the depth
in kilometers. The errors that arise in this estimate from rounding of the
gravitational acceleration or the density changes with depth are significantly
smaller than the accuracy of geobarometers and may therefore be neglected.
If the three principal stresses are not the same (as they cannot be in deform-
ing rocks), the deviatoric stresses contribute to the overall pressure and it has
been of continuous debate if and how this “tectonic overpressure” is part of
the pressure measured by petrologists when applying geobarometers to rocks
(see sect. 6.3.5).

Note that pressure is generally given in kilobars in the geological litera-
ture, in energy per volume by the thermodynamics community and in Pas-
cal by the geophysicists. The conversions between these units are given by:
1 kbar =100 MPa=10% Pa=10% Jm—>.

7.1.2 The Metamorphic Facies

The P-T space relevant to crustal rocks may be divided into metamorphic
facies. The metamorphic facies concept was introduced by Eskola (1915) and
is widely used by metamorphic geologists (e.g. Yardley 1989). Nevertheless,
placing exact boundaries on facies fields is difficult. This is largely due to
the strong dependence of parageneses on bulk composition and the fact that
parageneses, not individual minerals are characteristic of metamorphic grade.
Modern petrologists may argue that the facies concept is obsolete in view of
the availability of pseudosections. However, the idea is still well entrenched
in the literature and certainly justifies a small excursion here. In our division
(Fig. 7.1a) we follow Hacker et al. (2003) and Brown (2006) and use phase
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diagrams of Dale et al. (2005) and White et al. (2001), but we also introduce
a new facies concept that appears useful to distinguish between metamor-
phic facies fields used by petrologists and facies fields as used by tectonicists
(Fig. 7.1). Petrologists use the facies concept to group rocks with similar
characteristic parageneses. Tectonicists use the concept to discern between
P-T fields reached by different tectonic processes. For both, metamorphic
facies space is limited by a region which is simply too cold to be reached by
metamorphic rocks. Brown (2006) suggests that this limit is given by a T'/P
ratio lower than 15°C / kbar. Although there is — in principle — no limit, no
metamorphic rocks have been found with lower T'/ P ratios. Above this ratio
there are a series of facies fields:

Metamorphic geologists discern the following main fields (Fig. 7.1a):
Greenschist facies is defined in mafic rocks by the presence of actinolite above
about 250°C to 300°C (instead of glaucophane at blueschist and hornblende
at amphibolite facies). Below this there is a series of low grade fields includ-
ing prehnite, pumpellyite and zeolite facies that will not be discussd here. In
pelitic rocks, it starts with the coarse grained appearance of white micas.

Amphibolite facies is defined by the first appearance of staurolite in
metapelites. For subaluminous pelites, staurolite appears at the KFMASH
univariant breakdown of garnet + chlorite to staurolite + biotite (the “stau-
rolite isograd”) above a line from about about 570°C at 4 kbar to 630°C at
9 kbar. For aluminous pelites, staurolite may appear in continuous equilib-
ria at somewhat lower 7. In mafic rocks, the amphibolite facies begins with
the appearance of hornblende in continuous reaction at similar P-T to the
staurolite isograd. Within the amphibolite facies, amphibolites begin to bear
garnet at high P and epidote at low T, giving rise to a series of possible sub-
divisions. The wet solidus of pelitic rock is also within the amphibolite facies
field and even the muscovite breakdown (the “effective” solidus) is generally
considered to be part of this facies.

The start of granulite facies is defined by the first appearance of orthopy-
roxene in mafic rocks. In fact, a “granulite” in the narrow sense of the word is
an orthopyroxene bearing gneiss. In pelitic rocks, granulite facies is generally
considered to begin above the KFMASH univariant breakdown of biotite +
sillimanite to garnet + cordierite, a reaction with positive slope from about
700°C at 2 kbar to 800°C at 8 kbar. These values are similar to those of the
first appearance of orthopyroxene in mafic rocks. In pelitic rocks, the silli-
manite - kyanite transition marks the boundary between low-P and high-P
granulites. In mafic rocks the continuous appearance of jadeite-rich pyroxenes
and the disappearance of plagioclase marks a broad transition to eclogites at
roughly 15 - 20 kbar.

Eclogite and blueschist facies cover the high-P region. Their boundary
is very loosely defined by the disappearance of garnet to lower 7. The limit
to the lower P fields is defined by the disappearance of lawsonite and glau-
cophane from the blueschist field and the disappearance of zoisite from the
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Figure 7.1. Metamorphic facies according to the interests of the metamorphic
petrologist (left) and geodynamicist (right). Shown is the P-T region of relevance
to the lithosphere and fields are inserted semi-quantitatively. The axes are the
same in both diagrams but labeled in kbar in a and in km (assuming a density of
2800 kg m~?) in b. In the “forbidden zone” phase equilibria are not drawn. Bands
delineating fields in a indicate that boundaries vary according to bulk composition.
The normal geotherm in b is drawn as to pass about 500°C at 35 km depth and
reach 1200°C in 120 km depth for reasons discussed in chapter 3. Abbreviations
are: L = low grade; G = greenschist; A = amphibolite facies; Gra = granulite facies;
B = blueschist facies; E = eclogite facies; UHP = ultrahigh pressure facies; UHT
= ultrahigh temperature facies. Minerals are: sill = sillimanite; ky = kyanite; jd =
jadeite; ab = albite; g = quartz. Field boundaries are discussed in the text

eclogite field. Again, these phases disappear in continuous reaction so that
these boundaries are wide bands. Only the boundary to ultrahigh pressure

facies (UHP metamorphism) is sharply defined by the quartz - coesite tran-
sition.

Tectonicists divide P-T space into conditions that are warmer and those
that are colder than a normal continental geotherm (Fig. 7.1b). On the warm
side a line with =~ 100°C per kilobar limits conditions that can possibly be
reached conductively (Barrovian style metamorphism) to the low-P high-T
facies. This slope corresponds to a situation where the base of the litho-
sphere (i.e. & 1200°C) is located at the Moho at normal depth (~ 35 km),
a situation that would lead to wholesale melting and rift formation and is
rarely realized. It is suggested here that this line provides a useful bound-
ary between a“conductive” or“Barrovian” part of P-T space and the low-P
high-T facies (Buchan style metamorphism) where metamorphism must be
related to contact effects in the widest sense. On the cold side of a normal
geotherm we suggest to discern a “colder than normal” and an “wltra low
temperature” (ULT) facies field. The “colder than normal” field encompasses
all conditions on the “cold” side of a normal geotherm that can be reached
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Figure 7.2. Two classic metamorphic
locations: The Barrow and Buchan
zones in Scotland. Note that the Buchan
zones form a concentric pattern, while
the Barrow zones increase in
metamorphic grade with distance from
the fundamental structures of the
Highland Boundary and the Great Glen
Faults. Zones are labeled as follows: C =
chlorite zone; B = biotite zone; G =
garnet zone; St = staurolite zone; A =
andalusite zone; S = sillimanite zone; K
= kyanite. Granites are shown in black.

by one-dimensional instantaneous thickening of the crust up to a maximum
thickness where it is in potential energy equilibrium with standard plate tec-
tonic driving forces, i.e. about double normal thickness or half the geothermal
gradient. Beyond that is the ULT field that lies at conditions less han half
of a normal geothermal gradient. This region can only be reached by pro-
cesses other than normal crustal thickening, for example in subduction zone
settings. Finally, ultrahigh pressure metamorphism (UHP) is as described for
Fig. 7.1a and the ultrahigh temperature metamorphic facies field (UHT) is
defined somewhat arbitrarily to be above 900°C, a temperature that requires
quite unusual magmas as heat sources.

Barrovian and Buchan style metamorphism. Metamorphic facies fields
reached by normal collisional processes causing regional (conductive) meta-
morphism as we discussed it in sect. 6.2.1 are also referred to as Barrovian
metamorphism. This refers to the Scottish Barrow zones where there is the
type sequence of regional metamorphic facies grades (Fig. 7.2). The type lo-
cation for the other end member of metamorphism — contact metamorphism —
lies also in Scotland: the Buchan zones. The Buchan areas exposes a sequence
of zones that include all three aluminosilicate polymorphs and is interpreted
to be related to a contact metamorphism.

7.2 Basic Principles of Petrology

Much of petrology is concerned with the physical and chemical conditions
that prevailed at the time of formation of a rock. As such, petrology is in-
separably connected with structural geology. Textural interpretation of mi-
crostructures and reaction textures in thin section is one of the basic tools
to infer both the structural and the metamorphic evolution of a rock. Any
reader thinking of him- or herself as either a petrologist or a structural ge-
ologist only, is warned when embarking on field or laboratory work with the
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aim of explaining the tectonic evolution of a region. Because petrology and
structural geology are inseparable field tools for a geologist trying to under-
stand the tectonic evolution of a terrain, a section on basic petrology finds
its place in a text book on geodynamics.

Classic phase petrology is based on the principle of thermodynamic equi-
librium. In contrast, most of the geodynamic processes discussed in this book
are inherently out of equilibrium, for example the thermal evolution of oro-
gens. The large success that the equilibrium thermodynamics approach has
had in determining metamorphic conditions largely relies on the Arrhenius
relationship which we will discuss in some detail on p. 344. However, here we
want to begin by stating that petrology may be seen to involve:

— equilibrium considerations,
— non-equilibrium considerations.

We will deal with these two fundamentally different approaches in sect. 7.2.1
and sect. 7.2.2, respectively. Throughout this chapter we remind the reader
that all topics are dealt with in a very sweeping way and refer to the wide
range of excellent teaching texts in petrology (e.g. Winter 2001; Spear 1993;
Anderson and Crerar 1993; Yardley 1989; Powell 1978).

Chemical Reaction. Microstructural and chemical changes in rocks de-
pend on two factors:

1. The rate of diffusion with which atoms are brought from one point of the
rock to another.

2. The rate of reaction or nucleation which actually binds the atoms at the
new location structurally into the crystal lattice.

These two processes depend on very different parameters. The rate of diffu-
sion depends very strongly on temperature (in a manner described by eq. 7.5).
The rate of nucleation and reaction is independent of temperature, but de-
pends on how far the reaction is overstepped. The slower of the two processes
will be the bottleneck for the overall process and will determine the process
rate (Fischer 1973; Joesten 1977; Putnis and McConnell 1980). Petrologists
refer to diffusion controlled processes and reaction controlled processes. At
geologically relevant temperatures the rate determining factor is usually dif-
fusion and we discuss chemical diffusion therefore in the next paragraph.

e Chemical diffusion. In the most simple case, one-dimensional diffusion of
a single element through a crystal lattice may be described by:

oC D 82C
Bt a2
There, C' is the concentration of a given element in a given mineral, ¢ is time

and z is a spatial coordinate, for example the distance from the center of a
garnet crystal to its surface. D(ry is the cation diffusivity and we note already

(7.3)
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here that it is not a constant (as it was in eq. 3.6), but a strong function of
temperature. Other than that, element diffusion in minerals is completely
analogous to the diffusion of heat (sect. 3.1, eq. 3.6), or the diffusion of mass
on a larger scale (e.g. sect. 4.5.2) (Stiiwe 1998b). As for those, analytical
solutions of eq. 7.3 may be found for a large range of initial and boundary
conditions in Carslaw and Jaeger (1959). The specifics of element diffusion is
described in detail by the excellent text book of Crank (1975).

The application of eq. 7.3 is not only hindered by the temperature de-
pendence of the diffusivity. It is also complicated by that fact that diffusion
rates depend on the diffusion path. For example, diffusion of atoms along
grain boundaries is orders of magnitude faster than volume diffusion through
the crystal lattice. Thus, volume diffusion is the process rate limiting factor.
The rate of volume diffusion of chemical elements through a crystal lattice
itself depends on many factors and is — akin to the determination of creep
constants for power law creep — difficult to determine experimentally. Also, if
several elements diffuse at the same time in the same crystal, then they may
influence each others diffusion rates (Onsager 1931).

Nevertheless, eq. 7.3 may be used to make some important estimates on
the degree to which chemical equilibration of a rock has gone to completion,
for example by using the same argument we have used on p. 62 to estimate
the time scale for the diffusion of heat (sect. 3.1.3 and 3.1.4, eq. 3.17). In
analogy to there we can write here:

12

teq ~ 5 - (74)
There, [ is the length scale of diffusion, which a measure of the spatial distance
over which elements diffuse in time ¢.,. Eq. 7.4 may be used to estimate the
time it takes for a garnet crystal of a given size to equilibrate at a given tem-
perature, or vice versa. For example, we will show below that the diffusivities
of iron through a garnet lattice at 400°C is about: Dy ~ 2.7-1072" m?s~!
and at 800°C it is about Dggg ~ 2.3-10729 m? s~!. Using eq. 7.4 we can esti-
mate that — if a metamorphic event of 800 °C temperature lasted of the order
of 10 my — only garnets smaller than 2.7 mm can be equilibrate by volume
diffusion in this time. Correspondingly, we can judge that garnet crystals of
2 mm diameter must be heated for at least 5 my to 800°C or at least for
4.7-107 my to 400°C, so that they can equilibrate. If we want to learn about
mean diffusion times over a period of temperature change, then we need to
use mean diffusivities that we can estimate using eq. 7.9.

Why does Equilibrium Work? The fantastic success of equilibrium ther-
modynamic considerations in petrology may be largely accredited to the Ar-
rhenius relationship. The Arrhenius relationship states that diffusion pro-
cesses are an exponential function of temperature:

_Qﬂ)

Dyry = Doel=%r (7.5)



7.2 - Basic Principles of Petrology 345

In this equation, D7y is the diffusivity of elements as a function of tempera-
ture (inm?s™1), Dy is a pre exponential factor, @ is the activation energy, R
is the gas constant and 7' is absolute temperature. The numerator of the ex-
ponent also includes the product of the activation volume V and pressure P.
However, the activation volumes of petrological processes are generally so
small, so that the pressure dependence of element diffusion is generally ne-
glected. According to eq. 7.5 the diffusivity goes towards zero when temper-
ature goes towards zero. In other words, all equilibria that rely on diffusion
freeze at low temperatures. At higher temperatures, the diffusivity rises and
goes asymptotically towards Dy. Thus, with higher temperatures, it becomes
increasingly likely that different minerals in a rock can communicate with
each other and are in chemical or structural equilibrium. The Arrhenius rela-
tionship applies not only to the diffusion of ions on a crystal lattice but also
to the diffusion of radioactive isotopes or lattice dislocations. The former
is highly relevant to geochronologists, the latter is relevant when discussing
flow processes and microstructures. In this context we have met the Arrhenius
equation already when we discussed deformation mechanisms (sect. 5.1.2).

The Irreversibility Principle. Because of the temperature dependence of
diffusion processes (eq. 7.5), only small parts of a metamorphic P-T' path are
actually preserved in a rock. According to which parts of a P-T path are pre-
served in a rock and which parts are not, the metamorphic evolution of rocks
may be divided into 5 different sections (Fig. 7.3). In the 1st section there
is no chemical reaction or mineral growth. Temperatures and diffusion rates
are too slow. In the second part chemical equilibration does occur. However,
because temperature and diffusion rates continue to increase, each equilib-
rium will be erased and superseded by that of the next higher temperature.
The 3rd section of the P-T-path is reached at the metamorphic temperature
peak where - by definition - the rate of temperature change is small. There,
chemical and textural equilibrium is reached to the best degree. The 4th part
of the P-T path occurs during the initial cooling history. Diffusion rates de-
crease and the volume of the rock which can be in equilibrium at any given
temperature decreases. Thus, larger and larger parts of the rock will cease
to equilibrate with their surroundings and preserve larger and larger parts
of the rocks. Partial retrogression will occur in this 4th section. In the 5th
section of the P-T path all equilibria are frozen and reaction has terminated.

Fig. 7.3a summarizes this information. It shows that only the thermal peak
and a small section of the path thereafter are likely to be preserved by rocks,
while the heating phases is likely to be only preserved in relics. Because
temperature is so much more important to the equilibration process than
pressure (see discussion of eq. 7.5) the thermal maximum (rather than the
baric maximum) is generally referred to as the metamorphic peak. However,
it is emphasized that pressure and temperature peak of a P-T' path must not
coincide (Fig. 7.3b). Indeed, valuable tectonic information may be extracted
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from the temporal relationship between pressure and temperature maximum

on a metamorphic P-T' path.

7.2.1 Equilibrium Information: Thermobarometry

If we assume that rocks do, in fact, record some sort of chemical equilib-
rium from some stage of their metamorphic evolution it is possible to use the
principles of equilibrium thermodynamics to infer their formation conditions.
Very often this concerns the derivation of metamorphic pressures and tem-
peratures using geothermometers and geobarometers. In general, the term
geothermobarometry summarizes the methods used. It is useful to discrimi-

nate between:

— petrological thermobarometry,
— mineralogical - crystallographic thermobarometry and:

— structural thermobarometry.

An example for structural barometers are the palacopiezometric methods (e. g.
Christie and Ord 1980; Dunning et al. 1982) and an example of structural
thermometry is textural analysis like lattice preferred orientations of quartz
(e. g. Jessel and Lister 1990). Mineralogical thermobarometry uses the pressure
and temperature dependence of parameters hat may be measured in a single
mineral, for example the lattice parameters, the concentration of a given

element or the composition of fluid inclusions.

Petrological thermobarometry is based on the fact that the distribution of
elements between minerals is a function of pressure and temperature. For en-
ergetic reasons, this distribution always aims to be in chemical equilibrium.

a b P-peak

Ar Ar

T r
- —

Figure 7.3. a Schematic P-T-path that is divided into five different sections that
are recorded in different detail in a rock. The different sections are discussed in the
text. The sections of a P-T-path that are well recorded by a rock are shown thick
b P-T-path in which pressure and temperature peak coincide (a); and P-T-path
in which pressure and temperature peak do not coincide (b). A schematic stable

geotherm is shown for reference
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In particular with high grade metamorphic rocks, petrological thermobarom-
etry has become the standard method to determine the physical conditions
of metamorphism. However, for a meaningful application it is crucial that
chemical equilibrium was reached and that reaction textures between differ-
ent minerals are interpreted correctly (Cooke et al. 2000). About the methods
and problems of textural interpretation of mineral parageneses there is abun-
dant literature (e.g. Spear and Florence 1992; Robinson 1990).

The Chemical Equilibrium Condition. Most of the petrological thermo-
barometry is based on the assumption of chemical equilibrium in rocks. Then,
the thermodynamic equations describing equilibrium can be used to predict
the distribution of a chemical element between the different minerals in a
rock. The thermodynamic equilibrium condition may be formulated as:

0=AG’ + RTInK . (7.6)

In this equation, R is the gas constant, AGY is the change in Gibb’s free
energy between all phases involved in a reaction in their standard states and
K is the equilibrium coefficient. This coeflicient may be derived from the
activities of different mineral end members in a mineral, which is related
to their composition. T is the absolute temperature. For a simple exchange
reaction of the element C between the phases A and B, K is given by the
relationship:

1—- x4 XB
K= L L : .
(529) (72%2) i

There, X§ is the mol fraction of the element C in mineral A and XE is the
corresponding mol fraction in mineral phase B. Thus, K may be measured
directly from the compositions of different minerals in a rock, for example by
electron microprobe. The expression AG? is the difference between the free
enthalpies of the reactants and the products (in this case the pure phases A
and B) in their standard state. These free enthalpies are functions of material
constants like heat capacity, formation energy, pressure and temperature.
Thus, eq. 7.6 may be solved for pressure as a function of temperature or vice
versa, if all the other constants are known. If eq. 7.6 describes a curve with a
shallow slope in a pressure-temperature diagram, then this reaction is called a
barometer. Correspondingly, if the slope of this curve is steep, then it is called
a thermometer. Clearly, the information given in this short paragraph is by
no means sufficient to learn about the thermodynamics of thermobarometry.
It is just meant to indicate that an entry into this field is not all this hard.
For details see an abundance of literature on the thermodynamics of rocks,
for example Holland and Powell (1990), Atkins (1994), Powell (1978), Spear
(1993) or Will (1998).




348 7 « Metamorphic Processes

The Phase Rule. The concept of the phase rule is a much undervalued
tool that can also be used by the field geologist. This section shows how.
The phase rule relates the number of degrees of thermodynamic freedom to
the number of chemical components and the number of mineral phases (Zen
1966). It may be formulated as:

Phases = Components — Degrees of Freedom + 2 . (7.8)

For example, a reaction involving one chemical component and twoe mineral
phases will have one degree of thermodynamic freedom. We may freely choose
the pressure where this reaction is supposed to occur, but then the temper-
ature and compositions of all phases are predetermined by this assumption
- they are fixed. The reaction between ice and water is a good example of a
univariant (one degree of freedom) reaction between 2 phases in the 1 com-
ponent system HoO. Similarly, the reaction between periclase and quartz to
form enstatite is a univariant reaction between 3 phases in a 2 component
system MgO - Si0Os. We can also see that — in a 6 component system — it is
impossible for more than 8 phases to exist in stable equilibrium. In fact, it
is extremely unlikely that rocks equilibrate on invariant points or even along
univariant reactions. This information can help us enormously:

e ... by considering observed minerals as phases. Then, the phase rule can
be used to infer two overprinting events. For example, pelitic rocks typically
contain 6 chemical components: K20, FeO, MgO, Al,O3, SiO; and H,O.
If a pelitic rock contains 8 minerals, for example garnet, staurolite, biotite,
muscovite, kyanite, chlorite, quartz and water, then we must conclude that
it is invariant. As this unlikely (or impossible if there is even more minerals),
we can conclude that one or several of the observed phases grew later or
earlier than the rest and we are observing at least two different equilibrium
assemblages. As such, the phase rule can aid us to infer overprinting events
when doing petrography. Alternatively, it may tell us that there are more
chemical components in the system, for example, CaO or MnO.

e ... by considering end members as phases. Then, the phase rule may be
used to estimate the number of possible thermobarometers that we can use
to constrain our paragenesis. If the parageneses above contains only 6 com-
ponents and is in fact invariant then there is at least 10 end members with
appreciable activities in it: There are pyrope and almandine in the garnet,
phlogopite and annite in biotite and so on. Since we need 7 end members to
formulate a univariant reaction for a thermobarometer equation (eq. 7.6), 10
end members allows us to formulate at least 4 independent thermobarom-
eters. In short, the phase rule can help us to estimate how easy it will be
to constrain our formation conditions. Using several thermobarometers si-
multaneously is the principle underlying the idea of formulating internally
consistent thermodynamic data sets that can then be used to do average cal-
culations between many thermobarometers (e.g. Holland and Powell 1990;
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Berman 1988). Because of these reasons it is generally useful to collect in the
field rocks that contain as many phases as possible for as few minerals as
possible.

7.2.2 Non-equilibrium Information: Kinetics

While equilibrium thermodynamic methods are the most widely used tool by
petrologists, much additional information can be gained by using the non-
equilibrium information recorded by rocks. Very loosely, it may be said that
this is done using two different approaches:

— using non-equilibrium thermodynamics,
— using equélibrium thermodynamics and “being careful”.

The use of non-equilibrium thermodynamics in petrology was pioneered
in the seventies (e.g. Fischer 1973; Joesten 1977), but — while undoubtedly
a rigorous treatment of the subject — it has not found wide application by
the field geology community. In contrast, the application of equilibrium con-
siderations to the interpretation of metamorphic disequilibria (e.g. partial
reaction textures) by “being careful” is widely applied by geologists to the
interpretation of metamorphic P-T paths. In particular the consideration of
a time scale in diffusion processes has led to a lot of progress which may be
summarized under the term “geospeedometry” (Lasaga 1983). The following
section presents a few highlights form this field.

The Concept of Closure Temperature. Because of the strong temper-
ature dependence of diffusivities (eq. 7.5) diffusing systems are subject to
a closure temperature. We illustrate this with the rate of volume diffusion
of cations in garnet crystals. The magnitude of the diffusion rate of magne-
sium in garnet is roughly known. It is described by the material constants
Q = 239000 Jmol~! and Dy = 9.81-107% m?s~! (Cygan and Lasaga 1985).
Using eq. 7.5 we can derive a diffusivity of Dy = 2.7 - 10727 m?s~! or
Dggo == 2.3-10720 m2 571 at temperatures of 400°C or 800 °C, respectively.
We can see that the diffusivity changes over many orders of magnitude over
this geologically relevant temperature interval.

From the above and eq. 7.4 we can see that a crystal of a given size can only
equilibrate in a given time if its P-T-path exceeds a certain temperature over
a certain time. If the temperature decreases below this temperature, then full
equilibration is not any more possible and the crystal will only equilibrate
partially. The diffusive length scale (given by [ in eq. 7.4) gets smaller than
the radius of a crystal and at least part of the crystal center will not be able
to keep up with the processes on the crystal surface. It will cease to react with
the surroundings and its composition will freeze. This phenomenon is called
closure and the temperature at which this occurs is called the closure temper-
ature. The successive closure of the chemical composition of a crystal leads
to the development of a zoning profile and can be observed in the minerals of



350 7 « Metamorphic Processes

00
- 1700
s o
3 | ~
T closure- L
E temperature Tc 600
500

Figure 7.4. Modeled and observed concentric zoning pattern in garnet. The mod-
eled profile illustrates the definition of closure temperature T;. The horizontal axis
is a profile through a garnet crystal that is 0.5 mm in diameter. The grain center is
located at  =0.25 mm. The left hand vertical axis is labeled with the Fe concentra-
tion in the crystal (given as mol fraction Fe /(Fe+ Mg)). In equilibrium this con-
centrations may be directly correlated with temperature (right hand vertical axis).
The surface of the crystal is assumed to be in chemical equilibrium with a much
larger biotite crystal characterized by an Fe concentration of Fe / (Fe+Mg)=0.5
at all times. A cooling rate of 100°Cmy ™! was assumed. Calculated by numerical
coupling of eqgs. 7.3, 7.5 and 7.7 and the garnet - biotite thermometer equation of
Holland and Powell (1990). The shown garnet crystal is from the Mt Isa Inlier of
Central Australia (Image by M. Hand)

many rocks (Fig. 7.4). The chemical non-equilibrium that is frozen into such
zoning profiles is an important piece of evidence for the interpretation of the
cooling history of a rock.
Mean Diffusivities. Even if a mineral grain is open to diffusive equilibra-
tion (i.e. it is above its closure temperature) diffusivities are very strong
functions of temperature so that it is difficult to use eq. 7.4 to estimate diffu-
sive length scales without having found an appropriate mean diffusivity that
is representative for the diffusion rate over a given interval of temperature
change. As the Arrhenius relationship is strongly non linear it is not a triv-
ial exercise to estimate such a mean diffusivity. However, if the cooling rate
within the temperature interval of consideration is constant, then the mean
diffusion rate may be estimated with the following relationship (Itayama and
Stitwe 1974):

D~ Da : (7.9)

(#%) (1 - Tu/T)

There, D is the mean diffusion rate averaged between the starting tempera-
ture Tx and the final temperature Tx (e.g. the metamorphic peak tempera-
ture and the temperature of the earth’s surface). Dy is the diffusion rate at
the starting temperature and may be calculated from eq. 7.5.
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Determining Cooling Rates. From the above we can summarize, that the
following parameters have a close linking in diffusive processes:

— Diffusive length scale (grain size),
— cooling rate (temperature, time),
— diffusivity (material constants).

For simple exchange systems and simple geometries of the crystal eq. 7.3 may
be solved analytically to describe this relationship:

= poel~7+0) [ _EL )
s = Dye <(l/2)2Q . (7.10)
There, s is the cooling rate, T, is the closure temperature, (defined in Fig. 7.4)
and ! is the radius of a crystal. The constant G is a parameter that describes
the geometry of the crystal in which diffusion occurs. For spherical crystals
(as is well-approximated by garnet) this constant is: G = 1.96. The vari-
ables (7, Dy and R were defined in eq. 7.5. Eq. 7.10 was derived by Dodson
(1973) for application in geochronological systems but it is equally applica-
ble to cation diffusion in minerals where it has become an important tool to
estimate cooling rates of rocks using data that are easily obtained using op-
tical microscopy (to determine [) and electron microprobe (to determine T)
(Ehlers and Powell 1994; Ehlers et al. 1994a). The relationship between grain
size, closure temperature and cooling rate defined by eq. 7.10 is illustrated in
Fig. 7.5a.

e Tectonic use of cooling rate information. The slope and curvature of cooling
curves is characteristic of the underlying cooling process. Thus, determination
of cooling curves is an important tool for the interpretation of geodynamic
processes. For example, a comparison of Fig. 3.15 with 3.33 (as contrasted
in Fig. 7.5b) shows, that cooling curves terminating a regional metamorphic
cycle are fundamentally different from those that characterize cooling after
contact metamorphism (Harrison and Clark 1979). If cooling occurs because
the rocks are exhumed, then the cooling rate increases with decreasing tem-
perature. In contrast, the cooling rate decreases with decreasing temperature
towards the end of contact metamorphism (see Fig. 7.5b).

Fig. 7.5a illustrates the different relationships between closure tempera-
tures and grain size that are expected in two rocks that cooled according to
the two cooling curves shown in Fig. 7.5b. Overlaying Fig. 7.5a onto Fig. 7.5b
shows that these relationships are different! Ehlers et al. (1994b) have doc-
umented closure temperatures between 400°C and 700°C in a single thin
section and were able to correlate these closure temperatures with grain size.
This range of closure temperatures is sufficient to document crucial parts of
a cooling curve.

Geochronology. Many geochronological methods also rely on the concept
of closure temperature. At high temperatures, diffusivities of radiogenically
produced isotopes are large enough so that they do not accumulate in a
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Figure 7.5. Relationships between cooling rate and temperature. a Cooling rate
plotted against closure temperature T, of crystals with different diameters. The
curves were calculated with eq. 7.10 assuming a spherical grain geometry. The
diffusion data of Cygan and Lasaga (1985) for garnet were used. b Cooling rate
against temperature for two different cooling processes. The curve for contact meta-
morphism was calculated with eq. 3.88 using 73 = 800 °C, T}, = 300°C, | =60 km,
#=10"% m?s! and z = 0. The curve for regional metamorphism was calculated
with eq. 3.48 and eq. 3.49 using ¢ =30°Ckm™', z =25 km and an erosion rate
of w = —1 kmmy~!. While the assumptions underlying these equations are very
much simplified from real settings, they do show some typical characteristics. For
example, note that during cooling from regional metamorphism the cooling rate
increases with decreasing temperature, while the cooling rate decreases with de-
creasing temperature following contact metamorphism. Such differences may be
extracted, at least in principle, from zoned crystals

crystal lattice. Below the closure temperature the diffusivities are low and
the isotopes accumulate. Thus, the content of daughter isotopes in a crystal
is proportional to the time it has spent below the closure temperature and
the content of the parent isotope. If the latter is known, the former an be
inferred (Fig. 7.6). However, as we have learned above, closure temperatures
are dependent on cooling rates and many other factors, so that dating with
isotopes has a large range of problems that geochronologists battle with.

A common method to document cooling curves uses isotopic dating of a
series of isotopic systems in minerals with different closure temperatures. Clo-
sure temperature of the various isotopic systems is then plotted against the
radiometrically determined age and a cooling curve is constructed. However,
in the previous section we have shown that the closure temperature depends
on cooling rate. Thus there is an obvious circular argument: Cooling rates
obtained by this approach can — strictly taken — only be estimated once a
cooling rates is assumed. Only then the closure temperature of the system is
known.
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The successful application of geochronological methods to the determina-
tion of cooling curves indicates that the variability of closure temperatures
of isotopic systems is small — even for a large range of cooling rates — in com-
parison to many other factors influencing closure of isotopic systems during
cooling. However, it is important to be aware of the implicit circularity in the
uncritical acceptance of a certain value for closure temperature of an isotopic

system.
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7.3 Classification of P-T-Paths

P-T-paths may be divided into two groups, according to their slope following
the metamorphic temperature peak:

— 1. P-T-paths which are characterized by a decrease in pressure before
cooling commences.

— 2. P-T-paths which are characterized by a decrease in temperature before
decompression commences and P-T-paths where pressure increase accom-
panies cooling (Fig. 7.7).

In a diagram in which the positive temperature axis is drawn to the right and
the positive pressure axis is drawn upwards, these two paths follow a clockwise
and an anticlockwise curvature, respectively (Fig. 7.7a). Thus, the two path
groups 1. and 2. are referred to as clockwise P-T-paths and anticlockwise
P-T-paths, respectively.

However, in the geological literature it is common to plot the pressure axis
downwards to assist the intuitive understanding that pressure increases with
depth in the crust (Fig. 7.7b). Obviously, the direction of a P-T-path in such
a diagram is reversed from that in the conventional representation. Thus, it
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may be better to use the less ambiguous description of ITD- (IsoThermal
Decompression) or IBC-paths (IsoBaric Cooling) instead of clockwise and
anticlockwise.

This qualitative division of P-T-paths may be formulated a bit more rigor-
ously. At the thermal peak, the rate of temperature change is, by definition,
zero: dT'/dt=0. Thus, differently shaped P-T paths may be defined on the
basis of the qualitative nature of the pressure change at the temperature
peak. We can write:

- ‘ = negative: clockwise (ITD)
(dT/dt=0)

- ‘ anticlockwise (IBC)
(dT/dt= 0)

- &= = positive: anticlockwise
(dT/dt:O)

While this is quite a rigorous classification, this definition does not state how
long this condition is held upright. For example, it is possible that the P-T-
path is characterized by pressure increase only at the very temperature peak,
but that most of the time the path occurred during decompression (Fig. 7.8a).
In short, it remaings difficult to define a rigorous quantitative classification of
P-T-paths.

e Continuous or discontinuous P-T-paths?. The most common problem with
interpreting the shape of P-T-paths is illustrated in Fig. 7.8b. There, two
black dots indicate the P-T-conditions for the formation of two overprinting
metamorphic parageneses in a single rock. Usually it is very difficult to seein a
rock if the two parageneses formed in a continuous P-T-evolution during one

clock-
anti- wise | \ T
clock- {
wise --gf— IBC e

ant- —~<@—IBC
slock ImD clock- {
wise { 4/ . v wise

- P
conventional geological orientation
orientation of axes (suggesting depth)

Figure 7.7. Directions of P-T-paths in different presentations. The thick dot is the
metamorphic peak. a In the conventional representation, isothermal decompression
paths follow a clockwise path and isobaric cooling paths have an anticlockwise
shape. b In the geologically most commonly used representation pressure is usually
plotted to increase downwards to indicate that it increases with depth in the crust.
Then, “anticlockwise paths” actually follow a clockwise path and vice versa



7.3 « Documentation of P-T-Paths 355

orogenic event (ii), or as the consequence of two independent metamorphic
events that may be hundreds of million years apart (i) (Fig. 7.8b).

7.3.1 Slope and Curvature of P-T-Paths

The slope and curvature of metamorphic P-T-paths contains important in-
formation on the relative and absolute rate of different geological processes.
The two diagrams on the left in Fig. 7.9 show the temporal evolution of pres-
sure a rock experienced (bottom diagram) and three different possibilities
of the temporal evolution of temperature in the same rock. The diagram on
the right shows three P-T-paths that correspond to the temporal evolutions
shown at left. The temporal evolution of neither pressure nor temperature
may be inferred from the P-T-path, but their relative temporal evolution is.
This may be inferred from the slope of the three different P-T-paths. From
the IBC-path ¢ we can infer that the rate of cooling was rapid compared
to the rate of pressure change. Correspondingly, we can conclude from the
ITD-path @ that the rate of decompression was rapid compared to the rate
of cooling. Note that we extracted this information solely on the basis of its
P-T-path.

If pressure and temperature are not linear functions of time, then the rela-
tionships discussed above need not apply. For example, if the temporal evolu-
tion of pressure and that of temperature are the same, then the P-T-path will
be linear, irregardless of what temporal evolution pressure and temperature
undertake. This is shown on Fig. 7.10 where both the combination of temper-

AP a AP b c
\i
e
x i
8 I il I T

Figure 7.8. Examples of P-T-paths that are easily misinterpreted. a P-T-path
which — according to conventional classification — would be interpreted to be anti-
clockwise, but which has the overall form of a ITD-path. b Example of a fundamen-
tal problem of the interpretation of P-T-paths. If two metamorphic parageneses are
observed in a rock that indicate the two P-T conditions shown by the two black
dots, then it is usually very difficult to discern if the path between the two was
characterized by two different events with IBC-paths (shown by path ¢) or a single
ITD path (shown by path #). ¢ Example of another problem of interpreting P-T'-
paths: The observation of two overprinting parageneses and the knowledge of the
reaction that produced them is often insufficient to discern between IBC and ITD
paths.
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Figure 7.9. Different shapes of P-T-paths (diagram on right), as they arise from
different cooling rates of rocks (at left) even though all paths experienced the same
decompression rate (at center). The P-T-paths a, b and ¢in the diagram on the right
correspond to the three different cooling curves as labeled on the left. The shaded
rectangle indicates schematically the P-T-region which is likely to be preserved in
a rock

ature evolution ¢ with pressure evolution € and the temperature evolution b
with pressure evolution B produce the same linear P-T-path.

Interpreting the Slope of a P-T-Path. Let us illustrate the enormous
geodynamical relevance of the considerations of the last sections with an ex-
ample. In many high grade metamorphic terrains in the Precambrian shields
IBC-curves have been documented (e. g. Harley 1989). We can conclude that
the cooling rate of all these terraing must have been much more rapid than
their rate of exhumation or burial during the thermal evolution (assuming
that all pressure change is related to depth change). As most of these terrains
are characterized by intense synmetamorphic deformation (both extensional
and compressional) it is likely that the terrains did indeed exhume or get
buried during their thermal history. Thus, if the rates of exhumation and
burial during erosion or continental deformation were known, the we can use
the fact that a terrain is characterized by an IBC paths to constrain mini-
mum values for the rate of cooling. During normal continental deformation
rates of ¢ = 1071310714 s~! the rate of exhumation or burial is of the order
of some millimeters per year. At this rate of depth change an IBC-path can
only occur if the cooling phase of the terrain lasted a mere few millions of
years. For example, if we just take an arbitrary number of 3 millimeters per
year of depth change and assume that a P-T-path will look like an IBC path
if it cools more rapidly than 300 °C per kilobar of pressure change, then this
implies a cooling rate of at least 243°C my~*.

If we now recall sect. 3.1.4 where we have shown that the duration of
conductive processes is proportional to the square of the length scale of the
conducting body, then we can use the estimate for the total duration of cool-
ing to infer the spatial size of the terrain in question, at least to the order of
magnitude. It turns out that for the total duration of the cooling phase as
estimated above, the size of the heated region is a mere few kilometers. We
can conclude from our derived IBC-path that it is unlikely that the metamor-
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Figure 7.10. Possibilities for P-T-paths as they may arise as a consequence of
various non-linear evolutions of pressure and temperature. The figure is analogous
to Fig. 7.9

phic event was caused by a process that affected the entire lithosphere. It is
more likely that the heating mechanism was localized. Indeed, it is this very
argument that has often been used to interpret that IBC-paths are atypical
for regional metamorphic events and are more likely to be associated with
contact metamorphism around magma bodies (e. g. Lux et al. 1986; DeYoreo
et al. 1991; see. sect. 6.3.3). You may argue that all the numbers used here
are wrong or not well constrained, but the thought process carried out here
is independent of the numbers and in an example where they are known, it
may extremely useful.

7.4 Interpretation of P-T-t- D-Relationships in Orogens

We will now go into some detail how to interpret spatial and temporal field
relationships and P-T'-t-D-paths and refer the reader also to Passchier et al.
(1990). Conceptual interpretations like those presented below are particularly
important in ancient or badly exposed metamorphic terrains, where little is
known about the geometry, style or tectonic setting of the underlying oro-
genic event. However, even in well known orogens like the European Alps,
such conceptual interpretations may help geologists to free the eye from a
huge abundance of detailed regional knowledge and help to understand some
fundamental background of orogenic processes. In general, it is important to
discriminate between two different types of relationships:

— 1. The temporal relationship between deformation and metamorphism.
— 2. The spatial change of the relationship between metamorphism and de-
formation across the terrain in question.

Such relationships, both in space and time, may be well illustrated on an
event diagram (Fig. 7.11). When mapping such changes in the field it is im-
portant to be aware of the fact that different mapped parameters may have
completely different strike directions in the field. For example, the lithological
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boundaries may strike completely different from the direction of the meta-
morphic isograds or from lines of constant strain or those of constant age.

Terminology Definition. When discussing spatial and temporal relation-
ships between metamorphic pressure, temperature and time across a terrain,
or within a single rock, it is easy to confuse a number of quite different issues
each of which contains important interpretative information. We therefore
define the following terms:

o Metamorphic field gradient. The term “metamorphic field gradient” is used
strictly to describe the change of metamorphic grade with distance as ob-
served in the field (measured normal to the metamorphic isograds). As such,
metamorphic field gradients have the units of d7'/dz or dP/dz depending
whether the gradient describes the change of metamorphic temperature or
pressure with lateral distance . The ratio of the metamorphic temperature
gradient to the metamorphic pressure gradient does not need to document a
metamorphic geotherm (although it also has the units of dT'/dP and may be
easily converted into d7'/dz assuming the conversion discussed in eq. 7.1).
In contrast, the T/ P ratio of a single rock will alwaeys record one point on a
metamorphic geotherm (by definition - see below).

@ @
D4 M4 D3 M3
D3 D2
M2 M2
D1 M1 D1 M1

Figure 7.11. “Event diagrams” are a useful way to record field observations. a and
b show two different nomenclatures used for event diagrams for the same set of field
observations. Both diagrams are drawn for a terrain in which three deformation
phases (D) and three metamorphic events (M) have been mapped in the field.
In a the different events were numbered according to their temporal sequence, but
without consideration to whether the event is a deformation event or a metamorphic
event. In b deformation events and metamorphic events are numbered separately.
Both according to their respective temporal sequence, but with no consideration
of the temporal relationship between deformation and metamorphic events. Which
representation is more useful depends on the question that is to be answered with
the illustration
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e Metamorphic geotherm. The term “metamorphic geotherm” is used to de-
scribe the relationship between temperature and depth at a chosen point in
time during metamorphism. As such, a metamorphic geotherm is a transient
feature and contrasts the term stable geotherm. Very generally, metamorphic
geotherms change at rates of >>10°C my !, whereas stable geotherms change
at rates of €10°C my~!. During regional (Barrovian) metamorphism, meta-
morphic geotherms are generally characterized by a monotonous increase
of temperature with depth (England and Thompson 1984). However, during
contact metamorphism or in staked nappe piles, metamorphic geotherms may
transiently be characterized by some crustal sections in which temperature
decreases with increasing depth.

e Piezothermal array. The term “piezothermal array” was clearly defined by
Richardson and England (1979) as the line that connects the metamorphic
temperature peaks of all rocks in a vertical crustal section through depth and
time. Piezothermal arrays are diachronous in time and they cross metamor-
phic geotherms. In general, it is a piezothermal array that will be preserved
by an obliquely exposed crustal section, but piezotherms may coincide with
metamorphic geotherms for some tectonic settings, for example if exhumation
is practically instantaneous. Piezotherms are discussed in some more detail
further below.

7.4.1 Interpreting Temporal Relationships

The relative temporal relationship between deformation and metamorphism
is usually well-preserved in metamorphic rocks (Fig. 7.11). There are three
different possible relationships between one phase of deformation and one
phase of metamorphism:

1. Deformation of rocks precedes metamorphism,
2. deformation and metamorphism occurred contemporaneously,
3. deformation occurred after metamorphism.

Clearly, it is always possible that the causes for deformation are unrelated
to the causes of metamorphism. However, the timing relationship may also
be the consequence of a causal coupling between the two. In the following,
we discuss possible interpretations of these timing relationships in terms of
a single underlying cause.

e Deformation precedes metamorphism. This timing relationship is charac-
teristic for regional metamorphism, where metamorphism was caused by heat
conduction and radiogenic heat production in overthickened continental crust
(sect. 6.2.1). This is because continental deformation rates are typically about
one order of magnitude more rapid than thermal equilibration over the length
scale of the crust (s. sect. 3.1.4, 6.3.6). Thus, thickening of the crust at “nor-
mal” collision rates is usually completed before conductive equilibration may
catch up. As a consequence, it may be expected that metamorphism is sep-
arated from peak metamorphism by up to several tens of millions of years.
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e Deformation occurred contemporaneously with metamorphism. This rela-
tionship is typical of many low-pressure high-temperature metamorphic ter-
rains. Three possible relationships may be thought of (s. also p. 331):

1. Deformation is caused directly by the heating. This is possible if the terrain
in question is subjected to a constant plate boundary driving force. Then,
heating of the terrain may weaken the rocks sufficiently so that strain rate
rises rapidly in response to the far field stress (Sandiford et al. 1991).

2. Heating is caused directly and instantaneously by deformation. This is
only possible if the rocks are strong enough so that shear heating causes
the metamorphism. This is widely-observed on a local scale, for example
around pseudotachylites, but the possibility for regional shear heating is
subject to debate.

3. Both heating and deformation may have been caused by advection of hot
material towards shallower depths. Such processes are certainly important
when stacking nappes or when exhuming core complexes, but even whole
sale convection has been suggested to operate in the crust (Weinberg 1997).

e Deformation occurs after metamorphism. Field examples where deforma-
tion of a terrain occurred after its metamorphic peak, are typically interpreted
in terms of two independent events. That is, deformation and metamorphism
are unrelated. Unlike the other two timing relationships discussed above,
there is currently no elegant models which allow us to interpret this timing
relationship in terms of a single tectonic process.

7.4.2 Interpreting Spatial Relationships

In many metamorphic terrains the metamorphic grade changes across the
terrain. The change in grade is often accompanied by a change of the timing
of peak metamorphism. For example, high grade parts may experience their
metamorphic peak earlier or later than lower grade parts, either relative
to an absolute marker (e.g. a dike swarm), or as determined by absolute
geochronology. Such spatial changes may be interpreted in three different
ways:

1. Independent heating mechanisms heated different parts of the terrain in
question at different times. In this case, it is expected that there is a
discontinuity in metamorphic grade or metamorphic age somewhere in the
terrain; for example, because the rocks of different metamorphic age where
juxtaposed much later.

2. Lateral variations in the physical parameters, for example, thermal con-
ductivity or heat production rate may cause different parts of a terrain to
heat at different rates and to different degrees (Sonder and Chamberlain
1992).



7.4 - Interpretation of P-T-t-D-Relationships in Orogens 361

3. The changes in the timing of metamorphism across the terrain are inher-
ent to the nature of a single heating process. A typical example for this
is heat conduction: because of the time it takes for a terrain to equili-
brate conductively, it is possible that some parts of a terrain experienced
metamorphism earlier than others (e. g. s. sect. 3.1.4). In this case, changes
in metamorphic timing and grade are expected to be continuous across a
terrain.

The curve that must be interpreted to understand some of these relationships
is the piezothermal array.

Piezothermal Arrays. Piezothermal arrays are curves that connect the
metamorphic temperature peaks of rocks from all crustal depths through
grade and time (England and Thompson 1984; Fig. 7.12). Accordingly,
piezotherms may be plotted in pressure-temperature, in temperature-time,
or in pressure-time diagrams. As the slopes of the piezotherms in two of these
different diagrams are independent, it is useful to discriminate between two
different features of a piezotherm. These are: 1. their temporal characteristics
and 2. their thermal perturbation characteristics.

e Time characteristics of piezotherms. The temporal characteristics of a
piezotherm describe if the metamorphic peak of high grade rocks occurs ear-
lier or later than that of their lower grade equivalents (Fig. 7.12a). These
timing relationships may be characterized by the slope of the piezotherm in
a temperature-time diagram (e.g. Stiiwe et al. 1993; Stiiwe 1998c). Three
qualitatively different relationships may be discerned:

A a Temporal characteristics A b Thermal Perturbation
characteristics
/ Contact Regional
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Figure 7.12. Schematic cartoons illustrating a the temporal characteristics and b
the thermal perturbation characteristics of piezothermal arrays for some different
tectonic settings and metamorphic heat sources. As the slope of the piezotherms in
these diagrams are mapable in the field, these functions are extremely important
to consider when interpreting metamorphic terrains
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1. If the metamorphic peak in high grade rocks occurred later than in low
grade rocks, then the slope of the piezothermal array in a temperature-
time diagram is positive. Piezothermal arrays with a positive slope are
typical of regional metamorphism (sect. 6.2.1, Fig. 7.12a). Rocks from
shallow crustal levels will not heat significantly because of their proximity
to the surface and will be the first to cool when exhumation commences
(Fig. 6.17). Rocks from deeper crustal levels have more time to equilibrate
and will reach their metamorphic peak therefore later (Fig. 7.13a).

2. If the metamorphic peak in high grade rocks occurred earlier than in low
grade rocks, then the slope of the piezothermal array in a temperature-
time diagram is negative. Piezothermal arrays with a negative slope are
typical of contact metamorphism (Fig. 3.33, 7.12). Near the contact of
a heat source, rocks are heated very rapidly to high temperatures. With
increasing distance from the heat source, the thermal effects of contact
metamorphism are felt later and the metamorphic grade is lower (for detail
s. sect. 3.6.2).

3. The situation that the time of metamorphism is independent of metamor-
phic grade is unusual. More likely, the temporal variation is too small to be
discernable in the field. Nevertheless, one mechanism that would allow the
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Figure 7.13. Cartoons illustrating the thermal evolution of thickened continental
crust during: a exhumation by erosion (all rocks in a vertical column move up-
wards by the same amount during each time step as indicated by the vertical bars)
and b exhumation by pure shear extension (the exhumation rate is depth depen-
dent). Shown are: stable geotherms prior to thickening (dotted lines), metamorphic
geotherms (thin lines labeled from time ¢; immediately after thickening to ts near
the final stages of exhumation), piezothermal arrays (shaded bars) and PT'¢t paths
(thick lines). Note that in a the slope of the piezothermal array has a higher T/P
gradient than any one geotherm but in b it has a lower T/ P gradient. Moreover,
the temporal relationships between high and low grade rocks are reversed between
the two exhumation mechanisms
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metamorphic peak to occur at the same time in rocks of all metamorphic
grades, is if metamorphism is caused by mechanical heat production in a
region with a strong strain gradient.

While the slope of the piezothermal array contains a lot of information on
the underlying thermal event, the age difference between metamorphism of
the highest grade rocks and that of the lowest grade rocks is often too small
to be resolved with geochronological methods. Thus, we are often limited to
interpret timing relationships from detailed observations in the field using
structural observations.

Figure 7.14. T-z diagram showing two .-;-_
hypothetical data sets collected from

metamorphic terrains with a field gradient \{;‘__:‘_‘_‘;_—%'\I

(large dots). The data set shown by the . eU

black dots has positive thermal perturbation — )
characteristics: low grade rocks are less \

thermally perturbed from stable ' De
metamorphic conditions than high grade \ Q ( 4
rocks. For the data set shown by the white \‘-.. 0 e

dots this relationship is reversed: high grade N Q’ Q
rocks are less thermally perturbed than low ‘i_>\~/i a z
grade rocks. This latter relationship is e
actually very common in many terrains ' z y N

around the world (e.g. Tenczer and Stiiwe \

2003). The information of this figure is
equivalent to that shown in Fig. 7.12b

o Thermal perturbation characteristics of piezotherms. The thermal pertur-
bation characteristics of a piezotherm describe if high grade rocks are more or
less thermally perturbed from stable geothermal conditions than their lower
grade equivalents. This may be characterized by the slope of the piezotherm
in a PT diagram. For example, during regional metamorphism according to
the classic description of England and Thompson (1984), high grade rocks
may experience their peak at large depths and substantially derived from
stable geothermal conditions (Figs. 7.12, 7.13a, black dots on Fig. 7.14). In
contrast, many metamorphic terrains show reversed relationships between
grade and magnitude of thermal perturbation (white dots on Fig. 7.14). For
example, in the eclogite type locality in the eastern Alps, eclogites equili-
brate at 650°C and almost 20 kbar, (which is not very perturbed as it lies
near a “normal” geothermal gradient around 9°C km~1!), but amphibolite
facies rocks further north equilibrated at 650°C and 6 kbar (which is very
warm for that pressure, s. Fig. 7.1). Thus, the amphibolite facies rocks are
substantially more thermally perturbed than their eclogite facies equivalents
(Tenczer and Stiiwe 2003; Stiiwe 1998a). One possible interpretation of this
relationship is presented in Fig. 7.13b.
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7.5 Problems

Problem 7.1. Converting pressure and volume (p. 338):
a) What is the mean density of the atmosphere assuming that it is 10 km
thick and that the pressure on the surface is 1 atmosphere? b) What is the
barometric pressure in kilobar on the surface of the earth?

Problem 7.2. Converting pressure and volume (p. 338):

The molar volume of almandine-garnet is about 11.5 Jbar—!. Convert these
units of volume (volume = energy/pressure) into cubic centimeters. Check
your result by comparing the weight of one formula unit of almandine with its
density. (The garnet almandine has the formula Fe3Al;Siz Oy and a density
of about 4 gem ™3,

Problem 7.3. Estimating cation diffusivities (p. 843):

Use the Arrhenius relationship (eq. 7.5) to estimate the diffusivity of cations
through a garnet lattice at 300°C, 500°C and 1000°C. For the material
constants use: @ = 239000 Jmol™!, Dy = 9.81-107Y m?s~! and assume
the activation volume is negligible (Cygan and Lasaga 1985). The value of
the gas constant may be found in Table D.4. Discuss the significance of
the enormous difference between these cation diffusivities and the thermal
diffusivity & ~ 10~%m?2s~1.

Problem 7.4. Time scale of chemical equilibration (p. 344):
How long does it roughly take for a 1 mm large garnet crystal to equilibrate
chemically at 600°C ? Use eq. 7.4 and the data from Problem 7.3.

Problem 7.5. Estimating mean diffusivity (p. 350):

The Arrhenius relationship and the results of Problem 7.3 show a strong
exponential dependence of cation diffusivity on temperature. In metamorphic
processes cations in minerals diffuse typically during temperature change. It
is therefore useful to know some sort of mean diffusivity that characterizes
the diffusion rate during the entire thermal evolution. Use eq. 7.9 to estimate
this mean diffusivity of cations in garnet between the starting temperature
Ta=700°C and Tg=400°C. Use the data from Problem 7.3 and compare
your result.

Problem 7.6. The meaning of “metamorphic peak” (p. 346):

Figure 7.3 shows in @ a P-T-path in which the thermal peak coincides with
the pressure peak and in b a P-T-path in which pressure and temperature
peak occur at different times. The case of b is more common. In the literature
we often read simply about the “metamorphic peak” of a terrain. a) Does this
mean the temperature peak or the pressure peak? b) Why is this imprecise
usage of the term “metamorphic peak” so common? ¢) Draw a P-T-path in
which the temperature peak is reached before the pressure peak. d) What
tectonic process can you think of that causes such a path?
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Problem 7.7. Estimating cooling rates (p. 351):

Assume you have found a garnet that is 2 mm in diameter (1 mm radius) that
has a retrograde zoning profile similar to that shown on Fig. 7.4. You have
analyzed it and found it to have a closure temperature of 600°C. Estimate
the cooling rate of the metamorphic event that caused the zoning profile using
eq. 7.10.

Problem 7.8. Using diffusivity estimates in the field (p. 343-344):

(This is an integrated problem using knowledge on closure temperatures as
well as the time scale of diffusion of both mass and heat. To tackle this
problem you should solve problems 7.3, 7.4 and 7.5 first).

A 2 km thick mafic dike has intruded rocks that were cooling from a
previous regional metamorphic event at the time of intrusion. The intrusion
temperature of the mafic magma was 7; =1200°C. The temperature of the
cooling host rocks at the time of intrusion was T}, =500°C. The dike has a
contact metamorphic aureole that overprints the metamorphic parageneses
from the previous event. In this contact metamorphic aureole, 5 mm large
mica crystals were found at a distance of about 50 m from the dike contact.
Microstructural observations show that these crystals grew prior to intrusion
during the previous regional metamorphic event.

Question: Will the isotopic systems of the micas record the older regional
metamorphic event or will they have been reset by the contact metamorphic
event?

a) Find an answer by estimating the time scale of the contact metamorphic
event (eq. 3.17) (k = 1078 m? s71). Compare this with the time scale of diffu-
sive equilibration of the micas at 1200°C and 500°C (from eq. 7.4 and using
eq. 7.5).Use the following diffusion constants for mica: @ = 163000 Jmol~!
and Dy = 7.7-107° m? s~ (Fortier and Giletti 1991).

b) The result from a) should have shown that, in principle, the micas can
be used to date the intrusion event, but that the estimate we have made is
very crude and needs refining. The dating may be improved by calculating
the maximum temperature (Tp,a,) the mica experienced during the contact
metamorphic event (by substituting eq. 3.90 into eq. 3.88). Also, a better
value for the diffusive time constant of the micas can be derived by calculating
the mean diffusion rate between T}, and T, = 500°C using eq. 7.9.

c) Sketch out a flow chart for a computer program that could be used to
find a detailed solution for the problem.

Problem 7.9. Constructing P-T-paths (p. 355):

Draw pressure-time and temperature-time paths that correspond to the P-T-
t-paths shown in Fig. 7.15. Discuss some possible interpretations. The num-
bers shown along the P-T-paths are geochronologically determined ages in
my.

Problem 7.10. Constructing P-T-paths (p. 355):
Construct P-T-paths from the pairs of pressure-time and temperature-time
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Figure 7.15. Illustration to Problem 7.9
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Figure 7.16. Ilustration to Problem 7.10

curves shown in Fig. 7.16. The P-T paths you have constructed contain no
information on time. It is therefore possible to interpret them in terms of
different temporal evolutions for P and T from those shown in Fig. 7.16 (if
only the P-T path is known). Discuss some.

Problem 7.11. Construction of P-T-paths (p. 355):

Draw the retrograde P-T-path of a rock that experienced the following evolu-
tion following its metamorphic peak: Peak metamorphism occurred in 20 km
depth at 700°C. Then, the rock was exhumed at a rate of 1200 mmy~! for
5 my. After that, the exhumation rate decreased to 400 m my—'. The meta-
morphic temperature remained at 700 °C for another 3 my after the meta-
morphic peak before cooling commenced. Then cooling commenced a rate of
100°Cmy~! and lasted for 3 my. After that, the cooling rate decreased to
20°Cmy~! until a stable geotherm is reached. Final cooling occurred along
the stable geotherm. Assume that the stable geotherm is characterized by a
constant gradient of 20°Ckm™!. Hint: It is easiest to first draw depth-time
and temperature-time curves and construct a depth-temperature diagram
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from those. The conversion from depth to pressure can be done as a final
step in the calculation using p = 2700 kgm~2 for density and g= 10 ms~2
for the gravitational acceleration. Non lithostatic components of pressure are
to be neglected.



A. Topographic Maps

This section is a small Atlas of 16 of the most important areas in geodynamics
around the world. All maps are shown in Mercator projection and were pro-
duced from the ETOPQO2 global digital elevation model using the GMT soft-
ware of Wessel and Smith (1995, 1998). Slab contours on some maps are after
Gudmundsson and Sambridge (1998) (http://wwwrses. anu.edu.au/ seismol-
ogy/ projects/RUM/). Plotted seismicity is from the IRIS seismic data base
(http:/ /www. iris.edu). All events above magnitude 5 since 1973 are plotted
(except for Fig. A.3, Fig. A.10, Fig. A.14, where only magnitudes above 5.5,
6 and 5.5 are plotted, respectively). Depth of hypocenters is color coded: Red
— yellow = 0 — 600 km. Size of dots refers to magnitude. Surface elevations
are colored according to the scale bar shown on Fig. A.2. Major permanent
rivers are shown and water bodies below 5000 km? are omitted. For scaling
recall that one arc minute of latitude (not longitude !) is defined as one nau-
tical mile or: 10° & 1080 km, (10 degrees latitude are very roughly 1000 km)
(s. p- 25). All maps (with and without labeling) and the GMT scripts used
to produce them, are available from the author.
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Fig. A.2: India - Asia collision zone. Topographic map of the most
spectacular orogen on earth - the India Asia collision zone. The FEuropean
Alps are plotted for scale the top right corner. The scale bar at top left is
for all maps. 1 = Tibetan Plateau (covering the entire region between about
78°E and 95°E and 30°N to 37°N. 2 = The Shillong Plateau is the smallish
elevated region north of the number. 3 = Tarim Basin. 4 = Altyntag Range.
5 = The deepest point in Central Asia is 154 m below sea level. 6 = Pamir.
7 = Kirgis Tien Shan. The low area northwest of the number is Lake Issyk
Kul. 8 = Chinese Tien Shan. 9 = Western- or Namche Barwa syntaxis. The
Brahmaputra River breaks through the chain here. 10 = Red River and Red
River shear zone system. 11 = Chinese Loess Plateau. The region is shown
in detail on Fig. 4.46. 12 = Mt. Everest. 13 = Mt Kailas. Both the Indus
and the Tsangpo (later forming the Brahmaputra) come from here. 14 =
Kasachstan Platform. 15 = Ganges delta. 16 = Hindukush. 17 = Eastern
syntaxis of the Himalaya. The Indus River breaks through the chain here. 18
= Gobi Desert. 19 = Dabie Shan — a famous ultra high pressure terrain. 20 =
Arabian Bagin and fan shaped cone of the Indus River. 21 = Sichuan Basin.
22 = Qilian Shan. 23 = Qaidam Basin. 24 = Long Men Shan. 25 = Kun Lun
Range. 26 = Western Kun Lun Range. 27 = Western Ghats with the Deccan
Traps flood basalts (mainly south of the map sheet). 28 = Helmand Basin
and river. Kandahar is just northeast of the number. 29 = Kabul and the
Afghan highlands to the west.

Fig. A.3: Andes. Topographic map of the Andes: the earth’s most spec-
tacular example of the collision between an oceanic plate and a continental
plate. Labeled are: 1 = Altiplano. 2 = Lake Titicaca. 3 = Nasca Ridge. 4
= Juan Fernandez Islands. 5 = Carnegie Ridge with the Galapagos Islands
at the west end (off the map). 6 = San Ambrosia Island. 7 = Peru-Chile
Trench. Slab contours of Pacific Plate are drawn every 100 km depth. 8 =
Sierras Pampeanas: a Panafrican granulite terrain. 9 = Amazonas Basin. 10
= Pre Cordillera. 11 = Frontal Cordillera. 12 = Cordillera Principal. 13 =
Coastal Cordillera. 14 = Buenos Aires. 15 = Parana Basin and river. 16 =
Rio de la Plata. 17 = Arequipa. 18 = Escondida. The world’s largest copper
mine.

Fig. A.4: Europe. Topographic map of southern Europe showing the
Alpine orogen as well as the geometry of micro plates in the Mediterranean
realm. Labeled are: 1 = Eastern Alps. The number is drawn into the Tauern
window. The triangular feature just south of the number is the Peradriatic
lineament, marking the boundary between European and Adriatic plates. 2 =
Western Alps. 3 = Pannonian Basin. 4 = Moesian Platform. The Iron Gate
— where the Danube breaks through the Carpathian Arc is to be seen north-
west of the number. 5 = Carpathian arc. 6 = Dinarides. 7 = The west - east
striking structures transecting most of Turkey is the North Anatolian fault
system. 8 = Helenic Trench along the north directed subduction zone be-
tween the Anatolian Plate and the Adriatic Plate. 9 = Tyrrhenian sea. This
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sea is interpreted as a backarc basin between Italy and the islands of Corsica
and Sardinia. 10 = Ligurian sea. 11 = Ionian sea with the island of Malta
just north of the number. 12 = Aegean sea. 13 = Rhine graben flanked by
the Black Forest on the east and the Voges Range in the west. To the south
is the Banana shaped Jura Mountains. 14 = Pyrenees. 15 = Subduction zone
between the Adriatic Plate and the Apulian Plate. Mt Etna located north-
west of the number along the east coast of Sicily is related to this subduction.
16 = Apuseni Mountains. 17 = Bohemian Massif. 18 = Massif Central. 19 =
Rotation pole of the Adriatic Plate. 20 = Atlas Mountains. 21 = Vesuvio. 22
= Appenine Range. 23 = Rhodope Range.

Fig. A.5: Arabian Region. Topographic map of the Arabian region. 1 =
Afar Depression. 2 = Egyptian Eastern Desert. Pan African core complexes
are exhumed here. 3 = The Oman ophiolite complex. 4 = The deepest point
on land in the world: the Dead Sea shore is 417 m below sea level. The
Dead Sea lies along the Dead Sea Transform Fault that continues to form the
boundary between the Arabian Plate and the Anatolian Plate (black line). 5
= Zagros Mountains. 6 = Luxor on the Nile river. 7 = Ethiopian Highlands.
8 = North Anatolian Fault System. 9 = Mt Elbrus (5633 m) in the Caucasus
is the highest point in Europe. 10 = United Arab Emirates — where most of
the oil is. 11 = Caspian Sea. 12 = Red Sea Rift. 13 = Persian Gulf. 14 = Gulf
of Oman - separated from the Persian Gulf by the Straits of Hormuz. 15 =
Indian Plate. 16 = Socotra Island at the entrance to the Gulf of Aden. 17 =
Mt Ararat. 18 = Elburz Mountain range between Teheran and the Caspian
Sea. 19 = Troodos ophiolite complex on Cyprus.

Fig. A.6: Africa. Topographic map of Africa. 1 = Lesotho highlands. East
of the highlands is the city of Durban at the costs. The marked topographic
jump from the highlands down to the coastal lands is the South African Great
Escarpment that can be seen all around the southern edge of the continent.
In Lesotho it is called the Drakensberg escarpment. Note that the drainage
in Lesotho drains west into the Oranje River. 2 = Namaqualand and the
mouth of the Oranje River. 3 = Kalahari Desert. 4 = The lowlands south of
the Great Escarpment are made up of the Cape fold belt. Note large scale
folding of strata. 5 = Limpopo River drainage basin. Note how the basin
breaks through the Great Escarpment. 6 = Sambezi River. 7 = Lake Njassa.
The southernmost of the large lakes along the East African rift system. 8
= Lake Tanganjika. 9 = Lake Victoria. 10 = Nairobi. The spots north and
south of the number are Mt Kenia and Mt Kilimanjaro, respectively. The
highlands just west of the rift valley are the Serengeti. 11 = Lake Rudolf. 12
= The lowlands at the north end of the map widen into the Afar Depression.
13 = Kongo Basin. 14 = Fernando Poo hot spot trace. Note how the chain of
islands can also be seen onland in Kamerun. The line is also known as Guinea,
Ridge. 15 = Walfis Ridge. 16 = Agulhas Plateau. 17 = Mozambique Plateau.
18 = Malagasy fracture zone. This fracture zone is part of the ridge system
separating the African Plate from the Antarctic Plate. 19 = Namibian Desert.



372 7 - Atlas

Brandberg is just north of the number. 20 = Angola Basin. 21 = In this region
are the Witwatersrand gold reef and the Kimberley diamond mines. Pretoria
and Johannesburg are near here. 22 = Aldabra and Comoro Islands. 23 =
Etosha Pan. 24 = Olduvai Gorge - the site of the earliest human fossils. Also:
Ngorongoro Crate and Oldolnya Lengai — the worlds only active carbonatite
volcano. 25 = Cape Basin. 26 Agulhas Ridge.

Fig. A.7: North Atlantic. Topographic map of the North Atlantic. 1 =
Mid-Atlantic Ridge. 2 = Azores. 3 = Madeira Islands. 4 = Biscay abyssal
Plain. 5 = Flemish Cap. 6 = Faeroe Islands. 7 = Jan Mayen Island. South of
the number extends the Jan Mayen micro-continent to Iceland. 8 = Reykjanes
Ridge (active 55 Ma to now). Note the V-shaped arrangement of ridges and
the continuous rise of the Mid-Atlantic Ridge towards Iceland for almost
1000 km. 9 = Rockall Island. 10 = Hatton Basin. 11 = Rockall Trough. 12 =
Scoresby Sund. The worlds largest fjord with 475 km length. 13 = Gunbjorns
Fjeld (3700 m). The highest mountain on this map. 14 = Greenland ice sheet
is about 3000 m thick here. Bedrock is 300 m below sea level. 15 = Aegir Ridge
was active from 55 - 33 Ma before it jumped across to: 16 = Kolbeinsey Ridge,
active now. 17 = Present day position of Iceland Hot Spot. 18 = Liverpool
Land: Remains of Caledonian crust with ultra high pressure eclogites. 19 =
Huge sedimentary fans deposited from glacial erosion on Greenland. 20 =
Mohns Ridge (active now).

Fig. A.8: Eastern North America. Topographic map of eastern North
America. 1 = Bermuda Islands. 2 = Florida. 3 = Deepest point in the At-
lantic Ocean at the west end of the Antilles Trench. 4 = Lesser Antilles. 5=
Caribbean Sea. 6 = Puerto Rico Trench. 7 = Bahamas. 8 = West Indies.
9 = Appalachian Mountains. 10 = Great Lakes. 11 = Blake Plateau. 12 =
Gulf of Mexico. 13 = Bermuda Rise. The large fractures to the east belong to
the Mid-Atlantic Ridge. 14 = The Mississippi Delta and New Orleans. Note
the fan in the Gulf of Mexico. 15 = Outer ridge. 16 = Canadian Shield. 17
= New York and Long Island. 18 = Cape Cod and Boston to the west on
the mainland. 19 = Nova Scotia. 20 = St Laurence seaway. 21 = Site of the
Chicxulub crater which is often made responsible for the mass extinction at
the Cretaceous - Tertiary boundary.

Fig. A.9: Western North America. Topographic map of western North
America - a region which hosts a series of classic geodynamic settings. La-
beled are: 1 = San Andreas Fault (from north west to south east). 2 = Lake
Tahoe. 3 = Grand Canon and Colorado River. Hoover Dam with Lake Mead
and Las Vegas are just south west of the number. 4 = Snake River Plain.
5 = Yellowstone Hot Spot. 6 = Columbia River. 7 = Sierra Nevada (out-
lined). 8 = Great Salt Lake. 9 = Great Valley. San Francisco Bay is west of
the number. 10 = Colorado Plateau (outlined) and Upper Colorado River in
Utah. The number is drawn over Monument Valley and west of the number
is Lake Powell. 11 = Vancouver Island. 12 = Seattle. Just east of the number
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is Mt Rainier as the north end of a linear chain of volcanoes including from
north to south Mt St Helens, Mt Adams and Mt Hood as the highest peaks.
13 = Sierra Madre Occidental (outlined). 14 = Southern Basin and Range
(outlined). 15 = Northern Basin and Range (outlined). 16 = Uinta Moun-
tains. 17 = Klamath Mountains. 18 = Cascadia Mountains. 19 = Bighorn
Mountains. 20 = Transverse Ranges. 21 = Rio Grande Rift. 22 = Southern
Rocky Mountains. 23 = Black Hills. 24 = Bitterroot Mountains. 25 = Death
Valley. Owens Valley extends further north west of the number. 26 = Meteor
Crater. 27 = Yosemite Valley. 28 = Madre Archipelago. Outlines are after
Thelin and Pike (1991). See also Ellis et al. (1999), Sonder and Jones (1999)
or Leeman (1989).

Fig. A.10: Western Pacific. Topographic map of the western Pacific also
known as the “ring of fire”. 1 = Kuril Trench. 2 = Japan Trench. 3 = Izu
Bonin Trench. 4 = Mariana Trench. 5 = Ryukyu Trench. 6 = Challenger
Deep - the deepest point known in the oceans. It is 10911 m deep and is
located near 11°22'N and 142°36’E. It was discovered by the Royal Navy
survey ship HMS Challenger in 1951 and the point was visited by J Piccard
and D Walsh in the US Navy submersible Trieste in 1960. 7 = Java (Sunda)
Trench. 8 = Bougainville Trench. 9 = Philippine Trench. 10 = Parece Vela
Ridge. The number is central to the Philippine Plate which extends from
the Mariana Trench to the Philippines. 11 = Sikhote Alin range. 12 = Lake
Baikal and the Baikal rift. 13 = Shatsky Rise. 14 = Banda Sea. 15 = Taiwan.
16 = Luzon. 17 = Yellow Sea. 18 = Sea of Okhosk. 19 = South China Sea. 20
= New Britain Trench. 21 = Ottong Java Plateau - the worlds largest igneous
province. 22 = Arafura Basin between Papua New Guinea and the Australian
Gulf of Carpentaria. 23 = Sunda shelf. 24 = Wallace line separating different
paleontological faunas between Borneo and Sulawesi (continues between Bali
and Lombaok to the south and just south of the Philippines to the north. Slab
contours are drawn every 100 km depth for the Indonesian, the Luzon-, the
Ryukyu, west Philippine- and east Philippine slabs. For slab contours of the
Mariana and Japan slabs see Fig. 2.6.

Fig. A.11: Eastern Pacific. Topographic map of the eastern Pacific. 1
= Aleutian Trench. 2 = Hawaiian Ridge and Hawaiian islands. The largest
island at the east end of the ridge is ”Big Island”. Note the diffuse light
shading indicating shallow water several hundreds of kilometers north and
south of the chain and the deeper water (dark color) in the immediate vicinity
of the chain indicating lithospheric flexure. 3 = Emperor seamount chain. 4
= Midway Islands. 5 = Mid Pacific Mountain Range including Cape Johnson
Guyot and Hess Guyot as the highest (under water) peaks. 6 = Bowers Bank.
7 = Kodiak Island in Alaska. 8 = North end of the Manihiki Plateau. A
Cretaceous large igneous province. 9 = Gilbert Islands. 10 = Marshall Islands.
11 = Mendocino Fracture Zone. 12 = Murray Fracture Zone. 13 = Christmas
Island Ridge. 14 = Shatsky Rise. 15 = Hess Rise. 16 = Kuril Trench. 17 =
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Pribilof Islands. 18 = Emperor Trough. 19 = Chinook Trough. 20 = Musicians
Seamounts. 21 = Necker Ridge. 22 = Hokkaido Trough.

Fig. A.12: Indian Ocean. Topographic map of the Indian Ocean - the
birthplace of many plate tectonic concepts. 1 = The Amery ice shelf in
the failed rift of the Lambert graben, Antarctica. Today, the worlds largest
glacier, the Lambert glacier, flows down this graben. 2 = Enderby land. 3
= These are not islands - they are icebergs. 4 = Kerguelen Plateau with
the French Kerguelen Island to the northwest and the Australian Heard Is-
land to the southeast of the number. 5 = Ninety East Ridge. 6 = Broken
Ridge Plateau. 7 = Diamantina Fracture Zone. 8 = Madagaskar. 9 = Chagos
Trench with the Chagos Lacadive Plateau to the west. 10 = Seychelles. 11
= Amirante Trench. 12 = TLa Reunion in the west and Mauritius in the east.
13 = Ile St Paul and Ile Amsterdam at the southwest end of the Amsterdam
fracture zone. 14 = Crozet Islands. 15 = Cocos Islands. 16 = Triple junction
between African Plate, Indo-Australian Plate and Antarctic Plate.

Fig. A.13: Australia. Topographic map of Australia. 1 = Lake Eyre and
other salt lakes (just below sea level). 2 = The Proterozoic Broken Hill Block
and its Pb - Zn deposit. 3 = Flinders Ranges. 4 = Murray Basin. 5 = Otway
Basin (most of it is off shore). 6 = Cooper - Eromanga Basin hosting most of
Australia’s onshore gas deposits. 7 = Proterozoic Arunta Block. 8 = Musgrave
Block. 9 = Mt Isa Block and Mt Isa deposit. 10 = Kimberley Ranges. 11
= Northwest Shelf hosting most of Australia’s hydrocarbon deposits. 12 =
Albany Fraser Province. 13 = Nullabor Plain and Great Australian Bight. 14
= Ayers Rock. 15 = The Archaean Pilbara Block. 16 = Diamantina Trench.
17 = Wallaby Plateau- 18 = Hammersley Basin and iron deposits. 19 = Jack
Hills where the oldest zircons on Earth were found. 20 = Yilgarn Craton
(going as far as the Jack Hills). 21 = Australian Dividing Range and Snowy
Mountains. 22 = Gawler Craton.

Fig. A.14: New Zealand. Topographic map of New Zealand. The black line
in New Zealand is the Alpine Fault. 1 = The Great escarpment of eastern
Australia. 2 = Tonga Trench and Tonga Islands. Slab contours are drawn
every 100 km. 3 = Kermadec Trench. 4 = Macquarie Trench and Macquarie
Island just northeast of the number. 5 = Campbell Plateau. South of the
number are the Auckland islands. 6 = Lord Howe rise and Lord Howe island
west of the number. 7 = New Caledonia. 8 = New Hebridies Trench. Slab
contours are drawn every 100 km depth. 9 = Fiji Plateau with the Fiji islands
east of the number. 10 = Samoa Islands. 11 = Norfolk Island. 12 = Lau
Ridge. 13 = Bounty Trough with the Catham Islands to the northeast. 14
= Queensland Plateau on the south side of the Solomon sea. 15 = Tasman
Sea as part of the Indo-Australian Plate. 16 = New Hebrides. 17 = Louisville
seamount chain. 18 = White Island and the Taupo volcanic zone on the New
Zealand mainland. 19 = Colville Ridge.
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Fig. A.15: Scotia Plate. Topographic map of the Scotia Plate at the south
tip of south America: 1 = Falkland Plateau and Falkland Islands. 2 = South
Sandwich Trench. Slab contours are drawn every 50 km depth. 3 = South
Sandwich microplate with the South Sandwich Islands just north and south
of the number. The microplate extends to the small ridge just west of the
number. 4 = South Georgia. 5 = Scotia Ridge. 6 = Argentinian abyssal
plain. 7 = Scotia Plate. 8 = South Orkney Islands. 9 = Antarctic Plate. 10
= Elephant Island. 11 = Antarctic Peninsula. 12 = Patagonia. 13 = South
Shetland Islands. 14 = Shackleton Fracture Zone. 15 = Falkland Trough. 16
= Chile triple point. Currently the only place on earth where a mid oceanic
ridge is being subducted.

Fig. A.16: Arctic. Topographic map of the Arctic: 1= Franz Josef Land. 2
= Spitzbergen (Svalbard). 3 = Ellesmere Island. 4 = Baffin Island. 5 = Victo-
ria Island. 6 = Barents abyssal plain. 7 = Wrangel Island. 8 = North magentic
pole. 9 = New Siberian Islands. 10 = Nansen Ridge. 11 = Lomonosov Ridge.
12 = Novaya Zemlya. 13 = Severnaya Zemlya. 14 = Jan Mayen Island is just
west of the number. 15 = Greenland Fracture Zone. 16 = Canada Basin. 17
= Makarov Basin. 18 = The early Archaean Isua supracrustal belt, with 3.8
Ga believed to be the oldest rock on Earth.

Fig. A.17: Antarctica. Topographic map of Antarctica. The two percent
of the continent that are ice free bear many unique geological features: 1 =
Enderby Land — one of the first discoveries of ultra high temperature meta-
morphism. 2 = Lambert rift — a Mesozoic failed rift and home to the Lambert
Glacier, the largest glacier in the world. 3 = Prince Charles Mountains. The
last discovered major mountain range on the globe. 4 = Larsemann Hillg
and Vestfold Hills. Two classic low pressure - high temperature metamor-
phic areas. 5= Mt Vinson. With 4892 m the highest peak of Antarctica. 6
= Antarctic Peninsula. 7 = Transantarctic Mountain Range. 8 = McMurdo
Sound. 9 = Dry Valleys. 10 = Mt Erebus, Antarctica’s only active volcano.
11 = Law Dome. A region of stationary ice where much of the worlds ice
core drilling is done for palaeoclimatological research. 12 = Vostok Station.
Russian permanent research station near the coldest and highest part of the
continent. 13 = West Antarctica. 14 = Patriot Hills. 15 = The South Mag-
netic Pole (2005) is just north of here off the map. 16 = Ross Ice Shelf. 17 =
Ronne Ice Shelf. 18 = Weddell Sea. 19 = Bunger Hills. 20 = Dronning Maud
Land. 21 = Allan Hills in Victoria Land. Many meteorites have been found
in this region.
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Figure A.2. Topographic map of the most spectacular orogen on earth - the India
Asia collision zone.
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Figure A.3. Topographic map of the Andes.



Figure A.4. Topographic map of southern Europe.



7.1 - Atlas

30 40 50

Figure A.5. Topographic map of the Arabian region.
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Figure A.8. Topographic map of Southern Africa.
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Figure A.7. Topographic map of the northern Atlantic Ocean.
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Figure A.8. Topographic map of eastern North America.
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Figure A.9. Topographic map of western North America.
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Figure A.10. Topographic map of the western Pacific also known as the "ring of
fire”.
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Figure A.11. Topographic map of the eastern Pacific.
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Figure A.12. Topographic map of the Indian Ocean - the birthplace of many plate
tectonic concepts.
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Figure A.13. Topographic map of Australia.
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Figure A.14. Topographic map of eastern Australia and New Zealand.
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Figure A.15. Topographic map of the Scotia Plate.
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Figure A.16. Topographic map of the Arctic.
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Figure A.17. Topographic map of Antarctica



B. Mathematical Tools

Most geodynamic processes are processes that change in space and time.
One of the most important tools to describe such changing processes are
differential equations. This chapter is therefore mainly concerned with the use
and interpretation of differential equations. A few selected other important
numerical tricks and basic rules are summarized towards the end of this
chapter.

B.1 What is a Differential Equation?

The derivative (or: differential) dy/dz is a way to describe the change of y
with respect to another variable z. It can be interpreted as the slope (or
gradient) of the function y = f(z). If the slope of this function is constant
between two points along the z axis, for example between  and x+ Az, then
we need no derivative and we can write:

y(z + Az) — y(z)
Ax

The numerator of the fraction on the right hand side of this equation is given
by the difference between the y values of the function at the two points x and
z + Azx. The denominator is given by the distance between the two points on
the z axis between which the gradient is measured (Fig. B.1). Their ratio is
the slope between the points 2 and z + Az. If we consider a function where
the slope is not constant between z and xz + Az, then eq. B.1 would give
us only some mean of all the slopes of this function between the two points.
However, the smaller we choose our Az, the better will eq. B.1 describe the
exact slope at point 2. We can write:

y'(@) = j—y = lim Az — 0 (W +4z) = y(m)) . (B.2)

gradient = (B.1)

z Az

Eq. B.2 is the mathematical definition of a derivative or slope of a function.
Note that we used a dash to indicate that ¢’ is a derivative. This is a com-
monly used notation. The slope of a mountain road is a clear example to
illustrate the meaning of slope. Assume that H describes the elevation of the
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Figure B.1l. Diagram illustrating the defini- y
tion of the first derivative of a function (thick
curve) (eq. B.1 and B.2). The slope of the thick
drawn straight line may be accurately described

by the ratio (y(z + Az) — y(z))/Az. The slope

of the curved function at z is only moderately
well approximated by this ratio. However, the
smaller Az becomes, the better this approxi-
mation will be to describe the slope at a single
point

road surface as a function of distance from the valley 2: H = f(z). Then, the
slope of the road is given by the first derivative of this function f,:

+ dH
The units of this differential are mm™!. In short, it is dimensionless for this
example. Familiar geological examples described by first derivatives (first
differentials) of functions are the geothermal gradient, describing the change
of temperature with depth (in °Cm™!), or cooling histories of metamorphic
terrains that describe the change of temperature over time (in °Cs™1).

The second derivative (or second differential) of a function describes how
the slope changes. The more familiar name of the second derivative is curva-
ture. It is often abbreviated with f;'. In our example of a mountain road, the
vertical curvature of the road is:

. d(4E)  &H

o= —4p T4 (B.4)

and has the units of m/(mm~2), which is: m~!. It should be read as: “d two
H over dz square”. The scheme we have followed to go from first to second
derivative may be followed to describe the third, fourth or higher derivatives
of functions. Corresponding to the first two derivatives, the third derivative
of a function describes the change of the curvature of the function and the
fourth the curvature of the curvature and so on (Fig. B.2):
I dSH rets d4H

In our example of a mountain road, the units of the third and fourth deriva-
tives are m~2 and m~3, respectively. Be careful not to confuse these linear
derivatives of the third and fourth order (in eq. B.5) with the non-linear first
order derivatives (dH /dz)® and (dH/dz)*. Fortunately there are very few
geological problems where more than 2nd order differentials are needed (the
flexure equation (eq. 4.48) in elasticity theory is just about the only one).
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o
@]

Figure B.2. A sine function as A
an example for the function f,

and its first, second and third 0
derivatives. At the maximum of )
the function (point A), the slope

of the function is f, = 0 and the
curvature has a negative 0

0
0

0

Slope

)

Curvature

maximum: f: = —1. Conversely, f(x)
at the inflection point of the

curve (point B), the slope has a
minimum the curvature is zero 0
fz = 0. At the minimum of the '(x)
function (point C), the slope is

also zero and the curvature has a
positive maximum 0

Change in curvature

B.1.1 Terminology Used in Differential Calculus

Order. The order of the highest derivative in a differential equation is called
the order of the equation. For example, eq. 3.57 is a first order differential
equation, eq. 3.6 or eq. 3.56 are second order differential equation and eq. 4.48
is a fourth order differential equation. Fig. B.2 illustrates the meaning of
derivatives of higher order using the example of a simple sine function.

Partial and Total Derivatives. A function may have several variables.
For example, the elevation of a point H on the surface of the earth can be
described as a function of two spatial coordinates in the horizontal directions
2 and y, but it may also be a function of time or any other variables that
we deem of importance, say vegetation or lithology. Let us consider the spa-
tial dependence only. Then, using a simple hypothetical function to describe
topography, elevation might be described by:

H =32 +4° . (B.6)

Such analytic descriptions are great, because we can use it to determine
parameters like slope directly from it. If we differentiate this function with
respect to one of the variables only, then this is called a partial derivative. It
describes the slope of the function in one spatial direction only. When forming
a partial derivative with respect to one variable, then all other variables are
kept constant during the process and are treated like any other constant of the
equation. The symbol for the partial differential is 8 (say: “del”). However,
“del” is no real Greek letter and should not be confused with 4. The partial
derivative of eq. B.6 after x is:

o

= . B.
ox y=const. 6z ( 7)
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This partial derivative describes the slope of the function in direction . The
total differential is the sum of all partial derivatives. In our example it is:

OH OH
dH = <—) x dz + (—) xdy . (B.8)
Oz y=const. 81/ z=const.

This gives the total derivative of the function from eq. B.6 to be:
dH = 6z +12¢% . (B.9)

This total derivative describes the tangential plane at the point x,y. In our
example of surface elevation, eq. B.9 may also be interpreted as the slope
of the surface in dip direction. Partial and total derivative are identical if
the function contains only one variable. Partial derivatives after time are
often called rates and symbolized by a little dot above the variable concerned
(e.g. strain: € and strain rate: de/9t = €). Differential equations that contain
only total derivatives are called ordinary differential equations, in contrast to
the partial differential equations, which contain partial derivatives. A good
summary of these simple definitions may be found in Anderson and Crerar
(1993) or Zill (1986), as well as many other mathematical hand books.

Linear and Non-linear Differential Equations. A differential equation
is said to be linear if it is characterized by two properties: 1.) the dependent
variable and all its derivatives are of the first degree, that is, the power of
each term involving it is 1; and 2.) each coefficient depends only on the in-
dependent variable. In this context, the dependent variable is generally the
one in the numerator of the derivative, while the variable in the denominator
is called the independent variable. For example, in the differential equations
in chapter 3, temperature, T or heat H are generally used as the dependent
variables, while the spatial coordinates or time are generally the independent
variables. Just about all differential equations in this book are linear differen-
tial equations (e.g. egs. 3.6, 3.56 or 4.48). On the other hand, hypothetical
examples of non-linear differential equations would be:

0T oT d3T ‘

a2 "Ogy = O @+T2=O. (B.10)
These are examples of non-linear second and third order partial differential
equations, respectively. The first example is non-linear because the coefficient
of the first term depends on 7', the second because T occurs in the power of
2. The only geologically relevant example of a non-linear differential equation
discussed in this book occurs on p. 186.

Analytical and Numerical Solutions. In order to make use of a differ-
ential equation we must solve it. Only then, they can be used as a tool to
extract numbers that describe some process. There are two fundamentally
different ways to solve them.
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e 1. Analytical solutions. Analytical or closed solutions of differential equa-
tions may be found by integrating them. Let us consider as an example the
description of a geotherm by

dT 1.5

dz 2
There, T is temperature in °C and z is depth. This differential equation can
be integrated without difficulty:

T=3/z+C . (B.12)

(B.11)

The integration constant C' must be determined using boundary conditions.
Eq. B.12 is said to be an “analytical solution of the differential equation
eq. B.117. If we assume (as our boundary condition) that the temperature
at the earths surface is always zero and we assume a coordinate system where
the surface is at z# = 0, then this constant must be also zero: C' = 0. Now
eq. B.12 can be used to calculate temperatures at any depth of our choice
by inserting numbers for z. For example, for z = 100000 m eq. B.12 gives
T =949°C.

e 2. Numerical solutions. Numerical solutions of differential equations are
used to extract numbers from differential equations without having to solve
(integrate) them. With their aid we can arrive at the result that eq. B.11
describes a temperature of T7=949°C at 100 km depth without having to
solve the differential equation, i.e. without having to go from eq. B.11 to
eq. B.12. Great — results without having to solve the problem! However,
there is nothing such as a free lunch: numerical solutions are not exact. Nu-
merical approximations are always approximations and they are plagued by
stability and accuracy problems (s. p. 401). The numerical solution of partial
differential equations is a science on its own (sect. B.2, B.4). The two most
important methods that are in use are finite difference methods and finite
element methods.

The finite element method has the advantage that it is much more elegant
to use it for the description of deformation on Lagrangian coordinates. The
principal disadvantage of the finite element method is that it is not very
intuitive and therefore requires quite an initial effort to learn it.

The finite difference method has the enormous advantage that it is quite
intuitive, easy to implement on a computer (even by inexperienced math-
ematicians) and easily adaptable to many different problems. Its principal
problems are those of instability, and that they are quite cumbersome when
it comes to the treatment of discontinuous boundary conditions and deformed
grids (sect. B.2).

e Advantages and disadvantages. Numerical and analytical solutions have
both their advantages and disadvantages. The enormous advantage of nu-
merical solutions is that they allow us to arrive at results without having



398 B - Mathematical Tools

to know enough differential calculus to be able to integrate the equation in
question. In fact many geological problems can be simplified enough to be
able to formulate them into an equation, but are too complicated so that an
analytical solution can be found. In such cases, numerical solutions are the
only way to obtain results.

Analytical solutions have the advantage that they are much more useful
to understand the nature of a geological process. For example, eq. B.12 may
be used directly to infer that the temperature in the crust rises with the
square root of depth. If this model corresponds well with our observations in
nature, then we can continue to think about the significance of this quadratic
relationship. Such considerations are difficult with numerical solutions as they
only deliver numbers.

Initial- and Boundary Conditions.

e Boundary conditions. When solving differential equations, boundary con-
ditions are necessary in order to determine the integration constants. This is
true for both numerical and analytical solutions. For differential equations of
the first order we need one boundary condition, for those of the second order
two and so on. The term boundary condition is exactly what it implies: it is
a condition at the boundary of the model (s. sect. B.2.4). The most common
types of boundary conditions are:

— A prescribed value of the function at the model boundary (e.g. T = 0
at z = 0; s. eq. B.12),

— Neumann boundary condition: A prescribed gradient of the function at
the model boundary (e.g. the heat flow boundary condition we used in
sect. 3.4.3),

— A functional relationship between value and gradient at the model bound-
ary (e.g. the constant heat content boundary condition used on p. 123).

Boundary conditions given by higher derivatives of functions are also possible
and play an important role when integrating differential equations of higher
orders (s. sect. 4.4.2, eq. 4.48). In sect. B.2 we discuss how some of these
boundary conditions may be implemented.

e Initial conditions. Initial conditions are necessary to determine the start-
ing point of a model. For example, if we want to use the diffusion equation
(eq. 3.6) to calculate the evolution of a diffusive zoning profile over time,
then we must use a function T = f(z) at the time ¢t = 0 from which we can
start calculating. The nature of this function 7' = f(z) must be determined
by a known initial condition. Steady state problems usually do not require
an initial condition.
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B.2 The Finite Difference Method

The finite difference method makes use of the discretization of the derivative
from eq. B.2. Instead of describing the differential dy/dz by the limiting
value Az — 0, a finite value of Ax is used (i.e. eq. B.1 is retained). For our
explanation on the next pages we use Fig. B.3 showing the function T' = f(x)
and assume that this function is a temperature profile across a metamorphic
terrain along the spatial axis z. Thus, we will use the variable T instead of
the more abstract y that we have used up to now in this chapter. At the point
z; (labeled in Fig. B.3a by the dotted line) the function has the slope d7/dz.
When using the method of finite differences, this slope is approximated by the
discrete temperature difference at two different places with a finite distance
to each other (a bit as we have already implicitly shown in Fig. B.1). There
is many ways to formulate such a difference. From Fig. B.3b we can see that
one way to formulate such a difference is:
dr Tipn =T _Tipn - T;

~ = . B.1
dz =z —x; Az (B.13)

The index ¢ is just a description of the number of the grid point chosen here.
T; is the temperature at the “i**” point of a discrete grid of points. T;,; is
the temperature at the next point of the grid, T;_1 at the previous point. The
finite difference method used in eq. B.13 is called forward differencing method
as we have calculated the temperature gradient at x; using the temperature at
z; as well as the temperature at the next forward point on the grid (Fig. B.4).

Some other simple examples of differencing schemes have the form:
dT' T, -T;_4 AT Ty — T34
& As o & ° T 24z
For reasons that should now be obvious, these two methods are called back-
ward differencing and central differencing schemes (Fig. B.4).

(B.14)

AX

f(x)

Xi X1 Xi Xi
a slope at a point b finite difference approximation
Figure B.3. Graphical illustration of the method of finite differences. In a the slope
of the function f(z) at point z; is accurately described by the touching tangent.

Mathematically this slope is described by the differential d7/dz. In b the slope is
approximated by the ratio of the differences of two temperature and two x values
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e Differentiating with respect to time. All information we have discussed so
far is generally applicable, regardless of what variable is described by =, y or
T. However, the use of x has suggested that we imply spatial differentials.
In order to discriminate between the numbering of grid nodes of spatial and
temporal grids, the symbols “+” and “—” are common to describe the next
time step and the previous time step while 7 and ¢ + 1 is used for the spatial
grid stepping. Thus we can write:

dT T+ -1~
dat At
In some books “3” and “j 4+ 1” are used to denote time steps. However, this
should not be confused with spatially two-dimensional problems in which “¢”

subscripts are used for grid numbering in # direction and “j” numbering of
grid steps in y direction.

(B.15)

e Approximations of derivatives of higher order. For the approximation of
derivatives of the second or higher order we can use the same scheme as that
for the first derivative (eq. B.13, B.14). For the second derivative we must
form the ratio of the difference in slope at two different grid points with the
distance Ax:

it1—=1; ;T
T _ d(55) N (T+A1$ ) B ( Az 1) T 2T+ T (B.16)
de2 = dz Az - Az? - b

From eq. B.16 we can see that, in order to formulate the difference between
slopes at two point, the slope at point ¢ was approximated once by forward
differencing and once by backward differencing. This is necessary, as we want
to calculate the curvature at point ¢ from the differences between the slopes
of the curve as near as possible to it (i.e. in front of it and behind it). We
can see that the curvature is described by the difference of slopes, just like
we describe the slope by the differences between two function values.

backward t forward ¢ central
++ ® :/I ° ++-e o T\o +rFe e ™
-F e ° -rFre e -rFe °
u u o]
E|l @ o o @ El o o o @ El e o e @
= +— +—
- 1 L> x L 1 L> x 1 1 't
space .. T space .1 o~ + space | -+

Figure B.4. Schematic illustration of three simple methods of discretization in
the finite difference method. The z axis of each diagram shows four discrete points
of a one-dimensional spatial grid. Each dot is a temperature value at this point
in space. The y-axis shows three different time steps of the calculation. In the
three diagrams, the temperature at the third grid point (labeled by subscript %)
is calculated by backward, forward and central differencing. In each diagram this
calculation is for the values at the (as yet) unknown time step “+” from known
information at time “-”
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e Solution of the diffusion equation using finite differences. If differential
equations contain more than one variable (e. g. the diffusion equation (eq. 3.6),
in which both spatial and temporal derivatives occur) it is necessary to com-
bine several indices with each other. This may lead to apparently quite com-
plicated formulations. Here we will follow the use of temporal and spatial
indices as discussed above, i.e. the temperature at the spatial grid point ¢
at a future time step is called T;r and at a previous time step it is called
T, (Fig. B.4). Once we are familiar with this notation it should be straight
forward to understand the following finite difference approximation of the
diffusion equation (eq. 3.6) by using eqgs. B.15 and B.16:

or _ T T -1, _ ﬁTijrl —2T7 + T,

- = ~ B.17
ot~ " ox? At Az? (B.17)
Solved for T at the new time step of interest this gives:
_ wAt _ _ _
TH=T+ (TxQ> (T, —2T7 +T,) - (B.18)

Now we can insert into eq. B.18 known temperatures at known points in space
from a previous time step (starting from the known temperature profile of
our initial condition) to determine the temporal evolution of the temperature
profile.

The last few pages have given you an overview over the basic principles
of the finite difference method. All other finite difference approximations
are refinements of the above aiming at higher accuracy, higher stability and
higher speeds of calculation on computers.

Why better methods may be necessary can be illustrated with eq. B.18.
There, the magnitude of the constant (/cAt/AxZ) is critical for the stability
and accuracy of the approximation (sect. B.2.1). The magnitude of this term
is so important so that this term has its own name. It is called the Fourier
cell number and must be smaller than 0.25 so that the solution of eq. B.18
retains stability. Since the magnitude of « depends on material constants, we
cannot change it arbitrarily. Thus, in order to fulfill the stability criterion we
must make a corresponding choice with the time and space stepping. With
many simple finite difference approximations this leads to insurmountable
problems: If a given problem requires high spatial resolution (small Az) it
requires a correspondingly small choice of At. However, if this problem should
now be solved over long geological times, then we may have to iterate through
too many time steps for the problem to be solvable in realistic computer
time. This is one of the reasons why large computers (and more refined finite
difference methods) are required for many geological questions.

B.2.1 Stability and Accuracy

Finite difference solutions of differential equations have two important dis-
advantages:
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1. They are only approximations.
2. They are often unstable.

Criteria for accuracy and stability are extensively discussed in the litera-
ture (e.g. Smith 1985; Fletcher 1991; Anderson et al. 1984). However, both
problems can be reduced to a minimum by some very simple checks:

e Accuracy. The accuracy of finite difference approximations can easily be
checked by successively decreasing the time or spatial stepping (for a discus-
sion of accuracy versus precision s. p. 5). If the result does not change, the
exact solution has probably been approximated well enough. A second test
can be performed by simplifying the initial and boundary conditions of a giv-
ing problem enough so that analytical integration of the descriptive equations
is possible. Then the numerical solution may be compared directly with the
analytical results. Time and space stepping can then be relaxed and finally
the initial and boundary conditions readjusted to describe the problem in the
required detail.

o Stability. A finite difference solution is called stable if it converges to the
correct solution. Unstable solutions diverge with progressive calculation more
and more. Most unstable solutions “explode” within a few time steps. Thus,
stability problems are often relatively easy to recognize as all functional values
trend towards infinity (s. Fig. B.7). Stability problems can often be brought
under control by decreasing the discrete stepping in the approximation.

B.2.2 Implicit and Explicit Finite Difference Methods

There are two fundamentally different types of finite difference methods that
may be used to solve (approximate) differential equations:

1. explicit methods,
2. implicit methods.

There is also miézed methods that are partially implicit and partially explicit.
Fig. B.5 illustrates what is meant with implicit and explicit. Both methods
will be discussed briefly below using the example of temperature calculation
with the diffusion equation. However, the principal difference between implicit
and explicit solutions are the same regardless of the variables or the equations.

e Fxplicit methods. The idea behind explicit finite difference methods is illus-
trated in Fig. B.5a. This figure corresponds to the way the diffusion equation
was solved in eq. B.18 (Fig. B.4). It may be seen that the temperature at
point ¢ at the new time step TZ-Jr is calculated from the known temperatures
(those from the previous time step) at the points ¢ — 1, ¢ and ¢ + 1. As these
temperatures (T; , T;_; and T, ;) are known, the application of eq. B.18 is no
problem. All methods that use schemes where new information is calculated
exclusively from known information are called explicit methods.
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Figure B.5. Examples for implicit and explicit finite difference methods. The ver-
tical axis is time, the horizontal space. Time step “4” is the time step to be cal-
culated. Time step “-” denotes the time for which information is already available.
The Crank Nicolson method is a mixed method. It consists of implicit and explicit
parts

o Implicit methods. Implicit finite difference methods calculate the unknown
temperatures I; from other unknown temperatures at the same time step
(Fig. B.5b). This sounds a bit counter intuitive if not impossible, but is
possible if all temperatures are calculated simultaneously. Remember that
we have boundary conditions that tell us the new temperatures at the two
ends of the grid. Thus, in a grid with n points, there is only n — 2 points
where the temperature is unknown. It is therefore possible to formulate a set
of n — 1 equations with n — 2 unknowns. This may be solved for all unknown
variables. An example of an implicit approximation of eq. 3.6, (corresponding
to Fig. B.5b) is:

or >’T T -T7 _ 5, - 2T + T,

— = ~ . B.19
at " oa? At " Az? ( )
Solved for the temperature of interest this is:
T+ R(TE, +Tt) kAt
T+ =2 il il here : =-—— . B.2
i 1+2R where =7 (B-20)

o Mized methods. Mixed methods use explicit as well as implicit information
to calculate the new data (Fig. B.5¢). Mixed methods have the best accuracy
and stability characteristics and are therefore commonly used. The most fa-
mous of all mixed methods is the Crank-Nicolson-method which is used to
describe second order differentials, as they occur in the diffusion equation.
The Crank Nicolson method describes this with:

T, - T, _k (Tz’il - 2T + T, + Tiyr — 27, + Tz'_—l)

At 2 Az? Ag? (B.21)

It may be seen that the expression inside the brackets is the sum of the right
hand sides of eq. B.17 and eq. B.20 and that the mean of these expressions is
formed. Ways to implement eq. B.21 are discussed in most books on numerical
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mathematics. The Thomas algorithm is an elegant method that can be used
to implement the simultaneous solution of equations as is necessary to solve
eq. B.21.

Two-dimensional Derivatives. In the following we illustrate the approx-
imation of two-dimensional differential equations using the two-dimensional
form of the heat conduction equation as an example. This equation is:

or (82T 62T>

The most commonly used finite difference method to approximate eq. B.22
is the Alternating Direction Implicit Method, in short: ADI method. In this
method, each time step is divided into two. The first half time step is explicit
in one spatial direction and émplicit in the other, the second half time step
is done in reverse. Thus, for each step in time, two steps of calculation are
required. The ADI method has a lot of similarities with the Crank Nicolson
method. A discrete version of eq. B.22 looks like this:

1. step:
T2 _ 7~
t iy +/2 +/2 +/2
wrToal b (T - e TR
K _
+E(Tz]+l 2T +Tz] 1)
2. step:
T+ —Tt/? )
i, i, +/2 +/2
R = A BT o TR
K
JFA—yQ(T”Jrl 2T + T ) . (B.23)

In this equation we have used the subscripts ¢ and j to label the grid points
in the z- and y-directions and we used “4/2” as a description of half a time
step.

B.2.3 Approximation of the Transport Equation

In sect. 3.3 we introduced a simple equation that can be used to describe the
advection of material, for example the advection of rocks to the surface by
erosion or the advection of fluids through a marble (eq. 3.40). Although it
looks much more simple than the diffusion equation, it is not. In fact, the
equation requires the use of very different finite difference approximations
from those discussed above for the diffusion equation. For example, backward
and central differencing schemes are unstable when applied to approximate
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eq. 3.40. Thus forward differencing schemes must be used. A simple forward
differencing scheme that can be used to approximate this transport equation
is:

TH=T"+ uj—; (T —T7) - (B.24)
However, eq. B.24 is associated with numerical diffusion, a problem which
makes the solution increasingly inaccurate if used over many time steps.
The Problem of Numerical Diffusion. The description of advection with
forward finite differencing schemes of the transport equation causes a phe-
nomenon known by the name numerical diffusion. During numerical diffusion
progressive steps of the calculation cause a rounding of parts of the function
that are strongly curved. This rounding is akin to the smoothing of curves
by diffusion, but is only an artifact of the numerical approximation and has
nothing to do with any real diffusion process. Fig. B.6 illustrates why this
numerical diffusion occurs. There, the original temperature profile is shown
by the continuous line. The black dots label discrete values of this function.
Using eq. B.24 and positive values for 4 caused advection (motion) of the tem-
perature profile towards the origin (against the z direction). If the transport
velocity is exactly u = Ax/At, then the temperature profile will be moved
by exactly one grid node with every time step (dashed line and white dots).
If, however, the transport rate is u < Az/At then the temperature profile
is shifted accordingly, but also rounded off (dotted line and gray dots). If
we look at eq. B.24 carefully we can see that the numerical diffusion occurs
because of interpolations between grid points when the transport is not a full
grid interval per time step.

Unfortunately, many geological transport rates are too small so that the
number of time and space steps required to fulfill v = Az/At is much too
large to be sensibly used. Tt is often necessary to use a space stepping that is

O
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Figure B.6. Illustration of the origin of numerical diffusion in the one-dimensional
transport equation (eq. 3.40). The black dots mark discrete values of the tempera-
ture profile shown by the continuous line. The dashed line (and white dots) shows
the temperature profile as calculated with eq. B.24 after one At time step if the
transport velocity u is exactly v = Az/At. It may be seen that the original tem-
perature profile is advected towards the left without a change in shape. However,
if w < Az/At, then the temperature profile after one At, is not exactly like the
original profile (dotted line, shaded dots). It has been victim to numerical diffusion
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Az > uAt. As a consequence, we often have to deal with numerical diffusion
when describing the transport of rocks using eq. 3.40. Fig. B.7b,c illustrates
how much information of a step-shaped temperature profile is lost, if the
transport rate is 90 % or 30 % of v = Ax/At. It may be seen that after about
50 time steps the shape of the initial and the final temperature profile have
little in common. Fig. B.7d illustrates how eq. B.24 becomes unstable if the
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Figure B.7. Graphical illustration of numerical diffusion and instabilities using
the example of the advection of a step shaped temperature profile originally at the
position indicated by the thick line. The advection of a step shaped temperature
profile is shown as described with the finite difference approximation of eq. 3.40
given in eq. B.24. (However, note that we use « instead of z for the spatial coordinate
here). u is positive so that advection is against the z-direction. The grid consists of
100 points between 0 and 1 in the z-direction. Labels are in numbers of time steps.
au=Az/At; b, cu< Az/At; d u > Az /At
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transport rate is u > Ax/At. The temperature profile gets jagged edges and
quickly blows up meaninglessly.

B.2.4 Grids and Boundary Conditions

If we want to use the finite difference method to solve a differential equation
(e.g. eq. B.18), we need to build a discrete grid on which the function is
evaluated (Fig. B.9). A regular grid with n grid points has n — 1 grid spaces.
If the total length of the grid is L and the grid spacing is regular, then the
distance between any two grid points will be Az = L/(n — 1) (Fig. B.9a).
However, grid spacings need not be regular. For example, if a function is
of particular interest in a special region it may be useful to make the grid
especially fine in this region. On the other hand, it may not be wise to make
the grid everywhere this fine as this may enlarge the time of calculation
enormously. A spatially variable grid is the best solution for this. On such
spatially variable grids we must substitute Az by (z;11 — ;) (see: eq. B.13)

For most two dimensional models triangulated grids are used today. Such
grids may be designed to be self adaptive, that is that they refine themselves
as a function of the changes per time step (Fig. B.9¢). Another way to deal
with problems that require a high spatial resolution is the use of multigrid
methods. Multigrid methods use a series of successively coarser grids for each
time step.

e Boundary conditions. Closer consideration of eq. B.18 indicates that this
equation may not be evaluated at the points ¢ = 1 and ¢ = n, because no
grid points “i — 1”7 and “n + 1”7 exist there for which we could insert the
temperatures T;—; and T;,1 into the right hand side of the equation. These
two temperatures must be determined by the boundary conditions. These
boundary conditions are equivalent to the integration limits of a definite in-
tegral that are required to determine the integration constants. Thus, it is

6—0—1 4

L. 2 3 4 6
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Figure B.8. Some examples for the discretization of a two-dimensional region with
an irregular boundary. a The interpolation of the model boundary on an orthogonal
grid is difficult and messy. b A non-orthogonal grid with a constant number of grid
points in z- and y-direction. ¢ The most elegant way to handle an irregular boundary
is by using a triangulation of the area of interest
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no coincidence that there is two grid nodes in finite difference approxima-
tions of second order derivatives, where the functional values can on only be
determined with the aid of boundary conditions.

B.2.5 Dealing with Irregular Grid Boundaries

When dealing with two-dimensional geological problems, model boundaries
are often not straight lines, but are curved. For example, if we want to use
the Moho heat flow as a boundary condition and the Moho is curved un-
derneath a mountain range. Another example was discussed in sect. 3.7.3
where the irregular boundary was given by the irregular shape of the earths
surface. When dealing with such problems it is often difficult to find simple
finite difference approximations of the descriptive differential equations. The
type of problem that we may encounter is illustrated in Fig. B.8. This figure
shows an irregular body (shaded region) for which a two-dimensional heat
conduction problem is to be solved. If we want to discretize the region with a
rectangular grid (as for example the ADI-method in eq. B.23 would require),
then this problem can only be solved for the part of the grid high lighted by
the thick black dots in Fig. B.8a. The marginal points (shown in white on
Fig. B.8a) must be defined by the boundary conditions. Clearly this is highly
unsatisfactory. If we want the model boundaries to correspond to the real
boundaries of the problem, then we would need to introduce all kinds of new
grid lines (thin lines on Fig. B.8a) and the grid would become irregular and
the entire numerical approximation full of interpolations and, in fact, quite
messy.

Such problems may be avoided with one of the two following alternatives:

1. A grid may be defined that has just as many points in the z- and y di-
rections, but in which the grid lines are not on an orthogonal grid but
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Figure B.9. Examples of discrete grids. a Discrete form of the one dimensional
function from Fig. B.3 on a regular one-dimensional spatial grid. Different points
are numbered from ¢ = 1 to ¢ = n. b An irregular two-dimensional orthogonal grid.
The grid serves the description of the dark shaded region. Thus, a finer grid spacing
was used for the grid in the lower left hand portion of the grid. ¢ Self adaptive grid
for a model of flow past a heated cylinder (Pain pers. comm. 2005)
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follow the problem boundaries (Fig. B.8b). Such curvilinear grids can still
be dealt with using finite difference methods, but correction terms for the
changes in direction at the grid nodes must be added. Calculations on such
non-orthogonal grids become quite inaccurate if the direction changes at
individual nodes become too large.

2. The most elegant (and common) method to deal with irregular boundaries
is by using triangulations of the region of interest (Fig. B.8¢). Triangles are
the most simple of all geometric forms that can be used to subdivide two-
dimensional regions and triangles are therefore with many respects supe-
rior to polygons with four corners. When triangulating a two-dimensional
region, there are many ways to do this. For example, one could assume
a certain allowed triangle size, a minimum triangle angle, or assume the
number of triangles that are allowed to meet in one point. For many pur-
poses the Delaunay triangulation is the best choice of how to triangulate a
region (Fig. B.10) (e.g. Sambridge et al. 1995). The biggest disadvantage
of triangulated grids is that finite difference approximations often become
quite a lot more complicated than those for orthogonal grids. These days
it is possible to download a large variety of mesh generators off the web
that produce triangulated grids for any given geometric problem.

B.2.6 Recommended Reading

— Anderson, Tannehill and Pletcher (1984) Computational Fluid Mechanics
and Heat Transfer.

— Fletcher (1991) Computational Techniques for Fluid Dynamics Volume 1.
Fundamental and General Techniques.

— Smith (1985) Numerical Solutions of Partial Differential Equations.

— Reece (1986) Microcomputer Modeling by Finite Differences.

Figure B.10. A section of the
grid from Fig. B.8c for the
illustration of the Delaunay
triangulation. In a Delaunay
triangulation every circle that
contains all three corners of any
given triangle does not include
any other grid nodes. Thus, all
shaded triangles, except the dark
shaded one, are Delaunay
triangles
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— O’Rouke (1993) Computational geometry in C.
— Zill (1986) A First Course in Differential Equations with Applications.
— http://mathworld.wolfram.com /FiniteDifferenceMethod.html

B.3 Scalars, Vectors and Tensors

e Scalars. Geological parameters that are described by their magnitude only
are scalar quantities. The temperature at the Moho, the elevation of a moun-
tain, density of a rock or pressure are examples. (According to Oertel (1996)
pressure should be referred to as an isotropic tensor of second rank but for
all intents and purposes of this book it is sufficient to treat it as a scalar).
Variables that are scalar quantities are commonly denoted with italics, as
most variables in this book.

e Vectors. Geological parameters that have both a magnitude and a direction
are described by vectors. An example is the force with which India and Asia
collide or the rate of intrusion of a magmatic body. The former is roughly
10* Nm~! and is directed northwards; the latter might be some meters per
year and directed upwards in the crust. Vectors are commonly represented
by bold roman letters, although we refrain from this use in this book.

e Tensors. Parameters that are characterized by not only their magnitude
and their direction, but also by a spatial dependence of this direction are de-
scribed by tensors. The state of stress at a point or strain rate are two familiar
examples of tensor quantities to a geologist. It is easy to see that magnitude
and direction alone are insufficient to describe stress. For example, the ten-
sor components o, and gy, both act in the z direction and they also may
both be of the same magnitude. However, 0, is a normal stress and o, is a
shear stress, i.e. they are exerted onto planes of different orientation. Tensors
are represented as matrices and are commonly abbreviated with italics. As
for vectors, we do not use this notation in the present book as the tensorial
quantities occurring herein (e.g. strain rate or stress) are usually simplified
enough so that they reduce to simple scalar quantities (e.g by considering
one-dimensional cases only).

Scalars, vectors and tensors are often called tensorial quantities of the 0.,
1. and 2nd rank. In this book we treat many quantities that are actually
described by vectors or tensors as if they were scalars (except in sect. 5.1.1).
We have done so by making our problems so simple, so that they may be
treated one-dimensionally. In fact, it is better to call them “pseudoscalars”
because it is always implicit that their direction is known. Regardless, we
introduce some of the basic principals of vector calculations on the following

pages.
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e Common confusions. Quantities described by scalars, vectors and tensors
are often confused in the literature. Even in this book — while we try not
to confuse them — we often treat tensorial quantities as if they were scalars.
For a correct consideration of two and three-dimensional problems, the full
tensor quantities must be considered. Products and sums of tensors are not
described by the sum of the one-dimensional descriptions in several spatial
directions alone (e.g. Oertel 1996; Strang 1988) and it is therefore often not
trivial to understand the results of two- and three-dimensional models in
comparison to their one-dimensional equivalents.

Basics of Vector Algebra. Vectors describe direction and magnitude of
a parameter. Thus, in Cartesian coordinates, they are described by three
components:

u=uzi+uyj+uk . (B.25)

Uy, Uy and u, are called the vector components of the vector u and i, j and k
are called the unit vectors in the three orthogonal spatial directions. The unit
vectors are often omitted and vectors are usually just written as a list of three
scalar components. In the literature, these are variably named wu,, u,, u, or
U, U, W OF U1, U2, 3. In the following we use the first of these three notation
rules. Note that vectors are commonly represented with bold characters.

The sum of two vectors u and v is given by the sum of the vector compo-
nents:

w=u+v=(uy +v,)i+ (uy +v,)j+ (u; +v.)k . (B.26)
This sum is often written as:
W = (Uy + Vg, Uy + Uy, Uy +0;) . (B.27)

The magnitude (or length) of a vector is given by:

lu| = y/u3 +u +u? . (B.28)

Eqs B.25, B.26 and B.28 may be intuitively or graphically followed using the
Pythagoras theorem.

The scalar- or dot product of two vectors is a scalar quantity which is
defined as the sum of the products of two vector components:

U eV = Uy, + UyUy + Uzt . (B.29)

This is equivalent to the product of the magnitudes of the two vectors and
the cos of the angle ¢ between them:

uev =|ul|v|cosg . (B.30)

The scalar product has its name because the result is a scalar quantity. A nice
example for a scalar product is the work required to move a plate with the
force F (being a vector) for the distance 1 (having a length and a direction).
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The cross product or vector productis denoted with x or A and is important
when calculating rotations, for example from the angular velocity vector w
and a position vector r. The result is a vector. It is defined as follows:

W=UXV=UAV=(UyU, — UyUy, UsVp — Ugly, UgVy — UyV;) . (B.31)

The three values on the right hand side of eq. B.31 have the form of the
determinants of matrices.

e Grad, Div and Curl. The gradient of a scalar valued function (denoted with
“Grad” or “Del” or: V; s. sect. 3.1.1) is a vector describing the spatial change
of this function. It is defined as

(0 0 @
V:(%’a_gﬂ&) . (B.32)

Thus, the spatial change of temperature (as a function of z,y and 2: T =
T(z,y, 2)), may be described as:

ar oT 6T)

55" By’ 9% (B.33)

Grad T=VT = (
The vector “Grad T is normal to surfaces of constant temperature just like
the dip direction of a surface is always normal to the contour lines. “Grad” is
a handy tool for the description of the topography of any potential surface.

The divergence of a vector field is a scelar. In the earth sciences it often
describes the transfer rate of mass or energy. The divergence of a vector is
defined as follows:

(B.34)

Div v=Vev = (8% % 8vz>

oz + oy + 0z
Let us illustrate the divergence of a vector valued function dependent on the
spatial coordinates z,y and z with an example. Assume that v is the rate of
mass or energy transfer. The flow of mass is ¢¢ = pv and the flow of energy is:
q = Hv. There, p is density in kgm ™2 and H is the volumetric energy content
in Jm~2. Thus, flow has the units of kgm=2s~! or Wm™2, respectively. The
divergence of these flows is the sum of the change in flow in the three spatial
directions (eq. B.34). If the flow of energy or mass into a unity cube is just
as large as the flow out of it (general criterion for the conservation of mass),
then Div v =0 (s. also sect. 3.1.1, 3.3).

The Curl or Rot of a vector field is a vector describing the rotation of a
vector. A vector with Curl u=0 is called non rotating. The Curl is defined
by the relationship:

Curl v=Rot v=V xv
dv, v, v, Ov, O %
_(L_& 0, Qs &_ai) , (B.35)
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B.4 Using Fourier Series

In sections 3.1.1, 3.6.1 and 3.4.1 we have been introduced to two different
types of solutions of the diffusion equation (eq. 3.6). They are:

1. Solutions that may be found by integration. These include mainly problems
for which the descriptive equations may be so much simplified so that it
is straight forward to integrate them. Very often, these are steady state
problems in which it is possible to assume d7T'/d¢t=0.

2. Solutions containing an error function. These may be found for problems
that have their boundary condition at infinity. For example, when describ-
ing the thermal evolution of intrusions that are much smaller than the
thickness of the crust or their distance to the earths surface, it is possible
to make this assumption (e.g. p. 111 or p. 187).

A third type of solution is necessary for time dependent problems with spa-
tially fixed boundary conditions. We have encountered such examples when
describing the erosion of mature landscapes between incising drainages with
the diffusion equation, for example on p. 188. Such examples may be solved
using Fourier series. As the diffusion equation is such a classic example where
Fourier series find an important application, we will continue to use this equa-
tion as an example. The now well familiar equation that we want to use again
(eq. 3.6) is:

or _ o°’T

ot~ "oz
with T being a function of both space z and time #: T = T'(z,t). Let us

assume that this equation is subject to zero temperature boundary conditions
at £ = 0 and = = { which may be formulated as:

— T=0atz=0at timet > 0.
— T=0atz=1at time ¢ > 0.

(B.36)

With these boundary conditions, this problem corresponds to that discussed
on page 188. There, D and H correspond to what is here x and T and the
spatial extent of the problem was there measured between —! and [, while it is
here only from 0 to {. On page 188 we just gave the solution of this problem in
eq. 4.69 without detailing the methods of solution. In order to understand the
process of solution here in some more detail, consider the following: Eq. B.36
is satisfied if we find a term for which the first time derivative is directly
proportional to the second spatial derivative (s. also eq. 3.43 where we solved
a very similar problem). The proportionality constant is «.

Tt turns out that a general function that satisfies this condition and the
boundary conditions has the form:

T= ganeb"tsin (@) . (B.37)



414 B - Mathematical Tools

There, a,, and b,, are constants. This is not very obvious at first and we will
therefore now show why this solution satisfies eq. B.36 and how it may be
derived:

1. We can see that the solution above contains an exponential function of
time and a sine-function of z. This can be understood as follows: Differen-
tiating an exponential function will always return an exponential function.
Correspondingly, the second derivation of a sine-function is a negative sine
function. This negative will result in the exponential function also being
negative (as shown below), which gives a function that decays with time.
Thus, the first derivative of eq. B.37 with respect to ¢, will always be pro-
portional to its second derivative with respect to z. Thus, the condition of
the diffusion equation is met, if the correct constants are found.

2. Tt may be seen that the boundary conditions at = 0 and z = [ are always
satisfied as the sine-function is always zero at these two values of z. Thus,
temperature there is also always zero.

3. The fact that the solution contains an infinite sum is a generalization. If
a single term of the infinite sum satisfies eq. B.36, so will the infinite sum
of a series of terms.

Let us check if eq. B.37 actually satisfies eq. B.36. For clarity, we perform this
check only for a single term of the infinite sum. For our check we differentiate
this term with respect to time as well as space. The time derivative gives:

or . /nmz

i abe”*sin (T) . (B.38)
The spatial derivatives are:

I  nra 4, NI

e g B.

o ; ecos( ; ) (B.39)
as well as:

8T n’ra 4, . (AT

W = — l2 e’ s (T) (B40)

Comparing eq. B.38 and eq. B.40 shows that eq. B.36 is satisfied if the con-
stant b has the following value:
n?n?

b= K - (B.41)
If we insert b from eq. B.41 in eq. B.37, we have an equation that satisfies
all conditions of eq. B.36. The values for the constants a,, can be determined
from the initial conditions. At time ¢t = 0, e = 1 and thus from eq. B.37 it
is true that:

T(x,0) = f(z) = iansin (@) . (B.42)
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Eq. B.42 is an example of a Fourier series. The coefficients a,, can be deter-
mined from the integral:

an, = %/Ol f(z)sin (#) dz | (B.43)

the derivation of which does not follow directly from eq. B.42 and will not
be discussed here. However, it may be found in any book on Fourier series.
The coeflicients may be evaluated from this integral if the initial condition
T(z,0) = f(z) is known. However, this integral is only easily evaluated for
certain functions of f(z). For more general functions, solutions to this integral
may be obtained from either math tables or numerically.

\
X 2 terms
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Figure B.11. a The function f(z) = 2 (thick line) and the first five terms of an
infinite sum of sine functions from eq. B.42 at time ¢ = 0. b The sum of the first
two, three and nine terms of the function shown in a. It may be seen that the sum
of only few terms is sufficient to approximate the thick drawn function in a quite
good

e Solving eq. B.36 for non-zero boundary conditions. We can take this ap-
proach one step further to solve the diffusion equation eq. B.36 for non-zero
boundary conditions:

— T =T, at =0 at time ¢ > 0.
— T =T at £ =1 at time ¢t > 0.
and initial conditions T = f(z) at ¢ = 0. In this case, the temperature T
should evolve with time to the steady-state solution that satisfies the bound-

ary conditions. We will denote the steady-state solution as g(z). It can be
shown that g(z) = Ty + (T» — T1)a/l. The solution for T has the form:

T=g(z)+ i ane’tsin (@) . (B.44)
n=0
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where b, is given by equation eq. B.41 and a,, has the form

ay = %/Ol (f(@) - g(a)sin (%) da . (B.45)

B.5 Selected Numerical Tricks

B.5.1 Integrating Differential Equations

For many differential equations there are mathematical reference books con-
taining their solutions and it certainly goes beyond the scope of this book
to go into details of complicated integration methods. However, one simple
differential equation that describes an enormous number of natural processes
is a rate law where the rate of change of a parameter is linearly related to
this parameter. This differential equation has the form:

YW ytp (B.46)

dx
where a and b are constants and we have seen examples of it in eq. 4.15
or eq. 3.44. The equation states that the differential of the variable y is
proportional to y. This information is sufficient to be able to guess that
the solution will contain an exponential function of the form e*, because
exponential functions always remain exponential functions when they are
differentiated (s. Table C.2). Thus, we may guess that the solution will have
the form:

y = qe* +d (B.47)
and thus:

dy _ et

— = gce . (B.48)

dx

Inserting eq. B.47 and eq. B.48 in eq. B.46 shows that ¢ = ¢ and d = —b/a.

Tt follows that:
y = qel*®) — g : (B.49)

for a fixed scalar q.

B.5.2 Analytically Unsolvable Equations

Many equations cannot be solved analytically. However, they often may be
evaluated numerically by separating them into two parts. We illustrate this
using the transcendental eq. 6.3 as an example. This equation has the form

cx=ae " +d . (B.50)
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All other parameters that occur in eq. 6.3 are summarized in eq. B.50 into
the constants a, b, ¢ and d. Eq. B.50 cannot be solved for z. In order to solve
it numerically it is useful to split the right hand side and the left hand side
of the equation into two new equations. For the left side we write:

z=cx (B.51)
and for the right side we write:
1 z—d
z=ae " +d or: xz = n g ) (B.52)

These two functions are plotted in Fig. B.12. With the constants a = 1,
b=2,¢c=23and d =3, the steep linear curve is eq. B.51 and the curve with
a negative slope is eq. B.52. Their intersection is the solution of eq. B.50. This
point may be found by alternating solution of eq. B.51 and B.52. For this we
guess a value for z, insert this into eq. B.51 to calculate z and then insert
this value for z into eq. B.52 to obtain a new z. For the example illustrated
in Fig. B.24 an initial guess of = 0 leads to the series: z = 4, x = 1.333,
z = 3.069, z = 1.023, z = 3.129, = 1.043, z = 3.124 and so forth. The
result converges to a solution of approximately z = 1.04 and z =~ 3.12. The
exact solution may be approximated as closely as desired. While the method
is very simple, it may also lead to wrong results, for example if one of the
two functions has local minima or maxima.

B.5.3 The Least Squares Method

A common problem in science occurs when a curve should be fitted to a num-
ber of data points and the fit of the data to this curve should be quantified.
The most common method for this is to find the smallest sum of the squares
of the deviations of the data from the curve, in short, the least squares. In the
following section we explain how this is done with the example of a linear fit,

Figure B.12. Tllustration of the
numerical solution of eq. B.50.
The constants are a = 1, b = 2,

¢ =3 and d = 3. The straight line
represents eq. B.51, the curved
line is eq. B.52. The dashed line
shows the iterative approximation
of their intersection
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i.e. the curve that is fitted to the data is a straight line. However, for more
complicated choices of functions, the same rules apply. We assume that the
data consist of n values for y and just as many for 2. We label the data with
y; and x; from ¢ = 1 to n. The straight line we will to fit through the data
cloud has the form y = ax + b where a and b are unknown. If we insert our
data pair for z and y into this linear equation, we obtain:

yi=az;+b—e , (B.53)

where e is the deviation of a given data point from the fitted line. In order
to minimize the sum of the squares of this deviation, the sum of all ¢ must
be minimized. This means that:
n n

Z e? = Z(ami +b—1y)? (B.54)

i=1 i=1
must be minimized. In order to do so, eq. B.54 may be partially differentiated
with respect to a and b, set to zero and solved for a or b. Using the simple
differentiation rules from Table C.1 the derivative with respect to a may be
found to be:

(>3 (azi +b—y:)?)

20 = Z 2$i(am‘,~ +b— yz')Q . (B55)

=1

0=

The derivative with respect to b is:

4 (Zi=1(aagb+ b=v:)’) = Z 2(az; +b—y:)” . (B.56)

i=1

0=

Eqgs. B.55 and B.56 may be simplified and solved simultaneously for a and b.
We get:

NN (N no
(S o) = (i ) (F ) -

n (i 7)) — (i #)

_ (2?21 vi) (2?21 373) - (Z?:l ;) (Z?=1 T;y)

= 2

n (X, 23) — (i, i)

These are the coefficients of the best fitting straight line of eq. B.53. These
two equations (eq. B.57 and eq. B.58) are straight forward to implement on
a computer.

The errors of these values, as given by their standard deviations are simply
given by:

(B.58)

(9a)? = i€ . (B.59)
(n=2) (n(Ti, 2% - (T, 2:)°)

and:
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(ab)z — (2?21 x?) (Z?:l e?)

(n=2) (n (i 22) - (S o)) (B.60)

B.5.4 Basic Statistical Parameters

A fundamental task of geologists is the characterization of the location and
the variability of a data set, for example P-T data determined with ther-
mobarometry, geochronological data, numbers from a whole rock analysis,
digital data during image processing or dip and strike data measured in the
field. Because such measurements may be very precise, but they are never
perfectly accurate it is necessary to evaluate them statistically (s. p. 5). The
most important parameters for such an evaluation are summarized here.

e Normal distribution. The statistical interpretation of many geological data
is based on the assumption that the data have a normal (also called Gaussian)
distribution around the exact value. A distribution is said to be normal if
its probability density function is given by:

f(a:)z( ! )e(_%m;) . (B.61)

oV2mw

This function is characterized by two parameters called the mean, u, and the
standard deviation . Eq. B.61 is plotted in Fig. B.13 and may be interpreted
as the enveloping curve of a histogram. If the data are centered around a
mean of y = 0 and the standard deviation is ¢ = 1, then eq. B.61 simplifies
to: f(x) = e_($2/2)/\/ﬂ. The distribution is said to be a standard normal
distribution.

e Mean. The mean of a data set indicates the most probable location of the
exact value. For a data set S containing n data S; it is defined as:

p=x 2": s . (B.62)

the mean gives the most probable location of the exact value.
e Variance and standard deviation. The variance is a measure of the vari-
ability of the data around the mean. It is defined as

n

Var = %Z(Si —u)? . (B.63)

i=1

If the data set is incomplete (univariat data set), where only a finite number
of data points were collected, an unbiased estimate of the population variance
is given by:

1

Var' =
ar n_1

Z(Si SO (B.64)



420 B - Mathematical Tools

f(x) normal
distribution b
04 - y
positive
kurtosi / "x

03 negative |

kurtosis \4.'
]
|
|

0.2

0.1

Figure B.13. a Normal distribution of data points calculated with eq. B.61. The
curve for ¢ = 1 is a standard normal distribution. The area underneath all three
curves is 1. The lo confidence interval is shaded dark, the 20 confidence interval is
shaded light. These two areas contain 68.26% and 95.45% of the data, respectively. b
shows data distributions with high and low kurtosis as well as one with a significant
skewness (shaded), relative to a normal distribution

The standard deviation is defined as the square root of the variance. If
the data distribution is normal (Gaussian), then the standard deviation is
abbreviated with ¢ = v/Var. From eq. B.61 it may be calculated that 68.26%
of all data of a normal distribution will fall within +1¢ of the mean and
95.45% of the data within +20. The latter is therefore often loosely referred
to as a “95% confidence interval”.

o Skewness and kurtosis. Skewness is a measure of the lack of symmetry of
data in a histogram. Kurtosis is a measure of whether the data are peaked or
flat relative to a normal distribution (Fig. B.13b). Data with a high kurtosis
have a distinct peak near the mean, decline rather rapidly and have heavy
tails. Data with a low kurtosis have a flat top. A uniform distribution is an
extreme case of kurtosis. Skewness (for a univariate data set s. eq. B.64) is
defined as:

1 - 3

Kurtosis is defined as:

1 - 4
kurt = <U4(n_ ) ;(SZ ) ) 3. (B.66)
Many classical statistical tests depend on the assumption that the data have
a normal distribution. Significant skewness and kurtosis indicate that the
data are not normal. In fission track analysis the skewness and kurtosis of
track length distributions bear significant information on the cooling history
of the rocks.
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B.6 Problems

Problem B.1. Finite difference approzimations (p. 399):

Eq. 3.42 describes simultaneous diffusion and one-dimensional mass trans-
port. Write an explicit finite difference approximation for this equation. Use
a forward differencing scheme to approximate the transport term. Follow the
schemes introduced in eq. B.14 and eq. B.15

Problem B.2. Finite difference approzimations (p. 400):

Eq. 4.52 describes the elastic bending of oceanic lithosphere under applied
loads. There, w is the variable for which we want to solve the equation. Tt is
the vertical deflection of the bent plate as a function of distance z. Write an
explicit finite difference approximation for this equation. Hint: it is easiest to
just expand the scheme we have followed in eq. B.16

Problem B.3. Finite difference approzimations (p. 405):

Redraw Fig. B.6 carefully to convince yourself why backward finite differenc-
ing schemes will be unstable when describing the transport equation. For your
considerations look at the scheme of eq. B.24, and a corresponding backward
differencing scheme for u = Azx/A¢.

Problem B.4. Mean and standard deviation (p. 405):

Determine the mean and the standard deviation of the following two data
sets S1 = {10,10,10,10,6,6,6,6} and S2 = {1, 5,10, 20,15, 9,4, 0}, assuming
that both data sets are samples from a normal distribution.
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Table C.1. General rules of differential calculus using the example of the function
y = f(z). v and v are also functions of z. a is a constant. f'(z) or ' is the first
derivative of y with respect to z

f (=) f'(=)

y = au y' = a(du/dx)

y = .’L‘a yl — awa—l

Yy = am yl = amln(a)

y==x" y = (1+In(z))z”
y=u+v y' = (du/dz) + (dv/dz)

Y = uv y' = u(dv/dz) + v(du/dz)
y=2= y' = (vdu/dz — udv/dz)/v?

y=u" y =’ ((v/u)(du/dz) + Inu(dv/dz))
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Table C.2. Special derivatives of
the function y = f(z). f'(z) or
' is the first derivative of y with
respect to z. The table may be
read both ways: f(z) may also be
interpreted as the integral of the
function f'(z)

Table C.3. Conversions between
different logarithms. In this book
we use “In” for the natural loga-
rithm (o the base of ) and “log”
for the decimal logarithm (to the
base of 10)

C - Maths Refresher

f' (=)

— In(@)
— 1n(10)

-2

1
z1n(10)

[

xz

|
E &%
= 8
O

S - -
|
2
)

In(zy)

=3

=3
8

=3
o

=3

=3

—
=]

1

n

g(z)
1

z/y)
(%)

(e)
(1)
(0)

(10)log(e)

— In(z) + In(y)
— In(z) — In(y)
= yln(z)

=1

=0

= In(z)/In(10)
=1

= log(e)ln(z)
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Table C.4. Trigonometry of a triangle with the side lengths a, b and ¢. The angles
«, B and v are those opposite to the sides a, b and ¢, respectively

plane triangles with a right angle (v = 90°)

a’ +b=c? (Pythagoras)
sin(a) = a/fc
cos(a) =b/c
tan(a) = a/b
ctg(a) =b/a

area=(a x b)/2

general plane triangles
a/sin(a) = b/sin(B) = ¢/sin(vy)
a’> =" 4 ¢* — 2bc x cos(a)
area = (besin(a))/2 = [s(s — a)(s — b)(s — ¢)]*/?
...where: s=1/2(a+b+¢)

spherical triangles
sin(a)/sin{c) = sin(b)/sin(8) = sin(c)/sin(7y)
cos(a) = cos(b)cos(c) + sin(b)sin(c)cos(x)
angular separation o of 2 points on a sphere (lats. A1, X2 and longs. ¢1, ¢2)
cos(a) = sin(A1)sin(Az) + cos(A1)cos(A2)cos(pa — ¢1)
..for any «
sin(c/2) = (sin?((A2 — A1)/2) + cos(Aa)cos(Ar)sin® (g2 — ¢1)/2)) ™"
...for small
transformation between spherical and Cartesian coordinates (R is sphere radius)
x = Rcos(¢p)cos(A)
y = Rsin(¢)cos(A)
z = Rsin()\)
spatial distance a between two points x1, y1, z1 and 2, Y2, 22

a® = (z2—21)" + (g2 —y1)” + (22 — 21)°
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Table C.5. Volume, surface and other important data of some geometrical bodies

cube with side length a

surface =64

volume =a’

length of side diagonal =av?2

length of space diagonal =aV3
tetrahedron with side length a

surface =a’V3

volume = £a’V?2

sphere with radius r

surface = 4xP
volume = %7‘”’3
cone with radius r and height H
surface of the mantle =rrv/r’ + H?
volume = inr’H
cylinder with radius r and height H
surface of the mantle =2raH
volume =rrH

Table C.6. Definitions and con- ]
versions between trigonometric ) =1/sin(z)
functions sec(z) =1/cos(x)

tg(z) =sin(z)/cos(z)

ctg(z) = cos(z) [sin(z) = 1/tan(z)

sin? (x) 4 cos® (z)=1

csc(

Table C.7. Special values of trigonometric functions (Fig. C.1)

Angle a=0° a = 30° o = 45° a = 60° a = 90°
rad 0 /6 w/4 /3 /2
sin(c) 0 0.5 V22 V3/2 1

cos(a) 1 V3/2 V2/2 0.5 0

tg(a) 0 1/V3 1 V3 00
ctg(a) o0 V31 1/v3 0
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Figure C.1. The unity circle and
definitions of the trigonometric
functions. The four trigonometric
functions are labeled for an angle
of 45°

Table C.8. Solutions of quadratic equa-
tions of the form az? + bz +¢c =0 T1,2 = —%:I: i\/bl —4ae

Table C.9. Approximation of the error o
function using the constants a = 0.3480242; erf(z) =1 — (ay + by + cys) e ®
b = —0.0958798 and ¢ = 0.7478556 and
y=1/(14 0.47047zx)
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D . Symbols and Units

Table D.1. Symbols and units of the variables used in this book. Physical constants
of the earth are listed in Table D.3 and D.4. Variables abbreviated with Greek letters
are explained in Table D.2. Variables used in the text are often specified in more
detail by adding a subscript. The most commonly used subscripts in this book are
{ for lithosphere; ¢ for crust; m for mantle; ¢,  and » for numbering; x, y and z for
spatial directions and 0 for initial values

Symbol Variable Unit 1. Occurrence
Ar Argand number - Eq. 6.31
A area m? Eq. 3.2
A pre exponential constant MPa~"s™! Eq. 5.43
Aq ...of quartz creep MPa~" st Table 5.3
Ao ...of olivine creep MPa~"s~! Table 5.3
a acceleration ms ™2 Eq. 5.14
a general constant variable Eq. 3.19
b general constant variable Eq. 3.19
o heat capacity (of rocks) ~1000Jkg™'K™! Eq. 3.4
Cof ... of fluids Jkg 'K™? Eq. 3.50
C concentration - Eq. 7.3
C constant of integration variable Eq. 3.57
D angular momentum kgm?s! Sect. 2.2.4
D rigidity of elastic plates Nm Eq. 4.47
D displacement gradient tensor Eq. 4.3
D diffusivity of mass m2s™! Eq. 4.61
Dy pre exponential diffusivity m?s? Eq. 7.5
e elongation - Eq. 4.1
e error - Eq. B.53
E Young's Modul Pa Eq. 4.49
E energy J -
E, potential energy (per area) Jm™2 Eq. 5.49
Ey kinetic energy J Eq. 5.22
f frequency 5! Eq. 3.100
f ellipticity - Eq. 4.7
fe vertical strain of crust - Eq. 4.9
fi vertical strain of lithosphere - Eq. 4.9
F force N Sect. 2.2.4
Fy buoyancy force (per length) Nm™! Eq. 5.49
Fq tectonic driving force (per length) Nm™* Eq. 6.21
Fefr effective driving force (per length) Nm™! Eq. 6.21
F integrated strength Nm™? Eq. 5.48
G gravitation constant - Eq. 1.1
G geometrical factor for T, - Eq. 7.10
G Gibb's energy J Eq. 7.6
g geothermal gradient °Cm™! Eq. 3.48
g acceleration (gravitational) ms2 Eq. 4.22
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Table C.1. ... continuation
Symbol Variable Unit 1. Occurrence
h elastic thickness m Eq. 4.49
h dimensionless height - Eq. 1.2
hr exponential drop off m Eq. 3.67
hs erodable thickness m Eq. 4.62
H heat content (volumetric) Jm™3 Fig. 3.12; Eq. 3.3
H elevation, height m Eq. 1.2
/ momentum kgms™! Sect. 2.2.4
/ tensor invariant - Eq. 5.3
J moment of inertia kg m? Sect. 2.2.4
k thermal conductivity JsTim~tKk! Eq. 3.1
K bulk modulus Pa Sect. 5.1.2
K equilibrium coefficient - Eq. 7.6
/ thickness, length m Eq. 3.17
L latent heat of fusion Jkg™! Eq. 3.31
L sediment thickness m Eq. 6.2
Lo ...of decompacted layer m Eq. 6.2
L ...of decompacted pile m Eq. 6.2
m mass kg Eq. 1.1
M bending moment N Eq. 4.47
N number, counter - Eq. 3.91
n power law-exponent - Eq. 5.44
n general counter - Eq. 3.15
Pe Peclet number - Eq. 3.51
P pressure Pa Eq. 5.5
Q activation energy (diffusion) Jmol ™t Eq. 7.5
Q activation energy (creep) Jmol ™! Eq. 5.43
Qq ...of quartz creep Jmol ™! Table 5.3
Qo ... of olivine creep Jmol™! Table 5.3
Qb ...of Dorn law creep Jmol™! Eq. 5.47
q load on a plate Pa Eq. 4.48
q heat flow Wm—2 Eq. 3.1
s ...at the surface Wm—2 Eq. 3.61
Gm ...at the Moho W m 2 Eq. 3.61
Grad ...caused by radioactivity Wm™?2 Eq. 3.61; Eq. 6.13
gr water flux ms? Eq. 4.81
g sediment flux in rivers ms~! Eq. 4.81
r radius m Eq. 1.1, 3.11
r distance in polar coordinates m Eq. 1.1, 3.11
R radius of earth m Eq. 2.1
Ra ...at the equator 6378.139 km Eq. 4.7
Rp ...at the pole 6356.75 km Eq. 4.7
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Table C.1. continuation

Symbol Variable Unit 1. Occurrence

5 stretch - Eq. 4.1

s cooling rate °cs! Eq. 3.89

S rate of heat production Js7im™3 Eq. 3.23
Schem . ..chemical Js7im™3 Eq. 3.22
Stmec ... mechanical Js7im™3 Eq. 3.22
Sad ...radioactive Jsim™3 Eq. 3.22
So ...radioactive at surface Js7im™3 Eq. 3.67

S entropy JK! Eq. 3.30

St sea level m Eq. 6.5

t time s Eq. 3.4

t, degradation coefficient m? Eq. 4.72

teq time scale of diffusion s Eq. 3.17

te erosional time constant s Eq. 4.16

T temperature °C K Eq. 3.1
Ta ...at the start °C; K Eq. 7.9
Ty .. of the host rock °C; K Eq. 3.84
Tc ...closure temperature °C; K Eq. 7.10
Te .. at the end °C; K Eq. 7.9
T ...intrusion temperature °C; K Eq. 3.84
Ti ...at base of lithosphere ~ 1200-1300°C Egq. 3.59
Ti ... liquidus °C; K Eq. 3.38
Ts ...solidus °C; K Eq. 3.38
Ts ...at the surface °C; K Eq. 3.80
To ..initial temperature °C; K Eq. 3.100

u veloaty (often: in x direction) ms™! Eq. 3.40

U circumference m Sect. 4.2.1

v velocity (often: in ¥ direction) ms™* Eq. 4.10
v ... of fluids ms™? Eq. 3.50
Vex exhumation rate ms! Eq. 4.10
Ver erosion rate ms~! Eq. 4.13
Vro uplift rate of rocks ms™? Eq. 4.10
Vup uplift rate of the surface ms~? Eq. 4.10

v volume m?3 Eq. 3.2

w angular velocity st Sect. 2.2.4

w water depth m Eq. 4.36

w thickness of crustal root m Eq. 5.55

w plate deflection m Eq. 4.47

x spatial coordinate (horizontal) m Sect. 1.2

X mole fraction - Eq. 7.7

y spatial coordinate (horizontal) m Sect. 1.2

z spatial coordinate (vertical) m Sect. 1.2
FA thickness of crust m Sect. 2.4.1; Eq. 3.63
Z initial depth m Eq. 3.49
ZK isostatic compensation depth  m Eq. 4.21
Z thickness of lithosphere m Sect. 2.4.1
Zad thickness of radioactive crust = 7-10 km Eq. 3.61
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Table D.2. Greek symbols

433

Symbol Variable Unit 1. Occurrence
@ coefficient of thermal expansion ~3-107°°C™!  Eq.3.29
o general angle radian Eq. 3.99
o flexural parameter m Eq. 453
Ié) isothermal compressibility Pa~! Eq. 3.28; 5.28
Ié) stretching factor (mantle lithosph.) - Eq. 6.10
) stretching factor (crust) - Eq. 6.10
é density ratio - Eq. 4.31
¥ shear strain - Eq. 4.2
n viscosity Pas Eq. 5.42
€ strain - Eq. 5.24
é strain rate st Eq. 1.5
K diffusivity m?s™! Eq. 3.6
A longitude degree Eq. 2.2; Fig. 2.8
A wave length m Eq. 3.101
A pore fluid pressure ratio - Eq. 5.33
Ac ...in the crust - Fig. 5.17
Al ...in the lithosphere - Fig. 5.17
m coefficient of internal friction - Eq. 5.29
v Poisson ratio - Eq. 4.49
¢ latitude degree Fig. 2.8
¢ latitude degree Fig. 2.8
¢ angular shear strain degree Eq. 4.2
ba ...at the surface - Eq. 6.1
¢ friction angle radian Eq. 5.32
P density kg m~3 Eq. 3.4
Pe ...of the crust kgm™3 Eq. 4.24
Pg ... of sediment grains kgm™3 Fig. 6.5; Eq. 6.7
00 ..of the mantle at 0°C ~ 3300 kgm™> Eq. 4.28
oL ...of a sedimentary pile kgm™3 Eq. 6.5
Pm ..of the mantle at 7, 3200 kgm™>  Eq. 4.24
Pw ...of water 2~ 1000 kgm™®  Eq. 4.36
o stress (tensor) Pa Eq. 4.3
o1, 02, 03 principal stress Pa Eq. 5.2
o4 differential stress Pa Eq. 3.25
O shear stress Pa Eq. 5.29
On normal stress Pa Eq. 5.1
oD ... critical, Dorn law creep Pa Eq. 5.47
T deviatoric stress (tensor) Pa Eq. 5.7
0 dimensionless temperature - Eq. 1.3; 3.87
0 angle of a failure surface to o1 radian Fig. 5.6
é expansion ratio - Eq. 4.31
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Table D.3. Important data of the earth

D . Symbols and Units

equatorial radius
polar radius
diameter of core

volume

mass

surface area

area of the continents

area of continental lithosphere

area of oceanic lithosphere

mean elevation of the continents
mean depth of the oceans

total length of mid oceanic ridges
mean continental surface heat flow

mean oceanic surface heat flow

6378.139 km
6356.750 km
3468 km

1.083.10% m?
5.973-10* kg

5.10- 10" m?
1.48 10" m?
2.0-10" m?
3.1-10" m?
825 m

3770 m

2 60 000 km

2~ 0.065 W m~2
~ 0.101 Wm™2

Table D.4. Important physical constants

Constant Symbol Value

8.3144 Jmol tK™!
6.6732 107" Nm? kg™
2.99792-10® ms™!

gas constant R
gravitational constant G

speed of light c
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Table D.5. SI-units

Physical Symbol in Text Unit Abbreviation
Parameter

distance X, ¥, z meter m

time t second s

mass m kilogram kg

temperature T Kelvin K

Table D.6. Important derived units

Physical Symbol in Text Unit Abbreviation SI-Unit
Parameter

force F Newton N kgms™?2
pressure P Pascal Pa=Nm™2 kgm~!s™2
energy E Joule J=Nm kg m? s>
power - Watt W=Js! kgm?s™3

435



436 D . Symbols and Units

Table D.7. Conversions between derived units

Physical Parameter Conversion
force = mass x acceleration
= pressure X distance =Pam
pressure =force per area=Nm~2
=energy per volume=Jm™3
energy =force x distance=Nm
=mass X velocity’ = kgm? s>
power =work per time=Js"'=W
velocity =distance per time=m ~*

acceleration = velocity change per time=ms 2
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Table D.8. Important commonly used variables and their conversion into SI-units.
Numbers are given to a maximum of 4 digits

Parameter Unit Conversion
length 1 angstrom =10""m

1 micrometer (pm) =10"%m

1 millimeter (mm) =10"%m

1 kilometer (km) =10 m

1 foot (ft) =0.3048 m

1 inch (in) =2.54 cm

1 mile (mi) =1.6093 km

1 yard (yd) =0.9144 m

1 nautical mile (nmi)  =1.852 km

1° latitude =60 nmi=111.12 km
area 1 hectar (ha) =10" m?

1 acre =4046.9 m*
volume 1 liter (1) =10"%m?

1 gallon (US) =3.7854 |

1 gallon (UK) =4.5461 |

1 hectoliter (hl) =100 |

1 barrel (US) =158.98 |
time 1 day =8.64-10* s

1 million years (my) =3.1557-10" s
temperature  1°C =1K (0°C=273.16 K)
force 1 dyne =1lgems™2=10"°N
pressure 1 bar =10° Pa

1 atmosphere (atm) =1.0133-10° Pa=760 mm Hg

1 mm Hg (torr) =1.3332-10% Pa

1lbin~? =6.8947 - 10° Pa
energy 1 cal =4.184 )

1erg =1dynecm=10""J

1 heat flow unit (hfu) =107% calem™2s7! =0.04184 Wm™?

1 horse power (PS) =746 W

viscosity 1 poise =0.1 Pas




E. Answers to Problems

Problem 2.1. According to Fig. 2.5, both the Aleute arc and the Java
Trench appear to have small circle radii corresponding to roughly 25° latitude
which is &~ 2700 km. Thus, the ping pong ball model of eq. 2.1 predicts
subduction angles of the order of 25°. The much steeper observed dip may be
due to additional forces exerted onto the subducted slab by asthenospheric
convection.

Problem 2.2. The experiment can be performed by starting at 1+(27n)~! km
from the south pole, where n is an integer. Thus, there is not only a single
point, but an infinite number of rings around the south pole from where this
experiment can be started. 1 km south of each of these rings the circumference
of the earth along a line going due east or west is 1/n km.

Problem 2.3. (5/360) - 24 hours = 20 minutes. Knowl edge of the latitude is
not necessary.

Problem 2.4. The difference in geographic longitude is 4° 42’ =282’. The
improved solution of Problem 2.3 is then 282/(360 - 60) - 24 hours = 18.8 min-
utes.

Figure E.1. Sketch of the
solution of Problem 2.5
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Problem 2.5. a) The difference in longitude between Munich and Vienna
is: A¢p = 5°. Therefore: we = cos)\gA—G%2R7r:371 961.3 m. The small circle
radius 7 for the 48th degree of latitude is r = RcosA = 4262.362 km. The
great circle angular separation (using the formula in Table C.4) is: 3.34507°.
Accordingly, the great circle distance is 371 896 m. This is about 65 m shorter
than the distance along the small circle. The direct (Euclidian) distance along
a hypothetical tunnel is: z =371843 m. It is only about 53 m shorter than
the great circle distance.

Problem 2.6. At the given angular velocity, a full rotation takes 2 /(107 15s71)
~ 200 my. The equatorial circumference of the earth is 2 Rm &~ 40000 km.
Thus, the plate velocity at the equator is roughly 20 ¢cm per year. At 48°
north the small circle circumference is only 26781 km (eq. 2.2). Thus, the
relative plate velocity at this latitude is only 13 cm per year.

Problem 2.7. The torque at the equator is: M = R - 102 Nm. North and
south of the equator we can write: A = r- 10'2 Nm. Using r = Rcos) (e. 2.2)
we get a latitude of: A = 51° either north or south.

Problem 2.8. z = C1¢ and y = CstgA. The constants 'y and C5 can have
any value for example 1. They are not really necessary, but are introduced
here in order to show that the Mercator projection can be scaled to rectangles
of any aspect ratio.

Problem 2.9. In thermally stabilized continental lithosphere, the base of
the crust is at about z.= 30 - 40 km depth, the base of the lithosphere is at
about z = 100 - 200 km depth. The temperature at the Moho is about 500°C
and at the base of the lithosphere it is about 7 &~ 1200 — 1300 °C. Thus, at
least 100 - 200 °C of the Moho-temperature may be attributed to radioactive
heat. The mean density of crustal rocks is of the order of p.= 2800kg m~3
and that of mantle rocks in the asthenosphere about pj= 3200kg m~>. The
thermal expansion coefficient of rocks is about a = 3 x 1072°C~! so that
the density changes by several percent within both the crust and the mantle
part of the lithosphere.

Problem 2.10. a) The relative velocities may be read from Table 2.3. b) A
new plate boundaries is currently forming along the East African Rift system.
However, how the world will look like in future is very much a trial and error
game. Have a look at http://www.scotese.com. ¢) Ancient plate boundaries
exist just about anywhere where there is ancient mountain belts. Fig. 2.3
gives an overview over the last 170 my.

Problem 2.11. There is a total of 10 possible triple junctions: RRR, FFF,
TTT, RRT, RRF, FFT, FFR, TTF, TTR, RTF. RRR-triple junctions are
always stable, FFF-triple junctions are always unstable. Most other triple
junctions may occur in stable or in unstable configuration. Whether they
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are unstable or not does not depend on the qualitative nature of the plate
motion, but rather on the angles and relative velocities.

Problem 3.1. The amount of heat in one gram of mass is 1072 kg x
300000% km?s~2 =9-10** J, which is enough to light a 60 W globe for
9-10'3 J /60 W ~ 48000 years.

Problem 3.2. See Table D.8.

Problem 3.3. It may be seen intuitively that the ore body will be nearly
isothermal if it has a high conductivity. As a consequence, the isotherms
above and below the ore body have a closer spacing (Fig. E.2).

Problem 3.4. At the contact between two rocks of different conductivity
the heat flow must be the same on both sides of the contact. Thus, for the
given linear thermal gradient the temperatures at different depths will be:
T5km =100 OC; T7km =120°C and TlOkm =180°C.

Problem 3.5. The thermal time constant of the pile is roughly 40 my. This
is significantly longer than the deformation in a), but significantly shorter
than that in b). (¢=107'2? s~! implies that the pile doubles in thickness in a
mere 30000 years). The implication of this result is that the deformation in
b) occurs largely in thermal equilibrium. In contrast, in a) the crust will be
out of thermal equilibrium at the end of deformation. The deformation will
be followed by thermal equilibration. Metamorphic parageneses are expected
t0 grow across the fabric in a) but grow syn-deformational in b).

Problem 3.6. Using eq. 3.17 it is easy to see that the thermal time constant
(giving an estimate of the duration of heat conduction) of a 10 km large
body is at least one order of magnitude longer than the questioned period
of observation of 10° years. Heat conduction may therefore be neglected and
the temperature is given (from eq. 3.21) by T = ¢ X Sraa/pcp. Using the given
values for density and heat capacity this implies a temperature rise of about
T =~ 100°C.

Problem 3.7. a) The product of deviatoric stress and strain rate gives
minimum and maximum values for the heat production rate of 3-10~% and
31078 Wm™3, respectively (eq. 3.25). These minimum and maximum values

Figure E.2. Answer to Problem 3.3
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are significantly higher and smaller than typical values for radiogenic heat
production rates, respectively. b) Multiplying these values with a deformation
period of 1 my, the total shear heat production is 10° Jm~2 for the largest
stresses and strain rates and 106 Jm~2 for the small stresses and strain rates.
Thus, according to eq. 3.26, the maximum temperature that can be reached
is given by the ratio of volumetric heat content and pec,. This gives 370°C
and 0.37 °C for the maximum and minimum values, respectively. Whether or
not these temperatures can be reached depends on the efficiency of heat con-
duction away from the site of heat production and on the change in strength
of the shear zone during deformation. The former depends on the thickness
of the heat producing shear zone.

Problem 3.8. None! All heat of the fire is reaction heat (chemically produced
heat). Tt is released by the exothermic chemical reaction: wood — COsz +
water.

Problem 3.9. The duration for which the rock will remain at constant tem-
perature is given by the ratio of total amount of released fusion heat to rate
of heat loss by conduction. For example, if  J are produced by the crystal-
lization and the conductive cooling causes a heat loss of « Js~!, then it the
cooling history will be halted for exactly 1 second. The volumetric amount
of heat that is released at the solidus is 0.3 x Lp. The rate of heat loss due
to cooling is dT'/dtpe, (s. eq. 3.3). Thus, the duration of thermal buffering is
=L/cp(dt/dT) =~ 1 my. The fact that the cooling history is halted for 1 my
may imply that metamorphic parageneses re-equilibrate partially or fully at
this temperature.

Problem 3.10. Using eq. 3.51 and a standard value for the thermal diffusiv-
ity of & = 10~%m?s ™!, the three advection (erosion) rates give Peclet numbers
of Pe = 0.1, Pe = 1 and Pe = b, respectively. Thus, the slow erosion rate of
a) warrant description of the regional thermal evolution with consideration
of conduction only (e.g. eq. 3.6), while the intermediate rates of b) require
consideration of both conductive and advective processes (e.g. eq. 3.42) and
the rapid rates of ¢) would allow to consider the thermal evolution as a solely
advective process (e.g. eq. 3.40).

Problem 3.11. The answer is discussed in egs. 6.14 and 6.15.

Problem 3.12. a) Eq. 3.80 shows that the error function must have a value
of 0.8333 so that the temperature is T=1000 °C. For this, Fig. 3.6 shows that
the argument of the error function must be ~ 0.98 (thus: 0.98 = z/v/4xt).
From this we get: z = 98 km. b) 0 km /0°C; 10 km / 371 °C; 20 km / 689 °C;
30 ki /921°C; 40 km /1 067°C; 50 km /1144°C; 75 km /1196°C; 100 km
/1199°C.

Problem 3.13. a) Using t., = [*/x the result is ~ 80 years. b) for symmetry
reasons this temperature is half way between the intrusion and the host rock
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Figure E.3. Solution of Prob- &
lem 3.14 ° /f\nfflilcio
ntrusion
£1000 -
e
E = Granith Heat content of terrain
W iefliak During metamorphism
a Intrusion
£ 800 -
@ Mean heat input
= n of intrusives
600 7 /
400
200 - Heat content
prior to metamarphism
0 T T T T T T T

0 20 40 60 80 100
Areal proportion of terrain (%)

temperature if both have the same heat capacity: 500°C, directly at the
contact. ¢) 50 m- (T; — Tp)pc, = 5.4 - 1010 J /m? dike surface. d) 40 years is
roughly half of the total thermal history. The cooling of the dike is most rapid
at the start. Thus, the dike will have cooled a bit more than half by then.
The area underneath the T-z-profile must remain constant as no heat may
be lost. This information may be used to estimate the width of the contact
metamorphic halo.

Problem 3.14. The depth of the rocks multiplied with the geothermal gra-
dient gives the terrain temperature prior to metamorphism: 300°C. If 10%
of the terrain were at 1100°C and 30 % of the terrain area at 700°C, and the
remainder at 300°C, then the mean temperature is Tpoo; = 0.1 x 11004+ 0.3 x
7004+0.6 x 300 = 500°C. This is 200 °C above the host rock temperature. Thus,
the heat of the intrusives is insufficient to explain metamorphism if latent heat
of crystallization is neglected. The additional temperature contribution of the
crystallization heat from 40% of the terrain is T,y5 = 0.4 x L/c, = 128°C.
Thus, the potential metamorphic temperature is Tcool+Tcryst: 628 °C, as the
mean potential temperature for the whole terrain. This is within 10 %-error
of the observed metamorphic temperature. Contact metamorphism is there-
fore a plausible model explanation for the observations. Fig. E.3 illustrates
the problem answer graphically.

Problem 3.15. The depths and temperatures of the starting condition are:
z[1]=0, T[1]=0; 2[2]=10 km, T[2]=125°C; 2[3]=20 km, T'[3]=250°C;
2[4] =30 km, T[4]=375°C; 2[5]=40 km, T[5]=500°C; 2[6] =50 km, T'[6]
=0°C; 2[7]=60 km, T[7]=125°C; 2[8] =70 km, T[8] = 250°C; 2[9] = 80 km,
T9]=375°C; 2[10]=90 km, T[10]=500°C. The time stepping must be
smaller than 0.7937 my. In order to perform the calculations with a round
number it is useful to use something like At = 0.5 my =1.575-10"° s, i.e.
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R=0.1575. After 1At the temperatures are: T[5] =402°C and T[6]=98°C.
After 2At the temperatures are: T[4]=360°C, T[5]=350°C, T[6]=150°C
and T[7]=140°C. All other temperatures remain up to this time constant
because there is no spatial curvature of the temperature profile around them
(eq. 3.6).

Problem 4.1. Using eq. 4.8 we get a distance of the summit of Mt Everest of
6 382.207 km from the center of the earth and 6 384.32 km for Chimborazzo.
Thus, Chimborazzo is actually about 2 100 m higher than Everest, if measured
from the enter of the earth.

Problem 4.2. a) There is no rock uplift at all. b) The rock is not exhumed
at all. Tt is buried by 1 km. This example is actually what occurs to rocks
on the Tibetan Plateau at the moment where extreme surface uplift and
sedimentation occur at the same time.

Problem 4.3. a) Morphological equilibrium will be reached after a long time.
Thus, eq. 4.18 may be used for t — oco: tg = Hb/(¢(H + a)) = 1.834 my~'.
b) If z =0 and ¢ =40 my are inserted into eq. 4.19 and this is solved for z;
we get: z; =10202 m. ¢) This may be evaluated by finding the derivative of
eq. 4.19 with respect to ¢, setting the result to 0 and solving for ¢. The result
is 11.8 my.

Problem 4.4. Eq. 4.23 is solved in eq. 4.26. Adapting the variables by insert-
ing z = 1 for a randomly chosen thickness of the iceberg of 1 and H = 0.1,
because 10% of this thickness are above water and using the density of water

for p, we get for the density of ice: pjce = 900 kg m~3.

Problem 4.5. The solution is shown graphically in Fig. E.4.

Problem 4.6. a) AH = 10 km (py;, — pu)/pm = 937 m. Density and thickness
of the crust do not change and therefore need not be considered. b) AH =
391 m. c¢) the thinning of the crust in b) causes a subsidence of {fe — 1)(pm —
pc)/pmze = 2343 m. This is partially balanced by an uplift of 391 m by
the basaltic underplate. Relative to a) there is a total elevation difference of
937 + (2343 — 391) = 2889 m.

Problem 4.7. a) The answer is: 2.5 cmy~!. From this and the given data the
water depths are: 469, 878, 1049, 1483, 1756, 1906, 2392, 2633, 2795, 2930,
3318, 3709, 3855 and 3995 m for the given distances from the mid oceanic
ridge. b) These model values correspond well with the observed values up to
an age of roughly 100 my. From there on, sedimentary loading of the plate, its
increasing strength and changes of the lower boundary condition by mantle
convection cause the divergence between model and observation.

Problem 4.8. a) The units of D are Nm. The fourth derivative has the units
of m™* and q has the units of stress or force per area. The load is the vertical
stress. F' has therefore the units of Nm~!, or Newton per meter length of
orogen. b) Dp—1gxm ~ 8.8 x 102! Nm and Dj—7oxm ~ 3 x 1024 Nm.
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H (km)

t (my)

Figure E.4. Solution of Problem 4.5. The mean vertical denudation z within 1 my
is given by the relationship Iz = (vt)?. This relationship was derived geometrically
from Fig. 4.49. Thermal expansion or the influence of the mantle lithosphere need
not be considered as they remain constant. The mean subsidence at any time is
given by: £(pm — pc)/pm. Thus, the elevation of the ridges is after 0.25 my: 132 m,
after 0.5 my: 527 m, after 0.75 my: 1187 m and after 1 my: 2110 m. Thereafter,
the ridges subside with a rate of 781 mmy~!. The subsidence of the valley floors
may be easily derived from the product of incision rate and time subtracted from
the results for the ridge elevations

Problem 4.9. a) The given hints are required to determine the constants of
integration. For the first and second integration they the constants must be:
C1 = —qL/D and: Cy = qL?/(2D), respectively. For the third and fourth
integration the constants must be: Cs = 0 and Cy = 0, respectively. Thus:
w = q2?/D (2®/24 — La/6 + L?/4). b) At « = L the deflection is: w =
3qL*/(24D). Using the parameters given in the problem we get: D = 0.0008
Nm.

Problem 4.10. a) For the lowest point where there is a density difference
between the two columns we can write: column A: 0,, = p.g{H + 2z, + w);
column B: ¢,, = pegzc + pmgw. The buoyancy is given by the difference
between these two values. This is the origin of eq. 4.50. b) If the load is ¢,
is not considered, then we can write for the downward force per unit area:
(pe— pw)wg, and for the upward directed force: (py, — pe)wg. The net force per
unit area is therefore: wg(pw — pm). The total load is: ¢ = ga + wg(pw — pm)-

Problem 4.11. o ~ 65 km.

Problem 4.12. At the highest point of the elastic bulge the slope of
the plate is dw/dz=0. The slope of the plate as a function of distance
is given by the first spatial derivative of eq. 4.54. If this is set to zero:
0 = —2wo/ae%/*sin(z/a), we get: x = ma. This is the highest point of
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the fore bulge. In 250 km distance from this point we get from eq. 4.53:
D =2.2-10% Nm, and eq. 4.49: h ~ 33 km. The value of wy does not change
the distance of the forebulge from the load and its knowledge is therefore not
required.

Problem 4.13. The problem is easiest solved by plotting the data and graph-
ing eq. 4.67 iteratively for different times until a best fit for the data is found.
For this a half height of the scarp a & Tm should be used, which is roughly
half the elevation difference between base and top. It is also useful to subtract
roughly 150m from all = values so that the inflection point of the scarp is at
« = 0. Then, a best fit gives an age of about 30000 years.

Problem 4.14. The two boulders have been exposed to weathering for the
same time. This result is easiest arrived at by measuring [ (for example in
millimeters) off the photograph for the two different boulders and comparing
the topographic shapes of the boulders with plots of eq. 4.69. Neither the
magnitude of D, not the actual length of I need be known as we perform only
a comparison between the two profiles.

Problem 5.1. The stretch is 2, the elongation is 1. The vertical strain is
100%.

Problem 5.2. Force =mass X acceleration. As weight is a force and the ac-
celeration on the surface of the earth is g=9.81 m/s*, a mass of 1 kg hat has
the weight of: 1 kg-9.81 m/s? =9.81 N.

Problem 5.3. Energy is given by the product of force times distance. Thus,
the collision process releases 10"*N x10° m = 10'® J. The most important
forms of energy into which this mechanical energy is transformed are frictional
heat and potential energy of the mountain belt that formed in response to
the collision.

Problem 5.4. As there are no shear stresses and the problem is two di-
mensional, we can assume that o,, = o1 and o, = o2 (there is no o3).
For the continent, that is pulled apart by the subducting plate we can write:
Ozz =02 = —A and 0,, = 01 = 0. From this, the mean stress (pressure) is:
om = —A/2. According to eq. 5.10 the vertical and horizontal components of
deviatoric stress are: +A4/2 and —A/2, respectively. For the continent that
collapses under the weight of a mountain range we can write: o, = 03 = 0
and 0,, = 01 = A. From this, the mean stress is given by: ¢,, = A/2. The
vertical and horizontal components of deviatoric stress are also: +4/2 and
—A/2. Thus, we can conclude that state of deviatoric stress is the same in
both continents but the pressure is different.

Problem 5.5. As no shear stresses apply to the surfaces of the rock, all
components of eq. 5.15 that describe shear stresses are zero. Eq. 5.15 sim-
plifies to: do,,/dz = pg. The corresponding equations for the other two
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spatial directions in which there is no gravitational acceleration simplify to:
dogz/dz = 0 and doy,/dy = 0. Integration of these three equation gives:
Ope = C1, oyy = C2 and 0., = pgz + C3. C1, (2 and C5 are the con-
stants of integration. They are determined by the boundary conditions of
the problem. The normal stresses can be assumed to be zero on each free
surface (Fig. 5.34): 0., = 0 at 2 = —H. From this we get: C5 = pgH and
0., = pg(H+z). Furthermore, because there is no stresses on the sides it must
be true that: Co = C1 = 0; 045 = 0yy = 0. The mean principal stress (pres-
sure P) as a function of depth is: P = (044 + 0yy + 0..)/3 = pg(H + 2)/3.
The principal components of the deviatoric stress tensor are, according to
eq. 5.7: 05y — P =0yy — P =—pg(H+2)/3 and 0, — P = 2pg(H + 2)/3.

Problem 5.6. Similar to problem 5.5, integration of the stress balance equa-
tions gives: oz = C1; 0yy = Co and 0, = pgz + C3. As fluids support only
negligible differential stresses it is true that: oz = oyy = 0. With the same
boundary condition for the vertical component of stress as in Problem 5.5
we get: Oz = Oyy = 04, = pg(z + H) = P. Thus, at any given depth, the
pressure in the fluid is three times as high as it is in the rock of Problem 5.5.
All components of the deviatoric stress tensor are zero.

Problem 5.7. If the side wall is fixed, then the stain rate is: € = 0 and
0., = Ozz- The mean force per area is given by the vertically integrated
vertical stresses pg(z + H) using the limits of integration —H and 0 from
Fy, = pgH?/2. The mean horizontal stress &, is therefore 7,, = Fy/H =
pgH /2.

Problem 5.8. In the fluid: 0,y = oyy = 0., = P = ppg2. In the rock
the horizontal stresses for 2 < 0 are: g5, = oyy = 0, and for z > 0 they
are: 0gy = Oyy = Pmgz. The vertical stresses in the whole rock are: o,, =
peg(H + z). The pressure in the rock is given by the mean of the principal
stresses. For z < 0 it is: P = (p.g(H + 2))/3. For z > 0 it is: P = (2pp,92 +
pcg(H + 2))/3. All principal components of the deviatoric stress tensor in
the fluid are 0. In the rock, for z < 0 they are: 7,;, = 7y = 04 — P =
oyy— P =—(peg(H+2))/3and: 7., = 0., — P = (2p.g(H +2))/3. For 2 > 0
they are: 7., = Tyy = Ogo — P = 0yy — P = (pmgz — peg(z + H))/3 and
Tay =0, — P = —(2ngz - 2pcg(z + H))/3

Problem 5.9. From eq. 5.10 we get: ¢ = ¢/E = 5- 10’Pa/5 - 10!°Pa =
0.001=0.1%.

Problem 5.10. The vertical stress at any given depth is: o,, = pgz. The
strain of a unity cube at depth z in the lithosphere is therefore: € = pgz/E.
From this, the total strain integrated over the entire lithosphere is given by:

Oz’ pgz/Edz = pgz?/2E. Using the given numerical values for the parameters
this is: 2500 m. Thus, the elastic thickness change of the total lithosphere
due to its own weight is roughly 2.5 % of its total thickness.
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Problem 5.11. The solution is graphically shown in Fig. E.5.

d

a,b

Figure E.5. Solution of Problem 5.11

Problem 5.12. For the quartz data the stresses are o4 = 117MPa; o4 =
24MPa and oq = 11MPa, for n = 2, n = 3 and n = 4, respectively. For
olivine the stresses are g = 1.4 x 108 MPajoq = 2.7 X 105 MPa and g4 =
1.2 x 10* MPa, for n = 2, n = 3 and n = 3, respectively.

Problem 5.13. When taking the logarithm of eq. 5.46 it becomes linear. It
then has the form: log(é=nlog(cq) + log(A4)-Q/RT. Thus, if the experimental
results are plotted in a diagram of log(é) against log{oy) the slope of the
data gives the power law exponent n and the intercept is (log(A)-Q/RT).
Replotting the data from a constant stress on a diagram of log(é against 1/T
gives a line with the slope of —()/R from which the activation energy may
be determined.

Problem 5.14. Tt is because in oceanic lithosphere olivine dominates the
lithospheric rheology at much shallower levels (and therefore colder temper-
atures) than in continental lithosphere.

Problem 5.15. According to eq. 5.50 it is: B, = fO_H o,.dz = fO_H pg(H +
z)dz = pgH? /2.

Problem 5.16. The solution is Fy, &~ 10.5 x10'2N m~!. The result is the
same as that from Problem 5.19 as can also be seen from Fig. E.6

Problem 5.17. Eq. 5.57 gives a buoyancy force of Fj, ~ 6.6 x10'> N m~!.

Problem 5.18. Inserting the given values into eq. 5.59 give a horizontal
buoyancy force of the mountain range of F, ~ 7.71 x10'2 N m~!. This result
may also be read from Fig. 5.32. There, the point f. = 2, fi = 1 gives a value
of about Fj, ~8.3 x10'2N m~!. The difference arises from slightly different
assumptions of the densities and thicknesses. The result is larger than that
from eq. 5.57 because the refined equation (eq. 5.59) also considers thermal
contraction of the mantle part of the lithosphere.

Problem 5.19. The graphical solution of this problem is shown in Fig. E.6.
The net force between the two columns corresponds to the shaded area on this
figure (see also Problem 5.16). Calculating this area algebraically, gives a net
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Figure E.6. Graphical solution
of Problem 5.19
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force of 10.5-10'2 Nm~! towards the homogeneously thickened lithosphere.
This is comparable to the magnitude of plate tectonic driving forces, even
though there is no elevation difference between the two lithospheric columns.

Problem 5.20. The kinetic energy (Eg;, = mv?/2) of the plate is: Ey;,, =
3- 10%%kg- (0.03 m/y)? =271 J (or kgm? s~1). The potential energy per cubic
meter is: 5, = pgh. Thus, with a kinetic energy of 271 J we can lift one cubic
meter of rock (using p = 2700 kgm~2 and g = 10 ms~2) merely by about
1 cm. Consequently, the kinetic energy is completely insignificant to have an
influence on the orogenic force balance. Plate motions are too slow!

Problem 6.1. Fig. 6.2 shows that the elevation contours have a slope of
roughly (f./f1)=1.333. Thus, during extension (when both f. and fi be-
come smaller than 1) uplift will occur when (f./fi)>1.333; for the assumed
thicknesses and densities of Fig. 6.2. Eq. 4.35 shows that the elevation does
not change when dz.(fc — 1) = £z1(fi — 1) and subsidence will occur when
Szc(fe — 1) < €z1(fi — 1). This can be solved for any of the variables in that
equation.

Problem 6.2. According to eq. 6.1 we can write for the cross over between
sandstone and shale porosities: ¢§e"%exp(—c®*dz) = @ghateexp(—cshaley).
This can be solved for z by taking the logarithm of the equation giving:
z = (log(¢§°™?) — log(gghete))/(c*@md — cshale), Using the parameter values
from Fig. 6.5 we get z =1116m.

Problem 6.3. Inserting eq. 6.1 into eq. 6.4 and using the parameter values
from Fig. 6.5 gives Ly = 130m.

Problem 6.4. According to eq. 4.23 we can formulate from Fig. 6.7: Lgpr, +
ZeQPe = Zs9Pw + 2egpe + (L — 25)gpm. Solving for 2 we get eq. 6.5 with a
reversed sign. The different sign arises because the surface is lower before
sedimentation, whereas we have automatically changed the sign in eq. 6.5 to
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deal only with positive numbers. The equation that describes the change if
water depth may be derived analogously.

Problem 6.5. The answer is shown in Fig. E.7. The first three columns show
the field data: a illustrates thickness and lithology (sandstone: gray, slate:
lines), b shows the age of the lithological boundaries and ¢ the water depth.
The strata are numbered from bottom to top from 1 to 5. For the following
calculations the center points of each layer (shown in the 4th column) are used
as reference point. For the porosities we use the data from Fig. 6.5. Using
eq. 6.1 for the uppermost, 1000 m thick layer we get a porosity of 34.4% at
the mean depth of 500 m (1st column of Table d). The thickness of each layer
is based on field measurements and their densities are given by eq. 6.7. In
the second column the data for porosity, thickness and density after removal
of the uppermost layer (i = 5) are plotted. For the second layer from the top
(i = 4) that has a mean depth of 1250 m, we begin with a determination of
porosity. Its decompacted thickness is then calculated with eq. 6.4 using the
porosities of the first column and the decompacted porosities. The porosity
of the third layer after removing the first two strata is given by eq. 6.1 at
a depth of 655 m + 500 m and so on. The same principle is repeated for all
columns using always the data from the fist column so that no methodical
errors are propagated. The sum of the thicknesses and densities if the profile
(in the bottom row) are calculated with eq. 6.8 and 6.9. e is a graphical
illustration of the data from Table d.

Problem 6.6. To determine the ratio we take the subsidence in eq. 6.10 to
be zero, i.e.: H =0. Thus, after rearranging: z./2z1 = paTh/(2(p1 — pw)). For
the given numerical values of the parameters: z./2 =13.7 km. At smaller
starting ratios of the thicknesses, the contribution of the mantle part of the
lithosphere is so large, so that homogeneous stretching of the lithosphere
(when thinned) will lead to surface uplift.

Problem 6.7. Eq. 6.11 shows that the duration of the thermal sag period is
only determined by the ratio t/t, in the last term of the equation. The time
scale of thermal equilibration %, is the same we have discussed in eq.3.17
and Table 3.2. Tt differs from that only by the factor 72, but is in principle
equivalent. We can see that when ¢ = ¢, then Hy,, has reached (1 — e_l) X
100% completion. 90% of the thermal sag is completed when: (1 —e~t/tes) =
0.9 or: t = —teg1n(0.1). This is ~ 75 my for 100 km thick lithosphere and
~ 300 my for 200 km thick lithosphere.

Problem 6.8. For the thickened lithosphere we can use eq. 6.15. We
get: ¢s=0.06 Wm™?; ¢s=0.075 Wm~2 and ¢, =0.09 Wm™2, for the three
heat source distributions, respectively. For the thinned lithosphere we must
use ¢s = 2¢m + ¢aa/2 and get: g =0.0525 Wm™2; ¢, =0.075 Wm~?2 and
¢s =0.0975 Wm 2, respectively. We can see that the first distribution results
in an increase of the surface heat flow with increasing thickness, while the
last distribution results in a decrease of the surface heat flow with increasing
thickness.
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Figure E.7. Solution of Problem 6.5

Problem 6.9. (a) Fig. 5.32 shows that the buoyancy force Fj, balances the
driving force roughly at f. & 1.65 (while fi = 1). Fig. 4.18 shows that this
corresponds to a surface elevation of about H = 3.5 km. (b) In order to use
eq. 5.57, the thickness of the root w must be substituted by w = Hp./Ap.
It then can be solved for to give H = 4400m at a buoyancy force of
F,=F3=5-10'2 Nm™!. (¢) Eq. 5.59 simplifies significantly for fi = 1. It
then can be used to derive f. = 1.7 to give F, = F3 =5-102 Nm~!. From
this, eq. 4.31 gives a surface elevation of H = 3800m. The estimate from
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(b) is substantially higher than those from (a) and (c) because the thermal
contraction in the mantle part of the lithosphere is not considered here.

Problem 6.10. Using the parameter values from Table 5.3 and eq. 6.31 gives:
Ap(T=400) o 027 and Ar(T=%90) ~ 15. Thus, deformation in the “colder” oro-
gen will be concentrated around the collision zone establishing substantial to-
pography and potential energy contrasts, while deformation in the “warmer”
orogen will be dissipated over a large region with little topography. However,
note that the Argand number is used in geodynamics in order to avoid the
use of ill-constrained material constants and temperatures in as much detail
as we do here. Thus, it is not generally meaningful to use examples like this
one for any quantitative consideration of a real orogen.

Problem 6.11. The lithostatic component of pressure in 10 and 15 km depth
will be ¢,, = pgz =275 and 321 MPa, respectively. The temperature at this
depth is 300°C and 450°C, respectively. The strain rate is: 1/5 my~!. From
the power law we get differential stresses of 824 MPa and 40 MPa, respec-
tively. According to eq. 6.33 the pressure component related to differential
stress in 10 or 15 km depth 412 MPa or 20 MPa, respectively. This means
that the non lithostatic component of pressure in 10 km depth may be larger
than the stress exerted by burial. In 15 km depth pressure is roughly equal
to the vertical normal stress.

Problem 7.1. a) We can insert into eq. 7.1 the values: 2=10000 m; P =
1 atm ~ 10° Pa und g ~ 10 ms~2. This gives a mean density of p=1 kgm™3.
b) 1 atm~ 1 bar = 1072 kbar.

Problem 7.2. One mole of almandine has the volume: Vyimandine =11.5J / 10°
Pa =1.15-10"* m3 =115 cm?®.

Problem 7.3. The cation diffusivities at the 3 temperatures are: Dzgg =
1.6-10730 m2s™!; Dygg = 6.9-10725 m2s™'; Dygoo = 1.5- 1078 m?s~ 1. All
these are many orders of magnitude smaller than the diffusivity of thermal
energy. Thus, chemical zoning profiles in minerals will only develop because
of the sluggishness of cation diffusion, but not because temperature gradients
in a crystal.

Problem 7.4. Similar to problem 7.3 we can use the Arrhenius relationship
to obtain a diffusivity of Dggo &~ 4.9 - 1072% m2s~1. Inserting this diffusivity
and [ =1 mm (being careful to use SI units!) we obtain a time scale of
more than 600 million years. This is much longer than the duration of most
metamorphic events. We can conclude that 1 mm sized garnets are unlikely
to be equilibrated at 600 °C by diffusion. Chemically equilibrated garnets of
this size must have grown at this temperature.

Problem 7.5. The mean diffusivity between 700°C and 400°C is: D =~
1.1-10722 m?s 1.
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Problem 7.6. a) The thermal maximum. b) Because the activation volume
in eq. 7.5 is much smaller than the activation energy ). ¢) The uppermost
curve in Fig. 7.7a. d) Yes, for example if crustal shortening follows intrusion
and contact metamorphism.

Problem 7.7. Inserting the given values into eq. 7.10 gives a cooling rate:
5~ 42°C my~ L.

Problem 7.8. a) The characteristic time sale of cooling (the thermal time
constant) of the dike is: 4 - 10'2 5. The diffusivities at 7} and Tj, are
Disgo =~ 1.3- 107 m?s~! and Dsgg =~ 7.4- 1072° m?s~!. The diffusive
time constants of mica are t;2°° & 1.9 - 10° s and 30° ~ 3.35- 10" s. Thus,
the chemical equilibration of the micas is much more rapid than the cooling
of the dike at 1200°C but much slower than the cooling at 500°C. Thus,
it may be - in principal - meaningful to use the micas to determine the in-
trusion age geochronologically. However, 50 m from the intrusion contact the
maximum contact metamorphic temperatures are much lower than 1200 °C.
Thus it is necessary to obtain better information on the contact metamor-
phic temperatures to investigate if the dating of these micas is meaningful.
b) Eq. 3.90 shows that the maximum contact metamorphic temperature of
the micas is reached 2.83- 10! s after intrusion. Inserting this into eq. 3.88
we get the contact metamorphic peak temperature the micas experienced
to be: T4, =829 °C. Using this number as the starting temperature T4 and
500°C as the final temperature Ty, eq. 7.9 may be used to estimate the mean
diffusivity to be: D a2 1.91 - 10717 m2s™! and %, = 1.3 - 10'2 5. This value
is only a bit shorter that the characteristic time scale of cooling of the dike.
Thus, equilibration of the micas is likely to be at least affected by the contact
metamorphism. Whether the micas are partially or fully equilibrated can not
be answered and requires careful analysis.

Problem 7.11. The T-t-curve passes following points: 700°C; 0 my — 700°C;
3 my—400°C; 6 my —0°C; 26 my. However, the last point will not be
reached as the cooling curve intersects the stable geotherm before that. The
corner points of the z-t-curve are: 20 km; 0 my — 14 km; 5 my — 0 km;
40 my. The intersection of the cooling curve with the stable geotherm
may be found by finding the intersection of the linear equations T =
2x20°C /kmand T =280 °C - zx50°C /km. Tt is at: T =187°C and z =
9333 m. According to these results, the P-T-path follows the following evo-
lution: 5.4 kbar; 700°C — 4.43 kbar; 700 °C — 3.78 kbar; 500 °C — 3.67 kbar;
400°C — 2.52 kbar; 187°C — 0 kbar; 0°C.

Problem B.1. The solution of this problem is simply the sum of the ap-
proximations from eq. B.13 and eq. B.16:

_ 2k At 25 At 2 At
Tz,+ = T'z <1 — A_z2 — ’U,At) + Ti—i—l (A_Zz + uAt) + Tz'—l (A_22>
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Problem B.2. The answer is:
_ -D
6D + Azt (pm — pc)g

W; (Wit1 — Awipr — dw;—1 + wi_2)

This equation was derived by forming the difference between the curvature
at neighboring grid points in an analogous way to the way eq. B.16 was
formulated.

Problem B.3. Using u = Ax/At forward and backward finite differencing
schemes give the following approximations: T;7 = T;, bzw. T;" = 2T, —
T;~,. If you draw these equations according to the scheme of Fig. B.5, it
becomes visible that backward differencing schemes become unstable.

Problem B.4. Both data sets have a mean of i = 8. The first data set hgas
a variance of Var = 4, but an unbiased estimate of the population variance
of Var' =4.57. For the second data set the variance is Var = 42, but the
unbiased estimate of the population variance is Var' = 48.
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On the next few pages there is a random selection of internet addresses that
are in some way related to geodynamics. The list was not created according
to any important selective criteria and obviously claims no completeness. It

is merely a number of addresses that were encountered during the writing of
this book.

Software and Online Tools:

ANSYS. Commercial FEM package

e http://www.ansys.com/
DimensionMG. General purpose 3D mesh generator

e http://www.ahpcre.org/ johnson/SOFTWARE/MESHGEN/
ESRI. widely used GIS software and data depot

e http://www.esri.com/
GeoVu. Software to simplify access to diverse data

o http://www.ngdc.noaa.gov/seg/geovu/
GMT. Software to produce maps from digital data

o http://gmt.soest.hawaii.edu/
MARC. Commercial FEM package

e http://www.marc.com/
MATLAB. Software to do mathematics

e http://www.mathworks.com /products/matlab/
MICRODEM. Software for imaging of digital elevation models

o http://www.usna.edu/Users/oceano/pguth /website/microdemdown . htm
Online topographic map creation facility

e http://www.aquarius.geomar.de/omc/
Ounline palaeogeographic map creation (Fig. 2.3)

e http://www.odsn.de/odsn/services/paleomap/paleomap.html
Online geophysical map creation facility

e http://jules.unavco.org
SCOTESE. Plate and climate reconstruction

o http://www.scotese.com/
Spectral analysis of data toolkit

e http://www.atmos.ucla.edu/tcd/ssa/
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Geological Data

Digital Elevation Models

Shuttle Radar Topography Mission (SRTM)

e ftp://e0srpOlu.ecs.nasa.gov/srtm/version2/
SRTM30 - 30 sec. resolution - global

e ftp://e0srpOlu.ecs.nasa.gov/srtm/version2/SRTM30
SRTM30_Plus

e http://www.ngdc.noaa.gov/mgg/bathymetry /arctic/arctic.html
SRTM3 - 3 sec. resolution - global

e ftp://e0srpOlu.ecs.nasa.gov/srtm/version2/SRTM3
SRTM1 - 1 sec. resolution - USA

e ftp://e0srpOlu.ecs.nasa.gov/srtm/version2/SRTM3
GTOPO30 (better use SRTM30)

e http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html
GLOBE (30 sec similar to Gtopo30)

e http://www.ngdc.noaa.gov/megg/topo/gltiles. html
ETOPO2 - 2 min. resolution including bathymetry

e http://www.ngdc.noaa.gov/mgg/global /relief/ ETOPO2/ETOP02v2-2006/
GEBCO-Sand (1minute blend of the Gebco bathymetry with Smith and

Sandwell

e ftp://falcon.grdl.noaa.gov/pub/walter/
GEBCO-BATHYMETRY (signed 16 bit integer )

e http://snowy.arsc.alaska.edu/nasa/topography/
Multibeam Bathymetric Data

e http://map.ngdc.noaa.gov/website/mgg/multibeam /viewer.htm
Coastal Relief

e http://www.ngdc.noaa.gov/megg/coastal /coastal.html
Bathymetry of the Baltic Sea

e http://www.pangaea.de/Software/PanMap/
International Bathymetric Chart of the Arctic Ocean

e http://www.ngdc.noaa.gov/mgg/bathymetry /arctic/arctic.html
Bathymetry, topography

e http://www.ngdc.noaa.gov/megg/bathymetry /relief. html
Bathymetric Chart of the Arctic Ocean

e http://www.ngdc.noaa.gov/mgg/bathymetry /arctic/arctic.html
Bathymetric Chart of the Oceans

e http://www.ngdc.noaa.gov/megg/gebco/gebco. html
Seafloor topography from satellite

e http://www.ngdc.noaa.gov/mgg/announcements/announce predict.html
Digital elevation models for the US

e http://mcemceweb.er.usgs.gov
Digital elevation model of the US

e http://edcwww.cr.usgs.gov/Webglis/glishin/guide.pl /glis/hyper /guide /7 min_dem
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Satellite Images

Global Land Cover Facility (free Landsat...)

o http://glcf.umiacs.umd.edu/index.shtml
Landsat Mosaic (MrSid - format)

e http://www-wsm.physik.uni-karlsruhe.de/
Free Orthoimages

e http:/ /www.worldwindcentral.com/wiki/Sources_of_free_orthoimagery
USGS Global Visualization Viewer

o http://glovis.usgs.gov/
Satellite images

e http://earth.jsc.nasa.gov/

e http://visibleearth.nasa.gov/

e http://nix.nasa.gov/

e http://www.earthkam.ucsd.edu/

e http://www.spaceimaging.com/index_text.html

Water Bodies, Rivers, Shorelines

SRTM - Water Body Data
e ftp://e0srp0lu.ecs.nasa.gov/srtm/version2/SWBD/
The Global Discharge Data Base
e http://www.rivdis.sr.unh.edu/
Global River Discharge Data Base
e http://www.sage.wisc.edu/riverdata/
GSHHS - A Global Self-consistent, Hierarchical, High-resolution Shoreline
Database
e http://www.ngdc.noaa.gov/mgg/shorelines/gshhs html
World Vector Shoreline (WVS)
e http://www.pangaea.de/Software/PanMap/
Shoreline Database
e http://www.ngdc.noaa.gov/mgg/shorelines/gshhs html
Shoreline of the United States
e http://www.csc.noaa.gov/products/shorelines /digdata.htm

Country Boundaries and City Coordinates

City coordinates global
o http://www.heavens-above.com
Country Boundaries
e http://www.cipotato.org/DIVA /data/MoreData.htm

Seismicity and Fault Plane Solutions

Iris Earthquake Event Cataloque

e http://www.iris.edu/quakes/eventsrch.htm
Iris Moment, Tensor Data

e ftp://ftp.iris.washington.edu/pub/CMT/
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Earthquake Catalog of Switzerland

e http:/ /histserver.ethz.ch/simplequery_e.html
Earthquakes of Central, Northern and Northwestern Europe

e http://neic.usgs.gov /neis/epic/epic.html
Earthquake catalogue

e http://quake.geo.berkeley.edu/cnss/
Earthquake Database

e http://www.ngdc.noaa.gov/seg/hazard/sigsrch.shtml
Earthquake Hazards Program

e http://earthquake.usgs.gov/research/
Advanced National Seismic System

e http://www.ncedc.org/anss/catalog-search.html
Southern California Earthquake Data Center

e http://www.data.scec.org/ catalog-search/date_magloc.php
Seismologic data bases

e http://www.seismology.harvard.edu/CMTsearch.html
World stress map project

e http://www-wsm.physik.uni-karlsruhe.de/

Precipitation and Heat Flow

Tropical Rainfall Measuring Mission (TRMM)

e http://daac.gsfc.nasa.gov/data/datapool/ TRMM DP/
Geothermal heat flow data

e http://www.noaa.gov/geothermal.html

Gravity and Magnetism

Land and Marine Gravity Data

e http://www.ngdc.noaa.gov/mgg/bathymetry /arctic/arctic.html
GRIM5-51/C1: A new global Earth’s gravity field model

e http://www.gfz-potsdam.de/pbl/pg3/grim/grim5_e.html
Global Gravity and Magnetic Data

e http://www.getech.com/data/
Geomagnetic Data On-line

e http://www.ngdc.noaa.gov/seg/geomag/data.shtml
Marine Gravity From Sattelite Altimetry

e http://topex.ucsd.edu/ WWW _html/mar_grav.html
Gravity land

e http://www.noaa.gov/landgravity.html
Gravity data marine (Sandwell)

e http://topex.ucsd.edu/marine_grav/mar_grav.html
Gravity data global

o ftp://topex.ucsd.edu/pub/global_grav_2min/
Gravimetric data base

e http://bgi.cnes.fr:8110/bgiservice_a.html
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Geomagnetics
e http://www.noaa.gov/geomagnetics.html

GPS

high-precision GPS data

e http://sopac.ucsd.edu/
GPS - time series

o http://sideshow.jpl.nasa.gov/mbh/series.html
GEOnet GPS- time series

o http://www.geonet.org.nz/gps/ TimeSeries.html
UNAVCO

e http://sps.unavco.org/crustal motion/dxdt/
Jules Verne Voyager: Earth

e http://jules.unavco.org/Voyager /Earth
IGS. International GPS service

e http://tonga.unavco.ucar.edu/
International GPS support association

e http://igsch.jpl.nasa.gov/

Other Data

Earth sciences websites

o http://www.websites.noaa.gov/guide/sciences/earth /earth.html
Geographic data download of USGS.

e http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndedb.html
Geological time table

e http://www.dinosauria.com/dml/history.htm
Geological time table

e http://www.ucmp.berkeley.edu/help/timeform.html
Geophysical data base of the USGS

e http://crustal.cr.usgs.gov/crustal/geophysics/index.html
GIS datadepot

o http://www.gisdatadepot.com/
IERS. International earth rotation service

e http://maia.usno.navy.mil/
Landform atlas of the US

e http://fermi.jhuapl.edu/states/states.html
Marine geology and geophysics data bases

o http://www.ngdc.noaa.gov/mgg/mggonline.html
National geophysical data center of the US

e http://www.ngdc.noaa.gov/ngde.html
Natural hazards

e http://www.noaa.gov/hazards.html
Sediment thicknesses around the world

o http://www.ngdc.noaa.gov/mgg/sedthick /sedthick.html
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Statistic data of the world
e http://www.un.org/Depts/unsd
World fact book of the CIA
e http://www.odci.gov/cia/publications/factbook/index.html

Important Earth Science Journals:

Australian Journal of Earth Science (Blackwell)

e http://www.blacksci.co.uk/products/journals/xajes.htm
Computers and Geoscience (Elsevier)

e http://www.elsevier.com/inca/publications/store/3/9/8/
Earth and Planetary Science Letters (Elsevier)

e http://www.elsevier.nl:80/inca/publications/store/5/0/3/3/2/8/
Earth Science reviews (Elsevier)

o http://www.elsevier.com/inca/publications/store/5/0/3/3/2/9/
Electronic Geosciences

e http://link.springer.de/link/service/journals/10069 /index.htm
EOS

e http://www.agu.org/pubs/eos.html
Geochemistry, Geophysics, Geosystems (electronic Journal)

o http://146.201.254.53/
Geophysical Journal International (Blackwell)

e http://www.blacksci.co.uk/products/journals/gji.htm
Geophysical Research Letters

e http://www.agu.org/grl/
GSA Bulletin, Geology, GSA today

e http://www.geosociety.org/pubs/
Journal of Applied Geophysics (Elsevier)

e http://www.elsevier.com/inca/publications/store/5/0/3/3/3/3/
Journal of Geophysical Research

e http://www.agu.org/journals/jb/
Journal of Metamorphic Geology (Australian site)

e http://www.es.mq.edu.au/jmg/jmg.html
Journal of African Earth Science (Elsevier)

e http://www.elsevier.com/inca/publications/store/6/9/1/
Journal of Geodynamics (Elsevier)

e http://www.elsevier.com/inca/publications/store/8/7/4/
Journal of Petrology (Elsevier)

e http://petrology.oupjournals.org/
Journal of Structural Geology(Elsevier)

e http://www.elsevier.nl:80/inca/publications/store/5/3/9/
Journal of the Virtual Explorer (electronic Journal)

e http://www.virtualexplorer.com.au/
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Mineralogy and Petrology

e http://link.springer.de/link/service/journals/00710/index.htm
Physics of the Earth and Planetary Interiors

e http://www.elsevier.com/inca/publications/store/5/0/3/3/5/6/
Precambrian Research (Elsevier)

e http://www.elsevier.com/inca/publications/store/5/0/3/3/5/7/
Reviews in Geophysics

e http://www.agu.org/rog/
Tectonics

e http://www.agu.org/journals/tc/

Important geological organizations:

American Geophysical Union (AGU)
e http://www.agu.org/
Austrian Geological Survey
e http://www.geolba.ac.at/
Austrian portal to academic Institutions Home pages
e http://www.portal.ac.at/
Australian Earth Science Departments
o http://www.earth.monash.edu.au/aus_depts.html
Australian Geological Survey
e http://www.agso.gov.au/
British Geological Society
o http://www.geolsoc.org.uk
Geological Society of America
e http://www.geosociety.org/
German portal to academic Institutions Home pages
e http://www.bildungsserver.de/
International Earth Science Departments and Organizations
e http://dir.yahoo.com/Science/Earth Sciences/Geology_and_Geophysics/Institutes/
NASA
e http://www.nasa.gov/NASA _homepage.html/
Swiss Portal to academic Institutions Home pages
o http://www.switch.ch/
European Geoscience Department listing
e http://www.uni-mainz.de/FB/Geo/Geologie/Geolnst /Europa.html
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A Asthenosphere

— definition, 36
Acceleration Atmosphere CO2, 329
— angular, 25 Australia, 178, 281
— gravitational, 26, 75 Ayers rock, 9
— of plates, 26
Accretionary wedge, 106, 246, 309 B
Accuracy
— definition, 5 Back stripping, 274
— numerical, 401, 402 Back thrust, 315
Acoustic energy, 69 Back-arc basin, 42, 256, 270
Activation Barometry, 346
— energy, 231, 345 Barrier reef, 178
— volume, 345 Barrow zone, 93, 292
ADI-method, 404 Basin
Adiabatic — back-arc, 42, 256
— compressibility, 75 — fore-arc, 270
— gradient, 76 — foreland, 42, 270
— melting, 34 — intra-continental, 270
— processes, 74 — McKenzie model, 277
Advection, 80 — molasse, 172
Africa — origin, 266
— lithosphere, 35 — types, 269
— rift, 40 Bathymetry, 16
Airy, 164 Bending
Altiplano, 300 — of continental plates, 172
Amontons law, 226 — of oceanic plates, 171
Analytical solution, 396 Benioff zone, 42, 108
Andersons theory, 226 Bessel Ellipsoid, 144
Angle of friction, 225 Black smokers, 42
Angular Boundary condition
— acceleration, 25 — at infinity, 102, 110
— momentum, 27 — definition, 398
— velocity, 25 — mechanical, 246
— velocity of plates, 41 — orogenic, 28
Arc — thermal, 120
— island, 108 Boundary layer
— magmatic, 108 — mechanical, 36
Argand number, 305 — thermal, 36, 319
Arrhenius relationship, 231, 344 Brace-Goetze lithosphere, 235
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Brittle

— deformation, 223

— ductile transition, 226, 234, 327
Buchan zones, 341

Bulk modulus, 223

Buoyancy force, 249, 296
Butterfly effect, 334

Byerlees law, 225

C

Chaos, 200, 202, 330

Cheese tectonics, 20

Chemical boundary layer, 36

Chinese Loess Plateau, 203

Clapeyron curve, 107

Coast line

— fractal dimension, 204

Cohesion, 224

Collision

— momentum, 218

— of continental plates, 41

— of oceanic plates, 44

— of plates generally, 41

Compaction, 271

Compensation depth, 162, 249

Complementary error function, 61

Compressibility

— adiabatic, 75

Conductivity

— changes, 56

— thermal, 53

Confidence interval, 420

Coustitutive relationship, 220

Contact metamorphism, 57, 82, 114,
322, 352

Continent

— mean elevation, 147

Continental

collision, 285

— elevation, 434

— geotherm, 90

— lithosphere, 39

Convection, 80

Convergence

— of plates, 44, 298

Cooling

— of earth, 59

— of half space, 103

— of oceanic lithosphere, 102

Cooling rate, 114

Coordinates

— cartesian, 22

Index

cylindrical, 59

polar, 23

reference frame, 144

— spherical, 59

Core

— of earth, 34

Corner flow model, 313
COST-drilling program, 267
Coulomb criterion, 224, 310
Crank-Nicolson, 403

Crust

— continental, 39

— oceanic, 102, 255
Crystallization

— heat, 120

— of dikes, 120

Curvature

— definition, 394

D

Deborah number, 306
Deccan, 253, 317
Declination, 25
Deformation

— laws, 220

— maps, 230

— permanent, 223
deformation tensor, 141
Degradation

— of scarps, 187
Delamination, 319
Density

— of the crust, 36, 56, 166
— of the mantle lithosphere, 36, 166
Derivatives

— order, 395

Dextral, 228

Differential

— partial, 395

— total, 395

Differential equation, 393
— analytical solution, 397
— method of solution, 413, 416
— numerical solution, 397
— order, 395

— ordinary, 396

— partial, 396

Differential stress, 74, 213
Diffusion

— cation, 349

— equation, 55

— mass, 184
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— nonlinear, 186 — law, 221
— numerical, 81, 405 — of continents, 178
— radial, 59 — of oceanic plates, 176
— time scale, 62 Elevation
Diffusion age, 192 — of mountain belts, 165
Diffusivity, 231 Ellipticity, 143
— erosional, 185 Elongation, 73
— thermal, 56, 62 — definition, 140
Dike endogenic process, 179
— swarms, 116 Endothermic
— thermal evolution, 113 — reaction, 76
Dimension Energy
— dimensionless, 9 — acoustic, 69
— one-dimensional, 13 — activation, 231
— spatial, 6 — equilibrium, 54
— three-dimensional, 8 — Gibbs, 347
— two-dimensional, 11 — kinetic, 219
— units, 25 — potential, 69, 282
— zero-dimensional, 8 Equator
Dislocation energy, 69 — radius, 143, 431
Displacement, 295 Equilibrium
Dissipative heat production, 68 — coefficient, 347
Distribution — force, 218
— Gaussian, 419 — isostatic, 161
— normal, 419 — steady state, 61, 89, 157, 199, 312
Divergence — thermodynamic, 347
— definition, 412 — transient, 89
Dorn law, 232 Erosion model, 157, 180, 181
Driving force Error function, 61, 427
— plate tectonic, 242, 245, 295 — derivative of, 104
Ductile deformation, 216 Escarpment, 172
Dynamic Euler
— collision, 294 — reference frame, 82
— extension, 282 Euler pole, 25
Dynamics Eulerian
— on a sphere, 25 — description, 81

— reference frame, 84, 144, 179
E Exhumation, 149

— mechanism, 324
Earth exogenic process, 179
— age of, 59 Exothermic
— core, 34 — reaction, 76
— layer structure of, 33 Expansion
— radius, 143 — thermal, 75, 165
— shape, 143 Explicit methods, 402
— total heat loss, 89 Extension
Earthquake, 228 — active, 265, 282, 316

— distribution, 244
Eclogite, 325

brittle, 226
continental, 148

Elastic — force, 296
— bulge, 172 — lateral, 303
— thickness, 173 — pasive, 316

Elasticity — passive, 265, 282
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— rheology change, 236
— self limiting, 282

— two-dimensional, 280
Extrusion

— lateral, 303, 308

— vertical, 325

F

Fault

— orientation, 226

— plane solution, 228

— temperatures, 132, 150
— transform, 44
Feedback, 329

Ficks law, 52

Ficks law, 185

Finite

— difference method, 137, 399

— element method, 397
Finite difference method
- stability, 401
Flexural

— parameter, 176

- rigidity, 173

Flexure

— of plates, 170

Flood basalt, 255
Flood basalts, 316
Flow

— of heat, 52

— of mass, 52

— viscous, 231

— volumetric, 52

Flow law, 220

Fluid

- flow, 85, 108

— heat transport, 85

— Newtonian, 231

— pressure, 225

Fold and thrust belt, 309
Folding

— of isotherms, 127

— rate, 127

Force, 210

— applied to oceanic plates, 253

— driving plates, 248
— extension, 296

— transmission, 245
— units, 25

Force balance

— extension, 282

— in orogens, 298

Index

Fore-arc basin, 42, 256, 270
Foreland basin, 256, 270
Fourier

— cell number, 401

— first law, 52, 185, 343

— second law, 54

— series, 415

Fractal, 329

— geometrical, 203

— statistical, 203

Friction coefficient, 224
Friction heat, 68, 132, 338, 360
Fusion heat, 77

G

Gas constant, 345
Gaussian distribution, 419
Geobarometer, 213
Geobarometry, 346
Geochrononology, 345
Geoid

— anomaly, 144, 250

— definition, 143
Geometry

— on a sphere, 23
Geosyncline, 46
Geotherm

— continental, 90

— definition, 89

— oceanic, 103
Geothermometry, 346
Gondwana, 15

GPS, 227

Graded rivers, 199
Gradient, 58

— definition, 412
Granitic weathering, 188
Gravitational

— acceleration, 75, 170, 218, 339
— constant, 4

— stress, 249

Great barrier reef, 178
Great circle, 23

Great Escarpment, 281
Great escarpment, 172, 184
Greenwich, 23

H

Hack Law, 196
Half-space cooling model, 102, 112, 169
Hawaii, 176, 208
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Heat

— capacity, 54

— conductivity, 53

— content, 78

— content of intrusions, 124
— content of terrains, 123
— dissipative, 132

— friction, 360

— of fusion, 77

— refraction, 56

Heat flow

— at the surface, 101, 242
— definition, 53

— from mantle, 92

— mantle, 289, 293

— oceanic, 105

— surface, 289

— two-dimensional, 58, 118, 129
— unit, 53

Heat production

— by friction, 68

— by radioactivity, 67, 92
— by reaction, 76

— distribution, 94

Heat transfer

— by active transport, 80
— by diffusion, 52

— types of, 51

Himalaya, 57, 194, 219
Histogram, 419

Hooks law, 222
Hydrostatic isostasy, 161
Hydrostatic pressure, 162, 201, 220

I

Iceland, 255

Implicit methods, 402
Inclination, 25
Incompressibility, 223
Indenter, 306

Indus River, 198

Initial condition

— definition, 398
Interferometry, 227
Intra-continental basins, 270
Intrusion

— cooling of, 114

— heat content, 124

— spherical, 117

— thermal evolution, 110
Invariant

— tensor, 212

Island arc, 44, 108, 310
Isograds

— stretching, 132

— telescoping, 132
Isostasy, 162

— Airy, 164

— equilibration rate, 161
flexural, 170
hydrostatic, 161

— Pratt, 164
Isotherms

— around faults, 132

— folding of, 126

— topography, 128

J

Jacobian matrix, 141
Julia set, 329

K

Karoo, 253
Kelvin model, 59
Kinematics

— on a sphere, 25
— vertical, 149
Kinetic

— energy, 219
Kinetics

— of reaction, 198
Knick point, 197
Kochs snow flake, 203
Kurtosis, 420

L

La Place equation, 60
Lagrangian

— coordinates, 397

— description, 81, 191
— reference frame, 144
Landscape model, 199
Landslide, 200

Large igneous provinces, 316
Latent heat

— of evaporation, 76
— of fusion, 77, 122
lateral extrusion, 306
Laurasia, 15

Layers of earth, 34
Least squares, 417
Liquidus, 78
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Lithosphere Metamorphic geotherm
— definition, 36 — definition, 359
— mantle part, 36, 97 Metamorphic gradient
— mechanical definition, 246 — contact, 116, 362
— subdivision, 35 — inverted, 133
— temperature at base, 36 — regional, 291, 357
— thermal definition, 88 Metamorphism

— types of, 38 — Barrovian, 292, 321
Lithosphere thickness — contact, 57, 322
— elastic, 165, 238 — facies, 340
- mechanical, 37 - LPHT, 321
— thermal, 37 — regional, 285, 291, 359
Lithostatic pressure, 220 — space-time relations, 359
Load — space-time relatlonshlp, 291
— external, 175, 238 Michigan Basin, 282
— internal, 175, 238 Mid-oceanic r1dge 16, 102, 167, 253
Longitudinal wave, 228 — manometer, 36, 166
Lorentz attractor, 330 Model
Loxodrome, 25 — concept, 2
LPHT-terrains, 321 — requirements, 5
Luzon, 310 Moho

— definition, 34
M — temperature, 100
Mohr-Coulomb criterion, 224

Main Central Thrust, 57 Molasse, 172
Mantle Moment
— definition, 34 — of inertia, 27
— density, 165 Momentum, 25, 27, 218
— discontinuity, 257 — angular, 27
— heat flow, 92, 288 Mt Blanc, 10
— lithosphere, 36, 97, 102, 235 Mt Everest, 10
— plume, 255, 259, 260
— viscosity, 161, 162 N

— wedge convection, 108
Mantle lithosphere, 164, 265 Nabla operator, 58
Mantle plume, 282 Neotectoncis, 179
Mantle plumes, 315 Network law, 194
Map projection, 28 New degrees, 23
— cylindrical, 29 Newton
— true to angle, 29 — units, 26
— true to area, 29 Newtonian fluid, 231
Mariana Trench, 15, 22 Nodal plane, 229
Mass extinctions, 318 Normal fault, 226
Mass flux, 52, 185 Normal stress, 211
Matrix, 212 Normalize, 9
Mean Nucleation rate, 343
— depth, 147 Numerical
— elevation, 147, 434 — diffusion, 81, 405
— surface heat flow, 434 — solution, 396
Mercator projection, 29
Meridian, 23 &)

Metamorphic field gradient
— definition, 358 Obduction, 42
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Ocean — exponent, 233

— mean depth, 147 Pratt, 164

Ocean floor age, 19 Pre-exponent constant, 231

Oceanic Precision

— CHABLIS model, 106 — definition, 5

— cooling, 102 Pressure, 364

— geotherms, 101 — chemical, 213

— water depth, 167, 434 — hydrostatic, 220

Olivine, 34, 71, 106, 232, 240, 255, 283, — mechanical, 213

430 — tectonic, 220, 326

Orogenic force balance, 298 Pressure-depth relationship, 338
Projection

P — of maps, 28
Pseudotachylite, 74

P-wave, 228 PT-path, 337

Paired metamorphic belt, 108 — anticlockwise, 353

Palaeopiezometry, 346 — interpretation, 292

Palaeostress, 227 — parts of, 345

Pannonian Basin, 282 — shape, 353

Parametric diagram, 114, 338 Pure shear, 154

Passive margin, 172, 269 Pythagoras, 411

Peclet number, 86

Periodic problems, 125 Q

Petrology, 342

Phase Quadratic equation, 427

— transition, 77

Phase rule, 348 R

Piezometry, 210

Piezothermal array, 361 Radioactive heat, 67

Ping-pong ball model, 22 Radius

Plane strain, 11, 306 — of earth, 143

Plate Reaction

— graveyards, 257 — endotherm, 76

— reconstruction, 18 — exotherm, 76

— tectonic driving force , 245 — rate, 343

— tectonics, 15 Reaction heat

Plate boundary — dehydration, 77

— convergent, 41, 285 — melting, 77

— diffuse, 20 Red Sea, 46, 282

— divergent, 40 Reference frame, 144

— passive, 40, 269, 283 — Eulerian, 84

— transform, 44 — Lagrangian, 144

Plume Reference levels, 142

— mantle, 255 Refraction

Poisson constant, 173, 222 — of heat, 56

Porosity, 85, 272 Retro-arc foreland basin, 270

Post orogenic collapse, 307 Rheology

Potential — definition, 233

— surface, 8, 412 — of continents, 234

Potential energy, 69, 248, 282 — of oceans, 243

— continents, 257 — olivine, 238

Power law — quartz, 238

— definition, 231 Rhumb line, 25
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Ridge push, 253

Rift, 40

— basin, 269

Rifted margin sequence, 316
Rifting, 316

Ring of Fire, 22

Roll back, 256

Rotation pole, 25

S

San Andreas Fault, 44
Scalar

— definition, 410
Scarp

— degradation, 187
Schmidt net, 29, 229
Sea level

— mean, 147

Sea mount, 171
Sedimentary basin
- origin, 266
Seismicity, 244
Shear

— pure, 281

— simple, 154, 281
— strength, 74

— stress, 211

Shear strength

— definition, 216
Shear zone, 70, 153, 281, 314
Shields, 152, 321

— continental, 96
Simple shear, 154
Skewness, 420

Skin depth, 96

Slab breakoff, 257
Slab pull, 255
Slope

— of a function, 393
Snowball earth, 329
Solar system, 4
Solidus, 78
Solution

— analytical, 397

— numerical, 396
South Georgia, 256
Specific heat, 54, 56
Speed

— definition, 25
Sphere

— geometry, 20

— latitude, 23

Index

— longitude, 23

— meridian, 23
Spheroid, 143

Stability

— numerical, 401, 402
Stable geotherm, 89
Standard deviation, 420
Steady state

— equilibrium, 61

— geotherm, 89

— surface elevation, 157
Stefan problem, 120
Strain

— definition, 140, 222

— hardening, 214

— longitudinal, 73

— plane, 11, 303, 306

— rate, 13, 141
Strength

— continents, 239

— definition, 216

— integrated, 239

— mean, 73, 300

— of the continents, 235
— of the oceans, 243
Stress

— deviatoric, 69, 213

— differential, 74, 213

— mean, 213

— principal, 212

— shear, 211

— tensor, 210

Stress field, 17

Stress profile

— quantitative, 239
Stretch

— definition, 140

Strike slip fault, 226, 230
Subduction Erosion, 153
Subduction zone, 42, 106
— accretionary wedge, 309
— force balance, 42

— geometry, 7

— isotherms, 107

— roll back, 256

— shape, 171, 176

— slab break off, 257
Subsidence

— analysis, 271

— isostatic, 268

— mechanisms, 268

— tectonic, 267

— total, 267
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Surface

— heat flow, 101, 105, 242, 289, 331
Surface elevation, 165

— evolution, 157

Surface heat flow

— mean, 434

T

Taiwan, 309

Tectonic

— driving force, 296, 298

— pressure, 220, 326
Temperature

— absolute, 345

— dimensionless, 10

— fluctuations, 126

— steps, 111

Tensor

— calculation, 410

— stress, 210

Thermal

— boundary layer, 36, 64, 319
— conductivity, 53

— expansion, 75, 165
Thermodynamic

— degree of freedom, 348

— equilibrium, 347
Thermomechanics, 294
Thermometry, 346
Thickness

— elastic, 174

— of elastic lithosphere, 173
— of mechanical lithosphere, 37
— of thermal lithosphere, 37, 88
Thin sheet approximation, 13, 303
Thomas algorithm, 404
Threshold, 200

— mechanism, 332

Thrust, 226

Tien Shan, 246

Time constant

— diffusive, 344

— thermal, 62

Topography

— dynamic, 170

Torque, 25, 253

Traction

— definition, 210
Transform

— basin, 269

— plate boundary, 44
Transform fault, 25

Trench, 176

— suction, 255
Triple junction, 45
Two-dimensional
— deformation, 146

U

Under plating, 81
Units

— in this book, 429
— mistakes with, 25
Uplift, 149

— of rocks, 151

— surface, 156
UTM projection, 30

Vv

Variance, 420
Vector

— calculation, 410
— definition, 410
Velocity

— angular, 25

— definition, 25
Vertical

— kinematics, 149
Viscosity

— dynamic, 230
— effective, 231

— kinematic, 230
— mantle, 161
Volcano

— shape, 201

w

Wegener, 15
WGS84, 143
Wilson cycle, 46, 282
Wulff net, 29

Y

Young’s modulus, 173, 222
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