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I dislike very much to consider any quanti ta­
t i v e problem set by a geologist. In nearly ev­
ery case, the conditions given are much too 
vague for the mat te r to be in any sense satis­
factory, and a geologist does not seem to mind 
a few millions of years in mat ters relating to 
t i m e . . . 

John Perry, 1895 
(In the paper in which he calculated the age of 
the earth - previously estimated by Lord Kelvin 
to be 90 my - to the correct age of 4.5 Gy.) 



Foreword to 2nd edition 

I was invited by SPRINGER publishers to write a 2nd edition of this textbook 
days before departing for the EGU conference in Vienna in spring 2006. 
Naturally, the idea roamed around my mind whilst sitting through a variety 
of great talks which presented new results from the field of geodynamics. 
Many talks presented incredibly realistic results from advanced numerical 
models and I quickly got the feeling that - in order to remain up to date 
- a new edition should contain much more on some of these sophisticated 
models. Quite clearly, geodynamics is a rapidly developing field that makes 
more and more use of computing skills to cope with an ever growing number 
of processes that scientists want to consider simultaneously to explain large 
data sets. 

However, as exciting as this development is, it also bears a danger: 
Shouldn't a good model provide a weighted balance between simplicity and 
realistic description? Do we really help the field geologists, our undergrad­
uates or even ourselves by producing models that look more and more like 
nature but that are increasingly difficult to follow intuitively and need grad­
uate knowledge in physics and advanced programming skills to understand? 

Personally I feel that the pendulum has swung a bit too far towards the 
"realistic description" side. What use is a model that extracts an awed gasp 
from the impressed viewer, but fails to provide an intuitive feel what is going 
on or - worse still - might fail on first principles behind the curtain of colorful 
animations? I felt myself confirmed when I sat in a talk where 2nd order 
morphological features of a drainage system were modeled numerically with 
fantastic reality; a talk that was followed by a discussion in which the 1st 
order features and their implementation were hotly debated. 

I have therefore refrained from diverging too far from the simplistic style of 
text, maths and figures of the 1st edition. New sections are written in the same 
vein as in the 1st edition and in fact, some pages I deemed too complicated 
have been omitted. I still feel that - even in today's sophisticated world -
there is room for a simplistic view that reminds us of the basics and that 
helps the quantitatively inclined field geologist to enter the wonderful world 
of geodynamic modeling. 
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Preamble to 1st edition 

Field geologists typically interpret their data in terms of tectonic models 
that are consistent with their observations in a given terrain, but that often 
lack an independent test. Such models can be strengthened considerably if 
they are supported by independent estimates of the magnitude of the implied 
geodynamic processes. For example, estimates of the thermal energy budget 
of a metamorphic terrain are an invaluable aid for the tectonic interpreta­
tion of metamorphic isograds mapped in the field; estimates for the orogenic 
force balance of a certain nappe staking geometry interpreted from structural 
mapping are a fantastic way to test its mechanical plausibility. 

This book was written because there appears to be a strong bi-modality in 
the nature of text books dealing with such problems. Books that introduce 
the reader to the modeling of geodynamic processes often require a relatively 
high maths background. On the other hand, books that deal with basic maths 
usually lack any connection to geology. This book was written in an attempt 
to bridge this gap. It is the aim of this book to introduce field based geologists 
to the power of the quantitative treatment of their field data. Because of this, 
the emphasis of this book lies on the interpretation of data that are typically 
collected by structural geologists, petrologists and geochronologists in the 
field, rather than those collected by seismologists or geophysicists. 

As an introductory text, little mathematical knowledge is required. All 
calculations are discussed in detail without omitting steps in the derivations 
and an extensive appendix on mathematical tools is provided. All computer 
codes used to calculate the figures are available from the author. They may 
also be downloaded from the address http://wegener.uni-graz.at. 
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1. Introduction 

The large scale structure of the earth is caused by geodynamic processes 
which are explained using energetic, kinematic and dynamic descriptions. 
While "geodynamic processes" are understood to include a large variety of 
processes and the term is used quite loosely, the methods of their description 
involve well defined fields. Energetic descriptions are involved with distribu­
tion of energy in our planet, typically expressed in terms of heat and tempera­
ture. Kinematic descriptions describe movements using velocities, strains and 
strain rates. Dynamic descriptions indicate how stresses and forces behave. 

In the field, we document only the consequences of geological processes. The 
underlying causes are much harder to constrain directly. Nevertheless, if we 
want to explain the tectonic evolution of our planet, we need to interpret these 
causes or: "driving forces" . For this, we need to find a dynamic description of 
geological processes that is consistent with our observations. Our descriptions 
relate causes and consequences - tectonic processes with field observations. In 
many cases, we will use equations as a concise form to describe processes and 
observations in nature. As we will be dealing mostly with large scale tectonic 
questions, the observations that we shall use are also on a large scale. For 
example, we shall use observations on the elevation (Fig. 1.1) and heat flow 
of mountain ranges, the thickness of continents and the water depth of the 
oceans. 

As the processes we seek to describe are changing with time or space, 
many of the descriptive equations will be differential equations. However, it 
is not the aim of this book to confuse the reader with high level mathematics. 
Rather it is the aim to introduce field geologists to the beauty and simplicity 
of descriptions with equations. Thus, all equations will be explained from 
basic principles so that an intuitive understanding can be achieved. While I 
prefer the term "description", many colleagues would refer to the contents of 
this book as "modeling". Thus, it appears useful to begin this book with a 
discussion what we mean when we use the word "model". 

1.1 W h a t is a Model? 

Models are tools that we use to describe the world around us in a simplified 
way so that we can understand it better. Sadly, many geologists misunder-
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stand the word model and think of it only as something complicatedly math­
ematical that has little to do with field work (s. Greenwood 1989). In doing 
so, many field geologists overlook the fact that field mapping itself is also a 
form of modelling: 

Geological Mapping: A Typical Modeling Exercise. A map is a trans­
formation of reference frames; for example the projection of the geographic 
position of field locations onto a piece of paper. However, a geological map 
that is a mere representation of field data in a new reference frame (i.e. our 
piece of paper) may be a good map but is usually a poor geological map 
(Passchier et al. 1990). It may still be useful to find a given outcrop of a 
given lithology, structure or metamorphic grade, but as scientists we are usu­
ally unsatisfied by simply documenting what is there. Usually we want to go 
beyond that and map to clarify field relationships, for example when we infer 
where a lithological contact is underneath a meadow. We make maps so that 
we can explain some features of nature to a colleague geologist without him 
or her having to do the same amount of field work we invested to produce 
the map in the first place. In order to achieve this aim, the geological map 
must illustrate field relationships in a simplified and interpreted manner. This 
forces the field geologist to a constant decision-making process. First of all 
the geologist has to decide what is to be mapped. Is it topography? Is it 
structure? Is it metamorphic isograds or is it lithology? Which of these (and 
many others) is to be mapped depends on the question with which we go 
into the field (Fig. 1.1). Then, the geologist has to decide on the scale on 
which the map should be produced. This decision is not trivial! The scale 
of the map depends on the problem to be solved. Once the scale is decided 
upon many more decisions are to be made. Which observations are too small 
to be mapped and should be neglected? Which ones should be drawn into 
the map? Which ones are to be emphasized by lines? Can a contact seen in 
two outcrops be mapped as a line, even in the paddock separating the two 
outcrops? The geologist is modeling! 

If the map is good, then it helps the reader - like any other good model 
- to understand nature quickly and easily. It also helps to make predictions 
how the geology may look at different places that were not mapped yet. 
For example, constructing profiles across our map helps us (to a certain de­
gree) to explain how the geology looks underground. In numerical-, analogue-, 
conceptual- or thought-models this process is identical. Mathematical models 
consist of a series of rules that determine which observations in nature are to 
be neglected and which ones are to be emphasized. The former will not ap­
pear in an equation, the latter will appear as a parameter in the equation. As 
such, a mathematical model is no different from the field work of a geologist. 

Every model can be considered as a tool that can be used to make pre­
dictions about observations in nature. Just as a geological map can be used 
to construct cross sections and thus predict the geology underneath the sur­
face, a numerical model can be used to make predictions about temperatures, 
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210 240 270 300 330 0 30 60 90 120 150 
Figure 1.1. Topographic map of the continents showing the large mountain ranges 
which always have inspired geologists to geodynamic models explaining their origin. 
Elevations higher than 1 000 m above sea level are shown as grey, elevations higher 
than 3 000 m are shown in black. The map bears all the characteristics of a good 
model. It captures the essence of the planets distribution of high mountain ranges 
within only about 0.01 m of this page, which is only possible by making a range 
of simplifying assumptions, for example on resolution or choice of cut-off elevation. 
As such, elevations above 3 000 m in the Azores or Japan escape the scale. Also 
- while the model largely succeeds in its aim - it is also "wrong" in some places. 
For example, much of the land surface of (ice covered) Greenland and Antarctica 
is actually below sea level 

forces or velocities which cannot be observed directly because of their enor­
mous time scale or depth. 

If the choice of parameters that we consider in our model (and the rules 
that relate them to each other) are good, then our model is good and it will 
predict many new observations which will be proven to be correct by future 
observations. If our choice of parameters and rules is bad, then our model 
may explain the one or other field observations, but it will predict many 
other features that will be proven wrong by future observations. Modeling 
is therefore an iterative back and forth between the choice of parameters 
and rules that are to be considered or neglected, new observations in nature 
and finally improvement of the model based on the new observations. Good 
models are consistent with a large number of observations (s. p. 5), but models 
are hardly ever unique in fitting those observations. 

Consistent versus Unique. The difference between consistent and unique 
is an important one that is often not recognized, even by modelers them-
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selves. Unique means - as the word says - that the model is the very only 
explanation for a set of observations. Consistent means that the proposed 
model does explain a set of observations, but that other models may also 
explain the same set of observations. The largest majority of models are con­
sistent but by no means unique. For example, the heliocentric Copernican 
model for the solar system (which states that the planets rotate around the 
sun as initially suggested by Aristarchus of Samos 310 - 230 B.C., but only 
brought to wide acceptance by Corpernicus in the early 16th century) is a 
model which is consistent with our observations of when the sun rises and 
sets and so on. However, a geocentric model (initially designed by Ptolemy) 
in which the planets and the sun rotate around the earth is possible too. 
The geocentric model is amazingly more complicated than the heliocentric 
model and it involves weird planetary motions including epicycles and cycloid 
curves. However, it also is consistent with our observations on planetary mo­
tions. Neither the heliocentric, nor the geocentric model are therefore unique. 
When viciously defending a model in a discussion it is always sobering to re­
mind oneself that practically all models are only consistent (at best). 

Good versus Accura te . The difference between good (or possibly: "ade­
quate") and accurate models is related to the difference between consistent 
and unique models, but it is not quite the same. Here, it is important to 
realize that the best model must not be the most accurate model! The best 
model is the one that finds the best balance between accurate description 
and simplicity. A good example for this is given by a comparison of New­
ton's law of gravitation and relativity theory when applied to the description 
of planetary motion (e.g.Hawkins 1988). Newtonian theory states that the 
gravitational attraction, F, between two masses is directly proportional to 
the masses of the two bodies mi and m-2, and inverse proportional to the 
square of the distance r between the two bodies. This model is incredibly 
simple and may be described by a simple equation: 

F = G ^ . (1.1) 

The constant of proportionality is called the gravitational constant, G. Its 
value may be found in Table D.4 in the Appendix of this book. This model 
describes the elliptic motions of the planets (that were discovered by Kepler 
in order to improve the Copernican model) extremely well. However, very 
detailed measurements early this century showed that the motions of some 
planets differ a bit from those described by eq. 1.1. These differences may be 
explained with the model of general relativity, which describes the planetary 
motions more exactly than Newton's law. Indeed, general relativity shows 
that many concepts of Newtonian physics are "wrong", for example the con­
stancy of mass (general relativity states that mass depends on speed). Thus, 
one might consider Newton's model to be superseded by general relativity 
and use this new model from now on. 
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However, general relativity is much harder to grasp than the intuitive 
understanding of eq. 1.1. It is therefore often not very practical to use. In 
fact, for the largest majority of purposes - for example to find a planet with 
a telescope in the sky, or for the interpretation of gravity anomalies by a 
geologist - Newton's model (eq. 1.1) is sufficient. Thus, for most purposes 
Newton's model is better (because simpler), albeit less accurate. In short, a 
good model should find a good balance between simplicity of the model and 
accuracy in describing a set of observations and this balance depends on the 
problem to be solved. 

Accuracy versus Precision. In the last paragraph we have used the word 
correct to describe a very good correlation between model description and 
observation in nature. In general this is the same what is meant by the word 
accurate. However, precision is something different. Precision describes how 
good a model or an experiment can be repeated with the same result (s. 
p. 419). Let us illustrate this with an example. A radiochemical analysis may 
indicate that a rock formed 100 my ago. This analysis is very precise if every 
time we perform it, we arrive at the same age of 100 my. This applies to errors 
as well. The analysis is still called very precise if we come up with an answer 
of 100± 50 my, if that answer is reproducible with the identical error limits 
and we know these error bars very well. However, the radiometric age above 
is not very accurate. In fact, even analyses with very small analytical errors 
may be not very accurate at all. It could be that a precise but inaccurate age 
of 100± 0.1 my was obtained for a rock that actually formed 150 my ago, 
which in itself bears important information, for example, why the chosen 
radiometric system re-equilibrated 50 my later. 

In conclusion of this section, let us define a good model. A model is a de­
scription of nature that has the three following properties: 

— It should describe a large set of observations with a comparably small set 
of parameters. 

— A good model must be useable as a tool to make predictions about fact 
that have not been observed yet. 

— It must be possible to test a good model by making new experiments or 
observations. 

Note that none of these three requirements includes accuracy. The deciding 
factor for a good model remains the balance between accuracy and sim­
plicity. Accurate description of nature is a virtue that remains reserved to 
(explanation-free) collections of measured accurate data. (Although, remem­
ber that many measured data may not be accurate either.) 

Geodynamics describes the dynamic evolution of earth through space and 
time. This dynamic evolution occurs on time scales of up to many hundreds 
of million years and spatial scales of up to thousands of kilometers. Direct ob­
servation is therefore often difficult. Geodynamics is therefore a science which 
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relies to a much larger extent on the model tool than many other sciences. 
Mapping in the field, analogue modeling in the laboratory and programming 
on the computer are all three modeling techniques that are of equal impor­
tance in this process. Integrated use of various modeling techniques is the 
most elegant way to arrive efficiently at a good description of the nature 
around us. 

a b 

T 

I 
Figure 1.2. Examples of illustrations of one- and two-dimensional models, a shows 
an example of temperature evaluated as a function of a single spatial coordinate, z. 
The axes of the surface of this page are used up for this one-dimensional description. 
The strange geotherm is uniquely defined: Every depth corresponds uniquely to a 
single temperature, b shows a two-dimensional model, for example temperatures in 
a subduction zone as a function of depth z and horizontal distance x. The surface of 
this page is used up for the two spatial dimensions of the model and the evaluated 
variable must be portrayed by the contours 

1.2 Spatial Dimension of Geological Problems 

When a geological process is to be described by a simple model, one of the 
first decisions that has to be made is often the number of spatial dimensions 
that are to be considered. This decision has to be made according to the 
requirements of a good model, as discussed above. That is, it should be tried 
to describe the problem in question with as few spatial dimensions as possible, 
without loosing the essence of the problem. Fortunately, a very large number 
of geological problems can be considered one-dimensionally or even without 
any spatial dimension. Before we go on to discuss some problems that require 
one-, two-, or three-dimensional consideration, it should be emphasized that 
"dimension" need not always be the "spatial dimension". For many problems 

V 
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it is important to consider time or some other independent variable as the 
dimension which may then become an axis on a diagram which we use to 
illustrate some feature of our description. In this book we will stick to (unless 
otherwise noted) the meaning of a spatial dimension when we talk of the 
dimension of a problem and use the SI units, when we use another variable 
as our "dimension". 

One-dimensional Problems. A simple example of a one-dimensional prob­
lem is the description of temperature in the lithosphere as a function of 
depth (Fig. 1.2a). A one-dimensional description of this problem is sufficient 
when the lateral extent of the plate is large compared to the thickness of 
the lithosphere and there is no other lateral changes in physical parameters 
or structure. Continental lithosphere is often of the order of 100 km thick, 
but continents are usually many hundreds or even thousands of kilometers 
in lateral extent. The temperature as a function of depth can therefore be 
well-illustrated in a diagram in which one axis denotes depth and the other 
temperature. The depth axis is the dimension of the problem, the temperature 
axis is the evaluated variable. Similar logic may be applied to the description 
of temperatures around magmatic dikes. 

One-dimensional problems need not be in Cartesian coordinates, but can 
also occur in spherical or cylindrical coordinates, for example temperatures 
around a spherical intrusion or compositional zoning profiles in a cylindrical 
crystal. One-dimensional descriptions are useful when there is little or no 
variation of the variable of interest in the other spatial directions. 

Two-dimensional Problems. An example of a typical two-dimensional 
problem is the temperature distribution in subduction zones. There, the sub-
duction angle as well as the plate thickness are both critical for the shape of 
the isotherms and a vertical (z) plus a horizontal spatial coordinate (x) are 
therefore needed for a meaningful description (Fig. 1.2b). Fortunately, the 
third spatial dimension - the direction parallel to the trench - can often be 
neglected because trenches are usually long and the subduction direction is 
often at roughly right angles to the trench. Calculated temperatures can be 
illustrated as contours on a diagram with two spatial dimension of the axes. 

Figure 1.3. A 
"three-dimensional" illustration 
of the two-dimensional function 
p — sin(x) x sin(j/) shown on the P = ^^ 
two-dimensional paper of this i 
book page T y 
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The same two-dimensional problem can also be illustrated by using a per­
spective sketch where the two spatial coordinates and the temperature axis 
are all shown in one diagram. Fig. 1.3 illustrates such a "three-dimensional" 
illustration of a two-dimensional model using the abstract function i(x, y) = 
sin(x) x sin(y) as an example. "Three-dimensional" is shown here in quota­
tion marks, firstly because the third dimension (p, or T in Fig. 1.2b) is not 
really a spatial dimension but the evaluated variable, and secondly because 
a perspective sketch is still drawn on the two dimensions of this page. Thus, 
such drawings remain two-dimensional on paper (unless they are built of wire 
or something else) and they only appeal to the three dimensional imagination 
of the reader. For two-dimensional models that are used to evaluate temper­
atures "three-dimensional" illustrations are not common practice, but for ge-
omorphological models and many geophysical questions "three-dimensional" 
illustrations of two-dimensional model results are quite instructive and are 
often used. 

However, be careful! The fact that two-dimensional models are often shown 
as surfaces over a grid of two spatial coordinates should not be mistaken for 
a real three-dimensional model. The third dimension is only the evaluated 
variable! For Fig. 1.2b we could write T=i(x, z): temperature is a function of 
x and z only. In landscape models (e.g.Fig. 1.4) this is often quite confus­
ing as the evaluated variable (surface elevation) has the same units (meters) 
as the two spatial coordinates on which it was evaluated. To stop confusion 
it is often useful to use the expression potential surface. Just like geophysi-
cists evaluate gravitational- or electromagnetic- potential as a function of two 
spatial coordinates, so can surface elevation or temperature be viewed as a 
potential surface overlying the plane defined by the two spatial coordinates. 

Three-dimensional Problems. Three-dimensional models are not only 
very difficult to design, their results are also hard to understand, to explain or 
to show graphically. For many geological problems - for example those that 
involve the modeling of stress or strain - three-dimensional models involve 
tensors algebra, which makes it often hard to follow their results intuitively. 
Three-dimensional models should therefore only be used if the problem that 
is to be solved cannot be simplified in its spatial dimensions (s. p. 7). Exam­
ples of important geological problems that are inherently three-dimensional 
are mantle convection or oblique subduction. Such problems are only solvable 
with three dimensional models and brave earth scientists use modern meth­
ods of calculation and illustration to tackle such difficult problems (e. g. Braun 
and Beaumont 1995; Piatt 1993a). Practically, three-dimensional model re­
sults can only be illustrated on a computer screen or with series of contoured 
diagrams or videos. 

Zero-dimensional Problems. A very large number of geological problems 
can be solved quite elegantly without considering any spatial dimensions. For 
example, the surface elevation of mountain belts in isostatic equilibrium or 
the influence of heat production on temperature of rocks can be estimated 
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Figure 1.4. a, b "Three-dimensional" illustration of a two-dimensional model 
shown on the two dimensions of this page, c Two-dimensional illustration of the 
same model results. The coordinates x and y are the spatial coordinates of the 
model and H is the evaluated variable - or potential surface. In other models the 
vertical axis may be the gravitational potential (in m s~ ), temperature of a meta-
morphic terrain or the concentration of an element in a crystal. However, in the 
shown example, H is of the same units as the spatial coordinates - the model is a 
landscape model, a and c are illustrations of field data of the shape of Ayers Rock 
in Central Australia and b shows the modeled shape according to Stiiwe (1994) 

without spatial considerations and can still give use enormous insight into the 
nature of many tectonic processes. When neglecting all spatial dependence 
of a problem, this gives us the great freedom to evaluate the model results 
graphically as a function of two variables simultaneously. Both axes that 
may be drawn on paper can be used to evaluate the influence of two different 
variables against each other. 

Zero-dimensional problems should not be confused with dimensionless 
variables or normalized variables. In many problems of this book we will 
encounter variables that are normalized to some standard value and there­
fore have no units. This is called a dimensionless variable. Dimensionless 
variables are great to get a feeling what a certain number means in relation­
ship to some better known value. For example, the elevation of Mt Blanc, 
H 

(MtBianc) i c a n be either given in meters, or it could be described in terms 
of its proportional elevation h (in %) relative to, say, Mt Everest: 

h 
H, (MtBianc) 4 807 m 

#(MtEverest) 8 848 m 
0.543 (1.2) 
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h = 0.543 is the dimensionless elevation of Mt Blanc relative to Mt Everest. 
The use of the dimensionless elevation in eq. 1.2 may not be immediately 

clear. The next example will illustrate the usefulness of this approach better. 
When describing the thermal evolution of contact metamorphic aureoles, 

(sect. 3.6) we will often encounter dimensionless temperatures of the following 
form: 

0 = (T-Th)/(Ti-Th) (1.3) 

There, TJ and Tj, are the temperatures of an intrusion and the background 
temperature of the host rock, for example: T\ = 900 °C and Tb = 300 °C. T is 
the variable temperature which may change as a function of distance from the 
intrusion or time. When T = 600 °C, then this in itself is not very instructive. 
However, when expressed as 9=0.5 we can see that this temperature is exactly 
half way between the host rock and the intrusion temperature. For many 
questions this is much more instructive. 

In other examples we will encounter even more complicated formulations of 
dimensionless variables. For example, in diffusion problems it is often useful 
to evaluate temperature as a function of the dimensionless variable: 

r = f(£) d.4) 

This may appear quite confusing, but it has also the purpose of simplifying 
the results, similar to what we did in eq. 1.3. Eq. 1.4 shows that the variables 
K ( diffusivity ), t (time) and I (size) are coupled in the particular form of this 
equation ("f()" in eq. 1.4 means "function of"). Using dimensionless variables 
is not only useful for the better illustration of the meaning of a result, but is 
also a great aid in differential calculus. 

1.2.1 Reducing Spatial Dimensions 

Deformation of lithospheric plates is - in the most general case - a three-
dimensional problem (however: s. sect. 2.2.2). In three dimensions, stress, 
strain and strain rate are described by tensors and any fully three-dimensional 
description of continental deformation does therefore involve tensor calcula­
tions (s. sect. 5.1 and B.3). In order to reduce the complications that arise in 
such calculations, it is useful to see if the number of considered dimensions 
can be reduced. When describing lithospheric deformation, there are various 
well-established simplifications that allow us to neglect some or even all of 
the components of a tensor. Of course, whether or not these simplifications 
should be used depends on the nature of the problem. Two of these simpli­
fications are important enough for plate tectonic modeling so that they are 
mentioned already in this first chapter of the book. 
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Figure 1.5. Illustration of two- and three-dimensional deformation models (ab­
breviated with 2D and 3D in the figure). The shortening of the block shown in a 
in the x direction is compensated in b only by stretching in the y direction. The 
thickness of the block remains constant. This is plane strain deformation. In c the 
shortening of the block is compensated by both stretching in the y and z directions. 
The thickening or stretching in the z direction is homogeneous. This corresponds 
to the two-dimensional thin sheet approximation. In d the shortening in the x di­
rection is compensated by stretching in the y direction and also by inhomogeneous 
thickening in the z direction. This kind of deformation can only be described with a 
fully three-dimensional model. In b and c the stretching in the y and z directions is 
no function of x (in contrast to Fig. 1.6). This is no requirement of the plane strain 
or thin sheet approximations. The illustrated geometries are therefore special cases 
which could also be described one-dimensionally. Stretching in y and z direction 
could both be evaluated as a function of the shortening in x only 

P l a n e Stra in A p p r o x i m a t i o n . The plane strain approximation helps to 
reduce three-dimensional problems to two dimensions. It assumes tha t all 
deformation is strictly two-dimensional so tha t all strain and displacement 
occurs in plane and no strain perpendicular to this plane. In plate tectonic 
modeling we normally consider only the case of no volume change. Then, the 
total amount of shortening in one spatial direction must be compensated by 
stretching in the other (Fig. 1.5b; Fig. 1.6). No area change occurs. Tapponier 
(e. g. 1982) has made great advances in our understanding of continental de­
formation using this assumption in his descriptions of the India-Asia collision. 
Plane strain deformation may be viewed as the deformation of a thin film of 
material t ha t deforms between two fixed parallel plates. It is not plane stress, 
as the normal stresses on the surfaces of the confining plates will vary, de­
pending on where deformation concentrates. Plane strain modeling is a good 
approximation when the lateral extent of deformation is much larger than the 
extent in the direction normal to the two modeled dimensions, e.g. crustal 
thickening or thinning when modeling continental deformation in plan view. 

T h i n Shee t A p p r o x i m a t i o n . When lithospheric shortening in one hori­
zontal direction is compensated both by stretching in the second horizontal 
direction and by thickening (or thinning) in the vertical, the lithospheric 
deformation becomes three-dimensional. However, such scenarios can still 
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plane strain plane stress 

Figure 1.6. A comparison of modeling in two dimensions assuming plane strain 
(left) and plane stress or a thin sheet (right hand row). The top two diagrams show 
the outline of the model region at three different time steps of the runs. The bottom 
two diagrams show the mesh at the final time step. The shading indicates plate 
thickness. The initial geometry and boundary conditions are chosen to resemble the 
India-Asia collision zone (shown as inset at the top) (Houseman and England 1996). 
In plane strain, the area of the plate remains constant throughout deformation: 
The light shaded area is identical in size to the dark shaded area. The area loss 
in the right hand row is compensated by thickening in the third dimension. The 
boundaries along the top and left hand sides are force to remain fixed. The right 
hand boundary is stress free in both tangential and normal direction. The bottom 
boundary is tangentially stress free and is forces to move northwards at the constant 
rate that ends up in the shape of the plate boundary between Indian and Asian 
plate. The model region is assumed to have a viscous rheology. Model calculated 
with the finite element package BASIL of Barr and Houseman (1996) 

be modeled in two dimensions assuming the thin sheet approximation (s. 
e.g. Houseman and England 1986a; s. however: Braun 1992). The thin sheet 
model is based on the assumption that the normal stresses at the surfaces 
of the plate are constant and that there are no shear stresses on horizontal 
planes. Thus, the thin sheet approximation is also called the plane stress ap­
proximation. As a consequence, the plate may thicken or thin in the vertical 
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direction as to maintain the surface stresses constant but there are no vertical 
strain rate gradients (Fig. 1.5; 1.6) (England and McKenzie 1982, England 
and Jackson 1989). Using z for the vertical spatial coordinate and e for strain 
rate, this can be described by: 

The thin sheet approximation is a good approximation for the description of 
lithospheric scale deformation when: 

1. The shear stresses at the surface and the base of the lithosphere are neg­
ligible. 

2. If the topographic gradients at these two surfaces are small. 

Both are usually given on the scale of whole lithospheric plates (s. more 
detailed discussion in sect. 5.3 and 6.2). Note however that this descrip­
tion can only describe homogeneous thickening of the lithosphere. Thus, this 
thickening strain can be evaluated as a variable without the need for a third 
spatial dimension. Extended formulations have been devised that can help to 
overcome some of these problems (Medvedev and Podladchikov 1999). 



2. Plate Tectonics 

In this chapter we repeat basic aspects of the theory of plate tectonics. In the 
first part of the chapter a summary of the history of the plate tectonic model 
is presented and some basic principles how to describe it are discussed. Some 
arguments that suggest why plate tectonics may not work are also presented. 
In the second part of this chapter we discuss the layered structure of the 
earth and the geographic distribution of lithospheric plates. We will also use 
this chapter to introduce the terminology that is used in the remainder of 
the book. As such, the chapter is meant as a basis for all following chapters. 

2.1 Historical Development 

Observations pertaining to the theory of plate tectonics are at least 500 years 
old. In the late 16th century, Sir Francis Bacon observed that the coast lines 
of the American and African continents have a matching shape. At Dar­
win's times the connections between the two continents were already well-
established. However, it was only Alfred Wegener who presented the first syn­
thesis explaining these similarities with a theory of plate motion. In part, his 
synthesis was based on his own observations on the climatological connections 
between the two continents. While Wegener's synthesis was ultimately proven 
wrong by the first detailed bathymetric surveys of the oceans in the middle 
of the past century, his publications (and those of others around his time, 
e.g.Taylor 1910) are still viewed as the basic foundation of plate tectonic 
theory (Wegener 1912a,b; 1915). At the time of Wegener, the significance 
of mid-oceanic ridges and subduction zones were still unknown. However, 
the deepest point in the world (the Mariana Trench with 11.5 km below sea 
level) and the eastern Pacific rise had already been discovered by the research 
vessel H.M.S. Challenger around 1875. Also, mantle convection was already 
established as the driving force for plate motion (Holmes 1929; Griggs 1939). 
Nevertheless, Wegener had no model for the processes on the ocean floors 
and thought of plate motion as some "plough-like" motion of the continents 
through the oceans. From the time of this theory, only the names of the an­
cient super continents Gondwana and Laurasia (du Toit 1937) are still being 
used. 
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Figure 2.1. Topographic map of the ocean floor. Most regions where the water 
depth is less than 200 m (nearly white regions) are made of continental lithosphere. 
Note that in some regions substantial portions of continental lithosphere are actu­
ally below sea level, for example around New Zealand, between North-America and 
Siberia, in the Mediterranean or east of southern South America 

The real break through of plate tectonics came not until the mid-twentieth 
century when the first detailed bathymetric surveys of the Atlantic were 
performed around 1950 to 1965 (Heezen 1962; Menard 1964). During these 
surveys, the gigantic mountain ranges and valleys of the ocean floors were 
discovered that are now known as mid-oceanic ridges and subduction zones. 
Earlier on, however, these valleys and ridges were interpreted by all kinds of 
theories, for example the expanding earth theory (Carey 1976; King 1983). 
However, since the mid-sixties it is well-established that mid-oceanic ridges 
are areas of lithosphere production, while subduction zones are areas where 
lithosphere is being consumed (destructive plate margins). The chains of vol­
canoes that produce new oceanic lithosphere along the mid-oceanic ridges 
had already been predicted by some authors, but they were only discovered 
by the submarine research vessel Alvin (s. Edmond and Damm 1983). Sub­
duction zones and mid oceanic ridges are in volumetric balance so that there 
is no need for an expanding earth theory (Hess 1961; Vine and Mathews 
1963). Today our knowledge of mid-oceanic ridges and subduction zones is 
well-established as the basic foundation of plate tectonic theory (sect. 2.4.3) 
(e. g. Morgan 1968). 

Modern Understanding of Plate Tectonics. Our modern understanding 
of plate tectonic theory is largely based on observations from the ocean floors 
(Le Pichon et al. 1976). The total length of mid-oceanic ridges is of the order 
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Figure 2.2. The intraplate stress field of the world. The different symbols indicate 
different methods of determination including earthquake focal mechanisms, bore­
hole breakouts and geological indicators. The different shadings indicate different 
deformation regimes: darkest are thrust faults, medium gray are normal faults and 
light shading are strike slip faults. For detailed resolution of this figure see the orig­
inal CASMO facility on the world stress map home page, which was used to create 
this map (Muller et al. 2000) 

of 60 000 km. Most of them are located on the ocean floors (s. sect. 2.4.3). The 
average rifting rate at these ridges is about 4 cm per year, (Table 2.3) which 
implies that the total production rate of new surface on earth is about is about 
2 km2 y _ 1 . This surface production is balanced by surface wasting at the 
subduction zones. The total surface of the oceans is about Ao = 3.1 • 108 km2 

which means that all oceanic lithosphere is being renewed about every 155 
my. This is a geologically short time span and means that oceanic lithosphere 
is one of the younger features of this globe. It is therefore ironic that plate 
tectonic theory - which is now mostly being applied to our very detailed 
observations in the continents - has its origin not on the continents, but 
at the deepest points of the ocean floors. Cox (1972) has summarized the 
revolution of plate tectonic theory. He considers the plate tectonic theory to 
be based on four independent data sets: 

— The topographic maps of the ocean floors (Fig. 2.1). 
— The magnetic maps of the ocean floors. 
— The age dating of the magnetic maps (Fig. 2.4). 
— Detailed maps of the epicenters of global earthquakes (Fig. 2.5). 
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Figure 2.3. Plate reconstructions for the last 170 my. Produced with the ODSN 
home page (s. p. 455). Maps are in Mollweide projection reconstructed relative to 
the magnetic reference frame 

With the advance of GPS measurements of active plate motions over the last 
10 years (e.g. Kreemer et al. 2003), it may be said that a 5th data set must 
be added to the list: 

— Direct measurement of plate motions. 

Since the fundamental break through of the sixties, plate tectonic theory has 
made dramatic and rapid advances. It was soon discovered that many obser­
vations can be explained by astoundingly simple physical models, all within 
the plate tectonic concept. For example, the startlingly simple quadratic re­
lationship between space- and time scales of diffusion processes (sect. 3.1.4) 
has now been used to explain an enormous variety of processes including the 
water depth of the oceans (sect. 4.4.1), the duration of metamorphic events, 
the magnitude of contact metamorphic aureoles (sect. 3.6.2) or the shape of 
chemical zoning profiles in minerals (sect. 7.2.2). 

Such amazing success of simple physical models has lead in the past 30 
years to an unparalleled development of plate tectonic theory. Much of this 
development has been characterized by the application of simple analytical 
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Figure 2.4. The age of the ocean floor (Miiller et al. 1997). Shading intervals 
are every 10 my from 0 (white) to 160 my (black). Ocean floor older than 160 
my is black. Areas with no data ar white. These regions are both on continental 
and on oceanic lithosphere. Landmasses are grey. Oldest known parts of oceanic 
lithosphere are around 180 my in the western Pacific just east of the Mariana 
Trench, between Madagascar and Africa and in the westernmost Atlantic just east 
of the US. Compare this map also with the topography of the ocean floor (Fig. 2.1) 
and note the similarities. 

models to geological problems. Many of these models are introduced in this 
book. 

Are We Sure that it Works? Despite the wide spread acceptance of the 
plate tectonic model, there are observations and ideas that indicate that 
it may not work after all. Most important among these observations are the 
occurrence of zircons with continental signatures found in oceanic islands, for 
example in Mauritius or Iceland (e.g. Schaltegger et al. 2002). It also has been 
argued that there is a discrepancy between the observed long narrow zones 
of axial volcanism at the mid ocean ridges and the geometry of upwelling 
mantle plumes (McKenzie 2001). As an alternative, it is being discussed if 
mid ocean ridges may reflect zones of asthenospheric downwelling and that 
the magnetic striping of the oceanic plates is the consequence of narrowing 
of formerly much more expanded zones. Within this view substantial parts of 
the oceanic plates may represent the ultimate end member of an extremely 
thinned continental margin. Even if arguments can be found that refute such 
models, some of these hypothesis remind us not to accept the plate tectonic 
model uncritically. 

Nevertheless, there is no debate about the fact that plates move and that 
the surface of earth includes zones of divergence and convergence that sepa­
rate zones of less internal strain which we often refer to as cratonic interiors 
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or plates (Fig. 4.2). More than calling the plate tectonic concept "wrong" it 
could be said that it becomes slowly outdated in view of our much better 
understanding of the processes that govern plate motion and deformation. 

Recent Developments and Future. Although the global distribution of 
earthquakes shows that oceanic plates act according to the principles of plate 
tectonic theory, continental plates do not: Oceanic plates are large and flat 
and their margins are narrow compared to their size and seismicity is confined 
to the rims of these plates. Continents behave differently. They are charac­
terized by deformation and seismicity which reaches wide into the continents 
themselves, their thickness varies dramatically and some seismicity even oc­
curs in their centers. Their plate boundaries are diffuse. It has therefore been 
suggested to use the term "cheese tectonics" as a superceding term for "plate 
tectonics", because continents seem to deform rather like soft camembert 
than like rigid plates. Like many good jokes this one has a true core. It has 
been known since the turn of the century that rocks behave like fluids on ge­
ological time scales (s. summary by Gordon 1965 or England 1996). However, 
only in the past 30 years geologists have begun to actually use the theory 
of deformation of viscoelastic materials to describe the dynamic evolution of 
continents (England and McKenzie 1982; England and Jackson 1989). In part 
these new descriptions were triggered by studies like those of Goetze (1978) 
or Brace and Kohlstedt (1980) who provided us with the first simple models 
of lithospheric rheologies. 

Because of such models it has now been possible to describe largest scale 
tectonic processes with simple dynamic models. Even coupled thermomechan-
ical approaches can now be performed with startling simplicity (e.g. Sonder 
and England 1986) and have found their use even by non-geophysically ori­
ented earth scientists. 

The current development of plate tectonics is going more and more to­
wards the use of numerical models and further away from simple analytical 
models. Digital data sets of global observations - for example the global dig­
ital elevation model SRTM3 or the global sea floor topography of Smith and 
Sandwell (1997) - make it now possible to tackle problems that can only be 
solved using large numbers of data. Such models can now be used to explain 
problems that go beyond single observations and pertain to the whole globe. 
The future will surely be characterized by an increasing use of large data sets 
and numerical models. 

2.2 Working on a Spherical Surface 

The earth is nearly a sphere (s. sect. 4.2) and many aspects of the geometry 
and the mechanics on a sphere are different from its Cartesian equivalent. In 
this section we discuss some aspects of spherical coordinates that may need 
to be considered when solving geodynamic problems on very large scales. We 
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Figure 2.5. Global seismicity. All recorded earthquakes above magnitude 6 since 
1973 are shown. Note that most earthquakes along oceanic plate boundaries (e.g. 
the Mid-Atlantic Ridge) occur very near the plate boundary, while earthquakes 
associated with plate boundaries in continental lithosphere cover much more diffuse 
areas (e.g. the India-Asia collision zone). See Fig. 2.20 and Fig.4.2 for more details 
about the plates and strain distribution 

also discuss some ball park estimates that can be used to judge whether it is 
sufficient to neglect the spherical geometry. 

2.2.1 . . . or is the Earth Flat After All? 

By far the largest number of geodynamic problems can be described assuming 
a flat earth. Fig. 2.6 shows that over a line two thousand kilometers in length, 
the curvature of the earth causes about 80 km deviation from a straight line. 
This is only about 5% of the extent of the feature. For geological features 
of some tens of kilometers extent, the deviation is only some tens of meters, 
which is about 0.1% of the extent of the feature. We can conclude that only 
for geodynamic problems that have a length scale of substantially more than 
thousand kilometers the curvature of earth must be considered. 

A famous example for a problems that can not be described on a flat 
earth is the shape of long subduction zones. On a flat earth, the trace of a 
subduction zone should be linear, just like the linear trace of the curvature 
of a sheet of paper hanging off the edge of a table. In contrast, the trace of 
many deep ocean trenches is curved along the surface of earth. For example, 
the Aleutian, Kurile, Japan, Izu Bonin and Mariana trenches from northeast 
to southwest) along the Pacific ring of fire, the South Sandwich Trench east 
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Figure 2.6. Illustration of the ping pong model, a Slab contours for the Aleutian 
slab and the Kuril-, Japan- and Mariana slabs. Depth contours are shown every 
50 km from 0 km to 700 km (in the Japan Trench). Data from Gudmundsson 
and Sambridge (1998), (http://rses.anu.edu.au/seismology/projects/RUM). b The 
difference between a flat and a curved surface of the earth. The maximum deviation 
of a curved surface from a flat surface, H, is given from geometric relationships by 
H — R—y/R2 — r2. For r — 1000 km as shown here and the value for R from Table 
D.3 the deviation is H «80 km 

of South Georgia or the Java (Sunda) Trench south of Sumatra and Java 
are all curved concave towards the subduction direction in plan view. This 
is often explained with the ping pong ball model. This model compares the 
curvature of trenches on the surface of the earth with the curvature of the 
indentation edge on a dented ping pong ball. If the indented part of a ping 
pong ball is not deformed in itself, then this edge forms a small-circle on the 
surface of the ball. Exactly this is observed in subduction zones. In fact, the 
model can be used to predict the subduction angle (2 9), which should be 
given (according to Fig. 2.6) by: 

sin(0) = L (2.1) 

where r is the small circle radius and R is the radius of earth. Most of the small 
circle radii of subduction zones on earth correspond well with the subduc­
tion angle predicted by eq. 2.1 (s. Isacks and Barazangi 1977). However, the 
subduction angles may also depend on a large number of other parameters, 
for example whether subduction occurs in or against the direction of convec­
tion in the asthenosphere (Doglioni 1993). In fact, it has been suggested that 
the earths rotation causes a westward drag between lithosphere and astheno­
sphere which also influences the direction and steepness of subduction zones 
(Doglioni et al. 1999). Other plate scale examples for the influence of the cur­
vature on plate motions are the transform faults in the oceanic lithosphere 
(Fig. 2.9). 

Geometrical problems can be described on a flat earth using the familiar 
Cartesian coordinate system. In this book we use x and y for the coordinates 
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Figure 2.7. Six plates on a flat 
surface. The relative motions of 
some plates are shown by the 
arrows. However, the relative 
motions of plates C and E, D 
and E, B and E, B and F as 
well as that between A and F 
are completely unconstrained 
by the shown relative motions 

oriented parallel to the surface of the earth and z for the vertical direction. In 
section 2.3 we discuss the relationship between those coordinates and those 
of other coordinate systems. In section 4.2 we discuss some confusions that 
may arise from mixing different reference frames. 

Kinematic and dynamic problems on a flat earth can be described by 
motion and forces in the horizontal and vertical directions. Velocities and 
forces are described by vectors. This means that they have a direction and a 
magnitude and can be split up into vector components that are parallel to the 
axes of a Cartesian coordinate system. For combined paths we can therefore 
use the rues of vector algebra. Be careful to note, however, that all motions 
(and forces) are relative! This is important to realize as an observed motion 
in one place of the globe must not imply that this motion is elsewhere the 
same (for example China is moving towards Tibet, but the region between 
China and Tibet is under extension). Fig. 2.7 illustrates some more examples. 
All this is quite different on a spherical surface. 

2.2.2 Geometry on a Sphere 

On a spherical surface the position of a point is described by its longitude 
4>, and latitude A (Fig. 2.8). As with time, spherical geometry is one of the 
few branches in science where the duo-decimal system is still in use: a right 
angle has 90 degrees and longitude and latitude around the globe are divided 
into 360 degrees. (The use of 100 degrees for a right angle was attempted 
by the introduction of "new degrees" but has not found footing in science). 
Every degree of longitude is described by a great circle which goes through 
the geographic poles. These great circles are called Meridians. Great circles 
are lines on the surface of a sphere that are defined by the intersection of 
a planar surface through the center of the sphere, with the surface of that 
sphere. Meridians are therefore a special kind of great circle, namely one that 
goes through the poles. Small circles are defined as intersections of all other 
planar surfaces with the surface of a sphere. 180 of the 360 Meridians are 
numbered west of Greenwich and the other 180 east of Greenwich, which 
has been internationally agreed upon to be the reference for longitude. Each 
degree of latitude is defined by a small circle parallel to the Equator and 
at right angles to the axis that connects the poles. 90 degrees of latitude 

D 

E 

B 

/ 
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are north of the equator and 90 are south. Note that there is a total of 360 
Meridians, but only 180 degrees of latitude. The spacing of the degrees of 
latitude is chosen so that they divide the Meridians into 360 sections of equal 
length. Thus, the distance (along the surface of the earth) between degrees 
of latitude is constant everywhere on the globe, while the distance between 
degrees of longitude is largest at the equator and zero at the poles. For 
more detailed description of locations on a spherical surface, every degree is 
divided into 60 arc minutes and every arc minute into 60 arc seconds. Just to 
make things worse, the duo-decimal system is often coupled with the decimal 
system: Geographic locations are often described by degrees and decimals. 
That is, tenth and hundredths of degrees are given, rather than arc minutes 
and arc seconds. 

incurvation"^** 

magnetic 
field 

line 

small circle of 
constant latitude — 

equator 

general great circle 

Greenwich 

great circle of 
constant longitude 

rhumb line 

Figure 2.8. Definitions of important lines and angles on a spherical surface. The 
geographic longitude </> of point X is west of Greenwich. The white dot is the mag­
netic pole. The angle between magnetic and geographic north (labeled at point X) 
is the declination and the plunge angle of the magnetic field lines is the inclination 

The circumference of a great circle on earth is about 2Rn RJ 40 000 km. (If 
it were exactly 40 000 km, then the radius of the earth would have to be R 
= 6 366.2 km; in reality the equatorial radius is 6 378.139 km and the polar 
radius is 6 356.75 km). In fact, one meter was long defined as the 1/40 000000 
part of the circumference of earth. One degree of longitude at the equator 
(and all degrees of latitude) is therefore about 40 000/360 RS 111 km. On small 
circles north and south of the equator, the distance between full degrees of 
longitude, I, decreases with the cosine of the latitude: 

I « cos(A) • 111 . (2.2) 

In eq. 2.2 we have used the approximate value for one degree of longitude at 
the equator. Correspondingly, the small circle radius of each small circle of 
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constant latitude shrinks with the cosine of the latitude: r= cos(A)xi?, where 
R is the radius of earth. One arc minute of latitude is defined as one nautical 
mile which is « 1.8 km. Along the equator, distances between degrees of 
longitude and latitude are of equal length. 

Other important lines on spherical surfaces are rhumb lines (also called 
loxodromes). These are lines that intersect degrees of latitude and longitude 
at constant angles. Rhumb lines are easy to follow, for example when setting 
constant course on a ship, but they form spiral-shaped curves on a sphere and 
they are not the shortest connection between two points (Fig. 2.8). The angle 
between magnetic north and the lines of longitude (geographical north) is 
called the magnetic declination. The vertical angle between the normal to the 
Geoid surface and the magnetic field lines is called the magnetic inclination. 

All distances and angles on a spherical earth can be calculated with sim­
ple combinations of the trigonometric functions. Throughout the book it is 
assumed that the use of those, as well as some sound spatial imagination is 
familiar to the reader. As a reminder, some of the relationships we will need 
are summarized in Appendix C, Tables C.4, C.6, C.7, and Fig. C.l. 

2.2.3 Kinematics on a Sphere 

On a flat surface, velocity v and speed have the units of m s_ 1 . Velocity is 
a vector and speed is a scalar quantity. For example, the Indian Plate has a 
speed of 0.05 m s_ 1 , but a velocity of 0.05 m s _ 1 moving north. The equivalent 
to velocity on a spherical surface is the angular velocity w. w has the units of 
radian per time, which is s _ 1 . The axis that is perpendicular to the planar 
surface swept over by angular motion is called the pole of rotation or Euler 
pole (Fig. 2.9). The velocity that corresponds to a given angular velocity 
depends on the distance of the angular motion from the pole of rotation. 
Acceleration in a straight line is the change of velocity over time and has the 
units m s~2. Correspondingly, the angular acceleration has the units of s - 2 . 
The differences in units between linear velocity and angular velocity has lead 
to a lot of confusion in the literature. For example, a constant rate of plate 
motion with a constant angular velocity will cause differences in the rates of 
relative plate motions along the plate margin. The relative plate motion rate 
depends on the small circle radius of the velocity vector (Fig. 2.9). In fact, 
even qualitative changes from divergent plate motion to convergent plate 
motion may occur along a plate margin because of this (compare Fig. 2.7 
and 2.9). This is spectacularly illustrate by the transform faults on the ocean 
floors which solve the space problem caused by the angular rotation. 

2.2.4 Mechanics on a Sphere 

Plate tectonic forces are often described in the literature as "torques" (e.g. 
Sandiford et al. 1995). For example, ridge "push" is a force, while many 
authors rather use the term ridge "torque". Strictly speaking, we should 
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rotational axis 

Figure 2.9. Illustration showing the meaning of rotation poles. The arrows are 
vectors showing the direction and magnitude of relative motion of the two plates 
(shaded regions). The thick line connecting the arrow heads is the new plate margin 
after some time. The axis of the earth is only shown to emphasize that it has nothing 
to do with the rotation pole of plate motion. The enlargement illustrates the origin 
of transform faults 

only use torques to understand the mechanics that cause plate motion on the 
earth's surface as plates do not move in a linear direction but rather around a 
rotation pole (the center of earth). In calculating a force or torque balance of 
a mountain belt, where every point in the belt is virtually the same distance 
from the pole of rotation, the distance to the rotation pole cancels out and 
torque balances and force balances are practically equivalent (s. p. 216). 

Force F is given in Newtons [N] and: 1 N = 1 k g m s - 2 . Force is a vector 
with a magnitude and direction. Horizontal forces are therefore tangential to 
the globe. The equivalent on a spherical surface is torque. Torque (which is 
different from angular momentum!) is the turning moment which is exerted 
by a force about an axis. It is given by the product of force and the distance 
from the axis about which the torque acts. Torque has the units of Nm or 
kgm2 s - 2 . A force of 1012 Newton that acts in direction of a great circle on 
the earth's surface, corresponds to a torque of 6.37 • 1018 Nm. The torque 
changes along a plate margin, as the normal distance of the plate margin to 
the rotation pole changes. The units of torque can be read as "Newton times 
meter of leverage", where the "meters of leverage" are the normal distance 
to the rotation pole. In the literature, "forces" are often given in Newton 
per meter, meaning for example, that the force building a mountain range is 
normalized "per meter length of orogen". It is important not to confuse this 
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Table 2.1. Important kinematical and mechanical parameters and their units. Each 
parameter is given with both, the linear and the spherical equivalents 

physical parameter unit 

velocity 

angular velocity 

acceleration 

angular acceleration 

force 

torque 

mass 

moment of inertia 

linear momentum 

angular momentum 

with torques, which have the units of Newton times meters, there the meters 
are the distance to the rotation pole. 

Force = mass x acceleration (F = m x dv/dt) and similarly torque = 
mass x angular acceleration. In plate tectonics the changes in velocity and 
angular velocity occur over very long time periods, so that accelerations and 
angular acceleration are negligible (s. p. 218). Thus, the common assumption 
is that the sum of the torques or the net torque acting on a plate is zero or, 
correspondingly, that the sum of the forces or net force acting on a smaller 
region such as a mountain belt is zero. 

Aside from force and torque, there are some other important mechanical 
parameters that we will need in this book. The linear momentum / is the 
product of mass and velocity: / = mv = k g m s _ 1 . Just as momentum is given 
by / — mv, the change of momentum is given by: AI = mAv, mass times the 
change in velocity. Considering that force has the units of the product of mass 
and acceleration (the change in velocity) we can write that: F = mdv/dt. 
Thus, the change of momentum is: AI = Ft, force acting over a given time. 
On a spherical surface, the angular momentum is analogous to the linear 
momentum. The angular momentum D is the product of the moment of 
inertia J and the angular velocity w: D = Jw. The moment of inertia is the 
ratio of torque and angular velocity and has the units of J = kg m2. Angular 
momentum has the units of D = k g m 2 s _ 1 . In plate tectonics, changes in 
momentum and angular momentum are ignored because changes in veloc­
ity and angular velocity of plates takes place over very large time periods 
(s.sect. 5.1.1). In most problems then, the net forces or torques acting on a 
given plate must balance or add up to zero (s. p. 216). However, momentum 

m s 1 

s " 1 

- 2 

m s 

s" 2 

kgm s - 2 

k g m 2 s - 2 

kg 
kgm2 

kgm s _ 1 
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and angular momentum help to understand why forces or velocities can form 
the boundary conditions for orogenic processes. 

2.3 Map Projections 

Map projections are mathematical or geometrical models that portray the 
features of the spherical surface of our globe on the two dimensions of paper. 
The map projection model serves the purpose to make these features easier 
to look at and pays for that by accepting some distortion. Usually, the pro­
cess of projection involves the conversion of latitude A and longitude <j> into 
Cartesian coordinates (Robinson et al. 1984). Map projections have become 
an increasingly important part of geology since global data sets are used. Map 
projections can be performed geometrically or they can be purely mathemat­
ical, without any apparent geometrical equivalent. Among projections with a 
geometrical equivalent we discern three important types (Fig. 2.10): 

Figure 2.10. Schematic illustration of three examples of commonly used geometri­
cal map projections, a Cylindrical projection with examples of (i) normal or equato­
rial, (ii) transverse and (iii) oblique orientations of the projection surface; b conical 
projection with examples of (i) tangential orientation (touching the sphere along 
the thick line) and (ii) secant orientation (intersecting the globe) of the projection 
surface; c Azimuth projection with polar orientation of the projection surface 

— Cylindrical projections, 
— conical projections, 
— azimuth projections. 

These three types of projections can be imagined as projections of the earth's 
surface from an imaginary light source (usually assumed to be located at the 
center of earth) onto some enveloping surface which is then rolled open to 
form a planar surface. In these three projections, the enveloping surface is 
a cylinder, a cone or a planar surface. The enveloping surface can touch the 
globe along one line (tangential orientation) or transect it (sectant orienta­
tion) so that it has two lines along which there is no distortion. In total, 
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there are several hundreds of known projections that serve a large variety 
of purposes. A large number of other projections are explained by Snyder 
(1987) and Snyder and Voxland (1989). All their projections are usable with 
the software PROJ by Evenden (1990) and there is great overlap with the 
projections incorporated in GMT and described therein (Wessel and Smith 
1995). A bit more detail was also given in the first edition of this book. Most 
known projections are not geometrical but are only described by a projection 
function that relates spherical and planar coordinates. Just about all map 
projections are either: 

— Conformal (orthomorphic) projections, 
— equivalent (equal-area) projections, 
— azimuthal projections. 

Conformal projections represent angular relationships the way they are on 
the spherical surface. Equivalent projections render the same areas as those 
on the spherical surface. Azimuthal projections retain azimuthality, that is, 
the directional relationships along great circle bearings are the same on the 
map as they are on the sphere. No projections on two-dimensional paper can 
retain more than one of these relationships from a sphere at the same time. 
However, many projections aim to find a useful compromise between different 
relationships, on the expense of being neither true in angle nor true in area 
or great circle bearing. 

Most geologists are familiar with at least one conformal and one equivalent 
projection, even if they have never used maps of the globe. These are the 
nets of Schmidt (also known as Lambert's equivalent projection ) and Wulff 
(also known as stereographic projection) that are used by crystallographers for 
the presentation of angular relationships of crystal faces and by structural 
geologists for the equivalent illustration of planar structures, respectively 
(Fig. 2.11). Note that lines of constant latitude and longitude need not look 
like they do on Fig. 2.11. If the orientation of the projection surface is oblique 
to the axis of the globe, then these lines may have very different shapes as 
shown on Fig. 2.12. 

2.3.1 The Mercator Projection 

The Mercator projection is one of the most familiar projection and is one 
of several known cylindrical projections where the projection surface is a 
cylinder as shown in Fig. 2.10a. It was first used by G. Mercator in 1569 
for navigation on the oceans. For this projection, the projection surface is 
a cylinder a cylinder that touches the globe along the equator and has its 
axis therefore parallel to the axis of earth (Fig. 2.10a). Every point of the 
earth's surface is projected onto this cylinder from an imaginary light source 
at the center of earth. The imaginary cylinder is then rolled open. The map 
is ready! There is two great advantages of this projection: 
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Figure 2.11. a The equal-area net by Schmidt, b The conformal net of Wulff 

1. There is no distortion along the equator and the distortion in equator-near 
regions is negligible. 

2. Lines of constant longitude, latitude and rhumb lines appear as straight 
lines. 

Because rhumb lines are easy to navigate along, Mercator projections used 
to be common for shipping (before navigation software made more direct 
routing much easier). However, note that the shortest connection between 
two points on the globe - a great circle - appears on the Mercator projection 
as a curved line. The biggest disadvantage of the Mercator projection is that 
the areal distortion increases with latitude. Areas near the poles appear too 
large and the poles themselves cannot be represented at all. For example, 
Greenland appears to be larger than south America although it has only an 
eight part of its size. 

This problem can be avoided by using the transversal Mercator projection. 
There, the cylinder touches the globe along one of the Meridians and its axis 
is at right angles to the axis of the earth. Accordingly, there is no distortion 
along this Meridian and the distortion goes towards infinity on the equatorial 
points of the Meridian that is 90° from the Meridian where the cylinder 
touches. Both lines of constant longitude and latitude are curved on this 
projection. 

The U T M Projection. The Universal Transversal Mercator projection 
(UTM) is defined by a total of 60 different Meridians (all separated by 6 
degrees of longitude) all of which are touching Meridians for 60 assumed 
projection cylinders (Fig. 2.13). In other words, it is a combination of 60 
transversal-Mercator projections. This avoids serious distortion of any point 
on the surface of the globe. 

2.3.2 National Grids 

Using latitude and longitude is not always the best way to define a point on a 
map. Lines of constant latitude and longitude may be curved lines or - even 
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Figure 2.12. Four examples of map projections with circular outlines, a ortho­
graphic projection, b equidistant azimuthal projection, c Lambert's equal area 
projection and d stereographic projection. All shown examples are for inclined 
orientations of the rotation axis of earth relative to the projection direction. If c 
and d were projected parallel to the axis of earth, then lines of constant longitude 
and latitude in c would correspond to those of Fig. 2.11a and lines of constant 
longitude and latitude in d would correspond to those of Fig. 2.11b 

if they are straight lines - their spacing is unlikely to be constant. Thus, in 
order to simplify the use of maps, national grids are used. National grids are 
orthogonal grids with equal spacing in two horizontal directions x and y that 
are superimposed on projected maps (Figs. 2.13; 2.14). Different countries 
use different grids for their national mapping but many of them are based on 
the UTM projection or slight modifications thereof. 

For example, topographic maps in Austria are based on the Gauss Kriiger 
projection which differs from the UTM projection by having transversally 
oriented cylinders touching earth (described by a Bessel ellipsoid) every 3 
degrees (not 6), starting at Ferro (instead of Greenwich) and going east (for 
details on the Bessel ellipsoid and its difference to the WGS84 system see 
sect. 4.2.1). Within this projection, the axes of the superimposed orthogonal 
national grid are assumed to be the equator and the touching Meridian (which 
are called M28, M31 and M34 in Austria), x and y values on the orthogonal 
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Figure 2.13. Illustration of the 
UTM projection. A series of 
transversally oriented cylinders 
touch the reference ellipsoid 
along longitudinal lines. A given 
point along this line is then 
chosen as the origin of an 
orthogonal national grid with 
northing and easting values. 

grid are then counted eastwards from the touching Meridian in kilometers 
and northwards from the equator, respectively. Just to make it a bit more 
complicated surveyors have decided that - in Austria - the y values get too 
large if counted from the equator and that negative x values west of the 
touching Meridian look ugly. To resolve this, the origin at the equator is 
assigned an arbitrary x and y value (x=150 km and y = - 5000 km for the 
M28) so that the numbers at 45° have reasonable values and eastings don't 
get negative. 

Figure 2.14. Example of the top left 
corner of a topographic map sheet. 
Typically, referenced map sheets are 
bound by lines of constant latitude and 
longitude. The "lat" and "long" values 
are indicated at the corners. Because 
these may be curved (depending on the 
projection), the corners are usually not 
parallel to the edges of the paper. The 
superimposed national grid is usually 
slightly oblique to the lat and long lines 
and is labelled in kilometer. The fact that 
the first digit is printed small has no 
significance other than to save some space 

Similarly, the National Imagery and Mapping Agency (NIMA) of the 
United States has divided the United States into 10 zones (numbered from 10 
through 19), each of which is 6 degrees wide and which lie between 126° west 
and 66° west. Within each zone, a transversally oriented cylinder is assumed 
to touch a central Meridian and northings and eastings on the superimposed 
orthogonal grid are counted in kilometers from 10 000 km south of the equa­
tor and 500 km west of the touching Meridian. The shifting of the grid origin 
for each zone to 10 000 km south and 500 km to the west is done to avoid 
negative numbers south of the equator or on western halves of zones, because 
the US use this system for maps world wide. 
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240 0 120 

c WinkelTripel d Eckert IV 

e Mollweide f Sine 

g Hammer h split Sine 

Figure 2.15. Eight examples of projections commonly used to portray the entire 
globe, a Mercator projection shown up to 75 degrees north, b The Robinson projec­
tion is pseudocylindrical and is neither conformal nor equivalent but "looks right". 
c Winkel tripel projection, d The Eckert IV projection is pseudocylindrical and 
equivalent. It is common in Atlases, e The Mollweide projection is also pseudo-
cylindrical and equivalent with longitudes being straight lines and Meridians parts 
of ellipses, f The equivalent sine projection is often used for south America.g The 
Hammer projection is also equivalent, h A split version of the sine projection shown 
above 

2.4 The Layered Structure of Earth 

Earth can be divided into layers according to: 

— different materials, 
— different physical properties. 

When considering the layers made of different materials, there is three: a 
crust, a mantle and a core (layers above the surface of solid earth like the 
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Figure 2.16. The layered structure of earth 

hydrosphere, biosphere or atmosphere are not considered here). The crust is 
the uppermost layer. In its normal state, it is between some 5 to 7 and 30 km 
thick, depending on whether we deal with oceanic or continental crust. In 
regions of deformed continental crust - for example underneath the Tibetan 
Plateau or the Alps - continental crust can get up to 80 km thick. Chemically, 
the crust is highly-differentiated and very heterogeneous, but many of its 
mechanical and physical properties (e.g. density, conductivity or rheology) 
can be well-approximated with those of quartz. The mantle is largely made 
up of olivine and - at larger depths - its high-pressure breakdown products. 
The seismically clearly visible contact between crust and mantle is called the 
Mohorovicic-discontinuity (short: Moho). From the Moho the mantle reaches 
down to a depth of about 2 900 km. The core consists mainly of iron and 
nickel. 

When considering the physical properties, the layered structure is quite 
different. Then, the outermost layers of earth are the lithosphere and the 
asthenosphere. The lithosphere is solid and acts like rock on geological time 
scales. Therefore its name. It involves both a crustal and a mantle part. 
The asthenosphere consists of the soft mantle that underlies the lithosphere. 
Some authors call the entire upper mantle underneath the lithosphere the 
asthenosphere. Others use the term only for the mantle section that lies above 
the point where the adiabatic melting curve comes nearest to the temperature 
profile (Fig. 3.11). According to Ringwood (1988) the mantle can be divided 
into three zones: 

1. The upper mantle, which reaches down to about 400 km and is character­
ized by a seismic p-wave velocity of about 8.1 kins"1 . 

2. A transition zone from about 400 km to the 650 km discontinuity. 
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Figure 2.17. Nomenclature of 
different parts of the outer shells 
of the earth 
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3. The lower mantle which reaches from the 650 km discontinuity to the 
core-mantle boundary at 2 900 km depth. 

Below that is the core. The outer core is liquid and the inner core is solid. 

2.4.1 Crust and Lithosphere 

The lithosphere is the outer solid layer of the earth (s. sect. 3.4). As for 
the whole globe, the lithosphere can be divided according to its physical 
properties or according to its chemical (material) properties. Because there 
is overlap between layers distinguished on the basis of different properties it 
is crucial for the understanding of this book to be familiar with the nomen­
clature illustrated in Fig. 2.17. However, for many geodynamic questions it 
is not necessary to consider these subdivisions, as the lithosphere acts as a 
whole. 

When considering its chemical properties, the lithosphere consists of a 
crust and a mantle part. The crust consists of highly-differentiated partial 
melts from the mantle. The mantle part of the lithosphere is largely made 
up of the similar material to that of the underlying asthenospheric mantle, 
but it acts like a solid, because of its lower temperature. However, we note 
that chemical differences between the mantle lithosphere and the underlying 
asthenosphere do exist and account for example for unusually thick, but ap­
parently mechanically stable mantle lithosphere, underneath southern Africa. 
Modern research has been able to document much detail of the compositional 
variation within the uppermost mantle, both on chemical grounds (e.g. Mc-
Donough and Rudnick 1998) and based on seismic velocities (Jordan 1981a; 
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1989). Nevertheless we take in this book the simple-minded view that den­
sity variations between mantle lithosphere and asthenosphere may be largely 
attributed to differences in temperature (e.g. on p. 165). 

A schematic but characteristic thermal and density profile of the litho­
sphere is shown in Fig. 2.18. A very large number of the geodynamic pro­
cesses discussed in this book are a function of the fundamental shape of the 
curves on this figure. 

Within the crust the temperature profile is curved, because of radioactive 
heat production. Within the mantle part of the lithosphere, the thermal pro­
file is linear (in a steady state). The base of the thermal lithosphere is defined 
by the point where the temperature profile intersects the 1200° C or 1300° C 
isotherm (sect. 3.4). At higher temperatures, mantle material begins to flow 
rapidly on geological time scales and any temperature gradients will be elim­
inated by convection. Thus, temperature and density are constant below the 
depth z\ on the scale of Fig. 2.11. Both curves of Fig. 2.18 will be useful help 
throughout this book. 

Definition of the Lithosphere. The term "lithosphere" comes from the 
Greek lithos = rock and was introduced by Suess (1885). The term was later 
used by Barrell (1914) and ultimately defined by Isacks et al. (1968) as a near 
surface layer of strength of earth. Even today it remains difficult to find a 
more precise definition than this. Most of the physical parameters, for exam­
ple temperature or density, change continuously underneath the Moho and 
the transition from the rigid outer shell of the earth (the mechanical bound­
ary layer) into the more viscous hot asthenosphere (from the Greek asthe­
nia = soft) is also continuous. This transition zone is called thermal boundary 
layer) (Fig. 2.19; sect. 6.3.2; Parsons and McKenzie 1978; McKenzie and 
Bickle 1988). However, even on the definition of the term "thermal boundary 
layer" there is no clear consensus in the literature. Some authors refer with 
this term only to the transition zone between lithosphere and asthenosphere 
and others to the entire lithosphere as being a thermal boundary layer to 
earth (s. p. 89, p. 64 and Fig. 2.19). 

One thing can be said with certainty: the definition of the lithosphere de­
pends on the question that is being asked. For example, it can be shown that 
the thickness of the lithosphere is a function of the observed time scale. Seis­
mic motion, isostatic uplift and ductile deformation occur on time scales of 
seconds, 104 y and > 106 y, respectively. The larger the time scale of the pro­
cess, the smaller the thickness of the lithosphere. Seismically, the lithosphere 
is of the order of 200 km thick, while the elastic thickness of the lithosphere 
is only some tens of kilometers thick. Very generally the lithosphere may 
be defined mechanically as the outer part of the earth in which stresses can 
be transmitted on geological time scales (s. McKenzie 1967). According to a 
somewhat different mechanical definition the thickness of continental litho­
sphere may be defined as the layer that is in isostatic equilibrium with the 
mid-oceanic ridges (Cochran 1982). This is meaningful, because the mid-
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Figure 2.18. a Temperature and b density of the continental lithosphere as a 
function of depth. The depth of the Moho below surface is zc, that of the whole 
lithosphere is z\. a The curvature of the geotherm within the continental crust is 
caused by radioactive heat production. The light shaded area corresponds to the 
heat content of the lithosphere that can be attributed to radioactive decay in the 
crust. The dark shaded region corresponds to the heat content conducted into the 
lithosphere from the asthenosphere. The relative contributions of the radioactive 
and the mantle heat flow will be discussed in sect. 3.4.2 and sect. 6.2.1. Here it 
may be seen that the heat content of the crust consists to roughly equal part of 
mantle heat and of radioactive heat, b The slope of the density profile within the 
crust and within the mantle lithosphere is a function of the thermal expansion. 
A comparison of the shaded areas shows that the density deficiency in the crust 
(light shaded area) is comparable to the density excess in the mantle lithosphere 
(dark shaded area) - both relative to the asthenosphere. Within the asthenosphere 
convective flow equalizes all density and temperature heterogeneities. Both curve 
are therefore vertical 

oceanic ridges may be interpreted as manometers of the upper mantle (s. p. 
166, Turcotte et al. 1977). 

According to a thermal definition the lithosphere is the part of earth in 
which thermal energy is largely transferred by heat conduction, in contrast 
to the asthenosphere, where heat is transferred by convection (s. sect. 3.4 for 
more detail). In some ways the thermal definition encompasses the mechanical 
definition because many of the mechanical properties of rocks depend on the 
ratio of their temperature to their melting temperature. In stable continental 
lithosphere, thermal and mechanical definitions indicate thicknesses of 100-
150 km. The thickness of the crust and its content in radioactive minerals is 
crucial to the thickness of the lithosphere, because they strongly influence the 
Moho-temperature (s. Fig. 3.20). Many studies that are concerned with the 
rheology of the lithosphere avoid to use a number for lithospheric thickness. 
Rather, the lithosphere is defined via the Moho-temperature (s. sect. 6.2.2). 
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F igure 2.19. Definition of 
the mechanical and thermal 
boundary layer as well as of 
the lithosphere and 
asthenosphere according to 
Parsons and McKenzie 
(1978) and McKenzie and 
Bickle (1988). The thick 
line is the geotherm. Its 
curvature in the upper 
crust is ignored. However, 
note that other definitions 
for thermal boundary layer 
are also in use in the 
literature s. p. 89, p. 64) 

Types of Lithosphere. There is two fundamentally different types of litho­
sphere on earth: oceanic and conimente/lithosphere. Despite these names, the 
correlation of oceanic lithosphere with the geographic area of the ocean and 
vice versa is only very approximate and there are substantial parts of conti­
nental lithosphere that lie under water and vice versa. A very rough indicator 
for the line separating continental from oceanic lithosphere is about 500 m 
water depth. On Fig. 2.1 most of the white colored regions within the oceans 
are actually continental lithosphere. 

• Oceanic lithosphere. Oceanic lithosphere begins its life at the mid oceanic 
ridges. There, it consists only of an about 7 km thick oceanic crust, which 
is made up of crystallized partial melts from the uppermost mantle. The 
thickness of the mantle part of the oceanic lithosphere is zero near the mid-
oceanic ridges. With increasing age - that is: with increasing distance from the 
ridge - the thickness of the mantle part of the oceanic lithosphere increases 
as the asthenosphere successively freezes to the base of the cold crust. In the 
oldest parts of known oceanic lithosphere the thickness of the oceanic mantle 
lithosphere is almost as thick as continental mantle lithosphere. However, 
oceanic lithosphere is being produced and consumed at all times, so that 
there is hardly any oceanic lithosphere on earth that is much older than 
about 150 my. Because of the young age (and therefore low thickness) the 
mean oceanic heat flow is significantly higher than that of the continents. 
Although there is practically no radiogenic heat production in oceanic crust 
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the mean oceanic heat flow is 101 mWm 2 (Pollack et al. 1993; Wei and 
Sandwell 2006) (s. p. 17, Figs. 3.1, 2.4). 

• Continental lithosphere. In contrast to the oceanic lithosphere, the total 
area of continental lithosphere has remained largely constant in the entire 
Phanerozoic. Thus, the present day continents consist largely of Proterozoic 
continental lithosphere, which has been reworked in many places. Neverthe­
less there ae enough places around the world where Archaean and Proterozoic 
continental crust is preserved giving us a glimpse of tectonic processes in the 
Precambrian (e.g. Greenland, Canadian Shield, East Antarctic Shield, Kongo 
Craton, Arunta Block, Yilgarn block and many others). Continental crust is 
chemically highly-differentiated, it has a high content in radioactive elements 
and in its stable state it is about 30-50 km thick. According to thermal and 
mechanical definitions, the mantle part of the lithosphere is 70-100 km thick, 
so that the total thickness of stable continental lithosphere is of the order of 
100-150 km. However, in old shield areas this thickness can be much more, 
probably due to a different chemical composition of the mantle lithosphere. 
The mean heat flow of the continental lithosphere is about 65 mWm~2 (Pol­
lack et al. 1993; Wei and Sandwell 2006). 

2.4.2 The Lithospheric Plates 

The surface of the earth can be divided into seven major lithospheric plates 
plus a number of smaller plates (Fig. 2.20, Table 2.2). Not all major plates 
correspond to the seven continents and it is of some coincidence that the 
number of continents equals that of the major plates. Most major plates 
consist of both continental and oceanic lithosphere. 

Among the seven major plates, the Antarctic Plate and the African Plate 
have a special position as they are surrounded on just about all sides by 
mid-oceanic ridges. Both plates increase therefore permanently in size and 
they form a good example where plates go from a compressive state into an 
extensional state purely as a function of their increasing age (Sandiford and 
Coblentz 1994; sect. 5.3.1). 

2.4.3 The Plate Boundaries 

Most geodynamically interesting processes occur along the plate boundaries. 
These boundaries can be divided according to: 

— their kinematics, 
— the types of plates that are in contact. 

When choosing a division according to the types of bounding plates, we can 
discern: 

— plate boundaries between two continental plates, 
— plate boundaries between two oceanic plates, 
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Figure 2.20. Plate tectonic division of the surface of earth. Continents are white 
and oceans are shaded. The difference between continental and oceanic lithosphere 
is not shown. For that, see Fig. 2.1. Note that the plate boundaries coincide only in 
a few places with the coast lines that delineate the continents (s. Table 2.2). The 
seven major plates are labeled with their names. The most important minor plates 
are labeled with letters. They are: a Nazca Plate; b Cocos Plate; c Philippine Plate; 
d Caribbean Plate; e Scotia Plate; / Chinese Subplate; g Arabic Plate; h Juan-de-
Fuca Plate 

— plate boundaries between a continental and an oceanic plate. 

When choosing a division according to the kinematics, we can discern be­
tween convergent, divergent and transform plate boundaries (s. Tables 2.3; 
2.4). Passive margins are formerly divergent plate boundaries between two 
continental plates which now consist of a passive contact between oceanic-
and continental lithosphere. They are often listed as its own type of plate 
margin. 

Divergent Plate Boundaries. Divergent plate boundaries are regions 
where two plates move into opposite directions or where one plate is split­
ting into two. Divergent plate margins exist only between two continental 
plates (e. g. central African rift system) or between two oceanic plates (e. g. 
Mid-Atlantic Ridge). The passive seams between continental and oceanic 
lithosphere are mechanically very strong and it would be a great coincidence 
if a divergent plate margin would form exactly along them. However, there 
are places on the globe where divergent plate margins cross passive margins. 
The Sheba Ridge in the Gulf of Aden and the Carlsberg Ridge in the Indian 
Ocean are examples. Divergent plate boundaries on the continents are called 
rifts. The best know examples (in order of progressive rift development) are 
the Rheingraben, the Central African rift system and the Red Sea. Divergent 
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Table 2.2. Approximate parts of oceanic and continental lithosphere of each of the 
major plates 

% continental lith. plate 

major plates 

Pacific Plate 
North-American Plate 
South-American Plate 
Eurasian Plate 
Antarctic Plate 
African Plate 
Indo-Australian Plate 

important minor plates 

Nazca Plate 
Cocos Plate 
Juan-de-Fuca Plate 
Scotia Plate 
Philippine Plate 
Caribbean Plate 
Arabic Plate 

% oceanic lith. 

100 
30 
50 
30 
50 
50 
40 

100 
100 
100 
100 
100 
100 
10 

% 

0 
70 
50 
70 
50 
50 
60 

0 
0 
0 
0 
0 
0 
90 

Table 2.3. The twelve most important relative motions of plates (after DeMets 
et al. 1990). 1° corresponds to about 110 km 

plate boundary rotation pole angular velocity 

longitude latitude • 10~7 o /y 

Africa - Antarctica 
Africa - Eurasia 
Africa - North-America 
Africa - South-America 
Australia - Antarctica 
Pacific - Antarctica 
South-America - Antarctica 
India - Eurasia 
Eurasic - North-America 
Eurasia - Pacific 
Pacific - Australia 
North-America - Pacific 

5.6°N 
21.0°N 
78.8° N 
62.5° N 
13.2°N 
64.3°S 
86.4°S 
24.4° N 
62.4° N 
61.1°N 
60.1°S 
48.7° N 

39.2°W 
20.6°W 
38.3° E 
39.4°W 
38.2° E 
96.0° E 
139.3° E 
17.7°E 
135.8°E 
85.8°W 
178.3°W 
78.2°W 

1.3 
1.3 
2.5 
3.2 
6.8 
9.1 
2.7 
5.3 
2.2 
9.0 
11.2 
7.8 

plate margins between two oceanic plates (mid-oceanic ridges) are - in most 

cases - the last stage of a rift (sect. 2.4.4, Fig. 2.21). 

Convergent Plate Boundaries. Convergent pate boundaries may form 

between two continental plates (Fig. 2.15), between two oceanic plates or 

between a continental and an oceanic plate. In convergent plate boundaries 
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Figure 2.21. Nomenclature of rift valley 
some of the most important ( w j t h D | a c k smokers) 
parts of oceanic lithosphere 

mid-oceanic ridge 

/ abyssal plane 

/ sea mount 

oceanic crust 
mantle lithosphere 

asthenosphere 
hot spot 

between continental and oceanic plates, the oceanic plate dives beneath the 
continent, because of its higher density. This is called subduction and its 
surface expression is a trench (Fig. 2.23). The most famous example for sub­
duction is the subduction of the Nazca Plate underneath the south-American 
continent along the Peru-Chile Trench. Subduction leads to high pressure 
metamorphism in the hanging wall of the subducted plate. This metamor-
phism is associated with dehydration and partial melting of the plate of the 
oceanic plate in the Benioff zone. Fluids that rise through the overlying man­
tle wedge react with the wedge material in endothermic reactions (Fig. 3.28). 
However, additional heat input by convection in the wedge leads to partial 
melting (Hoke et al. 1994) and ultimately to the development of volcanic arcs 
on the surface. 

The kinematics of subduction zones is complicated. The forces and veloci­
ties with which subducting plates sink into the asthenosphere are comparable 
to the forces exerted by mid-oceanic ridges onto the plate. Subduction zones 
can therefore move backwards (towards to mid-ocean ridge) if the downward 
velocity of the subducting plate is larger than the rifting rate at the ridge 
(e. g. South-Georgia, Scotia Plate). They can move forward (towards the con­
tinent) if the rifting rate at the ridge is larger than the downward velocity 
(e. g. Pacific Plate - Alaska). In other words, the distance between the trench 
and the continent in the far field hinterland increases, decreases or remains 
constant. Depending on details of the force and velocity field in subduction 
zone environments, forearc- or backarc basins may develop. In some cases of 
collision between oceanic and continental lithosphere, parts of the oceanic 
plate are welded onto the continental plate or even thrust over it. This is 
called obduction. 
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Figure 2.22. Nomenclature of important parts of continental plates 

In contrast to subduction zones - where one of the two plates usually dives 
underneath the other - the convergence of two continental plates leads to a 

continental 
lithosphere 

oceanic 
lithosphere 

- N * -
andesitic 
volcanoes forearc bas 

backarc basin 

slab breakoff 

accretionary wedge 

trench 

elastic bulge 

high-P/low-T-
metamorphism 

high-T/low-P-
metamorphism 

melting 
"v' (Benioff-zone) 

Figure 2.23. Nomenclature of important parts of subduction zones. Forearc- and 
backarc basins are even more clearly developed during subduction of oceanic litho­
sphere underneath another oceanic plate. Good descriptions of various phenomena 
on this figure can be found for slab break off by: Blanckenburg and Davies (1995); 
about the mantle wedge by: Spiegelman and McKenzie (1987) (sect. 3.5.2); about 
metamorphism by: Miyashiro (1973); about accretionary wedges in: sect. 6.2.3; 
about the elastic fore bulge: sect. 4.4.2 



44 2 • Plate Tectonics 

head-on collision of both plates. The reason for this is because continental 
lithosphere is (i) much thicker, (ii) less dense and (iii) much softer than 
oceanic lithosphere. Why the continental lithosphere is much softer than the 
oceanic lithosphere although it is much ticker will be discussed in sect. 5.2. 
This leads to the formation of the collisional mountain ranges tha t form most 
of the topographically high mountain belts of our globe (Fig. 1.1). During 
this head on collision the crust gets typically pervasively deformed, while 
the mantle par ts of the lithosphere override each other (a bit like shown 
schematically on the cover of this book). 

When two oceanic plates converge, no collision occurs and subduction 
zones form, similar to those tha t form when two plates of different kind 
collide. In contrast to the collision between two continental plates, no collision 
occurs between two oceanic plates because they are thinner, much stronger 
and because they are much denser and can therefore dive easier into the upper 
mantle (sect. 5.2.2). Because little internal deformation of the plates occurs, 
island arcs form tha t are clearly defined in space. Two beautiful examples for 
this are the subduction of the Pacific Pla te underneath the Philippine Plate 
along the Mariana Trench or the subduction of the Pacific Pla te underneath 
North-America along the Aleutes. 

Figure 2.24. Topography of the 
Dragonsback Ridge segment of 
the San Andreas Fault in 
California. The shown segment 
is about 3 km long and the 
resolution is less than 0.5 m. 
The fault is oriented northwest -
southeast (top left to bottom 
right). Image was obtained by 
the B4 Project using Airborne 
Laser Swath Mapping (Hudnut 
and Bevis, pers. comm., 2006) 

Transform P l a t e B o u n d a r i e s . When two plates glide past each other 
without much convergence or divergence, their contact is called a t rans­
form plate boundary. No topographic features as significant as rift valleys 
or mountain ranges form. However, transform plate boundaries are well-
known because they form some of the most important zones of seismicity 
on the globe. The best known examples are the San-Andreas-fault zone (Fig. 
2.24), (probably because it crosses one of the most densely populated parts 
of North-America) or the Alpine fault in New Zealand. 

Triple J u n c t i o n s . The spherical geometry of the earth requires tha t three 
or more plates touch each other in some places. This is called a triple junction. 
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Figure 2.25. Cartoons of four types of triple junction and vector diagrams showing 
their relative velocities. The shown examples are all stable because the sum of the 
vectors results in zero velocity 

Triple junctions have a stable configuration if the relative motions of the 
bounding plates can maintain the geometry through time. They have an 
unstable configuration if their geometry is transient. Places where four or 
more plates touch are always unstable and will quickly resolve into two or 
more triple junctions. Such an area occurs currently west of New Guinea, 
where the Philippine, Australian, Eurasian and Pacific Plates meet. However, 
detailed mapping shows that this area may be divided into a series of micro 
plates and triple junctions and that the touching of more than three plates has 
only occurred transiently. Depending on the kinematics of plate boundaries, 
we can discern between a large number of different triple junctions. Using "R" 
(as in Ridge) for divergent plate boundaries, "T" (as in Trench) for convergent 
plate boundaries and "F" (as in Fault) for transform boundaries, we can 
describe RRR-, TTT-, FFF-, RTF- and a number of other triple junctions 
(McKenzie and Morgan 1969). Four examples are shown in Fig. 2.25. The 
examples shown there are all stable because the sum of the velocity vectors 
(U) is zero in all cases. 

Figure 2.26. Schematic map of 
the most famous triple junction 
on earth: the meeting point of 
the East African rift system 
(dashed) with the Red Sea rift. 
The black dots are volcanoes, 
the light shaded areas show the 
rift flank uplift 
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Table 2.4. Different types of plate boundaries divided according to their kine­
matics and according to the plate type (O — oceanic lithosphere, C — continental 
lithosphere) 

relative motion type plate tectonic feature example 

convergent 0 - 0 island arc Philippines 
0-C subduction zone west coast of 

trench South-America 
C-C collisional mountain belt Himalaya 

divergent 0 - 0 mid-oceanic ridge 
C-C continental rift 

Atlantic 
east African rift 

passive 0-C passive plate margin eastern Australia 

One of the most famous triple junction is the RRR triple junction between 
the Gulf of Aden, the Red Sea and the Central African rift system (Fig. 2.26). 
With this, as with other RRR triple junctions, the three different branches 
occur in various stages of development and, in fact, one arm may stop rifting 
leaving behind a failed rift and a single plate boundary. A beautiful example 
of this is given by the failed Lambert Graben rift in Antarctica which stopped 
rifting in the Cretaceous while the ridge in the southern Indian Ocean con­
tinued to separate Australia from Antarctica. 

2.4.4 The Wilson Cycle 

The Wilson-cycle is a model that brings the individual processes that we 
discussed in the last sections into an imaginary cycle (Fig. 2.27). This cy­
cle was first suggested by Wilson (1972) and supersedes the old terms of 
"geosynclines". 

The Wilson-cycle begins with extension of a continent. This stage of the 
Wilson-cycle can be currently observed in the Rheingraben. In the second 
stage, the continent breaks up and a spreading center forms in its middle. 
Oceanic lithosphere begins to form. This is the stage of the Red Sea. The 
third stage involves the development of a classic ocean with passive continen­
tal margins on both sides and a mid-oceanic ridge in its center. This is cur­
rently being observed in the Atlantic. The following stages describe processes 
that occur during opposite relative plate motion. These stages may therefore 
occur independent of the first three stages. The fourth stage describes the 
commencement of subduction of an oceanic plate underneath a continental 
plate as it is currently observes along the west coast of South-America. The 
fifth stage involves the subduction of a mid-oceanic ridge underneath the 
continental plate. A present day example for this is the subduction of the 
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Figure 2.27. The Wilson cycle. The arrows indicate the relative plate motions 

ridges bounding the Juan de Fuca Plate underneath North-America. During 
the sixth and final stage the collision between two continents occurs. Clearly, 
the India-Asia collision is the most spectacular example for that. 

2.5 Problems 

Problem 2.1. Small circles and subduction zones (p. 22): 
Make a very rough estimate of the small circle radius of the Aleute arc (from 
Fig. 2.5 or any atlas) and estimate the subduction angle of the Pacific Plate 
underneath Alaska using the model of Fig. 2.6. This subduction angle is ac­
tually known. It is RJ 45°. Discuss possible reasons for the difference between 
your estimate and this value. Compare your estimate with an estimate of the 
subduction angle of the Indoaustralian Plate underneath the Eurasian Plate 
along the Java Trench. 

Problem 2.2. Understanding longitude and latitude (p. 23): 
Find a point on the surface of earth (outside the north pole!) where the 
following experiment is possible: You walk 1 km south then 1 km west and 
then 1 km north and you are where you started from. (It is said that this 
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question was asked by Sir Ernest Shackleton in 1908 to applicants for his 
south pole expedition.) 

Problem 2.3. Understanding longitude and latitude (p. 23): 
The city of Vienna is located at 16° east and 48° north; the city of Munich is 
located at 11° east and the same latitude as Vienna. How much earlier does 
the sun rise in Vienna? 

Problem 2.4. Understanding arc-minutes in decimals (p. 23): 
Improve your result of Problem 2.3 using the following values: Vienna: 
16°21' east, 48° 11' north; Munich: 11°39' east and the same latitude as Vi­
enna. 

Problem 2.5. Estimating the curvature of earth (p. 24): 
a) How far is it from Vienna to Munich going directly from east to west along 
the surface of the globe? (use eq. 2.2). b) How far is it from Vienna to Munich 
going the shortest distance along a great circle? (use the formula for angular 
separation of 2 points in Table C.4). c) How far is it from Vienna to Munich if 
you could go along a tunnel connecting the two cities in a straight line through 
the earth? (use the result from b) and the logic illustrated in Fig. 2.6). Use 
the longitudes and latitudes given in Problem 2.3 and a perfectly spherical 
earth with radius R= 6370 km. 

Problem 2.6. Spherical kinematics (p. 25): 
What is the west-east velocity of a plate that has rotation pole that coincides 
with the geographic north pole and rotates relative to another plate with an 
angular velocity of 10 _ 1 5s _ 1 ; a) at the equator; b) at 48° north? (Use R= 
6 370 km). 

Problem 2.7. Understanding torque (p. 25): 
A north-south striking mid-oceanic ridge has a west-directed force of 1012 N. 
At which latitude is the torque of this ridge around the axis of the earth 
4 • 1018 Nm? (The radius of earth is: R = 6 370 km) 

Problem 2.8. The Mercator projection (p. 29): 
Derive the function that is used in the Mercator projection to convert longi­
tude <j) and latitude A into the Cartesian coordinates x and y. Detailed study 
of Fig. 2.10 is helpful to answer this problem. 

Problem 2.9. Physics of the lithosphere (p. 37): 
Put numbers on the axes of the diagrams on Fig. 2.18. (This problem requires 
the use of parameter values that have not been discussed up to this chapter 
yet. It is meant as a self-test for the interested reader.) 

Problem 2.10. Modern and ancient plate boundaries (p. 40): 
a) Draw relative velocity vectors between the plates onto Fig. 2.20. b) Draw 
three future new plate boundaries and three plate boundaries that will dis­
appear within the next 50 my on Fig. 2.20. c) Draw three ancient plate 
boundaries onto Fig. 2.20. 



2.5 • Problems 49 

Problem 2.11. Understanding triple junctions (p. 44): 

How many different types of triple junctions exist, using the three possi­
ble relative motions R, T and F? Not all of the triple junctions you should 
come up with are stable. Draw an example of a stable and an unstable triple 
junction. 



3. Energetics: Heat and Temperature 

In this chapter we discuss geodynamic processes that may be described with 
the units of energy or temperature. This general theme is an obvious starting 
point in geodynamics, as so many properties of rocks that may be observed 
in the field are a strong function of temperature, for example the formation 
of metamorphic parageneses or the mechanisms with which rocks deform. 

Energy has the unit Joule [J], which is equivalent to mass x velocity2 (1 
J = 1 kg m 2 s - 2 ) , or volume x pressure (1 J = 1 m3 x Pa = 1 N m, which, 
because 1 N = 1 kg m s~2, is also 1 kg m2s~2). These conversions give us a first 
indication that thermal and mechanical energy are often hard to separate. 
Thermal energy may be converted into temperature using heat capacity and 
density which are parameters that we shall discuss in some detail on the next 
pages. 

The production and redistribution of heat in the lithosphere is done by 
three fundamentally different processes: 

— heat conduction, 
— heat advection (or convection) and 
— heat production. 

The relevance of these three processes for regional metamorphism is sum­
marized at the start of sect. 3.4 in Table 3.4. However, in the first part of 
this chapter we will present some basic methods how to estimate if and how 
important each of these three processes may be for the thermal budget of the 
lithosphere. In this context we also discuss the basics of their mathematical 
description. The importance of such estimates is enormous: it will enable the 
reader to critically evaluate in his or her metamorphic study terrain to which 
degree heat conduction (e. g. because of burial), heat production (e. g. friction 
heat or radioactivity) or active transport of heat (e. g. by fluid or magma) 
may have played a role during metamorphism. Thus, the information on the 
following pages provides a powerful tool for the interpretation of heat sources 
for field geologists. 
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3.1 Principles of Heat Conduction 

3.1.1 The Heat Conduction Equation 

The heat conduction equation - more commonly known as the diffusion equa­
tion - is fundamental for the understanding of the transport of heat in the 
lithosphere. We will also show in other chapters that the very same equa­
tion cannot only be applied to the transport of thermal energy, but also to 
the diffusion of mass. It finds therefore application in many other fields, for 
example geomorphology, metamorphic petrology or hydrology (s. p. 185; p. 
343). Thus, the diffusion equation is the first equation of this book that we 
will discuss in some detail. The fact that it is a second order partial differ­
ential equation should not scare us off. We will show that it is possible to 
understand it quite intuitively. There is also some explanations on how to 
read differential equations in section B.l. 

Fourier's Law of Heat Conduction. Fourier's 1. law is the basic law un­
derlying the diffusion equation. This law states that the flow of heat q is 
directly proportional to the temperature gradient (Fourier 1816). This state­
ment can easily be formulated in an equation: 

dT 

In this equation q is short for heat flow, T stands for temperature and z 
for a spatial coordinate, for example depth in the crust. The ratio dT/dz is 
the change of temperature in direction z. We call this ratio the temperature 
gradient, k is the proportionality constant between the gradient and the flow 
of heat. In order to understand this law better (and understand the units 
of k), let us consider a more familiar analogue: the flow of water in a river. 
The same law applies. In a river the flow of water can be described by the 
volume of water passing per unit of time and per area of cross section of the 
river (in Si-units: m3 s _ 1 m - 2 = m s _ 1 ) . This is called the volumetric flow. 
When normalized only to the width of the river and not to the cross sectional 
area of the river, the volumetric flow has the units of m2 s _ 1 (sect. 4.5). In 
contrast, the flow of mass has the units k g s - 1 m - 2 . Fourier's law - applied to 
our example of water flow - states that the flow of water is proportional to the 
topographic gradient of the river. This corresponds well to our observations 
in nature: The steeper a river bed, the faster the flow of water in the river (per 
square meter of cross sectional area). Fourier's law seems to be a good model 
description for this observation. This simple example also explains why there 
is a negative sign in eq. 3.1. The flow is against the gradient: it is positive in 
the downwards direction of the gradient. 

In the theory of heat conduction, the flow of heat has obviously not the 
units of volume per time and area, but energy per time and area, (in SI units: 
J s _ 1 m~2 = W m - 2 ) . The thermal gradient now replaces the topographic gra­
dient of the river. Because of historical reasons heat flow is sometimes given 
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Figure 3.1. Map of global surface heat flow. The map is contoured in milli W 
m - 2 and data above 300 m W - 2 are omitted so that only a conductive response is 
shown. Nevertheless, because of the highly irregular distribution of the data, the 
contouring on a global scale is strongly dependent on the contouring algorithm 
and is associated with large uncertainties in areas of low data density, (made with 
the Global Heat Flow Data Base of the International Heat Flow Commission, W. 
Gosnold, Custodian pers. comm. 2006). As a consequence, this map is exclusively 
a representation of the data base with no consideration of the data distribution, its 
density or their reliability. As such, it appears (wrongly) that the heat flow on the 
oceans is lower than that of the continents. For a more considered heat flow map 
see Pollack et al. (1993) or Wei and Sandwell (2006) 

in heat flow units, or hfu. One hfu corresponds to 10~6 cals _ 1cm~ 2 and 
can easily be converted into W m - 2 (s. Problem 3.2, Table D.8). The units of 
the proportionality constant k, in eq. 3.1, follows now easily from the units 
of the other components of the equation: Because temperature has the units 
of K (or °C) and z has the unit m, k must have the units J s _ 1 m _ 1 K _ 1 so 
that the equation is consistent in its units. The constant k is called thermal 
conductivity. We can now try to read eq. 3.1. We can see that the flow of 
heat trends to zero if the conductivity is very low, regardless of the thermal 
gradient. Correspondingly, if the conductivity is very large, the flow of heat 
becomes large, even if the thermal gradient is very low. The equation may 
therefore be understood quite intuitively. 

Would the thermal gradient be constant everywhere, we could write it 
as AT/Az. However, in geological problems this gradient is never constant. 
Thus, we use the derivative AT/Az, which states that we want to be careful 
and consider our thermal gradient only to be constant within each infinitely 
small section of the thermal profile. If the gradient changes along the z di­
rection, then eq. 3.1 states that the heat flow must also change. 
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Figure 3.2. The flow of heat in a unity vol­
ume of rock. The heat production inside this 
volume 5, is not considered until we discuss 
eq. 3.23 

Energy Balance. The second part of the diffusion equation (often called 
Fourier's 2. law) describes an energy balance. This energy balance relates heat 
and temperature and the change of heat flow with change in temperature. 
This relationship may be established independently from eq. 3.1 and may be 
written as: 

9T dq 

~dt"-Tz • (3"2) 

This equation states that the rate of temperature change of a rock must be 
proportional to the rate with which its heat content changes (oc is the symbol 
for "proportional to"). The rate with which the heat content of a rock changes 
(dq/dz) is given by the difference between the flow of heat into the rock and 
the flow of heat out of the rock (Fig. 3.2). If the heat flow into the cube of 
Fig. 3.2 is larger than the flow of heat out of it, then the heat content of 
the cube will rise and its temperature will increase. If the heat flow into the 
volume is just as large as that that flows out, the temperature will remain 
constant. If more heat flows out of the cube than into it, then its temperature 
will decrease. 

In the last sentences we have begun mixing the terms "temperature" and 
"heat". However, we have to remain careful no to confuse them as the rate of 
temperature change is not the same as the rate of heat content change. They 
relate by: 

H = Tpcp (3.3) 

where H is the volumetric heat content in J m~3 (s. sect. 3.6.4). The rate, 
with which the temperature will change for a given change in heat content 
depends on another material specific proportionality constant. This is the 
specific heat capacity cp. The specific heat capacity or short "specific heaf 
has the units of J k g _ 1 K _ 1 and defines how many Joules are required to 
heat the mass of one kg of rock by one degree Kelvin. The most common 
abbreviation for specific heat is c. The subscript p symbolizes the condition 
that the specific heat is measured at constant pressure (s. sect. 3.2.2). If the 
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specific heat of a rock is large, we need many Joules to heat the rock and even 
a rapid increase of its heat content will lead to slow temperature increase and 
vice versa. Specific heat is formulated in terms of the mass that is heated. 
Considering that the energy balance in eq. 3.2 is formulated in terms of the 
spatial coordinate z, and heat capacity is formulated in terms of mass, we 
need to multiply cp with the density p, so that the relationship between 
the spatial change of heat flow and the temporal change of temperature is 
consistent with the units. We can write the proportionality of eq. 3.2 as: 

p C ^ = -d-z • ( 3 - 4 ) 

It should now be straight forward to understand eq. 3.4 intuitively using 
Fig. 3.2. The negative sign arises because the temperature increase when 
dq = q0ut — qin is negative, that is, more heat flows into the rock volume 
than out of it. You may have noticed that the step from eq. 3.2 to eq. 3.4 
was accompanied by the change from total- to partial differentials. This was 
necessary, because different parts of this equation are now differentiated with 
respect to different parameters (s. sect. B.l.l). 
The Diffusion Equation. If we substitute Fourier's law of heat conduction 
(eq. 3.1) into the thermal energy balance of eq. 3.4, we arrive at: 

Eq. 3.5 is the general form of the one-dimensional diffusion or heat conduc­
tion equation. If k is independent of z (e. g. if we consider heat conduction 
in an area without lithological contrasts), it is possible to simplify eq. 3.5 
significantly, k can then be taken out of the differential and we can write: 

dT , ddT OT ff2T 
P C ^ = kd-zTz ° r : -Q-t=K-^ • ( 3-6 ) 

The constants k, p and cp are now summarized to K = k/(pcp). K is called 
thermal diffusivity. Eq. 3.6 can also be understood intuitively, without follow­
ing the detailed derivation given above. Eq. 3.6 may be formulated in words 
as: 

- The rate of temperature change is proportional to the spatial curvature of 
the temperature profile. 

If you do not understand the relationship between this sentence and eq. 3.6, 
then remember that the first differential of a function describes its slope (or: 
"gradient", or: "rate") and the second its curvature (s. sect. B.l, Fig. B.3, 
B.2). 

Figure 3.3 illustrates this graphically. In our daily lives we encounter 
many examples that are described by this equation. Think for example that 
a piece of toast cools much quicker on its corners than along the edges or in 
its middle. This is because the spatial curvature of the isotherms in the toast 
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is the largest at the corners! The same is true for the rapid cooling of the tip 
of a needle, the rapid erosion of ragged mountain tops and countless other 
examples in nature, all the way down to the rapid chemical equilibration of 
fine grained rocks in comparison with coarse grained rocks. 

If we want to use eq. 3.6 we must solve it. For this we need boundary- and 
initial conditions. We also need some mathematical knowledge so that we can 
integrate this equation. Various methods how to go about this are discussed in 
sect. B.l . l . A large part of this chapter will deal with various solutions of this 
equation. In this context we will often meet the terms "boundary conditions" 
and "initial conditions". Make sure you understand what they mean (s. p. 
398). 

• The magnitude of K. A quantitative application of eq. 3.6 requires the 
knowledge of K and therefore the knowledge of k, p and cp. The specific heat 
of rocks is about cp =1000 - 1200 J k g ^ K " 1 (Oxburgh 1980). For most 
rocks cp does not vary by more than 20% around this value. Thus, the nice 
and even value of cp = 1000 J k g - 1 K _ 1 is a sound assumption that can be 
used for many thermal problems. The density of many crustal rocks is of the 
order of 2 750 k g m - 3 and varies also not all that much around this value. 
However, thermal conductivity, varies by the factor 2 or 3 between different 
rocks types (Table 3.1). Fortunately, it is between 2 and 3 J s _ 1 m _ 1 K _ 1 for 
many rock types. For k = 2.75 J s _ 1 m _ 1 K _ 1 and the values for specific heat 
and density from above the diffusivity is: K = 10~6 m2 s _ 1 . Because this value 
is easy to remember it is commonly used in the literature. Note, however, that 
K may also be twice- or half as large if the thermal conductivity of rocks is 
twice or half as large. 

Heat Refraction. If rocks of different thermal conductivity are in contact, 
the phenomenon of heat refraction may occur. What this is, is easily ex­
plained with eq. 3.1. In thermal equilibrium, the flow of heat in two adjacent 
rocks must be equal. Following from eq. 3.1 we can formulate: 

Figure 3.3. The thermal equilibration of a ran­
dom temperature profile. The temperature pro­
file is drawn at two different time steps to and t\. 
Note that the largest change in temperature be­
tween the two time steps has occurred in those 
places of the profile where the curvature of the 
profile is the largest (s. eq. 3.4). Where the cur­
vature of the profile is zero (at the inflection 
points) the temperature does not change at all 
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- , = fcl—= fc2— , (3 .7) 

where the subscripts i and 2 denote two different rocks as shown in Fig. 3.4. 
We can see in this equation that, if the conductivities ki and k-2 are different, 
the temperature gradient in the rock with the higher conductivity must be 
lower and vice versa (Fig. 3.4). This is called heat refraction. Eq. 3.7 can also 
be written in differential form. This means, the temperature gradient must 
not change abruptly, but can also change continuously, if there are continuous 
changes in thermal conductivity. 

Let us illustrate the phenomenon with an example. A rock with extremely 
high thermal conductivity, for example an iron ore body, will be practically 
isothermal, even if it stretches over many vertical kilometers in the crust. 
Its high conductivity will cause it to adapt some average temperature. Thus, 
the upper part the body may have a significantly higher temperature than 
its surroundings while its lowest part is colder than its surroundings. As a 
consequence, it is conceivable that the process of heat refraction will even 
leads to some kind of contact metamorphism (s. Problem 3.3). 

Jaupart and Provost (1985) have noticed that there are some important 
differences in thermal conductivity between the sediments of the Tethys zone 
and the high Himalayan crystalline complex. They suggested that the pro­
cess of heat refraction may have been of relevance in connection with the 
melting of the Himalayan leucogranites. The process has also been discussed 
as the cause for high grade metamorphism in several Australian provinces 
(e.g. Mildren and Sandiford 1995) and as the trigger for a range of tectonic 
processes (Sandiford 1999). In fact, several exploration companies currently 
explore for geothermal energy sources in Australia by looking for regions 
where rocks of low thermal conductivity insulate underlying rocks of high 
thermal conductivity (Hillis et al. 2004). 

If we want to describe the process of heat refraction quantitatively, we can 
not assume the simplification that we have made in going from eq. 3.5 to 
eq. 3.6. We must stick with eq. 3.5 to describe conductive equilibration. If we 
form the derivative of the right side of eq. 3.5 using the rules of differentiation 
of products (Table C.l) we get: 

rock type k cp 

sandstone 
gneiss 
amphibolite 
granite 
ice 
water 
salt 
iron 

1.5-4.2 
2.1-4.2 
2.5-3.8 
2.4-3.8 
2.2 
0.58 
5.4-7.2 
73 

920 
800 
840 
790 

1800 
4 200 
880 
460 

Table 3.1. Thermal conductivi­
ties and heat capacities of some 
rocks and common materials, k is 
given in J s~ m~ K~ and cp in 
J kg _ 1 K _ 1 . The change of ther­
mal conductivity as a function of 
pressure and temperature are neg­
ligible at geologically relevant tem­
peratures in the crust (Cull 1976; 
Schatz and Simmons 1972). Never­
theless, the numbers given here are 
only approximate 
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F igure 3.4. Illustration of the process of heat 
refraction. The flow of heat in the dark and the 
light shaded bodies is the same. However, the 
temperature gradient in the dark shaded body 
is larger, because its thermal conductivity fci is 
smaller. The subscripts i and 2 denote the dark 
and the light shaded body, respectively 
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In this form the heat conduction equation can be used for the description of 
many problems with variable conductivity. 

H e a t C o n d u c t i o n in Several Spat ia l D i m e n s i o n s . Eq. 3.6 is a linear 
differential equation (s. p . 396). This means tha t heat conduction in two 
or three dimensions can be described by the sum of heat conduction in the 
individual directional components. In general, we can write: 

dT 

~dt 

d2T d2T d2T 

dx2 dy2 dz2 (3.9) 

if the thermal diffusivity is the same in all three spatial directions. In the 
li terature eq. 3.9 is often written as: 

f^r (3.10) 

The symbol V is called the "Nabla-" or: "Del"-operator and is defined 
in eq. B.32. V 2 describes the same thing for the second partial derivative 
(s. sect. B.3). Part ial differentials (or derivatives) are discussed in detail in 
section B . l . l . An important property of the diffusion equation is tha t it con­
tains an energy balance. This means tha t no energy can be gained or lost by 
diffusion processes. If a rock cools by conduction, then it is by heat loss at 
the model boundaries, not because of the conduction itself. 

• Complicated geometries. The diffusion equation we presented above is lin­
ear in temperature if all the material constants are independent of temper­
ature and time. Therefore, it is possible to describe diffusion problems of 
complicated geometries simply by a linear superposition of the solutions for 
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more simple problems. We will use this approach extensively when we de­
scribe the cooling history of intrusions in sect. 3.6. For the same reason is it 
possible to describe time dependent problems by a superposition of a steady 
state solution and a time dependent component. 

Heat Conduction in Polar Coordinates. Many heat conduction prob­
lems in the earth sciences are much better described in cylindrical or spherical 
coordinates. In cylindrical coordinates, eq. 3.6 adapts the form: 

3 T _ /(PT_ ldT\ 
dt \ dr2 r dr J 

If we consider heat conduction in spherical coordinates (and restrict ourselves 
to heat flow in the radial direction), then the heat conduction equation adapts 
the form: 

dT _ (d2T 2dT\ 

dt \ dr2 r dr J 

In eqs. 3.11 and 3.12 r is the distance from the coordinate origin on the cylin­
der axis or at the sphere center, respectively. Detailed derivations of these 
equations will not be described here, but they can be found - among many 
others - by Carslaw and Jaeger (1959); Crank (1975) or Smith (1985). Exam­
ples for spherical conduction problems that can be described with eq. 3.12 are 
the Kelvin model for the cooling of the earth or the chemical diffusion of ele­
ments in garnet crystals. Note that eqs. 3.11 and 3.12 are one-dimensional and 
their results can therefore be directly compared with eq. 3.6 (e. g. Fig. 3.32 
and 3.37). 

The Kelvin Model for the Cooling of Earth. The most famous example 
for the application of the heat conduction equation is the estimate of the 
age of the earth by Lord Kelvin (1864). However, we note that very similar 
estimates were already performed by Fourier himself in 1820. Both physicists 
realized that - in principle - one could estimate the age of the earth from the 
present day thermal gradient at the surface (surface heat flow, s. Table D.3) 
if the following assumptions are made (Fig. 3.5): 1. The whole earth was 
at the time of its formation of constant temperature (which was assumed 
by Kelvin to be 4000CC); 2. the surface temperature has remained constant 
ever since and 3. heat conduction is the principle process of cooling. Using 
eq. 3.12, Kelvin concluded that the earth must be around 100 my old (he 
used a very similar solution to the one we introduce in sect. 3.6.1). Today we 
know that his calculation was wrong for two important reasons. The first (and 
most quoted) reason is that there are heat producing elements in the crust 
that prolong the cooling of earth. Radioactivity was unknown at Kelvin's 
time. The second reason is that convection in the upper mantle rises the 
isotherms. While this process actually leads to a faster cooling of earth, both 
radioactivity and convection cause the present day geothermal gradient in 
the lithosphere to be steeper than it would be without these two processes. 
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Figure 3.5. Schematic illustration of the model of Lord Kelvin for the estimation 
of the age of earth. The small T-a-diagram is an enlarged section of outer 300 km 
of the globe. The shaded area is the lithosphere. a is the initial thermal profile of 
the earth at the time of its formation, b is the present day thermal profile that was 
calculated by Kelvin based on the measured surface heat flow qs (thick drawn part 
on the thermal profile) and on a spherical heat conduction model. However, be­
cause of radioactivity (unbeknown to Kelvin), the lower lithosphere is much hotter 
than Kelvin thought possible. Moreover, in the asthenosphere convection destroys 
a conductive thermal gradient, which is very low in this part of earth, (convection 
was know at Kelvin's time but ignored in his estimates), d is the thermal profile 
that we should measure today, if the earth had only cooled by conduction since its 
formation at «4 .5 -109 y. The surface heat flow would be much lower than what we 
measure today 

This leads to a massive underestimate of the age of earth. Interestingly, the 
error that is caused in Kelvin's estimate by him neglecting convection is 
much larger than that caused by neglecting radioactivity. In 1895 John Perry 
improved Kelvin's estimates drastically, by assuming a "convective mantle 
conductivity" which he assumed to be ten times larger than the conductivity 
of the crust (s. p. V). With this assumption he arrived at an almost correct 
age. 

Why Kelvin ignored convection in the mantle, although it had been known 
for some time, we do not know. However, in defense of his estimate it should 
be said that he did mention in his discussion that heat production, for exam­
ple by chemical reaction, was not considered in his model but might change 
the results. The model of Kelvin remains a fantastic example for a conduction 
model that turned out to be completely wrong because other heat transport 
mechanisms were not considered. It should serve us as a reminder when in­
terpreting the heat sources of a metamorphic terrain. 

3.1.2 The Laplace Equat ion 

Equations 3.6 and 3.10 describe the evolution of temperature as a function 
of time. Thus, we can use them to describe heating and cooling curves of 
rocks. However, for many geological questions we are not all this interested 
in the temporal changes of the temperature, but rather in the steady state 
shape of a temperature profile, for example the shape of a stable continental 
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geotherm. For all those problems, where it is reasonable to assume that there 
is no temporal change of a temperature profile, we can write: 

dT 

T H = ° - <313> 
Any geological situation where this equation applies is called the steady state. 
When we make this assumption, K can be cancelled out of eq. 3.6 and eq. 3.10. 
We are left with: 

V2T = 0 . (3.14) 

Eq. 3.14 is called Laplace-equation. Just like the diffusion equation, it is an 
extremely important equation for many geological problems. In this chapter 
we will need it when we consider stable geotherms, but it also has applications 
in many other branches of the earth sciences. 

3.1.3 The Error Function 

If we want to use eq. 3.6 to describe a time dependent conduction problem, we 
must solve it for a given set of boundary- and initial conditions. If we try this, 
we would quickly realize that this is only possible for a very few boundary-
and initial conditions. Periodic problems are some of those for which there 
are "real" solutions of this equation (sect. 3.7.1). For most problems there 
are simply no solutions of eq. 3.6 possible. For example, for many geological 
problems we will see that it is useful to assume that the boundary conditions 
lie at infinity (at distances that are far away compared to the scale of the 
problem). In all such problems, the results of integrating eq. 3.6 will contain 
a term of the form: 

2 
U / e"n 2dn = erf(n) (3.15) 
7T Jo 

This integral cannot be solved. However, because it occurs so often in solu­
tions of the heat flow equation, it has its own name: the error function. The 
values of the error function for different values of n have been determined 
numerically and can be looked up on tables, or it can be calculated with some 
numerical approximation (s. Table C.9). Fig. 3.6 shows the shape of the error 
function. In many solutions of eq. 3.6 the variable n from eq. 3.15 has the 
form n = z/V^Kt. There, time t, and distance z are inside the error function 
and they are in a quadratic relationship to each other. Most solutions that we 
will use for the description of contact metamorphism contain error functions 
of this form (sect. 3.6). We will need the term n = z/y/iKt in sect. 3.1.4, 
4.4.1 and others. The complementary error function erfc is defined as: 

erfc (n) = 1 — erf (n) . (3.16) 
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Figure 3.6. The error function and the complementary error function. The dashed 
frame in a shows the part of erf(n) that is shown enlarged in b 

3.1.4 Time Scales of Diffusion 

In the last sections we have seen that heat conduction approaches thermal 
equilibrium asymptotically. Even after a very long time the new equilibrium 
is not reached a 100 % and isotherms will still be curved, even if ever so 
slightly. Thus, if we want to define a duration of thermal equilibration we need 
to define some arbitrary point along the equilibration curve which we use as 
a time scale, for example when half or 90 % or 99 % of the new equilibrium 
is reached. We call such a number along an asymptotically evolving process 
characteristic time scale, in this case: time scale of diffusion or: thermal time 
constant, teq. We can use teq as a scaling factor for the duration of a thermal 
event. It is a fantastic aid for an enormous number of estimates, even when 
in the field. It can be used to estimate the width of contact aureoles, the 
duration of metamorphic events, the chemical zoning profile of crystals and 
much more (s. Problem 7.8). The thermal time constant teq is given by the 
relationship 

teq OC (3.17) 

There, I is the spatial size, or: characteristic length scale of a thermal event 
(e. g. the diameter of an intrusion, of a hydrothermal vein or a metamorphic 
terrain), K is the thermal diffusivity and oc means "proportional to". Eq. 3.17 
tells us that the duration of diffusive equilibration is proportional to the 
square of the size of the equilibrating body. In other words, if for example 
there are two granitic plutons with one being twice the size of the other, then 
the duration of cooling will be four times longer for the larger body. The 
proportional relationship from eq. 3.17 adapts various forms, depending on 
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tea — I ,-» (3.18) 

the problem solved and on how exactly we want to define the thermal time 
constant. Usually it is defined as: 

J^J ° r : *"" = V(£32)2 
The different formulations are based on different assumptions about the mag­
nitude of the scaling factor for teq. In eq. 3.20 we will discuss this in some 
more detail. Table 3.2 shows some numerical values for different sizes of cool­
ing bodies. 

The value of teq can be used either way. It can be used to estimate the 
duration of a diffusion process or it can be used to estimate the length scale 
of a thermally influenced region after a given time scale. We should try to 
remember that the typical duration of thermal equilibration of length scales of 
10 m, 100 m, 1 km, 10 km and 100 km is of the order of 1 y, 100 y, 10 000 y, 
1 my and 100 my, respectively. Table 3.2 gives a number of examples of 
thermal time constants for different length scales. 

The Meaning of the "Time Scale" of Diffusion. We now want to define 
a bit more clearly what is meant by the terms "length scale" and "time scale" 
which we have introduced in the last section. For this, we have to use some 
information from sect. 3.6. There, we shall see that many solutions of the heat 
conduction equation contain an error function of the form: erf (l/\/4Kt). For 
example, the solutions discussed on page p. I l l or in eq. 3.80 are all of the 
form: 

T(t) = o + 6 erf (3.19) 

where a and b are constants. In eq. 3.19 the expression (l/^/int) corresponds 
to the variable n from eq. 3.15. The length scale I and time t are both con­
tained within the error function and do not appear elsewhere in the solution. 
The shape of the error function in Fig. 3.6 shows that it reaches asymptot­
ically 1 as n get very large. Correspondingly, from eq. 3.19, the term inside 

Table 3.2. Different values of the thermal time constant teq for a series of geolog­
ically relevant length scales /, and calculated for one of the two proportionalities 
given in eq. 3.18 as well as for one used much later in this book (p. 279) for the 
same purpose 

/ 

10 m 
100 m 
1 km 
10 km 
100 km 

teq =12/2K 

5-107 s«1 .58 y «10° y 
5-109 s « 1 5 8 y « 1 0 2 y 
5-1011 s « 1 5 000y « 1 0 4 y 
5-1013 s « 1 . 5 mywlO6 y 
5-1015 s « 1 5 8 my « 1 0 8 y 

teq -

1.01 
1.01 
1.01 
1.01 
1.01 

= l2/7Z2K 

107 s « 1 6 weeks « 1 0 _ 1 y 
109 s « 3 2 y wlO1 y 
1011 s « 3 2 0 0 y « 1 0 3 y 
1013 s « 3 2 0 000y « 105 y 
1015 s « 3 2 my wlO7 y 
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the brackets will always remain 1 for very large / (regardless of t), or for very 
small t (regardless of /). We can also see that - because time is in the denom­
inator inside the error function - complete equilibrium is reached only after 
infinite time (when the term inside the brackets asymptotically approaches 
zero). In order to define a "duration of equilibration" we may want to arbi­
trarily choose a point in the equilibration process where the argument of the 
error function (for which we use n in eq. 3.15) is 1. This means that: 

b y = i °r: *=£=*"• (3-2o) 
Figure 3.6 illustrates that for the argument to be 1 (where t = Z2/(2re)), the 
thermal equilibration is 84.3% complete. Just for simplicity, this arbitrary 
value is often chosen as a scaling factor for the equilibration history where it 
may be said that the diffusive equilibration is "largely complete". 

As the value of 84.3 % seems a bit arbitrary, thermal time constants are 
sometimes formulated using the reverse consideration: What is the thickness 
of a layer, which has equilibrated to 90 % within a given time? From Fig. 3.6 
we can see that erf(n) = 0.9, for n ~ 1.16 or I w 2 .32\ /K£. This expression for 
thickness is also used for the thermal definition of the lithosphere (sect. 3.4). 
It is what is sometimes called the thermal boundary layer. 

Both formulations discussed above are chosen in an arbitrary way, and ei­
ther can be used depending whether one wants a slightly simpler formulation 
of teq, or the value of the percent of thermal equilibration. It is important to 
note that teq gives an approximation of the time it will take for most of the 
thermal equilibration to take place. In summary, it will be sufficient for most 
purposes to remember the basic message of eq. 3.17: 

- During conductive processes the duration of thermal equilibration in­
creases with the square of the length scale of the equilibrating body. 

- For geologically realistic thermal diffusivities, the characteristic time scale 
of equilibration of a 103 m length scale is of the order of 104 y. On the 
scale of the lithosphere (108 m), the time scale of equilibration is of the 
order of 108 y. 

This means that regional metamorphism of nappe piles that are several tens 
of kilometers thick should last of the order of several tens of my. We shall 
discuss the implications of this in much more detail in sect. 6.2.1. 

3.2 Principles of Heat Production 

We discern three fundamentally different geological mechanisms that produce 
heat: 

- radioactive heat production, 
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— chemical heat production, 
— mechanical heat production. 

In the next sections we derive the basic equations that are needed to describe 
these three mechanism and we discuss their respective geological relevance. 
In general, the rate of temperature change due to heat production may be 
described by: 

dr pcp 

There, T, t, p and cp correspond to temperature, time, density and heat 
capacity as discussed on p. 53 and S is the volumetric rate of heat production 
in J s _ 1 m - 3 = W m - 3 . Heat production rate must be divided by density and 
specific heat to convert the volumetric heat production rate into a rate of 
temperature change, just as we have done with heat flow in section 3.1.1. 
If S is positive, heat is produced, dT/dt is positive and rocks heat up. If S 
is negative, heat is consumed, dT/dt is negative and rocks cool. The heat 
production rate S can be of radioactive, chemical or mechanical origin so 
that we can write: 

^ = "rad "r '-'chern T i>mec • (o.ZZj 

All three of these components may have a significant influence on the thermal 
evolution of rocks depending on the circumstances and all three have different 
characteristics that require different methods of description. 

Production or Conduction? From section 3.1 we remember that the rate 
of temperature change due to conduction is proportional to the difference 
between heat flow into and out of a unit rock volume (<fin — qout) • However, 
we now learn that the rate of temperature change also depends on the amount 
of heat that is produced inside this unit volume (Fig. 3.2). This value must 
be added to the difference <ftn — <fout- Thus, if we adapt eq. 3.6 to formulate a 
thermal energy balance considering conduction and production, we can write: 

dT d2T ( S \ 

W = K^+fe) • (3-23) 
Note that we now need to use partial derivatives. Whether or not we need to 
consider eq. 3.23 to model a given thermal problem, or if we can use the sim­
pler form of eq. 3.21 (neglecting heat production) or eq. 3.21 (neglecting heat 
conduction) depends on the magnitude and relative rates of heat production 
and heat conduction. Some heat production rates are very rapid (e.g. friction 
heat production during an earthquake), others are very slow (e.g. reaction 
heat production during retrograde metamorphism) but it really is on their 
rate relative to conduction that is critical to consider. A comparison between 
the diffusion and the heat production term on the right hand side of eq. 3.23 
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element U T h K 

mean mantle concentration (kg/kg) 31 x 10"9 124 x 10"9 31 x 10"5 

mean crustal concentration 1.24 x 10"6 5.6 x 10"6 1.43 x 10"2 

mantle heat production (W/kg) 3 x 10"12 3.2 x 10"12 1.1 x 10"12 

crustal heat production (W/kg) 1.4 x 1CT10 1.5 x 1CT10 0.5 x 1(T10 

Table 3.3. Concentrations of heat producing elements in the crust and undepleted 
mantle (after Turcotte and Schubert 2002). In granites, the heat production is about 
2-3 times higher than the values listed here. The heat productions are per kg of 
rock, i.e. the values come from concentrations given in the first two rows multiplied 
with the heat productions given in the text 

can help us to judge if one of the two processes is much smaller than the 
other and can therefore be neglected in the problem that is being considered. 
Such a comparison could be made two ways: 

1. Comparison. The characteristic time scale of diffusion teq of diffusion may 
be compared with the duration of heat production. If teq is much larger 
than the duration of heat production, then conduction can be neglected 
and heat production will dominate the temperature change. However, if teq 

is much smaller than the duration of heat production, then all heat that 
is produced will be conducted away at a much faster rate than it is being 
produced. Even large amounts of heat production will have a comparably 
small influence on the temperature and it may be possible to neglect the 
production term. If heat production- and conduction occur on similar time 
scales, then the following comparison may be of value. 

2. Comparison. Consider the case of stable temperature where dT/di = 0. 
Then we can see from eq. 3.23 and eq. 3.6 that: — S/k = d2T/dx2 . In 
words: if the ratio S/k corresponds to the curvature of the temperature 
profile, then the rate of heat production is balanced by the rate of heat 
conduction. An important example for such a balance is given by the steady 
state shape of isotherms in subduction zones (p. 107) and a corresponding 
example in the theory of mass transfer is discussed on p. 192. 

However, for this chapter, let us remain with the case where heat production 
is much more important than heat conduction and we neglect any diffusion 
processes in the first instance. 

3.2.1 Radioactive Heat Production 

Radioactive (or: radiogenic) heat is produced in the earth predominantly by 
the naturally occurring radioactive isotopes 238U, 235U, 232Th and 40K. Of 
the two naturally occurring uranium isotopes 99.28% is 238U and only 0.72% 
is 235U. All of the naturally occurring thorium is 232Th and only 0.0119% of 
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Figure 3.7. a Radioactive heat production in the crust through time. Note that 
the heat production in the Archaean 3 Ga ago was about twice as high as today. Also 
note that U and Th are the primary heat producing elements today, but it was U an 
K in the past, b Rates of radiogenic heat production in granites from the Mt Painter 
province, a low-pressure high-temperature metamorphic terrain in Australia (after 
Sandiford and Hand 1998b). Heat production rates in other Proterozoic terrains of 
Australia are similar. N is the number of data points 

the natural potassium is 40K (Turcotte and Schubert 2002). As pure metals, 
these 4 isotopes produce the following amounts of heat: 238U = 9.46 x 10~5W 
kg"1; 235U = 5.69 x 10"4W kg"1; 232Th = 2.64 x 10"5W kg"1 and 40K = 
2.92 x 10_5W kg - 1 . Fortunately, the concentrations of these elements in 
rocks are quite low so that substantially less heat is produced per cubic me­
ter of rock. Table 3.3 lists some average concentrations of the heat producing 
elements in the continental crust and in the mantle. We can see that the 
earth's mantle (oceanic crust has comparable values) contains about 2 orders 
of magnitude less radioactive elements than the crust. These concentrations 
are still important when considering problems related to cooling of earth as 
a whole or when thinking about the vigor of mantle convection in the Ar­
chaean, but for considerations of the heat budget of the Phanerozoic crust 
we need not consider radioactivity in the mantle. However, the crustal heat 
production is significant: The sum of the values listed in this table is about 
3.4 x 10~10 W k g - 1 , which corresponds roughly to a heat production rate of 
about one p W m " 3 . Using typical values for heat capacity and density of 
crustal rocks and eq. 3.21, S= 1 / jWm"3 converts to a heating rate of of 
about 10°C per million years (s. Problem 3.6). So the burial of highly ra­
diogenic bodies by deformation can cause significant heating ! In fact, most 
granites have substantially higher heat productions than those listed in Ta­
ble 3.3 and there are many terrains around the world where radiogenic heat 
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production rates is significantly higher than some ( iWm - 3 (Fig. 3.7b; San-
diford and Hand 1998b). Radiogenic heat production in the continental crust 
is responsible for about half of the heat flow that we can measure at the 
surface of the earth (Chapter 2, Fig. 2.18). However, in total, about 80 % of 
the cooling of earth is related to radioactive decay because even the low ra­
dioactivity in the mantle has an important influence on enhancing convective 
motion in the mantle and therefore on the heat that flows from the mantle 
into the lithosphere. Radioactive heat production is an important contributor 
to the heat budget of the crust as a whole (Chamberlain and Sonder 1990; 
MacLaren et al. 1999; Sandiford et al. 1998). 

Radioactivity in Space and Time. We know that heat producing ele­
ments are not homogeneously distributed across the crust, but that the bulk 
of the heat producing elements is concentrated in the upper crust. This is 
because all of the important radiogenic elements occur in granite and the 
intrusion of granites has been the principle agent of fractionating and redis­
tributing matter from the earth's interior towards the surface. Uranium and 
thorium are very large atoms and are therefore incompatible and thus con­
tained in granitic melts. Potassium is less radioactive, but there is so much 
of it in potassium feldspar so that it also has a significant contribution. Over 
time, granitic melts have transported those elements into the upper crust. 
Nevertheless, the vertical distribution of heat producing elements in the crust 
may be extremely variable (e. g. Haack 1983; Lachenbruch and Bunker 1971). 
In the section on the calculation of geotherms we will spend some time to 
discuss the influence of the vertical distribution of these elements on the 
temperature profile of the lithosphere (sect. 3.4.2, see also p. 289). 

The temporal variation of radioactivity in the earth's crust through time 
has been a topic of significant debate, as it is intimately connected to the 
question if plate tectonics is a modern feature or if it occurred in the Archaean 
as well. The half lives of the four important radioactive isotopes are known 
to us. They are: 238U = 4.47 Ga; 235U =0.704 Ga; 232Th = 14 Ga and 40K = 
1.25 Ga. As such, the half lives are comparable to the age of earth and it is 
easy to estimate the radioactivity in the past. Fig. 3.7a shows that the heat 
production in the Archaean was about twice as high as today. Of course this 
is true for the mantle as well. A series of authors have discussed the influence 
of higher heat production in the Archaean for secular changes observed in 
the style of ore deposits (Groves et al. 2005), the style of metamorphism 
(Sandiford 1989) and the style of continent formation in general (Abbott and 
Hoffman 1984). 

3.2.2 Mechanical Heat Production 

The forces that deform rocks can be viewed as mechanical energy that is 
added to the rock. The work done on the system is the product of force 
applied to the system times the distance over which it is deformed. This 
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energy will be taken up by a variety of mechanical energy sinks. A part of 
this energy will be transformed into potential energy (s. sect. 5.3.1), some into 
dislocation energy in crystal lattices, some in noise and other forms of energy. 
However, most authors agree that the majority of this mechanically produced 
energy will be transformed into friction heat. Frictional heating is also often 
referred to as shear heating (because it is produced when rocks are sheared) 
or viscous dissipation (because momentum is dissipated, see details in sect. 
5.1.1). We abbreviate this mechanical heat production with Smec- The rate of 
mechanical heat production Smec is given by the product of deviatoric stress 
r and strain rate e. Stress has the units of Pascal. One Pascal is one Joule 
per cubic meter (1 P a = l J m " 3 ) . Thus, stress can be expressed as energy 
per volume and energy is stress times volume. These conversions between 
the different units should be straight forward, remembering the well-known 
relationships: 

,. . force 
force = mass x acceleration and stress = . 

area 

The units of acceleration are m s - 2 and those of force are therefore: k g m s - 2 . 
Stress and pressure therefore have the units of kg m s - 2 m - 2 or Pa = kg m _ 1 s - 2 

and energy has the units of J = kgm 2s~ 2 . Accordingly, if high deviatoric 
stresses are required to deform a rock, a lot work is done on the system and 
the mechanical energy production rate is high, and vice versa. We notice that 
when we rub our hands together: The harder we press and the faster we rub, 
the warmer they get. Both deviatoric stress and strain rate are tensors and 
the rate of mechanical heat production is therefore given by a tensor product. 
Considering tangential and normal components in three dimensions, friction 
heat is given by: 

^mec — Txx^xx ' Tyy^yy ' ^~zz^zz ~r ^ \^~xy^xy ' ^~xz^xz < TyZ€yZ) yo.ZQ} 

(see e.g. Burg and Gerya 2005). The subscripts and notation of the compo­
nents of deviatoric stress and strain rate should not worry us here and will 
be discussed in some detail in sect. 5.1.1. For now, we consider only the one-
dimensional case (and only normal components, i.e. we neglect shear stresses 
and shear strain rates). Then we can view the mechanical heat production 
rate as the simple scalar product: 

Smec = re . (3.25) 

Some of the implicit assumptions in this simplification are discussed in 
sect. 5.1.1 and 6.2.2. In order to write the temperature change that arises 
from frictional heating we can write in analogy to eq. 3.21: 

dT re 
— = . (3.26 
at pcp 

Note that eq. 3.26 is independent of the deformation mechanism. Both brittle 
and ductile deformation mechanisms will produce the same amount of friction 
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heat if they support the same deviatoric stresses. We only may need to be 
careful with the units: Brittle faults do not have a strain rate (in s_1) but a 
slip rate in meters per second. The product of slip rate and deviatoric stress 
does not have the units of heat production per cubic meter, but the units of 
heat flow (i.e. J s _ 1 m - 2 normal to the fault surface) which can be converted 
into a heating rate using the laws of heat conduction discussed in previous 
sections. 

Temperature Dependent Strength. In chapter 5 (p. 231) we will show 
that the deviatoric stresses that rocks can support during viscous deformation 
are a strong function of temperature. Thus, eq. 3.26 should strictly have been 
written as: 

— = - L ^ - . (3.27 
at pcp 

We can see from this equation that the temperature increase that may occur 
due to shear heating is in itself a function of temperature. There is a negative 
feedback between shear heat production and thermal weakening so that any 
incremental amount of shear heating will instantaneously soften the rocks 
and subsequent heating becomes more and more difficult as temperature gets 
higher. Shear heating is self limiting. 

For some assumptions about the deformation mechanism it is possible to 
integrate eq. 3.27, even though temperature occurs both on the left and right 
hand sides of the equation. For example, for the deformation law described 
by eq. 5.46, it is possible to integrate eq. 3.27 (Stiiwe 1998a). While this 
analytical solution will not be repeated here, a graph of this solution is shown 
in Fig. 3.8 for the rheological parameters of quartz and olivine. It may be 
seen that - if rocks are very soft (e.g. at very high temperatures) - there is no 
shear heating and temperatures before and after deformation are the same. 
However, at temperatures below about 600°C shear heating may be quite 
significant. Due to the self limiting nature of shear heating, curves become 
parallel to the vertical axis at even colder temperatures. 

Note that Fig. 3.8 can only be used to evaluate the effects of shear heating 
if conduction of heat may be neglected. The time scale of conductive equili­
bration of the lithosphere is of the order of hundreds of my, while the duration 
of continental deformation processes is only 1-10 my. Thus, on the scale of 
the lithosphere, the duration of mechanical heat production is at least one 
order of magnitude less than the duration of heat conduction. Thus, conduc­
tion of heat may be neglected if shear heating is considered on the scale of the 
lithosphere (s. comparison on p. 66). Also note that Fig. 3.8 was calculated 
assuming that the strain rate remains constant. While this describes some 
geological scenarios, there are many others where stress is a constant and the 
strain rate changes in order to balance it (s. p. 246). 

Shear Zones of Finite Width. If we consider problems on a small scale, 
for example shear heating around a small shear zone, then the influence of 
conduction during heat production needs to be considered. For the solution 
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Figure 3.8. Temperature of rocks at the start of deformation, plotted against the 
temperature at the end of deformation. Mechanical heat production is assumed to 
be the only heating process and heat conduction is neglected. The diagram was 
calculated with the solution presented by Stiiwe (1998a), which was derived from 
eq. 3.27 and eq. 5.46. The various curves are labeled according to the following 
syntax: before the dash: i0Log(e) between e — 10~12 and 10~16 s _ 1 ; after the dash: 
elongation from 1-10. Obviously, the increase in temperature is larger for larger 
strains. However, during crustal shortening, a stretch of 2-3 is rarely exceeded. 
Thus, the effects of shear heating are likely to be much larger in strike slip regimes 
where much larger strains are possible than during crustal thickening. Rheological 
assumptions for quartz are: Q - 1.9 • 106 Jmol" 1 , A = 5 • 10"6 MPa"3 s"1, n — 3. 
Rheological assumptions for olivine are: Q — 5.2-105 J m o l - 1 , A — 7-104 M P a _ 3 s _ 1 , 
n — 3 

of such problems, eq. 3.26 must be enlarged by a term that describes diffu­
sion. The equation we must solve is eq. 3.23, subject to initial and boundary 
conditions that describe the shear zone geometry. Fortunately, many shear 
zones have reasonably simple planar geometries that may be described with 
simple initial and boundary conditions. If we define the width of a shear zone 
to be 2/ and assume a one-dimensional spatial coordinate z that extends 
normal to the shear zone and has its origin in the shear zone center, then 
the boundary conditions for a planar shear zone of constant width may be 
formulated as follows: 

— T = 0 at the time t = 0 in the half space z > 0. 
— For alH > 0 there is heat production in the region 0 < z < I at a constant 

rate S. 
— For alH > 0 the thermal gradient at z = 0 is: dT/dz = 0. 
— At z = ±oo the temperature stays at T = 0 at all times. 

You can visualize yourself these initial and boundary conditions by sketching 
them into a diagram where z is plotted against T. Using these initial and 
boundary conditions it is possible to find solutions of eq. 3.23 that describe the 

15/1 12/1 12/10 15/112/1 
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Figure 3.9. Temperature profile 
across a shear zone of the width 
2/ — 50 m at three different time 
steps labeled in my. The heat 
production rate in the shear 
zone is 10"4 W m " 3 ; the thermal 
conductivity k is 
2.7 J s _ 1 m _ 1 K _ 1 . The figure 
was calculated with equations 
given in the 1st edition of this 
book. For another example 
where the same model may 
apply see p. 201 

z(km) 

temperatures in and around the shear zone. This and many other solutions 
of the heat flow equation are discussed by Carslaw and Jaeger (1959) and can 
be looked up therein. Fig. 3.9 shows a graph of the relevant solution (given 
in the first edition of this book). The largest error in this figure is introduced 
by the assumption that the mechanical energy production rate was assumed 
to be constant. In reality, there is a feed back mechanism between heating 
and softening in the shear zone. Carslaw and Jaeger (1959) present for this 
problem some solutions in which the heat production rate can be varied as 
a function of time. However, for most realistic problems, where shear heat 
production feeds back on the rheology of the rock (e. g. in Fig. 3.8) it is wiser 
to use a numerical solution of eq. 3.23. 

Geological Relevance of Shear Heat Production. A range of authors 
have discussed the importance of shear heating on a geologically significant 
scale (e.g. Burg and Gerya 2005; Nabelek and Liu 1999; Brun and Cobbold 
1980; Lachenbruch 1980; Scholz 1980; Barton and England 1979; Graham and 
England 1976). Nevertheless, its importance in many tectonic and metamor-
phic processes remains contentious. This is because both, deviatoric stresses 
and strain rates on the scale of the crust are not very well constrained and 
are among the most discussed geological parameters. We can constrain shear 
heating to a certain degree using eq. 3.26 to estimate the temperature in­
crease a rock might experience for some realistic deviatoric stresses and strain 
rates. For this, we neglect heat conduction away from the site of mechanical 
heat production in the first instance. Our estimates are therefore an upper 
constraint but may be quite appropriate if the length scale of shear heat pro­
duction is very large (e.g. deforming nappe piles of several tens of kilometers) 
and the time scale of heat production is short (e.g. less than a few millions 
of years). 

v 
o 

shear zone 
(width=2l) 
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Methods to measure geological strain rates show an upper limit of e = 
10~12 to 10 - 1 4 s_ 1 . These numbers imply that deformation doubles the thick­
ness of a rock package (strain of about 100 %) within 1-10 my. The magnitude 
of deviatoric stresses is much less constrained. Stress determination experi­
ments are performed at strain rates of e = 10~6 s _ 1 and must be extrapolated 
by six to eight orders of magnitude of strain rate. The relevance of such ex­
perimental results remains therefore debated. Moreover, deviatoric stress is 
strongly temperature dependent. Nevertheless, we know that the order of 
magnitude of plate tectonic driving forces is between 1012 and 1013 N m " 1 

(s. sect. 5.3) and we will show on p. 300 that this implies a rock strength 
of 50-100 MPa, averaged over the thickness of the lithosphere. However, the 
vertical distribution of this strength in the lithosphere is largely unclear. In 
fact, in section 6.3.5 and 5.2.1 we will see that the middle crust may exceed 
those values dramatically. In problem 3.7 we use some number to estimate 
the arising heating rates. 

An estimate for total heating can be arrived at even easier: During oroge­
nesis, the crust typically changes its thickness by a factor of two (it doubles 
in collisional orogens and halves its thickness in many extensional settings). 
Remember that a stretch of 2 corresponds to a longitudinal strain (or elon­
gation) of 1 (e • t = e = 1; s. eq. 4.1). Assuming all else being constant, it 
is easy to integrate eq. 3.26. The temperature at the end of deformation for 
a longitudinal strain of 1 can simply be estimated with: T — T/(pcp). Us­
ing standard values for the density and specific heat (,0 = 2 700 k g m - 3 and 
cp —1000 J k g - 1 K_ 1) we can see that a rock that has a shear strength of 
100 MPa will be heated by about 37°C. If rocks are twice as strong, then 
the temperature increase is twice as high. As the strength of rocks may be 
several hundreds of MPa under some circumstances, we must conclude that 
viscous dissipation may be of significant importance to the thermal energy 
budget of the lithosphere. 

Figure 3.10. Field photographs 
of pseudotachylites. The left 
photo shows network typical of 
many pseudotachylites, the right 
photo shows a pseudotachylite 
with chilled margin and 
recrystallised center. Both 
photos are 550 my old 
pseudotachylites from the 
Woodroffe Thrust system, 
Central Australia (Camacho et 
al. 1995) 
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Examples where friction heat production has a significant influence on the 
temperature of rocks are well-known to us from pseudotachylites from all 
crustal levels (Camacho et al. 1995; 2001; Austrheim et al. 1996) (Fig. 3.10). 
In those, friction heat was sufficient to even melt the rock. Pseudotachylites 
form during seismic events where extremely rapid deformation occurred on 
a very local scale. They are therefore not very appropriate to estimate the 
influence of friction heat on the thermal evolution of the entire crust where 
we have to deal with averaged strain rates and averaged stresses (e. g. Kin-
caid and Silver 1996; Stiiwe 1998a). Regardless, even significant amounts of 
friction heat need not be reflected in significantly increased temperatures. 
Whether or not shear heating actually becomes geologically significant on a 
crustal scale depends largely on 2 factors: 

- 1. It depends on the relationship between the length scale of heat produc­
tion (which determines how rapidly heat may be conducted away from the 
site of production) and the time scale of heat production. The same con­
siderations that we discussed on p. 66 apply. For example, if a 100 m thick 
shear zone is active for 1 my, then eq. 3.18 tells us that the characteristic 
time scale of diffusion of this shear zone is of the order of only 1000 y. 
Thus, shear heat produced over a time interval of 1 my will be largely con­
ducted away as it is produced. In contrast, if a 15 km nappe pile deforms 
under the same conditions, then its thermal time constant will be tens of 
my and all heat produced within 1 my will be largely retained in the pile. 

- 2. It depends on the feedback between heating and softening of rocks. 

In summary we can say that shear heating is a potential candidate for signif­
icant heating of rocks and that every argument for or against shear heating 
should be reduced to an argument about one of the following three points: 

- What is the strength of the rocks under consideration? 
- What is the strain rate? 
- What is the relationship between the duration of deformation and the size 

of the deforming rock body? 

We can also conclude from the active discussion in the literature that the 
question is partly open and that it is unwise to take sides without some 
valued consideration of the problem. 

Adiabatic Processes. "Adiabatic" means: "without change in heat con­
tent" or: "without change in enthalpy". If a rock is buried, the pressure rises 
because of the weight of the increasing overburden. The rock is compressed 
and there is work done to change its volume. The energy of the rock increases 
by the product of the applied lithostatic force and the distance of shortening 
during the volume change. It is a type of mechanically produced energy. If 
no change of the heat content of the system is allowed, then the rock must 
get warmer. The rock heats adiabatically. Correspondingly, an adiabatically 
heated rock will cool and expand when it is decompressed. We can observe 
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adiabatic cooling on gas bottles that freeze on their surface when they are 
opened and adiabatic heating on bicycle tires that warm up when they are 
pumped up. Rocks are compressible enough so that adiabatic processes is a 
geologically relevant process, in particular in the earths mantle. For the con­
sideration of adiabatic processes we define the isothermal compressibility (i 
as the relative volume change, dV, per increment of pressure change, dP, at 
constant temperature. This has the units of P a - 1 (sect. 5.1.2): 

We discuss the compressibility in sect. 5.1.2. More commonly we will en­
counter the thermal expansion coefficient a. Corresponding to the isother­
mal compressibility, a is given by the relative volume change per increment 
of temperature change at constant pressure. This is given by: 

«=4(£), • 
Rocks have typical values of a « 3 - 1 0 - 5 K _ 1 and /3 « 10 - 1 1 P a - 1 . When 
discussing adiabatic heating processes we need yet another parameter, which 
is the adiabatic compressibility (which is different from the compressibility at 
constant temperature). This is given by the change in density with change in 
pressure at constant entropy and should not be confused with the isothermal 
compressibility discussed in eq. 3.28. The adiabatic compressibility is smaller 
than the isothermal compressibility. 

Whatever the case may be, to the geologist it is relevant to remember 
that part of the temperature increase with depth in the earth is due to an 
adiabatic temperature gradient. Without going into the derivation in any 
detail we state here that this gradient is given by: 

— = -?— . (3.30 
dz cp 

The constant g is the gravitational acceleration, T is temperature and cp is 
the specific heat. Without further explanation we also want to remember that 
this gradient is understood to be at constant entropy. Detailed derivations 
of eq. 3.30 are given by Turcotte and Schubert (1982) and in many other 
geophysical teaching texts. If we insert realistic numbers we see that the adi­
abatic temperature gradient in the mantle is about 0.3-0.5 °C km - 1 . In other 
words, the adiabatic temperature change between the surface and the base 
of a 100 km thick lithosphere is about 50°C. For most geological processes 
within the crust this is negligible. However, for geodynamic processes that 
require the consideration of large vertical length scales in the mantle, the pro­
cess is of relevance. It is particularly important for melting processes in the 
upper mantle (Fig. 3.11). In fact, because convection in the asthenosphere is 
rapid enough to equalize most conductive gradients, the adiabatic gradient 
is often the only temperature change with depth that there is. 
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F igure 3.11. The temperature profile (thick line) and the melting curve (dashed 
line) between the earth's surface and the center of the earth in 6 300 km depth 
(after Jeanloz and Richter 1979; Jeanloz 1988). See Fig. 2.16 for scaling of this 
figure. In the mantle, the temperature increase is given by the adiabatic temperature 
gradient (eq. 3.30). The steps in the temperature profile arise from exothermic and 
endothermic reactions during phase transitions. Note that only the outer core is 
liquid according to this diagram. However, rapid exhumation of the upper mantle 
may lead to a cross over of the two curves above 500 km depth and therefore to 
partial melting. This is what happens underneath mid oceanic ridges or during 
continental extension 

3.2.3 Chemical Heat Production 

Different rocks are characterized by different internal heat contents defined by 
the strength of bonding of the atoms in the crystal lattices in the rock-forming 
minerals. During chemical reaction, the difference in heat content between re-
actants and products is released or consumed as latent heat of reaction. We 
abbreviate this chemically produced or consumed heat with Ŝ hem- By far 
the largest majority of chemical reactions are endothermic when the temper­
ature increases. Because of this, temperature rise of rocks may be buffered by 
the phase transition. Correspondingly, most reactions are exothermic when 
crossed down temperature. However, most chemical reactions have a posi­
tive slope in a pressure-temperature diagram. Thus exothermal reaction can 
not only be triggered by a decrease in temperature, but also by an increase 
in pressure (at constant temperature). In very general terms, we can chem­
ical reactions that produce heat into three groups. In decreasing order of 
importance these are: 

— Phase transitions: The chemically produced heat of reactions involving 
phase transitions is significant to the thermal budget of rocks. 

"^r; 1 r 
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— Dehydration reactions: In the solid state, dehydration reactions are 
the most important producer of reaction heat (Connolly and Thompson 
1989; Peacock 1989). In the greenschist fades they produce of the order 
of 4-106 J per kg of released water. However, rocks contain only of the 
order of 4 % H2O and this water is being released over quite a large tem­
perature interval. Thus, the heat of reaction is fairly insignificant during 
regional metamorphism. Connolly and Thompson (1989) estimated that 
metamorphic reaction produce of the order of 5-10 -10 -14 W c m - 3 . 

— Solid - solid reactions: The chemical heat production of solid - solid 
reaction is negligible for geological problems. 

The geologically most important reactions that involve phase transitions are 
the melting reactions where the latent heat of fusion is released or the latent 
heat of melting is consumed. As a consequence, it is important to consider 
reaction heat when dealing with the thermal energy budget of migmatites and 
intrusions. A commonly used value for the latent heat of melting of rocks is 
L = 320 000 J kg - 1 . Evaporation and condensation reactions are also strongly 
exothermic and endothermic respectively, but they are not very important in 
the geodynamics of the lithosphere. 

Quantitative Description of Chemical Heat Production. The rate of 
reaction heat production Schem has the same units as any other heat produc­
tion rate: W i n - 3 . It can be described by: 

dV 
Schem = Lp-j- • (3.31) 

In this equation L is the latent heat of reaction in J kg - 1 . Since we think of 
the chemical heat production rate as a volumetric heat production rate, it is 
necessary to multiply L by the density p to convert it into a volumetric heat 
content. The expression dV/dt is the volumetric proportion of the reaction 
that occurs per unit time (in s _ 1) . Note that V has the units of percent and 
not cubic meters. Thus, the equation determines the part of L that is freed 
in every time step of the reaction. Substituting eq. 3.31 into eq. 3.21 we can 
now formulate the temperature change during chemical heat production to 
be: 

dt ~ cpdt • ( 3 ' 3 > 

If we consider one dimensional diffusion of heat in direction z as well, but 
neglect other heat sources we can write: 

dT d2T LdV . 
1 H = ^ + 7P1H ' (3-33) 

where the first term on the right side is the diffusion term discussed at length 
in eq. 3.6. You will recall from there that K = k/pcp. In this form of the 



78 3 • Energetics: Heat and Temperature 

equation we also have neglected differences in density between the reactants 
and the products. It may help you to understand eq. 3.33 by formulating it in 
terms of energy rather than in terms of temperature. It then takes the form: 

dH ,<92T T dV lnnl. 
lK=k^ + L<)lH • (3-34) 

There, H is the heat content in J m " 3 . The conversion between heat and 
temperature is illustrated in Fig. 3.12 and was briefly discussed in eq. 3.3. 
In principle, it is possible to implement the heat of reaction quantitatively 
and describe the evolution of PT paths under consideration of buffering pro­
cesses. However, the estimates of Thompson and England (1984), Connolly 
and Thompson (1989), Peacock (1989), Barr and Dahlen (1989) and others 
shows that the magnitude of reaction heat does not justify to implement such 
a model in great detail and that it is only important to consider latent heat 
when rocks melt. Then, reaction heat has indeed quite a significant effect on 
the thermal evolution of rocks and we will now discuss how to describe it. 

Thermally Buffered Melting. Melting during prograde metamorphism in 
the upper amphibolite and granulite facies is a strongly endothermic process. 
Thus, the rate with which temperature increases during metamorphism at 
this grade will be buffered by the melting reactions. At univariant melting 
reactions, the temperature will remain constant until the phase transition 
from solid reactants to liquid products is complete. It is the very same reason 
why we have so much snow slush on our roads in spring: ice and water will 
both have a temperature of 0°C, until all ice has melted, even if the air 
temperature has been above freezing for quite some time. For the same reason 
water will boil at a constant temperature of 100°C, regardless of the heat 
added by the stove, until it all has evaporated. In the buffering interval, the 
amount of heat added to the rock from the outside is exactly balanced by the 
amount of heat consumed by the phase transition. 

Most rocks consist of many chemical components in complicated chemical 
systems. As a consequence, they do not melt at a single temperature, but over 
a melting interval between their solidus (where the first melt appear during 
temperature increase) and liquidus (where the last remaining piece of rock 
melts). If we want to describe such rocks, we must find a formulation that 
allows us to release (or consume) the latent heat over a large temperature 
interval. For this it is useful to reformulate the rate of volume change from 
one phase to another from eq. 3.31 into: 

dV _8VdT 

m ~ DT m " l ' 
In this form it is easier to add the heat of reaction to the time derivative on 
the left side of eq. 3.33. This reads then as: 

/ dV\8T kd2T 

{Cp-Ldf)^ = -p^ (3-36) 
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Figure 3.12. a A schematic model for the description of the relationship between 
melt volume and temperature. The curves are labeled for different values of the 
constant a in eq. 3.38. For a — 0, eq. 3.38 simplifies to the linear relationship 
V(T) — T/(T] — Ts). The thick drawn line is probably the most realistic curve for 
the melting of hydrated metapelitic rocks, b The relationship between heat content 
and temperature in the melting interval of a melting rock (shown between solidus 
temperature Ts and liquidus temperature T\. The slope of the curves within the 
melting interval are for five different assumptions of the melting process according 
to eq. 3.38; after Stiiwe 1995) 

or: 
dT 

^ m o d 
d2T 

(3.37) 

There, Km0d = k/(pcm0<i) is the modified diffusivity and cm0d is a modified 
heat capacity: cm0d = cp — Lp(dV/dT). We wrote down these equations to 
illustrate that chemical buffering of thermal processes can be described by 
modifying the diffusivity. The numerical problems that can arise when doing 
this were first described by Price and Slack (1954). 

How Do Rocks Melt? Many migmatite terrains have equilibrated around 
700° C, although their peak pressures vary considerably from terrain to ter­
rain. This leads one to suspect that this common peak temperature may be 
unrelated to the burial depth of the terrain and has other causes. The prox­
imity of 700° C to the solidus temperature of rocks suggests that thermal 
buffering by the effects of latent heat is a conceivable cause of this common 
phenomenon (Stiiwe 1995). In order to explore this hypothesis, it is neces­
sary to know the amount of melt that is formed at or around 700° C, because 
only eutectic melts form at the solidus. Petrogenetic studies have rapidly ad­
vanced over the last five years and can - in principle - be used to determine 
the relationship between melt volume and temperature in the melting inter-
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val (White et al. 2001; Riesco et al. 2004; Kelsey et al. 2005). However, for a 
ball park estimate, a useful relationship may be: 

V(T) = ^r^r (3.38) 

In this freely invented equation, a can be adjusted to explore different rela­
tionships (i.e. different melting models) between melt proportion, V(T) and 
temperature T between the solidus temperature Ts and the liquidus temper­
ature T\ (Fig. 3.12). If a has a large positive value, then most of the rock 
melts near the solidus. If a adapts large negative values, then most of the 
melting occurs near the liquidus. For values of a —> zero, melting becomes 
linear in temperature. Many rocks contain hydrated phases at the onset of 
melting. As water is a great catalyst for melting processes, it is likely that 
more melting will occur near the solidus than near the liquidus. Realistic 
values for a are therefore likely to be positive and possibly around a = 0.01. 
If we accept eq. 3.38 as a melting model, then the change of melt volume 
with temperature dV/dT can be derived from eq. 3.36 to be the following: 

dV ( a \ T 

d T i „„r, „„T_ , e a • (3-3 9) 

This relationship can be used directly to estimate the influence of melting 
on the thermal evolution of rocks. Stiiwe (1995) showed that it may be large 
enough to account for the equilibration of parageneses in the low-pressure 
high-temperature metamorphic environment. 

3.3 Principles of Heat Advection 

Heat can be transported actively by the motion of warm rocks. We discern 
between advection and convection of heat. Advection is generally used if the 
active transport of heat is only in one direction, for example the transport 
of heat by an intrusion that moves in the vertical direction. Convection is 
generally used when referring to material transport in a closed loop, for ex­
ample the convection of mantle material in the asthenosphere, or that of fluids 
in a hydrothermal system. In this book, we only deal with advection. One-
dimensional active transport of heat (for example in the vertical direction z), 
relative to the z direction may be described by: 

9T dT 

-m^u^- (3-40) 

In eq. 3.40, u is the transport velocity; the derivative dT/dz describes the 
thermal gradient and dTjdt is the change of temperature with time. For posi­
tive u, eq. 3.40 describes transport against the spatial coordinate z: transport 
is from high z towards lower z (Fig. B.7 illustrates the sign of u). Eq. 3.40 is 
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also called the transport equation and is equally applicable to the transport 
of mass, for example during advection of concentration profiles through a 
crystal lattice. In three dimensions, the heat advection equation is: 

dT dT dT dT . 

flT = u * t o + t t » ^ + u ' a F • (3-41) 

Although we shall discuss below some examples where eq. 3.40 may be solved 
analytically, the vast majority of geological problems require numerical solu­
tions of eq. 3.40. Indeed, although eq. 3.40 looks much simpler to solve than 
eq. 3.6 it is much more complicated to solve it. In numerical solutions of 
advection problems we are often faced by the problem of numerical diffusion 
(sect. B.2.3, B.2.3). One way to avoid problems with numerical diffusion is 

by converting the problem from an advection problem into one where there 
is no advection, but moving boundary conditions; i.e. we describe the prob­
lem in a Lagrangian, rather than a Eulerian reference frame (sect. 4.2.2). In 
Lagrangian descriptions the material is transported through the coordinate 
system. Eulerian reference frames move with the material. 

There are three different important mechanisms by which heat is advected 
in the lithosphere that require different methods of description. These three 
mechanisms are: 

— advection of heat by magmas, e. g. magmatic intrusion; 
— advection of heat by solid rock motion, e. g. erosion or deformation; 
— advection of heat by fluids, e. g. during infiltration events. 

The difference between these three processes in terms of their mathematical 
description arises mainly from the relative rates of advective and diffusive 
processes. These three processes will therefore now be discussed separately. 

3.3.1 Heat Advection by Magma 

During intrusion of magma from deeper into shallower levels in the crust, the 
heat of the magma is transported to higher crustal levels by the motion of 
the magma itself. The process of magmatic intrusion is - in general - much 
faster than most other geological processes, for example the thermal equili­
bration during contact metamorphism. It is therefore usually not necessary 
to describe the intrusion process itself by an advection equation. For ques­
tions related to the thermal evolution of contact metamorphism is usually 
suffices to assume that intrusion is infinitely rapid and can be described by 
instantaneous heating problems (s. sect. 3.6). Simple examples for good model 
assumptions to describe intrusions into the crust are given by Jaeger (1964) 
and for intrusion at the Moho (under plating) are given by Wells (1980) and 
Huppert and Sparks 1988). Thermal processes related to intrusion will be 
discussed at length in sect. 3.6. Nevertheless, we want to note that country 
rocks that heated during contact metamorphism are often referred to as being 
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"advectively heated". Strictly speaking this is not correct as it is conduction 
from the intrusion into the country rocks, not advection itself that causes 
contact metamorphism (s. sect. 6.3.3). 

3.3.2 Heat Advection by Solid Rock 

Any movement and deformation of rocks will carry the heat it contains with 
it. for example, during exhumation of rocks by erosion, the lithosphere (and 
its heat) are moved vertically upwards (s. sect. 4.3.4). The column is moved 
through a surface of constant temperature - the surface of earth. Erosion is 
therefore a heat advection process. In a similar way, any other motion of rocks, 
for example during thrusting or folding may be interpreted as an advective 
process (if viewed in an externally fixed Eulerian reference frame, s. p. 144). 
Here we will only discuss one-dimensional, vertical advection of heat to and 
from the earth's surface. The time scale of continental denudation processes 
is comparable to the time scale of thermal equilibration on the scale of the 
crust and we can therefore not neglect to consider both processes at the same 
time. If we want to describe advection and diffusion of heat simultaneously, 
then we must expand eq. 3.40 by the diffusion term from eq. 3.6. The equation 
that must be solved becomes: 

dT 
(3.42) 

d2T dT 

dt dz2 dz 
A schematic illustration how the two processes interact to shape a geotherm 
during erosion is shown in Fig. 3.13. You may also want to consider to expand 
this equation by yet another term describing heat production (e.g. the term in 
eq. 3.21). Then, we would have a complete thermal energy balance to describe 
any thermal problem. However, it is strongly recommended to perform a 
careful evaluation of the relative importance of heat conduction, advection 
and production for a given problem to decide which terms must be considered 
and which not. Such a comparison may be done similar to that we have shown 
on p. 66. Here we consider only diffusion and advection. 

Figure 3.13. Schematic illustration of one-
dimensional advection of heat by erosion. The 
coordinate system is fixed with z — 0 at the 
earth's surface. Temperature profiles through 
the crust are shown for two times: at the on­
set of erosion to, at which a linear geotherm is 
assumed and a later time t\. The advection rate 
u is positive upwards. In the shown time inter­
val the erosion process advects the geotherm by 
ttxti meters upwards. Simultaneous diffusion 
causes the curvature of the temperature profile 

advection 

^ x diffusion and 
\ advection 

+u 
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Geotherms During Erosion and Sedimentation. Eq. 3.42 can be used 
to describe the evolution of a crustal geotherm that is advected through the 
earth's surface, for example during erosion (upwards advection) or sedimen­
tation (downwards advection) (Benfield 1949) or - on a smaller scale - the 
evolution of temperature profiles in soil during accumulation or ablation of 
snow. For simple assumptions about advection rate (e.g. that this is constant) 
and boundary conditions, analytical solutions of eq. 3.42 may be found. In 
the following we present some examples of useful boundary conditions for 
both steady state and time dependent scenarios. 

• Steady state geotherms during erosion. For fixed boundary conditions a 
thermal steady state will be reached by geotherms during erosion if the up­
wards advection of heat is exactly balanced by conductive cooling from the 
surface. Then, there is no temperature change with time (i.e. dT/dt — 0) and 
eq. 3.42 simplifies to: 

d_(dJ\=_ud_T_ 
dz \dz J K dz 

(Spiegel 1968, Mancktelow and Grasemann 1997). Using A = U/K and v = 
dT/dz this can also be written as: v'(z) = —Xv(z). This is a very common 
differential equation and its solution is: v(z) = v(0)exp(—Xz). Written in full: 

% = -£if-""'"'"' • <"4> 
The derivation is explained in the appendix on p. 416. There are three geo­
logically relevant boundary conditions with which this equation can be easily 
integrated a 2nd time to give a closed solution for steady state thermal profiles 
during advection. In all three examples we assume that one of the two re­
quired boundary conditions is given by zero surface temperature (T(z=o) = 0), 
but any surface temperature can simply be added to the given solutions. 

• 1. If the other boundary conditions is defined by the mean geothermal 
gradient g at z = 0, then this boundary condition can be directly inserted 
into eq. 3.44 and integrated a 2nd time. The solution is: 

T = 9— ( l - e - ( u z / K ) ) . (3.45) 

• 2. If the lower boundary is fixed with the temperature T^ as the depth 
goes to infinity (T(z^,oo) = ^oo) then a steady state solution of eq. 3.42 is: 

T = ^ ( l - e- ( u z / K ) ) . (3.46) 

• 3. If the lower boundary is fixed at the temperature T = TL at a fixed 
depth z = L, a steady state the temperature is described by the solution: 

/ 1 — O-{UZ/K) \ 

T = T t 1 - e - W ) • ( 3 - 4 7 ) 
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Figure 3.14. Examples of steady state geotherms during simultaneous upwards 
advection and diffusion, a Geotherms fixed at the surface with T — 0 and at infinite 
depth at temperature T^ — 1000° C (calculated with eq. 3.46). b Geotherms fixed 
at the surface with T = 0 and at depth L = 100 000 with TL = 1000° C (calculated 
with eq. 3.47). Contours are for different advection rates u labeled in meters per 
million years and K — 10 _ 6 m 2 s _ 1 

This latter case is quite a realistic scenario for the lithosphere where is may 
be fair to assume that the temperature at its base is constant (Stiiwe et 
al. 1993b) (Fig. 3.14). More refined solutions for a range of other problems 
including variably erosion rate and erosion of a heat producing crust are 
discussed by Mancktelow and Grasemann (1997) as well as Batt and Braun 
(1997). 

• Time dependent evolutions and cooling paths. Time dependent solutions 
may also be found for the two problems discussed above (Mancktelow and 
Grasemann 1997). Here we present a time dependent evolution for yet another 
scenario, namely one where there is no lower boundary condition, i.e. the 
advection of a semi-infinite half space with a constant thermal gradient g 
through the surface. For that, a solution of eq. 3.42 is: 

T = gz-gut+9- ({z + ut)euz^eric (Z-±^L\ + (ut _ z)eric (lj^\\3A8) 

(Benfield 1949; Carslaw and Jaeger 1959, chapter XV; Mancktelow and 
Grasemann 1997). While this equation may be used to calculate time de­
pendent geotherms, most geologist do actually not want to know tempera­
tures as a function of depth but the temporal evolution of a given rock. In 
other words, the evolution of temperature in a Lagrangian reference frame in­
stead of the Eulerian description given by the equations above (s. sect. 4.2.2). 
Within the reference frames of the geotherm descriptions, rocks move (are 
advected) through the coordinate system at the rate u. Thus, if they were at 
the initial depth Zi at the onset of erosion, they change their depth to: 
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ut (3.49) 

at time t. Thus, if we want to calculate cooling histories of a given rock that 
are due to its exhumation by erosion, we can simply use eqs. 3.46, 3.47 or 
3.48 and substitute eq. 3.49 for z. Cooling curves that were calculated with 
this approach and eq. 3.48 are shown in Fig. 3.15. 

3.3.3 Heat Advection by Fluids 

Heat may also be advected by fluids that circulate through rocks. Heating of 
rocks due to fluid advection is different from the previous examples, because 
only part of the rock volume is being advected, namely the fluids that fill 
the pore volume. Thus, when formulating an advective term in an advection-
diffusion equation, we need to take care so that we describe only the advection 
of a fraction of the total rock volume. In a general one-dimensional form 
eq. 3.40 can be written as: 

£ = *,(**)«: 
at \ pcp J oz 

(3.50) 

(McKenzie 1984). There, <p is the porosity of the rock (s. sect. 6.1.3) and vi 
is the fluid flux in m 3 m _ 2 s _ 1 . The product cfivt is the fluid volume that is 
transported per unit time and per unit area through the rock. This product 
has the units of m s _ 1 , which corresponds to the standard definition of fluxes 
(sect. 4.5.3). It is called the volumetric fluid flux, p and pf are the densities 
and cp as well as cpf are the specific heat capacities, both of the rock and the 
fluid, respectively. The term inside the brackets is the ratio of the volumetric 
heat capacities (volumetric heat capacity = heat capacity x density) of the 
fluid to that of the rock. 

Eq. 3.50 may be used to describe the thermal effects of fluid advection. 
However, in many geological processes heat advection by fluids occurs on 
similar time scales as heat conduction. Thus, it is usually necessary to expand 

Figure 3.15. Cooling curves of rocks 
that cool as the consequence of 
exhumation only. The three curves are for 
three different erosion rates in m m y - . 
Calculated with eqs. 3.48 and 3.49. Other 
assumptions are: g — 30° C k m - 1 and 
K — 10 _ 6 m 2 s _ 1 . An important feature of 
the cooling curves is that the cooling rate 
increases with decreasing temperature. 
This relationship is opposite to cooling 
following contact metamorphism 
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eq. 3.50 by a term describing diffusion as we did in eq. 3.50. The importance 
of the transport of heat by fluids for the thermal evolution of the crust was 
discussed by Bickle and McKenzie (1987), Connolly and Thompson (1989) as 
well as Peacock (1989). These authors agree that the fluid flux that may be 
caused by metamorphic dehydration reactions is less than about 1 kg fluid 
per square meter and per year. This is not enough to transport heat very 
efficiently by fluids. Peacock (1989) estimated that the thermal evolution of 
rocks can only be influenced by fluids if these are focused into narrow zones 
from regions as wide as 10 km. We can conclude that heat advection by fluids 
is insignificant at least when we are interested in thermal budgets of the crust 
as a whole. Clearly, in special geological settings, for example hydrothermal 
cells, heat advection by fluids may be the controlling process. Note also that 
equations similar to eq. 3.50 may be used to describe advection of fluids 
through rocks in general and are among the important equations governing 
fluid flow through fractured media. 

3.3.4 The Peclet Number 

In many geological processes the diffusion rates and advection rates are of 
the same order of magnitude. This is true for fluid infiltration processes, 
for erosion that occurs during thermal equilibration of the crust, thermal 
profiles around moving faults and many more (sect. 3.7.4). In such processes 
the Peclet number Pe is a useful parameter which can be used to estimate 
the relative influence of diffusive and advective processes. The Peclet number 
is defined as: 

Pe=
ul = ^ L (3.51) 

K k 
where u is the rate of advection, K the diffusivity and I the characteristic 
length scale of the advection process. The second way to write the Peclet 
number is only inserted above to remind us that the diffusivity is the ratio of 
conductivity k, density p and heat capacity cp. If Pe is about 1, then diffusion 
and advection are of similar importance to a process. If Pe is much larger 
than 1, advection dominates the process. If Pe is much smaller than 1, then 
diffusion dominates the process. Eq. 3.51 can be used to derive advection 
rates. For example, on Fig. 3.16 isotherms have been displaced by a thrust. 
Consider the 400°C isotherm. On any length scale that is larger than I2, this 
isotherms is simply displaced by the material advection of the hanging wall 
(i.e. Pe > 1). On the length scale of h (dark shaped region) both diffusion 
and advection have played a role in shaping the curved isotherm (i.e. Pe — 1). 
On the length scale h (light shaded region), diffusion has dominated and the 
isotherm appears not displaced across the fault (i.e. Pe < 1). 

Aside from its importance for the description of thermal processes, the 
Peclet number finds many other application. For example, Bickle and McKen­
zie (1987) have used the Peclet number for some fundamental interpretations 
about the relative importance of diffusive and advective processes during 
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Figure 3.16. a Schematic cartoon showing the displacement of isotherms during 
thrusting. Note that - within the length scale h - diffusion has eliminated any 
displacement of isotherms across the fault, while above length scale fa only dis­
placement, but no curvature is visible, b Diffusion and advection of isotopes from 
a layered sequence. The vertical axis is isotope concentration, the horizontal axis is 
a profile across the three rock types shown. The continuous step shaped line shows 
the concentrations at the time of formation. The dotted line after subsequent diffu­
sion (Pe < 1), the dashed line after fluid infiltration (Pe > 1), but without diffusion 
(Pe — 1). The asymmetric line during both (Pe — 1) 

fluid infiltration of rocks (Fig. 3.16 and Sandiford (2002) has used the Peclet 
number to argue about the stability of orogens. 

3.4 Heat in the Continental Lithosphere 

In the past sections we have discussed the three fundamental processes that 
produce and redistribute heat in the lithosphere: conduction, production 
and advection. In summary from above we can conclude that a full one-
dimensional description of the thermal energy balance for the lithosphere has 
the form: 

dT 
~dt pcp 

d2T dT 
dz2 dz pcp 

(3.52) 

where the diffusivity is the ratio of conductivity and density x heat capacity: 
K = k/pcp and the heat production S may have mechanical, chemical and 
radioactive contributions (s. eq. 3.22). In this section we will apply our knowl­
edge from the last sections and describe aspects of the thermal structure of 
the continental lithosphere. For this, not all of the terms in eq. 3.52 may be 
relevant. Table 3.4 shows (as a summary from the last sections), which ther­
mal energy parameters may be relevant to thermal estimates on the scale of 
the lithosphere. In order to set the scene, we begin with a brief explanation 
how the lithosphere may be defined thermally and what "geotherms" actually 
are. 
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Table 3.4. Summary of possible heat transfer mechanisms in the crust and their 
potential relevance for the heat budget of metamorphic terrains. The column "rel­
evance" makes some very crude suggestions whether the processes listed in the 1st 
and 2nd column can be of relevance for terrain scale metamorphism. The relation­
ships shown in the 4th column are the key relationships that should be considered 
when estimating the relevance of a given transfer mechanism in a given terrain. 
Conduction is only relevant if the time scale of conduction, teq, is comparable to 
the ratio of the square of length scale / and thermal diffusivity K. Advection is 
only relevant if the Peclet number, Pe, is larger than 1, where u is the advection 
rate, / length scale of the advective process and K the diffusivity. Heat production is 
only relevant if the heat production rate S times its duration t produces significant 
amounts of thermal energy (which may then be converted into temperature rise 
using density and heat capacity). For radioactivity this product is generally large 
on geological time scales, for chemical heat production this product is only large 
for melting reactions and for mechanical heat production it is given by the product 
of stress and strain rate. Both stress and strain rate are not well known and the 
relevance of mechanical heat production to metamorphism remains a much debated 
topic in earth sciences. Acronyms for selected key references are: ER77 — England 
and Richardson (1977); ET84 = England and Thompson (1984); HS88 = Huppert 
and Sparks (1988); BM87 = Bickle and McKenzie (1987); J64 = Jaeger (1964); L86 
= Lux et al. (1986); L70 = Lachenbruch (1970); S98 = Sandiford et al. (1998); C90 
= Chamberlain and Sonder (1990); ME90 = Molnar and England (1990a); S98 = 
Stiiwe (1998a); S95 = Stiiwe (1995); P89 = Peacock (1989); CT89 = Connolly and 
Thompson (1989) 

transfer geological 
mechanism process 

geol. relationship key 
relevance to consider ref. 

conduction large te : t2JK ER77; ET84 

advection by fluids rare 

by magma - intrusion large 

- underplating large 

by rock - erosion large 

- deformation large 

BM87 

J64; L86 

Pe = ul/n HS88 

production radioactive large L70; S98; C90 

mechanical unknown ME90; S98 

chemical - melting large S x t S95 

- dehydration small P89; CT89 

- solid-solid negligible P89 

T h e r m a l Def in i t ion of t h e L i thosphere . The lithosphere may be de­
fined thermally or mechanically (s. sect. 2.4.1). According to the thermal 
definition, the lithosphere is the outer shell of the earth, in which heat is 
t ransported primarily by conduction. In contrast, in the asthenosphere, heat 
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is transported primarily by convection. Thus, the lithosphere itself is noth­
ing but a thermal boundary layer of the earth, although we defined thermal 
boundary layer somewhat differently in Fig. 2.19 . This boundary layer looses 
heat at all times through the earth's surface into the atmosphere and further 
— by radiation - into space. The average heat flow through the surface of 
the continents is 0.065 Wm~ 2 . The total surface area of the continents is 
about Ac = 2-108 km2. Thus, the total heat loss of earth from the conti­
nents is 1.3-1013 J s _ 1 . This heat loss is balanced by radioactive heat pro­
duction within the lithosphere and by heat flow into the lithosphere from the 
asthenosphere, so that this thermal boundary layer has a largely constant 
temperature profile, if it is not disturbed by orogenesis. Thermally stabilized 
lithosphere has a thickness between 100 and 200 km (Pollack and Chapman 
1977). 

Definition of Geotherms. The function that describes temperature in the 
lithosphere as a function of depth is what we call a geotherm. We discern: 

— stable or steady state geotherms, 
— transient geotherms. 

• Stable geotherms. Stable or steady state geotherms form by long term ther­
mal equilibration of the lithosphere (sect. 3.4.1). In general, this is understood 
that the term "steady state" refers to a geotherm in a stationary lithosphere 
and we shall use it in this way in this section. However, in other reference 
frames, steady state geotherms may also occur in a moving lithosphere (for 
example a lithosphere that moves upwards relative to the surface during ero­
sion, s. p. 82). In sect. 3.7.3 and 3.5.2 we discuss examples of steady state 
geotherms in Eulerian reference frames. 

In most geological situations, the temperatures of steady state geotherms 
increase steadily with depth. Stable geotherms are only found in regions that 
have had at least about 100 my time for equilibration and have not changed in 
thickness during this time. The origin of this number is discussed in sect. 3.1.4. 
Thus, active orogens are not characterized by stable geotherms. Regardless, 
the calculation of steady state geotherms in orogens may help us to esti­
mate the maximum or minimum temperatures that can be attained during 
an orogenic process at a given depth. This maximum or minimum possible 
temperature is often called potential temperature (e.g. Sandiford and Powell 
1990). 

• Transient geotherms. Transient geotherms are only valid for a particular 
point in time. In some geological situations, transient geotherms do not in­
crease steadily with depth and the change of the geotherm with time can be 
different in different depths. For example, after rapid stacking of nappes, 
rocks may simultaneously heat above a major thrust, but cool below it 
(sect. 7.4.2). In principle it is possible to document such relationships of 
transient geotherms in space and time with careful observation in the field. 
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If they can be documented, then such information is invaluable for the in­
terpretation of the nature of a tectonometamorphic process (s. sect. 7.4.2). 
We discuss the transient evolution of geotherms during orogenic processes in 
several other chapters (e.g. sect. 3.6 and 6.2.1). 

In this section we calculate the quantitative shape of stable continental 
geotherms as shown schematically in Fig. 2.18. 

3.4.1 Stable Geotherms: The Relevant Equation 

For the stable or steady state case, the heat conduction equation (eq. 3.6) or 
the full thermal energy balance (eq. 3.52) can be simplified enough so that 
it is possible to find simple analytical solutions that provide useful tools to 
understand the thermal structure of the lithosphere, even without a lot of 
mathematical knowledge. This is therefore a good example to familiarize 
ourselves with the involved thought process. The equation we must solve is 
the now familiar heat conduction equation with a heat production term: 

— - (—\ — — 
dt \pcpj dz2 pcp 

We need the heat production term to account for radioactivity, which is of 
substantial importance to stable geotherms. However, we can neglect advec-
tive terms as we consider only steady state. For steady state geotherms, there 
is no change of the temperature with time (s. sect. 3.1.2). This means: 

£ = • > • 
Eq. 3.53 simplifies to: 

jfc \ d2T S + — = 0 . (3.54) 
pcpj azz pcp 

Note that eq. 3.54 is no partial differential equation anymore. By canceling 
out of the constants we get: 

d2T 
k—T = -S . (3.55) 

The integration of this equation forms the basis for all calculations of stable 
geotherms. 
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Geotherms Without Radioactivity. Equation 3.55 may be integrated 
the easiest, if we neglect radioactive heat production all together. Although 
we have shown in chap. 2 and sect. 3.2.1 how important radioactivity is for 
the temperature profiles of the lithosphere (e.g. Fig. 2.18) we can easiest 
understand the integration of eq. 3.55 by assuming the heat production is 
negligible: S = 0. Eq. 3.55 then simplifies to: 

d2T d2T 
k——.r- = 0 or even: —— = 0 . (3.56) 

az* azz 

As this still is a differential equation of the second order, me must integrate 
it twice to solve it. A first integration gives: 

dT 
X - = Ci (3.57) 
dz 

and a second: 

T = dz + C2 • (3.58) 

The two integration constants C\ and C-2 must be determined by the geolog­
ical boundary conditions (s. sect. B.l . l) . For example, we can assume that 
we know that the temperature at the surface of earth (at z = 0) is constant 
and has the value T — 0. Then, for eq. 3.58 to hold, C2 must be zero so that 
the temperature is zero at z = 0. It we assume a thermal definition of the 
lithosphere, then we can determine the other constant with the assumption 
that T — T\ at depth z = z\ where T\ and z\ are the temperature and the 
depth of the base of the lithosphere. With this assumption C\ must have 
the value C\ = T\jz\. The temperature as a function of depth is therefore 
described by: 

T = z— . (3.59) 

Equation 3.59 describes a linear temperature profile between the surface and 
the base of the lithosphere. This is not very surprising as we have assumed no 
heat production and no other reasons why the temperature profile should be 
anything else but a straight line between the assumptions at the boundaries. 
With a thermal conductivity of fc = 2-3 W m " 1 "C" 1 , and 2] = 1 200°C as 
well as a lithospheric thickness of z\ = 100 km, our equation describes a surface 
heat flow of 0.024-0.036 W m - 2 . This value is much lower than the average 
surface heat flow of the continents which is between 0.04 and 0.08 W m - 2 . 
This is one of the proofs of the existence of radioactivity in the lithosphere. 
We can easily conclude that eq. 3.56 is not a very good model description 
and that it is wiser to integrate eq. 3.55 using a meaningful function that 
describes S as a function of depth. When we do so, we will always assume 
that S = Srad, i-e. there is no other heat production sources but the radiogenic 
ones. In the steady state mechanical or chemical heat production sources are 
irrelevant. 
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3.4.2 The Contribution of Radioactivity 

The radioactive heat production rate of rocks is of the order of some mi­
crowatts per cubic meter (s. Table 3.3). However, unusually high heat produc­
tions have been reported from a series of locations around the world, in partic­
ular from Australia (McLaren et al. 1999) (Fig. 3.7). A typical value measured 
from samples at the earth's surface is: S = 2 — 5/*Wm"3 = 2 —5-10-6 Wm~ 3 . 
The contribution of this value to the surface heat flow is simply the heat pro­
duction times its depth extent. For example, if the heat production were 
constant in the entire crust of 30 km thickness (zc = 30 km) then the surface 
heat flow caused by radioactivity is: 

q = qs = S-zc= 0.03Wm"2 . (3.60) 

This can be converted into a temperature gradient using eq. 3.1 where we have 
seen that the thermal gradient has the units of heat flow divided by the ther­
mal conductivity. If the thermal conductivity is k = 3 W m _ 1 K _ 1 , then the 
assumptions from above indicate: dT/dz = q/k = 0.05°Cm_ 1 = 5 0 ° C k m _ 1 . 
This geothermal gradient of 50 °C per kilometer is only due to the contribu­
tion of radioactivity. The mantle heat flow would have to be added to this. 
Since the resulting thermal gradient would be much higher than just about all 
thermal gradients measured on earth, we can conclude that the radioactivity 
of rocks measured at the earth's surface must be higher than that of the rest 
of the crust (for more information on the radioactive heat flow contribution 
see p. 289). 

The Distribution of Heat Production. The considerations above have 
shown that the radioactive heat production of the crust is unlikely to be that 
of the surface in the entire crust. Various studies have therefore explored the 
vertical distribution of heat producing elements (e.g. Cermak and Rybach 
1989; Pinet and Jaupart 1987; Pribnow and Hurter 1998; Heier and Brown 
1978). The most simple model for a heat source distribution is that the heat 
production is constant to the depth zTa,d and zero below that. This model 
depth, to which the crust produces radioactive heat at the same rate as 
on the surface, has been elegantly determined using the relationship of two 
independent sets of data that can be measured at the surface: The surface 
heat flow and the heat production rate at the surface, So- Roy et al. (1968) 
explored this relationship in the eastern US and its significance was described 
by Lachenbruch (1968; 1970; 1971). They found a roughly linear relationship 
between these two parameters (Fig. 3.17). The straight line that fits these 
data has the form: 

?s = 1m + grad = Qm + ZradS0 • (3.61) 

In this equation, qs is the surface heat flow, qm is the mantle heat flow, grad the 
radiogenically produced heat flow and zrad is the thickness of a hypothetical 
layer in which radioactive heat is produced at the same rate as on the surface. 
qm can be measured from the intersection of the line with the heat flow axis 
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Figure 3.17. Measured data of 
surface heat flow qs and surface 
heat production £0 in the 
eastern US. The best line that 
fits the data is described by the 
equation qa = 0.035 + 7413So-
Accordingly, the thickness of the 
layer that produces heat at a 
rate 5 is 7413 m thick and the 
contribution of mantle heat flow 
to the total heat flow is 
0.035 W m " 2 (after Roy et al. 
1968) 

2 4 6 8 
heat production rate S0 (uW m~3) 

and the value of zrad is given by its slope. The data of Roy et al. (1968) show 
that £rad is about 7 km in the eastern US. Similar considerations in other 
areas indicate thicknesses of 10-15 km. Of course, the crust does not produce 
heat constantly in this layer and no heat at all below it, but the relationship 
is useful to estimate the total heat production in the crust. This is given by 
the product ziadSo. This product corresponds to the area underneath the 
different model curves in Fig. 3.18. 

For the calculation of geotherms in the following sections we will use dif­
ferent model assumptions about the distribution of radioactivity with depth 
(Fig. 3.18). We will see that these different assumptions have important dif­
ferent implications for the temperatures in both the crust and the mantle 
part of the lithosphere. So we want to remember that both the magnitude 
and the distribution of radioactive heat production are important for the 
thermal budget of the crust (Sandiford et al. 1998; 2002; Chamberlain and 
Sonder 1990). 

3.4.3 Geotherms with Heat Flow Boundary Condition 

We begin our calculations of stable geotherms by integrating eq. 3.55 by as­
suming a somewhat different boundary condition at the base than what we 
have used to derive eq. 3.59. We will assume as boundary condition that the 
heat flow at the Moho is constant, instead of assuming the temperature at 
the base of the lithosphere. We do this for three reasons: Firstly, because 
this boundary condition has been the assumption of England and Thompson 
(1984). Their model has become the classical model to describe Barrovian 
metamorphism and is therefore the obvious starting point. Secondly - fol­
lowing the argument of England and Richardson (1977) - we want to argue 
that we know the heat flow at the Moho much better than the temperature 
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F igure 3.18. Four simple models describing 
the distribution of heat production with depth 
in the crust (s. Haack 1983). The total heat pro­
duction of the crust is given by the area under­
neath the model curves. It is the same for all 
four models and is shaded for model c. a Con­
stant concentration in the entire crust and no 
heat production in the mantle, b Constant con­
centration in the upper crust in a layer with 
the thickness zra(j and no heat production below 
that, c Exponential drop off of the heat produc­
tion with depth, d Heat production peaking in 
the middle crust. Such a situation may occur if 
a crust with heat source distribution c is buried 
underneath a low heat producing sedimentary 
pile. Note that the surface heat production is 
different in the different models, while the total 
heat production is the same 

So 

MOHO — 

or depth of the base of the lithosphere. Thirdly, we assume this boundary 
condition because the integration of eq. 3.55 is quite easy with this boundary 
condition. 

C o n s t a n t H e a t P r o d u c t i o n . If the heat production is independent of 
depth, S is a constant. Integration of eq. 3.55 results in: 

d T 
-Sz + d (3.62) 

The left side of this equation has the units of heat flow. The constant of 
integration C\ must be derived from the boundary conditions. If we know 
the mantle heat flow at the Moho, and assume tha t it is constant through 
time, we can describe this condition as: g m =cons tan t at z = zc. If no details 
are known about the changes of the heat flow at this depth, then this is the 
most simple assumption and corresponds therefore with the idea of a good 
model (sect. 1.1). With this assumption, the constant of integration must be: 

C\ = Szc + qm , 

so tha t at the depth z = zc (zc is the crustal thickness) we get: k ( ^ j ) = qm-
After inserting C\ into eq. 3.62 and integrating a second time we get: 

Sz2 

kT = — + Szcz + qmz + C2 (3.63) 

The most meaningful assumption for the second boundary is tha t the tem­
perature at the surface at z = 0 has the value T = 0. This gives us tha t 
C-2 = 0. After some simplification we get the following expression: 
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Figure 3.19. Two calculated 
continental geotherm. It was 
assumed that the mantle heat 
flow has the value 
qm =0.025 W m - 2 . Curve a was 
calculated assuming that the 
entire crust has a constant heat 
production. It was calculated 
with eq. 3.64. Curve b was 
calculated with eq. 3.70 
assuming that the heat 
production decreases 
exponentially with depth 
(hT — 10 km). For a and 6 
following other assumptions were 
made: zc — 35 km; 
S = 3 - K T 6 W m " 3 (= So in 
eq. 3.70); fc = 2 J s _ 1 m - 1 K _ 1 

T- — (r Z\ I qmZ 

Equation 3.64 describes the temperature as a function of depth in the crust. 
It is an analytical solution of the differential equation eq. 3.55. An analysis 
of the units can be used to confirm the internal consistency of this equation. 
A geotherm calculated with eq. 3.64 is shown in Fig. 3.19a. It is immediately 
obvious that the temperatures are much too high, although we made mean­
ingful assumptions for mantle heat flow, crustal thickness and surface heat 
production. However, we also made the incorrect assumption that the heat 
production is constant in the whole crust and has everywhere the same value 
as that measured on the surface. This assumption is in contrast to what we 
argued on p. 93, where we discussed the distribution of heat production with 
depth. The real distribution of the heat producing elements in the crust is 
not very well known, but we can help ourselves with one of the models from 
Fig. 3.18. If we make the assumption b from that figure (heat is only produced 
at a constant rate down to the depth £rad), then there is a discontinuity in 
the heat production with depth. As a consequence, we can integrate eq. 3.55 
only to the depth z = zrad- We get a result that is very similar to eq. 3.64: 

T = — (zrad - - J + - ^ - in the region : z < zr&A . (3.65) 

For larger depths we can help ourselves with the knowledge that the geother-
mal gradient must be a straight line (i.e. the heat flow must be constant and 
is qm) because there is no disturbing influence or heat production anymore 
(s. eq. 3.59). The temperature at the base of the heat producing layer may 
be found by evaluating eq. 3.65 at the depth z = zrad- Below this depth the 
temperature qm(z — zraa)/k must be added to the temperature at the base of 
the assumed heat producing layer. It follows that: 

— 10 
£ 

a 
<V 

73 20 

30 

continental 
geotherms 

(3.64) 
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j Z O Z 
T = —^ + 25L. in the region : z > zrad . (3.66) 

2k k 

If you do not understand what we did in the last lines, draw a little sketch 
that illustrates every written sentence. Equations 3.65 and 3.66 are those 
that England and Thompson (1984) used for their classic model explaining 
regional metamorphism (s. sect. 6.2.1). If we insert reasonable values for the 
parameters, then we get temperatures at the base of the crust between 500 °C 
and 600 °C. We also get a depth for the base of the lithosphere (the depth 
of the 1200 °C isotherm) around 100 to 150 km. Both corresponds to a large 
number of observations from the stable continental shields and the equation 
provides a good model description of continental geotherms. 

Exponential Heat Production. A much more elegant model assumption 
for the distribution of the heat production in the crust is the assumption that 
there is a continuous exponential drop off in radioactive heat production with 
depth (model c in Fig. 3.18). This model has the great advantage that there 
is no discontinuity in the heat production in the crust and we do therefore 
not need several equations to describe a single geotherm as we did above. A 
continuous distribution of radioactivity with depth also appears intuitively 
more appropriate. We assume that: 

5 ( Z ) 5 0 e ( "* ) . (3.67) 

The variable hT is called the characteristic drop off or skin depth of heat 
production. According to eq. 3.67, the heat production at depth z = hr is 
only the 1/e part of the heat production at the surface So. Our new starting 
equation is now: 

d2T / * \ 
k—T = -S*0eV-^) . (3.68) 

azz 

The integration of this equation is a bit harder than those of the previous 
section but it still only involves the integration of simple exponential functions 
(s. Table C.2). A first integration gives: 

k^f- = hrS0e(~t) + a . (3.69) 
dz 

Note that we used the "product rule" for this integration (s. appendix C, 
Table C.l, C.2). Assuming the same boundary condition that we used in the 
last section, the constant of integration is: 

d = -hTS0e(-& +qm . 

After inserting this constant into eq. 3.69 and a second integration we get: 

kT = -h^S0e(-^ -zhTS0e(-& + qmz + C2 . (3.70) 
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Figure 3.20. This illustration 
shows how the thickness of the 
mantle part of a thermally de­
fined lithosphere is automatically 
determined by the condition of 
a constant mantle heat flow at 
the Moho. All three geotherms on 
this figure have the same thermal 
gradient at the Moho and there­
fore the same heat flow through 
the Moho. However, the mantle 
parts of the lithosphere (thickness 
shown by double arrows) is very 
different for the three examples 

The second constant must be C-2 = h^So so that the condition T = 0 at 
the surface (z = 0) is fulfilled. Fig. 3.19b shows a geotherm calculated with 
eq. 3.70 after inserting this integration constant and using reasonable values 
for all parameters. We see that the geotherm has a realistic shape. Eq.3.70 is 
a good model description of stable continental geotherms. 

How do Geotherms Continue at Larger Depth? In the previous sec­
tions we have used a known mantle heat flow as the lower boundary condition 
for our integration of the steady state heat flow equation. Our calculations 
were therefore confined to the description of the crust. The thickness of the 
mantle part of the lithosphere was implicitly determined by the boundary 
conditions (Fig. 3.20). The depth of the base of the lithosphere is thermally 
defined by the temperature XI s» 1 200 °C, so we only need to find the depth 
where our geotherm reaches this temperature to determine the thickness of 
the mantle part of the lithosphere. With a thermal conductivity of k = 3, and 
a mantle heat flow at the Moho of 0.03 W m - 2 , the steady state thermal 
gradient is 10°Ckm _ 1 at the Moho. As we assumed no radioactive heat pro­
duction in the mantle part of the lithosphere, this gradient will be constant in 
the remainder of the mantle lithosphere. If the Moho-temperature is 500 °C 
then this gradient implies a thickness of the mantle part of the lithosphere of 
70 km (if we define the lithospheric base thermally by the depth where the 
geotherm intersects the 1200°C isotherm). 

This is quite a reasonable value for the thickness of the mantle lithosphere. 
Nevertheless, we have only implied this thickness of the mantle part of the 
lithosphere whereas the equations of the last sections were only designed 
to describe the crust. Because there is many reasons why we may want to 
prescribe the thickness of the mantle lithosphere as well (for example because 
we know it from considerations of surface elevation or lateral buoyancy forces) 

1 280 °C 

S \ \ \ ! a 

Vz ^ \ 
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Figure 3.21. Examples of 
continental geotherms calculated 
with a lower boundary condition 
of a fixed temperature at the 
base of the lithosphere. 
Geotherm a was calculated 
assuming constant heat 
production in the crust and no 
heat production in the mantle 
lithosphere. Geotherm b was 
calculated for a continuous, 
exponentially decreasing heat 
production using eq. 3.74. The 
temperature T\ is assumed to be 
1 280 °C; all other parameters 
are the same as in Fig. 3.19 

a lower boundary condition at the base of the lithosphere is often more useful. 
In the next section we discuss such alternative lower boundary conditions. 

3.4.4 Geotherms with Fixed Basal Boundary Condition 

If we define the lithosphere thermally, we implicitly state that we know the 
temperature at its base. An obvious choice for a lower boundary condition 
may therefore be: T = T\ at the depth z = z\. This choice allows us to describe 
temperatures in the entire lithosphere. However, we have to pay for this 
advantage by having to deal with various discontinuities of the parameters at 
the Moho, for example density. This complicates the integration of eq. 3.55. 
Constant Heat Production. In a model where we assume constant heat 
production rate in the crust and no heat production in the mantle part of 
the lithosphere, density and heat production are discontinuous at the Moho. 
This complicates the integration of eq. 3.55 dramatically. We will not present 
the equations here and refer the interested reader to the original works of 
Sandiford and Powell (1990) or Zhou and Sandiford (1992). However, for 
comparison with the thermal model of England and Thompson (1984) we 
show an example of a geotherm calculated with these assumptions as curve a 
in Fig. 3.21. We see that this model results in unrealistically high tempera­
tures if we assume the surface heat production rate to be representative for 
the whole crust. 

Exponential Heat Production. If we assume a continuous heat produc­
tion in the whole lithosphere that decreases exponentially with depth, then 
we can derive from eq. 3.68 an elegant and simple description of stable con­
tinental geotherms. After two integrations we get: 

kT = -h2
rS0e(~^+dz + C2 . (3.71) 

200 600 1000 
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Both constants of integration can only be evaluated after this second inte­
gration. The second integration constant C2 is fairly easy to determine if we 
assume again that T = 0 at the surface where z = 0. At z = 0 the exponential 
term in eq. 3.71 goes to 1 so that C2 must be: 

C2 = h2
rS0 . (3.72) 

The lower boundary condition of T = T\ at the depth z = z\ can be evaluated 
by rearranging eq. 3.71: 

Cl^Jl + ^ ^ l _ 9 l . (3.73) 
Z\ Z\ Z\ 

After inserting both constants into eq. 3.71 we get: 

r = T + W - < - * > ) - ( j - < - * > ) f) • (3J4) 

Curve b in Fig. 3.21 is an example of a geotherm calculated with this relation­
ship. Eq. 3.74 provides a realistic and useful description of stable continental 
geotherms and has been presented and used by a number of authors (Zhou 
and Sandiford 1992; Stiiwe and Sandiford 1995; Mancktelow and Grasemann 
1997: eq. 13). 

More General Formulations. Using a lower boundary condition where 
we explicitly prescribe the thickness of the mantle part of the lithosphere (as 
we did in the previous section) is extremely useful to explore the influence 
of thickness variations of crust and mantle lithosphere on the temperatures 
in the crust. In order to do this more efficiently, it is useful to introduce two 
new parameters: the vertical thickening (or thinning) strain of the crust and 
that of the lithosphere. We call these parameters / c and f\ and will discuss 
them in some detail in sect. 4.2.3 (s.a. sect. 5.1)(Sandiford and Powell 1990). 
A value of fc = 2 means that the crust is twice as thick as in the reference 
state (Sandiford and Powell 1990; Zhou and Sandiford 1992). Using these 
parameters, eq. 3.74 can be generalized. All we need to do is multiply the 
reference crustal and lithospheric thicknesses zc and z\ with their respective 
thickening strains. We also need to be careful with the thickness of the skin 
depth of the heat production which also changes with crustal thickening or 
thinning. Eq. 3.67 becomes: 

S(z) = 5 0 e ( - ^ ) . (3.75) 

If we substitute of these generalized formulations for the thicknesses of crust, 
lithosphere and skin depth into eq. 3.68 and integrate it subject to the same 
boundary conditions we used for eq. 3.74, we arrive at: 
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This equation is the most general and most elegant form of a geotherm equa­
tion that can be used to calculate temperatures in the entire lithosphere for 
any thickening geometry of our choice. We only need to keep in mind that 
the temperatures we caluclate are only potential temperatures which means 
that they may not be reached during an orogenic cycle. In the next section 
we will use this equation to calculate some important temperatures. 

• Moho Temperature from eq. 3.76. For many thermal and mechanical con­
siderations the Moho-temperature is a meaningful parameter that can be used 
to characterize the thermal structure of the entire lithosphere (sect. 6.2.2). If 
we want to calculate this temperature for a series of crustal and lithospheric 
thicknesses, we must evaluate eq. 3.76 at z = zc for a series of fc and f\. 
Figure 3.22 shows an /c-/i-diagram of Moho-temperature. It shows that the 
Moho-temperature does not change very much for homogeneous thickening 
of the entire lithosphere (which would appear on this figure as a diagonal 
path from fc = f\ = l towards fc = f\ = 2). This is because the heating ef­
fect of the increased thickness of the heat producing crust is almost balanced 
by the cooling effect of the thickened mantle part of the lithosphere. We 
have indicated this effect already in the discussion of Fig. 2.18a. However, 
the strong curvature of the contours on Fig. 3.22 shows that in very thin 
crusts (fc « 1), the Moho-temperature depends largely on the thickness 
of the mantle part of the lithosphere. Also, in very thick crusts (fc » 1), 
the Moho-temperature depends mostly on crustal thickness. This is because 
there the Moho-temperature is largely determined by the radioactivity in the 
crust. Small changes in crustal thickness will lead to quite significant tem­
perature changes, while the thickness of the mantle part of the lithosphere is 
comparably insignificant. 

Figure 3.22. 
Moho-temperatures of 
continental lithosphere for 
different crustal thickening 
strains (expressed by / c) and for 
different total thickening strains 
of the lithosphere (expressed 
by / i) . The diagram was 
calculated with eq. 3.76 
assuming z — zc- The 
assumption of the parameters 
are the same as in Fig. 3.21. The 
thick line in the bottom right 
hand corner of the diagram 
marks the limit of the allowed 
part of parameter space. It is 
explained in more detail in the 
context of Fig. 4.7 

0.5 L 
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• Surface Heat flow from eq. 3.76. The surface heat flow qs is one of the 
few important thermal parameters of the lithosphere that can be measured 
directly. It is therefore a much used parameter to define thermal features 
in the lithosphere (e.g. Zhou and Sandiford 1992). Within the models dis­
cussed above, heat flow is simply given by the derivative of the geotherm 
equations with respect to depth and divided by the thermal conductivity. 
The surface heat flow qs can then be found by evaluating these derivatives 
at the depth z = 0. For a boundary condition at the base of the lithosphere 
(and exponentially decreasing heat production with depth) we get from from 
eq. 3.76: 

Figure 3.23. The surface heat 
flow (contoured in 10 _ 3W m—2) 
for a range of crustal thicknesses 
(expressed by the vertical 
thickening strain / c ) and for a 
range of total thicknesses of the 
lithosphere (expressed by the 
vertical thickening strain /i). 
The diagram was calculated 
with eq. 3.77. The assumptions 
for all parameters are the same 
as in Fig. 3.21, curve b 

rp 
gs = k- h S0fchr 

f\Z\ 
1 -

f\Z\ 
(3.77) 

Figure 3.23 shows an /c-/i-diagram, which is contoured for q&. We can see 
that the surface heat flow depends much more on the crustal thickness than 
the Moho-temperature does (compare Fig. 3.22 ). 

3.5 Heat in the Oceanic Lithosphere 

Oceanic lithosphere contains practically no radioactive elements. Thus, one 
could think that it is simple to describe stable oceanic geotherms. In analogy 
to continental geotherms we might want to formulate the geotherm equation 
as: 

k 
d2T 
dz2 0 (3.78) 
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After one integration we get: 

Using the boundary conditions that are well-known to us from sect. 3.4.3 
with: q = qm at the depth z = zc, we get: 

kT = qmz + C2 • 

If we also assume that T = 0 at the surface z = 0, then C-2 = 0 and we can 
write: 

T = z ^ , (3.79) 
k 

... if the same boundary conditions as in sect. 3.4.3 are used. However, eq. 3.79 
is not a very good model to describe oceanic lithosphere. A simple consider­
ation of the time scale of conductive equilibration will show us why: oceanic 
lithosphere is produced at the mid-oceanic ridges and it gets its thickness 
only by its increasing age. The oldest oceanic lithosphere is about 150 my 
old (Fig. 2.4). However, in sect. 3.1.4 we showed that the characteristic time 
scale of equilibration for thermally stabilized lithosphere is of the order of 
150 my or more! We can conclude that oceanic lithosphere is not thermally 
stabilized. The assumption underlying eq. 3.78 is wrong. There is no ther­
mally stabilized oceanic lithosphere! We can not assume that dT / dt = 0 and 
we must solve the time dependent diffusion equation (eq. 3.6). 

3.5.1 Aging Oceanic Lithosphere 

The oceanic crust, that is produced from partial mantle melts at the mid-
oceanic ridges is only of the order of 5-8 km thick. That is, it is much 
thinner than the continental crust. At the mid-oceanic ridge the thickness 
of the entire oceanic lithosphere is that of the crust (Fig. 3.24). The high 
potential energy of the ridges forces this crust to move away from the ridge. 
As the oceanic crust ages and moves further and further away from the mid-
oceanic ridge, the asthenosphere cools and becomes part of the oceanic mantle 
lithosphere. It is often said that the mantle successively "freezes" onto the 
base of the oceanic lithosphere as it ages. While this describes the process 
quite intuitively, it is somewhat incorrect as the asthenosphere itself is not 
molten. Regardless, the process of the successive cooling of the aging oceanic 
lithosphere can be described with the diffusion equation using simple initial 
and boundary conditions. Indeed, the description of oceanic lithosphere with 
these boundary conditions has become one of the most successful models 
of plate tectonic theory (s.a. Sclater et al. 1980). It is called the half space 
cooling model (s. sect. 3.6.1). 
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Figure 3.24. Thickness and thermal profile of oceanic lithosphere at a series of 
points. The oceanic crust is not drawn separately. On the scale of this sketch it would 
appear as a very narrow band of constant thickness near the upper boundary of 
the gray shaded region 

The Half Space Cooling Model. As any other problem in the theory of 
heat conduction, the half space cooling model relies on the integration of 
eq. 3.6, using a set of boundary and initial conditions. These conditions are 
provided by geological observation: The temperature at the surface of mid-
oceanic ridges is that of the water temperature. For simplicity, we assume 
that it is Ts = 0. Below the ridge, the mantle temperature is almost con­
stant - convection equalizes all temperature gradients. Thus, we can write a 
very simple initial condition describing the thermal profile below mid-oceanic 
ridges: 

- T = Ts at the depth z = 0 and: 
- T = T\ in all depths z > 0 at time t = 0. 

This initial condition is illustrated in T-^-diagram on the bottom right corner 
of Fig. 3.24. For the upper boundary condition it is obvious to assume that 
the temperature at the ocean floor remains constant. As there is effectively no 
lower boundary, we assume that it lies at infinity and that the temperature 
there is T = T\. We can write this as follows: 

- T = Ts at z = 0 for all* > 0 and: 
- T = 7] at z = oo for all* > 0. 

(Fig. 3.24). The solution of the heat conduction equation for these boundary 
conditions is: 

T = Ts + (T, - Ts)erf (-£=) . (3.80) 

This solution is already a bit familiar to us from section 3.1.3 and we discuss 
this solution in some more detail in sect. 3.6.1 (s. a. sect. 3.1.3). Fig. 3.25a 
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shows temperature profiles through oceanic lithosphere of different ages, that 
were calculated with eq. 3.80. The curves correspond to the two sketches of 
thermal profiles in the middle and on the left of Fig. 3.24. Fig. 3.25b shows 
the depth of a series of isotherms as a function of age. 

Surface Heat Flow: The Test for the Model. Temperature profiles cal­
culated with this model for the cooling oceanic lithosphere can not be tested 
directly, as we cannot drill deep enough into the oceanic lithosphere. Our ob­
servations are confined to parameters which we can measure near the surface. 
One of these parameters is easy to measure and very useful to infer the ther­
mal profile: the surface heat flow (Pollack et al. 1993) (Fig. 3.1). The surface 
heat flow is the product of thermal conductivity and the thermal gradient 
at z = 0. This can be calculated from eq. 3.80 and can be compared with 
measured data in the oceans. To obtain surface heat flow we must differen­
tiate eq. 3.80 with respect to depth and evaluate it at z = 0. From eq. 3.80 
this is: 

q& = k{Tx - Ts) 

dH7fe)) 
dz 

(3.81) 

As the error function itself is an integral (see eq. 3.15), it is easy to differen­
tiate eq. 3.80 (sect. 3.1.3). We get: 

«s = fe(n-TsH/— (3.82) 
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Figure 3.25. a Temperature T versus depth profiles through oceanic lithosphere 
at a number of different ages labeled in my. b The depth of isotherms (in °C) 
in oceanic lithosphere as a function of age between 0 and 100 my. The curves on 
both figures were calculated with eq. 3.80 assuming T\ = 1 280 °C. The age can be 
converted into distance from the mid-oceanic ridge by using x = u/t where x is 
the distance from the ridge and u is the rifting rate. Compare the curves also with 
Fig. 3.40 
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This equation can be generalized for the description of different oceanic plates 
with different rifting rates. For this, we express the rifting rate « a s u = x/t. 
There, x is the distance from the mid-oceanic ridge and t is the age. If we 
replace t in eq. 3.82 by x/u, we get: 

qa=k(T1-Ta)J . (3.83) 
V TTKX 

Eq. 3.83 shows us that the surface heat flow as a function of distance from the 
mid-oceanic ridge is a square root function. Fig. 3.26 shows the surface heat 
flow in oceanic lithosphere as calculated with eq. 3.83. The heat flow data of 
Sclater et al. (1980) show that these curves correspond well with heat flow 
measured in the deep oceans. In sect. 4.4.1 we will show that the half space 
cooling model is not only a good description for the temperatures and heat 
flow in oceanic lithosphere, but can also be used to describe the water depth 
of the oceans. It can even be used to calculate the magnitude of the ridge 
push force (sect. 5.3.2). The relationship between all these parameters that 
are described with the half space cooling model is called the age-depth-heat 
flow relationship of oceanic lithosphere. This age-depth-heat flow relation­
ship corresponds fantastically well with our observations up to an age of the 
oceanic lithosphere of 50 - 80 my. The age-depth-heat flow relationship is 
generally accepted as one of the greatest successes of plate tectonic theory. 

Alternative Models for the Aging Oceanic Lithosphere. The half space cooling 
model is the most famous model for the description of oceanic lithosphere, 
but there is several reasons why it may not be a perfect description: 

— The half space cooling model assumes implicitly that the heat flow at the 
base of the lithosphere changes through time. It is not clear that this should 
be so. 

Figure 3.26. The surface heat 
flow of oceanic lithosphere as a 
function of age and therefore as 
a function of distance from the 
mid-oceanic ridge as calculated 
with eq. 3.83. Contours are for 
different rifting rate labeled in 
a n y " ' 

distance from mid-oceanic ridge (km) 

500 1000 1500 
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- The model fails to describe the water depth and the surface heat flow of 
oceanic lithosphere beyond an age of about 80 my. 

Moreover, various recent studies have shown that the increase in water depth 
and changes in heat flow with distance from the ridge deviate a bit from the 
half space cooling model and that there is a relationship between seafloor 
subsidence rate and height of the ridge (Dumoulin et al. 2001). One possible 
alternative model is to assume that the mantle heat flow through the base of 
the lithosphere is kept constant by small scale convection (Doin and Fleitout 
1996). This assumption leads to a description which corresponds much better 
with the long term evolution of oceanic lithosphere than the half space cool­
ing model. This idea is know by the name of CHABLIS-model. This name 
is an acronym for: Constant Heat flow Applied to Bottom of Lithospheric 
Isotherm . Some authors have also argued that the observed seafloor depth 
and heat flow can be better explained if small amounts of radiogenic heat 
production of the thin oceanic crust are considered (Hillier and Watts 2005). 

3.5.2 Subduction Zones 

The description of the kinematics, thermal evolution and dynamics of sub­
duction zones is a fundamentally two-dimensional problem. It is the first 
problem in this book for which we require more than one spatial coordinate 
to characterize the essence of the problem (Fig. 3.27). Many problems re­
lated to subduction zones concern the accretionary wedge that forms near 
the surface between the surface of the subducting slab and the upper plate. 
Dynamic and kinematic models for accretionary wedges will be discussed in 
sect. 6.2.3 and also in sect. 5.3.2. Here we discuss some general aspects about 
the deep thermal structure of subduction zone environments. 

Figure 3.27. Schematic illustration of the temperature distribution in subduction 
zones, the subducted lithosphere is shaded light, the upper plate dark. The thick 
dark line that follows the 1 600 °C-isotherm outside the subduction zone is the 
Clapeyron-curve. It marks the olivine-spinel phase transition 
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Isotherms in Subduction Zones. Fig. 3.27 shows, schematically, the 
shape of isotherms in subduction zones. In the subducting slab, the isotherms 
will be bent and subducted with the slab. The further they are subducted, the 
more they merge to the center of the slab as both surfaces of the subducting 
slab equilibrate with the surrounding mantle temperatures. A thermal steady 
state will be reached when the curvature of the isotherms is large enough so 
that the rate of thermal equilibration is balanced by the subducting velocity 
(s. Fig. 3.3; s. Molnar and England 1995). In this stage, diffusion (which leads 
to the decay of the high curvature of the temperature profile in the tip of the 
subducting slab) will be balanced by advection (which moves the isotherms 
to larger depths). A steady state is reached that is very similar to the balance 
discussed in the second comparison on page 3.2 and also equivalent to the 
steady state that landforms between incising drainages may reach (discussed 
in Fig. 4.37). The time that is needed by subduction zones to reach this ther­
mal steady state depends on the thickness of the plate and on the subduction 
rate. It can be estimated with the Peclet number (sect. 3.3.4). 

At a temperature of about 1600°C, which is in about 400 km depth, 
olivine reacts to form spinel. The depth of this phase transition is called 
the Clapeyron-Curve. This reaction is exothermic with about 1.7-10s J kg - 1 . 
Thus, the isotherms in this depth have a kink. The positive slope of the 
Clapeyron curve in P-T-space causes that the Clapeyron curve is somewhat 
higher within the subducting slab than it is outside. At a depth of 650 km 
(about 1 700 °C) there is another kink in the geotherm, caused by the phase 
transition from spinel to oxide (not illustrated on Fig. 3.27). The qualitative 

upper plate 

flow lines of ^ 
mantle convection 

Figure 3.28. The motion of melts in and above the Benioff zone according to 
Spiegelman and McKenzie (1987). The dashed lines show the convective motion in 
the asthenosphere, the continuous lines are the motion of the partial melts. The 
enlarged sections show how the velocity field of the partial melts is given by the 
sum of the upward velocity of the melt and the motion in the mantle wedge 
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direction of this kink is opposite to that of the Clapeyron curve as the spinel-
oxide phase transition is endothermic. 

Fig. 3.27 shows schematically that the isotherms within the upper plate are 
closer to the surface near the subduction zone than they are in the far field. 
This is because of the dehydration of the subducting plate and the conse­
quential rise of partial melts and other hot fluids. This leads typically to high 
temperature metamorphism in the rocks of the upper plate and ultimately 
to the development of magmatic arcs (see next section). This is in contrast 
to the very low temperatures that occur in the subducting plate up to very 
large depths. This coupled occurrence of low-pressure - high-temperature and 
high-pressure - low-temperature metamorphism was recognized by Miyashiro 
(1973) as one of the characteristic features of metamorphic terrains in sub­
duction zone environments. He called this a paired metamorphic belt. 

Island Arcs and Subduction Zones. An interesting observation in the 
upper plate of subduction zones is that there is volcanic arcs that always 
form a narrow line that is exactly where the seismically active surface be­
tween the subducting slab and the upper plate is about 150 km deep (Isacks 
and Barazangi 1977). In subduction zones that have a dip of 45° this im­
plies a horizontal distance of the arc from the trench of 100-150 km. If the 
subduction angle is steeper, then this distance is shorter and vice versa. This 
observation is true for the distance of the Aleute-volcanoes to the Aleute 
Trench, for the distance of the Indonesian volcanoes from the Java Trench 
and many other volcanic arcs around the globe. This observation is not trivial 
to explain. The volcanics that erupt from these volcanoes are derived from 
partial melts in the mantle wedge that melted during fluid infiltration of 
fluids that were derived by dehydration of sediments on the surface of the 
subducting slab in the Benioff-zone. This zone stretches for several hundreds 
of kilometers along the surface of the subducting slab and is definitely much 
wider than the width of the volcanic arcs on the surface. Some authors have 
suggested that there are important pressure sensitive dehydration reactions 
that occur in exactly 150 km depth, but there is little penological evidence 
for this. 

An alternative explanation was suggested by Spiegelman and McKenzie 
(1987) (Fig. 3.28). Their model describes the motion of partial melts through 
the mantle wedge as the sum of two vector fields: 

1. The motion of the asthenosphere in the mantle wedge. This motion follows 
the wedge and is illustrated in Fig. 3.28 by the dashed lines. 

2. The motion of the partial melts. Partial melt is produced continuously 
along the surface of the subducting plate and moves vertically upwards. 

The sum of the two velocity fields results in curved paths that converge at 
the tip of the mantle wedge (Fig. 3.28). This elegant model is a beautiful 
example for a successful model description of fluid flow in deforming rocks. 
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Figure 3.29. Integrated thermomechanical model of Gerya and Yuen (2003) to 
describe subduction related processes. The shown model also considers metamor-
phic processes, for example dehydration reactions and is set up to investigate the 
development of mixed and unmixed plumes in the mantle wedge in response to slab 
dehydration (Gerya pers. comm. 2006). Different gray shades are different layers. 
The inset at left shows more detail in the accretionary wedge but is actually from a 
different model run. The P-T diagram at right shows P-T paths of different rocks 
in the wedge as indicated by the symbols in the inset at left. Note that crustal rocks 
can easily reach 2.5 GPa by being dragged down along the surface of the subducted 
slab. Because they are then rapidly exhumed within the same wedge, they have not 
found time to heat up and remain in the eclogite and blueschist fades (s. Fig. 7.1) 

P-T Paths in Subduction Zones. Although the model shown in Fig. 3.28 
is extremely elegant, a range of observations and new modeling results have 
made it somewhat redundant. Geologists have noted that arc volcanoes are 
not as narrow as thought by Isaacks and Barazangi (1977) and our recent 
understanding of dehydration processes on subducted slabs have indicated 
that the temperature range of dehydration may be small enough to cause 
some focusing of fluids without having to appeal to the model of Fig. 3.28. 
One of the most sophisticated models that have recently been used to describe 
such processes is the model of Gerya and Yuen (2003) (Fig. 3.29). 

3.6 Thermal Evolution of Intrusions 

Intrusion of magmatic rocks into higher levels in the crust is an important 
geodynamic process that can be responsible for a large range of thermal, 
chemical and mechanical changes in the crust. Intrusive rocks, as well as 
their contact aureoles, are familiar to us from field observations. Thus, their 
geodynamic interpretations can often be tested directly with structural and 
petrological data. The process of intrusion itself is a very efficient mechanism 
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for the transport of heat. Thus, most intrusions do not cool very much on their 
intrusive path and their temperature may be used to infer the temperature 
of rocks at the depth of their origin. There are two important reasons, why 
the quantitative description of the thermal evolution of intrusions is quite 
simple: 

- In comparison to the duration of a contact metamorphic event or the du­
ration of an orogenic cycle, the rate of intrusion is very rapid. Thus, for the 
thermal modeling of intrusions it is possible to assume that their emplace­
ment was infinitely rapid, compared to the time of the subsequent thermal 
equilibration. This is what is called an instantaneous heating model. The 
thermal equilibration of intrusions with their surroundings can therefore 
be described with the heat conduction equation (eq. 3.6), assuming the 
intrusion geometry as an "initial condition". 

- Most intrusions are small if compared to the size of their surroundings, for 
example the distance to the surface or to the base of the lithosphere. Thus, 
the boundary conditions that are needed to solve the heat conduction 
equation can often be assumed to lie at infinity in comparison to the scale 
of the problem. 

With these two assumptions, it is possible to solve the heat conduction equa­
tion. The solutions may then be used for the analytical description of the 
thermal evolution of intrusions. For simple intrusion geometries, for example 
dikes, the description is very similar to description of the thermal evolution 
of oceanic lithosphere (sect. 3.5.1). However, before we use such a model, 
we need formulate two more simplifying assumptions which we will make 
initially: 

- The latent heat of fusion - which actually plays an important role for 
the thermal energy budget of intrusions - will be neglected. Thus we will 
analyze in the first instance none of the processes discussed in sect. 3.2. 

- The thermal conductivity is assumed to the constant in space. Thus we 
will also not consider any of the problems discussed in sect. 3.1.1. 

With these assumptions, it is possible to integrate eq. 3.6. We begin with 
some simple examples. 

3.6.1 Step-shaped Temperature Distributions 

The most simple of all model examples describing the cooling of rocks in 
the direct vicinity of intrusions is given by the thermal equilibration of step-
shaped temperature profiles in one dimension. This example is illustrated in 
Fig. 3.30 and is one of the most useful examples for the understanding of 
the cooling history of intrusions. We interpret the temperatures on the two 
sides of the step as the intrusion- and the host rock temperatures; 7} and 
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l b , respectively. The step itself is the intrusion contact. If we choose a one-
dimensional coordinate system in which the origin z = 0 is exactly at the 
contact of the model intrusion, then the initial and boundary conditions of 
this equilibration problem may be described by: 

- Initial condition: T = T{ for all z > 0 and T = Tb for all z < 0 at t = 0. 
— Boundary conditions: T = Tb at z = —oo and T = T\ at z = oo for all 

t > 0 . 

You may have noticed tha t there is two boundary conditions tha t are located 
a very long distance from the contact inside the intrusion and far away from 
the contact in the host rock (at z = +00 and z = —00). We need two 
boundary conditions because the equation tha t is to be solved (eq. 3.6) is a 
partial differential equation of the second order (s. sect. B . l . l ) . Integration 
of eq. 3.6 using these boundary and initial conditions gives: 

(Ti - Tb) 
T = Tb + 1 + erf (3.84) 

We will not discuss how eq. 3.84 was derived (s. sect. 3.1.3) but when you 
compare this equation to eq. 3.80 you will see tha t it is very similar and differs 
from the most simple form of the half space cooling model only by some 
shifting and scaling of the error function. Because of the choice of coordinate 
system we have made to formulate this problem (Fig. 3.30), this solution looks 
very simple. In another coordinate system in which the coordinate origin is 
located at a distance / from the temperature step, the initial condition must 
be reformulated to: T = T ; for all z > I and T = Th all z < I at t = 0. The 
boundary conditions remain the same. The solution gets the form: 

T = Tb + 
(Ti " Tb) 1 + erf (3.85) 

F igure 3.30. Thermal 
equilibration of an initially 
step-shaped temperature 
distribution. The curves were 
calculated with eq. 3.84 for 
K = 1CT6 m2s-\Ti = 700°C 
and Tb = 200 °C. The different 
curves are temperature profiles 
at different times (in years) after 
the intrusion event 
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Figure 3.31. Schematic 
illustration of the initial 
condition and the variables of 
the dike cooling problem of 
eq. 3.88 
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Again, in comparison to eq. 3.85 you can see that this solution only shifts the 
temperature profile to the right place. On Fig. 3.30 it may be seen that the 
thermal evolution on both sides of the mean temperature between T\ and Tb 

develops symmetrically. This is to be expected as the initial and boundary 
conditions are also symmetric. 

• Cooling of half spaces. In the example of eq. 3.84, the temperature at z = 0 
stays constant in time. It has the value XI, + (Xj — Tb)/2. Thus, this problem 
is very similar to the description of the cooling of semi-infinite half spaces 
(sect. 3.5.1). This thermal problem is very important in the earth sciences 
and may be described by the following initial and boundary conditions: 

- Initial condition: X = Tb at all z > 0 and X = Xj at z = 0 at time t = 0. 
- Boundary conditions: X = XJ at z = 0 and X = Tb at z = oo for all t > 0. 

These conditions are very similar to those of the last problem. Thus, the 
corresponding solution is also similar to eq. 3.84: 

T = Tb + (Ti - Tb) 1 - erf (3.86) 

We have met this equation in a slightly different form already in sect. 3.5.1. 
The result of eq. 3.80 and eq. 3.86 can be simplified if it is expressed as the 
dimensionless temperature 0 = (T — Tb)/(Xi — Tb) (sect. 1.2). Then, using 
the complementary error function, eq. 3.86 simplifies to: 

8 = erfc (3.87) 

This simplification is shown here to illustrate that cooling curves of this 
problem have the shape of an error function. However, in the remainder of 
this section we will not use dimensionless temperatures. We begin with some 
geologically relevant examples that may be described with this solution. 

3.6.2 One-dimensional Intrusions 

One of the simplest but also most important applications of the equations 
introduced in the last section is the description of the cooling history of 
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intrusions (Jaeger 1964). As the solutions shown above are one-dimensional, 
their application is particularly relevant to the description of the thermal 
evolution of dikes that are narrow compared with their lateral extent. When 
using the solutions described above to describe the cooling history of dikes, 
it is implied that the dike extends "infinitely" in the two spatial directions 
normal to the coordinate described in the cooling problem. In contrast to 
the previous sections, we only need to be careful to consider both surfaces 
of the dike. For a coordinate system with its origin in the center of a dike 
with the thickness I, the initial conditions may be described by: T = T\ for 
-(1/2) < z < (1/2) and T = Th for (1/2) < z < -(1/2) (Fig. 3.31). The 
boundary conditions remain the same as for the step problem. With these 
conditions, a solution of eq. 3.6 may be found to be: 

Figure 3.32. Thermal 
equilibration of one-dimensional 
intrusions, for example 
magmatic dikes of large lateral 
extent (calculated with eq. 3.88 
and labeled in years after initial 
intrusion). All parameters are 
the same as in Fig. 3.30. Cooling 
curves of rocks from a range of 
distance from the dike center are 
shown in Fig. 3.33a 
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It may be easily seen, that the solution is made up of descriptions for two 
opposing step-shaped temperature profiles at z = —1/2 and z = 1/2. Fig. 3.32 
shows the thermal evolution described by eq. 3.88. As the diffusion equation 
is a linear differential equation, the diffusive equilibration of just about any 
one-dimensional geometry may be described by the summation of solutions 
for various initial conditions. 

In contrast to Fig. 3.30, the temperature at the intrusion contact departs 
from the temperature (T\ + Tb)/2 after some time in Fig. 3.32. The contact 
of the dike begins to cool. This is because the dike contact at z = +1/2 
begins to follow the thermal effects of the temperature step at z = —1/2. 
Correspondingly, the other dike contact at z = —1/2 cools, because it "feels" 
the cooling at z = +1/2. 
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Cooling History of Simple Intrusions. In the following paragraphs we 
will use eq. 3.88 to infer some characteristic features of contact metamor-
phism. Firstly, eq. 3.88 shows us that - in the absence of other thermal 
processes - the maximum temperature that may be reached by contact meta-
morphism is much lower than the intrusion temperature: Only at the very 
contact of the intrusion the contact metamorphic temperatures may reach 
the half way mark between the initial host rock and intrusion temperature. 
We can conclude that field observations of contact metamorphic haloes doc­
umenting haloes of considerable width and temperature imply that thermal 
processes other than conductive equilibration have played a role in their for­
mation (s. sect. 3.6.4). 

• Cooling curves. In order to interpret heating and cooling curves of rocks 
in the contact metamorphic environment, it is useful to plot eq. 3.88 in a 
temperature-time diagram (Fig. 3.33a). This figure illustrates that rocks lo­
cated at different distances from the intrusion may experience very different 
cooling curves. For example, it may be seen that some rocks cool, while others 
heat up, or that rocks cool with different rates. In fact, near the contact of the 
intrusion, cooling curves have extremely complicated shapes including more 
than one maximum in the cooling rate (e.g. the 490-m-curve in Fig. 3.33a). 
Spend some time and think through why these different shapes come about. 
As simple as the model is, it teaches us much about the equilibration of con­
tact metamorphic aureoles: Many metamorphic processes, for example grain 
growth or cation diffusion, are strongly dependent on both temperature and 
cooling rate (e.g. Dodson 1973). The interpretation of these curves is there­
fore extremely important (s. sect. 7.2). 

• Cooling rates. The cooling rate s for a chosen point near the intrusion is 
described by the time derivative of eq. 3.88. As the error function itself is 
an integral, it is not too difficult to find this derivative, although we will not 
explain it in detail here. It is: 

dT (Tj-Tb) / z-QM _ z + QM \ 
dt Atj^Tt Ve«°-5i-*)2/4K*) difixi+zr/iKt)) V-™> 

(s. sect. 3.1.3, 3.5.1). Cooling rates as a function of time as calculated with 
this equation are shown in Fig. 3.33b. They correspond directly to the curves 
in Fig. 3.33a. 

For many petrological questions the cooling rate at a given temperature 
is much more important than the cooling rate at a given time. For this, 
a parametric plot of temperature against cooling rate is useful. Parametric 
plots are diagrams in which two independent functions of the same variable 
(here: time) are plotted against each other. Thus, the parametric plot of T 
against s shown in Fig. 3.34 is a combination of Figs. 3.33a and 3.33b. The 
time dependence of temperature or cooling rate can not be illustrated on this 
figure. Thus, Fig. 3.34 may appear a bit confusing at first view. Nevertheless, 
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Figure 3.33. a Temperature-time paths (cooling curves) for a series of rocks within 
and within the contact aureole of a 1 km thick magmatic dike (1 = 1 km) shown 
up to 40 000 years after intrusion (all constants are the same as in Fig. 3.32). The 
figure was calculated with eq. 3.88. The curves are labeled for distance from the 
center of the intrusion in km. As the thickness is I = 1 km, the first three curves are 
within the magma and the others in the country rock, b Cooling rates for the same 
points as shown in a plotted against time. Curves are calculated with eq. 3.89 

such diagrams are crucial for a meaningful interpretation of petrological and 
geochronological data. 

• Contact Metamorphic Peak. Aside from cooling curves or cooling rates, 
there is even more important information on the thermal evolution of in­
trusions that may be extracted from eq. 3.88. For example, the time of the 
contact metamorphic thermal peak ^Tmax for the model of eq. 3.88 may also 
be found analytically. At the thermal peak the rate of temperature change is 
zero: s|t=rmojt = 0 (read: s at t = Tm a x). Thus, this time is given by setting 
eq. 3.89 to zero and solving for time. We get: 

Figure 3.34. Parametric plot of 
cooling rate against temperature. The 
diagram was constructed from 
Figs. 3.33a and 3.33b. Although the 
diagram may not appear intuitive at 
first, it is simply a combination of the 
curves from Fig. 3.33a,b and is 
extremely useful for the interpretation 
of the equilibration of mineral 
parageneses (sect. 7.2) 
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(3.90) 

From this, we can also get the thermal peak temperature as a function of dis­
tance from the intrusion. We get this by substi tuting the t ime obtained from 
eq. 3.90 into eq. 3.88 and solving tha t for temperature (Fig. 3.34; Fig. 3.35). 
With this diagram we can make some fundamental predictions about the 
nature of contact metamorphism: 

1. The contact metamorphic peak temperature drops rapidly with increasing 
distance from the heat source. 

2. The t ime of peak contact metamorphism increases rapidly with increasing 
distance from the heat source and with decreasing metamorphic grade. This 
predicts tha t - if contact metamorphism occurred - low grade metamorphic 
rocks should experience their metamorphic peak later than high grade 
metamorphic rocks (Den Tex 1963). 

These predictions help to infer heating mechanisms of metamorphic terrains. 
For example, during regional metamorphism the relationships between grade 
and timing of metamorphism are reversed (sect. 6.3.3 and sect. 7.4.1). In 
the chapter on P-T- t -pa ths we will discuss further implications of the timing 
relationships of various cooling curves. 

M o r e C o m p l i c a t e d O n e - d i m e n s i o n a l G e o m e t r i e s . One of the largest 
drawbacks of the model discussed in the last section (eq. 3.88 and its derived 
relationships) is tha t it predicts much narrower contact metamorphic aureoles 
than those tha t are generally observed around intrusions. One of the reasons 
for this may lie in the geometry of the heat source. Other causes will be 
discussed in sect. 3.6.4. 

• Dike swarms. In terrains tha t are penetrated by many intrusions, the mean 
contact metamorphic tempera ture may be much higher than tha t would be 
observed around a single intrusion. This may be described schematically by 

Figure 3.35. Contact 
metamorphic peak temperature 
and the time of the contact 
metamorphic temperature peak 
of the simple one-dimensional 
intrusion from Figs. 3.31 and 
Fig. 3.32. Calculated by 
substituting eq. 3.90, into 
eq. 3.88. The thickness of the 
intrusion / is 1 km, T; = 700 °C, 
Tb = 200 °C and K = 1 0 - 6 m2 s"3 
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Figure 3.36. Two examples of complicated one dimensional intrusion geometries. 
a Contact metamorphism between two neighboring intrusions. The figure was cal­
culated with eq. 3.91 using Zl = -1000, z2 = 1000 and h = l2 = 1000. Curves 
are shown in thousands of years (e. g. the line labeled for 0.2 corresponds to 200 
years). Note that the contact metamorphic aureole between the intrusions is much 
wider than on their outside, b Schematic illustration of the diffusive equilibration 
of a step-shaped temperature profile (for example a one-dimensional intrusion like 
a sill) superimposed on a linear geotherm. Temperature profiles are shown at two 
different time steps Jo and t\. As the diffusion equation is a linear differential equa­
tion, the temperatures of eq. 3.88 can simply be added to the geotherm equation 
(in this case a straight line) 

the combination of a series of temperature steps. If there is N intrusions of 
the thicknesses ln, that intrude at the depths zn, then this can be described 
by the summation of 2N steps in the temperature distribution. The solution 
is: 

N 

* = j E e r f (zn - 0.5/„) 
+ erf 

(zn + 0.5I„) 
+ ... (3-91) 

where 6 is again the normalized temperature 9 = (T—Tb)/(Tj—Tb). Fig. 3.36a 
shows an example of two intrusions calculated with this equation. It may 
be seen that the contact metamorphic halo between the intrusions is much 
wider and of a higher temperature than on their outside. Because of this 
observation, Barton and Hanson (1989) suggested that multiple intrusion 
may be the principle heat source for low-pressure high-temperature meta­
morphism (s. sect. 6.3.3). Fig. 3.36b shows another schematic example for a 
one-dimensional problem that may be solved by the summation of a series of 
one-dimensional model geometries (s. p. 58). 

• Spherical intrusions. The thermal evolution of spherical intrusions is also a 
one-dimensional problem in polar coordinates. The equation we need to solve 
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Figure 3.37. Cooling history of 
a spherical intrusion. For easy 
comparison, all chosen 
parameters and the shown time 
steps (labeled in years) are the 
same as those in Fig. 3.32. 
Calculated with eq. 3.92. 

- 2 - 1 r / 1 , 1 2 
r(km) 

is eq. 3.12. If we want to compare the thermal evolution of spherical intrusions 
with that described by eq. 3.88, then we formulate the following boundary 
conditions: T = T^ at r = oo and r = —oo, and the initial condition T = T\ 
in the region —R < z < R and T = Xb in the region —R > z > R at t = 0, 
where R is the radius of the intrusion and is analogous to 1/2 in the Cartesian 
example discussed in eq. 3.88. r is the distance from the origin. The solution 
of eq. 3.12 under these conditions is: 

2 V \V^tJ \V4^iJJ 

-iZh^y^/V^Le"^)] . (3.92) 

Temperature profiles across cooling spheres at different times are shown in 
Fig. 3.37. They may be directly compared with those in Fig. 3.32. It may 
be seen that spheres cool much faster than dikes, which is intuitively clear 
as they have a much larger ratio of surface to volume in comparison to one 
dimensional steps in Cartesian coordinates. 

3.6.3 Two-dimensional Intrusions 

The description of two-dimensional thermal problems is - for most bound­
ary conditions - not much harder than one-dimensional problems because 
heat conduction in several spatial dimensions can be described as the sum of 
conduction in the individual directional components (s. eqs. 3.9 to 3.10). In 
general it can be said that two-dimensional heat conduction problems may 
be described by the product of the one-dimensional solutions if: 1. the initial 
conditions may be expressed as the product of two functions f(z) and f(y) 
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and 2. the boundary conditions are given by a constant temperature or con­
stant heat flow. Solutions of the two-dimensional heat conduction equation 
with z and y as the spatial coordinates can therefore be expressed as: 

T = solution in ^-direction x solution in y-direction 

For example, the cooling history of a corner is described by the product of 
the cooling of two initial step-shaped temperature profiles as we discussed 
them in eq. 3.86: 

T = Tb + (2- - Tb)erf erf y (3.93) 

The diffusive equilibration of squares may be used to describe the cooling 
history of a rectangular hot region. The solution for this can be derived 
directly from eq. 3.88: 

Tb + (Ti - Tb) erf 
0.51 

+ erf 
0.51+ z 

erf 
0.51 -y 

+ erf 
0.51+ y 

(3.94) 

This solution may be used to describe the cooling history of a rectangular 
hot region (Fig. 3.38) and longer expansions of the same solution can be 
used to describe the cooling of any two dimensional shape of an instanta­
neously emplaced heat source (Fig. 3.39). However, it also finds a series of 
important applications in the fields of geomorphology (sect. 4.5) and petrol­
ogy (sect. 7.2). In Chapter 4.5 we will see that weathering of granites can be 
described with the same solution. 

100 y 4000 y 

Figure 3.38. Three dimensional illustration ul the cooling of a two-dimensional 
intrusion (2 times 1 km in size) of 700 °C intruding 300 °C hot rocks. Calculated 
with eq. 3.94. Temperatures are shown 100, 4 000 and 10 000 years after initial 
intrusion 
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5 10 15 km 

Figure 3.39. Temperatures around a series of intrusions with complicated shapes 
Modeled with a series of equations like eq. 3.94 after Kiihn et al. (2004) 

3.6.4 Modeling Realistic Intrusions 

A series of observations in contact metamorphic aureoles of intrusions show 
that these are much wider and of a higher temperature than those we have 
predicted in the last section even as in the two dimensional examples shown. 
There is two important reasons for this: 

— All problems we have discussed so far have been "instantaneous cooling" 
problems. This means, we have assumed that the cooling history com­
mences at the time of intrusion. This need not be the case. In fact, in 
dikes through which magma is fed into a pluton, this would be highly un­
likely. We need to describe some contact aureoles with a model where the 
temperature is fixed at the intrusion contact. 

— So far we have neglected the latent heat of fusion as part of the cooling 
history. This latent heat of fusion amounts to about 320 kj per kg of rock 
or roughly 8.64-108 J m " 3 . During crystallization of intrusions this heat is 
added to the thermal energy budget available to cause temperature change 
and causes buffering of the cooling history. 

In the following we discuss some simple model tools to describe both pro­
cesses. 

Fixed Boundary Conditions. Intrusion near the surface, where the tem­
perature is constant, or intrusions through which magma flows to keep them 
at constant temperature must be modeled assuming a fixed temperature at 
the model boundary. If only one of the boundaries is fixed in temperature, 
then such problems may be described as a half space problem (sect. 3.6.1), as 
we have done when describing the evolution of oceanic lithosphere (see also 
Fig. 3.40). However, if both boundaries of a one-dimensional problem are 
fixed in temperature, then none of the solutions we discussed so far can be 
used. Under fixed boundaries the integration of eq. 3.6 is quite difficult and 
the solutions are not as simple as those we have discussed in sect. 3.6.2 and 
3.6.3. Eq. 3.6 may only be solved by a Fourier transform (s. sect. B.4). Such 
solutions contain infinite summations. In their most general form, boundary 
and initial conditions of diffusion problems with fixed boundaries are given 
by: 
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— Initial condition: In the region 0 < z < I the temperature is given by 
T = fxiz) at t imet = 0. 

— Boundary conditions: At times t > 0 the temperature at z = 0 is given by 
T = f2(t) and at z = lit is given by T = f3(t). 

The function f{z) can be used to describe the shape of a cooling body and 
the functions f2 and f% can describe a large number of thermal processes at 
the model boundaries. The fact that f2 and f% are functions and not fixed 
values is also a sort of "fixed boundary" (s. sect. B.2.4). In other words, fixed 
boundary conditions need not be a fixed value of temperature, but they need 
to be defined at all times by external parameters. Eq. 3.6 can only be solved 
using Fourier series and such solutions therefore contain infinite summations 
and trigonometric functions. However, for many special cases of the space and 
time dependent functions fi(z), f2(t) and fs(t) Fourier series solutions are 
relatively easy to derive and can be looked up in the literature (e. g. Carslaw 
and Jaeger 1959). 

The Stefan Problem. The latent heat of reaction is an important part 
of the heat budget of high grade metamorphic terrains when phase transi­
tions occur (see sect. 3.2.3). As we need about 1000 Joules to heat one kg 
of rock by one degree (cp = 1000 J k g - 1 K _ 1 ) , the latent heat of fusion in 
enough to heat a rock by about 320 °C (because L — 320 kj kg - 1 ) . An intru­
sion of Ti = 700 °C, that intrudes host rocks of Tb = 200 °C, is AT = 500 °C 
hotter than its surroundings. This corresponds to ATcp = 500 000 J k g - 1 

additional energy that is brought into the rock by this temperature differ­
ence. However, the total heat content of the intrusion (including its latent 
heat) that is brought into the rock is ATcv + L = 820000 Jkg" 1 . The ex­
cess energy is therefore about 1.64 times as large as the excess temperature. 

Figure 3.40. Temperature 
profiles around a dike which is 
kept at constant temperature by 
the flow of magma. The curves 
were calculated with eq. 3.86 
(curves are labeled in my). 
Compare this figure with 
Fig. 3.25 and Fig. 3.30 
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This means that we have underestimated the cooling history in the previous 
sections substantially (s.p. 123). 

If we want to describe the cooling history properly (rather than being 
satisfied with the ball park estimate above) we need to consider where and 
when this crystallization heat is added to the energy budget. To illustrate 
this, it is useful to imagine the processes involved in the freezing of a lake. 
During cooling of the air below the freezing point, at first the lakes surface will 
freeze. The crystallization heat that is freed during this process buffers the 
further freezing process. During further cooling of the surface, the subsequent 
thickening of the ice layer will slow down, as the frozen layer insulates the 
water to the outside and the latent heat of crystallization freed at the ice-
water interface remains contained in the water. For this reason it is rare to 
find pack ice on the polar oceans that is thicker than about 2 m. In fact, 
it was the observation of ice on the polar oceans that lead Stefan (1891) to 
describe the problem that now bears his name. 

For the one-dimensional case and if the magma of a cooling intrusion 
crystallizes at a single eutectic temperature, there is an analytical solution 
that can be used to describe its thermal evolution under consideration of 
the latent heat of fusion. This is the solution found be Stefan (1891) for the 
freezing of water. However, most rocks crystallize in divariant reaction over 
a large temperature interval between a solidus and a liquidus temperature, 
rather than at a single temperature. Then, numerical solutions of the heat 
flow equation must be used to consider the effects of latent heat (s. sect. 3.2.3). 
Regardless, the solution of Stefan (1891) gives important insights into the 
thermal processes involved. It solves the heat conduction equation under 
consideration of the latent heat crystallization at the rock- magma interface 
for the geometry described by: 

- T = Tb at all z > 0 and T = I- at z < 0 at time t = 0 

and boundary conditions at infinity. It is also assumed that the magma crys­
tallizes at temperature T = T{. The solution that describes the temperatures 
outside the crystallising interface is given by: 

/erfc (-fr-) 

In this equation, A is given by the function 

L ^ _ e~A2 

c p ( r ; - T b ) ~ A(l+erf(A)) 

The derivation of this equation is complicated and of no relevance here. 
Eq. 3.96 may be solved iteratively or its solutions can be looked up in ta­
bles. Values for A can then be inserted into eq. 3.95. This equation describes 
the temperature profile around a crystallizing dike margin. Fig. 3.41 shows 

(3.95) 

(3.96) 
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Figure 3.41. Temperatures in 
the contact aureole of a 
crystallizing interface between 
magma and host rock after 1 000 
and 5 000 years, as calculated 
with eq. 3.95. Note that the 
contact metamorphic aureole is 
wider and of higher temperature 
than when only heat conduction 
is considered (Fig. 3.32). All 
parameters assumed here 
correspond to those used for 
Fig. 3.32 with the only difference 
being that latent heat is 
considered here 
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some curves calculated with eq. 3.95. The thickness of the dike is no part of 
this solution. The position z = 0 is the location of the dike margin at the 
onset of crystallization. The solution may be used up to the t ime where the 
crystallization interfaces of the opposite walls of the dike meet at its cen­
ter. Thereafter numerical solutions must be used to describe the subsequent 
cooling history. 

H e a t C o n t e n t of Intrus ions a n d M e t a m o r p h i c Terrains . If we recall 
eq. 3.3, there is a simple relationship between heat and temperature . The 
relating proportionality constants are the heat capacity cp and density p. In 
fact, all problems we have described using temperature , could have also been 
formulated in terms of heat using: 

-pcp (3.97) 
dH _ dT 
~iW ~ ~dt' 

Instead of going through many calculated examples here, we only want to 
s tate tha t the heat content of an intrusion or a metamorphic terrain can be 
viewed - in one dimension - as the area underneath a T — z curve (Fig.3.42). 
In essence, this is what eq. 3.3 and eq. 3.97 state (some more detail is given 
in the first edition of this book). In other words, the heat content of a dike of 
thickness I and temperature 7] relative to its surroundings of temperature 71, 
is given in J m - 2 by: (T\ — Tb)lpcp. Using typical values of p = 2 700 k g m - 3 

and cp = 1000 J K _ 1 k g _ 1 , the intrusion of Fig. 3.32 has a heat content of 
H = 1.89 • 1012 J m - 2 . This is the heat content per square meter of dike sur­
face. 

In high grade metamorphic terrains containing syn-metamorphic intrusives 
it is often discussed if the volume of the intrusions is sufficient to contribute 
significantly to the metamorphism. In other words, it is discussed if the meta-
morphism is contact metamorphism in the widest sense (e.g. Problem 3.14). 
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In order to do this estimate properly, the heat content of the intrusives must 
be compared with the heat content of the terrain. If the specific heat capaci­
ties of the intrusives and the metamorphic host rocks are the same, then the 
comparison of energy contents can also be made as a comparison of the tem­
peratures. However, we must consider the latent heat of fusion that is part 
of the heat of the intrusives, but not of the host rocks. As simple calculation 
shows that: 

rm a x = r b + U -Tb + - ) y;;trusives . (3.98) 
V ^P J ^ terrain 

There, Xb and T\ are the temperature of the host rock before metamorphism 
and that of the intrusion, respectively. Vintrusives is the volume of the intrusives 
and Vterrain is the volume of the entire metamorphic terrain. Tmax is the 
maximum temperature that can be reached by contact metamorphism. 

If the aerial proportion of intrusives to host rock are representative for the 
volumetric proportion of intrusives in the terrain, then the volumes of eq. 3.98 
may be replaced by areas. Using T; = 700 °C, Tb = 300 °C, L = 320 000 J kg"1 

and cp = 1000 J k g _ 1 K _ 1 , eq. 3.98 shows the following: only about 55% of 
the terrain must consist of syn-metamorphic granites in order to heat the 
entire terrain to 700 °C, even if the intrusion temperature itself was only 
700°C. If the intrusives are 1200°C hot mafic magmas, then only 30% of 
the terrain must be intrusives in order to heat the terrain to 700 °C. 

• Using heat content as a boundary condition. In numerical calculations of 
thermal evolutions on grids of finite extent it is often not possible to assume 
boundary conditions at infinity. Then, a consideration of the heat content 
may come in handy as a boundary condition. For example, the boundary 
conditions for eq. 3.88 were assumed at infinity there, but may also be for­
mulated in terms of the heat content of the intrusion. As no heat can be 
lost from the system if it cools by conduction only, the area underneath the 
curves in Fig. 3.32 must stay constant between z = +00 and z — —00. This is 
schematically shown on Fig. 3.42. During cooling of the intrusion, the area A 
must always be as large as the sum of 2B + 2C. When solving the heat flow 
equation numerically on grids of finite extent, for example between the two 
straight lines on Fig. 3.42, problems are often easier to handle this way than 
they are if the temperature is assumed to be constant at infinity. In this 
case the heat flow at the model boundary (given by the angle a) could be 
adjusted so that the areas C have the correct size. From Fig. 3.42 it may 
be seen that A = 2B + 2C and tan(cn) = AzjAT. From this, the thermal 
gradient at the model boundary is given by: 

a = tg" 1 ((A - 2B)/AT2) . (3.99) 

This relationship is a useful in many numerical descriptions of diffusion prob­
lems with boundary conditions at infinity. 
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Figure 3.42. Schematic 
illustration of the heat content 
of a dike. The sum of the areas 
of the two dark-shaded 
regions B, plus the white 
triangles C must be the same as 
the light-shaded area A. Then, 
the heat content of the total 
system remains constant 
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3.7 Selected Heat Transfer Problems 

In this section we discuss a selection of geologically important heat transfer 
problems that do not belong directly to any of the past sections but are 
important to understand geodynamic processes. We discuss mainly problems 
which are subject to spatially or temporally changing temperatures. Such 
problems can be described with periodic boundary conditions and have the 
great advantage that analytical solutions of the heat conduction equation 
can be found for them. In particular, we have selected three geodynamically 
relevant sets of problems, which may be described with periodic boundary 
conditions as well as the temperature distribution around faults. Analytical 
solutions for these and many others interesting heat transfer problems can 
be found in the literature (e.g., Carslaw and Jaeger 1959) 

3.7.1 Periodic Temperature Fluctuations 

The temperatures at the surface of earth are subject to the daily or annually 
periodically changing temperatures of the atmosphere. Problems where this 
is relevant, range from understanding the thickness of permafrost soils, to 
the regulation of temperatures in tunnels and insulation of walls of buildings. 
Many of these problems can be described with a one-dimensional coordinate 
system with z as the coordinate normal to the surface and with boundary 
conditions that describe a periodic fluctuation of the temperature at the 
surface. This may be written as: 

Initial condition: T = To at all z at time t = 0. 
Boundary condition: T = To + ATcos(ft) at z 
T = T0 at z = oo for all t > 0. 

0 for all t > 0, and 

There, AT is half the amplitude of the annual fluctuation, t is time and / 
is the frequency of the periodic temperature cycle (Fig. 3.43 a). To is the 
mean temperature over one cycle. The time dependent diffusion equation 
(eq. 3.6) can be integrated using these assumptions. We will not go through 
this integration here, but the result is amazingly simple. It is given by: 

T = T0 + ATe (-VS) cos ft (3.100) 
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Figure 3.43. The temperature in the upper few meters of the crust as a function 
of annually changing surface temperature, a shows the upper boundary condition: 
the temperature T as a function of time t at z = 0. The annual mean temperature 
was assumed to be To=10°C. The variation about this mean was assumed to be 
AT = 20 °C. b shows six thermal profiles in the ground at six different times through 
the course of half a year. The curves are labeled for time in years. It may be seen 
that below depths of about 2 m temperatures never sink below the freezing point 

This equation may be used to describe temperature fluctuations at depth 
as a function of a periodic temperature variation at the surface. It may be 
seen that this equation contains a trigonometric function and an exponential 
function. At each time t it describes a cosine function of temperature which 
decays in amplitude exponentially with depth. At the depth z = ( / / 2 K ) ~0,5 

the amplitude of the temperature oscillation is that of the surface divided 
by e. This depth is often called the characteristic depth of equilibration or 
skin depth (s. sect. 3.4.3). Eq. 3.100 is extremely important for many near 
surface problems, for example temperature profiles in snow, air temperatures 
in caves and many more (Fig. 3.43b). 

3.7.2 Folded Isotherms 

A beautiful problem illustrating the relationships between length and time 
scales of heat conduction and advection (s. sect. 3.1.4, 3.3.4) is given the 
shape of isotherms during folding. Before we discuss this problem it should 
be said that - strictly speaking - isotherms can not be folded, as they are not 
material lines. However, a number of model descriptions use the term "fold­
ing" even when talking of isotherms and we use it here as well. Fig. 3.44a 
shows schematically how isotherms may be folded during deformation of 
rocks. This process may occur if the axial plane of the folds is not par­
allel to the isotherms. Whether or not folding of isotherms has a thermal 
influence on rocks depends on the relationship between the wavelength and 
amplitude of the fold, on the folding rate and of course on the diffusivity K. If 

AT 

-10 
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the wavelength, the amplitude and the folding rate are large, then isotherms 
will be folded together with the stratigraphy. If the folding rate is small, then 
the rate of thermal equilibration is rapid compared with the folding and the 
isotherms will remain flat. Field observations like the up doming of the Tauern 
Window in the eastern Alps, together with the updoming of the Alpine meta-
morphic isograds show that it may be important to estimate the magnitude 
of this effect. If the estimates show that folding of rocks is rapid enough to 
fold the isotherms as well, then we should observe that antiforms cool and 
synforms heat. With the methods of modern petrology it is conceivable that 
such details of the thermal evolution can be tested (sect. 7.2). 

A first estimate of the potential magnitude of an isotherm folding process 
can be made using the Peclet number (sect. 3.3.4). For a geologically reason­
able shortening rate of 1 c m y - 1 an amplitude of a single antiform of 5 km 
forms in about 0.5 my. The rate u, with which the material lines are deformed 
is therefore 104 m m y - 1 . Using I as the amplitude and K = 10~6 m 2 s _ 1 we 
get from eq. 3.51, that Pe « 1.5. This shows that diffusion and advection pro­
cesses are both relevant for the assumed parameters and that a more detailed 
investigation of the problem is justified. 

A quantitative and very simple model that can be used for the description 
of this process was developed by Sleep (1979). This model is based on the 
following assumptions: 

a 
_ ._ i 

/ • •• 

••-. / \ / ' °-5 

slow folding 

rapid folding x 

• - 1 

N —'" N — ' 0 0.2 0.4 0.6 0.8 1 

Figure 3.44. Illustration of folded isotherms, a Schematic illustration. The light 
and dark shaded regions are folded strata, the thick lines are isotherms. During slow 
folding, equilibration is faster than folding and isotherms will not be folded with 
the rock. During rapid folding of the rock conductive equilibration can not keep 
up with the material advection and the isotherms will be folded with the rock, b 
Folding of stratigraphy and isotherms as calculated with the model of Sleep (1979). 
The continuous lines show the shape of a layer at three different points in time. 
The folding is characterized by a principal fold with wave length and amplitude 
of 1, overprinted by a parasitic fold with wavelength and amplitude 0.25. For this 
model two sets of eq. 3.101 and eq. 3.102 must be summed up. For details see Sleep 
(1979) or the first edition of this book 
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1. Before folding, isotherms are parallel to each other and to the surface 
of earth. The isotherms have a constant distance to each other so that the 
initial temperature distribution as a function of depth is: T(t=o) = Qz-> where 
g is the geothermal gradient and z is depth. 

2. Folding of rocks occurs by shear folding along axial planes that are 
perpendicular to the isotherms and a sine-shaped fold is produced that has 
the form: 

v = i>o-4sin I —— J or : z = too^lsin I —— 1 . (3.101) 

In this equation, v is the displacement rate at each point of the fold, vo is 
the displacement rate of the fold hinge and x is the horizontal coordinate, z 
is the depth of the folded rock at time t. A is the amplitude of the fold. This 
assumption describes shear folding at constant volume and does not consider 
shortening perpendicular to the axial plane of the folds. A is the wavelength 
of folding. Using these assumptions, eq. 3.42 may be integrated. According 
to Sleep (1979) this gives: 

T = g(z-zo(l- e-^°) Asm (^\} . (3.102) 

There, the constants ZQ and to are: 

z« = iik and io = ik • (3-103) 
This equation may - of course - also be reformulated to solve for the depth 
z of a chosen isotherm T. Folding events that last shorter than to will cause 
a significant deformation of the isotherms. If they last longer, then the ad­
ditional deformation is negligible. For most field examples of folding, the 
geometry assumed for the folding process in this model is too simple. How­
ever, Sleep (1979) notes that all fold geometries that have formed by shear 
folding can be represented by a summation of sine-functions. Thus, eq. 3.102 
could be applied to all sine-shaped components of a random folding geometry 
and the results could then be summed up. Fig. 3.44b shows an example in 
which the amplitude and wavelength of two folds, a principal fold and a par­
asitic fold is considered. There, the amplitude of the overprinting parasitic 
fold is 1/4 of that of the principal fold. 

3.7.3 Isotherms and Surface Topography 

An important example of a heat conduction - advection problem concerns 
the influence of the surface topography on isotherms at depth. Rocks inside 
mountains are thermally insulated, while rocks nearer the surface of an in­
cising valley are cooled by the surface. As a consequence, isotherms follow 
the earth's surface it in a damped form. Just how the distance of a given 
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isotherm from the surface varies with amplitude and wavelength of the to­
pography is of large importance for the interpretation of low temperature 
geochronological da ta in mountainous regions, for the design of ventilation 
systems in tunnels and more (Fig. 3.45) (Braun 2002; 2006). In this section 
we discuss some models tha t can be used to estimate the magnitude of this 
effect. 

T h e U p p e r B o u n d a r y : T h e Topography. For simplicity we assume tha t 
the surface topography may be described by a sine-function with the wave­
length A and the amplitude ha/2 where we interpret the wavelength A as 
the distance between two parallel valleys and ho as the maximum elevation 
of the peaks above the valleys. Using the coordinate system illustrated in 
Fig. 3.46a,b, the elevation h at any point of the topography is described by: 

1 (_ (2-KX^ 
Z(T=0) -h ho- 1 + cos 

V A 
(3.104) 

Using such a simple function to describe topography allows us to evaluate 
the magnitude of the thermal effects as a function of two simple parameters 
of topography: the wavelength and the amplitude. 

We also assume tha t the temperature along the curve described by 
eq. 3.104 is the surface temperature Ts = 0 and neglect any atmospheric 
tempera ture gradient or seasonal variation. However, even for these simpli­
fied assumptions, integration of the two-dimensional diffusion- or diffusion-
advection equation (eq. 3.6 or 3.42) under this boundary condition is very 
difficult (s. sect. 3.6.3). A common way to surround this problem is by substi­
tut ing this boundary condition of constant temperature at a variable spatial 
position, by a boundary condition of variable temperature at a constant ele­
vation, for example at z = 0. This would be described by: 

T(x)iz=0) = AT\ (\ + cos ( ^ ) ) (3.105) 

F igure 3.45. Schematic illustration of 
isotherms underneath topography, (a), (b) and 
(c) show three different isotherms at depth. 
Note that the topographic perturbation of 
isotherms decreases with depth in proportion 
to the wavelength of the topography. Using a 
geochronological system that closes at isotherm 
(b), a comparison of samples from A and 
B (vertical age profiling) could be used to 
determine the erosion rate, while a comparison 
of samples from A and C may be used to study 
the landform evolution. Using age elevation 
relationships at A and B with an isotopic 
system that closes at isotherm (a) would result 
in an overestimate of the erosion rate (Braun 
2006; Stiiwe et al. 1994). 
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where AT = hog and g is the geothermal gradient in the absence of topogra­
phy. This assumption implies that the thermal gradient inside the mountains 
is linear. AT corresponds to ho m the proper formulation (s. Fig. 3.46). This 
approximation is good if the wavelength of the topography is large compared 
to the amplitude because then the lateral cooling through the sides of the 
valley can be neglected. Note that this approximation of the topography is 
actually quite a correct description if the surface temperature on a flat shield 
does vary laterally, for example because of the presence of lakes. Using these 
assumptions, we can discern three different types of scenarios described by 
different solutions of the diffusion - advection equation: 

Topography Without Erosion. If there is no erosion, there is no advection 
towards the surface. As a consequence, the topographic perturbation effect on 
isotherms is substantially smaller than it would be in an eroding terrain. To 
estimate it we need to solve the two dimensional diffusion equation (eq. 3.9) 
subject to the boundary conditions of eq. 3.105. The solution is: 

T{XiX) = T(x){z=0) x e " 2 ^ A . (3.106) 

We can see from this solution a fundamental result (shown in Figs. 3.46b): 
The perturbation of isotherms decreases exponentially with depth and in 
proportion to the wavelength of the topography. In other words: at a depth 
A/27T the amplitude of the isotherm is a mere e _ 1 « 0.3 of the amplitude 
of the surface topography. Lets use the Alps and an isotherm relevant for 

(a) , . , (b) (c) (d) 

steady state steady state tempora l evolut ion 

no erosion w i t h erosion during erosion 

Figure 3.46. Isotherms underneath regions of high topographic relief, b , c and 
d show two-dimensional profiles through a mountainous topography. The two 
isotherms in b are for a non-eroding topography calculated with eq. 3.105 and 
adding a linear thermal gradient to the solution to place the different isotherms at 
the correct depths, c shows a thermal steady state case for an eroding topography. 
In d the time dependent evolution underneath an eroding topography is shown for 
a single isotherm, in this case 100 °C. The two black dots in a and b are at equal 
depth, but they have a different temperature. Note that in the chosen coordinate 
system the surface is located at negative values for a, but (according to eq. 3.104) 
at positive values for h (s. Fig. 4.3) 
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fission track analysis (« 100°C corresponding to a depth of « 3 km) as an 
example: The Alps have a topographic amplitude of about 3 km and a series 
of topographic wavelengths from about A « 2 km in the most rugged regions 
to A Ri 200 km from the northern to the southern Molasse basin. Inserting 
these numbers into the exponential term of eq. 3.106 shows that the narrow 
wavelengths are just about invisible for the 100°C isotherm, while 90% of the 
longest wavelength is preserved at 3 km depth. This caused Brown (1991) 
to conclude the interpretation of age - elevation profiles from apatite fission 
tack data may be done without topographic correction. 
Eroding Topography. During erosion material is advected towards the 
surface, isotherms are compressed into the topography and the amplitude 
of a given isotherm is substantially larger than when no erosion occurs. To 
estimate the perturbation effect quantitatively we need to solve a two dimen­
sional form of the diffusion - advection equation (eq. 3.42). Eqs. 3.45, 3.46 
and 3.47 are three examples for geotherms during erosion but without consid­
eration of topography. These equations may be expanded into two dimensions 
and modified to account for the variable boundary at the top surface. Solu­
tions typically show the same fundamental relationship discussed in connec­
tion with eq. 3.106, namely that the effect decreases exponentially with depth 
and in proportion to the wavelength of the topography. However, depending 
on the erosion rate, the advection processes may be strong enough to perturb 
isotherms of geological relevance. Stiiwe et al. (1994) found a semi-analytical 
solution of the two-dimensional diffusion-advection equation to describe this 
problem (Fig. 3.46c and 3.45) 

Figure 3.47. Example 
of a three dimensional 
conduction-advection model 
to consider topographic 
perturbation effects on to­
pography (Hergarten and 
Stiiwe in prep). For this 
example, the digital elevation 
model of the Gotthard region 
was interpolated onto a three 
dimensional grid to consider 
thermal effects important 
for ventilation in the longest 
road tunnel on earth: the 
Gotthard base tunnel. Be­
low the topography, two 
isotherms are shown (labeled 
for temperature and depth). 
Assumed erosion rate was 
1 mm per year. North and 
south entrance of the Got­
thard tunnel are shown by 
the white arrows 

They concluded that at erosion rates above 
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500 m m y - 1 it becomes important to consider the topographic effects on the 
interpretation of apatite fission track results. 
Asymmetric Advection, Three-dimensionality and Time Depen­
dence. Several other processes not considered in the discussion above may 
be of interest when estimating topographic corrections on isotherms at depth. 
These include radiogenic heat production, time dependent effects, atmo­
spheric temperature gradients, convective heat transfer by fluids or seasonal 
temperature variation and asymmetric advection due to variable erosion rate. 
To account for such processes properly, it is usually necessary to use numer­
ical solutions of the diffusion - advection equation. Then, all these processes 
can be considered in a much more straight forward manner. A nice exam­
ples of the use of a three dimensional model is presented by Craw et al. 
(2005) and another one is shown in Fig. 3.47. Several three dimensional mod­
els are currently in use to describe these effects. Mancktelow and Grasemann 
(1997) investigated the time dependent effects how this steady state is reached 
(Fig. 3.46d). However, as the Peclet number of most topographies is small, 
it is usually not necessary to investigate the time dependent evolution of 
isotherms. Asymmetric erosion due to differential rain fall on different sides 
of a mountain range was considered by Stiiwe and Hintermuller (2000) and 
also discussed in the first edition of this book. With the advent of a series 
of new thermochronological methods (e.g. House et al. 1998; 2000) enough 
detail of low temperature cooling curves is starting to be resolved to justify 
careful modeling of all these processes. 

3.7.4 Temperature Distribution Around Faults 

The thermal evolution of rocks around faults is a typical two-dimensional 
problem in which all three heat transfer mechanisms may play a role: diffusion 
in the foot and hanging wall of the fault, advection of heat by the relative 
motion of the two sides of the fault and production of friction heat in the fault 
itself (s. Fowler and Nisbet 1982). In the following analysis we only discuss 
diffusion and advection. For the importance of mechanical heat production, 
the interested reader is referred to the now classic discussions by Molnar and 
England (1990a), Graham and England (1976) and Pavlis (1986), sect. 3.2.2 
and a wealth of modern literature on the subject. 

Fig. 3.48 shows a vertical cross section through a package of rock that is 
transected by a fault (in the shown orientation it is a normal fault). The 
normal fault is inclined with 60° to the left and the initial isotherms are 
inclined with 20° to the right. The displacement along the fault (10 km in 
this case) opposes the hot rocks in the foot wall with the relatively cold 
rocks in the hanging wall. As a consequence, the isotherms are stretched 
near the fault. The lateral temperature gradient in the vicinity of the fault 
is decreased by the fault displacement (Fowler and Nisbet 1982). If the fault 
were a reverse fault of the same angle, then the situation would be reversed: 
the foot wall would be cooled, the hanging wall would be heated and the 
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isotherms would be compressed. The heating of rocks by reverse faulting is 
one of several processes that have been made responsible for the formation of 
inverted metamorphic gradients (s. discussion by England and Molnar 1993). 

• Estimating the thermal influence. In order to estimate the thermal influence 
of a fault zone on its surroundings, we can employ two simple tools which 
we have discussed in previous sections: The thermal time constant (eq. 3.17) 
and the Peclet number (eq. 3.51). In Fig. 3.48a,b and c, the rate of material 
advection u (displacement rate) is 1, 10 and 20 km my - 1 , respectively. From 
eq. 3.51 we can estimate the length scale I where both diffusion and advection 
influence the thermal structure (i.e. Pe = 1) by (Fig. 3.16): 

I = - . (3.107) 
u 

With re = 10~6 m2 s _ 1 , this gives I— 30, 3 and 1.5 km, respectively. A compar­
ison with Figs. 3.48a,b and c shows that the region over which isotherms are 
curved corresponds indeed to these length scales. This suggests that a more 
detailed description with sophisticated numerical models is not necessary to 
understand the first order effects. 

• Temperature-time evolution during exhumation in the vicinity of faults. In 
many regions of active and ancient mountain belts it is observed that displace­
ment along fundamental structures leads to different rates of exhumation of 
the foot wall and the hanging wall. This may lead to a complicated thermal 
evolution of rocks as there are two competing thermal processes: 

Figure 3.48. Isotherms in a crustal cross section around a normal fault that is 
inclined with 60 degrees to the left. The shown area is 50 km by 50 km in size. 
The figures are labeled for the rate of normal displacement u. a, b and c show the 
temperatures after 10 my, 1 my and 0.5 my. Thus, the displacement is the same in 
all three figures. The gray shaded region indicates schematically a lithological layer. 
The isotherms are shown every 50 °C. The isotherms were inclined with 20 degrees 
to the right before the fault became active (dashed line). The boundary conditions 
on all four sides are given by constant heat flow. This implies that the crustal 
section shown is surrounded on all sides by matter and that the diagram can be 
rotated arbitrarily. The diagram was calculated with a numerical solution of a two-
dimensional form of eq. 3.41. For an analytical solution of related problems see e. g. 
Voorhoeve and Houseman (1988) 
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Figure 3.49. Isotherms in a 
vertical cross section through the 
crust with a vertical fault. Both 
sides of the fault exhume with 
different rates ui and u-i- The 
shown section is 50 km by 
50 km. The boundary condition 
at the top boundary is given by 
a constant temperature. The 
boundary conditions on all other 
sides are given by constant flow 
of heat. In contrast to Fig. 3.48 
all isotherms are preserved, 
because of the fixed top 
boundary 

1. The heating and cooling of the two respective sides of the fault. 
2. The cooling of rocks with proximity to the surface. 

Fig. 3.49 illustrates this with a vertical cross section through the crust. This 
figure differs from Fig. 3.48 in that the upper boundary (the earth's surface) 
is now defined by a boundary condition of constant temperature. Thus, in 
contrast to Fig. 3.48, no isotherms intersect the surface. The crustal section 
shown is divided into two blocks separated by a vertical fault. The two blocks 
exhume with two different rates, U\ and «2-

In order to understand the thermal evolution of rocks near the fault, con­
sider rocks in the slower exhuming block (left block on Fig. 3.49) near the 
fault. There, the cooling influence of the surface is opposed by the heating 
influence of the block on the right hand side. Because of this, it may happen, 
that rocks that cool during exhumation experience a late stage heating event 
caused by the other side of the fault. An example of such a thermal evolution 
was documented by Grasemann and Mancktelow (1993) at the Simplon-line 
in the central Alps. 

3.8 Problems 

Problem 3.1. Converting different units of energy (p. 51): 
In nuclear reactions, mass is converted to energy. How long can a 60-W-light 
globe be lit with 1 g of mass assuming that this mass may converted com­
pletely into energy? Remember: energy = mass x speed of light2. The speed 
of light is RJ 300 000 k m s - 1 . A related problem is found in Problem 5.3. 

Problem 3.2. Converting different units of energy (p. 53): 
What is the conversion factor between hfu (1 hfu = 10~6 calcm~2s_ 1) and 
the Si-units W m - 2 . 

3 • Energetics: Heat and Temperature 
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Problem 3.3. Understanding heat refraction qualitatively (p. 56): 
A spherical iron ore body of 10 km diameter (with extremely high thermal 
conductivity) lies in the middle of a 30 km thick crust. Draw a cross sec­
tion through the crust and sketch schematically some isotherms. Discuss the 
thermal consequences that such a geometry may have for the surrounding 
rocks. 

Problem 3.4. Understanding heat refraction quantitatively (p. 56): 
Calculate the temperature at 10 km depth in the crust using the follow­
ing assumptions. The crust is made up of schists with a conductivity of 
k = 2 J s~ 1 m~ 1 K~ 1 . These schists are intruded by a 2 km thick sill that 
has a conductivity of k —4 J s _ 1 m _ 1 K _ 1 . The upper contact of the sill is 
in 5 km depth. The thermal gradient at the surface is 20°Ckm _ 1 and the 
temperature at the surface is 0 °C. The temperature profile is in steady state 
(there is no exchange of heat between the layers) and there is no heat pro­
duction in the crust (i.e. the different sections of the geotherm are linear). 
You can use eq. 3.7. 

Problem 3.5. Using thermal time constant (p. 62): 
Two continental plates collide and deform a 35 km thick crust. The deforma­
tion rate e is a) 10~12 s _ 1 and b) 10~16 s _ 1 . During and after deformation, 
the thermal structure of the crust re-equilibrates by diffusion. For the given 
deformation rates, estimate whether the equilibration of the crust is faster, 
slower or of similar rate as the deformation? The time scale of the thermal 
equilibration may be estimated with the thermal time constant (eq. 3.17). 
What consequences may your results of a) and b) have for structures and 
parageneses that may be observed in a thin section? 

Problem 3.6. The importance of radiogenic heat production (p. 66): 
A roughly spherical radioactive ore body of 10 km diameter produces about 
SVad ~ 100 micro Watts of heat per cubic meter. Estimate how hot the center 
of the body will get after about t= 10s years. Use eq. 3.21 but before you 
do, make an argument why it may be realistic to neglect heat conduction. 
Use eq. 3.18 and estimates for the necessary parameter values as discussed in 
the text, for example K = l O ^ n r V 1 , cp=1000 J k g ^ K " 1 and p = 2 700kg 
m . 

Problem 3.7. The importance of mechanical heat production (p. 68): 
a) What is the mechanical heat production rate of a 5 km wide shear zone 
which deforms at a rate of i) e = 10~13 s _ 1 or: ii) e = 10~15 s_ 1? As­
sume that the deviatoric stress that the shear zone material supports is be­
tween 30-300 MPa. Give minimum and maximum values using both strain 
rates and both shear strengths using eq. 3.25. b) How warm could the shear 
zone possibly get if deformation lasts for 1 my? (cp = 1000 J k g _ 1 K _ 1 ; 
/9 = 2 700 k g m - 3 ) . c) Which parameters control if (and how much) the shear 
zone heats up during this process? (Another problem related to mechanical 
heat production is Problem 5.3) 
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Problem 3.8. Understanding heat of reaction (p. 76): 
How much mass is converted to energy when burning 5 kg of wood? 

Problem 3.9. The importance of latent heat of fusion (p. 78): 
A high grade metamorphic rock contains 30 % partial melts. All of this partial 
melt was formed by a single melting reaction at a fixed temperature. The 
rock cools conductively from its metamorphic peak (which was much higher 
than this melting temperature) with a constant cooling rate of 100°Cmy_ 1 . 
Estimate how long the rock will be buffered to a constant temperature when 
this melt crystallizes? Give the result in my. The latent heat of fusion is 
320000 J kg - 1 , the rock has a density of p =2 700 k g m - 3 and a specific heat 
capacity of cp=1000 J k g _ 1 K _ 1 . Discuss the potential effect of your result 
on geothermometry that may be planned for this rock. 

Problem 3.10. Understanding the Peclet number (p. 86): 
A regional metamorphic event occurred over the whole of a 30 km thick 
crust. A mountain belt at the surface eroded at the same time and exhumed 
the metamorphic rocks during this process. Estimate whether the regional 
thermal evolution can be described by only considering heat conduction (that 
caused the regional metamorphic event) or if heat advection (due to erosion) 
must also be considered. Use erosion rates of a) 100 m my - 1 ; b) 1000 m 
my - 1 ; c) 5 000 m m y - 1 and eq. 3.51. 

Problem 3.11. Contribution of radioactivity to heat flow (p. 92): 
Use eq. 3.61 to estimate how the surface heat flow changes if the radiogenically 
caused heat flow doubles and the mantle heat flow is decreased by 50%. Note 
that both will occur when the lithosphere is doubled in thickness. 

Problem 3.12. Cooling of oceanic lithosphere (p. 101): 
The temperature distribution in oceanic lithosphere may be described with 
the half space cooling model (eq. 3.80). a) Calculate the depth of the 1000 °C-
isotherm for an 80 my old oceanic lithosphere. Assume the temperature of 
the asthenosphere is T\ = 1200°C and the temperature at the surface is 
Ts = 0°C. The diffusivity K is 10"6 m2 s"1. Use eq. 3.80 and Fig. 3.6 or the 
approximation in Table C.9 to solve the error function, b) Draw a tempera­
ture profile through 10 my old oceanic lithosphere with the same assumptions. 

Problem 3.13. Qualitative thermal evolution of intrusions (p. 112 - 116): 
a) Estimate the total duration of cooling of a 50 m wide dike with K = 
10~6 m 2 s _ 1 . Use eq. 3.18. b) Assume that the dike has intruded with 
700°C into host rocks that are 300°C hot. What is the maximum contact 
metamorphic temperature? c) How much additional heat does the dike bring 
into the rock it intrudes? Use eq. 3.3 and eq. 3.97 and p = 2 700 k g m - 3 , 
cp = 1000 J k g _ 1 K _ 1 . d) Draw a qualitative temperature profile across the 
dike at 40 years after intrusion. Help yourself for this with the result from a). 
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Figure 3.50. Illustration for Problem 3.15 r.-i 
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Problem 3.14. Inferring metamorphic heat sources (p. 123): 
Estimate if the following metamorphic terrain could have been heated by con­
tact metamorphism. The terrain has reached a peak temperature of 600 °C. 
About 10% of the area of the terrain are syn-metamorphic mafic intrusions 
that had an intrusion temperature of 1100 °C. Another 30% of the area of the 
terrain are syn-metamorphic granitoids that had an intrusion temperature of 
700 °C. The peak metamorphic pressure was 5 kbar, which corresponds to a 
depth of 18.5 km. Before metamorphism the terrain was at the same depth 
and had a temperature corresponding to a stable geothermal gradient of 
16.2°Ckm - 1 . The density of the rocks is ,0=2 700 k g m - 3 and the specific 
heat capacity is cp= 1000 J k g - 1 K _ 1 . Answer the question graphically and 
algebraically with and without consideration of the latent heat of fusion of 
the magmas (L = 320 000 J kg"1). 

Problem 3.15. Inverted isograds and numerical solutions of the heat flow 
equation (sect. 3.1.1, B.2): 
Calculate the thermal evolution above and below a thrust that has doubled 
the entire crust of zc = 40 km. Assume that the thrusting rate was much faster 
than the rate of thermal equilibration. Thus, we can assume a "saw tooth" 
geotherm as our initial condition (Fig. 3.50). The initial geotherm is defined as 
follows: In the region 0 < z < zc it is given by T = TMoho(z/zc); in the region 
zc < z < 2zc it is given by T = TMoho((z - zc - Az)/zc). (TMOho = 500°C 
and zc = 40 km). The distance between discrete points for your calculation 
is Az = 10 km. Use eq. B.16 and eq. B.18 in order to approximate eq. 3.6. 
For the mathematical stability of your solution you have to make sure that 
the constant R = (nAt)/(Az2) is smaller than 0.25. This condition gives you 
the maximum time step At that you can use. K is 10~6 m2 s _ 1 . 



4. Kinematics: Morphology and Deformation 

In this chapter we discuss the position, shape and the motion of rocks. In 
short: geodynamic processes measured in meters. This includes the discussion 
of strain and ventures therefore a bit into the field of structural geology. How­
ever, mostly we shall discuss processes like the elevation of mountain ranges, 
and the depth of the oceans, as well as the change of such parameters: kine­
matics. We begin with a consideration of the basics of strain. Our summary 
remains brief and the interested reader is referred to a number of excellent 
textbooks in the field of structural geology (Pollard and Fletcher 2006; Ram­
say and Huber 1983; 1987; Ramsay and Lisle 2000; Twiss and Moores 1992; 
Pluijm and Marshack 1997). 

4.1 Strain - The Basics 

The deformation of rocks can be described by gradients in displacement, 
(at least for an infinitely small time step). Such displacement gradients may 
occur in the considered direction and normal to the considered direction. 
These two gradients are often referred to as normal strain and shear strain 
but these descriptions are somewhat imprecise and in fact sometimes wrong 
(as we will show). It is part of the aim of this section to clarify the meaning of 
displacement and strain on a simple and intuitive level. Because we want to 
keep things intuitive, we take a lot of unexplained shortcuts around a rigorous 
treatment of the subject (for example by assuming volume constancy and 
many other assumptions common to many rocks, but not explicitly stated 
here). We will also refrain from the excessive use of general subscripts i and 
j (both being short for x, y and z). We will also discuss strain in only two 
dimensions and use ux and uv for the displacements in x and y direction. 

It is noted that most of the tensors related to deformation discussed here 
are very much analogous to the stress tensor (and its related quantities) 
discussed in sect. 5.1.1. Thus, you can read through that section and draw 
analogs to strain. Before venturing into the necessary tensors, we begin with 
a definition of the most common parameters referred to as "strain": 

• Normal strain. Normal- or logitudinal strains are encountered very often 
in this book, for example when we talk about the thickening parameters fc 
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and fi (e.g. sect. 4.2.3) or about the stretching factor (i in sect. 6.1.4. Normal 
strain simply relates the length of a body after deformation I to the length 
before deformation IQ. We define the following common terminology: The 
stretch of a rock s is the ratio of its length after deformation I to that before 
deformation lo- Its elongation is the ratio of the change in length and the 
original length. We call this e. We can write the relationship between stretch 
(uniaxial strain), elongation and length in short: 

- = l + e = l + 
h 

•h 

lo 
(4.1) 

a 

dUy 

dy 

u 
Figure 4.1. Deformation of a unity cube for the explanation of strain, a Deforma­
tion under normal strain also referred to as pure shear, b Deformation under shear 
strain also referred to as simple shear, c Rotation of the unity cube showing that 
displacement gradients can exist without internal strain. Conversely, deformation 
can usually be split into a rotational and a strain component. 

1 

dx • 

u dux 
. . • • _ • „ 

dy 

•y 

"•/" 
dx 
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Both s and e are often loosely referred to as "strain". It is therefore im­
portant to understand their respective meaning when we try to understand 
kinematics. With reference to Fig. 4.1a: s = (dy + duy)/dy, where duy is the 
displacement du in direction y. 

• Shear strain, is defined as the change in displacement with respect to a 
direction that is normal to this displacement. Shear strain is often referred 
to as 7 and is given by the ratio of dux to dy in Fig. 4.1 b so that: 

7 = tan0 
dux 

dy 
(4.2) 

The angle </> is called the angular shear strain. 

• General displacement. In a general state of deformation (for example some­
where between Fig. 4.1a and b) scalar values of s and 7 are insufficient to 
describe the deformation and we require both shear and normal displace­
ments, both in all considered spatial directions. In total, the deformation of 
a rock may be described by what is called the displacement gradient tensor, 
which is a tensor containing all shear and normal gradients in displacement. 
This tensor is given by: 
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8% e% (4.3) 
dx dy J 

The displacement gradient is also called the Jacobian matrix or the deforma­
tion tensor and its individual components might be abbreviated with dui/dj. 
This tensor describes the deformation of a unity cube perfectly well. Clearly, 
the examples for simple and pure shear discussed above may also be written 
in terms of this tensor, but several of the terms will be zero. 

It is important to note that the displacement gradient tensor does not 
describe strain. For example, the rotating cube in Fig. 4.1c has definitely 
displacement gradients in both x and y direction, but it does not strain. 
Indeed, even for the simple shear example shown in Fig. 4.1b, the shear strain 
7 does not describe the strain of the body correctly, as it may be shown that 
part of the "simple shear" deformation is rigid body rotation. Fortunately 
(because of its symmetry), the displacement gradient tensor may always be 
expanded so that it can be resolved into two parts: 

dm 1 (dm _ 9UJ\ 1 fdm du3 
_ + m + i m _ ^ (4.4) 

dj 2 \dxj dxij 2 \dxj dxij 

The first term on the right hand side of this equation is called the strain 
tensor eij, the second part describes the rigid body rotation uiij. Adding a 
translation of the body u, we can write the full deformation of a body by: 

Ui + dm — Ui + eijdxi + Uijdxi (4.5) 

Eq. 4.5 is a full description of deformation of rocks including their transla­
tion (first term), their strain (second term) and their rotation (third term). 
Rotational components of deformation are very much the field of structural 
geology and are not discussed further here. However, the strain tensor and 
its time derivative, the strain rate tensor, are needed in several parts of this 
book and we therefore write it out in full as: 

_ 1 fdui_ du£\ _ I "5F 2 \~W + ~5FJ ] ,.„•. 
€ij ~ 2 \dxi dxi J ~ \ LfOlbL+duA euy_ W 

V J ' \ 2{dx + dy ) dy J 

The strain rate tensor looks identical to eq. 4.6 if u is considered to be velocity 
and not displacement. Just like the stress tensor, the strain tensor is sym­
metric and the invariants of the strain tensor matrix are of some importance, 
for example when considering flow laws or shear heating. As an example, a 
map of global strain rate is shown in Fig. 4.2 where the magnitude of the 2nd 
invariant of the strain rate tensor is shown by the shading (for explanation 
see p. 304). 
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Figure 4.2. Global map of strain rate (Kreemer et al. 2003). Data from 
http://gsrm.unavco.org/intro/ . Plotted is the 2nd invariant of the strain rate ten­
sor on a logarithmic scale between 0 (white) and 3 x l O _ 6 y _ 1 (black). Invariants of 
tensors are discussed in more detail in connection with the stress tensor in chapter 
5. Compare also with Fig. 2.5 

4.2 Reference Levels 

All geological motion, for example the motion along faults, the uplift of a 
mountain range or the approaching of two lithospheric plates may only be 
observed relatively (s. Fig. 2.7). Thus, for any kinematic problem it is nec­
essary to define a coordinate system to which the motion may be related. 
Usually we do this quite intuitively. For example, when talking of a dextral 
fault, we all understand that we mean the motion of one side of the fault as 
seen relative to a reference frame fixed to the other side of the same fault. 
For other examples, in particular those revolving around vertical motions or 
those around plate motions on a large scale there has been much confusion 
with reference frames in the literature. For example, in all previous sections 
(when discussing geotherms), we have fixed our coordinate system to the sur­
face of the crust. This reference level is useful when describing geotherms as 
it is irrelevant to a thermal evolution whether the entire lithospheric column 
is being uplifted or remains stationary. However this reference level is not 
very meaningful when considering vertical motion of this surface itself: the 
elevation of a mountain range relative to its own surface is always zero. It 
cannot be described in a reference frame that is fixed to the surface. Thus, 
for problems dealing with surface elevation, we need to change our reference 
frame and fix it to sea level or some other externally fixed reference frame 
(Fig. 4.3). In sect. 4.3.1 we will show in some detail how careless handling of 
reference levels may lead to grave misinterpretations. However, we begin by 
discussing some important reference levels for geodynamic problems. 
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Figure 4.3. Schematic sketch of two different 
vertical axes that are used by earth scientists 
to describe vertical motions in the lithosphere. 
The surface elevation H is usually described rel­
ative to sea level or the reference lithosphere 
and is generally assumed to extend positively 
upwards. This reference frame is used by geo-
morphologists. The depth of rocks in the crust is 
generally measured relative to the surface and is 
measured positively downwards. This reference 
frame is used by petrologists. Note that both 
the direction and the origin of the axes are dif­
ferent for the two reference levels. 

4.2.1 Sphere, Spheroid and Geoid 

When considering geological problems for which it is not possible to make 
the two-dimensional approximation that the earth is flat (s. sect. 2.2.1), it 
is necessary to make another approximation: we must find a good model 
description of the shape of our three-dimensional globe. The best first or­
der approximation is that the earth is a sphere. For a long time one meter 
was defined as the 40 000000th fraction of the circumference U of the globe. 
According to this definition, the radius R of a spherical earth would be: 
R = U/(2TT) « 6 366 km. This approximation of the earth's radius is suffi­
cient for most plate tectonic problems, for example those that consider the 
curvature of mountain belts or subduction zones, or those that consider the 
torques exerted by mid-oceanic ridges (s. sect. 2.2.2). However, the "real" 
shape of the earth deviates from a sphere by being flattened in the direction 
of the rotation axis: the centrifugal forces that arise because of the rotation 
of the globe cause the earth to have more the shape of an ellipsoid. This 
flattening of the globe at the poles is much more pronounced in the atmo­
sphere than it is in the solid part of earth. In fact in the atmosphere it is 
pronounced enough so that Mt Everest could not be climbed if it were at any 
higher latitudes (Fig. 4.4). The polar radius of earth is Rp= 6356.75 km. 
The equatorial radius is RA = 6 378.139 km. Because the difference between 
polar and equatorial radius is very small (only about 20 km which is « 0 . 3 % 
of the radius), the ellipsoid of earth is also often referred to as a spheroid. The 
ellipsoid defined by these radii is the ellipsoid used by the World Geodetic 
System WGS84. This is the geodetic system in which the GPS measurements 
are based. The fractional difference between the two radii of an ellipsoid is 
given by: 

/ = R A ~ R F a, 0.0034 ra 1 : 298 (4.7) 
RA 

and is called the ellipticity. Using this ellipticity, the radius of earth at any 
location is often described by: 

143 

m< 



144 4 • Kinematics: Morphology and Deformation 

Torr 

700 

600 

500 

400 

300 

200 

\ a 

barometric pressure ^ ^ 

i i i 

lorr 
250 

240 

230 

220 

\ \ \ ^ / J , 

4 \ \% 
V. \ NO 

E
ve

rc
 

\ X 
barometric pressure N ^ 
at 8848m elevation 

b 

2 4 6 8 
surface elevation 

km 10 20 30 40 50 60 70° 
latitude 

Figure 4.4. a The drop of atmospheric pressure with elevation and b the change 
of atmospheric pressure at the elevation of the top of Mt Everest with latitude. The 
pressure is given in Torr which corresponds to millimeters Hg. The conversion to 
SI units is 1 Torr = 133.32 Pa (s. Table D.8) 

iJ = i ? A ( l - / s i n 2 A ) (4-

Another commonly used reference ellipsoid is the Bessel ellipsoid which differs 
in both radii by about 700 meters. The Bessel ellipsoid provides a better fit 
for many places, in particular for the northern hemisphere and is therefore 
used as the basis for many national mapping grids (sect. 2.3.2). 

The geoid is the surface of constant gravitational potential energy (Fig. 
4.5. In areas of high density, the gravitational acceleration is relatively high 
and the surface of the geoid lies low and vice versa (as to compensate the 
high acceleration with a lower mass of the column). Geoid anomalies are the 
differences between the equipotential surface of earth and a reference shape 
that is somewhat more complicated than an ellipsoid (Marsh et al. 1990). 

4.2.2 Lagrangian and Eulerian Reference Frames 

Most problems we have discussed in the previous chapters of this book were 
discussed in fixed reference frames. That is, temperatures change and rocks 
move relative to the coordinate system. Such a coordinate system is called a 
Eulerian reference frame. The description of processes in Eulerian reference 
frames is referred to as Eulerian or spatial description. For many problems 
in the earth sciences, it is more useful to choose a coordinate system that 
moves with the rock. Such coordinate systems are called Lagrangian reference 
frames. Lagrangian descriptions are also referred to as material description. 
Fig. 4.6 illustrates both reference frames. Fig. 4.6a illustrates the evolution of 
geotherms during erosion. From the point of view of a Eulerian observer (who 
stands on the eroding surface) rocks (and the geotherm) are moved through 
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Figure 4.5. Geoid map of the world. The largest geoid anomaly (labeled in meters) 
is in the Indian Ocean where the geoid has an 80 m deep hole relative to the reference 
spheroid 

the surface. From the point of view of a Lagrangian observer, the coordinate 
system is fixed to the rock and the location of the surface boundary condition 
changes its location downwards in the coordinate system. 

Both reference frames have advantages and disadvantages and it depends 
on the nature of a problem in terms of which reference frame it should be dealt 
with. The Eulerian description has the advantage that it is easy to describe 
the motion of material relative to an unmoved area, for example relative to 
the reference lithosphere. One advantage of Lagrangian descriptions is it that 
the history of a given rock is much easier to track. For example, in numerical 
calculations using a Lagrangian reference frame, the time dependent changes 
of a variable at a given grid node will always describe the evolution of a rock 
at this location, while in Eulerian reference frames, rock trajectories will go 
through the grid. 

As the description of a problem changes with the choice of reference frame, 
so does the relevant equation. Consider the example of Fig. 4.6a. In a Eulerian 
description, the thermal evolution of the geotherm during erosion may be de­
scribed as advection of the material through the grid. The relevant equation 
is the diffusion - advection equation (e.g. eq. 3.42). In steady state problems 
(which Fig. 4.6a is not), the temperature at a given depth stays constant, 
which makes it easy to illustrate, but rocks track through the coordinate sys­
tem, which makes it difficult to track them. Within a Lagrangian description, 
the same problem may be described without advection. The process of ero­
sion is described by moving the boundary condition through the coordinate 
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system. This is mathematically much more difficult to handle, but has the 
great advantage that a fixed coordinate describes the thermal evolution of a 
given rock. We will encounter the description of a very similar problem in 
two different reference frames in the context of Fig. 4.37. 

Figure 4.6b illustrates another example of Lagrangian and Eulerian de­
scriptions of the same problem, using a two-dimensional deformation model. 
The gray area represents a body of rock and the grid is a two-dimensional 
coordinate grid. The rock is deformed towards the walls on the right and at 
the top by forces acting from the left. Within a Eulerian reference frame, 
this deformation appears like material is being transported through the co­
ordinate system. The coordinates of individual rocks change with time. For a 
Lagrangian observer the deformation appears to be caused by an approach­
ing side wall and a retreating upper wall. Individual rocks remain at the 
same coordinates and the grid is distorted together with the rock (Fig. 4.6). 
Again, the principle advantage of the Lagrangian description is that a given 
coordinate remains fixed to a rock. 

As a final example, consider the flow of a river across a waterfall from 
two different observers. The Eulerian observer (e.g. a fisherman on the river 
bank) will not see that the river accelerates. If he fishes above the waterfall 
he will observe that the water is slow and flows with constant velocity. If he 
looks towards the fall he will see that the water flows fast and also at constant 
velocity. The Eulerian observer (e.g. a fish floating with the stream) will feel 
the acceleration across the edge, but he has no sense of being elsewhere as 
the water around him does not move. 
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Figure 4.6. Differences between reference frames according to Lagrange and to Eu­
ler. a One-dimensional model of the evolution of geotherms during erosion, b Two-
dimensional deformation of a square block. In both cases, the Eulerian description 
is within a coordinate system that is fixed externally (material is transported rel­
ative to the coordinate system) and the Lagrangian description is in a coordinate 
system that moves with the material 
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4.2.3 The Undeformed Reference Lithosphere 

For most geological problems of the field geologist most reference levels dis­
cussed above are not very instructive. In fact, only if we deal with gravity 
data or global seismology, reference frames like the geoid, or the spheroid be­
come important. For the large majority of the problems of the field geologist, 
the most useful reference frame is the undeformed reference lithosphere (Le 
Pichon et al. 1982). The undeformed reference lithosphere is a hypothetical 
lithospheric column which remains unchanged relative to the orogen under 
observation. If the undeformed state of the lithosphere under observation is 
unknown, then it is most simple to assume that the surface of the undeformed 
reference lithosphere corresponds to the mean surface of the continents. This 
is 840 m above sea level and the mean depth of the oceans is 3 700 m. How­
ever, about 80 % of the land surface is only between 100 and 200 m above 
sea level. All heights and elevations that are given in the following sections 
without a detailed mention of the reference level, are understood to be rela­
tive to the surface of the reference lithosphere. That is, they are relative to 
the elevation of the respective lithospheric level (e. g. the surface, the Moho 
etc.) prior to onset of thickening or thinning. 

The / c - / i -Plane . This plane is a diagram that allows to explore a range 
of parameters in comparison with an undeformed reference lithosphere. The 
axes of the plane show: 

— 1. the thickness of the crust, 
— 2. the thickness of the mantle part of the lithosphere, 

both relative to the reference lithosphere (s. Fig. 2.18). During orogenesis, 
these two parts of the lithosphere may change their thickness at different rates 
and by different amounts. It is therefore instructive to explore the influence 
of thickening of the two parts of the lithosphere explicitly but simultaneously. 
Strictly speaking, / c and f\ are nothing but the vertical strains of the crust 
and lithosphere, but instead of the typical abbreviation fro strain, e, we follow 
the original authors and use / c and f\. They are defined as: 

/ c = £de|c ^ / l = £defl ( 4 9 ) 

Zc Z\ 

where d̂efc and Zdefl are the thicknesses of crust and lithosphere at a given 
time during orogenesis and zc and z\ are the thicknesses of undeformed ref­
erence crust and lithosphere, respectively. Orogenic thickness evolutions may 
be plotted in the /c-/i-plane as paths. Such paths are parametric in time 
(P — T paths in P — T space are also parametric int ime s. p. 338). This 
diagram was given to us by Sandiford and Powell (1990; 1991) and has since 
been used by a number of authors (e.g. Zhou and Stuwe 1994, Hawkesworth 
et al. 1995, Turner et al. 1995). Note that, according to the original definition 
of Sandiford and Powell (1990), /i is the thickening strain of the entire litho­
sphere and not only that of the mantle lithosphere. While other definitions 
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are of course possible, we retain this original nomenclature here. Note also 
that /i is the inverse of the stretching factor f$ {f\ = 1//3) that is commonly 
used in the description of continental extension (sect. 6.1.4). 

Fig. 4.7a shows the / c-/rplane with some schematic lithospheric profiles of 
different deformation geometries of crust and mantle part of the lithosphere. 
As it is impossible that the whole lithosphere is thinner than the crust, the 
/c-/i-plane is not defined in the region f\z\ < fczc (shaded region in Fig. 4.7). 
The slope of the limiting line of this region is given by the initial thickness 
ratio of crust and whole lithosphere in the undeformed reference state: (j> = 
zc/z\. Fig. 4.7b shows a range of deformation paths that are end members of 
different orogenic evolutions. 

0 0.5 1.5 2 0 0.5 1.5 2 
fc *- fc ^ 

Figure 4.7. The /c-/i-plane. a The little schematic lithosphere columns indicate 
the thickness relationships of crust and mantle lithosphere in different parts of the 
diagram. Light shaded part of the columns is the crust, dark shaded part is the 
mantle part of the lithosphere. The point fc = f\ = 1 is the reference lithosphere. 
b Some important lines in the /c-/i-plane. Note that f\ describes the thickening 
strain of the entire lithosphere (that is: the mantle part of the lithosphere plus 
the crust), i is the line of constant thickness of the mantle lithosphere. ii is the 
line of homogeneous thickening (thinning) of the entire lithosphere. Hi is the line 
of variable crustal thickness at constant lithospheric thickness. It implies that the 
mantle part of the lithosphere must thin along this line as the crust thickens and 
vice versa, iv illustrates thickening of the mantle part of the lithosphere without 
crustal thickening, v limits the allowed space in the /c-/i-plane. Along this line, 
the crustal thickness and the lithospheric thickness are the same. That is, there 
is no mantle part of the lithosphere. Clearly, the lithosphere can not be thinner 
than the crust (not allowed dark shaded region). All lines are dashed in the region 
of thinning and continuous in the region of thickening relative to the undeformed 
reference lithosphere 
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The principal value of the /c-/i-plane is that it may be contoured for a 
range of important geodynamic parameters, for example surface elevation, 
Moho temperature (Fig. 3.22), potential energy (Fig. 5.32), strain rate and 
others. The influence of the deformation geometry of the lithosphere on these 
parameters may then be explored in this diagram. As such, the /c-/i-plane is 
in contrast to Fig. 3.20, where the thickness of the mantle part of the litho­
sphere is only implicitly determined by thermal considerations (s.Fig. 6.20). 
One of the disadvantages of the /c-/i-plane is that both axes of the horizon­
tal plane are used to describe the thickening strains. Thus, the use of the 
/c-/i-plane and the two dimensions of this page limit us to the illustration 
of a single variable for which the plane may be contoured. For example on 
Fig. 3.22 the /c-/i-plane is contoured for Moho-temperature as a character­
istic temperature for the entire lithosphere. 

4.3 Uplift and Exhumation 

In the past decade, much progress in our understanding of mountain building 
processes has been made with studies in the interdisciplinary field between 
geomorphology and tectonics. In such studies, the interaction of two different 
processes that occur with respect to two different reference frames are studied 
(Fig. 4.3): 1. The evolution of surface elevation and landforms at the surface. 
2. The evolution of depth and distance of rocks in the crust. The two different 
reference levels are: 

- The distance to the surface of an undeformed reference lithosphere. This 
is the reference level labeled with H on Fig. 4.3. 

- The distance to the surface of the lithosphere under consideration. This is 
the reference level we have used for most considerations in chap. 3. 

The latter tells us about depth and pressure of rocks in the crust, the former 
about the geomorphic evolution of the surface. In the following section we 
discuss vertical motions of rocks relative to both of these reference levels. In 
this context, it is pointed out that the vertical axis z is sometimes measured 
positively upwards and sometimes positively downwards, depending on the 
question that is being asked (s. sect. 3.7.3). As it is very easy to get confused 
with these different reference frames, we begin with a careful definition of our 
terminology. 

4.3.1 Definition of Uplift and Exhumation 

Motion of rocks relative to the surface of the lithosphere under consideration 
is called exhumation or burial, depending on the motion being towards the 
surface or away from it (Tab. 4.1). In contrast to the geomorphological use 
of the word "exhumation" (where it is only used to describe the surfacing of 
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Table 4.1. Definition and methods of interpreting uplift 

uplift: vertical motion of the earth's surface 
relative to a reference level 

direction of motion upwards: 

direction of motion downwards: 

may be directly interpreted from: 

may be indirectly interpreted from: 

called: uplift 

called: subsidence 

palaeobotany, palaeoclimatology, 

sediments in the surrounding basins 

Table 4.2. Definition and methods of interpreting exhumation 

exhumation: vertical motion of rocks, 
relative to the surface 

direction of motion towards the surface: 

direction of motion away from the surface: 

may be directly interpreted from: 

may be indirectly interpreted from: 

called: exhumation 

called: burial 

geobarometry 
geothermometry 
(via assumption of a geotherm) 

geochronology 
(via assumption of a geotherm) 

rocks that were previously at the surface, for example exhumation of a fossil 
or the exhumation of a river delta), tectonicists use the word "exhumation" 
also when describing upwards motion that has not brought rocks all the 
way to the surface (e.g. partial exhumation), or upwards motion of rocks 
that have never been on the surface previously (e. g. exhumation of a core 
complex) (Stiiwe and Barr 1998). Exhumation is often used interchangeably 
with the word denudation. 

Motion of rocks relative to the surface of an undeformed reference litho-
sphere is called uplift or subsidence depending on the motion being upwards 
or downwards with respect to an externally defined reference frame. In gen­
eral, the words uplift and subsidence are only used to describe the vertical 
motion of the surface itself. Thus, when using these terms for another level in 
the crust, for example the uplift of a rock relative to another rock e. g. on the 
other side of a fault, then the term "uplift" should only be used together with 
a specification of the reference level - in this case: "the other side of a fault" 
(England and Molnar 1990). The terminology of uplift and exhumation is 
not very consistently used in the literature. England and Molnar (1990) have 
defined these terms precisely. In the following we will follow their definition 
and the expansion of their logic by Stiiwe and Barr (1998). Table 4.1 and 4.2 
summarize these definitions and their use. 
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Uplift and exhumation are both measured in units of distance. Uplift and 
exhumation rates are measured in velocities: in m s " 1 . For the following dis­
cussion we call the uplift ra te vup and define it positively upwards. The ex­
humation rate is abbreviated with v e x . The rate of uplift of rocks vI0 (relative 
to a fixed reference frame) is given by the sum of the uplift and the exhuma­
tion rate: 

Vr0 = Vex + Vup . (4.10) 

The variable vTO describes the vertical motion of rocks relative to a fixed 
reference level and is one of the most used and misused variables describing 
vertical motions. Ironically, vro is the only of the three vertical motions of 
eq. 4.10 which can not be determined directly from field or laboratory ob­
servations. It can only be determined from eq. 4.10. The importance of this 
equation can not be overemphasized. It is also emphasized tha t geobaromet-
ric or thermochronological da ta may only be used to infer exhumation and 
can not be used to interpret uplift. If there is no exhumation, then vTO — vup. 
In the next section we illustrate with some examples, how important the 
discrimination of different reference levels can be for the interpretation of 
tectonic features. 

before deformation & erosion & 
deformtion compensation compensation 

Figure 4.8. Schematic sketch of the vertical kinematics in isostatically compen­
sated mountain belts, a shows a crustal column before deformation, b shows the 
crustal column after shortening. Note that all rocks below depth A are displaced 
downwards relative to a. c shows the crustal column after exhumation by erosion. 
Note that the dome structure that is now observed on the surface was formed by 
the exhumation processes only and not by the shortening 
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4.3.2 Vertical Motion in Active Orogens 

In many mountain belts the highest grade metamorphic rocks crop out near 
the region of the highest topography. Well documented examples for the 
simultaneous occurrence of vertical motions are found in just about all con­
vergent orogens, for example by the fact that the highest grade metamor­
phic rocks often crop out near the axis of highest surface elevation. In the 
eastern European Alps, P-T-i-paths have been documented that show that 
exhumation of rocks occurred synchronously with shortening deformation 
phases (Cliff et al. 1985). Equivalent observations have even been made in 
the granulite facies roots of ancient mountain belts (Carson et al. 1997). This 
suggests that the regions of the largest exhumation are also typically the re­
gion of largest uplift. This may not appear unusual, but the coincidence of the 
two has been the seed for much of the confusion about the different vertical 
motions. In fact, there are many examples where uplift and exhumation do 
not correlate. For example, there are small sedimentary basins on the Tibetan 
Plateau which imply that the rocks at the base of these basins were buried at 
a time of rapid surface uplift. Correspondingly, there are many sedimentary 
basins in which the surface subsides (negative uplift) during burial of rocks. 
Vertical Motion in Convergent Tectonics. During convergent tectonics 
all rocks will be buried, i.e. increase their distance relative to the surface. 
However, Fig. 4.8b illustrated that - in isostatic equilibrium - rocks above 
depth A will be uplifted relative to an externally fixed reference frame during 
the process, while most rocks in the crustal column will not only increase in 
distance from the surface, but also move downwards with respect to an exter­
nal reference frame. The upwards motion of rocks below A can only be caused 
by exhumation processes as shown in Fig. 4.8c. In the literature upwards and 
downwards motions are often confused, for example by drawing the vertical 
arrows like those on Fig. 4.8c on the same diagram as the shortening arrows 
like those on Fig. 4.8a. 

Figure 4.9. Schematic 
illustration of the vertical motion 
of the hanging wall (A) and the 
foot wall (B) of a ramp anticline, 
relative to the surface. Note that 
the thrusting process itself does 
not cause any exhumation and 
that it is only the subsequent 
erosion that brings the rocks 
nearer the surface 

If the shortening is not homogeneous as shown on Fig. 4.8b but discontin­
uous, for example during nappe stacking, then rocks will still only be buried 
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by the process. "Thrusting to the surface" is a commonly used term when 
talking of exhumation of rocks in association with a thrust, but the term is 
misleading. Fig. 4.9 shows that exhumation is not caused by the thrusting, 
but because the thrusting process places rocks in a position where they can 
easily be removed. If there is no erosion or other process removing material 
from the surface, then thrusting can not bring rocks closer to the surface! 
During thrusting, rocks in the upper plate will remain at constant depth be­
low the surface, even though they are uplifted with respect to a reference 
frame fixed to an undeformed reference lithosphere (Fig. 4.9). Rocks in the 
foot wall on the other hand can only be buried. 

4.3.3 Exhumation Processes 

We discern a range of fundamentally different exhumation processes. Many 
of the will be encountered again in later sections of this book when we talk 
about dynamic processes (sect. 6.3.4). Here we restrict our discussion to the 
exhumation "end members" and how they differ with respect to the vertical 
motions of a crustal column. We discern: 

- Exhumation by erosion, 
- Exhumation by extension, 
- Exhumation by compressive deformation. 

Exhumation by Erosion. This is one of the earliest models proposed for 
exhumation, largely because of the recognition that mountain belts exposing 
high grade metamorphic rocks are flanked by sedimentary basins. Several 
studies have correlated volumes derived from sedimentary basins with those 
estimated from geobarometry and shown that there is a good correspondence 
(England 1981; Kuhlemann et al. 2001). Although we restrict our discussion 
here to erosion at the surface, it should be noted that erosion also occurs 
at depth, for example by scraping off material by an overriding plate. This 
process is often referred to as subduction erosion and has been described in 
Costa Rica, Mexico, Alaska and in connection with several other subduction 
zones. However, subduction erosion does not cause exhumation and will not 
be discussed further here. 

Exhumation by erosion involves always a vertical translation of the column 
upwards, or - more generally - in direction normal to the erosion surface 
(Fig. 4.11). As such, the column below the eroding surface remains intact, 
which has implications for the interpretation of metamorphic field gradients 
recording burial depth of rocks. 

Exhumation by Extension. This is by far the most efficient exhumation 
mechanism for rocks from large depths. It is also referred to tectonic denuda­
tion and is a much discussed process in connection with the interpretation of 
high pressure metamorphic rocks (Avigard 1992; Piatt 1993b) (sect. 6.3.4). 
Piatt (1993b) subdivided exhumation processes that occur due to extension 
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in convergent orogens into those that occur in connection with underplating 
in orogenic wedges and those that occur in collisional orogens (sect. 6.2.2). 
This distinction is important when interpreting high pressure metamorphism. 
However, for the purpose of understanding vertical motions, it may be simpler 
to discern between 

— Exhumation by normal faulting, 
— Exhumation by ductile thinning. 

Similar to erosion, normal faults and crustal scale detachments can bring 
large areas of high pressure metamorphic rocks practically undeformed to 
the surface and translate the vertical column upwards. In contrast, pure shear 
thinning or simple shear deformation can pervasively deform enormous rock 
packages causing telescoping or thinning of metamorphic isograds. Also note 
that ideal pure shear can never lead to complete exhumation as the complete 
thinned column of rock will always remain preserved (Fig. 4.10b). During 
extension by simple shear processes it is easy to exhume rocks as part of the 
column is physically removed from the top (Fig. 4.10c). 

Figure 4.10. Exhumation during pure and simple shear of the lithosphere. a Start­
ing situation with five marked depths, b In pure shear thinning rocks get partially 
exhumed, but can never exhume completely to the surface, even at very large ex-
tensional strains. The entire column above the rocks remains preserved in thinned 
form, c In simple shear it is easy to exhume rocks to the surface 

Exhumation by Compressive Deformation. Although we have shown 
in section 4.3.2 that convergent deformation leads only to burial, it must be 
said that this is only true when this is considered one-dimensionally. In two or 
three dimensions exhumation during convergence can occur by buoyant up­
raise, by channel flow, wedge forcing and a range of other processes that will 
be discussed in some more detail when we talk about orogenic wedges and ex­
humation of high pressure metamorphic rocks (sect. 6.3.4). Most exhumation 
mechanisms that occur during compressive deformation are characterized by 
a very heterogeneous distribution of vertical motions. In the field this may be 
reflected by the close proximity of high and low pressure metamorphic rocks. 

4.3.4 Modeling Vertical Kinematics 

In most convergent orogens the various vertical motions discussed above oc­
cur simultaneously. Thus, it is often not clear at what stages of the evolution 
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rocks should exhume or get buried and if the surface uplifts or subsides at 
the time. In the following, we want to introduce an extremely simplistic one 
dimensional kinematic model that can be used to illustrate typical relation­
ships between different vertical motions during orogensis. The model is based 
on eq. 4.10 an describes a convergent orogen subject to homogeneous crustal 
thickening and erosion at the surface (Stiiwe and Barr 1998). It bears many 
characteristic features of real orogens. 

Vertical Coordinates for the Model. For the model we define z as the 
vertical distance of a rock from the surface of an undeformed reference litho-
sphere and z' as the vertical distance of the same rock from the surface above 
it, i.e. the depth of burial (Fig. 4.11). With these assumptions it is possible 
to describe the vertical motions of rocks with: 

vz = vT0 - e(z + H) . (4.11) 

There, vz is the rate with which rocks move relative to the reference column 
(measured positive if they move upwards), e is the vertical strain rate (i.e. 
thickening rate) and H is the surface elevation of the lithosphere under con­
sideration, again measured relative to the surface of an undeformed reference 
lithosphere. Eq. 4.11 is fundamental for the understanding of the following 
considerations so read it carefully before going on. If vro = 0 and z = —H 
(this means: rocks at the surface), then: vz = 0. Relative to the reference 
frame of the deforming lithosphere under consideration we can also write: 

Vz< — V e x = Ver — &' • (4-12) 

There, ver is the rate with which material is removed from the surface, e. g. 
the erosion rate. Note that ver is different from vex. The rate of exhuma­
tion depends on the difference between ver (exhuming the rocks) and the 
deforming strain rate e (burying the rocks at a rate that is proportional to 
their depth z'). However, it should be clear that vz< = uex. The relationship 
between the different reference levels may also be written as: 

z' = z + H . (4.13) 

The first term on the right hand side of eq. 4.11 describes the vertical motion 
of the lithosphere as a consequence of removal of material at the surface and 
isostatic compensation thereof. It is positive, because vz is defined positively 
upwards. The second term of the equation describes the vertical thickening 
of the lithosphere during thickening. It is negative because thickening leads 
to burial of rocks. The sum of both motions is vz or vz<, depending on the 
chosen reference frame (eq. 4.11). From eq. 4.11 we can read the following: 
At high crustal levels, where z is small, the second term of the equation is 
also small. The contribution of the first term is relatively large, so that vz is 
likely to be positive. Rocks move upwards in the crust during simultaneous 
thickening and erosion at the surface (Fig. 4.11). At deep crustal levels the 
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Figure 4.11. Schematic illustration of the vertical motions of rocks in the crust 
relative to the surface of the undeformed reference lithosphere. a reference litho-
sphere. b vertical motion as the consequence of thickening, c vertical motion as the 
consequence of erosion at the surface and isostatic compensation, d vertical motion 
during simultaneous thickening and erosion (after Zhou and Stiiwe 1994; Stiiwe and 
Barr 1998) 

second term is larger than the first term and vz is likely to be negative. 
Rocks move downwards. It may be concluded that - even during homogeneous 
thickening - vertical motions in the crust may be very heterogeneous if there 
is simultaneous erosion. 

Modeling Simple Vertical Motions. If we want to analyze these het­
erogeneous vertical motions in a bit more detail, we must pre empty some 
information from sect. 4.4, because we need eq. 4.35. This equation may be 
used to calculate the surface elevation of an isostatically compensated moun­
tain range as a function of the thickness of crust and mantle lithosphere 
(expressed by / c x zc and f\ x z\) using some very simple assumptions on the 
density structure (expressed by the density terms 5 and £). If we can find 
the time derivative of this equation we have a description for the change in 
elevation as a function of time: the uplift rate. The time derivative of eq. 4.35 
is: 

dt 
—rr=Szc{^-

dt • ^ 1 d F 
(4.14) 

We can find the time derivatives of / c and f\ in eq. 4.14 if we assume that 
the crustal and lithospheric thickening rates (the change of / c and f\ with 
time) are described by the difference between thickening due to deformation 
and thinning due to erosion at the surface: 
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d/c , . ver d/i . wer 

-TT = Jce and : — = /ie . 
at zc at zi 

Inserting these into eq. 4.14 we get the surface elevation as a function of 
time (the uplift rate). After some rearrangement of this equation, which you 
should be able to follow on paper, we find this to be: 

H FT 
— =Vup= Verb - e(H + a) . (4.15) 

In this equation, a and b summarize the constants from eq. 4.35 that are 
explained in eq. 4.32. They are: a = (6zc — £z\) and: b = (5 — £). Eq. 4.15 
describes the evolution of surface elevation of a mountain range in which there 
is simultaneous vertical thickening (for example due to lateral shortening) and 
material removal from the surface (for example due to erosion). 

Eq. 4.15 may be solved, if the erosion rate uer is known. So let us assume 
a simple erosion model for a mountain range in which the erosion rate is 
proportional to the elevation of the range: 

ver = ^- . (4.16) 

In sect. 4.5.1 we will discuss this equation in a bit more detail and show that 
this model may be quite a realistic description for many mountain belts. In 
eq. 4.16 fa is an erosional time constant that indicates the time scale over 
which the elevation H is removed by erosion. According to eq. 4.16 erosion 
is more rapid, if £E is small. If we insert eq. 4.16 into eq. 4.15 it is possible 
to calculate the incremental uplift rates of a mountain range subject to the 
simple model boundary conditions assumed here. 

Geomorphic Steady State. Eq. 4.16 states that the erosion rate gets 
higher as the elevation increases. The consequence of this model is that a 
mountain range will reach a geomorphic steady state when the elevation -
and therefore the erosion rate - becomes high enough to balance further 
thickening. This is a realistic scenario observed in many mountain belts and 
can eb described with the model of eq. 4.15. In this steady state, vTO and vex 

at the surface have the same absolute value and it is true that: dH/dt = 0. 
From eq. 4.15 we get (s. Zhou and Stiiwe 1994): 

e = —777 or H = :— . (4.17) 
tE(H + a) b-etE 

Eq. 4.17 can be used to explore the geomorphic steady state constraints on 
mountain belts as a function of thickening strain rate and erosion rate as 
characterized by £E (Fig. 4.12a). It may be seen that - for the surface to 
remain constant - the erosion rate must be larger (i.e. IE must be smaller) 
the higher the mountain range and the faster the thickening rate. This result 
is actually quite intuitive. 

Let us now consider the case of a mountain range not in the steady state 
and explore the uplift or subsidence rates it will undergo. However, we need 
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Figure 4.12. a Strain rates (contoured in i0Log(e)) necessary to maintain a geo-
morphic steady state (where the uplift rate is zero: vup = 0) as a function of surface 
elevation H and erosion rate (characterized by the erosion parameter JE) . The di­
agram was calculated with eq. 4.17. b The instantaneous uplift rate (contoured 
in meters per million years) of an isostatically compensated mountain range as a 
function of surface elevation and thickening strain rate. Calculated with eq. 4.15 
using eq. 4.16 to describe the erosion rate. For uplift the values are positive, for sub­
sidence negative. Assumptions for the physical parameters are: /9m = 3 200 k g m - 3 , 
pc = 2 700 kgm" 3 , ac = 35 km, z\ = 100 km, T1 = 1280°C, a = 3- l O ^ K " 1 . With 
these parameters the constants in the equations are: a « 3545 and b « 0.14 (s. 
eq. 4.32) 

to keep in mind that we can only explore the instantaneous uplift rates as 
they will immediately change as a different elevation is reached. This may 
be recognized as both (dH/dt) and H occur in eq. 4.15 and we have not 
expressed H as a function of time. Fig. 4.12b shows the instantaneous uplift 
rates as a function of thickening rate and surface elevation as calculated with 
eq. 4.15 and eq. 4.16. The figure still shows some interesting results. For 
example, it shows that for thickening strain rates below about e = 10~15) the 
uplift rate is negative (subsidence occurs) and the subsidence rate increases 
with elevation, while this relationship is reversed for other thickening rates. 
Above around e = 10 - 1 5 there is uplift with the uplift rate increasing for 
higher mountain belts. Let us remember that such counter intuitive results 
are useful to teach us about the processes controlling the evolution of surface 
elevation in mountain belts, but that the model presented here is far too 
simplistic for any direct application. 

Evolution of Surface Elevation. We can also use the model above to 
explore the evolution of surface elevation with time. For this it is necessary 
to integrate eq. 4.15. Using the erosion model of eq. 4.16 integration of eq. 4.15 
(using the method of Appendix B.5.1) gives: 
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Figure 4.13. The evolution of surface eleva­
tion and depth of rocks in the crust in a moun­
tain belt during simultaneous thickening and 
erosion, a Surface elevation for four different 
erosion parameters £E (eq. 4.18). b Rock trajec­
tories for the assumption of: £E = 0.56/e in a, 
as calculated with eq. 4.19. Note that all rocks 
with an initial depth of less than 30 km will 
be exhumed under these assumptions. All other 
assumptions are the same as in Fig. 4.12 
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Fig. 4.13a shows four examples for the evolution of surface elevation with 
time as described by eq. 4.18. It may be seen that surface elevation converges 
only to a steady state if £E < b/e (s. Problem 4.4). 

So far we have only considered the vertical motion of the surface. How­
ever, we can use our model also to describe the vertical motions of rocks in 
the crust. From Fig. 4.11 we know that rock trajectories in the crust may be 
divided into two groups: paths that track upwards and those that track down­
wards in the crust. The two groups are separated by the point where vz = 0 
or vTO = 0. This point is of great geological importance, as rocks can only get 
exhumed by material removal from the surface if their depth z is z < ZVSS=Q. 

We can actually calculate this point and all rock trajectories in the crust 
within our simple model. We can do that because we know that the vertical 
motion of rocks relative to an externally fixed reference frame is described by 
vv0 = (dz/dt). Rock trajectories showing the evolution of depth through time 
may therefore be calculated by integrating eq. 4.10. After inserting eq. 4.15 
and eq. 4.13 in eq. 4.10 and integrating (which we do not derive in detail 
here) we get: 

' 1 - & N 

z(t) Z\<d + -(l-e«)+H (4.19) 
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There, z\ is the initial depth of rocks in the crust. Fig. 4.13b shows rock tra­
jectories calculated with eq. 4.19. Within our simple model, the depth zVz=o 
or ZVTO=O may now be calculated reasonable easy. It is given by inserting 
eq. 4.15 and eq. 4.13 in eq. 4.10 assuming vro = 0. Solving for z gives: 

z{v,=0)=a+^-(l-b) . (4.20) 

Inserting a range of realistic numerical values for the physical parameters 
into eq. 4.20 shows that this transition point lies at roughly 30-40 km depth. 
This means, that rocks can only be exhumed in orogens subject to simulta­
neous thickening and erosion at the surface if they lie at depths shallower 
than 30-40 km. This is in good correspondence with our observation that 
greenschist and amphibolite fades rocks with metamorphic pressures up to 
roughly 10 kbar (see eq. 7.1) are common in convergent orogens, while eclog-
ites and other high pressure rocks are rare and usually confined to structures 
of the orogen that can only be describe with two-dimensional models (e.g. 
subduction zones, lithosphere scale thrusts etc.). Our model also shows that 
the exhumation of high pressure rocks requires consideration of other ex­
humation mechanisms (s. sect. 6.3.4; s. Piatt 1993b). 

4.4 Isostasy 

Isostasy is a stress balance. However, since it is used to describe the elevation 
of the surface the concept of isostasy is discussed in this chapter. Isostasy 
relates the vertical distribution of mass to elevation in a state of equilibrium in 
which the lithosphere is considered to be floating on the underlying relatively 
weak asthenosphere. Isostasy does a good job of explaining the first-order 
variation of elevation over most of the earth's surface. In general, isostasy is 
concerned with the comparison of the surface elevation in two different places. 
For example, we might want to interpret the elevation difference between a 
mountain range and its foreland (assuming isostatic equilibrium) in terms 
of its implications for their different thicknesses. When we consider isostatic 
equilibrium it is useful to discern: 

- hydrostatic isostasy and 
- flexural isostasy. 

Hydrostatic isostasy is a stress balance in the vertical direction only (s. sect. 
5.1.1). Thus, hydrostatic isostasy is a model that should really only be applied 
to regions that are large compared to the elastic thickness of the lithosphere. 
In other words, to geological features that are of at least several hundreds 
of kilometers in extent, i.e. areas like the Tibetan Plateau or the Canadian 
Shield. Flexural isostasy describes a stress balance in two or even three di­
mensions (s. Fig. 4.14). As a consequence, flexural isostatic considerations can 
be used to interpret the shape of much smaller scale features, for example 
foreland basins or subduction zones. 
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Figure 4.14. Illustration of the difference between a hydrostatic isostasy and 
b flexural isostasy. In a all vertical columns are considered independently of each 
other. In b the shear stresses between vertical columns are akso considered, q is the 
load 

Isostatic Equilibration Rates. Isostasy describes an equilibrium state and 
is therefore independent of time. Nevertheless, many geologists misinterpret 
the temporal evolution of isostatic rebound as a feature inherent to isostasy. 
For example, we observe that isostatic equilibrium of Scandinavia in response 
to its deglaciation in the last ice age, occurs on a time scale of 104 years (e. g. 
Sabodini et al. 1991). Such isostatic compensation rates can be measured, for 
example by dating raised beaches (Fig. 4.15). However, this observation does 
not tell us that isostasy itself is time-dependent. Isostasy is a stress balance 
and as such independent of time. If a plate tries to rise or sink to reach its 
isostatic equilibrium state in response to a changed load, it has to displace 
the underlying asthenosphere. Thus, the rate of isostatic compensation can 
be used to estimate the viscosity of the asthenosphere (e.g. Lambeck 1993). 

4.4.1 Hydrostatic Isostasy 

The hydrostatic isostatic model is based on the assumption that all vertical 
profiles through the lithosphere may be considered independently of each 
other. That is, shear stresses on vertical planes are neglected (Fig. 4.14a). 
Then, there will be a depth at which the vertical stresses of all vertical profiles 
are equal. This depth is called the isostatic compensation depth. At this depth, 
the weight of all columns are equal. If you dive underneath a boat you dive 
beneath this isostatic compensation depth: Regardless if the boat is above 
you or not, the water pressure is the same. If we consider two profiles A 
and B, the isostasy condition may be formulated in terms of an equation 
(s. Fig. 4.16): 

azz\z=Z-K = °~Zz\z=Z-K • (4.21) 

In this equation a^z and afz are the vertical normal stresses of the two 
columns A and B and the depth ZK is the isostatic compensation depth. 
The vertical dash stands for "at the location". For most geological purposes 
we want to compare the elevation of two neighboring lithospheric columns 
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Figure 4.15. Observed and interpreted sea level changes, a Typical evolution of 
surface uplift relative to sea level in regions of recent deglaciation, for example 
Scandinavia (e.g. Lambeck 1991). Such curves typically contain two distinct parts 
and may be interpreted as the sum of sea level rise due to deglaciation (because of 
increased water mass in the oceans) and sea level drop because of isostatic rebound. 
A simple example for the former is shown in curve b consisting of a linear sea level 
rise until deglaciation ceases. Isostatic rebound (curve c) decreases exponentially 
as isostatic equilibrium is approached and therefore outlasts the deglaciation. From 
such curves, mantle viscosities of the order of 1020 Poise have been calculated 

in isostatic equilibrium. For this, it is useful to assume as isostatic compen­
sation depth the shallowest possible depth below which there is no density 
differences between two neighboring columns. For most examples this can 
be assumed to be the base of the lithosphere of the column which reaches 
deepest into the asthenosphere. 

The downward force that is exerted by one cubic meter of rock is given 
by the product of its mass x gravitational acceleration. The downward force 
that is exerted by an entire vertical column per square meter (the vertical 
normal stress) is thus the product of density and acceleration integrated over 
the thickness of the column: 

/•2K 

/ pgdz . 
Jo 

Inserting eq. 4.22 into eq. 4.21 gives: 

rzK 
/ pA(z)gdz 

Jo 

/•2K 

/ PB(z)gdz 
Jo 

(4.22) 

(4.23) 

where PA(Z) and PB(Z) are the densities of the two columns that are to be 
compared, both as a function of depth, z. Within the coordinate system 
shown in Fig. 4.16, the lower limit of integration 0 corresponds to the upper 
surface of the higher of two columns that are to be compared. The upper limit 
of integration is the isostatic compensation depth ZK- g is the gravitational 
acceleration. Eq. 4.23 is the basis of all calculations of isostasy. 
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Figure 4.16. Illustration of isostatic equilib­
rium. Note that the z-axis is defined positively 
downwards and has its origin at the surface of 
the light shaded block (e.g. an iceberg or the 
lithosphere) that is assumed to float in a dark 
shaded region of higher density (e.g. water or 
the asthenosphere) 
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When considering the isostatically supported elevation of a mountain belt, 

it is useful to divide the density variations in the lithosphere into two parts: 

— density variations that are due to material differences and 
— density variations that are caused by thermal expansion. 

The fact that both types of density variations may form significant contri­
butions to the density structure of the lithosphere is familiar to us from 
Fig. 2.18. We begin by considering material differences. 
Isostasy due to Material Differences. We begin by solving the balance 
written out in eq. 4.23 for the elevation of a single lithospheric column above 
the asthenosphere. For simplicity we forget in the first instance about the 
mantle part of the lithosphere and consider the crust only so that ZK = zc 

(Fig. 4.16; s. also sect. 5.1.1). The block in Fig. 4.16 has a constant density pc 

(e.g. density of the crust) and floats in a denser medium of the constant 
density pm (e.g. density of the mantle). We call its elevation above the surface 
of the denser medium Hmat, although it is just labeled as H in Fig. 4.16. We 
use the subscript m a t to emphasize that - for now - we consider only the 
material contribution to density differences between the profiles A and B. 
The densities and the acceleration are independent of z. Thus, they can be 
drawn out of the integrals on both sides of eq. 4.23 and integration is easy. 
By integrating the left half of the equation and splitting up the right half of 
eq. 4.23 we get according to Fig. 4.16: 

pcgz •r 
Jo 

paildz + g Pmdz (4.24) 

The density of air is negligible in comparison with pm or pc. Thus, the first 
integral on the right hand side of eq. 4.24 is also negligible. After finishing 
the integration, canceling out g and inserting the integration limits we get: 

Pc^c — PmZc ^m-"mat 

Solving for elevation H gives: 

H = Hn 

(4.25) 

(4.26) 
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Figure 4.17. Comparison of the interpretations of the isostatic model according 
to Airy and Pratt. The shading indicates density. Darker shading means higher 
density 

This relationship describes the hydrostatically balanced elevation of the 
surface of a floating body above the medium it floats in. Remember that 
H = Hmat emphasizes the fact that this elevation difference is only based on 
the material difference between the block and the liquid. We can control this 
equation for some end member scenarios: If pc is zero, then this equation 
states that H = z\: the entire column floats on top of the liquid. This is the 
scenario given by a kids balloon floating on a lake. Alternatively if the two 
densities approach each other (pm = pc), then the entire body is submerged 
(H = 0). This is the scenario we observe with water soaked logs that float al­
most completely submerged in water. We can conclude that our observations 
confirm the simple model. 

Isostasy According to Airy and Pratt. Two centuries ago, different 
models were developed to explain elevation differences observed in the moun­
tain belts of the world in terms of the isostasy model. The two most notable 
models are those of Airy and Pratt (Fig. 4.17). Both earth scientists recog­
nized that mountain belts are likely to rest in isostatic equilibrium and that 
their elevation is proportional to the density contrast between crust and man­
tle, as expressed by eq. 4.26. Pratt observed that many low lying Proterozoic 
shields are made up of high grade metamorphic rocks of high density, while 
mountain belts are often made up of hydrated, low grade metasediments and 
carbonates. He concluded that most continental crusts extend to roughly 
similar depths and that the observed differences in surface elevation are the 
consequence of horizontal density variations in the crust. 

In contrast, Airy estimated that the density of the crust is largely the 
same in all continental regions and therefore concluded that topographically 
higher regions, must be compensated by crustal roots at depth. The models 
of Airy and Pratt still bear their names. Seismic studies in many mountain 
belts show that most regions of high surface elevation are indeed compensated 
by significant roots at depth. On the other hand, it is true that there is a 
relationship between surface elevation and density of rocks. In short, the truth 
lies between the models of Airy and Pratt, although much success has been 
made by following Airy's model. 

Isostasy Due to Thermal Expansion. In order to calculate the con­
tribution of thermal expansion to surface elevation we need to introduce 
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a: the coefficient of thermal expansion, which we encountered already in 
eq. 3.29. a has the units of strain per temperature increment, which is 
K _ 1 (s. sect. 5.1). For most rocks the coefficient of thermal expansion is of 
the order a = 3 • 10~5 K _ 1 . Using a and the density of the mantle pm (at the 
temperature of the asthenosphere), the density of colder rocks of the same 
material as a function of temperature may be calculated with: 

p(T)=pm(l + a(Tl-T)) . (4.27) 

There, XI is the temperature at the base of the lithosphere at z = z\. Accord­
ing to eq. 4.27: p = pm, where T = T\. At lower temperatures, the density 
increases linearly. At the surface, where we can assume that the temperature 
is Xs =0°C, eq. 4.27 becomes: 

P(T=Ta) =P0 = Pm(l + 0O\) . (4.28) 

If the density of the mantle is about p m =3 200 k g m - 3 at XI, then the den­
sity at the surface is: po=3300 k g m - 3 . Assuming a linear geotherm in the 
lithosphere, we can describe the mean density of the lithosphere with: 

P = Pm(l + a^^j . (4.29) 

In order to estimate which proportion of the elevation of a mountain belt 
is due to thermal expansion (iXtherm), we insert eq. 4.29 into the left hand 
side of eq. 4.23. The following algebra remains the same as in eq. 4.24 and 
eq. 4.25 except that the upper limit of integration is not the base of the crust, 
but the base of the lithosphere, because thermal expansion and contraction 
affects the entire lithospheric column. After integration according to the same 
principles as we did before we get here: 

Htherm = - ^ i a ( T i + T s ) / 2 . (4.30) 

The negative sign arises because ~p is larger than pm. 

The Elevation of Mountain Belts. First off a warning: Gravimetric data 
tell us that many active orogens are not in isostatic equilibrium, but that their 
topography is dynamically supported. This means the surface elevation is ac­
tively held up or pushed down and is out of isostatic equilibrium. Dynamically 
supported topography may generally be found on length scales that are com­
parable to the elastic thickness of the lithosphere and will be discussed there 
(e.g. Forsyth 1985; Lyon-Caen and Molnar 1983; Molnar and Lyon-Caen 
1989) (sect. 4.4.2). It is therefore emphasized that the model of hydrostatic 
isostasy should only be used for topographic features that are at least some 
hundreds of kilometers in lateral extent. For example, the European Alps are 
barely 200 kilometers across and are only partly compensated isostatically 
(Karner and Watts 1983). This limitation of the hydrostatic model should be 
kept in mind when we interpret the simple considerations below. 
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Nevertheless, let us now consider the elevation of a lithosphere with the 
thickness z\ and a crustal thickness of zc above its surroundings considering 
both the influence of the different materials and the influence of thermal 
expansion. The higher density of the cold lithosphere provides a negative 
contribution to the overall buoyancy (eq. 4.30). The material contribution 
of the crust to the elevation, on the other hand, is positive and was derived 
in eq. 4.26. Density variations within the mantle part of the lithosphere are 
neglected here (s. however p. 37). Then, the isostatically supported surface 
elevation relative to the surroundings is given be the sum of the thermal and 
the material contributions: 

H = Hmat + Htherm = zc (
pm~pc\ - z,a(Tx + Ts)/2 . (4.31) 

V Pm / 

If we summarize all the material parameters into the constants: 

S=(pm-pc)/pm and: £ = a(Ti + Ts)/2 , (4.32) 

then this eq. 4.31 simplifies to: 

H = 6zc-£z1 . (4.33) 

If we insert meaningful numbers into eq. 4.31 (e.g. pm = 3 200 k g m - 3 , 
pc — 2 700 k g m - 3 ) , we get: 

6« 0.15 and: £ RJ 0.018 . (4.34) 

This implies that the influence of material difference between crust and man­
tle, per meter of lithospheric column, is about ten times more important to 
the isostatically supported surface elevation than the influence of the ther­
mal expansion. However, because the crust constitutes only about one third 
of the lithosphere, the crustal material contribution to the elevation is in to­
tal only about 3 times larger than the contribution of thermal contraction, 
which applies to the whole lithosphere. In total, H is about 3 600 m. 

This is the elevation of the upper surface (of a lithosphere with zc and z\ 
as above) above the hypothetical surface of a liquid mantle, as we illustrated 
in Fig. 4.16. Mid-oceanic ridges are the only place on the globe where we can 
measure the depth of this reference level. It turns out that mid-oceanic ridges 
lie indeed about 3 600 m below the average elevation of the continents and 
lie at a very constant depth below sea level (Turcotte et al. 1977; Cochran 
1982). 

In most geological problems it is much more interesting to know the el­
evation of a mountain belt above its surroundings, rather than above the 
mid-oceanic ridges. For this purpose, it is useful to reformulate eq. 4.31, so 
that the elevation is given as the elevation difference between a thickened (or 
thinned) lithosphere and an undeformed reference lithosphere: 

H = (Sfczc - tfw) - (6zc - £*0 = Szo(fc - 1) - 6*i(/i - 1) • (4.35) 
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The parameters fc and f\ describe the thickening strains of the crust and 
the mantle lithosphere and were discussed in detail in sect. 3.4.4 and 4.2.3 
(also: sect. 6.1.4, eq. 6.10). The elevation of isostatically supported mountain 
belts above the undeformed reference lithosphere is shown in Fig. 4.18 (for the 
concept of an undeformed reference lithosphere see: Le Pichon et al. 1982). 
More detailed assumptions about the thermal expansion have no influence on 
the surface elevation (e. g. Zhou and Sandiford 1992). Fig. 4.18 shows clearly 
that homogeneous thickening of the entire lithosphere (a diagonal line from 
bottom left to top right in this diagram) causes relatively small changes of the 
surface elevation, because the two contributions in eq. 4.33 and eq. 4.35 have 
opposite signs. Accordingly, the negative buoyancy caused by the thickening 
of the mantle part of the lithosphere is largely compensated by the positive 
buoyancy of the thickened crust. It may also be read from this figures, that 
doubling of the crust, without thickening of the lithosphere would imply an 
isostatic uplift of about 3-4 km (compare the paths in Fig. 4.7b, s. sect. 
2.4.1). 

The Depth of the Oceans. The water depth of the oceans is a direct func­
tion of the distance to the mid-oceanic ridges (Fig. 2.1). The functional rela­
tionship between water depth and distance from the mid-oceanic ridge was 
described with a fantastically simple model by Parsons and Sclater (1977). 
Their model is one of the largest successes of the theory of heat conduction 
(sect. 2.1, 3.5.1). It can be derived using the principles of hydrostatic isostasy. 

Oceanic lithosphere consists (except for a thin 7 km thick crust) largely of 
asthenosphere material that has cooled to form lithospheric mantle. Because 
of the small and constant thickness of the crust, material contributions to 
density variations may be neglected and thermal expansion (contraction) is 
the governing factor for variations in the density structure. In order to use 

Figure 4.18. Isostatically 
supported surface elevation of 
mountain belts in the /c-/i-plane 
(after Sandiford and Powell 
1990). Contours were calculated 
with eq. 4.35 and are labeled in 
km. Following assumptions were 
used: pm = 3 200, pc = 2 750, 
a = 3 10~5, zc =35 km, 
z\ = 100 km. Using these values, 
the two constants are: 5 « 0.14 
and £ = 0.018. The thick line in 
the lower right hand corner of 
the diagram delineates the not 
allowed region of this parameter 
space (s. sect. 4.2.3) 

fc 
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this density variation to estimate the isostatically supported elevation of the 
ocean floor, we use the model sketched in Fig. 4.19. According to eq. 4.23 
the vertical normal stresses of the columns 
the compensation depth z = z\. For column 
depth z = z\ is given by: 

pwgw + f 
Jo 

P(z)9dz 

A and B must be the same in 
A the vertical normal stress at 

(4.36) 

There, w is the water depth in column A, pw is the water density, g is the 
gravitational acceleration and p^ is the density of the lithosphere as a func­
tion of depth which we shall discuss on the next page. For column B we can 
formulate: 

azz\ pmgw + pmgzi (4.37) 

It should be possible to follow eqs. 4.36 and 4.37 by considering Fig. 4.19. 
After inserting eqs. 4.36 and 4.37 into eq. 4.23, the isostasy condition of gets 
the following form: 

pmzi + w(pn •» = f 
Jo 

K \dz (4.38) 

With foresight to the following steps, we bring the first term of this equation 
to the right hand side, find its derivative with respect to z and write it 
therefore into the integral. Eq. 4.38 gets the form: 

w(pm - pw) = / (P(z 
Jo 

pm)dz (4.39) 

This equations states that the water depth is dependent on the density struc­
ture as a function of depth p(zy In oceanic lithosphere this density function 
is a direct function of the temperature profile (s. sect. 3.5). Thus, if we know 
the temperature as a function of depth, then p^ in eq. 4.39 is known, be­
cause we know already the relationship between density and temperature 
from eq. 4.27. Thus we can begin by inserting eq. 4.27 into eq. 4.39: 

w(pm - pw) 
Jo 

pma(Ti - T(z))dz (4.40) 

1 ' 

V 

\ E 5 

A ^ _ ^ _ ^ I w pw 

^ \ ^ r~->-
" pm _ 

z = -w 

z = 0 

z = z\ 

Figure 4.19. Schematic profile through a mid-oceanic ridge and the oceanic litho­
sphere as used for the calculation of water depth. The oceanic crust is neglected 
because it is everywhere of the same thickness 
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The variable T(z) is the only unknown in this equation, but we determined 
it in sect. 3.5.1. It is well-described by the half-space cooling model. Thus, 
the temperature profile of eq. 3.80 may be directly inserted into eq. 4.40: 

w(Pm - pw) = p Pma (T\ -TS- (TI - Ts)erf (-?=)) cb . (4.41) 

After simplification using eq. 3.16 we get: 

w(pm ~pw)= I' Pma(T} - Ts)erfc (-£=) dz (4.42) 
Jo W4rc i / 

or, after taking the constants out of the integral and solving for w: 

^ ^ - ^ f ' e r f c f - J = )d* . (4.43) 
(Pm-pw) Jo WiKtJ 

If we introduce the variable n = z/\Z4nt, we can take all the constants out 
of the integral (s. Appendix C) and get: 

:pma{Ti - Ts) 

[Pw — Pro) Jo r 
Jo 

w = S]\KV , K ^ / erfc (n) dn . (4.44) 

The definite integral of the error function is not know for integration limits 
of 0 and z\, but it is known for integration with limits at infinity. It is: 

I erfc(n)dn = —= 
o \ A 

This is a close enough approximation, in particular since p —¥ pm at the 
base of the lithosphere. Thus, the integral of eq. 4.44 may be substituted by 
the integral from above. The water depth as a function of distance from the 
mid-oceanic ridge may thus be described with this model by: 

w=2pa(Tl-Ts) / g _ 
(/3m - Pw) V 7T 

If we insert standard values for all the constants in this equation we get: 

w « 5.91 • l O " 5 ^ . (4.46) 

In words, the depth of the water is proportional to the square root of age 
of the oceanic lithosphere. Note that this water depth is only the additional 
water depth on top of the water depth at the mid-oceanic ridge (Fig. 4.19). 
We can convert this into water depth as a function of distance from the mid-
oceanic ridge if we substitute age by the ratio of distance to rifting rate: x/u, 
(which is also age). Fig. 4.20 shows some water depth profiles calculated with 
this equation. The fantastic coincidence of these curves with bathymetric 
measurements in the oceans of the world to at least an age of the oceanic 
lithosphere of about 50 my, confirm the model (see also its correspondence 
with heat flow data in sect. 3.5.1). 
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Figure 4.20. Profiles of water 
depth as a function of distance 
from the mid-oceanic ridge as 
calculated with eq. 4.45. The 
curves are shown for different 
rifting rates in m y - . Following 
constants were used: 
pm = 3 200 kgm" 3 , 
pw =1000 kgm" 3 , 
a = 3 -10" 5 K " \ Ti = 1280°C, 
Ts = 0 ° C and n= l Q - W 1 

4.4.2 Flexural Isostasy 

Most topographic features of our planet that are less than many hundreds of 
kilometers across are not completely in hydrostatic isostatic equilibrium. This 
includes whole mountain ranges like the European Alps (Karner and Watts 
1983; Lyon-Caen and Molnar 1989) and can be measured gravimetrically: 
Gravimetry measures mass and in isostatic disequilibrium the total mass 
above the isostatic compensation depth is not everywhere the same. Thus, 
gravity anomalies may be interpreted in terms of the degree of isostatic dis­
equilibrium. Isostatic disequilibria may form in response to a large range of 
processes. For example, a continental plate may be actively pushed down­
wards by the load of another plate, or it may be actively held up by mantle 
convection exerting an upwards force to the bottom of a plate. Topographic 
features that are created by non-isostatic processes are called: dynamically 
supported. 

Flexural isostasy is a stress balance that also considers horizontal elastic 
stresses (Fig. 4.14b). Flexural isostasy is therefore at least a two-dimensional 
stress balance. It may be used to interpret surface topography in terms of 
both, hydrostatic balance and elastic flexure. In flexural isostasy, lithospheric 
plates are viewed as elastic plates that are bent by vertical loads. Interest­
ingly, this model describes a large number of observations extremely well, 
although it is not at all trivial that the lithosphere should behave elastically 
at all. For example, we will show in sect. 5.2, that deformation of the litho­
sphere on geological time scales may be best described by brittle and ductile 
deformation mechanisms (sect. 5.1.2). Nevertheless, we observe a number of 

200 400 600 800 
distance from mid-oceanic ridge (km) 
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large scale features that are well-described by elastic lithospheric models. In 
the following we summarize a few of these observations. 
Examples of Elastic Deformation. Although it may not be intuitive that 
rocks can be elastic, there are quite a few observations that show us that they 
are! For example, regular spacing between joints and other cracks is a function 
of the elastic behavior of rocks and the continuous versus discontinuous dis­
placement across seismically active structures is an elastic deformation that 
can be measured even with GPS measurements (Fig. 4.21). Elastic strains 
are of the order of about one per mil at the most. 

• Examples in oceanic lithosphere. Oceanic lithosphere is rheologically stronger 
than continental lithosphere and is therefore little internally deformed. IT has 
a very uniform thickness and a largely flat surface. As a consequence, plate 
scale elastic features that develop in response to vertical loads may spectac­
ularly be seen without much disturbance by features created by other defor­
mation mechanisms. The best known example for elastic deformation of the 
oceanic lithosphere are the valleys around sea mounts, for example around 
the Hawaii-Emperor chain. Sea mounts are volcanoes that have formed far 
from mid-oceanic ridges. They were created by hot spots that have their ori­
gin deep inside the mantle (Fig. 4.22). Thus, hot spot volcanoes that have 
formed on the surface of the oceanic lithosphere have no compensating root 
at the base of the plate. The volcano may be considered as an external load 
to a plate of more or less constant thickness that bends it downwards. 

Another example of elastic deformation of oceanic lithosphere is the bend­
ing of the plates at subduction zones. The shape of trenches and the fore 

tO t1 t2 t3 

Figure 4.21. Examples of elastic deformation of rocks, a Tension veins in compe­
tent layers between incompetent shale from Prince William Sound, Alaska (paddle 
for scale). The spacing is determine by the length scale that can support elastic 
deformation. Note that the spacing of veins is larger in the narrower layer at the 
top than in the wider layers at the bottom, b Schematic illustration of the elastic 
deformation around a fault. The marker lines are before deformation (tO), during 
elastic deformation (tl and t2) and after rupture (t3) 
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bulge on the seaward side of the trench are also the consequence of elastic 
bending of the plate. 

• Examples in continental lithosphere. The elastic bending of continental 
plates may be observed in the foreland of many collisional orogens, where 
molasse basins form as the consequence of the elastic deflection of the plate 
in response to the load of the mountain belt. One of the best know examples 
is the northern molasse of the European Alps. There, the European Plate is 
bent downwards under the load of the alpine mountain chain. The deepest 
point of the deflection is the valley of the river Donau. However, in collisional 
orogens the external load applied by the weight of the mountain belt is partly 
compensated by an internal loads: the root of the mountain belt. Thus, the 
distribution of loads is not as clear or as easy to interpret as the examples of 
oceanic plates. 

Passive continental margins also show often evidence for elastic bending of 
continental lithosphere (Fig. 4.26). The best known examples for this are the 
great escarpments along the coasts of southern Africa and Australia (Tucker 
and Slingerland 1994; Kooi and Beaumont 1994). There, the unloading of 
the plate that is caused by the asymmetric erosion of the continental margin 
is compensated by elastic updoming of the coastal foreland. The Australian 
Great Barrier Reef, for example, may be interpreted as an elastic fore bulge 
similar to those observed in the vicinity of subduction zones (Stuwe 1991). 

Interestingly, many geological structures that may be explained with the 
theory of elasticity - as for example the shape of the Australian escarpment -
are preserved for many tens of millions of years. In sect. 5.3 we will show that 
on such a large time scale most stresses should be compensated by viscous 
deformation. 

The Flexure Equation. In order to describe flexural isostasy quantita­
tively, we need to preempt some information on elastic deformation from 

Figure 4.22. Flexure of oceanic 
lithosphere due to the loading of 
a sea mount 

hot spot 
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Figure 4.23. Bending of an ideal 
elastic plate in a simplified model 
view which is useful for the de­
scription of bending lithospheric 
plates 

sect. 5.1.2. Elastic deformation describes an empirically derived constitu­
tive relationship in which stress and strain are proportional to each other 
(eq. 5.24). The proportionality constant between stress and strain is called 
the modulus of elasticity or Young's modulus E. How much a plate bends un­
der an applied stress depends on E and its compressibility, which is described 
by the Poisson ratio v. 

Let us now consider the bending of a simple, ideal elastic plate like the 
one sketched in Fig. 4.23. We also neglect buoyancy forces for now. When 
integrating the horizontal normal stresses axx, over the thickness of the elastic 
plate h, then it may be shown (or even intuitively seen) that the bending 
moment M is proportional to the curvature of the plate (s. Fig. 4.23): 

M = ~Dd-^ . (4.47) 

In this equation, w is the vertical deflection of the plate and the constant 
of proportionality D is called the flexural rigidity of the plate. The bending 
moment M is the integrated torques on both sides of the load. The derivation 
of eq. 4.47 and the following steps are explained in some detail by Turcotte 
(1979) and Turcotte and Schubert (1982) and will not be repeated here. 

Eq. 4.47 is in itself not yet very useful. However, it may be coupled with a 
force balance equation that relates bending moments, the vertical load q, any 
applied horizontal forces F and the shear forces (s. Fig. 4.23) to each other 
(s. Turcotte and Schubert 1982; Ranalli 1987). When coupled with eq. 4.47, 
one arrives at the one-dimensional flexure equation: 

~dw „ d w 
D^-r = qx-F-d** - - * d ^ • ( 4 ' 4 8 ) 

There, qx is the vertical load as a function of horizontal distance x and has 
the units of force per area: stress. Thus, if the distribution of loads is known, 
this equation may be solved for either the deflection of the plate w or for its 
flexural rigidity D (in N x m). Usually, the deflection is well known from 
bathymetric or topographic observation and eq. 4.48 is used to derive the 
rigidity or "stiffness" of the plate. This flexural rigidity is a direct function 
of the elastic material properties of an ideal elastic plate of thickness h and 
is related to these by: 
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Thus, if the material constants E and v are known and the flexural rigidity of 
a plate was derived from modeling its shape using eq. 4.48, then this may be 
converted directly into an elastic thickness of the lithosphere using eq. 4.49. 
All descriptions of the bending of elastic plates are based on the integration 
of eq. 4.48, or its two-dimensional equivalent. 

Application to the Lithosphere. Eq. 4.48 may be directly applied to 
describe flexural isostatic equilibrium, i.e. the elastic bending of lithospheric 
plates under external and internal loads. When we do this, we need to be 
aware of at least three important points: 

1. We have to keep in mind that the flexure equation is based on completely 
different deformation mechanisms from those that we will discuss in sect. 5.2, 
where we consider the rheology of the lithosphere. In other words: eq. 4.48 
is only a model that describes some field observations very well, but may be 
quite useless for the description of many other observations. 

2. The flexural rigidity D must be interpreted correctly. Field observations 
tell us that the rigidity of lithospheric plates is of the order of D m 1023 Nm 
(± about one order of magnitude) and laboratory experiments show that the 
material constants are about E « 1011 Pa and v K, 0.25. According to eq. 4.49 
these parameters imply that the elastic thickness of the lithosphere h is only 
some tens of kilometers. Thus, the elastic thickness of the lithosphere is much 
thinner than the lithosphere according to thermal or mechanical definitions. 
The elastic thickness must be considered as the theoretical thickness of a plate 
with homogeneous elastic properties. Considering that the brittle strength of 
the upper crust as well as the ductile strength of the lower most lithosphere 
are likely to be very small, it is only the central part of the lithosphere that 
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Figure 4.24. Distribution of loads during the elastic bending of lithospheric plates. 
The shown example illustrates the displacement of the mantle by crustal material. 
At the left margin of the diagram the case of water covered oceanic lithosphere is 
illustrated (Problem 4.10). The central part of the figure illustrates the case of a 
continental plate. The right hand part of the figure shows how this plate can be 
split up into parts in order to consider the different forces acting on the plate, w is 
the plate deflection in both the left and the right hand example. Points A and B 
are marked for Problem 4.10 
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is dominated by elastic behavior on time scales that are short compared to 
the viscous response. However, it is important to note that the concept of an 
elastic thickness remains a theoretical one. Ranalli (1994) showed that the 
elastic thickness of the lithosphere is largely dependent on the depth of the 
900°C-isotherm (s. sect. 5.2.1, Fig. 5.16). As the rigidity is proportional to 
h3 (eq. 4.49), it might therefore be expected that D is indirectly proportional 
to the cube-root of the geothermal gradient (Molnar and Lyon-Caen 1989). 
This, however, is not the case. For example, the rigidity of the Indian and 
Adriatic plates varies by about three orders of magnitude but the difference 
in geothermal gradients is less than one order of magnitude. Thus, the elastic 
thickness is likely to be not only dependent on the 900°C-isotherm. 

3. The distribution of loads on the plate must be thought through. The 
load as a function of distance qx as used in eq. 4.48 is the sum of a series of 
internal and external loads that act upwards and downwards onto a plate. 
In order to clarify which different forces act on the plate, it is useful to 

divide the plate under consideration according to the scheme illustrated in 
the right hand part of Fig. 4.24. There, it may be seen that the downward 
force exerted by the mountain range on the plate is given by the vertical 
normal stress c/ext = PcgH. This is the external or the positive load. This 
load is opposed by a buoyancy force in the region of the displaced mantle. 
This is the internal or negative load shown on Fig. 4.24 with the upwards 
arrows. This internal load has the magnitude q\nt = (pm — pc)gw, where w 
is the deflection of the plate. The net load that is applied to the plate is 
therefore: 

q(x) = fct - <?int - PcgH(x) - (pm - pc)gw . (4.50) 

Note that the load is here already expressed as a function of horizontal dis­
tance x. If eq. 4.50 is inserted into eq. 4.48, this may be solved for w nu­
merically or - for some simple boundary conditions - also analytically. When 
considering multi-layered plates, the same principle may be followed in de­
riving the net load on the plate (s. Problem 4.10). 

Applications to the Oceanic Lithosphere. A series of elastic bending 
problem in the oceanic lithosphere may be well-described with eq. 4.48 if 
two simplifying assumptions are made: 

— 1. We assume that there are no horizontal forces applied to the plate. Then, 
the entire last term of eq. 4.48 is zero. This is justified as many oceanic 
plates are not pushed from the side, but have open ends. Moreover, the 
forces that do act from the sides cause only a second order effect in plate 
deflection. 

— 2. We assume that the vertical load is only applied at a single location at 
the end of the plate; i.e. there is no dependence of the load on x. When 
we consider subduction zones or island chains, this is also justified as both 
are largely linear features loading the plate. 
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Based on the second assumption, and assuming that the downwards deflected 
region is filled with water, eq. 4.50 simplifies to: 

Q = Qa - (Pm ~ Pw)gW • (4-51) 

as illustrated on the very left hand edge of Fig. 4.24 (pw is the water density). 
Eq. 4.48 simplifies to: 

d w 
D^j = -(p™-pv/)gw • (4.52) 

Eq. 4.52 describes a range of geological features surprisingly well and has 
the great advantage that it may be integrated analytically for a range of 
geologically relevant boundary conditions. After integration, the constants D, 
g, pm and pc often occur in the following relationship: 

AD ^ 1 / 4 

a = r . (4.53) 
\9iPm- Pw)J 

a is called the flexure parameter of the lithosphere (s. Problem 4.11). 

• Seamount chains. The first example we want to discuss is that of a line-
shaped load of islands on a continuous plate of constant thickness. For ap­
propriately formulated boundary and initial conditions (e.g. the load applies 
only at x — 0, symmetry of the deflection so that dw/dx=0 at x = 0 and 
others) a solution of eq. 4.52 is: 

w = woe~x'a (cos(x/a) + sin(x/a)) . (4.54) 

There, wo is the maximum deflection of the plate directly underneath the 
load and w is normalized to this value (we can see from eq. 4.54 that w —> wo 
for x —> 0). Interestingly, the maximum deflection wo is given by: 

«» = f £ • (4-55) 
Eq. 4.54 is a good approximation for the description of the water depth 
around the Hawaii and Emperor Island chains (s. Fig. 4.25a). The equation 
is also historically important, as is was one of the first models used to estimate 
the elastic thickness of the lithosphere using the bathymetric surveys around 
Hawaii. 

• Trench morphology. The second example that may be described with the 
approximation of eq. 4.52 is the shape of oceanic lithosphere near trenches. 
There, the loading of the subducting oceanic plate may be viewed as a line-
loading by the margin of the upper plate. For this case, boundary conditions 
must be assumed that describe a broken half plate which is subjected to a 
load at its end. For appropriately formulated boundary conditions a solution 
of eq. 4.52 is: 

w = woe -
x/a(cos(x/a)) . (4.56) 
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The shape of plates as described by eq. 4.56 is illustrated in Fig. 4.25b. Note 
how similar this solution is to eq. 3.100: They both describe sine-functions 
that decay exponentially with distance. A comparison of the curves shown on 
Fig. 4.25b with bathymetric measurements shows that most subduction zones 
are steeper near the trench than what is described by the curves at the left 
margin of Fig. 4.25b. It is interpreted that this indicates that subducted plates 
are not only loaded by the upper plate but that convection in the mantle 
wedge and other forces exert a additional torques on subducting plates. For 
other reasons of strange subduction angles see p. 22. 

Applications to the Continental Lithosphere. Continental lithosphere 
deforms internally much easier than oceanic lithosphere by pervasive duc­
tile mechanisms. Thus, elastic features are often not so clearly exposed and 
loads of mountain ranges and the like are distributed over large parts of the 
plates. As a consequence, continental lithosphere does not lend itself so eas­
ily to description with analytical solutions of eq. 4.48. Nevertheless, it should 
be said that the load of long mountain chains on homogeneous continental 
plates is analogous to the problem of long island chains on oceanic litho­
sphere. Thus, eq. 4.54 can - in principle - also be used to describe foreland 
basins, but care must be taken by accounting for sedimentary fill of foreland 
basins, compensating crustal roots etc (s. Turcotte and Schubert 1982). For 
example, pw must be replaced by pc in the formulation of the flexural pa­
rameter (s. eq. 4.50). However, much more progress has recently been made 

100 200 100 200 
x(km) x(km) 

Figure 4.25. Shape of elastically bent plates, a Continuous plate loaded only at 
x = 0: the left margin of the diagram (eq. 4.54). Only half of the plate is shown. 
b Broken plate, also loaded only at x = 0 (eq. 4.56). The curves are labeled with 
the flexural rigidity of the plates in Nm. In a, the volume of the formed basin is 
shown by the shaded region for onw curve. However, the basin volume is for all 
rigidities the same! Note the elastic bulges that occur outwards of the basins before 
the plates return to their normal position in the far field 
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in foreland basin modeling by using numerical approximations, where more 
realistic scenarios may be described (Garcia-Castellanos et al. 1997). 

Figure 4.26. Elastic flexure at passive continental margins. The map shows the 
Great Escarpment of southern Africa. The straight line shows the profile which is 
schematically modeled at right. The model at right is a cross section through an 
idealized passive margin showing surface elevation H as a function of distance from 
the continental shelf L at four different time steps to to ts, during the successive 
erosional retreat of a 1 000 m high escarpment. The land region of the cross section 
is shaded for time step to- Topographic profiles similar those at ti to J3 can be 
found in southern Africa and eastern Australia (after Stuwe 1991) 

The topography of passive continental margins is probably the example in 
the continental lithosphere that is most obviously described by elastic flexure 
(Fig. 4.26). While the geometry of passive margins may be characterized with 
a very simple geometry, there is no analytical solution of the flexure equation 
to describe it and models in the literature rely on numerical approximations. 
Passive margins feature a range of interesting morphological relationships 
between the position of the drainage divide, the shape and direction of the 
drainage networks, the position of a characteristic great escarpment and the 
slope of the range (s. p. 184). Many of these relationships indicate that the 
relief of the plate margin is characterized by elastic bulges in the foreland 
of the escarpment that are interpreted to have formed in response to the 
unloading of the plate margin by erosional retreat of the escarpment. The 
Great Barrier Reef in Australia has been explained as such a forebulge (e. g. 
Stiiwe 1991; Gilchrist et al. 1994; Tucker and Slingerland 1994). Other curious 
features of passive continental margins, for example the inland drainage of 
rivers, are consistent with such interpretations. 

4.5 Geomorphology 

The interpretation of geomorphological features in terms of an integrated 
geodynamic understanding of plate tectonic processes has become an impor-
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tant topic in the earth sciences. This new direction has become known by the 
name "tectonic geomorphology" or "neotectonics" and the appearance of a 
range of recent excellent textbooks testifies of the topical nature of this new 
field (e.g. Burbank and Anderson 2001; Summerfield 1991; Keller and Pinter 
1996; Schumm et al. 2000; Kirkby 1994; Julien 1998). 

Figure 4.27. Schematic car­
toon illustrating the develop­
ment of uplift versus incision 
controlled topography. From 
left to right the three little 
blocks in each row show differ­
ent time steps during the land­
scape evolution 

For the description of geomorphic processes it is often useful to discrimi­
nate between: 

— geomorphic shaping by tectonic ("endogenic") processes, and 
— geomorphic shaping by erosion and sedimentation ("exogenic") processes. 

We could define these two basic end members as "uplift controlled" and as 
"incision controlled" topography, respectively (Fig. 4.27). In many tectoni-
cally active regions both processes interact (Fig. 4.28) and an understanding 
of the relative contributions of these two processes is crucial for an integrated 
understanding of the evolution of such regions. Most of both process groups 
may be described using some very basic principles of which some are intro­
duced on the following pages. From the viewpoint of a Eulerian observer, 
both process groups may be described as a material transport into or out 
of the system. Tectonic ("endogenic") processes move material by faulting, 
by uplift or by subsidence. Erosion and sedimentation ("exogenic") processes 
move material by removing or depositing material. In many cases the mate­
rial transport may be described with the same principles as the transport of 
heat. That is, by: 

— diffusion, 
— advection or 
— production 

of material in the system. Accordingly, many geomorphic processes may be 
described with the same principles discussed in sect. 3.1, 3.2 and 3.3, by 
considering the transport of mass instead of energy. However, there are also 
processes that are unique to landscape formation, for example, the hydrolog-
ical processes in drainage networks or the threshold mechanisms governing 
landslides. Before we discuss the description of individual processes in some 
detail, the following paragraphs illustrate the difference between endogenic 
and exogenic landscape formation. 

Incision controlled 

Uplift controlled 
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Eastern Alps 

Pannonian Basin 

^Pohorje P. 

Adriatic Plate 

Figure 4.28. Digital elevation model and tectonic cartoon of a 120 km by 120 
km section at the transition zone between the Alpine orogen and the Pannonian 
Basin (centered around 47°N and 15°E). The region shows a series of spectacular 
neotectonic features, for example the incision of the river Drava which is clearly 
antecedent with respect to the uplift of the dome made by the Pohorje Pluton. This 
pluton is the eastern most of a series of plutons within the suture zone between 
the Adriatic and European plates. Also note that some of the north south striking 
ridges within the basin show a clear asymmetry with steep west flanks and shallow 
east flanks indicating that the basin inversion was assciated with morphological 
shaping by block tilting. The topographic highs at H and V are tectonic horsts and 
active volcanoes, respectively, both evidencing the high activity of the region 

• Geomorphic shaping by tectonic processes. Relief development by tectonic 
processes is generally described with mechanical and kinematic models and 
- while undoubtedly an integral process of landscape formation - are usually 
not the subject of the modeling of geomorphic processes as such. Rather, 
tectonic processes form boundary conditions to geomorphic modeling, which 
generally concentrates on the description of the exogenic processes. For exam­
ple, tectonic processes that are rapid compared to the subsequent geomorphic 
shaping can be assumed as starting condition, not unlike the assumption we 
discussed for the description of contact metamorphism on p. 81. Alterna­
tively, slow tectonic uplift over long time scales can be modeled as an uplift 
function that interacts with the geomorphic shaping. 

• Geomorphic shaping by erosion and sedimentation. Erosion and sedimen­
tation processes are governed by a large range of different physical processes 
including soil creep, solution, rain splash, chemical- and aeolian weathering, 
down- and sideways cutting of drainages, debris flows, as well as discontinuous 
processes like landslides and many others (e.g. Carson and Kirkby 1972). In 
order to describe these processes with simple models it is useful to summarize 
them into three groups: 



4.5 • Geomorphology 181 

Figure 4.29. Map of global rain fall. The plotted range is from 
zero (black) to 3 m (white) annual mean precipitation. Data from 
http://daac.gsfc.nasa.gov/data/datapool/TRMM. Data processed and plotted by 
Robl, pers. comm. (2006) 

— short range continuous transport, 
— long range continuous transport, 
— discontinuous processes. 

Short range transport describes the local redistribution of mass on a hill slope 
scale and is discussed starting on p. 184. Long range transport describes the 
erosion and sedimentation processes in rivers (p. 193) and discontinuous pro­
cesses are processes that are episodic in time, like landslides (p. 200). Fortu­
nately, geological time scales are long enough so that many local discontinuous 
processes may be described by continuous models. However, as always, the 
chosen model description depends critically on the question being asked. For 
example, when modeling the first order morphological features of orogens as 
a whole, the subdivision discussed above is unnecessary. We begin therefore 
with a summary of geomorphic modeling on the largest scale. 

4.5.1 Erosion Models on Orogenic Scale 

Erosion models are not only important for geomorphologists. Many questions 
typically asked by tectonicists and metamorphic petrologists also require the 
consideration of erosion in some simplified way. For example, when we discuss 
the exhumation mechanism of a metamorphic rock we may want to know if 
erosion or extension drove the exhumation. The studies of England (1981), 
Summerfield and Hutton (1994) or Harrison (1994) show that at least in 
some orogens, erosion is the principle exhumation mechanism. Thus, it is 
crucial to consider erosion processes as an integral part of geodynamic models 
(e.g. sect. 6.2.1). In many models where the description of the landscape 
evolution is not the primary focus of the study, the process of surface erosion 
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Figure 4.30. The influence of four different erosion models on the shaping of an 
asymmetric mountain belt. The light shaded area shows the mountain before the 
onset of erosion. The dark shaded region shows the shape of the mountain after some 
time, a constant erosion rate, b erosion rate proportional to elevation, c erosion 
rate proportional to slope, d erosion rate proportional to surface curvature. In all 
four erosion models, the erosion rate is the rate of removal of vertical section of 
the topography, measured in m s _ 1 . Note that only in models a and b the highest 
point of the topography remains laterally fixed during erosion 

is simplified as much as possible. Then, one of the following erosion models 
is often used (Fig. 4.30): 

a Erosion rate is constant through time and space, 
b erosion rate is a function of elevation, 
c erosion rate is a function of slope, 

There are also more refined models in which erosion rate is assumed to be 
proportional to terrain curvature (diffusion) and those that model fluvial in­
cision. These latter descriptions are important for landscape evolution models 
and are discussed in some detail in sect. 4.5.2 and sect. 4.5.3, respectively. 
Which of the three more simple models listed above should be used for a 
given problem to describe erosion on the most simple level is discussed in the 
three next paragraphs. 

Constant Erosion Rate. Assuming that the erosion rate during a given 
orogenic process is constant through space and time is the most dramatic 
thinkable simplification of real erosion processes. However, let us recall that 
a good model must find the right balance between accurate description and 
simplicity (p. 4). For example, erosion models assuming constant erosion 
rate have been very successful to explain the causes of the clockwise shape 
of metamorphic PT paths during regional metamorphism (sect. 6.2.1). Thus, 
for many purposes and problems of metamorphic petrologists, this model is 
the best. The model can be formulated as: 

vei = — —7— = constant . (4-57) 

where ver is the erosion rate, H is elevation and t is time. Note that the sign 
must be negative for erosion to decrease surface elevation (this is different 
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from other vertical reference frames we have used elsewhere in this book). 
Remember that the erosion rate can only be set equal to the rate with which 
the surface goes downwards if the uplift rate of rocks is vIO = 0 (s. eq. 4.10). 

Erosion Rate Proportional to Elevation. Assuming that the erosion 
rate of a mountain belt is proportional to its elevation is the next closer 
approximation of nature. In fact, this model describes many aspects of real 
erosion processes very well and we have used it extensively in the section 
around page 157. For example, we observe that high mountain ranges like 
the European Alps erode much quicker than low lying hills in the German 
or Italian foreland. However, there are also examples where the opposite is 
true: the Tibetan Plateau is 5 000 m high, but erosion rate is practically zero. 
Nevertheless, this erosion model has found much application in the literature. 
In the most simple case, the proportionality between elevation and erosion 
rate is linear and may be described by the relationship: 

dH H , 

Note again that the sign convention used here is consistent with the conven­
tion used in the last paragraph, but opposite to that used in eq. 4.16, where 
we used a different reference frame. The erosion parameter £E (in units of 
time) describes how long it takes to erode a mountain of the elevation H. 
The model implies that the erosion rate drops immediately as the first in­
crement of erosion has decreased the elevation of a mountain. If eq. 4.58 is 
integrated (e.g. using the principle explained on p. 416), the model describes 
an exponential decrease of the elevation through time: 

H = H0x e ( ^ ) , (4.59) 

where Ho is the original elevation at the onset of erosion. 

Erosion Rate Proportional to Slope. A proportionality between erosion 
rate and slope may be described by: 

ver = — — = -u— . (4.60) 
at ax 

There, x is a horizontal spatial coordinate and dH/dx is the topographic 
gradient: the slope. The proportionality constant u is the horizontal rate 
of displacement of the slope. As with eq. 4.57, it is important to note that 
erosion rate only corresponds to the rate of elevation change, if all other uplift 
or subsidence processes are zero. Equation 4.60 should remind us of eq. 3.40. 
Both are one-dimensional transport equations, which may be solved with the 
methods discussed in sect. 3.3 (s. Fig. 3.13 or Fig. B.7). The model is a good 
description for the evolution of many landforms, for example the motion of 
sand dunes. The model has also been applied to describe the geomorphic 
evolution of passive continental margins. 
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• Advection at passive margins. Markedly asymmetric mountain ranges are 
developed at several locations around the globe along the passive margins of 
continents. The best developed examples are the Great Dividing Range along 
the east coast of Australia and the coastal ranges along much of the southern 
African continent (Fig. 4.26) . In both these examples, the inland side of 
the mountain range has a very small slope angle, while the coastal side is 
characterized by much steeper slope, often referred to as Great Escarpment 
(Oilier 1985). Because of this marked asymmetry, King (1953) concluded 
that erosion occurs largely along the escarpment which causes that the shape 
of the range remains largely self similar through time and that the great 
escarpment retreats inland (s. Fig. 4.26). In southern Africa this process is 
aided by the fact that the escarpment is often made up by the very resistant 
Karoo-basalts. This erosion model and the implied morphological evolution 
of passive continental margins has found much interest in the past decade. 
The simple model of King (1953) is now largely superseded (e. g. Stiiwe 1991; 
Kooi and Beaumont 1994; Tucker and Slingerland 1994), but it still must be 
acknowledged that it describes a number of features quite well. 

4.5.2 Short Range Transport 

Modeling erosion rate as a function of terrain curvature is the most refined 
description of erosion on short length scales, in particular on hill slopes. It is 
important enough so that we will spend some pages on it. This mass transfer 
process is also called diffusion and we have already met and discussed this 
process in much detail on p. 55. We will recall from there, that diffusion 
describes a proportionality between temporal change and spatial curvature 
(eqs. 3.1, 3.4). That this model can also be applied to describe the geomorphic 
shaping of landforms was established by Culling (1960), Ahnert (1970) or 
Andrews and Bucknam (1987). Many observations in nature lend themselves 
to description with this proportionality: We can observe that ragged, pointy 
mountains erode much quicker than flat plateaus (even if they lie very high); 
that sharp escarpments erode quicker than smoothly curved hills and many 
more. Among diffusion models we discern: 

- linear diffusion, 
— non-linear diffusion. 

Before we describe and apply diffusion models on the next pages we want 
to recall that the diffusion model is only a simple description summarizing 
a range of physical processes (including even discontinuous processes like 
landslides if they may be temporally averaged). 

• Linear diffusion. Linear diffusion of mass is completely analogous to the 
logic discussed on p. 52. It is based on the assumption that the rate of down 
slope transport of mass (described by mass flux q) is proportional to the hill 
slope: 
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Figure 4 .31 . Comparison between linear and non-linear diffusion in the evolution 
of a degrading scarp. Note that in the non-linear case slope curvatures are more 
localized than for the linear case 

-D 
dH 

dx 
(4.61) 

where dH/dx is the topographic gradient, (i. e. the slope) and the erosional 
diffusivity D corresponds to re in the theory of heat conduction and has the 
units of m 2 s _ 1 . This equation is directly analogous to Fourier's first law 
(eq. 3.1). Note tha t the mass flux q has the units of m 2 s _ 1 which may be 
interpreted as the volumetric flow normalized to the width of a profile. In 
other parts of this chapter we will encounter fluxes tha t are normalized to the 
channel cross section and have therefore the units o f r n s " 1 (e.g. p . 198). The 
diffusivity D may be interpreted as the product of horizontal ra te of mass 
t ransport v and thickness of an erodable near surface layer hs (Beaumont 
et al. 1992; Carson and Kirkby 1972): 

D = vhs (4.62) 

From this equation, we can recognize the origin of the variability of D: hs is 
dependent on rock type, but v is not. As in the theory of heat transfer, the 
flux equation eq. 4.61 may be combined with a one-dimensional mass balance 
of the form: 

dH 

~~dt 

dq 

dx 
(4.63) 

This equation is analogous to eq. 3.2 and is not derived in detail here. By 
inserting eq. 4.61 in eq. 4.63 we obtain the mass diffusion equation in one 
dimension: 

dH 

1H 
D 

d2H 

dx2 (4.64) 

Eq. 4.64 is analogous to eq. 3.6. If we insert concentration instead of elevation 
into eq. 4.64 then this equation may also be used to model the distribution 
of elements in minerals (s. eq. 7.3). In mineralogy and geochemistry, the 
equations governing diffusion are known as Fick's laws. 
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• General conservation of mass. The diffusion equation describes conserva­
tion of mass on a local scale. However, just as we have combined conduction, 
advection and production of heat in a complete thermal energy balance in 
eq. 3.52, we can write a more general form of a mass conservation equation 
in two dimensions as: 

dH „ (d2H d2H\ dH OH 

dt \ dx2 dy2 J x dx v dy 

This equation describes the change in elevation at a given point of the to­
pography as the sum of diffusion (first term on right hand side), sidewards 
advection of a topographic profile (e.g. dune motion or retreat of an erosional 
escarpment) at the horizontal rates ux and uy (second and third term) and 
material "production", i.e. upwards advection at the rate v. This "upwards 
advection rate" v may be seen as the sum of uplift and sediment deposition 
and is particularly important for descriptions in Lagrangian reference frames. 

Note that this equation describes a two-dimensional model, although all 
three spatial dimensions x, y and H occur in it and although the model can 
be represented as a three-dimensionally (e.g. as a plaster model). However, H 
is evaluated only on the basis of two model variables and landscape models 
are therefore in general two-dimensional models (s.p. 7). 

• Non-linear diffusion. In linear diffusion it is assumed that the mass trans­
port is directly proportional to slope. However, this need not be so. Non-linear 
diffusion describes in effect a down-slope change of the erosional diffusivity 
D (Pierce and Coleman 1986). It may be intuitively seen that this may be a 
good description of nature: On many slopes, the material is more and more 
loose the steeper the slope gets and erosion may therefore be more rapid 
there. A more general formulation of diffusion that accounts for this may 
therefore look like: 

If n = 3 this equation describes what is called cubic diffusion. (For an ex­
planation of the definition of a general non-linear differential equation see 
p. 396). If the rate of down slope transport is related to some power of slope, 
then this will have the consequence that more even slope profiles develop with 
sharper edges as illustrated in Fig. 4.31. Non-linear diffusion was discussed 
by Newman (1983) and established for the modeling of scarps by Andrews 
and Bucknam (1987) and most recently discussed by Roering et al. (2001). 
Hanks and Andrews (1989) suggested a "linear plus cubic" diffusion model 
as a good fit to some field data. Modern discussion of non-linear versus linear 
diffusion in landform processes are found by Avouac (1993) or Avouac and 
Peltzer (1993). 
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Figure 4.32. Double terrace riser in the Tien 
Shan. The risers are very much degraded as they 
are high above the present river bed. More de­
tails on these particular risers are described by 
Avouac (1993) (photo by Avouac) 

Scarp Degradation. As a first example for the application of the short 
range diffusion model, let us discuss the morphological dating of fault scarps. 
Scarps form by earthquakes as a practically instantaneously created steps 
in the surface (Fig. 4.33). Their subsequent morphological decay may be 
described as a mass diffusion process and lends itself to a description with 
similar solutions as we discussed for the diffusion of heat around step-shaped 
temperature perturbations in sect. 3.6 (Fig. 3.30, eq. 3.84). As we did there, 
boundary conditions can often be assumed at infinity because scarps are 
often small compared to the extend of the slope they occur on. Using H 
for elevation, x for a spatial coordinate system normal to the fault scarp and 
with its origin in the center of the scarp (as shown in Fig. 4.31), the boundary 
conditions may be formulated as H = a at x = oo for t > 0 and H = — a at 
x = — oo for t > 0. These boundary conditions describe a scarp displacing a 
flat surface by the height 2a. For these conditions, eq. 4.64 may be integrated 
to give: 

scarp profile slope profile 

A 

scarp profile slope profile 

(0 A 

/a 

(b) A 

faulting event / 

gravitational phase 

' (d) 

diffusion phase 

Figure 4.33. Stages in the evolution of a fault scarp (after Avouac 1993). Note 
the similarity of the slope profile during the diffusion process from c to d to the 
cooling of intrusions shown in Fig. 3.32. Parameters labeled in c are those used in 
eq. 4.68 

H = a x erf (4.67) 
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which is completely analogous to eq. 3.84, except that we shifted the coor­
dinate system to the middle of the scarp. However, field observations show 
that many fault scarps are not vertical, in part because they did not form on 
vertical faults and in part because they sag gravitationally after a faulting 
event and assume a stable angle of repose (angle a on Fig. 4.33c) only some 
time thereafter. Fortunately, this "gravitational phase" is usually short com­
pared to the subsequent degradation and the decay of the landform may still 
be described with the diffusion equation. However, an analytical solution of 
eq. 4.64 for the initial geometry shown in Fig. 4.33 is unlike more complicated 
than eq. 4.67. It is: 

„ (c [Dt\ ( ( (x + c)2\ ( (x-c)2\\ 
H={aV-)x

 {^{—WTJ-^K—WT)) 

+ (£) x ((, + c)erf (£ + £) -(,-C)erf ( ^ Q ) + bx , (4.68) 

where c = a/(a — b), the half height of the scarp is a and b = tan(/?), as 
shown in Fig. 4.33c. 

Instead of fitting this equation to measured scarps, it is often possible date 
the decay of scarps by using a single value: the maximum scarp slope tan(#). 
That may be found by taking the derivative of eq. 4.68 with respect to x and 
evaluating this at x — 0. This gives much more simple expressions which have 
been used to date scarps by a variety of authors (e.g. Avouac 1993; Avouac 
and Peltzer 1993). The slope distribution shown in Fig. 4.31 and 4.33 shows 
that diffusive decay of scarps is characterized by a Gaussian distribution of 
slope. Diffusion of landforms may therefore also be described by Gaussian 
smoothing (Avouac 1993). 

Mass Diffusion with Fixed Boundary Conditions. While the degra­
dation of scarps may be described with boundary conditions fixed at infin­
ity, most geomorphological diffusion problems are characterized by spatially 
fixed boundary conditions. For example, the rounding of hill slopes is usually 
spatially confined to a hill between two drainages from where material is effi­
ciently transported out of the system. Similarly, the weathering and erosion 
of granitic boulders occurs between joints from where material is removed out 
of the system. Below we discuss two examples for which there are analytical 
solutions of eq. 4.64. 

• Spheroidal weathering. Mechanically isotropic rocks (for example granite) 
often weather in typical rounded shapes (Fig. 4.34). This spheroidal weath­
ering occurs because individual blocks are separated relatively quickly by 
jointing, but the rounding off by erosion takes a much longer time scale. The 
weathering process is most effective on surfaces that have a high spatial cur­
vature: it is a diffusion process and may be described with eq. 4.64. In order 
to formulate appropriate boundary conditions for the integration of eq. 4.64 
it is useful to choose a coordinate system with an origin at the center of the 
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Figure 4.34. Illustration of spheroidal weathering, a Schematic illustration. The 
top diagram shows the starting geometry, the middle diagram shows how jointing 
of the rock surface occurs rapidly due to climatic influence and occurs rapidly in 
comparison with the subsequent erosion. The bottom diagram shows the typically 
rounded shapes that form during the subsequent weathering and the coordinate 
system is shown that is used for the formulation of eq. 4.69. b shows an example from 
the Devils Marbles, Central Australia. The coordinate systems on the photograph 
are drawn for Problem 4.14 

block (Fig. 4.34). If the diameter of the block is 21, then the joints on either 
sides of the block lie at x = I and x = —I. Initial and boundary conditions 
may be formulated as: 

— Initial condition: H = Htop in the region — I < x < I at time t = 0. 
— Boundary conditions: H = 0 at x = I and x = — I at t > 0. 

Htop is the height of the block as shown in Fig. 4.34a. A solution of eq. 4.64 
subject to these boundary conditions requires the use of Fourier series (for 
reasons explained on p. 413 and p. 120) and therefore contains infinite sum­
mations and trigonometric functions. It is: 

H = ^ E 2^TT«P (-*>(2» + l)2^/4/2) 
n=Q 

f(2n + l)TTx\ 
xcos n ^ ^ J • (4-69) 

The shape of weathering profiles as a function of time calculated with this 
equation are shown in Fig. 4.35. The mismatch between the curves shown in 
this figure and the photograph in Fig. 4.34b is predominantly because eq. 4.69 
is one-dimensionally, while the boulders in the photograph also round off in 
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the plane normal to the photograph, plus from below. Fortunately, a two-
dimensional equivalent to eq. 4.69 is easily formulated as the product of two 
solutions in orthogonal directions, as we discussed on p. 119. 

Figure 4.35. The shape of an initially rect­
angular ridge that erodes by mass diffusion 
processes after 1 000, 10 000 and 30 000 years. 
Streams transporting eroded material out of the £ 
system must be imagined in the bottom left and 3; 
right corners to run normal to this page. Calcu­
lated with eq. 4.69 using / = 1 km, Htop = 1 km 
and D = 10"6 m 2 s _ 1 

- / 0 / 

• Hill slope profiles. Eq. 4.69 and its graph on Fig. 4.35 may not only be 
used to date spheroidally weathered granite boulders. It can also be used 
to model the shape of ridge profiles between parallel drainages (Fig. 4.36). 
However, when modeling hill slopes between drainages we need to be careful, 
as the boundary conditions we have formulated in the last paragraph describe 
stationary (non-incising) river beds. Thus, the model applies only to rivers 
where the material transport in the stream equals the amount of material fed 
into them by the ridge. If the streams incise into the landscape simultaneously 
with the diffusion on the hill slope, we must formulate the problem with 
variable boundary conditions. 

Figure 4.36. Example of hill 
slope formation due to mass dif­
fusion with incising boundaries. 
Western Mac Donnell Range, 
Central Australia. The length of 
the visible part of the princi­
ple ridge is about 500 m. Dif­
ferent stages of hill slope devel­
opment may be seen. Near the 
principle drainage divide, (where 
head waters in the gullies have in­
cised last), profiles are similar to 
the youngest profile of Fig. 4.37 
(profile a), while hill slopes have 
adapted a steady state by b which 
is maintained in c before the slope 
disintegrated into smaller land-
forms 
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Mass Diffusion with Variable Boundary Conditions. If the incision 
rate of drainages is comparable to the rate of diffusion, then the incision 
itself is part of the hill slope shaping process and the boundary conditions 
of the previous sections may not be used. The description of simultaneous 
diffusion and incision at the model boundaries depends on the reference frame 
used. Two possibilities offer themselves. 

• Eulerian description. For an observer fixed to an external reference frame, 
the incision of drainages may be formulated as follows: 

— Initial condition: H = 0 in the region — I < x < I at time t = 0. 
— Boundary conditions: H = vt\t for x = I and x = — I at time t > 0. 

In this formulation we used H — 0 at the surface before the onset of erosion 
as the origin of a vertical axis going positively downwards and a horizontal 
coordinate system with the origin half way between two parallel streams that 
are a distance 21 apart, va is the vertical incision rate of the rivers. The 
elevation H increases linearly at the model boundaries with time. Note that 
we changed the direction of the vertical axis from the last section, for clearer 
illustration. Solving eq. 4.64 subject to these temporally varying boundary 
conditions is difficult and will not discuss here. However, an example of a 
result from a corresponding solution is shown in Fig. 4.37a. 

• Lagrangian description. From the observation point in the river bed it 
appears as if the landscape uplifts between the river beds (Fig. 4.37b). We 
can describe this using the uplift rate vro for which it is true that: vTO = —VR. 
The uplift is a kind of "material production" between the model boundaries 
and we can not use eq. 4.64 for a description in a Lagrangian reference frame. 
The equation we need to solve includes a term describing the rock uplift. It 
is: 

which is equivalent to the heat conduction equation with a heat production 
term (see eq. 3.23, also see eq. 4.65). The initial and boundary conditions 
that apply for the solution of this equation are: 

— Initial condition: H = 0 in the region — I < x < I at the time t = 0. 

— Boundary condition: H — 0 at x = I and x = — I at all times t > 0. 

For these boundary conditions a solution of eq. 4.70 is given by Crank (1975): 

;i2-x2\ 16/V, 
H = Vy, 

E 

2D J Dir3 

- 1 " _ / r v o . , ^2„2+/,u2x f(2n + l)wx" 

n (2n + l ) 3 

71=0 

exp (-D(2n + 1)2TTH/412) COS ( ^ ^ 7 ^ ) -(4-71) 
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Figure 4.37. Landscape evolution of a ridge subject to mass diffusion processes be­
tween vertically incising drainages, a Within in a Eulerian reference frame (spatially 
fixed) and b in a Lagrangian reference frame (fixed to the incising drainages). The 
shape of the ridge is shown after 1 000, 10 000 and 30 000 years and was calculated 
using eq. 4.71, 1 = 1 km, vro =0.05 m per year and D = 1 0 - 6 m 2 s _ 1 

A model example of a hill slope profile calculated with this solution is shown 
in Fig. 4.37b. Note that the landscape profiles in Fig. 4.37a and b have the 
same shape at the same times. They differ only in the reference frame and 
thus the profiles occur at different absolute elevations. 

On Fig. 4.37b we can see that the landscape evolution described here 
approaches a steady state shape after about 20 000 years. This is what is 
called an erosional steady state (Ahnert 1984). In the steady state, the shape 
of the hill slope profile does not change anymore. This steady state is reached 
when the curvature of the landscape profile is exactly large enough, so that 
the diffusive mass transport balances the mass production described by the 
rock uplift ^ro (s. p. 66 to estimate when such steady states are reached). 
The attainment and preservation of an erosional steady state can be observed 
on Fig. 4.36. We have discussed an equivalent steady state in the theory of 
heat conduction when discussing the steady state temperatures in subduction 
zones (p. 107). 

Time Scales of Mass Diffusion. For the construction of the curves in 
Fig. 4.35 or 4.37 we have assumed that D = 10~6 m2 s _ 1 . We have assumed 
this value in order to retain some analogy to chapter 3 where we have dis­
cussed that the thermal diffusivity is K « 10~6 m2 s _ 1 and rarely varies by 
more than a factor of two from this value. However, the diffusivity of mass 
in erosion processes is much more variable. It depends on climate, mate­
rial and many other parameters. Mass diffusivities have been reported to 
range between D = 1 x 10 _ 1 0 m 2 s _ 1 or D = 1.7 x 10 _ 1 0 m 2 s _ 1 for largely 
unconsolidated materials in different regions in China and the Tien Shan 
(Tapponier et al. 1990; Avouac and Peltzer 1993), to D = 5.3 x 10 _ 1 2 m 2 s- 1 

and D = 1.8 x 10 _ 1 1 m 2 s _ 1 as estimates for the in-strike and cross-strike 
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diffusivities for vertically bedded sandstone at Ayers Rock, Australia (Stiiwe 
1994). Mass diffusivities may vary by many orders of magnitude and unless 
we have measured D in our region of interest, we can usually not know if a 
given landform formed over a long time with a small diffusivity or a short 
time with a high diffusivity. 

However, we can see that in eqs. 4.69 and 4.71, time and diffusivity occur 
always as a linear product and profiles are therefore identical if the product 
of time and diffusivity is a constant. Thus, it is often useful to define a 
"degradation coefficient", ta, as the product of time and diffusivity: 

ta = Dt . (4.72) 

Degradation coefficients are also known by the name "diffusion age", although 
we can see from eq. 4.72 that it has the units of m2. Note however, that degra­
dation coefficients are only defined by the simply linear product of eq. 4.72 if 
the diffusivity is constant in time. If the diffusivity changes with time (as of­
ten is the case if climate or the state of consolidation change during erosion), 
then the degradation coefficient is defined by a more complicated function 
discussed and explained in detail by Avouac (1993). 

• Diffusive time versus length scale. The degradation coefficient corresponds 
to the product teq x K in eq. 3.17 and can therefore be used to convert between 
time and length scale in diffusion processes (s. also eq. 7.4). The diffusive 
time scale argument used on p. 62 can directly be applied to estimate the 
rough time scale of erosion processes and is therefore a useful tool for the 
field geologist. As the analogy between energy and mass diffusion is straight 
forward, the discussion from p. 62 is not repeated here. 

4.5.3 Long Range Transport: Drainages 

Fluvial erosion is one of the most important landscaping processes and the 
transport of material by rivers is an efficient mechanism for redistribution 
of mass on a large scale. Fluvial erosion is therefore often called long-range 
transport. In the field, this is documented by the enormous incision rates of 
some rivers and their extensive sedimentary fans elsewhere; for example the 
Indus or the Tsangpo in the Himalayas. In fluvial erosion processes it is often 
useful to discern between: 

— supply limited erosion, 
— transport limited erosion. 

In supply-limited processes the transport of material out of the system is 
much more efficient than the sediment production rate, while transport lim­
ited processes are limited by the fluvial transport of rapidly supplied sediment 
(e.g. Tucker and Slingerland 1994). In the following we discuss some methods 
of characterizing fluvial erosion. 
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Figure 4.38. Schematic sketch of two different spatial relationships between 
drainage divide (continuous line), axis of the highest topography (dashed line) 
and direction of drainages (arrows). In the eastern European Alps the principle 
drainage divide corresponds to the region of the highest topography and the prin­
ciple drainages are parallel to this axis. In the Himalayas, the principle drainage 
divide is some hundreds of kilometers north of the line of the highest topography 
and the drainages are perpendicular to this axis 

Networks. The geometry of drainages - both with respect to a longitudi­
nal profile along the drainage, as well as in plan view - usually have spatial 
patterns that are characteristic of tectonic and erosion processes (s. Summer-
field 1991, Burbank and Anderson 2001), (Fig. 4.38). It is therefore useful to 
discuss some model tools that can be used to describe the spatial pattern of 
drainages. In plan view, the spatial characteristics of drainage networks may 
be described by their: 

- topological properties, 
- geometrical properties. 

Both properties are often largely independent of scale. They are self-similar 
and lend themselves to a description as fractal shapes (s. sect. 4.5.6). 

• Network rules. The topological properties of drainage networks may be 
characterized by allocating each stream section an order. There are different 
rules, how this may be done. According to Horton (1945), Strahler (1964) 
and Schumm (1956) the first stream after the spring has the order 1. When 
two streams of different order merge, the subsequent stream has the order 
of the higher order stream at the confluence. If both streams have the same 
order, then the order of the subsequent stream is larger by one (Fig. 4.39a). 
According to the scheme of Shreve (1967) the order of a stream is the number 
of contributing springs (Fig. 4.39b). If one uses the scheme of Horton (1945), 
then the topology of most natural networks appear to follow simple exponen­
tial laws. For example, the law of stream number states that the number of 
streams of order i may be described by: 

Ni - one1 b\i (4.73) 

There, Ni is the number of streams of the order i and a,\ and b\ are constants. 
Similar laws apply to the length of streams of different order li and the size 
of the catchment of each stream A;: 
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Figure 4.39. Stream order according to two different schemes: a according to 
Horton (1945) and Strahler (1964); b according to Shreve (1967) 

k = a2e
b2i and At = a 3 e M . (4.74) 

There, a2, a^, b$ and b$ are constants. These network laws can be used to 
characterize the topology of an entire network with only a small portion of 
the network. However, Kirchner (1993) showed that practically all networks 
follow these laws and that it is therefore difficult to discern between artificial, 
random and natural networks using these rules (s. also Tarboton 1996). 

Models Describing Fluvial Erosion. In order to describe landscaping by 
rivers, a series of elegant models have been designed in the last few years 
(Ahnert 1976; Kooi and Beaumont 1994; Beaumont et al. 1992; Willgoose 
et al. 1991; Chase 1992; Tucker and Slingerland 1994, 1996). In many of 
these models two different types of fluvial channels are distinguished which 
are thought to form due to different physical processes: 

— bedrock channels, 
— alluvial channels 

• Bedrock channels. For the description of the erosion of bedrock channels, it 
may be assumed that the rate of incision due to bedrock erosion is a function 
of discharge and channel gradient: 

OH afdHY . . 

There, t is time, H is the elevation of the channel, veT is the erosion rate, I is 
the horizontal distance along the channel and the discharge qT has the units 
of discharge volume per drainage width and time (m s _ 1) . The negative sign 
arises because the elevation gets smaller for larger discharge and slope, a and 
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Figure 4.40. Three different time steps of a landscape evolution model. The shown 
drainages incise exclusively according to the erosion law formulated in eq. 4.75 into 
a flat topography disturbed only by numerical noise. Despite this simple model 
assumption, interesting patterns develop. In particular note that the river develop­
ing in the central diagonal of the shown section disappears between b and c. The 
pattern shown in c approaches a steady state and further time steps do not show 
significant differences (after Hergarten 2002) 

j3 are exponents defining the non-linearity and are not to be confused with the 
"proportional to" sign oc. This model is based on an empirical relationship 
between slope and drainage area found by Hack (1957). If it is assumed that qT 

correlates with the size of the drainage basin above a given point, eq. 4.75 can 
be numerically solved for erosion rate at any given point of a digital elevation 
model to produce an elegant description of evolving landscapes (Fig. 4.40) 
(Beaumont et al. 1992; Hergarten 2002). 

However, in many natural channels, the general law of eq. 4.75 can be 
simplified enough so that an analytical solution can be found that can then 
be compared with measured longitudinal river profiles (Fig. 4.42). For this, 
we assume that the erosion rate is directly proportional to the discharge (i.e. 
a = 1) and that the discharge is directly proportional to the area A of 
the drainage basin (which is a fair assumption, unless there are hydrological 
peculiarities like strong precipitation gradients or karst features like sinks). 
Then: 

The proportionality in eq. 4.76 could be replaced by an equality if a propor­
tionality constant is added to the right hand side. However, in the following 
steps, several other proportionality constants must be inserted, so that we 
rather stick with eq. 4.76 and retain the "oc" sign. The area A is usually 
related to the channel length / by: 

locAh . (4.77) 

The exponent would be ft, = 0.5 if the basin area rose quadratically with river 
length. However, most basins are somewhat elongated and for many rivers 
this exponent appears to be around h = 0.56. The exact exponent can be 
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Figure 4.41. Example of an inte­
grated landscape evolution model 
for the India- Asia collision zone 
where a simple erosion model 
according to eq. 4.75 (causing 
thinning of the crust) was cou­
pled with force balanced finite 
deformation producing topogra­
phy (and thickening of the crust). 
See also Fig. 1.6 which was per­
formed with similar boundary 
conditions, but no erosion. Shad­
ing is surface elevation. Drainages 
are exclusively dynamically de­
veloped, white parts of drainages 
are where they sediment 

derived from an area 
eq. 4.76 becomes: 

distance plot as shown on Fig. 4.42. Using eq. 4.77, 

at \di J 
(4.78) 

In an equilibrium channel, where the erosion rate is the same at every point, 
the erosion rate dH/dt is a constant and eq. 4.78 may be written as: 

dff 
dl 

ji-i/Ph) 
or : &H oc l^-W^dl 

Integration (according to the rules given in appendix B.5.2) gives: 

F o e 
_ j l - l / ( a h ) 

- V(/3ft) 
+ C 

(4.79) 

(4.80) 

The integration constant C determines the absolute elevation of the profile. 
The proportionality constant that must be inserted to make eq. 4.80 into a 
proper equation summarizes a series of erodibility terms that determine how 
rapid H falls with /. However, the shape of curves plotted with eq. 4.80 is 
independent of the constant. Eq. 4.80 provides a good description of eroding 
rivers in equilibrium and is a useful model that can be used to determine knick 
points by comparing equilibrium channels with channel profiles measured 
from digital elevation models (Fig. 4.42). 

• Alluvial channels. Alluvial channels are those where the sediment transport 
of the channel is important to its erosion / deposition characteristics. For the 
description of those, it is often useful to consider the erosion/sedimentation 
processes in terms of the sediment carrying capacity of the stream 
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Figure 4.42. Longitudinal profile along the Indus River (between the mountain 
K2 in the Karakorum and the Indian ocean), in comparison with the analytical 
description of eq. 4.80. The deviation in the Himalayan syntaxis is clearly due to 
recent uplift causing the channel to be out of equilibrium. The deviation in the 
lower course is because there is no erosion but sedimentation in this part of the 
river. It can therefore not be described with the model discussed here. The right 
hand diagram is a simplified area - distance plot for the Indus River basin 

«/(eq) -**• l'f (4.81) 

where <7/(eq) is the equilibrium carrying capacity of a river (i.e. that a graded 
river bed carries), iff is a constant of proportionality and m and n are expo­
nents defining the non-linearities (Beaumont et al. 1992; Begin et al. 1981; 
Willgoose et al. 1991). The other parameters are as above. Most modern 
models assume simply that m = n = 1 (see Kooi and Beaumont 1994; Beau­
mont et al. 1992). Erosion / sedimentation processes may then be modeled 
by comparing the equilibrium carrying capacity of the river <//(eq) given by 
eq. 4.81 with the actual sediment freight carried by a drainage c/f. Whether 
the river erodes- or sediments onto its bed, then depends on whether the 
sediment flow qt is larger or smaller than the sediment equilibrium carrying 
capacity. The actual sediment freight qt can be calculated using the following 
two assumptions: 

— 1. The rate of change of the sediment content of a river is proportional to 
the magnitude of the disequilibrium dqf/dt oc (g/(eq) — Qf)- If ?f < <7/(eq)> 
then the amount of sediment in the river increases and the river will erode 
its bed. If qf > qf(eq), then there is more sediment in the stream than it 
can hold and there is sedimentation in the river bed. 

— 2. The change of the sediment content dqf/dt is inversely proportional to a 
length scale of reaction, If, which may be interpreted as the distance that 
water needs to flow along a river bed in order to do work on the river bed. 
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If the reaction length scale is large, then the change of sediment freight of 
the river occurs slowly and over larger length scales and vice versa. 

Using these two assumptions qt may be evaluated by numerical integration 
along the river bed. The rate of vertical lowering (by erosion) or rising (by 
sedimentation) of the river bed may be then described by: 

dH dof 1 / \ / . ^ 

Figs. 4.43b, c and d show schematic illustrations of the temporal evolution 
of drainages as calculated with eq. 4.82. All drainages may be divided into 
two sections: a lower part where the slope of the river decreases and an upper 
part where the slope of the river increases. In the lower section of the rivers a 
graded river bed develops. The section of the river bed which is graded grows 
with the evolution of the drainage upwards. The length of the section of the 
grade river bed and the rate with which it grows drainage upwards, depends 
on the reaction length scale. 

• Graded river beds. If we plot the surface elevation of a river bed against 
distance from the spring (a cross section along the river) many drainages 
have a shape that reminds of an exponential function: The drainage bed 
is steep at first and then gets shallower with increasing distance from the 
spring. This natural development often leads to the development of graded 
river beds (Mackin 1948). In a graded river, the slope of the drainage and 
the flow of water are in equilibrium so that neither erosion nor sedimentation 
takes place. The flow rate is exactly large enough to transport the sediment 
from the drainage basin above. Because of this, a graded river can maintain 
its shape and is in geomorphic equilibrium. 

• Integrated landscape models. Eq. 4.82 describes many field observations 
made about the geometry of river profiles very well and has therefore been 
used by a range of authors to describe the temporal evolution of drainages 
and drainage networks. However, it fails to describe processes at the drainage 
divide for which different models must be invoked. Within the model of 
eq. 4.82 the parameters qr and therefore q^ and q? are zero at the water­
shed and drainage divides will therefore remain preserved as steep ridges. 
The steepness of the ridge is proportional to the reaction length scale. How­
ever, the decay of the drainage divide itself may be well-described by diffusive 
mass transport discussed in the previous sections. Beaumont et al. (1992), 
Tucker and Slingerland (1994) and others have integrated combinations of 
diffusive short range transport and long range transport to describe two-
dimensional landscape evolutions. This model was transferred onto irregular 
grids by Braun and Sambridge (1997) which is today probably one of the 
most elegant model for the integrated description of landscape evolutions. 
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Figure 4.43. Erosion of a model landscape, a Relief formation by diffusion. If 
the starting profile is asymmetric, then diffusion will lead to a lateral shift of the 
drainage divide, b, c and d Relief formation by fluvial erosion (eq. 4.82). The model 
rives flow on both sides of the drainage divide along the surface of the gray shaded 
region outwards. The water shed (drainage divide) itself is not affected by this. The 
three examples differ in the magnitude of the reaction length scale k• In b , If is 
much smaller than the length of the river, in c it is comparable and in d If is much 
longer than the length of the river 

4.5.4 Discontinuous Landscape Formation 

Not all geomorphic processes may be described using continuous models like 
those discussed in the previous sections. For example, the occurrence of land­
slides is a classic discontinuous process that requires its own class of model 
description. How continuous geological processes may cause discontinuous 
processes will be discussed in some detail in sections 6.3.6 and 6.3.6. We 
will show there that discontinuous processes may be triggered by threshold 
mechanisms, or be the direct cause of non-linear feedback between different 
processes. The particular example of landslide occurrence is a beautiful ex­
ample illustrating the meaning of self-organized criticality (Hergarten 2002). 

Consider an incising valley. As a river incises into the landscape, the slopes 
will steepen until they reach a critical angle where a steady state geomorphic 
profile is reached (s. p. 192, Fig. 4.37b). However, in many real landforms, this 
steady state will not be maintained by continuous incremental transport of 
material into the drainage, but by discontinuous landslides that cause a tem­
poral fluctuation of slope around the steady state angle. The size-frequency 
distribution of such land slides is fractal and the state of the slope is said to 
be in a state of self-organized criticality (Turcotte 1997). 

4.5.5 The Shape of Volcanoes 

Many strato-volcanoes have an intriguingly similar shape and surface eleva­
tion suggesting that they formed by similar processes (Turcotte 1997). For 
example, Etna in Sicily, Mt. Fuji in Japan as well as many volcanoes in In­
donesia and in Alaska are all about 3 500 m high and have conical profiles 
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Figure 4.44. Two models for the formation of strato volcanoes, a This model 
assumes that volcanoes get their shape from the interaction of mass production at a 
single point at the center of the volcano and mass diffusion distributing the material 
(s. also Fig. 3.9). b This model assumes that volcanoes describe surfaces of constant 
hydrostatic pressure. Magma does not necessarily extrudes at the tip of the volcano, 
but follows the way of least resistance giving the mountain its shape without erosive 
influence. While both models lead to similar shapes, detailed comparison between 
measured shapes of volcanoes with the two models may help to provide constraints 
on future eruption sites 

with concave flanks. Two very simple (but very different) models may be 
used to explain this shape. One relies on the principals of mass production 
and diffusion as we have discussed in several parts of this book; the other is 
a hydrostatic model. 

• Diffusion model. The diffusion model is based on the assumption that 
magma erupts always from the same point on the surface and that the erupted 
material is distributed from there by mass diffusion (Fig. 4.44a). This model 
may be described with the equations we have used in sections 3.1 and 3.2 
for the simultaneous production and diffusion of heat. If we assume that the 
erupted magma is distributed concentrically around the eruption point, then 
we can describe this problem in cylindrical coordinates using the eruption 
point as the origin and using an equivalent of eq. 3.23 in cylindrical coor­
dinates (s. p. 59). Initial and boundary conditions for the problem may be 
formulated as: 

— Initial condition: H = 0 for all r at t = 0 as well as vro = magma production 
rate at r = 0 and vm=0 at r > 0. 

— Boundary condition: dH/dr = 0 at r = 0 and H = 0 at r —¥ oo for t > 0. 

vTO is the rate of magma production at the coordinate origin and replaces the 
heat production rate in eq. 3.23. These conditions are equivalent to those we 
have used on p. 71 for the description of the influence of frictional heating 
around shear zones. The only difference lies in that we have used Cartesian 
coordinates there (as shear zones are generally planar) and will require cylin­
drical coordinates for the description of volcanoes. However, the curves in 
Fig. 3.9 give a qualitative indication of the shape obtained with this model. 

• Hydrostatic head model. The second model that has been used to describe 
the shape of volcanoes relies on the assumption that the surface of a volcano 

production 

diffusion 

hydrostatic 
model 
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Figure 4.45. The first four stages of Koch's snow flake, a typical example for the 
development of a fractal geometry. The final form at d has a fractal geometry as it 
is self similar. The sections inside the box in b and c or in c and d are identical 

corresponds to a surface of constant hydrostatic head over a point source 
where the magma erupts (Fig. 4.44b). Thus, it is assumed that magma will 
always erupt to the surface where it finds the least resistance, even if this 
is not the crater vertically above the point source. This second model is 
discussed in detail by Turcotte and Schubert (1982). 

Both models discussed above lead to cone shapes with concave surfaces, 
just like we observe volcanoes to look like. However, there is sufficient dif­
ference in the details of the two models, so that it may be possible to use 
the observed shape of a volcano in comparison with both model to predict 
what processes govern the magma distribution in the chosen example. It may 
be possible to use the models described here to make predictions about the 
likely points of future eruptions. 

4.5.6 Fractals 

Many morphological forms on the earth's surface have a fractal shape, for 
example coast lines (Mandelbrot 1975) or the shape of the earth's surface 
itself (Chase 1992). Fractals are usually brought in connection with non-linear 
feed back and chaotic processes because many geometric representations of 
non-linear phenomena do indeed render fractal shapes (e.g. Turcotte 1997; 
s. sect. 6.3.6). However, fractals themselves have nothing to do with chaos or 
feedback. Rather, they are simply defined as a geometric object that has the 
following properties (Fig. 4.45): 

- The shape of the object must be able to be characterized without having 
to give a scale. This property is called self similarity or scale independence. 

- It must be possible to characterize the object with a fractal dimension. 

• Fractal dimension. The fractal dimension of an object is defined as follows: 

log(m) 
D 

log(n) 
(4.83) 

There, m is the number of objects and n is a characteristic linear dimension. 
This may be illustrated with the fractal dimension of a simple geometric 
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Figure 4.46. Fractal drainage 
patterns in the Chinese Loess 
Plateau. Similar fractal patterns 
can be found in the shape of the 
Grand Canon and countless 
other examples around the 
world. However, the Chinese 
Loess Plateau is probably the 
largest and most spectacular 
example in the world (because of 
the isotropy and high erodability 
of the material). This example 
was also chosen by Turcotte 
(1997) as a title image for his 
textbook on fractals 

object (called a geometrical fractal). Consider a square that is subdivided 
into four sub-squares. If the edge of the square is subdivided into n pieces, 
then the total number of small squares is m = n2. If one magnifies the length 
of the edge of each sub-square by the factor n we return to the original 
square. Using eq. 4.83 we arrive at D = log(m)/log(n) = 2. For a square 
(having obviously two dimensions) this is quite trivial. However, for the snow 
flake of Koch things are not so clear (Fig. 4.45). Each edge of a triangle with 
length a corresponds to four edge sections each of which has a length of a/3 
in each subsequent figure in Fig. 4.45. We can write: D = log(4)/log(3) = 
log(16)/log(9) » 1-262. 

In natural landscapes there are two important fractal dimensions that may 
be defined and used to characterize the landscape: 

— the fractal dimension of the drainage network, 
— the fractal dimension of the topography itself. 

Both can be obtained statistically from natural landscapes and they are there­
fore called "statistical fractal" (in contrast to the geometrical fractal dimen­
sion of Koch's snow flake). The fractal dimension of drainage networks is 
defined as the ratio of the logarithms of bifurcation ratio and length-order 
ratio: 

log(i4) 
D 

l0g(.Rr) 
(4.84) 

where R{, is the ratio of the number of streams of a given order, to the number 
of streams of the next higher order and Rr is defined as a length ratio in a 
corresponding way. Typical drainage networks (like that shown in Fig. 4.46) 
have fractal dimensions that are somewhat less than space filling with D RJ 
1.8. The fractal dimension of coast lines is similar to that of drainage networks 
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Figure 4.47. a The coast of Britain in three different resolutions (labeled in km). 
The figure was constructed using the generic mapping tool GMT. The length of the 
coast line segments are determined by the resolution of the digital elevation models 
used and are therefore not exactly of the same length. Nevertheless, the figure 
illustrates the relationship between segment length and coast line length used to 
determine the fractal dimension in b (after Mandelbrot 1967) 
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Figure 4.48. a Schematic cartoon of an idealized landscape made up of horsts and 
grabens which were subsequently eroded and sedimented upon by mass diffusion 
processes. Curve to describes the landscape at the end of the tectonically induced 
horst and graben formation. The other two curves show the landscape at two sub­
sequent times ti and £2 b shows the fractal dimension of the landscape at times 
to, ti and J2 in a plot of relief against length scale /. There, relief is the elevation 
difference between two points separated by a distance / (after Braun and Sambridge 
1997) 

inasmuch as it is smaller than 2. The fractal dimension of coast lines may be 
measured by taking m as the length of a measured coast line and n as the 
length of the measuring rod (Figs. 4.47). For the classic example of the west 
coast of Britain it is D = 1.25 (Mandelbrot 1967). 

Corresponding to the measurement of the fractal dimension of coast lines, 
the fractal dimension of entire landscapes may be defined as the ratio of the 
logarithm of the relief and the logarithm of length scale. Natural landscapes 
have a fractal dimension around D m 2.1-2.7 (Mandelbrot 1982). 
Using Fractal Dimension. Consider a landscape that was created by tec­
tonic processes, for example the idealized horst and graben structure shown 
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for time step to m Fig- 4.48a. If the tectonic processes created a more or less 
random topography, then such a landscape may be characterized by a sin­
gle fractal dimension as shown by the straight line for time to m Fig- 4.48b. 
Subsequent erosion and sedimentation processes will destroy landforms at 
a rate that is proportional to their length scale. Small landforms will be 
quickly destroyed by mass diffusion processes, while intermediate landforms 
are only rounded and the largest landforms will preserve their original shape 
the longest. The length scale of the landform that separates smaller landforms 
(that are now characterized by "erosive shapes") from larger landforms (that 
still retain the shape created by the initial tectonic event) may be used to 
derive a characteristic diffusive length scale of the landscape. At time t\ this 
is roughly the length scale of the landform e for the example in Fig. 4.48a. 
At time £2 erosion has proceeded further and only the valley located to the 
right of landform / i s large enough so that its original shape is still dominant. 
The landscape becomes multi fractal as indicated by the curves for t\ and £2 
in Fig. 4.48b. As we have discussed on p. 193, the diffusive length scale may 
now be converted into a time scale and therefore can be used to date the time 
of the last landscape forming tectonic event. Such qualitative considerations 
can be considerably improved by using statistic evaluation of length scales 
over an entire landscape (Chase 1992). Braun and Sambridge (1997) used 
this approach to date the age of the eastern Australian highlands. 

4.6 Problems 

Problem 4.1. Vertical reference frames (p. 143): 
The summit of Chimborazzo in Equador is 6180 m above sea level. The sum­
mit of Mt Everest is 8 848 m above sea level. Use eq. 4.8 to calculate the 
elevation difference between the two summits measured from the center of 
earth rather than from sea level. Chimborazzo lies practically at the equator, 
Mt Everest at roughly A = 28°N. 

Problem 4.2. Uplift versus exhumation (p. 150): 
a) How much was a rock uplifted relative to a fixed external reference level if 
it was exhumed from 10 km depth to 5 km depth by erosion and the eroding 
mountain range decreases in this time from 8 000 m to 3 000 m elevation, b) 
What is the amount of exhumation a rock experienced if the surface uplift 
was 5 km and the rock was uplifted 4 km relative to a fixed reference level. 

Problem 4.3. Vertical kinematics (p. 159): 
Use eq. 4.15, eq. 4.17 and eq. 4.18 to calculate the uplift and the exhumation 
history of a simple model mountain range that may be described with these 
equations. Assume that the range is in geomorphic steady state, so that its 
surface elevation remains constant because ver = vI0. a) What is the magni­
tude of the erosion parameter £E of this range? Use the following constants: 
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a = 2 500 m and b = 0.13 and e = 10 - 1 5 s - 1 . b) What was the depth of 
rocks that reach the surface after 40 my at the start of their evolution? Use 
eq. 4.19. c) How long is the hiatus between the onset of surface uplift and 
the onset of exhumation of these rocks? Use eq. 4.19. 

Problem 4.4. The principle of isostasy (p. 163): 
We are familiar with the fact that 90% of icebergs are under water and 10% 
above the surface. Use Fig. 4.16 and eq. 4.23 to determine the density of ice 
from this observation. The density of water is pw = 1 000 kg m - 3 . 

Problem 4.5. Relationship between relief and uplift (p. 163): 
Parallel rivers incise an isostatically compensated plateau with a vertical in­
cision rate of: v = 5 mm y - 1 (Fig. 4.49). The slopes on both sides of the rivers 
are 45° steep. All rivers have a distance of / = 10 km from each other. Draw 
the surface elevation of the ridges and the river beds as a function of time 
assuming the plateau remains isostatically compensated during the incision 
process. Assume the following numerical values for the necessary physical 
parameters: pm = 3 200 k g m - 3 and pc = 2 700 k g m - 3 . (An interesting dis­
cussion of this problem may be found by Montgomery 1994.) 

Figure 4.49. Illustration of —— 10 km —— 
Problem 4.5 

o 

Problem 4.6. Controls on surface elevation (p. 163): 
Calculate the surface elevation changes of an isostatically compensated moun­
tain belt that occur in response to the following processes: a) Continental 
crust of thickness zc =30 km (pc = 2 700 kgm - 3 ) is being underplated by 
a 10 km thick basaltic layer of density pu = 2 900 k g m - 3 . The density of 
the underlying mantle is pm = 3 200 k g m - 3 . b) Continental crust is being 
thinned to half its thickness (/c = 0.5) and underplated by a 5 km thick layer 
of basaltic underplate of density pu = 2 950 k g m - 3 . c) What is the difference 
in surface elevation between a) and b)? 

Problem 4.7. Age depth relationship of oceanic lithosphere (p. 167): 
a) Is the rifting rate at the Mid-Atlantic Ridge 1.5 c m y - 1 , 2.5 c m y - 1 or 
3.5 cmy - 1 ? Calculate the answer assuming that the bathymetry of the 
Atlantic may be described with the model of eq. 4.45 (Fig. 4.20), and 
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use the following bathymetric data from the north Atlantic Ocean. The 
data are given in pairs for water depth/distance from the Mid-Atlantic 
Ridge: 300 m/50 km; 500 m/175 km; 800 m/250 km; 1300 m/500 km; 
1500 m/700 km; 1800 m/825 km; 2 300 m/1300 km; 2 600 m/1 575 km ; 
2 800 m/1 775 km; 2 900 m/1 950 km; 3 200 m/2 500 km; 3 200 m/3125 km; 
3 300 m/3 375 km; 3 200m/3625 km. pm = 3 200 kgm"3 ; pw = 1000 kgm"3 ; 
a = 3-10- 5 o C- 1 ;T i = 1200°C; K = 1 0 - 6 m 2 s " 1 . b ) From a certain distance 
from the ridge (age) onwards, these data do not correspond very well with 
the model, even for the correct answer of a). What is this distance (age) and 
why does the model not work for older oceanic lithosphere? 

Problem 4.8. Understanding the flexure equation (p. 173): 
Perform a dimensional analysis of eq. 4.49 and eq. 4.48. a) What are the units 
of D, F and ql b) Typical continental lithosphere may be described with a 
Poisson's ratio around v = 0.25 and a Young's modulus of E = 1011 Pa. 
What is the flexural rigidity of a continent that may be described with an 
elastic thickness of h = 10km to h = 70 km? 

Problem 4.9. Understanding the flexure equation (p. 173): 
(a) Integrate the flexure equation (eq. 4.48) to describe the shape of a fishing 
rod of length L held horizontally at its end and bent downwards under its 
own weight. Use the geometry shown in Fig. 4.50. (Equivalent curves are 
described by a piece of paper hanging off the edge of a table, or a bridge 
under construction extending half over a valley). 
Some hints: 1.) Since there is no horizontal force applied to the rod, the last 
term of eq. 4.48 is zero. 2.) Since the load per unit length is everywhere the 
same, the load is independent of x. Eq. 4.48 simplifies to d4w/dx4=q/D. 3.) 
Since there is no torque or change in torque applied to the free-hanging end 
of the rod, it is true that d2w/dx2 = 0 at x = L as well as that: d3w/dx3 = 0 
at x = L. 4.) Since the rod is held out horizontally, it is also true that w = 0 
at x — 0 and that: dw/dx — 0 at x = 0. (b) Use your result to estimate the 
flexural rigidity of a piece of paper hanging L = 10 cm off the edge of a 
table with the lowest point of the paper tip hanging WX=L = 3 cm down. The 
weight of the paper corresponds to a load of q = 2 N m - 2 . 

Figure 4.50. Illustration of 
Problem 4.9 
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Problem 4.10. Internal and external loads (p. 174): 
a) Repeat the derivation of eq. 4.50 using the principles of eq. 4.21. In other 
words, derive eq. 4.50 by comparing the weights of the vertical columns in 
Fig. 4.24 at the points A and B. b) Derive an equation for the load on oceanic 
plates that corresponds to eq. 4.50. This case is illustrated in Fig. 4.24 on 
the very left. The variable c/a is a line load. That is, it has to be imagined to 
extend infinitely in the direction normal to this page. 

Problem 4.11. Understanding the flexural parameter a (p. 176): 
What are the units of the flexure parameter a in eq. 4.53? How large 
is a roughly for the continental lithosphere? Use D RJ 1023 Nm; pm — 
3 200 kgm" 3 and pw = 1000 kgm"3 . 

Problem 4.12. Plate flexure near Hawaii (p. 176): 
The water depth of the Pacific in the vicinity of the Hawaii- and Emperor 
Island chains is somewhat deeper than in the remainder of the abyssal planes 
of the Pacific. Also, there is a high point in the ocean floor, about 250 km 
off the coast of Hawaii. (Fig. 4.22). This water depth profile corresponds 
well with the shape of an elastically flexed plate loaded by the weight of the 
island chain with the high point in the ocean floor being the flexural bulge. 
What is the thickness of the elastic lithosphere in the Pacific? Use eq. 4.54, 
4.53, 4.49 and the following values for the physical parameters: E = 70 GPa, 
pm = 3 200 kgm"3 ; pw = 1000 kgm"3 ; g = 10 m s " 1 and v =0.25. For the 
most elegant solution of this problem we need not even know the details of 
the shape of the flexed plate or the maximum water depth at the point of 
maximum flexure. 

Problem 4.13. Fault scarp degradation (p. 187): 
Avouac and Peltzer (1993) report a fault scarp from China with the following 
profile: (27,1; 51,1.1; 68,1.2; 77,1.8; 90,1.8; 110,1.9; 111,2.0; 120,2.2; 122,2.45; 
125,2.6; 128,3.1; 130,4; 133,4.5; 135,5; 140,6.6; 143,7.5; 147,8.8; 150,10; 155,11; 
160,12; 170,12.8; 180,13.5; 190,13.5; 220,13.7). This list shows the scarp co­
ordinates {x\,H\; x-2,H-2 ...), where x horizontal distance from a fix point in 
the far field and H is the surface elevation above the base, both in meters. 
Assuming that the surface is flat in the far field and that the scarp was ini­
tially vertical, use eq. 4.67 to date the earth quake that formed it. Assume 
that the mass diffusivity is 5.5 m2 per 1000 years. 

Problem 4.14. Spheroidal weathering (p. 189): 
Measure the topographic profiles off the two boulders with the marked co­
ordinate systems on Fig. 4.34 and use eq. 4.69 to estimate whether the two 
boulders commenced weathering at the same time, or if the smaller one has 
been subjected to weathering longer. 



5. Mechanics: Force and Rheology 

In this chapter we discuss the forces involved in geodynamic processes. Know­
ing a bit about forces is a great tool for the field geologist to test field obser­
vations. Let us consider an example: A field geologist finds folds and thrusts 
in a Precambrian terrain that he or she interprets to have formed as the 
consequence of crustal shortening. Strain analysis shows that 80% shortening 
occurred and the geometry of shortening indicates that this resulted in four­
fold thickening of the crust. He therefore further infers (using the principle 
of isostasy) that - at the time - a mountain range of some 15 km elevation 
existed above the metamorphic terrain. This interpretation is consistent with 
the field observations, but it has no independent test. In this particular exam­
ple we could argue that we have no knowledge of any present day mountain 
range that is this high and that, therefore, this interpretation is unlikely. 
However, in many less obvious examples there are no direct analogies and 
the resulting model is - albeit perfectly imaginable and fully consistent with 
field observations - wrong. One way to provide an independent test of such 
models is to make a rough estimate of the forces involved. In the next chap­
ters we want to perform such estimates. In order to do so, it is necessary to 
commence with a brief repetition of the basics of stress and strain. For more 
details on the basics the interested reader is referred to a range of excellent 
text books on the subject. For example: 

- Pollard and Fletcher (2006) Fundamentals of Structural Geology 
- Twiss and Moores (1992) Structural geology. 
- Ramsay and Huber (1983) Modern Structural Geology. Volume 1: Strain 

Analysis 
- Ramsay and Huber (1987) Modern Structural Geology. Volume 2: Folds 

and Fractures 
- Ramsay and Lisle (2000) Modern Structural Geology. Volume 3: Applica­

tions of Continuum Mechanics in Structural Geology 
- Weijermars (1997) Principles of Rock Mechanics. 
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5.1 Stress - The Basics 

Many field geologists and metamorphic petrologists are only ever confronted 
with a single variable that has the units of force per area: pressure. Only 
with in situ stress measurements and some palaeopiezometric methods is 
it possible to resolve the stress state in more detail than this single value. 
However, as soon as we try to describe the forces that act on a structural 
feature in some more detail we will discover that the words "pressure" or 
"stress" are simply not precise enough to describe what we see. In fact, we 
will soon discover that the state of stress of a rock can only be described 
by nine numbers that form a tensor. Because many field geologists remain 
uncertain about the relationship between the pressure they measure and the 
complete stress tensor, we begin in sect. 5.1.1 with a very brief summary of 
the stress tensor and its most important derived quantities. Much of the logic 
discussed below also applies to the strain tensor discussed in sect. 4.1. 

5.1.1 The Stress Tensor 

There are many excellent descriptions of stress in an abundance of good text 
books (e.g. Means 1976; Suppe 1985; Engelder 1993; Pollard and Fletcher 
2006). Here we only summarize the definitions of a few terms related to 
stress (Engelder 1994). 

Force. Force is a vector and - like all vectors - is described by a magnitude 
and a direction. It has the units of mass x acceleration: 1 N = 1 kg m s - 2 . 
A related vector quantity is traction. Traction is a force (with magnitude 
and direction) per area, where the orientation of this area is not defined. 
Tractions may be subdivided into normal and parallel components called 
normal traction and shear traction. It is important to note that tractions 
are vectors, although they have the same units as stress. In contrast, stress 
is a tensorial quantity described by all the tractions acting on a unit cube 
(s. sect. B.3). We will now discuss the stress tensor in a bit more detail. 

The Stress Tensor. In three-dimensional space, the state of stress of a 
single point inside a rock (i.e. a unit cube) is given by nine numbers, all of 
which have the units of force per area. These nine numbers are all tractions 
acting on different planes and different directions that need to be defined 
by using subscripts. These nine numbers define the stress tensor which is 
typically written as: 

( o n <7i2 <7i3 \ / axx axy axz \ 
021 022 023 = &yx &yy &yz (5.1) 

031 032 033 / \ a™ °ZV azz J 

(s. sect. B.3). The two different notations of subscript used in eq. 5.1 are both 
common in the literature. The first of the two specifying spatial indices x, y 
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a b 
Figure 5.1. a The state of stress of a unit square within the two dimensions 
of this book page. In two dimensions, the stress tensor has only four independent 
components illustrated here by the four labeled arrows. In b the coordinate system 
x , y , z was chosen in such an orientation so that the shear stresses become zero. 
The normal stresses become therefore principal stresses. The state of stress of the 
square in a and b is identical 

and z (or 1, 2 and 3) indicates the direction in which the stress component 
acts. The second index indicates the normal to the plane on which this stress 
component acts. We can see that the three tensor components in the diagonal 
of this matrix have two identical indices. They are called normal stresses 
because the surface onto which the stresses act are normal to the direction 
in which they act, (i.e. the indices for "direction in which it acts" and "plane 
onto which it acts" are the same). In the following we abbreviate normal 
stresses with an. The remaining six components of stress in eq. 5.1 are shear 
stresses. In these, the stress components they describe act parallel to the 
plane onto which they are exerted. Shear stresses are abbreviated in this 
book with <7S 

The stress components in a given column of eq. 5.1 act on the same plane, 
but in different directions. The rows contain stress components oriented in 
the same direction, but acting on different planes. 

In the literature, shear stresses are often abbreviated with r and normal 
stresses with a. However, this notation is somewhat confusing as all com­
ponents of the tensor have the same units and should be abbreviated with 
the same symbol. We therefore stick to the notation of eq. 5.1 in particular 
to the use of x and y rather than 1 and 2 as subscripts and describe shear 
stresses with a^j or as and normal stresses with <ri=j or an. We reserve r as 
a symbol for deviatoric stress. 

The stress tensor is symmetrical, that is, each component above the diag­
onal has an equivalent component of equal magnitude below it: oyx = axy, 
o~zx = °~xz, <?yz = o~zy Thus, the stress tensor consists of only six indepen­
dent numbers: three normal stresses (written in the diagonal) and three shear 
stresses (the off diagonal terms). 

The state of stress described by eq. 5.1 can be expressed a bit more simply 
in a differently oriented coordinate system. Because of the symmetry of the 
stress tensor, it is always possible to assume a coordinate system with the 
coordinates x', y' and z', in which all shear stresses (all off diagonal terms 
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in eq. 5.1) become zero. The diagonal components in this new coordinate 
system are called principal stresses. Principal stresses are denoted with a 
single subscript as o\, a-2 and 173. In the earth sciences it is common to use 
the subscript "1" for the largest principal stress and "3" for the smallest. 
Thus, the state of stress at a point may always be characterized by only 
three principal stresses (Fig. 5.1): 

/ a'xx 0 0 \ / o-i 0 0 \ 
a1 = 0 o'yy 0 = 0 a-2 0 . (5.2) 

V 0 0 a'zz J \0 0 a3 J 

The order in which a\, <r2 and <73 appear in eq. 5.2 implies that the new 
coordinate system was chosen here so that the x'-axis is parallel to the largest 
of the three principal stresses. Of course this need not be the case. Also note 
that the numbers denoting the three principal stresses have nothing to do 
with the spatial subscripts we briefly used in eq. 5.1. They simply refer to 
the largest, the intermediate and the smallest of the three principal stresses. 

In the stress diagrams of this book the coordinates are generally drawn 
parallel to the principal stress directions so that we can write: a = &'. 
Fortunately, in the earth's crust the principal stresses are often oriented 
roughly parallel to the vertical and the horizontal directions, because the 
shear stresses at the earth's surface (e.g. by wind) and at the base of the 
lithosphere (e.g. by mantle convection) are both negligible. 

The stress tensor has a series of invariants that are independent of the 
choice of the coordinate system. For example the trace (the sum of the di­
agonal terms) or the determinant of the stress tensor is constant regardless 
how the coordinate system is oriented. There is three important invariant 
quantities. The first is given by the sum of the three normal stresses: 

h = ^ 1 1 + Gyy + &zz = &1 + &2 + &3 • (5.3) 

Note that pressure is directly related to the first invariant (see eq. 5.5). The 
second invariant of the stress tensor is given (in terms of the principal stresses) 
by: 

h = ~ (0-20-3 + 0301 + oio2) , 

and the third invariant is given by the determinant of the tensor, which -
again in terms of the principal stresses - is: 

I3 = (71(72(73 • (5.4) 

The 2nd and 3rd invariants are relevant for the understanding of some fun­
damental geodynamic processes (e.g. sect. 6.2.2). 
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Mean Stress. The mean stress am is given by the mean of the three principal 
stresses. It is therefore independent of the coordinate system: 

axx + uyy + Gzz _ &l + <?1 + &3 (5.5) 

The mean stress is also called pressure P. Strictly speaking, the mean stress 
is the mechanical definition of pressure, while a chemist or thermodynamicist 
would say that work is the product of pressure and volume change and that, 
therefore, pressure has the units of energy per volume (1 Pa = 1 J m - 3 ) . 
The most common place where geologists encounter these non-intuitive units 
for pressure is when looking up the molar volumes of mineral phases. These 
are generally quoted in the units Joule per bar. As the volume change may 
be highly anisotropic in an anisotropic stress state, chemically defined pres­
sure may be determined by integrating the volume change over the surface 
of a unit volume. Chemical and mechanical pressure only correspond in an 
isotropic state of stress. Earth scientists measure pressure using geobarom-
eters (sect. 7.2.1). Many geobarometers rely on the pressure sensitivity of 
chemical equilibria. It is therefore not clear if we measure mechanical or 
chemical pressure with them. This is some of the reason why the relationship 
between geobarometrically measured pressure and depth is often discussed 
in the literature (e.g. Harker 1939; Wintsch and Andrews 1988). However, 
in the following we assume that the differences between chemical and me­
chanical pressure are so small (if any) that we need not be concerned with 
them. 

Differential Stress. Differential stress is a scalar value defined as the dif­
ference between the largest and the smallest principal stress: 

(7d = (7i - (73 . (5.6) 

It is a measure of how far the stress state deviates from the isotropic state. 
As such, differential stress relates directly to deviatoric stress r . In fact, 
we will see that n = 0d/2 and that TZ = —<T<J/2. During viscous (ductile) 
deformation, the application of any differential stress will cause permanent 
deformation. Of course, differential stresses also arise when the deformation is 
not permanent, for example during elastic deformation. In the brittle regime, 
deforming rocks will only record the differential stress that causes failure (i.e. 
if it is large enough to touch the failure envelope on the Mohr circle). 

Deviatoric Stress. Unlike mean stress, pressure or differential stress, devi­
atoric stress is not a single number, but a tensor, denoted commonly with r . 
This tensor is defined by the deviation of the stress tensor in a general coor­
dinate system (i.e. eq. 5.1) from the mean stress (i.e. pressure): 
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It can be seen tha t the total stress tensor is the sum of the isotropic stress 
tensor plus the deviatoric stress tensor: 

uyx 

&zx 

®xz 

- p 

This equation may also be writte in short as: 

(j = Pl+T . 

(5.8 

(5.9) 

where 1 is the identity matr ix . In the viscous regime, only deviatoric stresses 
(right hand te rm in eq. 5.8) cause deformation. In contrast, elastic deforma­
tion occurs in response to the total stress s tate as described by the left hand 
side of eq. 5.8 (Fig. 5.2). 

' v ' 
Elastic 
deformation 

v ' 
Ductile 
deformation 

Figure 5.2. a Relationship between stress a and strain e for elastic, plastic and 
brittle deformation. Curve ii is for the ideal case of plastic (ductile) deformation; 
i is with strain hardening; iii with strain softening, b Relationship between stress 
and strain rate e for three different viscous materials. For a Newtonian fluid this 
relationship is linear. The number n is the power law exponent which we will discuss 
in some detail in sect. 5.1.2 

For a coordinate system parallel to the principal stress directions the devia­
toric stress tensor may simply be written as (in analogy to eq. 5.2): 

(5.10) 
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In this book, just about all discussed examples are for orientations of the 
stress field where T = T'. Also, we usually use many terms related to the 
stress tensor as if they were a scalar, i. e. we use them in equations tha t 
involve no tensor calculus. This is because most problems discussed in this 
book are reduced - for simplicity - to mere one-dimensional scenarios where 
there is only a single direction in which stresses are non-zero. 
• Simple examples for the use of deviatoric stress. The deviatoric stress ten­
sor is important as its components cause viscous deformation. The absolute 
magnitude of the deviatoric stress tensor components indicates how rapidly 
a rock will strain (deform). A rock will extend in the direction in which the 
deviatoric stress components are negative (negative is tensional in the earth 
science convention), even if all the principal stresses indicate compression 
(s. Fig. 5.3). Thus, when making cartoons of a field terrain it is always most 
instructive to sketch arrows for the principal components of the deviatoric 
stress tensor onto them, as their magnitude and direction corresponds to 
what is observed kinematically in the field (s. Fig. 6.26). Two rocks from 
different crustal levels may suffer the same deviatoric stresses and therefore 
deform similarly, but they may be in completely different states of total stress 
(Problem 5.4). 

Deviatoric 
compression 

X = 1 MPa 

°"i = 1 =1.5 MPa 

f - u Deviatoric 
^ v > tension 

x =-0.5 MPa 
°2 = °3 = 0 MPa 

Figure 5.3. Cartoon illustrating a typical uniaxial deformation experiment. The 
state of deviatoric stress of the cylinder in a is identical to that of the cylinder 
in b . However, in a is is not specified what the confining pressure is. This may 
be an arbitrary number added to all deviatoric stress values. Nevertheless, if there 
is no additional confining pressure, then a is consistent with the pressure inside 
both cylinders being 0.5 MPa, although both <rd and o\ are 1.5 MPa. In a the state 
of stress is illustrated in terms of the components of the deviatoric stress tensor. 
In b in terms of the uniaxially applied stress. Because the experiment is uniaxial, 
all illustrated stress components are also principal stress components both for the 
deviatoric stresses in a and the applied stress in b (after Engelder 1994) 

Let us consider a simple two dimensional example (there are only two 
principal stresses eri and a 2) where both a\ and (T2 are positive (the rock is 
under compression) and the mean stress is am = (ai -\-a-2)j1. Then, according 
to eq. 5.8, the principle components of deviatoric stress are: T\ = o\ — am = 
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((Ti — a-2)j1 and T-2 = <72 — am = — (CTI — 02) jl. We can see that the largest 
principal component of the deviatoric stress tensor is n = (Td/2 and the 
smallest is T2 = —(Td/2- We can summarize this information with a more 
applied example of a continent that is under horizontal compression where 
the principle components of stress crxx and azz are parallel to the horizontal 
(x) and vertical (z) directions. There, the principle horizontal deviatoric stress 
is: 

°~xx ~ &zz <̂ d (K -\-\\ 
Txx — &XX ~ Cm — Z — — • W- 1 1 / ' 

Fig. 5.3 illustrates the state of stress of a rock cylinder as expressed in terms 
of the deviatoric stresses (left) and total stresses (right). 

Strength. Strength, failure strength or shear strength are terms used to de­
scribe the critical value which the differential stress must reach to cause per­
manent deformation. As such it is a material property. In the elastic regime, 
the term "strength" does not really have a meaning and it is better to refer 
to rigidity or other terms explained in some more detail in section 4.4.2 and 
5.1.2. In the brittle regime, the strength depends directly on the magnitude of 
the principal stresses and is given by the stress where the curve on Fig. 5.2a 
deviates from its linear course. In the viscous regime, all differential stresses 
will lead to permanent deformation (Fig. 5.2). and "strength" is dependent 
on strain rate. Strictly, therefore, strength has no meaning in viscous de­
formation either and it is better to describe viscous stresses via viscosity. 
Nevertheless, in this book we use the terms "strength", "viscous strength" 
and "differential stress" in a similar meaning and note that they relate by a 
factor two: 

strength = ^ . (5.12) 

Stress Balance. The equations describing the balance of stresses are the 
basics for all mechanical descriptions of deformation. A stress balance is a 
generalized form of Newton's second law: 

force = mass x acceleration . (5.13) 

This equation is applied to a small volume of rock which may be subjected to 
surface forces (applied to the surfaces of the small volume, e.g. by pushing it) 
and body forces (applied to the small volume itself, e.g. by gravity). Eq. 5.13 
has its only complication in that it is a vector equation, because force is 
a vector. That is, it consists of three equations each of which describe a 
force balance in one of the three spatial directions. Also, within each of these 
equations, several surface and body forces must be summed up and set equal to 
the product of mass times acceleration on the right hand side of the equations. 
Also note that the equations of force balance are generally considered per 
unity volume so that eq. 5.13 is usually written in terms of force/volume = 
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Figure 5.4. Different surface forces acting on a 
unity cube in the z direction. If z is the vertical, 
then there is also a body force due to gravity 
of the magnitude pg. At rest, each of the three 
labeled forces is compensated by a force of equal 
magnitude but opposite direction. Other forces 
in the y- and ^-directions are not labeled for 
clarity 

< Ax 

density x acceleration. The different forces acting in the z direction can be 
summed up from Fig. 5.4. The sum is: 

+ 
da. 

dz 
Az I Ax Ay — azzAxAy + I azx + 

daz 

9^Ax] AyAz 
ox J 

dy 
azxAyAz + I azy H—-^-Ay I AxAz — azyAxAz — pgAxAyAz 

pazAxAyAz (5.14) 

where x, y and z are the three spatial directions, p is density, g is acceleration 
due to gravity and az is the acceleration of the body in the z direction. Even 
if this equation appears enormously complicated, it should be easy to follow 
it using Fig. 5.4. It simply states that the difference in forces between any 
two sides of a unity cube result in acceleration. We can see that the equation 
has six similar looking terms on the left hand side. Every group of two terms 
describes a difference between the force on one side of the cube (e.g. the 
2nd term in eq. 5.14: crzzAxAy) and the force on the opposite side of the 
cube (e.g. the 1st term in eq. 5.14: [azz + (dazz/dz)Az) Ax Ay). If these are 
equally large, then the body does not accelerate. If this difference is finite, 
then the body accelerates with the rate written on the right hand side of the 

equation: p^f-AxAyAz. Writing eq. 5.14 a bit shorter we can write: 

da 

dx 

dt 

zx . @0~zy . 

dy 
dazz 

~dz~ pg = paz 
(5.15) 

• Navier-Stokes equation. Eq. 5.15 (plus its corresponding versions for the x 
and y directions) can be reformulated into the famous Navier-Stokes equation 
if it is coupled with a viscous flow law. We will encounter this in eq. 5.42, 
but use it already here briefly to introduce this important equation. We also 
need the definition of strain rate from eq. 4.6 and the relationship between 
the stress and deviatoric stress tensors shown in eq. 5.9. Then, we can insert 
the definition of strain rate into eq. 5.42 and that into eq. 5.9. The resulting 
description of stress is then differentiated according to eq. 5.15 and we arrive 



218 5 • Mechanics: Force and Rheology 

at the Navier-Stokes equation for an incompressible medium with constant 
viscosity: 

-S/P + rjS72u = pa + pg , (5.16) 

In this form, we have placed both acceleration terms (that due to surface 
forces and that due to body forces) on the right hand side of the equation. 
In particular the surface force related acceleration term in eq. 5.16 (which 
is a instead of the earlier az meaning that acceleration may be in all three 
directions) can also be expressed in terms of velocity changes, but we need 
not do this here, as we will show below that is is negligible for most geological 
problems. 

• Force balance equations. In most geodynamic problems, acceleration is neg­
ligible. Then, in the horizontal directions the term p^jf- = p-gf- —* 0 and in 
the vertical direction p^f- —• pg, as gravitational force is still felt as a body 
force. Thus, eq. 5.14 simplifies to the following: 

do-zz dazx dazy _ Q 

dz dx dy 

Eq. 5.15 describes the equilibrium of stresses in the vertical direction and 
is generally applicable in the earth sciences. The first three terms of this 
equation are the sum of the surface forces acting in the ^-direction, the fourth 
term is the volume or body force downwards. In analogous equations for the 
x- and y-direction this fourth term does not appear. The relationships for 
the x- and y-directions are: 

d ^ + da^ + d*^=0 ( 5 1 8 ) 

ox ay oz 

and: 

^ + ^ + ^ = 0 . (5.19) 
ay ox oz 

Eqs. 5.15, 5.18 and 5.19 are the basics of all mechanical equilibria discussed 
in this book (e.g. sect. 4.4.1; 6.2.2, s. Problem 5.5). 

Tectonic Relevance of Momentum. In this section we discuss the nature 
and relevance of momentum in tectonic processes to show that momentum is 
practically negligible to most geological problems. The momentum of a body 
I is given by the product of its mass m and its velocity v (sect. 2.2.4): 

I = mv . (5.20) 

While the velocities of plate tectonic motions are very small, the mass of 
plates is very large and it is therefore not immediately obvious if momentum 
plays a role in the tectonic force balance. 
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Momentum is a physical quantity that is preserved: During the collision of 
two plates the momentum of the entire system remains constant. However, 
the momentum of one of the plates may be transferred to the other. This 
transfer of momentum occurs by a force. The magnitude of this force is given 
by the change of momentum AI per time At that occurs during the slowing 
of plate motion due to collision. 

F=% • (5-21) 
At v ' 

If a plate is slowed down due to collision very abruptly, then the force is large. 
If it slows over a large time period, the force is small. The slowing of a plate 
has also the consequence that its kinetic energy Ek decreases. Kinetic energy 
is given by the integrated momentum integrated over the change in velocity: 

Ek = ?f • (5.22) 

Let us now check if momentum, kinetic energy and the forces that arise 
from them could be responsible for the acceleration or slowing of plates. For 
this, let us hypothesize that the slowing of a continental collision is caused 
by a waning momentum. Lets use the India-Asia collision and make some 
very simple assumptions. The area of the Indo-Australian Plate is roughly 
A = 5 • 106 km2. If the mean plate thickness is z\ = 100 km and the mean 
density is p = 3000 k g m - 3 then its mass is: m = Az\p = 1.5 • 1021 kg. 
If the relative plate velocity between India and Asia is v = 0.1 m y - 1 m 
3.2 • 10 - 9 m s _ 1 , then, according to eq. 5.20, the momentum of the collision 
is: I = mv = 4.7 • 1012 k g m _ 1 s _ 1 and the kinetic energy of the Indian 
Plate is: Ek = 7.6 • 103 J. If we now assume that the Indian Plate will be 
brought to a complete halt within one million year of the collision, then: 
F = 4.7 • 1012/3.15 • 1013 RJ 0.15 N. Distributed over almost 5000 km of 
collision length this leaves only about: 3 • 10~8 Nm" 1 . We can infer that 
plates would have to be brought to a halt within fractions of a second of a 
collision in order for momentum to have any influence on the orogenic force 
balance. In short, momentum is negligible in plate tectonics. 

Indeed, we know that the relative rate of motion between the Indian and 
the Asian plates has hardly changed since the Tertiary. We can conclude that 
any changes in velocity are due to changes in the boundary conditions and 
have nothing to do with momentum. It is for this reason that force balance 
equations in the earth science (e.g. eq. 6.25) need not consider acceleration 
terms. 

The Difference Between Lithostatic and Non-Lithostatic. The pres­
sure measured by petrologists with geobarometers in metamorphic rocks is 
generally interpreted as the "burial pressure", that is, the pressure is directly 
correlated with the depth of the rocks at the time of metamorphism accord­
ing to eq. 7.1 (s. sect. 7.1.1). This interpretation is based on the assumption 
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that rocks have negligible strength, i.e. they cannot support any differential 
stress. This state of stress is called lithostatic. In this state, the lithostatic 
pressure is of the same magnitude as each of the principal stresses (eq. 5.5). 
The state of stress is isotropic. An every day example is the state of stress 

inside fluids which have negligible strength, for example a glass of beer. The 
force exerted by the beer onto the outside glass is exactly as large as the 
weight of the vertical section of beer lying above this point (s. Problem 5.6). 
However, if we consider a more general state of stress (i.e. a material that can 
support differential stresses), then we can see that only part of the pressure is 
caused by depth. The magnitude of the difference u\ — 03 also contributes to 
pressure and the orientation of <TI , cr2 and a3 determines how pressure relates 
to depth. The discussion on the magnitude of the differential stress o\ —u^ in 
rocks can be summarized under the term "tectonic overpressure" (Rutland 
1965; Ernst 1971) and will be discussed in a bit more detail in s. sect. 6.3.5. 

For some special orientations of a general stress field it is possible to divide 
pressure into a lithostatic and a non lithostatic component. Such a division 
helps to illustrate the different contributions to pressure and allows us to 
estimate the magnitude of differential stresses under different boundary con­
ditions. In a stress field where <j\ and 0-3 are the maximum and minimum 
principle stresses and are oriented horizontally and vertically, respectively we 
can write: 

0-1+0-3 , 0 - 1 - 0 - 3 . o-d , „ „ > 
P = 2 = °3 H ^ = (Jl i th + Y = pgz + Tl • ' ' 

There, cruth is the component of pressure caused by the weight of the over­
lying rock column, and the non-lithostatic component is given by the largest 
principal component of the deviatoric stress tensor. Of course, eq. 5.23 is only 
valid if (72 = (a 1 + cr3)/2. For other values of 02, or for differently oriented 
stress fields, this simple subdivision in lithostatic and non-lithostatic terms of 
pressure is not possible and non-lithostatic components of pressure can only 
be calculated from the complete tensor. In sect. 6.3.5 we discuss how large 
such tectonic contributions to pressure might be. 

5.1.2 Deformation Laws 

For a mechanical description of deformation we need a mathematical rule 
that relates stress (or force) to strain (or strain rate). Such a relationship 
is called a flow law, deformation law or constitutive relationship. If we know 
the flow law for a given rock, then we can use the relationships of mechanical 
equilibrium (eqs. 5.14 to 5.19) to describe the deformation of rocks in response 
to an applied force. 

On a microscopic scale, structural geologists discriminate between a large 
number of deformation laws. On geological time scales and lithospheric length 
scales, most geologists use only one of five terms to describe deformation 
mechanisms (Table 5.1): 
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— brittle deformation 
— plastic deformation 
— ductile deformation 
— elastic deformation 
— viscous deformation. 

These five terms have very different meanings and some of them are very 
rigorously defined and others are not. We will deal with these five terms 
at length over the next sections (s. also: Weijermars 1997; Twiss and Moores 
1992; Jaeger and Cook 1979). Here we summarize some of the most important 
information on these five terms and how they relate stress to strain in general 
terms. 

• Brittle deformation is no really a deformation mechanism at all. We 
will see below that the laws of brittle deformation only describe a stress state 
and not a relationship between stress and strain. The deformation law usually 
used to describe rocks in a brittle fashion is plastic deformation. 

• Plastic deformation law states that a constant stress is required to deform 
the rock. Irregardless how much or how fast we deform, the required force is 
all the same. Deforming sand is a good example. 

• Ductile deformation is a wonderful term that has no specified meaning 
other than that we want to say that the deformation is not elastic and not 
brittle. It is therefore an extremely useful term for the field geologist who 
does not want to specify himself by using words like "viscous", "plastic" or 
"dislocation creep" - all of which have very rigorously defined meanings. 

• Elastic deformation is the law that states that the strain of a rock is 
proportional to the applied total stress. As such, it is the only deformation 
mechanism which is not permanent: As soon as the stress is released, the 
strain is gone as well. 

• Viscous deformation is the law that is most commonly used to describe 
ductile deformation on the crustal scale. Viscous means that the strain rate 
of a rock is proportional to the applied deviatoric stress. 

We all have every day encounters with these two deformation mechanisms, 
namely with rubber bands (elastic) and mixing cake dough (viscous). When 
stretching a rubber band, the amount of stretch depends on how hard we pull. 
The more pull, the more stretch. The applied stress and the resulting strain 
are proportional. On the other hand it does not matter at all whether we 
pull fast or slow. The stretch is always the same for the same applied force, 
independent on the speed (strain rate) with which we do the experiment. 
With mixing dough its exactly opposite: It does not matter at all whether we 
mix it only a bit or very thoroughly (little or much strain in the dough), the 
needed force is always the same. However, how much force we need depends 
very strongly on the mixing rate. If we mix it rapidly, we need much more 
force than if we mix slowly. 

Elastic Deformation. Elastic deformation is characterized by a proportion­
ality between stress and strain (Fig. 5.2). Both these parameters are described 
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Table 5.1. Deformation laws, for more information see also Tabel 5.2 

brittle no deformation law but a stress state; 

usually described with plastic law 

plastic (ductile) constant stress; example: sand 

viscous (ductile) stress and strain rate are proportional - linear 

(Newtonian) 

- non linear 

(power law) 

elastic stress and strain are proportional 

by tensors which each include 6 independent values. However, if this propor­
tionality is ideally linear, and we only consider uniaxial (one-dimensional) 
loading then this relationship is called Hooke 's law and may be simply writ­
ten as: 

axx = Eexx . (5.24) 

where the subscripts emphasize that this equation is meant to be one dimen­
sional (and not a full tensor equation). When the deformation is uni-axial, 
then e is the (dimensionless) longitudinal normal strain and is defined as 
the change in length during deformation relative to the original length (s in 
eq. 4.1). The proportionality constant E is called the Young's modulus and 
has the units of stress (N m - 2 ) . The Young modulus corresponds to the slope 
of the elastic section of the curve in Fig. 5.2. For rocks, the Young's modulus 
is of the order of 1010 to 1011 Pa. Young's modulus is a kind of a summary of 
the Lame elastic constants which are the elastic coefficients that occur when 
eq. 5.24 is written as a full tensor equation. 

If more than one of the three principal stresses is larger than zero, then it 
is also important to consider that rocks are compressible. This is described 
by the Poisson constant v. For the largest principal stress we can write: 

<7i = ei-E + v<72 + vo% (5.25) 

or, if strain is written as a function of stress: 

\ v v 
£ 1 = ^ " " l ~ ^ C T 2 - -^CT3 . ( 5 . 2 6 ) 

For the other two spatial directions equivalent equations may be formulated. 
The Poisson constant is given by the ratio of two stretches, namely the in­
finitesimal strain normal to the applied stress and the stretch in direction of 
the applied stress (Fig. 5.5). 
During compressive deformation, a rock will shorten in the direction of the 
applied stress. Thus, the incremental stretch ei in Fig. 5.5 is negative. If the 
rock is isotropic, then this shortening is distributed evenly between expan­
sion in the other two spatial directions. Thus, v = +0.5 for incompressible 
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Figure 5.5. Stretch of a cube as the conse­
quence of compression in the vertical direction. 
The Poisson constant is denned as v = —ezje\ 

materials. For example, rubber is almost incompressible and has a Poisson 
constant of almost v = +0.5. In contrast, the Poisson constant of rocks is 
of the order of 0.1-0.3. We can see that rocks are quite compressible in the 
elastic regime. However, the total strains of rocks in the elastic regime are 
quite small, because the Young's modulus of rocks is very large. Thus it is 
no obvious to us that rocks are actually quite compressible. 

While the Poisson constant is directly related to how compressible a rock 
is, it should not be confused with the compressibility /3. Under isotropic stress 
(with pressure P) a rock will compress isotropically (i.e. ei = £2 = £3) and 

1 , 
£2 = £3) • 

(3 is related to Young's modulus and the Poisson constant by: 

a 
3 - 6 ^ 

E 

(5.27) 

(5.28) 

We can see from this equation that, for incompressible materials where v = 
+0.5, the compressibility becomes: )3 = 0. The inverse of the compressibility 
is called the bulk modulus: K = 1//?. For a more rigorous treatment of the 
theory of elasticity the reader is referred to the literature. 

Brittle Fracture. When the stresses applied to rocks cannot be compen­
sated elastically, permanent deformation will occur. This may occur by ductile 
or brittle processes. Among brittle processes, two different modes of brittle 
deformation may be discerned: rocks deform either by creating new cracks, 
or by friction along existing fractures. In both cases the friction along the 
failure planes plays a critical role. Brittle failure is commonly described 
with the Mohr-Coulomb-criterion. However, it should be said here that -
strictly speaking - the Mohr-Coulomb-criterion describes only a state of 
stress, namely the critical state at which failure occurs. It does not place 
stress and strain in a relationship to each other and is therefore not a consti­
tutive relationship or flow law. 
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• Mohr-Coulomb-criterion. Coulomb (1773) was the first to recognize that 
the brittle strength of materials is largely a linear function of the applied 
normal stress an and that it depends only to the second order on a material 
constant called cohesion <ro • At geological stresses cohesion is largely negligi­
ble. According to the Coulomb criterion, failure occurs when the shear stress 
on a given plane reaches a critical value o% that is a function of the normal 
stress acting on that plane an, as: 

<7s = <T0 + /X(7n . (5 .29) 

The coefficient /J, that relates shear stress and normal stress on a failure plane 
is called the internal coefficient of friction. This coefficient is dimensionless. In 
the literature, the critical failure stress is often abbreviated with r (including 
in the first edition of this book). However, it is probably clearer if we reserve r 
exclusively for deviatoric stresses and we therefore choose a different notation 
in this edition: We use the subscript s for all shear stresses (for both stress: as 

and deviatoric shear stress: rs) and apply additional superscripts if necessary. 
According to the Coulomb criterion (eq. 5.29) brittle deformation is a nearly 
linear function of total stress. It is independent of temperature or strain 
rate e and almost independent of the material as the cohesion is almost 
negligible and the internal coefficients of friction are very similar for most 
rocks (Byerlee's law). 

Mohr (1900) then discovered that the failure criterion of Coulomb may be 
elegantly portrayed graphically. His graphical analysis is called the Mohr dia­
gram. In the Mohr diagram shear stresses are plotted against normal stresses 

Figure 5.6. The relationship between normal stress (horizontal axis) and shear 
stress (vertical axis) in the Mohr circle. The normal stresses are compressive (pos­
itive) to the right of the origin and tensional (negative) to the left. Eq. 5.29 de­
scribes the tangent to the Mohr circles drawn around centers at (<7i + <T3)/2 with 
the radius (<TI — as,)/2. In the ductile regime shear stresses do not increase lin­
early with normal stresses anymore. However, for many rocks the curve is even in 
the brittle regime not completely linear, but slightly concave against the normal 
stress axis. For failure planes in a rock it is true that: <rj = sin2#(<7i — <J3)/2 and 
<r„ = (ffi + <r3)/2 - COS(20)(CTI - <r3)/2 
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and the stress state in a rock is plotted as a circle. Fig. 5.6 shows (for example 
for point B) that the shear stresses in a rock as are a function of the angle 
9 between the considered plane and the directions of the principal stresses. 
This may be formulated in terms of the equation: 

sin(20) = , 2<7s , , (5.30) 
((Ti - (73 ) 

where the angle 0 is the angle between any considered plane in a rock and 
the principal stress directions. From eq. 5.30 we can see that <rs is the largest 
on planes that lie at an angle of 45° to the principal stress direction (i.e. 
26> = 90° and sin(20) = 1): 

_ m a x " 1 ~ "3 (r n-r \ 

as = . (5.31) 

Thus, the maximum shear stress a rock can support is half as large as the 
applied differential stress. However, it is important to note that the largest 
shear stress is not where failure occurs. From Fig. 5.6 we can see that the 
normal stress at oflax is just a little bit larger (it is: ern = — (ci + <73)/2 than 
the normal stress at the critical failure stress of (at point A, for which the 
normal stress is explained in Figure caption Fig. 5.6. 

The slope of the tangent to the Mohr circles in Fig. 5.6 is given by the 
internal angle of friction. This angle of friction <f> and coefficient of friction /i 
are related by: 

tan0 = /j . (5.32) 

For most rocks this angle is about 30-40°, which is equivalent to an internal 
coefficient of friction between roughly 0.6 and 0.85. This relationship is called 
Byerlee's law as he was the first to measure p o n a crustal scale and derived 
<f> f r o m (i. 

If fluid pressure plays a role, then the Mohr-Coulomb criterion is often 
formulated as: 

of = at, + fi (<Tn - P{) , (5.33) 

where P{ is the pore fluid pressure. This can be approximated as of = <ro + 
/«rn(l — A), where A = Pf/o^ is the ratio of pore fluid pressure to lithostatic 
stress, <TL, if <7n ~ ox- If both are of the same magnitude, then A = 1 and the 
shear stress necessary for failure is only a function of the cohesion. If there is 
no fluid, then eq. 5.33 reduces to eq. 5.29. 

• Byerlee's and Amonton's laws. If preexisting cracks occur in a rock then 
there is no cohesion. To be more precise: the remaining cohesion is negligible 
compared to the cohesion of an intact rock. The shear stresses needed to 
deform a rock only need to overcome the coefficient of friction and the normal 
stresses applied to the rock. Eq. 5.29 simplifies to: 
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Figure 5.7. Brittle failure as a 
function of depth and normal 
stress or "lithostatic pressure", 
as calculated with 5.38, 5.39 and 
5.40 

<Ts
c=/x<Tn . (5.34) 

This equation is usually called Amonton's law. Byerlee (1968; 1970) showed 
empirically that, at pressures below 200 MPa, (roughly less than 8 km) the 
crust may be characterized by an internal coefficient of friction around 0.85: 

<rs
c = 0.85o-n . (5.35) 

At larger depths, but above the brittle ductile transition brittle failure in the 
crust appears to be best described by: 

<rs
c = 6 0 M P a + 0.6crn . (5.36) 

These empirical relationships are called Byerlee's laws (Fig. 5.7). Because of 
the fact that /i RS 0.85, most faults occur at 30 degrees angle to the maximum 
principle stress. Byerlee's laws state that rocks at 5 km depth will fail at 
roughly 110 MPa, in 10 km depth at roughly 230 MPa and in 15 km depth 
at about 300 MPa. If we want to consider fluid pressure as well we can 
reformulate Byerlee's laws to: 

<rs
c = 0.85CT„(1 - A) and rc = 60MPa +0.6crn(l - A) . (5.37) 

• Anderson's theory. Byerlee's laws describe the relationship between shear 
stresses (in particular a^) and normal stresses (which relate to depth in the 
crust) in general, but they do not explain the spatial orientation of failure 
planes relative to the principal stresses. 

Anderson (1951) reformulated the Mohr-Coulomb law in terms of differ­
ential stress (ci — 0-3) and lithostatic stress (ox = pgz) instead of shear 
stress and normal stress. He took three cases to represent reverse faults, nor­
mal faults and strike slip faults and assumed that ox = 03, ox = o\ and 
O"L = cr-2 = 0.5(CTI + 0-3) for each of these cases, respectively (Fig. 5.8). Then, 
the differential stress as a function of depth (or ox) may be written as follows: 

100 300 500 700 
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Normal fault Reverse fault 

en 
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Figure 5.8. Geometry of a brittle fault during: a extension, b compression and 
c strike slip motion 
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The relationship for each case can be directly derived from Fig. 5.6 using 
trigonometric relationships (e. g. Weijermars 1997). Fig. 5.7 shows these three 
linear relationships for ji = 0.85 and CTQ = 0. 

• Interpretation of fault orientations. The spatial orientation of faults in the 
earth's crust is one of the most important pieces of evidence for the interpre­
tation of the magnitude and geometry of the stress field in the lithosphere 
(s. sect. 6.2; Zoback 1992). If the orientation of faults can be measured di­
rectly in outcrop, then there is a series of statistical methods that may be 
used to derive the palaeostress field at the time of fault formation (Ange-
lier 1984; 1994). For the interpretation of the present day stress field of the 
lithosphere the most important methods are: 

— Interpretation of seismic data, 
— Interpretation of bore hole break outs (e. g. Bell and Gough 1979; Mastin 

1988; Wilde and Stock 1997), 
— direct in-situ- measurement of stresses (Zoback and Haimson 1983), 
— Interpretation of GPS data (Global Positioning System; e.g. Argus and 

Heflin 1995), 
— interferometric methods (e.g. Molnar and Gibson 1996). 

The application of interferometric methods has only been possible since they 
are accurate enough to measure plate motions directly. However, strictly 
speaking, these methods (and those using GPS data) measure motions rather 
than stresses. Data from all these methods are collected in the world stress 
data base http://www-gpi-physik.uni-karlsruhe.de/wsm/) ( see also Fig. 2.2). 
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Figure 5.9. Polarity and intensity of P-waves 
in two dimensions. The two planes along which 
there are no P-waves are called nodal lines or « 
nodal planes 

C • 
D » 

• F 

The most reliable data source for the interpretation of the intra plate stress 
field remains the interpretation of seismic data, in particular because it allows 
to characterize processes that occur deep inside the lithosphere (Fig. 2.2). 
Thus, they can not only be used to determine the stress field in two di­
mensions, but also its depth dependence on a plate scale. Seismic data are 
commonly interpreted with the aid of fault plane solutions (s. e. g. Michael 
1987; McKenzie 1969a). 
• Fault plane solutions. Fault plane solutions illustrate the qualitative direc­
tion of motion (polarity) of seismic P-waves (primary longitudinal waves) on 
a Schmidt net (s. Figs. 2.11, 5.11). In order to be able to do this, a seismic 
event must be recorded by a large number of seismic stations around the 
globe. Fig. 5.9 illustrates how such data are then used to plot a fault plane 
solution using a two-dimensional example. The gray shaded bar and the ar­
rows in the middle of this figure symbolize a dextral fault, and we assume that 
the center of the seismic event lies in the middle of the figure. Points A to G 
are seismic stations in the region that have recorded the event. The very first 
motion along the fault as measured by the seismic stations is either tensional 
or compressional. According to their position relative to the epicenter, the 
stations A, B and F will register a tensional first motion, while stations G 
and D will register a compressional first motion. Stations C and E will record 
no P-waves at all. These results are illustrated by the clove leaf around the 
center of the diagram. Tensional regions are colored white and characterized 
by a "-", compressional regions are drawn black and characterized by a "+". 
The distance of the clove leaf circumference from the middle indicates the 
intensity of the measured P-waves. The arrow from the origin towards sta­
tion B is a vector indicating direction and intensity of the P-waves measured 
at B. 

For the interpretation of a fault in three-dimensional space, we cannot 
restrict ourselves to the two-dimensional cartoon of Fig. 5.9 and it is nec­
essary to use data from seismic stations around the globe. Fig. 5.10a shows 



5.1 • Stress and Strain 229 

Figure 5.10. a Schematic cross section through the earth. Point P marks the 
occurrence of a seismic event. Point S marks a seismic station that has recorded the 
event, b Enlarged section from a. The polarity of all P-waves emanating downwards 
from point P is plotted in a Schmidt net surrounding the fault. The fault itself 
intersects the Schmidt net along line A. Plane B is the normal to this plane and to 
the movement direction. A and B are called nodal planes 

a schematic cross section through earth. Now consider a seismic event that 
occurs at point P. From there, P-waves will begin to propagate in all direc­
tions. Because of the refraction of waves through the interior of the globe, the 
wave measured at point S will have departed from point P almost straight 
downwards. In order to know exactly which direction this wave has left from 
point P, we need to know the curvature of the wave through earth. However, 
this is known and may be looked up in seismic tables. It is therefore possible 
to plot the relative position of all seismic stations that have recorded the 
event into a Schmidt net. All stations in the vicinity of the epicenter (i.e. on 
a tangential plane to earth at the epicenter) will plot near the circumference 
of the net. For these stations we could use the two-dimensional illustration 
of Fig. 5.9. Fig 5.10b is an enlarged section from Fig. 5.10a. The polarity of 
the P-waves on the projection hemisphere is indicated by the light and dark 
shading. 

Fig. 5.11a shows the fault plane solution for the seismic event in the three-
dimensional cartoon in Fig. 5.10b. Note that the solution has two alternative 
interpretations. Firstly, Fig. 5.11a may be interpreted as a normal fault with a 
steep eastwards dip. Then, the boundary between the right hand black colored 
region and the central white region is the fault plane (plane A in Fig. 5.10b) 
and the boundary between the left hand black region and the white region is 
the normal to this plane (auxiliary plane; plane B in Fig. 5.10b). However, 
the figure may alternatively be interpreted as a normal fault with a shallow 
westward directed dip. All fault plane solutions have two alternative inter­
pretations for the orientation of the fault they represent. Fig. 5.11b is the 
fault plane solution of the reverse fault of the same orientation as in a and 
Fig. 5.11c is the fault plane solution of a strike slip fault. Fig. 5.lid is the 
fault plane solution for a fault containing reverse thrust as well as strike slip 
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a b e d 

O i) (V * 
Figure 5.11. Some examples of fault plane solutions, a Fault plane solution for a 
normal fault that dips steeper than 45° towards the right (east) or shallower than 
45° towards the left (west), b Fault plane solution for a reverse fault of the same 
orientations as in a. c Fault plane solution of a north south striking dextral- or 
an east-west striking sinistral strike slip fault, d Fault plane solution for a reverse 
fault that is inclined with roughly 45° towards the left (west) and has a dextral 
strike slip component in its motion. Alternatively, this fault plane solution could be 
for a reverse fault that is inclined towards the south east and contains a sinistral 
component. Note that the polarity of the center of the fault plane solution always 
indicates the overall kinematics of the structure (i.e. extensional vs. compressional) 

components in its motion. Fault plane solutions as illustrated in Fig. 5.11 are 
a common means of interpretation of geodynamic processes in active orogens 
(Molnar and Lyon-Caen 1989) and plate boundary processes (s. e. g. Frohlich 
et al. 1997). 

Viscous Deformation. On the scale of a thin section, rocks behave not vis­
cously but according to a large range of deformation mechanisms (e.g. grain 
boundary migration, diffusion creep and many others). The dependence of 
deformation mechanism on the physical conditions may be portrayed in defor­
mation mechanism maps (Frost and Ashby 1982). In such maps parameters 
like temperature, grain size, stress and viscosity are plotted against each other 
and the diagrams a divided into different fields where different mechanisms 
apply. However, on a larger scale, it is useful to average different deformation 
mechanisms and assume that rocks behave like viscous fluids. Viscous defor­
mation of ideal fluids is described by a proportionality between deviatoric 
stress and strain rate. If we make a simple shear experiment in which we 
compare the scalar quantities of the shear strain rate 7 and the shear force 
(per area) we require to shear it rs, then we can write: 

TS =rjj . (5-41) 

If we use the full deviatoric stress tensor r and the full strain rate tensor e, 
then this is given by: 

T = 2rje . (5.42) 

where the factor 2 arises from the definition of strain rate (eq. 4.6). Both 
equations are used in the literature (Ranalli 1987). In both the proportionality 
constant n is called the dynamic viscosity. There is also a parameter called 
the kinematic viscosity which is the ratio of dynamic viscosity and density 
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and has the units of diffusivity, namely: m2 s _ 1 . The dynamic viscosity has 
the units of Pascal times second (Pas) or k g m _ 1 s _ 1 . For air it is roughly 
10~5 Pas, the viscosity of water is roughly 10~3 Pas, the viscosity of ice 
roughly 1010 Pas, of salt 1017 Pas and of granite it is roughly 1020 Pas. If 
n is constant with respect to strain rate then eq. 5.42 is linear. A fluid that 
behaves according to such a linear relationship is called a Newtonian fluid. 
Eq. 5.42 states that the larger the deviatoric stress that is applied, the faster 
the rock will deform. Note that, in the orientation of the maximum shear 
strain rate, the stress in eq. 5.42 will be rm a x , which is equivalent to half of 
the differential stress ad/2 = (a± —uz)j2, (s. eq. 5.31). There are two reasons 
why rocks typically don't deform according to the simple form of eq. 5.41 
with a constant viscosity: 

• 1. The Arrhenius relationship. Viscosity is extremely strongly tempera­
ture dependent. This temperature dependence is described by the Arrhenius 
relationship: 

V = A0e
Q/RT . (5.43) 

In this relationship the constants AQ and Q are material-specific constants 
called the pre exponent constant and the activation energy (in Jmol - 1 ) , re­
spectively. The parameter R is the universal gas constant and T is the 
absolute temperature. If we try to read eq. 5.43 we can see that it states that 
the viscosity of any material will trend towards infinity at absolute zero and 
will decrease exponentially from there to approach the value Ao asymptoti­
cally at high temperatures. The Arrhenius relationship will be discussed in 
some more detail in sect. 7.2.2 in connection with eq. 7.5. Do not forget to 
always use absolute temperature when performing calculations with eq. 5.43. 

• 2. Non linearity. Rocks rarely deform as a Newtonian fluid (i. e. there is 
rarely a linear relationship between the applied deviatoric stress and strain 
rate). In fact, many rocks deform roughly 8 times as rapid if the applied 
stress is doubled. More generally, this may be written in terms of a power 
law relationship: 

r r = 4»ff7 • (5.44) 

There, the exponent n is called the power law exponent. It is a material 
constant and is between 2 and 4 for many rock types. The parameter Aes is 
a material constant. It is analogous to n in eq. 5.42, but does not have the 
units of viscosity and we therefore use a different symbol. Aeg has the units 
Pa71 s. However, in analogy to a Newtonian fluid, it is possible to derive an 
effective viscosity from eq. 5.44 which is given by the ratio of deviatoric stress 
and strain rate. This is: 

rhB = I?- = A^x^i/n)-i _ ( 5 - 4 5 ) 

We will meet this relationship again in eq. 6.29. 
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Figure 5.12. Differential stress (in MPa) during viscous deformation as a function 
of a range of parameters as calculated with eq. 5.46. A power law exponent of 
n = 3 was assumed, a Differential stress as a function of temperature and strain 
rate for the material constants of quartz, b Differential stress as a function of 
activation energy Q (in J m o l - 1 ) and pre exponential constant A (in M P a _ 3 s _ 1 ) . 
Continuous lines are for 500 °C, dashed lines are for 1000°C. The assumed strain 
rate is e = 10~13 s _ 1 . The rheological data for quartz and olivine from sect. 5.2.1 
are plotted 

• General viscous flow law for the lithosphere. If we want to apply a non­
linear viscous relationship like eq. 5.44 to rocks, it is useful to couple it with 
the Arrhenius relationship. However, because of the parameter Aeg does not 
really have the units of viscosity, and because experiments are typically not 
performed as shear experiments (where 7 is measured), viscous flow laws are 
usually formulated somewhat differently. Typically, they are formulated as a 
relationship between differential stress (01 — 0-3) and longitudinal strain rate 
e;, as it is measured in uniaxial shortening experiments. Such an empirical 
relationship is called Dorn's law and is typically written as: 

(0-1 - a3) = (j) e ( ^ ) or : e, = a ^ e " * , (5.46) 

(e.g. Sandiford et al. 1991; Sonder and England 1989 or Houseman and Eng­
land 1986). The three material constants A, Q and n are constrained by series 
of experiments performed at constant strain rate and temperature (e.g. Glea-
son and Tullis 1995). For exponents larger than 1, Dorn's law is also called 
simply power law. Note that the constant A has (in contrast to Aeg), the 
units of P a _ n s _ 1 and incorporates the factor 2 we encountered in eq. 5.42. 
Also note again that - if you want to use eq. 5.46 to estimate the litho-
spheric strength or non lithostatic contributions to pressure - only half of 
the differential stress contributes to pressure (e.g. eq. 5.12; eq. 5.23 or: eq. 
6.33). 

For mechanical models in which temperature is not considered explicitly, 
it is useful to summarize the temperature dependent terms of eq. 5.46. We 
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Table 5.2. Dependence of brittle and viscous deformation on some physical pa­
rameters 

dependent on brittle viscous 

total pressure (depth) 
material 
strain rate 
temperature 

yes (linear) 
no 
no 
no 

no 
yes ( « power of 3) 
yes 
yes (exponential) 

will discuss this in some more detail in sect. 6.2.2 on p. 304. Fig. 5.12a shows 
the differential stress as a function of temperature and strain rate for the 
material constants of quartz. Fig. 5.12b shows differential stress as a function 
of activation energy and pre exponent constant at fixed temperatures and 
strain rates. 

Dorn's law is an empirical deformation law and in some cases it is nec­
essary to modify it empirically. One example where this is necessary is the 
deformational behavior of olivine. Fig. 5.12b shows that olivine deforms at 
500 °C (which may be a realistic assumption for the Moho-temperature) only 
at unrealistically high stresses around 107 MPa if it were described with 
eq. 5.46. Thus, Goetze (1978) and Goetze and Evans (1979) suggested that 
a better description of the behavior of olivine above 200 MPa is given by the 
relationship: 

(n-<,)=0D^-^b(*)j . (5.47) 

There, QD is again an activation energy, OD a critical stress that must be 
exceeded and eb is the critical strain rate (s. Table 5.3). Comparing eq. 5.47 
with eq. 5.46 shows that this law is by far not as temperature dependent 
as the power law. Combinations of eqs. 5.46, 5.47 and Byerlee's laws form 
the basics of many simple quantitative models describing the rheology of the 
lithosphere as a whole (Brace and Kohlstedt 1980). 

Eq. 5.46 shows that the stresses during viscous deformation are strongly 
dependent on temperature, strain rate and material constants, but are inde­
pendent of the confining pressure. Thus, ductile deformation is subject to 
completely different laws than brittle deformation (Table 5.2). 

5.2 Rheology of the Lithosphere 

Rheology is the science of the flow characteristics of materials. In a more 
general sense, rheology is often used as a term to describe the deformational 
behavior of material (in the case of geologists: rocks), independent of whether 
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the deformation is actually by flow or rather by brittle fracture or other defor­
mation mechanisms. Rheology describes the relationships between forces and 
motions, and between stress and strain. As such, constitutive relationships 
form the basics for the all rheological questions (s. p. 220). 

In the previous section we showed that two of the most important deforma­
tion mechanisms in the lithosphere, namely brittle and viscous deformation, 
depend on very different physical parameters (Table 5.2). This is the rea­
son for strong rheological heterogeneities in the lithosphere and also for the 
different rheological behavior of continental versus oceanic lithosphere. This 
will be the subject of the next sections. 

5.2.1 Rheology of the Continental Lithosphere 

In the late seventies of last century Brace, Goetze and others summarized 
much of the information from the previous sections to formulate a simple 
rheological model for the lithosphere. This rheological model is sketched in 
Fig. 5.13 and the following figures and will be the basis for our discussion 
in this book. Note that in these strength profiles (e.g. Figs. 5.13, 5.14 and 
5.15) differential stress rather than deviatoric stress is usually plotted on 
the horizontal axis, because era is a single scalar value that may be used to 
characterize the stress state. It is important to note throughout this chapter 
that (Jd/2 corresponds to the maximum deviatoric stress (s. discussion around 
eqs. 5.31 and 5.42). 

The strength profiles in Fig. 5.13 consist of two different types of curves. 
The straight lines are for brittle fracture. They show increasing rock strength 
with increasing depth as the normal stresses in the crust increase with 
depth as shown in eq. 5.29 (Fig. 5.13b, s. sect. 5.1.2). The curved lines de­
scribe viscous deformation. The strength they describe decreases exponen­
tially downwards, because temperature increases with depth roughly linearly 
(s. sect. 5.1.2) and viscosity for a given mineral decreases exponentially with 
temperature. Each curve is for a given strain rate that is assumed to be 
constant over the entire lithosphere. A higher strain rate will yield a curve 
that has a higher strength at a given depth. Fig. 5.13b shows that, for a 
given strain rate, two different failure strengths may be associated with each 
depth. A rock at a given depth will always deform according to the defor­
mation mechanism that requires less stress. Using this logic, we can draw 
strength profiles like those illustrated in Fig. 5.13c and 5.13d. We can see 
that the model predicts that, at shallow levels, rocks deform in a brittle fash­
ion, as is familiar to us from the fact that rocks at near the surface break 
in brittle fashion or break (instead of flow) when we hit them with a ham­
mer. At large depths and high temperatures, viscous deformation prevails as 
is familiar to us from the fact that high grade metamorphic rocks are often 
characterized by folding and other features indicating viscous (ductile) defor­
mation. The depth at which brittle strength and viscous strength have the 
same magnitude is called the brittle-ductile transition. Note that the depth 
of this transition is strain rate dependent in this model. 
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Figure 5.13. Schematic illustration of a Brace-Goetze lithosphere. a Tempera­
ture T as a function of depth z. This curve has the shape of a typical continental 
geotherm. b, c and d show shear strength as a function of depth, b Shear strength 
due to brittle failure (straight line) and viscous deformation (curved lines) for two 
different strain rates and the material constants for quartz and olivine. At any 
given depth, the curve with the higher strength corresponds to the higher strain 
rates, c and d Strength profiles constructed from b for low and high strain rates. 
Integrating the shaded area yields the vertically integrated strength. The units of 
this integrated strength are N m _ 1 . This integrated strength may be interpreted as 
the force per meter length of orogen applied to the orogen in direction normal to 
the orogen (assuming the orogen is everywhere deforming). Note that the cartoon 
indicates that - at high strain rates (profile d) - the upper mantle will deform in a 
brittle fashion just below the Moho 

In first approximation it is fair to assume that a rock will begin to deform 
when the Theologically weakest phase fails. As quartz is one of the softer 
minerals and most crustal rocks contain quartz, the ductile deformation of 
the crust may well be described with the rheological data for quartz. Rocks 
in the mantle part of the lithosphere are quartz absent and dominated by 
olivine. Therefore, Fig. 5.13 shows two pairs of curves for power law creep; 
one pair for the creep stresses of quartz at low and high strain rates, the 
other for the creep behavior of olivine at low and high stain rates. Together, 
all these curves result in a strength profile for the continental lithosphere 
that contains two strength maxima, one at mid crustal levels, the other in 
the uppermost portions of the mantle part of the lithosphere. This extremely 
simple model for the rheological stratification of the lithosphere is called a 
Brace-Goetze lithosphere (after a suggestion by Molnar 1992). 

Qualitative Features of the Brace-Goetze Lithosphere. The model 
of the Brace-Goetze lithosphere has a large number of features that are in 
phenomenal correspondence with observations in nature. Some of these are 
discussed here. Whilst we discuss these features, we want to keep in mind that 

viscous strength 
of quartz 

VISCOUS 
strength of olivine 

slow 
deformation 
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the Brace-Goetze lithosphere is only a model (also referred to as the "jelly 
sandwich model" and that there are also arguments against it (Jackson 2002). 

• Brittle failure in the mantle. A comparison of Figs. 5.13c and d shows 
an interesting qualitative difference between the two strength profiles. At 
low strain rates the entire lithosphere below the brittle ductile transition 
deforms viscously. However, at large strain rates, the viscous strength of the 
upper mantle is larger than its brittle strength and the uppermost mantle 
will fracture. Of course, the occurrence of brittle fracture in the upper mantle 
depends on a large number of other factors as well. However, we want to note 
that the brittle strength of the upper mantle is comparable to its viscous 
strength at geologically realistic strain rates. Should it be true that the upper 
most mantle deforms brittle under some circumstances, then this process 
might have important consequences for the accumulation of mafic material 
(underplating) at the Moho (Huppert and Sparks 1988). 

The transition from viscous flow to brittle failure in the upper most man­
tle may not only occur due to a change in strain rate (increase of viscous 
strength), but may also occur due to a decrease of the brittle strength. This 
may occur if there is a transition from compression to extension (sect. 5.1.2; 
Fig. 5.14, Sawyer 1985). Eq. 5.39 shows that the brittle strength of rocks is 
smaller in extension than it is in compression. It is therefore possible that 
brittle failure of the upper most mantle is caused by a qualitative change of 
the deformation regime. 

a b e 
compression extension 

Figure 5.14. Schematic diagram showing the changes in mechanical strength of 
a Brace-Goetze lithosphere when changing the deformation regime qualitatively, 
i.e. from compression to extension, a The change from compression to extension 
decreases the brittle failure strength (see. eq. 5.38 and eq. 5.39; Fig. 5.7), while 
the viscous strength remains unaffected by this change, if the absolute value of the 
strain rate remains constant. Potentially, this may be reflected in brittle failure of 
the upper mantle. This is illustrated in the strength profiles in b and c that were 
constructed from a: In b the entire mantle part of the lithosphere deforms viscously, 
while in c the upper most mantle fails in brittle fashion 
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• Changes in the Theological stratification. Changes in the strain rate of an 
orogen can also change the rheological stratification of the lithosphere. This 
is illustrated in Fig. 5.15 using a simple model lithosphere made up of three 
lithological layers. The figure shows that a change in the strain rate may 
change the rheological layering. At low strain rates there are three strength 
maxima, while at high strain rate there are only two (Fig. 5.15b,c). Such weak 
points may be the nucleus for the formation of a tectonic nappe boundary. 
Thus, it is possible that the thickness of nappes in a lithologically stratified 
crust is a function of the strain rate (Kuznir and Park 1986). 

• Changes in the geotherm. During viscous deformation it is not only changes 
in the strain rate that can change the strength of the lithosphere. Changing 
the geotherm may have the same influence. In the following we will encounter 
a series of examples where the shape of the geotherm is critical to the defor­
mation mechanism. Other mechanisms that can cause changes in the strength 
of the lithosphere are, for example, strain hardening, or metamorphism. 

• Strength change due to metamorphism. During metamorphism and defor­
mation, both mineralogy and grain size change. It is therefore conceivable 
that a rock has a higher shear strength after metamorphism than before. For 
example, a garnet mica schist has a larger shear strength than its precursor: 
a clay. This is an interesting aspect which may be crucial in the consideration 
of postorogenic extension of mountain belts. In general it is thought that the 
stresses required for the late extension of an orogen are smaller than those 
required for its shortening. This is based on the fact that brittle deforma­
tion requires smaller stresses in tension than in compression. However, this 
is contrasted by the fact that the crust may have increased its strength by 

ad 

- large 

Figure 5.15. Schematic diagram showing how changes of the deformation rate 
can cause changes in the rheological stratification of the lithosphere. In the shown 
example the crust is assumed to consist of three rock strata with different viscous 
rheologies (e.g. the upper, middle and lower crust). During deformation at low 
strain rate the lithosphere has three strength maxima. If the strain rate increases, 
the central strength maximum disappears. In a the continuous lines are for low 
stain rate and the dashed curves for large strain rate 
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metamorphism by the time it wants to extend. It is therefore possible that 
larger rather than smaller stresses are required to extend an orogen, than to 
build it. 
• Rheology considering elastic criteria. The Brace-Goetze lithosphere as we 
have discussed it in the last sections is based on the assumption that only 
viscous and brittle deformation mechanisms dominate its behavior. As such, 
it is in contrast to our assumption of the lithosphere as an elastic plate as 
we have done in sect. 4.4.2 when we have discussed flexural isostasy. Which 
model assumptions are made always depends on the question we are trying 
to answer (sect. 1.1). 

Ranalli (1994) suggested to describe the rheology of the lithosphere using 
a coupled viscous, elastic and brittle approach. His model is illustrated in 
Fig. 5.16, but we need to be careful not to confuse it with the strength 
profiles in Figs. 5.13 or 5.14. Elastic deformation is instantaneous and does 
not reflect a strength envelop for a given strain rate as the viscous curves do. 
Thus, the model illustrated in Fig. 5.16 may be used to infer a stress state, 
but should not be interpreted as a failure envelope. 

In a downward bent elastic lithosphere there is a stress neutral layer in the 
middle of the lithosphere. Above this point the lithosphere is under compres­
sion, below this point it is under extension (Fig. 4.23). These elastic stresses 
are shown in Fig. 5.16 by the straight line that goes from positive to negative 
stresses in the middle of the diagram. It may be seen that - in the upper most 
and lower most lithosphere - elastic stresses are extremely large but brittle 
and ductile stresses are small. However, in the central lithosphere, elastic 
stresses are smaller than brittle or viscous stresses and elastic stresses can 
therefore support internal and external loads. This model also shows that 
the elastic part of the lithosphere is significantly thinner than the thermally 
defined lithosphere (Fig. 5.16). 

• Quantitative description of a Brace-Goetze lithosphere. In order to describe 
the Brace-Goetze lithosphere quantitatively we require quantitative infor­
mation on 1. the depth dependence of temperature, i.e. a description of a 
geotherm; 2. the material constants (both 1 and 2 we need in order to calcu­
late viscous stresses); 3. we need density and thickness of the crust and mantle 
part of the lithosphere in order to calculate vertical stresses and therefore the 
brittle strength. Table 5.3 lists typical numerical values for these parameters 
(Brace and Kohlstedt 1980). For the thermal structure of the lithosphere we 
will assume in the following that the radiogenic heat production decreases 
exponentially with depth according to eq. 3.67 with the characteristic drop 
off depth hT — 10 km. We also assume that the thermal conductivity is 
k — 2 J s _ 1 m _ 1 K_ 1 , and that the temperature at the base of the lithosphere 
is T\ = 1280°C. Assumption on thickness and density are also listed in Ta­
ble 5.4. 

We also make the assumption that the viscous behavior of olivine is de­
scribed by eq. 5.46 below stresses of 200 MPa and by eq. 5.47 for stresses 
above 200 MPa. Brittle failure is described with Byerlee's law. That is, below 
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Figure 5.16. Rheology of the lithosphere considering elastic, viscous and brittle 
constitutive relationships. Note that this model illustrates a stress state rather than 
a failure envelope and should therefore not be confused with illustrations like those 
in Figs. 5.13 or 5.14. Compressive stresses are plotted towards the right, tensional 
stresses towards the left, a Strength profile for the crust (viscous stresses are only 
plotted for a single mineral phase, e.g. quartz), b Strength profile through the 
lithosphere considering the rheology of quartz and olivine. In both strength profiles 
elastic stresses are also plotted as the straight line with positive stresses in the 
upper crust and negative stresses in the lower parts (s. Fig. 4.23). The deformation 
mechanism that dominates at a given depth is given by the lowest stresses at a given 
depth. The elastic section of the crust in a is therefore restricted to the region h. 
In b the elastic portion of the lithosphere is in two regions hi and /i2, that are 
separated from each other (after Ranalli 1994) 

500 M P a britt le failure is assumed to occur without cohesion and an internal 
coefficient of friction of 0.8 and above 500 M P a the cohesion is 60 M P a and 
the internal coefficient of friction is 0.6. Some strength profiles calculated 
with these assumptions are dawn in Fig. 5.17. 

S t r e n g t h of t h e L i thosphere . When considering the distribution of stresses 
in the continental lithosphere, we have so far always only considered the 
stresses at a given depth. However, if we want to consider the deformation of 
entire continental plates, we need to know the mean stresses averaged over the 
entire lithosphere, or we need to know the total force tha t it needed to deform 
the entire lithosphere from top to base. Within the model of a Brace-Goetze 
lithosphere, this force is given by the vertically integrated stresses. This inte­
grated strength is abbreviated with F\ and corresponds to the shaded region 
in Figs. 5.13, 5.14 and 5.15). If we make the thin sheet approximation, then 
the integrated strength of the lithosphere may be calculated as: 

F (7i -a3)dz (5.48) 

It has the units of force per meter or P a m = N m " 1 . F\ may be interpreted 
as the force acting in the direction normal to the orogen per meter length of 
orogen (i.e. in direction parallel to the orogen), tha t is required to deform 
the orogen with a given stain rate (Fig. 5.13, 5.14, 5.15). In the li terature, 
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Table 5.3. Rheological parameters of the continental lithosphere relevant for its 
viscous behavior. These data are largely after Sonder and England (1986). However, 
the activation energy was changed from Sonder and England (1986) ( Q D = 5.4-105) 
to the value of Qu = 5.454 • 10 in order to allow a smooth transition between the 
stresses at 200 MPa. Instead of changing QD , Zhou and Sandiford (1992) changed 
for the same reason eb from 5.7-1011 to 3.05 • 1011. If all other parameters remain 
constant, then the two changes have the consequence that stresses are about 40 MPa 
larger than those of Sonder and England (1986) 

parameter 

power 

\ 
Oq 
" q 

A, 
Oo 
n0 

Dorn s 

OD 

«D 

C D 

law 

law 

value/unit 

(eq. 5.46) 

5- 10"6 M P a " 3 s _ 1 

1.9-105 J m o l - 1 

3 

7- 104 M P a - 3 s _ 1 

5.2 105 J m o l " 1 

3 

(eq. 5.47) 

5.4 105 J m o l " 1 

5.7 - H ^ s - 1 

8500 MPa 

definition 

pre exponent constant for quartz 
activation energy for quartz 
power law exponent for quartz 

pre exponent constant for olivine 
activation energy for olivine creep 
power law exponent for olivine 

activation energy for olivine creep 

strain rate 
critical stress 

Table 5.4. Rheological parameters of relevance for the brittle deformation of a 
Brace-Goetze lithosphere 

parameter 

P(<500MPa) 

P(>500MPa) 

0O(<5OOMPa) 

<70(>500MPa) 

A 
Zc 

A 

Pc 

Pm 

value/unit 

0.8 
0.6 
0 
60 MPa 
0.4 and 0.8 
35 km 
125 km 
2 750 k g m - 3 

3 300 kgm"3 

definition 

coefficient of friction in the crust 
coefficient of friction in the mantle 
cohesion of the crust 
cohesion of the mantle 
pore fluid/lithostatic pressure ratio 
thickness of the crust 
thickness of the lithosphere 

density of the crust 

density of the mantle lithosphere 

the terms "strength" is often used very loosely. Strength (in Pa), integrated 
strength (in N m _ 1 ) , sometimes stress and occasionally even force are all often 
confused. We want to remember that strength has the units of stress (it is the 
stress that leads to brittle failure or viscous flow) and that integrated strength 
is a force per meter (which is equal to stress x meter). In the viscous regime 
strength is only defined for a given strain rate. This should be clear from 
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Figure 5.17. Strength profiles for the continental lithosphere as calculated with 
the model for a Brace-Goetze lithosphere and the data from Table 5.3 and 5.4). 
a, b, c and d are profiles for four different geologically relevant strain rates. The two 
diagrams show the strength profiles for two different Moho-temperatures that result 
from assumptions for the radiogenic surface heat production of So = 5 • 1 0 - 6 W m - 3 

and So = 7 • 1 0 - 6 W m - 3 . In each diagram two linear curves for brittle failure for 
A = 0.4 and A = 0.8 are plotted. The stress curve with the higher stresses is for the 
lower value of A. It was assumed that Ac = Ai. The vertically integrated stresses F\ 
are given in 1012 N m _ 1 

eq. 5.46, where it is shown that the viscous stresses (strength) are strongly 
dependent on strain rate. 
• Integrated strength as a function of Moho-temperature. The strength of 
the lithosphere is very strongly dependent on the Moho-temperature. The 
details of the temperature distribution above and below the Moho are only a 
second order effect (Sonder and England 1986). Thus, for many mechanical 
questions on the scale of the lithosphere it is sufficient to characterize the 
geotherm by a single number: the Moho-temperature. Above and below the 
Moho it is sufficient to assume linear geotherms. However, in the following 
sections we continue to use curved geotherms characterized by exponentially 
decreasing radiogenic heat productions and so use the relationships derived in 
sect. 3.4.4. Thus, we determine the Moho-temperature indirectly by assuming 
the radiogenic surface heat production, the thermal conductivity and the 
surface heat flow. As a reminder to sect. 3.4.1, Fig. 5.18 shows the Moho-
temperature and the surface heat flow as a function of thermal conductivity 
and heat production. 

In order to quantify the integrated strength of the lithosphere we must 
integrate eq. 5.48. However, it is near impossible to integrate this equation 
analytically as the strength profile between z = 0 and z = z\ is composed 
of several very different functions (Zhou and Sandiford 1992). The values for 
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integrated strength quoted in the following sections were derived by numerical 
integration of eq. 5.48. Fig. 5.19 illustrates that the integrated strength rises 
dramatically with increasing strain rate (which corresponds to eq. 5.46). At 
geologically realistic strain rates the integrated strength ranges between 1012 

and 1014 Nm" 1 (s. Fig. 5.17). These magnitudes correspond well with the 
magnitude of estimated plate tectonic driving forces (sect. 5.3). 

5.2.2 Rheology of the Oceanic Lithosphere 

The fundamental assumptions which we have made for the calculation of 
stresses and strength profiles for the continental lithosphere are also valid for 

Figure 5.18. Surface heat flow 
and Moho-temperature as a 
function of radiogenic heat 
production at the surface So- It 
is assumed that this heat 
production rate decreases 
exponentially with depth. The 
characteristic skin depth for this 
exponential drop off is assumed 
to be 10 km (s. eq. 3.67). Curves 
are labeled for conductivities in 
J s _ 1 m _ 1 K _ 1 (calculated with 
eq. 3.76, eq. 3.77 and the data 
from Table 5.4) 

So(io*Wm3) 

Figure 5.19. Vertically 
integrated strength of the 
continental lithosphere Fi as a 
function of strain rate. The 
curves are shown for three 
different geotherms characterized 
by three different surface heat 
productions (So in W m - 3 ) . The 
Moho-temperatures that 
correspond to these assumptions 
may be read from Fig. 5.18. 
Similar diagrams were first 
discussed by Sonder and 
England (1986). The integrated 
strengths shown here are 
relatively small, because the 
assumed temperature profiles are 
relatively high 
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Figure 5.20. Strength profile 
through the oceanic lithosphere 
at ages of 10, 30 and 100 my. For 
each of these ages, stresses were 
calculated for three strain rates 
of e = 10 - 1 6 , 10 - 1 4 and 
10~12 s _ 1 . For each age, the 
curve for the highest strain rate 
has the largest strength. The 
temperature profiles needed to 
calculate the stresses were 
calculated using eq. 3.80; for the 
rheological data the values of 
Table 5.3 and 5.4 were used 
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the oceanic lithosphere. However, there are two important differences: 1. In 
contrast to the continental lithosphere, oceanic geotherms are time depen­
dent and there is no radiogenic heat production in the oceanic lithosphere. 
As a consequence, different relationships must be used to calculate the tem­
perature profile with depth and ultimately the rheology (sect. 3.5). 2. There 
is practically no quartz bearing crust in the oceanic lithosphere and the rhe­
ology of oceanic lithosphere is therefore largely governed by the rheology of 
olivine. As a consequence, there is only one maximum in the strength profile 
(Fig. 5.20). On the other hand, the strength profiles of oceanic lithosphere are 
highly dependent on its age (sect. 3.5.1). The depth dependent temperature 
profile of oceanic lithosphere may be calculated with eq. 3.80. A strength 
profile for the oceanic lithosphere may then be calculated using eqs. 5.38, 
5.46 and 5.47 as well as the data from table 5.3 and 5.4. Fig. 5.20 shows some 
examples for such strength profiles through oceanic lithosphere. 

Strength of the Oceanic Lithosphere. Eq. 5.48 may be used to calculate 
the integrated strength of the oceanic lithosphere just like we used it above to 
calculate the integrated strength for the continental lithosphere. In fact, it is 
possible to calculate the integrated strength of the oceanic lithosphere with 
much higher accuracy than of the continental lithosphere, because oceanic 
geotherms are much better known than continental geotherms. Fig. 5.21a 
shows the calculated integrated strength of oceanic lithosphere as a function 
of different strain rates and age as calculated numerically with eq. 5.48. 

Fig. 5.21a may be compared directly with Fig. 5.19. In Fig. 5.21b the same 
information is shown in a diagram with age on the horizontal axis. A compar­
ison with Fig. 5.19 shows that only very young oceanic plates have a smaller 
integrated strength than continental lithosphere. This result from Figs. 5.21 
and 5.19 corresponds to our observations: We know that most intra plate 
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Figure 5.21. a Integrated strength of the oceanic lithosphere as a function of 
strain rate for 5 differently aged oceanic lithospheres. Curves were calculated with 
eq. 5.48 using the results of Fig. 5.20. b Integrated strength of oceanic lithosphere 
as a function of age for three different strain rates, a and b contain the identical 
information 

Figure 5.22. The strain rate 
with which oceanic lithosphere 
will deform in response to ridge 
push. The strain rate is plotted 
against age of the oceanic 
lithosphere. Clearly, the older 
the oceanic lithosphere is, the 
larger the applied ridge push 
and the larger the strain rate. 
Note that all strain rates are 
several orders of magnitude 
below anything that might be 
geologically relevant. In other 
words, oceanic lithosphere does 
practically not deform under the 
force exerted by ridge push force 
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seismicity occurs in the continents and not in the oceans (Fig. 2.2). There is 
practically no deformation inside the oceanic plates of the earth. An oceanic 
plate acts - because of its high integrated strength - like a passive t ransmit ter 
of stresses from the mid oceanic ridges to the continents (s. sect. 6). 

• Strength relationships between continental and oceanic lithosphere. In the 
previous paragraph we have shown tha t oceanic lithosphere is significantly 
stronger than continental lithosphere, even though it is generally much thin­
ner. We have come to this important conclusion by comparing the integrated 
strength of continents and oceans if they would deform under the same strain 
rate . However, in geodynamics it is often more meaningful to compare the de-
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formation rate of continental and oceanic lithosphere under the same applied 
stresses, rather than the stresses under the same applied strain rates. 

One of the most important plate tectonic driving forces is the potential 
energy of the mid oceanic ridges (sect. 5.3.2). The force that is exerted by 
these ridges onto the surrounding continents increases with the age of the 
oceanic lithosphere. We can now ask ourselves if it is the continents or the 
oceanic lithosphere that are deformed by this force. In order to answer this 
question, we have plotted the strain rate of oceanic lithosphere with which 
oceanic lithosphere would deform under its own ridge push against age of the 
oceanic lithosphere (s. sect. 6.2.2). Fig. 5.22 shows that these strain rates are 
geologically irrelevant. The vast majority of the plate divergence at the mid 
oceanic ridges is compensated by deformation inside the continents and not 
inside the oceanic lithosphere. 

5.3 Forces Applied to Lithospheric Plates 

5.3.1 Transmission Mechanisms 

Plate tectonic driving forces may be divided into two fundamental groups 
according to the way they are transmitted: 

— transmission by shear stresses, 
— transmission by normal stresses. 

Because plate tectonic driving forces act horizontally, shear stresses must be 
applied to horizontal surfaces and normal stresses to vertical surfaces. If the 
transmission occurs by shear stresses, this is often called basal traction. If 
the transmission occurs by normal stresses, we speak of end loading or side 

a force applied at base b force applied at sides 

Figure 5.23. Illustration of the two fundamental mechanisms for the transmission 
of plate tectonic driving forces, a illustrates transmission by basal friction. In ii basal 
friction is shown in a Eulerian reference frame ("conveyer belt" model). In Hi basal 
friction is shown in a Lagrangian reference frame ("bulldozer" model), b illustrates 
transmission by lateral normal stresses ("side forcing") 
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forcing. Fig. 5.23 illustrates that different deformation geometries may arise, 
depending on the transmission mechanism. However, in reality it is often 
difficult to interpret which of the two mechanisms is responsible for a given 
plate motion (Wilson 1993). In fact, the scientific community remains divided 
between those who believe that plate tectonics is driven by basal traction and 
those who consider lateral normal stresses as the principal driving force. 

Transmission of Stresses by Shear- or Normal Stresses. One model 
for the explanation of plate motions is that the friction between the base of the 
lithosphere and the convective motion in the asthenosphere is the principal 
driving mechanism (Ziegler 1992; 1993). The most important argument for 
this model comes from the reconstruction of past plate motions. These do 
not correspond very well with the global geometry of mid oceanic ridges 
and subduction zones. Thus, it is thought that these plate motions reflect 
the geometry of convection cells in the mantle instead. The most important 
argument against this model is implicit in Fig. 5.13. This figure shows that 
differential stresses at the base of the lithosphere are much too small to be able 
to transmit forces from the mantle into the lithosphere. It is therefore hard 
to imagine that this softest part of the lithosphere can transmit stresses large 
enough to build the mountain ranges of our planet (s. mechanical definition 
of the lithosphere in sect. 2.4.1). The tractions at the base of the lithosphere 
are not likely to be larger than 10 - 2 MPa (Richardson 1992). 

The other - and by far more accepted - model for the explanation of plate 
motions is that plate boundary forces drive plate tectonics by lateral normal 
stresses (e.g. Forsyth and Uyenda 1975). These forces are predominantly 
caused by potential energy variations. Such variations occur inside the conti­
nents and along the boundaries of oceanic lithosphere and will be discussed 
on the following pages. 

Despite the two different models for the origin of plate tectonic driving 
forces we should not forget that, ultimately, all plate tectonic forces find their 
origin in the thermal energy of earth. On the scale of an individual orogen it is 
often easier to determine the way forces are transmitted into the orogen. For 
example, the geometry of accretionary wedges shows clearly that they form 
by basal traction with the subducting plate below (sect. 6.2.3). An example 
for deformation in response to lateral normal stresses is the deformation of 
intra continental mountain ranges like the Tien-Shan in central Asia. The 
Tien Shan developed at the same time as the Himalaya. The forces involved 
in the India - Asia collision were transmitted horizontally across the Tarim 
Basin into the Tien Shan. 

Boundary Conditions of Deformation. In the last section we have dis­
cussed normal and shear stresses that cause the deformation of plates. How­
ever, it is not clear that it is stresses that are the appropriate boundary 
conditions for plate deformation. For example, the India-Asia collision keeps 
going at constant convergence rate irregardless the stresses that arise as a 
consequence of the build up of the Himalaya. Thus, this may be an example 
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Figure 5.24. Illustration showing how apparently small differences in the bound­
ary conditions can cause very different deformation geometries. In both examples 
a square body is subjected to two-dimensional plane strain deformation. In both a 
and b the tangential and normal components of the boundary conditions on the 
left and right boundaries are given by stresses, which are assumed to be zero 
(o'xx = Qyx = 0). Also, in both examples the normal component at the bottom 
boundary is given by a velocity with which the bottom boundary moves towards 
the top boundary (vyy > 0). a and b differ only in the tangential component of 
the boundary condition along the bottom boundary. In a this is given by a velocity 
(vXy = 0), in b it is given by a stress (<rXy = 0 = free slip) 

where velocities rather than stresses form an appropriate boundary condition. 
We therefore discriminate between: 

— Orogenic boundary conditions given by velocities, 
— Orogenic boundary conditions given by stresses. 

Both types of boundary conditions may have a normal and a tangential 
component. Thus, for a two-dimensional mechanical model with the two spa­
tial coordinates x and y, we require a tangential and a normal boundary 
condition on each boundary. A total of four variables must be defined by the 
boundary conditions. Fig. 5.24 illustrates tha t the difference between velocity 
and stress boundary conditions may have a very profound influence on the 
deformation geometry. A boundary condition is called free slip if the shear 
stresses along this boundary are considered to be zero. 

The reason why we require four boundary conditions for the description 
of two-dimensional deformation may be also seen from the stress balance 
equations (eq. 5.15, 6.25 and 6.26). If we integrate these equations with two 
variables, then there are four constants of integration. In order to determine 
these constants we need four independent pieces of information: the four 
boundary conditions. 

If a medium is not everywhere a continuum, for example because it contains 
a britt le fracture, then all mechanical properties may have discontinuities. 
Such problems may not be solved using a single set of boundary conditions 
as in Fig. 5.24 and we must use internal boundary conditions or other special 
tricks to be able to solve such problems. For example, the medium can be 
subdivided into several continuous regions tha t are described separately. 
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Potential Energy. Practically all important plate tectonic driving forces 
find their origin in differences of the potential energy of different parts of the 
earth (Turcotte 1983). In this section we explain what we understand with 
the term potential energy in a plate tectonic context. We will return to this 
concept again in the sections 5.3.2, 5.3.3 and 6.2.2. 

In sect. 4.4.1 we have shown that the vertical normal stress at a given depth 
in the crust z is given by the product of density, gravitational acceleration 
and the height, or thickness of the vertical rock column above it. This vertical 
normal stress is the vertically acting force per area. It may be calculated by 
integrating pg between 0 and z, as we did in eq. 4.22. If the density over the 
thickness z remains constant, then this is simply pgz. This term has the units 
of Pa or k g s - 2 m _ 1 or Jm~ 3 . We can see that stress has the same units as 
energy per volume. 

This quantity can also be interpreted as the potential energy of a cubic 
meter of rock at depth z. If we want to know the potential energy not of a 
single cubic meter, but that of a whole body, for example that of a mountain 
range, then we need to integrate this potential energy per cubic meter over 
the lateral and vertical extent of the range. Fortunately, it is usually sufficient 
to know the potential energy per area, i.e. that of a complete vertical column, 
but only for one square meter of area. Using this potential energy per area 
we can compare different regions on the globe, for example two neighboring 
lithospheric columns of different thickness and density distribution. In the 
following we will represent the potential energy per area with Ep. In order to 
determine Ep at depth z we simply need to sum up (i.e. integrate) the vertical 
stresses in the lithospheric column of interest between the surface (which 
usually is z = 0 in the reference frame we use) and the depth of interest z: 

Ep = azzdz = / p^gdzdz . 
Jo Jo Jo 

(5.49) 

Very often the "depth of interest" is the isostatic compensation depth. If the 
density is independent of depth, then eq. 5.49 may be simplified to give: 

^2 
Ep = j a2Zdz = I pgzdz = ^f- . (5.50) 

This integral corresponds to the gray shaded region in Fig. 5.25b. We want to 
remember that Ep has the units of energy per area and is, therefore, strictly 
speaking, no energy as such. 

Horizontal Forces Arising from Potential Energy Variations. In a 
static, non-deforming lithosphere the horizontal and vertical normal stresses 
have the same magnitude (see Fig. 5.25). It is true that: 

®zz = ®xx = ®yy • (5.51) 

This is also stated in eq. 5.42, which says that there is no deviatoric stress 
if the strain rate is zero. The sum of all vertical stresses integrated over the 
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Figure 5.25. Density p and vertical normal stress azz as a function of depth z. 
The value azz is the vertically integrated density, times acceleration. Thus, the 
curve in b corresponds to the gray shaded region in a. The row of little unity cubes 
next to a illustrates how the vertical stress increases with depth. The column of 
cubes next to b illustrates that the horizontal force exerted by the column on its 
surroundings is given by the sum of all vertical stresses. This corresponds to the 
gray shaded area in b 

thickness of a plate is the potential energy of the plate per area. Since hor­
izontal and vertical stresses are the same, this potential energy per area is 
equivalent to the force exerted by the lithosphere onto its surroundings, per 
meter length of orogen. If two neighboring vertical lithospheric columns have 
the same potential energy per unit area, then they also exert equally large 
horizontal forces onto each other and there is no "net force" between them. 
However, if they have different potential energies per area, then this poten­
tial energy difference between the two plates may be interpreted as the net 
force Fb that is exerted by one column onto the other in the horizontal di­
rection and per meter length of orogen. This net force arising from potential 
energy differences is also called horizontal buoyancy force (somewhat cum­
bersome) or gravitational stress and it is important to remember that it has 
the units of force per meter length of orogen. This potential energy difference 
may be written as (s. Fig. 5.26): 

AEp = Fb= / pA(z)gdzdz- / pB(z)gdzdz . (5.52) 
Jo Jo Jo Jo 

There, ZK could be any depth, but for many purposes it is useful to assume 
that it is the same isostatic compensation depth we used on p. 161. Below 
this depth there is no density differences between the vertical columns A and 
B (s. eq. 4.21). pA(z) is the density of profile A as a function of depth z. 

If density is a continuous function of depth, then eq. 5.52 may be usually 
integrated without too much trouble. However, in the lithosphere, the density 
distribution has (a the least) a discontinuity at the Moho so that it may be 
necessary to split the integral in eq. 5.52, even for very simple assumptions on 
the density distribution in the lithosphere. For example, the potential energy 
of the two-layered column A in Fig. 5.26 for column A may be described by: 
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(5.53) 

It should be easy to understand this equation graphically by plotting density 
and vertical stress as a function of depth as we did in Fig. 5.25, 5.27, 5.31 
and 5.33. 

The importance of the density distribution in the lithosphere for the po­
tential energy may be illustrated nicely with an interesting example. Fig. 5.26 
shows two columns in isostatic equilibrium. The two columns have the same 
isostatically supported surface elevation, because they are made up of sections 
of the same densities and thicknesses. However, they have different potential 
energies because in column B the dense part lies up high. Potential energy 
does not only depend on thickness and density, but also on the distribution 
of density with depth. Thus, there is a net buoyancy force between the two 
columns shown in Fig. 5.26. This net force is exerted by column B towards 
column A. 

We can conclude that it is dangerous to infer lateral forces from topography 
on the surface of earth (England and Molnar 1991). Surface elevation is a 
linear function of thickness (eq. 4.23 and 4.24), while potential energy per 
unit area is a quadratic one (eq. 5.49 and 5.52). In fact, it is even possible, that 
topographically lower regions exert a gravitational stress on topographically 
higher regions, averaged over the thickness of the lithosphere (Stiiwe and 
Barr 2000). Geoid anomalies on the other hand can be used to estimate the 
density distribution within the lithosphere. Coblentz et al. (1994) have used 
a combination of information on surface elevation and on geoid anomalies to 
estimate the potential energy of the lithosphere. 

Force Balance Between Mountains and Foreland. In this section we 
estimate the forces exerted by a mountain range onto its foreland (Fig. 5.27). 
For this, we will follow the logic of Molnar and Lyon-Caen (1988) and also 
use their choice for the vertical axis of the cross section. We assume an ori­
gin at the Moho and measure the vertical direction positively upwards as 
illustrated in Fig. 5.27b. This choice for the vertical axis helps the intuitive 
understanding if the integration of eq. 5.52, as one of the integration limits is 
always zero (s. Molnar and Lyon-Caen 1988). However, note that the results 
are independent of the chosen reference frame as we do not calculate absolute 
potential energies, but only potential energy differences between two neigh­
boring columns. Thus, as long as we choose the same coordinate system for 
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Figure 5.26. Schematic cartoon showing two columns in isostatic equilibrium (pi < 
P2 < ps)- The surface of both columns has the same elevation above the liquid of 
density p2, because both bodies consist of equally thick sections of the densities 
pi and p3, i.e. they have the same weight. However, column B has a much higher 
potential energy per unit area than column A, because the distribution of density 
is different. In column B the high density part of the section lies higher. As a 
consequence, B exerts a net force towards A. The cartoon obviously represents no 
geologically realistic scenario for the lithosphere. However, it is useful to illustrate 
why mountain ranges need not exert a net force onto their lower lying surroundings 
even if they have a higher surface elevation. Note however, that this logic only 
applies if forces may be averaged over the thickness of the lithosphere. Problem 
5.16 is related to this figure 

the two columns that are to be compared, it does not matter which reference 
frame we pick. 

We begin by calculating the potential energy per unit area of the foreland 
following the logic of Molnar and Lyon-Caen (1988). We can find this by inte­
grating eq. 5.49. For the undeformed lithosphere in the foreland the potential 
energy above the Moho is simply: 

Ef
p°^d = pcgz2/2 . (5.54) 

Correspondingly, the potential energy of the thickened crust relative to the 
Moho is: 

E^=pcg(H + zc)
2/2 + Apgw2/2 . (5.55) 

where Ap = (pm — pc) and the thicknesses H, Zc and w are as labeled on Fig. 
5.27. The first term in the equation above is simply the potential energy of 
the thickened crust above the chosen origin at the Moho of the undeformed 
lithosphere. the second term is in the negative z direction, but the density 
contrast is also negative (as it acts as a buoyant force) providing in total a 
positive contribution to the potential energy. Note that these relationships 
were derived according to the same principal as eq. 5.53. The potential energy 
difference per unit area is given by the difference of eq. 5.54 and eq. 5.55 (s. 
eq. 5.52). It is: 

&E = pb = £ ™ g e _ £;foreland 

Pi 

y 
y 

n-> 
Pi 

= pcgH2/2 + pcgHzc + Apgw2/2 (5.56) 
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b pcgzc pc g(H + z c + W) 

Figure 5.27. Cartoon contrasting the distribution of vertical stresses in mountain 
ranges relative to their foreland, a The thickness of the crustal root is w, the 
surface elevation relative to the reference lithosphere in the foreland H. In isostatic 
equilibrium it is true that: Hpc = w(pm - pc) = wAp. In b the vertical stresses 
are drawn for the mountain range and the foreland. The dark shaded area between 
the two stress curves has the units of stress x meters or force per meter length 
of orogen exerted by the range onto the foreland. It corresponds to the potential 
energy difference between the mountain range and the foreland 

Eq. 5.56 may be simplified because we assume that both, mountain range 
and foreland are in isostatic equilibrium. The isostasy condition states that: 
Apw = Hpc. Using this we can simplify eq. 5.56 to: 

AEV =Fh= PcgH (H/2 + zc + w/2) (5.57) 

The force Fb corresponds to the dark shaded region in Fig. 5.27b. It is the 
difference between the vertically integrated vertical stresses uzz of two vertical 
columns in the mountain range and in the foreland, respectively (Tapponier 
and Molnar 1976). For a 3 km high mountain range with a 30 km root, 
eq. 5.57 gives a force Fb of the order of 3-4 -1012 N m _ 1 . We will see that this 
number is comparable with the forces applied to and exerted by mid ocean 
ridges. 

Despite its simplicity, eq. 5.56 may be used to draw some very fundamen­
tal conclusions. For one, we can see that the third term is significantly larger 
than the first term. Thus, the potential energy difference between two moun­
tain ranges of the same elevation becomes larger if the compensating root is 
thicker. For example, a 100 km thick root of a mountain range made up of 
low density mantle material contributes significantly more to the potential 
energy of a range than a 60 km thick root of crustal material. We can also 
see from eq. 5.56 that the potential energy of a mountain range grows with 
the square of both the surface elevation and the thickness of its root. The 
work that must be done to increase the surface elevation of a mountain range 
by one meter increases therefore as the mountain range gets higher (Molnar 
and Tapponier 1978; s. sect. 6.2.2). This is the reason why mountain ranges 
do not grow infinitely on this planet and have a limiting elevation. As poten-
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tial energy variations are some of the most important driving forces in the 
lithosphere we will continue with more details in the following sections 5.3.2 
and 5.3.3. 

5.3.2 Forces in Oceanic Lithosphere 

The forces exerted by oceanic lithosphere onto the continents around them 
are considered to be the fundamental driving mechanism for plate tectonic 
motion (McKenzie 1969b). There are two important driving forces in oceanic 
lithosphere: 1. the potential energy of the mid-oceanic ridges and 2. the forces 
that occur in subduction zones. The former is called ridge push, the latter 
are called slab pull and trench suction. In the following we discuss the nature 
of both types of forces and discuss their magnitude. 

Ridge Push. Mid-oceanic ridges have a high topography and a high poten­
tial energy relative to the average oceanic lithosphere. This potential energy 
is one of the more important (and certainly best known) plate tectonic driv­
ing forces. While strictly speaking the mid-oceanic ridge applies a torque to 
the plate (s. p. 25), we will neglect here the curvature of the earth and con­
tinue using the term "ridge push". It is important to understand that ridge 
push finds its origin in the high potential energy of the ridge, rather than 
in the frictional stresses between an outward welling mantle plume and the 
oceanic plate as drawn in Fig. 5.28a. 

The ridge push force per meter length of ridge (equivalent to the potential 
energy of the ridge per unit area) may be calculated with eq. 5.52, using 
similar assumptions to those we have made when designing a model to explain 
the water depth of the oceans (s. Fig. 4.19). The density of oceanic lithosphere 
must be expressed in terms of temperature (eq. 4.27) and temperature as 
a function of depth (eq. 3.80; s. Turcotte and Schubert 1982; Parsons and 
Richter 1980). Then - using the half space cooling model - it may be shown 
that the ridge push force is a function of the thermal profile through the 

- ^ - - ^ 

Figure 5.28. Cartoon showing two possible motions of the asthenosphere below 
mid oceanic ridges, a Asthenospheric material wells up below the mid ocean ridge 
in form of a mantle plume. During this process, adiabatic decompression of astheno­
sphere material will cause massive partial melting. It is thought that this situation 
pertains to regions where these melts are now present as large igneous provinces 
like the Karoo Basalts in southern Africa or the Deccan Traps in India and may be 
Iceland (Fig. 6.34). b shows the mantle motion that is thought to be representative 
for most mid oceanic ridges 
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Figure 5.29. The force exerted 
by mid-oceanic ridges onto the 
surrounding plate per meter 
length of ridge, shown as a 
function of age of the oceanic 
lithosphere. Calculated with 
eq. 5.58 

0 20 40 60 80 100 
age (my) 

oceanic lithosphere and therefore of age. Without reiteration the derivation 
of the ridge push force here, we simply state that it is given within this model 
by the equation: 

Fb = gpmaTiKt (l + ( pm ) — } » 1.19 • 10"3t . (5.58) 
V \Pm-PwJ 71- J 

All parameters of this equation are explained in sect. 4.4.1. From eq. 5.58 we 
can see that the ridge push force is a linear function of age of the oceanic litho­
sphere (Fig. 5.29). As such it is different from water depth which - within 
this model is described by a square root function of age (Fig. 4.20). The 
numerical value of the proportionality constant between age and force in 
eq. 5.58 (1.19 • 10~3) is derived using the following constants: Xi = 1200°C; 
pm = 3200 kgm"3 ; pw = 1000 kgm"3 ; a = 3-10"5 K"1 and K = 10"6 m2 s"1. 
Fig. 5.29 shows that ridge push is about an order of magnitude smaller 
than the integrated strength of continents at normal orogenic strain rates 
(s. Fig. 5.19). Thus, we may conclude that ridge push alone is insufficient as 
the principal plate tectonic driving force. 

• Asthenospheric flow at mid-oceanic ridges. In the past, ridge push has been 
interpreted to be related to frictional stresses of upwelling asthenosphere that 
"pushes" the ridge apart as illustrated in Fig. 5.28a. However, several obser­
vations speak against this model. For example, if upwelling material causes 
ridges, then it would be expected that different ridges have different elevations 
above the abyssal planes - dependent on the force exerted by the upwelling 
materials. In contrast, practically all mid ocean ridges lie at a constant water 
depth. Today we know that there are only very few places where mid-oceanic 
ridges coincide with diapirically upwelling mantle material. Rather, the as­
thenospheric flow at most mid-oceanic ridges is of the geometry shown in 
Fig. 5.28b. Among other arguments, this was recognized by McKenzie and 
Bickle (1988) using on geochemical arguments. These authors showed that 
partial melting that would occur due to adiabatic decompression of upwelling 
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melt in a mantle plume would be enough to form a 15 km thick oceanic crust. 
In contrast, normal oceanic crust is measured to be only about 5-7 km thick. 
This thickness can be produced by adiabatic melting of only the upper most 
asthenospheric regions. Asthenospheric flow as sketched in Fig. 5.28b is suf­
ficient to produce a 5-7 km thick oceanic crust. Thus, it is thought that 
the flow directions of asthenospheric convection have little to do with the 
position of the mid-oceanic ridges. There are only very few places where 
mid-oceanic ridges coincide with diapirically upwelling mantle material. One 
of these places is Iceland (Fig. 6.34). There, not only is the oceanic crust 
significantly thicker than 7 km, but also the mid oceanic ridge is uplifted by 
the stresses exerted to its base by the upwelling mantel material not unlike 
a jet of water shot from below onto a rubber sheet. Other regions where 
mantle plumes are thought to coincide with rifting margins are those of flood 
basalts (p. 315) (White and McKenzie 1989). 

Slab Pull and Trench Suction. Old oceanic lithosphere is denser that 
the underlying asthenosphere and it has therefore a negative buoyancy and 
it wants to sink. However, because oceanic lithosphere is very strong and stiff, 
it cannot immediately do this as soon as it reaches this critical age where its 
density becomes large compared to that of the underlying asthenosphere. 
Rather, the oceanic plate "glides" along the surface of the asthenosphere 
until this gravitationally unstable configuration is brought out of balance 
and a subduction zone forms. Once the edge of such an old oceanic plate 
has begun to subduct, it drags the remainder of the plate behind it. This 
is what is called slab pull. Such subduction processes may cause, or may be 
caused by, small scale convection in the upper mantle. This convection occurs 
predominantly in the wedge shaped region between the subducting and the 
upper plate. Once such a convection system is set up, it may actually drag 
both the upper plate and the subducting plate into the subduction zone 
(s. Fig. 3.28). This is what is called trench suction. 

Slab pull is gravitationally induced, simply because the dense oceanic litho­
sphere wants to sink into the less dense upper mantle. In fact, the slab pull 
force is reinforced by the fact that the density of the down-pulling slab in­
creases significantly once it has passed the olivine-spinel-transition at roughly 
400 km depth. The magnitude of slab pull is roughly 1013 N m _ 1 (s. Turcotte 
and Schubert 1982). Thus, slab pull is about an order of magnitude larger 
than ridge push. However, it is likely that slab pull is being counteracted 
by frictional stresses of about the same magnitude between the sinking plate 
and the surrounding asthenospheric mantle. Thus, the net force exerted by 
subduction zones onto the foreland need not be very large. Estimates by Bott 
(1993) and Bott et al. (1989) suggest that both slab pull and trench suction 
may be of the magnitude of roughly 4 • 1012 N m _ 1 . In general it may be said 
that the force balance in subduction zones is much less well understood than 
that around mid-oceanic ridges. Nevertheless, most authors agree that forces 
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Figure 5.30. Four possibilities for the shape of subducted slabs at trenches, a Shal­
low subduction as probably occurs if subduction occurs in the same direction as 
the convective flow of the upper mantle (Doglioni 1993). b Steep subduction as it 
is often observed around the globe with slab break off at depth (Blanckenburg and 
Davies 1995). c Vertically hanging plate with folding at the 650-km-discontinuity 
(Frottier et al. 1995; Houseman and Gubbins 1997). d Hypothetical (in nature not 
observed) shape of a subducted plate that would occur if no deformation of the 
plate would occur subsequently to subduction in the trench 

in and around subduction zones may be much larger than those exerted by 
the mid-oceanic ridges. 

Roll Back of Subduction Zones. Slab pull and trench suction are pre­
dominantly forces acting downwards, while ridge push acts mainly in the 
horizontal direction. Slab pull and trench suction are not related to potential 
energy variations, but to gravitational instabilities similar to those that are 
responsible for convective motions. Because slab pull and trench suction act 
downwards it is possible that the kink in the subducting plate near the trench 
shifts laterally. If the rifting rate at the mid-oceanic ridge exceeds the sinking 
rate of the subducting slab, then the trench will move towards the upper plate 
(Fig. 5.30). However, if the sinking rate is larger than the rifting rate, then 
the trench moves away from the upper plate towards the mid-oceanic ridge 
(e. g. Dewey 1988). This process is called roll back of a subduction zone. The 
most famous example for roll back is the Scotia arc west of South Georgia. 
The formation of extensional basins in front of subduction zones, in particu­
lar the formation of Fore-arc- and Back-arc-basins, is thought to be related 
to roll back (Royden 1993a). Roll back does not only depend on the relative 
rates of rifting and sinking of the oceanic plate, but also on how easily the 
asthenosphere may be displaced underneath the subducting plate. 

Deformation of Subducting Plates. The deformation of subducted plates 
in the upper mantle is not very well-understood. We know from bathymetric 
data that oceanic lithosphere is kinked at the trenches (Fig. 2.23). However, 
tomographic and seismic imaging indicates that subducted slabs are mainly 
planar slabs below the trench. This implies that the kinks of the subducted 
plates are unbent again at depth (Houseman and Gubbins 1997). Blanck-
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enburg and Davies (1995) showed that slabs may also break off at depth 
(Fig. 5.30). 

The long term evolution of subducting plates depends on the processes 
at the upper-lower mantle transition in about 650 km depth. Creager and 
Jordan (1984) showed that the processes there are of large importance to the 
possibility of recycling lithospheric material. In general it is thought that 
subducting plates cannot perforate this 650 km transition, predominantly 
because the density of the lower mantle is higher than that of the subducting 
slabs (e.g. Christensen and Yuen 1984) (Fig. 5.30c). This model has since 
been confirmed by tomographic imaging (e. g. van den Hilst et al. 1991; Gud-
mundsson and Sambridge 1998). It appears that the 650 km discontinuity 
is a graveyard for subducted slabs. There is a range of recent analogue and 
numerical experiments that test details of the geometry of deformation of 
subducted slabs at this discontinuity (Frottier et al. 1995). 

5.3.3 Forces in Continental Plates 

Inside the continents, plate tectonic driving forces arise predominantly from 
lateral variations in the density structure, which cause lateral variations in 
potential energy. When we discussed Fig. 5.27 we have already estimated the 
magnitude of these forces for a plate of constant density but variable thick-

Figure 5.31. Illustration of vertical stresses and potential energy differences be­
tween two neighboring lithospheric columns. Vertical normal stress is plotted as 
a function of depth. The shaded region between the two curves is the potential 
energy difference per area between the two adjacent columns. In a this difference 
is positive in the upper part of the lithosphere (light shading) but negative in the 
lower part (dark shading). This means, that there is a net force acting from the 
right hand column towards the left hand column, while this net force is directed 
towards the right in the lower part. Because both shaded regions are roughly of 
the same area, there is practically no net force between the two columns, averaged 
over the thickness of the lithosphere. In b the entire right hand lithospheric column 
exerts a net force onto the left hand column 
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ness (eq. 5.56). In this section we want to refine our estimates by considering 
a more realistic lithosphere consisting of a dense mantle lithosphere and a 
much less dense crust (s. Fig. 2.18). We also want to remember that momen­
tum (often considered by students as an important contributor to mountain 
building processes) is completely irrelevant in plate tectonics (s. p. 218). 

Fig. 5.31 illustrates two examples of potential energy differences between 
two lithospheric columns. Similar to Fig. 5.27 this potential energy difference 
is given by the shaded region between the two curves for vertical normal 
stress as a function of depth. This area corresponds to i*t, in eq. 5.52 and 
may be interpreted as the net force exerted by one column onto the other 
per meter length of orogen and averaged over the thickness of the lithosphere 
(horizontal buoyancy force). In Fig. 5.31b the vertical normal stresses in the 
right hand lithosphere column is larger than that of the left hand column at 
all depths. Thus, there is a net force from the right towards the left column at 
all depths. However, for the two columns shown in Fig. 5.31a the situation is 
different. In the upper part of the profile the vertical stresses in the column of 
lower surface elevation are smaller. Interestingly, the vertical normal stresses 
are smaller for the column of higher surface topography in the lower part of 
the profile. This means that there is a net force exerted from the right hand 
column towards the left hand column in the upper part (light shaded region 
in the (Tzz-^-diagram), but that this force is directed in the opposite direction 
in the lower part (dark shaded region; see Problem 5.19). 

The qualitative considerations of Fig. 5.31 may be quantified by integrating 
eq. 5.52 and using simple descriptions for density as a function of depth. If we 
assume a simple lithosphere of two layers (a crust and a mantle lithosphere) 
and assume a linear thermal profile in the lithosphere so that the density 
due to thermal expansion may be described with eq. 4.29, then the lateral 
buoyancy force is described by: 

Fh _6{l-5),.2 ^ aT, (,2 
(/c " 1) " Trr-/-^ (/i2 " 1 " 3J(/c/i - 1)) 

pmgzl 2 c Q(zc/z\) 

(Turcotte 1983; Sandiford and Powell 1990). All parameters in this equation 
are the same as those we used in eq. 4.35 to calculate the elevation of moun­
tain belts in isostatic equilibrium but the definition of S differs from that 
of Sandiford and Powell (1990) and the way eq. 5.59 is written here differs 
therefore slightly from theirs as well. Here (and elsewhere in this book) 5 is 
the density ratio of crust and mantle lithosphere 5 = (pm — pc)/pm, g is the 
gravitational acceleration, T\ the temperature at the base of the lithosphere 
and a is the coefficient of thermal expansion. Lateral forces calculated with 
eq. 5.59 are shown in Fig. 5.32. The shape of these curves hardly changes for 
more refined assumptions on the thermal structure of the lithosphere (Zhou 
and Sandiford 1992). Fig. 5.32 shows that the absolute values of the net lat­
eral forces exerted by very thin or very thick continental lithosphere on its 
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surroundings are of the order of 1012-1013 Nm" 1 . Thus, they are comparable 
to the magnitude of forces arising from ridge push or slab pull. This is really 
no surprise, as the thickness variations within the continental lithosphere are 
themselves only caused by plate driving forces in the oceans. Fig. 5.32 can 
also be used to explain why there is no place on the earth where the crustal 
thickness is significantly thicker than double of normal (/c 3> 2). Such regions 
can only form by forces in excess of Ft, > 1014 N m - 1 , which is greater than 
any known plate tectonic driving force. 

• Potential energy excess created by external forces. The potential energy 
of plates may not only be increased by internal deformation of the plates, 
but also by passively uplifting the entire plate, for example by the vertical 
stresses exerted from upwelling mantle plumes to the base of the lithosphere. 
McKenzie et al. (1974), McKenzie (1977a;b) as well as Houseman and Eng­
land (1986b) showed that these forces are large enough to lift lithospheric 
plates by several hundreds of meters. On the abyssal planes of the oceans, 
such upwelling convection streams may even cause topography of the order 
of 1 km (Crough 1983; Watts 1976). Such topography has a higher potential 
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Figure 5.32. Diagram of lithospheric thickening strain f\ plotted against crustal 
thickening strain / c and contoured for potential energy difference per area (equiva­
lent to: "horizontal buoyancy force per meter" or: "lateral force"). The / c- / i plane 
was explained in detail in Fig. 4.7. The potential energy difference is always that 
between any point in / c- / i space and the reference lithosphere at /c=/ i = 1- The 
diagram was calculated with eq. 5.59 and is contoured for Fb in 10 N m - 1 . Other 
assumptions are: pm = 3 200 kg m"3 ; pc = 2 750 kgm" 3 ; a = 3-10"5; zc = 35 000 m; 
z\ = 125 000 m; T\ = 1 200 °C. The curvature of the contours arises because of the 
quadratic dependence of potential energy on thickness. As such, these contours for 
lateral force between two columns are fundamentally different from those for surface 
elevation (s. Fig. 4.18) (Sandiford and Powell 1990; Stiiwe and Barr 2000) 
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energy than its surroundings and will - just like a mountain range in a region 
of thickened crust - exert a horizontal buoyancy force onto its surroundings. 
The geometry of this phenomenon is schematically drawn in Fig. 5.33. The 
horizontal force exerted by plate A onto plate B may also be calculated by 
integrating eq. 5.52, just as we did when calculating the potential energy 
difference between mountains and their foreland (Fig. 5.27). The magnitude 
of this force corresponds to the shaded region between the two curves for 
vertical stress as a function of depth in Fig. 5.33. The principal difference 
between this and the example discussed in Figs. 5.27 and 5.31 is that the 
vertical stresses of the two profiles do not converge, because the two columns 
in Fig. 5.33 are not in isostatic equilibrium. Integration according to the same 
principles we used in eq. 5.54 to eq. 5.57 gives: 

AE„ 
,gH2 

+ pcgHzc (5.60) 

Using the same numerical values for the physical parameters as we did in 
Fig. 5.32, we get for an uplifted elevation of H = 1 km a horizontal force 
of the order of i*b ss 9 • 1011 Nm" 1 . This results shows that convectional 
stresses in the mantle may have a significant influence onto the stress regime 
and therefore on the deformation of continents (s. sect. 6.1.4). 

5.4 Problems 

Problem 5.1. Units of strain (p. 140): 
During orogenesis a continental crust has thickened from 30 km to 60 km. 
What is the stretch, the elongation and the vertical strain it has experienced? 
Use eq. 4.1. 

Problem 5.2. Difference between weight and mass (p. 210): 
What is the weight of 1 kg of rock at the surface? Give the result in SI units. 

Figure 5.33. Illustration for the 
calculation of the potential 
energy change that is caused by 
actively lifting plate A with the 
thickness zc and the density pc 

by the amount H. Note that the 
two plates are not in isostatic 
equilibrium and that, therefore, 
the two curves for azz do not 
meet at the depth zc + H. The 
shaded area corresponds to the 
net horizontal force exerted by 
plate A onto plate B 
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Problem 5.3. Conversion of different energy forms (p. 213): 
A continent collides with another with a force of 1013 N and rams 100 km into 
the other continent. How much mechanical energy is released in the process? 
Discuss where this energy goes, i.e. into which other forms of energy it may 
be transformed. 

Problem 5.4. Formulations of stress state (p. 215): 
A continent is under extension because an attached subducting plate pulls 
it apart. The tensional stress has the absolute value A. Another continent is 
under extension because it collapses under the weight of a mountain range 
on its surface. Let us assume that the vertical normal stress exerted by the 
mountain range onto the plate has also the magnitude A. Are the states 
of stress of the two continents the same? For simplicity, consider the two 
continental plates to be represented by little cubes that have no weight of 
their own: one that is pulled on its side and the other that is loaded from 
above. Consider the problem only in two dimensions. 

Problem 5.5. Stress balance, pressure and deviatoric stress (p. 210- 220): 
Fig. 5.34 shows a rock that lies atop the plane z — 0. a) How large are the 
vertical and horizontal normal stresses inside the rock at a given depth zl 
b) How large is the pressure at this depth? c) How large are the components 
of the deviatoric stress tensor? For your answers, use the stress balance equa­
tions (eq. 5.15 and corresponding relationships in the other spatial directions; 
s. also eq. 6.25 and 6.26) and ignore elastic effects. Note that the coordinate 
system for this problem (Fig. 5.34) implies that the upper surface of the rock 
is at negative z. This is different from many other examples in this book 
where the origin of the vertical axis is often located at the highest point of 
the surface (see Fig. 4.3). 

Figure 5.34. Illustration to Problem 5.5 z = -H 

v/////////y//\z=° 

Problem 5.6. Stress balance, pressure and deviatoric stress (p. 210- 220): 
The rock from Problem 5.5 has melted. The shape it has in Fig. 5.34 is 
only maintained because we have put a box around it. a) How large are the 
vertical and horizontal normal stresses inside the rock in a given depth zl 
b) How large is the pressure at this depth? c) How large are the components 
of the deviatoric stress tensor? For your answers, use the stress balance equa­
tions (eq. 5.15 and corresponding relationships in the other spatial directions; 
s. also eq. 6.25 and 6.26). 
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Problem 5.7. Stress balance and deviatoric stress (p. 210- 220): 
Assume that the rock from Problem 5.6 cannot flow freely apart but pushes 
onto a fixed side wall (e. g. an indenter). How large is the force per meter 
that the rock exerts onto the side wall? 

Figure 5.35. Illustration for 
Problem 5.8 

Zc-H 

Problem 5.8. Stress balance and deviatoric stress (p. 210- 220): 
Fig. 5.35 shows a rock of density pc, floating in a fluid with the density pm. 
Write relationships describing the principal stresses, the pressure and the 
principal components of the deviatoric stress tensor in the rock and in the 
fluid, both as a function of depth. 

Problem 5.9. Understanding elastic deformation (p. 221): 
Granite has a Young's modulus of roughly 50 GPa. What is the elastic strain 
of a granite to which a uniaxial stress of 50 MPa is applied? Use eq. 5.24 and 
eq. 5.25. 

Problem 5.10. Understanding elastic deformation (p. 221): 
What is the elastic change in thickness of the lithosphere (assuming that 
it is perfectly elastic) that arises solely as a function of its own weight? 
Assume the pre-elastic thickness z\ = 100 km as well as E = 60 GPa, and 
/9 = 3 000kgm- 3 . 

Problem 5.11. Fault plane solutions (p. 227): 
Draw qualitative fault plane solutions for the following faults: a) a north 
- south striking vertical dip-slip fault where the eastern block is displaced 
downwards; b) a horizontal fault where the top wall is displaced to the west; 
c) a north - south striking vertical fault at which the eastern side was dis­
placed with roughly 45° towards the north and down; d) a thrust that dips 
a bit steeper than 45° to the east along which the upper plate was thrust 
obliquely to the north. 

Problem 5.12. Power law rheology (p. 232): 
Use the material constants for quartz and olivine from Table 5.3 (the acti­
vation energies Q, the pre exponent constants A and power law exponent 
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n) and calculate the shear stresses supported at strain rates of e = 10~1 4s_ 1 

and a temperature of 500° C. Investigate how the stresses change if the power 
law exponents were actually 2 or 4 instead of 3. Compare your result with 
Fig. 5.12. 

Problem 5.13. Power law rheology (p. 232): 
The data from experiments that are used to derive the rheological material 
constants for viscous deformation (those required in eq. 5.46 are usually rep­
resented as lines in diagrams where log((Jd) is plotted against log(e), or in 
diagrams where log(e) is plotted against 1/T. Why ? 

Problem 5.14. Lithospheric strength (p. 244)'-
Fig. 2.5 shows that seismicity along continental plate margins is distributed 
over much larger regions than seismicity along oceanic plate margins. This 
indicates that continental lithosphere is softer than oceanic lithosphere, al­
though it has a larger thickness. Why is this so? 

Problem 5.15. Understanding potential energy (p. 248): 
Calculate the potential energy per unit area of the rock shown in Fig. 5.34. 

Problem 5.16. Understanding potential energy (p. 248): 
Estimate the potential energy (per unit area) of the two columns in Fig. 
5.26 above the base of the lithosphere algebraically and graphically. For your 
graphic estimate, use the scheme illustrated in Fig. 5.31. For the calculation 
use the scheme explained in eq. 5.53 and zc =30 km; z\ = 100 km; px = 
2700kgm"3 , p3 = 3200kgm"3 and g = 10ms" 2 . 

Problem 5.17. Understanding gravitational stress (p. 252): 
What is the lateral buoyancy force exerted by a mountain range onto its 
foreland if the mountain range is characterized by a crust that is twice the 
thickness from the foreland (/c = 2), but the same thickness of the entire 
lithosphere (/i = 1). Use eq. 5.57 and zc =30 km, pc = 2 700kgm~3, pm = 
3300kgm - 3 and g = 10ms~2 . In order to use eq. 5.57 we also need to 
know the surface elevation of the range H and the thickness of the root w, 
both at / c = 2 and /i = 1. Recalling eq. 4.35 the elevation is i l=5454 m. 
Consequently, the thickness of the root is w = 24 546m. (See also Problem 
6.9.) 

Problem 5.18. Understanding gravitational stress (p. 258): 
Refine your estimate from Problem 5.17 using eq. 5.59 with T; = 1 200°C, 
z\ = 100 km and a = 3 x 10 _ 5 o C _ 1 . (Note that the surface elevation need 
not be known when using eq. 5.59). Compare your result with the result from 
Problem 5.18 and the graphically presented result in Fig. 5.32. 

Problem 5.19. Understanding gravitational stresses (p. 257): 
Fig. 5.36 shows a schematic lithosphere: a) Normal thick lithosphere of thick­
ness z\ with crust of thickness zc; b) after homogeneous thickening to double 
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thickness (2z\, 2zc); c) after doubling the entire lithosphere by over thrusting. 
How large are the net horizontal forces that the columns exert on each other? 
Estimate the result graphically using the scheme used in Fig. 5.31. Calculate 
the result using eq. 5.49 to eq. 5.53) and use the parameter values given in 
the caption of Fig. 5.36. 

Figure 5.36. Illustration to Problem 5.19. u a 
pc = 2700kgm- 3 , po = 3300kgm- 3 , p m = f _ , , _ 
3200kgm - 3 , g = 10ms" 2 . Note that the sur- Zl 

face elevation of the columns in 6 and c is the '' ' ^^^ » 
same as both columns have the same weight 2\ | | | | 

po 

• 

Problem 5.20. Understanding momentum (p. 218): 
A 100 km thick continental plate that has a mean density of 3 000 kg m - 3 and 
is 1000 x 1000 km large collides with a much larger continent at a velocity of 
0.03 m y - 1 . The collision stops the plate. How large is the kinetic energy of 
the plate? How high can a mountain belt be built if all kinetic energy of the 
collision process is transformed into potential energy? Assume that all other 
forces that may apply to the plates may be neglected. 



6. Dynamic Processes 

This chapter is the first of two chapters in which we integrate the information 
of the previous three chapters into "real" tectonic models. The first two thirds 
of this chapter are dedicated to the description of continents in extension 
and in collision. In the last third of this chapter we touch upon a range of 
interesting and currently very topical geodynamic problems. 

6.1 Continents in Extension 

Under certain stress states continents may extend. In the process, they usu­
ally decrease in their thickness. In general, extensional processes are divided 
into active and passive processes (e.g. Allan and Allen 1990; Ruppel 1995). 
An extensional process is considered to be active if the extension occurs as 
the consequence of forces inherent to the extending area, for example gravi­
tational collapse of a region of high potential energy. Examples are mid ocean 
ridges, high continental plateaus or regions actively uplifted by mantle plumes 
(Keen 1980). Active rifting is therefore also called "mantle generated" and we 
have estimated the forces that cause active rifting in eq. 5.60. We describe 
an extension process to be passive if the forces causing extension are ap­
plied outside the extending area, for example the force of a subducting plate 
that pulls at the passive margin of an adjacent continent (e.g. Le Pichon 
1983). Passive rifting is also called "lithosphere generated" rifting. However, 
we should remember that the stress state of an extending plate is identical 
for both active and or passive extension (s. Fig. 5.3 and Problem 5.4). 

• Uplift or subsidence. It is not trivial that extension of the lithosphere must 
lead to subsidence of the surface. The density of continental crust is lower 
than that of the underlying asthenosphere and the density of the mantle 
lithosphere is higher (s. Fig. 2.18). Whether or not extension leads to subsi­
dence depends therefore on the partitioning of the extensional strain between 
the crust and the mantle part of the lithosphere (Fig. 6.1). It also depends 
on the initial thickness ratio of the two prior to onset of extension (Fig. 6.2 
s. also: Fig. 4.18). McKenzie (1978) showed that surface subsidence during 
extension will only occur during homogeneous lithospheric extension if the 
crustal thickness at the onset was more than 14 km, as part of a thermally 
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equilibrated continental lithosphere. If the crust is thinner than this, then 
lithospheric extension will lead to surface uplift. 

Heterogeneous extension, same initial thickness ratio 

o 
P C . . . - • - • P c 

P, y
 p m

 s PI . , ' r»n ••• 
_ Pc<pm< p| '• - •'" pc< pm< p\ 

Figure 6 .1 . The influence of the heterogeneous stretching on surface up­
lift/subsidence during lithospheric extension. The variables pc, pi and p m are the 
density of the crust, mantle lithosphere and asthenosphere, respectively. In a ex­
tension causes surface uplift, because the mantle lithosphere is stretched more than 
the crust. In b extension causes subsidence because the crust is streched more than 
the mantle part of the lithosphere 

Subsidence and the development of sedimentary basins must not have been 
caused by extension: Several types of sedimentary basins form in collisional 
environments during crustal thickening. However, the processes of continental 
extension and sedimentary basin formation are so intimately related, tha t this 
first section of this chapter is concerned with the origin, nature and processes 
of the formation of all types of sedimentary basin. The processes tha t form 
basins in collisional environments are also discussed here. 

Homogeneous extension, different initial thickness ratio 

Pc K 

/>c<pm< /̂  " [ic< pm< /'I 

F igure 6.2. The influence of the initial thickness ratio of crust (light shaded area) 
and mantle part of the lithosphere (dark shaded areas) on the nature of the vertical 
motion of the surface during homogeneous lithospheric extension. The variables pc , 
pi and pm are the density of the crust, mantle lithosphere and asthenosphere, re­
spectively. In a extension causes surface uplift, because the mantle lithosphere con­
stitutes a large proportion of the lithosphere by thickness. In b extension causes 
subsidence because the crust forms a larger proportion of the lithosphere 

The temporal evolution of the subsidence of sedimentary basins is one 
of the most important sources of information for the geodynamic interpre­
tat ion of continental extension processes. In many ways, the processes and 
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Figure 6.3. Global sediment thickness map. Contours are shown for 1, 10 ans 
15 km sediment thickness. Greatest sediment thicknesses are in the oceans, in the 
Bengal Fan and the Gulf of Mexico, greatest thicknesses on land are north of the 
Caspian Sea (data from Laske and Masters 1997; see also Divins 2006; data set at: 
http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html ) 

methods of interpretation of the subsidence of basins is analogous to the pro­
cesses and interpretation of surface uplift during collisional processes (e. g. 
in sect. 4.3.1, 4.4.1). However, they differ fundamentally in one respect: the 
thickness of a basin fill is usually substantially larger than the amount of 
subsidence that could be accredited to tectonic processes alone. Earth scien­
tists first explained this phenomenon at a time when the COST drill holes 
on the continental shelf of the eastern USA were drilled by the ocean drilling 
program: the density of sediments is substantially larger than that of water 
or air. Thus, in isostatically compensated basins, sedimentary loading of tec-
tonically formed basins will cause additional subsidence which in turn makes 
room for additional sediment loads. 

We therefore discriminate between tectonic subsidence and total subsi­
dence. Total subsidence is the total amount of vertical change of the former 
surface. The rate of downward motion of the former surface is called the sub­
sidence rate. As such this definition is not quite analogous to the definition of 
uplift rate (s. sect. 4.3.4). The tectonic subsidence is only the component of 
total subsidence that is caused by tectonic mechanisms. In order to interpret 
the tectonic processes that lead to sedimentary basin formation, knowledge 
of the total subsidence (i.e. the sediment thickness in the basin) is only the 
starting point. It is then necessary to subtract the influence of sedimentary 
loading from the total subsidence to determine the tectonic contribution to 
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subsidence (Sclater and Christie 1980; Steckler and Watts 1978; 1981). This 
exercise is referred to as back stripping and will be discussed in sect. 6.1.3. 

6.1.1 Basin Subsidence Mechanisms 

The subsidence of just about all sedimentary basins is caused by one or more 
of the following three processes. Each of these processes has been discussed 
in previous sections of this book: 

- isostatic subsidence, 
- flexural subsidence, 
- thermal subsidence. 

The three mechanisms may be intimately related. In the following we dis­
cuss briefly the nature of these three mechanisms and then go on to explain 
different types of sedimentary basins using these terms. Good summaries of 
models for the development of sedimentary basins are published by Angevine 
et al. (1990) and Allen and Allen (1990) and we rely here - in part - on their 
work. 

• Isostatic subsidence is caused by physical changes in the thickness of the 
lithosphere. For example, if physical stretching of the lithosphere causes thin­
ning, then isostatic compensation will generally lead to subsidence (sect. 4.4.1; 
Fig. 6.4). 

• Flexural subsidence relies on elastic bending of the lithosphere (s. sect. 4.4.2). 
If the lithosphere is loaded, it bends and a basin forms near the load 
(Fig. 4.22). For very strong plates, such basins are wide and shallow, while for 
less competent plates such basins are narrow and deep. However, the basin 
volume is independent of the rigidity of the plate (s. Fig. 4.25). 

• Thermal subsidence occurs if the density structure of the lithosphere is 
thermally changed by cooling (sect. 4.4.1). Thus, thermal subsidence is also 
a type of isostatic subsidence, except that the thickness change is caused 
thermally and not mechanically. As cooling of the lithosphere occurs only 
in thermally destabilized lithosphere, thermal subsidence can only occur in 

a b c d 

Uplift Erosion Subsidence 

Figure 6.4. Sketch illustrating one of the first models for the development of 
sedimentary basins (Sleep 1971). A continent is uplifted by external processes, for 
example by upwelling asthenospheric material of a mantle plume. Erosion thins the 
uplifted region. When the uplifting process terminates, the continent returns to its 
original position and a shallow sedimentary basin is formed 
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lithosphere that has previously been heated. Everything else being equal, 
the amount of thermal subsidence during cooling is exactly as large as the 
amount of thermal uplift during the heating phase. Thus, no sedimentary 
basin can form as the consequence of thermal processes on their own. Erosion 
or extension must have separated the thermal uplift and thermal subsidence 
in order to form a sedimentary basin (Fig. 6.4; sect. 6.1.4; McKenzie 1978). 

6.1.2 Basin Types 

Different types of sedimentary basins were classified by Dickinson (1976) 
according to the three subsidence mechanisms discussed above (s. also Buck 
1991). 

• Passive margins and rift basins. Rift basins form as the consequence of con­
tinental extension and ultimately rifting (Fig. 2.27a). The extensional process 
during the formation of rift basins may be symmetrical (Keen et al. 1989) or 
asymmetrical (Wernicke 1985; Lister et al. 1986; 1991) about the rift axis. 
The subsidence associated with the isostatic compensation of the rifting is 
usually followed by a later phase of thermal subsidence during which the me­
chanically rifted mantle lithosphere thickens by cooling. Thus, the subsidence 
of rift basins may usually be divided into a rift phase and a sag phase, both 
of which are characterized by specific sedimentary environments. During the 
rift phase, sedimentation is rapid, highly energetic and associated with the 
development of half grabens and other tectonic structures. During the sag 
phase, sedimentation is slow and static. Both phases are best developed if 
the rifting has not gone to completion. Examples for rift basins that have 
gone to completion in their successive stages of development are to be found 
in the Rhein Graben, the East African Rift system, the Red Sea and the 
Atlantic coast. 

• Transform basins. Transform- or pull-apart basins also form due to conti­
nental extension. The most important difference between these and proper 
rift basins is that they are smaller because their extensional phase terminated 
much earlier. Transform basins never get to a rifting stage. They are bound 
on at least two sides by strike slip faults and they are usually rectangular or 
diamond shaped. Because of their limited size, heat conduction processes do 
not only occur in the vertical direction, but also in the lateral direction. As a 
consequence, thermal thinning of the mantle lithosphere is limited. Therefore, 
transform basins usually lack the sag phase that is so typical for rift basins 
(Pitman and Andrews 1985). Subsidence of transform basins is usually short­
lived and is largely a linear function of time. This is especially because the 
deformation history of the brittle structures that control their shape is very 
short-lived. Other structures in the same orogen will soon take over and ac­
commodate the strain. Examples of transform basins are the Death Valley 
in California, the Vienna Basin in Austria as well as a large number of small 
intramontane basins within the European Alps. 
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• Foreland basins. Foreland basins form during the collision of two continen­
tal plates and are the continental analogue to fore-arc and back-arc basins 
(see next paragraph). The principle subsidence mechanism is elastic flex­
ure of the plate in response to the loading by external and internal loads 
(Beaumont 1981; Jordan 1981b; Karner and Watts 1983). According to their 
location relative to the lower plate, foreland basins may be divided into two 
groups (Fig. 2.23). Peripheral foreland basins form near subduction zones in 
collisional environments as a consequence of loading of the lower plate by 
the upper plate. Retroarc foreland basins form on the upper plate in the hin­
terland of a subduction zone. Good examples of peripheral foreland basins 
are the molasse basins near the Alps or the Himalayas. Examples of retroarc 
foreland basins are those that form east of the Andes and also the molasse 
basins of the Alps. The subsidence rate in peripheral foreland basins may be 
used to determine the rate of loading of the plate and therefore ultimately 
the collision rate of two plates. 

• Fore-arc and Back-arc basins. Fore-arc-basins have their name because 
they form in front of an island arc. There is a range of models that have 
been used to explain their origin, but none of them is really well-constrained 
or completely satisfactory. Some of the models include: 1. Subduction of an 
oceanic plate underneath another leads to a doubling of the plate thickness 
beneath the accretionary wedge. Since the density of oceanic lithosphere may 
be higher than that of the underlying asthenosphere, doubling the plate thick­
ness leads to subsidence and formation of a fore-arc basin. 2. Subduction of 
a cold plate underneath a hot plate may cause cooling of the upper plate and 
thus lead to thermal subsidence and basin formation. 3. Loading of the plate 
from above by an island arc and loading from below by the buoyancy of the 
accretionary wedge may lead to elastic back-bending of the plate. Basins on 
oceanic lithosphere that form behind a subduction zone are called back-arc 
basins. Their formation is usually interpreted as the consequence of upwelling 
asthenospheric material in the mantle wedge and they have a characteristic 
basaltic signature (Taylor and Martinez 2003). However, they also have been 
thought to be connected with potential energy differences (Stiiwe and Barr 
2000). Examples of Fore-arc basins are those developed along the south mar­
gin of Sumatra and Java, along the east margin of Japan and a famous ancient 
example is the Californian Great Valley. Examples of back-arc basins are the 
Mariana back-arc basin west of the Mariana Ridge, or the North Fiji Basin. 

• Intracontinental basins. Some large sedimentary basins form intracontinen-
tally, for example the Michigan Basin in the USA. The amount of tectonic 
subsidence in these basins is rarely more than 2 km. Their round shape and 
slow subsidence rates indicate thermal subsidence as a subsidence mechanism. 
However, the origin of these basins remains largely unconstrained. 
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6.1.3 Subsidence Analysis 

The large variety of tectonic processes that form sedimentary basins discussed 
above illustrates the necessity to find a data set that can be collected in the 
field and that can be used to constrain the nature of the basin forming process. 
Such a data set exists in the subsidence history of a basin as recorded by the 
sedimentary basin fill. In order to constrain the evolution of subsidence from 
the stratigraphic record, three steps are necessary: 

— Documentation of the stratigraphic section, 
— Consideration of compaction of sediments, 
— Consideration of the water depth. 

If we are also interested in the tectonic component of the subsidence (as we 
usually are), then a fourth step is necessary: 

— Consideration of the sedimentary loading: back stripping. 

When mapping the stratigraphy of the basin fill with the intention of using it 
for subsidence analysis, the following data must be collected or assumed for 
each layer: 1. thickness, 2. lithology, 3. age and 4. water depth at deposition. 
Porosity of the sediments and information on the thermal evolution are ad­
ditional data that can be extremely helpful. On the following pages we show 
how the subsidence history may be extracted from this data. 

Compaction. Because of their porosity, sedimentary strata are compacted 
by overlying layers after their deposition. Thus, the thickness of each layer 
in a sedimentary sequence was larger at the time of its deposition than it is 
when measured in the field. In order to consider the influence of sediment 
compaction on the thickness and density of the stratigraphic column, the 
porosity must be known. Empirical studies show that the porosity of rocks 
decreases exponentially with depth. In general we can describe this with the 
relationship: 

cj) = cj)0e-cz . (6.1) 

Figure 6.5. The decrease of porosity of a 
range of rock types with depth. Calculated with 
eq. 6.1 and using the following material con­
stants. Sandstone: <j>o = 0.4, c = 3 • 10~4 m _ 1 ; 
limestone: <fio = 0.5, c = 7 • 10~4 m _ 1 ; slate: 
</>o = 0.5, c = 5 • 10~4 m _ 1 . The grain den­
sity pg of these three rock types is: sandstone: 
pg = 2 650 kgm" 3 ; shale: pg = 2 720 kgm" 3 ; 
limestone: pg = 2 710 k g m - 3 (data from Sclater 
and Christie 1980; s. also Bond et al. 1983) 
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There, 0 is the porosity of the rock at depth z, 0o is the porosity at the surface 
and c is a rock specific compaction constant (Fig. 6.5). If we now want to 
derive the original thickness of a layer LQ from that measured for this layer in 
the field, L, we must solve an integral. Assuming that the thickness was only 
changed by changing the porosity (and not by metamorphism, diagenesis, 
cementation or dissolution), it must be true that: 

rLo PZL+L 

/ ( l - 0 ) d s = / ( l - 0 ) d z . (6.2) 
JO JzL 

This equation states that the rock volume without the pore space (1-0) re­
mains a constant, regardless of the fact whether the upper surface of the layer 
L is at depth z = ZL or at z = 0. Eq. 6.2 is a one-dimensional volumetric bal­
ance. This equation forms the basis of our following considerations. Clearly it 
is important to check the applicability of this equation before embarking on a 
compaction analysis. If the sediment is cemented or partially dissolved, then 
it is easily possible that the processes did not occur at constant volume and 
the compaction analysis becomes more complicated. It may then be necessary 
to study the cementation material petrographically to see if it was derived 
internally or externally, and so on. It comes back to the universal fact that 
field and laboratory data determine how simple a model is allowed or how 
complicated it must be designed. 

By substituting eq. 6.1 into eq. 6.2 and integrating we get: 

Lo+foe(-czo){e(-cL0)_1) = L+foe(-cZL){e(-cL)_1) _ ( 6 3 ) 

C C 

Sadly, it is impossible to solve eq. 6.3 for L$ - the original depositional thick­
ness of a layer of which we measured the thickness L at depth z. When using 
eq. 6.3, L0 can only be determined numerically by iteration (sect. B.5.2). 
However, for most cases this is not necessary. It is usually sufficient to use 
the following approximation: 

A, = 4 ^ • (6.4) 
Using eq. 6.4 it is now possible to calculate the original thickness of a layer 
at the end of its sedimentation L$ from field data on the porosity 0 and 
the thickness L as measured from a drill hole. For this, the porosity 0o is 
calculated using eq. 6.1. The original thickness of the layer is needed for the 
further steps in the subsidence analysis. Obviously, eq. 6.4 can also be used 
to determine the thickness of a layer at any other stage of the decompaction 
process L* and not only the fully decompacted thickness LQ. We just need 
to use the porosity (and depth) at the right stage of the analysis 0* instead 
of the original porosity 0o- 0* can also be calculated with eq. 6.1 (Fig. 6.5). 

If we have additional information on the porosity or thermal evolution of 
our rocks, it is possible to refine the compaction analysis. However, we do 
not want to discuss this here. We only want to remember that - using eq. 6.1 
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and eq. 6.4 - it is possible to calculate subsidence curves for the basin floor. 
The method is also illustrated on Fig. 6.6. 

The subsidence evolutions that may be calculated with the method de­
scribed above give us the depth evolution of the basin floor underneath the 
surface of the basin fill as a function of time. However, it is important to note 
that the surface of the basin fill need not remain at a constant depth below 
(or above) sea level. If, for example the water depth in a sedimentary basin 
changes over time, then the water depth must be added to the subsidence 
curve to obtain the subsidence evolution relative to a fixed reference level. 
In marine basins, the water depth at the time of deposition can usually be 
constrained by lithology, sedimentary structures and fossil record. If the sea 
level itself changes during deposition, the interpretation becomes more dif­
ficult. Sometimes it is possible to document sea level changes by comparing 
synchronous stages in the sedimentation record of two independent basins 
subjected to the same sea level change. Basins that develop in terrestrial en­
vironments are much harder to interpret, as it is difficult to document the 
changes of surface elevation through time and the water depth is not so easy 
to determine. 

Backstripping. In the previous sections we have shown how to determine 
the evolution of total subsidence (i. e. the depth evolution of the basin floor) 
as a function of time. This subsidence history is the sum of tectonic subsidence 
and subsidence caused by the sedimentary loading. The process of determin-

f, r2 f3 U t, r2 t3 f4 t, f2 f3 f4 

2. 

I 
time 

Figure 6.6. Illustration showing the influence of compaction on a sedimentary 
section. The columns on the left and right of the central diagram show cartoons 
of stratigraphic columns as they evolve through times £i, £2, £3 and £4. On the 
left these columns are for sediments that compact during successive deposition, on 
the right these columns are for sediments that do not compact. For both sets of 
columns the oldest layer is shaded the darkest, the youngest the lightest. At present 
(£4) the stratigraphy of both profiles is identical. However, these identical columns 
at time £4 were arrived at by different sedimentation and subsidence histories. On 
the right sedimentation rates were constant through time and none of the units were 
compacted (curve a on the central diagram). On the left, sedimentation rates were 
rapid at time £1 and then decreased through time (curve b). The similar thickness of 
all units at time £4 arises here only because compaction has balanced the variations 
in sedimentation rate for the columns on the left 
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ing the tectonic contribution to subsidence from the total subsidence is called 
back stripping (Watts and Ryan 1976; Steckler and Watts 1978; Sclater and 
Christie 1980). The inverse of back stripping - back stacking - is also possible, 
using thermochronological data from sedimentary basins (Brown 1991). 

Back stripping is a mental exercise in which layers are successively removed 
from the sedimentary column of a basin. During each step of removal, the 
hypothetical depth of the basin floor without being loaded is calculated. In 
other words, we determine the isostatic loading of the column during succes­
sive steps of sedimentation. Depending how careful we need to do this (as 
required by the large scale geological situation, for example the size of the 
basin) we discern between: 

- Back stripping assuming hydrostatic isostatic compensation, 
- Back stripping assuming flexural isostatic compensation. 

Back stripping assuming hydrostatic isostasy is straight forward as all we 
need to do is apply eq. 4.23. We will illustrate this initially with an example 
of a basin filled by a single layer. 

• Back stripping of a single layer. For our Example we assume a marine 
(i. e. water covered) basin that was created by a single tectonic process. We 
further assume that the tectonic process started when the surface was at sea 
level and caused a tectonic subsidence of the amount ZT- Today, the basin is 
filled by water of the depth w and a single sedimentary layer of thickness L 
and density PL- On Fig. 6.7 we can see that the tectonic subsidence (ZT) can 
be written as the sum of the water depth at present w and the basin depth 
change due to sedimentary loading: ZT = W + ZS. We can use this relationship 
to determine the tectonic subsidence. So we first need to calculate zs: the 
depth of the basin floor prior to the sedimentary fill below sea level. The 
calculation of zs follows the same principle as the relationships we have used 
for the calculation of isostatic equilibrium (sect. 4.4.1; Problem 6.4), (Steckler 
and Watts 1978): 

Z. = L(^^) , (6.5) 

if we disregard any change in sea level during the period of loading. Somewhat 
more refined we can also write: 

zT = L(pm~pL)+w-ASL Pm , (6.6) 
\Pm-PwJ Pm-pw 

if we formulate the relationship in terms of ZT and also consider a sea level 
change that may have occurred during sedimentation. The densities pm, PL 
and pw are those of the asthenospheric mantle, that of the sediment layer L 
and that of water, w is the water depth and ASL is the change in sea level 
during the deposition of the unit of thickness L (Fig. 6.7). 

The thickness of the crust or even that of the lithosphere are not needed 
for eq. 6.5 or eq. 6.6, as we assume that no thickness change of the crust 
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Figure 6.7. Cartoon illustrating 
the origin of eq. 6.5 (s. also 
Problem 6.4). The right hand 
column shows a crustal profile in 
isostatic equilibrium after 
tectonic subsidence but before fill 
of the depression by sediments. 
The left hand profile shows the 
total subsidence of the column 
after the sedimentation of a layer 
with the thickness L. pc, p m 

and p w are the densities of crust, 
asthenospheric mantle and water 
and 2C is the thickness of the 
crust. 2S is the change of surface 
after removing the sedimentary 
basin fill and compensating 
isostatically. As pc and zc are 
the same in both columns, they 
cancel out in eq. 6.5 
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Figure 6.8. Cartoon illustrating eq. 6.7. Compaction of sediments decreases the 
water filled pore volume, but not the grain volume (unless diagenesis accompanies 
compaction). This is schematically shown by two profiles of water volume and 
grain volume for both the situation before compaction and after compaction. The 
variable pw is the density of the pore fluid and pg is the grain density 

occurred during the sedimentation, i.e. for the purpose of this example we 
have assumed that the tectonic amount of subsidence occurred entirely before 
the onset of sedimentation. If the basin was not filled by water at any stage of 
the evolution, then pw must be substituted by pajr = 0 for the corresponding 
period. Eq. 6.5 is analogous to eq. 4.26, but it is solved for another variable. 
The density of the porous sediment layer PL, that occurs in eq. 6.5 may be 
determined from the grain density pg and the pore fluid density pw (which - in 
most cases - is the density of water: p w = l 000 kg m~3) from the relationship: 

PL = <ppw + (1 (6-7) 

if the porosity <f> is known, eq. 6.7 is illustrated in Fig. 6.9. The amount of 
tectonic subsidence of basins that are filled by more than one sedimentary 
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Figure 6.9. Cartoon illustrating eq. 6.7. Compaction of sediments decreases the 
water filled pore volume, but not the grain volume (unless diagenesis accompanies 
compaction). This is schematically shown by two profiles of water volume and 
grain volume for both the situation before compaction and after compaction. The 
variable p w is the density of the pore fluid and pg is the grain density 

layer may also be determined with eq. 6.5. All we need to do is use the mean 
values for L and PL from all layers in the sequence. 
• Back stripping for multi layered sedimentary basins. Using eq. 6.5 we can 
determine the complete evolution of tectonic subsidence by stepwise removal 
of the top layer at any one stage during the analysis and performing the 
analysis as above. For the remaining column mean densities and thicknesses 
must be used at each time step. The value z-i is then the tectonic amount 
of subsidence during sedimentation of the top most layer only and L* and 
PL* are the thickness and density of the entire remaining sedimentary column 
after removal of the top layer i (i.e. the decompacted thickness). The thickness 
of a sediment pile with i layers is then: 

v = Y.Li (6.S 

The density of the sedimentary column underneath layer i is given by the 
mean density of all remaining layers. This is simply the sum of all densities, 
multiplied by the respective thickness and divided by L*: 

PL* 
1 Lj >jpw + (1 

(6.9) 

Now we can use eqs. 6.8 and 6.9 to determine the tectonic subsidence history 
of a basin by stepwise reconstruction. If we do this by hand, then we need to 
iteratively apply eq. 6.1, eq. 6.5 and eq. 6.7 (using L* and PL* instead of L 
and PL). An example is shown in Fig. 6.10 (s. also Problem 6.5). The anaylsis 
can be refined by considering flexural isostasy instead of hydrostatic isostasy 
as we did here. Computer programs that do sedimentary basin analysis follow 
exactly this procedure. 

6.1.4 Models of Cont inental Extension 

We have shown in the last section how a careful analysis of the sedimen­
tary basin fill may be used to constrain the tectonic subsidence history of a 
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Figure 6.10. Example for a subsidence analysis with consideration of compaction. 
a, b and c show the field data of a simple basin filled by three sedimentary strata. 
a Lithology and thickness of strata (slate: horizontal lines; sandstone: shaded; lime­
stone: brick signature); b age of the unconformities; c water depth as derived from 
fossil record. No sea level changes occurred during the sedimentation process. Strata 
are numbered from base to top. The center of each layer is the reference point used 
for the following calculations. For the values of porosity and density we use the data 
from Fig. 6.5. Porosity and density of the top layer (with a mean depth of 250 m) 
may be derived from eq. 6.1 and eq. 6.7. These data are written in the 1st column 
of Table d. The second column lists the porosity of the second layer (with a mean 
depth of 750 m = mean depth of second layer minus the thickness of the first layer) 
and so on. The thickness of the second layer is given by eq. 6.4 using the porosities 
of the 1. and 2. column as well as the thickness from the first column. The sum of 
the thicknesses and densities in the bottom two rows were calculated with eq. 6.8 
and eq. 6.9 respectively. Their mean values are written in the third column. In e 
the result of the subsidence analysis are illustrated graphically. Black dots show the 
measured field data, white dots the calculated decompacted thicknesses and black 
squares show the decompacted thicknesses plus water depth. The curve given by 
the white squares was calculated with eq. 6.5 and shows the tectonic component of 
subsidence 

basin. Based on analyses of this kind it was recognized that the evolution of 
subsidence of many sedimentary basins follows very process-specific patterns. 
Some of these characteristic patterns and simple models that have been used 
to explain them are discussed on the next pages. 

The McKenzie- and its Follow up Models. Subsidence analysis has 
shown that the tectonic subsidence rate of many sedimentary basins is rapid 
at first and then decreases abruptly to continue at a much slower rate for a 
much longer time. The model of McKenzie (1978) was one of the first and 
certainly most famous model that has successfully explained this pattern. 
Despite its simplicity it remains the basis of a large range of more refined 
models. Like other models of its time (e.g. Le Pichon et al. 1982) the model 
is one-dimensional and describes the subsidence of the surface as a function 
of lithospheric extension. Within the model, typical subsidence histories are 
divided into two phases: a rift phase and a sag phase. The model holds well in 
examples where the phase of physical extension of the lithosphere (rift phase) 
is short compared to the duration of the subsequent thermal equilibration (sag 
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Figure 6.11. Subsidence of sedimentary basins according to the model of McKenzie 
(1978) and that of Jarvis and McKenzie (1980). a Geotherms at three different 
times: prior to onset of extension (ti), at the end of a rapid stretching phase (fo) 
and during subsequent thermal equilibration of the lithosphere (£3). b Thickness of 
the crust (light shaded region) and that of the mantle part of the lithosphere (dark 
shaded region) at these three different time steps, c Schematic subsidence curve 
corresponding to the cartoons in a and b 

phase). In fact, within the original McKenzie (1978) model, the stretching 
phase (rift phase) is assumed to have occurred instantaneously (Fig. 6.11). 
The amount of subsidence during this instantaneous rifting phase iJrift

 m ay 
be calculated with the relationship: 

Hritt 
Po 

Po 
• z\ 

2(po - Pw) 
(6.10) 

Equation 6.10 is largely analogous to eq. 4.35, which we have used previ­
ously to describe the changes in surface elevation as a function of changed 
thicknesses of crust and mantle part of the lithosphere. Therefore, we do not 
derive the details of eq. 6.10 here and the reader is referred to sect. 4.4.1. 
In eq. 6.10, zc and z\ are the thickness of crust and lithosphere. pc, pw and 
po are the densities of crust, water and mantle at 0°C. a is the coefficient 
of thermal expansion, T\ is the temperature at the base of the lithosphere, 8 
the stretching parameter of the crust and /? that of the mantle part of the 
lithosphere. The stretching parameters are defined as the ratio of starting 
thickness to stretched thickness and the stretching parameter for the crust S 
is therefore the inverse of the thickening strain / c which we have used in sev­
eral other sections of this book: 5 = l / / c (s. sect. 4.2). However, (i does not 
correspond to l / / i , but rather to l / /m i - Because of this eq. 6.10 looks some­
what different from eq. 4.35, although both may be used to answer similar 
questions (Fig. 4.18). 
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Eq. 6.10 is already a refined McKenzie model: it allows to explore the 
consequence of different amounts of stretching in the crust and in the mantle 
lithosphere (s.e. g. Royden and Keen 1980). In the original McKenzie model 
5 = /?. In other words, the original McKenzie model assumed homogeneous 
stretching of the entire lithosphere. 

When we discussed eq. 4.35 we saw that the initial ratio of crust to mantle 
lithosphere determined if homogeneous thickening of the whole lithosphere 
leads to surface uplift or subsidence. The same is true for eq. 6.10 (s. Fig. 
6.2, Problem 6.6). 

The subsidence described by eq. 6.10 (Fig. 6.12a) is followed by a phase 
of thermal equilibration: the sag phase. During this subsequent phase, active 
extension has stopped and thickening of the mantle part of the lithosphere 
occurs due to cooling. The surface subsides as a consequence of this cool­
ing (Fig. 6.11). This is largely analogous to the surface subsidence associated 
with cooling of the oceanic lithosphere (Fig. 3.24). Thus, we can describe this 
subsidence with a similar model to the one we have discussed in sect. 3.5.1. 
The principle difference to the cooling of oceanic lithosphere arises because 
McKenzie assumed the bottom boundary not at infinity, but at depth z\. Be­
cause of this boundary condition at finite depth, the heat conduction equation 
may only be solved with the aid of Fourier series (s. sect. B.4). As a conse­
quence, the solution presented below contains trigonometric functions instead 
of an error function (s. sect. B.4). The solution is: 

M f̂e)(;*H(1-•-**•) • (6-n) 
This relationship describes the subsidence of rift basins during the sag phase 
as a function of time t. The parameter ieq is the time scale of thermal equili­
bration and is given by: £eq = Z'I/(TT2K,) (which differs from the time constant 
discussed on p. 63 by the factor n2, but is in principle equivalent). While 
we will not derive the origin of this equation in any detail, we note that it 
should be possible, at least in principle, to follow it from the information given 
in previous chapters of this book (s. e. g. eq. 4.69). In contrast to eq. 4.69, 
eq. 6.11 contains no infinite summations, because it is an approximation in 
which all terms for n > 1 were omitted. Aside from this, eq. 6.11 (and also 
eq. 4.69) describe a similar model to that of eq. 4.45, which we have used 
to calculate the water depth in the oceans. Examples of subsidence during 
the sag phase are shown in Fig. 6.12b. For very large times, the last term of 
eq. 6.11 becomes 1 and the simplified equation may be used to estimate the 
total amount of subsidence during the entire sag phase. 
• Finite extension. In contrast to the assumptions of the McKenzie model, 
many sedimentary basins show evidence that the duration of physical stretch­
ing or rifting of a continent was not instantaneous, but was comparable to 
the time scale of diffusive thermal equilibration of the lithosphere, i.e. rifting 
is slow and rift and sag phase are, in fact, of similar duration. In order to ac­
count for finite duration of the rifting phase Jarvis and McKenzie (1980) and 
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Figure 6.12. a Subsidence of rift basins at the end of the rift phase (Hrift) and 
at the end of the sag phase (Hsag) both as a function of the amount of initial 
stretching as given by /9. It is assumed that the lithosphere stretched homogeneously, 
i.e. & = ft (s. eq. 6.10). The total amount of subsidence is given by the sum of 
the two curves. For /3 < 1 the curve go to negative values, i. e. thickening leads 
to uplift, b Subsidence during the rift and subsequent sag phase as a function 
of time for two different values of f3 (describing different amounts of rifting at 
the onset). All curves were calculated using eq. 6.10, eq. 6.11 and the following 
values for the variables: z\ = 125 km; zc = 35 km; Tl = 1 280 °C; po = 3 300 k g m - 3 ; 
pc = 2 750 kgm" 3 ; p w = 1 000 kgm" 3 ; a = 3 • 10"5 ° C _ 1 andK = 10"6 m 2 s _ 1 

Cochran (1983) expanded the McKenzie model. Jarvis and McKenzie (1980) 
suggested as a rule of thumb that the duration of stretching, t, must only be 
considered in their model for basin development if the following relationship 
holds: 

t<^^~ , i f / 3<2 or : t < 60my (l - ^\ ,if /3 > 2 . (6.12) 

If the duration is shorter than time t, then it is sufficient to assume that 
stretching was instantaneous and occurred prior to any thermal equilibration. 

• Two-dimensional models for continental extension. Most rift basins are 
one-dimensional in their geometry, i. e. they are long compared to their width. 
If however, lithospheric stretching occurs two-dimensionally so that basins 
extend into two direction, then the modeling of subsidence during the sag 
phase must account for two-dimensional heat conduction. Some of the first 
two-dimensional models describing this were designed by Buck et al. (1988), 
Issler et al. (1989) and Wees et al. (1992). Those models assume that exten­
sion occurs symmetrically about the rifting axis. 

• Heterogeneous extension. One of the first models describing asymmetric 
extension of the lithosphere was designed by Oxburgh (1982). Oxburgh as­
sumed that both the crust and the mantle part of the lithosphere extend 
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homogeneously, but that the location of maximum crustal extension is lat­
erally displaced from the location of maximum extension of the mantle part 
of the lithosphere. Wernicke (1985) and Lister et al. (1986) were among the 
first who explored the consequences of simple shear geometries on lithospheric 
extension processes by assuming low-angle normal faults that transect the en­
tire lithosphere. These models were based on observations in the Basin and 
Range province of the western US. Lister and Etheridge (1989) and Lister 
et al. (1991) applied this model to the east coast of Australia in order to 
explain the simultaneous uplift of the Australian Great Dividing Range and 
the subsidence of continental lithosphere at the west coast of New Zealand 
(Fig. 6.13). 

An elegant analytical solution describing some aspects of the models of 
Wernicke and Lister was published by Voorhoeve and Houseman (1988). 
Some geometric considerations of extension models based on heterogeneous 
stretching geometries may be found in Buck et al. (1988). 

Dynamic Extension Models. In all previous paragraphs we have consid­
ered the evolution of extension and sedimentary basin formation purely on the 
basis of kinematic and thermal assumptions. We will now consider dynamic 
models, that is, models for continental extension that are based on mechani­
cal assumptions. One of the many questions that can only be explained with 
dynamical models relates to the causes for terminating extension: we observe 
that some rift basins extend until rifting occurs and a passive continental 

uplift subsidence 

Figure 6.13. Extension of the lithosphere by normal faulting along a low angle 
normal fault that transects the entire lithosphere. The upper cartoon shows the 
situation at the onset of extension, the lower cartoon after full separation of the two 
plates and the development of passive continental margins. Note that at location A, 
extension only decreased the thickness of the mantle part of the lithosphere, while 
at location S , extension only decreased the thickness of the crust. Lister et al. 
(1986) and Wernicke (1985) interpreted that the uplift of the left hand plate at 
location A (e. g. eastern Australia) and the subsidence of the right hand plate at 
location B (i. e. western New Zealand) are only caused by the changed thickness 
ratio of crust and mantle lithosphere at these two locations 
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margin forms (sect. 2.4.4), while in others the extension was limited. Exam­
ples for the former are the central African rift or the Red Sea, examples for 
the latter include the Michigan Basin in the US, the Cooper Basin in Aus­
tralia of the Pannonian Basin in Europe. There is two fundamentally different 
processes that may be responsible for the termination of extension: 

1. External reasons: In this case the termination of extension has nothing to 
do with the plate itself and is only a function of processes in the surround­
ing plates. Extension is controlled by the boundary conditions. The forces 
or velocities with which a plate is pulled apart and a basin is formed may 
simply decrease. 

2. Internal reasons: Extension may terminate because the rheology of the 
plate changes to become stronger. In this case no changes in the boundary 
conditions need to occur; the plate boundary forces may remain constant. 
The extension process itself is self limiting (s. sect. 6.2.2). 

Analogous to the terms active and passive extension, these two processes 
might be called active and passive termination to extension. Which of these 
two mechanisms caused the termination of a particular basin is a question 
which often can only be answered using dynamical models. Some of the first 
dynamic models for continental extension were those of Bassi (1991), Bassi 
et al. (1993) and Cloetingh et al. (1995). These models showed that the 
extension geometry is strongly dependent on the tectonic processes in a plate 
that occurred prior to the onset of extension. For example, they showed that 
continental extension onsets most easily in regions of thickened continental 
crust, as this is the region where the plate is the weakest (s. sect. 5.2.1, 6.3.6; 
Houseman and England 1986b). As another example, it was shown by Buck 
(1991) that the width of continental rift basins depends on the geothermal 
gradient and ultimately on the rheology. One of the more elegant models 
explaining the temporal limitation of extension processes is that of Houseman 
and England (1986b). In the following section we discuss this model in some 
more detail. 

• The model of Houseman and England. The one-dimensional model for con­
tinental extension by Houseman and England (1986b) is an elegantly simple 
model that can be used to illustrate why extension can be self limiting. The 
model is a coupled thermal and mechanical model in which extension is a 
function of both thermal and rheological development. For this, the authors 
assumed a model geotherm and a model rheology for the lithosphere. Active 
extension is assumed to be driven by upwelling asthenosphere of a mantle 
plume which initially lifted the entire continental plate by the amount Ho 
(Fig. 6.14a). Note that the extension is called "active" because it is triggered 
by potential energy of the lithosphere that was created by an external pro­
cess. Fig. 6.15 illustrates the evolution of extension in response to this uplift 
(s. also Fig. 5.33). According to the calculations of Houseman and England 
(1986b) this extension can ultimately lead to three different scenarios: 
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Figure 6.14. Possible evolution of an active extension process initiated by uplifting 
of the entire lithosphere for the amount Ho by upwelling asthenospheric material 
over mantle plumes, a Starting geometry at the onset of extension, b If the ex-
tensional forces are large enough, then the lithosphere is thinned and thermally 
weakened until a rift zone develops, c If the extensional forces are small, thickening 
(and strengthening) of the mantle lithosphere by cooling is more rapid than physical 
stretching. The extension process is self limiting. Note that the mantle lithosphere 
in c is thickest in the region of maximum crustal thinning 

1. If Ho is smaller than about 100 m, then the extensional forces caused by 
the excess potential energy are too small to be reflected in any appreciable 
strain rate. 

2. If Ho is of the order of several hundreds of meters, then the extension is 
self limiting. The extensional forces are large enough to cause extension at 
an appreciable rate, but this ra te is still slower than the rate of thickening 
of the mantle lithosphere by cooling (as in Fig. 6.11 between t% and £3). 
Thus, the mantle part of the lithosphere thickens, while the crust thins. 
This leads to a successive strengthening of the lithosphere (because the 
rheology of the mantle lithosphere is much stronger than tha t of the crust; 
s. sect. 5.2.2) and ultimately to a termination of the extension process 
(thick lines in Fig. 6.15; Fig. 6.14c). 

3. If HQ is of the order of one or even several kilometers, then the exten­
sion rates are rapid enough so tha t physical extension outweighs thermal 
thickening (as in Fig. 6.11 between t\ and t-i). The geotherm steepens, the 
lithosphere is thermally weakened and the excess potential energy leads to 
an acceleration of the extension process. Extension leads to rifting and ulti­
mately to the development of a new passive margin (thin lines in Fig. 6.15; 
Fig. 6.14b). 

The basic principles of the force balance underlying the scenarios discussed 
above will be explained in sect. 5.3.1 and 6.2.2. Models equivalent to the 
model of Houseman and England (1986b) but with application to continental 
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Figure 6.15. Two model evolutions of continental extension according to the model 
of Houseman and England (1986b). Thick lines show a self limiting extension pro­
cess. Thin lines are for conditions that ultimately lead to rifting, a the evolution 
of the stretching factor; b evolution of surface elevation; c evolution of viscosity; 
d evolution of surface heat flow (normalized to that at the onset of extension). The 
scaling of the vertical axes of all four plots depends strongly on the model assump­
tions. The shoulder in the evolution of surface elevation as seen for the thick line 
in b corresponds to the transition from rift phase to sag phase 

collision will be discussed in the context of Fig. 6.23 (Sonder and England 
1986; Molnar and Lyon-Caen 1989). 

6.2 Continents in Collision 

When two plates of continental lithosphere move toward each other, they 
will eventually collide. In contrast to the collision between two oceanic plates 
(during which one of the plate generally dives below the other and no in­
tense deformation occurs in either of the plates), continental collision leads 
to intense deformation and interfingering of both plates (Fig. 2.22). This fun­
damental difference between the collision of continental and oceanic plates 
occurs because of three reasons: 

- because of their different thickness, 
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- because of their different strength, 
- because of their different densities. 

Continental lithosphere is much thicker, much weaker much less dense than 
oceanic lithosphere. The lower density and larger thickness of continental 
plates make it more difficult to subduct them underneath each other. How­
ever, importantly, the weakness of continental lithosphere allows internal per­
vasive deformation including nappe stacking, folding and more, while the 
much larger strength of oceanic lithosphere does not allow such processes. 
This internal deformation leads to mountain building, metamorphism and a 
series of other tectonic events which we can observe today in active orogens 
and which are preserved for us in the metamorphic rocks of ancient orogens. 

Although only a relatively small number of all plate boundaries around 
the globe are formed by collisional orogens, such orogens are among the 
best studied tectonic features of our planet. This is certainly in part because 
continental collision processes form some of the most eye catching features on 
the planet: the spectacular mountain ranges of the Himalayas or the European 
Alps. In this section we deal with aspects of the thermal and dynamical 
evolution of such orogens. 

6.2.1 Thermal Evolution of Collisional Orogens 

It is widely observed that collision of two continental plates leads to heating 
of rocks at depth. In present day orogens this is evidenced by increased heat 
flow. In ancient orogens it is documented by the preservation of metamor­
phic rocks from a well known range of metamorphic fades. However, heating 
and convergent deformation need not occur simultaneously. In fact, in many 
convergent orogens it is observed that peak metamorphism occurred later 
than the deformation phases that were responsible for the crustal thickening. 
359 Many aspects of this typical relationship between deformation and meta­
morphism may be explained by a simple comparison of the duration of three 
processes: 1. The duration of crustal thickening processes; 2. The duration of 
thermal equilibration of the crust and 3. the time scale of exhumation pro­
cesses. A comparison of these three time scales was the basis of the model 
by England and Richardson (1977) which is one of the first elegant models 
unifying deformation and metamorphic processes in collisional orogens into a 
single model. This model will form the basis of the following section. Precur­
sors of the model were already published by Oxburgh and Turcotte (1974) 
as well as Bickle et al. (1975) and the model was quantified later by England 
and Thompson (1984), but the model is often referred to as the "England and 
Richardson" model and we use this name here. Today, their concept is still 
the standard model to explain "regional" or: "Barrovian" metamorphism (s. 
Fig. 7.1). 
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F u n d a m e n t a l s of t h e T h e r m a l E v o l u t i o n . England and Richardson 
(1977) recognized tha t the following relationships are fundamental to the 
thermal characteristics of collisional orogens (s. also Ridley 1989): 

- Thickening of the crust is substantially more rapid than thermal equili­
bration on the scale of the crust. The former generally occurs at rates of 
the order of e as 10~1 4 s _ 1 (i. e. doubling the crustal thickness in less than 
10 my), the latter takes of the order of several tens of my (as given by 
eq. 3.17). 

— The time scale of thermal equilibration is comparable to tha t of many 
exhumation processes, in particular to erosion: both often take several 
tens of my. 

The t ime scale of deformation and the t ime scale of exhumation are functions 
of the geological boundary conditions of the orogen in question and may vary. 
Their absolute and relative magnitudes are known to us from field observa­
tions. In contrast, the t ime scale of thermal equilibration is independent of the 
geological processes. It is given directly by the laws of heat conduction and 
depends largely on the length scale of the equilibrating body (s. sect. 3.1.4). 
These relationships give rise to the following stages in the tectonic evolution 
of collisional orogens: 

Figure 6.16. Cartoon illustrating the thermal changes that occur in the crust 
as the consequence of rapid crustal thickening, a and b show two end member 
scenarios of crustal thickening geometries: homogeneous crustal thickening in a 
and overthrusting of the whole crust (block 1 over block 2) in b . In each a and b 
a cartoon of a crustal column is shown on the left (the radioactive heat producing 
part of the crust is shown with the coarse dots) and a corresponding temperature 
- depth (T-z) diagram is shown on the right. The T-z diagrams show geotherms 
before thickening (labeled i) and after thickening but before thermal equilibration 
(labeled ii). The dashed line in b is the geotherm during early subsequent thermal 
equilibration. It shows that the "saw tooth geotherm" has rapidly equilibrated to 
a T-z profile not unlike i in a (rapidly in comparison to the overall duration of 
subsequent thermal equilibration). Thus, the overall thermal evolution of thickened 
crust is robust towards the initial thickening geometry. The vertical arrow between ii 
and ii in a indicates the T-z path of a rock during thickening. The horizontal arrow 
shows that thickening leads to cooling at a constant depth 
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• Thermal evolution during thickening. The fact that continental deforma­
tion is typically much more rapid than thermal equilibration on the length 
scale of the crust has two immediate consequences: 1. Thickening leads to 
burial of rocks without appreciable heating. This is indicated in Fig. 6.16a by 
the small vertical arrow in the T-z-diagram. 2. From the point of view of an 
Eulerian observer the crust cools. This is indicated in Fig. 6.16a by the small 
horizontal arrow in the T-z-diagram. Most of the interplay of heating and 
cooling mechanisms that governs the thermal evolution of collisional orogens 
occurs after the thickening. In order to understand this interplay it is useful 
to discuss heating and cooling mechanisms separately. 

• Heating mechanisms following thickening. There are two mechanisms that 
lead to heating: 

1. Prior to thickening the stable gotherm formed an equilibrium between 
surface heat flow out of the crust, the heat flow from the mantle into the 
crust and the radiogenic heat production in the crust. This equilibrium 
was perturbed by the thickening process. The geotherm was cooled. Given 
that the mantle heat flow does not change, heating will occur to reestablish 
the equilibrium geotherm. 

2. Thickening of the crust increases the total amount of radiogenic elements 
in each vertical column the crust (coarse dotted part in Fig. 6.16). This 
increased radiogenic heat production has the consequence that the new 
equilibrium geotherm will have a steeper gradient than before. Heating 
will therefore occur in order to attain an equilibrium beyond the initial 
stage. 

• Cooling mechanisms following thickening. Crustal thickening leads not only 
to heating, but also to mountain building. This is followed by erosion and 
extension processes thinning the crust and leading to exhumation of meta-
morphic rocks. In analogy to the last paragraph, there is two cooling processes 
that interact with the heating processes: 

1. Denudation of the upper crust removes the heat producing elements from 
the upper crust. This has the consequence that the thermal equilibrium 
heat flow decreases in the whole crust. 

2. All rocks must cool to the surface temperature by the time they reach 
the surface. The closer rocks get exhumed to the surface, the stronger the 
cooling influence of this surface becomes. 

The thermal evolution of rocks in a given orogen depends on the interplay 
and competition of the heating and cooling mechanisms listed in the last 
paragraphs. Usually, heating mechanisms outweigh cooling mechanisms in 
the early phase following the crustal thickening. During the later evolution, 
in particular after the onset of denudation at the surface, the heating mech­
anisms wane and the influence of cooling mechanisms increases. Eventually, 
cooling processes win over the heating processes and rocks begin to cool 
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Figure 6.17. Geotherms (thin lines) and T-
z-paths (thick lines) of rocks in typical colli-
sional orogens as predicted by the model of 
England and Richardson (1977). to is the start­
ing geotherm at the onset of collision, £i the 
geotherm immediately after thickening, £2, £3 
and £4 geotherms at later time steps. The Moho 
heat flow (given by the slope of the lower tip 
of all geotherms) is assumed to remain constant 
throughout the evolution. The black and white 
dots that lie on each geotherm label the evolu­
tion of rocks at two different depths. Note that 
the rocks of the shallower T-2-path (black dots) 
experience their thermal peak at time £3 and 
cool thereafter, while the rocks at larger depths 
(white dots) reach their metamorphic thermal 
peak only at time £4 

(s. Fig. 6.17). The competition between these various heating and cooling 
mechanisms has the consequence that the T-z-paths of rocks in collisional 
orogens have smooth curvature in a T-z diagram. They follow this curvature 
in a clockwise sense if the depth axis is drawn upwards and the temperature 
axis is drawn to the right (Fig. 7.7). Depending on the relative importance 
of heating and cooling mechanism, such paths are more or less tight in a T-
z diagram (Fig. 6.17). The slope and curvature of T-z paths is therefore an 
important indicator for tectonic processes (Fig. 7.5). It is the art of the meta­
morphic petrologist to extract such information from metamorphic mineral 
equilibria. 

The Model of England and Thompson. England and Thompson (1984) 
designed a quantitative numerical model based on the "England and Richard­
son" model discussed above. Their model is one of the most simple and intu­
itive models that can be used to explain the shape and nature of metamorphic 
P-T paths in collisional orogens. Thus, we will discuss the assumptions and 
results of their model in some more detail here. 

• Thermal assumptions. The thermal assumptions made by England and 
Thompson (1984) to describe the evolution of collisional orogens are those 
necessary to calculate an initial geotherm with eq. 3.23 (s. sect. 3.4.3. Fol­
lowing boundary conditions are assumed: 

- The temperature at the surface of earth Ts is constant. 
- The mantle heat flow at the Moho qm is also constant. 

These boundary conditions are assumed to remain the same throughout the 
thermal evolution. It is also assumed that the radiogenic heat production is 
of the constant value 5rad down to the depth z rad= 15 km and is zero below 
that (sect. 3.4.3). With those assumptions, integration of eq. 3.23 gives a 
description of a stable geotherm as given by eq. 3.65. 

<z 

T 

\ \ \ l ~ 3 5 k m -

W R 
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The numerical values needed in this equation are those for qm and S rad. 
England and Thompson chose them so tha t the surface heat flow qs (which is 
one of the few thermal parameters tha t may be measured directly) is between 
0.045 and 0.075 W m - 2 , which is reasonable for continental shield regions 
(Table 6.1). 

• Heat flow relationships. The relationship between surface heat flow, man­
tle heat flow and radioactive heat production can be illustrated clearly by 
interpreting the surface heat flow qs as the sum of the mantle heat flow qm 

and the heat flow caused by radiogenic heat production grad: 

Qs = Qm + <?rad • ( 6 . 1 3 ) 

In this equation, the radiogenic heat flow is given by: </rad = SiadZI!ui, as 
we explained when we discussed Fig. 3.17 (see also eq. 3.61). England and 
Thompson (1984) assumed tha t the radiogenically caused heat flow is com­
parable to the mantle heat flow (qiad as qni; Table 6.1) and tha t the mantle 
heat flow remains unchanged, regardless of the thickness of the crust (the 
problems and implications of this are discussed on p . 293). 

Thickening of the crust without thickening of the mantle part of the litho-
sphere doubles the radiogenic heat flow (because zrad is doubled) but does 
nothing to the mantle heat flow. We can write: 

Qs = Qm + 2<?rad • (6.14) 

Thus, the surface heat flow in thermal equilibrium after thickening is expected 
to be of the order of 1.5 times as high as before if qiad = qm (Eq. 6.13). 

However, if the mantle part of the lithosphere thickens together with the 
crust (homogeneous lithospheric thickening), then this halves the heat flow 
through the Moho (as the mantle lithosphere is thermally defined). We can 
then write: 

Table 6 .1 . Three different simple but geologically realistic assumptions about the 
distribution of heat sources in the crust (after England and Thompson 1984). The 
mantle heat flow qm and the radiogenic heat production graa are chosen in a way so 
that they give three different values for surface heat flow covering a realistic range of 
measured surface heat flows. The thickness of the heat producing layer in the crust 
is always assumed to be zra,d = 15 km. England and Thompson have coupled these 
three heat source distributions with three different thermal conductivities (1.5, 2.25 
and 3.0 W m - 1 K _ 1 ) to obtain a total of nine groups of T-z-paths 

qs ( W m " 2 ) S r a d ( 1 0 - 6 W m " 3 ) g r a d ( W m - 2 ) qm (W m" 2 ) 

0.045 1.666 0.025 0.020 
0.060 2.000 0.030 0.030 
0.075 2.333 0.035 0.040 
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(fe = ^ + 2</rad . (6.15) 

Thus, if c/rad = qm and the entire lithosphere thickens to double thickness, 
the surface heat flow in thermal equilibrium and after thickening would be 
only 1.25 times as large as the value given by Eq. 6.13. If qiad — gm/2, then 
thickening or thinning of the lithosphere as a whole does not change the 
surface heat flow at all. 

• Kinematic assumptions. England and Thompson (1984) made the follow­
ing simple assumptions about the kinematic evolution of collisional orogens 
(s. Fig. 6.18): 

— Thickening of the crust occurs homogeneously and instantaneously at the 
start of an orogenic cycle (there is no separation between to and t\ in 
Fig. 6.18; s. p. 286). This assumption was made because many observations 
of plate tectonic velocities show that the rate of continental deformation 
is indeed about an one or two orders of magnitude more rapid than the 
lifetime of an orogen (at rates of centimeters per year, crustal thickening 
events last only few millions of years, while orogenic cycles last of the order 
of tens to one hundred million years). 

— Following initial thickening, there is no vertical motion in the crust for 
about 20 my (Fig. 6.18). This assumption was made based on the obser­
vation that erosion and extension (causing the most important vertical 
motions in orogens) do not commence with the onset of thickening, but 
only once substantial topography is developed and potential energy is cre­
ated. 

— After 20 my erosion sets in. Denudation of the thickened crust is linear in 
time and lasts for several tens of my. While this assumption may be also 
an extreme simplification, it is the most simple assumption that can be 
made for the orogen to return to its normal thickens after some tens of 
my. 

These three kinematic assumptions are illustrated in Fig. 6.18. The z-i-paths 
in this figure correspond to homogeneous thickening. Fig. 6.16 shows the 
thickening geometry and geotherms during the initial thickening process for 
two end member scenarios of thickening explored by England and Thompson 
(1984): homogeneous thickening and stacking of the entire crust. The dashed 
curve in Fig. 6.16b is drawn for a short time (some few my) after thickening 
by thrusting. It shows that the subsequent T-z-paths of rocks are quite robust 
towards the geometry of initial thickening. This justifies the assumption of 
the most simple of all thickening geometries. 

• Model results and application. Fig. 6.17 illustrates the thermal evolution of 
a rock in a collisional orogen according to the model of England and Richard­
son (1977). According to this figure and the model, the involved processes 
occur in the following order: 
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F igure 6.18. Kinematic 
assumptions of the continental 
collision model of England and 
Thompson (1984). The 
depth-time-(«-£)-paths A-E 
correspond to 5 different rocks 
that originally (before 
thickening) were located at the 
depths indicated by the black 
dots. The labeled times to to *4 
correspond to those of Fig. 6.17 

fo-fl h f3 t4 * 

1. At the onset of the evolution (time t i ) crustal thickening causes burial of 
rocks to great depths. In metamorphic rocks this is likely to be documented 
by an early high pressure metamorphic event. 

2. Some tens of my later rocks reach their thermal metamorphic peak at mid-
crustal depths. In Fig. 6.17 it may be seen tha t , depending on crustal level 
of the rocks, this occurs at times £3 or £4. In metamorphic rocks this stage 
may be documented by the metamorphic peak paragenesis. 

3. Following the thermal peak, T-z-paths are first characterized by isothermal 
exhumation and later by cooling and finally exhumation to the surface 
(s. a. sect. 7.3). 

This evolution is shifted in t ime for different crustal levels (s. sect. 7.4.1). 
In Fig. 6.17 cooling of the upper crust commences at time £3, while the 

lower crust heats at least until time £4. Overall, there is a positive cor­
relation between metamorphic grade and the t ime of metamorphism: The 
higher the metamorphic grade of a rock, the later its peak metamorphism 
occurred. For contact metamorphic rocks this relationship is exactly the op­
posite (sect. 3.6.2). We can conclude tha t the relationship between meta­
morphic grade and time of peak metamorphism is an important tool for the 
interpretation of heat sources of metamorphism (s. sect. 7.4.2). 

The space, time and grade relationships predicted by the model discussed 
above (and shown in Fig. 6.17) are documented in the eastern Alps. There, 
Cretaceous high pressure parageneses are overprinted by mid Tertiary am-
phibolite fades parageneses. This observation was made by Oxburgh and his 
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students in the early seventies of last century and formed the basis of the 
model discussed here (e.g. Oxburgh and Turcotte 1974). 

• An example of some calculated T-z-paths. Fig. 6.19a,b shows depth-time 
and temperature-depth paths calculated with the model discussed above. 
We can see that these paths pass through conditions typical of Barrovian 
metamorphism (s. Fig. 7.1). Metamorphic peak temperatures between 600 °C 
and 800 °C are measured at metamorphic peak depths of 20-40 km in many 
regional metamorphic terrains. However, the temperatures that the model 
predicts for the lower crust are unrealistically high. This is indeed a major 
problem of the "England and Richardson" and "England and Thompson" 
models. It illustrates that - although the model is fantastic to teach us the 
fundamental relationships governing the thermal evolution of convergent oro-
gens - it required refinement for more realistic modeling. 

More Refined Thermal Modeling. The model discussed above has two 
important limitations that can be improved upon, even if we want to retain 
a one-dimensional model geometry: 

— The model does not allow for simultaneous deformation and metamor­
phism as observed in many orogens. 

- By assuming a constant mantle heat flow at the Moho, the model does not 
allow for any processes in the mantle part of the lithosphere. 

The influence of both is discussed here. 

• Simultaneous deformation and metamorphism. Fig. 6.19c,d show T-t- and 
T-z-paths calculated assuming that deformation occurs simultaneously with 
heating, in particular with the kinematic assumptions discussed in sect. 4.3.4. 
We can see that there are important differences between the T-z-paths shown 
in b and d: 

— If deformation, exhumation and thermal development occur on similar 
time scales, then metamorphic rocks reach their maximum depth and peak 
metamorphic temperature roughly at the same time (Fig. 6.19d). In con­
trast, if deformation of the orogen is short compared to the thermal devel­
opment, then metamorphic depth and temperature peak are separated in 
time (Fig. 6.19b). 

- The pro- and retrograde sections of the T-z-paths are distinctly differ­
ent if deformation precedes thermal development (Fig. 6.19b), but are 
much more similar if deformation and metamorphism occur simultane­
ously (Fig. 6.19d). 

These differences may form useful criteria for the tectonic interpretation of a 
metamorphic terrain for which the T-z- and T-i-path is roughly known, but 
any other geodynamic information is unknown. 
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Figure 6.19. Kinematic and thermal evolution of rocks in collisional orogens: a 
and b show depth-time (z-t) and depth-temperature (z-T) curves using the kine­
matic assumptions of England and Thompson (1984); c and d show corresponding 
paths assuming deformation, exhumation and thermal evolution occur simultane­
ously (as described in terms of a simple model in sect. 4.3.4 (eq. 4.19) (Stiiwe and 
Barr 1998) 

• The influence of the mantle lithosphere. Within the "England and Richard­
son" the mantle heat flow through the Moho is assumed to remain constant 
during orogenesis. Considering the thermal definition of the mantle part of 
the lithosphere, this implicitly defines the thickness of the mantle part of 
the lithosphere (Fig. 6.20; s. also Fig. 3.20). Within the model heating of the 
crust causes thinning of the mantle part of the lithosphere. This in turn leads 
ultimately to unrealistically high temperatures in the lower crust (Fig. 6.19) 
and has some quite peculiar implications for the evolution of surface eleva­
tion and the dynamic state of orogens as a whole (Fig. 3.20 and Fig. 4.18). 
For example, England (1987) and Ridley (1989) showed tha t orogens with 
geotherms as predicted by the England and Thompson (1984) model, would 
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Figure 6.20. The thickness evolution of the lithosphere according to the models of 
England and Richardson (1977) and England and Thompson (1984). The thickness 
evolution of the crust is explicitly prescribed by the model. The thickness evolution 
of the mantle part of the lithosphere is determined implicitly by the lower boundary 
condition of constant heat flow at the Moho. The labeled times to to £3 correspond 
to the time steps labeled in Fig. 6.17 and 6.18 

be mechanically extremely unstable (s. sect. 6.2.2). Interestingly, the implied 
evolution of the thickness of crust and mantle par t of the lithosphere has a 
lot of similarities with an orogenic evolution characterized by early homo­
geneous thickening of the whole lithosphere and later delamination of the 
mantle par t of the lithosphere (s. also sect. 6.3.2). Whatever the case may 
be, we may conclude tha t more refined models for the thermal evolution of 
the crust must consider the thickness of the mantle par t of the lithosphere, 
even in one dimensional models. 

6.2.2 M e c h a n i c a l D e s c r i p t i o n of Col l id ing C o n t i n e n t s 

So far we have considered the collision of continents only in terms of their 
thermal (sect. 6.2.1) and kinematic (sect. 4.3.4) evolution. If we want to con­
sider their mechanical evolution, we need to consider the force balance equa­
tions we discussed on page 218 and probably use a constitutive relationship 
to relate forces to motions (or stresses to strain rates) (sect. 5.3.1). In thermo 
mechanical descriptions, thermal processes and mechanical evolution are con­
sidered simultaneously. If the mechanical problem we are interested in is a 
three-dimensional one, then all three equations of mechanical equilibrium 
must be integrated. Because this is often very difficult and even more dif­
ficult to interpret, most models t ry to reduce the explain the mechanics of 
orogens in two dimensional plan view or in cross section. We dicuss such two 
dimensional mechanical models and their implicit assumptions later in this 
chapter. However, in the first par t of this section we make it even simpler and 
make a series of one dimensional considerations about mechanical equilibria 
in orogens. 

• Boundary conditions to orogens. Orogens may be subject to either "stress" 
or "velocity" type boundary conditions tha t drive their deformation and it 
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Figure 6.21. Illustration of the fact that the same boundary conditions may be 
reflected in two completely different stress states and strain fields (after Jackson 
and McKenzie 1988; England and Jackson 1989); (for an interpretation of the fault 
plane solutions see p. 227) . The processes in the left diagram may best be illustrated 
on a vertical section. The processes in the right hand diagram are best described 
with a plane strain model 

is important to discriminate between the two (s. Fig. 5.24). The India-Asia 
collision is an example for an orogenesis subject to a "constant velocity" type 
boundary condition: The convergence rate between the two plates has been 
largely constant over the last 30 million years, even though the potential 
energy of the Himalayas has increased dramatically during this time and is 
now opposing the driving force of the Indian Plate. 

• Plan view or cross section ? It is also important to realize that the same 
boundary conditions may lead to very different strain distributions. Fig. 6.21 
illustrates an example. In both cartoons of this figure plate A moves towards 
plate B. However, in the example on the left, the convergence is compensated 
by overthrusting. In the example on the right, the convergence leads to oro-
gen parallel extension. Although the overall velocity across the boundaries is 
the same, the strains are different. Clearly, the two geometries are different, 
because the boundary conditions in the vertical direction are different. 
Force Balances in Orogens. Proper force balance equations were dis­
cussed in other sections of this book (e.g. eq. 5.18). Here, we want to in­
troduce a more intuitive way to formulate a force balance for orgens that we 
can use without too much algebra. For this we divide (very loosely and not 
very precisely) the forces that keep orogens in mechanical equilibrium into 
three groups: 

1. Driving forces: Driving forces are forces applied from the outside to an 
orogen, for example ridge push or slab pull. In the following we abbrevi­
ate these forces with F^. Some of these forces were already discussed in 
sect. 5.3.2. 

2. Internal forces: These are the forces internal to the lithosphere which resist 
the driving forces and are limited by the inherent strength of the rocks in 
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the lithosphere. These are the forces discussed in detail in sect. 5.2.1. As 
we are often interested in the whole lithosphere we often use the vertically 
integrated strength of the lithosphere, which has the units of force/meter 
and was explained on p. 239. We represent this in the following with F\. 

3. Potential energy: Forces resulting from the potential energy difference of 
an orogen relative to its surroundings are also called gravitational stresses 
or: horizontal buoyancy forces. We denote those in the following with Fy,. 

This division is not completely sound, as many of the plate tectonic driving 
forces themselves are also caused by potential energy differences and many 
of the other forces are also coupled. However, it helps us to understand the 
balance of forces in orogens which we can write as: 

Fi = Fd-Fh . (6.16) 

Basically this equation states that the strength of the lithosphere balances 
the effective force applied to the orogen, with the "effective force" being 
the difference between the external driving force causing convergence and 
the buoyancy force causing extension. We will discuss this equation in some 
detail in a few pages. However, first we want to discuss the process of building 
up potential energy in an orogen in some more detail. Note also that all 
orogenic forces are usually not given in the units of force (N), but that they 
are discussed in terms of force per meter (Nm_1) and that the unit of "force 
per meter" is equivalent to the units of "potential energy per area" or the 
units of "stress x distance". 

• Building up potential energy. In sect. 5.3.1 we showed that the potential 
energy of orogens grows with the square of the surface elevation and with the 
square of the thickness of the orogenic root. Thus, it takes significantly more 
energy to increase the surface elevation of a high mountain range by one meter 
than it takes to increase the elevation of a low range by the same amount 
(Molnar and Tapponier 1978). As a consequence, the height of a mountain 
range and the thickness of an orogenic root are limited, if the driving force 
is a constant. This limiting elevation is reached when the potential energy of 
the range per square meter area is exactly as large as the tectonic driving 
force per meter length of orogen. Then, a steady state equilibrium of the 
forces is reached. 

In order to understand how this equilibrium is reached, consider Fig. 6.22a, 
which illustrates a very simple model orogen. The left of this diagram shows 
normal thick crust of the thickness zc and the density pc. On the right, 
this diagram shows an elevated mountain range in isostatic equilibrium of 
the elevation H. The diagram is equivalent to Fig. 5.27. The difference in 
potential energy between the two mountain range and the foreland per square 
meter of area is given by eq. 5.56 and 5.57. Let us also recall that AEP is 
a potential energy per area and has the units of J m " 2 and may also be 
interpreted as the mean net horizontal force exerted by the mountain range 
onto the foreland per meter length of orogen. 
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By analogy, the potential energy per meter length of orogen may also be 
interpreted as the product of the potential energy per area times the width 
of the mountain range I. From eq. 5.57 we can derive directly tha t : 

AE, p,m~ PcgHl (H/2 + zc + w/2) (6.17) 

The subscripts are used to emphasize tha t we are dealing with the units 
of potential energy difference per meter , while the AEP t ha t we used in 
eq. 5.56 and eq. 5.57 has the units of potential energy difference per area. 
Further growth of the mountain range may now proceed either in the vertical 
direction (Fig. 6.22b) or in the horizontal direction (Fig. 6.22c). If the crust 
inside the orogen is doubled in thickness, then the potential energy of the 
range per meter grows to the following value: 

AEhigh
 1 = 

p,m~L 
2pcgHl (H + zc + w) (6.18) 

If the growth of the mountain range is by doubling its width (at constant 
thickness, as shown in Fig. 6.22c), then the potential energy per meter growth 
to the following value: 

Zi.Ewide_ 
p,m 

2pcgHl (H/2 + zc+ w/2) (6.19) 

The difference of the potential energy increases between the two deformation 
styles is given by the difference between eq. 6.18 and eq. 6.19: 
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Figure 6.22. a Cartoon of a collisional orogen showing crust of normal thickness 
on the left and a mountain range on the right. Further displacement of the crust 
from left to right is compensated in b by further thickening and in c by lateral 
growth of the range. The difference in deformation style between b and c causes a 
significant difference of the potential energy of the mountain range (see eqs. 6.17 
to 6.20) (s. also Fig. 5.27; after Molnar and Lyon-Caen 1988) 
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AEf^ - AEgZLt = PcgHl (H + w)= f-E^J) gm" . (6.20) 
' V Pm Pc / 

The last simplification in the equation above was performed using the isostasy 
condition Apw = Hpc that we also used in eq. 5.57. Eq. 6.20 shows us that it 
takes significantly less energy to thicken the crust in the foreland of a moun­
tain belt (i.e. to widen the range) than it takes to increase the thickness of the 
crust in the mountain range itself (i.e. to increase the elevation of the range). 
Because of this, it is not necessary that convergence between two plates will 
stop when the gravitational extensional force i*\, has reached the same mag­
nitude as the tectonic driving force Fd acting towards the orogen. It is just 
that the convergence cannot be compensated anymore by vertical growth of 
the range, but will be compensated by lateral growth of the range towards the 
fore- or hinterland. Thus, active deformation in the range itself will come to a 
halt, the zone of active deformation propagates into the fore- and hinterland. 
A plateau will form in the center. In the process, the transition zone between 
the region where the largest principle stress is oriented horizontally and the 
region where it is oriented vertically will shift also towards the foreland. 

Note that - despite these dramatic changes of the deformation and stress 
fields in the orogen - nothing has changed in the overall kinematics or stresses 
of the collision zone as a whole (Molnar and Lyon-Caen 1988) (s. p. 301): The 
driving forces have remained constant and so has the convergence between 
the two colliding plates. Understanding these relationships should therefore 
serve as a warning to structural geologists who are tempted to infer the overall 
kinematics of an ancient orogen from field observations on the kinematics of 
a few rocks. 

• Evolution of orogens in the equilibrium of forces. The force balance we 
have discussed in the last paragraphs may be summarized in the following 
equation: 

Fev = Fd-Fb . (6.21) 

which we already introduced in eq. 6.16. There, Fd is the tectonic driving force 
per meter length of orogen, Fb is the gravitational stress times the thickness 
of the lithosphere. Fb is also called horizontal buoyancy force, or: extensional 
force or: potential energy per area. The difference between the driving force 
and the horizontal buoyancy force is the effective driving force applied to 
a continent Fe^. Equation 6.21 is often referred to as the "orogenic force 
balance". Note that - although this equation is called a "force balance" - it 
really balances parameters that have the units of force per meter or stress x 
meter. Eq. 6.21 is often also written as: 

FeS = Fd-Fh=F1 . (6.22) 

There, F\ is the vertically integrated strength of the lithosphere in Nm _ 1 and 
corresponds to the area under the failure envelope discussed in Figs. 5.13, 
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Figure 6.23. Schematic 
illustration of the evolution of a 
collisional orogen subject to the 
force balance of eq. 6.22. Surface 
elevation and crustal thickness 
converge to a steady state when 
the magnitude of the horizontal 
buoyancy force approaches the 
tectonic driving force. Then, the 
convergent strain rate goes 
towards zero 

s^~^ Surface elevation 

y ^ Crustal thickness 

^ - - - ^ _ ^ Strain rate 
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5.14 and several others. Note that F\ can only equal the left hand side of 
the equation if the orogen is deforming (i.e. at the point of failure). When 
-Feff < -PI; there is no deformation. However, we assume that active orogens 
are always on the point of failure so that Feff — F\ (sect. 5.2.1, eq. 5.48). 
The bulk of the lithosphere is dominated by viscous deformation mechanisms 
where deviatoric stress and strain rate are proportional. Thus, an orogen will 
always deform with a strain rate that is just large enough so that the vertically 
integrated flow stresses balance exactly the effective driving force (per meter). 
If the strain rate would be lower than this, the integrated strength of the 
lithosphere would be smaller than the effective driving force (per meter) and 
the deformation rate would increase. Conversely, if the strain rate would be 
larger than the effective driving force, then the strength would be too large 
for any deformation to occur. Note also that, within eq. 6.22, the integrated 
failure strength of the lithosphere is zero when the effective driving force is 
zero. 

Because of the balance described by eq. 6.21 it is possible to solve this 
equation for strain rate of an orogen, if a relationship is assumed that re­
lates stress to strain rate (e.g. a viscous flow law). Such an analysis has been 
done by a number of authors and provides insights into the basic principles 
of the mechanical evolution of collisional orogens (e. g. Sonder and England 
1986; Sandiford et al. 1991; Stiiwe et al. 1993a). If the tectonic driving force is 
assumed to be constant, then such orogenic evolutions track towards an equi­
librium where Fy, = Fd and Feg = Fi = 0 (Fig. 6.23). Thus, collisional orogens 
are self limiting. As such, collisional orogens are fundamentally different from 
extensional orogens, which are not necessarily self limiting (sect. 6.1.4). 

The limiting values for a range of geodynamical parameters (e.g. surface 
elevation, crustal thickness) depend not only in the driving force Fd, but also 
on the integrated strength of the lithosphere. This may be illustrated if we 
reformulate eq. 6.22 to: 

Fd=Fi + Fb (6.23) 
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Remember that F^ is a direct function of the surface elevation and the thick­
ness of the lithosphere. Thus, if the strength (i7!) of the lithosphere becomes 
smaller, for example because the lithosphere becomes warmer or the material 
changes due to metamorphism, then it is possible that the potential energy 
of the range per unit area (Ft,) increases, even at constant driving force - the 
mountain belt grows (Houseman and England 1986a). Because of this pro­
cess, sudden changes of the thermal structure of the lithosphere may cause 
sudden deformation events without changes in the driving force. 

• The mean strength of the lithosphere. Differences in surface elevation of 
the continental lithosphere can only be created if the lithosphere has a finite 
strength (Fig. 2.2). That is: if the horizontal and vertical principle stresses 
are of different magnitude (Artyushkov 1973; McKenzie 1972; Molnar and 
Lyon-Caen 1988). If the were no stress differences, then the surface of a plate 
subjected to lateral forces from the outside would lift everywhere by the same 
amount; like water between two converging sides of an aquarium. There would 
be no mountain ranges and the surface of the continents would look rather 
boring. Conversely, it is possible to use the thickness and surface elevation 
of a mountain belt to estimate the mean strength of the lithosphere (Molnar 
and Lyon-Caen 1989). 

Consider a mountain range which collapses under its own weight and to 
which there is no forces applied externally. We could then reformulate eq. 6.23 
to: 

Fh = -Fl . (6.24) 

The left hand side of eq. 6.24 is the potential energy difference between moun­
tains and foreland per unit area and was evaluated in eq. 5.57 or, somewhat 
more precisely, with eq. 5.59 (s. also Fig. 5.27). The right hand side of 
eq. 6.24 is the integrated strength of the lithosphere (s. eq. 5.48, Fig. 5.19 
and Fig. 5.21). It is the product of the mean differential stress of the extend­
ing mountain range and its thickness. Thus, the elevation contrast between 
mountain belts and their foreland may directly be used to provide an upper 
bound on the mean strength of the lithosphere. 

According to the estimates of Molnar and Lyon-Caen (1988), the surface 
elevation contrast between the Tibetan Plateau and the Indian foreland indi­
cates a mean strength of the Asian lithosphere of o~d = 69 MPa. For the Alti-
plano in the Andes similar estimates indicate a mean strength of ad = 52 MPa. 
This mean strength is estimated purely on the basis of topography differences 
and is therefore quite a sound estimate. If we acknowledge that some parts 
of the lithosphere will be significantly "softer" than this value (e. g. the up­
permost and lowermost parts of the crust as shown in Fig. 5.13), then there 
must be other parts of the lithosphere that are significantly "stronger" than 
this value to maintain the mean value given by these estimates. These con­
siderations provide a strong argument for the existence of a significant shear 
strength of parts of the lithosphere (s. sect. 6.3.5). 
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t 
Figure 6.24. Distribution of horizontal and vertical stresses in a simple collisional 
orogen. If the topographic gradients at the surface and the base of the lithosphere 
are small, then the horizontal and vertical stresses axx and azz are parallel to the 
principal stresses. The horizontal stresses are constant across the orogen. However, 
the vertical stresses at a constant crustal level are higher in the orogen and smaller 
in the foreland. Thus, the largest principal stress in the foreland is given by axx, 
while it is given by azz in the orogen 

M e c h a n i c s o n Vert ical Sec t ions . Many continental orogens are long com­
pared to their width. In such orogens many parameters do not change very 
much in the direction parallel to the orogen and it is often possible to neglect 
this direction altogether when describing the orogen: We can characterize 
them with a description on a vertical cross section and the equations tha t 
must be solved to describe this are eq. 5.15 and eq. 5.18, but omitting all 
terms tha t contain y. However, in this section we refrain from integrating 
these equations and simply expand on the discussion of the last section. 
More elegant two-dimensional models on cross sections are then discussed in 
sect. 6.2.3. 

• Changes in the stress field in collisional orogens. In the discussion of 
eq. 6.20 we have shown tha t the stress field in an orogen may change over 
t ime, even if the far field plate boundary stresses remain constant. Here we 
illustrate this in some more detail by looking at the changes of the stress state 
across a mountain belt. In this discussion we follow the logic of Dalmayrac 
and Molnar (1981) as well as Molnar and Lyon-Caen (1988). 

If the shear stresses at the base of the lithosphere are negligible, then 
the horizontal forces in a simple orogen (simplified as shown in Fig. 6.24) are 
constant, regardless of thickness of the plate or surface elevation (Artyushkov 
1973; Dalmayrac and Molnar 1981) (s. Problem 5.7). In other words, the 
product of the mean horizontal stress axx and the thickness of the plate 
remains a constant. Thus, if the stresses are a similar function of depth in 
different parts of the orogen, then the horizontal stress axx is constant at 
any one depth across the orogen. This also implies tha t mountain ranges and 
plateaus t ransmit horizontal forces from the foreland to the hinterland of the 
orogen without changing their magnitude. On Fig. 6.24 this is indicated by 
the horizontal white arrows tha t are of the same size everywhere across the 
orogen. 

This logic does not apply to the vertical stresses. Vertical stresses are the 
largest in regions where the overlying rock column is the thickest and the 
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Figure 6.25. Fault plane solutions for the two great plateaus on this planet, a The 
Tibetan Plateau as the consequence of the Ind ia - Asia collision and: b the Altiplano 
as the consequence of the collision between the Pacific and the South American 
plates. Note that the majority of the fault plane solutions at low elevation regions 
indicate compression, while those on top of the plateau indicate largely extension 

smallest where it is the thinnest (s. Fig. 5.27). As a consequence, the stress 
distribution in an orogen may be like that shown in Fig. 6.24. In the foreland 
(on the left in this figure) the vertical stress is smaller than the horizontal 
stress. The region is thickening, for example by thrusting. In the mountain 
belt (strictly: in the region of high potential energy, s. sect. 5.3.3), the largest 
principle stress is the vertical stress. The region is extending. In short: al­
though the horizontal stress on Fig. 6.24 is everywhere the same, there is 
thickening in parts of the Figure and extension in others. On earth, there 
are two orogens that have reached mechanical equilibrium and have formed 
plateaus. The Altiplano and the Tibetan Plateau. On both the transition 
from compression (in the foreland) to extension (on the plateau) can be ob­
served (Fig. 6.25). 

The lateral qualitative change in the deformation regime is not caused 
by changes in the horizontal- but changes in the vertical stress. This also 
explains why the observation of extension in mountainous regions must not 
occur because the surrounding plates are moving apart. The Tibetan Plateau 
is an example for such a situation: although the plateau is extending laterally, 
there is thrust tectonics in the surrounding regions (s. p. 303 and p. 306). 

• Changes in the stress field during the aging of plates. If the driving force in 
an orogen remains constant, the qualitative nature of the orientation of the 
principal stresses may be changed during orogenesis because of: 1. Increasing 
the potential energy of the mountain range or 2. decreasing the mean poten­
tial energy of the entire plate (Coblentz and Sandiford 1994; Sandiford and 
Coblentz 1994). The former was discussed in the last section, the latter is the 
subject of this paragraph. 
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The geoid anomalies at continental margins tell us that the potential en­
ergy of old oceanic lithosphere is very low, while that of the mid oceanic 
ridges and that of large parts of the continental lithosphere is relatively high. 
Thus, the mean potential energy of a lithospheric plate is largely governed 
by the relative proportions of oceanic and continental lithosphere within this 
plate. If a plate is largely surrounded by mid ocean ridges (as both the African 
and the Antarctic Plate are) then the proportion of oceanic lithosphere in the 
plate will grow over time and the mean potential energy of the plate will sink. 
Correspondingly, the part of the continental lithosphere that has a higher po­
tential energy than the mean value, will also grow over time. Thus, some areas 
that have long been under compression because of the high potential energy 
of the surrounding mid ocean ridges, may go into extension only because the 
plate is aging (the proportion of oceanic to continental lithosphere rises as 
the area of oceanic lithosphere rises). Sandiford and Coblentz (1994) have 
suggested that all continental plates will ultimately go into extension as a 
function of their age and suggested that features like the central African rift 
system may be largely caused by the aging of the African Plate. 

Mechanics in the Plane. Many collisional orogens have features that may 
only be described by considering deformation in plan view, for example pro­
cesses like lateral extrusion. In order to explain such observations (and avoid 
a full three dimensional description) two dimensional models in plan view 
are used. Because the vertical direction can then not be considered, verti­
cally averaged assumption for lithospheric rheology and thermal structure 
have to be made. There are two common ways how to do this. These are 
the plane strain assumption and the thin sheet (plane stress) assumption 
(s. p. 10; Fig. 6.21). Which of the two assumptions is more appropriate for 
the description of orogens has been a subject of debate between the schools 
of Tapponier on the one side (e. g. Molnar and Tapponier 1975; 1978) and 
that of England, Houseman and McKenzie on the other side (e. g. England 
and McKenzie 1982; Houseman and England 1986a; England and Houseman 
1986; 1988; Molnar and Lyon-Caen 1988). Within both the plane strain and 
the thin sheet model we need to consider the force balance equations: 

00Xx , OfJXy n 1 O&yx , OGyy . . 
—— + —S- = 0 and : —*- + — ^ = 0 . (6.25 

ox ay ox oy 

which are the two dimensional versions of the force balance introduced on 
p. 218 for the x and y direction, respectively. Within the plane strain model 
these equations are solved subject to the appropriate boundary conditions. 
In contrast, the thin sheet model (e.g. England and Jackson 1989; England 
and McKenzie 1982; England et al. 1985; Houseman and England 1996) also 
considers a reduced vertical force balance with the body force term: 

^ = - « (0-26) 
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Note that - as long as there are no vertical strain rate gradients considered 
- such a body force term can simply be considered as a variably on a two 
dimensional model region described by eqs. 6.25 and the model is still two 
dimensional. Substituting these equations into eq. 5.8, the force balance may 
be written in terms of the depth averaged components of deviatoric stress and 
a horizontal buoyancy force arising from horizontal gradients in the vertical 
stress. For the x and y directions these equations are: 

&7~xx UTxy OTzz O0~zz j ^ OTyx .^Tyy OTzz &0' zz /„ c\ry\ 

dx dy dx dx ' dy dx dy dy 

If the horizontal gradients of the vertical stress can be obtained indepen­
dently, i.e. without solving a three dimensional set of equations, then eq. 6.27 
remains a two dimensional description called the thin sheet approximation. It 
may be solved for evolving orogens is a flow law is assumed. Usually this flow 
law is assumed to be a non-linear viscous flow according to the relationship: 

(ai - <r3) = Befln) or : e, = B~n{ax - a3)
n (6.28) 

in which we can recognize a simplification of the viscous relationships ex­
plained in eq. 5.42 and eq. 5.45. The constant B summarizes all temperature 
dependent terms of the power law (eq. 5.46) and represents a depth aver­
aged value when doing thin sheet calculations. A comparison of eq. 5.46 with 
eq. 6.28 shows that: B = J\L(-1ln)^QlnRT. In short, B depends on strongly on 
temperature, but it can be shown that it is largely independent of the dis­
tribution of temperature within the lithosphere. Using the simplification of 
eq. 6.28 the lithosphere may be considered as a simple medium deforming ac­
cording to a power law relationship between stress and strain rate (described 
by eq. 4.6). However, eq.6.28 is not really a tensor equation (s. discussion of 
eq. 5.46) and it needs to be generalised to be coupled with the force balance 
above. Usually eq.6.28 is generalised in the form: 

T = BE^~lh (6.29) 

where E is the 2nd invariant of the strain rate tensor (E = y/eijlij) and r 
and e are the deviatoric stress and strain rate tensors as elsewhere in this 
book. Eq.6.29 is a proper vector equation (like eq. 5.42) and the flow law can 
now be coupled with the force balance above. The non linearity between de­
viatoric stress and strain rate is taken care of by introducing the deformation 
dependent term E. In this form, eq.6.29 is the basis of many dynamic models 
for the description of continental deformation, for example those of England 
and McKenzie (1982) or Vilotte et al. (1982). In these models, the nature of 
deformation is often characterized by a single value: the Argand number. 

• The Argand number. The Argand number Ar is a measure for the ease with 
which the lithosphere deforms in response to gravitational stresses. It tells 
us if an orogen is likely to flow apart at the same rate it is being built, or if 
significant amounts of potential energy may be stored within it before it would 
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Length scale 
Velocity scale 
Strain rate scale 

Viscosity scale 
Stress scale 

Argand number 

L 
Uo 
eo 
B 
To 

Ar 

= 

= 

oc 

Uo/eo 
L x to 
Uo/L 

To/io 
B x e0 

L/TO 

Table 6.2. Scaling parameters in non dimensional viscous calculations. For sim­
plicity, the stress exponent is assumed to be n = 1. Time scale t is not specifically 
listed here as it is simply t = e^1. In calculations where there is no Argand num­
ber, two of the top three variables and one of either viscosity- or stress scale are 
independent. Specifying Ar relates the top three to the next two variables, so that 
only two other scaling parameters must be chosen to define the system 

collapse slowly under the influence of gravitational stress. It stems from the 
need to obtain horizontal gradients in the vertical stress when solving eq. 6.27. 
England and McKenzie (1982) showed tha t these gradients in vertical stress 
are proportional to the square of the crustal thickness S: 

dazz dS2 dazz / apc ,_ , s \ dS 

dx * ^ x - o r : ^x- = \r^L{l-pclPm))^x-
 ( O 0 ) 

for reasons discussed on p . 248. In eq. 6.30 the densities are those commonly 
used in this book and L is a thickness of the considered layer. If this is 
substi tuted into eq. 6.27 and the equation is brought into a non-dimensional 
form by normalizing to the length scale L, stress scale TO and velocity scale 
Uo (the collision velocity), then the Argand number is: 

Ar = Pc9L{l -p/pm) = P^ 

B(Uo/L)V» TO y ' 

and may be interpreted as dimensionless ratio of the additional pressure P(£), 
t ha t arises because of the thickness difference L between two plates and the 
stress TQ, t ha t is necessary to deform a plate with a significant ra te eo = Uo/L 
(England and McKenzie 1982). 

In this form, Ar may be used as an input parameter for mechanical model­
ing of orogens without having to explicitly consider the rheology, the material 
constants or the temperature profile of the lithosphere (Table 6.2). The ad­
ditional pressure rises linearly with the thickness of the orogen and the stress 
ro increases with the effective viscosity of the plate. 

We can see tha t - if the effective viscosity of a plate is large, then the 
Argand number is small. Then, the flow properties of a mountain belt will 
depend largely on the orogenic boundary conditions. The belt will only begin 
to extend once its potential energy is very large. In contrast, if the Argand 
number is large (say between 10 and 20), then the effective viscosity of the 
range is very small and the forces caused by potential energy differences are 
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large. The crust will quickly flow in response to applied forces. No significant 
thickness variations between foreland and orogen will ever develop during 
orogenesis. England and McKenzie (1982) have shown that orogens charac­
terized by an Argand number of 30 show practically no thickness variation 
and their deformation is already nearly plane strain. 

• The Deborah number: A number similar to the Argand number is the Deb­
orah number. In contrast to the Argand number (which is defined in terms of 
stresses), it is defined as the ratio of two time scales, namely the time scale of 
viscoelastic stress relaxation and the characteristic time scale of deformation 
(Reiner 1964; 1969). Akin to the Argand number it can be used as a mea­
sure of the fluid-like behavior of continents. When applied to the evolution 
of continents, the Deborah number may be interpreted as the duration for 
which an orogenic driving force is applied to a plate, relative to the duration 
an orogen takes to flow apart (England 1996). The Deborah number has also 
been employed on a much smaller scale to characterize outcrop scale folding 
(e.g. Mancktelow 1999; Schmalholz and Podladchikov 1999). 

• Orogen parallel displacement. Collision of continents causes displacement 
of rocks in all three spatial directions. The vertical displacement results in 
thickening, the horizontal displacement in direction normal to the indenta­
tion direction is called loosely lateral extrusion and may occur in either a 
compressional or extensional regime. 

Fig. 6.26a shows the collision of a plate with a rigid indenter that deforms 
the plate in front of it. The rocks in front of the indenter are displaced both in 
the direction of indentation and perpendicular to that direction. In Fig. 6.26a 
the amount of displacement decreases with distance from the indenter as the 
deformation there dissipates more. However, despite the orogen parallel dis­
placement of rocks, all points of the indented plate are under compression. 
There is no lateral extension. This conclusion from Fig. 6.26a is in contrast to 

v ^ = D e=C^/ 

m 
Indenter 

Figure 6.26. Different deformation regimes that occur during collision of an in­
denter with a much larger continental plate (gray shaded region). The arrows are 
velocity vectors. In a the plate is infinite or bound at all sides. In b the side bound­
aries of the plate are free and lateral extension occurs. The absence of confined 
model boundaries is one of four mechanisms that can account for orogen parallel 
extension during convergent plate motion 
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many observations in active collisional orogens where lateral extension does 
occur. According to England and Houseman (1989) orogen parallel exten­
sion in convergent orogens must find its nature in one of the following four 
processes: 

1. unconstrained boundaries, 
2. decrease in the convergence rate between two plates, 
3. changes in the rheology of the plate, 
4. external addition of potential energy to the plate. 

The first of these four processes is illustrate in Fig. 6.26b. There - in 
contrast to Fig. 6.26a - the gray shaded region is not bound on the sides. 
The other three processes may be illustrated with an analysis of eq. 6.23. A 
decrease in the convergence rate is reflected in this equation by a decrease 
in F^. If F\ remains constant, the horizontal buoyancy force must decrease 
and extension sets in. This process is generally known as "post orogenic col­
lapse" . Changing the rheology of the plate (e. g. by heating, recrystallization, 
metamorphism etc.) is reflected in eq. 6.23 by changes in F\. In order to 
maintain the force balance, strengthening of the plate must be accompanied 
by a decrease in the deformation rate or a decrease in the horizontal buoy-

Figure 6.27. Model for the lateral extrusion of the Eastern Alps illustrating the 
influence of Argand number Ar on the deformation regime during continental in­
dentation (after Robl and Stiiwe 2005). a The 4 considered regions and their rela­
tive viscosity contrasts: European foreland (10), Adriatic indenter (10), Pannonian 
Basin (0.8) and Eastern Alps (1). For Ar = 1 and even for Ar = 10, significant 
topography (gray shading) is built in the Alps and lateral extrusion is exclusively 
due to tectonic forcing. For Ar = 100, lateral extrusion is increased (a little bit) by 
an additional contribution of extensional collapse. However - although barely any 
topography is suported - the extensional collapse is still in an overall compressive 
regime (because indentation goes on). 
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Table 6.3. Definition of terms related to lateral displacement of rocks during in-
denter tectonics on an orogenic scale 

term 
(key reference) 

meaning 

lateral extrusion 

(Ratschbacher et al. 1991) 

gravitational collapse 

(Dewey 1988) 

tectonic escape 

(Tapponier et al. 1982) 

kinematic description for displacement of 

rocks normal to indentation direction 

(stress regime: undefined) 

extension under its own potential energy 

(stress regime: extensional) 

active lateral forcing along strike slip faults 

(stress regime: compressional) 

ancy force F^. Extension occurs as a consequence. The external addition of 
potential energy, for example by delamination of the mantle part of the litho-
sphere, has a similar influence on eq. 6.23. It may also cause the transition 
from compression to extension. 

• Lateral extrusion. Lateral extrusion of orogens is a great term that can 
be used when referring to lateral displacement of rocks without wanting 
to specify if its under a compressional or extensional regime. According to 
Ratschbacher et al. (1991), lateral extrusion describes lateral motion of rocks 
as the consequence of a combination of tectonic escape (in a compressional 
regime) and gravitational collapse (in an extensional regime). While the term 
lateral extrusion is mechanically not specified and is a largely a kinematic 
description, the terms tectonic escape and gravitational collapse have well de­
fined mechanical implications that were described by Tapponier et al. (1982) 
(Jones 1997) and Dewey (1988), respectively. Both processes are observed 
in the eastern European Alps, where extensional tectonics is observed along 
the east and west margins of the Tauern window ) and simultaneous tectonic 
forcing along major strike slip lineaments has occurred (Selverstone 1988; 
Ratschbacher et al. 1991; Robl and Stiiwe 2005). 

6.2.3 Orogenic Wedges 

All considerations of the last paragraphs are based on the thin sheet model 
assumption. That is, we have assumed thickening processes to be homoge­
neous. Using this simplification we were able to understand some important 
aspects of the mechanics of continental orogens, but we have limited our­
selves to the understanding of symmetrical orogens and plateaus. However, 
most orogens have a fundamentally asymmetric geometry in cross section 
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(e. g. Pfiffner et al. 1997). In fact, on a sub-orogen scale, wedge shaped pack­
ages of rock are very common in the foreland of orogens. According to the 
appropriate assumptions used to describe them, wedge shaped orogens may 
be very loosely divided into: 

- Mohr-Coulomb wedges (fold and thrust belts, accretionary wedges) 
- S-point wedges (used to describe orogens as a whole) 

Both have in common that they have characteristic geometries that are a 
function of the fact that stresses are imposed at the base and that the upper 
surface is stress free. As such they differ significantly from another use of the 
term "orogenic wedge": The term is also used for wedge shaped packages of 
rocks that are extruded in the horizontal or vertical direction between two 
fault zones, for example the Central Himalayan Crystalline complex (that 
extrudes between the Main Central Thrust and the South Tibetan Detach­
ment), The Chugach Metamorphic complex of Southern Alaska or the East­
ern European Alps. Extruding wedges of this type were discussed in the last 
section and we spend some time on them on page p. 323, 

Mohr-Coulomb Wedges. Wedge shaped orogenic bodies that are charac­
terized by a fixed angle between the surface of the earth and a detachment 
surface at the base of the plate form in many orogens both on land and under 
water. The mechanics and geometry of such wedges is well described with the 
Mohr-Coulomb criterion (Dahlen 1984; sect. 5.1.2) and we call them there­
fore here "Mohr-Coulomb wedges" although we also discuss thermal models 
in this section. Mohr-Coulomb wedges that form in connection with the sub-
duction of oceanic lithosphere are usually below sea level and are called ac­
cretionary wedges. In continental orogens, such wedges form above sea level 
and are called fold and thrust belts (McClay 1992). One of the fundamental 
characteristics of both fold and thrust belts and accretionary wedges is their 
constant overall shape during growth and in different examples throughout 
the world. Most accretionary wedges have a surface slope which dips at about 
1°. In fold and thrust belts, this angle is typically of the order of 3°. In the 
following section we use the term "wedge" or "orogenic wedge" for both ac­
cretionary wedges and fold and thrust belts. 

The wedge shape of all orogenic wedges stems from the fact that an inclined 
plane moves material towards a fixed back stop. This inclined plane is usually 
referred to as the basal detachment and the transmission of forces into the 
wedge is by friction along this detachment (s. sect. 6.2.2). In accretionary 
wedges marine sediments that lie on top of the subducting oceanic lithosphere 
are moved towards the upper plate (s. Fig. 2.23; 5.23). The upper plate is 
the back stop or indenter, depending on whether the process is seen in a 
Lagrangian or Eulerian reference frame (Fig. 6.29). A good example of such 
a wedge is the accretionary wedge that forms between the Pacific Plate and 
the North American continent in Alaska. The best known example of a fold 
and thrust belt is Taiwan, which formed as a consequence of the subduction of 
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Figure 6.28. Geometrical parameters of accretionary wedges and fold and thrust 
belts. The angles a and /9 are the inclination angle of the surface and that of the 
basal detachment both measured relative to the horizontal. In models that are based 
on Mohr-Coulomb criteria, the coordinate system is often chosen so that the axes 
and the indenter are parallel to the direction of the principle stresses as shown here 

the Eurasian continental margin underneath the island arc of Luzon (Suppe 
1981; 1987). Using Taiwan as an example, a number of models have been 
developed in the past 20 years tha t may be used to explain orogenic wedges 
around the world (Davis et al. 1983; Dahlen et al. 1984; Dahlen 1984; Barr 
and Dahlen 1989; Dahlen and Barr 1989; P ia t t 1990; 1993a). 

Modeling orogenic wedges is a typical two-dimensional problem. The most 
important parameters necessary for the geometrical description of the wedge 
are the angle of inclination of the basal detachment j3 and tha t of the surface a 
(both relative to the horizontal Fig. 6.28). Models describing accretionary 
wedges may be divided into: 

1. Models, describing the geometry and the s tate of stress. 
2. Models, describing the kinematics and thermal development. 

Both types of models will be discussed briefly in the next sections. In the 
context of doing so we will show tha t indenters are not necessary for the 
formation of an orogenic wedge. 

• 1. Geometry and State of Stress. The origin of the typical shape of orogenic 
wedges may be understood by comparing orogenic wedges with the familiar 
analog of a snow plow. If a snow plow star ts moving through a fresh layer 
of snow, we know tha t there are two possibilities of how the snow deforms: 
1. If the internal strength of the snow is higher than the friction with the 
road (e.g. if the snow is icy and the road is warm), then the snow will be 
moved as an undeformed slab in front of the plow. 2. If the internal strength 
is smaller than the friction with the road (as usually is the case) then the 
snow deforms internally and its surface will become inclined. According to 
the Mohr-Coulomb criterion, the strength of the snow will increase as the 
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thickness of the snow wedge increases (and the normal stresses within it do, 
s. eq. 5.29). This will continue until a critical taper between surface and 
basal detachment (in our example: the road) is reached where the strength 
of the snow is exactly as large as the basal traction (on Fig. 6.28 this is the 
angle a + p) (Davis et al. 1983). In this state, the wedge can now move along 
the basal detachment and during progressive deformation the wedge stays 
constant in shape. However, while constant in shape, it still may grow in size 
as more snow is scraped up always retaining a balance between (increasing) 
internal strength and (increasing) basal friction. The wedge has a self similar 
geometry. 

Dahlen (1984) showed that many orogenic wedges may be described very 
well with the assumption that they consist of cohesion-free material deforming 
according to Mohr-Coulomb criterion (sect. 5.1.2). In this case the orientation 
of the principal stresses are constant everywhere within the wedge (Fig. 6.28). 
Summarizing this we can write: 

a + (3 = constant . (6.32) 

The constant in this equation depends on two parameters: the strength of the 
wedge material and the strength of the basal detachment. Both parameters 
are functions of the coefficient of internal friction n and the fluid pressure 
(eq. 5.33). High stresses on the basal detachment increase the critical taper, 
high internal strength decreases it. Similarly, high fluid pressure inside the 
wedge decreases the strength of the wedge and increases the critical taper, 
while high fluid pressure along the basal detachment decreases the friction 
along this surface and thus decreases the critical taper. 

The model discussed in the last paragraph was a great advance in our 
understanding of orogenic wedges (Dahlen 1984). Before the consideration of 
Mohr-Coulomb rheologies, wedges were generally described with models that 
do not consider the depth dependence of stresses (Chappie 1978; Stockmal 
1983). 

• Differences between limited and unlimited wedge size. In the last paragraph 
we have shown that an orogenic wedge will grow infinitely while maintaining 
a self similar shape. Depending on the position of the observer this growth 
may be interpreted in two different ways. An observer on the indenter (e. g. 
a snow plow driver) will see that the wedge grows at the toe and increases in 
thickness. This is illustrated in Figs. 6.29a and Fig. 6.30a and this situation 
corresponds to most accretionary wedges. However, if seen from the point of 
view of the wedge toe on the subducting plate, the wedge grows at its wide 
end and the region of most intense deformation moves progressively towards 
the foreland (Fig. 6.29b and Fig. 6.30b). This is observed in Fold-and-thrust 
belts where the deforming area progressively propagates forward into the 
orogen. There are two possibilities to limit not only the shape but also the 
size of a wedge: 

— In the snow plow model, the size of the wedge is limited by the height of the 
plow. During progressive deformation, the wedge will eventually become as 
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high as the plow itself and the snow will be removed from the system over 
the top of the plow blade. Koons (1990) showed tha t exactly this process 
may be relevant to the geometry of deformation in New Zealand. 

- The surface of the wedge may erode rapidly enough so tha t the erosive 
removal of material from the system balances the input of material at the 
wedge toe. 

The second possibility appears to be realized in many accretionary wedges 
around the world. It forms the basis of the kinematic models we discuss in 
the next section. 

Indenter-model Forward propagation - model 

Figure 6.29. Cartoon illustrating the growth of accretionary wedges and fold and 
thrust belts. The arrows and light shaded wedge sections indicate the growth direc­
tion. The black regions show undeformed parts of the foreland, a From the point 
of view of the indenter, the wedge grows at its toe. b From the point of view of the 
basal detachment, the wedge growth appears to be caused by forward propagation 
of the deformation into the foreland. The indenter model is more appropriate to 
accretionary wedges. The forward propagation model more appropriate to fold-and-
thrust belts 

Figure 6.30. Schematic illustration of the kinematic and thermal structure in 
accretionary wedges (after Dahlen and Barr 1989; Barr and Dahlen 1989). The 
velocity vectors penetrate the surface because it is assumed that there is a steady 
state equilibrium between material input at the wedge toe (left edges) and material 
output by erosion at the surface, a Velocity vectors relative to the indenter (upper 
plate); b Velocity field relative to the subducting plate; c Rock trajectories in the 
accretionary wedge; d Isotherms 
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active margin continent - continent collision 

Figure 6.31. Two different plate margin settings showing that they have similar 
geometries. In both, point S is a discontiniuty in the basal boundary condition 

• 2. Kinematics and Thermal Structure of Orogenic Wedges. If there is no 
erosion and the height of the indenter is infinitely high, then wedges would 
grow infinitely. The velocity field of rocks in the wedge relative to the indenter 
would look like a radial vector field starting at the toe of the wedge (coor­
dinate origin in Fig. 6.28). There is no exhumation. However, if the wedge 
formation is accompanied by erosion at the surface, then the rock trajectories 
follow curved paths. If the total volume of the eroded material is exactly as 
large as the amount of material that is put into the wedge at its toe by the 
subducting plate, then the wedge does not grow and the rock trajectories are 
in a steady state (Fig. 6.30c). For such wedges with a constant shape and 
size, there is a range of models that describe their internal kinematics. 

The most simple models are based on methods used in fluid dynamics 
for the description of the flow behavior of fluids in corner (corner flow mod­
els; Cowan and Silling 1978; Cloos 1984; Cloos and Shreve 1988). In further 
developments, Barr and Dahlen (1989) as well as Dahlen and Barr (1989) suc­
ceeded in developing analytical models that may be used to describe the in­
ternal kinematics of wedges that are subject to the Mohr-Coulomb-criterion. 
For this, they chose a coordinate system that is parallel to the principal 
stresses in the wedge (Fig. 6.28). 

The thermal structure of wedges has also been described in models de­
signed by Royden (1993b); Piatt (1993a) as well as Barr and Dahlen (1989); 
(Fig. 6.30d). Similar models have been designed by Bird and Piper (1980), 
Beaumont et al. (1992) and Willet (1992). 

S-point Wedges. "S-point wedges" bear their name because Willett et al. 
(1993) and Beaumont et al. (1996) recognized that a series of plate margin 
settings can be described by a simple discontinuity at the basal boundary 
and that a back stop - like in the bulldozer model discussed on the last 
pages - is not explicitly required to describe wedge shaped orogens or parts 
thereof (Fig. 6.31). The model of S-point wedges is also more appropriate to 
doubly vergent orogens and in fact, effective back stops develop dynamically 
during model evolutions. As such, the S-point wedge model is more simple, 
more elegant and it now largely supersedes the geometry described for Mohr 
Coulomb wedges in the last section in most model studies describing orogenic 
wedges. 
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The S-point wedge model of Willett et al. (1993) is described by a rectangle 
tha t is subjected to zero stress boundary conditions at the sides and at the 
top (Fig. 6.32a). The lower boundary is subjected to kinematic boundary 
conditions with a discontinuity at point S in the center. To the left of point S 
there is a constant tangential velocity imposed at the base (VT = fp) To 
the right of point S the velocity is zero. The lower boundary conditions is 
assumed to represent the Moho and implies tha t the mantle lithosphere of 
the plate PB (ProBeam) subducts at point S towards the right underneath 
plate RB (RetroBeam). 

a b 

Figure 6.32. Boundary conditions of the two-dimensional model for S-point 
wedges, a The original model of Willett et al. (1993). The white arrows show the 
velocity boundary condition along the lower margin of the plate. On the other three 
boundaries it is assumed that both normal and shear stresses are zero. The dashed 
lines with the shear sense indicators are not part of the model assumptions. They il­
lustrate regions of high shear as they develop dynamically during model simulations 
with these boundary conditions (Fig. 6.33b). b The general subduction-collision 
model of Beaumont et al. (1996). The geometry of the initial condition shown here 
is the consequence of the magnitude of the downwards acting load L applied at 
point S'. PB and RB are the lower and upper plate (PR for pro beam and RB 
for retro beam). The shear zone between S and So is no model assumption but 
develops dynamically during model runs with these boundary conditions, b If the 
load L is assumed to be zero, the model recovers the geometry shown in a 

Beaumont et al. (1996) expanded this model to describe subduction of the 
entire lower plate within the same model (Fig. 6.32b). For this modification 
they assumed a vertical load L (simulating a downwards pulling plate) to 
apply at point 5". To the left of point S1 and to the right of point S, the same 
boundary conditions as in Fig. 6.32a apply. Between 5" and S the velocities 
are assumed to be the same as at point S". These boundary conditions imply 
tha t the entire crust is subducted between these two points. As the load L 
in Fig. 6.32a becomes zero, the model becomes tha t of Fig. 6.32b. 

Model runs performed with these boundary conditions reproduce a series of 
structures commonly observed in collisional orogens, in particular the conju­
gate shear zones tha t are schematically indicated in Fig. 6.32. It is important 
to note tha t these shear zones are not predefined, but develop dynamically 
during the model runs. The crustal scale shear zones give the orogen quite 
a symmetric appearance, despite the fundamental asymmetry of the basal 
boundary conditions. This apparent symmetry warns us to be careful with 
the interpretation of the direction of subduction of plates in an orogen, if this 
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Figure 6.33. Results of model evolutions using the boundary condition geometry 
shown in Fig. 6.32. a Cartoon of a typical model geometry Convergence between 
probeam and retrobeam has produced a doubly vergent orogen. FE and FA are 
the mass outflux and influx showing that there may be a balance between erosion 
and convergence in steady state orogens (Willett and Brandon 2002). b Lagrangian 
tracking grid of a typical model run used to study morphological evolutions by 
considering erosion explicitly (Willett 1999). Gray shading is strain rate. Note that 
two conjugate directions concentrate the strain 

is solely interpreted on the basis of observations of structural trends at the 
surface 

The model shown in Fig. 6.32 has been use extensively in the past years 
(e.g. Fig. 6.33, for example to illustrate the effects of erosion on the dynamics 
of orogens (Willett 1999), to explore the balance between mass in flux by 
collision and mass outflux by erosion (Willett and Brandon 2002), and even 
effects of asymmetric precipitation or climate change (Willett 1999; Willett 
et al. 2006). 

6.3 Selected Geodynamic Processes 

In this section we discuss, very superficially, a random selection of some 
important and currently actively debated geodynamic problems. There is no 
direct connection between the individual sections. 

6.3.1 F l o o d B a s a l t s and M a n t l e P l u m e s 

Around the globe there are a large number of regions where enormous quanti­
ties of basalts have erupted (Fig. 6.34). These regions are known by the name 
of "large igneous •provinces" or just "LIP". Aside from the rocks formed at 
the mid oceanic ridges, they are the second largest accumulations of mostly 
mafic igneous rocks on earth. LIPs are a typical feature of Phanerozoic geol­
ogy and are largely unknown from the Proterozoic or Archaean. LIPs include 
three types of basaltic provinces: 

- continental flood basalts, 
- rifted continental margin volcanic sequences, 
- oceanic plateaus. 
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210 240 270 300 330 0 30 60 90 120 150 
Figure 6.34. Large igneous provinces on earth. The most important labeled 
provinces are: l=Karoo Basalts; 2=Deccan Traps; 3=Otong-Java Plateau (largest 
province with 2xl0 6km 2 ) ; 4=Kerguelen Plateau; 5=Siberian Traps; 6=Broken 
Ridge Plateau; 7=Iceland; 8=Columbia River basalts; 9=Hawaii; 10=Chagos Kac-
cadive Ridge; ll=Maskarene Plateau. Data are from Coffin and Eldholm (1993a,b) 

The formation of LIPs has been discussed by a large number of authors (see 
recent summary edited by: Mahoney and Coffin 1997). In general, it is ac­
cepted that most of such provinces are caused by plume activity in the mantle. 
Initially mantle plumes were considered to be part of the general convection 
system of earth (Morgan 1971). However, within our modern understanding 
of plumes, they are known to be secondary features unrelated to the plate 
scale convection in the mantle (Sleep 1992). Today, authors discern between 
two types of plumes: 

- Plumes that initiate from the core - mantle boundary that have narrow 
stems and large heads (Fig. 6.35). These plumes will be associated with 
"active" rifting that follows active uplift of the overlying lithosphere by the 
plume (s. p. 253). 

- Plumes that form due to adiabatic upwelling of the asthenosphere in re­
sponse to passive lithospheric extension (White and McKenzie 1989). Such 
plumes are themselves the consequence of the rifting but there may be 
positive feedbacks that cause an accelerating extension process. 

(For a discussion of active versus passive rifting see also p. 265 and 253). The 
island chain of Hawaii was the first place where mantle plume activity was 
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Figure 6.35. a Scaled cross section through earth showing the size and geometry 
of mantle plumes. The circles for the Otong-Java Plateau and the Deccan Traps 
show minimum and maximum estimates for the volumes of melt extracted from the 
mantle during their activity (after Coffin and Eldholm 1994). See also Fig. 4.22. 
b The occurrence of the last 5 large igneous provinces in the last 150 my in rela­
tionship to other episodic events during this time. Shown are the time of the long 
magnetic normal in the Cretaceous, some important mass extinctions, important 
black shale deposition events as well as sea level, global temperature and oceanic 
crust production curves (after Larson 1991, as well as Coffin and Eldholm 1994) 

suggested to be responsible for the appearance of the volcanic chain (Wil­
son 1963), although Hawaii is now known to be one of the smaller basaltic 
provinces on the planet (Fig. 6.34). Some of the largest LIPs form in places 
where rifted continental margins coincide with plumes (see also discussion 
of Fig. 5.28 and White and McKenzie 1989). There, LIPs may occur on the 
surface or below sea level, depending on the relationship between rifting rate 
and magma supply (Saunders et al. 1996). If the spreading rate is low in com­
parison to the rate of magma supply, then the plateaus become subareal as in 
Iceland. If the spreading rate is low the igneous province remain submarine. 

Geomet ry . In the nineties people have begun to explore the geometry and 
volumes of LIPs mainly using the facilities of the international ocean drilling 
program ODP. For example, it is now known that plumes account at present 
for abut 5-10% of the mass and energy flux from the mantle to the crust and 
that this value may have been much larger in the past (Coffin and Eldholm 
1994). Thicknesses of LIPs are between 20 and 40 km and appear to have 
formed in relatively short-lived pulses of increase global production. Many 
oceanic plateaus have refractory depleted keels that are more buoyant than 
normal oceanic crust. As a consequence, oceanic plateaus may be preserved 
much longer in the plate tectonic cycle than normal oceanic crust. When they 
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collide with active margins, they choke the subduction zone and may cause 
back-stepping of the zone. 

Thicknesses and aerial extent are well enough known to estimate magma 
production rates. For example, it is now known that the magma production 
rate for the formation of the Otong-Java Plateau may have exceeded the 
entire production rate of mid ocean ridge around the world at present (Coffin 
and Eldholm 1994). 

Plumes or no Plumes. While mantle plumes have been generally accepted 
as the cause for the formation of most LIPs, it is worth mentioning that they 
may not be the only cause (Coffin 1997). Several authors have discussed 
alternative mechanisms for the formation of large igneous provinces (King 
1996; Seth 1999). Three alternative ideas have been discussed: 

- Linear chains of volcanoes may indicate propagating rifts where the vol­
canic chain delineates the stress field, rather than the displacement field. 
This idea has been discussed by Turcotte and Oxburgh (1973) and Jack­
son and Shaw (1975) and the origin of the Deccan Traps as well as the 
Laccadives-Reunion hot spot has been suggested as an example by Seth 
(1999). Within this model volcanic chains are piezometers rather than 
speedometers. 

- LIPs may be leaky transform faults (Smoot 1997). 
- Linear chains of volcanoes are produced by magma surge channels (Mey-

erhoff 1995). 

However, it should be said that none of these models have found wide 
acceptance and plumes are still the most widely accepted model for the for­
mation of LIPs. 

Large Igneous Provinces and Mass Extinctions. Large igneous provinces 
have formed episodically during the entire Phanerozoic. This episodicity has 
been brought in connection with a range of other episodically occurring events 
(Fig. 6.35b). For example, super plume activity and oceanic crust production 
have been brought in connection with cessation of the magnetic field rever­
sal in the mid Cretaceous and in the Permian (Larson 1991) (s. also Yale 
and Carpenter 1998). Correlations with mass extinction events have been 
attempted by a number of authors. However, in a recent summary Wignall 
(2001) considers most of these correlations as unduly optimistic. On the other 
hand, Wignall (2001) does recognize correlations with some mass extinction 
events, namely with the Karoo basalts, the Siberian traps, the central At­
lantic volcanism and the Emeishan flood basalts. 

6.3.2 Delamination of the Mantle Lithosphere 

The mantle part of the lithosphere is colder and thus may be denser than 
the underlying asthenosphere (Fig. 2.18, eq. 4.30). Thus, the mantle part of 
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the lithosphere can have a negative buoyancy (in contrast to the crust) and it 
is conceivable that it falls down into the asthenosphere. If this happens, the 
overlying orogen experiences dramatic changes to its potential energy, surface 
elevation and thermal structure. There are several mechanisms why and how 
in detail such sinking of the mantle lithosphere into the asthenosphere may 
occur. In particular, there are two models regarding how this may happen: 

1. Delamination of the entire mantle part of the lithosphere from the crust 
along the Moho. 

2. Convective removal of only the mechanically unstable thick root of the 
mantle lithosphere which, during progressive thickening, successively pro­
trudes into the asthenosphere (Fig. 6.36). 

• Delamination. The first mechanism was initially suggested by Bird (1979) 
to explain the uplift of the Colorado Plateau in the western US. However, 
the model implies that the asthenosphere comes in direct contact with the 
crust and it is therefore expected that abundant crustal melts occur in con­
nection with the surface uplift. This is not observed in Colorado. However, 
mantle xenolith studies in several regions around the world show that the up­
permost mantle lithosphere is significantly younger than the overlying crust, 
indicating that this process does happen under some conditions. Jull and 
Kelemen (2001) have even suggested that the lowermost (eclogitized) crust 
may delaminate together with the mantle lithosphere. 

• Convective removal. The second mechanism was suggested by Houseman 
et al. (1981) and has since been confirmed by many field observations (e.g. 
Piatt and England 1994). The model relies on the following argument: The 
uppermost part of the mantle lithosphere is so viscous that its sinking rate 
is geologically irrelevant, despite its high density. The viscosity of the low­
est part of the mantle lithosphere, on the other hand, approximates that of 
the asthenosphere. This part, where heat is still being transported mainly 
by conduction (and therefore part of the thermally defined lithosphere), but 
which has a negative buoyancy and a viscosity comparable to that of the as­
thenosphere, is also called the thermal boundary layer (Parsons and McKenzie 
1978) (Fig. 2.19). This part of the mantle lithosphere may be removed from 
the rest of the mantle lithosphere by convective processes in the surrounding 
asthenosphere and it may ultimately sink (Houseman et al. 1981; Fleitout 
and Froidevaux 1982; Houseman and Molnar 1997; Molnar et al. 1998). 
Temporal Evolution of Convective Removal. The evolution of the con­
vective removal of the mantle part of the lithosphere may be divided into three 
temporal stages: 

— The first stage is the development of a lithospheric root during collision. It 
is necessary to develop a substantial root of the mantle lithosphere in order 
for the negative buoyancy forces to be large enough to cause stain rates 
that overcome geologically relevant values. Only then convective removal 
can set it. 
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Figure 6.36. Schematic illustration of the Houseman et al. (1981) model for the 
convective removal of the mantle lithosphere in thickening orogens. a Thickening 
of the lithosphere during collisional orogenesis (crust is shaded light, mantle part 
of the lithosphere dark). The arrows indicate convergent motion. The labels on the 
schematic geotherms in the little T-z diagrams on the right are: b = before thick­
ening, a = after thickening. T\ is the temperature at the base of the lithosphere and 
z\ is the thickness of the lithosphere prior to deformation, b Delamination of the 
thermal boundary layer from the mantle lithosphere. Note the uplifted surface and 
the dramatically changed thermal profile, c Subsequent thermal equilibration will 
cause the mantle lithosphere to thicken again. This process counteracts the simulta­
neously occurring rapid extension that occurs in response to the increased potential 
energy of the orogen. The two geotherms in the T-z diagram are: t = during thermal 
equilibration, / = o = final stable stage 

— The second stage is the beginning of the removal process. This process is 
initially very slow and may take of the order of 1-10 my. 

— The third stage is the completion of the removal. This occurs very rapidly 
once the sinking velocity has reached its maximum. 

At the end of the detachment of the thickened root, the mantle part of the 
lithosphere is of similar thickness, or even thinner than at the start of the 
orogenic process (Fig. 6.36b). 

The numerical experiments of Houseman et al. (1981) showed that con­
vective removal may occur much more rapidly than orogenic evolution as a 
whole. Removal may be completed within a total of 1-10 my, while orogenic 
cycles last on the order of several tens of my. Thus, convective removal of 
the mantle part of the lithosphere may even be a cyclic process that occurs 
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more than once during the evolution of a collisional orogen. Recent studies 
of Houseman and Molnar (1997), Molnar et al. (1998), Conrad and Molnar 
(1999) and others have shown that the non-linear viscous behavior of the 
lithosphere may cause asymmetries between the location of maximum thick­
ening and the location of convective removal. 

Mechanical Consequences of Convective Removal. The removal of 
the dense root of the mantle lithosphere of an orogen causes rapid isostatic 
uplift of the overlying orogen. The amount of surface uplift depends on the 
thickness of the removed thermal boundary layer. England and Houseman 
(1989) estimated about 1-3 km surface uplift, which in turn causes an increase 
of the potential energy of the orogen by about 2-10 -1012 Nm" 1 . This increase 
is comparable to the magnitude of several plate tectonic driving forces and 
will therefore significantly influence the evolution of deformation events in 
the orogen. In particular, it is very likely that the removal of the lithospheric 
root may trigger the onset of extension in convergent orogens (sect. 6.1.4). 

Thermal Consequences. The rapid removal of a lithospheric root has the 
consequence that hot asthenospheric material is brought much closer to the 
Moho than before (Fig. 6.36b). This causes increased heat flow through the 
Moho and ultimately partial melting in the lower crust. The amount and 
chemistry of partial melts that may form due to decompression in the mantle 
and due to partial melting of the lower crust is discussed by McKenzie and 
Bickle (1988) as well as White and McKenzie (1989). 

However, it is not trivial that the increased heat flow at the Moho can also 
lead to high temperature metamorphism in the middle crust. Because of the 
slow rates of heat conduction on crustal length scales it may take up to tens of 
my until the middle crust "feels" the thermal effects at the base of the crust. 
In this time span extension may also have caused an increase of the geother-
mal gradient. Thus, a metamorphic event that occurred synchronously with 
removal of a lithospheric root may occur due to rapid extensional processes 
rather than heat conduction. Piatt and England (1994) showed that if the ex­
tensional processes are short-lived, then metamorphism caused by heat flow 
changes at the Moho may be characterized by isobaric heating and cooling. 

6.3.3 Low Pressure - High Temperature Metamorphism 

In many regions of this planet, in particular on the Precambrian shields, 
we can find metamorphic terrains that experienced peak metamorphism at 
unusually high temperatures, if compared with the depth of metamorphism 
(Fig. 7.1). In other words, the ratio of peak pressure to peak temperature in 
these terrains is much higher than that corresponding to a "normal" geother-
mal gradient or that predicted by models for regional (Barrovian) metamor­
phism (e. g. sect. 6.2.1). Such terrains are generally called "low-pressure-high-
temperature", or short LPHT- terrains and the metamorphism is often re­
ferred to as "Buchan style". LPHT terrains occur at all grades, ranging from 
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greenschist fades metamorphism at less than a kilobar peak pressure (e. g. 
Xu et al. 1994) to granulite fades metamorphism at less than 3 or 4 kilobars 
(Greenfield et al. 1998). The heat sources of metamorphism in these terrains 
are intensely debated. In principal there are two fundamentally different heat 
sources that might be considered: "external" and "internal" heating. 

External Heat Sources. One school of thought argues that the T — P ra­
tio of peak metamorphic conditions in LPHT terrains is much too high to be 
possibly attainable by a conductive geotherm. Thus, so it is argued, the heat 
sources must originate from "outside" the terrain under consideration (the 
heat sources are: "external heat") (e.g. Bohlen 1987; Lux et al. 1986; San-
diford et al. 1991). Examples of external heat sources would be heat sources 
that are advected from larger depths into the terrain, for example magma 
or fluids. This process can be considered as "contact metamorphism" in the 
widest sense. The most important arguments in support of this external 
heating model are: 

— If the terrain was heated by conductive response of the lithosphere to a 
changed thickness geometry of crust and mantle lithosphere, then this im­
plies that the measured PT ratio corresponds more or less to a geothermal 
gradient (curve a in Fig. 6.37). Typical PT ratios of LPHT terrains imply 
that a geotherm would reach the base of the lithosphere (as 1200°C) at 
a depth of about 30 km. Today, we observe such small lithospheric thick­
nesses only in regions of active extension and intra continental rift zones. 
In contrast, LPHT terrains are usually characterized by convergent struc­
tures and evidence for a plate margin setting are usually absent. Thus, 
alternative (external) heat sources must be made responsible. 

— In many LPHT terrains metamorphism occurred synchronously with de­
formation. This observation is easily explained if external heat sources are 
responsible for metamorphism (s. p. 360). However, it is in contrast with 
the models that explain regional metamorphism as a function of conductive 
processes (s. sect. 6.2.1) (s. Problem 3.5). 

— Many LPHT terrains are characterized by isobaric cooling curves. This 
observation indicates that the rate of cooling was substantially larger than 
the rate of burial or exhumation (s. sect. 7.3.1). As the duration of con­
ductive cooling of a terrain is proportional to the square of the size of the 
cooling region, the rates of exhumation or burial may be used to constrain 
the length scale of the heated terrain. Assuming normal rates of vertical 
motion of rocks, such estimates indicate that only a region substantially 
smaller than the entire lithosphere could have been affected by the LPHT 
event. 

Internal Heat Sources. In contrast to the arguments presented above, 
another school of thought argues that neither enough magmatic bodies nor 
sufficient evidence for fluid infiltration is found in LPHT terrains to justify 
external heat transfer into the terrains (s. sect. 3.6.4, Problem 3.14). Thus, 
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Figure 6.37. Left: Typical field appearance of LPHT terrains with multiple genera­
tions of partial melts (some syndeformational, some post deformational) and garnet 
- cordierite bearing melanosomes. Right: Three different models for the interpre­
tation of geotherms in LPHT terrains, a is a monotonously rising geotherm. Such 
a geotherm implies that the base of the thermally defined lithosphere at 1 200 °C 
is located at a depth of only 30 km (arrow), b and c show two other possibilities 
for geotherms that are characterized by LPHT metamorphism, but allow normal 
lithospheric thicknesses. However, geotherms can usually not get such a shape by 
conductive processes only 

so it is argued, LPHT metamorphism must have similar causes as regional 
Barrovian type metamorphism (s. Harley 1989). In order to explain the ex­
ceptional peak metamorphic PT ratios a series of models have been invoked 
that all are based on extremely unusual thickness geometries of crust and 
mantle lithosphere. For example, extreme thinning of the crust and the man­
tle lithosphere may cause conditions appropriate to LPHT metamorphism. 
Another possibility that has recently received some attention is unusually 
high radioactive heat production within the crust (Chamberlain and Sonder 
1990; Sandiford and Hand 1998a;b). This might lead to a geotherm of the 
shape of curve b on Fig. 6.37. Spear and Peacock (1989) discuss models of 
internal and external heating of metamorphic terrains in some detail. Their 
contribution also includes a series of computer programs that can be used to 
model these heating mechanisms. 

6.3.4 High Pressure Metamorphism 

Metamorphic rocks that were buried to depths above 60 km are a common 
minor constituent of the lithological assembly of many orogens (Ring et al. 
1999). In sect. 4.3.4 (and several others of this book) we have shown that it is 
difficult to exhume rocks in convergent orogens from more than 30 km depth 
both via exension or erosion, when considering only a simple one-dimensional 
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model. Therefore, the terms "high pressure metamorphism" (and: "ultrahigh 
pressure metamorphism" above the quartz - coesite transition, s. Fig. 7.1) 
have found their own meaning in the literature. The exhumation of such rocks 
must be considered as a two dimensional problem and a series of models have 
been suggested that can be used to explain exhumation from much larger 
depths (s. sect. 4.3.3). These models can be grouped according to the nature 
of the exhuming forces into (s. Piatt 1993b): 

1. Models that rely on forces that are applied externally to the metamorphic 
terrain (extrusion). 

2. Models that rely on buoyancy forces caused by density differences. 
3. Models that rely on extensional processes caused by gravitational stresses. 

Compare this division also to the subdivsion for exhumation processes made 
on p. 153. The third of these three mechanisms was already discussed on 
p. 153 and cannot be responsible for exhumation of more than from about 
30 km depth. The first two both play a role in extruding high P terrains 
(Fig. 6.39). The currently most popular model quoted for the exhumation 
of high pressure rocks is the model of Chemenda (Chemenda et al. 1996; 
Shemenda 1994), which relies on a complicated interaction of processes from 
all three model groups in subduction zones. Before we discuss these model 
groups in some more detail, we note that the observation of high pressure 
metamorphic parageneses must not necessarily be interpreted as an indicator 
of large burial depths (e.g. Ernst 1971; Mancktelow 1993; 1995; s. sect. 6.3.5). 

Figure 6.38. Exhumation of rocks according to the Chemenda (1996) model, a 
and b show two time steps during subduction and extrusion of the accretionary 
wedge; c shows schematically the extrusion process in the circled region in b 

1. Exhumation by External Forces. Exhumation mechanisms of the first 
group may be characterized by the key words Extrusion, strike slip faulting 
and corner flow (s.p. 308). The process of vertical extrusion means that 
material is squeezed out between two hard blocks of rock, for example in a 
flower structure. The process is quite similar to what we discussed as "lateral 
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extrusion" on p. 308, but in the vertical direction. Vertical extrusion does not 
help to exhume the rocks by itself, but it brings rocks rapidly into a position 
where they may be exhumed by erosion. The amount of vertical extrusion as 
a function of the forces between the two hard blocks may be calculated from 
the relationships we discussed in sect. 5.1.1, 5.3.1 and 6.2.2 (e.g. eq. 6.21, 
5.57). 

The corner flow model is different. During the continuous deformation of 
accretionary wedges it is possible that rocks will be exhumed without the re­
moval of a corresponding amount of material from the surface (s. sect. 6.2.3). 
However, this process can only be invoked as an explanation of exhumation if 
the viscosity of the rocks is very low or the exhumed rocks occur as isolated 
blocks in a soft melange (Cloos 1982). 

Figure 6.39. Competing flow during shearing and buoyancy in a subduction chan­
nel (England and Holand 1979; Mancktelow 1995). The net flow shown in b corre­
sponds well with the distribution of metamorphic rocks in parts of the Himalayan 
crystalline complex that extrudes between the Main Central Thrust and the South 
Tibetan Detachment zone 

2. Exhumation by Buoyancy Forces. If high pressure metamorphic rocks 
have a lower density than their surroundings, then it is conceivable that they 
rise through the crust only due to their positive buoyancy - a bit like plutons 
in the solid state (Fig. 6.39). One example where this may occur is if crustal 
material is brought down into the mantle (Wheeler 1991; Chemenda et al. 
1996). However, one of the most common high pressure metamorphic rocks 
is eclogite which is generally embedded into rocks of much lower density and 
grade. This observation cannot be explained by buoyancy forces. England 
and Holland (1979) observed that eclogites from the eastern Alps are often 
embedded in carbonates. They infer that the buoyancy of eclogites plus car­
bonates may be low compared to the density on a regional scale, so that 
exhumation by buoyancy forces is possible. 
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6.3.5 Tectonic Overpressure 

The term "tectonic overpressure" is very loosely used for all non-lithostatic 
components of pressure (s. sect. 5.1.1; eq. 5.23). In other words, the compo­
nent of pressure that deviates from eq.7.1. Ernst (1971) and Rutland (1965) 
suggested that the non lithostatic stresses may form a significant contribution 
to the pressure measured with geobarometers in metamorphic parageneses. 
However, today most petrologists assume that this component of pressure 
is so small that it may be neglected completely when interpreting results 
from geobarometers applied to metamorphic parageneses. Whether this as­
sumption is always justified is not trivial and needs testing. In very general 
terms, we can say that there is two mechanisms to create tectonic over- or 
underpressure: 

1. Deformation (via shear stresses that contribute to pressure) 
2. Static confinement (via increased principal stresses) 

Deformation causes overpressure because the inherent strength of rocks is 
responsible for a deviation from the isotropic stress state. Then, shear stresses 
contribute to the mean stress. Deformation is only possible if rocks have a 
finite strength so that the mean stress (pressure) will always be different from 
the lithostatic stress. Static confinement may be important when rocks are 
squeezed into an area where all the principal stresses are increased. 

Figure 6.40. Examples of local pressure variation in outcrop and model, a Partial 
melt in a boudin neck from Namibia. Did it form there (?) or migrate there (?) -
do to local pressure gradients during boudinage ? (photo by Grasemann, hat by 
Mancktelow). b Biotite growth in the pressure shadow of a garnet crystal from the 
Plattengneiss shear zone in the Eastern Alps. The rock contains only muscovite 
and quartz in the matrix and biotite forms exclusively in the pressure shadows -
probably due to local decompression, c Finite element model of pressure variation 
during viscous folding (Mancktelow pers. comm. 2006). Competence contrast be­
tween central layer and matrix is 20:1. Highest pressure in the core of folds is about 
twice the normal flow stress 
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Some Field Observations. The fact that non lithostatic stresses have an 
influence on the pressure distribution in rocks is quite obvious on a large 
range of scales from the hand specimen scale (Fig. 6.40) to the intra plate 
stress field on the largest scale (Fig. 2.2). On the hand specimen scale we 
know of the existence of pressure shadows behind minerals, pressure solution, 
boudinage and folding (Fig. 6.40). In fact, any fabric formation in rocks can 
all only occur if there is deviations from the isotropic stress state of rocks. For 
the mechanical analysis of such deviations, numerical methods, in particular 
the finite element method are now of common use. The interested reader is 
referred to the classics of Stromgard (1973) and Stephansson (1974), more 
modern studies of Barr and Houseman (1996), Bons et al. (1997), Tenczer et 
al. (2001) or Schmid (2005) and - of course - to the wonderful text book of 
Ramsay and Lisle (2000). On a larger scale, large isothermal sections of the 
crust (as they are common in many areas around the world, s. Fig. 7.14) 
may indicate overpressure on a crustal scale. 

Estimating its Magnitude and Interpretation. To illustrate overpres­
sure, let us consider the different parameters that contribute to pressure 
during viscous deformation. For this we consider a simple convergent defor­
mation geometry in which the largest principal stress is oriented horizontally 
and the smallest vertically and where we can write: o~2 = (o~i + o~3)/2. In this 
case pressure is the mean of the largest and smallest principal stress and may 
be described as follows: (s. sect. 5.1.1, eq. 5.23 and eq. 5.46): 

CTl + CT3 , 0"! - 0"3 Ud , 1 / C; V ' ' _ Q _ 

J ^ — 2 — = * » + —2—=*3 + y = « ? * + 2 ( j J e - r .(6.33) 

where e; is longitudinal strain rate, as we described it in eq. 5.46. The sec­
ond term in this equation may be called the "non lithostatic component of 
pressure". It depends on the material constants Q, A and n as well as tem­
perature T and strain rate e. As it is very difficult to determine the material 
constants experimentally, geologists have tried to constrain their magnitude 
using field observations (e.g. Molnar and England 1990a; England and Molnar 
1991; Mancktelow 1993, 1995; Stiiwe 1998a). 

• Constraints from the elevation of mountain ranges. One of the most impor­
tant field observations used to constrain the magnitude of differential stress 
(strength) of the crust is the elevation of mountain belts: The mean eleva­
tion of a mountain ranges implies that the mean differential stress in the 
lithosphere must be of the order of 50 MPa (s. p. 300). This implies that 
the mean contribution of non-lithostatic components to pressure is about 
0.25 kbar. However, considering the rheological anisotropy of the lithosphere, 
it is very likely that some parts of the lithosphere are significantly weaker 
than this and others therefore stronger. For example, the rheological model of 
the Brace-Goetze-lithosphere implies that differential stresses near the brittle 
ductile transition are of the order of several hundreds of MPa (s. Fig. 5.17 and 
Fig. 5.20). Thus, the Brace-Goetze-model is in contrast to the wide spread 
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Figure 6.41. This diagram illustrates that the temporal evolution of differen­
tial stress need not correlate in any intuitive way with either the evolution of 
temperature or the evolution of strain rate. This is because differential stress 
in the ductile regime has such a complicated exponential and power law depen­
dence on temperature and strain rate (eq. 6.33). a Schematic illustration of tem­
perature and strain rate in a metamorphic terrain. These curves were calculated 
with the purely artificial assumptions that temperature may be described by: 
T = T1 + (T2-T1)(t/ti)e

(1-t/tl) and strain rate by: e = e1(t/t2)e
(-1-t/t2'). b The dif­

ferential stress contribution to pressure with the assumed temperature and strain 
rate evolutions from a. Calculated with eq. 6.33 using A = 2 • 10~4 M P a _ 3 s _ 1 ; 
Q = 2. -105 J m o l - 1 ; n = 3 

opinion tha t differential stresses are of negligible influence to the interpreta­
tion of geobarometric data . 

• Constraints from metamorphic PT paths. Metamorphic PT paths - in par­
ticular those from low-P high-T terrains - show a large variability including 
decompression, compression and isobaric cooling. Many of these paths are 
constrained only by directions of PT changes rather than by absolute pressure 
changes and it has therefore been argued tha t they may reflect counter intu­
itive variations of non-lithostatic stresses, ra ther than depth changes. From 
eq. 6.33 we can see tha t temperature and strain rate are related to differential 
stress by complicated exponential and power law functions. Thus, it is not 
trivial to see if differential stresses (and therefore the tectonic overpressure) 
will rise or fall when the temperature or the strain rate in a metamorphic ter­
rain change. In low-P high-T terrains deformation and tempera ture change 
are often intimately related, as shown, for example in Fig. 6.41a. Fig. 6.41b 
shows the differential stress tha t results from these strain rate and temper­
ature evolutions if inserted into eq. 6.33. Despite the simple and intuitive 
shape of the functions in Fig. 6.41a, the resulting evolution of stress as a 
function of t ime is completely counter intuitive. Fig. 6.41b should serve us as 
a warning to a t t r ibute too much significance to some complications observed 
in P-T pa ths of metamorphic rocks (s. Stiiwe and Sandiford 1994). 
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6.3.6 Feedback and Episodicity 

Feedback between different geological processes is a common phenomenon in 
the earth science. In general, we discriminate between two types of feedback 
processes: 

- positive feedback, 
- negative feedback. 

In both cases one process has an effect on another, the changes of which in­
fluence in turn the first process. Feedback processes are called positive if two 
or several processes "accelerate" each other. Feedback processes are called 
negative, if two or several processes hinder each other. We have encountered 
positive feedback processes between lithospheric extension and thermal weak­
ening in Fig. 6.15: There, the onset of lithospheric extension causes steeping 
of the geothermal gradient (thermal weakening), which accelerates the exten-
sional strain rates, which in turn results in accelerated thermal weakening. 
The process begins to "run away" until rifting occurs. Another currently very 
topical positive feedback processes occur between global glaciation and CO2 
content of the atmosphere possibly resulting in very rapid formation of a 
snowball earth (North et al. 1981; Hoffman et al. 1998). Negative feedback 
is more intuitive, for example the feedback between potential energy and ef­
fective driving force during collisional orogenesis (Fig. 6.23). There, collision 
causes an increase of the potential energy of a new orogen which opposes 
the driving force and therefore causes the collisional strain rate to decrease, 
which in turn leads to a slowed increase of the potential energy until orogen­
esis comes to a rapid halt. Because of feedback processes the question on the 
cause or consequence of one or the other geological process is often difficult 
to answer. Most feedback processes in the earth sciences are non-linear, that 
is, there is not a direct linear relationship between cause and consequence. 

Non-linear Feedback. Consider a very simple theoretical example. If we 
iterate the non-linear function x = x2 for many iterations, then the result will 
depend on our assumption for the starting value of x. For all positive starting 
values of x that are smaller than 1, this function will converge toward zero. For 
all starting values of x that are larger than 1 this function will diverge towards 
x —> 00. Because of the non-linearity, it will do so at an increasingly large 
rate, the more iterations we perform. Only a single starting value, namely 
x = 1, separates the two different trends. (If the starting value is not a real 
number but a complex number, then this critical starting guess separating 
different evolutions will become a series of starting values forming a line in 
complex plane. This line often has a complicated fractal shape and is known 
by the name Julia set). 

Many geological processes behave that way due to non-linear feedbacks: 
depending on the starting situation, they either "run away" or converge to 
a steady state. For instance, in the example we discussed in Fig. 6.15, we 
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noted that there is single set of starting conditions separating two completely 
different orogenic evolutions. These are evolutions terminating in self-limiting 
extension and those terminating in "run away" rifting processes. Even a very 
small difference in starting conditions is sufficient to result in these very 
different evolutions, if the two starting conditions lie on either side of this 
critical set of starting conditions. The example is therefore equivalent to the 
simple illustrative iteration of x = x2. 

For some functions, convergent and diverging evolutions are not separated 
by a single starting value, but by a whole region of starting values. Within 
this critical region the evolution may behave oscillatory or chaotic. In this 
context chaotic means that the evolution of the function may not be predicted 
directly from the choice of starting parameters. 

• Lorentz Attractor. Although it has no direct geodynamic applications, the 
so called Lorentz attractor provides a nice simple illustration how non linear 
feedback processes may cause chaotic and oscillatory behavior of processes. 
The Lorentz attractor describes the feedback between three independent dif­
ferential equations: 

— = -lQx + lQy , 
at 

- 1 = -xz + 28x-y , (6.34) 

dz 8 

-ai=xy-r • 
All three equations are functions of the same parameters: x, y and z. Also, 
all three equations are non-linear (the fact that variables occur as themselves 
and as their own derivative within the same equation indicates that they are 
exponential functions; s. p. 416). Numerical simultaneous solution of these 
three equations using the method of finite differences is straight forward 
and results in the irregular temporal evolution of the three variables x, y 
and z that is illustrated in Fig. 6.42b. We can see that x, y and z have 
unpredictable ups and downs as a function of time, although each of the three 
functions in eq.6.34 are continuous functions. It is therefore very tempting 
to interpret the x and z as shown in Fig. 6.42b as - for example - the 
evolution of metamorphism and deformation of a polymetamorphic terrain 
and suggest that the repeated occurrence of deformation or metamorphic 
events in orogens may have nothing to do with separate events and is solely 
a function of non-linear feedback processes. 

Geological Examples of Non-linear Feedback. Non-linear feedback pro­
cesses are very familiar to geophysicists who model dynamic processes, but 
their potential influence on shaping the observations that field geologists make 
in the outcrop is not appreciated. In this section we therefore illustrate feed­
back processes with three examples with direct relevance to field observations. 
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Figure 6.42. a The Lorentz-attractor in the x-y-pl&ne, calculated with the 
eqs. 6.34. b chaotic evolution of the variables x and z plotted as a function of 
time t 

• 1. Feedback between erosion and deformation. Feedback processes 
between surface erosion and the tectonic and thermal evolution of the crust 
are well recognized (England and Richardson 1977; Willett 1999). Even feed­
backs between climate changes and mantle processes have been suggested 
(e. g. Molnar et al. 1993; Koons 1990; Harrison et al. 1992; Pinter and Bran­
don 1997). Many of these models are based on the fact that the rate of 
erosion and that of the thermal equilibration on the scale of the crust are 
comparable. As a consequence, erosion may or may not advect heat towards 
the surface, depending on the relative rates. This in turn may cause ther­
mal weakening, which may be reflected in deformation events (Hoffman and 
Grotzinger 1993). We have discussed this interaction in several sections of 
this book and it is well documented in New Zealand, where the difference in 
surface heat flow between the west and the east coast of the South Island may 
be correlated with the difference in rain fall on the two sides of the island 
(Koons 1990). Similarly, Molnar and England (1990b) have speculated that 
the Indian Monsoon is closely linked to the uplift of the Tibetan Plateau and 
Zhou and Stiiwe (1994) showed that this connection of events is only possible 
for exceptional rates during orogenesis. 

• 2. Deformation and metamorphism — cause or consequence. Ob­
servations from many metamorphic terrains show that there are character­
istic temporal relationships between metamorphism and deformation indi­
cating that feedback processes between deformation and metamorphism are 
likely. In principle, there may be three different timing relationships: the de­
formation of a terrain may occur pre-, syn- or postdate to metamorphism 
(s. sect. 7.4.1). Clearly, it is useful to know if one caused the other, or if there 
are feedback processes between metamorphism and deformation. 
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Models that are used to explain regional Barrovian type conductive meta-
morphism (where deformation precedes metamorphism) consider metamor-
phism to be the consequence of deformation (e. g. the model of England and 
Richardson, s. sect. 6.2.1): the deformation causes thickening which in turn 
causes a thermal disequilibrium. The subsequent thermal equilibration that 
causes metamorphism is therefore the result of deformation (s. sect. 7.4.1; 
Fig. 7.13). Conversely, metamorphism can cause a deformation event. For 
example, if a strong lithospheric plate is thermally-weakened, then it might 
deform in response to the thermal event, while the far field stress field re­
mains constant (s. eq. 6.23, sect. 5.3.1). In this model, deformation is the 
result of metamorphism and deformation is likely to be syn- metamorphic. 

• 3. Orogeny as a non-linear feedback between many processes. Mountain 
building processes are characterized by a series of non-linear relationships 
between physical parameters (e.g. Malanson et al. 1992; Hodges 1996; Stiiwe 
et al. 1993). Fig. 6.43 gives an overview over some non-linear processes and 
their interaction during orogenesis. Many of the processes illustrated there 
may be described by mathematical relationships not unlike those of Eq. 6.34. 
A correlation between the evolutions of x, y and z on Fig. 6.42b and strain 
rate of thermal events may therefore be not completely wrong. 
Episodicity in Geological Events. Most eological events occur episodi­
cally: Field geologists map out discrete events of repeated deformation and 
metamorphism (s. Fig. 7.11); volcanoes erupt cyclically; earthquakes, mass 
extinctions, glaciations, magmatic activity and orogenesis all occur over time 
spans that are short compared to the periods of quiescence before they occur 
again (e.g. Waschbush and Royden 1992; Malniverno and Pockalny 1990). 
In a very general way, the episodicity of a process may be explained in three 
different ways: 

— Episodicity at the boundaries, 
— threshold mechanisms, 
— non-linear feedback. 

The last of these three mechanisms was dealt with in the last section. The 
first mechanisms ("episodicity at the boundaries") simply refers to an expla­
nation of the cyclicity of events by cyclicity of events elsewhere. For example, 
the cyclic nature of tectonic events in the western US has been interpreted 
as the consequence of the episodic subduction of the Pacific Plate under the 
North American continent (Elison 1991). This interpretation explains the 
cyclic occurrence of events in North America, but it does not explain episod­
icity as such. Rather, it defers the causes of episodicity to an area outside the 
region of consideration - in this case outside North America. 

• Threshold mechanisms. The most common way how continuous processes 
are broken up into discrete episodically occurring events is by threshold mech­
anisms. In principle this means that a certain value of a parameter - the 
threshold - needs to be exceeded by a continuous evolution before a process 
can occur (Tong 1983; Hergarten 2002). Two examples: 
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Figure 6.43. Interaction and feedback between some selected processes during 
orogenesis. Note that the functional relationship between several of the processes is 
non-linear. For example, the strain rate is an exponential function of temperature, 
a cubic function of stress (eq. 5.46) and potential energy is a quadratic function of 
thickness (eq. 5.49). It is therefore possible that interaction between the different 
processes may lead to a chaotic evolution of processes during orogenesis 

— Earthquakes occur if a certain threshold stress is exceeded. During defor­
mation elastic stresses are cumulatively built up until the failure stress of 
a rock is exceeded. An earthquake dissipates these stresses then by defor­
mation. This is followed by a period of quiescence during which stresses 
build up again, until the threshold stress is exceeded again. 

— Partially molten rocks often intrude into higher crustal levels. For a melted 
rock to leave its source rocks and form an intrusion a threshold melt volume 
must be exceeded in the source rock (Wickham 1987). 

Both the above examples are characterized by a regular, but episodic evolu­
tion, even though the applied boundary conditions remain constant. However, 
in reality, earth quakes and magmatic activity occur much more randomly 
than the above models and thresholds suggest. This is because the thresh­
olds in question are coupled with a spatial length scale. For example, an 
earth quake will not occur if the necessary threshold stresses are only ex­
ceeded along a single micro fracture. Instead, it will be necessary that the 
mean stress over a certain area exceeds the threshold stress. Similarly, magma 
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segregation will not occur if a critical melt volume is exceeded on the scale 
of a thin section. Instead, it will be necessary that melt can only segregate 
once the critical melt volume is exceeded over a certain length scale. 

Thus, in order to be able to predict the occurrence of earth quakes or mag-
matic intrusion (or any other process relying on threshold mechanisms), it is 
necessary to know the relationship between the magnitude of the threshold 
and the length scale over which this threshold needs to be exceeded. Sadly, 
this relationship is a function of so many variables that is practically im­
possible to know it. The problem is akin to the problem of meteorologists, 
who would need to know the motion of every gas molecule in the atmosphere 
in order to be able to predict weather patterns with any accuracy. The fact 
that infinitely small variations of a single small parameter are sufficient to 
bring the whole system out of predictability, this called the butterfly effect, 
reminding us of the possibility that the air current caused by the flight of a 
butterfly may cause complete weather patterns to change. 

6.4 Problems 

Problem 6.1. Extension: uplift or subsidence? (p. 266): 
Fig. 6.2 illustrates that continental extension can lead to surface uplift or 
to surface subsidence, depending on the initial thickness ratio of crust and 
mantle lithosphere and their densities. Use eq. 4.35 and Fig. 4.18 to under­
stand which parameters control whether uplift or subsidence will occur (s. 
also Problem 6.6). 

Problem 6.2. Porosity estimates (p. 271): 
Use eq. 6.1 to estimate the depth at which the porosity of sandstone is the 
same as that of shale. Use the parameter values given in the caption for 
Fig. 6.5. 

Problem 6.3. Compaction of sediments (p. 272): 
Use eq. 6.4 to calculate the thickness of a 100 m thick sandstone unit at 
2 000 m depth at the time of its deposition. For the porosity data of sandstone 
use those in Fig. 6.5. 

Problem 6.4. Isostasy of sedimentary basins (p. 275): 
Derive eq. 6.5 using Fig. 6.7 and eq. 4.23. 

Problem 6.5. Subsidence analysis (p. 277): 
Describe the subsidence evolution of the sedimentary basin characterized be­
low. What tectonic process might have formed the basin and discuss field 
observations you would look for to test your model? What subsidence mech­
anism might have been responsible for the evolution of subsidence you have 
derived? Note that your subsidence analysis must include back stripping to 
answer these questions. 
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The basin we consider is filled by a 6 km thick pile of sediments. A drill 
hole has shown that the pile is made up of five strata which we number from 
the base to the top with i — 1 to i — 5. Fossils were found in each layer 
and allowed to determine a detailed record of the sedimentary succession: 
The 1. layer is a 3 km thick sandstone layer that was deposited during an 
increasing water depth from 500 m to 800 m between 55 my and 60 my. The 
second layer is a 500 m thick shale layer that was deposited in a water depth 
of 800 m between 40 my and 55 my. The third layer is a 1 km thick sandstone 
unit, deposited during decreasing water depth from 800 m to 300 m in the 
time between 40 my and 30 my. The 4. layer is a 500 m thick shale unit that 
was deposited during a decrease of water depth from 300 m to 0 m in the 
time between 30 my and 15 my. The 5. layer was deposited between 15 my 
and present in the tidal environment. 

For your analysis use Eq. 6.1, 6.4 and 6.5 (note that you will also need 
Eq. 6.7 for Eq. 6.5). Use the values for densities and porosities from Fig. 6.5. 
The density of the asthenosphere is: p& = 3 200 k g m - 3 . 

Problem 6.6. Extension: uplift or subsidence? (p. 278): 
According to McKenzie (1978) homogeneous stretching of the lithosphere 
will only lead to subsidence if the initial ratio of crustal thickness to litho-
spheric thickness exceeds a certain ratio. Derive how large this ratio is using 
Eq. 6.10 and making the following assumption for the physical parameters. 
po = 3 300 kgm"3 ; pc = 2 750 kgm"3 ; pw = 1000 kgm"3 ; a = 3 • 10"5 °C-L ; 
Ti=l 280 °C and z\ = 130 km. (See also Problem 6.1.) 

Problem 6.7. Estimating thermal sag (p. 279): 
Estimate roughly the total duration of the thermal sag phase that may be 
expected in a hypothetical basin forming in Europe, where the lithosphere is 
roughly 100 km thick and another one in southern Africa, where the litho­
sphere is almost 200 km thick. Use eq. 6.11. 

Problem 6.8. Radioactive contribution to heat flow (p. 290): 
Table 6.1 lists a range of geologically realistic radiogenically caused heat flows 
<Zrad and mantle heat flows qm for the continental lithosphere. Calculate the 
expected equilibrium surface heat flow in lithosphere that is (a) doubled in 
thickness and (b) halved in thickness using the logic outlined in eq. 6.13 to 
eq. 6.15 

Problem 6.9. Understanding orogenic force balance (p. 295 - p. 301): 
A mountain belt has formed in response to the collision of two plates. How 
high can the (isostatically supported) mountain range grow if the driving force 
for collision is ^ = 5 • 1012 N m _ 1 ? Use eq. 6.21. Tackle the problem in 3 differ­
ent ways and compare the answers: (a) Solve the problem graphically by using 
the logic of eq. 6.21 and comparing Fig. 4.18 and Fig. 5.32 (assuming that 
only the crust thickens but that the complete lithospheric thickness remains 
unchanged, i.e. f\ — 1 at all times), (b) Calculate the answer using eq. 5.57 
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and zc = 30 km, pc = 2 700 kg m"3 , pm = 3 300 kg m"3 and 5 = 10ms"2. (c) 
Refine that answer of (b) by using eq. 5.59 (using a = 3 x l 0 ~ 5 o C _ 1 , Ti=1200 
°C and £i=100 km as additional variables) to calculate the buoyancy force 
and eq. 4.31 to calculate the isostatically supported surface elevation (as­
suming again that only the crust thickens but that the complete lithospheric 
thickness remains unchanged), (s. also Problem 5.17.) 

Problem 6.10. Estimating the Argand number (p. 305): 
Use eq. 6.31 to make a rough estimate how an orogen will look like in which 
the thickness increase is L = 50 km, pc — 2 700 kg m - 3 , pni = 3 300 kg 
m - 3 and the collision rate is 5 cm per year. For the parameter B use the 
relationship given in the text following eq. 6.29 (see eq. 5.46) and the values 
for the material constants of olivine given in Table 5.3. Calculate the Argand 
number for 400°C and 500 °C and discuss what difference this makes. 

Problem 6.11. Estimating tectonic overpressure (p. 327): 
How large is the tectonic overpressure in a quartz dominated rock in 10 
or 15 km depth if the thermal gradient from the surface to that depth is 
30 °C k m - 1 and the strain rate is large enough to double the thickness of the 
crust in 5 my? Use eq. 6.33 and the rheological data for quartz given in Table 
5.3. Assumed eq. 5.46 to be the governing constitutive relationship. 



7. Metamorphic Processes 

One of the basic data sets used by geologists for the geodynamic interpre­
tation of a metamorphic terrain is the spatial and temporal evolution of 
pressure P , temperature T and deformation D that the rocks experienced: 
the metamorphic evolution of the rocks. Data on the metamorphic evolution 
are particularly important when interpreting ancient orogens where it is im­
possible to measure many other parameters directly (e.g. surface elevation, 
surface heat flow, gravity etc.). The relative evolution of pressure, tempera­
ture and deformation may well be illustrated as curves in P-T-space. Such 
curves are called P-T-paths or P-T-t-.D-paths, if the path is also labeled for 
deformation events and time. As the interpretation of metamorphic rocks is 
so crucial to any geodynamic interpretation performed by a field geologist, we 
dedicated it here its own chapter. For detailed treatment of thermodynamics 
underlying all petrological studies of P-T-paths we recommend: Anderson 
and Crerar (1993) or: Atkins (1994). For more petrologically oriented texts 
with geodynamic applications we recommend: Spear (1993) or: Spear and 
Peacock (1989). 

7.1 Introduction 

Most tectonic processes are characterized by process-specific spatial and/or 
temporal relationships between the evolutions of pressure, temperature and 
deformation. Thus, when inferring tectonic processes from such relationships, 
it is important to subdivide these three parameters in as much detail as pos­
sible: The thermal evolution may be subdivided into a heating phase and 
a cooling phase, the baric evolution may be subdivided into a phase of in­
creasing pressure and into one of decreasing pressure and the evolution of 
deformation may be subdivided into phases of increasing and phases of de­
creasing strain rate. When collecting field observations it is important to 
discriminate between two different sets of data pertaining to two different 
questions: 

— What is the temperature, pressure and deformation evolution of a single 
rock? (temporal evolution) 
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— How does this temporal evolution change in space across the terrain in 
question; for example as a function of a regionally decreasing or increasing 
metamorphic or strain gradient? (spatial structure) 

The more detailed these questions can be answered in the field or in the 
laboratory, the easier it is to constrain the tectonic processes that formed 
the terrain in question. However, answering these questions is not always 
easy. An observed regional strain gradient could be the consequence of both 
a regional change in the duration of deformation or a regional change in 
strain rate. In other words, it remains unclear if the observation should be 
interpreted in terms of a spatial or temporal change. Corresponding problems 
may arise during the interpretation of pressure or temperature changes: A 
rise of temperature need not imply heat conduction and may be related to 
other thermal processes like those discussed in sect. 3.1, 3.2 and 3.3. A 
change in pressure need not correlate with a change in depth. Finally, the 
interpretation of these questions is complicated by the fact that the evolution 
of temperature, pressure and deformation may not be independent. Thermal 
expansion may have an influence on the pressure field, pressure changes may 
be followed by adiabatic heating or friction heat released during deformation 
may influence the thermal evolution. 

Fortunately, such couplings do not necessarily hinder the geodynamic in­
terpretation. To the contrary, this interaction of processes is often the very 
reason for very process specific spatial or temporal relationships between 
metamorphic rocks. They provide an exciting playground for the geodynam-
ically oriented field geologist in which we can probe our art of interpretation 
of metamorphic P-T-paths. 

7.1.1 What Exactly are P-T- and P-T-t-D-Paths? 

P-T-paths are curves on a diagram in which pressure and temperature form 
the axes. Thus, a P-T-path illustrates the relative change of pressure and 
temperature in a rock, but it cannot show the temporal evolution of either 
of them. P-T-diagrams are parametric diagrams because they show the re­
lationship between two independent functions of the same variable (in this 
case: time). In rocks it is much easier to document the relative evolution of 
pressure and temperature, than the absolute temporal changes of these two 
parameters. Thus, P-T-diagrams have become one of the standard tools for 
the interpretation of metamorphic rocks. If absolute timing information is 
available, or the timing of deformation relative to pressure and temperature 
is known, then we speak of P-T-t- or even P-T-t-£>-paths. 

Relationship Between Pressure and Depth. The interpretation of P-T-
paths is often made with the basic assumption that pressure is only caused by 
the weight of the overlying rock column, i.e. it is hydrostatic or, as geologists 
s&y.lithostatic. Then the principal stresses are of the same magnitude in all 
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spatial directions: a\ — ui = <J%. Moreover, if this stress field is oriented 
parallel and normal to the earth surface, then= a\ — a-2 = <J% = o~xx = 
(jyy — Uzz and pressure correlates directly with depth, more specifically: to 
the vertical normal stress . At depth z this may be calculated by integrating 
the density over depth (s. also sect. 4.4.1): 

P = <JZZ= / P(z)gdz . (7.1) 
Jo 

If the density is independent of depth, then this integral is easily solved. It 
is: P — pgz. Checking the units confirms that this equation is dimension-
ally consistent: stress = force per area, force = mass times acceleration and 
mass = density times volume. For a 10 km thick column of rock with the 
density p = 2 700 k g m - 3 , we get a mass per area of: 2 700 x 10000 k g m - 2 . 
Multiplied with the gravitational acceleration (g «10 m s - 2 ) , this gives a 
pressure of 2.7-108 k g m - 1 s - 2 = 2.7-108 Pa =270 MPa = 2.7 kbar. In short: 

P(kbar) « 0.27 x z(km) or : z(km) « 3.7 x P(kbar) (7.2) 

In words: the depth in kilometers times « 0.27 gives us the pressure in kilo-
bar. Correspondingly, the pressure in kilobar times sa 3.7 gives us the depth 
in kilometers. The errors that arise in this estimate from rounding of the 
gravitational acceleration or the density changes with depth are significantly 
smaller than the accuracy of geobarometers and may therefore be neglected. 
If the three principal stresses are not the same (as they cannot be in deform­
ing rocks), the deviatoric stresses contribute to the overall pressure and it has 
been of continuous debate if and how this "tectonic overpressure" is part of 
the pressure measured by petrologists when applying geobarometers to rocks 
(see sect. 6.3.5). 

Note that pressure is generally given in kilobars in the geological litera­
ture, in energy per volume by the thermodynamics community and in Pas­
cal by the geophysicists. The conversions between these units are given by: 
1 kbar = 100 MPa = 108 Pa = 108 J m - 3 . 

7.1.2 The Metamorphic Facies 

The P-T space relevant to crustal rocks may be divided into metamorphic 
facies. The metamorphic facies concept was introduced by Eskola (1915) and 
is widely used by metamorphic geologists (e.g. Yardley 1989). Nevertheless, 
placing exact boundaries on facies fields is difficult. This is largely due to 
the strong dependence of parageneses on bulk composition and the fact that 
parageneses, not individual minerals are characteristic of metamorphic grade. 
Modern petrologists may argue that the facies concept is obsolete in view of 
the availability of pseudosections. However, the idea is still well entrenched 
in the literature and certainly justifies a small excursion here. In our division 
(Fig. 7.1a) we follow Hacker et al. (2003) and Brown (2006) and use phase 
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diagrams of Dale et al. (2005) and White et al. (2001), but we also introduce 
a new facies concept that appears useful to distinguish between metamor­
phic fades fields used by petrologists and facies fields as used by tectonicists 
(Fig. 7.1). Petrologists use the facies concept to group rocks with similar 
characteristic parageneses. Tectonicists use the concept to discern between 
P-T fields reached by different tectonic processes. For both, metamorphic 
facies space is limited by a region which is simply too cold to be reached by 
metamorphic rocks. Brown (2006) suggests that this limit is given by a T/P 
ratio lower than 15°C / kbar. Although there is - in principle - no limit, no 
metamorphic rocks have been found with lower T/P ratios. Above this ratio 
there are a series of facies fields: 

Metamorphic geologists discern the following main fields (Fig. 7.1a): 
Greenschist facies is defined in mafic rocks by the presence of actinolite above 
about 250° C to 300° C (instead of glaucophane at blueschist and hornblende 
at amphibolite facies). Below this there is a series of low grade fields includ­
ing prehnite, pumpellyite and zeolite facies that will not be discussd here. In 
pelitic rocks, it starts with the coarse grained appearance of white micas. 

Amphibolite facies is defined by the first appearance of staurolite in 
metapelites. For subaluminous pelites, staurolite appears at the KFMASH 
univariant breakdown of garnet + chlorite to staurolite + biotite (the "stau­
rolite isograd") above a line from about about 570°C at 4 kbar to 630°C at 
9 kbar. For aluminous pelites, staurolite may appear in continuous equilib­
ria at somewhat lower T. In mafic rocks, the amphibolite facies begins with 
the appearance of hornblende in continuous reaction at similar P-T to the 
staurolite isograd. Within the amphibolite facies, amphibolites begin to bear 
garnet at high P and epidote at low T, giving rise to a series of possible sub­
divisions. The wet solidus of pelitic rock is also within the amphibolite facies 
field and even the muscovite breakdown (the "effective" solidus) is generally 
considered to be part of this facies. 

The start of granulite facies is defined by the first appearance of orthopy-
roxene in mafic rocks. In fact, a "granulite" in the narrow sense of the word is 
an orthopyroxene bearing gneiss. In pelitic rocks, granulite facies is generally 
considered to begin above the KFMASH univariant breakdown of biotite + 
sillimanite to garnet + cordierite, a reaction with positive slope from about 
700°C at 2 kbar to 800°C at 8 kbar. These values are similar to those of the 
first appearance of orthopyroxene in mafic rocks. In pelitic rocks, the silli­
manite - kyanite transition marks the boundary between low-P and high-P 
granulites. In mafic rocks the continuous appearance of jadeite-rich pyroxenes 
and the disappearance of plagioclase marks a broad transition to eclogites at 
roughly 15-20 kbar. 

Eclogite and blueschist facies cover the high-P region. Their boundary 
is very loosely defined by the disappearance of garnet to lower T. The limit 
to the lower P fields is defined by the disappearance of lawsonite and glau­
cophane from the blueschist field and the disappearance of zoisite from the 
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The Petrologist's View The Tectonicist's View 

Figure 7.1. Metamorphic fades according to the interests of the metamorphic 
petrologist (left) and geodynamicist (right). Shown is the P-T region of relevance 
to the lithosphere and fields are inserted semi-quantitatively. The axes are the 
same in both diagrams but labeled in kbar in a and in km (assuming a density of 
2800 kg m" 3 ) in b . In the "forbidden zone" phase equilibria are not drawn. Bands 
delineating fields in a indicate that boundaries vary according to bulk composition. 
The normal geotherm in b is drawn as to pass about 500° C at 35 km depth and 
reach 1200° C in 120 km depth for reasons discussed in chapter 3. Abbreviations 
are: L = low grade; G = greenschist; A = amphibolite fades; Gra = granulite fades; 
B = blueschist facies; E = eclogite fades; UHP = ultrahigh pressure facies; UHT 
= ultrahigh temperature facies. Minerals are: sill = sillimanite; ky = kyanite; jd = 
jadeite; ab = albite; q = quartz. Field boundaries are discussed in the text 

eclogite field. Again, these phases disappear in continuous reaction so that 
these boundaries are wide bands. Only the boundary to ultrahigh pressure 
facies (UHP metamorphism) is sharply defined by the quartz - coesite tran­
sition. 

Tectonicists divide P-T space into conditions that are warmer and those 
that are colder than a normal continental geotherm (Fig. 7.1b). On the warm 
side a line with m 100°C per kilobar limits conditions that can possibly be 
reached conductively (Barrovian style metamorphism) to the low-P high-T 
facies. This slope corresponds to a situation where the base of the litho­
sphere (i.e. « 1200°C) is located at the Moho at normal depth (« 35 km), 
a situation that would lead to wholesale melting and rift formation and is 
rarely realized. It is suggested here that this line provides a useful bound­
ary between a "conductive" or "Barrovian" part of P-T space and the low-P 
high- T facies (Buchan style metamorphism) where metamorphism must be 
related to contact effects in the widest sense. On the cold side of a normal 
geotherm we suggest to discern a "colder than normal" and an "ultra low 
temperature" (ULT) facies field. The "colder than normal" field encompasses 
all conditions on the "cold" side of a normal geotherm that can be reached 
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F igure 7.2. Two classic metamorphic 
locations: The Barrow and Buchan 
zones in Scotland. Note that the Buchan 
zones form a concentric pattern, while 
the Barrow zones increase in 
metamorphic grade with distance from 
the fundamental structures of the 
Highland Boundary and the Great Glen 
Faults. Zones are labeled as follows: C = 
chlorite zone; B = biotite zone; G = 
garnet zone; St = staurolite zone; A = 
andalusite zone; S = sillimanite zone; K 
= kyanite. Granites are shown in black. 

by one-dimensional instantaneous thickening of the crust up to a maximum 
thickness where it is in potential energy equilibrium with s tandard plate tec­
tonic driving forces, i.e. about double normal thickness or half the geothermal 
gradient. Beyond tha t is the ULT field tha t lies at conditions less han half 
of a normal geothermal gradient. This region can only be reached by pro­
cesses other than normal crustal thickening, for example in subduction zone 
settings. Finally, ultrahigh pressure metamorphism (UHP) is as described for 
Fig. 7.1a and the ultrahigh tempera ture metamorphic fades field (UHT) is 
defined somewhat arbitrarily to be above 900°C, a temperature tha t requires 
quite unusual magmas as heat sources. 

Barrov ian and B u c h a n s ty le m e t a m o r p h i s m . Metamorphic fades fields 
reached by normal collisional processes causing regional (conductive) meta­
morphism as we discussed it in sect. 6.2.1 are also referred to as Barrovian 
metamorphism. This refers to the Scottish Barrow zones where there is the 
type sequence of regional metamorphic facies grades (Fig. 7.2). The type lo­
cation for the other end member of metamorphism - contact metamorphism -
lies also in Scotland: the Buchan zones. The Buchan areas exposes a sequence 
of zones tha t include all three aluminosilicate polymorphs and is interpreted 
to be related to a contact metamorphism. 

7.2 Basic Principles of Petrology 

Much of petrology is concerned with the physical and chemical conditions 
tha t prevailed at the t ime of formation of a rock. As such, petrology is in­
separably connected with structural geology. Textural interpretation of mi-
crostructures and reaction textures in thin section is one of the basic tools 
to infer both the structural and the metamorphic evolution of a rock. Any 
reader thinking of him- or herself as either a petrologist or a structural ge­
ologist only, is warned when embarking on field or laboratory work with the 
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aim of explaining the tectonic evolution of a region. Because petrology and 
structural geology are inseparable field tools for a geologist trying to under­
stand the tectonic evolution of a terrain, a section on basic petrology finds 
its place in a text book on geodynamics. 

Classic phase petrology is based on the principle of thermodynamic equi­
librium. In contrast, most of the geodynamic processes discussed in this book 
are inherently out of equilibrium, for example the thermal evolution of oro-
gens. The large success that the equilibrium thermodynamics approach has 
had in determining metamorphic conditions largely relies on the Arrhenius 
relationship which we will discuss in some detail on p. 344. However, here we 
want to begin by stating that petrology may be seen to involve: 

— equilibrium considerations, 
— non-equilibrium considerations. 

We will deal with these two fundamentally different approaches in sect. 7.2.1 
and sect. 7.2.2, respectively. Throughout this chapter we remind the reader 
that all topics are dealt with in a very sweeping way and refer to the wide 
range of excellent teaching texts in petrology (e. g. Winter 2001; Spear 1993; 
Anderson and Crerar 1993; Yardley 1989; Powell 1978). 

Chemical Reaction. Microstructural and chemical changes in rocks de­
pend on two factors: 

1. The rate of diffusion with which atoms are brought from one point of the 
rock to another. 

2. The rate of reaction or nucleation which actually binds the atoms at the 
new location structurally into the crystal lattice. 

These two processes depend on very different parameters. The rate of diffu­
sion depends very strongly on temperature (in a manner described by eq. 7.5). 
The rate of nucleation and reaction is independent of temperature, but de­
pends on how far the reaction is overstepped. The slower of the two processes 
will be the bottleneck for the overall process and will determine the process 
rate (Fischer 1973; Joesten 1977; Putnis and McConnell 1980). Petrologists 
refer to diffusion controlled processes and reaction controlled processes. At 
geologically relevant temperatures the rate determining factor is usually dif­
fusion and we discuss chemical diffusion therefore in the next paragraph. 

• Chemical diffusion. In the most simple case, one-dimensional diffusion of 
a single element through a crystal lattice may be described by: 

dC-n °2c (7* 
- d t ~ D ^ ^ • ( 7-3 ) 

There, C is the concentration of a given element in a given mineral, t is time 
and x is a spatial coordinate, for example the distance from the center of a 
garnet crystal to its surface. i?(r) is the cation diffusivity and we note already 
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here that it is not a constant (as it was in eq. 3.6), but a strong function of 
temperature. Other than that, element diffusion in minerals is completely 
analogous to the diffusion of heat (sect. 3.1, eq. 3.6), or the diffusion of mass 
on a larger scale (e.g. sect. 4.5.2) (Stiiwe 1998b). As for those, analytical 
solutions of eq. 7.3 may be found for a large range of initial and boundary 
conditions in Carslaw and Jaeger (1959). The specifics of element diffusion is 
described in detail by the excellent text book of Crank (1975). 

The application of eq. 7.3 is not only hindered by the temperature de­
pendence of the diffusivity. It is also complicated by that fact that diffusion 
rates depend on the diffusion path. For example, diffusion of atoms along 
grain boundaries is orders of magnitude faster than volume diffusion through 
the crystal lattice. Thus, volume diffusion is the process rate limiting factor. 
The rate of volume diffusion of chemical elements through a crystal lattice 
itself depends on many factors and is - akin to the determination of creep 
constants for power law creep - difficult to determine experimentally. Also, if 
several elements diffuse at the same time in the same crystal, then they may 
influence each others diffusion rates (Onsager 1931). 

Nevertheless, eq. 7.3 may be used to make some important estimates on 
the degree to which chemical equilibration of a rock has gone to completion, 
for example by using the same argument we have used on p. 62 to estimate 
the time scale for the diffusion of heat (sect. 3.1.3 and 3.1.4, eq. 3.17). In 
analogy to there we can write here: 

t e B * ^ • (7-4) 

There, I is the length scale of diffusion, which a measure of the spatial distance 
over which elements diffuse in time teq. Eq. 7.4 may be used to estimate the 
time it takes for a garnet crystal of a given size to equilibrate at a given tem­
perature, or vice versa. For example, we will show below that the diffusivities 
of iron through a garnet lattice at 400 °C is about: -D400 ~ 2.7 • 10~27 m2 s _ 1 

and at 800 °C it is about Dsoo « 2.3 • 10"20 m2 s_ 1 . Using eq. 7.4 we can esti­
mate that - if a metamorphic event of 800 ° C temperature lasted of the order 
of 10 my - only garnets smaller than 2.7 mm can be equilibrate by volume 
diffusion in this time. Correspondingly, we can judge that garnet crystals of 
2 mm diameter must be heated for at least 5 my to 800 °C or at least for 
4.7 -107 my to 400 °C, so that they can equilibrate. If we want to learn about 
mean diffusion times over a period of temperature change, then we need to 
use mean diffusivities that we can estimate using eq. 7.9. 

Why does Equilibrium Work? The fantastic success of equilibrium ther­
modynamic considerations in petrology may be largely accredited to the Ar-
rhenius relationship. The Arrhenius relationship states that diffusion pro­
cesses are an exponential function of temperature: 

( Q+VP\ 
D(T) = D0ey RT > (7.5) 
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In this equation, -D(r) is the diffusivity of elements as a function of tempera­
ture (inm2 s_ 1) , DQ is a pre exponential factor, Q is the activation energy, R 
is the gas constant and T is absolute temperature. The numerator of the ex­
ponent also includes the product of the activation volume V and pressure P. 
However, the activation volumes of petrological processes are generally so 
small, so that the pressure dependence of element diffusion is generally ne­
glected. According to eq. 7.5 the diffusivity goes towards zero when temper­
ature goes towards zero. In other words, all equilibria that rely on diffusion 
freeze at low temperatures. At higher temperatures, the diffusivity rises and 
goes asymptotically towards D0. Thus, with higher temperatures, it becomes 
increasingly likely that different minerals in a rock can communicate with 
each other and are in chemical or structural equilibrium. The Arrhenius rela­
tionship applies not only to the diffusion of ions on a crystal lattice but also 
to the diffusion of radioactive isotopes or lattice dislocations. The former 
is highly relevant to geochronologists, the latter is relevant when discussing 
flow processes and microstructures. In this context we have met the Arrhenius 
equation already when we discussed deformation mechanisms (sect. 5.1.2). 

The Irreversibility Principle. Because of the temperature dependence of 
diffusion processes (eq. 7.5), only small parts of a metamorphic P-T path are 
actually preserved in a rock. According to which parts of a P-T path are pre­
served in a rock and which parts are not, the metamorphic evolution of rocks 
may be divided into 5 different sections (Fig. 7.3). In the 1st section there 
is no chemical reaction or mineral growth. Temperatures and diffusion rates 
are too slow. In the second part chemical equilibration does occur. However, 
because temperature and diffusion rates continue to increase, each equilib­
rium will be erased and superseded by that of the next higher temperature. 
The 3rd section of the P-T-path is reached at the metamorphic temperature 
peak where - by definition - the rate of temperature change is small. There, 
chemical and textural equilibrium is reached to the best degree. The 4th part 
of the P-T path occurs during the initial cooling history. Diffusion rates de­
crease and the volume of the rock which can be in equilibrium at any given 
temperature decreases. Thus, larger and larger parts of the rock will cease 
to equilibrate with their surroundings and preserve larger and larger parts 
of the rocks. Partial retrogression will occur in this 4th section. In the 5th 
section of the P-T path all equilibria are frozen and reaction has terminated. 

Fig. 7.3a summarizes this information. It shows that only the thermal peak 
and a small section of the path thereafter are likely to be preserved by rocks, 
while the heating phases is likely to be only preserved in relics. Because 
temperature is so much more important to the equilibration process than 
pressure (see discussion of eq. 7.5) the thermal maximum (rather than the 
baric maximum) is generally referred to as the metamorphic peak. However, 
it is emphasized that pressure and temperature peak of a P-T path must not 
coincide (Fig. 7.3b). Indeed, valuable tectonic information may be extracted 
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from the temporal relationship between pressure and temperature maximum 
on a metamorphic P-T path. 

7.2.1 Equilibrium Information: Thermobarometry 

If we assume that rocks do, in fact, record some sort of chemical equilib­
rium from some stage of their metamorphic evolution it is possible to use the 
principles of equilibrium thermodynamics to infer their formation conditions. 
Very often this concerns the derivation of metamorphic pressures and tem­
peratures using geothermometers and geobarometers. In general, the term 
geothermobarometry summarizes the methods used. It is useful to discrimi­
nate between: 

— penological thermobarometry, 
— mineralogical - crystallographic thermobarometry and: 
— structural thermobarometry. 

An example for structural barometers are the palaeopiezometric methods (e. g. 
Christie and Ord 1980; Dunning et al. 1982) and an example of structural 
thermometry is textural analysis like lattice preferred orientations of quartz 
(e. g. Jessel and Lister 1990). Mineralogical thermobarometry uses the pressure 
and temperature dependence of parameters hat may be measured in a single 
mineral, for example the lattice parameters, the concentration of a given 
element or the composition of fluid inclusions. 

Petrological thermobarometry is based on the fact that the distribution of 
elements between minerals is a function of pressure and temperature. For en­
ergetic reasons, this distribution always aims to be in chemical equilibrium. 

Figure 7.3. a Schematic P-T-path that is divided into five different sections that 
are recorded in different detail in a rock. The different sections are discussed in the 
text. The sections of a P-T-path that are well recorded by a rock are shown thick 
b P-T-path in which pressure and temperature peak coincide (a); and P-T-path 
in which pressure and temperature peak do not coincide (b). A schematic stable 
geotherm is shown for reference 
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In particular with high grade metamorphic rocks, petrological thermobarom-
etry has become the standard method to determine the physical conditions 
of metamorphism. However, for a meaningful application it is crucial that 
chemical equilibrium was reached and that reaction textures between differ­
ent minerals are interpreted correctly (Cooke et al. 2000). About the methods 
and problems of textural interpretation of mineral parageneses there is abun­
dant literature (e.g. Spear and Florence 1992; Robinson 1990). 

The Chemical Equilibrium Condition. Most of the petrological thermo-
barometry is based on the assumption of chemical equilibrium in rocks. Then, 
the thermodynamic equations describing equilibrium can be used to predict 
the distribution of a chemical element between the different minerals in a 
rock. The thermodynamic equilibrium condition may be formulated as: 

0 = AG0 + RTlnK . (7.6) 

In this equation, R is the gas constant, AG0 is the change in Gibb's free 
energy between all phases involved in a reaction in their standard states and 
K is the equilibrium coefficient. This coefficient may be derived from the 
activities of different mineral end members in a mineral, which is related 
to their composition. T is the absolute temperature. For a simple exchange 
reaction of the element C between the phases A and B, K is given by the 
relationship: 

There, XQ is the mol fraction of the element C in mineral A and X® is the 
corresponding mol fraction in mineral phase B. Thus, K may be measured 
directly from the compositions of different minerals in a rock, for example by 
electron microprobe. The expression AG0 is the difference between the free 
enthalpies of the reactants and the products (in this case the pure phases A 
and B) in their standard state. These free enthalpies are functions of material 
constants like heat capacity, formation energy, pressure and temperature. 
Thus, eq. 7.6 may be solved for pressure as a function of temperature or vice 
versa, if all the other constants are known. If eq. 7.6 describes a curve with a 
shallow slope in a pressure-temperature diagram, then this reaction is called a 
barometer. Correspondingly, if the slope of this curve is steep, then it is called 
a thermometer. Clearly, the information given in this short paragraph is by 
no means sufficient to learn about the thermodynamics of thermobarometry. 
It is just meant to indicate that an entry into this field is not all this hard. 
For details see an abundance of literature on the thermodynamics of rocks, 
for example Holland and Powell (1990), Atkins (1994), Powell (1978), Spear 
(1993) or Will (1998). 
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The Phase Rule. The concept of the phase rule is a much undervalued 
tool that can also be used by the field geologist. This section shows how. 
The phase rule relates the number of degrees of thermodynamic freedom to 
the number of chemical components and the number of mineral phases (Zen 
1966). It may be formulated as: 

Phases = Components — Degrees of Freedom + 2 . (7.8) 

For example, a reaction involving one chemical component and two mineral 
phases will have one degree of thermodynamic freedom. We may freely choose 
the pressure where this reaction is supposed to occur, but then the temper­
ature and compositions of all phases are predetermined by this assumption 
- they are fixed. The reaction between ice and water is a good example of a 
univariant (one degree of freedom) reaction between 2 phases in the 1 com­
ponent system H2O. Similarly, the reaction between periclase and quartz to 
form enstatite is a univariant reaction between 3 phases in a 2 component 
system MgO - SiC-2- We can also see that - in a 6 component system - it is 
impossible for more than 8 phases to exist in stable equilibrium. In fact, it 
is extremely unlikely that rocks equilibrate on invariant points or even along 
univariant reactions. This information can help us enormously: 

• ... by considering observed minerals as phases. Then, the phase rule can 
be used to infer two overprinting events. For example, pelitic rocks typically 
contain 6 chemical components: K 2 0 , FeO, MgO, AI2O3, Si02 and H 2 0 . 
If a pelitic rock contains 8 minerals, for example garnet, staurolite, biotite, 
muscovite, kyanite, chlorite, quartz and water, then we must conclude that 
it is invariant. As this unlikely (or impossible if there is even more minerals), 
we can conclude that one or several of the observed phases grew later or 
earlier than the rest and we are observing at least two different equilibrium 
assemblages. As such, the phase rule can aid us to infer overprinting events 
when doing petrography. Alternatively, it may tell us that there are more 
chemical components in the system, for example, CaO or MnO. 

• ... by considering end members as phases. Then, the phase rule may be 
used to estimate the number of possible thermobarometers that we can use 
to constrain our paragenesis. If the parageneses above contains only 6 com­
ponents and is in fact invariant then there is at least 10 end members with 
appreciable activities in it: There are pyrope and almandine in the garnet, 
phlogopite and annite in biotite and so on. Since we need 7 end members to 
formulate a univariant reaction for a thermobarometer equation (eq. 7.6), 10 
end members allows us to formulate at least 4 independent thermobarom­
eters. In short, the phase rule can help us to estimate how easy it will be 
to constrain our formation conditions. Using several thermobarometers si­
multaneously is the principle underlying the idea of formulating internally 
consistent thermodynamic data sets that can then be used to do average cal­
culations between many thermobarometers (e.g. Holland and Powell 1990; 
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Berman 1988). Because of these reasons it is generally useful to collect in the 
field rocks that contain as many phases as possible for as few minerals as 
possible. 

7.2.2 Non-equilibrium Information: Kinetics 

While equilibrium thermodynamic methods are the most widely used tool by 
petrologists, much additional information can be gained by using the non-
equilibrium information recorded by rocks. Very loosely, it may be said that 
this is done using two different approaches: 

— using non-equilibrium thermodynamics, 
— using equilibrium thermodynamics and "being careful". 

The use of non-equilibrium thermodynamics in petrology was pioneered 
in the seventies (e.g. Fischer 1973; Joesten 1977), but - while undoubtedly 
a rigorous treatment of the subject - it has not found wide application by 
the field geology community. In contrast, the application of equilibrium con­
siderations to the interpretation of metamorphic disequilibria (e.g. partial 
reaction textures) by "being careful" is widely applied by geologists to the 
interpretation of metamorphic P-T paths. In particular the consideration of 
a time scale in diffusion processes has led to a lot of progress which may be 
summarized under the term "geospeedometry" (Lasaga 1983). The following 
section presents a few highlights form this field. 

The Concept of Closure Temperature. Because of the strong temper­
ature dependence of diffusivities (eq. 7.5) diffusing systems are subject to 
a closure temperature. We illustrate this with the rate of volume diffusion 
of cations in garnet crystals. The magnitude of the diffusion rate of magne­
sium in garnet is roughly known. It is described by the material constants 
Q = 239000 J mol"1 and D0 = 9.81 • 10"9 m2 s"1 (Cygan and Lasaga 1985). 
Using eq. 7.5 we can derive a diffusivity of -D400 « 2.7 • 10~27 m2 s _ 1 or 
Ds00 « 2.3 • 10"20 m2 s"1 at temperatures of 400 °C or 800 °C, respectively. 
We can see that the diffusivity changes over many orders of magnitude over 
this geologically relevant temperature interval. 

From the above and eq. 7.4 we can see that a crystal of a given size can only 
equilibrate in a given time if its P-T-path exceeds a certain temperature over 
a certain time. If the temperature decreases below this temperature, then full 
equilibration is not any more possible and the crystal will only equilibrate 
partially. The diffusive length scale (given by I in eq. 7.4) gets smaller than 
the radius of a crystal and at least part of the crystal center will not be able 
to keep up with the processes on the crystal surface. It will cease to react with 
the surroundings and its composition will freeze. This phenomenon is called 
closure and the temperature at which this occurs is called the closure temper­
ature. The successive closure of the chemical composition of a crystal leads 
to the development of a zoning profile and can be observed in the minerals of 
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Figure 7.4. Modeled and observed concentric zoning pattern in garnet. The mod­
eled profile illustrates the definition of closure temperature Tc. The horizontal axis 
is a profile through a garnet crystal that is 0.5 mm in diameter. The grain center is 
located at x = 0.25 mm. The left hand vertical axis is labeled with the Fe concentra­
tion in the crystal (given as mol fraction Fe / (Fe + Mg)). In equilibrium this con­
centrations may be directly correlated with temperature (right hand vertical axis). 
The surface of the crystal is assumed to be in chemical equilibrium with a much 
larger biotite crystal characterized by an Fe concentration of Fe / (Fe +Mg) =0.5 
at all times. A cooling rate of 100°Cmy _ 1 was assumed. Calculated by numerical 
coupling of eqs. 7.3, 7.5 and 7.7 and the garnet - biotite thermometer equation of 
Holland and Powell (1990). The shown garnet crystal is from the Mt Isa Inlier of 
Central Australia (Image by M. Hand) 

many rocks (Fig. 7.4). The chemical non-equilibrium tha t is frozen into such 
zoning profiles is an important piece of evidence for the interpretation of the 
cooling history of a rock. 

M e a n Dif fus iv i t ies . Even if a mineral grain is open to diffusive equilibra­
tion (i.e. it is above its closure temperature) diffusivities are very strong 
functions of temperature so tha t it is difficult to use eq. 7.4 to estimate diffu­
sive length scales without having found an appropriate mean diffusivity tha t 
is representative for the diffusion rate over a given interval of temperature 
change. As the Arrhenius relationship is strongly non linear it is not a triv­
ial exercise to estimate such a mean diffusivity. However, if the cooling rate 
within the temperature interval of consideration is constant, then the mean 
diffusion rate may be estimated with the following relationship (I tayama and 
Stiiwe 1974): 

DA (7-9) D 
{•&)(!-TB/TA) 

There, D is the mean diffusion rate averaged between the start ing tempera­
ture T A and the final temperature T E (e. g. the metamorphic peak tempera­
ture and the temperature of the ear th 's surface). DA is the diffusion rate at 
the start ing temperature and may be calculated from eq. 7.5. 
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Determining Cooling Rates. From the above we can summarize, that the 
following parameters have a close linking in diffusive processes: 

— Diffusive length scale (grain size), 
— cooling rate (temperature, time), 
— diffusivity (material constants). 

For simple exchange systems and simple geometries of the crystal eq. 7.3 may 
be solved analytically to describe this relationship: 

•^-^(mk) • (7-I0) 

There, s is the cooling rate, Tc is the closure temperature, (defined in Fig. 7.4) 
and I is the radius of a crystal. The constant G is a parameter that describes 
the geometry of the crystal in which diffusion occurs. For spherical crystals 
(as is well-approximated by garnet) this constant is: G = 1.96. The vari­
ables Q, D0 and R were defined in eq. 7.5. Eq. 7.10 was derived by Dodson 
(1973) for application in geochronological systems but it is equally applica­
ble to cation diffusion in minerals where it has become an important tool to 
estimate cooling rates of rocks using data that are easily obtained using op­
tical microscopy (to determine I) and electron microprobe (to determine Tc) 
(Ehlers and Powell 1994; Ehlers et al. 1994a). The relationship between grain 
size, closure temperature and cooling rate defined by eq. 7.10 is illustrated in 
Fig. 7.5a. 

• Tectonic use of cooling rate information. The slope and curvature of cooling 
curves is characteristic of the underlying cooling process. Thus, determination 
of cooling curves is an important tool for the interpretation of geodynamic 
processes. For example, a comparison of Fig. 3.15 with 3.33 (as contrasted 
in Fig. 7.5b) shows, that cooling curves terminating a regional metamorphic 
cycle are fundamentally different from those that characterize cooling after 
contact metamorphism (Harrison and Clark 1979). If cooling occurs because 
the rocks are exhumed, then the cooling rate increases with decreasing tem­
perature. In contrast, the cooling rate decreases with decreasing temperature 
towards the end of contact metamorphism (see Fig. 7.5b). 

Fig. 7.5a illustrates the different relationships between closure tempera­
tures and grain size that are expected in two rocks that cooled according to 
the two cooling curves shown in Fig. 7.5b. Overlaying Fig. 7.5a onto Fig. 7.5b 
shows that these relationships are different! Ehlers et al. (1994b) have doc­
umented closure temperatures between 400 °C and 700 °C in a single thin 
section and were able to correlate these closure temperatures with grain size. 
This range of closure temperatures is sufficient to document crucial parts of 
a cooling curve. 

Geochronology. Many geochronological methods also rely on the concept 
of closure temperature. At high temperatures, diffusivities of radiogenically 
produced isotopes are large enough so that they do not accumulate in a 
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Figure 7.5. Relationships between cooling rate and temperature, a Cooling rate 
plotted against closure temperature Tc of crystals with different diameters. The 
curves were calculated with eq. 7.10 assuming a spherical grain geometry. The 
diffusion data of Cygan and Lasaga (1985) for garnet were used, b Cooling rate 
against temperature for two different cooling processes. The curve for contact meta-
morphism was calculated with eq. 3.88 using Ti = 800 °C, T"b = 300 °C, / = 60 km, 
K = 10~6 m 2 s _ 1 and z = 0. The curve for regional metamorphism was calculated 
with eq. 3.48 and eq. 3.49 using g = 30°Ckm _ 1 , z\ =25 km and an erosion rate 
of u = — 1 km m y - 1 . While the assumptions underlying these equations are very 
much simplified from real settings, they do show some typical characteristics. For 
example, note that during cooling from regional metamorphism the cooling rate 
increases with decreasing temperature, while the cooling rate decreases with de­
creasing temperature following contact metamorphism. Such differences may be 
extracted, at least in principle, from zoned crystals 

crystal lattice. Below the closure temperature the diffusivities are low and 
the isotopes accumulate. Thus, the content of daughter isotopes in a crystal 
is proportional to the time it has spent below the closure temperature and 
the content of the parent isotope. If the latter is known, the former an be 
inferred (Fig. 7.6). However, as we have learned above, closure temperatures 
are dependent on cooling rates and many other factors, so that dating with 
isotopes has a large range of problems that geochronologists battle with. 

A common method to document cooling curves uses isotopic dating of a 
series of isotopic systems in minerals with different closure temperatures. Clo­
sure temperature of the various isotopic systems is then plotted against the 
radiometrically determined age and a cooling curve is constructed. However, 
in the previous section we have shown that the closure temperature depends 
on cooling rate. Thus there is an obvious circular argument: Cooling rates 
obtained by this approach can - strictly taken - only be estimated once a 
cooling rates is assumed. Only then the closure temperature of the system is 
known. 
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The successful application of geochronological methods to the determina­
tion of cooling curves indicates that the variability of closure temperatures 
of isotopic systems is small - even for a large range of cooling rates - in com­
parison to many other factors influencing closure of isotopic systems during 
cooling. However, it is important to be aware of the implicit circularity in the 
uncritical acceptance of a certain value for closure temperature of an isotopic 
system. 

Figure 7.6. Isotope systems 
commonly used for absolute 
geochronology and the 
temperatures they date. For most 
systems these temperatures are 
"closure temperatures", where 
the diffusion of the radioactive 
element of interest ceases. For 
some, for example fission track 
(FT) analysis, it is a "track 
retention temperature". For 
cosmogenic isotopes it is simply 
an accumulation time. (After 
Fitzgerald and Baldwin pers 
comm 2006). 
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7.3 Classification of P-T-Paths 

P-T-paths may be divided into two groups, according to their slope following 
the metamorphic temperature peak: 

— 1. P-T-paths which are characterized by a decrease in pressure before 
cooling commences. 

— 2. P-T-paths which are characterized by a decrease in temperature before 
decompression commences and P-T-paths where pressure increase accom­
panies cooling (Fig. 7.7). 

In a diagram in which the positive temperature axis is drawn to the right and 
the positive pressure axis is drawn upwards, these two paths follow a clockwise 
and an anticlockwise curvature, respectively (Fig. 7.7a). Thus, the two path 
groups 1. and 2. are referred to as clockwise P-T-paths and anticlockwise 
P-T-paths, respectively. 

However, in the geological literature it is common to plot the pressure axis 
downwards to assist the intuitive understanding that pressure increases with 
depth in the crust (Fig. 7.7b). Obviously, the direction of a P-T-path in such 
a diagram is reversed from that in the conventional representation. Thus, it 
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may be bet ter to use the less ambiguous description of ITD- (IsoThermal 
Decompression) or IBC-paths (IsoBaric Cooling) instead of clockwise and 
anticlockwise. 

This qualitative division of P -T-pa ths may be formulated a bit more rigor­
ously. At the thermal peak, the rate of tempera ture change is, by definition, 
zero: d T / d t = 0 . Thus, differently shaped P-T paths may be defined on the 
basis of the qualitative nature of the pressure change at the temperature 
peak. We can write: 

dP 
dt (dT/dt=0) 

^ = 0: 

— negative: 

dt 

dP 
dt 

(dT/dt=0) 

(dT/dt=0) 
= positive: 

clockwise (ITD) 

anticlockwise (IBC) 

anticlockwise 

While this is quite a rigorous classification, this definition does not state how 
long this condition is held upright. For example, it is possible tha t the P-T-
path is characterized by pressure increase only at the very temperature peak, 
but tha t most of the time the pa th occurred during decompression (Fig. 7.8a). 
In short, it remains difficult to define a rigorous quanti tat ive classification of 
P -T-pa ths . 

• Continuous or discontinuous P-T-paths?. The most common problem with 
interpreting the shape of P -T-pa ths is illustrated in Fig. 7.8b. There, two 
black dots indicate the P-T-condit ions for the formation of two overprinting 
metamorphic parageneses in a single rock. Usually it is very difficult to see in a 
rock if the two parageneses formed in a continuous P-T-evolution during one 

conventional 
orientation of axes 

geological orientation 
(suggesting depth) 

Figure 7.7. Directions of P-T-paths in different presentations. The thick dot is the 
metamorphic peak, a In the conventional representation, isothermal decompression 
paths follow a clockwise path and isobaric cooling paths have an anticlockwise 
shape, b In the geologically most commonly used representation pressure is usually 
plotted to increase downwards to indicate that it increases with depth in the crust. 
Then, "anticlockwise paths" actually follow a clockwise path and vice versa 
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orogenic event (ii), or as the consequence of two independent metamorphic 
events that may be hundreds of million years apart (i) (Fig. 7.8b). 

7.3.1 Slope and Curvature of P-T-Paths 

The slope and curvature of metamorphic P-T-paths contains important in­
formation on the relative and absolute rate of different geological processes. 
The two diagrams on the left in Fig. 7.9 show the temporal evolution of pres­
sure a rock experienced (bottom diagram) and three different possibilities 
of the temporal evolution of temperature in the same rock. The diagram on 
the right shows three P-T-paths that correspond to the temporal evolutions 
shown at left. The temporal evolution of neither pressure nor temperature 
may be inferred from the P-T-path, but their relative temporal evolution is. 
This may be inferred from the slope of the three different P-T-paths. From 
the IBC-path c we can infer that the rate of cooling was rapid compared 
to the rate of pressure change. Correspondingly, we can conclude from the 
ITD-path a that the rate of decompression was rapid compared to the rate 
of cooling. Note that we extracted this information solely on the basis of its 
P-T-path. 

If pressure and temperature are not linear functions of time, then the rela­
tionships discussed above need not apply. For example, if the temporal evolu­
tion of pressure and that of temperature are the same, then the P-T-path will 
be linear, irregardless of what temporal evolution pressure and temperature 
undertake. This is shown on Fig. 7.10 where both the combination of temper-

i \ 

c 

\ 
i 

T 
>J 

Figure 7.8. Examples of P-T-paths that are easily misinterpreted, a P-T-path 
which - according to conventional classification - would be interpreted to be anti­
clockwise, but which has the overall form of a ITD-path. b Example of a fundamen­
tal problem of the interpretation of P-T-paths. If two metamorphic parageneses are 
observed in a rock that indicate the two P-T conditions shown by the two black 
dots, then it is usually very difficult to discern if the path between the two was 
characterized by two different events with IBC-paths (shown by path i) or a single 
ITD path (shown by path ii). c Example of another problem of interpreting P-T-
paths: The observation of two overprinting parageneses and the knowledge of the 
reaction that produced them is often insufficient to discern between IBC and ITD 
paths. 
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Figure 7.9. Different shapes of P-T-paths (diagram on right), as they arise from 
different cooling rates of rocks (at left) even though all paths experienced the same 
decompression rate (at center). The P-T-paths a, b and c in the diagram on the right 
correspond to the three different cooling curves as labeled on the left. The shaded 
rectangle indicates schematically the P-T-region which is likely to be preserved in 
a rock 

ature evolution a with pressure evolution C and the temperature evolution b 
with pressure evolution B produce the same linear P -T-pa th . 
In terpre t ing t h e S lope of a P - T - P a t h . Let us illustrate the enormous 
geodynamical relevance of the considerations of the last sections with an ex­
ample. In many high grade metamorphic terrains in the Precambrian shields 
IBC-curves have been documented (e.g. Harley 1989). We can conclude tha t 
the cooling rate of all these terrains must have been much more rapid than 
their ra te of exhumation or burial during the thermal evolution (assuming 
tha t all pressure change is related to depth change). As most of these terrains 
are characterized by intense synmetamorphic deformation (both extensional 
and compressional) it is likely tha t the terrains did indeed exhume or get 
buried during their thermal history. Thus, if the rates of exhumation and 
burial during erosion or continental deformation were known, the we can use 
the fact tha t a terrain is characterized by an IBC paths to constrain mini­
mum values for the rate of cooling. During normal continental deformation 
rates of e = 1 0 ~ 1 3 - 1 0 - 1 4 s _ 1 the rate of exhumation or burial is of the order 
of some millimeters per year. At this ra te of depth change an IBC-path can 
only occur if the cooling phase of the terrain lasted a mere few millions of 
years. For example, if we just take an arbitrary number of 3 millimeters per 
year of depth change and assume tha t a P -T-pa th will look like an IBC pa th 
if it cools more rapidly than 300 °C per kilobar of pressure change, then this 
implies a cooling rate of at least 243 °C m y - 1 . 

If we now recall sect. 3.1.4 where we have shown tha t the duration of 
conductive processes is proportional to the square of the length scale of the 
conducting body, then we can use the estimate for the total duration of cool­
ing to infer the spatial size of the terrain in question, at least to the order of 
magnitude. It turns out tha t for the total duration of the cooling phase as 
estimated above, the size of the heated region is a mere few kilometers. We 
can conclude from our derived IBC-path tha t it is unlikely tha t the metamor-
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Figure 7.10. Possibilities for P-T-paths as they may arise as a consequence of 
various non-linear evolutions of pressure and temperature. The figure is analogous 
to Fig. 7.9 

phic event was caused by a process that affected the entire lithosphere. It is 
more likely that the heating mechanism was localized. Indeed, it is this very 
argument that has often been used to interpret that IBC-paths are atypical 
for regional metamorphic events and are more likely to be associated with 
contact metamorphism around magma bodies (e. g. Lux et al. 1986; DeYoreo 
et al. 1991; see. sect. 6.3.3). You may argue that all the numbers used here 
are wrong or not well constrained, but the thought process carried out here 
is independent of the numbers and in an example where they are known, it 
may extremely useful. 

7.4 Interpretation of P-T-t-^-Relationships in Orogens 

We will now go into some detail how to interpret spatial and temporal field 
relationships and P-T-i-D-paths and refer the reader also to Passchier et al. 
(1990). Conceptual interpretations like those presented below are particularly 
important in ancient or badly exposed metamorphic terrains, where little is 
known about the geometry, style or tectonic setting of the underlying oro-
genic event. However, even in well known orogens like the European Alps, 
such conceptual interpretations may help geologists to free the eye from a 
huge abundance of detailed regional knowledge and help to understand some 
fundamental background of orogenic processes. In general, it is important to 
discriminate between two different types of relationships: 

— 1. The temporal relationship between deformation and metamorphism. 
— 2. The spatial change of the relationship between metamorphism and de­

formation across the terrain in question. 

Such relationships, both in space and time, may be well illustrated on an 
event diagram (Fig. 7.11). When mapping such changes in the field it is im­
portant to be aware of the fact that different mapped parameters may have 
completely different strike directions in the field. For example, the lithological 
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boundaries may strike completely different from the direction of the meta­
morphic isograds or from lines of constant strain or those of constant age. 

T e r m i n o l o g y Def in i t ion . When discussing spatial and temporal relation­
ships between metamorphic pressure, temperature and time across a terrain, 
or within a single rock, it is easy to confuse a number of quite different issues 
each of which contains important interpretative information. We therefore 
define the following terms: 

• Metamorphic field gradient. The te rm "metamorphic field gradient" is used 
strictly to describe the change of metamorphic grade with distance as ob­
served in the field (measured normal to the metamorphic isograds). As such, 
metamorphic field gradients have the units of dT/dx or dP/dx depending 
whether the gradient describes the change of metamorphic temperature or 
pressure with lateral distance x. The ratio of the metamorphic temperature 
gradient to the metamorphic pressure gradient does not need to document a 
metamorphic geotherm (although it also has the units of dT/dP and may be 
easily converted into dT/dz assuming the conversion discussed in eq. 7.1). 
In contrast, the T/P ratio of a single rock will always record one point on a 
metamorphic geotherm (by definition - see below). 

1 

D3 

D2 

D1 

M3 

M2 

Ml 

b 

Figure 7.11. "Event diagrams" are a useful way to record field observations, a and 
b show two different nomenclatures used for event diagrams for the same set of field 
observations. Both diagrams are drawn for a terrain in which three deformation 
phases (D) and three metamorphic events (M) have been mapped in the field. 
In a the different events were numbered according to their temporal sequence, but 
without consideration to whether the event is a deformation event or a metamorphic 
event. In b deformation events and metamorphic events are numbered separately. 
Both according to their respective temporal sequence, but with no consideration 
of the temporal relationship between deformation and metamorphic events. Which 
representation is more useful depends on the question that is to be answered with 
the illustration 
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• Metamorphic geotherm. The term "metamorphic geotherm" is used to de­
scribe the relationship between temperature and depth at a chosen point in 
time during metamorphism. As such, a metamorphic geotherm is a transient 
feature and contrasts the term stable geotherm. Very generally, metamorphic 
geotherms change at rates of ^>10 °C my - 1 , whereas stable geotherms change 
at rates of <C10°C my - 1 . During regional (Barrovian) metamorphism, meta­
morphic geotherms are generally characterized by a monotonous increase 
of temperature with depth (England and Thompson 1984). However, during 
contact metamorphism or in staked nappe piles, metamorphic geotherms may 
transiently be characterized by some crustal sections in which temperature 
decreases with increasing depth. 

• Piezothermal array. The term "piezothermal array" was clearly defined by 
Richardson and England (1979) as the line that connects the metamorphic 
temperature peaks of all rocks in a vertical crustal section through depth and 
time. Piezothermal arrays are diachronous in time and they cross metamor­
phic geotherms. In general, it is a piezothermal array that will be preserved 
by an obliquely exposed crustal section, but piezotherms may coincide with 
metamorphic geotherms for some tectonic settings, for example if exhumation 
is practically instantaneous. Piezotherms are discussed in some more detail 
further below. 

7.4.1 Interpreting Temporal Relationships 

The relative temporal relationship between deformation and metamorphism 
is usually well-preserved in metamorphic rocks (Fig. 7.11). There are three 
different possible relationships between one phase of deformation and one 
phase of metamorphism: 

1. Deformation of rocks precedes metamorphism, 
2. deformation and metamorphism occurred contemporaneously, 
3. deformation occurred after metamorphism. 

Clearly, it is always possible that the causes for deformation are unrelated 
to the causes of metamorphism. However, the timing relationship may also 
be the consequence of a causal coupling between the two. In the following, 
we discuss possible interpretations of these timing relationships in terms of 
a single underlying cause. 
• Deformation precedes metamorphism. This timing relationship is charac­
teristic for regional metamorphism, where metamorphism was caused by heat 
conduction and radiogenic heat production in overthickened continental crust 
(sect. 6.2.1). This is because continental deformation rates are typically about 
one order of magnitude more rapid than thermal equilibration over the length 
scale of the crust (s. sect. 3.1.4, 6.3.6). Thus, thickening of the crust at "nor­
mal" collision rates is usually completed before conductive equilibration may 
catch up. As a consequence, it may be expected that metamorphism is sep­
arated from peak metamorphism by up to several tens of millions of years. 
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• Deformation occurred contemporaneously with metamorphism. This rela­
tionship is typical of many low-pressure high-temperature metamorphic ter­
rains. Three possible relationships may be thought of (s. also p. 331): 

1. Deformation is caused directly by the heating. This is possible if the terrain 
in question is subjected to a constant plate boundary driving force. Then, 
heating of the terrain may weaken the rocks sufficiently so that strain rate 
rises rapidly in response to the far field stress (Sandiford et al. 1991). 

2. Heating is caused directly and instantaneously by deformation. This is 
only possible if the rocks are strong enough so that shear heating causes 
the metamorphism. This is widely-observed on a local scale, for example 
around pseudotachylites, but the possibility for regional shear heating is 
subject to debate. 

3. Both heating and deformation may have been caused by advection of hot 
material towards shallower depths. Such processes are certainly important 
when stacking nappes or when exhuming core complexes, but even whole 
sale convection has been suggested to operate in the crust (Weinberg 1997). 

• Deformation occurs after metamorphism. Field examples where deforma­
tion of a terrain occurred after its metamorphic peak, are typically interpreted 
in terms of two independent events. That is, deformation and metamorphism 
are unrelated. Unlike the other two timing relationships discussed above, 
there is currently no elegant models which allow us to interpret this timing 
relationship in terms of a single tectonic process. 

7.4.2 Interpreting Spatial Relationships 

In many metamorphic terrains the metamorphic grade changes across the 
terrain. The change in grade is often accompanied by a change of the timing 
of peak metamorphism. For example, high grade parts may experience their 
metamorphic peak earlier or later than lower grade parts, either relative 
to an absolute marker (e.g. a dike swarm), or as determined by absolute 
geochronology. Such spatial changes may be interpreted in three different 
ways: 

1. Independent heating mechanisms heated different parts of the terrain in 
question at different times. In this case, it is expected that there is a 
discontinuity in metamorphic grade or metamorphic age somewhere in the 
terrain; for example, because the rocks of different metamorphic age where 
juxtaposed much later. 

2. Lateral variations in the physical parameters, for example, thermal con­
ductivity or heat production rate may cause different parts of a terrain to 
heat at different rates and to different degrees (Sonder and Chamberlain 
1992). 
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3. The changes in the timing of metamorphism across the terrain are inher­
ent to the nature of a single heating process. A typical example for this 
is heat conduction: because of the t ime it takes for a terrain to equili­
brate conductively, it is possible tha t some par ts of a terrain experienced 
metamorphism earlier than others (e. g. s. sect. 3.1.4). In this case, changes 
in metamorphic timing and grade are expected to be continuous across a 
terrain. 

The curve tha t must be interpreted to understand some of these relationships 
is the piezothermal array. 

P i e z o t h e r m a l Arrays . Piezothermal arrays are curves tha t connect the 
metamorphic temperature peaks of rocks from all crustal depths through 
grade and time (England and Thompson 1984; Fig. 7.12). Accordingly, 
piezotherms may be plotted in pressure-temperature, in temperature-t ime, 
or in pressure-time diagrams. As the slopes of the piezotherms in two of these 
different diagrams are independent, it is useful to discriminate between two 
different features of a piezotherm. These are: 1. their temporal characteristics 
and 2. their thermal per turbat ion characteristics. 

• Time characteristics of piezotherms. The temporal characteristics of a 
piezotherm describe if the metamorphic peak of high grade rocks occurs ear­
lier or later than tha t of their lower grade equivalents (Fig. 7.12a). These 
timing relationships may be characterized by the slope of the piezotherm in 
a temperature- t ime diagram (e.g. Stiiwe et al. 1993; Stiiwe 1998c). Three 
qualitatively different relationships may be discerned: 

Thermal Perturbation 
characteristics 

Regional 
metamorphism 

terminated by erosion 

Regional 
metamorphism 
terminated by extension 

• 
time of metamorphic peak Tdeparture from stable geotherm 

Figure 7.12. Schematic cartoons illustrating a the temporal characteristics and b 
the thermal perturbation characteristics of piezothermal arrays for some different 
tectonic settings and metamorphic heat sources. As the slope of the piezotherms in 
these diagrams are mapable in the field, these functions are extremely important 
to consider when interpreting metamorphic terrains 
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1. If the metamorphic peak in high grade rocks occurred later than in low 
grade rocks, then the slope of the piezothermal array in a temperature-
time diagram is positive. Piezothermal arrays with a positive slope are 
typical of regional metamorphism (sect. 6.2.1, Fig. 7.12a). Rocks from 
shallow crustal levels will not heat significantly because of their proximity 
to the surface and will be the first to cool when exhumation commences 
(Fig. 6.17). Rocks from deeper crustal levels have more time to equilibrate 
and will reach their metamorphic peak therefore later (Fig. 7.13a). 

2. If the metamorphic peak in high grade rocks occurred earlier than in low 
grade rocks, then the slope of the piezothermal array in a temperature-
time diagram is negative. Piezothermal arrays with a negative slope are 
typical of contact metamorphism (Fig. 3.33, 7.12). Near the contact of 
a heat source, rocks are heated very rapidly to high temperatures. With 
increasing distance from the heat source, the thermal effects of contact 
metamorphism are felt later and the metamorphic grade is lower (for detail 
s. sect. 3.6.2). 

3. The situation that the time of metamorphism is independent of metamor­
phic grade is unusual. More likely, the temporal variation is too small to be 
discernable in the field. Nevertheless, one mechanism that would allow the 

Figure 7.13. Cartoons illustrating the thermal evolution of thickened continental 
crust during: a exhumation by erosion (all rocks in a vertical column move up­
wards by the same amount during each time step as indicated by the vertical bars) 
and b exhumation by pure shear extension (the exhumation rate is depth depen­
dent). Shown are: stable geotherms prior to thickening (dotted lines), metamorphic 
geotherms (thin lines labeled from time t\ immediately after thickening to te near 
the final stages of exhumation), piezothermal arrays (shaded bars) and PTt paths 
(thick lines). Note that in a the slope of the piezothermal array has a higher T/P 
gradient than any one geotherm but in b it has a lower T/P gradient. Moreover, 
the temporal relationships between high and low grade rocks are reversed between 
the two exhumation mechanisms 
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metamorphic peak to occur at the same time in rocks of all metamorphic 
grades, is if metamorphism is caused by mechanical heat production in a 
region with a strong strain gradient. 

While the slope of the piezothermal array contains a lot of information on 
the underlying thermal event, the age difference between metamorphism of 
the highest grade rocks and tha t of the lowest grade rocks is often too small 
to be resolved with geochronological methods. Thus, we are often limited to 
interpret timing relationships from detailed observations in the field using 
structural observations. 

Figure 7.14. T-z diagram showing two 
hypothetical data sets collected from 
metamorphic terrains with a field gradient 
(large dots). The data set shown by the 
black dots has positive thermal perturbation 
characteristics: low grade rocks are less 
thermally perturbed from stable 
metamorphic conditions than high grade 
rocks. For the data set shown by the white 
dots this relationship is reversed: high grade 
rocks are less thermally perturbed than low 
grade rocks. This latter relationship is 
actually very common in many terrains 
around the world (e.g. Tenczer and Stuwe 
2003). The information of this figure is 
equivalent to that shown in Fig. 7.12b 

• Thermal perturbation characteristics of piezotherms. The thermal pertur­
bation characteristics of a piezotherm describe if high grade rocks are more or 
less thermally per turbed from stable geothermal conditions than their lower 
grade equivalents. This may be characterized by the slope of the piezotherm 
in a PT diagram. For example, during regional metamorphism according to 
the classic description of England and Thompson (1984), high grade rocks 
may experience their peak at large depths and substantially derived from 
stable geothermal conditions (Figs. 7.12, 7.13a, black dots on Fig. 7.14). In 
contrast, many metamorphic terrains show reversed relationships between 
grade and magnitude of thermal per turbat ion (white dots on Fig. 7.14). For 
example, in the eclogite type locality in the eastern Alps, eclogites equili­
brate at 650 °C and almost 20 kbar, (which is not very per turbed as it lies 
near a "normal" geothermal gradient around 9 ° C k m - 1 ) , but amphibolite 
fades rocks further nor th equilibrated at 650 °C and 6 kbar (which is very 
warm for tha t pressure, s. Fig. 7.1). Thus, the amphibolite fades rocks are 
substantially more thermally per turbed than their eclogite fades equivalents 
(Tenczer and Stiiwe 2003; Stuwe 1998a). One possible interpretation of this 
relationship is presented in Fig. 7.13b. 
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7.5 Problems 

Problem 7.1. Converting pressure and volume (p. 338): 
a) What is the mean density of the atmosphere assuming that it is 10 km 
thick and that the pressure on the surface is 1 atmosphere? b) What is the 
barometric pressure in kilobar on the surface of the earth? 

Problem 7.2. Converting pressure and volume (p. 338): 
The molar volume of almandine-garnet is about 11.5 J bar - 1 . Convert these 
units of volume (volume = energy/pressure) into cubic centimeters. Check 
your result by comparing the weight of one formula unit of almandine with its 
density. (The garnet almandine has the formula Fe3Al2Si3 0i2 and a density 
of about 4 g cm - 3 . 

Problem 7.3. Estimating cation diffusivities (p. 343): 
Use the Arrhenius relationship (eq. 7.5) to estimate the diffusivity of cations 
through a garnet lattice at 300 °C, 500 °C and 1000°C. For the material 
constants use: Q — 239 000 J m o l - 1 , D0 = 9.81 • 10~9 m2 s _ 1 and assume 
the activation volume is negligible (Cygan and Lasaga 1985). The value of 
the gas constant may be found in Table D.4. Discuss the significance of 
the enormous difference between these cation diffusivities and the thermal 
diffusivity K m 10 _ 6m 2s _ 1 . 

Problem 7.4. Time scale of chemical equilibration (p. 344): 

How long does it roughly take for a 1 mm large garnet crystal to equilibrate 
chemically at 600 °C ? Use eq. 7.4 and the data from Problem 7.3. 

Problem 7.5. Estimating mean diffusivity (p. 350): 
The Arrhenius relationship and the results of Problem 7.3 show a strong 
exponential dependence of cation diffusivity on temperature. In metamorphic 
processes cations in minerals diffuse typically during temperature change. It 
is therefore useful to know some sort of mean diffusivity that characterizes 
the diffusion rate during the entire thermal evolution. Use eq. 7.9 to estimate 
this mean diffusivity of cations in garnet between the starting temperature 
TA=700°C and TE=400°C. Use the data from Problem 7.3 and compare 
your result. 

Problem 7.6. The meaning of "metamorphic peak" (p. 346): 
Figure 7.3 shows in a a P-T-path in which the thermal peak coincides with 
the pressure peak and in & a P-T-path in which pressure and temperature 
peak occur at different times. The case of b is more common. In the literature 
we often read simply about the "metamorphic peak" of a terrain, a) Does this 
mean the temperature peak or the pressure peak? b) Why is this imprecise 
usage of the term "metamorphic peak" so common? c) Draw a P-T-path in 
which the temperature peak is reached before the pressure peak, d) What 
tectonic process can you think of that causes such a path? 
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Problem 7.7. Estimating cooling rates (p. 351): 
Assume you have found a garnet that is 2 mm in diameter (1 mm radius) that 
has a retrograde zoning profile similar to that shown on Fig. 7.4. You have 
analyzed it and found it to have a closure temperature of 600°C. Estimate 
the cooling rate of the metamorphic event that caused the zoning profile using 
eq. 7.10. 

Problem 7.8. Using diffusivity estimates in the field (p. 343-344): 

(This is an integrated problem using knowledge on closure temperatures as 
well as the time scale of diffusion of both mass and heat. To tackle this 
problem you should solve problems 7.3, 7.4 and 7.5 first). 

A 2 km thick mafic dike has intruded rocks that were cooling from a 
previous regional metamorphic event at the time of intrusion. The intrusion 
temperature of the mafic magma was T; — 1200 °C. The temperature of the 
cooling host rocks at the time of intrusion was Ty, =500°C. The dike has a 
contact metamorphic aureole that overprints the metamorphic parageneses 
from the previous event. In this contact metamorphic aureole, 5 mm large 
mica crystals were found at a distance of about 50 m from the dike contact. 
Microstructural observations show that these crystals grew prior to intrusion 
during the previous regional metamorphic event. 

Question: Will the isotopic systems of the micas record the older regional 
metamorphic event or will they have been reset by the contact metamorphic 
event? 

a) Find an answer by estimating the time scale of the contact metamorphic 
event (eq. 3.17) (K = 10~6 m2 s _ 1) . Compare this with the time scale of diffu­
sive equilibration of the micas at 1 200 °C and 500 °C (from eq. 7.4 and using 
eq. 7.5).Use the following diffusion constants for mica: Q = 163 000 J m o l - 1 

and D0 = 7.7 • 10"9 m2 s"1 (Fortier and Giletti 1991). 
b) The result from a) should have shown that, in principle, the micas can 

be used to date the intrusion event, but that the estimate we have made is 
very crude and needs refining. The dating may be improved by calculating 
the maximum temperature (Tmax) the mica experienced during the contact 
metamorphic event (by substituting eq. 3.90 into eq. 3.88). Also, a better 
value for the diffusive time constant of the micas can be derived by calculating 
the mean diffusion rate between Tmax and T, = 500°C using eq. 7.9. 

c) Sketch out a flow chart for a computer program that could be used to 
find a detailed solution for the problem. 

Problem 7.9. Constructing P-T-paths (p. 355): 
Draw pressure-time and temperature-time paths that correspond to the P-T-
i-paths shown in Fig. 7.15. Discuss some possible interpretations. The num­
bers shown along the P-T-paths are geochronologically determined ages in 
my. 

Problem 7.10. Constructing P-T-paths (p. 355): 
Construct P-T-paths from the pairs of pressure-time and temperature-time 
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curves shown in Fig. 7.16. The P-T paths you have constructed contain no 
information on time. It is therefore possible to interpret them in terms of 
different temporal evolutions for P and T from those shown in Fig. 7.16 (if 
only the P-T path is known). Discuss some. 

Problem 7.11. Construction of P-T-paths (p. 355): 
Draw the retrograde P-T-path of a rock that experienced the following evolu­
tion following its metamorphic peak: Peak metamorphism occurred in 20 km 
depth at 700 °C. Then, the rock was exhumed at a rate of 1200 m m y - 1 for 
5 my. After that, the exhumation rate decreased to 400 m m y - 1 . The meta­
morphic temperature remained at 700 °C for another 3 my after the meta­
morphic peak before cooling commenced. Then cooling commenced a rate of 
100°Cmy_ 1 and lasted for 3 my. After that, the cooling rate decreased to 
20°Cmy _ 1 until a stable geotherm is reached. Final cooling occurred along 
the stable geotherm. Assume that the stable geotherm is characterized by a 
constant gradient of 20°Ckm _ 1 . Hint: It is easiest to first draw depth-time 
and temperature-time curves and construct a depth-temperature diagram 
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from those. The conversion from depth to pressure can be done as a final 
step in the calculation using p — 2 700 k g m - 3 for density and g= 10 m s - 2 

for the gravitational acceleration. Non lithostatic components of pressure are 
to be neglected. 



A. Topographic Maps 

This section is a small Atlas of 16 of the most important areas in geodynamics 
around the world. All maps are shown in Mercator projection and were pro­
duced from the E T 0 P 0 2 global digital elevation model using the GMT soft­
ware of Wessel and Smith (1995,1998). Slab contours on some maps are after 
Gudmundsson and Sambridge (1998) (http://wwwrses. anu.edu.au/ seismol­
ogy/ projects/RUM/). Plotted seismicity is from the IRIS seismic data base 
(http://www. iris.edu). All events above magnitude 5 since 1973 are plotted 
(except for Fig. A.3, Fig. A.10, Fig. A.14, where only magnitudes above 5.5, 
6 and 5.5 are plotted, respectively). Depth of hypocenters is color coded: Red 
- yellow = 0 - 600 km. Size of dots refers to magnitude. Surface elevations 
are colored according to the scale bar shown on Fig. A.2. Major permanent 
rivers are shown and water bodies below 5000 km2 are omitted. For scaling 
recall that one arc minute of latitude (not longitude !) is defined as one nau­
tical mile or: 10° as 1080 km, (10 degrees latitude are very roughly 1000 km) 
(s. p. 25). All maps (with and without labeling) and the GMT scripts used 
to produce them, are available from the author. 

Figure A . l . World map showing the locations of the 16 maps presented here. 
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Fig. A.2: India - Asia collision zone. Topographic map of the most 
spectacular orogen on earth - the India Asia collision zone. The European 
Alps are plotted for scale the top right corner. The scale bar at top left is 
for all maps. 1 = Tibetan Plateau (covering the entire region between about 
78°E and 95°E and 30°N to 37°N. 2 = The Shillong Plateau is the smallish 
elevated region north of the number. 3 = Tarim Basin. 4 = Altyntag Range. 
5 — The deepest point in Central Asia is 154 m below sea level. 6 = Pamir. 
7 — Kirgis Tien Shan. The low area northwest of the number is Lake Issyk 
Kul. 8 = Chinese Tien Shan. 9 = Western- or Namche Barwa syntaxis. The 
Brahmaputra River breaks through the chain here. 10 = Red River and Red 
River shear zone system. 11 — Chinese Loess Plateau. The region is shown 
in detail on Fig. 4.46. 12 = Mt. Everest. 13 = Mt Kailas. Both the Indus 
and the Tsangpo (later forming the Brahmaputra) come from here. 14 — 
Kasachstan Platform. 15 = Ganges delta. 16 = Hindukush. 17 = Eastern 
syntaxis of the Himalaya. The Indus River breaks through the chain here. 18 
= Gobi Desert. 19 = Dabie Shan - a famous ultra high pressure terrain. 20 = 
Arabian Basin and fan shaped cone of the Indus River. 21 = Sichuan Basin. 
22 = Qilian Shan. 23 = Qaidam Basin. 24 = Long Men Shan. 25 = Kun Lun 
Range. 26 = Western Kun Lun Range. 27 = Western Ghats with the Deccan 
Traps flood basalts (mainly south of the map sheet). 28 = Helmand Basin 
and river. Kandahar is just northeast of the number. 29 = Kabul and the 
Afghan highlands to the west. 

Fig. A.3: Andes. Topographic map of the Andes: the earth's most spec­
tacular example of the collision between an oceanic plate and a continental 
plate. Labeled are: 1 — Altiplano. 2 = Lake Titicaca. 3 = Nasca Ridge. 4 
= Juan Fernandez Islands. 5 = Carnegie Ridge with the Galapagos Islands 
at the west end (off the map). 6 = San Ambrosia Island. 7 = Peru-Chile 
Trench. Slab contours of Pacific Plate are drawn every 100 km depth. 8 — 
Sierras Pampeanas: a Panafrican granulite terrain. 9 = Amazonas Basin. 10 
— Pre Cordillera. 11 = Frontal Cordillera. 12 = Cordillera Principal. 13 — 
Coastal Cordillera. 14 = Buenos Aires. 15 = Parana Basin and river. 16 = 
Rio de la Plata. 17 = Arequipa. 18 = Escondida. The world's largest copper 
mine. 

Fig. A.4: Europe. Topographic map of southern Europe showing the 
Alpine orogen as well as the geometry of micro plates in the Mediterranean 
realm. Labeled are: 1 = Eastern Alps. The number is drawn into the Tauern 
window. The triangular feature just south of the number is the Peradriatic 
lineament marking the boundary between European and Adriatic plates. 2 — 
Western Alps. 3 = Pannonian Basin. 4 — Moesian Platform. The Iron Gate 
- where the Danube breaks through the Carpathian Arc is to be seen north­
west of the number. 5 — Carpathian arc. 6 = Dinarides. 7 = The west - east 
striking structures transecting most of Turkey is the North Anatolian fault 
system. 8 = Helenic Trench along the north directed subduction zone be­
tween the Anatolian Plate and the Adriatic Plate. 9 = Tyrrhenian sea. This 
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sea is interpreted as a backarc basin between Italy and the islands of Corsica 
and Sardinia. 10 — Ligurian sea. 11 — Ionian sea with the island of Malta 
just north of the number. 12 = Aegean sea. 13 — Rhine graben flanked by 
the Black Forest on the east and the Voges Range in the west. To the south 
is the Banana shaped Jura Mountains. 14 — Pyrenees. 15 = Subduction zone 
between the Adriatic Plate and the Apulian Plate. Mt Etna located north­
west of the number along the east coast of Sicily is related to this subduction. 
16 — Apuseni Mountains. 17 = Bohemian Massif. 18 — Massif Central. 19 = 
Rotation pole of the Adriatic Plate. 20 = Atlas Mountains. 21 = Vesuvio. 22 
= Appenine Range. 23 = Rhodope Range. 

Fig. A.5: Arabian Region. Topographic map of the Arabian region. 1 = 
Afar Depression. 2 — Egyptian Eastern Desert. Pan African core complexes 
are exhumed here. 3 = The Oman ophiolite complex. 4 = The deepest point 
on land in the world: the Dead Sea shore is 417 m below sea level. The 
Dead Sea lies along the Dead Sea Transform Fault that continues to form the 
boundary between the Arabian Plate and the Anatolian Plate (black line). 5 
= Zagros Mountains. 6 — Luxor on the Nile river. 7 — Ethiopian Highlands. 
8 = North Anatolian Fault System. 9 = Mt Elbrus (5633 m) in the Caucasus 
is the highest point in Europe. 10 = United Arab Emirates - where most of 
the oil is. 11 = Caspian Sea. 12 = Red Sea Rift. 13 = Persian Gulf. 14 = Gulf 
of Oman - separated from the Persian Gulf by the Straits of Hormuz. 15 = 
Indian Plate. 16 = Socotra Island at the entrance to the Gulf of Aden. 17 = 
Mt Ararat. 18 = Elburz Mountain range between Teheran and the Caspian 
Sea. 19 = Troodos ophiolite complex on Cyprus. 

Fig. A.6: Africa. Topographic map of Africa. 1 = Lesotho highlands. East 
of the highlands is the city of Durban at the costs. The marked topographic 
jump from the highlands down to the coastal lands is the South African Great 
Escarpment that can be seen all around the southern edge of the continent. 
In Lesotho it is called the Drakensberg escarpment. Note that the drainage 
in Lesotho drains west into the Oranje River. 2 — Namaqualand and the 
mouth of the Oranje River. 3 = Kalahari Desert. 4 = The lowlands south of 
the Great Escarpment are made up of the Cape fold belt. Note large scale 
folding of strata. 5 = Limpopo River drainage basin. Note how the basin 
breaks through the Great Escarpment. 6 = Sambezi River. 7 = Lake Njassa. 
The southernmost of the large lakes along the East African rift system. 8 
= Lake Tanganjika. 9 = Lake Victoria. 10 = Nairobi. The spots north and 
south of the number are Mt Kenia and Mt Kilimanjaro, respectively. The 
highlands just west of the rift valley are the Serengeti. 11 = Lake Rudolf. 12 
= The lowlands at the north end of the map widen into the Afar Depression. 
13 = Kongo Basin. 14 = Fernando Poo hot spot trace. Note how the chain of 
islands can also be seen onland in Kamerun. The line is also known as Guinea 
Ridge. 15 = Walfis Ridge. 16 = Agulhas Plateau. 17 = Mozambique Plateau. 
18 — Malagasy fracture zone. This fracture zone is part of the ridge system 
separating the African Plate from the Antarctic Plate. 19 = Namibian Desert. 
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Brandberg is just north of the number. 20 = Angola Basin. 21 = In this region 
are the Witwatersrand gold reef and the Kimberley diamond mines. Pretoria 
and Johannesburg are near here. 22 — Aldabra and Comoro Islands. 23 — 
Etosha Pan. 24 = Olduvai Gorge - the site of the earliest human fossils. Also: 
Ngorongoro Crate and Oldolnya Lengai - the worlds only active carbonatite 
volcano. 25 = Cape Basin. 26 Agulhas Ridge. 

Fig. A.7: North Atlantic. Topographic map of the North Atlantic. 1 — 
Mid-Atlantic Ridge. 2 = Azores. 3 = Madeira Islands. 4 = Biscay abyssal 
Plain. 5 = Flemish Cap. 6 = Faeroe Islands. 7 = Jan Mayen Island. South of 
the number extends the Jan Mayen micro-continent to Iceland. 8 — Reykjanes 
Ridge (active 55 Ma to now). Note the V-shaped arrangement of ridges and 
the continuous rise of the Mid-Atlantic Ridge towards Iceland for almost 
1000 km. 9 = Rockall Island. 10 = Hatton Basin. 11 = Rockall Trough. 12 = 
Scoresby Sund. The worlds largest fjord with 475 km length. 13 — Gunbjorns 
Fjeld (3700 m). The highest mountain on this map. 14 — Greenland ice sheet 
is about 3000 m thick here. Bedrock is 300 m below sea level. 15 = Aegir Ridge 
was active from 55 - 33 Ma before it jumped across to: 16 = Kolbeinsey Ridge, 
active now. 17 — Present day position of Iceland Hot Spot. 18 = Liverpool 
Land: Remains of Caledonian crust with ultra high pressure eclogites. 19 — 
Huge sedimentary fans deposited from glacial erosion on Greenland. 20 — 
Mohns Ridge (active now). 

Fig. A.8: Eastern North America. Topographic map of eastern North 
America. 1 = Bermuda Islands. 2 = Florida. 3 = Deepest point in the At­
lantic Ocean at the west end of the Antilles Trench. 4 = Lesser Antilles. 5= 
Caribbean Sea. 6 = Puerto Rico Trench. 7 = Bahamas. 8 = West Indies. 
9 = Appalachian Mountains. 10 = Great Lakes. 11 = Blake Plateau. 12 — 
Gulf of Mexico. 13 = Bermuda Rise. The large fractures to the east belong to 
the Mid-Atlantic Ridge. 14 = The Mississippi Delta and New Orleans. Note 
the fan in the Gulf of Mexico. 15 = Outer ridge. 16 = Canadian Shield. 17 
— New York and Long Island. 18 — Cape Cod and Boston to the west on 
the mainland. 19 = Nova Scotia. 20 = St Laurence seaway. 21 = Site of the 
Chicxulub crater which is often made responsible for the mass extinction at 
the Cretaceous - Tertiary boundary. 

Fig. A.9: Western North America. Topographic map of western North 
America - a region which hosts a series of classic geodynamic settings. La­
beled are: 1 = San Andreas Fault (from north west to south east). 2 = Lake 
Tahoe. 3 = Grand Canon and Colorado River. Hoover Dam with Lake Mead 
and Las Vegas are just south west of the number. 4 = Snake River Plain. 
5 = Yellowstone Hot Spot. 6 = Columbia River. 7 — Sierra Nevada (out­
lined). 8 = Great Salt Lake. 9 = Great Valley. San Francisco Bay is west of 
the number. 10 = Colorado Plateau (outlined) and Upper Colorado River in 
Utah. The number is drawn over Monument Valley and west of the number 
is Lake Powell. 11 = Vancouver Island. 12 = Seattle. Just east of the number 
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is Mt Rainier as the north end of a linear chain of volcanoes including from 
north to south Mt St Helens, Mt Adams and Mt Hood as the highest peaks. 
13 = Sierra Madre Occidental (outlined). 14 — Southern Basin and Range 
(outlined). 15 = Northern Basin and Range (outlined). 16 = Uinta Moun­
tains. 17 = Klamath Mountains. 18 = Cascadia Mountains. 19 = Bighorn 
Mountains. 20 = Transverse Ranges. 21 — Rio Grande Rift. 22 = Southern 
Rocky Mountains. 23 = Black Hills. 24 = Bitterroot Mountains. 25 = Death 
Valley. Owens Valley extends further north west of the number. 26 = Meteor 
Crater. 27 = Yosemite Valley. 28 = Madre Archipelago. Outlines are after 
Thelin and Pike (1991). See also Ellis et al. (1999), Sonder and Jones (1999) 
or Leeman (1989). 

Fig. A.10: Western Pacific. Topographic map of the western Pacific also 
known as the "ring of fire". 1 = Kuril Trench. 2 = Japan Trench. 3 = Izu 
Bonin Trench. 4 — Mariana Trench. 5 — Ryukyu Trench. 6 — Challenger 
Deep - the deepest point known in the oceans. It is 10911 m deep and is 
located near 11°22'N and 142°36'E. It was discovered by the Royal Navy 
survey ship HMS Challenger in 1951 and the point was visited by J Piccard 
and D Walsh in the US Navy submersible Trieste in 1960. 7 = Java (Sunda) 
Trench. 8 = Bougainville Trench. 9 = Philippine Trench. 10 = Parece Vela 
Ridge. The number is central to the Philippine Plate which extends from 
the Mariana Trench to the Philippines. 11 = Sikhote Alin range. 12 = Lake 
Baikal and the Baikal rift. 13 = Shatsky Rise. 14 = Banda Sea. 15 = Taiwan. 
16 = Luzon. 17 = Yellow Sea. 18 = Sea of Okhosk. 19 = South China Sea. 20 
= New Britain Trench. 21 = Ottong Java Plateau - the worlds largest igneous 
province. 22 = Arafura Basin between Papua New Guinea and the Australian 
Gulf of Carpentaria. 23 = Sunda shelf. 24 — Wallace line separating different 
paleontological faunas between Borneo and Sulawesi (continues between Bali 
and Lombok to the south and just south of the Philippines to the north. Slab 
contours are drawn every 100 km depth for the Indonesian, the Luzon-, the 
Ryukyu, west Philippine- and east Philippine slabs. For slab contours of the 
Mariana and Japan slabs see Fig. 2.6. 

Fig. A . l l : Eastern Pacific. Topographic map of the eastern Pacific. 1 
= Aleutian Trench. 2 = Hawaiian Ridge and Hawaiian islands. The largest 
island at the east end of the ridge is "Big Island". Note the diffuse light 
shading indicating shallow water several hundreds of kilometers north and 
south of the chain and the deeper water (dark color) in the immediate vicinity 
of the chain indicating lithospheric flexure. 3 — Emperor seamount chain. 4 
= Midway Islands. 5 = Mid Pacific Mountain Range including Cape Johnson 
Guyot and Hess Guyot as the highest (under water) peaks. 6 = Bowers Bank. 
7 = Kodiak Island in Alaska. 8 = North end of the Manihiki Plateau. A 
Cretaceous large igneous province. 9 = Gilbert Islands. 10 = Marshall Islands. 
11 = Mendocino Fracture Zone. 12 = Murray Fracture Zone. 13 = Christmas 
Island Ridge. 14 = Shatsky Rise. 15 = Hess Rise. 16 = Kuril Trench. 17 = 
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Pribilof Islands. 18 = Emperor Trough. 19 = Chinook Trough. 20 = Musicians 
Seamounts. 21 — Necker Ridge. 22 = Hokkaido Trough. 

Fig. A.12: Indian Ocean. Topographic map of the Indian Ocean - the 
birthplace of many plate tectonic concepts. 1 = The Amery ice shelf in 
the failed rift of the Lambert graben, Antarctica. Today, the worlds largest 
glacier, the Lambert glacier, flows down this graben. 2 = Enderby land. 3 
— These are not islands - they are icebergs. 4 — Kerguelen Plateau with 
the French Kerguelen Island to the northwest and the Australian Heard Is­
land to the southeast of the number. 5 = Ninety East Ridge. 6 = Broken 
Ridge Plateau. 7 = Diamantina Fracture Zone. 8 = Madagaskar. 9 — Chagos 
Trench with the Chagos Lacadive Plateau to the west. 10 = Seychelles. 11 
— Amirante Trench. 12 = La Reunion in the west and Mauritius in the east. 
13 = He St Paul and lie Amsterdam at the southwest end of the Amsterdam 
fracture zone. 14 = Crozet Islands. 15 = Cocos Islands. 16 = Triple junction 
between African Plate, Indo-Australian Plate and Antarctic Plate. 

Fig. A.13: Australia. Topographic map of Australia. 1 — Lake Eyre and 
other salt lakes (just below sea level). 2 — The Proterozoic Broken Hill Block 
and its Pb - Zn deposit. 3 — Flinders Ranges. 4 = Murray Basin. 5 = Otway 
Basin (most of it is off shore). 6 = Cooper - Eromanga Basin hosting most of 
Australia's onshore gas deposits. 7 = Proterozoic Arunta Block. 8 = Musgrave 
Block. 9 = Mt Isa Block and Mt Isa deposit. 10 = Kimberley Ranges. 11 
— Northwest Shelf hosting most of Australia's hydrocarbon deposits. 12 — 
Albany Fraser Province. 13 = Nullabor Plain and Great Australian Bight. 14 
— Ayers Rock. 15 — The Archaean Pilbara Block. 16 = Diamantina Trench. 
17 = Wallaby Plateau- 18 = Hammersley Basin and iron deposits. 19 = Jack 
Hills where the oldest zircons on Earth were found. 20 = Yilgarn Craton 
(going as far as the Jack Hills). 21 = Australian Dividing Range and Snowy 
Mountains. 22 = Gawler Craton. 

Fig. A.14: New Zealand. Topographic map of New Zealand. The black line 
in New Zealand is the Alpine Fault. 1 — The Great escarpment of eastern 
Australia. 2 — Tonga Trench and Tonga Islands. Slab contours are drawn 
every 100 km. 3 = Kermadec Trench. 4 — Macquarie Trench and Macquarie 
Island just northeast of the number. 5 = Campbell Plateau. South of the 
number are the Auckland islands. 6 = Lord Howe rise and Lord Howe island 
west of the number. 7 = New Caledonia. 8 = New Hebridies Trench. Slab 
contours are drawn every 100 km depth. 9 = Fiji Plateau with the Fiji islands 
east of the number. 10 = Samoa Islands. 11 = Norfolk Island. 12 — Lau 
Ridge. 13 = Bounty Trough with the Catham Islands to the northeast. 14 
= Queensland Plateau on the south side of the Solomon sea. 15 = Tasman 
Sea as part of the Indo-Australian Plate. 16 = New Hebrides. 17 = Louisville 
seamount chain. 18 — White Island and the Taupo volcanic zone on the New 
Zealand mainland. 19 — Colville Ridge. 



7.1 • Atlas 375 

Fig. A. 15: Scotia Plate. Topographic map of the Scotia Plate at the south 
tip of south America: 1 = Falkland Plateau and Falkland Islands. 2 = South 
Sandwich Trench. Slab contours are drawn every 50 km depth. 3 = South 
Sandwich microplate with the South Sandwich Islands just north and south 
of the number. The microplate extends to the small ridge just west of the 
number. 4 = South Georgia. 5 = Scotia Ridge. 6 = Argentinian abyssal 
plain. 7 = Scotia Plate. 8 = South Orkney Islands. 9 = Antarctic Plate. 10 
= Elephant Island. 11 = Antarctic Peninsula. 12 = Patagonia. 13 = South 
Shetland Islands. 14 — Shackleton Fracture Zone. 15 = Falkland Trough. 16 
= Chile triple point. Currently the only place on earth where a mid oceanic 
ridge is being subducted. 

Fig. A.16: Arctic. Topographic map of the Arctic: 1= Franz Josef Land. 2 
= Spitzbergen (Svalbard). 3 = Ellesmere Island. 4 — Baffin Island. 5 = Victo­
ria Island. 6 = Barents abyssal plain. 7 = Wrangel Island. 8 = North magentic 
pole. 9 = New Siberian Islands. 10 = Nansen Ridge. 11 = Lomonosov Ridge. 
12 = Novaya Zemlya. 13 = Severnaya Zemlya. 14 — Jan Mayen Island is just 
west of the number. 15 = Greenland Fracture Zone. 16 = Canada Basin. 17 
= Makarov Basin. 18 = The early Archaean Isua supracrustal belt, with 3.8 
Ga believed to be the oldest rock on Earth. 

Fig. A. 17: Antarctica. Topographic map of Antarctica. The two percent 
of the continent that are ice free bear many unique geological features: 1 = 
Enderby Land - one of the first discoveries of ultra high temperature meta-
morphism. 2 — Lambert rift - a Mesozoic failed rift and home to the Lambert 
Glacier, the largest glacier in the world. 3 = Prince Charles Mountains. The 
last discovered major mountain range on the globe. 4 = Larsemann Hills 
and Vestfold Hills. Two classic low pressure - high temperature metamor-
phic areas. 5— Mt Vinson. With 4892 m the highest peak of Antarctica. 6 
= Antarctic Peninsula. 7 = Transantarctic Mountain Range. 8 — McMurdo 
Sound. 9 = Dry Valleys. 10 = Mt Erebus, Antarctica's only active volcano. 
11 — Law Dome. A region of stationary ice where much of the worlds ice 
core drilling is done for palaeoclimatological research. 12 — Vostok Station. 
Russian permanent research station near the coldest and highest part of the 
continent. 13 = West Antarctica. 14 = Patriot Hills. 15 = The South Mag­
netic Pole (2005) is just north of here off the map. 16 = Ross Ice Shelf. 17 = 
Ronne Ice Shelf. 18 — Weddell Sea. 19 = Bunger Hills. 20 = Dronning Maud 
Land. 21 = Allan Hills in Victoria Land. Many meteorites have been found 
in this region. 
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Figure A.2 . Topographic map of the most spectacular orogen on earth - the India 
Asia collision zone. 
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Figure A . 3 . Topographic map of the Andes. 
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Figure A . 5 . Topographic map of the Arabian region. 
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Figure A.6 . Topographic map of Southern Africa. 
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Figure A.7 . Topographic map of the northern Atlantic Ocean. 
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Figure A .8 . Topographic map of eastern North America. 
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Figure A.9 . Topographic map of western North America. 
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Figure A.10. Topographic map of the western Pacific also known as the "ring of 
fire". 
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Figure A.12. Topographic map of the Indian Ocean - the birthplace of many plat 
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Figure A.13 . Topographic map of Australia. 
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Figure A.16. Topographic map of the Arctic. 
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B. Mathematical Tools 

Most geodynamic processes are processes that change in space and time. 
One of the most important tools to describe such changing processes are 
differential equations. This chapter is therefore mainly concerned with the use 
and interpretation of differential equations. A few selected other important 
numerical tricks and basic rules are summarized towards the end of this 
chapter. 

B.l What is a Differential Equation? 

The derivative (or: differential) dy/dx is a way to describe the change of y 
with respect to another variable x. It can be interpreted as the slope (or 
gradient) of the function y = i(x). If the slope of this function is constant 
between two points along the x axis, for example between x and x + Ax, then 
we need no derivative and we can write: 

y(x + Ax) — y(x) .„ „. 
gradient = — -^ y-^-J- . (B.l) 

The numerator of the fraction on the right hand side of this equation is given 
by the difference between the y values of the function at the two points x and 
x + Ax. The denominator is given by the distance between the two points on 
the x axis between which the gradient is measured (Fig. B.l). Their ratio is 
the slope between the points x and x + Ax. If we consider a function where 
the slope is not constant between x and x + Ax, then eq. B.l would give 
us only some mean of all the slopes of this function between the two points. 
However, the smaller we choose our Ax, the better will eq. B.l describe the 
exact slope at point x. We can write: 

Eq. B.2 is the mathematical definition of a derivative or slope of a function. 
Note that we used a dash to indicate that y' is a derivative. This is a com­
monly used notation. The slope of a mountain road is a clear example to 
illustrate the meaning of slope. Assume that H describes the elevation of the 
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Figure B . l . Diagram illustrating the defini­
tion of the first derivative of a function (thick 
curve) (eq. B.l and B.2). The slope of the thick 
drawn straight line may be accurately described 
by the ratio (y(x + Ax) — y{x))/Ax. The slope 
of the curved function at x is only moderately 
well approximated by this ratio. However, the 
smaller Ax becomes, the better this approxi­
mation will be to describe the slope at a single 
point 

\/>l 

y(x+ Ax) 

y(x) 

' >< 

>< 
< 
+ 
>< 1 >• 

Ax 

road surface as a function of distance from the valley x: H = f(x). Then, the 
slope of the road is given by the first derivative of this function fx: 

f' = — 
Sx~ dx 

(B.3) 

The units of this differential are m m - 1 . In short, it is dimensionless for this 
example. Familiar geological examples described by first derivatives (first 
differentials) of functions are the geothermal gradient, describing the change 
of temperature with depth (in " C m " 1 ) , or cooling histories of metamorphic 
terrains tha t describe the change of temperature over t ime (in ° C s _ 1 ) . 

The second derivative (or second differential) of a function describes how 
the slope changes. The more familiar name of the second derivative is curva­
ture. It is often abbreviated with fx . In our example of a mountain road, the 
vertical curvature of the road is: 

d ( ^ ) _ d 2 f f £ V da; / 
Jx ~ dx ~ dx2 

(B.4) 

and has the units of m / ( m m - 2 ) , which is: m _ 1 . It should be read as: "d two 
H over dx square". The scheme we have followed to go from first to second 
derivative may be followed to describe the third, fourth or higher derivatives 
of functions. Corresponding to the first two derivatives, the third derivative 
of a function describes the change of the curvature of the function and the 
fourth the curvature of the curvature and so on (Fig. B.2): 

L = 
d3H 

and : h = 
d4H 

(B.5) 
dx 3 ' Jx dx4 ' 

In our example of a mountain road, the units of the third and fourth deriva­
tives are m - 2 and m - 3 , respectively. Be careful not to confuse these linear 
derivatives of the third and fourth order (in eq. B.5) with the non-linear first 
order derivatives (dH/dx)3 and (dH/dx)4. Fortunately there are very few 
geological problems where more than 2nd order differentials are needed (the 
flexure equation (eq. 4.48) in elasticity theory is just about the only one). 
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Figure B.2. A sine function as 
an example for the function fx 

and its first, second and third 
derivatives. At the maximum of 
the function (point A), the slope 

of the function is fx = 0 and the 
curvature has a negative 
maximum: fx = — 1. Conversely, 
at the inflection point of the 
curve (point B), the slope has a 
minimum the curvature is zero 
fx = 0. At the minimum of the 
function (point C), the slope is 
also zero and the curvature has a 
positive maximum 
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B . l . l T e r m i n o l o g y U s e d in Differential Calcu lus 

Order. The order of the highest derivative in a differential equation is called 
the order of the equation. For example, eq. 3.57 is a first order differential 
equation, eq. 3.6 or eq. 3.56 are second order differential equation and eq. 4.48 
is a fourth order differential equation. Fig. B.2 illustrates the meaning of 
derivatives of higher order using the example of a simple sine function. 

Part ia l and Tota l Der iva t ives . A function may have several variables. 
For example, the elevation of a point H on the surface of the earth can be 
described as a function of two spatial coordinates in the horizontal directions 
x and y, but it may also be a function of t ime or any other variables tha t 
we deem of importance, say vegetation or lithology. Let us consider the spa­
tial dependence only. Then, using a simple hypothetical function to describe 
topography, elevation might be described by: 

H = 3x2 + 4y3 (B-6) 

Such analytic descriptions are great, because we can use it to determine 
parameters like slope directly from it. If we differentiate this function with 
respect to one of the variables only, then this is called a partial derivative. It 
describes the slope of the function in one spatial direction only. When forming 
a partial derivative with respect to one variable, then all other variables are 
kept constant during the process and are treated like any other constant of the 
equation. The symbol for the partial differential is d (say: "del"). However, 
"del" is no real Greek letter and should not be confused with S. The partial 
derivative of eq. B.6 after x is: 

dH 

OX y=const. 
6x (B.7) 
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This partial derivative describes the slope of the function in direction x. The 
total differential is the sum of all partial derivatives. In our example it is: 

W=(%L) xdx+ffO *dy . (B.8) 
\OX J y=const. \ O]) J x=const. 

This gives the total derivative of the function from eq. B.6 to be: 

dff = 6ar + 12|/2 . (B.9) 

This total derivative describes the tangential plane at the point x,y. In our 
example of surface elevation, eq. B.9 may also be interpreted as the slope 
of the surface in dip direction. Partial and total derivative are identical if 
the function contains only one variable. Partial derivatives after time are 
often called rates and symbolized by a little dot above the variable concerned 
(e.g. strain: e and strain rate: de/dt = e). Differential equations that contain 
only total derivatives are called ordinary differential equations, in contrast to 
the partial differential equations, which contain partial derivatives. A good 
summary of these simple definitions may be found in Anderson and Crerar 
(1993) or Zill (1986), as well as many other mathematical hand books. 

Linear and Non-linear Differential Equations. A differential equation 
is said to be linear if it is characterized by two properties: 1.) the dependent 
variable and all its derivatives are of the first degree, that is, the power of 
each term involving it is 1; and 2.) each coefficient depends only on the in­
dependent variable. In this context, the dependent variable is generally the 
one in the numerator of the derivative, while the variable in the denominator 
is called the independent variable. For example, in the differential equations 
in chapter 3, temperature, T or heat H are generally used as the dependent 
variables, while the spatial coordinates or time are generally the independent 
variables. Just about all differential equations in this book are linear differen­
tial equations (e.g. eqs. 3.6, 3.56 or 4.48). On the other hand, hypothetical 
examples of non-linear differential equations would be: 

T 2 ! | _ 5 § U X o r : £I + T ' = 0 . (B.IO) 
ox/ ay azA 

These are examples of non-linear second and third order partial differential 
equations, respectively. The first example is non-linear because the coefficient 
of the first term depends on T, the second because T occurs in the power of 
2. The only geologically relevant example of a non-linear differential equation 
discussed in this book occurs on p. 186. 

Analytical and Numerical Solutions. In order to make use of a differ­
ential equation we must solve it. Only then, they can be used as a tool to 
extract numbers that describe some process. There are two fundamentally 
different ways to solve them. 
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• 1. Analytical solutions. Analytical or closed solutions of differential equa­
tions may be found by integrating them. Let us consider as an example the 
description of a geotherm by 

AT _ 1.5 
dz \fz 

(B.ll) 

There, T is temperature in °C and z is depth. This differential equation can 
be integrated without difficulty: 

T = 3 v ^ + C . (B.12) 

The integration constant C must be determined using boundary conditions. 
Eq. B.12 is said to be an "analytical solution of the differential equation 
eq. B. l l" . If we assume (as our boundary condition) that the temperature 
at the earths surface is always zero and we assume a coordinate system where 
the surface is at z = 0, then this constant must be also zero: C = 0. Now 
eq. B.12 can be used to calculate temperatures at any depth of our choice 
by inserting numbers for z. For example, for z = 100000 m eq. B.12 gives 
T = 949°C. 

• 2. Numerical solutions. Numerical solutions of differential equations are 
used to extract numbers from differential equations without having to solve 
(integrate) them. With their aid we can arrive at the result that eq. B. l l 
describes a temperature of T = 949°C at 100 km depth without having to 
solve the differential equation, i.e. without having to go from eq. B. l l to 
eq. B.12. Great - results without having to solve the problem! However, 
there is nothing such as a free lunch: numerical solutions are not exact. Nu­
merical approximations are always approximations and they are plagued by 
stability and accuracy problems (s. p. 401). The numerical solution of partial 
differential equations is a science on its own (sect. B.2, B.4). The two most 
important methods that are in use are finite difference methods and finite 
element methods. 

The finite element method has the advantage that it is much more elegant 
to use it for the description of deformation on Lagrangian coordinates. The 
principal disadvantage of the finite element method is that it is not very 
intuitive and therefore requires quite an initial effort to learn it. 

The finite difference method has the enormous advantage that it is quite 
intuitive, easy to implement on a computer (even by inexperienced math­
ematicians) and easily adaptable to many different problems. Its principal 
problems are those of instability, and that they are quite cumbersome when 
it comes to the treatment of discontinuous boundary conditions and deformed 
grids (sect. B.2). 

• Advantages and disadvantages. Numerical and analytical solutions have 
both their advantages and disadvantages. The enormous advantage of nu­
merical solutions is that they allow us to arrive at results without having 
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to know enough differential calculus to be able to integrate the equation in 
question. In fact many geological problems can be simplified enough to be 
able to formulate them into an equation, but are too complicated so that an 
analytical solution can be found. In such cases, numerical solutions are the 
only way to obtain results. 

Analytical solutions have the advantage that they are much more useful 
to understand the nature of a geological process. For example, eq. B.12 may 
be used directly to infer that the temperature in the crust rises with the 
square root of depth. If this model corresponds well with our observations in 
nature, then we can continue to think about the significance of this quadratic 
relationship. Such considerations are difficult with numerical solutions as they 
only deliver numbers. 

Initial- and Boundary Conditions. 

• Boundary conditions. When solving differential equations, boundary con­
ditions are necessary in order to determine the integration constants. This is 
true for both numerical and analytical solutions. For differential equations of 
the first order we need one boundary condition, for those of the second order 
two and so on. The term boundary condition is exactly what it implies: it is 
a condition at the boundary of the model (s. sect. B.2.4). The most common 
types of boundary conditions are: 

- A prescribed value of the function at the model boundary (e. g. T = 0 
at z = 0] s. eq. B.12), 

- Neumann boundary condition: A prescribed gradient of the function at 
the model boundary (e. g. the heat flow boundary condition we used in 
sect. 3.4.3), 

- A functional relationship between value and gradient at the model bound­
ary (e.g. the constant heat content boundary condition used on p. 123). 

Boundary conditions given by higher derivatives of functions are also possible 
and play an important role when integrating differential equations of higher 
orders (s. sect. 4.4.2, eq. 4.48). In sect. B.2 we discuss how some of these 
boundary conditions may be implemented. 

• Initial conditions. Initial conditions are necessary to determine the start­
ing point of a model. For example, if we want to use the diffusion equation 
(eq. 3.6) to calculate the evolution of a diffusive zoning profile over time, 
then we must use a function T = f(z) at the time t = 0 from which we can 
start calculating. The nature of this function T = f(z) must be determined 
by a known initial condition. Steady state problems usually do not require 
an initial condition. 
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B.2 The Finite Difference Method 

The finite difference method makes use of the discretization of the derivative 
from eq. B.2. Instead of describing the differential dy/dx by the limiting 
value Ax —>• 0, a finite value of Ax is used (i.e. eq. B.l is retained). For our 
explanation on the next pages we use Fig. B.3 showing the function T — f(x) 
and assume that this function is a temperature profile across a metamorphic 
terrain along the spatial axis x. Thus, we will use the variable T instead of 
the more abstract y that we have used up to now in this chapter. At the point 
Xi (labeled in Fig. B.3a by the dotted line) the function has the slope dT/dx. 
When using the method of finite differences, this slope is approximated by the 
discrete temperature difference at two different places with a finite distance 
to each other (a bit as we have already implicitly shown in Fig. B.l). There 
is many ways to formulate such a difference. From Fig. B.3b we can see that 
one way to formulate such a difference is: 

dT _ Ti+1 -Tj = Ti+1 - Tt 

dx %i-\-l %i Ax 
(B.13) 

The index % is just a description of the number of the grid point chosen here. 
Tt is the temperature at the «:thu point of a discrete grid of points. Tj+i is 
the temperature at the next point of the grid, T,_i at the previous point. The 
finite difference method used in eq. B.13 is called forward differencing method 
as we have calculated the temperature gradient at Xi using the temperature at 
Xi as well as the temperature at the next forward point on the grid (Fig. B.4). 
Some other simple examples of differencing schemes have the form: 

dT Ti - Tj_i dT Tj+i - Tj_i 
£-: nr ex — 

dx 
or (B.14) 

Ax dx 2Ax 
For reasons that should now be obvious, these two methods are called back 
ward differencing and central differencing schemes (Fig. B.4). 
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Figure B.3 . Graphical illustration of the method of finite differences. In a the slope 
of the function f(x) at point Xi is accurately described by the touching tangent. 
Mathematically this slope is described by the differential dT/dx. In b the slope is 
approximated by the ratio of the differences of two temperature and two x values 
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• Differentiating with respect to time. All information we have discussed so 
far is generally applicable, regardless of what variable is described by x, y or 
T. However, the use of x has suggested that we imply spatial differentials. 
In order to discriminate between the numbering of grid nodes of spatial and 
temporal grids, the symbols "+" and "—" are common to describe the next 
time step and the previous time step while i and i + 1 is used for the spatial 
grid stepping. Thus we can write: 

At At y ' 

In some books " j " and "j + 1" are used to denote time steps. However, this 
should not be confused with spatially two-dimensional problems in which "i" 
subscripts are used for grid numbering in x direction and " j " numbering of 
grid steps in y direction. 

• Approximations of derivatives of higher order. For the approximation of 
derivatives of the second or higher order we can use the same scheme as that 
for the first derivative (eq. B.13, B.14). For the second derivative we must 
form the ratio of the difference in slope at two different grid points with the 
distance Ax: 

d2r 
dx2 

'IS (¥)-(*) 
da; Ax 

Tj+i — 2Tj + Tj_i 

Ax2 (B.16) 

From eq. B.16 we can see that, in order to formulate the difference between 
slopes at two point, the slope at point i was approximated once by forward 
differencing and once by backward differencing. This is necessary, as we want 
to calculate the curvature at point i from the differences between the slopes 
of the curve as near as possible to it (i.e. in front of it and behind it). We 
can see that the curvature is described by the difference of slopes, just like 
we describe the slope by the differences between two function values. 
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Figure B.4. Schematic illustration of three simple methods of discretization in 
the finite difference method. The x axis of each diagram shows four discrete points 
of a one-dimensional spatial grid. Each dot is a temperature value at this point 
in space. The y-axis shows three different time steps of the calculation. In the 
three diagrams, the temperature at the third grid point (labeled by subscript i) 
is calculated by backward, forward and central differencing. In each diagram this 
calculation is for the values at the (as yet) unknown time step "+" from known 
information at time "-" 
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• Solution of the diffusion equation using finite differences. If differential 
equations contain more than one variable (e. g. the diffusion equation (eq. 3.6), 
in which both spatial and temporal derivatives occur) it is necessary to com­
bine several indices with each other. This may lead to apparently quite com­
plicated formulations. Here we will follow the use of temporal and spatial 
indices as discussed above, i.e. the temperature at the spatial grid point i 
at a future time step is called Tf and at a previous time step it is called 
T[~ (Fig. B.4). Once we are familiar with this notation it should be straight 
forward to understand the following finite difference approximation of the 
diffusion equation (eq. 3.6) by using eqs. B.15 and B.16: 

gT ^ Tt_T_ ^ _2T_+T__i 

dt~Kdx>~ At ~K Ax? " [U-U) 

Solved for T at the new time step of interest this gives: 

Now we can insert into eq. B.18 known temperatures at known points in space 
from a previous time step (starting from the known temperature profile of 
our initial condition) to determine the temporal evolution of the temperature 
profile. 

The last few pages have given you an overview over the basic principles 
of the finite difference method. All other finite difference approximations 
are refinements of the above aiming at higher accuracy, higher stability and 
higher speeds of calculation on computers. 

Why better methods may be necessary can be illustrated with eq. B.18. 
There, the magnitude of the constant (nAt/Ax2) is critical for the stability 
and accuracy of the approximation (sect. B.2.1). The magnitude of this term 
is so important so that this term has its own name. It is called the Fourier 
cell number and must be smaller than 0.25 so that the solution of eq. B.18 
retains stability. Since the magnitude of K depends on material constants, we 
cannot change it arbitrarily. Thus, in order to fulfill the stability criterion we 
must make a corresponding choice with the time and space stepping. With 
many simple finite difference approximations this leads to insurmountable 
problems: If a given problem requires high spatial resolution (small Ax) it 
requires a correspondingly small choice of At. However, if this problem should 
now be solved over long geological times, then we may have to iterate through 
too many time steps for the problem to be solvable in realistic computer 
time. This is one of the reasons why large computers (and more refined finite 
difference methods) are required for many geological questions. 

B.2.1 Stability and Accuracy 

Finite difference solutions of differential equations have two important dis­
advantages: 
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1. They are only approximations. 
2. They are often unstable. 

Criteria for accuracy and stability are extensively discussed in the litera­
ture (e.g. Smith 1985; Fletcher 1991; Anderson et al. 1984). However, both 
problems can be reduced to a minimum by some very simple checks: 

• Accuracy. The accuracy of finite difference approximations can easily be 
checked by successively decreasing the time or spatial stepping (for a discus­
sion of accuracy versus precision s. p. 5). If the result does not change, the 
exact solution has probably been approximated well enough. A second test 
can be performed by simplifying the initial and boundary conditions of a giv­
ing problem enough so that analytical integration of the descriptive equations 
is possible. Then the numerical solution may be compared directly with the 
analytical results. Time and space stepping can then be relaxed and finally 
the initial and boundary conditions readjusted to describe the problem in the 
required detail. 

• Stability. A finite difference solution is called stable if it converges to the 
correct solution. Unstable solutions diverge with progressive calculation more 
and more. Most unstable solutions "explode" within a few time steps. Thus, 
stability problems are often relatively easy to recognize as all functional values 
trend towards infinity (s. Fig. B.7). Stability problems can often be brought 
under control by decreasing the discrete stepping in the approximation. 

B.2.2 Implicit and Explicit Finite Difference Methods 

There are two fundamentally different types of finite difference methods that 
may be used to solve (approximate) differential equations: 

1. explicit methods, 
2. implicit methods. 

There is also mixed methods that are partially implicit and partially explicit. 
Fig. B.5 illustrates what is meant with implicit and explicit. Both methods 
will be discussed briefly below using the example of temperature calculation 
with the diffusion equation. However, the principal difference between implicit 
and explicit solutions are the same regardless of the variables or the equations. 

• Explicit methods. The idea behind explicit finite difference methods is illus­
trated in Fig. B.5a. This figure corresponds to the way the diffusion equation 
was solved in eq. B.18 (Fig. B.4). It may be seen that the temperature at 
point i at the new time step T+ is calculated from the known temperatures 
(those from the previous time step) at the points i — 1, i and i + 1. As these 
temperatures (Tj~, T^_ 1 and T^_±) are known, the application of eq. B.18 is no 
problem. All methods that use schemes where new information is calculated 
exclusively from known information are called explicit methods. 
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a Explicit methods b Implicit methods 
f l U tk 
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c Crank Nicolson method 

Figure B.5. Examples for implicit and explicit finite difference methods. The ver­
tical axis is time, the horizontal space. Time step "+" is the time step to be cal­
culated. Time step "-" denotes the time for which information is already available. 
The Crank Nicolson method is a mixed method. It consists of implicit and explicit 
parts 

• Implicit methods. Implicit finite difference methods calculate the unknown 
temperatures T[~ from other unknown temperatures at the same time step 
(Fig. B.5b). This sounds a bit counter intuitive if not impossible, but is 
possible if all temperatures are calculated simultaneously. Remember tha t 
we have boundary conditions tha t tell us the new temperatures at the two 
ends of the grid. Thus, in a grid with n points, there is only n — 2 points 
where the temperature is unknown. It is therefore possible to formulate a set 
of n — 1 equations with n — 2 unknowns. This may be solved for all unknown 
variables. An example of an implicit approximation of eq. 3.6, (corresponding 
to Fig. B.5b) is: 

dT _ d2T 

dt dx2 

T+-Tr _ l£ 1 -2T++l£ 1 

At Ax2 

Solved for the tempera ture of interest this is: 

T+ 
Tr + R(T++1+T+1) 

1 + 2R 
where : R 

nAt 

'Ax1 

(B.19) 

(B.20) 

• Mixed methods. Mixed methods use explicit as well as implicit information 
to calculate the new da ta (Fig. B.5c). Mixed methods have the best accuracy 
and stability characteristics and are therefore commonly used. The most fa­
mous of all mixed methods is the Crank-Nicolson-method which is used to 
describe second order differentials, as they occur in the diffusion equation. 
The Crank Nicolson method describes this with: 

At 
K 

2 

^T+ + T+_i x T-+1-2Tr+Ti 

Ax2 + Ax2 (B.21) 

It may be seen tha t the expression inside the brackets is the sum of the right 
hand sides of eq. B.17 and eq. B.20 and tha t the mean of these expressions is 
formed. Ways to implement eq. B.21 are discussed in most books on numerical 
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mathematics. The Thomas algorithm is an elegant method that can be used 
to implement the simultaneous solution of equations as is necessary to solve 
eq. B.21. 

Two-dimensional Derivatives. In the following we illustrate the approx­
imation of two-dimensional differential equations using the two-dimensional 
form of the heat conduction equation as an example. This equation is: 

dT (d2T ff2T\ ,„ , 

1H=K{!^ + W) • (R22) 

The most commonly used finite difference method to approximate eq. B.22 
is the Alternating Direction Implicit Method, in short: ADI method. In this 
method, each time step is divided into two. The first half time step is explicit 
in one spatial direction and implicit in the other, the second half time step 
is done in reverse. Thus, for each step in time, two steps of calculation are 
required. The ADI method has a lot of similarities with the Crank Nicolson 
method. A discrete version of eq. B.22 looks like this: 

1. step: 

Ti,j ~ Ti,j _ K
 (T+/2 _ 2 T + / 2 T + / 2 x 

At/2 Ax2V i+1'j *••»' i-1'i) 

+ A~y2~(Ti'j+1 ~ 2Ti'j + Ti>i-^ ' 

2. step: 

rp-\- _ rp+/2 
^ij ±ij _ K fm+/2 _ 9 T + / 2 T+/2 x 

At/2 ~ Ax2[i+1>i ^ +li-^> 

+ ^ ( ^ + l - 2 T i + ^ - l ) " (B"23) 

In this equation we have used the subscripts i and j to label the grid points 
in the x- and y-directions and we used "+/2" as a description of half a time 
step. 

B.2.3 Approximation of the Transport Equation 

In sect. 3.3 we introduced a simple equation that can be used to describe the 
advection of material, for example the advection of rocks to the surface by 
erosion or the advection of fluids through a marble (eq. 3.40). Although it 
looks much more simple than the diffusion equation, it is not. In fact, the 
equation requires the use of very different finite difference approximations 
from those discussed above for the diffusion equation. For example, backward 
and central differencing schemes are unstable when applied to approximate 
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eq. 3.40. Thus forward differencing schemes must be used. A simple forward 
differencing scheme tha t can be used to approximate this t ransport equation 
is: 

At 
T+ + UA~JT^-T^ (B.24) 

However, eq. B.24 is associated with numerical diffusion, a problem which 
makes the solution increasingly inaccurate if used over many time steps. 
T h e P r o b l e m of N u m e r i c a l Dif fus ion. The description of advection with 
forward finite differencing schemes of the t ransport equation causes a phe­
nomenon known by the name numerical diffusion. During numerical diffusion 
progressive steps of the calculation cause a rounding of par ts of the function 
tha t are strongly curved. This rounding is akin to the smoothing of curves 
by diffusion, but is only an artifact of the numerical approximation and has 
nothing to do with any real diffusion process. Fig. B.6 illustrates why this 
numerical diffusion occurs. There, the original tempera ture profile is shown 
by the continuous line. The black dots label discrete values of this function. 
Using eq. B.24 and positive values for u caused advection (motion) of the tem­
perature profile towards the origin (against the x direction). If the t ransport 
velocity is exactly u = Ax/At, then the temperature profile will be moved 
by exactly one grid node with every time step (dashed line and white dots). 
If, however, the t ransport ra te is u < Ax/At then the temperature profile 
is shifted accordingly, but also rounded off (dotted line and gray dots). If 
we look at eq. B.24 carefully we can see tha t the numerical diffusion occurs 
because of interpolations between grid points when the t ransport is not a full 
grid interval per t ime step. 

Unfortunately, many geological t ransport rates are too small so tha t the 
number of t ime and space steps required to fulfill u = Ax/At is much too 
large to be sensibly used. It is often necessary to use a space stepping tha t is 

AT 
^ 

u=Ax/AKL---"\ • 
o-

u <Ax/ At 

Ax 
» / - i ;+i ;+2 

Figure B.6. Illustration of the origin of numerical diffusion in the one-dimensional 
transport equation (eq. 3.40). The black dots mark discrete values of the tempera­
ture profile shown by the continuous line. The dashed line (and white dots) shows 
the temperature profile as calculated with eq. B.24 after one At time step if the 
transport velocity u is exactly u = Ax/At. It may be seen that the original tem­
perature profile is advected towards the left without a change in shape. However, 
if u < Ax/At, then the temperature profile after one At, is not exactly like the 
original profile (dotted line, shaded dots). It has been victim to numerical diffusion 
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Ax > uAt. As a consequence, we often have to deal with numerical diffusion 
when describing the transport of rocks using eq. 3.40. Fig. B.7b,c illustrates 
how much information of a step-shaped temperature profile is lost, if the 
transport rate is 90 % or 30 % of u = Ax/At. It may be seen that after about 
50 time steps the shape of the initial and the final temperature profile have 
little in common. Fig. B.7d illustrates how eq. B.24 becomes unstable if the 
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Figure B.7. Graphical illustration of numerical diffusion and instabilities using 
the example of the advection of a step shaped temperature profile originally at the 
position indicated by the thick line. The advection of a step shaped temperature 
profile is shown as described with the finite difference approximation of eq. 3.40 
given in eq. B.24. (However, note that we use x instead of z for the spatial coordinate 
here), u is positive so that advection is against the x-direction. The grid consists of 
100 points between 0 and 1 in the re-direction. Labels are in numbers of time steps. 
a u = Ax/At; b , c t i < Ax/At; d a > Ax/At 
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transport rate is u > Ax/At. The temperature profile gets jagged edges and 
quickly blows up meaninglessly. 

B.2.4 Grids and Boundary Conditions 

If we want to use the finite difference method to solve a differential equation 
(e.g. eq. B.18), we need to build a discrete grid on which the function is 
evaluated (Fig. B.9). A regular grid with n grid points has n — 1 grid spaces. 
If the total length of the grid is L and the grid spacing is regular, then the 
distance between any two grid points will be Ax = L/(n — 1) (Fig. B.9a). 
However, grid spacings need not be regular. For example, if a function is 
of particular interest in a special region it may be useful to make the grid 
especially fine in this region. On the other hand, it may not be wise to make 
the grid everywhere this fine as this may enlarge the time of calculation 
enormously. A spatially variable grid is the best solution for this. On such 
spatially variable grids we must substitute Ax by (£i+i — Xi) (see: eq. B.13) 

For most two dimensional models triangulated grids are used today. Such 
grids may be designed to be self adaptive, that is that they refine themselves 
as a function of the changes per time step (Fig. B.9c). Another way to deal 
with problems that require a high spatial resolution is the use of multigrid 
methods. Multigrid methods use a series of successively coarser grids for each 
time step. 
• Boundary conditions. Closer consideration of eq. B.18 indicates that this 
equation may not be evaluated at the points i — 1 and i = n, because no 
grid points "i — 1" and "n + 1" exist there for which we could insert the 
temperatures Ti_i and T^+i into the right hand side of the equation. These 
two temperatures must be determined by the boundary conditions. These 
boundary conditions are equivalent to the integration limits of a definite in­
tegral that are required to determine the integration constants. Thus, it is 

6—! 

5 , 

4—i 

3 _ , 

2 _ , 

' 1 

t J . > 

!> 

1 

3 I I . 

a 

6 

Figure B.8. Some examples for the discretization of a two-dimensional region with 
an irregular boundary, a The interpolation of the model boundary on an orthogonal 
grid is difficult and messy, b A non-orthogonal grid with a constant number of grid 
points in x- and y-direction. c The most elegant way to handle an irregular boundary 
is by using a triangulation of the area of interest 
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no coincidence that there is two grid nodes in finite difference approxima­
tions of second order derivatives, where the functional values can on only be 
determined with the aid of boundary conditions. 

B.2.5 Dealing with Irregular Grid Boundaries 

When dealing with two-dimensional geological problems, model boundaries 
are often not straight lines, but are curved. For example, if we want to use 
the Moho heat flow as a boundary condition and the Moho is curved un­
derneath a mountain range. Another example was discussed in sect. 3.7.3 
where the irregular boundary was given by the irregular shape of the earths 
surface. When dealing with such problems it is often difficult to find simple 
finite difference approximations of the descriptive differential equations. The 
type of problem that we may encounter is illustrated in Fig. B.8. This figure 
shows an irregular body (shaded region) for which a two-dimensional heat 
conduction problem is to be solved. If we want to discretize the region with a 
rectangular grid (as for example the ADI-method in eq. B.23 would require), 
then this problem can only be solved for the part of the grid high lighted by 
the thick black dots in Fig. B.8a. The marginal points (shown in white on 
Fig. B.8a) must be defined by the boundary conditions. Clearly this is highly 
unsatisfactory. If we want the model boundaries to correspond to the real 
boundaries of the problem, then we would need to introduce all kinds of new 
grid lines (thin lines on Fig. B.8a) and the grid would become irregular and 
the entire numerical approximation full of interpolations and, in fact, quite 
messy. 

Such problems may be avoided with one of the two following alternatives: 

1. A grid may be defined that has just as many points in the x- and y di­
rections, but in which the grid lines are not on an orthogonal grid but 

Figure B.9. Examples of discrete grids, a Discrete form of the one dimensional 
function from Fig. B.3 on a regular one-dimensional spatial grid. Different points 
are numbered from i = 1 to i = n. b An irregular two-dimensional orthogonal grid. 
The grid serves the description of the dark shaded region. Thus, a finer grid spacing 
was used for the grid in the lower left hand portion of the grid, c Self adaptive grid 
for a model of flow past a heated cylinder (Pain pers. comm. 2005) 
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follow the problem boundaries (Fig. B.8b). Such curvilinear grids can still 
be dealt with using finite difference methods, but correction terms for the 
changes in direction at the grid nodes must be added. Calculations on such 
non-orthogonal grids become quite inaccurate if the direction changes at 
individual nodes become too large. 

2. The most elegant (and common) method to deal with irregular boundaries 
is by using triangulations of the region of interest (Fig. B.8c). Triangles are 
the most simple of all geometric forms that can be used to subdivide two-
dimensional regions and triangles are therefore with many respects supe­
rior to polygons with four corners. When triangulating a two-dimensional 
region, there are many ways to do this. For example, one could assume 
a certain allowed triangle size, a minimum triangle angle, or assume the 
number of triangles that are allowed to meet in one point. For many pur­
poses the Delaunay triangulation is the best choice of how to triangulate a 
region (Fig. B.10) (e.g. Sambridge et al. 1995). The biggest disadvantage 
of triangulated grids is that finite difference approximations often become 
quite a lot more complicated than those for orthogonal grids. These days 
it is possible to download a large variety of mesh generators off the web 
that produce triangulated grids for any given geometric problem. 

B.2.6 Recommended Reading 

- Anderson, Tannehill and Pletcher (1984) Computational Fluid Mechanics 
and Heat Transfer. 

- Fletcher (1991) Computational Techniques for Fluid Dynamics Volume 1. 
Fundamental and General Techniques. 

- Smith (1985) Numerical Solutions of Partial Differential Equations. 
- Reece (1986) Microcomputer Modeling by Finite Differences. 

Figure B.10. A section of the 
grid from Fig. B.8c for the 
illustration of the Delaunay 
triangulation. In a Delaunay 
triangulation every circle that 
contains all three corners of any 
given triangle does not include 
any other grid nodes. Thus, all 
shaded triangles, except the dark 
shaded one, are Delaunay 
triangles 
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- O'Rouke (1993) Computational geometry in C. 
- Zill (1986) A First Course in Differential Equations with Applications. 
- http://mathworld.wolfram.com/FiniteDifferenceMethod.html 

B.3 Scalars, Vectors and Tensors 

• Scalars. Geological parameters that are described by their magnitude only 
are scalar quantities. The temperature at the Moho, the elevation of a moun­
tain, density of a rock or pressure are examples. (According to Oertel (1996) 
pressure should be referred to as an isotropic tensor of second rank but for 
all intents and purposes of this book it is sufficient to treat it as a scalar). 
Variables that are scalar quantities are commonly denoted with italics, as 
most variables in this book. 

• Vectors. Geological parameters that have both a magnitude and a direction 
are described by vectors. An example is the force with which India and Asia 
collide or the rate of intrusion of a magmatic body. The former is roughly 
1013 Nm" 1 and is directed northwards; the latter might be some meters per 
year and directed upwards in the crust. Vectors are commonly represented 
by bold roman letters, although we refrain from this use in this book. 

• Tensors. Parameters that are characterized by not only their magnitude 
and their direction, but also by a spatial dependence of this direction are de­
scribed by tensors. The state of stress at a point or strain rate are two familiar 
examples of tensor quantities to a geologist. It is easy to see that magnitude 
and direction alone are insufficient to describe stress. For example, the ten­
sor components axx and ayx both act in the x direction and they also may 
both be of the same magnitude. However, axx is a normal stress and axy is a 
shear stress, i.e. they are exerted onto planes of different orientation. Tensors 
are represented as matrices and are commonly abbreviated with italics. As 
for vectors, we do not use this notation in the present book as the tensorial 
quantities occurring herein (e.g. strain rate or stress) are usually simplified 
enough so that they reduce to simple scalar quantities (e.g by considering 
one-dimensional cases only). 

Scalars, vectors and tensors are often called tensorial quantities of the 0., 
1. and 2nd rank. In this book we treat many quantities that are actually 
described by vectors or tensors as if they were scalars (except in sect. 5.1.1). 
We have done so by making our problems so simple, so that they may be 
treated one-dimensionally. In fact, it is better to call them "pseudoscalars" 
because it is always implicit that their direction is known. Regardless, we 
introduce some of the basic principals of vector calculations on the following 
pages. 
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• Common confusions. Quantities described by scalars, vectors and tensors 
are often confused in the literature. Even in this book - while we try not 
to confuse them - we often treat tensorial quantities as if they were scalars. 
For a correct consideration of two and three-dimensional problems, the full 
tensor quantities must be considered. Products and sums of tensors are not 
described by the sum of the one-dimensional descriptions in several spatial 
directions alone (e.g. Oertel 1996; Strang 1988) and it is therefore often not 
trivial to understand the results of two- and three-dimensional models in 
comparison to their one-dimensional equivalents. 

Basics of Vector Algebra. Vectors describe direction and magnitude of 
a parameter. Thus, in Cartesian coordinates, they are described by three 
components: 

u = ux'i + uvj + uz\z. . (B.25) 

ux, uv and uz are called the vector components of the vector u and i, j and k 
are called the unit vectors in the three orthogonal spatial directions. The unit 
vectors are often omitted and vectors are usually just written as a list of three 
scalar components. In the literature, these are variably named ux, uy, uz or 
u, v, w or «i , u2,1*3- In the following we use the first of these three notation 
rules. Note that vectors are commonly represented with bold characters. 

The sum of two vectors u and v is given by the sum of the vector compo­
nents: 

w = u + v = (ux + vx)i+ (uv + vv)i + (uz + vz)k . (B.26) 

This sum is often written as: 

w = (ux + vx,uy + vv,uz + vz) . (B.27) 

The magnitude (or length) of a vector is given by: 

|u| = s]ul +u2
y + u2

z . (B.28) 

Eqs B.25, B.26 and B.28 may be intuitively or graphically followed using the 
Pythagoras theorem. 

The scalar- or dot product of two vectors is a scalar quantity which is 
defined as the sum of the products of two vector components: 

u • v = uxvx + UyVy + uzvz . (B.29) 

This is equivalent to the product of the magnitudes of the two vectors and 
the cos of the angle </> between them: 

u » v = |u| |v|cos0 . (B.30) 

The scalar product has its name because the result is a scalar quantity. A nice 
example for a scalar product is the work required to move a plate with the 
force F (being a vector) for the distance 1 (having a length and a direction). 
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The cross product or vector product is denoted with x or A and is important 
when calculating rotations, for example from the angular velocity vector w 
and a position vector r. The result is a vector. It is defined as follows: 

w = u x v = u A v = (uyvz — uzvv,uzvx — uxvz,uxvy — uyvx) . (B.31) 

The three values on the right hand side of eq. B.31 have the form of the 
determinants of matrices. 

• Grad, Div and Curl. The gradient of a scalar valued function (denoted with 
"Grad" or "Del" or: V; s. sect. 3.1.1) is a vector describing the spatial change 
of this function. It is defined as 

~ \dx'dyJ dzj 

Thus, the spatial change of temperature (as a function of x,y and z: T — 
T(x,y,z)), may be described as: 

(&T dT dT\ 
G l a d r s v r = ( - , - , - ) . (B.33) 

The vector "Grad T" is normal to surfaces of constant temperature just like 
the dip direction of a surface is always normal to the contour lines. "Grad" is 
a handy tool for the description of the topography of any potential surface. 

The divergence of a vector field is a scalar. In the earth sciences it often 
describes the transfer rate of mass or energy. The divergence of a vector is 
defined as follows: 

» " - * " = {% + % + %)• <w 
Let us illustrate the divergence of a vector valued function dependent on the 
spatial coordinates x, y and z with an example. Assume that v is the rate of 
mass or energy transfer. The flow of mass is q{ = p\ and the flow of energy is: 
q = Hv. There, p is density in k g m - 3 and H is the volumetric energy content 
in Jm~ 3 . Thus, flow has the units of k g m - 2 s _ 1 or W m - 2 , respectively. The 
divergence of these flows is the sum of the change in flow in the three spatial 
directions (eq. B.34). If the flow of energy or mass into a unity cube is just 
as large as the flow out of it (general criterion for the conservation of mass), 
then Div v —0 (s. also sect. 3.1.1, 3.3). 

The Curl or Rot of a vector field is a vector describing the rotation of a 
vector. A vector with Curl u = 0 is called non rotating. The Curl is defined 
by the relationship: 

Curl v = Rot v = V x v 

'dvz _ dvy_ dvx_ _ dv^ dvy_ _ dv^S 
dy dz dz dx ' dx dy J 
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B.4 Using Fourier Series 

In sections 3.1.1, 3.6.1 and 3.4.1 we have been introduced to two different 
types of solutions of the diffusion equation (eq. 3.6). They are: 

1. Solutions that may be found by integration. These include mainly problems 
for which the descriptive equations may be so much simplified so that it 
is straight forward to integrate them. Very often, these are steady state 
problems in which it is possible to assume dT/dt = 0. 

2. Solutions containing an error function. These may be found for problems 
that have their boundary condition at infinity. For example, when describ­
ing the thermal evolution of intrusions that are much smaller than the 
thickness of the crust or their distance to the earths surface, it is possible 
to make this assumption (e.g. p. I l l or p. 187). 

A third type of solution is necessary for time dependent problems with spa­
tially fixed boundary conditions. We have encountered such examples when 
describing the erosion of mature landscapes between incising drainages with 
the diffusion equation, for example on p. 188. Such examples may be solved 
using Fourier series. As the diffusion equation is such a classic example where 
Fourier series find an important application, we will continue to use this equa­
tion as an example. The now well familiar equation that we want to use again 
(eq. 3.6) is: 

~dt=Kd^ ' ( R 3 6 ) 

with T being a function of both space x and time t: T — T(x,t). Let us 
assume that this equation is subject to zero temperature boundary conditions 
at x = 0 and x = I which may be formulated as: 

- T = 0 at £ = 0 at time t > 0. 
- T = 0 at x = I at time t > 0. 

With these boundary conditions, this problem corresponds to that discussed 
on page 188. There, D and H correspond to what is here K and T and the 
spatial extent of the problem was there measured between — / and I, while it is 
here only from 0 to I. On page 188 we just gave the solution of this problem in 
eq. 4.69 without detailing the methods of solution. In order to understand the 
process of solution here in some more detail, consider the following: Eq. B.36 
is satisfied if we find a term for which the first time derivative is directly 
proportional to the second spatial derivative (s. also eq. 3.43 where we solved 
a very similar problem). The proportionality constant is K. 

It turns out that a general function that satisfies this condition and the 
boundary conditions has the form: 

oo 

T = £> n e>»«s in (^ ) . (B.37) 
ra=0 
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There, an and bn are constants. This is not very obvious at first and we will 
therefore now show why this solution satisfies eq. B.36 and how it may be 
derived: 

1. We can see that the solution above contains an exponential function of 
time and a sine-function of x. This can be understood as follows: Differen­
tiating an exponential function will always return an exponential function. 
Correspondingly, the second derivation of a sine-function is a negative sine 
function. This negative will result in the exponential function also being 
negative (as shown below), which gives a function that decays with time. 
Thus, the first derivative of eq. B.37 with respect to t, will always be pro­
portional to its second derivative with respect to x. Thus, the condition of 
the diffusion equation is met, if the correct constants are found. 

2. It may be seen that the boundary conditions at x = 0 and x = I are always 
satisfied as the sine-function is always zero at these two values of x. Thus, 
temperature there is also always zero. 

3. The fact that the solution contains an infinite sum is a generalization. If 
a single term of the infinite sum satisfies eq. B.36, so will the infinite sum 
of a series of terms. 

Let us check if eq. B.37 actually satisfies eq. B.36. For clarity, we perform this 
check only for a single term of the infinite sum. For our check we differentiate 
this term with respect to time as well as space. The time derivative gives: 

— = a&eMsin f — J . (B.38) 

The spatial derivatives are: 

to = —6 C°S (—) (R39) 

as well as: 

d2T n2w2a bt . /mrx\ 

&? = ——eM—) • (B-40) 

Comparing eq. B.38 and eq. B.40 shows that eq. B.36 is satisfied if the con­
stant b has the following value: 

(B.41) 
p • 

If we insert b from eq. B.41 in eq. B.37, we have an equation that satisfies 
all conditions of eq. B.36. The values for the constants an can be determined 
from the initial conditions. At time t — 0, ebt = 1 and thus from eq. B.37 it 
is true that: 

T(x,0) = f(x) = Y,<h>*™(Tf-) • (B-42) 
n=0 
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Eq. B.42 is an example of a Fourier series. The coefficients an can be deter­
mined from the integral: 

an = - I /(ar)sin ( — J da; , (B.43) 

the derivation of which does not follow directly from eq. B.42 and will not 
be discussed here. However, it may be found in any book on Fourier series. 
The coefficients may be evaluated from this integral if the initial condition 
T(x,0) = f(x) is known. However, this integral is only easily evaluated for 
certain functions of f(x). For more general functions, solutions to this integral 
may be obtained from either math tables or numerically. 

F igure B . l l . a The function f(x) = 2 (thick line) and the first five terms of an 
infinite sum of sine functions from eq. B.42 at time t = 0. b The sum of the first 
two, three and nine terms of the function shown in a. It may be seen that the sum 
of only few terms is sufficient to approximate the thick drawn function in a quite 
good 

• Solving eq. B.36 for non-zero boundary conditions. We can take this ap­
proach one step further to solve the diffusion equation eq. B.36 for non-zero 
boundary conditions: 

- T = Ti at x = 0 at t ime t > 0. 
- T = T2 at x = I at t ime t > 0. 

and initial conditions T = f(x) at t — 0. In this case, the tempera ture T 
should evolve with time to the steady-state solution tha t satisfies the bound­
ary conditions. We will denote the steady-state solution as g(x). It can be 
shown tha t g(x) — 2 \ + (T2 — T±)x/l. The solution for T has the form: 

00 

T = 5( a :) + ^ a n e 6 » * S i n ( ^ ) . (B.44) 
n=0 
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where bn is given by equation eq. B.41 and an has the form 

^ = y J (f(x) - g(x)) sin ( ^ ) dx . (B.45) 

B.5 Selected Numerical Tricks 

B.5.1 Integrating Differential Equations 

For many differential equations there are mathematical reference books con­
taining their solutions and it certainly goes beyond the scope of this book 
to go into details of complicated integration methods. However, one simple 
differential equation that describes an enormous number of natural processes 
is a rate law where the rate of change of a parameter is linearly related to 
this parameter. This differential equation has the form: 

^L = ay + b , (BAG) 

where a and b are constants and we have seen examples of it in eq. 4.15 
or eq. 3.44. The equation states that the differential of the variable y is 
proportional to y. This information is sufficient to be able to guess that 
the solution will contain an exponential function of the form ex, because 
exponential functions always remain exponential functions when they are 
differentiated (s. Table C.2). Thus, we may guess that the solution will have 
the form: 

y = q e ^ + d (B.47) 

and thus: 

qce(cx) . (B.48) ^ = „«.(-) 
dx 

Inserting eq. B.47 and eq. B.48 in eq. B.46 shows that c — a and d = —b/a. 
It follows that: 

y = qe^ - - , (B.49) 

for a fixed scalar q. 

B.5.2 Analytically Unsolvable Equations 

Many equations cannot be solved analytically. However, they often may be 
evaluated numerically by separating them into two parts. We illustrate this 
using the transcendental eq. 6.3 as an example. This equation has the form 

cx = ae~bx+d . (B.50) 
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All other parameters that occur in eq. 6.3 are summarized in eq. B.50 into 
the constants a, b, c and d. Eq. B.50 cannot be solved for x. In order to solve 
it numerically it is useful to split the right hand side and the left hand side 
of the equation into two new equations. For the left side we write: 

z = ex (B.51) 

and for the right side we write: 

l n ( ^ ) 
z = ae-bx + d or : x= V_" ; . (B.52) 

These two functions are plotted in Fig. B.12. With the constants a = 1, 
b = 2, c = 3 and d = 3, the steep linear curve is eq. B.51 and the curve with 
a negative slope is eq. B.52. Their intersection is the solution of eq. B.50. This 
point may be found by alternating solution of eq. B.51 and B.52. For this we 
guess a value for x, insert this into eq. B.51 to calculate z and then insert 
this value for z into eq. B.52 to obtain a new x. For the example illustrated 
in Fig. B.24 an initial guess of x = 0 leads to the series: z = 4, x = 1.333, 
z = 3.069, x = 1.023, z = 3.129, x = 1.043, z = 3.124 and so forth. The 
result converges to a solution of approximately x w 1.04 and z « 3.12. The 
exact solution may be approximated as closely as desired. While the method 
is very simple, it may also lead to wrong results, for example if one of the 
two functions has local minima or maxima. 

B.5.3 The Least Squares Method 

A common problem in science occurs when a curve should be fitted to a num­
ber of data points and the fit of the data to this curve should be quantified. 
The most common method for this is to find the smallest sum of the squares 
of the deviations of the data from the curve, in short, the least squares. In the 
following section we explain how this is done with the example of a linear fit, 

Figure B.12. Illustration of the 
numerical solution of eq. B.50. 
The constants are a = 1, b = 2, 
c = 3 and d = 3. The straight line 
represents eq. B.51, the curved 
line is eq. B.52. The dashed line 
shows the iterative approximation 
of their intersection 

3 

0 1 x 
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i.e. the curve that is fitted to the data is a straight line. However, for more 
complicated choices of functions, the same rules apply. We assume that the 
data consist of n values for y and just as many for x. We label the data with 
yi and Xi from i = 1 to n. The straight line we will to fit through the data 
cloud has the form y = ax + b where a and b are unknown. If we insert our 
data pair for x and y into this linear equation, we obtain: 

yi = axi + b — e , (B.53) 

where e is the deviation of a given data point from the fitted line. In order 
to minimize the sum of the squares of this deviation, the sum of all e must 
be minimized. This means that: 

n n 

£ e 2 = £ > * * + 6 - j / 0 2 (B.54) 
i= l i= l 

must be minimized. In order to do so, eq. B.54 may be partially differentiated 
with respect to a and b, set to zero and solved for a or b. Using the simple 
differentiation rules from Table C.l the derivative with respect to a may be 
found to be: 

0 = fig^+ft-*)2) = £ 2Xi{aXi + b _ yif . (B.55) 

The derivative with respect to b is: 

0 = ^ 7j7 = 2_,2(axi + b - yi) . (B.56) 
i=l 

Eqs. B.55 and B.56 may be simplified and solved simultaneously for a and b. 
We get: 

a =
 n(E?=ixiVi) -(£?=ixt)(Er=iVJ) } ( B 5 7 ) 

«(Er=ia;2)-(Er=ia;i)2 

i _ (Ei=i VJ) (Ei=i xi) ~ (Ei=i x v ( E i = i x ^ ^ ) /g ro\ 

n ( E ? = i a ; i ) - ( E ? = i * i ) 2 

These are the coefficients of the best fitting straight line of eq. B.53. These 
two equations (eq. B.57 and eq. B.58) are straight forward to implement on 
a computer. 

The errors of these values, as given by their standard deviations are simply 
given by: 

(da)2 = -. ^LA (B.59) 
(n-2){n{Y:=1x

2)-{Yri=1Xif) 

and: 
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{dbf = — ( s r = i ^ ) ( E r = i ^ ) — _ ( B 6 0 ) 

(^-2)(n(Er=i^)-(Er=i^)2) 

B.5.4 Basic Statistical Parameters 

A fundamental task of geologists is the characterization of the location and 
the variability of a data set, for example P-T data determined with ther-
mobarometry, geochronological data, numbers from a whole rock analysis, 
digital data during image processing or dip and strike data measured in the 
field. Because such measurements may be very precise, but they are never 
perfectly accurate it is necessary to evaluate them statistically (s. p. 5). The 
most important parameters for such an evaluation are summarized here. 

• Normal distribution. The statistical interpretation of many geological data 
is based on the assumption that the data have a normal (also called Gaussian) 
distribution around the exact value. A distribution is said to be normal if 
its probability density function is given by: 

1 A Is*-) / (* )=ter J • (R61) 
This function is characterized by two parameters called the mean, /i, and the 
standard deviation a. Eq. B.61 is plotted in Fig. B.13 and may be interpreted 
as the enveloping curve of a histogram. If the data are centered around a 
mean of /i = 0 and the standard deviation is a = 1, then eq. B.61 simplifies 
to: f(x) = e~(x /2)/\/27r. The distribution is said to be a standard normal 
distribution. 

• Mean. The mean of a data set indicates the most probable location of the 
exact value. For a data set S containing n data Si it is defined as: 

1 n 

H=-TSi . (B.62) 
n t—1 

1=1 

the mean gives the most probable location of the exact value. 

• Variance and standard deviation. The variance is a measure of the vari­
ability of the data around the mean. It is defined as 

1 n 

Var=-y"(Si-ii)2 . (B.63) 
n f—' 

2=1 

If the data set is incomplete (univariat data set), where only a finite number 
of data points were collected, an unbiased estimate of the population variance 
is given by: 

1 n 

Var' = ^ ( S , - M ) 2 . (B.64) 
n — 1 t—f 
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f(x) 

0.4 

0.3 

0.2 

0.1 

" 

CT=1 

4 • 

> 2 * • I K 

a normal 
distribution 

positive y/[\\ 
kurtosis\/y/ \ \ \ 

negative / \ 
kurtosis \ / \ 

b 

Figure B.13. a Normal distribution of data points calculated with eq. B.61. The 
curve for a = 1 is a standard normal distribution. The area underneath all three 
curves is 1. The la confidence interval is shaded dark, the la confidence interval is 
shaded light. These two areas contain 68.26% and 95.45% of the data, respectively, b 
shows data distributions with high and low kurtosis as well as one with a significant 
skewness (shaded), relative to a normal distribution 

The standard deviation is defined as the square root of the variance. If 
the data distribution is normal (Gaussian), then the standard deviation is 
abbreviated with a = y/Var. From eq. B.61 it may be calculated that 68.26% 
of all data of a normal distribution will fall within ± l c of the mean and 
95.45% of the data within ±2a. The latter is therefore often loosely referred 
to as a "95% confidence interval". 

• Skewness and kurtosis. Skewness is a measure of the lack of symmetry of 
data in a histogram. Kurtosis is a measure of whether the data are peaked or 
flat relative to a normal distribution (Fig. B.13b). Data with a high kurtosis 
have a distinct peak near the mean, decline rather rapidly and have heavy 
tails. Data with a low kurtosis have a fiat top. A uniform distribution is an 
extreme case of kurtosis. Skewness (for a univariate data set s. eq. B.64) is 
defined as: 

skew 
1 ™ — -\2(Sl-n)3 

a6 (n — 1 t-f 

Kurtosis is defined as: 

kurt (s^D*-")1) 

(B.65) 

(B.66) 

Many classical statistical tests depend on the assumption that the data have 
a normal distribution. Significant skewness and kurtosis indicate that the 
data are not normal. In fission track analysis the skewness and kurtosis of 
track length distributions bear significant information on the cooling history 
of the rocks. 
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B.6 Problems 

Problem B . l . Finite difference approximations (p. 399): 
Eq. 3.42 describes simultaneous diffusion and one-dimensional mass trans­
port. Write an explicit finite difference approximation for this equation. Use 
a forward differencing scheme to approximate the transport term. Follow the 
schemes introduced in eq. B.14 and eq. B.15 

Problem B.2. Finite difference approximations (p. 400): 
Eq. 4.52 describes the elastic bending of oceanic lithosphere under applied 
loads. There, w is the variable for which we want to solve the equation. It is 
the vertical deflection of the bent plate as a function of distance x. Write an 
explicit finite difference approximation for this equation. Hint: it is easiest to 
just expand the scheme we have followed in eq. B.16 

Problem B.3. Finite difference approximations (p. 405): 
Redraw Fig. B.6 carefully to convince yourself why backward finite differenc­
ing schemes will be unstable when describing the transport equation. For your 
considerations look at the scheme of eq. B.24, and a corresponding backward 
differencing scheme for u = Ax/At. 

Problem B.4. Mean and standard deviation (p. 405): 
Determine the mean and the standard deviation of the following two data 
sets 5*1 = {10,10,10,10,6,6,6,6} and 52 = {1,5,10,20,15,9,4,0}, assuming 
that both data sets are samples from a normal distribution. 
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Recommended Reading: 

- Abramowitz and Stegun (1972) Handbook of Mathematical Functions. 
- Press, Flannery, Teukolsky and Vetterling (1989) Numerical Recipes. 
- Strang (1988) Linear Algebra and Applications. 
- http://mathworld.wolfram.com 

Table C. l . General rules of differential calculus using the example of the function 
y = f(x). u and v are also functions of x. a is a constant. f'(x) or y' is the first 
derivative of y with respect to x 

/(*) 

y = au 

y = xa 

y = ax 

y = xx 

y = u + v 

y = uv 

y = -

y = u" 

/'(*) 

y = a(du/dx) 

y' = ax"-1 

y = ax\n(a) 

y' = (1 + ln(x))xx 

y' = (du/dx) + (dw/dx) 

y' = u(dv/dx) + w(d'u/da;) 

y = (vdujdx — udv/dx)/v 

y = uv ((w/'u)(d'u/da;) + \vLu{dv/dx)) 
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Table C.2. Special derivatives of 
the function y = f(x). f'{x) or 
y' is the first derivative of y with 
respect to x. The table may be 
read both ways: f(x) may also be 
interpreted as the integral of the 
function f'(x) 

/ ( * ) 

y = i 
y = ln(a:) 

y = log(z) 

y = ex 

y = e 

y = a;ln(x) — x 

y = sin(x) 

y = cos(x) 

y = tan(x) 

= x~1 

ln(as) 
— ln(10) 

/ ' ( * ) 

y = -x~2 

it' 1 

i> z l n (10 ) 

1l' 1 

y - x 

y =ex 

y' = aex 

y' = in(s) 

y = cos(x) 

y = —sin(a) 

y = sec(a;) 

Table C.3. Conversions between 
different logarithms. In this book 
we use "In" for the natural loga­
rithm (to the base of e) and "log" 
for the decimal logarithm (to the 
base of 10) 

\n(xy) 

\n(x/y) 

l n ^ " ) 

ln(e) 

ln(l) 

ln(0) 

log(a;) 

ln(10)log(e) 

= ln(x) + Info) 

= ln(x) - ln(y) 

= 3/ln(a;) 
= 1 

= 0 

= —oo 

= ln(x)/ln(10) 

= 1 

log(e)ln(a 
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Table C.4. Trigonometry of a triangle with the side lengths a, b and c. The angles 
a, p and 7 are those opposite to the sides o, b and c, respectively 

plane triangles with a right angle (7 = 90°) 

a'2 +b2 = c2 (Pythagoras) 

sin(a) = a/c 

cos(a) = b/c 

tan(a) = a/b 

ctg(a) = b/a 

area = (a x fo)/2 

general plane triangles 

o/sin(a) = b/sm(/3) = c/sin(7) 

a2 = b2 + c2 - 2bc x cos(a) 

area = (6csin(a))/2 = [s(s — a)(s — b)(s — c)]1 / 2 

...where: s = l/2(a + b + c) 

spherical triangles 

sin(a)/sin(a) = sin(fo)/sin(/3) = sin(c)/sin(7) 

cos(a) = cos(6)cos(c) + sin(6)sin(c)cos(a) 

angular separation a of 2 points on a sphere (lats. Ai, A2 and longs. 4>i,4>2) 

cos(a) = sin(Ai)sin(A2) + cos(Ai)cos(A2)cos(^2 — 4>i) 
...for any a 

sin(a/2) = (sin2((A2 - Ai)/2) + cos(A2)cos(Ai)sin2((02 - 0 i ) / 2 ) ) 0 6 

...for small a 

transformation between spherical and Cartesian coordinates (R is sphere radius) 

x = Rcos((j))cos(\) 

y = iZsin((/i)cos(A) 

z = ifein(A) 

spatial distance a between two points xi, yi, z\ and xi, 1J2, zi 

a2 = (x2 - xi)2 + (j/2 - yi)2 + (22 - zi)2 
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Table C.5. Volume, surface and other important data of some geometrical bodies 

cube with side length a 

surface = 6a2 

volume = a3 

length of side diagonal = a\f2 

length of space diagonal = a\f% 

tetrahedron with side length a 

surface =a2\f% 

volume 

sphere with radius r 

surface 

volume 

cone with radius r and height H 

surface of the mantle 
volume 

cylinder with radius r and height H 

surface of the mantle 

volume 

= ±aV2 

= Anr2 

- 3 l f 

= rTryV2 + H2 

= W" 

= 2rirH 

= r2irH 

Table C.6. Definitions and con­
versions between trigonometric csc(xj = l/sm(a;J 
functions sec(x) = l/cos(x) 

tg(ic) =sin(x) /cos(x) 

ctg(a;) = cos(a;)/sin(a;) = l / tan(x ) 

sin2 (a;)+cos2 (x) = 1 

Table C.7 

Angle 

rad 

sin(a) 

cos (a) 

tg(a) 

ctg(a) 

. Special values of trigonometric functions 

a = 0° a = 30° 

0 TT/6 

0 0.5 

1 V3/2 

0 1/V3 

oo v 3 1 

a = 45° 

TT/4 

V2/2 

V2/2 

1 

1/V3 

(Fig. C.l) 

a = 60° 

TT/3 

V3/2 

0.5 

V3 

a = 90° 

TT/2 

1 

0 

CO 

0 
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Figure C. l . The unity circle and / 
definitions of the trigonometric / 
functions. The four trigonometric / 
functions are labeled for an angle / 
of 45° 1 / 

Table C.8. Solutions of quadratic equa-
tions of the form ax2 + bx + c = 0 »i,2 = - ^ ± ^ V 6 2 - 4oc 

Table C.9. Approximation of the error 
function using the constants a = 0.3480242; erf (x) « 1 — (03/ + by2 + cy3) e 
b = -0.0958798 and c = 0.7478556 and 
y = 1/(1 + 0.47047a;) 
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Table D . l . Symbols and units of the variables used in this book. Physical constants 
of the earth are listed in Table D.3 and D.4. Variables abbreviated with Greek letters 
are explained in Table D.2. Variables used in the text are often specified in more 
detail by adding a subscript. The most commonly used subscripts in this book are 
/ for lithosphere; c for crust; m for mantle; i, j and n for numbering; x, y and z for 
spatial directions and 0 for initial values 

Symbol Variable Unit 1. Occurrence 

Ar 

A 

A 

A, 
Ao 

a 
a 
b 

Cp 

Cpf 
C 
C 
D 
D 
D 

D 

Do 
e 
e 
E 
E 

EP 
Ek 

f 
f 
fc 
fi 
F 

Fb 

F6 

Feff 

R 
G 
G 
G 

g 

g 

Argand number 

area 

pre exponential constant 

.. .of quartz creep 

.. .of olivine creep 

acceleration 
general constant 
general constant 

heat capacity (of rocks) 
.. .of fluids 
concentration 
constant of integration 

angular momentum 
rigidity of elastic plates 
displacement gradient 

diffusivity of mass 

pre exponential diffusivity 
elongation 
error 
Young's Modul 
energy 

potential energy (per area) 
kinetic energy 

frequency 
ellipticity 
vertical strain of crust 
vertical strain of lithosphere 
force 

buoyancy force (per length) 
tectonic driving force (per length) 

effective driving force (per length) 

integrated strength 
gravitation constant 
geometrical factor for Tc 

Gibb's energy 

geothermal gradient 

acceleration (gravitational) 

-
m2 

M P a - ' V 1 

MPa"" s " 1 

M P a " ^ " 1 

m , - - 2 
ms variable 
variable 
« 1000 J k g " 1 K" 1 

J k g - ' K " 1 

-
variable 

k g m 2 s _ 1 

Nm 
tensor 
m 2 - 1 
m s 
m 2 - 1 
m s -
-
Pa 
J 

J I T , " 2 

J 

s - 1 

-
-
-
N 

N m " 1 

N m " 1 

N m " 1 

N m " 1 

-
-
J 

" C m " 1 

m „ - 2 
m s 

Eq. 6.31 
Eq. 3.2 

Eq. 5.43 

Table 5.3 
Table 5.3 
Eq. 5.14 
Eq. 3.19 
Eq. 3.19 
Eq. 3.4 

Eq. 3.50 
Eq. 7.3 
Eq. 3.57 

Sect. 2.2.. 
Eq. 4.47 
Eq. 4.3 

Eq. 4.61 

Eq. 7.5 
Eq. 4.1 
Eq. B.53 
Eq. 4.49 
-

Eq. 5.49 
Eq. 5.22 

Eq. 3.100 
Eq. 4.7 
Eq. 4.9 
Eq. 4.9 
Sect. 2.2.. 

Eq. 5.49 
Eq. 6.21 

Eq. 6.21 

Eq. 5.48 
Eq. 1.1 
Eq. 7.10 
Eq. 7.6 

Eq. 3.48 
Eq. 4.22 
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Symbol 

h 
h 
h, 
hs 

H 
H 
1 
1 

J 
k 
K 
K 
1 
L 
L 

U 
L* 

m 
M 
N 
n 
n 
Pe 
P 

Q 
Q 

Q* 
Oo 
OD 

q 
q 

qs 
C/m 

C/rad 

q< 
qt 
r 
r 
R 

RA 

Rp 

Variable 

elastic thickness 
dimensionless height 
exponential drop off 
erodable thickness 

heat content (volumetric) 
elevation, height 

momentum 
tensor invariant 
moment of inertia 

thermal conductivity 
bulk modulus 
equilibrium coefficient 
thickness, length 

latent heat of fusion 
sediment thickness 
. . . of decompacted layer 
. . . of decompacted pile 
mass 
bending moment 
number, counter 
power law-exponent 
general counter 
Peclet number 
pressure 
activation energy (diffusion) 
activation energy (creep) 

. . . of quartz creep 

. . . of olivine creep 

. . . of Dorn law creep 
load on a plate 

heat flow 

. . . at the surface 

. . . a t the Moho 

. . . caused by radioactivity 
water flux 

sediment flux in rivers 
radius 
distance in polar coordinates 
radius of earth 
. . . at the equator 
. . . at the pole 

Unit 

m 
-
m 
m 

J m " 3 

m 

kg ms~ 
-
kgm2 

J s _ 1 m 
Pa 
-
m 

J kg"1 

m 
m 
m 
kg 
N 
-
-
-
-
Pa 

J m o l -

J m o l -

J m o l -

J m o l -

J m o l -

Pa 
W m - 2 

W m - 2 

W m - 2 

W m - 2 

m s - 1 

m s - 1 

m 
m 
m 
6 378.1 
6 356.7 

1. Occurrence 

Eq. 
Eq. 
Eq. 
Eq. 

Fig 
Eq-

4.49 
1.2 
3.67 
4.62 

3.12; Eq. 3.3 
1.2 

1 Sect. 2.2.4 
Eq- 5.3 
Sect. 2.2.4 

- 1 K - 1 Eq. 3.1 
Sect. 5.1.2 
Eq. 
Eq. 

Eq-
Eq. 
Eq-
Eq. 
Eq. 
Eq-
Eq-
Eq-
Eq-
Eq-
Eq-

Eq-
Eq. 

7.6 
3.17 

3.31 
6.2 
6.2 
6.2 
1.1 
4.47 
3.91 
5.44 
3.15 
3.51 
5.5 

7.5 
5.43 

Table 5.3 

Table 5.3 

Eq-
Eq-

Eq. 

Eq-

Eq-

Eq-
Eq. 

Eq-
Eq-
Eq. 
Eq-

39 km Eq. 
5 km Eq. 

5.47 
4.48 
3.1 

3.61 

3.61 

3.61; Eq. 6.13 

4.81 

4.81 
1.1, 3.11 
1.1, 3.11 
2.1 
4.7 
4.7 
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Symbol Variable Unit 

-
^ s " 1 

J s - 1 m - 3 

J s - 1 m - 3 

J s - 1 m - 3 

J s _ 1 m - 3 

J s - 1 m - 3 

J K " 1 

m 
s 
m 2 
m s 
s 
°C 
°C 
°C 
°C 
°C 
°C 

K 
K 
K 
K 
K 
K 

w 1200-1 300 °C 

°c 
°c 
°c 
°c 

K 
K 
K 
K 

m s _ 1 

m 

m s~ 

m s~ 
m s 

m s~ 

m s~ 

m s~ 
m3 

s " 1 

m 
m 
m 
m 
-
m 
m 
m 
m 
m 
m 
w7 -10 km 

1. 1 

Eq. 

Eq. 

Eq. 
Eq. 

Eq. 

Eq. 

Eq. 

Eq. 
Eq. 
Eq. 

Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 
Eq. 

Eq. 

Dccurrence 

4.1 

3.89 
3.23 
3.22 

3.22 
3.22 

3.67 
3.30 
6.5 
3.4 

4.72 
3.17 
4.16 
3.1 
7.9 
3.84 
7.10 
7.9 
3.84 
3.59 
3.38 
3.38 
3.80 
3.100 

3.40 
Sect. 4.2.1 

Eq. 

Eq. 
Eq. 

Eq. 

Eq. 

Eq. 

Eq. 

4.10 

3.50 
4.10 

4.13 

4.10 

4.10 
3.2 

Sect. 2.2.4 
Eq. 
Eq. 
Eq. 

4.36 
5.55 
4.47 

Sect. 1.2 
Eq. 7.7 
Sect. 1.2 
Sect. 1.2 
Sect. 2.4.1; Eq 
Eq. 
Eq. 

3.49 
4.21 

Sect. 2.4.1 
Eq. 3.61 

s 

s 

S 

S 

•->chem 

•->mec 

Srad 
So 

SL 
t 

U 
teq 
t£ 
T 

u 
U 
V 

V 
w 
w 
w 
w 
X 

X 

y 
z 

TA 

Tb 

Tc 

TE 

7] 
7] 
7] 
Ts 

Ts 

To 

Vf 

l/ex 

1/er 

1/ro 

V„p 

Zc 

Zi 

zK 

A 
Zrad 

stretch 
cooling rate 

rate of heat production 

.. chemical 

.. mechanical 

.. radioactive 

.. radioactive at surface 

sntropy 
sea level 
time 

degradation coefficient 
:ime scale of diffusion 
srosional time constant 
temperature 
.. at the start 
.. of the host rock 
.. closure temperature 
.. at the end 
. . intrusion temperature 
.. at base of lithosphere 
.. liquidus 
.. solidus 
.. at the surface 
.. initial temperature 

i/elocity (often: in x direction) 
circumference 
i/elocity (often: in y direction) 

.. of fluids 
sxhumation rate 

srosion rate 

uplift: rate of rocks 

uplift: rate of the surface 

i/olume 

angular velocity 
water depth 
thickness of crustal root 
slate deflection 
spatial coordinate (horizontal) 
mole fraction 
spatial coordinate (horizontal) 
spatial coordinate (vertical) 
thickness of crust 
nitial depth 
sostatic compensation depth 
thickness of lithosphere 
thickness of radioactive crust 

3.63 
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Symbol 

Q 

Q 

Q 

P 
P 
5 
5 
7 
»? 
e 

e 

K 

A 
A 
A 

Ac 

Ai 

A* 
^ 

4> 
<t> 
<t> 

4>o 
<t> 
p 

Pc 

Pi 

Pa 
PL 

Pm 

Pw 
(7 

011 C2, (73 

C d 

C s 

CTn 

C D 

T 

0 
0 

£ 

Variable 

coefficient of thermal expansion 
general angle 
flexural parameter 

isothermal compressibility 
stretching factor (mantle lithosph.) 
stretching factor (crust) 
density ratio 
shear strain 
viscosity 
strain 

strain rate 

diffusivity 
longitude 
wave length 
pore fluid pressure ratio 
. . . in the crust 
. . . in the lithosphere 
coefficient of internal friction 
Poisson ratio 
latitude 
latitude 
angular shear strain 
. . . at the surface 
friction angle 

density 

. . . of the crust 

. . . of sediment grains 

. . . of the mantle at 0 °C 

. . . of a sedimentary pile 

. . . of the mantle at 7] 

. . . of water 
stress (tensor) 
principal stress 
differential stress 
shear stress 
normal stress 
. . . critical, Dorn law creep 
deviatoric stress (tensor) 
dimensionless temperature 
angle of a failure surface to o\ 
expansion ratio 

Unit 

« 3 - 1 0 
radian 
m 

Pa" 1 

-
-
-
-
Pas 
-

s " 1 

mV 1 

degree 
m 
-
-
-
-
-
degree 
degree 
degree 
-
radian 

k g m - 3 

k g m - 3 

k g m - 3 

« 3 300 
k g m " 3 

« 3 200 

« 1000 
Pa 
Pa 
Pa 
Pa 
Pa 
Pa 
Pa 
-
radian 
-

- 5 o c - l 

k g m - 3 

k g m - 3 

k g m - 3 

1. Occurrence 

Eq. 3.29 
Eq. 3.99 
Eq. 4.53 

Eq. 3.28; 5.28 
Eq. 6.10 
Eq. 6.10 
Eq. 4.31 
Eq. 4.2 
Eq. 5.42 
Eq. 5.24 

Eq. 1.5 

Eq. 3.6 
Eq. 2.2; Fig. 2.8 
Eq. 3.101 
Eq. 5.33 
Fig. 5.17 
Fig. 5.17 
Eq. 5.29 
Eq. 4.49 
Fig. 2.8 
Fig. 2.8 
Eq. 4.2 
Eq. 6.1 
Eq. 5.32 

Eq. 3.4 
Eq. 4.24 

Fig. 6.5; Eq. 6.7 

Eq. 4.28 

Eq. 6.5 
Eq. 4.24 

Eq. 4.36 
Eq. 4.3 
Eq. 5.2 
Eq. 3.25 
Eq. 5.29 
Eq. 5.1 
Eq. 5.47 
Eq. 5.7 
Eq. 1.3; 3.87 
Fig. 5.6 
Eq. 4.31 
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Table D.3 . Important data of the earth 

equatorial radius 

polar radius 

diameter of core 

volume 

mass 

surface area 

area of the continents 

area of continental lithosphere 

area of oceanic lithosphere 

mean elevation of the continents 

mean depth of the oceans 

total length of mid oceanic ridges 

mean continental surface heat flow 

mean oceanic surface heat flow 

6378.139 km 

6 356.750 km 

3 468 km 

1.083-1021 m3 

5.973 • 1024 kg 

5.10-1014 m2 

1.48 • 1014 m2 

2.0-1014 m2 

3.1 • 1014 m2 

825 m 

3 770 m 

« 60 000 km 

« 0.065 W m " 2 

« 0.101 W m - 2 

Table D.4 . Important physical constants 

Constant Symbol Value 

gas constant R 

gravitational constant G 

speed of light c 

8.3144 J m o l ^ K - 1 

6.6732 -10" 1 1 N m 2 k g -

2.99792-108 m s " 1 
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Table D.5. Si-units 

Physical 
Parameter 

distance 

time 

mass 

temperature 

Symbol 

x, y, z 

t 

m 

T 

in Text Unit 

meter 

second 

kilogram 

Kelvin 

Abbreviation 

m 

s 

kg 
K 

Table D.6. Important derived units 

Physical Symbol in Text Unit 
Parameter 

Abbreviation Si-Unit 

force 

pressure 

energy 

power 

F 

P 

E 

-

Newton N 

Pascal Pa = N m " 2 

Joule J = N m 

Watt W = J s " 1 

kgm s 2 

k g m ^ s " 2 

k g m 2 s - 2 

kgm2s~3 
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Table D.7. Conversions between derived units 

Physical Parameter Conversion 

force 

pressure 

energy 

power 

velocity 

acceleration 

= mass x acceleration 
= pressure x distance = Pa m 

= force per area = N m - 2 

= energy per volume = J m - 3 

= force x distance = Nm 

= mass x velocity2 = kg m2 s - 2 

= work per time = J s _ 1 = W 

= distance per t i m e = m _ 1 

= velocity change per t i m e = m s" 
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Table D.8. Important commonly used variables and their conversion into Si-units. 
Numbers are given to a maximum of 4 digits 

Parameter 

length 

area 

volume 

time 

temperature 

force 

pressure 

energy 

viscosity 

Unit 

1 angstrom 

1 micrometer (jam) 

1 millimeter (mm) 
1 kilometer (km) 
1 foot (ft) 
1 inch (in) 
1 mile (mi) 
1 yard (yd) 
1 nautical mile (nmi) 
1° latitude 

1 hectar (ha) 

1 acre 

1 liter (1) 
1 gallon (US) 
1 gallon (UK) 
1 hectoliter (hi) 
1 barrel (US) 

1 day 
1 million years (my) 

1°C 

1 dyne 

1 bar 

1 atmosphere (atm) 
1 mm Hg (torr) 

1 lb i n - 2 

1 cal 
1 erg 

1 heat flow unit (hfu) 
1 horse power (PS) 

1 poise 

Conversion 

= 10-1 0 m 

= 10"6 m 

= 10"3 m 

= 103 m 
= 0.3048 m 
= 2.54 cm 
= 1.6093 km 
= 0.9144 m 
= 1.852 km 
= 60 nmi = 111.12 km 

= 104 m2 

= 4 046.9 m2 

= 10"3 m3 

= 3.7854 1 
= 4.5461 1 
= 100 1 
= 158.98 1 

= 8.64-104 s 

= 3.1557 -1013 s 

= 1 K (0°C = 273.16 K) 

= 1 g e m s " 2 = 10"5 N 

= 1 0 5 Pa 

= 1.0133 • 105 Pa =760 mm Hg 
= 1.3332 -102 Pa 

= 6.8947-103 Pa 

= 4.184 J 

= 1 dynecm = 1 0 - 7 J 
= 10"6 cal c m " 2 s " 1 = 0.04184 W m" 2 

= 746 W 

= 0.1 Pas 



E. Answers to Problems 

Problem 2.1. According to Fig. 2.5, both the Aleute arc and the Java 
Trench appear to have small circle radii corresponding to roughly 25° latitude 
which is ~ 2 700 km. Thus, the ping pong ball model of eq. 2.1 predicts 
subduction angles of the order of 25°. The much steeper observed dip may be 
due to additional forces exerted onto the subducted slab by asthenospheric 
convection. 

Problem 2.2. The experiment can be performed by starting at l+(2irn)~1 km 
from the south pole, where n is an integer. Thus, there is not only a single 
point, but an infinite number of rings around the south pole from where this 
experiment can be started. 1 km south of each of these rings the circumference 
of the earth along a line going due east or west is 1/n km. 

Problem 2.3. (5/360) • 24 hours = 20 minutes. Knowl edge of the latitude is 
not necessary. 

Problem 2.4. The difference in geographic longitude is 4° 42' = 282'. The 
improved solution of Problem 2.3 is then 282/(360 • 60) • 24 hours = 18.8 min­
utes. 

Figure E.l. Sketch of the 
solution of Problem 2.5 
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Problem 2.5. a) The difference in longitude between Munich and Vienna 
is: A(j) = 5°. Therefore: we = COS\^2RTT = 371961.3 m. The small circle 
radius r for the 48th degree of latitude is r = RcosX = 4 262.362 km. The 
great circle angular separation (using the formula in Table C.4) is: 3.34507°. 
Accordingly, the great circle distance is 371896 m. This is about 65 m shorter 
than the distance along the small circle. The direct (Euclidian) distance along 
a hypothetical tunnel is: a; = 371843 m. It is only about 53 m shorter than 
the great circle distance. 

Problem 2.6. At the given angular velocity, a full rotation takes 2 7r/(10_15s_1) 
Rj 200 my. The equatorial circumference of the earth is 2 Rn m 40 000 km. 
Thus, the plate velocity at the equator is roughly 20 cm per year. At 48° 
north the small circle circumference is only 26 781 km (eq. 2.2). Thus, the 
relative plate velocity at this latitude is only 13 cm per year. 

Problem 2.7. The torque at the equator is: M = R • 1012 Nm. North and 
south of the equator we can write: M = r- 1012 Nm. Using r = RcosX (e. 2.2) 
we get a latitude of: A ~ 51° either north or south. 

Problem 2.8. x = C\(f> and y = C2tgA. The constants C\ and Ci can have 
any value for example 1. They are not really necessary, but are introduced 
here in order to show that the Mercator projection can be scaled to rectangles 
of any aspect ratio. 

Problem 2.9. In thermally stabilized continental lithosphere, the base of 
the crust is at about zc= 30 - 40 km depth, the base of the lithosphere is at 
about z\ = 100 - 200 km depth. The temperature at the Moho is about 500 °C 
and at the base of the lithosphere it is about 7] K, 1200 — 1300 °C. Thus, at 
least 100 - 200 °C of the Moho-temperature may be attributed to radioactive 
heat. The mean density of crustal rocks is of the order of pc= 2 800 kg m - 3 

and that of mantle rocks in the asthenosphere about p\= 3 200kg m - 3 . The 
thermal expansion coefficient of rocks is about a = 3 x 10 _ B °C _ 1 so that 
the density changes by several percent within both the crust and the mantle 
part of the lithosphere. 

Problem 2.10. a) The relative velocities may be read from Table 2.3. b) A 
new plate boundaries is currently forming along the East African Rift system. 
However, how the world will look like in future is very much a trial and error 
game. Have a look at http://www.scotese.com. c) Ancient plate boundaries 
exist just about anywhere where there is ancient mountain belts. Fig. 2.3 
gives an overview over the last 170 my. 

Problem 2.11. There is a total of 10 possible triple junctions: RRR, FFF, 
TTT, RRT, RRF, FFT, FFR, TTF, TTR, RTF. RRR-triple junctions are 
always stable, FFF-triple junctions are always unstable. Most other triple 
junctions may occur in stable or in unstable configuration. Whether they 
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are unstable or not does not depend on the qualitative nature of the plate 
motion, but rather on the angles and relative velocities. 

Problem 3.1. The amount of heat in one gram of mass is 10 3 kg x 
300 0002 km2 s~2 = 9-1013 J, which is enough to light a 60 W globe for 
9 • 1013 J / 60 W « 48 000 years. 

Problem 3.2. See Table D.8. 

Problem 3.3. It may be seen intuitively that the ore body will be nearly 
isothermal if it has a high conductivity. As a consequence, the isotherms 
above and below the ore body have a closer spacing (Fig. E.2). 

Problem 3.4. At the contact between two rocks of different conductivity 
the heat flow must be the same on both sides of the contact. Thus, for the 
given linear thermal gradient the temperatures at different depths will be: 
T5km = 100°C; T7km = 120 °C and T10km = 180 °C. 

Problem 3.5. The thermal time constant of the pile is roughly 40 my. This 
is significantly longer than the deformation in a), but significantly shorter 
than that in b). (e= 10~12 s _ 1 implies that the pile doubles in thickness in a 
mere 30000 years). The implication of this result is that the deformation in 
b) occurs largely in thermal equilibrium. In contrast, in a) the crust will be 
out of thermal equilibrium at the end of deformation. The deformation will 
be followed by thermal equilibration. Metamorphic parageneses are expected 
to grow across the fabric in a) but grow syn-deformational in b). 

Problem 3.6. Using eq. 3.17 it is easy to see that the thermal time constant 
(giving an estimate of the duration of heat conduction) of a 10 km large 
body is at least one order of magnitude longer than the questioned period 
of observation of 105 years. Heat conduction may therefore be neglected and 
the temperature is given (from eq. 3.21) by T = t x Siad/pcp. Using the given 
values for density and heat capacity this implies a temperature rise of about 
T « 100°C. 

Problem 3.7. a) The product of deviatoric stress and strain rate gives 
minimum and maximum values for the heat production rate of 3 • 10 - 5 and 
3 • 10~8 W m - 3 , respectively (eq. 3.25). These minimum and maximum values 
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are significantly higher and smaller than typical values for radiogenic heat 
production rates, respectively, b) Multiplying these values with a deformation 
period of 1 my, the total shear heat production is 109 J m - 3 for the largest 
stresses and strain rates and 106 J m - 3 for the small stresses and strain rates. 
Thus, according to eq. 3.26, the maximum temperature that can be reached 
is given by the ratio of volumetric heat content and pcp. This gives 370 °C 
and 0.37 °C for the maximum and minimum values, respectively. Whether or 
not these temperatures can be reached depends on the efficiency of heat con­
duction away from the site of heat production and on the change in strength 
of the shear zone during deformation. The former depends on the thickness 
of the heat producing shear zone. 

Problem 3.8. None! All heat of the fire is reaction heat (chemically produced 
heat). It is released by the exothermic chemical reaction: wood -¥ CO2 + 
water. 

Problem 3.9. The duration for which the rock will remain at constant tem­
perature is given by the ratio of total amount of released fusion heat to rate 
of heat loss by conduction. For example, if x J are produced by the crystal­
lization and the conductive cooling causes a heat loss of x J s _ 1 , then it the 
cooling history will be halted for exactly 1 second. The volumetric amount 
of heat that is released at the solidus is 0.3 x Lp. The rate of heat loss due 
to cooling is dT/dtpcp (s. eq. 3.3). Thus, the duration of thermal buffering is 
= L/cp(dt/dT) Ps 1 my. The fact that the cooling history is halted for 1 my 
may imply that metamorphic parageneses re-equilibrate partially or fully at 
this temperature. 

Problem 3.10. Using eq. 3.51 and a standard value for the thermal diffusiv-
ity of K = 10 _ 8m 2s _ 1 , the three advection (erosion) rates give Peclet numbers 
of Pe m 0.1, Pe m 1 and Pe m 5, respectively. Thus, the slow erosion rate of 
a) warrant description of the regional thermal evolution with consideration 
of conduction only (e.g. eq. 3.6), while the intermediate rates of b) require 
consideration of both conductive and advective processes (e.g. eq. 3.42) and 
the rapid rates of c) would allow to consider the thermal evolution as a solely 
advective process (e.g. eq. 3.40). 

Problem 3.11. The answer is discussed in eqs. 6.14 and 6.15. 

Problem 3.12. a) Eq. 3.80 shows that the error function must have a value 
of 0.8333 so that the temperature is T = l 000 °C. For this, Fig. 3.6 shows that 
the argument of the error function must be ss 0.98 (thus: 0.98 = z/y/4nt). 
From this we get: z = 98 km. b) 0 k m / 0 ° C ; 10 km/371 °C; 20 km/689°C; 
30 km/921 °C; 40km/1067°C; 50km/1144°C; 75km/1196°C; 100 km 
/1199°C. 

Problem 3.13. a) Using teq = 12/K the result is w 80 years, b) for symmetry 
reasons this temperature is half way between the intrusion and the host rock 
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Figure E.3. Solution of Prob­
lem 3.14 
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temperature if both have the same heat capacity: 500 °C, directly at the 
contact, c) 50 m • (Tj - T\)pcp = 5.4 • 1010 J / m2 dike surface, d) 40 years is 
roughly half of the total thermal history. The cooling of the dike is most rapid 
at the start. Thus, the dike will have cooled a bit more than half by then. 
The area underneath the T-z-profile must remain constant as no heat may 
be lost. This information may be used to estimate the width of the contact 
metamorphic halo. 

Problem 3.14. The depth of the rocks multiplied with the geothermal gra­
dient gives the terrain temperature prior to metamorphism: 300°C. If 10% 
of the terrain were at 1100 °C and 30 % of the terrain area at 700 °C, and the 
remainder at 300°C, then the mean temperature is Tcooi = 0.1 x 1100 + 0.3 x 
700+0.6x300 = 500°C. This is 200 °C above the host rock temperature. Thus, 
the heat of the intrusives is insufficient to explain metamorphism if latent heat 
of crystallization is neglected. The additional temperature contribution of the 
crystallization heat from 40% of the terrain is T( ̂ , s i = 0.4 x L / c p = 128°C. 
Thus, the potential metamorphic temperature is Tcooi+Tcryst= 628 °C, as the 
mean potential temperature for the whole terrain. This is within 10 %-error 
of the observed metamorphic temperature. Contact metamorphism is there­
fore a plausible model explanation for the observations. Fig. E.3 illustrates 
the problem answer graphically. 

Problem 3.15. The depths and temperatures of the starting condition are: 
z[l]=0, T[1] = 0; z[2] = 10 km, T[2] = 125°C; ^[3] = 20 km, T[3] = 250°C; 
z[4] =30 km, T[4]=375°C; ^[5] = 40 km, T[5] = 500°C; z[6] = 50 km, T[6] 
= 0°C; z[7] = 60 km, T[7] = 125°C; z[8] = 70 km, T[8] = 250°C; z[9] = 80 km, 
T[9]=375°C; z[10] = 90 km, T[10] = 500°C. The time stepping must be 
smaller than 0.7937 my. In order to perform the calculations with a round 
number it is useful to use something like At = 0.5 my = 1.575-1013 s, i.e. 



444 E • Answers to Problems 

R = 0.1575. After I At the temperatures are: T[5] = 402°C and T[6] = 98°C. 
After 2At the temperatures are: T[4] = 360°C, T[5]=350°C, T[6] = 150°C 
and T[7] = 140°C. All other temperatures remain up to this time constant 
because there is no spatial curvature of the temperature profile around them 
(eq. 3.6). 

Problem 4.1. Using eq. 4.8 we get a distance of the summit of Mt Everest of 
6 382.207 km from the center of the earth and 6 384.32 km for Chimborazzo. 
Thus, Chimborazzo is actually about 2100 m higher than Everest, if measured 
from the enter of the earth. 

Problem 4.2. a) There is no rock uplift at all. b) The rock is not exhumed 
at all. It is buried by 1 km. This example is actually what occurs to rocks 
on the Tibetan Plateau at the moment where extreme surface uplift and 
sedimentation occur at the same time. 

Problem 4.3. a) Morphological equilibrium will be reached after a long time. 
Thus, eq. 4.18 may be used for t -> oo: tE = Hb/(e(H + a)) = 1.834 my - 1 , 
b) If z = 0 and t = 40 my are inserted into eq. 4.19 and this is solved for Zi 
we get: Zi = 10 202 m. c) This may be evaluated by finding the derivative of 
eq. 4.19 with respect to t, setting the result to 0 and solving for t. The result 
is 11.8 my. 

Problem 4.4. Eq. 4.23 is solved in eq. 4.26. Adapting the variables by insert­
ing z\ = 1 for a randomly chosen thickness of the iceberg of 1 and H = 0.1, 
because 10% of this thickness are above water and using the density of water 
for pm we get for the density of ice: pice — 900 kg m 

Problem 4.5. The solution is shown graphically in Fig. E.4. 

Problem 4.6. a) AH = 10 km (pm — pu)/pm = 937m. Density and thickness 
of the crust do not change and therefore need not be considered, b) AH = 
391 m. c) the thinning of the crust in b) causes a subsidence of (fc — l)(pm — 
Pc)/Pm.zc = 2 343 m. This is partially balanced by an uplift of 391 m by 
the basaltic underplate. Relative to a) there is a total elevation difference of 
937 + (2 343 - 391) = 2 889 m. 

Problem 4.7. a) The answer is: 2.5 c m y - 1 . From this and the given data the 
water depths are: 469, 878, 1049, 1483, 1 756, 1906, 2 392, 2 633, 2 795, 2 930, 
3 318, 3 709, 3855 and 3 995 m for the given distances from the mid oceanic 
ridge, b) These model values correspond well with the observed values up to 
an age of roughly 100 my. From there on, sedimentary loading of the plate, its 
increasing strength and changes of the lower boundary condition by mantle 
convection cause the divergence between model and observation. 

Problem 4.8. a) The units of D are Nm. The fourth derivative has the units 
of m - 4 and q has the units of stress or force per area. The load is the vertical 
stress. F has therefore the units of N m - 1 , or Newton per meter length of 
orogen. b) Dh=10km « 8.8 x 1021 Nm and Dh=7Qkm « 3 x 1024 Nm. 
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f(my) 

Figure E.4. Solution of Problem 4.5. The mean vertical denudation x within 1 my 
is given by the relationship Ix = (vt)2. This relationship was derived geometrically 
from Fig. 4.49. Thermal expansion or the influence of the mantle lithosphere need 
not be considered as they remain constant. The mean subsidence at any time is 
given by: x(pm — pc)/pm- Thus, the elevation of the ridges is after 0.25 my: 132 m, 
after 0.5 my: 527 m, after 0.75 my: 1187 m and after 1 my: 2 110 m. Thereafter, 
the ridges subside with a rate of 781 m m y - 1 . The subsidence of the valley floors 
may be easily derived from the product of incision rate and time subtracted from 
the results for the ridge elevations 

P r o b l e m 4 . 9 . a) The given hints are required to determine the constants of 
integration. For the first and second integration they the constants must be: 
C\ = —qL/D and: Ci = qL2/(2D), respectively. For the third and fourth 
integration the constants must be: C3 = 0 and C4 = 0, respectively. Thus: 
w = qx2/D (x2/24-Lx/6 + L2/4). b) At x = L the deflection is: w = 
3qL4/'(24D). Using the parameters given in the problem we get: D = 0.0008 
Nm. 

P r o b l e m 4 . 10 . a) For the lowest point where there is a density difference 
between the two columns we can write: column A: azz = pcg{H + zc + w); 
column B: azz = pcgzc + pmgw. The buoyancy is given by the difference 
between these two values. This is the origin of eq. 4.50. b) If the load is qa 

is not considered, then we can write for the downward force per unit area: 
(pc — Pw)wg, and for the upward directed force: (pm — pc)wg. The net force per 
unit area is therefore: wg(pV! — pm). The total load is: q = qa + wg(pw — pm). 

P r o b l e m 4 . 1 1 . a f» 65 km. 

P r o b l e m 4 .12 . At the highest point of the elastic bulge the slope of 
the plate is dw/dx = 0. The slope of the plate as a function of distance 
is given by the first spatial derivative of eq. 4.54. If this is set to zero: 
0 = — 2wo/ae~x/asm(x/a), we get: x = ira. This is the highest point of 



446 E • Answers to Problems 

the fore bulge. In 250 km distance from this point we get from eq. 4.53: 
D = 2.2 • 1023 Nm, and eq. 4.49: h m 33 km. The value of wo does not change 
the distance of the forebulge from the load and its knowledge is therefore not 
required. 

P rob lem 4.13. The problem is easiest solved by plotting the data and graph­
ing eq. 4.67 iteratively for different times until a best fit for the data is found. 
For this a half height of the scarp a m 7m should be used, which is roughly 
half the elevation difference between base and top. It is also useful to subtract 
roughly 150m from all x values so that the inflection point of the scarp is at 
x = 0. Then, a best fit gives an age of about 30 000 years. 

P rob lem 4.14. The two boulders have been exposed to weathering for the 
same time. This result is easiest arrived at by measuring I (for example in 
millimeters) off the photograph for the two different boulders and comparing 
the topographic shapes of the boulders with plots of eq. 4.69. Neither the 
magnitude of D7 not the actual length of I need be known as we perform only 
a comparison between the two profiles. 

P rob lem 5.1. The stretch is 2, the elongation is 1. The vertical strain is 
100%. 

P rob lem 5.2. Force = mass x acceleration. As weight is a force and the ac­
celeration on the surface of the earth is 5=9.81 m/s2 , a mass of 1 kg hat has 
the weight of: 1 kg-9.81 m/s2 =9.81 N. 

P rob lem 5.3. Energy is given by the product of force times distance. Thus, 
the collision process releases 1013N xlO5 m = 1018 J. The most important 
forms of energy into which this mechanical energy is transformed are frictional 
heat and potential energy of the mountain belt that formed in response to 
the collision. 

P rob lem 5.4. As there are no shear stresses and the problem is two di­
mensional, we can assume that azz = u\ and axx = 02 (there is no 03). 
For the continent that is pulled apart by the subducting plate we can write: 
&xx = o"2 = —A and azz = <n = 0. From this, the mean stress (pressure) is: 
am = —A/2. According to eq. 5.10 the vertical and horizontal components of 
deviatoric stress are: +A/2 and —A/2, respectively. For the continent that 
collapses under the weight of a mountain range we can write: axx = 03 = 0 
and azz = o\ = A. From this, the mean stress is given by: am = A/2. The 
vertical and horizontal components of deviatoric stress are also: +A/2 and 
—A/2. Thus, we can conclude that state of deviatoric stress is the same in 
both continents but the pressure is different. 

P rob lem 5.5. As no shear stresses apply to the surfaces of the rock, all 
components of eq. 5.15 that describe shear stresses are zero. Eq. 5.15 sim­
plifies to: dazz/dz = pg. The corresponding equations for the other two 
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spatial directions in which there is no gravitational acceleration simplify to: 
daxx/dx = 0 and dayy/dy = 0. Integration of these three equation gives: 
oxx = C\, uyv = Ci and azz = pgz + C3. C\, Ci and C3 are the con­
stants of integration. They are determined by the boundary conditions of 
the problem. The normal stresses can be assumed to be zero on each free 
surface (Fig. 5.34): azz = 0 at z = —H. From this we get: C3 = pgH and 
azz = pg(H+z). Furthermore, because there is no stresses on the sides it must 
be true that: C2 = C\ = 0; axx = ayy = 0. The mean principal stress (pres­
sure P) as a function of depth is: P = (axx + ayy + azz)/3 = pg(H + z)/3. 
The principal components of the deviatoric stress tensor are, according to 
eq. 5.7: axx — P = ayy — P = —pg(H + z)/3 and azz — P = 2pg(H + z)/3. 

Problem 5.6. Similar to problem 5.5, integration of the stress balance equa­
tions gives: axx = C\; ayy = Ci and azz = pgz + C3. As fluids support only 
negligible differential stresses it is true that: axx = ayy = azz. With the same 
boundary condition for the vertical component of stress as in Problem 5.5 
we get: axx = ayy = azz = pg(z + H) = P. Thus, at any given depth, the 
pressure in the fluid is three times as high as it is in the rock of Problem 5.5. 
All components of the deviatoric stress tensor are zero. 

Problem 5.7. If the side wall is fixed, then the stain rate is: e = 0 and 
azz = axx. The mean force per area is given by the vertically integrated 
vertical stresses pg(z + H) using the limits of integration — H and 0 from 
Fb = pgH2/2. The mean horizontal stress <rxx is therefore cxx — F^/H — 
pgH/2. 

Problem 5.8. In the fluid: axx = ayy = azz = P = pmgz. In the rock 
the horizontal stresses for z < 0 are: axx = ayy = 0, and for z > 0 they 
are: axx = ayy = pmgz. The vertical stresses in the whole rock are: azz = 
pcg{H + z). The pressure in the rock is given by the mean of the principal 
stresses. For z < 0 it is: P = (pcg(H + z))/3. For z > 0 it is: P = (2pmgz + 
pcg{H + z))/3. All principal components of the deviatoric stress tensor in 
the fluid are 0. In the rock, for z < 0 they are: rxx = Tyy = axx — P = 
ayy-P= -{peg{H + z))l3 and: TZZ =azz-P= (2pcg(H + z))/3. For z > 0 
they are: rxx = ryy = axx - P = uyy - P = (pmgz - pcg(z + H))j3 and 
Tzz = Ozz ~ P = -(2pmgz - 2pcg(z + H))/3. 

Problem 5.9. From eq. 5.10 we get: e = a/E = 5 • 107Pa/5 • 1010Pa = 
0.001 = 0.1%. 

Problem 5.10. The vertical stress at any given depth is: azz = pgz. The 
strain of a unity cube at depth z in the lithosphere is therefore: e = pgz/E. 
From this, the total strain integrated over the entire lithosphere is given by: 
f^ pgz/Edz = pgz2 J2E. Using the given numerical values for the parameters 
this is: 2 500 m. Thus, the elastic thickness change of the total lithosphere 
due to its own weight is roughly 2.5 % of its total thickness. 
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Prob lem 5.11. The solution is graphically shown in Fig. E.5. 

a,b c d 

Figure E.5. Solution of Problem 5.11 

P rob lem 5.12. For the quartz data the stresses are ad = 117MPa; <7d = 
24MPa and <7d = 11 MPa, for n = 2, n = 3 and n — 4, respectively. For 
olivine the stresses are <Td = 1.4 x 108MPa;<7d = 2.7 x 105MPa and <7d = 
1.2 x 104 MPa, for n = 2, n = 3 and n = 3, respectively. 

P rob lem 5.13. When taking the logarithm of eq. 5.46 it becomes linear. It 
then has the form: log(e=nlog(<7d) + log(A)-Q/RT. Thus, if the experimental 
results are plotted in a diagram of log(e) against log(<7d) the slope of the 
data gives the power law exponent n and the intercept is (\og(A)-Q/RT). 
Replotting the data from a constant stress on a diagram of log(e against 1/T 
gives a line with the slope of —Q/R from which the activation energy may 
be determined. 

P rob lem 5.14. It is because in oceanic lithosphere olivine dominates the 
lithospheric rheology at much shallower levels (and therefore colder temper­
atures) than in continental lithosphere. 

P rob lem 5.15. According to eq. 5.50 it is: Ep = jQ azzdz = J0 pg(H + 
z)Az = pgH2/2. 

Prob lem 5.16. The solution is Fh » 10.5 x l0 1 2 N m"1 . The result is the 
same as that from Problem 5.19 as can also be seen from Fig. E.6 

P rob lem 5.17. Eq. 5.57 gives a buoyancy force of Fb m 6.6 xlO12 N m _ 1 . 

P rob lem 5.18. Inserting the given values into eq. 5.59 give a horizontal 
buoyancy force of the mountain range of Fb pa 7.71 x 1012 N m _ 1 . This result 
may also be read from Fig. 5.32. There, the point / c — 2, f\ = 1 gives a value 
of about i7^ PS8.3 xl01 2N m - 1 . The difference arises from slightly different 
assumptions of the densities and thicknesses. The result is larger than that 
from eq. 5.57 because the refined equation (eq. 5.59) also considers thermal 
contraction of the mantle part of the lithosphere. 

P rob lem 5.19. The graphical solution of this problem is shown in Fig. E.6. 
The net force between the two columns corresponds to the shaded area on this 
figure (see also Problem 5.16). Calculating this area algebraically, gives a net 
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Figure E.6. Graphical solution 
of Problem 5.19 

zc 

2zc-
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force of 10.5-1012 N m _ 1 towards the homogeneously thickened lithosphere. 
This is comparable to the magnitude of plate tectonic driving forces, even 
though there is no elevation difference between the two lithospheric columns. 

Problem 5.20. The kinetic energy (E/.in = mv2/2) of the plate is: E/.in — 
3 • 1020kg- (0.03 m/y)2 — 271 J (or kgm2 s _ 1) . The potential energy per cubic 
meter is: Ep = pgh. Thus, with a kinetic energy of 271 J we can lift one cubic 
meter of rock (using p = 2 700 k g m - 3 and g = 10 m s - 2 ) merely by about 
1 cm. Consequently, the kinetic energy is completely insignificant to have an 
influence on the orogenic force balance. Plate motions are too slow! 

Problem 6.1. Fig. 6.2 shows that the elevation contours have a slope of 
roughly (/c//i)=1.333. Thus, during extension (when both fc and f\ be­
come smaller than 1) uplift will occur when (/c//i)>1.333; for the assumed 
thicknesses and densities of Fig. 6.2. Eq. 4.35 shows that the elevation does 
not change when Szc(fc — 1) = £z\(f\ — 1) and subsidence will occur when 
8zc(fc — 1) < £-2i(/i — 1)- This can be solved for any of the variables in that 
equation. 

Problem 6.2. According to eq. 6.1 we can write for the cross over between 
sandstone and shale porosities: <^ar idexp(-csond£) = ^g / ia(eexp(—cshalez). 
This can be solved for z by taking the logarithm of the equation giving: 
z — (log(^o°"d) — \og((j>Qhale))/(csand — cshale). Using the parameter values 
from Fig. 6.5 we get z — 1116 m. 

Problem 6.3. Inserting eq. 6.1 into eq. 6.4 and using the parameter values 
from Fig. 6.5 gives L$ = 130 m. 

Problem 6.4. According to eq. 4.23 we can formulate from Fig. 6.7: LgpL + 
zc9Pc = zsgpw + zcgpc + (L — zs)gpm. Solving for z we get eq. 6.5 with a 
reversed sign. The different sign arises because the surface is lower before 
sedimentation, whereas we have automatically changed the sign in eq. 6.5 to 
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deal only with positive numbers. The equation that describes the change if 
water depth may be derived analogously. 

Problem 6.5. The answer is shown in Fig. E.7. The first three columns show 
the field data: a illustrates thickness and lithology (sandstone: gray, slate: 
lines), b shows the age of the lithological boundaries and c the water depth. 
The strata are numbered from bottom to top from 1 to 5. For the following 
calculations the center points of each layer (shown in the 4th column) are used 
as reference point. For the porosities we use the data from Fig. 6.5. Using 
eq. 6.1 for the uppermost, 1000 m thick layer we get a porosity of 34.4% at 
the mean depth of 500 m (1st column of Table d). The thickness of each layer 
is based on field measurements and their densities are given by eq. 6.7. In 
the second column the data for porosity, thickness and density after removal 
of the uppermost layer (i = 5) are plotted. For the second layer from the top 
(i = 4) that has a mean depth of 1 250 m, we begin with a determination of 
porosity. Its decompacted thickness is then calculated with eq. 6.4 using the 
porosities of the first column and the decompacted porosities. The porosity 
of the third layer after removing the first two strata is given by eq. 6.1 at 
a depth of 655 m + 500 m and so on. The same principle is repeated for all 
columns using always the data from the fist column so that no methodical 
errors are propagated. The sum of the thicknesses and densities if the profile 
(in the bottom row) are calculated with eq. 6.8 and 6.9. e is a graphical 
illustration of the data from Table d. 

Problem 6.6. To determine the ratio we take the subsidence in eq. 6.10 to 
be zero, i.e.: H — 0. Thus, after rearranging: zc/z\ = p\aT\/{2{p\ — /9W)). For 
the given numerical values of the parameters: zc/zi = 13.7 km. At smaller 
starting ratios of the thicknesses, the contribution of the mantle part of the 
lithosphere is so large, so that homogeneous stretching of the lithosphere 
(when thinned) will lead to surface uplift. 

Problem 6.7. Eq. 6.11 shows that the duration of the thermal sag period is 
only determined by the ratio t/teq in the last term of the equation. The time 
scale of thermal equilibration teq is the same we have discussed in eq.3.17 
and Table 3.2. It differs from that only by the factor n2, but is in principle 
equivalent. We can see that when t = teq, then iJsag has reached (1 — e_ 1) x 
100% completion. 90% of the thermal sag is completed when: (1 — e_i / / ie9) = 
0.9 or: t = —teqln(0.1). This is « 75 my for 100 km thick lithosphere and 
PS 300 my for 200 km thick lithosphere. 

Problem 6.8. For the thickened lithosphere we can use eq. 6.15. We 
get: g s=0.06 Win"2; qs = 0.075 Win"2 and &=0.09 Wm"2 , for the three 
heat source distributions, respectively. For the thinned lithosphere we must 
use qs = 2qm + grad/2 and get: qs = 0.0525 Wm"2 ; qs— 0.075 Wm"2 and 
qs — 0.0975 W m - 2 , respectively. We can see that the first distribution results 
in an increase of the surface heat flow with increasing thickness, while the 
last distribution results in a decrease of the surface heat flow with increasing 
thickness. 
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Figure E.7. Solution of Problem 6.5 

Problem 6.9. (a) Fig. 5.32 shows that the buoyancy force Fb balances the 
driving force roughly at fc a 1.65 (while f\ = 1). Fig. 4.18 shows that this 
corresponds to a surface elevation of about H a 3.5 km. (b) In order to use 
eq. 5.57, the thickness of the root w must be substituted by w = Hpc/Ap. 
It then can be solved for to give H — 4400 m at a buoyancy force of 
Fh =Fd=5-1012 Nm" 1 . (c) Eq. 5.59 simplifies significantly for f\ = 1. It 
then can be used to derive / c = 1.7 to give F^—F^ — 5-1012 N m - 1 . From 
this, eq. 4.31 gives a surface elevation of H = 3 800 m. The estimate from 
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(b) is substantially higher than those from (a) and (c) because the thermal 
contraction in the mantle part of the lithosphere is not considered here. 

Problem 6.10. Using the parameter values from Table 5.3 and eq. 6.31 gives: 
Ar(

T=i0°) & o.27 and ^ r (
T = 4 0 °) & 15. Thus, deformation in the "colder" oro-

gen will be concentrated around the collision zone establishing substantial to­
pography and potential energy contrasts, while deformation in the "warmer" 
orogen will be dissipated over a large region with little topography. However, 
note that the Argand number is used in geodynamics in order to avoid the 
use of ill-constrained material constants and temperatures in as much detail 
as we do here. Thus, it is not generally meaningful to use examples like this 
one for any quantitative consideration of a real orogen. 

Problem 6.11. The lithostatic component of pressure in 10 and 15 km depth 
will be azz — pgz =275 and 321 MPa, respectively. The temperature at this 
depth is 300°C and 450°C, respectively. The strain rate is: 1/5 my - 1 . From 
the power law we get differential stresses of 824 MPa and 40 MPa, respec­
tively. According to eq. 6.33 the pressure component related to differential 
stress in 10 or 15 km depth 412 MPa or 20 MPa, respectively. This means 
that the non lithostatic component of pressure in 10 km depth may be larger 
than the stress exerted by burial. In 15 km depth pressure is roughly equal 
to the vertical normal stress. 

Problem 7.1. a) We can insert into eq. 7.1 the values: z = 10 000 m; P — 
1 atm RS 105 Pa und g « 10 m s - 2 . This gives a mean density of p—1 k g m - 3 . 
b) 1 atm PS 1 bar = 10~3 kbar. 

Problem 7.2. One mole of almandine has the volume: Vaimandine = H-5 J / 10B 

Pa = 1.15• 10"4 m3 = 115 cm3. 

Problem 7.3. The cation diffusivities at the 3 temperatures are: -D300 « 
1.6 • 10"30 m2 s"1; D500 « 6.9 • 10"25 m2 s"1; £>iooo « 1.5 • 10"18 m2 s"1. All 
these are many orders of magnitude smaller than the diffusivity of thermal 
energy. Thus, chemical zoning profiles in minerals will only develop because 
of the sluggishness of cation diffusion, but not because temperature gradients 
in a crystal. 

Problem 7.4. Similar to problem 7.3 we can use the Arrhenius relationship 
to obtain a diffusivity of £>6oo « 4.9 • 10~23 m2 s_ 1 . Inserting this diffusivity 
and / =1 mm (being careful to use SI units!) we obtain a time scale of 
more than 600 million years. This is much longer than the duration of most 
metamorphic events. We can conclude that 1 mm sized garnets are unlikely 
to be equilibrated at 600 °C by diffusion. Chemically equilibrated garnets of 
this size must have grown at this temperature. 

Problem 7.5. The mean diffusivity between 700°C and 400°C is: 1} PS 
l . l - 1 0 - 2 2 m 2 s - 1 . 
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Problem 7.6. a) The thermal maximum, b) Because the activation volume 
in eq. 7.5 is much smaller than the activation energy Q. c) The uppermost 
curve in Fig. 7.7a. d) Yes, for example if crustal shortening follows intrusion 
and contact metamorphism. 

Problem 7.7. Inserting the given values into eq. 7.10 gives a cooling rate: 
s « 4 2 ° C m y - 1 . 

Problem 7.8. a) The characteristic time sale of cooling (the thermal time 
constant) of the dike is: 4 • 1012 s. The diffusivities at Ti and T^ are 
.Diaoo « 1-3 • 10"14 n ^ s " 1 and £>5oo « 7.4 • 10"20 m 2 s " 1 . The diffusive 
time constants of mica are tg200 « 1.9 • 109 s and t5

e°° « 3.35 • 1014 s. Thus, 
the chemical equilibration of the micas is much more rapid than the cooling 
of the dike at 1200°C but much slower than the cooling at 500 °C. Thus, 
it may be - in principal - meaningful to use the micas to determine the in­
trusion age geochronologically. However, 50 m from the intrusion contact the 
maximum contact metamorphic temperatures are much lower than 1 200 °C. 
Thus it is necessary to obtain better information on the contact metamor­
phic temperatures to investigate if the dating of these micas is meaningful, 
b) Eq. 3.90 shows that the maximum contact metamorphic temperature of 
the micas is reached 2.83-1011 s after intrusion. Inserting this into eq. 3.88 
we get the contact metamorphic peak temperature the micas experienced 
to be: Tmax =829°C. Using this number as the starting temperature TA and 
500 °C as the final temperature Tg, eq. 7.9 may be used to estimate the mean 
diffusivity to be: D « 1.91 • 10"17 m2 s"1 and t^ = 1.3 • 1012 s. This value 
is only a bit shorter that the characteristic time scale of cooling of the dike. 
Thus, equilibration of the micas is likely to be at least affected by the contact 
metamorphism. Whether the micas are partially or fully equilibrated can not 
be answered and requires careful analysis. 

Problem 7.11. The T-t-curve passes following points: 700 °C; 0 my ->• 700 °C; 
3 my—)-400°C; 6 my—»0°C; 26 my. However, the last point will not be 
reached as the cooling curve intersects the stable geotherm before that. The 
corner points of the z-t-cmve are: 20 km; 0 my —• 14 km; 5 my —>• 0 km; 
40 my. The intersection of the cooling curve with the stable geotherm 
may be found by finding the intersection of the linear equations T = 
z x 20°C /km and T = 280 °C - z x 5 0 ° C / k m . It is at: T =187°C and z = 
9 333 m. According to these results, the P-T-path follows the following evo­
lution: 5.4 kbar; 700 °C ->- 4.43 kbar; 700 °C ->• 3.78 kbar; 500 °C ->• 3.67 kbar; 
400 °C-» 2.52 kbar; 187°C ->-0 kbar; 0°C. 

Problem B . l . The solution of this problem is simply the sum of the ap­
proximations from eq. B.13 and eq. B.16: 

_ , ^ / 2nAt „ \ „, {2nAt „ \ _ (2nAt\ 
*t = Tr ( l - ^ F - ^ ) + ZWi {-£> + uAt) + T^ ( _ ] 
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Problem B.2. The answer is: 

Wi = r - (Wi+1 - 4wi+i - 4Wi-! + Wi-2) 
6D + Axi{pm-pc)g 

This equation was derived by forming the difference between the curvature 
at neighboring grid points in an analogous way to the way eq. B.16 was 
formulated. 

Problem B.3. Using u = Ax/At forward and backward finite differencing 
schemes give the following approximations: T+ = T i^1 bzw. T+ = 2T~ — 
Ti-\- If you draw these equations according to the scheme of Fig. B.5, it 
becomes visible that backward differencing schemes become unstable. 

Problem B.4. Both data sets have a mean of p, — 8. The first data set hgas 
a variance of Var = 4, but an unbiased estimate of the population variance 
of Var1 =4.57. For the second data set the variance is Var = 42, but the 
unbiased estimate of the population variance is Var' = 48. 
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On the next few pages there is a random selection of internet addresses that 
are in some way related to geodynamics. The list was not created according 
to any important selective criteria and obviously claims no completeness. It 
is merely a number of addresses that were encountered during the writing of 
this book. 

Software and Online Tools: 

ANSYS. Commercial FEM package 
• http://www.ansys.com/ 

DimensionMG. General purpose 3D mesh generator 
• http://www.ahpcrc.org/ johnson/SOFTWARE/MESHGEN/ 

ESRI. widely used GIS software and data depot 
• http://www.esri.com/ 

GeoVu. Software to simplify access to diverse data 
• http://www.ngdc.noaa.gov/seg/geovu/ 

GMT. Software to produce maps from digital data 
• http://gmt.soest.hawaii.edu/ 

MARC. Commercial FEM package 
• http://www.marc.com/ 

MATLAB. Software to do mathematics 
• http://www.mathworks.com/products/matlab/ 

MICRODEM. Software for imaging of digital elevation models 
• http://www.usna.edu/Users/oceano/pguth/website/microdemdown.htm 

Online topographic map creation facility 
• http://www.aquarius.geomar.de/omc/ 

Online palaeogeographic map creation (Fig. 2.3) 
• http://www.odsn.de/odsn/services/paleomap/paleomap.html 

Online geophysical map creation facility 
• http://jules.unavco.org 

SCOTESE. Plate and climate reconstruction 
• http://www.scotese.com/ 

Spectral analysis of data toolkit 
• http://www.atmos.ucla.edu/tcd/ssa/ 
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Geological Data 

Digital Elevation Models 

Shuttle Radar Topography Mission (SRTM) 
• ftp://e0srp01u.ecs.nasa.gov/srtm/versiori2/ 

SRTM30 - 30 sec. resolution - global 
• ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM30 

SRTM30_Plus 
• http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html 

SRTM3 - 3 sec. resolution - global 
• ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM3 

SRTM1 - 1 sec. resolution - USA 
• ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM3 

GTOPO30 (better use SRTM30) 
• http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html 

GLOBE (30 sec similar to Gtopo30) 
• http://www.ngdc.noaa.gov/mgg/topo/gltiles.html 

E T 0 P 0 2 - 2 min. resolution including bathymetry 
• http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-2006/ 

GEBCO-Sand (lminute blend of the Gebco bathymetry with Smith and 
Sandwell 
• ftp://falcon.grdl.noaa.gov/pub/walter/ 

GEBCO-BATHYMETRY (signed 16 bit integer ) 
• http://snowy.arsc.alaska.edu/nasa/topography/ 

Multibeam Bathymetric Data 
• http://map.ngdc.noaa.gov/website/mgg/multibeam/viewer.htm 

Coastal Relief 
• http://www.ngdc.noaa.gov/mgg/coastal/coastal.html 

Bathymetry of the Baltic Sea 
• http://www.pangaea.de/Software/PanMap/ 

International Bathymetric Chart of the Arctic Ocean 
• http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html 

Bathymetry, topography 
• http://www.ngdc.noaa.gov/mgg/bathymetry/relief.html 

Bathymetric Chart of the Arctic Ocean 
• http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html 

Bathymetric Chart of the Oceans 
• http://www.ngdc.noaa.gov/mgg/gebco/gebco.html 

Seafloor topography from satellite 
• http://www.ngdc.noaa.gov/mgg/announcements/announce_predict.html 

Digital elevation models for the US 
• http://mcmcweb.er.usgs.gov 

Digital elevation model of the US 
• http://edcwww.cr.usgs.gov/Webglis/glisbin/guide.pl/glis/hyper/guide/7_min_dem 
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Satellite Images 

Global Land Cover Facility (free Landsat...) 
• http://glcf.umiacs.umd.edu/index.shtml 

Landsat Mosaic (MrSid - format) 
• http://www-wsm.physik.uni-karlsruhe.de/ 

Free Orthoimages 
• http://www.worldwindcentral.com/wiki/Sourcesjof_free_orthoimagery 

USGS Global Visualization Viewer 
• http://glovis.usgs.gov/ 

Satellite images 
• http://earth.jsc.nasa.gov/ 
• http://visibleearth.nasa.gov/ 
• http://nix.nasa.gov/ 
• http://www.earthkam.ucsd.edu/ 
• http://www.spaceimaging.com/index_text.html 

Water Bodies, Rivers, Shorelines 

SRTM - Water Body Data 
• ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SWBD/ 

The Global Discharge Data Base 
• http://www.rivdis.sr.unh.edu/ 

Global River Discharge Data Base 
• http://www.sage.wisc.edu/riverdata/ 

GSHHS - A Global Self-consistent, Hierarchical, High-resolution Shoreline 
Database 
• http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html 

World Vector Shoreline (WVS) 
• http://www.pangaea.de/Software/PanMap/ 

Shoreline Database 
• http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html 

Shoreline of the United States 
• http://www.csc.noaa.gov/products/shorelines/digdata.htm 

Country Boundaries and City Coordinates 

City coordinates global 
• http://www.heavens-above.com 

Country Boundaries 
• http://www.cipotato.org/DIVA/data/MoreData.htm 

Seismicity and Fault Plane Solutions 

Iris Earthquake Event Cataloque 
• http://www.iris.edu/quakes/eventsrch.htm 

Iris Moment Tensor Data 
• ftp://ftp.iris.washington.edu/pub/CMT/ 
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Earthquake Catalog of Switzerland 
• http://histserver.ethz.ch/simplequeryje.html 

Earthquakes of Central, Northern and Northwestern Europe 
• http://neic.usgs.gov/neis/epic/epic.html 

Earthquake catalogue 
• http://quake.geo.berkeley.edu/cnss/ 

Earthquake Database 
• http://www.ngdc.noaa.gov/seg/hazard/sig-srch.shtml 

Earthquake Hazards Program 
• http://earthquake.usgs.gov/research/ 

Advanced National Seismic System 
• http://www.ncedc.org/anss/catalog-search.html 

Southern California Earthquake Data Center 
• http://www.data.scec.org/catalog-search/date_mag_loc.php 

Seismologic data bases 
• http://www.seismology.harvard.edu/CMTsearch.html 

World stress map project 
• http://www-wsm.physik.uni-karlsruhe.de/ 

Precipitation and Heat Flow 

Tropical Rainfall Measuring Mission (TRMM) 
• http://daac.gsfc.nasa.gov/data/datapool/TRMM_DP/ 

Geothermal heat flow data 
• http://www.noaa.gov/geothermal.html 

Gravity and Magnetism 

Land and Marine Gravity Data 
• http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html 

GRIM5-S1/C1: A new global Earth's gravity field model 
• http://www.gfz-potsdam.de/pbl/pg3/grim/grim5-e.html 

Global Gravity and Magnetic Data 
• http://www.getech.com/data/ 

Geomagnetic Data On-line 
• http://www.ngdc.noaa.gov/seg/geomag/data.shtml 

Marine Gravity From Sattelite Altimetry 
• http://topex.ucsd.edu/WWW_html/mar_grav.html 

Gravity land 
• http://www.noaa.gov/landgravity.html 

Gravity data marine (Sandwell) 
• http://topex.ucsd.edu/marine_grav/mar_grav.html 

Gravity data global 
• ftp://topex.ucsd.edu/pub/global_grav_2min/ 

Gravimetric data base 
• http://bgi.cnes.fr:8110/bgi_service_a.html 
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Geomagnetics 
• http://www.noaa.gov/geomagnetics.html 

GPS 

high-precision GPS data 
• http://sopac.ucsd.edu/ 

GPS - time series 
• http://sideshow.jpl.nasa.gov/mbh/series.html 

GEOnet GPS- time series 
• http://www.geonet.org.nz/gps/TimeSeries.html 

UNAVCO 
• http://sps.unavco.org/crustal_motion/dxdt/ 

Jules Verne Voyager: Earth 
• http://jules.unavco.org/Voyager/Earth 

IGS. International GPS service 
• http://tonga.unavco.ucar.edu/ 

International GPS support association 
• http://igscb.jpl.nasa.gov/ 

Other Data 

Earth sciences websites 
• http://www.websites.noaa.gov/guide/sciences/earth/earth.html 

Geographic data download of USGS. 
• http://edcwww.cr.usgs.gov/doc/edchome/ndcdb/ndcdb.html 

Geological time table 
• http://www.dinosauria.com/dml/history.htm 

Geological time table 
• http://www.ucmp.berkeley.edu/help/timeform.html 

Geophysical data base of the USGS 
• http://crustal.cr.usgs.gov/crustal/geophysics/index.html 

GIS datadepot 
• http://www.gisdatadepot.com/ 

IERS. International earth rotation service 
• http://maia.usno.navy.mil/ 

Landform atlas of the US 
• http://fermi.jhuapl.edu/states/states.html 

Marine geology and geophysics data bases 
• http://www.ngdc.noaa.gov/mgg/mggonline.html 

National geophysical data center of the US 
• http://www.ngdc.noaa.gov/ngdc.html 

Natural hazards 
• http://www.noaa.gov/hazards.html 

Sediment thicknesses around the world 
• http://www.ngdc.noaa.gov/mgg/sedthick/sedthick.html 
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Statistic data of the world 
• http://www.un.org/Depts/unsd 

World fact book of the CIA 
• http://www.odci.gov/cia/publications/factbook/index.html 

Important Earth Science Journals: 

Australian Journal of Earth Science (Blackwell) 
• http://www.blacksci.co.uk/products/journals/xajes.htm 

Computers and Geoscience (Elsevier) 
• http://www.elsevier.eom/inca/publications/store/3/9/8/ 

Earth and Planetary Science Letters (Elsevier) 
• http://www.elsevier.nl:80/inca/publications/store/5/0/3/3/2/8/ 

Earth Science reviews (Elsevier) 
• http://www.elsevier.eom/inca/publications/store/5/0/3/3/2/9/ 

Electronic Geosciences 
• http://link.springer.de/link/service/journals/10069/index.htm 

EOS 
• http://www.agu.org/pubs/eos.html 

Geochemistry, Geophysics, Geosystems (electronic Journal) 
• http://146.201.254.53/ 

Geophysical Journal International (Blackwell) 
• http://www.blacksci.co.uk/products/journals/gji.htm 

Geophysical Research Letters 
• http://www.agu.org/grl/ 

GSA Bulletin, Geology, GSA today 
• http://www.geosociety.org/pubs/ 

Journal of Applied Geophysics (Elsevier) 
• http://www.elsevier.eom/inca/publications/store/5/0/3/3/3/3/ 

Journal of Geophysical Research 
• http://www.agu.org/journals/jb/ 

Journal of Metamorphic Geology (Australian site) 
• http://www.es.mq.edu.au/jmg/jmg.html 

Journal of African Earth Science (Elsevier) 
• http://www.elsevier.eom/inca/publications/store/6/9/l/ 

Journal of Geodynamics (Elsevier) 
• http://www.elsevier.eom/inca/publications/store/8/7/4/ 

Journal of Petrology (Elsevier) 
• http: / /petrology, oup j ournals .org/ 

Journal of Structural Geology(Elsevier) 
• http://www.elsevier.nl:80/inca/publications/store/5/3/9/ 

Journal of the Virtual Explorer (electronic Journal) 
• http://www.virtualexplorer.com.au/ 
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Mineralogy and Petrology 
• http://link.springer.de/link/service/journals/00710/index.htm 

Physics of the Earth and Planetary Interiors 
• http://www.elsevier.eom/inca/publications/store/5/0/3/3/5/6/ 

Precambrian Research (Elsevier) 
• http://www.elsevier.eom/inca/publications/store/5/0/3/3/5/7/ 

Reviews in Geophysics 
• http://www.agu.org/rog/ 

Tectonics 
• http://www.agu.org/journals/tc/ 

Important geological organizations: 

American Geophysical Union (AGU) 
• http://www.agu.org/ 

Austrian Geological Survey 
• http://www.geolba.ac.at/ 

Austrian portal to academic Institutions Home pages 
• http://www.portal.ac.at/ 

Australian Earth Science Departments 
• http://www.earth.monash.edu.au/aus_depts.html 

Australian Geological Survey 
• http://www.agso.gov.au/ 

British Geological Society 
• http://www.geolsoc.org.uk 

Geological Society of America 
• http://www.geosociety.org/ 

German portal to academic Institutions Home pages 
• http://www.bildungsserver.de/ 

International Earth Science Departments and Organizations 
• http://dir.yahoo.com/Science/Earth_Sciences/Geology_and_Geophysics/Institutes/ 

NASA 
• http://www.nasa.gov/NASA_homepage.html/ 

Swiss Portal to academic Institutions Home pages 
• http://www.switch.ch/ 

European Geoscience Department listing 
• http://www.uni-mainz.de/FB/Geo/Geologie/GeoInst/Europa.html 
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A 

Acceleration 
- angular, 25 
- gravitational, 26, 75 
- of plates, 26 
Accretionary wedge, 106, 246, 3( 
Accuracy 
- definition, 5 
- numerical, 401, 402 
Acoustic energy, 69 
Activation 
- energy, 231, 345 
- volume, 345 
ADI-method, 404 
Adiabatic 
- compressibility, 75 
- gradient, 76 
- melting, 34 
- processes, 74 
Advection, 80 
Africa 
- lithosphere, 35 
- rift, 40 
Airy, 164 
Altiplano, 300 
Amontons law, 226 
Analytical solution, 396 
Andersons theory, 226 
Angle of friction, 225 
Angular 
- acceleration, 25 
- momentum, 27 
- velocity, 25 
- velocity of plates, 41 
Arc 
- island, 108 
- magmatic, 108 
Argand number, 305 
Arrhenius relationship, 231, 344 

Asthenosphere 
- definition, 36 
Atmosphere C02, 329 
Australia, 178, 281 
Ayers rock, 9 

B 

Back stripping, 274 
Back thrust, 315 
Back-arc basin, 42, 256, 270 
Barometry, 346 
Barrier reef, 178 
Barrow zone, 93, 292 
Basin 
- back-arc, 42, 256 
- fore-arc, 270 
- foreland, 42, 270 
- intra-continental, 270 
- McKenzie model, 277 
- molasse, 172 
- origin, 266 
- types, 269 
Bathymetry, 16 
Bending 
- of continental plates, 172 
- of oceanic plates, 171 
Benioff zone, 42, 108 
Bessel Ellipsoid, 144 
Black smokers, 42 
Boundary condition 
- at infinity, 102, 110 
- definition, 398 
- mechanical, 246 
- orogenic, 28 
- thermal, 120 
Boundary layer 
- mechanical, 36 
- thermal, 36, 319 
Brace-Goetze lithosphere, 235 
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Brittle 
- deformation, 223 
- ductile transition, 226, 234, 327 
Buchan zones, 341 
Bulk modulus, 223 
Buoyancy force, 249, 296 
Butterfly effect, 334 
Byerlees law, 225 

C 

Chaos, 200, 202, 330 
Cheese tectonics, 20 
Chemical boundary layer, 36 
Chinese Loess Plateau, 203 
Clapeyron curve, 107 
Coast line 
- fractal dimension, 204 
Cohesion, 224 
Collision 
- momentum, 218 
- of continental plates, 41 
- of oceanic plates, 44 
- of plates generally, 41 
Compaction, 271 
Compensation depth, 162, 249 
Complementary error function, 61 
Compressibility 
- adiabatic, 75 
Conductivity 
- changes, 56 
- thermal, 53 
Confidence interval, 420 
Constitutive relationship, 220 
Contact metamorphism, 57, 82, 114, 

322, 352 
Continent 
- mean elevation, 147 
Continental 
- collision, 285 
- elevation, 434 
- geotherm, 90 
- lithosphere, 39 
Convection, 80 
Convergence 
- of plates, 44, 298 
Cooling 
- of earth, 59 
- of half space, 103 
- of oceanic lithosphere, 102 
Cooling rate, 114 
Coordinates 
- cartesian, 22 

- cylindrical, 59 
- polar, 23 
- reference frame, 144 
- spherical, 59 
Core 
- of earth, 34 
Corner flow model, 313 
COST-drilling program, 267 
Coulomb criterion, 224, 310 
Crank-Nicolson, 403 
Crust 
- continental, 39 
- oceanic, 102, 255 
Crystallization 
- heat, 120 
- of dikes, 120 
Curvature 
- definition, 394 

D 

Deborah number, 306 
Deccan, 253, 317 
Declination, 25 
Deformation 
- laws, 220 
- maps, 230 
- permanent, 223 
deformation tensor, 141 
Degradation 
- of scarps, 187 
Delamination, 319 
Density 
- of the crust, 36, 56, 166 
- of the mantle lithosphere, 36, 166 
Derivatives 
- order, 395 
Dextral, 228 
Differential 
- partial, 395 
- total, 395 
Differential equation, 393 
- analytical solution, 397 
- method of solution, 413, 416 
- numerical solution, 397 
- order, 395 
- ordinary, 396 
- partial, 396 
Differential stress, 74, 213 
Diffusion 
- cation, 349 
- equation, 55 
- mass, 184 
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- nonlinear, 186 
- numerical, 81, 405 
- radial, 59 
- time scale, 62 
Diffusion age, 192 
Diffusivity, 231 
- erosional, 185 
- thermal, 56, 62 
Dike 
- swarms, 116 
- thermal evolution, 113 
Dimension 
- dimensionless, 9 
- one-dimensional, 13 
- spatial, 6 
- three-dimensional, 8 
- two-dimensional, 11 
- units, 25 
- zero-dimensional, 8 
Dislocation energy, 69 
Displacement, 295 
Dissipative heat production, 68 
Distribution 
- Gaussian, 419 
- normal, 419 
Divergence 
- definition, 412 
Dorn law, 232 
Driving force 
- plate tectonic, 242, 245, 295 
Ductile deformation, 216 
Dynamic 
- collision, 294 
- extension, 282 
Dynamics 
- on a sphere, 25 

E 

Earth 
- age of, 59 
- core, 34 
- layer structure of, 33 
- radius, 143 
- shape, 143 
- total heat loss, 89 
Earthquake, 228 
- distribution, 244 
Eclogite, 325 
Elastic 
- bulge, 172 
- thickness, 173 
Elasticity 

- law, 221 
- of continents, 178 
- of oceanic plates, 176 
Elevation 
- of mountain belts, 165 
Ellipticity, 143 
Elongation, 73 
- definition, 140 
endogenic process, 179 
Endothermic 
- reaction, 76 
Energy 
- acoustic, 69 
- activation, 231 
- equilibrium, 54 
- Gibbs, 347 
- kinetic, 219 
- potential, 69, 282 
Equator 
- radius, 143, 431 
Equilibrium 
- coefficient, 347 
- force, 218 
- isostatic, 161 
- steady state, 61, 89, 157, 199, 312 
- thermodynamic, 347 
- transient, 89 
Erosion model, 157, 180, 181 
Error function, 61, 427 
- derivative of, 104 
Escarpment, 172 
Euler 
- reference frame, 82 
Euler pole, 25 
Eulerian 
- description, 81 
- reference frame, 84, 144, 179 
Exhumation, 149 
- mechanism, 324 
exogenic process, 179 
Exothermic 
- reaction, 76 
Expansion 
- thermal, 75, 165 
Explicit methods, 402 
Extension 
- active, 265, 282, 316 
- brittle, 226 
- continental, 148 
- force, 296 
- lateral, 303 
- pasive, 316 
- passive, 265, 282 
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- rheology change, 236 
- self limiting, 282 
- two-dimensional, 280 
Extrusion 
- lateral, 303, 308 
- vertical, 325 

F 

Fault 
- orientation, 226 
- plane solution, 228 
- temperatures, 132, 150 
- transform, 44 
Feedback, 329 
Ficks law, 52 
Ficks law, 185 
Finite 
- difference method, 137, 399 
- element method, 397 
Finite difference method 
- stability, 401 
Flexural 
- parameter, 176 
- rigidity, 173 
Flexure 
- of plates, 170 
Flood basalt, 255 
Flood basalts, 316 
Flow 
- of heat, 52 
- of mass, 52 
- viscous, 231 
- volumetric, 52 
Flow law, 220 
Fluid 
- flow, 85, 108 
- heat transport, 85 
- Newtonian, 231 
- pressure, 225 
Fold and thrust belt, 309 
Folding 
- of isotherms, 127 
- rate, 127 
Force, 210 
- applied to oceanic plates, 253 
- driving plates, 248 
- extension, 296 
- transmission, 245 
- units, 25 
Force balance 
- extension, 282 
- in orogens, 298 

Fore-arc basin, 42, 256, 270 
Foreland basin, 256, 270 
Fourier 
- cell number, 401 
- first law, 52, 185, 343 
- second law, 54 
- series, 415 
Fractal, 329 
- geometrical, 203 
- statistical, 203 
Friction coefficient, 224 
Friction heat, 68, 132, 338, 360 
Fusion heat, 77 

G 

Gas constant, 345 
Gaussian distribution, 419 
Geobarometer, 213 
Geobarometry, 346 
Geochrononology, 345 
Geoid 
- anomaly, 144, 250 
- definition, 143 
Geometry 
- on a sphere, 23 
Geosyncline, 46 
Geotherm 
- continental, 90 
- definition, 89 
- oceanic, 103 
Geothermometry, 346 
Gondwana, 15 
GPS, 227 
Graded rivers, 199 
Gradient, 58 
- definition, 412 
Granitic weathering, 188 
Gravitational 
- acceleration, 75, 170, 218, 339 
- constant, 4 
- stress, 249 
Great barrier reef, 178 
Great circle, 23 
Great Escarpment, 281 
Great escarpment, 172, 184 
Greenwich, 23 

H 

Hack Law, 196 
Half-space cooling model, 102, 112, 169 
Hawaii, 176, 208 
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Heat 
- capacity, 54 
- conductivity, 53 
- content, 78 
- content of intrusions, 124 
- content of terrains, 123 
- dissipative, 132 
- friction, 360 
- of fusion, 77 
- refraction, 56 
Heat flow 
- at the surface, 101, 242 
- definition, 53 
- from mantle, 92 
- mantle, 289, 293 
- oceanic, 105 
- surface, 289 
- two-dimensional, 58, 118, 129 
- unit, 53 
Heat production 
- by friction, 68 
- by radioactivity, 67, 92 
- by reaction, 76 
- distribution, 94 
Heat transfer 
- by active transport, 80 
- by diffusion, 52 
- types of, 51 
Himalaya, 57, 194, 219 
Histogram, 419 
Hooks law, 222 
Hydrostatic isostasy, 161 
Hydrostatic pressure, 162, 201, 220 

I 

Iceland, 255 
Implicit methods, 402 
Inclination, 25 
Incompressibility, 223 
Indenter, 306 
Indus River, 198 
Initial condition 
- definition, 398 
Interferometry, 227 
Intra-continental basins, 270 
Intrusion 
- cooling of, 114 
- heat content, 124 
- spherical, 117 
- thermal evolution, 110 
Invariant 
- tensor, 212 

489 

Island arc, 44, 108, 310 
Isograds 
- stretching, 132 
- telescoping, 132 
Isostasy, 162 
- Airy, 164 
- equilibration rate, 161 
- flexural, 170 
- hydrostatic, 161 
- Pratt, 164 
Isotherms 
- around faults, 132 
- folding of, 126 
- topography, 128 

J 

Jacobian matrix, 141 
Julia set, 329 

K 

Karoo, 253 
Kelvin model, 59 
Kinematics 
- on a sphere, 25 
- vertical, 149 
Kinetic 
- energy, 219 
Kinetics 
- of reaction, 198 
Knick point, 197 
Kochs snow flake, 203 
Kurtosis, 420 

L 

La Place equation, 60 
Lagrangian 
- coordinates, 397 
- description, 81, 191 
- reference frame, 144 
Landscape model, 199 
Landslide, 200 
Large igneous provinces, 316 
Latent heat 
- of evaporation, 76 
- of fusion, 77, 122 
lateral extrusion, 306 
Laurasia, 15 
Layers of earth, 34 
Least squares, 417 
Liquidus, 78 
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Lithosphere 
- definition, 36 
- mantle part, 36, 97 
- mechanical definition, 246 
- subdivision, 35 
- temperature at base, 36 
- thermal definition, 88 
- types of, 38 
Lithosphere thickness 
- elastic, 165, 238 
- mechanical, 37 
- thermal, 37 
Lithostatic pressure, 220 
Load 
- external, 175, 238 
- internal, 175, 238 
Longitudinal wave, 228 
Lorentz attractor, 330 
Loxodrome, 25 
LPHT-terrains, 321 
Luzon, 310 

M 

Main Central Thrust, 57 
Mantle 
- definition, 34 
- density, 165 
- discontinuity, 257 
- heat flow, 92, 288 
- lithosphere, 36, 97, 102, 235 
- plume, 255, 259, 260 
- viscosity, 161, 162 
- wedge convection, 108 
Mantle lithosphere, 164, 265 
Mantle plume, 282 
Mantle plumes, 315 
Map projection, 28 
- cylindrical, 29 
- true to angle, 29 
- true to area, 29 
Mariana Trench, 15, 22 
Mass extinctions, 318 
Mass flux, 52, 185 
Matrix, 212 
Mean 
- depth, 147 
- elevation, 147, 434 
- surface heat flow, 434 
Mercator projection, 29 
Meridian, 23 
Metamorphic field gradient 
- definition, 358 

Metamorphic geotherm 
- definition, 359 
Metamorphic gradient 
- contact, 116, 362 
- inverted, 133 
- regional, 291, 357 
Metamorphism 
- Barrovian, 292, 321 
- contact, 57, 322 
- fades, 340 
- LPHT, 321 
- regional, 285, 291, 359 
- space-time relations, 359 
- space-time relationship, 291 
Michigan Basin, 282 
Mid-oceanic ridge, 16, 102, 167, 253 
- manometer, 36, 166 
Model 
- concept, 2 
- requirements, 5 
Moho 
- definition, 34 
- temperature, 100 
Mohr-Coulomb criterion, 224 
Molasse, 172 
Moment 
- of inertia, 27 
Momentum, 25, 27, 218 
- angular, 27 
Mt Blanc, 10 
Mt Everest, 10 

N 

Nabla operator, 58 
Neotectoncis, 179 
Network law, 194 
New degrees, 23 
Newton 
- units, 26 
Newtonian fluid, 231 
Nodal plane, 229 
Normal fault, 226 
Normal stress, 211 
Normalize, 9 
Nucleation rate, 343 
Numerical 
- diffusion, 81, 405 
- solution, 396 

O 

Obduction, 42 
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Ocean 
- mean depth, 147 
Ocean floor age, 19 
Oceanic 
- CHABLIS model, 106 
- cooling, 102 
- geotherms, 101 
- water depth, 167, 434 
Olivine, 34, 71, 106, 232, 240, 255, 

430 
Orogenic force balance, 298 

P 

P-wave, 228 
Paired metamorphic belt, 108 
Palaeopiezometry, 346 
Palaeostress, 227 
Pannonian Basin, 282 
Parametric diagram, 114, 338 
Passive margin, 172, 269 
Peclet number, 86 
Periodic problems, 125 
Petrology, 342 
Phase 
- transition, 77 
Phase rule, 348 
Piezometry, 210 
Piezothermal array, 361 
Ping-pong ball model, 22 
Plane strain, 11, 306 
Plate 
- graveyards, 257 
- reconstruction, 18 
- tectonic driving force , 245 
- tectonics, 15 
Plate boundary 
- convergent, 41, 285 
- diffuse, 20 
- divergent, 40 
- passive, 40, 269, 283 
- transform, 44 
Plume 
- mantle, 255 
Poisson constant, 173, 222 
Porosity, 85, 272 
Post orogenic collapse, 307 
Potential 
- surface, 8, 412 
Potential energy, 69, 248, 282 
- continents, 257 
Power law 
- definition, 231 

- exponent, 233 
Pratt, 164 
Pre-exponent constant, 231 
Precision 
- definition, 5 
Pressure, 364 
- chemical, 213 
- hydrostatic, 220 
- mechanical, 213 
- tectonic, 220, 326 
Pressure-depth relationship, 338 
Projection 
- of maps, 28 
Pseudotachylite, 74 
PT-path, 337 
- anticlockwise, 353 
- interpretation, 292 
- parts of, 345 
- shape, 353 
Pure shear, 154 
Pythagoras, 411 

Q 

Quadratic equation, 427 

R 

Radioactive heat, 67 
Radius 
- of earth, 143 
Reaction 
- endotherm, 76 
- exotherm, 76 
- rate, 343 
Reaction heat 
- dehydration, 77 
- melting, 77 
Red Sea, 46, 282 
Reference frame, 144 
- Eulerian, 84 
- Lagrangian, 144 
Reference levels, 142 
Refraction 
- of heat, 56 
Retro-arc foreland basin, 270 
Rheology 
- definition, 233 
- of continents, 234 
- of oceans, 243 
- olivine, 238 
- quartz, 238 
Rhumb line, 25 
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Ridge push, 253 
Rift, 40 
- basin, 269 
Rifted margin sequence, 316 
Rifting, 316 
Ring of Fire, 22 
Roll back, 256 
Rotation pole, 25 

S 

San Andreas Fault, 44 
Scalar 
- definition, 410 
Scarp 
- degradation, 187 
Schmidt net, 29, 229 
Sea level 
- mean, 147 
Sea mount, 171 
Sedimentary basin 
- origin, 266 
Seismicity, 244 
Shear 
- pure, 281 
- simple, 154, 281 
- strength, 74 
- stress, 211 
Shear strength 
- definition, 216 
Shear zone, 70, 153, 281, 314 
Shields, 152, 321 
- continental, 96 
Simple shear, 154 
Skewness, 420 
Skin depth, 96 
Slab breakoff, 257 
Slab pull, 255 
Slope 
- of a function, 393 
Snowball earth, 329 
Solar system, 4 
Solidus, 78 
Solution 
- analytical, 397 
- numerical, 396 
South Georgia, 256 
Specific heat, 54, 56 
Speed 
- definition, 25 
Sphere 
- geometry, 20 
- latitude, 23 

- longitude, 23 
- meridian, 23 
Spheroid, 143 
Stability 
- numerical, 401, 402 
Stable geotherm, 89 
Standard deviation, 420 
Steady state 
- equilibrium, 61 
- geotherm, 89 
- surface elevation, 157 
Stefan problem, 120 
Strain 
- definition, 140, 222 
- hardening, 214 
- longitudinal, 73 
- plane, 11, 303, 306 
- rate, 13, 141 
Strength 
- continents, 239 
- definition, 216 
- integrated, 239 
- mean, 73, 300 
- of the continents, 235 
- of the oceans, 243 
Stress 
- deviatoric, 69, 213 
- differential, 74, 213 
- mean, 213 
- principal, 212 
- shear, 211 
- tensor, 210 
Stress field, 17 
Stress profile 
- quantitative, 239 
Stretch 
- definition, 140 
Strike slip fault, 226, 230 
Subduction Erosion, 153 
Subduction zone, 42, 106 
- accretionary wedge, 309 
- force balance, 42 
- geometry, 7 
- isotherms, 107 
- roll back, 256 
- shape, 171, 176 
- slab break off, 257 
Subsidence 
- analysis, 271 
- isostatic, 268 
- mechanisms, 268 
- tectonic, 267 
- total, 267 
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Surface 
- heat flow, 101, 105, 242, 289, 
Surface elevation, 165 
- evolution, 157 
Surface heat flow 
- mean, 434 

T 

Taiwan, 309 
Tectonic 
- driving force, 296, 298 
- pressure, 220, 326 
Temperature 
- absolute, 345 
- dimensionless, 10 
- fluctuations, 126 
- steps, 111 
Tensor 
- calculation, 410 
- stress, 210 
Thermal 
- boundary layer, 36, 64, 319 
- conductivity, 53 
- expansion, 75, 165 
Thermodynamic 
- degree of freedom, 348 
- equilibrium, 347 
Thermomechanics, 294 
Thermometry, 346 
Thickness 
- elastic, 174 
- of elastic lithosphere, 173 
- of mechanical lithosphere, 37 
- of thermal lithosphere, 37, 88 
Thin sheet approximation, 13, 303 
Thomas algorithm, 404 
Threshold, 200 
- mechanism, 332 
Thrust, 226 
Tien Shan, 246 
Time constant 
- diffusive, 344 
- thermal, 62 
Topography 
- dynamic, 170 
Torque, 25, 253 
Traction 
- definition, 210 
Transform 
- basin, 269 
- plate boundary, 44 
Transform fault, 25 
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Trench, 176 
- suction, 255 
Triple junction, 45 
Two-dimensional 
- deformation, 146 

U 

Under plating, 81 
Units 
- in this book, 429 
- mistakes with, 25 
Uplift, 149 
- of rocks, 151 
- surface, 156 
UTM projection, 30 

V 

Variance, 420 
Vector 
- calculation, 410 
- definition, 410 
Velocity 
- angular, 25 
- definition, 25 
Vertical 
- kinematics, 149 
Viscosity 
- dynamic, 230 
- effective, 231 
- kinematic, 230 
- mantle, 161 
Volcano 
- shape, 201 

W 

Wegener, 15 
WGS84, 143 
Wilson cycle, 46, 282 
Wulff net, 29 

Y 

Young's modulus, 173, 222 
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